xref: /linux/kernel/bpf/core.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define ARG1	regs[BPF_REG_ARG1]
55 #define CTX	regs[BPF_REG_CTX]
56 #define IMM	insn->imm
57 
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64 	u8 *ptr = NULL;
65 
66 	if (k >= SKF_NET_OFF)
67 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 	else if (k >= SKF_LL_OFF)
69 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70 
71 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 		return ptr;
73 
74 	return NULL;
75 }
76 
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80 	struct bpf_prog_aux *aux;
81 	struct bpf_prog *fp;
82 
83 	size = round_up(size, PAGE_SIZE);
84 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85 	if (fp == NULL)
86 		return NULL;
87 
88 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 	if (aux == NULL) {
90 		vfree(fp);
91 		return NULL;
92 	}
93 
94 	fp->pages = size / PAGE_SIZE;
95 	fp->aux = aux;
96 	fp->aux->prog = fp;
97 
98 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
99 
100 	return fp;
101 }
102 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
103 
104 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
105 				  gfp_t gfp_extra_flags)
106 {
107 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
108 	struct bpf_prog *fp;
109 	u32 pages, delta;
110 	int ret;
111 
112 	BUG_ON(fp_old == NULL);
113 
114 	size = round_up(size, PAGE_SIZE);
115 	pages = size / PAGE_SIZE;
116 	if (pages <= fp_old->pages)
117 		return fp_old;
118 
119 	delta = pages - fp_old->pages;
120 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
121 	if (ret)
122 		return NULL;
123 
124 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
125 	if (fp == NULL) {
126 		__bpf_prog_uncharge(fp_old->aux->user, delta);
127 	} else {
128 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
129 		fp->pages = pages;
130 		fp->aux->prog = fp;
131 
132 		/* We keep fp->aux from fp_old around in the new
133 		 * reallocated structure.
134 		 */
135 		fp_old->aux = NULL;
136 		__bpf_prog_free(fp_old);
137 	}
138 
139 	return fp;
140 }
141 
142 void __bpf_prog_free(struct bpf_prog *fp)
143 {
144 	kfree(fp->aux);
145 	vfree(fp);
146 }
147 
148 int bpf_prog_calc_tag(struct bpf_prog *fp)
149 {
150 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
151 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
152 	u32 digest[SHA_DIGEST_WORDS];
153 	u32 ws[SHA_WORKSPACE_WORDS];
154 	u32 i, bsize, psize, blocks;
155 	struct bpf_insn *dst;
156 	bool was_ld_map;
157 	u8 *raw, *todo;
158 	__be32 *result;
159 	__be64 *bits;
160 
161 	raw = vmalloc(raw_size);
162 	if (!raw)
163 		return -ENOMEM;
164 
165 	sha_init(digest);
166 	memset(ws, 0, sizeof(ws));
167 
168 	/* We need to take out the map fd for the digest calculation
169 	 * since they are unstable from user space side.
170 	 */
171 	dst = (void *)raw;
172 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
173 		dst[i] = fp->insnsi[i];
174 		if (!was_ld_map &&
175 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
176 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
177 			was_ld_map = true;
178 			dst[i].imm = 0;
179 		} else if (was_ld_map &&
180 			   dst[i].code == 0 &&
181 			   dst[i].dst_reg == 0 &&
182 			   dst[i].src_reg == 0 &&
183 			   dst[i].off == 0) {
184 			was_ld_map = false;
185 			dst[i].imm = 0;
186 		} else {
187 			was_ld_map = false;
188 		}
189 	}
190 
191 	psize = bpf_prog_insn_size(fp);
192 	memset(&raw[psize], 0, raw_size - psize);
193 	raw[psize++] = 0x80;
194 
195 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
196 	blocks = bsize / SHA_MESSAGE_BYTES;
197 	todo   = raw;
198 	if (bsize - psize >= sizeof(__be64)) {
199 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
200 	} else {
201 		bits = (__be64 *)(todo + bsize + bits_offset);
202 		blocks++;
203 	}
204 	*bits = cpu_to_be64((psize - 1) << 3);
205 
206 	while (blocks--) {
207 		sha_transform(digest, todo, ws);
208 		todo += SHA_MESSAGE_BYTES;
209 	}
210 
211 	result = (__force __be32 *)digest;
212 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
213 		result[i] = cpu_to_be32(digest[i]);
214 	memcpy(fp->tag, result, sizeof(fp->tag));
215 
216 	vfree(raw);
217 	return 0;
218 }
219 
220 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
221 {
222 	return BPF_CLASS(insn->code) == BPF_JMP  &&
223 	       /* Call and Exit are both special jumps with no
224 		* target inside the BPF instruction image.
225 		*/
226 	       BPF_OP(insn->code) != BPF_CALL &&
227 	       BPF_OP(insn->code) != BPF_EXIT;
228 }
229 
230 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
231 {
232 	struct bpf_insn *insn = prog->insnsi;
233 	u32 i, insn_cnt = prog->len;
234 
235 	for (i = 0; i < insn_cnt; i++, insn++) {
236 		if (!bpf_is_jmp_and_has_target(insn))
237 			continue;
238 
239 		/* Adjust offset of jmps if we cross boundaries. */
240 		if (i < pos && i + insn->off + 1 > pos)
241 			insn->off += delta;
242 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
243 			insn->off -= delta;
244 	}
245 }
246 
247 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
248 				       const struct bpf_insn *patch, u32 len)
249 {
250 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
251 	struct bpf_prog *prog_adj;
252 
253 	/* Since our patchlet doesn't expand the image, we're done. */
254 	if (insn_delta == 0) {
255 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
256 		return prog;
257 	}
258 
259 	insn_adj_cnt = prog->len + insn_delta;
260 
261 	/* Several new instructions need to be inserted. Make room
262 	 * for them. Likely, there's no need for a new allocation as
263 	 * last page could have large enough tailroom.
