1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <net/sock.h> 18 #include <net/bpf_sk_storage.h> 19 20 #include "../cgroup/cgroup-internal.h" 21 22 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 23 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 24 25 /* __always_inline is necessary to prevent indirect call through run_prog 26 * function pointer. 27 */ 28 static __always_inline int 29 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 30 enum cgroup_bpf_attach_type atype, 31 const void *ctx, bpf_prog_run_fn run_prog, 32 int retval, u32 *ret_flags) 33 { 34 const struct bpf_prog_array_item *item; 35 const struct bpf_prog *prog; 36 const struct bpf_prog_array *array; 37 struct bpf_run_ctx *old_run_ctx; 38 struct bpf_cg_run_ctx run_ctx; 39 u32 func_ret; 40 41 run_ctx.retval = retval; 42 migrate_disable(); 43 rcu_read_lock(); 44 array = rcu_dereference(cgrp->effective[atype]); 45 item = &array->items[0]; 46 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 47 while ((prog = READ_ONCE(item->prog))) { 48 run_ctx.prog_item = item; 49 func_ret = run_prog(prog, ctx); 50 if (ret_flags) { 51 *(ret_flags) |= (func_ret >> 1); 52 func_ret &= 1; 53 } 54 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 55 run_ctx.retval = -EPERM; 56 item++; 57 } 58 bpf_reset_run_ctx(old_run_ctx); 59 rcu_read_unlock(); 60 migrate_enable(); 61 return run_ctx.retval; 62 } 63 64 void cgroup_bpf_offline(struct cgroup *cgrp) 65 { 66 cgroup_get(cgrp); 67 percpu_ref_kill(&cgrp->bpf.refcnt); 68 } 69 70 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 71 { 72 enum bpf_cgroup_storage_type stype; 73 74 for_each_cgroup_storage_type(stype) 75 bpf_cgroup_storage_free(storages[stype]); 76 } 77 78 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 79 struct bpf_cgroup_storage *new_storages[], 80 enum bpf_attach_type type, 81 struct bpf_prog *prog, 82 struct cgroup *cgrp) 83 { 84 enum bpf_cgroup_storage_type stype; 85 struct bpf_cgroup_storage_key key; 86 struct bpf_map *map; 87 88 key.cgroup_inode_id = cgroup_id(cgrp); 89 key.attach_type = type; 90 91 for_each_cgroup_storage_type(stype) { 92 map = prog->aux->cgroup_storage[stype]; 93 if (!map) 94 continue; 95 96 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 97 if (storages[stype]) 98 continue; 99 100 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 101 if (IS_ERR(storages[stype])) { 102 bpf_cgroup_storages_free(new_storages); 103 return -ENOMEM; 104 } 105 106 new_storages[stype] = storages[stype]; 107 } 108 109 return 0; 110 } 111 112 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 113 struct bpf_cgroup_storage *src[]) 114 { 115 enum bpf_cgroup_storage_type stype; 116 117 for_each_cgroup_storage_type(stype) 118 dst[stype] = src[stype]; 119 } 120 121 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 122 struct cgroup *cgrp, 123 enum bpf_attach_type attach_type) 124 { 125 enum bpf_cgroup_storage_type stype; 126 127 for_each_cgroup_storage_type(stype) 128 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 129 } 130 131 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 132 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 133 * doesn't free link memory, which will eventually be done by bpf_link's 134 * release() callback, when its last FD is closed. 135 */ 136 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 137 { 138 cgroup_put(link->cgroup); 139 link->cgroup = NULL; 140 } 141 142 /** 143 * cgroup_bpf_release() - put references of all bpf programs and 144 * release all cgroup bpf data 145 * @work: work structure embedded into the cgroup to modify 146 */ 147 static void cgroup_bpf_release(struct work_struct *work) 148 { 149 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 150 bpf.release_work); 151 struct bpf_prog_array *old_array; 152 struct list_head *storages = &cgrp->bpf.storages; 153 struct bpf_cgroup_storage *storage, *stmp; 154 155 unsigned int atype; 156 157 mutex_lock(&cgroup_mutex); 158 159 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 160 struct list_head *progs = &cgrp->bpf.progs[atype]; 161 struct bpf_prog_list *pl, *pltmp; 162 163 list_for_each_entry_safe(pl, pltmp, progs, node) { 164 list_del(&pl->node); 165 if (pl->prog) 166 bpf_prog_put(pl->prog); 167 if (pl->link) 168 bpf_cgroup_link_auto_detach(pl->link); 169 kfree(pl); 170 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 171 } 172 old_array = rcu_dereference_protected( 173 cgrp->bpf.effective[atype], 174 lockdep_is_held(&cgroup_mutex)); 175 bpf_prog_array_free(old_array); 176 } 177 178 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 179 bpf_cgroup_storage_unlink(storage); 180 bpf_cgroup_storage_free(storage); 181 } 182 183 mutex_unlock(&cgroup_mutex); 184 185 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 186 cgroup_bpf_put(p); 187 188 percpu_ref_exit(&cgrp->bpf.refcnt); 189 cgroup_put(cgrp); 190 } 191 192 /** 193 * cgroup_bpf_release_fn() - callback used to schedule releasing 194 * of bpf cgroup data 195 * @ref: percpu ref counter structure 196 */ 197 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 198 { 199 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 200 201 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 202 queue_work(system_wq, &cgrp->bpf.release_work); 203 } 204 205 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 206 * link or direct prog. 207 */ 208 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 209 { 210 if (pl->prog) 211 return pl->prog; 212 if (pl->link) 213 return pl->link->link.prog; 214 return NULL; 215 } 216 217 /* count number of elements in the list. 218 * it's slow but the list cannot be long 219 */ 220 static u32 prog_list_length(struct list_head *head) 221 { 222 struct bpf_prog_list *pl; 223 u32 cnt = 0; 224 225 list_for_each_entry(pl, head, node) { 226 if (!prog_list_prog(pl)) 227 continue; 228 cnt++; 229 } 230 return cnt; 231 } 232 233 /* if parent has non-overridable prog attached, 234 * disallow attaching new programs to the descendent cgroup. 235 * if parent has overridable or multi-prog, allow attaching 236 */ 237 static bool hierarchy_allows_attach(struct cgroup *cgrp, 238 enum cgroup_bpf_attach_type atype) 239 { 240 struct cgroup *p; 241 242 p = cgroup_parent(cgrp); 243 if (!p) 244 return true; 245 do { 246 u32 flags = p->bpf.flags[atype]; 247 u32 cnt; 248 249 if (flags & BPF_F_ALLOW_MULTI) 250 return true; 251 cnt = prog_list_length(&p->bpf.progs[atype]); 252 WARN_ON_ONCE(cnt > 1); 253 if (cnt == 1) 254 return !!(flags & BPF_F_ALLOW_OVERRIDE); 255 p = cgroup_parent(p); 256 } while (p); 257 return true; 258 } 259 260 /* compute a chain of effective programs for a given cgroup: 261 * start from the list of programs in this cgroup and add 262 * all parent programs. 