xref: /linux/kernel/bpf/cgroup.c (revision f6d08d9d8543c8ee494b307804b28e2750ffedb9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 /**
32  * cgroup_bpf_release() - put references of all bpf programs and
33  *                        release all cgroup bpf data
34  * @work: work structure embedded into the cgroup to modify
35  */
36 static void cgroup_bpf_release(struct work_struct *work)
37 {
38 	struct cgroup *cgrp = container_of(work, struct cgroup,
39 					   bpf.release_work);
40 	enum bpf_cgroup_storage_type stype;
41 	struct bpf_prog_array *old_array;
42 	unsigned int type;
43 
44 	mutex_lock(&cgroup_mutex);
45 
46 	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
47 		struct list_head *progs = &cgrp->bpf.progs[type];
48 		struct bpf_prog_list *pl, *tmp;
49 
50 		list_for_each_entry_safe(pl, tmp, progs, node) {
51 			list_del(&pl->node);
52 			bpf_prog_put(pl->prog);
53 			for_each_cgroup_storage_type(stype) {
54 				bpf_cgroup_storage_unlink(pl->storage[stype]);
55 				bpf_cgroup_storage_free(pl->storage[stype]);
56 			}
57 			kfree(pl);
58 			static_branch_dec(&cgroup_bpf_enabled_key);
59 		}
60 		old_array = rcu_dereference_protected(
61 				cgrp->bpf.effective[type],
62 				lockdep_is_held(&cgroup_mutex));
63 		bpf_prog_array_free(old_array);
64 	}
65 
66 	mutex_unlock(&cgroup_mutex);
67 
68 	percpu_ref_exit(&cgrp->bpf.refcnt);
69 	cgroup_put(cgrp);
70 }
71 
72 /**
73  * cgroup_bpf_release_fn() - callback used to schedule releasing
74  *                           of bpf cgroup data
75  * @ref: percpu ref counter structure
76  */
77 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
78 {
79 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
80 
81 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
82 	queue_work(system_wq, &cgrp->bpf.release_work);
83 }
84 
85 /* count number of elements in the list.
86  * it's slow but the list cannot be long
87  */
88 static u32 prog_list_length(struct list_head *head)
89 {
90 	struct bpf_prog_list *pl;
91 	u32 cnt = 0;
92 
93 	list_for_each_entry(pl, head, node) {
94 		if (!pl->prog)
95 			continue;
96 		cnt++;
97 	}
98 	return cnt;
99 }
100 
101 /* if parent has non-overridable prog attached,
102  * disallow attaching new programs to the descendent cgroup.
103  * if parent has overridable or multi-prog, allow attaching
104  */
105 static bool hierarchy_allows_attach(struct cgroup *cgrp,
106 				    enum bpf_attach_type type,
107 				    u32 new_flags)
108 {
109 	struct cgroup *p;
110 
111 	p = cgroup_parent(cgrp);
112 	if (!p)
113 		return true;
114 	do {
115 		u32 flags = p->bpf.flags[type];
116 		u32 cnt;
117 
118 		if (flags & BPF_F_ALLOW_MULTI)
119 			return true;
120 		cnt = prog_list_length(&p->bpf.progs[type]);
121 		WARN_ON_ONCE(cnt > 1);
122 		if (cnt == 1)
123 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
124 		p = cgroup_parent(p);
125 	} while (p);
126 	return true;
127 }
128 
129 /* compute a chain of effective programs for a given cgroup:
130  * start from the list of programs in this cgroup and add
131  * all parent programs.
132  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
133  * to programs in this cgroup
134  */
135 static int compute_effective_progs(struct cgroup *cgrp,
136 				   enum bpf_attach_type type,
137 				   struct bpf_prog_array **array)
138 {
139 	enum bpf_cgroup_storage_type stype;
140 	struct bpf_prog_array *progs;
141 	struct bpf_prog_list *pl;
142 	struct cgroup *p = cgrp;
143 	int cnt = 0;
144 
145 	/* count number of effective programs by walking parents */
146 	do {
147 		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
148 			cnt += prog_list_length(&p->bpf.progs[type]);
149 		p = cgroup_parent(p);
150 	} while (p);
151 
152 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
153 	if (!progs)
154 		return -ENOMEM;
155 
156 	/* populate the array with effective progs */
157 	cnt = 0;
158 	p = cgrp;
159 	do {
160 		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
161 			continue;
162 
163 		list_for_each_entry(pl, &p->bpf.progs[type], node) {
164 			if (!pl->prog)
165 				continue;
166 
167 			progs->items[cnt].prog = pl->prog;
168 			for_each_cgroup_storage_type(stype)
169 				progs->items[cnt].cgroup_storage[stype] =
170 					pl->storage[stype];
171 			cnt++;
172 		}
173 	} while ((p = cgroup_parent(p)));
174 
175 	*array = progs;
176 	return 0;
177 }
178 
179 static void activate_effective_progs(struct cgroup *cgrp,
180 				     enum bpf_attach_type type,
181 				     struct bpf_prog_array *old_array)
182 {
183 	rcu_swap_protected(cgrp->bpf.effective[type], old_array,
184 			   lockdep_is_held(&cgroup_mutex));
185 	/* free prog array after grace period, since __cgroup_bpf_run_*()
186 	 * might be still walking the array
187 	 */
188 	bpf_prog_array_free(old_array);
189 }
190 
191 /**
192  * cgroup_bpf_inherit() - inherit effective programs from parent
193  * @cgrp: the cgroup to modify
194  */
195 int cgroup_bpf_inherit(struct cgroup *cgrp)
196 {
197 /* has to use marco instead of const int, since compiler thinks
198  * that array below is variable length
199  */
200 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
201 	struct bpf_prog_array *arrays[NR] = {};
202 	int ret, i;
203 
204 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
205 			      GFP_KERNEL);
206 	if (ret)
207 		return ret;
208 
209 	for (i = 0; i < NR; i++)
210 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
211 
212 	for (i = 0; i < NR; i++)
213 		if (compute_effective_progs(cgrp, i, &arrays[i]))
214 			goto cleanup;
215 
216 	for (i = 0; i < NR; i++)
217 		activate_effective_progs(cgrp, i, arrays[i]);
218 
219 	return 0;
220 cleanup:
221 	for (i = 0; i < NR; i++)
222 		bpf_prog_array_free(arrays[i]);
223 
224 	percpu_ref_exit(&cgrp->bpf.refcnt);
225 
226 	return -ENOMEM;
227 }
228 