264 	 */
265 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
266 				    GFP_USER);
267 	if (!prog_adj)
268 		return NULL;
269 
270 	prog_adj->len = insn_adj_cnt;
271 
272 	/* Patching happens in 3 steps:
273 	 *
274 	 * 1) Move over tail of insnsi from next instruction onwards,
275 	 *    so we can patch the single target insn with one or more
276 	 *    new ones (patching is always from 1 to n insns, n > 0).
277 	 * 2) Inject new instructions at the target location.
278 	 * 3) Adjust branch offsets if necessary.
279 	 */
280 	insn_rest = insn_adj_cnt - off - len;
281 
282 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
283 		sizeof(*patch) * insn_rest);
284 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
285 
286 	bpf_adj_branches(prog_adj, off, insn_delta);
287 
288 	return prog_adj;
289 }
290 
291 #ifdef CONFIG_BPF_JIT
292 static __always_inline void
293 bpf_get_prog_addr_region(const struct bpf_prog *prog,
294 			 unsigned long *symbol_start,
295 			 unsigned long *symbol_end)
296 {
297 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
298 	unsigned long addr = (unsigned long)hdr;
299 
300 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
301 
302 	*symbol_start = addr;
303 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
304 }
305 
306 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
307 {
308 	const char *end = sym + KSYM_NAME_LEN;
309 
310 	BUILD_BUG_ON(sizeof("bpf_prog_") +
311 		     sizeof(prog->tag) * 2 +
312 		     /* name has been null terminated.
313 		      * We should need +1 for the '_' preceding
314 		      * the name.  However, the null character
315 		      * is double counted between the name and the
316 		      * sizeof("bpf_prog_") above, so we omit
317 		      * the +1 here.
318 		      */
319 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
320 
321 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
322 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
323 	if (prog->aux->name[0])
324 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
325 	else
326 		*sym = 0;
327 }
328 
329 static __always_inline unsigned long
330 bpf_get_prog_addr_start(struct latch_tree_node *n)
331 {
332 	unsigned long symbol_start, symbol_end;
333 	const struct bpf_prog_aux *aux;
334 
335 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
336 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
337 
338 	return symbol_start;
339 }
340 
341 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
342 					  struct latch_tree_node *b)
343 {
344 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
345 }
346 
347 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
348 {
349 	unsigned long val = (unsigned long)key;
350 	unsigned long symbol_start, symbol_end;
351 	const struct bpf_prog_aux *aux;
352 
353 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
354 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
355 
356 	if (val < symbol_start)
357 		return -1;
358 	if (val >= symbol_end)
359 		return  1;
360 
361 	return 0;
362 }
363 
364 static const struct latch_tree_ops bpf_tree_ops = {
365 	.less	= bpf_tree_less,
366 	.comp	= bpf_tree_comp,
367 };
368 
369 static DEFINE_SPINLOCK(bpf_lock);
370 static LIST_HEAD(bpf_kallsyms);
371 static struct latch_tree_root bpf_tree __cacheline_aligned;
372 
373 int bpf_jit_kallsyms __read_mostly;
374 
375 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
376 {
377 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
378 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
379 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
380 }
381 
382 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
383 {
384 	if (list_empty(&aux->ksym_lnode))
385 		return;
386 
387 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
388 	list_del_rcu(&aux->ksym_lnode);
389 }
390 
391 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
392 {
393 	return fp->jited && !bpf_prog_was_classic(fp);
394 }
395 
396 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
397 {
398 	return list_empty(&fp->aux->ksym_lnode) ||
399 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
400 }
401 
402 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
403 {
404 	if (!bpf_prog_kallsyms_candidate(fp) ||
405 	    !capable(CAP_SYS_ADMIN))
406 		return;
407 
408 	spin_lock_bh(&bpf_lock);
409 	bpf_prog_ksym_node_add(fp->aux);
410 	spin_unlock_bh(&bpf_lock);
411 }
412 
413 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
414 {
415 	if (!bpf_prog_kallsyms_candidate(fp))
416 		return;
417 
418 	spin_lock_bh(&bpf_lock);
419 	bpf_prog_ksym_node_del(fp->aux);
420 	spin_unlock_bh(&bpf_lock);
421 }
422 
423 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
424 {
425 	struct latch_tree_node *n;
426 
427 	if (!bpf_jit_kallsyms_enabled())
428 		return NULL;
429 
430 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
431 	return n ?
432 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
433 	       NULL;
434 }
435 
436 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
437 				 unsigned long *off, char *sym)
438 {
439 	unsigned long symbol_start, symbol_end;
440 	struct bpf_prog *prog;
441 	char *ret = NULL;
442 
443 	rcu_read_lock();
444 	prog = bpf_prog_kallsyms_find(addr);
445 	if (prog) {
446 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
447 		bpf_get_prog_name(prog, sym);
448 
449 		ret = sym;
450 		if (size)
451 			*size = symbol_end - symbol_start;
452 		if (off)
453 			*off  = addr - symbol_start;
454 	}
455 	rcu_read_unlock();
456 
457 	return ret;
458 }
459 
460 bool is_bpf_text_address(unsigned long addr)
461 {
462 	bool ret;
463 
464 	rcu_read_lock();
465 	ret = bpf_prog_kallsyms_find(addr) != NULL;
466 	rcu_read_unlock();
467 
468 	return ret;
469 }
470 
471 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
472 		    char *sym)
473 {
474 	unsigned long symbol_start, symbol_end;
475 	struct bpf_prog_aux *aux;
476 	unsigned int it = 0;
477 	int ret = -ERANGE;
478 
479 	if (!bpf_jit_kallsyms_enabled())
480 		return ret;
481 
482 	rcu_read_lock();
483 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
484 		if (it++ != symnum)
485 			continue;
486 
487 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
488 		bpf_get_prog_name(aux->prog, sym);
489 
490 		*value = symbol_start;
491 		*type  = BPF_SYM_ELF_TYPE;
492 
493 		ret = 0;
494 		break;
495 	}
496 	rcu_read_unlock();
497 
498 	return ret;
499 }
500 
501 struct bpf_binary_header *
502 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
503 		     unsigned int alignment,
504 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
505 {
506 	struct bpf_binary_header *hdr;
507 	unsigned int size, hole, start;
508 
509 	/* Most of BPF filters are really small, but if some of them
510 	 * fill a page, allow at least 128 extra bytes to insert a
511 	 * random section of illegal instructions.
