xref: /linux/kernel/bpf/core.c (revision 132db93572821ec2fdf81e354cc40f558faf7e4f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/frame.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define AX	regs[BPF_REG_AX]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 
95 	fp->pages = size / PAGE_SIZE;
96 	fp->aux = aux;
97 	fp->aux->prog = fp;
98 	fp->jit_requested = ebpf_jit_enabled();
99 
100 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
101 
102 	return fp;
103 }
104 
105 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
106 {
107 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
108 	struct bpf_prog *prog;
109 	int cpu;
110 
111 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
112 	if (!prog)
113 		return NULL;
114 
115 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
116 	if (!prog->aux->stats) {
117 		kfree(prog->aux);
118 		vfree(prog);
119 		return NULL;
120 	}
121 
122 	for_each_possible_cpu(cpu) {
123 		struct bpf_prog_stats *pstats;
124 
125 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
126 		u64_stats_init(&pstats->syncp);
127 	}
128 	return prog;
129 }
130 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
131 
132 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
133 {
134 	if (!prog->aux->nr_linfo || !prog->jit_requested)
135 		return 0;
136 
137 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
138 					 sizeof(*prog->aux->jited_linfo),
139 					 GFP_KERNEL | __GFP_NOWARN);
140 	if (!prog->aux->jited_linfo)
141 		return -ENOMEM;
142 
143 	return 0;
144 }
145 
146 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
147 {
148 	kfree(prog->aux->jited_linfo);
149 	prog->aux->jited_linfo = NULL;
150 }
151 
152 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
153 {
154 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
155 		bpf_prog_free_jited_linfo(prog);
156 }
157 
158 /* The jit engine is responsible to provide an array
159  * for insn_off to the jited_off mapping (insn_to_jit_off).
160  *
161  * The idx to this array is the insn_off.  Hence, the insn_off
162  * here is relative to the prog itself instead of the main prog.
163  * This array has one entry for each xlated bpf insn.
164  *
165  * jited_off is the byte off to the last byte of the jited insn.
166  *
167  * Hence, with
168  * insn_start:
169  *      The first bpf insn off of the prog.  The insn off
170  *      here is relative to the main prog.
171  *      e.g. if prog is a subprog, insn_start > 0
172  * linfo_idx:
173  *      The prog's idx to prog->aux->linfo and jited_linfo
174  *
175  * jited_linfo[linfo_idx] = prog->bpf_func
176  *
177  * For i > linfo_idx,
178  *
179  * jited_linfo[i] = prog->bpf_func +
180  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
181  */
182 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
183 			       const u32 *insn_to_jit_off)
184 {
185 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
186 	const struct bpf_line_info *linfo;
187 	void **jited_linfo;
188 
189 	if (!prog->aux->jited_linfo)
190 		/* Userspace did not provide linfo */
191 		return;
192 
193 	linfo_idx = prog->aux->linfo_idx;
194 	linfo = &prog->aux->linfo[linfo_idx];
195 	insn_start = linfo[0].insn_off;
196 	insn_end = insn_start + prog->len;
197 
198 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
199 	jited_linfo[0] = prog->bpf_func;
200 
201 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
202 
203 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
204 		/* The verifier ensures that linfo[i].insn_off is
205 		 * strictly increasing
206 		 */
207 		jited_linfo[i] = prog->bpf_func +
208 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
209 }
210 
211 void bpf_prog_free_linfo(struct bpf_prog *prog)
212 {
213 	bpf_prog_free_jited_linfo(prog);
214 	kvfree(prog->aux->linfo);
215 }
216 
217 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
218 				  gfp_t gfp_extra_flags)
219 {
220 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
221 	struct bpf_prog *fp;
222 	u32 pages, delta;
223 	int ret;
224 
225 	size = round_up(size, PAGE_SIZE);
226 	pages = size / PAGE_SIZE;
227 	if (pages <= fp_old->pages)
228 		return fp_old;
229 
230 	delta = pages - fp_old->pages;
231 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
232 	if (ret)
233 		return NULL;
234 
235 	fp = __vmalloc(size, gfp_flags);
236 	if (fp == NULL) {
237 		__bpf_prog_uncharge(fp_old->aux->user, delta);
238 	} else {
239 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
240 		fp->pages = pages;
241 		fp->aux->prog = fp;
242 
243 		/* We keep fp->aux from fp_old around in the new
244 		 * reallocated structure.
245 		 */
246 		fp_old->aux = NULL;
247 		__bpf_prog_free(fp_old);
248 	}
249 
250 	return fp;
251 }
252 
253 void __bpf_prog_free(struct bpf_prog *fp)
254 {
255 	if (fp->aux) {
256 		free_percpu(fp->aux->stats);
257 		kfree(fp->aux->poke_tab);
258 		kfree(fp->aux);
259 	}
260 	vfree(fp);
261 }
262 
263 int bpf_prog_calc_tag(struct bpf_prog *fp)
264 {
265 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
266 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
267 	u32 digest[SHA1_DIGEST_WORDS];
268 	u32 ws[SHA1_WORKSPACE_WORDS];
269 	u32 i, bsize, psize, blocks;
270 	struct bpf_insn *dst;
271 	bool was_ld_map;
272 	u8 *raw, *todo;
273 	__be32 *result;
274 	__be64 *bits;
275 
276 	raw = vmalloc(raw_size);
277 	if (!raw)
278 		return -ENOMEM;
279 
280 	sha1_init(digest);
281 	memset(ws, 0, sizeof(ws));
282 
283 	/* We need to take out the map fd for the digest calculation
284 	 * since they are unstable from user space side.
285 	 */
286 	dst = (void *)raw;
287 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
288 		dst[i] = fp->insnsi[i];
289 		if (!was_ld_map &&
290 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
291 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
292 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
293 			was_ld_map = true;
294 			dst[i].imm = 0;
295 		} else if (was_ld_map &&
296 			   dst[i].code == 0 &&
297 			   dst[i].dst_reg == 0 &&
298 			   dst[i].src_reg == 0 &&
299 			   dst[i].off == 0) {
300 			was_ld_map = false;
301 			dst[i].imm = 0;
302 		} else {
303 			was_ld_map = false;
304 		}
305 	}
306 
307 	psize = bpf_prog_insn_size(fp);
308 	memset(&raw[psize], 0, raw_size - psize);
309 	raw[psize++] = 0x80;
310 
311 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
312 	blocks = bsize / SHA1_BLOCK_SIZE;
313 	todo   = raw;
314 	if (bsize - psize >= sizeof(__be64)) {
315 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
316 	} else {
317 		bits = (__be64 *)(todo + bsize + bits_offset);
318 		blocks++;
319 	}
320 	*bits = cpu_to_be64((psize - 1) << 3);
321 
322 	while (blocks--) {
323 		sha1_transform(digest, todo, ws);
324 		todo += SHA1_BLOCK_SIZE;
325 	}
326 
327 	result = (__force __be32 *)digest;
328 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
329 		result[i] = cpu_to_be32(digest[i]);
330 	memcpy(fp->tag, result, sizeof(fp->tag));
331 
332 	vfree(raw);
333 	return 0;
334 }
335 
336 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
337 				s32 end_new, s32 curr, const bool probe_pass)
338 {
339 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
340 	s32 delta = end_new - end_old;
341 	s64 imm = insn->imm;
342 
343 	if (curr < pos && curr + imm + 1 >= end_old)
344 		imm += delta;
345 	else if (curr >= end_new && curr + imm + 1 < end_new)
346 		imm -= delta;
347 	if (imm < imm_min || imm > imm_max)
348 		return -ERANGE;
349 	if (!probe_pass)
350 		insn->imm = imm;
351 	return 0;
352 }
353 
354 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
355 				s32 end_new, s32 curr, const bool probe_pass)
356 {
357 	const s32 off_min = S16_MIN, off_max = S16_MAX;
358 	s32 delta = end_new - end_old;
359 	s32 off = insn->off;
360 
361 	if (curr < pos && curr + off + 1 >= end_old)
362 		off += delta;
363 	else if (curr >= end_new && curr + off + 1 < end_new)
364 		off -= delta;
365 	if (off < off_min || off > off_max)
366 		return -ERANGE;
367 	if (!probe_pass)
368 		insn->off = off;
369 	return 0;
370 }
371 
372 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
373 			    s32 end_new, const bool probe_pass)
374 {
375 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
376 	struct bpf_insn *insn = prog->insnsi;
377 	int ret = 0;
378 
379 	for (i = 0; i < insn_cnt; i++, insn++) {
380 		u8 code;
381 
382 		/* In the probing pass we still operate on the original,
383 		 * unpatched image in order to check overflows before we
384 		 * do any other adjustments. Therefore skip the patchlet.