229 static int update_effective_progs(struct cgroup *cgrp,
230 				  enum bpf_attach_type type)
231 {
232 	struct cgroup_subsys_state *css;
233 	int err;
234 
235 	/* allocate and recompute effective prog arrays */
236 	css_for_each_descendant_pre(css, &cgrp->self) {
237 		struct cgroup *desc = container_of(css, struct cgroup, self);
238 
239 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
240 			continue;
241 
242 		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
243 		if (err)
244 			goto cleanup;
245 	}
246 
247 	/* all allocations were successful. Activate all prog arrays */
248 	css_for_each_descendant_pre(css, &cgrp->self) {
249 		struct cgroup *desc = container_of(css, struct cgroup, self);
250 
251 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
252 			if (unlikely(desc->bpf.inactive)) {
253 				bpf_prog_array_free(desc->bpf.inactive);
254 				desc->bpf.inactive = NULL;
255 			}
256 			continue;
257 		}
258 
259 		activate_effective_progs(desc, type, desc->bpf.inactive);
260 		desc->bpf.inactive = NULL;
261 	}
262 
263 	return 0;
264 
265 cleanup:
266 	/* oom while computing effective. Free all computed effective arrays
267 	 * since they were not activated
268 	 */
269 	css_for_each_descendant_pre(css, &cgrp->self) {
270 		struct cgroup *desc = container_of(css, struct cgroup, self);
271 
272 		bpf_prog_array_free(desc->bpf.inactive);
273 		desc->bpf.inactive = NULL;
274 	}
275 
276 	return err;
277 }
278 
279 #define BPF_CGROUP_MAX_PROGS 64
280 
281 /**
282  * __cgroup_bpf_attach() - Attach the program to a cgroup, and
283  *                         propagate the change to descendants
284  * @cgrp: The cgroup which descendants to traverse
285  * @prog: A program to attach
286  * @type: Type of attach operation
287  * @flags: Option flags
288  *
289  * Must be called with cgroup_mutex held.
290  */
291 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
292 			enum bpf_attach_type type, u32 flags)
293 {
294 	struct list_head *progs = &cgrp->bpf.progs[type];
295 	struct bpf_prog *old_prog = NULL;
296 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE],
297 		*old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL};
298 	enum bpf_cgroup_storage_type stype;
299 	struct bpf_prog_list *pl;
300 	bool pl_was_allocated;
301 	int err;
302 
303 	if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI))
304 		/* invalid combination */
305 		return -EINVAL;
306 
307 	if (!hierarchy_allows_attach(cgrp, type, flags))
308 		return -EPERM;
309 
310 	if (!list_empty(progs) && cgrp->bpf.flags[type] != flags)
311 		/* Disallow attaching non-overridable on top
312 		 * of existing overridable in this cgroup.
313 		 * Disallow attaching multi-prog if overridable or none
314 		 */
315 		return -EPERM;
316 
317 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
318 		return -E2BIG;
319 
320 	for_each_cgroup_storage_type(stype) {
321 		storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
322 		if (IS_ERR(storage[stype])) {
323 			storage[stype] = NULL;
324 			for_each_cgroup_storage_type(stype)
325 				bpf_cgroup_storage_free(storage[stype]);
326 			return -ENOMEM;
327 		}
328 	}
329 
330 	if (flags & BPF_F_ALLOW_MULTI) {
331 		list_for_each_entry(pl, progs, node) {
332 			if (pl->prog == prog) {
333 				/* disallow attaching the same prog twice */
334 				for_each_cgroup_storage_type(stype)
335 					bpf_cgroup_storage_free(storage[stype]);
336 				return -EINVAL;
337 			}
338 		}
339 
340 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
341 		if (!pl) {
342 			for_each_cgroup_storage_type(stype)
343 				bpf_cgroup_storage_free(storage[stype]);
344 			return -ENOMEM;
345 		}
346 
347 		pl_was_allocated = true;
348 		pl->prog = prog;
349 		for_each_cgroup_storage_type(stype)
350 			pl->storage[stype] = storage[stype];
351 		list_add_tail(&pl->node, progs);
352 	} else {
353 		if (list_empty(progs)) {
354 			pl = kmalloc(sizeof(*pl), GFP_KERNEL);
355 			if (!pl) {
356 				for_each_cgroup_storage_type(stype)
357 					bpf_cgroup_storage_free(storage[stype]);
358 				return -ENOMEM;
359 			}
360 			pl_was_allocated = true;
361 			list_add_tail(&pl->node, progs);
362 		} else {
363 			pl = list_first_entry(progs, typeof(*pl), node);
364 			old_prog = pl->prog;
365 			for_each_cgroup_storage_type(stype) {
366 				old_storage[stype] = pl->storage[stype];
367 				bpf_cgroup_storage_unlink(old_storage[stype]);
368 			}
369 			pl_was_allocated = false;
370 		}
371 		pl->prog = prog;
372 		for_each_cgroup_storage_type(stype)
373 			pl->storage[stype] = storage[stype];
374 	}
375 
376 	cgrp->bpf.flags[type] = flags;
377 
378 	err = update_effective_progs(cgrp, type);
379 	if (err)
380 		goto cleanup;
381 
382 	static_branch_inc(&cgroup_bpf_enabled_key);
383 	for_each_cgroup_storage_type(stype) {
384 		if (!old_storage[stype])
385 			continue;
386 		bpf_cgroup_storage_free(old_storage[stype]);
387 	}
388 	if (old_prog) {
389 		bpf_prog_put(old_prog);
390 		static_branch_dec(&cgroup_bpf_enabled_key);
391 	}
392 	for_each_cgroup_storage_type(stype)
393 		bpf_cgroup_storage_link(storage[stype], cgrp, type);
394 	return 0;
395 
396 cleanup:
397 	/* and cleanup the prog list */
398 	pl->prog = old_prog;
399 	for_each_cgroup_storage_type(stype) {
400 		bpf_cgroup_storage_free(pl->storage[stype]);
401 		pl->storage[stype] = old_storage[stype];
402 		bpf_cgroup_storage_link(old_storage[stype], cgrp, type);
403 	}
404 	if (pl_was_allocated) {
405 		list_del(&pl->node);
406 		kfree(pl);
407 	}
408 	return err;
409 }
410 
411 /**
412  * __cgroup_bpf_detach() - Detach the program from a cgroup, and
413  *                         propagate the change to descendants
414  * @cgrp: The cgroup which descendants to traverse
415  * @prog: A program to detach or NULL
416  * @type: Type of detach operation
417  *
418  * Must be called with cgroup_mutex held.