512 	 */
513 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
514 	hdr = module_alloc(size);
515 	if (hdr == NULL)
516 		return NULL;
517 
518 	/* Fill space with illegal/arch-dep instructions. */
519 	bpf_fill_ill_insns(hdr, size);
520 
521 	hdr->pages = size / PAGE_SIZE;
522 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
523 		     PAGE_SIZE - sizeof(*hdr));
524 	start = (get_random_int() % hole) & ~(alignment - 1);
525 
526 	/* Leave a random number of instructions before BPF code. */
527 	*image_ptr = &hdr->image[start];
528 
529 	return hdr;
530 }
531 
532 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
533 {
534 	module_memfree(hdr);
535 }
536 
537 /* This symbol is only overridden by archs that have different
538  * requirements than the usual eBPF JITs, f.e. when they only
539  * implement cBPF JIT, do not set images read-only, etc.
540  */
541 void __weak bpf_jit_free(struct bpf_prog *fp)
542 {
543 	if (fp->jited) {
544 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
545 
546 		bpf_jit_binary_unlock_ro(hdr);
547 		bpf_jit_binary_free(hdr);
548 
549 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
550 	}
551 
552 	bpf_prog_unlock_free(fp);
553 }
554 
555 int bpf_jit_harden __read_mostly;
556 
557 static int bpf_jit_blind_insn(const struct bpf_insn *from,
558 			      const struct bpf_insn *aux,
559 			      struct bpf_insn *to_buff)
560 {
561 	struct bpf_insn *to = to_buff;
562 	u32 imm_rnd = get_random_int();
563 	s16 off;
564 
565 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
566 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
567 
568 	if (from->imm == 0 &&
569 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
570 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
571 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
572 		goto out;
573 	}
574 
575 	switch (from->code) {
576 	case BPF_ALU | BPF_ADD | BPF_K:
577 	case BPF_ALU | BPF_SUB | BPF_K:
578 	case BPF_ALU | BPF_AND | BPF_K:
579 	case BPF_ALU | BPF_OR  | BPF_K:
580 	case BPF_ALU | BPF_XOR | BPF_K:
581 	case BPF_ALU | BPF_MUL | BPF_K:
582 	case BPF_ALU | BPF_MOV | BPF_K:
583 	case BPF_ALU | BPF_DIV | BPF_K:
584 	case BPF_ALU | BPF_MOD | BPF_K:
585 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
586 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
587 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
588 		break;
589 
590 	case BPF_ALU64 | BPF_ADD | BPF_K:
591 	case BPF_ALU64 | BPF_SUB | BPF_K:
592 	case BPF_ALU64 | BPF_AND | BPF_K:
593 	case BPF_ALU64 | BPF_OR  | BPF_K:
594 	case BPF_ALU64 | BPF_XOR | BPF_K:
595 	case BPF_ALU64 | BPF_MUL | BPF_K:
596 	case BPF_ALU64 | BPF_MOV | BPF_K:
597 	case BPF_ALU64 | BPF_DIV | BPF_K:
598 	case BPF_ALU64 | BPF_MOD | BPF_K:
599 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
600 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
601 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
602 		break;
603 
604 	case BPF_JMP | BPF_JEQ  | BPF_K:
605 	case BPF_JMP | BPF_JNE  | BPF_K:
606 	case BPF_JMP | BPF_JGT  | BPF_K:
607 	case BPF_JMP | BPF_JLT  | BPF_K:
608 	case BPF_JMP | BPF_JGE  | BPF_K:
609 	case BPF_JMP | BPF_JLE  | BPF_K:
610 	case BPF_JMP | BPF_JSGT | BPF_K:
611 	case BPF_JMP | BPF_JSLT | BPF_K:
612 	case BPF_JMP | BPF_JSGE | BPF_K:
613 	case BPF_JMP | BPF_JSLE | BPF_K:
614 	case BPF_JMP | BPF_JSET | BPF_K:
615 		/* Accommodate for extra offset in case of a backjump. */
616 		off = from->off;
617 		if (off < 0)
618 			off -= 2;
619 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
620 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
621 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
622 		break;
623 
624 	case BPF_LD | BPF_ABS | BPF_W:
625 	case BPF_LD | BPF_ABS | BPF_H:
626 	case BPF_LD | BPF_ABS | BPF_B:
627 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
628 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
629 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
630 		break;
631 
632 	case BPF_LD | BPF_IND | BPF_W:
633 	case BPF_LD | BPF_IND | BPF_H:
634 	case BPF_LD | BPF_IND | BPF_B:
635 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
636 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
637 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
638 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
639 		break;
640 
641 	case BPF_LD | BPF_IMM | BPF_DW:
642 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
643 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
644 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
645 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
646 		break;
647 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
648 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
649 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
650 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
651 		break;
652 
653 	case BPF_ST | BPF_MEM | BPF_DW:
654 	case BPF_ST | BPF_MEM | BPF_W:
655 	case BPF_ST | BPF_MEM | BPF_H:
656 	case BPF_ST | BPF_MEM | BPF_B:
657 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
658 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
659 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
660 		break;
661 	}
662 out:
663 	return to - to_buff;
664 }
665 
666 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
667 					      gfp_t gfp_extra_flags)
668 {
669 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
670 	struct bpf_prog *fp;
671 
672 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
673 	if (fp != NULL) {
674 		/* aux->prog still points to the fp_other one, so
675 		 * when promoting the clone to the real program,
676 		 * this still needs to be adapted.