385 		 */
386 		if (probe_pass && i == pos) {
387 			i = end_new;
388 			insn = prog->insnsi + end_old;
389 		}
390 		code = insn->code;
391 		if ((BPF_CLASS(code) != BPF_JMP &&
392 		     BPF_CLASS(code) != BPF_JMP32) ||
393 		    BPF_OP(code) == BPF_EXIT)
394 			continue;
395 		/* Adjust offset of jmps if we cross patch boundaries. */
396 		if (BPF_OP(code) == BPF_CALL) {
397 			if (insn->src_reg != BPF_PSEUDO_CALL)
398 				continue;
399 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
400 						   end_new, i, probe_pass);
401 		} else {
402 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
403 						   end_new, i, probe_pass);
404 		}
405 		if (ret)
406 			break;
407 	}
408 
409 	return ret;
410 }
411 
412 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
413 {
414 	struct bpf_line_info *linfo;
415 	u32 i, nr_linfo;
416 
417 	nr_linfo = prog->aux->nr_linfo;
418 	if (!nr_linfo || !delta)
419 		return;
420 
421 	linfo = prog->aux->linfo;
422 
423 	for (i = 0; i < nr_linfo; i++)
424 		if (off < linfo[i].insn_off)
425 			break;
426 
427 	/* Push all off < linfo[i].insn_off by delta */
428 	for (; i < nr_linfo; i++)
429 		linfo[i].insn_off += delta;
430 }
431 
432 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
433 				       const struct bpf_insn *patch, u32 len)
434 {
435 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
436 	const u32 cnt_max = S16_MAX;
437 	struct bpf_prog *prog_adj;
438 	int err;
439 
440 	/* Since our patchlet doesn't expand the image, we're done. */
441 	if (insn_delta == 0) {
442 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
443 		return prog;
444 	}
445 
446 	insn_adj_cnt = prog->len + insn_delta;
447 
448 	/* Reject anything that would potentially let the insn->off
449 	 * target overflow when we have excessive program expansions.
450 	 * We need to probe here before we do any reallocation where
451 	 * we afterwards may not fail anymore.
452 	 */
453 	if (insn_adj_cnt > cnt_max &&
454 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
455 		return ERR_PTR(err);
456 
457 	/* Several new instructions need to be inserted. Make room
458 	 * for them. Likely, there's no need for a new allocation as
459 	 * last page could have large enough tailroom.
460 	 */
461 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
462 				    GFP_USER);
463 	if (!prog_adj)
464 		return ERR_PTR(-ENOMEM);
465 
466 	prog_adj->len = insn_adj_cnt;
467 
468 	/* Patching happens in 3 steps:
469 	 *
470 	 * 1) Move over tail of insnsi from next instruction onwards,
471 	 *    so we can patch the single target insn with one or more
472 	 *    new ones (patching is always from 1 to n insns, n > 0).
473 	 * 2) Inject new instructions at the target location.
474 	 * 3) Adjust branch offsets if necessary.
475 	 */
476 	insn_rest = insn_adj_cnt - off - len;
477 
478 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
479 		sizeof(*patch) * insn_rest);
480 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
481 
482 	/* We are guaranteed to not fail at this point, otherwise
483 	 * the ship has sailed to reverse to the original state. An
484 	 * overflow cannot happen at this point.
485 	 */
486 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
487 
488 	bpf_adj_linfo(prog_adj, off, insn_delta);
489 
490 	return prog_adj;
491 }
492 
493 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
494 {
495 	/* Branch offsets can't overflow when program is shrinking, no need
496 	 * to call bpf_adj_branches(..., true) here
497 	 */
498 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
499 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
500 	prog->len -= cnt;
501 
502 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
503 }
504 
505 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
506 {
507 	int i;
508 
509 	for (i = 0; i < fp->aux->func_cnt; i++)
510 		bpf_prog_kallsyms_del(fp->aux->func[i]);
511 }
512 
513 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
514 {
515 	bpf_prog_kallsyms_del_subprogs(fp);
516 	bpf_prog_kallsyms_del(fp);
517 }
518 
519 #ifdef CONFIG_BPF_JIT
520 /* All BPF JIT sysctl knobs here. */
521 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
522 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
523 int bpf_jit_harden   __read_mostly;
524 long bpf_jit_limit   __read_mostly;
525 
526 static void
527 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
528 {
529 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
530 	unsigned long addr = (unsigned long)hdr;
531 
532 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
533 
534 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
535 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
536 }
537 
538 static void
539 bpf_prog_ksym_set_name(struct bpf_prog *prog)
540 {
541 	char *sym = prog->aux->ksym.name;
542 	const char *end = sym + KSYM_NAME_LEN;
543 	const struct btf_type *type;
544 	const char *func_name;
545 
546 	BUILD_BUG_ON(sizeof("bpf_prog_") +
547 		     sizeof(prog->tag) * 2 +
548 		     /* name has been null terminated.
549 		      * We should need +1 for the '_' preceding
550 		      * the name.  However, the null character
551 		      * is double counted between the name and the
552 		      * sizeof("bpf_prog_") above, so we omit
553 		      * the +1 here.
554 		      */
555 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
556 
557 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
558 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
559 
560 	/* prog->aux->name will be ignored if full btf name is available */
561 	if (prog->aux->func_info_cnt) {
562 		type = btf_type_by_id(prog->aux->btf,
563 				      prog->aux->func_info[prog->aux->func_idx].type_id);
564 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
565 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
566 		return;
567 	}
568 
569 	if (prog->aux->name[0])
570 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
571 	else
572 		*sym = 0;
573 }
574 
575 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
576 {
577 	return container_of(n, struct bpf_ksym, tnode)->start;
578 }
579 
580 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
581 					  struct latch_tree_node *b)
582 {
583 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
584 }
585 
586 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
587 {
588 	unsigned long val = (unsigned long)key;
589 	const struct bpf_ksym *ksym;
590 
591 	ksym = container_of(n, struct bpf_ksym, tnode);
592 
593 	if (val < ksym->start)
594 		return -1;
595 	if (val >= ksym->end)
596 		return  1;
597 
598 	return 0;
599 }
600 
601 static const struct latch_tree_ops bpf_tree_ops = {
602 	.less	= bpf_tree_less,
603 	.comp	= bpf_tree_comp,
604 };
605 
606 static DEFINE_SPINLOCK(bpf_lock);
607 static LIST_HEAD(bpf_kallsyms);
608 static struct latch_tree_root bpf_tree __cacheline_aligned;
609 
610 void bpf_ksym_add(struct bpf_ksym *ksym)
611 {
612 	spin_lock_bh(&bpf_lock);
613 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
614 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
615 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
616 	spin_unlock_bh(&bpf_lock);
617 }
618 
619 static void __bpf_ksym_del(struct bpf_ksym *ksym)
620 {
621 	if (list_empty(&ksym->lnode))
622 		return;
623 
624 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
625 	list_del_rcu(&ksym->lnode);
626 }
627 
628 void bpf_ksym_del(struct bpf_ksym *ksym)
629 {
630 	spin_lock_bh(&bpf_lock);
631 	__bpf_ksym_del(ksym);
632 	spin_unlock_bh(&bpf_lock);
633 }
634 
635 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
636 {
637 	return fp->jited && !bpf_prog_was_classic(fp);
638 }
639 
640 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
641 {
642 	return list_empty(&fp->aux->ksym.lnode) ||
643 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
644 }
645 
646 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
647 {
648 	if (!bpf_prog_kallsyms_candidate(fp) ||
649 	    !bpf_capable())
650 		return;
651 
652 	bpf_prog_ksym_set_addr(fp);
653 	bpf_prog_ksym_set_name(fp);
654 	fp->aux->ksym.prog = true;
655 
656 	bpf_ksym_add(&fp->aux->ksym);
657 }
658 
659 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
660 {
661 	if (!bpf_prog_kallsyms_candidate(fp))
662 		return;
663 
664 	bpf_ksym_del(&fp->aux->ksym);
665 }
666 
667 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
668 {
669 	struct latch_tree_node *n;
670 
671 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
672 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
673 }
674 
675 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
676 				 unsigned long *off, char *sym)
677 {
678 	struct bpf_ksym *ksym;
679 	char *ret = NULL;
680 
681 	rcu_read_lock();
682 	ksym = bpf_ksym_find(addr);
683 	if (ksym) {
684 		unsigned long symbol_start = ksym->start;
685 		unsigned long symbol_end = ksym->end;
686 
687 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
688 
689 		ret = sym;
690 		if (size)
691 			*size = symbol_end - symbol_start;
692 		if (off)
693 			*off  = addr - symbol_start;
694 	}
695 	rcu_read_unlock();
696 
697 	return ret;
698 }
699 
700 bool is_bpf_text_address(unsigned long addr)
701 {
702 	bool ret;
703 
704 	rcu_read_lock();
705 	ret = bpf_ksym_find(addr) != NULL;
706 	rcu_read_unlock();
707 
708 	return ret;
709 }
710 
711 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
712 {
713 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
714 
715 	return ksym && ksym->prog ?