419  */
420 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
421 			enum bpf_attach_type type)
422 {
423 	struct list_head *progs = &cgrp->bpf.progs[type];
424 	enum bpf_cgroup_storage_type stype;
425 	u32 flags = cgrp->bpf.flags[type];
426 	struct bpf_prog *old_prog = NULL;
427 	struct bpf_prog_list *pl;
428 	int err;
429 
430 	if (flags & BPF_F_ALLOW_MULTI) {
431 		if (!prog)
432 			/* to detach MULTI prog the user has to specify valid FD
433 			 * of the program to be detached
434 			 */
435 			return -EINVAL;
436 	} else {
437 		if (list_empty(progs))
438 			/* report error when trying to detach and nothing is attached */
439 			return -ENOENT;
440 	}
441 
442 	if (flags & BPF_F_ALLOW_MULTI) {
443 		/* find the prog and detach it */
444 		list_for_each_entry(pl, progs, node) {
445 			if (pl->prog != prog)
446 				continue;
447 			old_prog = prog;
448 			/* mark it deleted, so it's ignored while
449 			 * recomputing effective
450 			 */
451 			pl->prog = NULL;
452 			break;
453 		}
454 		if (!old_prog)
455 			return -ENOENT;
456 	} else {
457 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
458 		 * allow detaching with invalid FD (prog==NULL)
459 		 */
460 		pl = list_first_entry(progs, typeof(*pl), node);
461 		old_prog = pl->prog;
462 		pl->prog = NULL;
463 	}
464 
465 	err = update_effective_progs(cgrp, type);
466 	if (err)
467 		goto cleanup;
468 
469 	/* now can actually delete it from this cgroup list */
470 	list_del(&pl->node);
471 	for_each_cgroup_storage_type(stype) {
472 		bpf_cgroup_storage_unlink(pl->storage[stype]);
473 		bpf_cgroup_storage_free(pl->storage[stype]);
474 	}
475 	kfree(pl);
476 	if (list_empty(progs))
477 		/* last program was detached, reset flags to zero */
478 		cgrp->bpf.flags[type] = 0;
479 
480 	bpf_prog_put(old_prog);
481 	static_branch_dec(&cgroup_bpf_enabled_key);
482 	return 0;
483 
484 cleanup:
485 	/* and restore back old_prog */
486 	pl->prog = old_prog;
487 	return err;
488 }
489 
490 /* Must be called with cgroup_mutex held to avoid races. */
491 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
492 		       union bpf_attr __user *uattr)
493 {
494 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
495 	enum bpf_attach_type type = attr->query.attach_type;
496 	struct list_head *progs = &cgrp->bpf.progs[type];
497 	u32 flags = cgrp->bpf.flags[type];
498 	struct bpf_prog_array *effective;
499 	int cnt, ret = 0, i;
500 
501 	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
502 					      lockdep_is_held(&cgroup_mutex));
503 
504 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
505 		cnt = bpf_prog_array_length(effective);
506 	else
507 		cnt = prog_list_length(progs);
508 
509 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
510 		return -EFAULT;
511 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
512 		return -EFAULT;
513 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
514 		/* return early if user requested only program count + flags */
515 		return 0;
516 	if (attr->query.prog_cnt < cnt) {
517 		cnt = attr->query.prog_cnt;
518 		ret = -ENOSPC;
519 	}
520 
521 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
522 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
523 	} else {
524 		struct bpf_prog_list *pl;
525 		u32 id;
526 
527 		i = 0;
528 		list_for_each_entry(pl, progs, node) {
529 			id = pl->prog->aux->id;
530 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
531 				return -EFAULT;
532 			if (++i == cnt)
533 				break;
534 		}
535 	}
536 	return ret;
537 }
538 
539 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
540 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
541 {
542 	struct cgroup *cgrp;
543 	int ret;
544 
545 	cgrp = cgroup_get_from_fd(attr->target_fd);
546 	if (IS_ERR(cgrp))
547 		return PTR_ERR(cgrp);
548 
549 	ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type,
550 				attr->attach_flags);
551 	cgroup_put(cgrp);
552 	return ret;
553 }
554 
555 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
556 {
557 	struct bpf_prog *prog;
558 	struct cgroup *cgrp;
559 	int ret;
560 
561 	cgrp = cgroup_get_from_fd(attr->target_fd);
562 	if (IS_ERR(cgrp))
563 		return PTR_ERR(cgrp);
564 
565 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
566 	if (IS_ERR(prog))
567 		prog = NULL;
568 
569 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0);
570 	if (prog)
571 		bpf_prog_put(prog);
572 
573 	cgroup_put(cgrp);
574 	return ret;
575 }
576 
577 int cgroup_bpf_prog_query(const union bpf_attr *attr,
578 			  union bpf_attr __user *uattr)
579 {
580 	struct cgroup *cgrp;
581 	int ret;
582 
583 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
584 	if (IS_ERR(cgrp))
585 		return PTR_ERR(cgrp);
586 
587 	ret = cgroup_bpf_query(cgrp, attr, uattr);
588 
589 	cgroup_put(cgrp);
590 	return ret;
591 }
592 
593 /**
594  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
595  * @sk: The socket sending or receiving traffic
596  * @skb: The skb that is being sent or received
597  * @type: The type of program to be exectuted
598  *
599  * If no socket is passed, or the socket is not of type INET or INET6,
600  * this function does nothing and returns 0.
