xref: /linux/kernel/bpf/core.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 
32 #include <asm/unaligned.h>
33 
34 /* Registers */
35 #define BPF_R0	regs[BPF_REG_0]
36 #define BPF_R1	regs[BPF_REG_1]
37 #define BPF_R2	regs[BPF_REG_2]
38 #define BPF_R3	regs[BPF_REG_3]
39 #define BPF_R4	regs[BPF_REG_4]
40 #define BPF_R5	regs[BPF_REG_5]
41 #define BPF_R6	regs[BPF_REG_6]
42 #define BPF_R7	regs[BPF_REG_7]
43 #define BPF_R8	regs[BPF_REG_8]
44 #define BPF_R9	regs[BPF_REG_9]
45 #define BPF_R10	regs[BPF_REG_10]
46 
47 /* Named registers */
48 #define DST	regs[insn->dst_reg]
49 #define SRC	regs[insn->src_reg]
50 #define FP	regs[BPF_REG_FP]
51 #define ARG1	regs[BPF_REG_ARG1]
52 #define CTX	regs[BPF_REG_CTX]
53 #define IMM	insn->imm
54 
55 /* No hurry in this branch
56  *
57  * Exported for the bpf jit load helper.
58  */
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
60 {
61 	u8 *ptr = NULL;
62 
63 	if (k >= SKF_NET_OFF)
64 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
65 	else if (k >= SKF_LL_OFF)
66 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
67 
68 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
69 		return ptr;
70 
71 	return NULL;
72 }
73 
74 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
75 {
76 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
77 			  gfp_extra_flags;
78 	struct bpf_prog_aux *aux;
79 	struct bpf_prog *fp;
80 
81 	size = round_up(size, PAGE_SIZE);
82 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
83 	if (fp == NULL)
84 		return NULL;
85 
86 	kmemcheck_annotate_bitfield(fp, meta);
87 
88 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 	if (aux == NULL) {
90 		vfree(fp);
91 		return NULL;
92 	}
93 
94 	fp->pages = size / PAGE_SIZE;
95 	fp->aux = aux;
96 	fp->aux->prog = fp;
97 
98 	return fp;
99 }
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101 
102 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103 				  gfp_t gfp_extra_flags)
104 {
105 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106 			  gfp_extra_flags;
107 	struct bpf_prog *fp;
108 
109 	BUG_ON(fp_old == NULL);
110 
111 	size = round_up(size, PAGE_SIZE);
112 	if (size <= fp_old->pages * PAGE_SIZE)
113 		return fp_old;
114 
115 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
116 	if (fp != NULL) {
117 		kmemcheck_annotate_bitfield(fp, meta);
118 
119 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
120 		fp->pages = size / PAGE_SIZE;
121 		fp->aux->prog = fp;
122 
123 		/* We keep fp->aux from fp_old around in the new
124 		 * reallocated structure.
125 		 */
126 		fp_old->aux = NULL;
127 		__bpf_prog_free(fp_old);
128 	}
129 
130 	return fp;
131 }
132 EXPORT_SYMBOL_GPL(bpf_prog_realloc);
133 
134 void __bpf_prog_free(struct bpf_prog *fp)
135 {
136 	kfree(fp->aux);
137 	vfree(fp);
138 }
139 EXPORT_SYMBOL_GPL(__bpf_prog_free);
140 
141 #ifdef CONFIG_BPF_JIT
142 struct bpf_binary_header *
143 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
144 		     unsigned int alignment,
145 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
146 {
147 	struct bpf_binary_header *hdr;
148 	unsigned int size, hole, start;
149 
150 	/* Most of BPF filters are really small, but if some of them
151 	 * fill a page, allow at least 128 extra bytes to insert a
152 	 * random section of illegal instructions.
153 	 */
154 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
155 	hdr = module_alloc(size);
156 	if (hdr == NULL)
157 		return NULL;
158 
159 	/* Fill space with illegal/arch-dep instructions. */
160 	bpf_fill_ill_insns(hdr, size);
161 
162 	hdr->pages = size / PAGE_SIZE;
163 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
164 		     PAGE_SIZE - sizeof(*hdr));
165 	start = (prandom_u32() % hole) & ~(alignment - 1);
166 
167 	/* Leave a random number of instructions before BPF code. */
168 	*image_ptr = &hdr->image[start];
169 
170 	return hdr;
171 }
172 
173 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
174 {
175 	module_memfree(hdr);
176 }
177 #endif /* CONFIG_BPF_JIT */
178 
179 /* Base function for offset calculation. Needs to go into .text section,
180  * therefore keeping it non-static as well; will also be used by JITs
181  * anyway later on, so do not let the compiler omit it.