263 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 264 * to programs in this cgroup 265 */ 266 static int compute_effective_progs(struct cgroup *cgrp, 267 enum cgroup_bpf_attach_type atype, 268 struct bpf_prog_array **array) 269 { 270 struct bpf_prog_array_item *item; 271 struct bpf_prog_array *progs; 272 struct bpf_prog_list *pl; 273 struct cgroup *p = cgrp; 274 int cnt = 0; 275 276 /* count number of effective programs by walking parents */ 277 do { 278 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 279 cnt += prog_list_length(&p->bpf.progs[atype]); 280 p = cgroup_parent(p); 281 } while (p); 282 283 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 284 if (!progs) 285 return -ENOMEM; 286 287 /* populate the array with effective progs */ 288 cnt = 0; 289 p = cgrp; 290 do { 291 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 292 continue; 293 294 list_for_each_entry(pl, &p->bpf.progs[atype], node) { 295 if (!prog_list_prog(pl)) 296 continue; 297 298 item = &progs->items[cnt]; 299 item->prog = prog_list_prog(pl); 300 bpf_cgroup_storages_assign(item->cgroup_storage, 301 pl->storage); 302 cnt++; 303 } 304 } while ((p = cgroup_parent(p))); 305 306 *array = progs; 307 return 0; 308 } 309 310 static void activate_effective_progs(struct cgroup *cgrp, 311 enum cgroup_bpf_attach_type atype, 312 struct bpf_prog_array *old_array) 313 { 314 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 315 lockdep_is_held(&cgroup_mutex)); 316 /* free prog array after grace period, since __cgroup_bpf_run_*() 317 * might be still walking the array 318 */ 319 bpf_prog_array_free(old_array); 320 } 321 322 /** 323 * cgroup_bpf_inherit() - inherit effective programs from parent 324 * @cgrp: the cgroup to modify 325 */ 326 int cgroup_bpf_inherit(struct cgroup *cgrp) 327 { 328 /* has to use marco instead of const int, since compiler thinks 329 * that array below is variable length 330 */ 331 #define NR ARRAY_SIZE(cgrp->bpf.effective) 332 struct bpf_prog_array *arrays[NR] = {}; 333 struct cgroup *p; 334 int ret, i; 335 336 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 337 GFP_KERNEL); 338 if (ret) 339 return ret; 340 341 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 342 cgroup_bpf_get(p); 343 344 for (i = 0; i < NR; i++) 345 INIT_LIST_HEAD(&cgrp->bpf.progs[i]); 346 347 INIT_LIST_HEAD(&cgrp->bpf.storages); 348 349 for (i = 0; i < NR; i++) 350 if (compute_effective_progs(cgrp, i, &arrays[i])) 351 goto cleanup; 352 353 for (i = 0; i < NR; i++) 354 activate_effective_progs(cgrp, i, arrays[i]); 355 356 return 0; 357 cleanup: 358 for (i = 0; i < NR; i++) 359 bpf_prog_array_free(arrays[i]); 360 361 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 362 cgroup_bpf_put(p); 363 364 percpu_ref_exit(&cgrp->bpf.refcnt); 365 366 return -ENOMEM; 367 } 368 369 static int update_effective_progs(struct cgroup *cgrp, 370 enum cgroup_bpf_attach_type atype) 371 { 372 struct cgroup_subsys_state *css; 373 int err; 374 375 /* allocate and recompute effective prog arrays */ 376 css_for_each_descendant_pre(css, &cgrp->self) { 377 struct cgroup *desc = container_of(css, struct cgroup, self); 378 379 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 380 continue; 381 382 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 383 if (err) 384 goto cleanup; 385 } 386 387 /* all allocations were successful. Activate all prog arrays */ 388 css_for_each_descendant_pre(css, &cgrp->self) { 389 struct cgroup *desc = container_of(css, struct cgroup, self); 390 391 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 392 if (unlikely(desc->bpf.inactive)) { 393 bpf_prog_array_free(desc->bpf.inactive); 394 desc->bpf.inactive = NULL; 395 } 396 continue; 397 } 398 399 activate_effective_progs(desc, atype, desc->bpf.inactive); 400 desc->bpf.inactive = NULL; 401 } 402 403 return 0; 404 405 cleanup: 406 /* oom while computing effective. Free all computed effective arrays 407 * since they were not activated 408 */ 409 css_for_each_descendant_pre(css, &cgrp->self) { 410 struct cgroup *desc = container_of(css, struct cgroup, self); 411 412 bpf_prog_array_free(desc->bpf.inactive); 413 desc->bpf.inactive = NULL; 414 } 415 416 return err; 417 } 418 419 #define BPF_CGROUP_MAX_PROGS 64 420 421 static struct bpf_prog_list *find_attach_entry(struct list_head *progs, 422 struct bpf_prog *prog, 423 struct bpf_cgroup_link *link, 424 struct bpf_prog *replace_prog, 425 bool allow_multi) 426 { 427 struct bpf_prog_list *pl; 428 429 /* single-attach case */ 430 if (!allow_multi) { 431 if (list_empty(progs)) 432 return NULL; 433 return list_first_entry(progs, typeof(*pl), node); 434 } 435 436 list_for_each_entry(pl, progs, node) { 437 if (prog && pl->prog == prog && prog != replace_prog) 438 /* disallow attaching the same prog twice */ 439 return ERR_PTR(-EINVAL); 440 if (link && pl->link == link) 441 /* disallow attaching the same link twice */ 442 return ERR_PTR(-EINVAL); 443 } 444 445 /* direct prog multi-attach w/ replacement case */ 446 if (replace_prog) { 447 list_for_each_entry(pl, progs, node) { 448 if (pl->prog == replace_prog) 449 /* a match found */ 450 return pl; 451 } 452 /* prog to replace not found for cgroup */ 453 return ERR_PTR(-ENOENT); 454 } 455 456 return NULL; 457 } 458 459 /** 460 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 461 * propagate the change to descendants 462 * @cgrp: The cgroup which descendants to traverse 463 * @prog: A program to attach 464 * @link: A link to attach 465 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 466 * @type: Type of attach operation 467 * @flags: Option flags 468 * 469 * Exactly one of @prog or @link can be non-null. 470 * Must be called with cgroup_mutex held. 471 */ 472 static int __cgroup_bpf_attach(struct cgroup *cgrp, 473 struct bpf_prog *prog, struct bpf_prog *replace_prog, 474 struct bpf_cgroup_link *link, 475 enum bpf_attach_type type, u32 flags) 476 { 477 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 478 struct bpf_prog *old_prog = NULL; 479 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 480 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 481 enum cgroup_bpf_attach_type atype; 482 struct bpf_prog_list *pl; 483 struct list_head *progs; 484 int err; 485 486 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 487 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 488 /* invalid combination */ 489 return -EINVAL; 490 if (link && (prog || replace_prog)) 491 /* only either link or prog/replace_prog can be specified */ 492 return -EINVAL; 493 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 494 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 495 return -EINVAL; 496 497 atype = to_cgroup_bpf_attach_type(type); 498 if (atype < 0) 499 return -EINVAL; 500 501 progs = &cgrp->bpf.progs[atype]; 502 503 if (!hierarchy_allows_attach(cgrp, atype)) 504 return -EPERM; 505 506 if (!list_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 507 /* Disallow attaching non-overridable on top 508 * of existing overridable in this cgroup. 509 * Disallow attaching multi-prog if overridable or none 510 */ 511 return -EPERM; 512 513 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 514 return -E2BIG; 515 516 pl = find_attach_entry(progs, prog, link, replace_prog, 517 flags & BPF_F_ALLOW_MULTI); 518 if (IS_ERR(pl)) 519 return PTR_ERR(pl); 520 521 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 522 prog ? : link->link.prog, cgrp)) 523 return -ENOMEM; 524 525 if (pl) { 526 old_prog = pl->prog; 527 } else { 528 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 529 if (!pl) { 530 bpf_cgroup_storages_free(new_storage); 531 return -ENOMEM; 532 } 533 list_add_tail(&pl->node, progs); 534 } 535 536 pl->prog = prog; 537 pl->link = link; 538 bpf_cgroup_storages_assign(pl->storage, storage); 539 cgrp->bpf.flags[atype] = saved_flags; 540 541 err = update_effective_progs(cgrp, atype); 542 if (err) 543 goto cleanup; 544 545 if (old_prog) 546 bpf_prog_put(old_prog); 547 else 548 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 549 bpf_cgroup_storages_link(new_storage, cgrp, type); 550 return 0; 551 552 cleanup: 553 if (old_prog) { 554 pl->prog = old_prog; 555 pl->link = NULL; 556 } 557 bpf_cgroup_storages_free(new_storage); 558 if (!old_prog) { 559 list_del(&pl->node); 560 kfree(pl); 561 } 562 return err; 563 } 564 565 static int cgroup_bpf_attach(struct cgroup *cgrp, 566 struct bpf_prog *prog, struct bpf_prog *replace_prog, 567 struct bpf_cgroup_link *link, 568 enum bpf_attach_type type, 569 u32 flags) 570 { 571 int ret; 572 573 mutex_lock(&cgroup_mutex); 574 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 575 mutex_unlock(&cgroup_mutex); 576 return ret; 577 } 578 579 /* Swap updated BPF program for given link in effective program arrays across 580 * all descendant cgroups. This function is guaranteed to succeed. 