601  *
602  * The program type passed in via @type must be suitable for network
603  * filtering. No further check is performed to assert that.
604  *
605  * For egress packets, this function can return:
606  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
607  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
608  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
609  *				  to call cwr
610  *   -EPERM			- drop packet
611  *
612  * For ingress packets, this function will return -EPERM if any
613  * attached program was found and if it returned != 1 during execution.
614  * Otherwise 0 is returned.
615  */
616 int __cgroup_bpf_run_filter_skb(struct sock *sk,
617 				struct sk_buff *skb,
618 				enum bpf_attach_type type)
619 {
620 	unsigned int offset = skb->data - skb_network_header(skb);
621 	struct sock *save_sk;
622 	void *saved_data_end;
623 	struct cgroup *cgrp;
624 	int ret;
625 
626 	if (!sk || !sk_fullsock(sk))
627 		return 0;
628 
629 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
630 		return 0;
631 
632 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
633 	save_sk = skb->sk;
634 	skb->sk = sk;
635 	__skb_push(skb, offset);
636 
637 	/* compute pointers for the bpf prog */
638 	bpf_compute_and_save_data_end(skb, &saved_data_end);
639 
640 	if (type == BPF_CGROUP_INET_EGRESS) {
641 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
642 			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
643 	} else {
644 		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
645 					  __bpf_prog_run_save_cb);
646 		ret = (ret == 1 ? 0 : -EPERM);
647 	}
648 	bpf_restore_data_end(skb, saved_data_end);
649 	__skb_pull(skb, offset);
650 	skb->sk = save_sk;
651 
652 	return ret;
653 }
654 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
655 
656 /**
657  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
658  * @sk: sock structure to manipulate
659  * @type: The type of program to be exectuted
660  *
661  * socket is passed is expected to be of type INET or INET6.
662  *
663  * The program type passed in via @type must be suitable for sock
664  * filtering. No further check is performed to assert that.
665  *
666  * This function will return %-EPERM if any if an attached program was found
667  * and if it returned != 1 during execution. In all other cases, 0 is returned.
668  */
669 int __cgroup_bpf_run_filter_sk(struct sock *sk,
670 			       enum bpf_attach_type type)
671 {
672 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
673 	int ret;
674 
675 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
676 	return ret == 1 ? 0 : -EPERM;
677 }
678 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
679 
680 /**
681  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
682  *                                       provided by user sockaddr
683  * @sk: sock struct that will use sockaddr
684  * @uaddr: sockaddr struct provided by user
685  * @type: The type of program to be exectuted
686  * @t_ctx: Pointer to attach type specific context
687  *
688  * socket is expected to be of type INET or INET6.
689  *
690  * This function will return %-EPERM if an attached program is found and
691  * returned value != 1 during execution. In all other cases, 0 is returned.
692  */
693 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
694 				      struct sockaddr *uaddr,
695 				      enum bpf_attach_type type,
696 				      void *t_ctx)
697 {
698 	struct bpf_sock_addr_kern ctx = {
699 		.sk = sk,
700 		.uaddr = uaddr,
701 		.t_ctx = t_ctx,
702 	};
703 	struct sockaddr_storage unspec;
704 	struct cgroup *cgrp;
705 	int ret;
706 
707 	/* Check socket family since not all sockets represent network
708 	 * endpoint (e.g. AF_UNIX).
709 	 */
710 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
711 		return 0;
712 
713 	if (!ctx.uaddr) {
714 		memset(&unspec, 0, sizeof(unspec));
715 		ctx.uaddr = (struct sockaddr *)&unspec;
716 	}
717 
718 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
719 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
720 
721 	return ret == 1 ? 0 : -EPERM;
722 }
723 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
724 
725 /**
726  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
727  * @sk: socket to get cgroup from
728  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
729  * sk with connection information (IP addresses, etc.) May not contain
730  * cgroup info if it is a req sock.
731  * @type: The type of program to be exectuted
732  *
733  * socket passed is expected to be of type INET or INET6.
734  *
735  * The program type passed in via @type must be suitable for sock_ops
736  * filtering. No further check is performed to assert that.
737  *
738  * This function will return %-EPERM if any if an attached program was found
739  * and if it returned != 1 during execution. In all other cases, 0 is returned.
