xref: /linux/kernel/bpf/core.c (revision ea1013c1539270e372fc99854bc6e4d94eaeff66)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <crypto/sha1.h>
22 #include <linux/filter.h>
23 #include <linux/skbuff.h>
24 #include <linux/vmalloc.h>
25 #include <linux/prandom.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/overflow.h>
30 #include <linux/rbtree_latch.h>
31 #include <linux/kallsyms.h>
32 #include <linux/rcupdate.h>
33 #include <linux/perf_event.h>
34 #include <linux/extable.h>
35 #include <linux/log2.h>
36 #include <linux/bpf_verifier.h>
37 #include <linux/nodemask.h>
38 #include <linux/nospec.h>
39 #include <linux/bpf_mem_alloc.h>
40 #include <linux/memcontrol.h>
41 #include <linux/execmem.h>
42 #include <crypto/sha2.h>
43 
44 #include <asm/barrier.h>
45 #include <linux/unaligned.h>
46 
47 /* Registers */
48 #define BPF_R0	regs[BPF_REG_0]
49 #define BPF_R1	regs[BPF_REG_1]
50 #define BPF_R2	regs[BPF_REG_2]
51 #define BPF_R3	regs[BPF_REG_3]
52 #define BPF_R4	regs[BPF_REG_4]
53 #define BPF_R5	regs[BPF_REG_5]
54 #define BPF_R6	regs[BPF_REG_6]
55 #define BPF_R7	regs[BPF_REG_7]
56 #define BPF_R8	regs[BPF_REG_8]
57 #define BPF_R9	regs[BPF_REG_9]
58 #define BPF_R10	regs[BPF_REG_10]
59 
60 /* Named registers */
61 #define DST	regs[insn->dst_reg]
62 #define SRC	regs[insn->src_reg]
63 #define FP	regs[BPF_REG_FP]
64 #define AX	regs[BPF_REG_AX]
65 #define ARG1	regs[BPF_REG_ARG1]
66 #define CTX	regs[BPF_REG_CTX]
67 #define OFF	insn->off
68 #define IMM	insn->imm
69 
70 struct bpf_mem_alloc bpf_global_ma;
71 bool bpf_global_ma_set;
72 
73 /* No hurry in this branch
74  *
75  * Exported for the bpf jit load helper.
76  */
77 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
78 {
79 	u8 *ptr = NULL;
80 
81 	if (k >= SKF_NET_OFF) {
82 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
83 	} else if (k >= SKF_LL_OFF) {
84 		if (unlikely(!skb_mac_header_was_set(skb)))
85 			return NULL;
86 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
87 	}
88 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
89 		return ptr;
90 
91 	return NULL;
92 }
93 
94 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
95 enum page_size_enum {
96 	__PAGE_SIZE = PAGE_SIZE
97 };
98 
99 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
100 {
101 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
102 	struct bpf_prog_aux *aux;
103 	struct bpf_prog *fp;
104 
105 	size = round_up(size, __PAGE_SIZE);
106 	fp = __vmalloc(size, gfp_flags);
107 	if (fp == NULL)
108 		return NULL;
109 
110 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
111 	if (aux == NULL) {
112 		vfree(fp);
113 		return NULL;
114 	}
115 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
116 	if (!fp->active) {
117 		vfree(fp);
118 		kfree(aux);
119 		return NULL;
120 	}
121 
122 	fp->pages = size / PAGE_SIZE;
123 	fp->aux = aux;
124 	fp->aux->main_prog_aux = aux;
125 	fp->aux->prog = fp;
126 	fp->jit_requested = ebpf_jit_enabled();
127 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
128 #ifdef CONFIG_CGROUP_BPF
129 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
130 #endif
131 
132 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
133 #ifdef CONFIG_FINEIBT
134 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
135 #endif
136 	mutex_init(&fp->aux->used_maps_mutex);
137 	mutex_init(&fp->aux->ext_mutex);
138 	mutex_init(&fp->aux->dst_mutex);
139 
140 #ifdef CONFIG_BPF_SYSCALL
141 	bpf_prog_stream_init(fp);
142 #endif
143 
144 	return fp;
145 }
146 
147 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
148 {
149 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
150 	struct bpf_prog *prog;
151 	int cpu;
152 
153 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
154 	if (!prog)
155 		return NULL;
156 
157 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
158 	if (!prog->stats) {
159 		free_percpu(prog->active);
160 		kfree(prog->aux);
161 		vfree(prog);
162 		return NULL;
163 	}
164 
165 	for_each_possible_cpu(cpu) {
166 		struct bpf_prog_stats *pstats;
167 
168 		pstats = per_cpu_ptr(prog->stats, cpu);
169 		u64_stats_init(&pstats->syncp);
170 	}
171 	return prog;
172 }
173 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
174 
175 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
176 {
177 	if (!prog->aux->nr_linfo || !prog->jit_requested)
178 		return 0;
179 
180 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
181 					  sizeof(*prog->aux->jited_linfo),
182 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
183 	if (!prog->aux->jited_linfo)
184 		return -ENOMEM;
185 
186 	return 0;
187 }
188 
189 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
190 {
191 	if (prog->aux->jited_linfo &&
192 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
193 		kvfree(prog->aux->jited_linfo);
194 		prog->aux->jited_linfo = NULL;
195 	}
196 
197 	kfree(prog->aux->kfunc_tab);
198 	prog->aux->kfunc_tab = NULL;
199 }
200 
201 /* The jit engine is responsible to provide an array
202  * for insn_off to the jited_off mapping (insn_to_jit_off).
203  *
204  * The idx to this array is the insn_off.  Hence, the insn_off
205  * here is relative to the prog itself instead of the main prog.
206  * This array has one entry for each xlated bpf insn.
207  *
208  * jited_off is the byte off to the end of the jited insn.
209  *
210  * Hence, with
211  * insn_start:
212  *      The first bpf insn off of the prog.  The insn off
213  *      here is relative to the main prog.
214  *      e.g. if prog is a subprog, insn_start > 0
215  * linfo_idx:
216  *      The prog's idx to prog->aux->linfo and jited_linfo
217  *
218  * jited_linfo[linfo_idx] = prog->bpf_func
219  *
220  * For i > linfo_idx,
221  *
222  * jited_linfo[i] = prog->bpf_func +
223  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
224  */
225 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
226 			       const u32 *insn_to_jit_off)
227 {
228 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
229 	const struct bpf_line_info *linfo;
230 	void **jited_linfo;
231 
232 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
233 		/* Userspace did not provide linfo */
234 		return;
235 
236 	linfo_idx = prog->aux->linfo_idx;
237 	linfo = &prog->aux->linfo[linfo_idx];
238 	insn_start = linfo[0].insn_off;
239 	insn_end = insn_start + prog->len;
240 
241 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
242 	jited_linfo[0] = prog->bpf_func;
243 
244 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
245 
246 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
247 		/* The verifier ensures that linfo[i].insn_off is
248 		 * strictly increasing
249 		 */
250 		jited_linfo[i] = prog->bpf_func +
251 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
252 }
253 
254 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
255 				  gfp_t gfp_extra_flags)
256 {
257 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
258 	struct bpf_prog *fp;
259 	u32 pages;
260 
261 	size = round_up(size, PAGE_SIZE);
262 	pages = size / PAGE_SIZE;
263 	if (pages <= fp_old->pages)
264 		return fp_old;
265 
266 	fp = __vmalloc(size, gfp_flags);
267 	if (fp) {
268 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
269 		fp->pages = pages;
270 		fp->aux->prog = fp;
271 
272 		/* We keep fp->aux from fp_old around in the new
273 		 * reallocated structure.
274 		 */
275 		fp_old->aux = NULL;
276 		fp_old->stats = NULL;
277 		fp_old->active = NULL;
278 		__bpf_prog_free(fp_old);
279 	}
280 
281 	return fp;
282 }
283 
284 void __bpf_prog_free(struct bpf_prog *fp)
285 {
286 	if (fp->aux) {
287 		mutex_destroy(&fp->aux->used_maps_mutex);
288 		mutex_destroy(&fp->aux->dst_mutex);
289 		kfree(fp->aux->poke_tab);
290 		kfree(fp->aux);
291 	}
292 	free_percpu(fp->stats);
293 	free_percpu(fp->active);
294 	vfree(fp);
295 }
296 
297 int bpf_prog_calc_tag(struct bpf_prog *fp)
298 {
299 	size_t size = bpf_prog_insn_size(fp);
300 	struct bpf_insn *dst;
301 	bool was_ld_map;
302 	u32 i;
303 
304 	dst = vmalloc(size);
305 	if (!dst)
306 		return -ENOMEM;
307 
308 	/* We need to take out the map fd for the digest calculation
309 	 * since they are unstable from user space side.
310 	 */
311 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
312 		dst[i] = fp->insnsi[i];
313 		if (!was_ld_map &&
314 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
315 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
316 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
317 			was_ld_map = true;
318 			dst[i].imm = 0;
319 		} else if (was_ld_map &&
320 			   dst[i].code == 0 &&
321 			   dst[i].dst_reg == 0 &&
322 			   dst[i].src_reg == 0 &&
323 			   dst[i].off == 0) {
324 			was_ld_map = false;
325 			dst[i].imm = 0;
326 		} else {
327 			was_ld_map = false;
328 		}
329 	}
330 	sha256((u8 *)dst, size, fp->digest);
331 	vfree(dst);
332 	return 0;
333 }
334 
335 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
336 				s32 end_new, s32 curr, const bool probe_pass)
337 {
338 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
339 	s32 delta = end_new - end_old;
340 	s64 imm = insn->imm;
341 
342 	if (curr < pos && curr + imm + 1 >= end_old)
343 		imm += delta;
344 	else if (curr >= end_new && curr + imm + 1 < end_new)
345 		imm -= delta;
346 	if (imm < imm_min || imm > imm_max)
347 		return -ERANGE;
348 	if (!probe_pass)
349 		insn->imm = imm;
350 	return 0;
351 }
352 
353 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
354 				s32 end_new, s32 curr, const bool probe_pass)
355 {
356 	s64 off_min, off_max, off;
357 	s32 delta = end_new - end_old;
358 
359 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
360 		off = insn->imm;
361 		off_min = S32_MIN;
362 		off_max = S32_MAX;
363 	} else {
364 		off = insn->off;
365 		off_min = S16_MIN;
366 		off_max = S16_MAX;
367 	}
368 
369 	if (curr < pos && curr + off + 1 >= end_old)
370 		off += delta;
371 	else if (curr >= end_new && curr + off + 1 < end_new)
372 		off -= delta;
373 	if (off < off_min || off > off_max)
374 		return -ERANGE;
375 	if (!probe_pass) {
376 		if (insn->code == (BPF_JMP32 | BPF_JA))
377 			insn->imm = off;
378 		else
379 			insn->off = off;
380 	}
381 	return 0;
382 }
383 
384 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
385 			    s32 end_new, const bool probe_pass)
386 {
387 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
388 	struct bpf_insn *insn = prog->insnsi;
389 	int ret = 0;
390 
391 	for (i = 0; i < insn_cnt; i++, insn++) {
392 		u8 code;
393 
394 		/* In the probing pass we still operate on the original,
395 		 * unpatched image in order to check overflows before we
396 		 * do any other adjustments. Therefore skip the patchlet.
397 		 */
398 		if (probe_pass && i == pos) {
399 			i = end_new;
400 			insn = prog->insnsi + end_old;
401 		}
402 		if (bpf_pseudo_func(insn)) {
403 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 						   end_new, i, probe_pass);
405 			if (ret)
406 				return ret;
407 			continue;
408 		}
409 		code = insn->code;
410 		if ((BPF_CLASS(code) != BPF_JMP &&
411 		     BPF_CLASS(code) != BPF_JMP32) ||
412 		    BPF_OP(code) == BPF_EXIT)
413 			continue;
414 		/* Adjust offset of jmps if we cross patch boundaries. */
415 		if (BPF_OP(code) == BPF_CALL) {
416 			if (insn->src_reg != BPF_PSEUDO_CALL)
417 				continue;
418 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
419 						   end_new, i, probe_pass);
420 		} else {
421 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 		}
424 		if (ret)
425 			break;
426 	}
427 
428 	return ret;
429 }
430 
431 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
432 {
433 	struct bpf_line_info *linfo;
434 	u32 i, nr_linfo;
435 
436 	nr_linfo = prog->aux->nr_linfo;
437 	if (!nr_linfo || !delta)
438 		return;
439 
440 	linfo = prog->aux->linfo;
441 
442 	for (i = 0; i < nr_linfo; i++)
443 		if (off < linfo[i].insn_off)
444 			break;
445 
446 	/* Push all off < linfo[i].insn_off by delta */
447 	for (; i < nr_linfo; i++)
448 		linfo[i].insn_off += delta;
449 }
450 
451 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
452 				       const struct bpf_insn *patch, u32 len)
453 {
454 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
455 	const u32 cnt_max = S16_MAX;
456 	struct bpf_prog *prog_adj;
457 	int err;
458 
459 	/* Since our patchlet doesn't expand the image, we're done. */
460 	if (insn_delta == 0) {
461 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
462 		return prog;
463 	}
464 
465 	insn_adj_cnt = prog->len + insn_delta;
466 
467 	/* Reject anything that would potentially let the insn->off
468 	 * target overflow when we have excessive program expansions.