716 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
717 	       NULL;
718 }
719 
720 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
721 {
722 	const struct exception_table_entry *e = NULL;
723 	struct bpf_prog *prog;
724 
725 	rcu_read_lock();
726 	prog = bpf_prog_ksym_find(addr);
727 	if (!prog)
728 		goto out;
729 	if (!prog->aux->num_exentries)
730 		goto out;
731 
732 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
733 out:
734 	rcu_read_unlock();
735 	return e;
736 }
737 
738 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
739 		    char *sym)
740 {
741 	struct bpf_ksym *ksym;
742 	unsigned int it = 0;
743 	int ret = -ERANGE;
744 
745 	if (!bpf_jit_kallsyms_enabled())
746 		return ret;
747 
748 	rcu_read_lock();
749 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
750 		if (it++ != symnum)
751 			continue;
752 
753 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
754 
755 		*value = ksym->start;
756 		*type  = BPF_SYM_ELF_TYPE;
757 
758 		ret = 0;
759 		break;
760 	}
761 	rcu_read_unlock();
762 
763 	return ret;
764 }
765 
766 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
767 				struct bpf_jit_poke_descriptor *poke)
768 {
769 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
770 	static const u32 poke_tab_max = 1024;
771 	u32 slot = prog->aux->size_poke_tab;
772 	u32 size = slot + 1;
773 
774 	if (size > poke_tab_max)
775 		return -ENOSPC;
776 	if (poke->ip || poke->ip_stable || poke->adj_off)
777 		return -EINVAL;
778 
779 	switch (poke->reason) {
780 	case BPF_POKE_REASON_TAIL_CALL:
781 		if (!poke->tail_call.map)
782 			return -EINVAL;
783 		break;
784 	default:
785 		return -EINVAL;
786 	}
787 
788 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
789 	if (!tab)
790 		return -ENOMEM;
791 
792 	memcpy(&tab[slot], poke, sizeof(*poke));
793 	prog->aux->size_poke_tab = size;
794 	prog->aux->poke_tab = tab;
795 
796 	return slot;
797 }
798 
799 static atomic_long_t bpf_jit_current;
800 
801 /* Can be overridden by an arch's JIT compiler if it has a custom,
802  * dedicated BPF backend memory area, or if neither of the two
803  * below apply.
804  */
805 u64 __weak bpf_jit_alloc_exec_limit(void)
806 {
807 #if defined(MODULES_VADDR)
808 	return MODULES_END - MODULES_VADDR;
809 #else
810 	return VMALLOC_END - VMALLOC_START;
811 #endif
812 }
813 
814 static int __init bpf_jit_charge_init(void)
815 {
816 	/* Only used as heuristic here to derive limit. */
817 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
818 					    PAGE_SIZE), LONG_MAX);
819 	return 0;
820 }
821 pure_initcall(bpf_jit_charge_init);
822 
823 static int bpf_jit_charge_modmem(u32 pages)
824 {
825 	if (atomic_long_add_return(pages, &bpf_jit_current) >
826 	    (bpf_jit_limit >> PAGE_SHIFT)) {
827 		if (!capable(CAP_SYS_ADMIN)) {
828 			atomic_long_sub(pages, &bpf_jit_current);
829 			return -EPERM;
830 		}
831 	}
832 
833 	return 0;
834 }
835 
836 static void bpf_jit_uncharge_modmem(u32 pages)
837 {
838 	atomic_long_sub(pages, &bpf_jit_current);
839 }
840 
841 void *__weak bpf_jit_alloc_exec(unsigned long size)
842 {
843 	return module_alloc(size);
844 }
845 
846 void __weak bpf_jit_free_exec(void *addr)
847 {
848 	module_memfree(addr);
849 }
850 
851 struct bpf_binary_header *
852 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
853 		     unsigned int alignment,
854 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
855 {
856 	struct bpf_binary_header *hdr;
857 	u32 size, hole, start, pages;
858 
859 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
860 		     alignment > BPF_IMAGE_ALIGNMENT);
861 
862 	/* Most of BPF filters are really small, but if some of them
863 	 * fill a page, allow at least 128 extra bytes to insert a
864 	 * random section of illegal instructions.
865 	 */
866 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
867 	pages = size / PAGE_SIZE;
868 
869 	if (bpf_jit_charge_modmem(pages))
870 		return NULL;
871 	hdr = bpf_jit_alloc_exec(size);
872 	if (!hdr) {
873 		bpf_jit_uncharge_modmem(pages);
874 		return NULL;
875 	}
876 
877 	/* Fill space with illegal/arch-dep instructions. */
878 	bpf_fill_ill_insns(hdr, size);
879 
880 	hdr->pages = pages;
881 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
882 		     PAGE_SIZE - sizeof(*hdr));
883 	start = (get_random_int() % hole) & ~(alignment - 1);
884 
885 	/* Leave a random number of instructions before BPF code. */
886 	*image_ptr = &hdr->image[start];
887 
888 	return hdr;
889 }
890 
891 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
892 {
893 	u32 pages = hdr->pages;
894 
895 	bpf_jit_free_exec(hdr);
896 	bpf_jit_uncharge_modmem(pages);
897 }
898 
899 /* This symbol is only overridden by archs that have different
900  * requirements than the usual eBPF JITs, f.e. when they only
901  * implement cBPF JIT, do not set images read-only, etc.
902  */
903 void __weak bpf_jit_free(struct bpf_prog *fp)
904 {
905 	if (fp->jited) {
906 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
907 
908 		bpf_jit_binary_free(hdr);
909 
910 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
911 	}
912 
913 	bpf_prog_unlock_free(fp);
914 }
915 
916 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
917 			  const struct bpf_insn *insn, bool extra_pass,
918 			  u64 *func_addr, bool *func_addr_fixed)
919 {
920 	s16 off = insn->off;
921 	s32 imm = insn->imm;
922 	u8 *addr;
923 
924 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
925 	if (!*func_addr_fixed) {
926 		/* Place-holder address till the last pass has collected
927 		 * all addresses for JITed subprograms in which case we
928 		 * can pick them up from prog->aux.
929 		 */
930 		if (!extra_pass)
931 			addr = NULL;
932 		else if (prog->aux->func &&
933 			 off >= 0 && off < prog->aux->func_cnt)
934 			addr = (u8 *)prog->aux->func[off]->bpf_func;
935 		else
936 			return -EINVAL;
937 	} else {
938 		/* Address of a BPF helper call. Since part of the core
939 		 * kernel, it's always at a fixed location. __bpf_call_base
940 		 * and the helper with imm relative to it are both in core
941 		 * kernel.
942 		 */
943 		addr = (u8 *)__bpf_call_base + imm;
944 	}
945 
946 	*func_addr = (unsigned long)addr;
947 	return 0;
948 }
949 
950 static int bpf_jit_blind_insn(const struct bpf_insn *from,
951 			      const struct bpf_insn *aux,
952 			      struct bpf_insn *to_buff,
953 			      bool emit_zext)
954 {
955 	struct bpf_insn *to = to_buff;
956 	u32 imm_rnd = get_random_int();
957 	s16 off;
958 
959 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
960 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
961 
962 	/* Constraints on AX register:
963 	 *
964 	 * AX register is inaccessible from user space. It is mapped in
965 	 * all JITs, and used here for constant blinding rewrites. It is
966 	 * typically "stateless" meaning its contents are only valid within
967 	 * the executed instruction, but not across several instructions.
968 	 * There are a few exceptions however which are further detailed
969 	 * below.
970 	 *
971 	 * Constant blinding is only used by JITs, not in the interpreter.
972 	 * The interpreter uses AX in some occasions as a local temporary
973 	 * register e.g. in DIV or MOD instructions.
974 	 *
975 	 * In restricted circumstances, the verifier can also use the AX
976 	 * register for rewrites as long as they do not interfere with
977 	 * the above cases!