740  */
741 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
742 				     struct bpf_sock_ops_kern *sock_ops,
743 				     enum bpf_attach_type type)
744 {
745 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
746 	int ret;
747 
748 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
749 				 BPF_PROG_RUN);
750 	return ret == 1 ? 0 : -EPERM;
751 }
752 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
753 
754 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
755 				      short access, enum bpf_attach_type type)
756 {
757 	struct cgroup *cgrp;
758 	struct bpf_cgroup_dev_ctx ctx = {
759 		.access_type = (access << 16) | dev_type,
760 		.major = major,
761 		.minor = minor,
762 	};
763 	int allow = 1;
764 
765 	rcu_read_lock();
766 	cgrp = task_dfl_cgroup(current);
767 	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
768 				   BPF_PROG_RUN);
769 	rcu_read_unlock();
770 
771 	return !allow;
772 }
773 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission);
774 
775 static const struct bpf_func_proto *
776 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
777 {
778 	switch (func_id) {
779 	case BPF_FUNC_map_lookup_elem:
780 		return &bpf_map_lookup_elem_proto;
781 	case BPF_FUNC_map_update_elem:
782 		return &bpf_map_update_elem_proto;
783 	case BPF_FUNC_map_delete_elem:
784 		return &bpf_map_delete_elem_proto;
785 	case BPF_FUNC_map_push_elem:
786 		return &bpf_map_push_elem_proto;
787 	case BPF_FUNC_map_pop_elem:
788 		return &bpf_map_pop_elem_proto;
789 	case BPF_FUNC_map_peek_elem:
790 		return &bpf_map_peek_elem_proto;
791 	case BPF_FUNC_get_current_uid_gid:
792 		return &bpf_get_current_uid_gid_proto;
793 	case BPF_FUNC_get_local_storage:
794 		return &bpf_get_local_storage_proto;
795 	case BPF_FUNC_get_current_cgroup_id:
796 		return &bpf_get_current_cgroup_id_proto;
797 	case BPF_FUNC_trace_printk:
798 		if (capable(CAP_SYS_ADMIN))
799 			return bpf_get_trace_printk_proto();
800 		/* fall through */
801 	default:
802 		return NULL;
803 	}
804 }
805 
806 static const struct bpf_func_proto *
807 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
808 {
809 	return cgroup_base_func_proto(func_id, prog);
810 }
811 
812 static bool cgroup_dev_is_valid_access(int off, int size,
813 				       enum bpf_access_type type,
814 				       const struct bpf_prog *prog,
815 				       struct bpf_insn_access_aux *info)
816 {
817 	const int size_default = sizeof(__u32);
818 
819 	if (type == BPF_WRITE)
820 		return false;
821 
822 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
823 		return false;
824 	/* The verifier guarantees that size > 0. */
825 	if (off % size != 0)
826 		return false;
827 
828 	switch (off) {
829 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
830 		bpf_ctx_record_field_size(info, size_default);
831 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
832 			return false;
833 		break;
834 	default:
835 		if (size != size_default)
836 			return false;
837 	}
838 
839 	return true;
840 }
841 
842 const struct bpf_prog_ops cg_dev_prog_ops = {
843 };
844 
845 const struct bpf_verifier_ops cg_dev_verifier_ops = {
846 	.get_func_proto		= cgroup_dev_func_proto,
847 	.is_valid_access	= cgroup_dev_is_valid_access,
848 };
849 
850 /**
851  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
852  *
853  * @head: sysctl table header
854  * @table: sysctl table
855  * @write: sysctl is being read (= 0) or written (= 1)
856  * @buf: pointer to buffer passed by user space
857  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
858  *	result is size of @new_buf if program set new value, initial value
859  *	otherwise
860  * @ppos: value-result argument: value is position at which read from or write
861  *	to sysctl is happening, result is new position if program overrode it,
862  *	initial value otherwise
863  * @new_buf: pointer to pointer to new buffer that will be allocated if program
864  *	overrides new value provided by user space on sysctl write
865  *	NOTE: it's caller responsibility to free *new_buf if it was set
866  * @type: type of program to be executed
867  *
868  * Program is run when sysctl is being accessed, either read or written, and
869  * can allow or deny such access.
870  *
871  * This function will return %-EPERM if an attached program is found and
872  * returned value != 1 during execution. In all other cases 0 is returned.
873  */
874 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
875 				   struct ctl_table *table, int write,
876 				   void __user *buf, size_t *pcount,
877 				   loff_t *ppos, void **new_buf,
878 				   enum bpf_attach_type type)
879 {
880 	struct bpf_sysctl_kern ctx = {
881 		.head = head,
882 		.table = table,
883 		.write = write,
884 		.ppos = ppos,
885 		.cur_val = NULL,
886 		.cur_len = PAGE_SIZE,
887 		.new_val = NULL,
888 		.new_len = 0,
889 		.new_updated = 0,
890 	};
891 	struct cgroup *cgrp;
892 	int ret;
893 
894 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
895 	if (ctx.cur_val) {
896 		mm_segment_t old_fs;
897 		loff_t pos = 0;
898 
899 		old_fs = get_fs();
900 		set_fs(KERNEL_DS);
901 		if (table->proc_handler(table, 0, (void __user *)ctx.cur_val,
902 					&ctx.cur_len, &pos)) {
903 			/* Let BPF program decide how to proceed. */
904 			ctx.cur_len = 0;
905 		}
906 		set_fs(old_fs);
907 	} else {
908 		/* Let BPF program decide how to proceed. */
909 		ctx.cur_len = 0;
910 	}
911 
912 	if (write && buf && *pcount) {
913 		/* BPF program should be able to override new value with a
914 		 * buffer bigger than provided by user.
915 		 */
916 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
917 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
918 		if (!ctx.new_val ||
919 		    copy_from_user(ctx.new_val, buf, ctx.new_len))
920 			/* Let BPF program decide how to proceed. */
921 			ctx.new_len = 0;
922 	}
923 
924 	rcu_read_lock();
925 	cgrp = task_dfl_cgroup(current);
926 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
927 	rcu_read_unlock();
928 
929 	kfree(ctx.cur_val);
930 
931 	if (ret == 1 && ctx.new_updated) {
932 		*new_buf = ctx.new_val;
933 		*pcount = ctx.new_len;
934 	} else {
935 		kfree(ctx.new_val);
936 	}
937 
938 	return ret == 1 ? 0 : -EPERM;
939 }
940 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl);
941 
942 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
943 					     enum bpf_attach_type attach_type)
944 {
945 	struct bpf_prog_array *prog_array;
946 	bool empty;
947 
948 	rcu_read_lock();
949 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
950 	empty = bpf_prog_array_is_empty(prog_array);
951 	rcu_read_unlock();
952 
953 	return empty;
954 }
955 
956 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
957 {
958 	if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0)
959 		return -EINVAL;
960 
961 	ctx->optval = kzalloc(max_optlen, GFP_USER);
962 	if (!ctx->optval)
963 		return -ENOMEM;
964 
965 	ctx->optval_end = ctx->optval + max_optlen;
966 	ctx->optlen = max_optlen;
967 
968 	return 0;
969 }
970 
971 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
972 {
973 	kfree(ctx->optval);
974 }
975 
976 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
977 				       int *optname, char __user *optval,
978 				       int *optlen, char **kernel_optval)
979 {
980 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
981 	struct bpf_sockopt_kern ctx = {
982 		.sk = sk,
983 		.level = *level,
984 		.optname = *optname,
985 	};
986 	int ret;
987 
988 	/* Opportunistic check to see whether we have any BPF program
989 	 * attached to the hook so we don't waste time allocating
990 	 * memory and locking the socket.
