xref: /linux/kernel/bpf/core.c (revision 27b3f70553432114b3d26f4d9c72cf02f38b84ee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 
38 #include <asm/barrier.h>
39 #include <asm/unaligned.h>
40 
41 /* Registers */
42 #define BPF_R0	regs[BPF_REG_0]
43 #define BPF_R1	regs[BPF_REG_1]
44 #define BPF_R2	regs[BPF_REG_2]
45 #define BPF_R3	regs[BPF_REG_3]
46 #define BPF_R4	regs[BPF_REG_4]
47 #define BPF_R5	regs[BPF_REG_5]
48 #define BPF_R6	regs[BPF_REG_6]
49 #define BPF_R7	regs[BPF_REG_7]
50 #define BPF_R8	regs[BPF_REG_8]
51 #define BPF_R9	regs[BPF_REG_9]
52 #define BPF_R10	regs[BPF_REG_10]
53 
54 /* Named registers */
55 #define DST	regs[insn->dst_reg]
56 #define SRC	regs[insn->src_reg]
57 #define FP	regs[BPF_REG_FP]
58 #define AX	regs[BPF_REG_AX]
59 #define ARG1	regs[BPF_REG_ARG1]
60 #define CTX	regs[BPF_REG_CTX]
61 #define IMM	insn->imm
62 
63 /* No hurry in this branch
64  *
65  * Exported for the bpf jit load helper.
66  */
67 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68 {
69 	u8 *ptr = NULL;
70 
71 	if (k >= SKF_NET_OFF)
72 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73 	else if (k >= SKF_LL_OFF)
74 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
75 
76 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
77 		return ptr;
78 
79 	return NULL;
80 }
81 
82 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
83 {
84 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
85 	struct bpf_prog_aux *aux;
86 	struct bpf_prog *fp;
87 
88 	size = round_up(size, PAGE_SIZE);
89 	fp = __vmalloc(size, gfp_flags);
90 	if (fp == NULL)
91 		return NULL;
92 
93 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
94 	if (aux == NULL) {
95 		vfree(fp);
96 		return NULL;
97 	}
98 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
99 	if (!fp->active) {
100 		vfree(fp);
101 		kfree(aux);
102 		return NULL;
103 	}
104 
105 	fp->pages = size / PAGE_SIZE;
106 	fp->aux = aux;
107 	fp->aux->prog = fp;
108 	fp->jit_requested = ebpf_jit_enabled();
109 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
110 #ifdef CONFIG_CGROUP_BPF
111 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
112 #endif
113 
114 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
115 	mutex_init(&fp->aux->used_maps_mutex);
116 	mutex_init(&fp->aux->dst_mutex);
117 
118 	return fp;
119 }
120 
121 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
122 {
123 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
124 	struct bpf_prog *prog;
125 	int cpu;
126 
127 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
128 	if (!prog)
129 		return NULL;
130 
131 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
132 	if (!prog->stats) {
133 		free_percpu(prog->active);
134 		kfree(prog->aux);
135 		vfree(prog);
136 		return NULL;
137 	}
138 
139 	for_each_possible_cpu(cpu) {
140 		struct bpf_prog_stats *pstats;
141 
142 		pstats = per_cpu_ptr(prog->stats, cpu);
143 		u64_stats_init(&pstats->syncp);
144 	}
145 	return prog;
146 }
147 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
148 
149 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
150 {
151 	if (!prog->aux->nr_linfo || !prog->jit_requested)
152 		return 0;
153 
154 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
155 					  sizeof(*prog->aux->jited_linfo),
156 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
157 	if (!prog->aux->jited_linfo)
158 		return -ENOMEM;
159 
160 	return 0;
161 }
162 
163 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
164 {
165 	if (prog->aux->jited_linfo &&
166 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
167 		kvfree(prog->aux->jited_linfo);
168 		prog->aux->jited_linfo = NULL;
169 	}
170 
171 	kfree(prog->aux->kfunc_tab);
172 	prog->aux->kfunc_tab = NULL;
173 }
174 
175 /* The jit engine is responsible to provide an array
176  * for insn_off to the jited_off mapping (insn_to_jit_off).
177  *
178  * The idx to this array is the insn_off.  Hence, the insn_off
179  * here is relative to the prog itself instead of the main prog.
180  * This array has one entry for each xlated bpf insn.
181  *
182  * jited_off is the byte off to the end of the jited insn.
183  *
184  * Hence, with
185  * insn_start:
186  *      The first bpf insn off of the prog.  The insn off
187  *      here is relative to the main prog.
188  *      e.g. if prog is a subprog, insn_start > 0
189  * linfo_idx:
190  *      The prog's idx to prog->aux->linfo and jited_linfo
191  *
192  * jited_linfo[linfo_idx] = prog->bpf_func
193  *
194  * For i > linfo_idx,
195  *
196  * jited_linfo[i] = prog->bpf_func +
197  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
198  */
199 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
200 			       const u32 *insn_to_jit_off)
201 {
202 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
203 	const struct bpf_line_info *linfo;
204 	void **jited_linfo;
205 
206 	if (!prog->aux->jited_linfo)
207 		/* Userspace did not provide linfo */
208 		return;
209 
210 	linfo_idx = prog->aux->linfo_idx;
211 	linfo = &prog->aux->linfo[linfo_idx];
212 	insn_start = linfo[0].insn_off;
213 	insn_end = insn_start + prog->len;
214 
215 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
216 	jited_linfo[0] = prog->bpf_func;
217 
218 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
219 
220 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
221 		/* The verifier ensures that linfo[i].insn_off is
222 		 * strictly increasing
223 		 */
224 		jited_linfo[i] = prog->bpf_func +
225 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
226 }
227 
228 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
229 				  gfp_t gfp_extra_flags)
230 {
231 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
232 	struct bpf_prog *fp;
233 	u32 pages;
234 
235 	size = round_up(size, PAGE_SIZE);
236 	pages = size / PAGE_SIZE;
237 	if (pages <= fp_old->pages)
238 		return fp_old;
239 
240 	fp = __vmalloc(size, gfp_flags);
241 	if (fp) {
242 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
243 		fp->pages = pages;
244 		fp->aux->prog = fp;
245 
246 		/* We keep fp->aux from fp_old around in the new
247 		 * reallocated structure.
248 		 */
249 		fp_old->aux = NULL;
250 		fp_old->stats = NULL;
251 		fp_old->active = NULL;
252 		__bpf_prog_free(fp_old);
253 	}
254 
255 	return fp;
256 }
257 
258 void __bpf_prog_free(struct bpf_prog *fp)
259 {
260 	if (fp->aux) {
261 		mutex_destroy(&fp->aux->used_maps_mutex);
262 		mutex_destroy(&fp->aux->dst_mutex);
263 		kfree(fp->aux->poke_tab);
264 		kfree(fp->aux);
265 	}
266 	free_percpu(fp->stats);
267 	free_percpu(fp->active);
268 	vfree(fp);
269 }
270 
271 int bpf_prog_calc_tag(struct bpf_prog *fp)
272 {
273 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
274 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
275 	u32 digest[SHA1_DIGEST_WORDS];
276 	u32 ws[SHA1_WORKSPACE_WORDS];
277 	u32 i, bsize, psize, blocks;
278 	struct bpf_insn *dst;
279 	bool was_ld_map;
280 	u8 *raw, *todo;
281 	__be32 *result;
282 	__be64 *bits;
283 
284 	raw = vmalloc(raw_size);
285 	if (!raw)
286 		return -ENOMEM;
287 
288 	sha1_init(digest);
289 	memset(ws, 0, sizeof(ws));
290 
291 	/* We need to take out the map fd for the digest calculation
292 	 * since they are unstable from user space side.
293 	 */
294 	dst = (void *)raw;
295 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
296 		dst[i] = fp->insnsi[i];
297 		if (!was_ld_map &&
298 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
299 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
300 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
301 			was_ld_map = true;
302 			dst[i].imm = 0;
303 		} else if (was_ld_map &&
304 			   dst[i].code == 0 &&
305 			   dst[i].dst_reg == 0 &&
306 			   dst[i].src_reg == 0 &&
307 			   dst[i].off == 0) {
308 			was_ld_map = false;
309 			dst[i].imm = 0;
310 		} else {
311 			was_ld_map = false;
312 		}
313 	}
314 
315 	psize = bpf_prog_insn_size(fp);
316 	memset(&raw[psize], 0, raw_size - psize);
317 	raw[psize++] = 0x80;
318 
319 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
320 	blocks = bsize / SHA1_BLOCK_SIZE;
321 	todo   = raw;
322 	if (bsize - psize >= sizeof(__be64)) {
323 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
324 	} else {
325 		bits = (__be64 *)(todo + bsize + bits_offset);
326 		blocks++;
327 	}
328 	*bits = cpu_to_be64((psize - 1) << 3);
329 
330 	while (blocks--) {
331 		sha1_transform(digest, todo, ws);
332 		todo += SHA1_BLOCK_SIZE;
333 	}
334 
335 	result = (__force __be32 *)digest;
336 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
337 		result[i] = cpu_to_be32(digest[i]);
338 	memcpy(fp->tag, result, sizeof(fp->tag));
339 
340 	vfree(raw);
341 	return 0;
342 }
343 
344 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
345 				s32 end_new, s32 curr, const bool probe_pass)
346 {
347 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
348 	s32 delta = end_new - end_old;
349 	s64 imm = insn->imm;
350 
351 	if (curr < pos && curr + imm + 1 >= end_old)
352 		imm += delta;
353 	else if (curr >= end_new && curr + imm + 1 < end_new)
354 		imm -= delta;
355 	if (imm < imm_min || imm > imm_max)
356 		return -ERANGE;
357 	if (!probe_pass)
358 		insn->imm = imm;
359 	return 0;
360 }
361 
362 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
363 				s32 end_new, s32 curr, const bool probe_pass)
364 {
365 	const s32 off_min = S16_MIN, off_max = S16_MAX;
366 	s32 delta = end_new - end_old;
367 	s32 off = insn->off;
368 
369 	if (curr < pos && curr + off + 1 >= end_old)
370 		off += delta;
371 	else if (curr >= end_new && curr + off + 1 < end_new)
372 		off -= delta;
373 	if (off < off_min || off > off_max)
374 		return -ERANGE;
375 	if (!probe_pass)
376 		insn->off = off;
377 	return 0;
378 }
379 
380 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
381 			    s32 end_new, const bool probe_pass)
382 {
383 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
384 	struct bpf_insn *insn = prog->insnsi;
385 	int ret = 0;
386 
387 	for (i = 0; i < insn_cnt; i++, insn++) {
388 		u8 code;
389 
390 		/* In the probing pass we still operate on the original,
391 		 * unpatched image in order to check overflows before we
392 		 * do any other adjustments. Therefore skip the patchlet.