182  */
183 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
184 {
185 	return 0;
186 }
187 EXPORT_SYMBOL_GPL(__bpf_call_base);
188 
189 /**
190  *	__bpf_prog_run - run eBPF program on a given context
191  *	@ctx: is the data we are operating on
192  *	@insn: is the array of eBPF instructions
193  *
194  * Decode and execute eBPF instructions.
195  */
196 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
197 {
198 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
199 	u64 regs[MAX_BPF_REG], tmp;
200 	static const void *jumptable[256] = {
201 		[0 ... 255] = &&default_label,
202 		/* Now overwrite non-defaults ... */
203 		/* 32 bit ALU operations */
204 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
205 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
206 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
207 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
208 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
209 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
210 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
211 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
212 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
213 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
214 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
215 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
216 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
217 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
218 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
219 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
220 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
221 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
222 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
223 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
224 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
225 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
226 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
227 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
228 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
229 		/* 64 bit ALU operations */
230 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
231 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
232 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
233 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
234 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
235 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
236 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
237 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
238 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
239 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
240 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
241 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
242 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
243 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
244 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
245 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
246 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
247 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
248 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
249 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
250 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
251 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
252 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
253 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
254 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
255 		/* Call instruction */
256 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
257 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
258 		/* Jumps */
259 		[BPF_JMP | BPF_JA] = &&JMP_JA,
260 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
261 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
262 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
263 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
264 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
265 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
266 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
267 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
268 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
269 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
270 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
271 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
272 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
273 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
274 		/* Program return */
275 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
276 		/* Store instructions */
277 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
278 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
279 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