469 	 * We need to probe here before we do any reallocation where
470 	 * we afterwards may not fail anymore.
471 	 */
472 	if (insn_adj_cnt > cnt_max &&
473 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
474 		return ERR_PTR(err);
475 
476 	/* Several new instructions need to be inserted. Make room
477 	 * for them. Likely, there's no need for a new allocation as
478 	 * last page could have large enough tailroom.
479 	 */
480 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
481 				    GFP_USER);
482 	if (!prog_adj)
483 		return ERR_PTR(-ENOMEM);
484 
485 	prog_adj->len = insn_adj_cnt;
486 
487 	/* Patching happens in 3 steps:
488 	 *
489 	 * 1) Move over tail of insnsi from next instruction onwards,
490 	 *    so we can patch the single target insn with one or more
491 	 *    new ones (patching is always from 1 to n insns, n > 0).
492 	 * 2) Inject new instructions at the target location.
493 	 * 3) Adjust branch offsets if necessary.
494 	 */
495 	insn_rest = insn_adj_cnt - off - len;
496 
497 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
498 		sizeof(*patch) * insn_rest);
499 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
500 
501 	/* We are guaranteed to not fail at this point, otherwise
502 	 * the ship has sailed to reverse to the original state. An
503 	 * overflow cannot happen at this point.
504 	 */
505 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
506 
507 	bpf_adj_linfo(prog_adj, off, insn_delta);
508 
509 	return prog_adj;
510 }
511 
512 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
513 {
514 	int err;
515 
516 	/* Branch offsets can't overflow when program is shrinking, no need
517 	 * to call bpf_adj_branches(..., true) here
518 	 */
519 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
520 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
521 	prog->len -= cnt;
522 
523 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
524 	WARN_ON_ONCE(err);
525 	return err;
526 }
527 
528 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
529 {
530 	int i;
531 
532 	for (i = 0; i < fp->aux->real_func_cnt; i++)
533 		bpf_prog_kallsyms_del(fp->aux->func[i]);
534 }
535 
536 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
537 {
538 	bpf_prog_kallsyms_del_subprogs(fp);
539 	bpf_prog_kallsyms_del(fp);
540 }
541 
542 #ifdef CONFIG_BPF_JIT
543 /* All BPF JIT sysctl knobs here. */
544 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
545 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
546 int bpf_jit_harden   __read_mostly;
547 long bpf_jit_limit   __read_mostly;
548 long bpf_jit_limit_max __read_mostly;
549 
550 static void
551 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
552 {
553 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
554 
555 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
556 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
557 }
558 
559 static void
560 bpf_prog_ksym_set_name(struct bpf_prog *prog)
561 {
562 	char *sym = prog->aux->ksym.name;
563 	const char *end = sym + KSYM_NAME_LEN;
564 	const struct btf_type *type;
565 	const char *func_name;
566 
567 	BUILD_BUG_ON(sizeof("bpf_prog_") +
568 		     sizeof(prog->tag) * 2 +
569 		     /* name has been null terminated.
570 		      * We should need +1 for the '_' preceding
571 		      * the name.  However, the null character
572 		      * is double counted between the name and the
573 		      * sizeof("bpf_prog_") above, so we omit
574 		      * the +1 here.
575 		      */
576 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
577 
578 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
579 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
580 
581 	/* prog->aux->name will be ignored if full btf name is available */
582 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
583 		type = btf_type_by_id(prog->aux->btf,
584 				      prog->aux->func_info[prog->aux->func_idx].type_id);
585 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
586 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
587 		return;
588 	}
589 
590 	if (prog->aux->name[0])
591 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
592 	else
593 		*sym = 0;
594 }
595 
596 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
597 {
598 	return container_of(n, struct bpf_ksym, tnode)->start;
599 }
600 
601 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
602 					  struct latch_tree_node *b)
603 {
604 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
605 }
606 
607 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
608 {
609 	unsigned long val = (unsigned long)key;
610 	const struct bpf_ksym *ksym;
611 
612 	ksym = container_of(n, struct bpf_ksym, tnode);
613 
614 	if (val < ksym->start)
615 		return -1;
616 	/* Ensure that we detect return addresses as part of the program, when
617 	 * the final instruction is a call for a program part of the stack
618 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
619 	 */
620 	if (val > ksym->end)
621 		return  1;
622 
623 	return 0;
624 }
625 
626 static const struct latch_tree_ops bpf_tree_ops = {
627 	.less	= bpf_tree_less,
628 	.comp	= bpf_tree_comp,
629 };
630 
631 static DEFINE_SPINLOCK(bpf_lock);
632 static LIST_HEAD(bpf_kallsyms);
633 static struct latch_tree_root bpf_tree __cacheline_aligned;
634 
635 void bpf_ksym_add(struct bpf_ksym *ksym)
636 {
637 	spin_lock_bh(&bpf_lock);
638 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
639 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
640 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
641 	spin_unlock_bh(&bpf_lock);
642 }
643 
644 static void __bpf_ksym_del(struct bpf_ksym *ksym)
645 {
646 	if (list_empty(&ksym->lnode))
647 		return;
648 
649 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
650 	list_del_rcu(&ksym->lnode);
651 }
652 
653 void bpf_ksym_del(struct bpf_ksym *ksym)
654 {
655 	spin_lock_bh(&bpf_lock);
656 	__bpf_ksym_del(ksym);
657 	spin_unlock_bh(&bpf_lock);
658 }
659 
660 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
661 {
662 	return fp->jited && !bpf_prog_was_classic(fp);
663 }
664 
665 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
666 {
667 	if (!bpf_prog_kallsyms_candidate(fp) ||
668 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
669 		return;
670 
671 	bpf_prog_ksym_set_addr(fp);
672 	bpf_prog_ksym_set_name(fp);
673 	fp->aux->ksym.prog = true;
674 
675 	bpf_ksym_add(&fp->aux->ksym);
676 
677 #ifdef CONFIG_FINEIBT
678 	/*
679 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
680 	 * and hence unwinder needs help.
681 	 */
682 	if (cfi_mode != CFI_FINEIBT)
683 		return;
684 
685 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
686 		 "__cfi_%s", fp->aux->ksym.name);
687 
688 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
689 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
690 
691 	bpf_ksym_add(&fp->aux->ksym_prefix);
692 #endif
693 }
694 
695 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
696 {
697 	if (!bpf_prog_kallsyms_candidate(fp))
698 		return;
699 
700 	bpf_ksym_del(&fp->aux->ksym);
701 #ifdef CONFIG_FINEIBT
702 	if (cfi_mode != CFI_FINEIBT)
703 		return;
704 	bpf_ksym_del(&fp->aux->ksym_prefix);
705 #endif
706 }
707 
708 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
709 {
710 	struct latch_tree_node *n;
711 
712 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
713 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
714 }
715 
716 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
717 				 unsigned long *off, char *sym)
718 {
719 	struct bpf_ksym *ksym;
720 	int ret = 0;
721 
722 	rcu_read_lock();
723 	ksym = bpf_ksym_find(addr);
724 	if (ksym) {
725 		unsigned long symbol_start = ksym->start;
726 		unsigned long symbol_end = ksym->end;
727 
728 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
729 
730 		if (size)
731 			*size = symbol_end - symbol_start;
732 		if (off)
733 			*off  = addr - symbol_start;
734 	}
735 	rcu_read_unlock();
736 
737 	return ret;
738 }
739 
740 bool is_bpf_text_address(unsigned long addr)
741 {
742 	bool ret;
743 
744 	rcu_read_lock();
745 	ret = bpf_ksym_find(addr) != NULL;
746 	rcu_read_unlock();
747 
748 	return ret;
749 }
750 
751 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
752 {
753 	struct bpf_ksym *ksym;
754 
755 	WARN_ON_ONCE(!rcu_read_lock_held());
756 	ksym = bpf_ksym_find(addr);
757 
758 	return ksym && ksym->prog ?
759 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
760 	       NULL;
761 }
762 
763 bool bpf_has_frame_pointer(unsigned long ip)
764 {
765 	struct bpf_ksym *ksym;
766 	unsigned long offset;
767 
768 	guard(rcu)();
769 
770 	ksym = bpf_ksym_find(ip);
771 	if (!ksym || !ksym->fp_start || !ksym->fp_end)
772 		return false;
773 
774 	offset = ip - ksym->start;
775 
776 	return offset >= ksym->fp_start && offset < ksym->fp_end;
777 }
778 
779 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
780 {
781 	const struct exception_table_entry *e = NULL;
782 	struct bpf_prog *prog;
783 
784 	rcu_read_lock();
785 	prog = bpf_prog_ksym_find(addr);
786 	if (!prog)
787 		goto out;
788 	if (!prog->aux->num_exentries)
789 		goto out;
790 
791 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
792 out:
793 	rcu_read_unlock();
794 	return e;
795 }
796 
797 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
798 		    char *sym)
799 {
800 	struct bpf_ksym *ksym;
801 	unsigned int it = 0;
802 	int ret = -ERANGE;
803 
804 	if (!bpf_jit_kallsyms_enabled())
805 		return ret;
806 
807 	rcu_read_lock();
808 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
809 		if (it++ != symnum)
810 			continue;
811 
812 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
813 
814 		*value = ksym->start;
815 		*type  = BPF_SYM_ELF_TYPE;
816 
817 		ret = 0;
818 		break;
819 	}
820 	rcu_read_unlock();
821 
822 	return ret;
823 }
824 
825 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
826 				struct bpf_jit_poke_descriptor *poke)
827 {
828 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
829 	static const u32 poke_tab_max = 1024;
830 	u32 slot = prog->aux->size_poke_tab;
831 	u32 size = slot + 1;
832 
833 	if (size > poke_tab_max)
834 		return -ENOSPC;
835 	if (poke->tailcall_target || poke->tailcall_target_stable ||
836 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
837 		return -EINVAL;
838 
839 	switch (poke->reason) {
840 	case BPF_POKE_REASON_TAIL_CALL:
841 		if (!poke->tail_call.map)
842 			return -EINVAL;
843 		break;
844 	default:
845 		return -EINVAL;
846 	}
847 
848 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
849 	if (!tab)
850 		return -ENOMEM;
851 
852 	memcpy(&tab[slot], poke, sizeof(*poke));
853 	prog->aux->size_poke_tab = size;
854 	prog->aux->poke_tab = tab;
855 
856 	return slot;
857 }
858 
859 /*
860  * BPF program pack allocator.
861  *
862  * Most BPF programs are pretty small. Allocating a hole page for each
863  * program is sometime a waste. Many small bpf program also adds pressure
864  * to instruction TLB. To solve this issue, we introduce a BPF program pack
865  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
866  * to host BPF programs.
867  */
868 #define BPF_PROG_CHUNK_SHIFT	6
869 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
870 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
871 
872 struct bpf_prog_pack {
873 	struct list_head list;
874 	void *ptr;
875 	unsigned long bitmap[];
876 };
877 
878 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
879 {
880 	memset(area, 0, size);
881 }
882 
883 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
884 
885 static DEFINE_MUTEX(pack_mutex);
886 static LIST_HEAD(pack_list);
887 
888 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
889  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
890  */
891 #ifdef PMD_SIZE
892 /* PMD_SIZE is really big for some archs. It doesn't make sense to
893  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
894  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
895  * greater than or equal to 2MB.