393 		 */
394 		if (probe_pass && i == pos) {
395 			i = end_new;
396 			insn = prog->insnsi + end_old;
397 		}
398 		if (bpf_pseudo_func(insn)) {
399 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
400 						   end_new, i, probe_pass);
401 			if (ret)
402 				return ret;
403 			continue;
404 		}
405 		code = insn->code;
406 		if ((BPF_CLASS(code) != BPF_JMP &&
407 		     BPF_CLASS(code) != BPF_JMP32) ||
408 		    BPF_OP(code) == BPF_EXIT)
409 			continue;
410 		/* Adjust offset of jmps if we cross patch boundaries. */
411 		if (BPF_OP(code) == BPF_CALL) {
412 			if (insn->src_reg != BPF_PSEUDO_CALL)
413 				continue;
414 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
415 						   end_new, i, probe_pass);
416 		} else {
417 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
418 						   end_new, i, probe_pass);
419 		}
420 		if (ret)
421 			break;
422 	}
423 
424 	return ret;
425 }
426 
427 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
428 {
429 	struct bpf_line_info *linfo;
430 	u32 i, nr_linfo;
431 
432 	nr_linfo = prog->aux->nr_linfo;
433 	if (!nr_linfo || !delta)
434 		return;
435 
436 	linfo = prog->aux->linfo;
437 
438 	for (i = 0; i < nr_linfo; i++)
439 		if (off < linfo[i].insn_off)
440 			break;
441 
442 	/* Push all off < linfo[i].insn_off by delta */
443 	for (; i < nr_linfo; i++)
444 		linfo[i].insn_off += delta;
445 }
446 
447 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
448 				       const struct bpf_insn *patch, u32 len)
449 {
450 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
451 	const u32 cnt_max = S16_MAX;
452 	struct bpf_prog *prog_adj;
453 	int err;
454 
455 	/* Since our patchlet doesn't expand the image, we're done. */
456 	if (insn_delta == 0) {
457 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
458 		return prog;
459 	}
460 
461 	insn_adj_cnt = prog->len + insn_delta;
462 
463 	/* Reject anything that would potentially let the insn->off
464 	 * target overflow when we have excessive program expansions.
465 	 * We need to probe here before we do any reallocation where
466 	 * we afterwards may not fail anymore.
467 	 */
468 	if (insn_adj_cnt > cnt_max &&
469 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
470 		return ERR_PTR(err);
471 
472 	/* Several new instructions need to be inserted. Make room
473 	 * for them. Likely, there's no need for a new allocation as
474 	 * last page could have large enough tailroom.
475 	 */
476 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
477 				    GFP_USER);
478 	if (!prog_adj)
479 		return ERR_PTR(-ENOMEM);
480 
481 	prog_adj->len = insn_adj_cnt;
482 
483 	/* Patching happens in 3 steps:
484 	 *
485 	 * 1) Move over tail of insnsi from next instruction onwards,
486 	 *    so we can patch the single target insn with one or more
487 	 *    new ones (patching is always from 1 to n insns, n > 0).
488 	 * 2) Inject new instructions at the target location.
489 	 * 3) Adjust branch offsets if necessary.
490 	 */
491 	insn_rest = insn_adj_cnt - off - len;
492 
493 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
494 		sizeof(*patch) * insn_rest);
495 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
496 
497 	/* We are guaranteed to not fail at this point, otherwise
498 	 * the ship has sailed to reverse to the original state. An
499 	 * overflow cannot happen at this point.
500 	 */
501 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
502 
503 	bpf_adj_linfo(prog_adj, off, insn_delta);
504 
505 	return prog_adj;
506 }
507 
508 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
509 {
510 	/* Branch offsets can't overflow when program is shrinking, no need
511 	 * to call bpf_adj_branches(..., true) here
512 	 */
513 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
514 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
515 	prog->len -= cnt;
516 
517 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
518 }
519 
520 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
521 {
522 	int i;
523 
524 	for (i = 0; i < fp->aux->func_cnt; i++)
525 		bpf_prog_kallsyms_del(fp->aux->func[i]);
526 }
527 
528 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
529 {
530 	bpf_prog_kallsyms_del_subprogs(fp);
531 	bpf_prog_kallsyms_del(fp);
532 }
533 
534 #ifdef CONFIG_BPF_JIT
535 /* All BPF JIT sysctl knobs here. */
536 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
537 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
538 int bpf_jit_harden   __read_mostly;
539 long bpf_jit_limit   __read_mostly;
540 long bpf_jit_limit_max __read_mostly;
541 
542 static void
543 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
544 {
545 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
546 
547 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
548 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
549 }
550 
551 static void
552 bpf_prog_ksym_set_name(struct bpf_prog *prog)
553 {
554 	char *sym = prog->aux->ksym.name;
555 	const char *end = sym + KSYM_NAME_LEN;
556 	const struct btf_type *type;
557 	const char *func_name;
558 
559 	BUILD_BUG_ON(sizeof("bpf_prog_") +
560 		     sizeof(prog->tag) * 2 +
561 		     /* name has been null terminated.
562 		      * We should need +1 for the '_' preceding
563 		      * the name.  However, the null character
564 		      * is double counted between the name and the
565 		      * sizeof("bpf_prog_") above, so we omit
566 		      * the +1 here.
567 		      */
568 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
569 
570 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
571 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
572 
573 	/* prog->aux->name will be ignored if full btf name is available */
574 	if (prog->aux->func_info_cnt) {
575 		type = btf_type_by_id(prog->aux->btf,
576 				      prog->aux->func_info[prog->aux->func_idx].type_id);
577 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
578 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
579 		return;
580 	}
581 
582 	if (prog->aux->name[0])
583 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
584 	else
585 		*sym = 0;
586 }
587 
588 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
589 {
590 	return container_of(n, struct bpf_ksym, tnode)->start;
591 }
592 
593 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
594 					  struct latch_tree_node *b)
595 {
596 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
597 }
598 
599 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
600 {
601 	unsigned long val = (unsigned long)key;
602 	const struct bpf_ksym *ksym;
603 
604 	ksym = container_of(n, struct bpf_ksym, tnode);
605 
606 	if (val < ksym->start)
607 		return -1;
608 	if (val >= ksym->end)
609 		return  1;
610 
611 	return 0;
612 }
613 
614 static const struct latch_tree_ops bpf_tree_ops = {
615 	.less	= bpf_tree_less,
616 	.comp	= bpf_tree_comp,
617 };
618 
619 static DEFINE_SPINLOCK(bpf_lock);
620 static LIST_HEAD(bpf_kallsyms);
621 static struct latch_tree_root bpf_tree __cacheline_aligned;
622 
623 void bpf_ksym_add(struct bpf_ksym *ksym)
624 {
625 	spin_lock_bh(&bpf_lock);
626 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
627 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
628 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
629 	spin_unlock_bh(&bpf_lock);
630 }
631 
632 static void __bpf_ksym_del(struct bpf_ksym *ksym)
633 {
634 	if (list_empty(&ksym->lnode))
635 		return;
636 
637 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
638 	list_del_rcu(&ksym->lnode);
639 }
640 
641 void bpf_ksym_del(struct bpf_ksym *ksym)
642 {
643 	spin_lock_bh(&bpf_lock);
644 	__bpf_ksym_del(ksym);
645 	spin_unlock_bh(&bpf_lock);
646 }
647 
648 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
649 {
650 	return fp->jited && !bpf_prog_was_classic(fp);
651 }
652 
653 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
654 {
655 	return list_empty(&fp->aux->ksym.lnode) ||
656 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
657 }
658 
659 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
660 {
661 	if (!bpf_prog_kallsyms_candidate(fp) ||
662 	    !bpf_capable())
663 		return;
664 
665 	bpf_prog_ksym_set_addr(fp);
666 	bpf_prog_ksym_set_name(fp);
667 	fp->aux->ksym.prog = true;
668 
669 	bpf_ksym_add(&fp->aux->ksym);
670 }
671 
672 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
673 {
674 	if (!bpf_prog_kallsyms_candidate(fp))
675 		return;
676 
677 	bpf_ksym_del(&fp->aux->ksym);
678 }
679 
680 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
681 {
682 	struct latch_tree_node *n;
683 
684 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
685 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
686 }
687 
688 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
689 				 unsigned long *off, char *sym)
690 {
691 	struct bpf_ksym *ksym;
692 	char *ret = NULL;
693 
694 	rcu_read_lock();
695 	ksym = bpf_ksym_find(addr);
696 	if (ksym) {
697 		unsigned long symbol_start = ksym->start;
698 		unsigned long symbol_end = ksym->end;
699 
700 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
701 
702 		ret = sym;
703 		if (size)
704 			*size = symbol_end - symbol_start;
705 		if (off)
706 			*off  = addr - symbol_start;
707 	}
708 	rcu_read_unlock();
709 
710 	return ret;
711 }
712 
713 bool is_bpf_text_address(unsigned long addr)
714 {
715 	bool ret;
716 
717 	rcu_read_lock();
718 	ret = bpf_ksym_find(addr) != NULL;
719 	rcu_read_unlock();
720 
721 	return ret;
722 }
723 
724 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
725 {
726 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
727 
728 	return ksym && ksym->prog ?
729 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
730 	       NULL;
731 }
732 
733 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
734 {
735 	const struct exception_table_entry *e = NULL;
736 	struct bpf_prog *prog;
737 
738 	rcu_read_lock();
739 	prog = bpf_prog_ksym_find(addr);
740 	if (!prog)
741 		goto out;
742 	if (!prog->aux->num_exentries)
743 		goto out;
744 
745 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
746 out:
747 	rcu_read_unlock();
748 	return e;
749 }
750 
751 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
752 		    char *sym)
753 {
754 	struct bpf_ksym *ksym;
755 	unsigned int it = 0;
756 	int ret = -ERANGE;
757 
758 	if (!bpf_jit_kallsyms_enabled())
759 		return ret;
760 
761 	rcu_read_lock();
762 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
763 		if (it++ != symnum)
764 			continue;
765 
766 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
767 
768 		*value = ksym->start;
769 		*type  = BPF_SYM_ELF_TYPE;
770 
771 		ret = 0;
772 		break;
773 	}
774 	rcu_read_unlock();
775 
776 	return ret;
777 }
778 
779 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
780 				struct bpf_jit_poke_descriptor *poke)
781 {
782 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
783 	static const u32 poke_tab_max = 1024;
784 	u32 slot = prog->aux->size_poke_tab;
785 	u32 size = slot + 1;
786 
787 	if (size > poke_tab_max)
788 		return -ENOSPC;
789 	if (poke->tailcall_target || poke->tailcall_target_stable ||
790 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
791 		return -EINVAL;
792 
793 	switch (poke->reason) {
794 	case BPF_POKE_REASON_TAIL_CALL:
795 		if (!poke->tail_call.map)
796 			return -EINVAL;
797 		break;
798 	default:
799 		return -EINVAL;
800 	}
801 
802 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
803 	if (!tab)
804 		return -ENOMEM;
805 
806 	memcpy(&tab[slot], poke, sizeof(*poke));
807 	prog->aux->size_poke_tab = size;
808 	prog->aux->poke_tab = tab;
809 
810 	return slot;
811 }
812 
813 /*
814  * BPF program pack allocator.