978 	 */
979 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
980 		goto out;
981 
982 	if (from->imm == 0 &&
983 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
984 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
985 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
986 		goto out;
987 	}
988 
989 	switch (from->code) {
990 	case BPF_ALU | BPF_ADD | BPF_K:
991 	case BPF_ALU | BPF_SUB | BPF_K:
992 	case BPF_ALU | BPF_AND | BPF_K:
993 	case BPF_ALU | BPF_OR  | BPF_K:
994 	case BPF_ALU | BPF_XOR | BPF_K:
995 	case BPF_ALU | BPF_MUL | BPF_K:
996 	case BPF_ALU | BPF_MOV | BPF_K:
997 	case BPF_ALU | BPF_DIV | BPF_K:
998 	case BPF_ALU | BPF_MOD | BPF_K:
999 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1000 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1001 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1002 		break;
1003 
1004 	case BPF_ALU64 | BPF_ADD | BPF_K:
1005 	case BPF_ALU64 | BPF_SUB | BPF_K:
1006 	case BPF_ALU64 | BPF_AND | BPF_K:
1007 	case BPF_ALU64 | BPF_OR  | BPF_K:
1008 	case BPF_ALU64 | BPF_XOR | BPF_K:
1009 	case BPF_ALU64 | BPF_MUL | BPF_K:
1010 	case BPF_ALU64 | BPF_MOV | BPF_K:
1011 	case BPF_ALU64 | BPF_DIV | BPF_K:
1012 	case BPF_ALU64 | BPF_MOD | BPF_K:
1013 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1014 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1015 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1016 		break;
1017 
1018 	case BPF_JMP | BPF_JEQ  | BPF_K:
1019 	case BPF_JMP | BPF_JNE  | BPF_K:
1020 	case BPF_JMP | BPF_JGT  | BPF_K:
1021 	case BPF_JMP | BPF_JLT  | BPF_K:
1022 	case BPF_JMP | BPF_JGE  | BPF_K:
1023 	case BPF_JMP | BPF_JLE  | BPF_K:
1024 	case BPF_JMP | BPF_JSGT | BPF_K:
1025 	case BPF_JMP | BPF_JSLT | BPF_K:
1026 	case BPF_JMP | BPF_JSGE | BPF_K:
1027 	case BPF_JMP | BPF_JSLE | BPF_K:
1028 	case BPF_JMP | BPF_JSET | BPF_K:
1029 		/* Accommodate for extra offset in case of a backjump. */
1030 		off = from->off;
1031 		if (off < 0)
1032 			off -= 2;
1033 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1034 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1035 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1036 		break;
1037 
1038 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1039 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1040 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1041 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1042 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1043 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1044 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1045 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1046 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1047 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1048 	case BPF_JMP32 | BPF_JSET | BPF_K:
1049 		/* Accommodate for extra offset in case of a backjump. */
1050 		off = from->off;
1051 		if (off < 0)
1052 			off -= 2;
1053 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1054 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1055 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1056 				      off);
1057 		break;
1058 
1059 	case BPF_LD | BPF_IMM | BPF_DW:
1060 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1061 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1063 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1064 		break;
1065 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1066 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1067 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1068 		if (emit_zext)
1069 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1070 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1071 		break;
1072 
1073 	case BPF_ST | BPF_MEM | BPF_DW:
1074 	case BPF_ST | BPF_MEM | BPF_W:
1075 	case BPF_ST | BPF_MEM | BPF_H:
1076 	case BPF_ST | BPF_MEM | BPF_B:
1077 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1078 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1079 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1080 		break;
1081 	}
1082 out:
1083 	return to - to_buff;
1084 }
1085 
1086 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1087 					      gfp_t gfp_extra_flags)
1088 {
1089 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1090 	struct bpf_prog *fp;
1091 
1092 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1093 	if (fp != NULL) {
1094 		/* aux->prog still points to the fp_other one, so
1095 		 * when promoting the clone to the real program,
1096 		 * this still needs to be adapted.
1097 		 */
1098 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1099 	}
1100 
1101 	return fp;
1102 }
1103 
1104 static void bpf_prog_clone_free(struct bpf_prog *fp)
1105 {
1106 	/* aux was stolen by the other clone, so we cannot free
1107 	 * it from this path! It will be freed eventually by the
1108 	 * other program on release.
1109 	 *
1110 	 * At this point, we don't need a deferred release since
1111 	 * clone is guaranteed to not be locked.
1112 	 */
1113 	fp->aux = NULL;
1114 	__bpf_prog_free(fp);
1115 }
1116 
1117 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1118 {
1119 	/* We have to repoint aux->prog to self, as we don't
1120 	 * know whether fp here is the clone or the original.
1121 	 */
1122 	fp->aux->prog = fp;
1123 	bpf_prog_clone_free(fp_other);
1124 }
1125 
1126 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1127 {
1128 	struct bpf_insn insn_buff[16], aux[2];
1129 	struct bpf_prog *clone, *tmp;
1130 	int insn_delta, insn_cnt;
1131 	struct bpf_insn *insn;
1132 	int i, rewritten;
1133 
1134 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1135 		return prog;
1136 
1137 	clone = bpf_prog_clone_create(prog, GFP_USER);
1138 	if (!clone)
1139 		return ERR_PTR(-ENOMEM);
1140 
1141 	insn_cnt = clone->len;
1142 	insn = clone->insnsi;
1143 
1144 	for (i = 0; i < insn_cnt; i++, insn++) {
1145 		/* We temporarily need to hold the original ld64 insn
1146 		 * so that we can still access the first part in the
1147 		 * second blinding run.
1148 		 */
1149 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1150 		    insn[1].code == 0)
1151 			memcpy(aux, insn, sizeof(aux));
1152 
1153 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1154 						clone->aux->verifier_zext);
1155 		if (!rewritten)
1156 			continue;
1157 
1158 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1159 		if (IS_ERR(tmp)) {
1160 			/* Patching may have repointed aux->prog during
1161 			 * realloc from the original one, so we need to
1162 			 * fix it up here on error.
1163 			 */
1164 			bpf_jit_prog_release_other(prog, clone);
1165 			return tmp;
1166 		}
1167 
1168 		clone = tmp;
1169 		insn_delta = rewritten - 1;
1170 
1171 		/* Walk new program and skip insns we just inserted. */
1172 		insn = clone->insnsi + i + insn_delta;
1173 		insn_cnt += insn_delta;
1174 		i        += insn_delta;
1175 	}
1176 
1177 	clone->blinded = 1;
1178 	return clone;
1179 }
1180 #endif /* CONFIG_BPF_JIT */
1181 
1182 /* Base function for offset calculation. Needs to go into .text section,
1183  * therefore keeping it non-static as well; will also be used by JITs
1184  * anyway later on, so do not let the compiler omit it. This also needs
1185  * to go into kallsyms for correlation from e.g. bpftool, so naming
1186  * must not change.