896  */
897 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
898 #else
899 #define BPF_PROG_PACK_SIZE PAGE_SIZE
900 #endif
901 
902 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
903 
904 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
905 {
906 	struct bpf_prog_pack *pack;
907 	int err;
908 
909 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
910 		       GFP_KERNEL);
911 	if (!pack)
912 		return NULL;
913 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
914 	if (!pack->ptr)
915 		goto out;
916 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
917 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
918 
919 	set_vm_flush_reset_perms(pack->ptr);
920 	err = set_memory_rox((unsigned long)pack->ptr,
921 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
922 	if (err)
923 		goto out;
924 	list_add_tail(&pack->list, &pack_list);
925 	return pack;
926 
927 out:
928 	bpf_jit_free_exec(pack->ptr);
929 	kfree(pack);
930 	return NULL;
931 }
932 
933 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
934 {
935 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
936 	struct bpf_prog_pack *pack;
937 	unsigned long pos;
938 	void *ptr = NULL;
939 
940 	mutex_lock(&pack_mutex);
941 	if (size > BPF_PROG_PACK_SIZE) {
942 		size = round_up(size, PAGE_SIZE);
943 		ptr = bpf_jit_alloc_exec(size);
944 		if (ptr) {
945 			int err;
946 
947 			bpf_fill_ill_insns(ptr, size);
948 			set_vm_flush_reset_perms(ptr);
949 			err = set_memory_rox((unsigned long)ptr,
950 					     size / PAGE_SIZE);
951 			if (err) {
952 				bpf_jit_free_exec(ptr);
953 				ptr = NULL;
954 			}
955 		}
956 		goto out;
957 	}
958 	list_for_each_entry(pack, &pack_list, list) {
959 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
960 						 nbits, 0);
961 		if (pos < BPF_PROG_CHUNK_COUNT)
962 			goto found_free_area;
963 	}
964 
965 	pack = alloc_new_pack(bpf_fill_ill_insns);
966 	if (!pack)
967 		goto out;
968 
969 	pos = 0;
970 
971 found_free_area:
972 	bitmap_set(pack->bitmap, pos, nbits);
973 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
974 
975 out:
976 	mutex_unlock(&pack_mutex);
977 	return ptr;
978 }
979 
980 void bpf_prog_pack_free(void *ptr, u32 size)
981 {
982 	struct bpf_prog_pack *pack = NULL, *tmp;
983 	unsigned int nbits;
984 	unsigned long pos;
985 
986 	mutex_lock(&pack_mutex);
987 	if (size > BPF_PROG_PACK_SIZE) {
988 		bpf_jit_free_exec(ptr);
989 		goto out;
990 	}
991 
992 	list_for_each_entry(tmp, &pack_list, list) {
993 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
994 			pack = tmp;
995 			break;
996 		}
997 	}
998 
999 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1000 		goto out;
1001 
1002 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1003 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1004 
1005 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1006 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1007 
1008 	bitmap_clear(pack->bitmap, pos, nbits);
1009 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1010 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1011 		list_del(&pack->list);
1012 		bpf_jit_free_exec(pack->ptr);
1013 		kfree(pack);
1014 	}
1015 out:
1016 	mutex_unlock(&pack_mutex);
1017 }
1018 
1019 static atomic_long_t bpf_jit_current;
1020 
1021 /* Can be overridden by an arch's JIT compiler if it has a custom,
1022  * dedicated BPF backend memory area, or if neither of the two
1023  * below apply.
1024  */
1025 u64 __weak bpf_jit_alloc_exec_limit(void)
1026 {
1027 #if defined(MODULES_VADDR)
1028 	return MODULES_END - MODULES_VADDR;
1029 #else
1030 	return VMALLOC_END - VMALLOC_START;
1031 #endif
1032 }
1033 
1034 static int __init bpf_jit_charge_init(void)
1035 {
1036 	/* Only used as heuristic here to derive limit. */
1037 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1038 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1039 					    PAGE_SIZE), LONG_MAX);
1040 	return 0;
1041 }
1042 pure_initcall(bpf_jit_charge_init);
1043 
1044 int bpf_jit_charge_modmem(u32 size)
1045 {
1046 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1047 		if (!bpf_capable()) {
1048 			atomic_long_sub(size, &bpf_jit_current);
1049 			return -EPERM;
1050 		}
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 void bpf_jit_uncharge_modmem(u32 size)
1057 {
1058 	atomic_long_sub(size, &bpf_jit_current);
1059 }
1060 
1061 void *__weak bpf_jit_alloc_exec(unsigned long size)
1062 {
1063 	return execmem_alloc(EXECMEM_BPF, size);
1064 }
1065 
1066 void __weak bpf_jit_free_exec(void *addr)
1067 {
1068 	execmem_free(addr);
1069 }
1070 
1071 struct bpf_binary_header *
1072 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1073 		     unsigned int alignment,
1074 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1075 {
1076 	struct bpf_binary_header *hdr;
1077 	u32 size, hole, start;
1078 
1079 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1080 		     alignment > BPF_IMAGE_ALIGNMENT);
1081 
1082 	/* Most of BPF filters are really small, but if some of them
1083 	 * fill a page, allow at least 128 extra bytes to insert a
1084 	 * random section of illegal instructions.
1085 	 */
1086 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1087 
1088 	if (bpf_jit_charge_modmem(size))
1089 		return NULL;
1090 	hdr = bpf_jit_alloc_exec(size);
1091 	if (!hdr) {
1092 		bpf_jit_uncharge_modmem(size);
1093 		return NULL;
1094 	}
1095 
1096 	/* Fill space with illegal/arch-dep instructions. */
1097 	bpf_fill_ill_insns(hdr, size);
1098 
1099 	hdr->size = size;
1100 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1101 		     PAGE_SIZE - sizeof(*hdr));
1102 	start = get_random_u32_below(hole) & ~(alignment - 1);
1103 
1104 	/* Leave a random number of instructions before BPF code. */
1105 	*image_ptr = &hdr->image[start];
1106 
1107 	return hdr;
1108 }
1109 
1110 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1111 {
1112 	u32 size = hdr->size;
1113 
1114 	bpf_jit_free_exec(hdr);
1115 	bpf_jit_uncharge_modmem(size);
1116 }
1117 
1118 /* Allocate jit binary from bpf_prog_pack allocator.
1119  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1120  * to the memory. To solve this problem, a RW buffer is also allocated at
1121  * as the same time. The JIT engine should calculate offsets based on the
1122  * RO memory address, but write JITed program to the RW buffer. Once the
1123  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1124  * the JITed program to the RO memory.
1125  */
1126 struct bpf_binary_header *
1127 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1128 			  unsigned int alignment,
1129 			  struct bpf_binary_header **rw_header,
1130 			  u8 **rw_image,
1131 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1132 {
1133 	struct bpf_binary_header *ro_header;
1134 	u32 size, hole, start;
1135 
1136 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1137 		     alignment > BPF_IMAGE_ALIGNMENT);
1138 
1139 	/* add 16 bytes for a random section of illegal instructions */
1140 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1141 
1142 	if (bpf_jit_charge_modmem(size))
1143 		return NULL;
1144 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1145 	if (!ro_header) {
1146 		bpf_jit_uncharge_modmem(size);
1147 		return NULL;
1148 	}
1149 
1150 	*rw_header = kvmalloc(size, GFP_KERNEL);
1151 	if (!*rw_header) {
1152 		bpf_prog_pack_free(ro_header, size);
1153 		bpf_jit_uncharge_modmem(size);
1154 		return NULL;
1155 	}
1156 
1157 	/* Fill space with illegal/arch-dep instructions. */
1158 	bpf_fill_ill_insns(*rw_header, size);
1159 	(*rw_header)->size = size;
1160 
1161 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1162 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1163 	start = get_random_u32_below(hole) & ~(alignment - 1);
1164 
1165 	*image_ptr = &ro_header->image[start];
1166 	*rw_image = &(*rw_header)->image[start];
1167 
1168 	return ro_header;
1169 }
1170 
1171 /* Copy JITed text from rw_header to its final location, the ro_header. */
1172 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1173 				 struct bpf_binary_header *rw_header)
1174 {
1175 	void *ptr;
1176 
1177 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1178 
1179 	kvfree(rw_header);
1180 
1181 	if (IS_ERR(ptr)) {
1182 		bpf_prog_pack_free(ro_header, ro_header->size);
1183 		return PTR_ERR(ptr);
1184 	}
1185 	return 0;
1186 }
1187 
1188 /* bpf_jit_binary_pack_free is called in two different scenarios:
1189  *   1) when the program is freed after;
1190  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1191  * For case 2), we need to free both the RO memory and the RW buffer.
1192  *
1193  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1194  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1195  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1196  * bpf_arch_text_copy (when jit fails).
1197  */
1198 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1199 			      struct bpf_binary_header *rw_header)
1200 {
1201 	u32 size = ro_header->size;
1202 
1203 	bpf_prog_pack_free(ro_header, size);
1204 	kvfree(rw_header);
1205 	bpf_jit_uncharge_modmem(size);
1206 }
1207 
1208 struct bpf_binary_header *
1209 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1210 {
1211 	unsigned long real_start = (unsigned long)fp->bpf_func;
1212 	unsigned long addr;
1213 
1214 	addr = real_start & BPF_PROG_CHUNK_MASK;
1215 	return (void *)addr;
1216 }
1217 
1218 static inline struct bpf_binary_header *
1219 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1220 {
1221 	unsigned long real_start = (unsigned long)fp->bpf_func;
1222 	unsigned long addr;
1223 
1224 	addr = real_start & PAGE_MASK;
1225 	return (void *)addr;
1226 }
1227 
1228 /* This symbol is only overridden by archs that have different
1229  * requirements than the usual eBPF JITs, f.e. when they only
1230  * implement cBPF JIT, do not set images read-only, etc.
1231  */
1232 void __weak bpf_jit_free(struct bpf_prog *fp)
1233 {
1234 	if (fp->jited) {
1235 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1236 
1237 		bpf_jit_binary_free(hdr);
1238 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1239 	}
1240 
1241 	bpf_prog_unlock_free(fp);
1242 }
1243 
1244 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1245 			  const struct bpf_insn *insn, bool extra_pass,
1246 			  u64 *func_addr, bool *func_addr_fixed)
1247 {
1248 	s16 off = insn->off;
1249 	s32 imm = insn->imm;
1250 	u8 *addr;
1251 	int err;
1252 
1253 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1254 	if (!*func_addr_fixed) {
1255 		/* Place-holder address till the last pass has collected
1256 		 * all addresses for JITed subprograms in which case we
1257 		 * can pick them up from prog->aux.
1258 		 */
1259 		if (!extra_pass)
1260 			addr = NULL;
1261 		else if (prog->aux->func &&
1262 			 off >= 0 && off < prog->aux->real_func_cnt)
1263 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1264 		else
1265 			return -EINVAL;
1266 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1267 		   bpf_jit_supports_far_kfunc_call()) {
1268 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1269 		if (err)
1270 			return err;
1271 	} else {
1272 		/* Address of a BPF helper call. Since part of the core
1273 		 * kernel, it's always at a fixed location. __bpf_call_base
1274 		 * and the helper with imm relative to it are both in core
1275 		 * kernel.
1276 		 */
1277 		addr = (u8 *)__bpf_call_base + imm;
1278 	}
1279 
1280 	*func_addr = (unsigned long)addr;
1281 	return 0;
1282 }
1283 
1284 const char *bpf_jit_get_prog_name(struct bpf_prog *prog)
1285 {
1286 	if (prog->aux->ksym.prog)
1287 		return prog->aux->ksym.name;
1288 	return prog->aux->name;
1289 }
1290 
1291 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1292 			      const struct bpf_insn *aux,
1293 			      struct bpf_insn *to_buff,
1294 			      bool emit_zext)
1295 {
1296 	struct bpf_insn *to = to_buff;
1297 	u32 imm_rnd = get_random_u32();
1298 	s16 off;
1299 
1300 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1301 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1302 
1303 	/* Constraints on AX register:
1304 	 *
1305 	 * AX register is inaccessible from user space. It is mapped in
1306 	 * all JITs, and used here for constant blinding rewrites. It is
1307 	 * typically "stateless" meaning its contents are only valid within
1308 	 * the executed instruction, but not across several instructions.
1309 	 * There are a few exceptions however which are further detailed
1310 	 * below.
1311 	 *
1312 	 * Constant blinding is only used by JITs, not in the interpreter.
1313 	 * The interpreter uses AX in some occasions as a local temporary
1314 	 * register e.g. in DIV or MOD instructions.
1315 	 *
1316 	 * In restricted circumstances, the verifier can also use the AX
1317 	 * register for rewrites as long as they do not interfere with
1318 	 * the above cases!
1319 	 */
1320 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1321 		goto out;
1322 
1323 	if (from->imm == 0 &&
1324 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1325 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1326 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1327 		goto out;
1328 	}
1329 
1330 	switch (from->code) {
1331 	case BPF_ALU | BPF_ADD | BPF_K:
1332 	case BPF_ALU | BPF_SUB | BPF_K:
1333 	case BPF_ALU | BPF_AND | BPF_K:
1334 	case BPF_ALU | BPF_OR  | BPF_K:
1335 	case BPF_ALU | BPF_XOR | BPF_K:
1336 	case BPF_ALU | BPF_MUL | BPF_K:
1337 	case BPF_ALU | BPF_MOV | BPF_K:
1338 	case BPF_ALU | BPF_DIV | BPF_K:
1339 	case BPF_ALU | BPF_MOD | BPF_K:
1340 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1341 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1342 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1343 		break;
1344 
1345 	case BPF_ALU64 | BPF_ADD | BPF_K:
1346 	case BPF_ALU64 | BPF_SUB | BPF_K:
1347 	case BPF_ALU64 | BPF_AND | BPF_K:
1348 	case BPF_ALU64 | BPF_OR  | BPF_K:
1349 	case BPF_ALU64 | BPF_XOR | BPF_K:
1350 	case BPF_ALU64 | BPF_MUL | BPF_K:
1351 	case BPF_ALU64 | BPF_MOV | BPF_K:
1352 	case BPF_ALU64 | BPF_DIV | BPF_K:
1353 	case BPF_ALU64 | BPF_MOD | BPF_K:
1354 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1355 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1356 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1357 		break;
1358 
1359 	case BPF_JMP | BPF_JEQ  | BPF_K:
1360 	case BPF_JMP | BPF_JNE  | BPF_K:
1361 	case BPF_JMP | BPF_JGT  | BPF_K:
1362 	case BPF_JMP | BPF_JLT  | BPF_K:
1363 	case BPF_JMP | BPF_JGE  | BPF_K:
1364 	case BPF_JMP | BPF_JLE  | BPF_K:
1365 	case BPF_JMP | BPF_JSGT | BPF_K:
1366 	case BPF_JMP | BPF_JSLT | BPF_K:
1367 	case BPF_JMP | BPF_JSGE | BPF_K:
1368 	case BPF_JMP | BPF_JSLE | BPF_K:
1369 	case BPF_JMP | BPF_JSET | BPF_K:
1370 		/* Accommodate for extra offset in case of a backjump. */
1371 		off = from->off;
1372 		if (off < 0)
1373 			off -= 2;
1374 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1375 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1376 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1377 		break;
1378 
1379 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1380 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1381 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1382 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1383 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1384 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1385 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1386 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1387 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1388 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1389 	case BPF_JMP32 | BPF_JSET | BPF_K:
1390 		/* Accommodate for extra offset in case of a backjump. */
1391 		off = from->off;
1392 		if (off < 0)
1393 			off -= 2;
1394 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1395 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1396 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1397 				      off);
1398 		break;
1399 
1400 	case BPF_LD | BPF_IMM | BPF_DW:
1401 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1402 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1403 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1404 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1405 		break;
1406 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1407 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1408 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1409 		if (emit_zext)
1410 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1411 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1412 		break;
1413 
1414 	case BPF_ST | BPF_MEM | BPF_DW:
1415 	case BPF_ST | BPF_MEM | BPF_W:
1416 	case BPF_ST | BPF_MEM | BPF_H:
1417 	case BPF_ST | BPF_MEM | BPF_B:
1418 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1419 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1420 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1421 		break;
1422 	}
1423 out:
1424 	return to - to_buff;
1425 }
1426 
1427 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1428 					      gfp_t gfp_extra_flags)
1429 {
1430 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1431 	struct bpf_prog *fp;
1432 
1433 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1434 	if (fp != NULL) {
1435 		/* aux->prog still points to the fp_other one, so
1436 		 * when promoting the clone to the real program,
1437 		 * this still needs to be adapted.