677 		 */
678 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
679 	}
680 
681 	return fp;
682 }
683 
684 static void bpf_prog_clone_free(struct bpf_prog *fp)
685 {
686 	/* aux was stolen by the other clone, so we cannot free
687 	 * it from this path! It will be freed eventually by the
688 	 * other program on release.
689 	 *
690 	 * At this point, we don't need a deferred release since
691 	 * clone is guaranteed to not be locked.
692 	 */
693 	fp->aux = NULL;
694 	__bpf_prog_free(fp);
695 }
696 
697 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
698 {
699 	/* We have to repoint aux->prog to self, as we don't
700 	 * know whether fp here is the clone or the original.
701 	 */
702 	fp->aux->prog = fp;
703 	bpf_prog_clone_free(fp_other);
704 }
705 
706 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
707 {
708 	struct bpf_insn insn_buff[16], aux[2];
709 	struct bpf_prog *clone, *tmp;
710 	int insn_delta, insn_cnt;
711 	struct bpf_insn *insn;
712 	int i, rewritten;
713 
714 	if (!bpf_jit_blinding_enabled())
715 		return prog;
716 
717 	clone = bpf_prog_clone_create(prog, GFP_USER);
718 	if (!clone)
719 		return ERR_PTR(-ENOMEM);
720 
721 	insn_cnt = clone->len;
722 	insn = clone->insnsi;
723 
724 	for (i = 0; i < insn_cnt; i++, insn++) {
725 		/* We temporarily need to hold the original ld64 insn
726 		 * so that we can still access the first part in the
727 		 * second blinding run.
728 		 */
729 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
730 		    insn[1].code == 0)
731 			memcpy(aux, insn, sizeof(aux));
732 
733 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
734 		if (!rewritten)
735 			continue;
736 
737 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
738 		if (!tmp) {
739 			/* Patching may have repointed aux->prog during
740 			 * realloc from the original one, so we need to
741 			 * fix it up here on error.
742 			 */
743 			bpf_jit_prog_release_other(prog, clone);
744 			return ERR_PTR(-ENOMEM);
745 		}
746 
747 		clone = tmp;
748 		insn_delta = rewritten - 1;
749 
750 		/* Walk new program and skip insns we just inserted. */
751 		insn = clone->insnsi + i + insn_delta;
752 		insn_cnt += insn_delta;
753 		i        += insn_delta;
754 	}
755 
756 	return clone;
757 }
758 #endif /* CONFIG_BPF_JIT */
759 
760 /* Base function for offset calculation. Needs to go into .text section,
761  * therefore keeping it non-static as well; will also be used by JITs
762  * anyway later on, so do not let the compiler omit it.
763  */
764 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
765 {
766 	return 0;
767 }
768 EXPORT_SYMBOL_GPL(__bpf_call_base);
769 
770 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
771 /**
772  *	__bpf_prog_run - run eBPF program on a given context
773  *	@ctx: is the data we are operating on
774  *	@insn: is the array of eBPF instructions
775  *
776  * Decode and execute eBPF instructions.
777  */
778 static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
779 				    u64 *stack)
780 {
781 	u64 tmp;
782 	static const void *jumptable[256] = {
783 		[0 ... 255] = &&default_label,
784 		/* Now overwrite non-defaults ... */
785 		/* 32 bit ALU operations */
786 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
787 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
788 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
789 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
790 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
791 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
792 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
793 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
794 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
795 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
796 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
797 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
798 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
799 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
800 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
801 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
802 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
803 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
804 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
805 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
806 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
807 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
808 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
809 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
810 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
811 		/* 64 bit ALU operations */
812 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
813 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
814 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
815 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
816 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
817 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
818 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
819 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
820 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
821 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
822 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
823 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
824 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
825 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
826 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
827 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
828 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
829 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
830 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
831 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
832 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
833 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
834 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
835 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
836 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
837 		/* Call instruction */
838 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
839 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
840 		/* Jumps */
841 		[BPF_JMP | BPF_JA] = &&JMP_JA,
842 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