581 */ 582 static void replace_effective_prog(struct cgroup *cgrp, 583 enum cgroup_bpf_attach_type atype, 584 struct bpf_cgroup_link *link) 585 { 586 struct bpf_prog_array_item *item; 587 struct cgroup_subsys_state *css; 588 struct bpf_prog_array *progs; 589 struct bpf_prog_list *pl; 590 struct list_head *head; 591 struct cgroup *cg; 592 int pos; 593 594 css_for_each_descendant_pre(css, &cgrp->self) { 595 struct cgroup *desc = container_of(css, struct cgroup, self); 596 597 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 598 continue; 599 600 /* find position of link in effective progs array */ 601 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 602 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 603 continue; 604 605 head = &cg->bpf.progs[atype]; 606 list_for_each_entry(pl, head, node) { 607 if (!prog_list_prog(pl)) 608 continue; 609 if (pl->link == link) 610 goto found; 611 pos++; 612 } 613 } 614 found: 615 BUG_ON(!cg); 616 progs = rcu_dereference_protected( 617 desc->bpf.effective[atype], 618 lockdep_is_held(&cgroup_mutex)); 619 item = &progs->items[pos]; 620 WRITE_ONCE(item->prog, link->link.prog); 621 } 622 } 623 624 /** 625 * __cgroup_bpf_replace() - Replace link's program and propagate the change 626 * to descendants 627 * @cgrp: The cgroup which descendants to traverse 628 * @link: A link for which to replace BPF program 629 * @type: Type of attach operation 630 * 631 * Must be called with cgroup_mutex held. 632 */ 633 static int __cgroup_bpf_replace(struct cgroup *cgrp, 634 struct bpf_cgroup_link *link, 635 struct bpf_prog *new_prog) 636 { 637 enum cgroup_bpf_attach_type atype; 638 struct bpf_prog *old_prog; 639 struct bpf_prog_list *pl; 640 struct list_head *progs; 641 bool found = false; 642 643 atype = to_cgroup_bpf_attach_type(link->type); 644 if (atype < 0) 645 return -EINVAL; 646 647 progs = &cgrp->bpf.progs[atype]; 648 649 if (link->link.prog->type != new_prog->type) 650 return -EINVAL; 651 652 list_for_each_entry(pl, progs, node) { 653 if (pl->link == link) { 654 found = true; 655 break; 656 } 657 } 658 if (!found) 659 return -ENOENT; 660 661 old_prog = xchg(&link->link.prog, new_prog); 662 replace_effective_prog(cgrp, atype, link); 663 bpf_prog_put(old_prog); 664 return 0; 665 } 666 667 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 668 struct bpf_prog *old_prog) 669 { 670 struct bpf_cgroup_link *cg_link; 671 int ret; 672 673 cg_link = container_of(link, struct bpf_cgroup_link, link); 674 675 mutex_lock(&cgroup_mutex); 676 /* link might have been auto-released by dying cgroup, so fail */ 677 if (!cg_link->cgroup) { 678 ret = -ENOLINK; 679 goto out_unlock; 680 } 681 if (old_prog && link->prog != old_prog) { 682 ret = -EPERM; 683 goto out_unlock; 684 } 685 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 686 out_unlock: 687 mutex_unlock(&cgroup_mutex); 688 return ret; 689 } 690 691 static struct bpf_prog_list *find_detach_entry(struct list_head *progs, 692 struct bpf_prog *prog, 693 struct bpf_cgroup_link *link, 694 bool allow_multi) 695 { 696 struct bpf_prog_list *pl; 697 698 if (!allow_multi) { 699 if (list_empty(progs)) 700 /* report error when trying to detach and nothing is attached */ 701 return ERR_PTR(-ENOENT); 702 703 /* to maintain backward compatibility NONE and OVERRIDE cgroups 704 * allow detaching with invalid FD (prog==NULL) in legacy mode 705 */ 706 return list_first_entry(progs, typeof(*pl), node); 707 } 708 709 if (!prog && !link) 710 /* to detach MULTI prog the user has to specify valid FD 711 * of the program or link to be detached 712 */ 713 return ERR_PTR(-EINVAL); 714 715 /* find the prog or link and detach it */ 716 list_for_each_entry(pl, progs, node) { 717 if (pl->prog == prog && pl->link == link) 718 return pl; 719 } 720 return ERR_PTR(-ENOENT); 721 } 722 723 /** 724 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 725 * propagate the change to descendants 726 * @cgrp: The cgroup which descendants to traverse 727 * @prog: A program to detach or NULL 728 * @link: A link to detach or NULL 729 * @type: Type of detach operation 730 * 731 * At most one of @prog or @link can be non-NULL. 732 * Must be called with cgroup_mutex held. 733 */ 734 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 735 struct bpf_cgroup_link *link, enum bpf_attach_type type) 736 { 737 enum cgroup_bpf_attach_type atype; 738 struct bpf_prog *old_prog; 739 struct bpf_prog_list *pl; 740 struct list_head *progs; 741 u32 flags; 742 int err; 743 744 atype = to_cgroup_bpf_attach_type(type); 745 if (atype < 0) 746 return -EINVAL; 747 748 progs = &cgrp->bpf.progs[atype]; 749 flags = cgrp->bpf.flags[atype]; 750 751 if (prog && link) 752 /* only one of prog or link can be specified */ 753 return -EINVAL; 754 755 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 756 if (IS_ERR(pl)) 757 return PTR_ERR(pl); 758 759 /* mark it deleted, so it's ignored while recomputing effective */ 760 old_prog = pl->prog; 761 pl->prog = NULL; 762 pl->link = NULL; 763 764 err = update_effective_progs(cgrp, atype); 765 if (err) 766 goto cleanup; 767 768 /* now can actually delete it from this cgroup list */ 769 list_del(&pl->node); 770 kfree(pl); 771 if (list_empty(progs)) 772 /* last program was detached, reset flags to zero */ 773 cgrp->bpf.flags[atype] = 0; 774 if (old_prog) 775 bpf_prog_put(old_prog); 776 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 777 return 0; 778 779 cleanup: 780 /* restore back prog or link */ 781 pl->prog = old_prog; 782 pl->link = link; 783 return err; 784 } 785 786 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 787 enum bpf_attach_type type) 788 { 789 int ret; 790 791 mutex_lock(&cgroup_mutex); 792 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 793 mutex_unlock(&cgroup_mutex); 794 return ret; 795 } 796 797 /* Must be called with cgroup_mutex held to avoid races. */ 798 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 799 union bpf_attr __user *uattr) 800 { 801 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 802 enum bpf_attach_type type = attr->query.attach_type; 803 enum cgroup_bpf_attach_type atype; 804 struct bpf_prog_array *effective; 805 struct list_head *progs; 806 struct bpf_prog *prog; 807 int cnt, ret = 0, i; 808 u32 flags; 809 810 atype = to_cgroup_bpf_attach_type(type); 811 if (atype < 0) 812 return -EINVAL; 813 814 progs = &cgrp->bpf.progs[atype]; 815 flags = cgrp->bpf.flags[atype]; 816 817 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 818 lockdep_is_held(&cgroup_mutex)); 819 820 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) 821 cnt = bpf_prog_array_length(effective); 822 else 823 cnt = prog_list_length(progs); 824 825 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 826 return -EFAULT; 827 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt))) 828 return -EFAULT; 829 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt) 830 /* return early if user requested only program count + flags */ 831 return 0; 832 if (attr->query.prog_cnt < cnt) { 833 cnt = attr->query.prog_cnt; 834 ret = -ENOSPC; 835 } 836 837 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 