1 /* 2 * Linux Socket Filter - Kernel level socket filtering 3 * 4 * Based on the design of the Berkeley Packet Filter. The new 5 * internal format has been designed by PLUMgrid: 6 * 7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 8 * 9 * Authors: 10 * 11 * Jay Schulist <jschlst@samba.org> 12 * Alexei Starovoitov <ast@plumgrid.com> 13 * Daniel Borkmann <dborkman@redhat.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 * 20 * Andi Kleen - Fix a few bad bugs and races. 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 22 */ 23 24 #include <linux/filter.h> 25 #include <linux/skbuff.h> 26 #include <linux/vmalloc.h> 27 #include <linux/random.h> 28 #include <linux/moduleloader.h> 29 #include <linux/bpf.h> 30 #include <linux/frame.h> 31 #include <linux/rbtree_latch.h> 32 #include <linux/kallsyms.h> 33 #include <linux/rcupdate.h> 34 35 #include <asm/unaligned.h> 36 37 /* Registers */ 38 #define BPF_R0 regs[BPF_REG_0] 39 #define BPF_R1 regs[BPF_REG_1] 40 #define BPF_R2 regs[BPF_REG_2] 41 #define BPF_R3 regs[BPF_REG_3] 42 #define BPF_R4 regs[BPF_REG_4] 43 #define BPF_R5 regs[BPF_REG_5] 44 #define BPF_R6 regs[BPF_REG_6] 45 #define BPF_R7 regs[BPF_REG_7] 46 #define BPF_R8 regs[BPF_REG_8] 47 #define BPF_R9 regs[BPF_REG_9] 48 #define BPF_R10 regs[BPF_REG_10] 49 50 /* Named registers */ 51 #define DST regs[insn->dst_reg] 52 #define SRC regs[insn->src_reg] 53 #define FP regs[BPF_REG_FP] 54 #define ARG1 regs[BPF_REG_ARG1] 55 #define CTX regs[BPF_REG_CTX] 56 #define IMM insn->imm 57 58 /* No hurry in this branch 59 * 60 * Exported for the bpf jit load helper. 61 */ 62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) 63 { 64 u8 *ptr = NULL; 65 66 if (k >= SKF_NET_OFF) 67 ptr = skb_network_header(skb) + k - SKF_NET_OFF; 68 else if (k >= SKF_LL_OFF) 69 ptr = skb_mac_header(skb) + k - SKF_LL_OFF; 70 71 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) 72 return ptr; 73 74 return NULL; 75 } 76 77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) 78 { 79 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; 80 struct bpf_prog_aux *aux; 81 struct bpf_prog *fp; 82 83 size = round_up(size, PAGE_SIZE); 84 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); 85 if (fp == NULL) 86 return NULL; 87 88 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags); 89 if (aux == NULL) { 90 vfree(fp); 91 return NULL; 92 } 93 94 fp->pages = size / PAGE_SIZE; 95 fp->aux = aux; 96 fp->aux->prog = fp; 97 98 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode); 99 100 return fp; 101 } 102 EXPORT_SYMBOL_GPL(bpf_prog_alloc); 103 104 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 105 gfp_t gfp_extra_flags) 106 { 107 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; 108 struct bpf_prog *fp; 109 u32 pages, delta; 110 int ret; 111 112 BUG_ON(fp_old == NULL); 113 114 size = round_up(size, PAGE_SIZE); 115 pages = size / PAGE_SIZE; 116 if (pages <= fp_old->pages) 117 return fp_old; 118 119 delta = pages - fp_old->pages; 120 ret = __bpf_prog_charge(fp_old->aux->user, delta); 121 if (ret) 122 return NULL; 123 124 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); 125 if (fp == NULL) { 126 __bpf_prog_uncharge(fp_old->aux->user, delta); 127 } else { 128 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); 129 fp->pages = pages; 130 fp->aux->prog = fp; 131 132 /* We keep fp->aux from fp_old around in the new 133 * reallocated structure. 134 */ 135 fp_old->aux = NULL; 136 __bpf_prog_free(fp_old); 137 } 138 139 return fp; 140 } 141 142 void __bpf_prog_free(struct bpf_prog *fp) 143 { 144 kfree(fp->aux); 145 vfree(fp); 146 } 147 148 int bpf_prog_calc_tag(struct bpf_prog *fp) 149 { 150 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64); 151 u32 raw_size = bpf_prog_tag_scratch_size(fp); 152 u32 digest[SHA_DIGEST_WORDS]; 153 u32 ws[SHA_WORKSPACE_WORDS]; 154 u32 i, bsize, psize, blocks; 155 struct bpf_insn *dst; 156 bool was_ld_map; 157 u8 *raw, *todo; 158 __be32 *result; 159 __be64 *bits; 160 161 raw = vmalloc(raw_size); 162 if (!raw) 163 return -ENOMEM; 164 165 sha_init(digest); 166 memset(ws, 0, sizeof(ws)); 167 168 /* We need to take out the map fd for the digest calculation 169 * since they are unstable from user space side. 170 */ 171 dst = (void *)raw; 172 for (i = 0, was_ld_map = false; i < fp->len; i++) { 173 dst[i] = fp->insnsi[i]; 174 if (!was_ld_map && 175 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 176 dst[i].src_reg == BPF_PSEUDO_MAP_FD) { 177 was_ld_map = true; 178 dst[i].imm = 0; 179 } else if (was_ld_map && 180 dst[i].code == 0 && 181 dst[i].dst_reg == 0 && 182 dst[i].src_reg == 0 && 183 dst[i].off == 0) { 184 was_ld_map = false; 185 dst[i].imm = 0; 186 } else { 187 was_ld_map = false; 188 } 189 } 190 191 psize = bpf_prog_insn_size(fp); 192 memset(&raw[psize], 0, raw_size - psize); 193 raw[psize++] = 0x80; 194 195 bsize = round_up(psize, SHA_MESSAGE_BYTES); 196 blocks = bsize / SHA_MESSAGE_BYTES; 197 todo = raw; 198 if (bsize - psize >= sizeof(__be64)) { 199 bits = (__be64 *)(todo + bsize - sizeof(__be64)); 200 } else { 201 bits = (__be64 *)(todo + bsize + bits_offset); 202 blocks++; 203 } 204 *bits = cpu_to_be64((psize - 1) << 3); 205 206 while (blocks--) { 207 sha_transform(digest, todo, ws); 208 todo += SHA_MESSAGE_BYTES; 209 } 210 211 result = (__force __be32 *)digest; 212 for (i = 0; i < SHA_DIGEST_WORDS; i++) 213 result[i] = cpu_to_be32(digest[i]); 214 memcpy(fp->tag, result, sizeof(fp->tag)); 215 216 vfree(raw); 217 return 0; 218 } 219 220 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn) 221 { 222 return BPF_CLASS(insn->code) == BPF_JMP && 223 /* Call and Exit are both special jumps with no 224 * target inside the BPF instruction image. 