280 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
281 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
282 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
283 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
284 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
285 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
286 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
287 		/* Load instructions */
288 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
289 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
290 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
291 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
292 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
293 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
294 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
295 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
296 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
297 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
298 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
299 	};
300 	u32 tail_call_cnt = 0;
301 	void *ptr;
302 	int off;
303 
304 #define CONT	 ({ insn++; goto select_insn; })
305 #define CONT_JMP ({ insn++; goto select_insn; })
306 
307 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
308 	ARG1 = (u64) (unsigned long) ctx;
309 
310 select_insn:
311 	goto *jumptable[insn->code];
312 
313 	/* ALU */
314 #define ALU(OPCODE, OP)			\
315 	ALU64_##OPCODE##_X:		\
316 		DST = DST OP SRC;	\
317 		CONT;			\
318 	ALU_##OPCODE##_X:		\
319 		DST = (u32) DST OP (u32) SRC;	\
320 		CONT;			\
321 	ALU64_##OPCODE##_K:		\
322 		DST = DST OP IMM;		\
323 		CONT;			\
324 	ALU_##OPCODE##_K:		\
325 		DST = (u32) DST OP (u32) IMM;	\
326 		CONT;
327 
328 	ALU(ADD,  +)
329 	ALU(SUB,  -)
330 	ALU(AND,  &)
331 	ALU(OR,   |)
332 	ALU(LSH, <<)
333 	ALU(RSH, >>)
334 	ALU(XOR,  ^)
335 	ALU(MUL,  *)
336 #undef ALU
337 	ALU_NEG:
338 		DST = (u32) -DST;
339 		CONT;
340 	ALU64_NEG:
341 		DST = -DST;
342 		CONT;
343 	ALU_MOV_X:
344 		DST = (u32) SRC;
345 		CONT;
346 	ALU_MOV_K:
347 		DST = (u32) IMM;
348 		CONT;
349 	ALU64_MOV_X:
350 		DST = SRC;
351 		CONT;
352 	ALU64_MOV_K:
353 		DST = IMM;
354 		CONT;
355 	LD_IMM_DW:
356 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
357 		insn++;
358 		CONT;
359 	ALU64_ARSH_X:
360 		(*(s64 *) &DST) >>= SRC;
361 		CONT;
362 	ALU64_ARSH_K:
363 		(*(s64 *) &DST) >>= IMM;
364 		CONT;
365 	ALU64_MOD_X:
366 		if (unlikely(SRC == 0))
367 			return 0;
368 		div64_u64_rem(DST, SRC, &tmp);
369 		DST = tmp;
370 		CONT;
371 	ALU_MOD_X:
372 		if (unlikely(SRC == 0))
373 			return 0;
374 		tmp = (u32) DST;
375 		DST = do_div(tmp, (u32) SRC);
376 		CONT;
377 	ALU64_MOD_K:
378 		div64_u64_rem(DST, IMM, &tmp);
379 		DST = tmp;
380 		CONT;
381 	ALU_MOD_K:
382 		tmp = (u32) DST;
383 		DST = do_div(tmp, (u32) IMM);
384 		CONT;
385 	ALU64_DIV_X:
386 		if (unlikely(SRC == 0))
387 			return 0;
388 		DST = div64_u64(DST, SRC);
389 		CONT;
390 	ALU_DIV_X:
391 		if (unlikely(SRC == 0))
392 			return 0;
393 		tmp = (u32) DST;
394 		do_div(tmp, (u32) SRC);
395 		DST = (u32) tmp;
396 		CONT;
397 	ALU64_DIV_K:
398 		DST = div64_u64(DST, IMM);
399 		CONT;
400 	ALU_DIV_K:
401 		tmp = (u32) DST;
402 		do_div(tmp, (u32) IMM);
403 		DST = (u32) tmp;
404 		CONT;
405 	ALU_END_TO_BE:
406 		switch (IMM) {
407 		case 16:
408 			DST = (__force u16) cpu_to_be16(DST);
409 			break;
410 		case 32:
411 			DST = (__force u32) cpu_to_be32(DST);
412 			break;
413 		case 64:
414 			DST = (__force u64) cpu_to_be64(DST);
415 			break;
416 		}
417 		CONT;
418 	ALU_END_TO_LE:
419 		switch (IMM) {
420 		case 16:
421 			DST = (__force u16) cpu_to_le16(DST);
422 			break;
423 		case 32:
424 			DST = (__force u32) cpu_to_le32(DST);
425 			break;
426 		case 64:
427 			DST = (__force u64) cpu_to_le64(DST);
428 			break;
429 		}
430 		CONT;
431 
432 	/* CALL */
433 	JMP_CALL:
434 		/* Function call scratches BPF_R1-BPF_R5 registers,
435 		 * preserves BPF_R6-BPF_R9, and stores return value
436 		 * into BPF_R0.
437 		 */
438 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
439 						       BPF_R4, BPF_R5);
440 		CONT;
441 
442 	JMP_TAIL_CALL: {
443 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
444 		struct bpf_array *array = container_of(map, struct bpf_array, map);
445 		struct bpf_prog *prog;
446 		u64 index = BPF_R3;
447 
448 		if (unlikely(index >= array->map.max_entries))
449 			goto out;
450 
451 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
452 			goto out;
453 
454 		tail_call_cnt++;
455 
456 		prog = READ_ONCE(array->ptrs[index]);
457 		if (unlikely(!prog))
458 			goto out;
459 
460 		/* ARG1 at this point is guaranteed to point to CTX from
461 		 * the verifier side due to the fact that the tail call is
462 		 * handeled like a helper, that is, bpf_tail_call_proto,
463 		 * where arg1_type is ARG_PTR_TO_CTX.