1438 		 */
1439 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1440 	}
1441 
1442 	return fp;
1443 }
1444 
1445 static void bpf_prog_clone_free(struct bpf_prog *fp)
1446 {
1447 	/* aux was stolen by the other clone, so we cannot free
1448 	 * it from this path! It will be freed eventually by the
1449 	 * other program on release.
1450 	 *
1451 	 * At this point, we don't need a deferred release since
1452 	 * clone is guaranteed to not be locked.
1453 	 */
1454 	fp->aux = NULL;
1455 	fp->stats = NULL;
1456 	fp->active = NULL;
1457 	__bpf_prog_free(fp);
1458 }
1459 
1460 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1461 {
1462 	/* We have to repoint aux->prog to self, as we don't
1463 	 * know whether fp here is the clone or the original.
1464 	 */
1465 	fp->aux->prog = fp;
1466 	bpf_prog_clone_free(fp_other);
1467 }
1468 
1469 static void adjust_insn_arrays(struct bpf_prog *prog, u32 off, u32 len)
1470 {
1471 #ifdef CONFIG_BPF_SYSCALL
1472 	struct bpf_map *map;
1473 	int i;
1474 
1475 	if (len <= 1)
1476 		return;
1477 
1478 	for (i = 0; i < prog->aux->used_map_cnt; i++) {
1479 		map = prog->aux->used_maps[i];
1480 		if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
1481 			bpf_insn_array_adjust(map, off, len);
1482 	}
1483 #endif
1484 }
1485 
1486 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1487 {
1488 	struct bpf_insn insn_buff[16], aux[2];
1489 	struct bpf_prog *clone, *tmp;
1490 	int insn_delta, insn_cnt;
1491 	struct bpf_insn *insn;
1492 	int i, rewritten;
1493 
1494 	if (!prog->blinding_requested || prog->blinded)
1495 		return prog;
1496 
1497 	clone = bpf_prog_clone_create(prog, GFP_USER);
1498 	if (!clone)
1499 		return ERR_PTR(-ENOMEM);
1500 
1501 	insn_cnt = clone->len;
1502 	insn = clone->insnsi;
1503 
1504 	for (i = 0; i < insn_cnt; i++, insn++) {
1505 		if (bpf_pseudo_func(insn)) {
1506 			/* ld_imm64 with an address of bpf subprog is not
1507 			 * a user controlled constant. Don't randomize it,
1508 			 * since it will conflict with jit_subprogs() logic.
1509 			 */
1510 			insn++;
1511 			i++;
1512 			continue;
1513 		}
1514 
1515 		/* We temporarily need to hold the original ld64 insn
1516 		 * so that we can still access the first part in the
1517 		 * second blinding run.
1518 		 */
1519 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1520 		    insn[1].code == 0)
1521 			memcpy(aux, insn, sizeof(aux));
1522 
1523 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1524 						clone->aux->verifier_zext);
1525 		if (!rewritten)
1526 			continue;
1527 
1528 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1529 		if (IS_ERR(tmp)) {
1530 			/* Patching may have repointed aux->prog during
1531 			 * realloc from the original one, so we need to
1532 			 * fix it up here on error.
1533 			 */
1534 			bpf_jit_prog_release_other(prog, clone);
1535 			return tmp;
1536 		}
1537 
1538 		clone = tmp;
1539 		insn_delta = rewritten - 1;
1540 
1541 		/* Instructions arrays must be updated using absolute xlated offsets */
1542 		adjust_insn_arrays(clone, prog->aux->subprog_start + i, rewritten);
1543 
1544 		/* Walk new program and skip insns we just inserted. */
1545 		insn = clone->insnsi + i + insn_delta;
1546 		insn_cnt += insn_delta;
1547 		i        += insn_delta;
1548 	}
1549 
1550 	clone->blinded = 1;
1551 	return clone;
1552 }
1553 #endif /* CONFIG_BPF_JIT */
1554 
1555 /* Base function for offset calculation. Needs to go into .text section,
1556  * therefore keeping it non-static as well; will also be used by JITs
1557  * anyway later on, so do not let the compiler omit it. This also needs
1558  * to go into kallsyms for correlation from e.g. bpftool, so naming
1559  * must not change.
1560  */
1561 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1562 {
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(__bpf_call_base);
1566 
1567 /* All UAPI available opcodes. */
1568 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1569 	/* 32 bit ALU operations. */		\
1570 	/*   Register based. */			\
1571 	INSN_3(ALU, ADD,  X),			\
1572 	INSN_3(ALU, SUB,  X),			\
1573 	INSN_3(ALU, AND,  X),			\
1574 	INSN_3(ALU, OR,   X),			\
1575 	INSN_3(ALU, LSH,  X),			\
1576 	INSN_3(ALU, RSH,  X),			\
1577 	INSN_3(ALU, XOR,  X),			\
1578 	INSN_3(ALU, MUL,  X),			\
1579 	INSN_3(ALU, MOV,  X),			\
1580 	INSN_3(ALU, ARSH, X),			\
1581 	INSN_3(ALU, DIV,  X),			\
1582 	INSN_3(ALU, MOD,  X),			\
1583 	INSN_2(ALU, NEG),			\
1584 	INSN_3(ALU, END, TO_BE),		\
1585 	INSN_3(ALU, END, TO_LE),		\
1586 	/*   Immediate based. */		\
1587 	INSN_3(ALU, ADD,  K),			\
1588 	INSN_3(ALU, SUB,  K),			\
1589 	INSN_3(ALU, AND,  K),			\
1590 	INSN_3(ALU, OR,   K),			\
1591 	INSN_3(ALU, LSH,  K),			\
1592 	INSN_3(ALU, RSH,  K),			\
1593 	INSN_3(ALU, XOR,  K),			\
1594 	INSN_3(ALU, MUL,  K),			\
1595 	INSN_3(ALU, MOV,  K),			\
1596 	INSN_3(ALU, ARSH, K),			\
1597 	INSN_3(ALU, DIV,  K),			\
1598 	INSN_3(ALU, MOD,  K),			\
1599 	/* 64 bit ALU operations. */		\
1600 	/*   Register based. */			\
1601 	INSN_3(ALU64, ADD,  X),			\
1602 	INSN_3(ALU64, SUB,  X),			\
1603 	INSN_3(ALU64, AND,  X),			\
1604 	INSN_3(ALU64, OR,   X),			\
1605 	INSN_3(ALU64, LSH,  X),			\
1606 	INSN_3(ALU64, RSH,  X),			\
1607 	INSN_3(ALU64, XOR,  X),			\
1608 	INSN_3(ALU64, MUL,  X),			\
1609 	INSN_3(ALU64, MOV,  X),			\
1610 	INSN_3(ALU64, ARSH, X),			\
1611 	INSN_3(ALU64, DIV,  X),			\
1612 	INSN_3(ALU64, MOD,  X),			\
1613 	INSN_2(ALU64, NEG),			\
1614 	INSN_3(ALU64, END, TO_LE),		\
1615 	/*   Immediate based. */		\
1616 	INSN_3(ALU64, ADD,  K),			\
1617 	INSN_3(ALU64, SUB,  K),			\
1618 	INSN_3(ALU64, AND,  K),			\
1619 	INSN_3(ALU64, OR,   K),			\
1620 	INSN_3(ALU64, LSH,  K),			\
1621 	INSN_3(ALU64, RSH,  K),			\
1622 	INSN_3(ALU64, XOR,  K),			\
1623 	INSN_3(ALU64, MUL,  K),			\
1624 	INSN_3(ALU64, MOV,  K),			\
1625 	INSN_3(ALU64, ARSH, K),			\
1626 	INSN_3(ALU64, DIV,  K),			\
1627 	INSN_3(ALU64, MOD,  K),			\
1628 	/* Call instruction. */			\
1629 	INSN_2(JMP, CALL),			\
1630 	/* Exit instruction. */			\
1631 	INSN_2(JMP, EXIT),			\
1632 	/* 32-bit Jump instructions. */		\
1633 	/*   Register based. */			\
1634 	INSN_3(JMP32, JEQ,  X),			\
1635 	INSN_3(JMP32, JNE,  X),			\
1636 	INSN_3(JMP32, JGT,  X),			\
1637 	INSN_3(JMP32, JLT,  X),			\
1638 	INSN_3(JMP32, JGE,  X),			\
1639 	INSN_3(JMP32, JLE,  X),			\
1640 	INSN_3(JMP32, JSGT, X),			\
1641 	INSN_3(JMP32, JSLT, X),			\
1642 	INSN_3(JMP32, JSGE, X),			\
1643 	INSN_3(JMP32, JSLE, X),			\
1644 	INSN_3(JMP32, JSET, X),			\
1645 	/*   Immediate based. */		\
1646 	INSN_3(JMP32, JEQ,  K),			\
1647 	INSN_3(JMP32, JNE,  K),			\
1648 	INSN_3(JMP32, JGT,  K),			\
1649 	INSN_3(JMP32, JLT,  K),			\
1650 	INSN_3(JMP32, JGE,  K),			\
1651 	INSN_3(JMP32, JLE,  K),			\
1652 	INSN_3(JMP32, JSGT, K),			\
1653 	INSN_3(JMP32, JSLT, K),			\
1654 	INSN_3(JMP32, JSGE, K),			\
1655 	INSN_3(JMP32, JSLE, K),			\
1656 	INSN_3(JMP32, JSET, K),			\
1657 	/* Jump instructions. */		\
1658 	/*   Register based. */			\
1659 	INSN_3(JMP, JEQ,  X),			\
1660 	INSN_3(JMP, JNE,  X),			\
1661 	INSN_3(JMP, JGT,  X),			\
1662 	INSN_3(JMP, JLT,  X),			\
1663 	INSN_3(JMP, JGE,  X),			\
1664 	INSN_3(JMP, JLE,  X),			\
1665 	INSN_3(JMP, JSGT, X),			\
1666 	INSN_3(JMP, JSLT, X),			\
1667 	INSN_3(JMP, JSGE, X),			\
1668 	INSN_3(JMP, JSLE, X),			\
1669 	INSN_3(JMP, JSET, X),			\
1670 	/*   Immediate based. */		\
1671 	INSN_3(JMP, JEQ,  K),			\
1672 	INSN_3(JMP, JNE,  K),			\
1673 	INSN_3(JMP, JGT,  K),			\
1674 	INSN_3(JMP, JLT,  K),			\
1675 	INSN_3(JMP, JGE,  K),			\
1676 	INSN_3(JMP, JLE,  K),			\
1677 	INSN_3(JMP, JSGT, K),			\
1678 	INSN_3(JMP, JSLT, K),			\
1679 	INSN_3(JMP, JSGE, K),			\
1680 	INSN_3(JMP, JSLE, K),			\
1681 	INSN_3(JMP, JSET, K),			\
1682 	INSN_2(JMP, JA),			\
1683 	INSN_2(JMP32, JA),			\
1684 	/* Atomic operations. */		\
1685 	INSN_3(STX, ATOMIC, B),			\
1686 	INSN_3(STX, ATOMIC, H),			\
1687 	INSN_3(STX, ATOMIC, W),			\
1688 	INSN_3(STX, ATOMIC, DW),		\
1689 	/* Store instructions. */		\
1690 	/*   Register based. */			\
1691 	INSN_3(STX, MEM,  B),			\
1692 	INSN_3(STX, MEM,  H),			\
1693 	INSN_3(STX, MEM,  W),			\
1694 	INSN_3(STX, MEM,  DW),			\
1695 	/*   Immediate based. */		\
1696 	INSN_3(ST, MEM, B),			\
1697 	INSN_3(ST, MEM, H),			\
1698 	INSN_3(ST, MEM, W),			\
1699 	INSN_3(ST, MEM, DW),			\
1700 	/* Load instructions. */		\
1701 	/*   Register based. */			\
1702 	INSN_3(LDX, MEM, B),			\
1703 	INSN_3(LDX, MEM, H),			\
1704 	INSN_3(LDX, MEM, W),			\
1705 	INSN_3(LDX, MEM, DW),			\
1706 	INSN_3(LDX, MEMSX, B),			\
1707 	INSN_3(LDX, MEMSX, H),			\
1708 	INSN_3(LDX, MEMSX, W),			\
1709 	/*   Immediate based. */		\
1710 	INSN_3(LD, IMM, DW)
1711 
1712 bool bpf_opcode_in_insntable(u8 code)
1713 {
1714 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1715 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1716 	static const bool public_insntable[256] = {
1717 		[0 ... 255] = false,
1718 		/* Now overwrite non-defaults ... */
1719 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1720 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1721 		[BPF_LD | BPF_ABS | BPF_B] = true,
1722 		[BPF_LD | BPF_ABS | BPF_H] = true,
1723 		[BPF_LD | BPF_ABS | BPF_W] = true,
1724 		[BPF_LD | BPF_IND | BPF_B] = true,
1725 		[BPF_LD | BPF_IND | BPF_H] = true,
1726 		[BPF_LD | BPF_IND | BPF_W] = true,
1727 		[BPF_JMP | BPF_JA | BPF_X] = true,
1728 		[BPF_JMP | BPF_JCOND] = true,
1729 	};
1730 #undef BPF_INSN_3_TBL
1731 #undef BPF_INSN_2_TBL
1732 	return public_insntable[code];
1733 }
1734 
1735 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1736 /**
1737  *	___bpf_prog_run - run eBPF program on a given context
1738  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1739  *	@insn: is the array of eBPF instructions
1740  *
1741  * Decode and execute eBPF instructions.