225 */ 226 BPF_OP(insn->code) != BPF_CALL && 227 BPF_OP(insn->code) != BPF_EXIT; 228 } 229 230 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta) 231 { 232 struct bpf_insn *insn = prog->insnsi; 233 u32 i, insn_cnt = prog->len; 234 235 for (i = 0; i < insn_cnt; i++, insn++) { 236 if (!bpf_is_jmp_and_has_target(insn)) 237 continue; 238 239 /* Adjust offset of jmps if we cross boundaries. */ 240 if (i < pos && i + insn->off + 1 > pos) 241 insn->off += delta; 242 else if (i > pos + delta && i + insn->off + 1 <= pos + delta) 243 insn->off -= delta; 244 } 245 } 246 247 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 248 const struct bpf_insn *patch, u32 len) 249 { 250 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; 251 struct bpf_prog *prog_adj; 252 253 /* Since our patchlet doesn't expand the image, we're done. */ 254 if (insn_delta == 0) { 255 memcpy(prog->insnsi + off, patch, sizeof(*patch)); 256 return prog; 257 } 258 259 insn_adj_cnt = prog->len + insn_delta; 260 261 /* Several new instructions need to be inserted. Make room 262 * for them. Likely, there's no need for a new allocation as 263 * last page could have large enough tailroom. 264 */ 265 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), 266 GFP_USER); 267 if (!prog_adj) 268 return NULL; 269 270 prog_adj->len = insn_adj_cnt; 271 272 /* Patching happens in 3 steps: 273 * 274 * 1) Move over tail of insnsi from next instruction onwards, 275 * so we can patch the single target insn with one or more 276 * new ones (patching is always from 1 to n insns, n > 0). 277 * 2) Inject new instructions at the target location. 278 * 3) Adjust branch offsets if necessary. 279 */ 280 insn_rest = insn_adj_cnt - off - len; 281 282 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, 283 sizeof(*patch) * insn_rest); 284 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); 285 286 bpf_adj_branches(prog_adj, off, insn_delta); 287 288 return prog_adj; 289 } 290 291 #ifdef CONFIG_BPF_JIT 292 static __always_inline void 293 bpf_get_prog_addr_region(const struct bpf_prog *prog, 294 unsigned long *symbol_start, 295 unsigned long *symbol_end) 296 { 297 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); 298 unsigned long addr = (unsigned long)hdr; 299 300 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); 301 302 *symbol_start = addr; 303 *symbol_end = addr + hdr->pages * PAGE_SIZE; 304 } 305 306 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 307 { 308 const char *end = sym + KSYM_NAME_LEN; 309 310 BUILD_BUG_ON(sizeof("bpf_prog_") + 311 sizeof(prog->tag) * 2 + 312 /* name has been null terminated. 313 * We should need +1 for the '_' preceding 314 * the name. However, the null character 315 * is double counted between the name and the 316 * sizeof("bpf_prog_") above, so we omit 317 * the +1 here. 318 */ 319 sizeof(prog->aux->name) > KSYM_NAME_LEN); 320 321 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); 322 sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); 323 if (prog->aux->name[0]) 324 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); 325 else 326 *sym = 0; 327 } 328 329 static __always_inline unsigned long 330 bpf_get_prog_addr_start(struct latch_tree_node *n) 331 { 332 unsigned long symbol_start, symbol_end; 333 const struct bpf_prog_aux *aux; 334 335 aux = container_of(n, struct bpf_prog_aux, ksym_tnode); 336 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); 337 338 return symbol_start; 339 } 340 341 static __always_inline bool bpf_tree_less(struct latch_tree_node *a, 342 struct latch_tree_node *b) 343 { 344 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b); 345 } 346 347 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) 348 { 349 unsigned long val = (unsigned long)key; 350 unsigned long symbol_start, symbol_end; 351 const struct bpf_prog_aux *aux; 352 353 aux = container_of(n, struct bpf_prog_aux, ksym_tnode); 354 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); 355 356 if (val < symbol_start) 357 return -1; 358 if (val >= symbol_end) 359 return 1; 360 361 return 0; 362 } 363 364 static const struct latch_tree_ops bpf_tree_ops = { 365 .less = bpf_tree_less, 366 .comp = bpf_tree_comp, 367 }; 368 369 static DEFINE_SPINLOCK(bpf_lock); 370 static LIST_HEAD(bpf_kallsyms); 371 static struct latch_tree_root bpf_tree __cacheline_aligned; 372 373 int bpf_jit_kallsyms __read_mostly; 374 375 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux) 376 { 377 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode)); 378 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms); 379 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops); 380 } 381 382 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux) 383 { 384 if (list_empty(&aux->ksym_lnode)) 385 return; 386 387 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops); 388 list_del_rcu(&aux->ksym_lnode); 389 } 390 391 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) 392 { 393 return fp->jited && !bpf_prog_was_classic(fp); 394 } 395 396 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 397 { 398 return list_empty(&fp->aux->ksym_lnode) || 399 fp->aux->ksym_lnode.prev == LIST_POISON2; 400 } 401 402 void bpf_prog_kallsyms_add(struct bpf_prog *fp) 403 { 404 if (!bpf_prog_kallsyms_candidate(fp) || 405 !capable(CAP_SYS_ADMIN)) 406 return; 407 408 spin_lock_bh(&bpf_lock); 409 bpf_prog_ksym_node_add(fp->aux); 410 spin_unlock_bh(&bpf_lock); 411 } 412 413 void bpf_prog_kallsyms_del(struct bpf_prog *fp) 414 { 415 if (!bpf_prog_kallsyms_candidate(fp)) 416 return; 417 418 spin_lock_bh(&bpf_lock); 419 bpf_prog_ksym_node_del(fp->aux); 420 spin_unlock_bh(&bpf_lock); 421 } 422 423 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr) 424 { 425 struct latch_tree_node *n; 426 427 if (!bpf_jit_kallsyms_enabled()) 428 return NULL; 429 430 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); 431 return n ? 