464 		 */
465 		insn = prog->insnsi;
466 		goto select_insn;
467 out:
468 		CONT;
469 	}
470 	/* JMP */
471 	JMP_JA:
472 		insn += insn->off;
473 		CONT;
474 	JMP_JEQ_X:
475 		if (DST == SRC) {
476 			insn += insn->off;
477 			CONT_JMP;
478 		}
479 		CONT;
480 	JMP_JEQ_K:
481 		if (DST == IMM) {
482 			insn += insn->off;
483 			CONT_JMP;
484 		}
485 		CONT;
486 	JMP_JNE_X:
487 		if (DST != SRC) {
488 			insn += insn->off;
489 			CONT_JMP;
490 		}
491 		CONT;
492 	JMP_JNE_K:
493 		if (DST != IMM) {
494 			insn += insn->off;
495 			CONT_JMP;
496 		}
497 		CONT;
498 	JMP_JGT_X:
499 		if (DST > SRC) {
500 			insn += insn->off;
501 			CONT_JMP;
502 		}
503 		CONT;
504 	JMP_JGT_K:
505 		if (DST > IMM) {
506 			insn += insn->off;
507 			CONT_JMP;
508 		}
509 		CONT;
510 	JMP_JGE_X:
511 		if (DST >= SRC) {
512 			insn += insn->off;
513 			CONT_JMP;
514 		}
515 		CONT;
516 	JMP_JGE_K:
517 		if (DST >= IMM) {
518 			insn += insn->off;
519 			CONT_JMP;
520 		}
521 		CONT;
522 	JMP_JSGT_X:
523 		if (((s64) DST) > ((s64) SRC)) {
524 			insn += insn->off;
525 			CONT_JMP;
526 		}
527 		CONT;
528 	JMP_JSGT_K:
529 		if (((s64) DST) > ((s64) IMM)) {
530 			insn += insn->off;
531 			CONT_JMP;
532 		}
533 		CONT;
534 	JMP_JSGE_X:
535 		if (((s64) DST) >= ((s64) SRC)) {
536 			insn += insn->off;
537 			CONT_JMP;
538 		}
539 		CONT;
540 	JMP_JSGE_K:
541 		if (((s64) DST) >= ((s64) IMM)) {
542 			insn += insn->off;
543 			CONT_JMP;
544 		}
545 		CONT;
546 	JMP_JSET_X:
547 		if (DST & SRC) {
548 			insn += insn->off;
549 			CONT_JMP;
550 		}
551 		CONT;
552 	JMP_JSET_K:
553 		if (DST & IMM) {
554 			insn += insn->off;
555 			CONT_JMP;
556 		}
557 		CONT;
558 	JMP_EXIT:
559 		return BPF_R0;
560 
561 	/* STX and ST and LDX*/
562 #define LDST(SIZEOP, SIZE)						\
563 	STX_MEM_##SIZEOP:						\
564 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
565 		CONT;							\
566 	ST_MEM_##SIZEOP:						\
567 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
568 		CONT;							\
569 	LDX_MEM_##SIZEOP:						\
570 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
571 		CONT;
572 
573 	LDST(B,   u8)
574 	LDST(H,  u16)
575 	LDST(W,  u32)
576 	LDST(DW, u64)
577 #undef LDST
578 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
579 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
580 			   (DST + insn->off));
581 		CONT;
582 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
583 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
584 			     (DST + insn->off));
585 		CONT;
586 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
587 		off = IMM;
588 load_word:
589 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
590 		 * only appearing in the programs where ctx ==
591 		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
592 		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
593 		 * internal BPF verifier will check that BPF_R6 ==
594 		 * ctx.
595 		 *
596 		 * BPF_ABS and BPF_IND are wrappers of function calls,
597 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
598 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
599 		 *
600 		 * Implicit input:
601 		 *   ctx == skb == BPF_R6 == CTX
602 		 *
603 		 * Explicit input:
604 		 *   SRC == any register
605 		 *   IMM == 32-bit immediate
606 		 *
607 		 * Output:
608 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
609 		 */
610 
611 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
612 		if (likely(ptr != NULL)) {
613 			BPF_R0 = get_unaligned_be32(ptr);
614 			CONT;
615 		}
616 
617 		return 0;
618 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
619 		off = IMM;
620 load_half:
621 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
622 		if (likely(ptr != NULL)) {
623 			BPF_R0 = get_unaligned_be16(ptr);
624 			CONT;
625 		}
626 
627 		return 0;
628 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
629 		off = IMM;
630 load_byte:
631 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
632 		if (likely(ptr != NULL)) {
633 			BPF_R0 = *(u8 *)ptr;
634 			CONT;
635 		}
636 
637 		return 0;
638 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
639 		off = IMM + SRC;
640 		goto load_word;
641 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
642 		off = IMM + SRC;
643 		goto load_half;
644 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
645 		off = IMM + SRC;
646 		goto load_byte;
647 
648 	default_label:
649 		/* If we ever reach this, we have a bug somewhere. */
650 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
651 		return 0;
652 }
653 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
654 
655 bool bpf_prog_array_compatible(struct bpf_array *array,
656 			       const struct bpf_prog *fp)
657 {
658 	if (!array->owner_prog_type) {
659 		/* There's no owner yet where we could check for
660 		 * compatibility.