815  *
816  * Most BPF programs are pretty small. Allocating a hole page for each
817  * program is sometime a waste. Many small bpf program also adds pressure
818  * to instruction TLB. To solve this issue, we introduce a BPF program pack
819  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
820  * to host BPF programs.
821  */
822 #define BPF_PROG_CHUNK_SHIFT	6
823 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
824 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
825 
826 struct bpf_prog_pack {
827 	struct list_head list;
828 	void *ptr;
829 	unsigned long bitmap[];
830 };
831 
832 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
833 
834 static size_t bpf_prog_pack_size = -1;
835 static size_t bpf_prog_pack_mask = -1;
836 
837 static int bpf_prog_chunk_count(void)
838 {
839 	WARN_ON_ONCE(bpf_prog_pack_size == -1);
840 	return bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE;
841 }
842 
843 static DEFINE_MUTEX(pack_mutex);
844 static LIST_HEAD(pack_list);
845 
846 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
847  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
848  */
849 #ifdef PMD_SIZE
850 #define BPF_HPAGE_SIZE PMD_SIZE
851 #define BPF_HPAGE_MASK PMD_MASK
852 #else
853 #define BPF_HPAGE_SIZE PAGE_SIZE
854 #define BPF_HPAGE_MASK PAGE_MASK
855 #endif
856 
857 static size_t select_bpf_prog_pack_size(void)
858 {
859 	size_t size;
860 	void *ptr;
861 
862 	size = BPF_HPAGE_SIZE * num_online_nodes();
863 	ptr = module_alloc(size);
864 
865 	/* Test whether we can get huge pages. If not just use PAGE_SIZE
866 	 * packs.
867 	 */
868 	if (!ptr || !is_vm_area_hugepages(ptr)) {
869 		size = PAGE_SIZE;
870 		bpf_prog_pack_mask = PAGE_MASK;
871 	} else {
872 		bpf_prog_pack_mask = BPF_HPAGE_MASK;
873 	}
874 
875 	vfree(ptr);
876 	return size;
877 }
878 
879 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
880 {
881 	struct bpf_prog_pack *pack;
882 
883 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(bpf_prog_chunk_count())),
884 		       GFP_KERNEL);
885 	if (!pack)
886 		return NULL;
887 	pack->ptr = module_alloc(bpf_prog_pack_size);
888 	if (!pack->ptr) {
889 		kfree(pack);
890 		return NULL;
891 	}
892 	bpf_fill_ill_insns(pack->ptr, bpf_prog_pack_size);
893 	bitmap_zero(pack->bitmap, bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE);
894 	list_add_tail(&pack->list, &pack_list);
895 
896 	set_vm_flush_reset_perms(pack->ptr);
897 	set_memory_ro((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
898 	set_memory_x((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
899 	return pack;
900 }
901 
902 static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
903 {
904 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
905 	struct bpf_prog_pack *pack;
906 	unsigned long pos;
907 	void *ptr = NULL;
908 
909 	mutex_lock(&pack_mutex);
910 	if (bpf_prog_pack_size == -1)
911 		bpf_prog_pack_size = select_bpf_prog_pack_size();
912 
913 	if (size > bpf_prog_pack_size) {
914 		size = round_up(size, PAGE_SIZE);
915 		ptr = module_alloc(size);
916 		if (ptr) {
917 			bpf_fill_ill_insns(ptr, size);
918 			set_vm_flush_reset_perms(ptr);
919 			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
920 			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
921 		}
922 		goto out;
923 	}
924 	list_for_each_entry(pack, &pack_list, list) {
925 		pos = bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
926 						 nbits, 0);
927 		if (pos < bpf_prog_chunk_count())
928 			goto found_free_area;
929 	}
930 
931 	pack = alloc_new_pack(bpf_fill_ill_insns);
932 	if (!pack)
933 		goto out;
934 
935 	pos = 0;
936 
937 found_free_area:
938 	bitmap_set(pack->bitmap, pos, nbits);
939 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
940 
941 out:
942 	mutex_unlock(&pack_mutex);
943 	return ptr;
944 }
945 
946 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
947 {
948 	struct bpf_prog_pack *pack = NULL, *tmp;
949 	unsigned int nbits;
950 	unsigned long pos;
951 	void *pack_ptr;
952 
953 	mutex_lock(&pack_mutex);
954 	if (hdr->size > bpf_prog_pack_size) {
955 		module_memfree(hdr);
956 		goto out;
957 	}
958 
959 	pack_ptr = (void *)((unsigned long)hdr & bpf_prog_pack_mask);
960 
961 	list_for_each_entry(tmp, &pack_list, list) {
962 		if (tmp->ptr == pack_ptr) {
963 			pack = tmp;
964 			break;
965 		}
966 	}
967 
968 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
969 		goto out;
970 
971 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
972 	pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT;
973 
974 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
975 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
976 
977 	bitmap_clear(pack->bitmap, pos, nbits);
978 	if (bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
979 				       bpf_prog_chunk_count(), 0) == 0) {
980 		list_del(&pack->list);
981 		module_memfree(pack->ptr);
982 		kfree(pack);
983 	}
984 out:
985 	mutex_unlock(&pack_mutex);
986 }
987 
988 static atomic_long_t bpf_jit_current;
989 
990 /* Can be overridden by an arch's JIT compiler if it has a custom,
991  * dedicated BPF backend memory area, or if neither of the two
992  * below apply.
993  */
994 u64 __weak bpf_jit_alloc_exec_limit(void)
995 {
996 #if defined(MODULES_VADDR)
997 	return MODULES_END - MODULES_VADDR;
998 #else
999 	return VMALLOC_END - VMALLOC_START;
1000 #endif
1001 }
1002 
1003 static int __init bpf_jit_charge_init(void)
1004 {
1005 	/* Only used as heuristic here to derive limit. */
1006 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1007 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
1008 					    PAGE_SIZE), LONG_MAX);
1009 	return 0;
1010 }
1011 pure_initcall(bpf_jit_charge_init);
1012 
1013 int bpf_jit_charge_modmem(u32 size)
1014 {
1015 	if (atomic_long_add_return(size, &bpf_jit_current) > bpf_jit_limit) {
1016 		if (!bpf_capable()) {
1017 			atomic_long_sub(size, &bpf_jit_current);
1018 			return -EPERM;
1019 		}
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 void bpf_jit_uncharge_modmem(u32 size)
1026 {
1027 	atomic_long_sub(size, &bpf_jit_current);
1028 }
1029 
1030 void *__weak bpf_jit_alloc_exec(unsigned long size)
1031 {
1032 	return module_alloc(size);
1033 }
1034 
1035 void __weak bpf_jit_free_exec(void *addr)
1036 {
1037 	module_memfree(addr);
1038 }
1039 
1040 struct bpf_binary_header *
1041 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1042 		     unsigned int alignment,
1043 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1044 {
1045 	struct bpf_binary_header *hdr;
1046 	u32 size, hole, start;
1047 
1048 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1049 		     alignment > BPF_IMAGE_ALIGNMENT);
1050 
1051 	/* Most of BPF filters are really small, but if some of them
1052 	 * fill a page, allow at least 128 extra bytes to insert a
1053 	 * random section of illegal instructions.
1054 	 */
1055 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1056 
1057 	if (bpf_jit_charge_modmem(size))
1058 		return NULL;
1059 	hdr = bpf_jit_alloc_exec(size);
1060 	if (!hdr) {
1061 		bpf_jit_uncharge_modmem(size);
1062 		return NULL;
1063 	}
1064 
1065 	/* Fill space with illegal/arch-dep instructions. */
1066 	bpf_fill_ill_insns(hdr, size);
1067 
1068 	hdr->size = size;
1069 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1070 		     PAGE_SIZE - sizeof(*hdr));
1071 	start = (get_random_int() % hole) & ~(alignment - 1);
1072 
1073 	/* Leave a random number of instructions before BPF code. */
1074 	*image_ptr = &hdr->image[start];
1075 
1076 	return hdr;
1077 }
1078 
1079 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1080 {
1081 	u32 size = hdr->size;
1082 
1083 	bpf_jit_free_exec(hdr);
1084 	bpf_jit_uncharge_modmem(size);
1085 }
1086 
1087 /* Allocate jit binary from bpf_prog_pack allocator.
1088  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1089  * to the memory. To solve this problem, a RW buffer is also allocated at
1090  * as the same time. The JIT engine should calculate offsets based on the
1091  * RO memory address, but write JITed program to the RW buffer. Once the
1092  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1093  * the JITed program to the RO memory.
1094  */
1095 struct bpf_binary_header *
1096 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1097 			  unsigned int alignment,
1098 			  struct bpf_binary_header **rw_header,
1099 			  u8 **rw_image,
1100 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1101 {
1102 	struct bpf_binary_header *ro_header;
1103 	u32 size, hole, start;
1104 
1105 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1106 		     alignment > BPF_IMAGE_ALIGNMENT);
1107 
1108 	/* add 16 bytes for a random section of illegal instructions */
1109 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1110 
1111 	if (bpf_jit_charge_modmem(size))
1112 		return NULL;
1113 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1114 	if (!ro_header) {
1115 		bpf_jit_uncharge_modmem(size);
1116 		return NULL;
1117 	}
1118 
1119 	*rw_header = kvmalloc(size, GFP_KERNEL);
1120 	if (!*rw_header) {
1121 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1122 		bpf_prog_pack_free(ro_header);
1123 		bpf_jit_uncharge_modmem(size);
1124 		return NULL;
1125 	}
1126 
1127 	/* Fill space with illegal/arch-dep instructions. */
1128 	bpf_fill_ill_insns(*rw_header, size);
1129 	(*rw_header)->size = size;
1130 
1131 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1132 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1133 	start = (get_random_int() % hole) & ~(alignment - 1);
1134 
1135 	*image_ptr = &ro_header->image[start];
1136 	*rw_image = &(*rw_header)->image[start];
1137 
1138 	return ro_header;
1139 }
1140 
1141 /* Copy JITed text from rw_header to its final location, the ro_header. */
1142 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1143 				 struct bpf_binary_header *ro_header,
1144 				 struct bpf_binary_header *rw_header)
1145 {
1146 	void *ptr;
1147 
1148 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1149 
1150 	kvfree(rw_header);
1151 
1152 	if (IS_ERR(ptr)) {
1153 		bpf_prog_pack_free(ro_header);
1154 		return PTR_ERR(ptr);
1155 	}
1156 	prog->aux->use_bpf_prog_pack = true;
1157 	return 0;
1158 }
1159 
1160 /* bpf_jit_binary_pack_free is called in two different scenarios:
1161  *   1) when the program is freed after;
1162  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1163  * For case 2), we need to free both the RO memory and the RW buffer.