1742  *
1743  * Return: whatever value is in %BPF_R0 at program exit
1744  */
1745 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1746 {
1747 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1748 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1749 	static const void * const jumptable[256] __annotate_jump_table = {
1750 		[0 ... 255] = &&default_label,
1751 		/* Now overwrite non-defaults ... */
1752 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1753 		/* Non-UAPI available opcodes. */
1754 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1755 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1756 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1757 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1758 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1759 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1760 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1761 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1762 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1763 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1764 	};
1765 #undef BPF_INSN_3_LBL
1766 #undef BPF_INSN_2_LBL
1767 	u32 tail_call_cnt = 0;
1768 
1769 #define CONT	 ({ insn++; goto select_insn; })
1770 #define CONT_JMP ({ insn++; goto select_insn; })
1771 
1772 select_insn:
1773 	goto *jumptable[insn->code];
1774 
1775 	/* Explicitly mask the register-based shift amounts with 63 or 31
1776 	 * to avoid undefined behavior. Normally this won't affect the
1777 	 * generated code, for example, in case of native 64 bit archs such
1778 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1779 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1780 	 * the BPF shift operations to machine instructions which produce
1781 	 * implementation-defined results in such a case; the resulting
1782 	 * contents of the register may be arbitrary, but program behaviour
1783 	 * as a whole remains defined. In other words, in case of JIT backends,
1784 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1785 	 */
1786 	/* ALU (shifts) */
1787 #define SHT(OPCODE, OP)					\
1788 	ALU64_##OPCODE##_X:				\
1789 		DST = DST OP (SRC & 63);		\
1790 		CONT;					\
1791 	ALU_##OPCODE##_X:				\
1792 		DST = (u32) DST OP ((u32) SRC & 31);	\
1793 		CONT;					\
1794 	ALU64_##OPCODE##_K:				\
1795 		DST = DST OP IMM;			\
1796 		CONT;					\
1797 	ALU_##OPCODE##_K:				\
1798 		DST = (u32) DST OP (u32) IMM;		\
1799 		CONT;
1800 	/* ALU (rest) */
1801 #define ALU(OPCODE, OP)					\
1802 	ALU64_##OPCODE##_X:				\
1803 		DST = DST OP SRC;			\
1804 		CONT;					\
1805 	ALU_##OPCODE##_X:				\
1806 		DST = (u32) DST OP (u32) SRC;		\
1807 		CONT;					\
1808 	ALU64_##OPCODE##_K:				\
1809 		DST = DST OP IMM;			\
1810 		CONT;					\
1811 	ALU_##OPCODE##_K:				\
1812 		DST = (u32) DST OP (u32) IMM;		\
1813 		CONT;
1814 	ALU(ADD,  +)
1815 	ALU(SUB,  -)
1816 	ALU(AND,  &)
1817 	ALU(OR,   |)
1818 	ALU(XOR,  ^)
1819 	ALU(MUL,  *)
1820 	SHT(LSH, <<)
1821 	SHT(RSH, >>)
1822 #undef SHT
1823 #undef ALU
1824 	ALU_NEG:
1825 		DST = (u32) -DST;
1826 		CONT;
1827 	ALU64_NEG:
1828 		DST = -DST;
1829 		CONT;
1830 	ALU_MOV_X:
1831 		switch (OFF) {
1832 		case 0:
1833 			DST = (u32) SRC;
1834 			break;
1835 		case 8:
1836 			DST = (u32)(s8) SRC;
1837 			break;
1838 		case 16:
1839 			DST = (u32)(s16) SRC;
1840 			break;
1841 		}
1842 		CONT;
1843 	ALU_MOV_K:
1844 		DST = (u32) IMM;
1845 		CONT;
1846 	ALU64_MOV_X:
1847 		switch (OFF) {
1848 		case 0:
1849 			DST = SRC;
1850 			break;
1851 		case 8:
1852 			DST = (s8) SRC;
1853 			break;
1854 		case 16:
1855 			DST = (s16) SRC;
1856 			break;
1857 		case 32:
1858 			DST = (s32) SRC;
1859 			break;
1860 		}
1861 		CONT;
1862 	ALU64_MOV_K:
1863 		DST = IMM;
1864 		CONT;
1865 	LD_IMM_DW:
1866 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1867 		insn++;
1868 		CONT;
1869 	ALU_ARSH_X:
1870 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1871 		CONT;
1872 	ALU_ARSH_K:
1873 		DST = (u64) (u32) (((s32) DST) >> IMM);
1874 		CONT;
1875 	ALU64_ARSH_X:
1876 		(*(s64 *) &DST) >>= (SRC & 63);
1877 		CONT;
1878 	ALU64_ARSH_K:
1879 		(*(s64 *) &DST) >>= IMM;
1880 		CONT;
1881 	ALU64_MOD_X:
1882 		switch (OFF) {
1883 		case 0:
1884 			div64_u64_rem(DST, SRC, &AX);
1885 			DST = AX;
1886 			break;
1887 		case 1:
1888 			AX = div64_s64(DST, SRC);
1889 			DST = DST - AX * SRC;
1890 			break;
1891 		}
1892 		CONT;
1893 	ALU_MOD_X:
1894 		switch (OFF) {
1895 		case 0:
1896 			AX = (u32) DST;
1897 			DST = do_div(AX, (u32) SRC);
1898 			break;
1899 		case 1:
1900 			AX = abs((s32)DST);
1901 			AX = do_div(AX, abs((s32)SRC));
1902 			if ((s32)DST < 0)
1903 				DST = (u32)-AX;
1904 			else
1905 				DST = (u32)AX;
1906 			break;
1907 		}
1908 		CONT;
1909 	ALU64_MOD_K:
1910 		switch (OFF) {
1911 		case 0:
1912 			div64_u64_rem(DST, IMM, &AX);
1913 			DST = AX;
1914 			break;
1915 		case 1:
1916 			AX = div64_s64(DST, IMM);
1917 			DST = DST - AX * IMM;
1918 			break;
1919 		}
1920 		CONT;
1921 	ALU_MOD_K:
1922 		switch (OFF) {
1923 		case 0:
1924 			AX = (u32) DST;
1925 			DST = do_div(AX, (u32) IMM);
1926 			break;
1927 		case 1:
1928 			AX = abs((s32)DST);
1929 			AX = do_div(AX, abs((s32)IMM));
1930 			if ((s32)DST < 0)
1931 				DST = (u32)-AX;
1932 			else
1933 				DST = (u32)AX;
1934 			break;
1935 		}
1936 		CONT;
1937 	ALU64_DIV_X:
1938 		switch (OFF) {
1939 		case 0:
1940 			DST = div64_u64(DST, SRC);
1941 			break;
1942 		case 1:
1943 			DST = div64_s64(DST, SRC);
1944 			break;
1945 		}
1946 		CONT;
1947 	ALU_DIV_X:
1948 		switch (OFF) {
1949 		case 0:
1950 			AX = (u32) DST;
1951 			do_div(AX, (u32) SRC);
1952 			DST = (u32) AX;
1953 			break;
1954 		case 1:
1955 			AX = abs((s32)DST);
1956 			do_div(AX, abs((s32)SRC));
1957 			if (((s32)DST < 0) == ((s32)SRC < 0))
1958 				DST = (u32)AX;
1959 			else
1960 				DST = (u32)-AX;
1961 			break;
1962 		}
1963 		CONT;
1964 	ALU64_DIV_K:
1965 		switch (OFF) {
1966 		case 0:
1967 			DST = div64_u64(DST, IMM);
1968 			break;
1969 		case 1:
1970 			DST = div64_s64(DST, IMM);
1971 			break;
1972 		}
1973 		CONT;
1974 	ALU_DIV_K:
1975 		switch (OFF) {
1976 		case 0:
1977 			AX = (u32) DST;
1978 			do_div(AX, (u32) IMM);
1979 			DST = (u32) AX;
1980 			break;
1981 		case 1:
1982 			AX = abs((s32)DST);
1983 			do_div(AX, abs((s32)IMM));
1984 			if (((s32)DST < 0) == ((s32)IMM < 0))
1985 				DST = (u32)AX;
1986 			else
1987 				DST = (u32)-AX;
1988 			break;
1989 		}
1990 		CONT;
1991 	ALU_END_TO_BE:
1992 		switch (IMM) {
1993 		case 16:
1994 			DST = (__force u16) cpu_to_be16(DST);
1995 			break;
1996 		case 32:
1997 			DST = (__force u32) cpu_to_be32(DST);
1998 			break;
1999 		case 64:
2000 			DST = (__force u64) cpu_to_be64(DST);
2001 			break;
2002 		}
2003 		CONT;
2004 	ALU_END_TO_LE:
2005 		switch (IMM) {
2006 		case 16:
2007 			DST = (__force u16) cpu_to_le16(DST);
2008 			break;
2009 		case 32:
2010 			DST = (__force u32) cpu_to_le32(DST);
2011 			break;
2012 		case 64:
2013 			DST = (__force u64) cpu_to_le64(DST);
2014 			break;
2015 		}
2016 		CONT;
2017 	ALU64_END_TO_LE:
2018 		switch (IMM) {
2019 		case 16:
2020 			DST = (__force u16) __swab16(DST);
2021 			break;
2022 		case 32:
2023 			DST = (__force u32) __swab32(DST);
2024 			break;
2025 		case 64:
2026 			DST = (__force u64) __swab64(DST);
2027 			break;
2028 		}
2029 		CONT;
2030 
2031 	/* CALL */
2032 	JMP_CALL:
2033 		/* Function call scratches BPF_R1-BPF_R5 registers,
2034 		 * preserves BPF_R6-BPF_R9, and stores return value
2035 		 * into BPF_R0.
2036 		 */
2037 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2038 						       BPF_R4, BPF_R5);
2039 		CONT;
2040 
2041 	JMP_CALL_ARGS:
2042 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2043 							    BPF_R3, BPF_R4,
2044 							    BPF_R5,
2045 							    insn + insn->off + 1);
2046 		CONT;
2047 
2048 	JMP_TAIL_CALL: {
2049 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2050 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2051 		struct bpf_prog *prog;
2052 		u32 index = BPF_R3;
2053 
2054 		if (unlikely(index >= array->map.max_entries))
2055 			goto out;
2056 
2057 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2058 			goto out;
2059 
2060 		tail_call_cnt++;
2061 
2062 		prog = READ_ONCE(array->ptrs[index]);
2063 		if (!prog)
2064 			goto out;
2065 
2066 		/* ARG1 at this point is guaranteed to point to CTX from
2067 		 * the verifier side due to the fact that the tail call is
2068 		 * handled like a helper, that is, bpf_tail_call_proto,
2069 		 * where arg1_type is ARG_PTR_TO_CTX.