991 	 */
992 	if (!cgroup_bpf_enabled ||
993 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
994 		return 0;
995 
996 	ret = sockopt_alloc_buf(&ctx, *optlen);
997 	if (ret)
998 		return ret;
999 
1000 	if (copy_from_user(ctx.optval, optval, *optlen) != 0) {
1001 		ret = -EFAULT;
1002 		goto out;
1003 	}
1004 
1005 	lock_sock(sk);
1006 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1007 				 &ctx, BPF_PROG_RUN);
1008 	release_sock(sk);
1009 
1010 	if (!ret) {
1011 		ret = -EPERM;
1012 		goto out;
1013 	}
1014 
1015 	if (ctx.optlen == -1) {
1016 		/* optlen set to -1, bypass kernel */
1017 		ret = 1;
1018 	} else if (ctx.optlen > *optlen || ctx.optlen < -1) {
1019 		/* optlen is out of bounds */
1020 		ret = -EFAULT;
1021 	} else {
1022 		/* optlen within bounds, run kernel handler */
1023 		ret = 0;
1024 
1025 		/* export any potential modifications */
1026 		*level = ctx.level;
1027 		*optname = ctx.optname;
1028 		*optlen = ctx.optlen;
1029 		*kernel_optval = ctx.optval;
1030 	}
1031 
1032 out:
1033 	if (ret)
1034 		sockopt_free_buf(&ctx);
1035 	return ret;
1036 }
1037 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt);
1038 
1039 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1040 				       int optname, char __user *optval,
1041 				       int __user *optlen, int max_optlen,
1042 				       int retval)
1043 {
1044 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1045 	struct bpf_sockopt_kern ctx = {
1046 		.sk = sk,
1047 		.level = level,
1048 		.optname = optname,
1049 		.retval = retval,
1050 	};
1051 	int ret;
1052 
1053 	/* Opportunistic check to see whether we have any BPF program
1054 	 * attached to the hook so we don't waste time allocating
1055 	 * memory and locking the socket.
1056 	 */
1057 	if (!cgroup_bpf_enabled ||
1058 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1059 		return retval;
1060 
1061 	ret = sockopt_alloc_buf(&ctx, max_optlen);
1062 	if (ret)
1063 		return ret;
1064 
1065 	if (!retval) {
1066 		/* If kernel getsockopt finished successfully,
1067 		 * copy whatever was returned to the user back
1068 		 * into our temporary buffer. Set optlen to the
1069 		 * one that kernel returned as well to let
1070 		 * BPF programs inspect the value.
1071 		 */
1072 
1073 		if (get_user(ctx.optlen, optlen)) {
1074 			ret = -EFAULT;
1075 			goto out;
1076 		}
1077 
1078 		if (ctx.optlen > max_optlen)
1079 			ctx.optlen = max_optlen;
1080 
1081 		if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) {
1082 			ret = -EFAULT;
1083 			goto out;
1084 		}
1085 	}
1086 
1087 	lock_sock(sk);
1088 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1089 				 &ctx, BPF_PROG_RUN);
1090 	release_sock(sk);
1091 
1092 	if (!ret) {
1093 		ret = -EPERM;
1094 		goto out;
1095 	}
1096 
1097 	if (ctx.optlen > max_optlen) {
1098 		ret = -EFAULT;
1099 		goto out;
1100 	}
1101 
1102 	/* BPF programs only allowed to set retval to 0, not some
1103 	 * arbitrary value.
1104 	 */
1105 	if (ctx.retval != 0 && ctx.retval != retval) {
1106 		ret = -EFAULT;
1107 		goto out;
1108 	}
1109 
1110 	if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1111 	    put_user(ctx.optlen, optlen)) {
1112 		ret = -EFAULT;
1113 		goto out;
1114 	}
1115 
1116 	ret = ctx.retval;
1117 
1118 out:
1119 	sockopt_free_buf(&ctx);
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt);
1123 
1124 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1125 			      size_t *lenp)
1126 {
1127 	ssize_t tmp_ret = 0, ret;
1128 
1129 	if (dir->header.parent) {
1130 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1131 		if (tmp_ret < 0)
1132 			return tmp_ret;
1133 	}
1134 
1135 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1136 	if (ret < 0)
1137 		return ret;
1138 	*bufp += ret;
1139 	*lenp -= ret;
1140 	ret += tmp_ret;
1141 
1142 	/* Avoid leading slash. */
1143 	if (!ret)
1144 		return ret;
1145 
1146 	tmp_ret = strscpy(*bufp, "/", *lenp);
1147 	if (tmp_ret < 0)
1148 		return tmp_ret;
1149 	*bufp += tmp_ret;
1150 	*lenp -= tmp_ret;
1151 
1152 	return ret + tmp_ret;
1153 }
1154 
1155 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1156 	   size_t, buf_len, u64, flags)
1157 {
1158 	ssize_t tmp_ret = 0, ret;
1159 
1160 	if (!buf)
1161 		return -EINVAL;
1162 
1163 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1164 		if (!ctx->head)
1165 			return -EINVAL;
1166 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1167 		if (tmp_ret < 0)
1168 			return tmp_ret;
1169 	}
1170 
1171 	ret = strscpy(buf, ctx->table->procname, buf_len);
1172 
1173 	return ret < 0 ? ret : tmp_ret + ret;
1174 }
1175 
1176 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1177 	.func		= bpf_sysctl_get_name,
1178 	.gpl_only	= false,
1179 	.ret_type	= RET_INTEGER,
1180 	.arg1_type	= ARG_PTR_TO_CTX,