838 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 839 } else { 840 struct bpf_prog_list *pl; 841 u32 id; 842 843 i = 0; 844 list_for_each_entry(pl, progs, node) { 845 prog = prog_list_prog(pl); 846 id = prog->aux->id; 847 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 848 return -EFAULT; 849 if (++i == cnt) 850 break; 851 } 852 } 853 return ret; 854 } 855 856 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 857 union bpf_attr __user *uattr) 858 { 859 int ret; 860 861 mutex_lock(&cgroup_mutex); 862 ret = __cgroup_bpf_query(cgrp, attr, uattr); 863 mutex_unlock(&cgroup_mutex); 864 return ret; 865 } 866 867 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 868 enum bpf_prog_type ptype, struct bpf_prog *prog) 869 { 870 struct bpf_prog *replace_prog = NULL; 871 struct cgroup *cgrp; 872 int ret; 873 874 cgrp = cgroup_get_from_fd(attr->target_fd); 875 if (IS_ERR(cgrp)) 876 return PTR_ERR(cgrp); 877 878 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 879 (attr->attach_flags & BPF_F_REPLACE)) { 880 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 881 if (IS_ERR(replace_prog)) { 882 cgroup_put(cgrp); 883 return PTR_ERR(replace_prog); 884 } 885 } 886 887 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 888 attr->attach_type, attr->attach_flags); 889 890 if (replace_prog) 891 bpf_prog_put(replace_prog); 892 cgroup_put(cgrp); 893 return ret; 894 } 895 896 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 897 { 898 struct bpf_prog *prog; 899 struct cgroup *cgrp; 900 int ret; 901 902 cgrp = cgroup_get_from_fd(attr->target_fd); 903 if (IS_ERR(cgrp)) 904 return PTR_ERR(cgrp); 905 906 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 907 if (IS_ERR(prog)) 908 prog = NULL; 909 910 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type); 911 if (prog) 912 bpf_prog_put(prog); 913 914 cgroup_put(cgrp); 915 return ret; 916 } 917 918 static void bpf_cgroup_link_release(struct bpf_link *link) 919 { 920 struct bpf_cgroup_link *cg_link = 921 container_of(link, struct bpf_cgroup_link, link); 922 struct cgroup *cg; 923 924 /* link might have been auto-detached by dying cgroup already, 925 * in that case our work is done here 926 */ 927 if (!cg_link->cgroup) 928 return; 929 930 mutex_lock(&cgroup_mutex); 931 932 /* re-check cgroup under lock again */ 933 if (!cg_link->cgroup) { 934 mutex_unlock(&cgroup_mutex); 935 return; 936 } 937 938 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 939 cg_link->type)); 940 941 cg = cg_link->cgroup; 942 cg_link->cgroup = NULL; 943 944 mutex_unlock(&cgroup_mutex); 945 946 cgroup_put(cg); 947 } 948 949 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 950 { 951 struct bpf_cgroup_link *cg_link = 952 container_of(link, struct bpf_cgroup_link, link); 953 954 kfree(cg_link); 955 } 956 957 static int bpf_cgroup_link_detach(struct bpf_link *link) 958 { 959 bpf_cgroup_link_release(link); 960 961 return 0; 962 } 963 964 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 965 struct seq_file *seq) 966 { 967 struct bpf_cgroup_link *cg_link = 968 container_of(link, struct bpf_cgroup_link, link); 969 u64 cg_id = 0; 970 971 mutex_lock(&cgroup_mutex); 972 if (cg_link->cgroup) 973 cg_id = cgroup_id(cg_link->cgroup); 974 mutex_unlock(&cgroup_mutex); 975 976 seq_printf(seq, 977 "cgroup_id:\t%llu\n" 978 "attach_type:\t%d\n", 979 cg_id, 980 cg_link->type); 981 } 982 983 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 984 struct bpf_link_info *info) 985 { 986 struct bpf_cgroup_link *cg_link = 987 container_of(link, struct bpf_cgroup_link, link); 988 u64 cg_id = 0; 989 990 mutex_lock(&cgroup_mutex); 991 if (cg_link->cgroup) 992 cg_id = cgroup_id(cg_link->cgroup); 993 mutex_unlock(&cgroup_mutex); 994 995 info->cgroup.cgroup_id = cg_id; 996 info->cgroup.attach_type = cg_link->type; 997 return 0; 998 } 999 1000 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1001 .release = bpf_cgroup_link_release, 1002 .dealloc = bpf_cgroup_link_dealloc, 1003 .detach = bpf_cgroup_link_detach, 1004 .update_prog = cgroup_bpf_replace, 1005 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1006 .fill_link_info = bpf_cgroup_link_fill_link_info, 1007 }; 1008 1009 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1010 { 1011 struct bpf_link_primer link_primer; 1012 struct bpf_cgroup_link *link; 1013 struct cgroup *cgrp; 1014 int err; 1015 1016 if (attr->link_create.flags) 1017 return -EINVAL; 1018 1019 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1020 if (IS_ERR(cgrp)) 1021 return PTR_ERR(cgrp); 1022 1023 link = kzalloc(sizeof(*link), GFP_USER); 1024 if (!link) { 1025 err = -ENOMEM; 1026 goto out_put_cgroup; 1027 } 1028 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1029 prog); 1030 link->cgroup = cgrp; 1031 link->type = attr->link_create.attach_type; 1032 1033 err = bpf_link_prime(&link->link, &link_primer); 1034 if (err) { 1035 kfree(link); 1036 goto out_put_cgroup; 1037 } 1038 1039 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1040 link->type, BPF_F_ALLOW_MULTI); 1041 if (err) { 1042 bpf_link_cleanup(&link_primer); 1043 goto out_put_cgroup; 1044 } 1045 1046 return bpf_link_settle(&link_primer); 1047 1048 out_put_cgroup: 1049 cgroup_put(cgrp); 1050 return err; 1051 } 1052 1053 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1054 union bpf_attr __user *uattr) 1055 { 1056 struct cgroup *cgrp; 1057 int ret; 1058 1059 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1060 if (IS_ERR(cgrp)) 1061 return PTR_ERR(cgrp); 1062 1063 ret = cgroup_bpf_query(cgrp, attr, uattr); 1064 1065 cgroup_put(cgrp); 1066 return ret; 1067 } 1068 1069 /** 1070 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1071 * @sk: The socket sending or receiving traffic 1072 * @skb: The skb that is being sent or received 1073 * @type: The type of program to be executed 1074 * 1075 * If no socket is passed, or the socket is not of type INET or INET6, 1076 * this function does nothing and returns 0. 1077 * 1078 * The program type passed in via @type must be suitable for network 1079 * filtering. No further check is performed to assert that. 1080 * 1081 * For egress packets, this function can return: 1082 * NET_XMIT_SUCCESS (0) - continue with packet output 1083 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1084 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1085 * to call cwr 1086 * -err - drop packet 1087 * 1088 * For ingress packets, this function will return -EPERM if any 1089 * attached program was found and if it returned != 1 during execution. 1090 * Otherwise 0 is returned. 