843 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
844 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
845 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
846 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
847 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
848 		[BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
849 		[BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
850 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
851 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
852 		[BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
853 		[BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
854 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
855 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
856 		[BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
857 		[BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
858 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
859 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
860 		[BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
861 		[BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
862 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
863 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
864 		/* Program return */
865 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
866 		/* Store instructions */
867 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
868 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
869 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
870 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
871 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
872 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
873 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
874 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
875 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
876 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
877 		/* Load instructions */
878 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
879 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
880 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
881 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
882 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
883 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
884 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
885 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
886 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
887 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
888 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
889 	};
890 	u32 tail_call_cnt = 0;
891 	void *ptr;
892 	int off;
893 
894 #define CONT	 ({ insn++; goto select_insn; })
895 #define CONT_JMP ({ insn++; goto select_insn; })
896 
897 select_insn:
898 	goto *jumptable[insn->code];
899 
900 	/* ALU */
901 #define ALU(OPCODE, OP)			\
902 	ALU64_##OPCODE##_X:		\
903 		DST = DST OP SRC;	\
904 		CONT;			\
905 	ALU_##OPCODE##_X:		\
906 		DST = (u32) DST OP (u32) SRC;	\
907 		CONT;			\
908 	ALU64_##OPCODE##_K:		\
909 		DST = DST OP IMM;		\
910 		CONT;			\
911 	ALU_##OPCODE##_K:		\
912 		DST = (u32) DST OP (u32) IMM;	\
913 		CONT;
914 
915 	ALU(ADD,  +)
916 	ALU(SUB,  -)
917 	ALU(AND,  &)
918 	ALU(OR,   |)
919 	ALU(LSH, <<)
920 	ALU(RSH, >>)
921 	ALU(XOR,  ^)
922 	ALU(MUL,  *)
923 #undef ALU
924 	ALU_NEG:
925 		DST = (u32) -DST;
926 		CONT;
927 	ALU64_NEG:
928 		DST = -DST;
929 		CONT;
930 	ALU_MOV_X:
931 		DST = (u32) SRC;
932 		CONT;
933 	ALU_MOV_K:
934 		DST = (u32) IMM;
935 		CONT;
936 	ALU64_MOV_X:
937 		DST = SRC;
938 		CONT;
939 	ALU64_MOV_K:
940 		DST = IMM;
941 		CONT;
942 	LD_IMM_DW:
943 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
944 		insn++;
945 		CONT;
946 	ALU64_ARSH_X:
947 		(*(s64 *) &DST) >>= SRC;
948 		CONT;
949 	ALU64_ARSH_K:
950 		(*(s64 *) &DST) >>= IMM;
951 		CONT;
952 	ALU64_MOD_X:
953 		if (unlikely(SRC == 0))
954 			return 0;
955 		div64_u64_rem(DST, SRC, &tmp);
956 		DST = tmp;
957 		CONT;
958 	ALU_MOD_X:
959 		if (unlikely((u32)SRC == 0))
960 			return 0;
961 		tmp = (u32) DST;
962 		DST = do_div(tmp, (u32) SRC);
963 		CONT;
964 	ALU64_MOD_K:
965 		div64_u64_rem(DST, IMM, &tmp);
966 		DST = tmp;
967 		CONT;
968 	ALU_MOD_K:
969 		tmp = (u32) DST;
970 		DST = do_div(tmp, (u32) IMM);
971 		CONT;
972 	ALU64_DIV_X:
973 		if (unlikely(SRC == 0))
974 			return 0;
975 		DST = div64_u64(DST, SRC);
976 		CONT;
977 	ALU_DIV_X:
978 		if (unlikely((u32)SRC == 0))
979 			return 0;
980 		tmp = (u32) DST;
981 		do_div(tmp, (u32) SRC);
982 		DST = (u32) tmp;
983 		CONT;
984 	ALU64_DIV_K:
985 		DST = div64_u64(DST, IMM);
986 		CONT;
987 	ALU_DIV_K:
988 		tmp = (u32) DST;
989 		do_div(tmp, (u32) IMM);
990 		DST = (u32) tmp;
991 		CONT;
992 	ALU_END_TO_BE:
993 		switch (IMM) {
994 		case 16:
995 			DST = (__force u16) cpu_to_be16(DST);
996 			break;
997 		case 32:
998 			DST = (__force u32) cpu_to_be32(DST);
999 			break;
1000 		case 64:
1001 			DST = (__force u64) cpu_to_be64(DST);
1002 			break;
1003 		}
1004 		CONT;
1005 	ALU_END_TO_LE:
1006 		switch (IMM) {
1007 		case 16:
1008 			DST = (__force u16) cpu_to_le16(DST);
1009 			break;
1010 		case 32:
1011 			DST = (__force u32) cpu_to_le32(DST);
1012 			break;
1013 		case 64:
1014 			DST = (__force u64) cpu_to_le64(DST);
1015 			break;
1016 		}
1017 		CONT;
1018 
1019 	/* CALL */
1020 	JMP_CALL:
1021 		/* Function call scratches BPF_R1-BPF_R5 registers,
1022 		 * preserves BPF_R6-BPF_R9, and stores return value
1023 		 * into BPF_R0.
1024 		 */
1025 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1026 						       BPF_R4, BPF_R5);
1027 		CONT;
1028 
1029 	JMP_TAIL_CALL: {
1030 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1031 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1032 		struct bpf_prog *prog;
1033 		u32 index = BPF_R3;
1034 
1035 		if (unlikely(index >= array->map.max_entries))
1036 			goto out;
1037 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1038 			goto out;
1039 
1040 		tail_call_cnt++;
1041 
1042 		prog = READ_ONCE(array->ptrs[index]);
1043 		if (!prog)
1044 			goto out;
1045 
1046 		/* ARG1 at this point is guaranteed to point to CTX from
1047 		 * the verifier side due to the fact that the tail call is
1048 		 * handeled like a helper, that is, bpf_tail_call_proto,
1049 		 * where arg1_type is ARG_PTR_TO_CTX.