432 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog : 433 NULL; 434 } 435 436 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 437 unsigned long *off, char *sym) 438 { 439 unsigned long symbol_start, symbol_end; 440 struct bpf_prog *prog; 441 char *ret = NULL; 442 443 rcu_read_lock(); 444 prog = bpf_prog_kallsyms_find(addr); 445 if (prog) { 446 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end); 447 bpf_get_prog_name(prog, sym); 448 449 ret = sym; 450 if (size) 451 *size = symbol_end - symbol_start; 452 if (off) 453 *off = addr - symbol_start; 454 } 455 rcu_read_unlock(); 456 457 return ret; 458 } 459 460 bool is_bpf_text_address(unsigned long addr) 461 { 462 bool ret; 463 464 rcu_read_lock(); 465 ret = bpf_prog_kallsyms_find(addr) != NULL; 466 rcu_read_unlock(); 467 468 return ret; 469 } 470 471 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 472 char *sym) 473 { 474 unsigned long symbol_start, symbol_end; 475 struct bpf_prog_aux *aux; 476 unsigned int it = 0; 477 int ret = -ERANGE; 478 479 if (!bpf_jit_kallsyms_enabled()) 480 return ret; 481 482 rcu_read_lock(); 483 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) { 484 if (it++ != symnum) 485 continue; 486 487 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); 488 bpf_get_prog_name(aux->prog, sym); 489 490 *value = symbol_start; 491 *type = BPF_SYM_ELF_TYPE; 492 493 ret = 0; 494 break; 495 } 496 rcu_read_unlock(); 497 498 return ret; 499 } 500 501 struct bpf_binary_header * 502 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 503 unsigned int alignment, 504 bpf_jit_fill_hole_t bpf_fill_ill_insns) 505 { 506 struct bpf_binary_header *hdr; 507 unsigned int size, hole, start; 508 509 /* Most of BPF filters are really small, but if some of them 510 * fill a page, allow at least 128 extra bytes to insert a 511 * random section of illegal instructions. 512 */ 513 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); 514 hdr = module_alloc(size); 515 if (hdr == NULL) 516 return NULL; 517 518 /* Fill space with illegal/arch-dep instructions. */ 519 bpf_fill_ill_insns(hdr, size); 520 521 hdr->pages = size / PAGE_SIZE; 522 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), 523 PAGE_SIZE - sizeof(*hdr)); 524 start = (get_random_int() % hole) & ~(alignment - 1); 525 526 /* Leave a random number of instructions before BPF code. */ 527 *image_ptr = &hdr->image[start]; 528 529 return hdr; 530 } 531 532 void bpf_jit_binary_free(struct bpf_binary_header *hdr) 533 { 534 module_memfree(hdr); 535 } 536 537 /* This symbol is only overridden by archs that have different 538 * requirements than the usual eBPF JITs, f.e. when they only 539 * implement cBPF JIT, do not set images read-only, etc. 540 */ 541 void __weak bpf_jit_free(struct bpf_prog *fp) 542 { 543 if (fp->jited) { 544 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); 545 546 bpf_jit_binary_unlock_ro(hdr); 547 bpf_jit_binary_free(hdr); 548 549 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); 550 } 551 552 bpf_prog_unlock_free(fp); 553 } 554 555 int bpf_jit_harden __read_mostly; 556 557 static int bpf_jit_blind_insn(const struct bpf_insn *from, 558 const struct bpf_insn *aux, 559 struct bpf_insn *to_buff) 560 { 561 struct bpf_insn *to = to_buff; 562 u32 imm_rnd = get_random_int(); 563 s16 off; 564 565 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); 566 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); 567 568 if (from->imm == 0 && 569 (from->code == (BPF_ALU | BPF_MOV | BPF_K) || 570 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { 571 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); 572 goto out; 573 } 574 575 switch (from->code) { 576 case BPF_ALU | BPF_ADD | BPF_K: 577 case BPF_ALU | BPF_SUB | BPF_K: 578 case BPF_ALU | BPF_AND | BPF_K: 579 case BPF_ALU | BPF_OR | BPF_K: 580 case BPF_ALU | BPF_XOR | BPF_K: 581 case BPF_ALU | BPF_MUL | BPF_K: 582 case BPF_ALU | BPF_MOV | BPF_K: 583 case BPF_ALU | BPF_DIV | BPF_K: 584 case BPF_ALU | BPF_MOD | BPF_K: 585 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 586 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 587 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); 588 break; 589 590 case BPF_ALU64 | BPF_ADD | BPF_K: 591 case BPF_ALU64 | BPF_SUB | BPF_K: 592 case BPF_ALU64 | BPF_AND | BPF_K: 593 case BPF_ALU64 | BPF_OR | BPF_K: 594 case BPF_ALU64 | BPF_XOR | BPF_K: 595 case BPF_ALU64 | BPF_MUL | BPF_K: 596 case BPF_ALU64 | BPF_MOV | BPF_K: 597 case BPF_ALU64 | BPF_DIV | BPF_K: 598 case BPF_ALU64 | BPF_MOD | BPF_K: 599 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 600 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 601 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); 602 break; 603 604 case BPF_JMP | BPF_JEQ | BPF_K: 605 case BPF_JMP | BPF_JNE | BPF_K: 606 case BPF_JMP | BPF_JGT | BPF_K: 607 case BPF_JMP | BPF_JLT | BPF_K: 608 case BPF_JMP | BPF_JGE | BPF_K: 609 case BPF_JMP | BPF_JLE | BPF_K: 610 case BPF_JMP | BPF_JSGT | BPF_K: 611 case BPF_JMP | BPF_JSLT | BPF_K: 612 case BPF_JMP | BPF_JSGE | BPF_K: 613 case BPF_JMP | BPF_JSLE | BPF_K: 614 case BPF_JMP | BPF_JSET | BPF_K: 615 /* Accommodate for extra offset in case of a backjump. */ 616 off = from->off; 617 if (off < 0) 618 off -= 2; 619 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 620 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 621 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); 622 break; 623 624 case BPF_LD | BPF_ABS | BPF_W: 625 case BPF_LD | BPF_ABS | BPF_H: 626 case BPF_LD | BPF_ABS | BPF_B: 627 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 628 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 629 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0); 630 break; 631 632 case BPF_LD | BPF_IND | BPF_W: 633 case BPF_LD | BPF_IND | BPF_H: 634 case BPF_LD | BPF_IND | BPF_B: 635 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 636 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 637 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg); 638 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0); 639 break; 640 641 case BPF_LD | BPF_IMM | BPF_DW: 642 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); 643 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 644 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 645 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); 646 break; 647 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ 648 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); 649 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 650 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); 651 break; 652 653 case BPF_ST | BPF_MEM | BPF_DW: 654 case BPF_ST | BPF_MEM | BPF_W: 655 case BPF_ST | BPF_MEM | BPF_H: 656 case BPF_ST | BPF_MEM | BPF_B: 657 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 658 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 659 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); 660 break; 661 } 662 out: 663 return to - to_buff; 664 } 665 666 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, 667 gfp_t gfp_extra_flags) 668 { 669 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; 670 struct bpf_prog *fp; 671 672 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL); 673 if (fp != NULL) { 674 /* aux->prog still points to the fp_other one, so 675 * when promoting the clone to the real program, 676 * this still needs to be adapted. 