1164  *
1165  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1166  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1167  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1168  * bpf_arch_text_copy (when jit fails).
1169  */
1170 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1171 			      struct bpf_binary_header *rw_header)
1172 {
1173 	u32 size = ro_header->size;
1174 
1175 	bpf_prog_pack_free(ro_header);
1176 	kvfree(rw_header);
1177 	bpf_jit_uncharge_modmem(size);
1178 }
1179 
1180 static inline struct bpf_binary_header *
1181 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1182 {
1183 	unsigned long real_start = (unsigned long)fp->bpf_func;
1184 	unsigned long addr;
1185 
1186 	if (fp->aux->use_bpf_prog_pack)
1187 		addr = real_start & BPF_PROG_CHUNK_MASK;
1188 	else
1189 		addr = real_start & PAGE_MASK;
1190 
1191 	return (void *)addr;
1192 }
1193 
1194 /* This symbol is only overridden by archs that have different
1195  * requirements than the usual eBPF JITs, f.e. when they only
1196  * implement cBPF JIT, do not set images read-only, etc.
1197  */
1198 void __weak bpf_jit_free(struct bpf_prog *fp)
1199 {
1200 	if (fp->jited) {
1201 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1202 
1203 		if (fp->aux->use_bpf_prog_pack)
1204 			bpf_jit_binary_pack_free(hdr, NULL /* rw_buffer */);
1205 		else
1206 			bpf_jit_binary_free(hdr);
1207 
1208 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1209 	}
1210 
1211 	bpf_prog_unlock_free(fp);
1212 }
1213 
1214 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1215 			  const struct bpf_insn *insn, bool extra_pass,
1216 			  u64 *func_addr, bool *func_addr_fixed)
1217 {
1218 	s16 off = insn->off;
1219 	s32 imm = insn->imm;
1220 	u8 *addr;
1221 
1222 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1223 	if (!*func_addr_fixed) {
1224 		/* Place-holder address till the last pass has collected
1225 		 * all addresses for JITed subprograms in which case we
1226 		 * can pick them up from prog->aux.
1227 		 */
1228 		if (!extra_pass)
1229 			addr = NULL;
1230 		else if (prog->aux->func &&
1231 			 off >= 0 && off < prog->aux->func_cnt)
1232 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1233 		else
1234 			return -EINVAL;
1235 	} else {
1236 		/* Address of a BPF helper call. Since part of the core
1237 		 * kernel, it's always at a fixed location. __bpf_call_base
1238 		 * and the helper with imm relative to it are both in core
1239 		 * kernel.
1240 		 */
1241 		addr = (u8 *)__bpf_call_base + imm;
1242 	}
1243 
1244 	*func_addr = (unsigned long)addr;
1245 	return 0;
1246 }
1247 
1248 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1249 			      const struct bpf_insn *aux,
1250 			      struct bpf_insn *to_buff,
1251 			      bool emit_zext)
1252 {
1253 	struct bpf_insn *to = to_buff;
1254 	u32 imm_rnd = get_random_int();
1255 	s16 off;
1256 
1257 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1258 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1259 
1260 	/* Constraints on AX register:
1261 	 *
1262 	 * AX register is inaccessible from user space. It is mapped in
1263 	 * all JITs, and used here for constant blinding rewrites. It is
1264 	 * typically "stateless" meaning its contents are only valid within
1265 	 * the executed instruction, but not across several instructions.
1266 	 * There are a few exceptions however which are further detailed
1267 	 * below.
1268 	 *
1269 	 * Constant blinding is only used by JITs, not in the interpreter.
1270 	 * The interpreter uses AX in some occasions as a local temporary
1271 	 * register e.g. in DIV or MOD instructions.
1272 	 *
1273 	 * In restricted circumstances, the verifier can also use the AX
1274 	 * register for rewrites as long as they do not interfere with
1275 	 * the above cases!
1276 	 */
1277 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1278 		goto out;
1279 
1280 	if (from->imm == 0 &&
1281 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1282 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1283 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1284 		goto out;
1285 	}
1286 
1287 	switch (from->code) {
1288 	case BPF_ALU | BPF_ADD | BPF_K:
1289 	case BPF_ALU | BPF_SUB | BPF_K:
1290 	case BPF_ALU | BPF_AND | BPF_K:
1291 	case BPF_ALU | BPF_OR  | BPF_K:
1292 	case BPF_ALU | BPF_XOR | BPF_K:
1293 	case BPF_ALU | BPF_MUL | BPF_K:
1294 	case BPF_ALU | BPF_MOV | BPF_K:
1295 	case BPF_ALU | BPF_DIV | BPF_K:
1296 	case BPF_ALU | BPF_MOD | BPF_K:
1297 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1298 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1299 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1300 		break;
1301 
1302 	case BPF_ALU64 | BPF_ADD | BPF_K:
1303 	case BPF_ALU64 | BPF_SUB | BPF_K:
1304 	case BPF_ALU64 | BPF_AND | BPF_K:
1305 	case BPF_ALU64 | BPF_OR  | BPF_K:
1306 	case BPF_ALU64 | BPF_XOR | BPF_K:
1307 	case BPF_ALU64 | BPF_MUL | BPF_K:
1308 	case BPF_ALU64 | BPF_MOV | BPF_K:
1309 	case BPF_ALU64 | BPF_DIV | BPF_K:
1310 	case BPF_ALU64 | BPF_MOD | BPF_K:
1311 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1312 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1313 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1314 		break;
1315 
1316 	case BPF_JMP | BPF_JEQ  | BPF_K:
1317 	case BPF_JMP | BPF_JNE  | BPF_K:
1318 	case BPF_JMP | BPF_JGT  | BPF_K:
1319 	case BPF_JMP | BPF_JLT  | BPF_K:
1320 	case BPF_JMP | BPF_JGE  | BPF_K:
1321 	case BPF_JMP | BPF_JLE  | BPF_K:
1322 	case BPF_JMP | BPF_JSGT | BPF_K:
1323 	case BPF_JMP | BPF_JSLT | BPF_K:
1324 	case BPF_JMP | BPF_JSGE | BPF_K:
1325 	case BPF_JMP | BPF_JSLE | BPF_K:
1326 	case BPF_JMP | BPF_JSET | BPF_K:
1327 		/* Accommodate for extra offset in case of a backjump. */
1328 		off = from->off;
1329 		if (off < 0)
1330 			off -= 2;
1331 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1332 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1333 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1334 		break;
1335 
1336 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1337 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1338 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1339 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1340 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1341 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1342 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1343 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1344 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1345 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1346 	case BPF_JMP32 | BPF_JSET | BPF_K:
1347 		/* Accommodate for extra offset in case of a backjump. */
1348 		off = from->off;
1349 		if (off < 0)
1350 			off -= 2;
1351 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1352 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1353 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1354 				      off);
1355 		break;
1356 
1357 	case BPF_LD | BPF_IMM | BPF_DW:
1358 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1359 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1360 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1361 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1362 		break;
1363 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1364 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1365 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1366 		if (emit_zext)
1367 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1368 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1369 		break;
1370 
1371 	case BPF_ST | BPF_MEM | BPF_DW:
1372 	case BPF_ST | BPF_MEM | BPF_W:
1373 	case BPF_ST | BPF_MEM | BPF_H:
1374 	case BPF_ST | BPF_MEM | BPF_B:
1375 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1376 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1377 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1378 		break;
1379 	}
1380 out:
1381 	return to - to_buff;
1382 }
1383 
1384 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1385 					      gfp_t gfp_extra_flags)
1386 {
1387 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1388 	struct bpf_prog *fp;
1389 
1390 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1391 	if (fp != NULL) {
1392 		/* aux->prog still points to the fp_other one, so
1393 		 * when promoting the clone to the real program,
1394 		 * this still needs to be adapted.
1395 		 */
1396 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1397 	}
1398 
1399 	return fp;
1400 }
1401 
1402 static void bpf_prog_clone_free(struct bpf_prog *fp)
1403 {
1404 	/* aux was stolen by the other clone, so we cannot free
1405 	 * it from this path! It will be freed eventually by the
1406 	 * other program on release.
1407 	 *
1408 	 * At this point, we don't need a deferred release since
1409 	 * clone is guaranteed to not be locked.
1410 	 */
1411 	fp->aux = NULL;
1412 	fp->stats = NULL;
1413 	fp->active = NULL;
1414 	__bpf_prog_free(fp);
1415 }
1416 
1417 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1418 {
1419 	/* We have to repoint aux->prog to self, as we don't
1420 	 * know whether fp here is the clone or the original.
1421 	 */
1422 	fp->aux->prog = fp;
1423 	bpf_prog_clone_free(fp_other);
1424 }
1425 
1426 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1427 {
1428 	struct bpf_insn insn_buff[16], aux[2];
1429 	struct bpf_prog *clone, *tmp;
1430 	int insn_delta, insn_cnt;
1431 	struct bpf_insn *insn;
1432 	int i, rewritten;
1433 
1434 	if (!prog->blinding_requested || prog->blinded)
1435 		return prog;
1436 
1437 	clone = bpf_prog_clone_create(prog, GFP_USER);
1438 	if (!clone)
1439 		return ERR_PTR(-ENOMEM);
1440 
1441 	insn_cnt = clone->len;
1442 	insn = clone->insnsi;
1443 
1444 	for (i = 0; i < insn_cnt; i++, insn++) {
1445 		if (bpf_pseudo_func(insn)) {
1446 			/* ld_imm64 with an address of bpf subprog is not
1447 			 * a user controlled constant. Don't randomize it,
1448 			 * since it will conflict with jit_subprogs() logic.
1449 			 */
1450 			insn++;
1451 			i++;
1452 			continue;
1453 		}
1454 
1455 		/* We temporarily need to hold the original ld64 insn
1456 		 * so that we can still access the first part in the
1457 		 * second blinding run.
1458 		 */
1459 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1460 		    insn[1].code == 0)
1461 			memcpy(aux, insn, sizeof(aux));
1462 
1463 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1464 						clone->aux->verifier_zext);
1465 		if (!rewritten)
1466 			continue;
1467 
1468 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1469 		if (IS_ERR(tmp)) {
1470 			/* Patching may have repointed aux->prog during
1471 			 * realloc from the original one, so we need to
1472 			 * fix it up here on error.
1473 			 */
1474 			bpf_jit_prog_release_other(prog, clone);
1475 			return tmp;
1476 		}
1477 
1478 		clone = tmp;
1479 		insn_delta = rewritten - 1;
1480 
1481 		/* Walk new program and skip insns we just inserted. */
1482 		insn = clone->insnsi + i + insn_delta;
1483 		insn_cnt += insn_delta;
1484 		i        += insn_delta;
1485 	}
1486 
1487 	clone->blinded = 1;
1488 	return clone;
1489 }
1490 #endif /* CONFIG_BPF_JIT */
1491 
1492 /* Base function for offset calculation. Needs to go into .text section,
1493  * therefore keeping it non-static as well; will also be used by JITs
1494  * anyway later on, so do not let the compiler omit it. This also needs
1495  * to go into kallsyms for correlation from e.g. bpftool, so naming
1496  * must not change.