1091 */ 1092 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1093 struct sk_buff *skb, 1094 enum cgroup_bpf_attach_type atype) 1095 { 1096 unsigned int offset = skb->data - skb_network_header(skb); 1097 struct sock *save_sk; 1098 void *saved_data_end; 1099 struct cgroup *cgrp; 1100 int ret; 1101 1102 if (!sk || !sk_fullsock(sk)) 1103 return 0; 1104 1105 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1106 return 0; 1107 1108 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1109 save_sk = skb->sk; 1110 skb->sk = sk; 1111 __skb_push(skb, offset); 1112 1113 /* compute pointers for the bpf prog */ 1114 bpf_compute_and_save_data_end(skb, &saved_data_end); 1115 1116 if (atype == CGROUP_INET_EGRESS) { 1117 u32 flags = 0; 1118 bool cn; 1119 1120 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1121 __bpf_prog_run_save_cb, 0, &flags); 1122 1123 /* Return values of CGROUP EGRESS BPF programs are: 1124 * 0: drop packet 1125 * 1: keep packet 1126 * 2: drop packet and cn 1127 * 3: keep packet and cn 1128 * 1129 * The returned value is then converted to one of the NET_XMIT 1130 * or an error code that is then interpreted as drop packet 1131 * (and no cn): 1132 * 0: NET_XMIT_SUCCESS skb should be transmitted 1133 * 1: NET_XMIT_DROP skb should be dropped and cn 1134 * 2: NET_XMIT_CN skb should be transmitted and cn 1135 * 3: -err skb should be dropped 1136 */ 1137 1138 cn = flags & BPF_RET_SET_CN; 1139 if (ret && !IS_ERR_VALUE((long)ret)) 1140 ret = -EFAULT; 1141 if (!ret) 1142 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1143 else 1144 ret = (cn ? NET_XMIT_DROP : ret); 1145 } else { 1146 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1147 skb, __bpf_prog_run_save_cb, 0, 1148 NULL); 1149 if (ret && !IS_ERR_VALUE((long)ret)) 1150 ret = -EFAULT; 1151 } 1152 bpf_restore_data_end(skb, saved_data_end); 1153 __skb_pull(skb, offset); 1154 skb->sk = save_sk; 1155 1156 return ret; 1157 } 1158 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1159 1160 /** 1161 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1162 * @sk: sock structure to manipulate 1163 * @type: The type of program to be executed 1164 * 1165 * socket is passed is expected to be of type INET or INET6. 1166 * 1167 * The program type passed in via @type must be suitable for sock 1168 * filtering. No further check is performed to assert that. 1169 * 1170 * This function will return %-EPERM if any if an attached program was found 1171 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1172 */ 1173 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1174 enum cgroup_bpf_attach_type atype) 1175 { 1176 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1177 1178 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1179 NULL); 1180 } 1181 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1182 1183 /** 1184 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1185 * provided by user sockaddr 1186 * @sk: sock struct that will use sockaddr 1187 * @uaddr: sockaddr struct provided by user 1188 * @type: The type of program to be executed 1189 * @t_ctx: Pointer to attach type specific context 1190 * @flags: Pointer to u32 which contains higher bits of BPF program 1191 * return value (OR'ed together). 1192 * 1193 * socket is expected to be of type INET or INET6. 1194 * 1195 * This function will return %-EPERM if an attached program is found and 1196 * returned value != 1 during execution. In all other cases, 0 is returned. 1197 */ 1198 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1199 struct sockaddr *uaddr, 1200 enum cgroup_bpf_attach_type atype, 1201 void *t_ctx, 1202 u32 *flags) 1203 { 1204 struct bpf_sock_addr_kern ctx = { 1205 .sk = sk, 1206 .uaddr = uaddr, 1207 .t_ctx = t_ctx, 1208 }; 1209 struct sockaddr_storage unspec; 1210 struct cgroup *cgrp; 1211 1212 /* Check socket family since not all sockets represent network 1213 * endpoint (e.g. AF_UNIX). 1214 */ 1215 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1216 return 0; 1217 1218 if (!ctx.uaddr) { 1219 memset(&unspec, 0, sizeof(unspec)); 1220 ctx.uaddr = (struct sockaddr *)&unspec; 1221 } 1222 1223 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1224 return bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1225 0, flags); 1226 } 1227 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1228 1229 /** 1230 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1231 * @sk: socket to get cgroup from 1232 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1233 * sk with connection information (IP addresses, etc.) May not contain 1234 * cgroup info if it is a req sock. 1235 * @type: The type of program to be executed 1236 * 1237 * socket passed is expected to be of type INET or INET6. 1238 * 1239 * The program type passed in via @type must be suitable for sock_ops 1240 * filtering. No further check is performed to assert that. 1241 * 1242 * This function will return %-EPERM if any if an attached program was found 1243 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1244 */ 1245 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1246 struct bpf_sock_ops_kern *sock_ops, 1247 enum cgroup_bpf_attach_type atype) 1248 { 1249 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1250 1251 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1252 0, NULL); 1253 } 1254 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1255 1256 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1257 short access, enum cgroup_bpf_attach_type atype) 1258 { 1259 struct cgroup *cgrp; 1260 struct bpf_cgroup_dev_ctx ctx = { 1261 .access_type = (access << 16) | dev_type, 1262 .major = major, 1263 .minor = minor, 1264 }; 1265 int ret; 1266 1267 rcu_read_lock(); 1268 cgrp = task_dfl_cgroup(current); 1269 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1270 NULL); 1271 rcu_read_unlock(); 1272 1273 return ret; 1274 } 1275 1276 BPF_CALL_0(bpf_get_retval) 1277 { 1278 struct bpf_cg_run_ctx *ctx = 1279 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1280 1281 return ctx->retval; 1282 } 1283 1284 static const struct bpf_func_proto bpf_get_retval_proto = { 1285 .func = bpf_get_retval, 1286 .gpl_only = false, 1287 .ret_type = RET_INTEGER, 1288 }; 1289 1290 BPF_CALL_1(bpf_set_retval, int, retval) 1291 { 1292 struct bpf_cg_run_ctx *ctx = 1293 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1294 1295 ctx->retval = retval; 1296 return 0; 1297 } 1298 1299 static const struct bpf_func_proto bpf_set_retval_proto = { 1300 .func = bpf_set_retval, 1301 .gpl_only = false, 1302 .ret_type = RET_INTEGER, 1303 .arg1_type = ARG_ANYTHING, 1304 }; 1305 1306 static const struct bpf_func_proto * 1307 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1308 { 1309 switch (func_id) { 1310 case BPF_FUNC_get_current_uid_gid: 1311 return &bpf_get_current_uid_gid_proto; 1312 case BPF_FUNC_get_local_storage: 1313 return &bpf_get_local_storage_proto; 1314 case BPF_FUNC_get_current_cgroup_id: 1315 return &bpf_get_current_cgroup_id_proto; 1316 case BPF_FUNC_perf_event_output: 1317 return &bpf_event_output_data_proto; 1318 case BPF_FUNC_get_retval: 1319 return &bpf_get_retval_proto; 1320 case BPF_FUNC_set_retval: 1321 return &bpf_set_retval_proto; 1322 default: 1323 return bpf_base_func_proto(func_id); 1324 } 1325 } 1326 1327 static const struct bpf_func_proto * 1328 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1329 { 1330 return cgroup_base_func_proto(func_id, prog); 1331 } 1332 1333 static bool cgroup_dev_is_valid_access(int off, int size, 1334 enum bpf_access_type type, 1335 const struct bpf_prog *prog, 1336 struct bpf_insn_access_aux *info) 1337 { 1338 const int size_default = sizeof(__u32); 1339 1340 if (type == BPF_WRITE) 1341 return false; 1342 1343 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1344 return false; 1345 /* The verifier guarantees that size > 0. */ 1346 if (off % size != 0) 1347 return false; 1348 1349 switch (off) { 1350 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1351 bpf_ctx_record_field_size(info, size_default); 1352 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1353 return false; 1354 break; 1355 default: 1356 if (size != size_default) 1357 return false; 1358 } 1359 1360 return true; 1361 } 1362 1363 const struct bpf_prog_ops cg_dev_prog_ops = { 1364 }; 1365 1366 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1367 .get_func_proto = cgroup_dev_func_proto, 1368 .is_valid_access = cgroup_dev_is_valid_access, 1369 }; 1370 1371 /** 1372 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1373 * 1374 * @head: sysctl table header 1375 * @table: sysctl table 1376 * @write: sysctl is being read (= 0) or written (= 1) 1377 * @buf: pointer to buffer (in and out) 1378 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1379 * result is size of @new_buf if program set new value, initial value 1380 * otherwise 1381 * @ppos: value-result argument: value is position at which read from or write 1382 * to sysctl is happening, result is new position if program overrode it, 1383 * initial value otherwise 1384 * @type: type of program to be executed 1385 * 1386 * Program is run when sysctl is being accessed, either read or written, and 1387 * can allow or deny such access. 