2070 		 */
2071 		insn = prog->insnsi;
2072 		goto select_insn;
2073 out:
2074 		CONT;
2075 	}
2076 	JMP_JA:
2077 		insn += insn->off;
2078 		CONT;
2079 	JMP32_JA:
2080 		insn += insn->imm;
2081 		CONT;
2082 	JMP_EXIT:
2083 		return BPF_R0;
2084 	/* JMP */
2085 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2086 	JMP_##OPCODE##_X:					\
2087 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2088 			insn += insn->off;			\
2089 			CONT_JMP;				\
2090 		}						\
2091 		CONT;						\
2092 	JMP32_##OPCODE##_X:					\
2093 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2094 			insn += insn->off;			\
2095 			CONT_JMP;				\
2096 		}						\
2097 		CONT;						\
2098 	JMP_##OPCODE##_K:					\
2099 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2100 			insn += insn->off;			\
2101 			CONT_JMP;				\
2102 		}						\
2103 		CONT;						\
2104 	JMP32_##OPCODE##_K:					\
2105 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2106 			insn += insn->off;			\
2107 			CONT_JMP;				\
2108 		}						\
2109 		CONT;
2110 	COND_JMP(u, JEQ, ==)
2111 	COND_JMP(u, JNE, !=)
2112 	COND_JMP(u, JGT, >)
2113 	COND_JMP(u, JLT, <)
2114 	COND_JMP(u, JGE, >=)
2115 	COND_JMP(u, JLE, <=)
2116 	COND_JMP(u, JSET, &)
2117 	COND_JMP(s, JSGT, >)
2118 	COND_JMP(s, JSLT, <)
2119 	COND_JMP(s, JSGE, >=)
2120 	COND_JMP(s, JSLE, <=)
2121 #undef COND_JMP
2122 	/* ST, STX and LDX*/
2123 	ST_NOSPEC:
2124 		/* Speculation barrier for mitigating Speculative Store Bypass,
2125 		 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2126 		 * rely on the firmware mitigation as controlled via the ssbd
2127 		 * kernel parameter. Whenever the mitigation is enabled, it
2128 		 * works for all of the kernel code with no need to provide any
2129 		 * additional instructions here. In case of x86, we use 'lfence'
2130 		 * insn for mitigation. We reuse preexisting logic from Spectre
2131 		 * v1 mitigation that happens to produce the required code on
2132 		 * x86 for v4 as well.
2133 		 */
2134 		barrier_nospec();
2135 		CONT;
2136 #define LDST(SIZEOP, SIZE)						\
2137 	STX_MEM_##SIZEOP:						\
2138 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2139 		CONT;							\
2140 	ST_MEM_##SIZEOP:						\
2141 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2142 		CONT;							\
2143 	LDX_MEM_##SIZEOP:						\
2144 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2145 		CONT;							\
2146 	LDX_PROBE_MEM_##SIZEOP:						\
2147 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2148 			      (const void *)(long) (SRC + insn->off));	\
2149 		DST = *((SIZE *)&DST);					\
2150 		CONT;
2151 
2152 	LDST(B,   u8)
2153 	LDST(H,  u16)
2154 	LDST(W,  u32)
2155 	LDST(DW, u64)
2156 #undef LDST
2157 
2158 #define LDSX(SIZEOP, SIZE)						\
2159 	LDX_MEMSX_##SIZEOP:						\
2160 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2161 		CONT;							\
2162 	LDX_PROBE_MEMSX_##SIZEOP:					\
2163 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2164 				      (const void *)(long) (SRC + insn->off));	\
2165 		DST = *((SIZE *)&DST);					\
2166 		CONT;
2167 
2168 	LDSX(B,   s8)
2169 	LDSX(H,  s16)
2170 	LDSX(W,  s32)
2171 #undef LDSX
2172 
2173 #define ATOMIC_ALU_OP(BOP, KOP)						\
2174 		case BOP:						\
2175 			if (BPF_SIZE(insn->code) == BPF_W)		\
2176 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2177 					     (DST + insn->off));	\
2178 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2179 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2180 					       (DST + insn->off));	\
2181 			else						\
2182 				goto default_label;			\
2183 			break;						\
2184 		case BOP | BPF_FETCH:					\
2185 			if (BPF_SIZE(insn->code) == BPF_W)		\
2186 				SRC = (u32) atomic_fetch_##KOP(		\
2187 					(u32) SRC,			\
2188 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2189 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2190 				SRC = (u64) atomic64_fetch_##KOP(	\
2191 					(u64) SRC,			\
2192 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2193 			else						\
2194 				goto default_label;			\
2195 			break;
2196 
2197 	STX_ATOMIC_DW:
2198 	STX_ATOMIC_W:
2199 	STX_ATOMIC_H:
2200 	STX_ATOMIC_B:
2201 		switch (IMM) {
2202 		/* Atomic read-modify-write instructions support only W and DW
2203 		 * size modifiers.
2204 		 */
2205 		ATOMIC_ALU_OP(BPF_ADD, add)
2206 		ATOMIC_ALU_OP(BPF_AND, and)
2207 		ATOMIC_ALU_OP(BPF_OR, or)
2208 		ATOMIC_ALU_OP(BPF_XOR, xor)
2209 #undef ATOMIC_ALU_OP
2210 
2211 		case BPF_XCHG:
2212 			if (BPF_SIZE(insn->code) == BPF_W)
2213 				SRC = (u32) atomic_xchg(
2214 					(atomic_t *)(unsigned long) (DST + insn->off),
2215 					(u32) SRC);
2216 			else if (BPF_SIZE(insn->code) == BPF_DW)
2217 				SRC = (u64) atomic64_xchg(
2218 					(atomic64_t *)(unsigned long) (DST + insn->off),
2219 					(u64) SRC);
2220 			else
2221 				goto default_label;
2222 			break;
2223 		case BPF_CMPXCHG:
2224 			if (BPF_SIZE(insn->code) == BPF_W)
2225 				BPF_R0 = (u32) atomic_cmpxchg(
2226 					(atomic_t *)(unsigned long) (DST + insn->off),
2227 					(u32) BPF_R0, (u32) SRC);
2228 			else if (BPF_SIZE(insn->code) == BPF_DW)
2229 				BPF_R0 = (u64) atomic64_cmpxchg(
2230 					(atomic64_t *)(unsigned long) (DST + insn->off),
2231 					(u64) BPF_R0, (u64) SRC);
2232 			else
2233 				goto default_label;
2234 			break;
2235 		/* Atomic load and store instructions support all size
2236 		 * modifiers.
2237 		 */
2238 		case BPF_LOAD_ACQ:
2239 			switch (BPF_SIZE(insn->code)) {
2240 #define LOAD_ACQUIRE(SIZEOP, SIZE)				\
2241 			case BPF_##SIZEOP:			\
2242 				DST = (SIZE)smp_load_acquire(	\
2243 					(SIZE *)(unsigned long)(SRC + insn->off));	\
2244 				break;
2245 			LOAD_ACQUIRE(B,   u8)
2246 			LOAD_ACQUIRE(H,  u16)
2247 			LOAD_ACQUIRE(W,  u32)
2248 #ifdef CONFIG_64BIT
2249 			LOAD_ACQUIRE(DW, u64)
2250 #endif
2251 #undef LOAD_ACQUIRE
2252 			default:
2253 				goto default_label;
2254 			}
2255 			break;
2256 		case BPF_STORE_REL:
2257 			switch (BPF_SIZE(insn->code)) {
2258 #define STORE_RELEASE(SIZEOP, SIZE)			\
2259 			case BPF_##SIZEOP:		\
2260 				smp_store_release(	\
2261 					(SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC);	\
2262 				break;
2263 			STORE_RELEASE(B,   u8)
2264 			STORE_RELEASE(H,  u16)
2265 			STORE_RELEASE(W,  u32)
2266 #ifdef CONFIG_64BIT
2267 			STORE_RELEASE(DW, u64)
2268 #endif
2269 #undef STORE_RELEASE
2270 			default:
2271 				goto default_label;
2272 			}
2273 			break;
2274 
2275 		default:
2276 			goto default_label;
2277 		}
2278 		CONT;
2279 
2280 	default_label:
2281 		/* If we ever reach this, we have a bug somewhere. Die hard here
2282 		 * instead of just returning 0; we could be somewhere in a subprog,
2283 		 * so execution could continue otherwise which we do /not/ want.
2284 		 *
2285 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2286 		 */
2287 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2288 			insn->code, insn->imm);
2289 		BUG_ON(1);
2290 		return 0;
2291 }
2292 
2293 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2294 #define DEFINE_BPF_PROG_RUN(stack_size) \
2295 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2296 { \
2297 	u64 stack[stack_size / sizeof(u64)]; \
2298 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2299 \
2300 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2301 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2302 	ARG1 = (u64) (unsigned long) ctx; \
2303 	return ___bpf_prog_run(regs, insn); \
2304 }
2305 
2306 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2307 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2308 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2309 				      const struct bpf_insn *insn) \
2310 { \
2311 	u64 stack[stack_size / sizeof(u64)]; \
2312 	u64 regs[MAX_BPF_EXT_REG]; \
2313 \
2314 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2315 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2316 	BPF_R1 = r1; \
2317 	BPF_R2 = r2; \
2318 	BPF_R3 = r3; \
2319 	BPF_R4 = r4; \
2320 	BPF_R5 = r5; \
2321 	return ___bpf_prog_run(regs, insn); \
2322 }
2323 
2324 #define EVAL1(FN, X) FN(X)
2325 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2326 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2327 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2328 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2329 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2330 
2331 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2332 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2333 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2334 
2335 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2336 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2337 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2338 
2339 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2340 
2341 static unsigned int (*interpreters[])(const void *ctx,
2342 				      const struct bpf_insn *insn) = {
2343 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2344 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2345 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2346 };
2347 #undef PROG_NAME_LIST
2348 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2349 static __maybe_unused
2350 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2351 			   const struct bpf_insn *insn) = {
2352 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2353 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2354 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2355 };
2356 #undef PROG_NAME_LIST
2357 
2358 #ifdef CONFIG_BPF_SYSCALL
2359 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2360 {
2361 	stack_depth = max_t(u32, stack_depth, 1);
2362 	insn->off = (s16) insn->imm;
2363 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2364 		__bpf_call_base_args;
2365 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2366 }
2367 #endif
2368 #endif
2369 
2370 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2371 					 const struct bpf_insn *insn)
2372 {
2373 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2374 	 * is not working properly, so warn about it!
2375 	 */
2376 	WARN_ON_ONCE(1);
2377 	return 0;
2378 }
2379 
2380 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2381 				      const struct bpf_prog *fp)
2382 {
2383 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2384 	struct bpf_prog_aux *aux = fp->aux;
2385 	enum bpf_cgroup_storage_type i;
2386 	bool ret = false;
2387 	u64 cookie;
2388 
2389 	if (fp->kprobe_override)
2390 		return ret;
2391 
2392 	spin_lock(&map->owner_lock);
2393 	/* There's no owner yet where we could check for compatibility. */
2394 	if (!map->owner) {
2395 		map->owner = bpf_map_owner_alloc(map);
2396 		if (!map->owner)
2397 			goto err;
2398 		map->owner->type  = prog_type;
2399 		map->owner->jited = fp->jited;
2400 		map->owner->xdp_has_frags = aux->xdp_has_frags;
2401 		map->owner->expected_attach_type = fp->expected_attach_type;
2402 		map->owner->attach_func_proto = aux->attach_func_proto;
2403 		for_each_cgroup_storage_type(i) {
2404 			map->owner->storage_cookie[i] =
2405 				aux->cgroup_storage[i] ?
2406 				aux->cgroup_storage[i]->cookie : 0;
2407 		}
2408 		ret = true;
2409 	} else {
2410 		ret = map->owner->type  == prog_type &&
2411 		      map->owner->jited == fp->jited &&
2412 		      map->owner->xdp_has_frags == aux->xdp_has_frags;
2413 		if (ret &&
2414 		    map->map_type == BPF_MAP_TYPE_PROG_ARRAY &&
2415 		    map->owner->expected_attach_type != fp->expected_attach_type)
2416 			ret = false;
2417 		for_each_cgroup_storage_type(i) {
2418 			if (!ret)
2419 				break;
2420 			cookie = aux->cgroup_storage[i] ?
2421 				 aux->cgroup_storage[i]->cookie : 0;
2422 			ret = map->owner->storage_cookie[i] == cookie ||
2423 			      !cookie;
2424 		}
2425 		if (ret &&
2426 		    map->owner->attach_func_proto != aux->attach_func_proto) {
2427 			switch (prog_type) {
2428 			case BPF_PROG_TYPE_TRACING:
2429 			case BPF_PROG_TYPE_LSM:
2430 			case BPF_PROG_TYPE_EXT:
2431 			case BPF_PROG_TYPE_STRUCT_OPS:
2432 				ret = false;
2433 				break;
2434 			default:
2435 				break;
2436 			}
2437 		}
2438 	}
2439 err:
2440 	spin_unlock(&map->owner_lock);
2441 	return ret;
2442 }
2443 
2444 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2445 {
2446 	/* XDP programs inserted into maps are not guaranteed to run on
2447 	 * a particular netdev (and can run outside driver context entirely
2448 	 * in the case of devmap and cpumap). Until device checks
2449 	 * are implemented, prohibit adding dev-bound programs to program maps.