1497  */
1498 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1499 {
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(__bpf_call_base);
1503 
1504 /* All UAPI available opcodes. */
1505 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1506 	/* 32 bit ALU operations. */		\
1507 	/*   Register based. */			\
1508 	INSN_3(ALU, ADD,  X),			\
1509 	INSN_3(ALU, SUB,  X),			\
1510 	INSN_3(ALU, AND,  X),			\
1511 	INSN_3(ALU, OR,   X),			\
1512 	INSN_3(ALU, LSH,  X),			\
1513 	INSN_3(ALU, RSH,  X),			\
1514 	INSN_3(ALU, XOR,  X),			\
1515 	INSN_3(ALU, MUL,  X),			\
1516 	INSN_3(ALU, MOV,  X),			\
1517 	INSN_3(ALU, ARSH, X),			\
1518 	INSN_3(ALU, DIV,  X),			\
1519 	INSN_3(ALU, MOD,  X),			\
1520 	INSN_2(ALU, NEG),			\
1521 	INSN_3(ALU, END, TO_BE),		\
1522 	INSN_3(ALU, END, TO_LE),		\
1523 	/*   Immediate based. */		\
1524 	INSN_3(ALU, ADD,  K),			\
1525 	INSN_3(ALU, SUB,  K),			\
1526 	INSN_3(ALU, AND,  K),			\
1527 	INSN_3(ALU, OR,   K),			\
1528 	INSN_3(ALU, LSH,  K),			\
1529 	INSN_3(ALU, RSH,  K),			\
1530 	INSN_3(ALU, XOR,  K),			\
1531 	INSN_3(ALU, MUL,  K),			\
1532 	INSN_3(ALU, MOV,  K),			\
1533 	INSN_3(ALU, ARSH, K),			\
1534 	INSN_3(ALU, DIV,  K),			\
1535 	INSN_3(ALU, MOD,  K),			\
1536 	/* 64 bit ALU operations. */		\
1537 	/*   Register based. */			\
1538 	INSN_3(ALU64, ADD,  X),			\
1539 	INSN_3(ALU64, SUB,  X),			\
1540 	INSN_3(ALU64, AND,  X),			\
1541 	INSN_3(ALU64, OR,   X),			\
1542 	INSN_3(ALU64, LSH,  X),			\
1543 	INSN_3(ALU64, RSH,  X),			\
1544 	INSN_3(ALU64, XOR,  X),			\
1545 	INSN_3(ALU64, MUL,  X),			\
1546 	INSN_3(ALU64, MOV,  X),			\
1547 	INSN_3(ALU64, ARSH, X),			\
1548 	INSN_3(ALU64, DIV,  X),			\
1549 	INSN_3(ALU64, MOD,  X),			\
1550 	INSN_2(ALU64, NEG),			\
1551 	/*   Immediate based. */		\
1552 	INSN_3(ALU64, ADD,  K),			\
1553 	INSN_3(ALU64, SUB,  K),			\
1554 	INSN_3(ALU64, AND,  K),			\
1555 	INSN_3(ALU64, OR,   K),			\
1556 	INSN_3(ALU64, LSH,  K),			\
1557 	INSN_3(ALU64, RSH,  K),			\
1558 	INSN_3(ALU64, XOR,  K),			\
1559 	INSN_3(ALU64, MUL,  K),			\
1560 	INSN_3(ALU64, MOV,  K),			\
1561 	INSN_3(ALU64, ARSH, K),			\
1562 	INSN_3(ALU64, DIV,  K),			\
1563 	INSN_3(ALU64, MOD,  K),			\
1564 	/* Call instruction. */			\
1565 	INSN_2(JMP, CALL),			\
1566 	/* Exit instruction. */			\
1567 	INSN_2(JMP, EXIT),			\
1568 	/* 32-bit Jump instructions. */		\
1569 	/*   Register based. */			\
1570 	INSN_3(JMP32, JEQ,  X),			\
1571 	INSN_3(JMP32, JNE,  X),			\
1572 	INSN_3(JMP32, JGT,  X),			\
1573 	INSN_3(JMP32, JLT,  X),			\
1574 	INSN_3(JMP32, JGE,  X),			\
1575 	INSN_3(JMP32, JLE,  X),			\
1576 	INSN_3(JMP32, JSGT, X),			\
1577 	INSN_3(JMP32, JSLT, X),			\
1578 	INSN_3(JMP32, JSGE, X),			\
1579 	INSN_3(JMP32, JSLE, X),			\
1580 	INSN_3(JMP32, JSET, X),			\
1581 	/*   Immediate based. */		\
1582 	INSN_3(JMP32, JEQ,  K),			\
1583 	INSN_3(JMP32, JNE,  K),			\
1584 	INSN_3(JMP32, JGT,  K),			\
1585 	INSN_3(JMP32, JLT,  K),			\
1586 	INSN_3(JMP32, JGE,  K),			\
1587 	INSN_3(JMP32, JLE,  K),			\
1588 	INSN_3(JMP32, JSGT, K),			\
1589 	INSN_3(JMP32, JSLT, K),			\
1590 	INSN_3(JMP32, JSGE, K),			\
1591 	INSN_3(JMP32, JSLE, K),			\
1592 	INSN_3(JMP32, JSET, K),			\
1593 	/* Jump instructions. */		\
1594 	/*   Register based. */			\
1595 	INSN_3(JMP, JEQ,  X),			\
1596 	INSN_3(JMP, JNE,  X),			\
1597 	INSN_3(JMP, JGT,  X),			\
1598 	INSN_3(JMP, JLT,  X),			\
1599 	INSN_3(JMP, JGE,  X),			\
1600 	INSN_3(JMP, JLE,  X),			\
1601 	INSN_3(JMP, JSGT, X),			\
1602 	INSN_3(JMP, JSLT, X),			\
1603 	INSN_3(JMP, JSGE, X),			\
1604 	INSN_3(JMP, JSLE, X),			\
1605 	INSN_3(JMP, JSET, X),			\
1606 	/*   Immediate based. */		\
1607 	INSN_3(JMP, JEQ,  K),			\
1608 	INSN_3(JMP, JNE,  K),			\
1609 	INSN_3(JMP, JGT,  K),			\
1610 	INSN_3(JMP, JLT,  K),			\
1611 	INSN_3(JMP, JGE,  K),			\
1612 	INSN_3(JMP, JLE,  K),			\
1613 	INSN_3(JMP, JSGT, K),			\
1614 	INSN_3(JMP, JSLT, K),			\
1615 	INSN_3(JMP, JSGE, K),			\
1616 	INSN_3(JMP, JSLE, K),			\
1617 	INSN_3(JMP, JSET, K),			\
1618 	INSN_2(JMP, JA),			\
1619 	/* Store instructions. */		\
1620 	/*   Register based. */			\
1621 	INSN_3(STX, MEM,  B),			\
1622 	INSN_3(STX, MEM,  H),			\
1623 	INSN_3(STX, MEM,  W),			\
1624 	INSN_3(STX, MEM,  DW),			\
1625 	INSN_3(STX, ATOMIC, W),			\
1626 	INSN_3(STX, ATOMIC, DW),		\
1627 	/*   Immediate based. */		\
1628 	INSN_3(ST, MEM, B),			\
1629 	INSN_3(ST, MEM, H),			\
1630 	INSN_3(ST, MEM, W),			\
1631 	INSN_3(ST, MEM, DW),			\
1632 	/* Load instructions. */		\
1633 	/*   Register based. */			\
1634 	INSN_3(LDX, MEM, B),			\
1635 	INSN_3(LDX, MEM, H),			\
1636 	INSN_3(LDX, MEM, W),			\
1637 	INSN_3(LDX, MEM, DW),			\
1638 	/*   Immediate based. */		\
1639 	INSN_3(LD, IMM, DW)
1640 
1641 bool bpf_opcode_in_insntable(u8 code)
1642 {
1643 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1644 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1645 	static const bool public_insntable[256] = {
1646 		[0 ... 255] = false,
1647 		/* Now overwrite non-defaults ... */
1648 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1649 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1650 		[BPF_LD | BPF_ABS | BPF_B] = true,
1651 		[BPF_LD | BPF_ABS | BPF_H] = true,
1652 		[BPF_LD | BPF_ABS | BPF_W] = true,
1653 		[BPF_LD | BPF_IND | BPF_B] = true,
1654 		[BPF_LD | BPF_IND | BPF_H] = true,
1655 		[BPF_LD | BPF_IND | BPF_W] = true,
1656 	};
1657 #undef BPF_INSN_3_TBL
1658 #undef BPF_INSN_2_TBL
1659 	return public_insntable[code];
1660 }
1661 
1662 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1663 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1664 {
1665 	memset(dst, 0, size);
1666 	return -EFAULT;
1667 }
1668 
1669 /**
1670  *	___bpf_prog_run - run eBPF program on a given context
1671  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1672  *	@insn: is the array of eBPF instructions
1673  *
1674  * Decode and execute eBPF instructions.