1187  */
1188 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1189 {
1190 	return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(__bpf_call_base);
1193 
1194 /* All UAPI available opcodes. */
1195 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1196 	/* 32 bit ALU operations. */		\
1197 	/*   Register based. */			\
1198 	INSN_3(ALU, ADD,  X),			\
1199 	INSN_3(ALU, SUB,  X),			\
1200 	INSN_3(ALU, AND,  X),			\
1201 	INSN_3(ALU, OR,   X),			\
1202 	INSN_3(ALU, LSH,  X),			\
1203 	INSN_3(ALU, RSH,  X),			\
1204 	INSN_3(ALU, XOR,  X),			\
1205 	INSN_3(ALU, MUL,  X),			\
1206 	INSN_3(ALU, MOV,  X),			\
1207 	INSN_3(ALU, ARSH, X),			\
1208 	INSN_3(ALU, DIV,  X),			\
1209 	INSN_3(ALU, MOD,  X),			\
1210 	INSN_2(ALU, NEG),			\
1211 	INSN_3(ALU, END, TO_BE),		\
1212 	INSN_3(ALU, END, TO_LE),		\
1213 	/*   Immediate based. */		\
1214 	INSN_3(ALU, ADD,  K),			\
1215 	INSN_3(ALU, SUB,  K),			\
1216 	INSN_3(ALU, AND,  K),			\
1217 	INSN_3(ALU, OR,   K),			\
1218 	INSN_3(ALU, LSH,  K),			\
1219 	INSN_3(ALU, RSH,  K),			\
1220 	INSN_3(ALU, XOR,  K),			\
1221 	INSN_3(ALU, MUL,  K),			\
1222 	INSN_3(ALU, MOV,  K),			\
1223 	INSN_3(ALU, ARSH, K),			\
1224 	INSN_3(ALU, DIV,  K),			\
1225 	INSN_3(ALU, MOD,  K),			\
1226 	/* 64 bit ALU operations. */		\
1227 	/*   Register based. */			\
1228 	INSN_3(ALU64, ADD,  X),			\
1229 	INSN_3(ALU64, SUB,  X),			\
1230 	INSN_3(ALU64, AND,  X),			\
1231 	INSN_3(ALU64, OR,   X),			\
1232 	INSN_3(ALU64, LSH,  X),			\
1233 	INSN_3(ALU64, RSH,  X),			\
1234 	INSN_3(ALU64, XOR,  X),			\
1235 	INSN_3(ALU64, MUL,  X),			\
1236 	INSN_3(ALU64, MOV,  X),			\
1237 	INSN_3(ALU64, ARSH, X),			\
1238 	INSN_3(ALU64, DIV,  X),			\
1239 	INSN_3(ALU64, MOD,  X),			\
1240 	INSN_2(ALU64, NEG),			\
1241 	/*   Immediate based. */		\
1242 	INSN_3(ALU64, ADD,  K),			\
1243 	INSN_3(ALU64, SUB,  K),			\
1244 	INSN_3(ALU64, AND,  K),			\
1245 	INSN_3(ALU64, OR,   K),			\
1246 	INSN_3(ALU64, LSH,  K),			\
1247 	INSN_3(ALU64, RSH,  K),			\
1248 	INSN_3(ALU64, XOR,  K),			\
1249 	INSN_3(ALU64, MUL,  K),			\
1250 	INSN_3(ALU64, MOV,  K),			\
1251 	INSN_3(ALU64, ARSH, K),			\
1252 	INSN_3(ALU64, DIV,  K),			\
1253 	INSN_3(ALU64, MOD,  K),			\
1254 	/* Call instruction. */			\
1255 	INSN_2(JMP, CALL),			\
1256 	/* Exit instruction. */			\
1257 	INSN_2(JMP, EXIT),			\
1258 	/* 32-bit Jump instructions. */		\
1259 	/*   Register based. */			\
1260 	INSN_3(JMP32, JEQ,  X),			\
1261 	INSN_3(JMP32, JNE,  X),			\
1262 	INSN_3(JMP32, JGT,  X),			\
1263 	INSN_3(JMP32, JLT,  X),			\
1264 	INSN_3(JMP32, JGE,  X),			\
1265 	INSN_3(JMP32, JLE,  X),			\
1266 	INSN_3(JMP32, JSGT, X),			\
1267 	INSN_3(JMP32, JSLT, X),			\
1268 	INSN_3(JMP32, JSGE, X),			\
1269 	INSN_3(JMP32, JSLE, X),			\
1270 	INSN_3(JMP32, JSET, X),			\
1271 	/*   Immediate based. */		\
1272 	INSN_3(JMP32, JEQ,  K),			\
1273 	INSN_3(JMP32, JNE,  K),			\
1274 	INSN_3(JMP32, JGT,  K),			\
1275 	INSN_3(JMP32, JLT,  K),			\
1276 	INSN_3(JMP32, JGE,  K),			\
1277 	INSN_3(JMP32, JLE,  K),			\
1278 	INSN_3(JMP32, JSGT, K),			\
1279 	INSN_3(JMP32, JSLT, K),			\
1280 	INSN_3(JMP32, JSGE, K),			\
1281 	INSN_3(JMP32, JSLE, K),			\
1282 	INSN_3(JMP32, JSET, K),			\
1283 	/* Jump instructions. */		\
1284 	/*   Register based. */			\
1285 	INSN_3(JMP, JEQ,  X),			\
1286 	INSN_3(JMP, JNE,  X),			\
1287 	INSN_3(JMP, JGT,  X),			\
1288 	INSN_3(JMP, JLT,  X),			\
1289 	INSN_3(JMP, JGE,  X),			\
1290 	INSN_3(JMP, JLE,  X),			\
1291 	INSN_3(JMP, JSGT, X),			\
1292 	INSN_3(JMP, JSLT, X),			\
1293 	INSN_3(JMP, JSGE, X),			\
1294 	INSN_3(JMP, JSLE, X),			\
1295 	INSN_3(JMP, JSET, X),			\
1296 	/*   Immediate based. */		\
1297 	INSN_3(JMP, JEQ,  K),			\
1298 	INSN_3(JMP, JNE,  K),			\
1299 	INSN_3(JMP, JGT,  K),			\
1300 	INSN_3(JMP, JLT,  K),			\
1301 	INSN_3(JMP, JGE,  K),			\
1302 	INSN_3(JMP, JLE,  K),			\
1303 	INSN_3(JMP, JSGT, K),			\
1304 	INSN_3(JMP, JSLT, K),			\
1305 	INSN_3(JMP, JSGE, K),			\
1306 	INSN_3(JMP, JSLE, K),			\
1307 	INSN_3(JMP, JSET, K),			\
1308 	INSN_2(JMP, JA),			\
1309 	/* Store instructions. */		\
1310 	/*   Register based. */			\
1311 	INSN_3(STX, MEM,  B),			\
1312 	INSN_3(STX, MEM,  H),			\
1313 	INSN_3(STX, MEM,  W),			\
1314 	INSN_3(STX, MEM,  DW),			\
1315 	INSN_3(STX, XADD, W),			\
1316 	INSN_3(STX, XADD, DW),			\
1317 	/*   Immediate based. */		\
1318 	INSN_3(ST, MEM, B),			\
1319 	INSN_3(ST, MEM, H),			\
1320 	INSN_3(ST, MEM, W),			\
1321 	INSN_3(ST, MEM, DW),			\
1322 	/* Load instructions. */		\
1323 	/*   Register based. */			\
1324 	INSN_3(LDX, MEM, B),			\
1325 	INSN_3(LDX, MEM, H),			\
1326 	INSN_3(LDX, MEM, W),			\
1327 	INSN_3(LDX, MEM, DW),			\
1328 	/*   Immediate based. */		\
1329 	INSN_3(LD, IMM, DW)
1330 
1331 bool bpf_opcode_in_insntable(u8 code)
1332 {
1333 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1334 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1335 	static const bool public_insntable[256] = {
1336 		[0 ... 255] = false,
1337 		/* Now overwrite non-defaults ... */
1338 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1339 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1340 		[BPF_LD | BPF_ABS | BPF_B] = true,
1341 		[BPF_LD | BPF_ABS | BPF_H] = true,
1342 		[BPF_LD | BPF_ABS | BPF_W] = true,
1343 		[BPF_LD | BPF_IND | BPF_B] = true,
1344 		[BPF_LD | BPF_IND | BPF_H] = true,
1345 		[BPF_LD | BPF_IND | BPF_W] = true,
1346 	};
1347 #undef BPF_INSN_3_TBL
1348 #undef BPF_INSN_2_TBL
1349 	return public_insntable[code];
1350 }
1351 
1352 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1353 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1354 {
1355 	memset(dst, 0, size);
1356 	return -EFAULT;
1357 }
1358 
1359 /**
1360  *	__bpf_prog_run - run eBPF program on a given context
1361  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1362  *	@insn: is the array of eBPF instructions
1363  *	@stack: is the eBPF storage stack
1364  *
1365  * Decode and execute eBPF instructions.