2450 	 */
2451 	if (bpf_prog_is_dev_bound(fp->aux))
2452 		return false;
2453 
2454 	return __bpf_prog_map_compatible(map, fp);
2455 }
2456 
2457 static int bpf_check_tail_call(const struct bpf_prog *fp)
2458 {
2459 	struct bpf_prog_aux *aux = fp->aux;
2460 	int i, ret = 0;
2461 
2462 	mutex_lock(&aux->used_maps_mutex);
2463 	for (i = 0; i < aux->used_map_cnt; i++) {
2464 		struct bpf_map *map = aux->used_maps[i];
2465 
2466 		if (!map_type_contains_progs(map))
2467 			continue;
2468 
2469 		if (!__bpf_prog_map_compatible(map, fp)) {
2470 			ret = -EINVAL;
2471 			goto out;
2472 		}
2473 	}
2474 
2475 out:
2476 	mutex_unlock(&aux->used_maps_mutex);
2477 	return ret;
2478 }
2479 
2480 static bool bpf_prog_select_interpreter(struct bpf_prog *fp)
2481 {
2482 	bool select_interpreter = false;
2483 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2484 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2485 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2486 
2487 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2488 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2489 	 * check needed.
2490 	 */
2491 	if (idx < ARRAY_SIZE(interpreters)) {
2492 		fp->bpf_func = interpreters[idx];
2493 		select_interpreter = true;
2494 	} else {
2495 		fp->bpf_func = __bpf_prog_ret0_warn;
2496 	}
2497 #else
2498 	fp->bpf_func = __bpf_prog_ret0_warn;
2499 #endif
2500 	return select_interpreter;
2501 }
2502 
2503 /**
2504  *	bpf_prog_select_runtime - select exec runtime for BPF program
2505  *	@fp: bpf_prog populated with BPF program
2506  *	@err: pointer to error variable
2507  *
2508  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2509  * The BPF program will be executed via bpf_prog_run() function.
2510  *
2511  * Return: the &fp argument along with &err set to 0 for success or
2512  * a negative errno code on failure
2513  */
2514 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2515 {
2516 	/* In case of BPF to BPF calls, verifier did all the prep
2517 	 * work with regards to JITing, etc.
2518 	 */
2519 	bool jit_needed = false;
2520 
2521 	if (fp->bpf_func)
2522 		goto finalize;
2523 
2524 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2525 	    bpf_prog_has_kfunc_call(fp))
2526 		jit_needed = true;
2527 
2528 	if (!bpf_prog_select_interpreter(fp))
2529 		jit_needed = true;
2530 
2531 	/* eBPF JITs can rewrite the program in case constant
2532 	 * blinding is active. However, in case of error during
2533 	 * blinding, bpf_int_jit_compile() must always return a
2534 	 * valid program, which in this case would simply not
2535 	 * be JITed, but falls back to the interpreter.
2536 	 */
2537 	if (!bpf_prog_is_offloaded(fp->aux)) {
2538 		*err = bpf_prog_alloc_jited_linfo(fp);
2539 		if (*err)
2540 			return fp;
2541 
2542 		fp = bpf_int_jit_compile(fp);
2543 		bpf_prog_jit_attempt_done(fp);
2544 		if (!fp->jited && jit_needed) {
2545 			*err = -ENOTSUPP;
2546 			return fp;
2547 		}
2548 	} else {
2549 		*err = bpf_prog_offload_compile(fp);
2550 		if (*err)
2551 			return fp;
2552 	}
2553 
2554 finalize:
2555 	*err = bpf_prog_lock_ro(fp);
2556 	if (*err)
2557 		return fp;
2558 
2559 	/* The tail call compatibility check can only be done at
2560 	 * this late stage as we need to determine, if we deal
2561 	 * with JITed or non JITed program concatenations and not
2562 	 * all eBPF JITs might immediately support all features.
2563 	 */
2564 	*err = bpf_check_tail_call(fp);
2565 
2566 	return fp;
2567 }
2568 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2569 
2570 static unsigned int __bpf_prog_ret1(const void *ctx,
2571 				    const struct bpf_insn *insn)
2572 {
2573 	return 1;
2574 }
2575 
2576 static struct bpf_prog_dummy {
2577 	struct bpf_prog prog;
2578 } dummy_bpf_prog = {
2579 	.prog = {
2580 		.bpf_func = __bpf_prog_ret1,
2581 	},
2582 };
2583 
2584 struct bpf_empty_prog_array bpf_empty_prog_array = {
2585 	.null_prog = NULL,
2586 };
2587 EXPORT_SYMBOL(bpf_empty_prog_array);
2588 
2589 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2590 {
2591 	struct bpf_prog_array *p;
2592 
2593 	if (prog_cnt)
2594 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2595 	else
2596 		p = &bpf_empty_prog_array.hdr;
2597 
2598 	return p;
2599 }
2600 
2601 void bpf_prog_array_free(struct bpf_prog_array *progs)
2602 {
2603 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2604 		return;
2605 	kfree_rcu(progs, rcu);
2606 }
2607 
2608 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2609 {
2610 	struct bpf_prog_array *progs;
2611 
2612 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2613 	 * no need to call kfree_rcu(), just call kfree() directly.
2614 	 */
2615 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2616 	if (rcu_trace_implies_rcu_gp())
2617 		kfree(progs);
2618 	else
2619 		kfree_rcu(progs, rcu);
2620 }
2621 
2622 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2623 {
2624 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2625 		return;
2626 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2627 }
2628 
2629 int bpf_prog_array_length(struct bpf_prog_array *array)
2630 {
2631 	struct bpf_prog_array_item *item;
2632 	u32 cnt = 0;
2633 
2634 	for (item = array->items; item->prog; item++)
2635 		if (item->prog != &dummy_bpf_prog.prog)
2636 			cnt++;
2637 	return cnt;
2638 }
2639 
2640 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2641 {
2642 	struct bpf_prog_array_item *item;
2643 
2644 	for (item = array->items; item->prog; item++)
2645 		if (item->prog != &dummy_bpf_prog.prog)
2646 			return false;
2647 	return true;
2648 }
2649 
2650 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2651 				     u32 *prog_ids,
2652 				     u32 request_cnt)
2653 {
2654 	struct bpf_prog_array_item *item;
2655 	int i = 0;
2656 
2657 	for (item = array->items; item->prog; item++) {
2658 		if (item->prog == &dummy_bpf_prog.prog)
2659 			continue;
2660 		prog_ids[i] = item->prog->aux->id;
2661 		if (++i == request_cnt) {
2662 			item++;
2663 			break;
2664 		}
2665 	}
2666 
2667 	return !!(item->prog);
2668 }
2669 
2670 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2671 				__u32 __user *prog_ids, u32 cnt)
2672 {
2673 	unsigned long err = 0;
2674 	bool nospc;
2675 	u32 *ids;
2676 
2677 	/* users of this function are doing:
2678 	 * cnt = bpf_prog_array_length();
2679 	 * if (cnt > 0)
2680 	 *     bpf_prog_array_copy_to_user(..., cnt);
2681 	 * so below kcalloc doesn't need extra cnt > 0 check.
2682 	 */
2683 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2684 	if (!ids)
2685 		return -ENOMEM;
2686 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2687 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2688 	kfree(ids);
2689 	if (err)
2690 		return -EFAULT;
2691 	if (nospc)
2692 		return -ENOSPC;
2693 	return 0;
2694 }
2695 
2696 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2697 				struct bpf_prog *old_prog)
2698 {
2699 	struct bpf_prog_array_item *item;
2700 
2701 	for (item = array->items; item->prog; item++)
2702 		if (item->prog == old_prog) {
2703 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2704 			break;
2705 		}
2706 }
2707 
2708 /**
2709  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2710  *                                   index into the program array with
2711  *                                   a dummy no-op program.
2712  * @array: a bpf_prog_array
2713  * @index: the index of the program to replace
2714  *
2715  * Skips over dummy programs, by not counting them, when calculating
2716  * the position of the program to replace.
2717  *
2718  * Return:
2719  * * 0		- Success
2720  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2721  * * -ENOENT	- Index out of range
2722  */
2723 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2724 {
2725 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2726 }
2727 
2728 /**
2729  * bpf_prog_array_update_at() - Updates the program at the given index
2730  *                              into the program array.
2731  * @array: a bpf_prog_array
2732  * @index: the index of the program to update
2733  * @prog: the program to insert into the array
2734  *
2735  * Skips over dummy programs, by not counting them, when calculating
2736  * the position of the program to update.
2737  *
2738  * Return:
2739  * * 0		- Success
2740  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2741  * * -ENOENT	- Index out of range
2742  */
2743 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2744 			     struct bpf_prog *prog)
2745 {
2746 	struct bpf_prog_array_item *item;
2747 
2748 	if (unlikely(index < 0))
2749 		return -EINVAL;
2750 
2751 	for (item = array->items; item->prog; item++) {
2752 		if (item->prog == &dummy_bpf_prog.prog)
2753 			continue;
2754 		if (!index) {
2755 			WRITE_ONCE(item->prog, prog);
2756 			return 0;
2757 		}
2758 		index--;
2759 	}
2760 	return -ENOENT;
2761 }
2762 
2763 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2764 			struct bpf_prog *exclude_prog,
2765 			struct bpf_prog *include_prog,
2766 			u64 bpf_cookie,
2767 			struct bpf_prog_array **new_array)
2768 {
2769 	int new_prog_cnt, carry_prog_cnt = 0;
2770 	struct bpf_prog_array_item *existing, *new;
2771 	struct bpf_prog_array *array;
2772 	bool found_exclude = false;
2773 
2774 	/* Figure out how many existing progs we need to carry over to
2775 	 * the new array.
2776 	 */
2777 	if (old_array) {
2778 		existing = old_array->items;
2779 		for (; existing->prog; existing++) {
2780 			if (existing->prog == exclude_prog) {
2781 				found_exclude = true;
2782 				continue;
2783 			}
2784 			if (existing->prog != &dummy_bpf_prog.prog)
2785 				carry_prog_cnt++;
2786 			if (existing->prog == include_prog)
2787 				return -EEXIST;
2788 		}
2789 	}
2790 
2791 	if (exclude_prog && !found_exclude)
2792 		return -ENOENT;
2793 
2794 	/* How many progs (not NULL) will be in the new array? */
2795 	new_prog_cnt = carry_prog_cnt;
2796 	if (include_prog)
2797 		new_prog_cnt += 1;
2798 
2799 	/* Do we have any prog (not NULL) in the new array? */
2800 	if (!new_prog_cnt) {
2801 		*new_array = NULL;
2802 		return 0;
2803 	}
2804 
2805 	/* +1 as the end of prog_array is marked with NULL */
2806 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2807 	if (!array)
2808 		return -ENOMEM;
2809 	new = array->items;
2810 
2811 	/* Fill in the new prog array */
2812 	if (carry_prog_cnt) {
2813 		existing = old_array->items;
2814 		for (; existing->prog; existing++) {
2815 			if (existing->prog == exclude_prog ||
2816 			    existing->prog == &dummy_bpf_prog.prog)
2817 				continue;
2818 
2819 			new->prog = existing->prog;
2820 			new->bpf_cookie = existing->bpf_cookie;
2821 			new++;
2822 		}
2823 	}
2824 	if (include_prog) {
2825 		new->prog = include_prog;
2826 		new->bpf_cookie = bpf_cookie;
2827 		new++;
2828 	}
2829 	new->prog = NULL;
2830 	*new_array = array;
2831 	return 0;
2832 }
2833 
2834 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2835 			     u32 *prog_ids, u32 request_cnt,
2836 			     u32 *prog_cnt)
2837 {
2838 	u32 cnt = 0;
2839 
2840 	if (array)
2841 		cnt = bpf_prog_array_length(array);
2842 
2843 	*prog_cnt = cnt;
2844 
2845 	/* return early if user requested only program count or nothing to copy */
2846 	if (!request_cnt || !cnt)
2847 		return 0;
2848 
2849 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2850 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2851 								     : 0;
2852 }
2853 
2854 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2855 			  struct bpf_map **used_maps, u32 len)
2856 {
2857 	struct bpf_map *map;
2858 	bool sleepable;
2859 	u32 i;
2860 
2861 	sleepable = aux->prog->sleepable;
2862 	for (i = 0; i < len; i++) {
2863 		map = used_maps[i];
2864 		if (map->ops->map_poke_untrack)
2865 			map->ops->map_poke_untrack(map, aux);
2866 		if (sleepable)
2867 			atomic64_dec(&map->sleepable_refcnt);
2868 		bpf_map_put(map);
2869 	}
2870 }
2871 
2872 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2873 {
2874 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2875 	kfree(aux->used_maps);
2876 }
2877 
2878 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2879 {
2880 #ifdef CONFIG_BPF_SYSCALL
2881 	struct btf_mod_pair *btf_mod;
2882 	u32 i;
2883 
2884 	for (i = 0; i < len; i++) {
2885 		btf_mod = &used_btfs[i];
2886 		if (btf_mod->module)
2887 			module_put(btf_mod->module);
2888 		btf_put(btf_mod->btf);
2889 	}
2890 #endif
2891 }
2892 
2893 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2894 {
2895 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2896 	kfree(aux->used_btfs);
2897 }
2898 
2899 static void bpf_prog_free_deferred(struct work_struct *work)
2900 {
2901 	struct bpf_prog_aux *aux;
2902 	int i;
2903 
2904 	aux = container_of(work, struct bpf_prog_aux, work);
2905 #ifdef CONFIG_BPF_SYSCALL
2906 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2907 	bpf_prog_stream_free(aux->prog);
2908 #endif
2909 #ifdef CONFIG_CGROUP_BPF
2910 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2911 		bpf_cgroup_atype_put(aux->cgroup_atype);
2912 #endif
2913 	bpf_free_used_maps(aux);
2914 	bpf_free_used_btfs(aux);
2915 	if (bpf_prog_is_dev_bound(aux))
2916 		bpf_prog_dev_bound_destroy(aux->prog);
2917 #ifdef CONFIG_PERF_EVENTS
2918 	if (aux->prog->has_callchain_buf)
2919 		put_callchain_buffers();
2920 #endif
2921 	if (aux->dst_trampoline)
2922 		bpf_trampoline_put(aux->dst_trampoline);
2923 	for (i = 0; i < aux->real_func_cnt; i++) {
2924 		/* We can just unlink the subprog poke descriptor table as
2925 		 * it was originally linked to the main program and is also
2926 		 * released along with it.