1388 * 1389 * This function will return %-EPERM if an attached program is found and 1390 * returned value != 1 during execution. In all other cases 0 is returned. 1391 */ 1392 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1393 struct ctl_table *table, int write, 1394 char **buf, size_t *pcount, loff_t *ppos, 1395 enum cgroup_bpf_attach_type atype) 1396 { 1397 struct bpf_sysctl_kern ctx = { 1398 .head = head, 1399 .table = table, 1400 .write = write, 1401 .ppos = ppos, 1402 .cur_val = NULL, 1403 .cur_len = PAGE_SIZE, 1404 .new_val = NULL, 1405 .new_len = 0, 1406 .new_updated = 0, 1407 }; 1408 struct cgroup *cgrp; 1409 loff_t pos = 0; 1410 int ret; 1411 1412 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1413 if (!ctx.cur_val || 1414 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1415 /* Let BPF program decide how to proceed. */ 1416 ctx.cur_len = 0; 1417 } 1418 1419 if (write && *buf && *pcount) { 1420 /* BPF program should be able to override new value with a 1421 * buffer bigger than provided by user. 1422 */ 1423 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1424 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1425 if (ctx.new_val) { 1426 memcpy(ctx.new_val, *buf, ctx.new_len); 1427 } else { 1428 /* Let BPF program decide how to proceed. */ 1429 ctx.new_len = 0; 1430 } 1431 } 1432 1433 rcu_read_lock(); 1434 cgrp = task_dfl_cgroup(current); 1435 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1436 NULL); 1437 rcu_read_unlock(); 1438 1439 kfree(ctx.cur_val); 1440 1441 if (ret == 1 && ctx.new_updated) { 1442 kfree(*buf); 1443 *buf = ctx.new_val; 1444 *pcount = ctx.new_len; 1445 } else { 1446 kfree(ctx.new_val); 1447 } 1448 1449 return ret; 1450 } 1451 1452 #ifdef CONFIG_NET 1453 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1454 struct bpf_sockopt_buf *buf) 1455 { 1456 if (unlikely(max_optlen < 0)) 1457 return -EINVAL; 1458 1459 if (unlikely(max_optlen > PAGE_SIZE)) { 1460 /* We don't expose optvals that are greater than PAGE_SIZE 1461 * to the BPF program. 1462 */ 1463 max_optlen = PAGE_SIZE; 1464 } 1465 1466 if (max_optlen <= sizeof(buf->data)) { 1467 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1468 * bytes avoid the cost of kzalloc. 1469 */ 1470 ctx->optval = buf->data; 1471 ctx->optval_end = ctx->optval + max_optlen; 1472 return max_optlen; 1473 } 1474 1475 ctx->optval = kzalloc(max_optlen, GFP_USER); 1476 if (!ctx->optval) 1477 return -ENOMEM; 1478 1479 ctx->optval_end = ctx->optval + max_optlen; 1480 1481 return max_optlen; 1482 } 1483 1484 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1485 struct bpf_sockopt_buf *buf) 1486 { 1487 if (ctx->optval == buf->data) 1488 return; 1489 kfree(ctx->optval); 1490 } 1491 1492 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1493 struct bpf_sockopt_buf *buf) 1494 { 1495 return ctx->optval != buf->data; 1496 } 1497 1498 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 1499 int *optname, char __user *optval, 1500 int *optlen, char **kernel_optval) 1501 { 1502 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1503 struct bpf_sockopt_buf buf = {}; 1504 struct bpf_sockopt_kern ctx = { 1505 .sk = sk, 1506 .level = *level, 1507 .optname = *optname, 1508 }; 1509 int ret, max_optlen; 1510 1511 /* Allocate a bit more than the initial user buffer for 1512 * BPF program. The canonical use case is overriding 1513 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1514 */ 1515 max_optlen = max_t(int, 16, *optlen); 1516 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1517 if (max_optlen < 0) 1518 return max_optlen; 1519 1520 ctx.optlen = *optlen; 1521 1522 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) { 1523 ret = -EFAULT; 1524 goto out; 1525 } 1526 1527 lock_sock(sk); 1528 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 1529 &ctx, bpf_prog_run, 0, NULL); 1530 release_sock(sk); 1531 1532 if (ret) 1533 goto out; 1534 1535 if (ctx.optlen == -1) { 1536 /* optlen set to -1, bypass kernel */ 1537 ret = 1; 1538 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1539 /* optlen is out of bounds */ 1540 ret = -EFAULT; 1541 } else { 1542 /* optlen within bounds, run kernel handler */ 1543 ret = 0; 1544 1545 /* export any potential modifications */ 1546 *level = ctx.level; 1547 *optname = ctx.optname; 1548 1549 /* optlen == 0 from BPF indicates that we should 1550 * use original userspace data. 1551 */ 1552 if (ctx.optlen != 0) { 1553 *optlen = ctx.optlen; 1554 /* We've used bpf_sockopt_kern->buf as an intermediary 1555 * storage, but the BPF program indicates that we need 1556 * to pass this data to the kernel setsockopt handler. 1557 * No way to export on-stack buf, have to allocate a 1558 * new buffer. 1559 */ 1560 if (!sockopt_buf_allocated(&ctx, &buf)) { 1561 void *p = kmalloc(ctx.optlen, GFP_USER); 1562 1563 if (!p) { 1564 ret = -ENOMEM; 1565 goto out; 1566 } 1567 memcpy(p, ctx.optval, ctx.optlen); 1568 *kernel_optval = p; 1569 } else { 1570 *kernel_optval = ctx.optval; 1571 } 1572 /* export and don't free sockopt buf */ 1573 return 0; 1574 } 1575 } 1576 1577 out: 1578 sockopt_free_buf(&ctx, &buf); 1579 return ret; 1580 } 1581 1582 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1583 int optname, char __user *optval, 1584 int __user *optlen, int max_optlen, 1585 int retval) 1586 { 1587 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1588 struct bpf_sockopt_buf buf = {}; 1589 struct bpf_sockopt_kern ctx = { 1590 .sk = sk, 1591 .level = level, 1592 .optname = optname, 1593 .current_task = current, 1594 }; 1595 int ret; 1596 1597 ctx.optlen = max_optlen; 1598 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1599 if (max_optlen < 0) 1600 return max_optlen; 1601 1602 if (!retval) { 1603 /* If kernel getsockopt finished successfully, 1604 * copy whatever was returned to the user back 1605 * into our temporary buffer. Set optlen to the 1606 * one that kernel returned as well to let 1607 * BPF programs inspect the value. 1608 */ 1609 1610 if (get_user(ctx.optlen, optlen)) { 1611 ret = -EFAULT; 1612 goto out; 1613 } 1614 1615 if (ctx.optlen < 0) { 1616 ret = -EFAULT; 1617 goto out; 1618 } 1619 1620 if (copy_from_user(ctx.optval, optval, 1621 min(ctx.optlen, max_optlen)) != 0) { 1622 ret = -EFAULT; 1623 goto out; 1624 } 1625 } 1626 1627 lock_sock(sk); 1628 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1629 &ctx, bpf_prog_run, retval, NULL); 1630 release_sock(sk); 1631 1632 if (ret < 0) 1633 goto out; 1634 1635 if (ctx.optlen > max_optlen || ctx.optlen < 0) { 1636 ret = -EFAULT; 1637 goto out; 1638 } 1639 1640 if (ctx.optlen != 0) { 1641 if (copy_to_user(optval, ctx.optval, ctx.optlen) || 1642 put_user(ctx.optlen, optlen)) { 1643 ret = -EFAULT; 1644 goto out; 1645 } 1646 } 1647 1648 out: 1649 sockopt_free_buf(&ctx, &buf); 1650 return ret; 1651 } 1652 1653 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 1654 int optname, void *optval, 1655 int *optlen, int retval) 1656 { 1657 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1658 struct bpf_sockopt_kern ctx = { 1659 .sk = sk, 1660 .level = level, 1661 .optname = optname, 1662 .optlen = *optlen, 1663 .optval = optval, 1664 .optval_end = optval + *optlen, 1665 .current_task = current, 1666 }; 1667 int ret; 1668 1669 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 1670 * user data back into BPF buffer when reval != 0. This is 1671 * done as an optimization to avoid extra copy, assuming 1672 * kernel won't populate the data in case of an error. 