1675  *
1676  * Return: whatever value is in %BPF_R0 at program exit
1677  */
1678 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1679 {
1680 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1681 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1682 	static const void * const jumptable[256] __annotate_jump_table = {
1683 		[0 ... 255] = &&default_label,
1684 		/* Now overwrite non-defaults ... */
1685 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1686 		/* Non-UAPI available opcodes. */
1687 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1688 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1689 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1690 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1691 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1692 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1693 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1694 	};
1695 #undef BPF_INSN_3_LBL
1696 #undef BPF_INSN_2_LBL
1697 	u32 tail_call_cnt = 0;
1698 
1699 #define CONT	 ({ insn++; goto select_insn; })
1700 #define CONT_JMP ({ insn++; goto select_insn; })
1701 
1702 select_insn:
1703 	goto *jumptable[insn->code];
1704 
1705 	/* Explicitly mask the register-based shift amounts with 63 or 31
1706 	 * to avoid undefined behavior. Normally this won't affect the
1707 	 * generated code, for example, in case of native 64 bit archs such
1708 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1709 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1710 	 * the BPF shift operations to machine instructions which produce
1711 	 * implementation-defined results in such a case; the resulting
1712 	 * contents of the register may be arbitrary, but program behaviour
1713 	 * as a whole remains defined. In other words, in case of JIT backends,
1714 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1715 	 */
1716 	/* ALU (shifts) */
1717 #define SHT(OPCODE, OP)					\
1718 	ALU64_##OPCODE##_X:				\
1719 		DST = DST OP (SRC & 63);		\
1720 		CONT;					\
1721 	ALU_##OPCODE##_X:				\
1722 		DST = (u32) DST OP ((u32) SRC & 31);	\
1723 		CONT;					\
1724 	ALU64_##OPCODE##_K:				\
1725 		DST = DST OP IMM;			\
1726 		CONT;					\
1727 	ALU_##OPCODE##_K:				\
1728 		DST = (u32) DST OP (u32) IMM;		\
1729 		CONT;
1730 	/* ALU (rest) */
1731 #define ALU(OPCODE, OP)					\
1732 	ALU64_##OPCODE##_X:				\
1733 		DST = DST OP SRC;			\
1734 		CONT;					\
1735 	ALU_##OPCODE##_X:				\
1736 		DST = (u32) DST OP (u32) SRC;		\
1737 		CONT;					\
1738 	ALU64_##OPCODE##_K:				\
1739 		DST = DST OP IMM;			\
1740 		CONT;					\
1741 	ALU_##OPCODE##_K:				\
1742 		DST = (u32) DST OP (u32) IMM;		\
1743 		CONT;
1744 	ALU(ADD,  +)
1745 	ALU(SUB,  -)
1746 	ALU(AND,  &)
1747 	ALU(OR,   |)
1748 	ALU(XOR,  ^)
1749 	ALU(MUL,  *)
1750 	SHT(LSH, <<)
1751 	SHT(RSH, >>)
1752 #undef SHT
1753 #undef ALU
1754 	ALU_NEG:
1755 		DST = (u32) -DST;
1756 		CONT;
1757 	ALU64_NEG:
1758 		DST = -DST;
1759 		CONT;
1760 	ALU_MOV_X:
1761 		DST = (u32) SRC;
1762 		CONT;
1763 	ALU_MOV_K:
1764 		DST = (u32) IMM;
1765 		CONT;
1766 	ALU64_MOV_X:
1767 		DST = SRC;
1768 		CONT;
1769 	ALU64_MOV_K:
1770 		DST = IMM;
1771 		CONT;
1772 	LD_IMM_DW:
1773 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1774 		insn++;
1775 		CONT;
1776 	ALU_ARSH_X:
1777 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1778 		CONT;
1779 	ALU_ARSH_K:
1780 		DST = (u64) (u32) (((s32) DST) >> IMM);
1781 		CONT;
1782 	ALU64_ARSH_X:
1783 		(*(s64 *) &DST) >>= (SRC & 63);
1784 		CONT;
1785 	ALU64_ARSH_K:
1786 		(*(s64 *) &DST) >>= IMM;
1787 		CONT;
1788 	ALU64_MOD_X:
1789 		div64_u64_rem(DST, SRC, &AX);
1790 		DST = AX;
1791 		CONT;
1792 	ALU_MOD_X:
1793 		AX = (u32) DST;
1794 		DST = do_div(AX, (u32) SRC);
1795 		CONT;
1796 	ALU64_MOD_K:
1797 		div64_u64_rem(DST, IMM, &AX);
1798 		DST = AX;
1799 		CONT;
1800 	ALU_MOD_K:
1801 		AX = (u32) DST;
1802 		DST = do_div(AX, (u32) IMM);
1803 		CONT;
1804 	ALU64_DIV_X:
1805 		DST = div64_u64(DST, SRC);
1806 		CONT;
1807 	ALU_DIV_X:
1808 		AX = (u32) DST;
1809 		do_div(AX, (u32) SRC);
1810 		DST = (u32) AX;
1811 		CONT;
1812 	ALU64_DIV_K:
1813 		DST = div64_u64(DST, IMM);
1814 		CONT;
1815 	ALU_DIV_K:
1816 		AX = (u32) DST;
1817 		do_div(AX, (u32) IMM);
1818 		DST = (u32) AX;
1819 		CONT;
1820 	ALU_END_TO_BE:
1821 		switch (IMM) {
1822 		case 16:
1823 			DST = (__force u16) cpu_to_be16(DST);
1824 			break;
1825 		case 32:
1826 			DST = (__force u32) cpu_to_be32(DST);
1827 			break;
1828 		case 64:
1829 			DST = (__force u64) cpu_to_be64(DST);
1830 			break;
1831 		}
1832 		CONT;
1833 	ALU_END_TO_LE:
1834 		switch (IMM) {
1835 		case 16:
1836 			DST = (__force u16) cpu_to_le16(DST);
1837 			break;
1838 		case 32:
1839 			DST = (__force u32) cpu_to_le32(DST);
1840 			break;
1841 		case 64:
1842 			DST = (__force u64) cpu_to_le64(DST);
1843 			break;
1844 		}
1845 		CONT;
1846 
1847 	/* CALL */
1848 	JMP_CALL:
1849 		/* Function call scratches BPF_R1-BPF_R5 registers,
1850 		 * preserves BPF_R6-BPF_R9, and stores return value
1851 		 * into BPF_R0.
1852 		 */
1853 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1854 						       BPF_R4, BPF_R5);
1855 		CONT;
1856 
1857 	JMP_CALL_ARGS:
1858 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1859 							    BPF_R3, BPF_R4,
1860 							    BPF_R5,
1861 							    insn + insn->off + 1);
1862 		CONT;
1863 
1864 	JMP_TAIL_CALL: {
1865 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1866 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1867 		struct bpf_prog *prog;
1868 		u32 index = BPF_R3;
1869 
1870 		if (unlikely(index >= array->map.max_entries))
1871 			goto out;
1872 
1873 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1874 			goto out;
1875 
1876 		tail_call_cnt++;
1877 
1878 		prog = READ_ONCE(array->ptrs[index]);
1879 		if (!prog)
1880 			goto out;
1881 
1882 		/* ARG1 at this point is guaranteed to point to CTX from
1883 		 * the verifier side due to the fact that the tail call is
1884 		 * handled like a helper, that is, bpf_tail_call_proto,
1885 		 * where arg1_type is ARG_PTR_TO_CTX.
1886 		 */
1887 		insn = prog->insnsi;
1888 		goto select_insn;
1889 out:
1890 		CONT;
1891 	}
1892 	JMP_JA:
1893 		insn += insn->off;
1894 		CONT;
1895 	JMP_EXIT:
1896 		return BPF_R0;
1897 	/* JMP */
1898 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1899 	JMP_##OPCODE##_X:					\
1900 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1901 			insn += insn->off;			\
1902 			CONT_JMP;				\
1903 		}						\
1904 		CONT;						\
1905 	JMP32_##OPCODE##_X:					\
1906 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1907 			insn += insn->off;			\
1908 			CONT_JMP;				\
1909 		}						\
1910 		CONT;						\
1911 	JMP_##OPCODE##_K:					\
1912 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1913 			insn += insn->off;			\
1914 			CONT_JMP;				\
1915 		}						\
1916 		CONT;						\
1917 	JMP32_##OPCODE##_K:					\
1918 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1919 			insn += insn->off;			\
1920 			CONT_JMP;				\
1921 		}						\
1922 		CONT;
1923 	COND_JMP(u, JEQ, ==)
1924 	COND_JMP(u, JNE, !=)
1925 	COND_JMP(u, JGT, >)
1926 	COND_JMP(u, JLT, <)
1927 	COND_JMP(u, JGE, >=)
1928 	COND_JMP(u, JLE, <=)
1929 	COND_JMP(u, JSET, &)
1930 	COND_JMP(s, JSGT, >)
1931 	COND_JMP(s, JSLT, <)
1932 	COND_JMP(s, JSGE, >=)
1933 	COND_JMP(s, JSLE, <=)
1934 #undef COND_JMP
1935 	/* ST, STX and LDX*/
1936 	ST_NOSPEC:
1937 		/* Speculation barrier for mitigating Speculative Store Bypass.
1938 		 * In case of arm64, we rely on the firmware mitigation as
1939 		 * controlled via the ssbd kernel parameter. Whenever the
1940 		 * mitigation is enabled, it works for all of the kernel code
1941 		 * with no need to provide any additional instructions here.
1942 		 * In case of x86, we use 'lfence' insn for mitigation. We
1943 		 * reuse preexisting logic from Spectre v1 mitigation that
1944 		 * happens to produce the required code on x86 for v4 as well.
1945 		 */
1946 #ifdef CONFIG_X86
1947 		barrier_nospec();
1948 #endif
1949 		CONT;
1950 #define LDST(SIZEOP, SIZE)						\
1951 	STX_MEM_##SIZEOP:						\
1952 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1953 		CONT;							\
1954 	ST_MEM_##SIZEOP:						\
1955 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1956 		CONT;							\
1957 	LDX_MEM_##SIZEOP:						\
1958 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1959 		CONT;							\
1960 	LDX_PROBE_MEM_##SIZEOP:						\
1961 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1962 				      (const void *)(long) (SRC + insn->off));	\
1963 		DST = *((SIZE *)&DST);					\
1964 		CONT;
1965 
1966 	LDST(B,   u8)
1967 	LDST(H,  u16)
1968 	LDST(W,  u32)
1969 	LDST(DW, u64)
1970 #undef LDST
1971 
1972 #define ATOMIC_ALU_OP(BOP, KOP)						\
1973 		case BOP:						\
1974 			if (BPF_SIZE(insn->code) == BPF_W)		\
1975 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1976 					     (DST + insn->off));	\
1977 			else						\
1978 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1979 					       (DST + insn->off));	\
1980 			break;						\
1981 		case BOP | BPF_FETCH:					\
1982 			if (BPF_SIZE(insn->code) == BPF_W)		\
1983 				SRC = (u32) atomic_fetch_##KOP(		\
1984 					(u32) SRC,			\
1985 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1986 			else						\
1987 				SRC = (u64) atomic64_fetch_##KOP(	\
1988 					(u64) SRC,			\
1989 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1990 			break;
1991 
1992 	STX_ATOMIC_DW:
1993 	STX_ATOMIC_W:
1994 		switch (IMM) {
1995 		ATOMIC_ALU_OP(BPF_ADD, add)
1996 		ATOMIC_ALU_OP(BPF_AND, and)
1997 		ATOMIC_ALU_OP(BPF_OR, or)
1998 		ATOMIC_ALU_OP(BPF_XOR, xor)
1999 #undef ATOMIC_ALU_OP
2000 
2001 		case BPF_XCHG:
2002 			if (BPF_SIZE(insn->code) == BPF_W)
2003 				SRC = (u32) atomic_xchg(
2004 					(atomic_t *)(unsigned long) (DST + insn->off),
2005 					(u32) SRC);
2006 			else
2007 				SRC = (u64) atomic64_xchg(
2008 					(atomic64_t *)(unsigned long) (DST + insn->off),
2009 					(u64) SRC);
2010 			break;
2011 		case BPF_CMPXCHG:
2012 			if (BPF_SIZE(insn->code) == BPF_W)
2013 				BPF_R0 = (u32) atomic_cmpxchg(
2014 					(atomic_t *)(unsigned long) (DST + insn->off),
2015 					(u32) BPF_R0, (u32) SRC);
2016 			else
2017 				BPF_R0 = (u64) atomic64_cmpxchg(
2018 					(atomic64_t *)(unsigned long) (DST + insn->off),
2019 					(u64) BPF_R0, (u64) SRC);
2020 			break;
2021 
2022 		default:
2023 			goto default_label;
2024 		}
2025 		CONT;
2026 
2027 	default_label:
2028 		/* If we ever reach this, we have a bug somewhere. Die hard here
2029 		 * instead of just returning 0; we could be somewhere in a subprog,
2030 		 * so execution could continue otherwise which we do /not/ want.