677 */ 678 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); 679 } 680 681 return fp; 682 } 683 684 static void bpf_prog_clone_free(struct bpf_prog *fp) 685 { 686 /* aux was stolen by the other clone, so we cannot free 687 * it from this path! It will be freed eventually by the 688 * other program on release. 689 * 690 * At this point, we don't need a deferred release since 691 * clone is guaranteed to not be locked. 692 */ 693 fp->aux = NULL; 694 __bpf_prog_free(fp); 695 } 696 697 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) 698 { 699 /* We have to repoint aux->prog to self, as we don't 700 * know whether fp here is the clone or the original. 701 */ 702 fp->aux->prog = fp; 703 bpf_prog_clone_free(fp_other); 704 } 705 706 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) 707 { 708 struct bpf_insn insn_buff[16], aux[2]; 709 struct bpf_prog *clone, *tmp; 710 int insn_delta, insn_cnt; 711 struct bpf_insn *insn; 712 int i, rewritten; 713 714 if (!bpf_jit_blinding_enabled()) 715 return prog; 716 717 clone = bpf_prog_clone_create(prog, GFP_USER); 718 if (!clone) 719 return ERR_PTR(-ENOMEM); 720 721 insn_cnt = clone->len; 722 insn = clone->insnsi; 723 724 for (i = 0; i < insn_cnt; i++, insn++) { 725 /* We temporarily need to hold the original ld64 insn 726 * so that we can still access the first part in the 727 * second blinding run. 728 */ 729 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && 730 insn[1].code == 0) 731 memcpy(aux, insn, sizeof(aux)); 732 733 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff); 734 if (!rewritten) 735 continue; 736 737 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); 738 if (!tmp) { 739 /* Patching may have repointed aux->prog during 740 * realloc from the original one, so we need to 741 * fix it up here on error. 742 */ 743 bpf_jit_prog_release_other(prog, clone); 744 return ERR_PTR(-ENOMEM); 745 } 746 747 clone = tmp; 748 insn_delta = rewritten - 1; 749 750 /* Walk new program and skip insns we just inserted. */ 751 insn = clone->insnsi + i + insn_delta; 752 insn_cnt += insn_delta; 753 i += insn_delta; 754 } 755 756 return clone; 757 } 758 #endif /* CONFIG_BPF_JIT */ 759 760 /* Base function for offset calculation. Needs to go into .text section, 761 * therefore keeping it non-static as well; will also be used by JITs 762 * anyway later on, so do not let the compiler omit it. 763 */ 764 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 765 { 766 return 0; 767 } 768 EXPORT_SYMBOL_GPL(__bpf_call_base); 769 770 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 771 /** 772 * __bpf_prog_run - run eBPF program on a given context 773 * @ctx: is the data we are operating on 774 * @insn: is the array of eBPF instructions 775 * 776 * Decode and execute eBPF instructions. 777 */ 778 static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, 779 u64 *stack) 780 { 781 u64 tmp; 782 static const void *jumptable[256] = { 783 [0 ... 255] = &&default_label, 784 /* Now overwrite non-defaults ... */ 785 /* 32 bit ALU operations */ 786 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X, 787 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K, 788 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X, 789 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K, 790 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X, 791 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K, 792 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X, 793 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K, 794 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X, 795 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K, 796 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X, 797 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K, 798 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X, 799 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K, 800 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X, 801 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K, 802 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X, 803 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K, 804 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X, 805 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K, 806 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X, 807 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K, 808 [BPF_ALU | BPF_NEG] = &&ALU_NEG, 809 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE, 810 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE, 811 /* 64 bit ALU operations */ 812 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X, 813 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K, 814 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X, 815 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K, 816 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X, 817 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K, 818 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X, 819 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K, 820 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X, 821 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K, 822 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X, 823 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K, 824 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X, 825 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K, 826 