1181 	.arg2_type	= ARG_PTR_TO_MEM,
1182 	.arg3_type	= ARG_CONST_SIZE,
1183 	.arg4_type	= ARG_ANYTHING,
1184 };
1185 
1186 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1187 			     size_t src_len)
1188 {
1189 	if (!dst)
1190 		return -EINVAL;
1191 
1192 	if (!dst_len)
1193 		return -E2BIG;
1194 
1195 	if (!src || !src_len) {
1196 		memset(dst, 0, dst_len);
1197 		return -EINVAL;
1198 	}
1199 
1200 	memcpy(dst, src, min(dst_len, src_len));
1201 
1202 	if (dst_len > src_len) {
1203 		memset(dst + src_len, '\0', dst_len - src_len);
1204 		return src_len;
1205 	}
1206 
1207 	dst[dst_len - 1] = '\0';
1208 
1209 	return -E2BIG;
1210 }
1211 
1212 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1213 	   char *, buf, size_t, buf_len)
1214 {
1215 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1216 }
1217 
1218 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1219 	.func		= bpf_sysctl_get_current_value,
1220 	.gpl_only	= false,
1221 	.ret_type	= RET_INTEGER,
1222 	.arg1_type	= ARG_PTR_TO_CTX,
1223 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1224 	.arg3_type	= ARG_CONST_SIZE,
1225 };
1226 
1227 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1228 	   size_t, buf_len)
1229 {
1230 	if (!ctx->write) {
1231 		if (buf && buf_len)
1232 			memset(buf, '\0', buf_len);
1233 		return -EINVAL;
1234 	}
1235 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1236 }
1237 
1238 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1239 	.func		= bpf_sysctl_get_new_value,
1240 	.gpl_only	= false,
1241 	.ret_type	= RET_INTEGER,
1242 	.arg1_type	= ARG_PTR_TO_CTX,
1243 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1244 	.arg3_type	= ARG_CONST_SIZE,
1245 };
1246 
1247 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1248 	   const char *, buf, size_t, buf_len)
1249 {
1250 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1251 		return -EINVAL;
1252 
1253 	if (buf_len > PAGE_SIZE - 1)
1254 		return -E2BIG;
1255 
1256 	memcpy(ctx->new_val, buf, buf_len);
1257 	ctx->new_len = buf_len;
1258 	ctx->new_updated = 1;
1259 
1260 	return 0;
1261 }
1262 
1263 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1264 	.func		= bpf_sysctl_set_new_value,
1265 	.gpl_only	= false,
1266 	.ret_type	= RET_INTEGER,
1267 	.arg1_type	= ARG_PTR_TO_CTX,
1268 	.arg2_type	= ARG_PTR_TO_MEM,
1269 	.arg3_type	= ARG_CONST_SIZE,
1270 };
1271 
1272 static const struct bpf_func_proto *
1273 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1274 {
1275 	switch (func_id) {
1276 	case BPF_FUNC_strtol:
1277 		return &bpf_strtol_proto;
1278 	case BPF_FUNC_strtoul:
1279 		return &bpf_strtoul_proto;
1280 	case BPF_FUNC_sysctl_get_name:
1281 		return &bpf_sysctl_get_name_proto;
1282 	case BPF_FUNC_sysctl_get_current_value:
1283 		return &bpf_sysctl_get_current_value_proto;
1284 	case BPF_FUNC_sysctl_get_new_value:
1285 		return &bpf_sysctl_get_new_value_proto;
1286 	case BPF_FUNC_sysctl_set_new_value:
1287 		return &bpf_sysctl_set_new_value_proto;
1288 	default:
1289 		return cgroup_base_func_proto(func_id, prog);
1290 	}
1291 }
1292 
1293 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1294 				   const struct bpf_prog *prog,
1295 				   struct bpf_insn_access_aux *info)
1296 {
1297 	const int size_default = sizeof(__u32);
1298 
1299 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1300 		return false;
1301 
1302 	switch (off) {
1303 	case offsetof(struct bpf_sysctl, write):
1304 		if (type != BPF_READ)
1305 			return false;
1306 		bpf_ctx_record_field_size(info, size_default);
1307 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1308 	case offsetof(struct bpf_sysctl, file_pos):
1309 		if (type == BPF_READ) {
1310 			bpf_ctx_record_field_size(info, size_default);
1311 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1312 		} else {
1313 			return size == size_default;
1314 		}
1315 	default:
1316 		return false;
1317 	}
1318 }
1319 
1320 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1321 				     const struct bpf_insn *si,
1322 				     struct bpf_insn *insn_buf,
1323 				     struct bpf_prog *prog, u32 *target_size)
1324 {
1325 	struct bpf_insn *insn = insn_buf;
1326 
1327 	switch (si->off) {
1328 	case offsetof(struct bpf_sysctl, write):
1329 		*insn++ = BPF_LDX_MEM(
1330 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1331 			bpf_target_off(struct bpf_sysctl_kern, write,
1332 				       FIELD_SIZEOF(struct bpf_sysctl_kern,
1333 						    write),
1334 				       target_size));
1335 		break;
1336 	case offsetof(struct bpf_sysctl, file_pos):
1337 		/* ppos is a pointer so it should be accessed via indirect
1338 		 * loads and stores. Also for stores additional temporary
1339 		 * register is used since neither src_reg nor dst_reg can be
1340 		 * overridden.