2031 		 *
2032 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2033 		 */
2034 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2035 			insn->code, insn->imm);
2036 		BUG_ON(1);
2037 		return 0;
2038 }
2039 
2040 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2041 #define DEFINE_BPF_PROG_RUN(stack_size) \
2042 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2043 { \
2044 	u64 stack[stack_size / sizeof(u64)]; \
2045 	u64 regs[MAX_BPF_EXT_REG]; \
2046 \
2047 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2048 	ARG1 = (u64) (unsigned long) ctx; \
2049 	return ___bpf_prog_run(regs, insn); \
2050 }
2051 
2052 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2053 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2054 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2055 				      const struct bpf_insn *insn) \
2056 { \
2057 	u64 stack[stack_size / sizeof(u64)]; \
2058 	u64 regs[MAX_BPF_EXT_REG]; \
2059 \
2060 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2061 	BPF_R1 = r1; \
2062 	BPF_R2 = r2; \
2063 	BPF_R3 = r3; \
2064 	BPF_R4 = r4; \
2065 	BPF_R5 = r5; \
2066 	return ___bpf_prog_run(regs, insn); \
2067 }
2068 
2069 #define EVAL1(FN, X) FN(X)
2070 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2071 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2072 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2073 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2074 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2075 
2076 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2077 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2078 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2079 
2080 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2081 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2082 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2083 
2084 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2085 
2086 static unsigned int (*interpreters[])(const void *ctx,
2087 				      const struct bpf_insn *insn) = {
2088 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2089 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2090 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2091 };
2092 #undef PROG_NAME_LIST
2093 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2094 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2095 				  const struct bpf_insn *insn) = {
2096 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2097 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2098 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2099 };
2100 #undef PROG_NAME_LIST
2101 
2102 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2103 {
2104 	stack_depth = max_t(u32, stack_depth, 1);
2105 	insn->off = (s16) insn->imm;
2106 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2107 		__bpf_call_base_args;
2108 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2109 }
2110 
2111 #else
2112 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2113 					 const struct bpf_insn *insn)
2114 {
2115 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2116 	 * is not working properly, so warn about it!
2117 	 */
2118 	WARN_ON_ONCE(1);
2119 	return 0;
2120 }
2121 #endif
2122 
2123 bool bpf_prog_map_compatible(struct bpf_map *map,
2124 			     const struct bpf_prog *fp)
2125 {
2126 	bool ret;
2127 
2128 	if (fp->kprobe_override)
2129 		return false;
2130 
2131 	spin_lock(&map->owner.lock);
2132 	if (!map->owner.type) {
2133 		/* There's no owner yet where we could check for
2134 		 * compatibility.
2135 		 */
2136 		map->owner.type  = fp->type;
2137 		map->owner.jited = fp->jited;
2138 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2139 		ret = true;
2140 	} else {
2141 		ret = map->owner.type  == fp->type &&
2142 		      map->owner.jited == fp->jited &&
2143 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2144 	}
2145 	spin_unlock(&map->owner.lock);
2146 
2147 	return ret;
2148 }
2149 
2150 static int bpf_check_tail_call(const struct bpf_prog *fp)
2151 {
2152 	struct bpf_prog_aux *aux = fp->aux;
2153 	int i, ret = 0;
2154 
2155 	mutex_lock(&aux->used_maps_mutex);
2156 	for (i = 0; i < aux->used_map_cnt; i++) {
2157 		struct bpf_map *map = aux->used_maps[i];
2158 
2159 		if (!map_type_contains_progs(map))
2160 			continue;
2161 
2162 		if (!bpf_prog_map_compatible(map, fp)) {
2163 			ret = -EINVAL;
2164 			goto out;
2165 		}
2166 	}
2167 
2168 out:
2169 	mutex_unlock(&aux->used_maps_mutex);
2170 	return ret;
2171 }
2172 
2173 static void bpf_prog_select_func(struct bpf_prog *fp)
2174 {
2175 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2176 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2177 
2178 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2179 #else
2180 	fp->bpf_func = __bpf_prog_ret0_warn;
2181 #endif
2182 }
2183 
2184 /**
2185  *	bpf_prog_select_runtime - select exec runtime for BPF program
2186  *	@fp: bpf_prog populated with BPF program
2187  *	@err: pointer to error variable
2188  *
2189  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2190  * The BPF program will be executed via bpf_prog_run() function.
2191  *
2192  * Return: the &fp argument along with &err set to 0 for success or
2193  * a negative errno code on failure
2194  */
2195 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2196 {
2197 	/* In case of BPF to BPF calls, verifier did all the prep
2198 	 * work with regards to JITing, etc.
2199 	 */
2200 	bool jit_needed = false;
2201 
2202 	if (fp->bpf_func)
2203 		goto finalize;
2204 
2205 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2206 	    bpf_prog_has_kfunc_call(fp))
2207 		jit_needed = true;
2208 
2209 	bpf_prog_select_func(fp);
2210 
2211 	/* eBPF JITs can rewrite the program in case constant
2212 	 * blinding is active. However, in case of error during
2213 	 * blinding, bpf_int_jit_compile() must always return a
2214 	 * valid program, which in this case would simply not
2215 	 * be JITed, but falls back to the interpreter.
2216 	 */
2217 	if (!bpf_prog_is_dev_bound(fp->aux)) {
2218 		*err = bpf_prog_alloc_jited_linfo(fp);
2219 		if (*err)
2220 			return fp;
2221 
2222 		fp = bpf_int_jit_compile(fp);
2223 		bpf_prog_jit_attempt_done(fp);
2224 		if (!fp->jited && jit_needed) {
2225 			*err = -ENOTSUPP;
2226 			return fp;
2227 		}
2228 	} else {
2229 		*err = bpf_prog_offload_compile(fp);
2230 		if (*err)
2231 			return fp;
2232 	}
2233 
2234 finalize:
2235 	bpf_prog_lock_ro(fp);
2236 
2237 	/* The tail call compatibility check can only be done at
2238 	 * this late stage as we need to determine, if we deal
2239 	 * with JITed or non JITed program concatenations and not
2240 	 * all eBPF JITs might immediately support all features.
2241 	 */
2242 	*err = bpf_check_tail_call(fp);
2243 
2244 	return fp;
2245 }
2246 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2247 
2248 static unsigned int __bpf_prog_ret1(const void *ctx,
2249 				    const struct bpf_insn *insn)
2250 {
2251 	return 1;
2252 }
2253 
2254 static struct bpf_prog_dummy {
2255 	struct bpf_prog prog;
2256 } dummy_bpf_prog = {
2257 	.prog = {
2258 		.bpf_func = __bpf_prog_ret1,
2259 	},
2260 };
2261 
2262 struct bpf_empty_prog_array bpf_empty_prog_array = {
2263 	.null_prog = NULL,
2264 };
2265 EXPORT_SYMBOL(bpf_empty_prog_array);
2266 
2267 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2268 {
2269 	if (prog_cnt)
2270 		return kzalloc(sizeof(struct bpf_prog_array) +
2271 			       sizeof(struct bpf_prog_array_item) *
2272 			       (prog_cnt + 1),
2273 			       flags);
2274 
2275 	return &bpf_empty_prog_array.hdr;
2276 }
2277 
2278 void bpf_prog_array_free(struct bpf_prog_array *progs)
2279 {
2280 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2281 		return;
2282 	kfree_rcu(progs, rcu);
2283 }
2284 
2285 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2286 {
2287 	struct bpf_prog_array *progs;
2288 
2289 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2290 	kfree_rcu(progs, rcu);
2291 }
2292 
2293 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2294 {
2295 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2296 		return;
2297 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2298 }
2299 
2300 int bpf_prog_array_length(struct bpf_prog_array *array)
2301 {
2302 	struct bpf_prog_array_item *item;
2303 	u32 cnt = 0;
2304 
2305 	for (item = array->items; item->prog; item++)
2306 		if (item->prog != &dummy_bpf_prog.prog)
2307 			cnt++;
2308 	return cnt;
2309 }
2310 
2311 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2312 {
2313 	struct bpf_prog_array_item *item;
2314 
2315 	for (item = array->items; item->prog; item++)
2316 		if (item->prog != &dummy_bpf_prog.prog)
2317 			return false;
2318 	return true;
2319 }
2320 
2321 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2322 				     u32 *prog_ids,
2323 				     u32 request_cnt)
2324 {
2325 	struct bpf_prog_array_item *item;
2326 	int i = 0;
2327 
2328 	for (item = array->items; item->prog; item++) {
2329 		if (item->prog == &dummy_bpf_prog.prog)
2330 			continue;
2331 		prog_ids[i] = item->prog->aux->id;
2332 		if (++i == request_cnt) {
2333 			item++;
2334 			break;
2335 		}
2336 	}
2337 
2338 	return !!(item->prog);
2339 }
2340 
2341 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2342 				__u32 __user *prog_ids, u32 cnt)
2343 {
2344 	unsigned long err = 0;
2345 	bool nospc;
2346 	u32 *ids;
2347 
2348 	/* users of this function are doing:
2349 	 * cnt = bpf_prog_array_length();
2350 	 * if (cnt > 0)
2351 	 *     bpf_prog_array_copy_to_user(..., cnt);
2352 	 * so below kcalloc doesn't need extra cnt > 0 check.
2353 	 */
2354 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2355 	if (!ids)
2356 		return -ENOMEM;
2357 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2358 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2359 	kfree(ids);
2360 	if (err)
2361 		return -EFAULT;
2362 	if (nospc)
2363 		return -ENOSPC;
2364 	return 0;
2365 }
2366 
2367 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2368 				struct bpf_prog *old_prog)
2369 {
2370 	struct bpf_prog_array_item *item;
2371 
2372 	for (item = array->items; item->prog; item++)
2373 		if (item->prog == old_prog) {
2374 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2375 			break;
2376 		}
2377 }
2378 
2379 /**
2380  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2381  *                                   index into the program array with
2382  *                                   a dummy no-op program.
2383  * @array: a bpf_prog_array
2384  * @index: the index of the program to replace
2385  *
2386  * Skips over dummy programs, by not counting them, when calculating
2387  * the position of the program to replace.
2388  *
2389  * Return:
2390  * * 0		- Success
2391  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2392  * * -ENOENT	- Index out of range
2393  */
2394 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2395 {
2396 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2397 }
2398 
2399 /**
2400  * bpf_prog_array_update_at() - Updates the program at the given index
2401  *                              into the program array.