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X, 827 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K, 828 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X, 829 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K, 830 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X, 831 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K, 832 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X, 833 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K, 834 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X, 835 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K, 836 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG, 837 /* Call instruction */ 838 [BPF_JMP | BPF_CALL] = &&JMP_CALL, 839 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, 840 /* Jumps */ 841 [BPF_JMP | BPF_JA] = &&JMP_JA, 842 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X, 843 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K, 844 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X, 845 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K, 846 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X, 847 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K, 848 [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X, 849 [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K, 850 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X, 851 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K, 852 [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X, 853 [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K, 854 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X, 855 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K, 856 [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X, 857 [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K, 858 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X, 859 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K, 860 [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X, 861 [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K, 862 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X, 863 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K, 864 /* Program return */ 865 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT, 866 /* Store instructions */ 867 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B, 868 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H, 869 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W, 870 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW, 871 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W, 872 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW, 873 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B, 874 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H, 875 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W, 876 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW, 877 /* Load instructions */ 878 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B, 879 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H, 880 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W, 881 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW, 882 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W, 883 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H, 884 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B, 885 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W, 886 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H, 887 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B, 888 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW, 889 }; 890 u32 tail_call_cnt = 0; 891 void *ptr; 892 int off; 893 894 #define CONT ({ insn++; goto select_insn; }) 895 #define CONT_JMP ({ insn++; goto select_insn; }) 896 897 select_insn: 898 goto *jumptable[insn->code]; 899 900 /* ALU */ 901 #define ALU(OPCODE, OP) \ 902 ALU64_##OPCODE##_X: \ 903 DST = DST OP SRC; \ 904 CONT; \ 905 ALU_##OPCODE##_X: \ 906 DST = (u32) DST OP (u32) SRC; \ 907 CONT; \ 908 ALU64_##OPCODE##_K: \ 909 DST = DST OP IMM; \ 910 CONT; \ 911 ALU_##OPCODE##_K: \ 912 DST = (u32) DST OP (u32) IMM; \ 913 CONT; 914 915 ALU(ADD, +) 916 ALU(SUB, -) 917 ALU(AND, &) 918 ALU(OR, |) 919 ALU(LSH, <<) 920 ALU(RSH, >>) 921 ALU(XOR, ^) 922 ALU(MUL, *) 923 #undef ALU 924 ALU_NEG: 925 DST = (u32) -DST; 926 CONT; 927 ALU64_NEG: 928 DST = -DST; 929 CONT; 930 ALU_MOV_X: 931 DST = (u32) SRC; 932 CONT; 933 ALU_MOV_K: 934 DST = (u32) IMM; 935 CONT; 936 ALU64_MOV_X: 937 DST = SRC; 938 CONT; 939 ALU64_MOV_K: 940 DST = IMM; 941 CONT; 942 LD_IMM_DW: 943 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; 944 insn++; 945 CONT; 946 ALU64_ARSH_X: 947 (*(s64 *) &DST) >>= SRC; 948 CONT; 949 ALU64_ARSH_K: 950 (*(s64 *) &DST) >>= IMM; 951 CONT; 952 ALU64_MOD_X: 953 if (unlikely(SRC == 0)) 954 return 0; 955 div64_u64_rem(DST, SRC, &tmp); 956 DST = tmp; 957 CONT; 958 ALU_MOD_X: 959 if (unlikely((u32)SRC == 0)) 960 return 0; 961 tmp = (u32) DST; 962 DST = do_div(tmp, (u32) SRC); 963 CONT; 964 ALU64_MOD_K: 965 div64_u64_rem(DST, IMM, &tmp); 966 DST = tmp; 967 CONT; 968 ALU_MOD_K: 969 tmp = (u32) DST; 970 DST = do_div(tmp, (u32) IMM); 971 CONT; 972 ALU64_DIV_X: 973 if (unlikely(SRC == 0)) 974 return 0; 975 DST = div64_u64(DST, SRC); 976 CONT; 977 ALU_DIV_X: 978 if (unlikely((u32)SRC == 0)) 979 return 0; 980 tmp = (u32) DST; 981 do_div(tmp, (u32) SRC); 982 DST = (u32) tmp; 983 CONT; 984 ALU64_DIV_K: 985 DST = div64_u64(DST, IMM); 986 CONT; 987 ALU_DIV_K: 988 tmp = (u32) DST; 989 do_div(tmp, (u32) IMM); 990 DST = (u32) tmp; 991 CONT; 992 ALU_END_TO_BE: 993 switch (IMM) { 994 case 16: 995 DST = (__force u16) cpu_to_be16(DST); 996 break; 997 case 32: 998 DST = (__force u32) cpu_to_be32(DST); 999 break; 1000 case 64: 1001 DST = (__force u64) cpu_to_be64(DST); 1002 break; 1003 } 1004 CONT; 1005 ALU_END_TO_LE: 1006 switch (IMM) { 1007 case 16: 1008 DST = (__force u16) cpu_to_le16(DST); 1009 break; 1010 case 32: 1011 DST = (__force u32) cpu_to_le32(DST); 1012 break; 1013 case 64: 1014 DST = (__force u64) cpu_to_le64(DST); 1015 break; 1016 } 1017 CONT; 1018 1019 /* CALL */ 1020 JMP_CALL: 1021 /* Function call scratches BPF_R1-BPF_R5 registers, 1022 * preserves BPF_R6-BPF_R9, and stores return value 1023 * into BPF_R0. 