1673 * Here we always pass the data and memset() should 1674 * be called if that data shouldn't be "exported". 1675 */ 1676 1677 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1678 &ctx, bpf_prog_run, retval, NULL); 1679 if (ret < 0) 1680 return ret; 1681 1682 if (ctx.optlen > *optlen) 1683 return -EFAULT; 1684 1685 /* BPF programs can shrink the buffer, export the modifications. 1686 */ 1687 if (ctx.optlen != 0) 1688 *optlen = ctx.optlen; 1689 1690 return ret; 1691 } 1692 #endif 1693 1694 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1695 size_t *lenp) 1696 { 1697 ssize_t tmp_ret = 0, ret; 1698 1699 if (dir->header.parent) { 1700 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1701 if (tmp_ret < 0) 1702 return tmp_ret; 1703 } 1704 1705 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1706 if (ret < 0) 1707 return ret; 1708 *bufp += ret; 1709 *lenp -= ret; 1710 ret += tmp_ret; 1711 1712 /* Avoid leading slash. */ 1713 if (!ret) 1714 return ret; 1715 1716 tmp_ret = strscpy(*bufp, "/", *lenp); 1717 if (tmp_ret < 0) 1718 return tmp_ret; 1719 *bufp += tmp_ret; 1720 *lenp -= tmp_ret; 1721 1722 return ret + tmp_ret; 1723 } 1724 1725 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 1726 size_t, buf_len, u64, flags) 1727 { 1728 ssize_t tmp_ret = 0, ret; 1729 1730 if (!buf) 1731 return -EINVAL; 1732 1733 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 1734 if (!ctx->head) 1735 return -EINVAL; 1736 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 1737 if (tmp_ret < 0) 1738 return tmp_ret; 1739 } 1740 1741 ret = strscpy(buf, ctx->table->procname, buf_len); 1742 1743 return ret < 0 ? ret : tmp_ret + ret; 1744 } 1745 1746 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 1747 .func = bpf_sysctl_get_name, 1748 .gpl_only = false, 1749 .ret_type = RET_INTEGER, 1750 .arg1_type = ARG_PTR_TO_CTX, 1751 .arg2_type = ARG_PTR_TO_MEM, 1752 .arg3_type = ARG_CONST_SIZE, 1753 .arg4_type = ARG_ANYTHING, 1754 }; 1755 1756 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 1757 size_t src_len) 1758 { 1759 if (!dst) 1760 return -EINVAL; 1761 1762 if (!dst_len) 1763 return -E2BIG; 1764 1765 if (!src || !src_len) { 1766 memset(dst, 0, dst_len); 1767 return -EINVAL; 1768 } 1769 1770 memcpy(dst, src, min(dst_len, src_len)); 1771 1772 if (dst_len > src_len) { 1773 memset(dst + src_len, '\0', dst_len - src_len); 1774 return src_len; 1775 } 1776 1777 dst[dst_len - 1] = '\0'; 1778 1779 return -E2BIG; 1780 } 1781 1782 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 1783 char *, buf, size_t, buf_len) 1784 { 1785 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 1786 } 1787 1788 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 1789 .func = bpf_sysctl_get_current_value, 1790 .gpl_only = false, 1791 .ret_type = RET_INTEGER, 1792 .arg1_type = ARG_PTR_TO_CTX, 1793 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1794 .arg3_type = ARG_CONST_SIZE, 1795 }; 1796 1797 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 1798 size_t, buf_len) 1799 { 1800 if (!ctx->write) { 1801 if (buf && buf_len) 1802 memset(buf, '\0', buf_len); 1803 return -EINVAL; 1804 } 1805 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 1806 } 1807 1808 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 1809 .func = bpf_sysctl_get_new_value, 1810 .gpl_only = false, 1811 .ret_type = RET_INTEGER, 1812 .arg1_type = ARG_PTR_TO_CTX, 1813 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1814 .arg3_type = ARG_CONST_SIZE, 1815 }; 1816 1817 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 1818 const char *, buf, size_t, buf_len) 1819 { 1820 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 1821 return -EINVAL; 1822 1823 if (buf_len > PAGE_SIZE - 1) 1824 return -E2BIG; 1825 1826 memcpy(ctx->new_val, buf, buf_len); 1827 ctx->new_len = buf_len; 1828 ctx->new_updated = 1; 1829 1830 return 0; 1831 } 1832 1833 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 1834 .func = bpf_sysctl_set_new_value, 1835 .gpl_only = false, 1836 .ret_type = RET_INTEGER, 1837 .arg1_type = ARG_PTR_TO_CTX, 1838 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1839 .arg3_type = ARG_CONST_SIZE, 1840 }; 1841 1842 static const struct bpf_func_proto * 1843 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1844 { 1845 switch (func_id) { 1846 case BPF_FUNC_strtol: 1847 return &bpf_strtol_proto; 1848 case BPF_FUNC_strtoul: 1849 return &bpf_strtoul_proto; 1850 case BPF_FUNC_sysctl_get_name: 1851 return &bpf_sysctl_get_name_proto; 1852 case BPF_FUNC_sysctl_get_current_value: 1853 return &bpf_sysctl_get_current_value_proto; 1854 case BPF_FUNC_sysctl_get_new_value: 1855 return &bpf_sysctl_get_new_value_proto; 1856 case BPF_FUNC_sysctl_set_new_value: 1857 return &bpf_sysctl_set_new_value_proto; 1858 case BPF_FUNC_ktime_get_coarse_ns: 1859 return &bpf_ktime_get_coarse_ns_proto; 1860 default: 1861 return cgroup_base_func_proto(func_id, prog); 1862 } 1863 } 1864 1865 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 1866 const struct bpf_prog *prog, 1867 struct bpf_insn_access_aux *info) 1868 { 1869 const int size_default = sizeof(__u32); 1870 1871 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 1872 return false; 1873 1874 switch (off) { 1875 case bpf_ctx_range(struct bpf_sysctl, write): 1876 if (type != BPF_READ) 1877 return false; 1878 bpf_ctx_record_field_size(info, size_default); 1879 return bpf_ctx_narrow_access_ok(off, size, size_default); 1880 case bpf_ctx_range(struct bpf_sysctl, file_pos): 1881 if (type == BPF_READ) { 1882 bpf_ctx_record_field_size(info, size_default); 1883 return bpf_ctx_narrow_access_ok(off, size, size_default); 1884 } else { 1885 return size == size_default; 1886 } 1887 default: 1888 return false; 1889 } 1890 } 1891 1892 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 1893 const struct bpf_insn *si, 1894 struct bpf_insn *insn_buf, 1895 struct bpf_prog *prog, u32 *target_size) 1896 { 1897 struct bpf_insn *insn = insn_buf; 1898 u32 read_size; 1899 1900 switch (si->off) { 1901 case offsetof(struct bpf_sysctl, write): 1902 *insn++ = BPF_LDX_MEM( 1903 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 1904 bpf_target_off(struct bpf_sysctl_kern, write, 1905 sizeof_field(struct bpf_sysctl_kern, 1906 write), 1907 target_size)); 1908 break; 1909 case offsetof(struct bpf_sysctl, file_pos): 1910 /* ppos is a pointer so it should be accessed via indirect 1911 * loads and stores. Also for stores additional temporary 1912 * register is used since neither src_reg nor dst_reg can be 1913 * overridden. 