661 		 */
662 		array->owner_prog_type = fp->type;
663 		array->owner_jited = fp->jited;
664 
665 		return true;
666 	}
667 
668 	return array->owner_prog_type == fp->type &&
669 	       array->owner_jited == fp->jited;
670 }
671 
672 static int bpf_check_tail_call(const struct bpf_prog *fp)
673 {
674 	struct bpf_prog_aux *aux = fp->aux;
675 	int i;
676 
677 	for (i = 0; i < aux->used_map_cnt; i++) {
678 		struct bpf_map *map = aux->used_maps[i];
679 		struct bpf_array *array;
680 
681 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
682 			continue;
683 
684 		array = container_of(map, struct bpf_array, map);
685 		if (!bpf_prog_array_compatible(array, fp))
686 			return -EINVAL;
687 	}
688 
689 	return 0;
690 }
691 
692 /**
693  *	bpf_prog_select_runtime - select exec runtime for BPF program
694  *	@fp: bpf_prog populated with internal BPF program
695  *
696  * Try to JIT eBPF program, if JIT is not available, use interpreter.
697  * The BPF program will be executed via BPF_PROG_RUN() macro.
698  */
699 int bpf_prog_select_runtime(struct bpf_prog *fp)
700 {
701 	fp->bpf_func = (void *) __bpf_prog_run;
702 
703 	bpf_int_jit_compile(fp);
704 	bpf_prog_lock_ro(fp);
705 
706 	/* The tail call compatibility check can only be done at
707 	 * this late stage as we need to determine, if we deal
708 	 * with JITed or non JITed program concatenations and not
709 	 * all eBPF JITs might immediately support all features.
710 	 */
711 	return bpf_check_tail_call(fp);
712 }
713 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
714 
715 static void bpf_prog_free_deferred(struct work_struct *work)
716 {
717 	struct bpf_prog_aux *aux;
718 
719 	aux = container_of(work, struct bpf_prog_aux, work);
720 	bpf_jit_free(aux->prog);
721 }
722 
723 /* Free internal BPF program */
724 void bpf_prog_free(struct bpf_prog *fp)
725 {
726 	struct bpf_prog_aux *aux = fp->aux;
727 
728 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
729 	schedule_work(&aux->work);
730 }
731 EXPORT_SYMBOL_GPL(bpf_prog_free);
732 
733 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
734 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
735 
736 void bpf_user_rnd_init_once(void)
737 {
738 	prandom_init_once(&bpf_user_rnd_state);
739 }
740 
741 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
742 {
743 	/* Should someone ever have the rather unwise idea to use some
744 	 * of the registers passed into this function, then note that
745 	 * this function is called from native eBPF and classic-to-eBPF
746 	 * transformations. Register assignments from both sides are
747 	 * different, f.e. classic always sets fn(ctx, A, X) here.
748 	 */
749 	struct rnd_state *state;
750 	u32 res;
751 
752 	state = &get_cpu_var(bpf_user_rnd_state);
753 	res = prandom_u32_state(state);
754 	put_cpu_var(state);
755 
756 	return res;
757 }
758 
759 /* Weak definitions of helper functions in case we don't have bpf syscall. */
760 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
761 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
762 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
763 
764 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
765 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
766 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
767 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
768 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
769 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
770 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
771 {
772 	return NULL;
773 }
774 
775 /* Always built-in helper functions. */
776 const struct bpf_func_proto bpf_tail_call_proto = {
777 	.func		= NULL,
778 	.gpl_only	= false,
779 	.ret_type	= RET_VOID,
780 	.arg1_type	= ARG_PTR_TO_CTX,
781 	.arg2_type	= ARG_CONST_MAP_PTR,
782 	.arg3_type	= ARG_ANYTHING,
783 };
784 
785 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
786 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
787 {
788 }
789 
790 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
791  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
792  */
793 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
794 			 int len)
795 {
796 	return -EFAULT;
797 }
798