1024 */ 1025 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, 1026 BPF_R4, BPF_R5); 1027 CONT; 1028 1029 JMP_TAIL_CALL: { 1030 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; 1031 struct bpf_array *array = container_of(map, struct bpf_array, map); 1032 struct bpf_prog *prog; 1033 u32 index = BPF_R3; 1034 1035 if (unlikely(index >= array->map.max_entries)) 1036 goto out; 1037 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) 1038 goto out; 1039 1040 tail_call_cnt++; 1041 1042 prog = READ_ONCE(array->ptrs[index]); 1043 if (!prog) 1044 goto out; 1045 1046 /* ARG1 at this point is guaranteed to point to CTX from 1047 * the verifier side due to the fact that the tail call is 1048 * handeled like a helper, that is, bpf_tail_call_proto, 1049 * where arg1_type is ARG_PTR_TO_CTX. 1050 */ 1051 insn = prog->insnsi; 1052 goto select_insn; 1053 out: 1054 CONT; 1055 } 1056 /* JMP */ 1057 JMP_JA: 1058 insn += insn->off; 1059 CONT; 1060 JMP_JEQ_X: 1061 if (DST == SRC) { 1062 insn += insn->off; 1063 CONT_JMP; 1064 } 1065 CONT; 1066 JMP_JEQ_K: 1067 if (DST == IMM) { 1068 insn += insn->off; 1069 CONT_JMP; 1070 } 1071 CONT; 1072 JMP_JNE_X: 1073 if (DST != SRC) { 1074 insn += insn->off; 1075 CONT_JMP; 1076 } 1077 CONT; 1078 JMP_JNE_K: 1079 if (DST != IMM) { 1080 insn += insn->off; 1081 CONT_JMP; 1082 } 1083 CONT; 1084 JMP_JGT_X: 1085 if (DST > SRC) { 1086 insn += insn->off; 1087 CONT_JMP; 1088 } 1089 CONT; 1090 JMP_JGT_K: 1091 if (DST > IMM) { 1092 insn += insn->off; 1093 CONT_JMP; 1094 } 1095 CONT; 1096 JMP_JLT_X: 1097 if (DST < SRC) { 1098 insn += insn->off; 1099 CONT_JMP; 1100 } 1101 CONT; 1102 JMP_JLT_K: 1103 if (DST < IMM) { 1104 insn += insn->off; 1105 CONT_JMP; 1106 } 1107 CONT; 1108 JMP_JGE_X: 1109 if (DST >= SRC) { 1110 insn += insn->off; 1111 CONT_JMP; 1112 } 1113 CONT; 1114 JMP_JGE_K: 1115 if (DST >= IMM) { 1116 insn += insn->off; 1117 CONT_JMP; 1118 } 1119 CONT; 1120 JMP_JLE_X: 1121 if (DST <= SRC) { 1122 insn += insn->off; 1123 CONT_JMP; 1124 } 1125 CONT; 1126 JMP_JLE_K: 1127 if (DST <= IMM) { 1128 insn += insn->off; 1129 CONT_JMP; 1130 } 1131 CONT; 1132 JMP_JSGT_X: 1133 if (((s64) DST) > ((s64) SRC)) { 1134 insn += insn->off; 1135 CONT_JMP; 1136 } 1137 CONT; 1138 JMP_JSGT_K: 1139 if (((s64) DST) > ((s64) IMM)) { 1140 insn += insn->off; 1141 CONT_JMP; 1142 } 1143 CONT; 1144 JMP_JSLT_X: 1145 if (((s64) DST) < ((s64) SRC)) { 1146 insn += insn->off; 1147 CONT_JMP; 1148 } 1149 CONT; 1150 JMP_JSLT_K: 1151 if (((s64) DST) < ((s64) IMM)) { 1152 insn += insn->off; 1153 CONT_JMP; 1154 } 1155 CONT; 1156 JMP_JSGE_X: 1157 if (((s64) DST) >= ((s64) SRC)) { 1158 insn += insn->off; 1159 CONT_JMP; 1160 } 1161 CONT; 1162 JMP_JSGE_K: 1163 if (((s64) DST) >= ((s64) IMM)) { 1164 insn += insn->off; 1165 CONT_JMP; 1166 } 1167 CONT; 1168 JMP_JSLE_X: 1169 if (((s64) DST) <= ((s64) SRC)) { 1170 insn += insn->off; 1171 CONT_JMP; 1172 } 1173 CONT; 1174 JMP_JSLE_K: 1175 if (((s64) DST) <= ((s64) IMM)) { 1176 insn += insn->off; 1177 CONT_JMP; 1178 } 1179 CONT; 1180 JMP_JSET_X: 1181 if (DST & SRC) { 1182 insn += insn->off; 1183 CONT_JMP; 1184 } 1185 CONT; 1186 JMP_JSET_K: 1187 if (DST & IMM) { 1188 insn += insn->off; 1189 CONT_JMP; 1190 } 1191 CONT; 1192 JMP_EXIT: 1193 return BPF_R0; 1194 1195 /* STX and ST and LDX*/ 1196 #define LDST(SIZEOP, SIZE) \ 1197 STX_MEM_##SIZEOP: \ 1198 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ 1199 CONT; \ 1200 ST_MEM_##SIZEOP: \ 1201 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ 1202 CONT; \ 1203 LDX_MEM_##SIZEOP: \ 1204 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 1205 CONT; 1206 1207 LDST(B, u8) 1208 LDST(H, u16) 1209 LDST(W, u32) 1210 LDST(DW, u64) 1211 #undef LDST 1212 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */ 1213 atomic_add((u32) SRC, (atomic_t *)(unsigned long) 1214 (DST + insn->off)); 1215 CONT; 1216 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */ 1217 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long) 1218 (DST + insn->off)); 1219 CONT; 1220 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */ 1221 off = IMM; 1222 load_word: 1223 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only 1224 * appearing in the programs where ctx == skb 1225 * (see may_access_skb() in the verifier). All programs 1226 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6, 1227 * bpf_convert_filter() saves it in BPF_R6, internal BPF 1228 * verifier will check that BPF_R6 == ctx. 1229 * 1230 * BPF_ABS and BPF_IND are wrappers of function calls, 1231 * so they scratch BPF_R1-BPF_R5 registers, preserve 1232 * BPF_R6-BPF_R9, and store return value into BPF_R0. 1233 * 1234 * Implicit input: 1235 * ctx == skb == BPF_R6 == CTX 1236 * 1237 * Explicit input: 1238 * SRC == any register 1239 * IMM == 32-bit immediate 1240 * 1241 * Output: 1242 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness 1243 */ 1244 1245 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp); 1246 if (likely(ptr != NULL)) { 1247 BPF_R0 = get_unaligned_be32(ptr); 1248 CONT; 1249 } 1250 1251 return 0; 1252 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */ 1253 off = IMM; 1254 load_half: 1255 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp); 1256 if (likely(ptr != NULL)) { 1257 BPF_R0 = get_unaligned_be16(ptr); 1258 CONT; 1259 } 1260 1261 return 0; 1262 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */ 1263 off = IMM; 1264 load_byte: 1265 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp); 1266 if (likely(ptr != NULL)) { 1267 BPF_R0 = *(u8 *)ptr; 1268 CONT; 1269 } 1270 1271 return 0; 1272 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */ 1273 off = IMM + SRC; 1274 goto load_word; 1275 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */ 1276 off = IMM + SRC; 1277 goto load_half; 1278 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */ 1279 off = IMM + SRC; 1280 goto load_byte; 1281 1282 default_label: 1283 /* If we ever reach this, we have a bug somewhere. */ 1284 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code); 