1366  */
1367 static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1368 {
1369 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1370 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1371 	static const void * const jumptable[256] __annotate_jump_table = {
1372 		[0 ... 255] = &&default_label,
1373 		/* Now overwrite non-defaults ... */
1374 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1375 		/* Non-UAPI available opcodes. */
1376 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1377 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1378 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1379 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1380 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1381 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1382 	};
1383 #undef BPF_INSN_3_LBL
1384 #undef BPF_INSN_2_LBL
1385 	u32 tail_call_cnt = 0;
1386 
1387 #define CONT	 ({ insn++; goto select_insn; })
1388 #define CONT_JMP ({ insn++; goto select_insn; })
1389 
1390 select_insn:
1391 	goto *jumptable[insn->code];
1392 
1393 	/* ALU */
1394 #define ALU(OPCODE, OP)			\
1395 	ALU64_##OPCODE##_X:		\
1396 		DST = DST OP SRC;	\
1397 		CONT;			\
1398 	ALU_##OPCODE##_X:		\
1399 		DST = (u32) DST OP (u32) SRC;	\
1400 		CONT;			\
1401 	ALU64_##OPCODE##_K:		\
1402 		DST = DST OP IMM;		\
1403 		CONT;			\
1404 	ALU_##OPCODE##_K:		\
1405 		DST = (u32) DST OP (u32) IMM;	\
1406 		CONT;
1407 
1408 	ALU(ADD,  +)
1409 	ALU(SUB,  -)
1410 	ALU(AND,  &)
1411 	ALU(OR,   |)
1412 	ALU(LSH, <<)
1413 	ALU(RSH, >>)
1414 	ALU(XOR,  ^)
1415 	ALU(MUL,  *)
1416 #undef ALU
1417 	ALU_NEG:
1418 		DST = (u32) -DST;
1419 		CONT;
1420 	ALU64_NEG:
1421 		DST = -DST;
1422 		CONT;
1423 	ALU_MOV_X:
1424 		DST = (u32) SRC;
1425 		CONT;
1426 	ALU_MOV_K:
1427 		DST = (u32) IMM;
1428 		CONT;
1429 	ALU64_MOV_X:
1430 		DST = SRC;
1431 		CONT;
1432 	ALU64_MOV_K:
1433 		DST = IMM;
1434 		CONT;
1435 	LD_IMM_DW:
1436 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1437 		insn++;
1438 		CONT;
1439 	ALU_ARSH_X:
1440 		DST = (u64) (u32) (((s32) DST) >> SRC);
1441 		CONT;
1442 	ALU_ARSH_K:
1443 		DST = (u64) (u32) (((s32) DST) >> IMM);
1444 		CONT;
1445 	ALU64_ARSH_X:
1446 		(*(s64 *) &DST) >>= SRC;
1447 		CONT;
1448 	ALU64_ARSH_K:
1449 		(*(s64 *) &DST) >>= IMM;
1450 		CONT;
1451 	ALU64_MOD_X:
1452 		div64_u64_rem(DST, SRC, &AX);
1453 		DST = AX;
1454 		CONT;
1455 	ALU_MOD_X:
1456 		AX = (u32) DST;
1457 		DST = do_div(AX, (u32) SRC);
1458 		CONT;
1459 	ALU64_MOD_K:
1460 		div64_u64_rem(DST, IMM, &AX);
1461 		DST = AX;
1462 		CONT;
1463 	ALU_MOD_K:
1464 		AX = (u32) DST;
1465 		DST = do_div(AX, (u32) IMM);
1466 		CONT;
1467 	ALU64_DIV_X:
1468 		DST = div64_u64(DST, SRC);
1469 		CONT;
1470 	ALU_DIV_X:
1471 		AX = (u32) DST;
1472 		do_div(AX, (u32) SRC);
1473 		DST = (u32) AX;
1474 		CONT;
1475 	ALU64_DIV_K:
1476 		DST = div64_u64(DST, IMM);
1477 		CONT;
1478 	ALU_DIV_K:
1479 		AX = (u32) DST;
1480 		do_div(AX, (u32) IMM);
1481 		DST = (u32) AX;
1482 		CONT;
1483 	ALU_END_TO_BE:
1484 		switch (IMM) {
1485 		case 16:
1486 			DST = (__force u16) cpu_to_be16(DST);
1487 			break;
1488 		case 32:
1489 			DST = (__force u32) cpu_to_be32(DST);
1490 			break;
1491 		case 64:
1492 			DST = (__force u64) cpu_to_be64(DST);
1493 			break;
1494 		}
1495 		CONT;
1496 	ALU_END_TO_LE:
1497 		switch (IMM) {
1498 		case 16:
1499 			DST = (__force u16) cpu_to_le16(DST);
1500 			break;
1501 		case 32:
1502 			DST = (__force u32) cpu_to_le32(DST);
1503 			break;
1504 		case 64:
1505 			DST = (__force u64) cpu_to_le64(DST);
1506 			break;
1507 		}
1508 		CONT;
1509 
1510 	/* CALL */
1511 	JMP_CALL:
1512 		/* Function call scratches BPF_R1-BPF_R5 registers,
1513 		 * preserves BPF_R6-BPF_R9, and stores return value
1514 		 * into BPF_R0.
1515 		 */
1516 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1517 						       BPF_R4, BPF_R5);
1518 		CONT;
1519 
1520 	JMP_CALL_ARGS:
1521 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1522 							    BPF_R3, BPF_R4,
1523 							    BPF_R5,
1524 							    insn + insn->off + 1);
1525 		CONT;
1526 
1527 	JMP_TAIL_CALL: {
1528 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1529 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1530 		struct bpf_prog *prog;
1531 		u32 index = BPF_R3;
1532 
1533 		if (unlikely(index >= array->map.max_entries))
1534 			goto out;
1535 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1536 			goto out;
1537 
1538 		tail_call_cnt++;
1539 
1540 		prog = READ_ONCE(array->ptrs[index]);
1541 		if (!prog)
1542 			goto out;
1543 
1544 		/* ARG1 at this point is guaranteed to point to CTX from
1545 		 * the verifier side due to the fact that the tail call is
1546 		 * handled like a helper, that is, bpf_tail_call_proto,
1547 		 * where arg1_type is ARG_PTR_TO_CTX.
1548 		 */
1549 		insn = prog->insnsi;
1550 		goto select_insn;
1551 out:
1552 		CONT;
1553 	}
1554 	JMP_JA:
1555 		insn += insn->off;
1556 		CONT;
1557 	JMP_EXIT:
1558 		return BPF_R0;
1559 	/* JMP */
1560 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1561 	JMP_##OPCODE##_X:					\
1562 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1563 			insn += insn->off;			\
1564 			CONT_JMP;				\
1565 		}						\
1566 		CONT;						\
1567 	JMP32_##OPCODE##_X:					\
1568 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1569 			insn += insn->off;			\
1570 			CONT_JMP;				\
1571 		}						\
1572 		CONT;						\
1573 	JMP_##OPCODE##_K:					\
1574 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1575 			insn += insn->off;			\
1576 			CONT_JMP;				\
1577 		}						\
1578 		CONT;						\
1579 	JMP32_##OPCODE##_K:					\
1580 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1581 			insn += insn->off;			\
1582 			CONT_JMP;				\
1583 		}						\
1584 		CONT;
1585 	COND_JMP(u, JEQ, ==)
1586 	COND_JMP(u, JNE, !=)
1587 	COND_JMP(u, JGT, >)
1588 	COND_JMP(u, JLT, <)
1589 	COND_JMP(u, JGE, >=)
1590 	COND_JMP(u, JLE, <=)
1591 	COND_JMP(u, JSET, &)
1592 	COND_JMP(s, JSGT, >)
1593 	COND_JMP(s, JSLT, <)
1594 	COND_JMP(s, JSGE, >=)
1595 	COND_JMP(s, JSLE, <=)
1596 #undef COND_JMP
1597 	/* STX and ST and LDX*/
1598 #define LDST(SIZEOP, SIZE)						\
1599 	STX_MEM_##SIZEOP:						\
1600 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1601 		CONT;							\
1602 	ST_MEM_##SIZEOP:						\
1603 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1604 		CONT;							\
1605 	LDX_MEM_##SIZEOP:						\
1606 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1607 		CONT;
1608 
1609 	LDST(B,   u8)
1610 	LDST(H,  u16)
1611 	LDST(W,  u32)
1612 	LDST(DW, u64)
1613 #undef LDST
1614 #define LDX_PROBE(SIZEOP, SIZE)							\
1615 	LDX_PROBE_MEM_##SIZEOP:							\
1616 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1617 		CONT;
1618 	LDX_PROBE(B,  1)
1619 	LDX_PROBE(H,  2)
1620 	LDX_PROBE(W,  4)
1621 	LDX_PROBE(DW, 8)
1622 #undef LDX_PROBE
1623 
1624 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1625 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1626 			   (DST + insn->off));
1627 		CONT;
1628 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1629 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1630 			     (DST + insn->off));
1631 		CONT;
1632 
1633 	default_label:
1634 		/* If we ever reach this, we have a bug somewhere. Die hard here
1635 		 * instead of just returning 0; we could be somewhere in a subprog,
1636 		 * so execution could continue otherwise which we do /not/ want.