1341 		 */
1342 		if (type == BPF_WRITE) {
1343 			int treg = BPF_REG_9;
1344 
1345 			if (si->src_reg == treg || si->dst_reg == treg)
1346 				--treg;
1347 			if (si->src_reg == treg || si->dst_reg == treg)
1348 				--treg;
1349 			*insn++ = BPF_STX_MEM(
1350 				BPF_DW, si->dst_reg, treg,
1351 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1352 			*insn++ = BPF_LDX_MEM(
1353 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1354 				treg, si->dst_reg,
1355 				offsetof(struct bpf_sysctl_kern, ppos));
1356 			*insn++ = BPF_STX_MEM(
1357 				BPF_SIZEOF(u32), treg, si->src_reg, 0);
1358 			*insn++ = BPF_LDX_MEM(
1359 				BPF_DW, treg, si->dst_reg,
1360 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1361 		} else {
1362 			*insn++ = BPF_LDX_MEM(
1363 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1364 				si->dst_reg, si->src_reg,
1365 				offsetof(struct bpf_sysctl_kern, ppos));
1366 			*insn++ = BPF_LDX_MEM(
1367 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 0);
1368 		}
1369 		*target_size = sizeof(u32);
1370 		break;
1371 	}
1372 
1373 	return insn - insn_buf;
1374 }
1375 
1376 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1377 	.get_func_proto		= sysctl_func_proto,
1378 	.is_valid_access	= sysctl_is_valid_access,
1379 	.convert_ctx_access	= sysctl_convert_ctx_access,
1380 };
1381 
1382 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1383 };
1384 
1385 static const struct bpf_func_proto *
1386 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1387 {
1388 	switch (func_id) {
1389 	case BPF_FUNC_sk_storage_get:
1390 		return &bpf_sk_storage_get_proto;
1391 	case BPF_FUNC_sk_storage_delete:
1392 		return &bpf_sk_storage_delete_proto;
1393 #ifdef CONFIG_INET
1394 	case BPF_FUNC_tcp_sock:
1395 		return &bpf_tcp_sock_proto;
1396 #endif
1397 	default:
1398 		return cgroup_base_func_proto(func_id, prog);
1399 	}
1400 }
1401 
1402 static bool cg_sockopt_is_valid_access(int off, int size,
1403 				       enum bpf_access_type type,
1404 				       const struct bpf_prog *prog,
1405 				       struct bpf_insn_access_aux *info)
1406 {
1407 	const int size_default = sizeof(__u32);
1408 
1409 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1410 		return false;
1411 
1412 	if (off % size != 0)
1413 		return false;
1414 
1415 	if (type == BPF_WRITE) {
1416 		switch (off) {
1417 		case offsetof(struct bpf_sockopt, retval):
1418 			if (size != size_default)
1419 				return false;
1420 			return prog->expected_attach_type ==
1421 				BPF_CGROUP_GETSOCKOPT;
1422 		case offsetof(struct bpf_sockopt, optname):
1423 			/* fallthrough */
1424 		case offsetof(struct bpf_sockopt, level):
1425 			if (size != size_default)
1426 				return false;
1427 			return prog->expected_attach_type ==
1428 				BPF_CGROUP_SETSOCKOPT;
1429 		case offsetof(struct bpf_sockopt, optlen):
1430 			return size == size_default;
1431 		default:
1432 			return false;
1433 		}
1434 	}
1435 
1436 	switch (off) {
1437 	case offsetof(struct bpf_sockopt, sk):
1438 		if (size != sizeof(__u64))
1439 			return false;
1440 		info->reg_type = PTR_TO_SOCKET;
1441 		break;
1442 	case offsetof(struct bpf_sockopt, optval):
1443 		if (size != sizeof(__u64))
1444 			return false;
1445 		info->reg_type = PTR_TO_PACKET;
1446 		break;
1447 	case offsetof(struct bpf_sockopt, optval_end):
1448 		if (size != sizeof(__u64))
1449 			return false;
1450 		info->reg_type = PTR_TO_PACKET_END;
1451 		break;
1452 	case offsetof(struct bpf_sockopt, retval):
1453 		if (size != size_default)
1454 			return false;
1455 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1456 	default:
1457 		if (size != size_default)
1458 			return false;
1459 		break;
1460 	}
1461 	return true;
1462 }
1463 
1464 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1465 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1466 	  si->dst_reg, si->src_reg,					\
1467 	  offsetof(struct bpf_sockopt_kern, F))
1468 
1469 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1470 					 const struct bpf_insn *si,
1471 					 struct bpf_insn *insn_buf,
1472 					 struct bpf_prog *prog,
1473 					 u32 *target_size)
1474 {
1475 	struct bpf_insn *insn = insn_buf;
1476 
1477 	switch (si->off) {
1478 	case offsetof(struct bpf_sockopt, sk):
1479 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1480 		break;
1481 	case offsetof(struct bpf_sockopt, level):
1482 		if (type == BPF_WRITE)
1483 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1484 		else
1485 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1486 		break;
1487 	case offsetof(struct bpf_sockopt, optname):
1488 		if (type == BPF_WRITE)
1489 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1490 		else
1491 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1492 		break;
1493 	case offsetof(struct bpf_sockopt, optlen):
1494 		if (type == BPF_WRITE)
1495 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1496 		else
1497 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1498 		break;
1499 	case offsetof(struct bpf_sockopt, retval):
1500 		if (type == BPF_WRITE)
1501 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1502 		else
1503 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1504 		break;
1505 	case offsetof(struct bpf_sockopt, optval):
1506 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1507 		break;
1508 	case offsetof(struct bpf_sockopt, optval_end):
1509 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1510 		break;
1511 	}
1512 
1513 	return insn - insn_buf;
1514 }
1515 
1516 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1517 				   bool direct_write,
1518 				   const struct bpf_prog *prog)
1519 {
1520 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1521 	 */
1522 	return 0;
1523 }
1524 
1525 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1526 	.get_func_proto		= cg_sockopt_func_proto,
1527 	.is_valid_access	= cg_sockopt_is_valid_access,
1528 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1529 	.gen_prologue		= cg_sockopt_get_prologue,
1530 };
1531 
1532 const struct bpf_prog_ops cg_sockopt_prog_ops = {
1533 };
1534