1285 return 0; 1286 } 1287 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */ 1288 1289 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size 1290 #define DEFINE_BPF_PROG_RUN(stack_size) \ 1291 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ 1292 { \ 1293 u64 stack[stack_size / sizeof(u64)]; \ 1294 u64 regs[MAX_BPF_REG]; \ 1295 \ 1296 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 1297 ARG1 = (u64) (unsigned long) ctx; \ 1298 return ___bpf_prog_run(regs, insn, stack); \ 1299 } 1300 1301 #define EVAL1(FN, X) FN(X) 1302 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) 1303 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) 1304 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) 1305 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) 1306 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) 1307 1308 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); 1309 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); 1310 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); 1311 1312 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), 1313 1314 static unsigned int (*interpreters[])(const void *ctx, 1315 const struct bpf_insn *insn) = { 1316 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 1317 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 1318 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 1319 }; 1320 1321 #else 1322 static unsigned int __bpf_prog_ret0(const void *ctx, 1323 const struct bpf_insn *insn) 1324 { 1325 return 0; 1326 } 1327 #endif 1328 1329 bool bpf_prog_array_compatible(struct bpf_array *array, 1330 const struct bpf_prog *fp) 1331 { 1332 if (!array->owner_prog_type) { 1333 /* There's no owner yet where we could check for 1334 * compatibility. 1335 */ 1336 array->owner_prog_type = fp->type; 1337 array->owner_jited = fp->jited; 1338 1339 return true; 1340 } 1341 1342 return array->owner_prog_type == fp->type && 1343 array->owner_jited == fp->jited; 1344 } 1345 1346 static int bpf_check_tail_call(const struct bpf_prog *fp) 1347 { 1348 struct bpf_prog_aux *aux = fp->aux; 1349 int i; 1350 1351 for (i = 0; i < aux->used_map_cnt; i++) { 1352 struct bpf_map *map = aux->used_maps[i]; 1353 struct bpf_array *array; 1354 1355 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1356 continue; 1357 1358 array = container_of(map, struct bpf_array, map); 1359 if (!bpf_prog_array_compatible(array, fp)) 1360 return -EINVAL; 1361 } 1362 1363 return 0; 1364 } 1365 1366 /** 1367 * bpf_prog_select_runtime - select exec runtime for BPF program 1368 * @fp: bpf_prog populated with internal BPF program 1369 * @err: pointer to error variable 1370 * 1371 * Try to JIT eBPF program, if JIT is not available, use interpreter. 1372 * The BPF program will be executed via BPF_PROG_RUN() macro. 1373 */ 1374 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) 1375 { 1376 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1377 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); 1378 1379 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; 1380 #else 1381 fp->bpf_func = __bpf_prog_ret0; 1382 #endif 1383 1384 /* eBPF JITs can rewrite the program in case constant 1385 * blinding is active. However, in case of error during 1386 * blinding, bpf_int_jit_compile() must always return a 1387 * valid program, which in this case would simply not 1388 * be JITed, but falls back to the interpreter. 1389 */ 1390 if (!bpf_prog_is_dev_bound(fp->aux)) { 1391 fp = bpf_int_jit_compile(fp); 1392 #ifdef CONFIG_BPF_JIT_ALWAYS_ON 1393 if (!fp->jited) { 1394 *err = -ENOTSUPP; 1395 return fp; 1396 } 1397 #endif 1398 } else { 1399 *err = bpf_prog_offload_compile(fp); 1400 if (*err) 1401 return fp; 1402 } 1403 bpf_prog_lock_ro(fp); 1404 1405 /* The tail call compatibility check can only be done at 1406 * this late stage as we need to determine, if we deal 1407 * with JITed or non JITed program concatenations and not 1408 * all eBPF JITs might immediately support all features. 1409 */ 1410 *err = bpf_check_tail_call(fp); 1411 1412 return fp; 1413 } 1414 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); 1415 1416 static unsigned int __bpf_prog_ret1(const void *ctx, 1417 const struct bpf_insn *insn) 1418 { 1419 return 1; 1420 } 1421 1422 static struct bpf_prog_dummy { 1423 struct bpf_prog prog; 1424 } dummy_bpf_prog = { 1425 .prog = { 1426 .bpf_func = __bpf_prog_ret1, 1427 }, 1428 }; 1429 1430 /* to avoid allocating empty bpf_prog_array for cgroups that 1431 * don't have bpf program attached use one global 'empty_prog_array' 1432 * It will not be modified the caller of bpf_prog_array_alloc() 1433 * (since caller requested prog_cnt == 0) 1434 * that pointer should be 'freed' by bpf_prog_array_free() 1435 */ 1436 static struct { 1437 struct bpf_prog_array hdr; 1438 struct bpf_prog *null_prog; 1439 } empty_prog_array = { 1440 .null_prog = NULL, 1441 }; 1442 1443 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) 1444 { 1445 if (prog_cnt) 1446 return kzalloc(sizeof(struct bpf_prog_array) + 1447 sizeof(struct bpf_prog *) * (prog_cnt + 1), 1448 flags); 1449 1450 return &empty_prog_array.hdr; 1451 } 1452 1453 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs) 1454 { 1455 if (!progs || 1456 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr) 1457 return; 1458 kfree_rcu(progs, rcu); 1459 } 1460 1461 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs) 1462 { 1463 struct bpf_prog **prog; 1464 u32 cnt = 0; 1465 1466 rcu_read_lock(); 1467 prog = rcu_dereference(progs)->progs; 1468 for (; *prog; prog++) 1469 if (*prog != &dummy_bpf_prog.prog) 1470 cnt++; 1471 rcu_read_unlock(); 1472 return cnt; 1473 } 1474 1475 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs, 1476 __u32 __user *prog_ids, u32 cnt) 1477 { 1478 struct bpf_prog **prog; 1479 u32 i = 0, id; 1480 1481 rcu_read_lock(); 1482 prog = rcu_dereference(progs)->progs; 1483 for (; *prog; prog++) { 1484 id = (*prog)->aux->id; 1485 if (copy_to_user(prog_ids + i, &id, sizeof(id))) { 1486 rcu_read_unlock(); 1487 return -EFAULT; 1488 } 1489 if (++i == cnt) { 1490 prog++; 1491 break; 1492 } 1493 } 1494 rcu_read_unlock(); 1495 if (*prog) 1496 return -ENOSPC; 1497 return 0; 1498 } 1499 1500 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs, 1501 struct bpf_prog *old_prog) 1502 { 1503 struct bpf_prog **prog = progs->progs; 1504 1505 for (; *prog; prog++) 1506 if (*prog == old_prog) { 1507 WRITE_ONCE(*prog, &dummy_bpf_prog.prog); 1508 break; 1509 } 1510 } 1511 1512 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array, 1513 struct bpf_prog *exclude_prog, 1514 struct bpf_prog *include_prog, 1515 struct bpf_prog_array **new_array) 1516 { 1517 int new_prog_cnt, carry_prog_cnt = 0; 1518 struct bpf_prog **existing_prog; 1519 struct bpf_prog_array *array; 1520 int new_prog_idx = 0; 1521 1522 /* Figure out how many existing progs we need to carry over to 1523 * the new array. 