1050 		 */
1051 		insn = prog->insnsi;
1052 		goto select_insn;
1053 out:
1054 		CONT;
1055 	}
1056 	/* JMP */
1057 	JMP_JA:
1058 		insn += insn->off;
1059 		CONT;
1060 	JMP_JEQ_X:
1061 		if (DST == SRC) {
1062 			insn += insn->off;
1063 			CONT_JMP;
1064 		}
1065 		CONT;
1066 	JMP_JEQ_K:
1067 		if (DST == IMM) {
1068 			insn += insn->off;
1069 			CONT_JMP;
1070 		}
1071 		CONT;
1072 	JMP_JNE_X:
1073 		if (DST != SRC) {
1074 			insn += insn->off;
1075 			CONT_JMP;
1076 		}
1077 		CONT;
1078 	JMP_JNE_K:
1079 		if (DST != IMM) {
1080 			insn += insn->off;
1081 			CONT_JMP;
1082 		}
1083 		CONT;
1084 	JMP_JGT_X:
1085 		if (DST > SRC) {
1086 			insn += insn->off;
1087 			CONT_JMP;
1088 		}
1089 		CONT;
1090 	JMP_JGT_K:
1091 		if (DST > IMM) {
1092 			insn += insn->off;
1093 			CONT_JMP;
1094 		}
1095 		CONT;
1096 	JMP_JLT_X:
1097 		if (DST < SRC) {
1098 			insn += insn->off;
1099 			CONT_JMP;
1100 		}
1101 		CONT;
1102 	JMP_JLT_K:
1103 		if (DST < IMM) {
1104 			insn += insn->off;
1105 			CONT_JMP;
1106 		}
1107 		CONT;
1108 	JMP_JGE_X:
1109 		if (DST >= SRC) {
1110 			insn += insn->off;
1111 			CONT_JMP;
1112 		}
1113 		CONT;
1114 	JMP_JGE_K:
1115 		if (DST >= IMM) {
1116 			insn += insn->off;
1117 			CONT_JMP;
1118 		}
1119 		CONT;
1120 	JMP_JLE_X:
1121 		if (DST <= SRC) {
1122 			insn += insn->off;
1123 			CONT_JMP;
1124 		}
1125 		CONT;
1126 	JMP_JLE_K:
1127 		if (DST <= IMM) {
1128 			insn += insn->off;
1129 			CONT_JMP;
1130 		}
1131 		CONT;
1132 	JMP_JSGT_X:
1133 		if (((s64) DST) > ((s64) SRC)) {
1134 			insn += insn->off;
1135 			CONT_JMP;
1136 		}
1137 		CONT;
1138 	JMP_JSGT_K:
1139 		if (((s64) DST) > ((s64) IMM)) {
1140 			insn += insn->off;
1141 			CONT_JMP;
1142 		}
1143 		CONT;
1144 	JMP_JSLT_X:
1145 		if (((s64) DST) < ((s64) SRC)) {
1146 			insn += insn->off;
1147 			CONT_JMP;
1148 		}
1149 		CONT;
1150 	JMP_JSLT_K:
1151 		if (((s64) DST) < ((s64) IMM)) {
1152 			insn += insn->off;
1153 			CONT_JMP;
1154 		}
1155 		CONT;
1156 	JMP_JSGE_X:
1157 		if (((s64) DST) >= ((s64) SRC)) {
1158 			insn += insn->off;
1159 			CONT_JMP;
1160 		}
1161 		CONT;
1162 	JMP_JSGE_K:
1163 		if (((s64) DST) >= ((s64) IMM)) {
1164 			insn += insn->off;
1165 			CONT_JMP;
1166 		}
1167 		CONT;
1168 	JMP_JSLE_X:
1169 		if (((s64) DST) <= ((s64) SRC)) {
1170 			insn += insn->off;
1171 			CONT_JMP;
1172 		}
1173 		CONT;
1174 	JMP_JSLE_K:
1175 		if (((s64) DST) <= ((s64) IMM)) {
1176 			insn += insn->off;
1177 			CONT_JMP;
1178 		}
1179 		CONT;
1180 	JMP_JSET_X:
1181 		if (DST & SRC) {
1182 			insn += insn->off;
1183 			CONT_JMP;
1184 		}
1185 		CONT;
1186 	JMP_JSET_K:
1187 		if (DST & IMM) {
1188 			insn += insn->off;
1189 			CONT_JMP;
1190 		}
1191 		CONT;
1192 	JMP_EXIT:
1193 		return BPF_R0;
1194 
1195 	/* STX and ST and LDX*/
1196 #define LDST(SIZEOP, SIZE)						\
1197 	STX_MEM_##SIZEOP:						\
1198 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1199 		CONT;							\
1200 	ST_MEM_##SIZEOP:						\
1201 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1202 		CONT;							\
1203 	LDX_MEM_##SIZEOP:						\
1204 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1205 		CONT;
1206 
1207 	LDST(B,   u8)
1208 	LDST(H,  u16)
1209 	LDST(W,  u32)
1210 	LDST(DW, u64)
1211 #undef LDST
1212 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1213 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1214 			   (DST + insn->off));
1215 		CONT;
1216 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1217 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1218 			     (DST + insn->off));
1219 		CONT;
1220 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1221 		off = IMM;
1222 load_word:
1223 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1224 		 * appearing in the programs where ctx == skb
1225 		 * (see may_access_skb() in the verifier). All programs
1226 		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1227 		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1228 		 * verifier will check that BPF_R6 == ctx.
1229 		 *
1230 		 * BPF_ABS and BPF_IND are wrappers of function calls,
1231 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
1232 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1233 		 *
1234 		 * Implicit input:
1235 		 *   ctx == skb == BPF_R6 == CTX
1236 		 *
1237 		 * Explicit input:
1238 		 *   SRC == any register
1239 		 *   IMM == 32-bit immediate
1240 		 *
1241 		 * Output:
1242 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1243 		 */
1244 
1245 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1246 		if (likely(ptr != NULL)) {
1247 			BPF_R0 = get_unaligned_be32(ptr);
1248 			CONT;
1249 		}
1250 
1251 		return 0;
1252 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1253 		off = IMM;
1254 load_half:
1255 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1256 		if (likely(ptr != NULL)) {
1257 			BPF_R0 = get_unaligned_be16(ptr);
1258 			CONT;
1259 		}
1260 
1261 		return 0;
1262 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1263 		off = IMM;
1264 load_byte:
1265 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1266 		if (likely(ptr != NULL)) {
1267 			BPF_R0 = *(u8 *)ptr;
1268 			CONT;
1269 		}
1270 
1271 		return 0;
1272 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1273 		off = IMM + SRC;
1274 		goto load_word;
1275 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1276 		off = IMM + SRC;
1277 		goto load_half;
1278 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1279 		off = IMM + SRC;
1280 		goto load_byte;
1281 
1282 	default_label:
1283 		/* If we ever reach this, we have a bug somewhere. */
1284 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1285 		return 0;
1286 }
1287 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1288 
1289 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1290 #define DEFINE_BPF_PROG_RUN(stack_size) \
1291 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1292 { \
1293 	u64 stack[stack_size / sizeof(u64)]; \
1294 	u64 regs[MAX_BPF_REG]; \
1295 \
1296 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1297 	ARG1 = (u64) (unsigned long) ctx; \
1298 	return ___bpf_prog_run(regs, insn, stack); \
1299 }
1300 
1301 #define EVAL1(FN, X) FN(X)
1302 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1303 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1304 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1305 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1306 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1307 
1308 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1309 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1310 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1311 
1312 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1313 
1314 static unsigned int (*interpreters[])(const void *ctx,
1315 				      const struct bpf_insn *insn) = {
1316 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1317 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1318 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1319 };
1320 
1321 #else
1322 static unsigned int __bpf_prog_ret0(const void *ctx,
1323 				    const struct bpf_insn *insn)
1324 {
1325 	return 0;
1326 }
1327 #endif
1328 
1329 bool bpf_prog_array_compatible(struct bpf_array *array,
1330 			       const struct bpf_prog *fp)
1331 {
1332 	if (!array->owner_prog_type) {
1333 		/* There's no owner yet where we could check for
1334 		 * compatibility.