1637 		 *
1638 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1639 		 */
1640 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1641 		BUG_ON(1);
1642 		return 0;
1643 }
1644 
1645 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1646 #define DEFINE_BPF_PROG_RUN(stack_size) \
1647 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1648 { \
1649 	u64 stack[stack_size / sizeof(u64)]; \
1650 	u64 regs[MAX_BPF_EXT_REG]; \
1651 \
1652 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1653 	ARG1 = (u64) (unsigned long) ctx; \
1654 	return ___bpf_prog_run(regs, insn, stack); \
1655 }
1656 
1657 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1658 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1659 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1660 				      const struct bpf_insn *insn) \
1661 { \
1662 	u64 stack[stack_size / sizeof(u64)]; \
1663 	u64 regs[MAX_BPF_EXT_REG]; \
1664 \
1665 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1666 	BPF_R1 = r1; \
1667 	BPF_R2 = r2; \
1668 	BPF_R3 = r3; \
1669 	BPF_R4 = r4; \
1670 	BPF_R5 = r5; \
1671 	return ___bpf_prog_run(regs, insn, stack); \
1672 }
1673 
1674 #define EVAL1(FN, X) FN(X)
1675 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1676 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1677 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1678 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1679 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1680 
1681 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1682 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1683 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1684 
1685 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1686 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1687 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1688 
1689 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1690 
1691 static unsigned int (*interpreters[])(const void *ctx,
1692 				      const struct bpf_insn *insn) = {
1693 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1694 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1695 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1696 };
1697 #undef PROG_NAME_LIST
1698 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1699 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1700 				  const struct bpf_insn *insn) = {
1701 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1702 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1703 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1704 };
1705 #undef PROG_NAME_LIST
1706 
1707 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1708 {
1709 	stack_depth = max_t(u32, stack_depth, 1);
1710 	insn->off = (s16) insn->imm;
1711 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1712 		__bpf_call_base_args;
1713 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1714 }
1715 
1716 #else
1717 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1718 					 const struct bpf_insn *insn)
1719 {
1720 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1721 	 * is not working properly, so warn about it!
1722 	 */
1723 	WARN_ON_ONCE(1);
1724 	return 0;
1725 }
1726 #endif
1727 
1728 bool bpf_prog_array_compatible(struct bpf_array *array,
1729 			       const struct bpf_prog *fp)
1730 {
1731 	if (fp->kprobe_override)
1732 		return false;
1733 
1734 	if (!array->aux->type) {
1735 		/* There's no owner yet where we could check for
1736 		 * compatibility.
1737 		 */
1738 		array->aux->type  = fp->type;
1739 		array->aux->jited = fp->jited;
1740 		return true;
1741 	}
1742 
1743 	return array->aux->type  == fp->type &&
1744 	       array->aux->jited == fp->jited;
1745 }
1746 
1747 static int bpf_check_tail_call(const struct bpf_prog *fp)
1748 {
1749 	struct bpf_prog_aux *aux = fp->aux;
1750 	int i;
1751 
1752 	for (i = 0; i < aux->used_map_cnt; i++) {
1753 		struct bpf_map *map = aux->used_maps[i];
1754 		struct bpf_array *array;
1755 
1756 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1757 			continue;
1758 
1759 		array = container_of(map, struct bpf_array, map);
1760 		if (!bpf_prog_array_compatible(array, fp))
1761 			return -EINVAL;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static void bpf_prog_select_func(struct bpf_prog *fp)
1768 {
1769 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1770 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1771 
1772 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1773 #else
1774 	fp->bpf_func = __bpf_prog_ret0_warn;
1775 #endif
1776 }
1777 
1778 /**
1779  *	bpf_prog_select_runtime - select exec runtime for BPF program
1780  *	@fp: bpf_prog populated with internal BPF program
1781  *	@err: pointer to error variable
1782  *
1783  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1784  * The BPF program will be executed via BPF_PROG_RUN() macro.
1785  */
1786 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1787 {
1788 	/* In case of BPF to BPF calls, verifier did all the prep
1789 	 * work with regards to JITing, etc.
1790 	 */
1791 	if (fp->bpf_func)
1792 		goto finalize;
1793 
1794 	bpf_prog_select_func(fp);
1795 
1796 	/* eBPF JITs can rewrite the program in case constant
1797 	 * blinding is active. However, in case of error during
1798 	 * blinding, bpf_int_jit_compile() must always return a
1799 	 * valid program, which in this case would simply not
1800 	 * be JITed, but falls back to the interpreter.
1801 	 */
1802 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1803 		*err = bpf_prog_alloc_jited_linfo(fp);
1804 		if (*err)
1805 			return fp;
1806 
1807 		fp = bpf_int_jit_compile(fp);
1808 		if (!fp->jited) {
1809 			bpf_prog_free_jited_linfo(fp);
1810 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1811 			*err = -ENOTSUPP;
1812 			return fp;
1813 #endif
1814 		} else {
1815 			bpf_prog_free_unused_jited_linfo(fp);
1816 		}
1817 	} else {
1818 		*err = bpf_prog_offload_compile(fp);
1819 		if (*err)
1820 			return fp;
1821 	}
1822 
1823 finalize:
1824 	bpf_prog_lock_ro(fp);
1825 
1826 	/* The tail call compatibility check can only be done at
1827 	 * this late stage as we need to determine, if we deal
1828 	 * with JITed or non JITed program concatenations and not
1829 	 * all eBPF JITs might immediately support all features.
1830 	 */
1831 	*err = bpf_check_tail_call(fp);
1832 
1833 	return fp;
1834 }
1835 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1836 
1837 static unsigned int __bpf_prog_ret1(const void *ctx,
1838 				    const struct bpf_insn *insn)
1839 {
1840 	return 1;
1841 }
1842 
1843 static struct bpf_prog_dummy {
1844 	struct bpf_prog prog;
1845 } dummy_bpf_prog = {
1846 	.prog = {
1847 		.bpf_func = __bpf_prog_ret1,
1848 	},
1849 };
1850 
1851 /* to avoid allocating empty bpf_prog_array for cgroups that
1852  * don't have bpf program attached use one global 'empty_prog_array'
1853  * It will not be modified the caller of bpf_prog_array_alloc()
1854  * (since caller requested prog_cnt == 0)
1855  * that pointer should be 'freed' by bpf_prog_array_free()
1856  */
1857 static struct {
1858 	struct bpf_prog_array hdr;
1859 	struct bpf_prog *null_prog;
1860 } empty_prog_array = {
1861 	.null_prog = NULL,
1862 };
1863 
1864 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1865 {
1866 	if (prog_cnt)
1867 		return kzalloc(sizeof(struct bpf_prog_array) +
1868 			       sizeof(struct bpf_prog_array_item) *
1869 			       (prog_cnt + 1),
1870 			       flags);
1871 
1872 	return &empty_prog_array.hdr;
1873 }
1874 
1875 void bpf_prog_array_free(struct bpf_prog_array *progs)
1876 {
1877 	if (!progs || progs == &empty_prog_array.hdr)
1878 		return;
1879 	kfree_rcu(progs, rcu);
1880 }
1881 
1882 int bpf_prog_array_length(struct bpf_prog_array *array)
1883 {
1884 	struct bpf_prog_array_item *item;
1885 	u32 cnt = 0;
1886 
1887 	for (item = array->items; item->prog; item++)
1888 		if (item->prog != &dummy_bpf_prog.prog)
1889 			cnt++;
1890 	return cnt;
1891 }
1892 
1893 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1894 {
1895 	struct bpf_prog_array_item *item;
1896 
1897 	for (item = array->items; item->prog; item++)
1898 		if (item->prog != &dummy_bpf_prog.prog)
1899 			return false;
1900 	return true;
1901 }
1902 
1903 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1904 				     u32 *prog_ids,
1905 				     u32 request_cnt)
1906 {
1907 	struct bpf_prog_array_item *item;
1908 	int i = 0;
1909 
1910 	for (item = array->items; item->prog; item++) {
1911 		if (item->prog == &dummy_bpf_prog.prog)
1912 			continue;
1913 		prog_ids[i] = item->prog->aux->id;
1914 		if (++i == request_cnt) {
1915 			item++;
1916 			break;
1917 		}
1918 	}
1919 
1920 	return !!(item->prog);
1921 }
1922 
1923 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1924 				__u32 __user *prog_ids, u32 cnt)
1925 {
1926 	unsigned long err = 0;
1927 	bool nospc;
1928 	u32 *ids;
1929 
1930 	/* users of this function are doing:
1931 	 * cnt = bpf_prog_array_length();
1932 	 * if (cnt > 0)
1933 	 *     bpf_prog_array_copy_to_user(..., cnt);
1934 	 * so below kcalloc doesn't need extra cnt > 0 check.