1914 */ 1915 if (type == BPF_WRITE) { 1916 int treg = BPF_REG_9; 1917 1918 if (si->src_reg == treg || si->dst_reg == treg) 1919 --treg; 1920 if (si->src_reg == treg || si->dst_reg == treg) 1921 --treg; 1922 *insn++ = BPF_STX_MEM( 1923 BPF_DW, si->dst_reg, treg, 1924 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1925 *insn++ = BPF_LDX_MEM( 1926 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1927 treg, si->dst_reg, 1928 offsetof(struct bpf_sysctl_kern, ppos)); 1929 *insn++ = BPF_STX_MEM( 1930 BPF_SIZEOF(u32), treg, si->src_reg, 1931 bpf_ctx_narrow_access_offset( 1932 0, sizeof(u32), sizeof(loff_t))); 1933 *insn++ = BPF_LDX_MEM( 1934 BPF_DW, treg, si->dst_reg, 1935 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1936 } else { 1937 *insn++ = BPF_LDX_MEM( 1938 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1939 si->dst_reg, si->src_reg, 1940 offsetof(struct bpf_sysctl_kern, ppos)); 1941 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 1942 *insn++ = BPF_LDX_MEM( 1943 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 1944 bpf_ctx_narrow_access_offset( 1945 0, read_size, sizeof(loff_t))); 1946 } 1947 *target_size = sizeof(u32); 1948 break; 1949 } 1950 1951 return insn - insn_buf; 1952 } 1953 1954 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 1955 .get_func_proto = sysctl_func_proto, 1956 .is_valid_access = sysctl_is_valid_access, 1957 .convert_ctx_access = sysctl_convert_ctx_access, 1958 }; 1959 1960 const struct bpf_prog_ops cg_sysctl_prog_ops = { 1961 }; 1962 1963 #ifdef CONFIG_NET 1964 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 1965 { 1966 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 1967 1968 return net->net_cookie; 1969 } 1970 1971 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 1972 .func = bpf_get_netns_cookie_sockopt, 1973 .gpl_only = false, 1974 .ret_type = RET_INTEGER, 1975 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 1976 }; 1977 #endif 1978 1979 static const struct bpf_func_proto * 1980 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1981 { 1982 switch (func_id) { 1983 #ifdef CONFIG_NET 1984 case BPF_FUNC_get_netns_cookie: 1985 return &bpf_get_netns_cookie_sockopt_proto; 1986 case BPF_FUNC_sk_storage_get: 1987 return &bpf_sk_storage_get_proto; 1988 case BPF_FUNC_sk_storage_delete: 1989 return &bpf_sk_storage_delete_proto; 1990 case BPF_FUNC_setsockopt: 1991 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 1992 return &bpf_sk_setsockopt_proto; 1993 return NULL; 1994 case BPF_FUNC_getsockopt: 1995 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 1996 return &bpf_sk_getsockopt_proto; 1997 return NULL; 1998 #endif 1999 #ifdef CONFIG_INET 2000 case BPF_FUNC_tcp_sock: 2001 return &bpf_tcp_sock_proto; 2002 #endif 2003 default: 2004 return cgroup_base_func_proto(func_id, prog); 2005 } 2006 } 2007 2008 static bool cg_sockopt_is_valid_access(int off, int size, 2009 enum bpf_access_type type, 2010 const struct bpf_prog *prog, 2011 struct bpf_insn_access_aux *info) 2012 { 2013 const int size_default = sizeof(__u32); 2014 2015 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2016 return false; 2017 2018 if (off % size != 0) 2019 return false; 2020 2021 if (type == BPF_WRITE) { 2022 switch (off) { 2023 case offsetof(struct bpf_sockopt, retval): 2024 if (size != size_default) 2025 return false; 2026 return prog->expected_attach_type == 2027 BPF_CGROUP_GETSOCKOPT; 2028 case offsetof(struct bpf_sockopt, optname): 2029 fallthrough; 2030 case offsetof(struct bpf_sockopt, level): 2031 if (size != size_default) 2032 return false; 2033 return prog->expected_attach_type == 2034 BPF_CGROUP_SETSOCKOPT; 2035 case offsetof(struct bpf_sockopt, optlen): 2036 return size == size_default; 2037 default: 2038 return false; 2039 } 2040 } 2041 2042 switch (off) { 2043 case offsetof(struct bpf_sockopt, sk): 2044 if (size != sizeof(__u64)) 2045 return false; 2046 info->reg_type = PTR_TO_SOCKET; 2047 break; 2048 case offsetof(struct bpf_sockopt, optval): 2049 if (size != sizeof(__u64)) 2050 return false; 2051 info->reg_type = PTR_TO_PACKET; 2052 break; 2053 case offsetof(struct bpf_sockopt, optval_end): 2054 if (size != sizeof(__u64)) 2055 return false; 2056 info->reg_type = PTR_TO_PACKET_END; 2057 break; 2058 case offsetof(struct bpf_sockopt, retval): 2059 if (size != size_default) 2060 return false; 2061 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2062 default: 2063 if (size != size_default) 2064 return false; 2065 break; 2066 } 2067 return true; 2068 } 2069 2070 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \ 2071 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2072 si->dst_reg, si->src_reg, \ 2073 offsetof(struct bpf_sockopt_kern, F)) 2074 2075 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2076 const struct bpf_insn *si, 2077 struct bpf_insn *insn_buf, 2078 struct bpf_prog *prog, 2079 u32 *target_size) 2080 { 2081 struct bpf_insn *insn = insn_buf; 2082 2083 switch (si->off) { 2084 case offsetof(struct bpf_sockopt, sk): 2085 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk); 2086 break; 2087 case offsetof(struct bpf_sockopt, level): 2088 if (type == BPF_WRITE) 2089 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level); 2090 else 2091 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level); 2092 break; 2093 case offsetof(struct bpf_sockopt, optname): 2094 if (type == BPF_WRITE) 2095 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname); 2096 else 2097 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname); 2098 break; 2099 case offsetof(struct bpf_sockopt, optlen): 2100 if (type == BPF_WRITE) 2101 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen); 2102 else 2103 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen); 2104 break; 2105 case offsetof(struct bpf_sockopt, retval): 2106 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2107 2108 if (type == BPF_WRITE) { 2109 int treg = BPF_REG_9; 2110 2111 if (si->src_reg == treg || si->dst_reg == treg) 2112 --treg; 2113 if (si->src_reg == treg || si->dst_reg == treg) 2114 --treg; 2115 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2116 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2117 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2118 treg, si->dst_reg, 2119 offsetof(struct bpf_sockopt_kern, current_task)); 2120 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2121 treg, treg, 2122 offsetof(struct task_struct, bpf_ctx)); 2123 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2124 treg, si->src_reg, 2125 offsetof(struct bpf_cg_run_ctx, retval)); 2126 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2127 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2128 } else { 2129 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2130 si->dst_reg, si->src_reg, 2131 offsetof(struct bpf_sockopt_kern, current_task)); 2132 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2133 si->dst_reg, si->dst_reg, 2134 offsetof(struct task_struct, bpf_ctx)); 2135 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2136 si->dst_reg, si->dst_reg, 2137 offsetof(struct bpf_cg_run_ctx, retval)); 2138 } 2139 break; 2140 case offsetof(struct bpf_sockopt, optval): 2141 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval); 2142 break; 2143 case offsetof(struct bpf_sockopt, optval_end): 2144 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end); 2145 break; 2146 } 2147 2148 return insn - insn_buf; 2149 } 2150 2151 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2152 bool direct_write, 2153 const struct bpf_prog *prog) 2154 { 2155 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2156 */ 2157 return 0; 2158 } 2159 2160 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2161 .get_func_proto = cg_sockopt_func_proto, 2162 .is_valid_access = cg_sockopt_is_valid_access, 2163 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2164 .gen_prologue = cg_sockopt_get_prologue, 2165 }; 2166 2167 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2168 }; 2169