1335 		 */
1336 		array->owner_prog_type = fp->type;
1337 		array->owner_jited = fp->jited;
1338 
1339 		return true;
1340 	}
1341 
1342 	return array->owner_prog_type == fp->type &&
1343 	       array->owner_jited == fp->jited;
1344 }
1345 
1346 static int bpf_check_tail_call(const struct bpf_prog *fp)
1347 {
1348 	struct bpf_prog_aux *aux = fp->aux;
1349 	int i;
1350 
1351 	for (i = 0; i < aux->used_map_cnt; i++) {
1352 		struct bpf_map *map = aux->used_maps[i];
1353 		struct bpf_array *array;
1354 
1355 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1356 			continue;
1357 
1358 		array = container_of(map, struct bpf_array, map);
1359 		if (!bpf_prog_array_compatible(array, fp))
1360 			return -EINVAL;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  *	bpf_prog_select_runtime - select exec runtime for BPF program
1368  *	@fp: bpf_prog populated with internal BPF program
1369  *	@err: pointer to error variable
1370  *
1371  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1372  * The BPF program will be executed via BPF_PROG_RUN() macro.
1373  */
1374 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1375 {
1376 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1377 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1378 
1379 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1380 #else
1381 	fp->bpf_func = __bpf_prog_ret0;
1382 #endif
1383 
1384 	/* eBPF JITs can rewrite the program in case constant
1385 	 * blinding is active. However, in case of error during
1386 	 * blinding, bpf_int_jit_compile() must always return a
1387 	 * valid program, which in this case would simply not
1388 	 * be JITed, but falls back to the interpreter.
1389 	 */
1390 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1391 		fp = bpf_int_jit_compile(fp);
1392 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1393 		if (!fp->jited) {
1394 			*err = -ENOTSUPP;
1395 			return fp;
1396 		}
1397 #endif
1398 	} else {
1399 		*err = bpf_prog_offload_compile(fp);
1400 		if (*err)
1401 			return fp;
1402 	}
1403 	bpf_prog_lock_ro(fp);
1404 
1405 	/* The tail call compatibility check can only be done at
1406 	 * this late stage as we need to determine, if we deal
1407 	 * with JITed or non JITed program concatenations and not
1408 	 * all eBPF JITs might immediately support all features.
1409 	 */
1410 	*err = bpf_check_tail_call(fp);
1411 
1412 	return fp;
1413 }
1414 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1415 
1416 static unsigned int __bpf_prog_ret1(const void *ctx,
1417 				    const struct bpf_insn *insn)
1418 {
1419 	return 1;
1420 }
1421 
1422 static struct bpf_prog_dummy {
1423 	struct bpf_prog prog;
1424 } dummy_bpf_prog = {
1425 	.prog = {
1426 		.bpf_func = __bpf_prog_ret1,
1427 	},
1428 };
1429 
1430 /* to avoid allocating empty bpf_prog_array for cgroups that
1431  * don't have bpf program attached use one global 'empty_prog_array'
1432  * It will not be modified the caller of bpf_prog_array_alloc()
1433  * (since caller requested prog_cnt == 0)
1434  * that pointer should be 'freed' by bpf_prog_array_free()
1435  */
1436 static struct {
1437 	struct bpf_prog_array hdr;
1438 	struct bpf_prog *null_prog;
1439 } empty_prog_array = {
1440 	.null_prog = NULL,
1441 };
1442 
1443 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1444 {
1445 	if (prog_cnt)
1446 		return kzalloc(sizeof(struct bpf_prog_array) +
1447 			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
1448 			       flags);
1449 
1450 	return &empty_prog_array.hdr;
1451 }
1452 
1453 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1454 {
1455 	if (!progs ||
1456 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1457 		return;
1458 	kfree_rcu(progs, rcu);
1459 }
1460 
1461 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1462 {
1463 	struct bpf_prog **prog;
1464 	u32 cnt = 0;
1465 
1466 	rcu_read_lock();
1467 	prog = rcu_dereference(progs)->progs;
1468 	for (; *prog; prog++)
1469 		if (*prog != &dummy_bpf_prog.prog)
1470 			cnt++;
1471 	rcu_read_unlock();
1472 	return cnt;
1473 }
1474 
1475 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1476 				__u32 __user *prog_ids, u32 cnt)
1477 {
1478 	struct bpf_prog **prog;
1479 	u32 i = 0, id;
1480 
1481 	rcu_read_lock();
1482 	prog = rcu_dereference(progs)->progs;
1483 	for (; *prog; prog++) {
1484 		id = (*prog)->aux->id;
1485 		if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
1486 			rcu_read_unlock();
1487 			return -EFAULT;
1488 		}
1489 		if (++i == cnt) {
1490 			prog++;
1491 			break;
1492 		}
1493 	}
1494 	rcu_read_unlock();
1495 	if (*prog)
1496 		return -ENOSPC;
1497 	return 0;
1498 }
1499 
1500 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1501 				struct bpf_prog *old_prog)
1502 {
1503 	struct bpf_prog **prog = progs->progs;
1504 
1505 	for (; *prog; prog++)
1506 		if (*prog == old_prog) {
1507 			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1508 			break;
1509 		}
1510 }
1511 
1512 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1513 			struct bpf_prog *exclude_prog,
1514 			struct bpf_prog *include_prog,
1515 			struct bpf_prog_array **new_array)
1516 {
1517 	int new_prog_cnt, carry_prog_cnt = 0;
1518 	struct bpf_prog **existing_prog;
1519 	struct bpf_prog_array *array;
1520 	int new_prog_idx = 0;
1521 
1522 	/* Figure out how many existing progs we need to carry over to
1523 	 * the new array.