1524 */ 1525 if (old_array) { 1526 existing_prog = old_array->progs; 1527 for (; *existing_prog; existing_prog++) { 1528 if (*existing_prog != exclude_prog && 1529 *existing_prog != &dummy_bpf_prog.prog) 1530 carry_prog_cnt++; 1531 if (*existing_prog == include_prog) 1532 return -EEXIST; 1533 } 1534 } 1535 1536 /* How many progs (not NULL) will be in the new array? */ 1537 new_prog_cnt = carry_prog_cnt; 1538 if (include_prog) 1539 new_prog_cnt += 1; 1540 1541 /* Do we have any prog (not NULL) in the new array? */ 1542 if (!new_prog_cnt) { 1543 *new_array = NULL; 1544 return 0; 1545 } 1546 1547 /* +1 as the end of prog_array is marked with NULL */ 1548 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); 1549 if (!array) 1550 return -ENOMEM; 1551 1552 /* Fill in the new prog array */ 1553 if (carry_prog_cnt) { 1554 existing_prog = old_array->progs; 1555 for (; *existing_prog; existing_prog++) 1556 if (*existing_prog != exclude_prog && 1557 *existing_prog != &dummy_bpf_prog.prog) 1558 array->progs[new_prog_idx++] = *existing_prog; 1559 } 1560 if (include_prog) 1561 array->progs[new_prog_idx++] = include_prog; 1562 array->progs[new_prog_idx] = NULL; 1563 *new_array = array; 1564 return 0; 1565 } 1566 1567 static void bpf_prog_free_deferred(struct work_struct *work) 1568 { 1569 struct bpf_prog_aux *aux; 1570 1571 aux = container_of(work, struct bpf_prog_aux, work); 1572 if (bpf_prog_is_dev_bound(aux)) 1573 bpf_prog_offload_destroy(aux->prog); 1574 bpf_jit_free(aux->prog); 1575 } 1576 1577 /* Free internal BPF program */ 1578 void bpf_prog_free(struct bpf_prog *fp) 1579 { 1580 struct bpf_prog_aux *aux = fp->aux; 1581 1582 INIT_WORK(&aux->work, bpf_prog_free_deferred); 1583 schedule_work(&aux->work); 1584 } 1585 EXPORT_SYMBOL_GPL(bpf_prog_free); 1586 1587 /* RNG for unpriviledged user space with separated state from prandom_u32(). */ 1588 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); 1589 1590 void bpf_user_rnd_init_once(void) 1591 { 1592 prandom_init_once(&bpf_user_rnd_state); 1593 } 1594 1595 BPF_CALL_0(bpf_user_rnd_u32) 1596 { 1597 /* Should someone ever have the rather unwise idea to use some 1598 * of the registers passed into this function, then note that 1599 * this function is called from native eBPF and classic-to-eBPF 1600 * transformations. Register assignments from both sides are 1601 * different, f.e. classic always sets fn(ctx, A, X) here. 1602 */ 1603 struct rnd_state *state; 1604 u32 res; 1605 1606 state = &get_cpu_var(bpf_user_rnd_state); 1607 res = prandom_u32_state(state); 1608 put_cpu_var(bpf_user_rnd_state); 1609 1610 return res; 1611 } 1612 1613 /* Weak definitions of helper functions in case we don't have bpf syscall. */ 1614 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; 1615 const struct bpf_func_proto bpf_map_update_elem_proto __weak; 1616 const struct bpf_func_proto bpf_map_delete_elem_proto __weak; 1617 1618 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; 1619 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; 1620 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; 1621 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; 1622 1623 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; 1624 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; 1625 const struct bpf_func_proto bpf_get_current_comm_proto __weak; 1626 const struct bpf_func_proto bpf_sock_map_update_proto __weak; 1627 1628 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) 1629 { 1630 return NULL; 1631 } 1632 1633 u64 __weak 1634 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1635 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 1636 { 1637 return -ENOTSUPP; 1638 } 1639 1640 /* Always built-in helper functions. */ 1641 const struct bpf_func_proto bpf_tail_call_proto = { 1642 .func = NULL, 1643 .gpl_only = false, 1644 .ret_type = RET_VOID, 1645 .arg1_type = ARG_PTR_TO_CTX, 1646 .arg2_type = ARG_CONST_MAP_PTR, 1647 .arg3_type = ARG_ANYTHING, 1648 }; 1649 1650 /* Stub for JITs that only support cBPF. eBPF programs are interpreted. 1651 * It is encouraged to implement bpf_int_jit_compile() instead, so that 1652 * eBPF and implicitly also cBPF can get JITed! 1653 */ 1654 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) 1655 { 1656 return prog; 1657 } 1658 1659 /* Stub for JITs that support eBPF. All cBPF code gets transformed into 1660 * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). 1661 */ 1662 void __weak bpf_jit_compile(struct bpf_prog *prog) 1663 { 1664 } 1665 1666 bool __weak bpf_helper_changes_pkt_data(void *func) 1667 { 1668 return false; 1669 } 1670 1671 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call 1672 * skb_copy_bits(), so provide a weak definition of it for NET-less config. 1673 */ 1674 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, 1675 int len) 1676 { 1677 return -EFAULT; 1678 } 1679 1680 /* All definitions of tracepoints related to BPF. */ 1681 #define CREATE_TRACE_POINTS 1682 #include <linux/bpf_trace.h> 1683 1684 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); 1685 1686 /* These are only used within the BPF_SYSCALL code */ 1687 #ifdef CONFIG_BPF_SYSCALL 1688 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type); 1689 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu); 1690 #endif 1691