1935 	 */
1936 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1937 	if (!ids)
1938 		return -ENOMEM;
1939 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1940 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1941 	kfree(ids);
1942 	if (err)
1943 		return -EFAULT;
1944 	if (nospc)
1945 		return -ENOSPC;
1946 	return 0;
1947 }
1948 
1949 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1950 				struct bpf_prog *old_prog)
1951 {
1952 	struct bpf_prog_array_item *item;
1953 
1954 	for (item = array->items; item->prog; item++)
1955 		if (item->prog == old_prog) {
1956 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1957 			break;
1958 		}
1959 }
1960 
1961 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1962 			struct bpf_prog *exclude_prog,
1963 			struct bpf_prog *include_prog,
1964 			struct bpf_prog_array **new_array)
1965 {
1966 	int new_prog_cnt, carry_prog_cnt = 0;
1967 	struct bpf_prog_array_item *existing;
1968 	struct bpf_prog_array *array;
1969 	bool found_exclude = false;
1970 	int new_prog_idx = 0;
1971 
1972 	/* Figure out how many existing progs we need to carry over to
1973 	 * the new array.
1974 	 */
1975 	if (old_array) {
1976 		existing = old_array->items;
1977 		for (; existing->prog; existing++) {
1978 			if (existing->prog == exclude_prog) {
1979 				found_exclude = true;
1980 				continue;
1981 			}
1982 			if (existing->prog != &dummy_bpf_prog.prog)
1983 				carry_prog_cnt++;
1984 			if (existing->prog == include_prog)
1985 				return -EEXIST;
1986 		}
1987 	}
1988 
1989 	if (exclude_prog && !found_exclude)
1990 		return -ENOENT;
1991 
1992 	/* How many progs (not NULL) will be in the new array? */
1993 	new_prog_cnt = carry_prog_cnt;
1994 	if (include_prog)
1995 		new_prog_cnt += 1;
1996 
1997 	/* Do we have any prog (not NULL) in the new array? */
1998 	if (!new_prog_cnt) {
1999 		*new_array = NULL;
2000 		return 0;
2001 	}
2002 
2003 	/* +1 as the end of prog_array is marked with NULL */
2004 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2005 	if (!array)
2006 		return -ENOMEM;
2007 
2008 	/* Fill in the new prog array */
2009 	if (carry_prog_cnt) {
2010 		existing = old_array->items;
2011 		for (; existing->prog; existing++)
2012 			if (existing->prog != exclude_prog &&
2013 			    existing->prog != &dummy_bpf_prog.prog) {
2014 				array->items[new_prog_idx++].prog =
2015 					existing->prog;
2016 			}
2017 	}
2018 	if (include_prog)
2019 		array->items[new_prog_idx++].prog = include_prog;
2020 	array->items[new_prog_idx].prog = NULL;
2021 	*new_array = array;
2022 	return 0;
2023 }
2024 
2025 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2026 			     u32 *prog_ids, u32 request_cnt,
2027 			     u32 *prog_cnt)
2028 {
2029 	u32 cnt = 0;
2030 
2031 	if (array)
2032 		cnt = bpf_prog_array_length(array);
2033 
2034 	*prog_cnt = cnt;
2035 
2036 	/* return early if user requested only program count or nothing to copy */
2037 	if (!request_cnt || !cnt)
2038 		return 0;
2039 
2040 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2041 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2042 								     : 0;
2043 }
2044 
2045 static void bpf_free_cgroup_storage(struct bpf_prog_aux *aux)
2046 {
2047 	enum bpf_cgroup_storage_type stype;
2048 
2049 	for_each_cgroup_storage_type(stype) {
2050 		if (!aux->cgroup_storage[stype])
2051 			continue;
2052 		bpf_cgroup_storage_release(aux, aux->cgroup_storage[stype]);
2053 	}
2054 }
2055 
2056 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2057 			  struct bpf_map **used_maps, u32 len)
2058 {
2059 	struct bpf_map *map;
2060 	u32 i;
2061 
2062 	bpf_free_cgroup_storage(aux);
2063 	for (i = 0; i < len; i++) {
2064 		map = used_maps[i];
2065 		if (map->ops->map_poke_untrack)
2066 			map->ops->map_poke_untrack(map, aux);
2067 		bpf_map_put(map);
2068 	}
2069 }
2070 
2071 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2072 {
2073 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2074 	kfree(aux->used_maps);
2075 }
2076 
2077 static void bpf_prog_free_deferred(struct work_struct *work)
2078 {
2079 	struct bpf_prog_aux *aux;
2080 	int i;
2081 
2082 	aux = container_of(work, struct bpf_prog_aux, work);
2083 	bpf_free_used_maps(aux);
2084 	if (bpf_prog_is_dev_bound(aux))
2085 		bpf_prog_offload_destroy(aux->prog);
2086 #ifdef CONFIG_PERF_EVENTS
2087 	if (aux->prog->has_callchain_buf)
2088 		put_callchain_buffers();
2089 #endif
2090 	bpf_trampoline_put(aux->trampoline);
2091 	for (i = 0; i < aux->func_cnt; i++)
2092 		bpf_jit_free(aux->func[i]);
2093 	if (aux->func_cnt) {
2094 		kfree(aux->func);
2095 		bpf_prog_unlock_free(aux->prog);
2096 	} else {
2097 		bpf_jit_free(aux->prog);
2098 	}
2099 }
2100 
2101 /* Free internal BPF program */
2102 void bpf_prog_free(struct bpf_prog *fp)
2103 {
2104 	struct bpf_prog_aux *aux = fp->aux;
2105 
2106 	if (aux->linked_prog)
2107 		bpf_prog_put(aux->linked_prog);
2108 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2109 	schedule_work(&aux->work);
2110 }
2111 EXPORT_SYMBOL_GPL(bpf_prog_free);
2112 
2113 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2114 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2115 
2116 void bpf_user_rnd_init_once(void)
2117 {
2118 	prandom_init_once(&bpf_user_rnd_state);
2119 }
2120 
2121 BPF_CALL_0(bpf_user_rnd_u32)
2122 {
2123 	/* Should someone ever have the rather unwise idea to use some
2124 	 * of the registers passed into this function, then note that
2125 	 * this function is called from native eBPF and classic-to-eBPF
2126 	 * transformations. Register assignments from both sides are
2127 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2128 	 */
2129 	struct rnd_state *state;
2130 	u32 res;
2131 
2132 	state = &get_cpu_var(bpf_user_rnd_state);
2133 	res = prandom_u32_state(state);
2134 	put_cpu_var(bpf_user_rnd_state);
2135 
2136 	return res;
2137 }
2138 
2139 BPF_CALL_0(bpf_get_raw_cpu_id)
2140 {
2141 	return raw_smp_processor_id();
2142 }
2143 
2144 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2145 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2146 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2147 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2148 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2149 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2150 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2151 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2152 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2153 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2154 
2155 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2156 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2157 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2158 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2159 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2160 
2161 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2162 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2163 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2164 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2165 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2166 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2167 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2168 
2169 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2170 {
2171 	return NULL;
2172 }
2173 
2174 u64 __weak
2175 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2176 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2177 {
2178 	return -ENOTSUPP;
2179 }
2180 EXPORT_SYMBOL_GPL(bpf_event_output);
2181 
2182 /* Always built-in helper functions. */
2183 const struct bpf_func_proto bpf_tail_call_proto = {
2184 	.func		= NULL,
2185 	.gpl_only	= false,
2186 	.ret_type	= RET_VOID,
2187 	.arg1_type	= ARG_PTR_TO_CTX,
2188 	.arg2_type	= ARG_CONST_MAP_PTR,
2189 	.arg3_type	= ARG_ANYTHING,
2190 };
2191 
2192 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2193  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2194  * eBPF and implicitly also cBPF can get JITed!
2195  */
2196 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2197 {
2198 	return prog;
2199 }
2200 
2201 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2202  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2203  */
2204 void __weak bpf_jit_compile(struct bpf_prog *prog)
2205 {
2206 }
2207 
2208 bool __weak bpf_helper_changes_pkt_data(void *func)
2209 {
2210 	return false;
2211 }
2212 
2213 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2214  * analysis code and wants explicit zero extension inserted by verifier.
2215  * Otherwise, return FALSE.
2216  */
2217 bool __weak bpf_jit_needs_zext(void)
2218 {
2219 	return false;
2220 }
2221 
2222 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2223  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2224  */
2225 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2226 			 int len)
2227 {
2228 	return -EFAULT;
2229 }
2230 
2231 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2232 			      void *addr1, void *addr2)
2233 {
2234 	return -ENOTSUPP;
2235 }
2236 
2237 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2238 EXPORT_SYMBOL(bpf_stats_enabled_key);
2239 
2240 /* All definitions of tracepoints related to BPF. */
2241 #define CREATE_TRACE_POINTS
2242 #include <linux/bpf_trace.h>
2243 
2244 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2245 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2246