2927 		 */
2928 		aux->func[i]->aux->poke_tab = NULL;
2929 		bpf_jit_free(aux->func[i]);
2930 	}
2931 	if (aux->real_func_cnt) {
2932 		kfree(aux->func);
2933 		bpf_prog_unlock_free(aux->prog);
2934 	} else {
2935 		bpf_jit_free(aux->prog);
2936 	}
2937 }
2938 
2939 void bpf_prog_free(struct bpf_prog *fp)
2940 {
2941 	struct bpf_prog_aux *aux = fp->aux;
2942 
2943 	if (aux->dst_prog)
2944 		bpf_prog_put(aux->dst_prog);
2945 	bpf_token_put(aux->token);
2946 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2947 	schedule_work(&aux->work);
2948 }
2949 EXPORT_SYMBOL_GPL(bpf_prog_free);
2950 
2951 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2952 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2953 
2954 void bpf_user_rnd_init_once(void)
2955 {
2956 	prandom_init_once(&bpf_user_rnd_state);
2957 }
2958 
2959 BPF_CALL_0(bpf_user_rnd_u32)
2960 {
2961 	/* Should someone ever have the rather unwise idea to use some
2962 	 * of the registers passed into this function, then note that
2963 	 * this function is called from native eBPF and classic-to-eBPF
2964 	 * transformations. Register assignments from both sides are
2965 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2966 	 */
2967 	struct rnd_state *state;
2968 	u32 res;
2969 
2970 	state = &get_cpu_var(bpf_user_rnd_state);
2971 	res = prandom_u32_state(state);
2972 	put_cpu_var(bpf_user_rnd_state);
2973 
2974 	return res;
2975 }
2976 
2977 BPF_CALL_0(bpf_get_raw_cpu_id)
2978 {
2979 	return raw_smp_processor_id();
2980 }
2981 
2982 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2983 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2984 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2985 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2986 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2987 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2988 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2989 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2990 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2991 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2992 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2993 
2994 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2995 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2996 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2997 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2998 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2999 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
3000 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
3001 
3002 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
3003 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
3004 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
3005 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
3006 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
3007 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
3008 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
3009 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
3010 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
3011 const struct bpf_func_proto bpf_set_retval_proto __weak;
3012 const struct bpf_func_proto bpf_get_retval_proto __weak;
3013 
3014 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
3015 {
3016 	return NULL;
3017 }
3018 
3019 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
3020 {
3021 	return NULL;
3022 }
3023 
3024 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
3025 {
3026 	return NULL;
3027 }
3028 
3029 u64 __weak
3030 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
3031 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
3032 {
3033 	return -ENOTSUPP;
3034 }
3035 EXPORT_SYMBOL_GPL(bpf_event_output);
3036 
3037 /* Always built-in helper functions. */
3038 const struct bpf_func_proto bpf_tail_call_proto = {
3039 	/* func is unused for tail_call, we set it to pass the
3040 	 * get_helper_proto check
3041 	 */
3042 	.func		= BPF_PTR_POISON,
3043 	.gpl_only	= false,
3044 	.ret_type	= RET_VOID,
3045 	.arg1_type	= ARG_PTR_TO_CTX,
3046 	.arg2_type	= ARG_CONST_MAP_PTR,
3047 	.arg3_type	= ARG_ANYTHING,
3048 };
3049 
3050 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3051  * It is encouraged to implement bpf_int_jit_compile() instead, so that
3052  * eBPF and implicitly also cBPF can get JITed!
3053  */
3054 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3055 {
3056 	return prog;
3057 }
3058 
3059 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3060  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3061  */
3062 void __weak bpf_jit_compile(struct bpf_prog *prog)
3063 {
3064 }
3065 
3066 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3067 {
3068 	return false;
3069 }
3070 
3071 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3072  * analysis code and wants explicit zero extension inserted by verifier.
3073  * Otherwise, return FALSE.
3074  *
3075  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3076  * you don't override this. JITs that don't want these extra insns can detect
3077  * them using insn_is_zext.
3078  */
3079 bool __weak bpf_jit_needs_zext(void)
3080 {
3081 	return false;
3082 }
3083 
3084 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3085  * all archs. The value returned must not change at runtime as there is
3086  * currently no support for reloading programs that were loaded without
3087  * mitigations.
3088  */
3089 bool __weak bpf_jit_bypass_spec_v1(void)
3090 {
3091 	return false;
3092 }
3093 
3094 bool __weak bpf_jit_bypass_spec_v4(void)
3095 {
3096 	return false;
3097 }
3098 
3099 /* Return true if the JIT inlines the call to the helper corresponding to
3100  * the imm.
3101  *
3102  * The verifier will not patch the insn->imm for the call to the helper if
3103  * this returns true.
3104  */
3105 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3106 {
3107 	return false;
3108 }
3109 
3110 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
3111 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3112 {
3113 	return false;
3114 }
3115 
3116 bool __weak bpf_jit_supports_percpu_insn(void)
3117 {
3118 	return false;
3119 }
3120 
3121 bool __weak bpf_jit_supports_kfunc_call(void)
3122 {
3123 	return false;
3124 }
3125 
3126 bool __weak bpf_jit_supports_far_kfunc_call(void)
3127 {
3128 	return false;
3129 }
3130 
3131 bool __weak bpf_jit_supports_arena(void)
3132 {
3133 	return false;
3134 }
3135 
3136 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3137 {
3138 	return false;
3139 }
3140 
3141 u64 __weak bpf_arch_uaddress_limit(void)
3142 {
3143 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3144 	return TASK_SIZE;
3145 #else
3146 	return 0;
3147 #endif
3148 }
3149 
3150 /* Return TRUE if the JIT backend satisfies the following two conditions:
3151  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3152  * 2) Under the specific arch, the implementation of xchg() is the same
3153  *    as atomic_xchg() on pointer-sized words.
3154  */
3155 bool __weak bpf_jit_supports_ptr_xchg(void)
3156 {
3157 	return false;
3158 }
3159 
3160 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3161  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3162  */
3163 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3164 			 int len)
3165 {
3166 	return -EFAULT;
3167 }
3168 
3169 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
3170 			      enum bpf_text_poke_type new_t, void *old_addr,
3171 			      void *new_addr)
3172 {
3173 	return -ENOTSUPP;
3174 }
3175 
3176 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3177 {
3178 	return ERR_PTR(-ENOTSUPP);
3179 }
3180 
3181 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3182 {
3183 	return -ENOTSUPP;
3184 }
3185 
3186 bool __weak bpf_jit_supports_exceptions(void)
3187 {
3188 	return false;
3189 }
3190 
3191 bool __weak bpf_jit_supports_private_stack(void)
3192 {
3193 	return false;
3194 }
3195 
3196 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3197 {
3198 }
3199 
3200 bool __weak bpf_jit_supports_timed_may_goto(void)
3201 {
3202 	return false;
3203 }
3204 
3205 u64 __weak arch_bpf_timed_may_goto(void)
3206 {
3207 	return 0;
3208 }
3209 
3210 static noinline void bpf_prog_report_may_goto_violation(void)
3211 {
3212 #ifdef CONFIG_BPF_SYSCALL
3213 	struct bpf_stream_stage ss;
3214 	struct bpf_prog *prog;
3215 
3216 	prog = bpf_prog_find_from_stack();
3217 	if (!prog)
3218 		return;
3219 	bpf_stream_stage(ss, prog, BPF_STDERR, ({
3220 		bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n");
3221 		bpf_stream_dump_stack(ss);
3222 	}));
3223 #endif
3224 }
3225 
3226 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3227 {
3228 	u64 time = ktime_get_mono_fast_ns();
3229 
3230 	/* Populate the timestamp for this stack frame, and refresh count. */
3231 	if (!p->timestamp) {
3232 		p->timestamp = time;
3233 		return BPF_MAX_TIMED_LOOPS;
3234 	}
3235 	/* Check if we've exhausted our time slice, and zero count. */
3236 	if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) {
3237 		bpf_prog_report_may_goto_violation();
3238 		return 0;
3239 	}
3240 	/* Refresh the count for the stack frame. */
3241 	return BPF_MAX_TIMED_LOOPS;
3242 }
3243 
3244 /* for configs without MMU or 32-bit */
3245 __weak const struct bpf_map_ops arena_map_ops;
3246 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3247 {
3248 	return 0;
3249 }
3250 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3251 {
3252 	return 0;
3253 }
3254 
3255 #ifdef CONFIG_BPF_SYSCALL
3256 static int __init bpf_global_ma_init(void)
3257 {
3258 	int ret;
3259 
3260 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3261 	bpf_global_ma_set = !ret;
3262 	return ret;
3263 }
3264 late_initcall(bpf_global_ma_init);
3265 #endif
3266 
3267 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3268 EXPORT_SYMBOL(bpf_stats_enabled_key);
3269 
3270 /* All definitions of tracepoints related to BPF. */
3271 #define CREATE_TRACE_POINTS
3272 #include <linux/bpf_trace.h>
3273 
3274 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3275 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3276 
3277 #ifdef CONFIG_BPF_SYSCALL
3278 
3279 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3280 			   const char **linep, int *nump)
3281 {
3282 	int idx = -1, insn_start, insn_end, len;
3283 	struct bpf_line_info *linfo;
3284 	void **jited_linfo;
3285 	struct btf *btf;
3286 	int nr_linfo;
3287 
3288 	btf = prog->aux->btf;
3289 	linfo = prog->aux->linfo;
3290 	jited_linfo = prog->aux->jited_linfo;
3291 
3292 	if (!btf || !linfo || !jited_linfo)
3293 		return -EINVAL;
3294 	len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3295 
3296 	linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3297 	jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3298 
3299 	insn_start = linfo[0].insn_off;
3300 	insn_end = insn_start + len;
3301 	nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx;
3302 
3303 	for (int i = 0; i < nr_linfo &&
3304 	     linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3305 		if (jited_linfo[i] >= (void *)ip)
3306 			break;
3307 		idx = i;
3308 	}
3309 
3310 	if (idx == -1)
3311 		return -ENOENT;
3312 
3313 	/* Get base component of the file path. */
3314 	*filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3315 	*filep = kbasename(*filep);
3316 	/* Obtain the source line, and strip whitespace in prefix. */
3317 	*linep = btf_name_by_offset(btf, linfo[idx].line_off);
3318 	while (isspace(**linep))
3319 		*linep += 1;
3320 	*nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3321 	return 0;
3322 }
3323 
3324 struct walk_stack_ctx {
3325 	struct bpf_prog *prog;
3326 };
3327 
3328 static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
3329 {
3330 	struct walk_stack_ctx *ctxp = cookie;
3331 	struct bpf_prog *prog;
3332 
3333 	/*
3334 	 * The RCU read lock is held to safely traverse the latch tree, but we
3335 	 * don't need its protection when accessing the prog, since it has an
3336 	 * active stack frame on the current stack trace, and won't disappear.
3337 	 */
3338 	rcu_read_lock();
3339 	prog = bpf_prog_ksym_find(ip);
3340 	rcu_read_unlock();
3341 	if (!prog)
3342 		return true;
3343 	/* Make sure we return the main prog if we found a subprog */
3344 	ctxp->prog = prog->aux->main_prog_aux->prog;
3345 	return false;
3346 }
3347 
3348 struct bpf_prog *bpf_prog_find_from_stack(void)
3349 {
3350 	struct walk_stack_ctx ctx = {};
3351 
3352 	arch_bpf_stack_walk(find_from_stack_cb, &ctx);
3353 	return ctx.prog;
3354 }
3355 
3356 #endif
3357