1524 	 */
1525 	if (old_array) {
1526 		existing_prog = old_array->progs;
1527 		for (; *existing_prog; existing_prog++) {
1528 			if (*existing_prog != exclude_prog &&
1529 			    *existing_prog != &dummy_bpf_prog.prog)
1530 				carry_prog_cnt++;
1531 			if (*existing_prog == include_prog)
1532 				return -EEXIST;
1533 		}
1534 	}
1535 
1536 	/* How many progs (not NULL) will be in the new array? */
1537 	new_prog_cnt = carry_prog_cnt;
1538 	if (include_prog)
1539 		new_prog_cnt += 1;
1540 
1541 	/* Do we have any prog (not NULL) in the new array? */
1542 	if (!new_prog_cnt) {
1543 		*new_array = NULL;
1544 		return 0;
1545 	}
1546 
1547 	/* +1 as the end of prog_array is marked with NULL */
1548 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1549 	if (!array)
1550 		return -ENOMEM;
1551 
1552 	/* Fill in the new prog array */
1553 	if (carry_prog_cnt) {
1554 		existing_prog = old_array->progs;
1555 		for (; *existing_prog; existing_prog++)
1556 			if (*existing_prog != exclude_prog &&
1557 			    *existing_prog != &dummy_bpf_prog.prog)
1558 				array->progs[new_prog_idx++] = *existing_prog;
1559 	}
1560 	if (include_prog)
1561 		array->progs[new_prog_idx++] = include_prog;
1562 	array->progs[new_prog_idx] = NULL;
1563 	*new_array = array;
1564 	return 0;
1565 }
1566 
1567 static void bpf_prog_free_deferred(struct work_struct *work)
1568 {
1569 	struct bpf_prog_aux *aux;
1570 
1571 	aux = container_of(work, struct bpf_prog_aux, work);
1572 	if (bpf_prog_is_dev_bound(aux))
1573 		bpf_prog_offload_destroy(aux->prog);
1574 	bpf_jit_free(aux->prog);
1575 }
1576 
1577 /* Free internal BPF program */
1578 void bpf_prog_free(struct bpf_prog *fp)
1579 {
1580 	struct bpf_prog_aux *aux = fp->aux;
1581 
1582 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1583 	schedule_work(&aux->work);
1584 }
1585 EXPORT_SYMBOL_GPL(bpf_prog_free);
1586 
1587 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1588 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1589 
1590 void bpf_user_rnd_init_once(void)
1591 {
1592 	prandom_init_once(&bpf_user_rnd_state);
1593 }
1594 
1595 BPF_CALL_0(bpf_user_rnd_u32)
1596 {
1597 	/* Should someone ever have the rather unwise idea to use some
1598 	 * of the registers passed into this function, then note that
1599 	 * this function is called from native eBPF and classic-to-eBPF
1600 	 * transformations. Register assignments from both sides are
1601 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1602 	 */
1603 	struct rnd_state *state;
1604 	u32 res;
1605 
1606 	state = &get_cpu_var(bpf_user_rnd_state);
1607 	res = prandom_u32_state(state);
1608 	put_cpu_var(bpf_user_rnd_state);
1609 
1610 	return res;
1611 }
1612 
1613 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1614 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1615 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1616 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1617 
1618 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1619 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1620 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1621 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1622 
1623 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1624 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1625 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1626 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1627 
1628 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1629 {
1630 	return NULL;
1631 }
1632 
1633 u64 __weak
1634 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1635 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1636 {
1637 	return -ENOTSUPP;
1638 }
1639 
1640 /* Always built-in helper functions. */
1641 const struct bpf_func_proto bpf_tail_call_proto = {
1642 	.func		= NULL,
1643 	.gpl_only	= false,
1644 	.ret_type	= RET_VOID,
1645 	.arg1_type	= ARG_PTR_TO_CTX,
1646 	.arg2_type	= ARG_CONST_MAP_PTR,
1647 	.arg3_type	= ARG_ANYTHING,
1648 };
1649 
1650 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1651  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1652  * eBPF and implicitly also cBPF can get JITed!
1653  */
1654 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1655 {
1656 	return prog;
1657 }
1658 
1659 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1660  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1661  */
1662 void __weak bpf_jit_compile(struct bpf_prog *prog)
1663 {
1664 }
1665 
1666 bool __weak bpf_helper_changes_pkt_data(void *func)
1667 {
1668 	return false;
1669 }
1670 
1671 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1672  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1673  */
1674 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1675 			 int len)
1676 {
1677 	return -EFAULT;
1678 }
1679 
1680 /* All definitions of tracepoints related to BPF. */
1681 #define CREATE_TRACE_POINTS
1682 #include <linux/bpf_trace.h>
1683 
1684 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1685 
1686 /* These are only used within the BPF_SYSCALL code */
1687 #ifdef CONFIG_BPF_SYSCALL
1688 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1689 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1690 #endif
1691