2402  * @array: a bpf_prog_array
2403  * @index: the index of the program to update
2404  * @prog: the program to insert into the array
2405  *
2406  * Skips over dummy programs, by not counting them, when calculating
2407  * the position of the program to update.
2408  *
2409  * Return:
2410  * * 0		- Success
2411  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2412  * * -ENOENT	- Index out of range
2413  */
2414 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2415 			     struct bpf_prog *prog)
2416 {
2417 	struct bpf_prog_array_item *item;
2418 
2419 	if (unlikely(index < 0))
2420 		return -EINVAL;
2421 
2422 	for (item = array->items; item->prog; item++) {
2423 		if (item->prog == &dummy_bpf_prog.prog)
2424 			continue;
2425 		if (!index) {
2426 			WRITE_ONCE(item->prog, prog);
2427 			return 0;
2428 		}
2429 		index--;
2430 	}
2431 	return -ENOENT;
2432 }
2433 
2434 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2435 			struct bpf_prog *exclude_prog,
2436 			struct bpf_prog *include_prog,
2437 			u64 bpf_cookie,
2438 			struct bpf_prog_array **new_array)
2439 {
2440 	int new_prog_cnt, carry_prog_cnt = 0;
2441 	struct bpf_prog_array_item *existing, *new;
2442 	struct bpf_prog_array *array;
2443 	bool found_exclude = false;
2444 
2445 	/* Figure out how many existing progs we need to carry over to
2446 	 * the new array.
2447 	 */
2448 	if (old_array) {
2449 		existing = old_array->items;
2450 		for (; existing->prog; existing++) {
2451 			if (existing->prog == exclude_prog) {
2452 				found_exclude = true;
2453 				continue;
2454 			}
2455 			if (existing->prog != &dummy_bpf_prog.prog)
2456 				carry_prog_cnt++;
2457 			if (existing->prog == include_prog)
2458 				return -EEXIST;
2459 		}
2460 	}
2461 
2462 	if (exclude_prog && !found_exclude)
2463 		return -ENOENT;
2464 
2465 	/* How many progs (not NULL) will be in the new array? */
2466 	new_prog_cnt = carry_prog_cnt;
2467 	if (include_prog)
2468 		new_prog_cnt += 1;
2469 
2470 	/* Do we have any prog (not NULL) in the new array? */
2471 	if (!new_prog_cnt) {
2472 		*new_array = NULL;
2473 		return 0;
2474 	}
2475 
2476 	/* +1 as the end of prog_array is marked with NULL */
2477 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2478 	if (!array)
2479 		return -ENOMEM;
2480 	new = array->items;
2481 
2482 	/* Fill in the new prog array */
2483 	if (carry_prog_cnt) {
2484 		existing = old_array->items;
2485 		for (; existing->prog; existing++) {
2486 			if (existing->prog == exclude_prog ||
2487 			    existing->prog == &dummy_bpf_prog.prog)
2488 				continue;
2489 
2490 			new->prog = existing->prog;
2491 			new->bpf_cookie = existing->bpf_cookie;
2492 			new++;
2493 		}
2494 	}
2495 	if (include_prog) {
2496 		new->prog = include_prog;
2497 		new->bpf_cookie = bpf_cookie;
2498 		new++;
2499 	}
2500 	new->prog = NULL;
2501 	*new_array = array;
2502 	return 0;
2503 }
2504 
2505 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2506 			     u32 *prog_ids, u32 request_cnt,
2507 			     u32 *prog_cnt)
2508 {
2509 	u32 cnt = 0;
2510 
2511 	if (array)
2512 		cnt = bpf_prog_array_length(array);
2513 
2514 	*prog_cnt = cnt;
2515 
2516 	/* return early if user requested only program count or nothing to copy */
2517 	if (!request_cnt || !cnt)
2518 		return 0;
2519 
2520 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2521 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2522 								     : 0;
2523 }
2524 
2525 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2526 			  struct bpf_map **used_maps, u32 len)
2527 {
2528 	struct bpf_map *map;
2529 	u32 i;
2530 
2531 	for (i = 0; i < len; i++) {
2532 		map = used_maps[i];
2533 		if (map->ops->map_poke_untrack)
2534 			map->ops->map_poke_untrack(map, aux);
2535 		bpf_map_put(map);
2536 	}
2537 }
2538 
2539 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2540 {
2541 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2542 	kfree(aux->used_maps);
2543 }
2544 
2545 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2546 			  struct btf_mod_pair *used_btfs, u32 len)
2547 {
2548 #ifdef CONFIG_BPF_SYSCALL
2549 	struct btf_mod_pair *btf_mod;
2550 	u32 i;
2551 
2552 	for (i = 0; i < len; i++) {
2553 		btf_mod = &used_btfs[i];
2554 		if (btf_mod->module)
2555 			module_put(btf_mod->module);
2556 		btf_put(btf_mod->btf);
2557 	}
2558 #endif
2559 }
2560 
2561 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2562 {
2563 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2564 	kfree(aux->used_btfs);
2565 }
2566 
2567 static void bpf_prog_free_deferred(struct work_struct *work)
2568 {
2569 	struct bpf_prog_aux *aux;
2570 	int i;
2571 
2572 	aux = container_of(work, struct bpf_prog_aux, work);
2573 #ifdef CONFIG_BPF_SYSCALL
2574 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2575 #endif
2576 #ifdef CONFIG_CGROUP_BPF
2577 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2578 		bpf_cgroup_atype_put(aux->cgroup_atype);
2579 #endif
2580 	bpf_free_used_maps(aux);
2581 	bpf_free_used_btfs(aux);
2582 	if (bpf_prog_is_dev_bound(aux))
2583 		bpf_prog_offload_destroy(aux->prog);
2584 #ifdef CONFIG_PERF_EVENTS
2585 	if (aux->prog->has_callchain_buf)
2586 		put_callchain_buffers();
2587 #endif
2588 	if (aux->dst_trampoline)
2589 		bpf_trampoline_put(aux->dst_trampoline);
2590 	for (i = 0; i < aux->func_cnt; i++) {
2591 		/* We can just unlink the subprog poke descriptor table as
2592 		 * it was originally linked to the main program and is also
2593 		 * released along with it.
2594 		 */
2595 		aux->func[i]->aux->poke_tab = NULL;
2596 		bpf_jit_free(aux->func[i]);
2597 	}
2598 	if (aux->func_cnt) {
2599 		kfree(aux->func);
2600 		bpf_prog_unlock_free(aux->prog);
2601 	} else {
2602 		bpf_jit_free(aux->prog);
2603 	}
2604 }
2605 
2606 void bpf_prog_free(struct bpf_prog *fp)
2607 {
2608 	struct bpf_prog_aux *aux = fp->aux;
2609 
2610 	if (aux->dst_prog)
2611 		bpf_prog_put(aux->dst_prog);
2612 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2613 	schedule_work(&aux->work);
2614 }
2615 EXPORT_SYMBOL_GPL(bpf_prog_free);
2616 
2617 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2618 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2619 
2620 void bpf_user_rnd_init_once(void)
2621 {
2622 	prandom_init_once(&bpf_user_rnd_state);
2623 }
2624 
2625 BPF_CALL_0(bpf_user_rnd_u32)
2626 {
2627 	/* Should someone ever have the rather unwise idea to use some
2628 	 * of the registers passed into this function, then note that
2629 	 * this function is called from native eBPF and classic-to-eBPF
2630 	 * transformations. Register assignments from both sides are
2631 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2632 	 */
2633 	struct rnd_state *state;
2634 	u32 res;
2635 
2636 	state = &get_cpu_var(bpf_user_rnd_state);
2637 	res = prandom_u32_state(state);
2638 	put_cpu_var(bpf_user_rnd_state);
2639 
2640 	return res;
2641 }
2642 
2643 BPF_CALL_0(bpf_get_raw_cpu_id)
2644 {
2645 	return raw_smp_processor_id();
2646 }
2647 
2648 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2649 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2650 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2651 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2652 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2653 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2654 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2655 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2656 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2657 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2658 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2659 
2660 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2661 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2662 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2663 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2664 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2665 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2666 
2667 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2668 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2669 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2670 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2671 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2672 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2673 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2674 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2675 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2676 const struct bpf_func_proto bpf_set_retval_proto __weak;
2677 const struct bpf_func_proto bpf_get_retval_proto __weak;
2678 
2679 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2680 {
2681 	return NULL;
2682 }
2683 
2684 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2685 {
2686 	return NULL;
2687 }
2688 
2689 u64 __weak
2690 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2691 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2692 {
2693 	return -ENOTSUPP;
2694 }
2695 EXPORT_SYMBOL_GPL(bpf_event_output);
2696 
2697 /* Always built-in helper functions. */
2698 const struct bpf_func_proto bpf_tail_call_proto = {
2699 	.func		= NULL,
2700 	.gpl_only	= false,
2701 	.ret_type	= RET_VOID,
2702 	.arg1_type	= ARG_PTR_TO_CTX,
2703 	.arg2_type	= ARG_CONST_MAP_PTR,
2704 	.arg3_type	= ARG_ANYTHING,
2705 };
2706 
2707 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2708  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2709  * eBPF and implicitly also cBPF can get JITed!
2710  */
2711 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2712 {
2713 	return prog;
2714 }
2715 
2716 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2717  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2718  */
2719 void __weak bpf_jit_compile(struct bpf_prog *prog)
2720 {
2721 }
2722 
2723 bool __weak bpf_helper_changes_pkt_data(void *func)
2724 {
2725 	return false;
2726 }
2727 
2728 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2729  * analysis code and wants explicit zero extension inserted by verifier.
2730  * Otherwise, return FALSE.
2731  *
2732  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2733  * you don't override this. JITs that don't want these extra insns can detect
2734  * them using insn_is_zext.
2735  */
2736 bool __weak bpf_jit_needs_zext(void)
2737 {
2738 	return false;
2739 }
2740 
2741 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2742 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2743 {
2744 	return false;
2745 }
2746 
2747 bool __weak bpf_jit_supports_kfunc_call(void)
2748 {
2749 	return false;
2750 }
2751 
2752 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2753  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2754  */
2755 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2756 			 int len)
2757 {
2758 	return -EFAULT;
2759 }
2760 
2761 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2762 			      void *addr1, void *addr2)
2763 {
2764 	return -ENOTSUPP;
2765 }
2766 
2767 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2768 {
2769 	return ERR_PTR(-ENOTSUPP);
2770 }
2771 
2772 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2773 {
2774 	return -ENOTSUPP;
2775 }
2776 
2777 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2778 EXPORT_SYMBOL(bpf_stats_enabled_key);
2779 
2780 /* All definitions of tracepoints related to BPF. */
2781 #define CREATE_TRACE_POINTS
2782 #include <linux/bpf_trace.h>
2783 
2784 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2785 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2786