1 /* 2 * Functions to manage eBPF programs attached to cgroups 3 * 4 * Copyright (c) 2016 Daniel Mack 5 * 6 * This file is subject to the terms and conditions of version 2 of the GNU 7 * General Public License. See the file COPYING in the main directory of the 8 * Linux distribution for more details. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/atomic.h> 13 #include <linux/cgroup.h> 14 #include <linux/slab.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <net/sock.h> 18 19 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key); 20 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 21 22 /** 23 * cgroup_bpf_put() - put references of all bpf programs 24 * @cgrp: the cgroup to modify 25 */ 26 void cgroup_bpf_put(struct cgroup *cgrp) 27 { 28 enum bpf_cgroup_storage_type stype; 29 unsigned int type; 30 31 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) { 32 struct list_head *progs = &cgrp->bpf.progs[type]; 33 struct bpf_prog_list *pl, *tmp; 34 35 list_for_each_entry_safe(pl, tmp, progs, node) { 36 list_del(&pl->node); 37 bpf_prog_put(pl->prog); 38 for_each_cgroup_storage_type(stype) { 39 bpf_cgroup_storage_unlink(pl->storage[stype]); 40 bpf_cgroup_storage_free(pl->storage[stype]); 41 } 42 kfree(pl); 43 static_branch_dec(&cgroup_bpf_enabled_key); 44 } 45 bpf_prog_array_free(cgrp->bpf.effective[type]); 46 } 47 } 48 49 /* count number of elements in the list. 50 * it's slow but the list cannot be long 51 */ 52 static u32 prog_list_length(struct list_head *head) 53 { 54 struct bpf_prog_list *pl; 55 u32 cnt = 0; 56 57 list_for_each_entry(pl, head, node) { 58 if (!pl->prog) 59 continue; 60 cnt++; 61 } 62 return cnt; 63 } 64 65 /* if parent has non-overridable prog attached, 66 * disallow attaching new programs to the descendent cgroup. 67 * if parent has overridable or multi-prog, allow attaching 68 */ 69 static bool hierarchy_allows_attach(struct cgroup *cgrp, 70 enum bpf_attach_type type, 71 u32 new_flags) 72 { 73 struct cgroup *p; 74 75 p = cgroup_parent(cgrp); 76 if (!p) 77 return true; 78 do { 79 u32 flags = p->bpf.flags[type]; 80 u32 cnt; 81 82 if (flags & BPF_F_ALLOW_MULTI) 83 return true; 84 cnt = prog_list_length(&p->bpf.progs[type]); 85 WARN_ON_ONCE(cnt > 1); 86 if (cnt == 1) 87 return !!(flags & BPF_F_ALLOW_OVERRIDE); 88 p = cgroup_parent(p); 89 } while (p); 90 return true; 91 } 92 93 /* compute a chain of effective programs for a given cgroup: 94 * start from the list of programs in this cgroup and add 95 * all parent programs. 96 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 97 * to programs in this cgroup 98 */ 99 static int compute_effective_progs(struct cgroup *cgrp, 100 enum bpf_attach_type type, 101 struct bpf_prog_array __rcu **array) 102 { 103 enum bpf_cgroup_storage_type stype; 104 struct bpf_prog_array *progs; 105 struct bpf_prog_list *pl; 106 struct cgroup *p = cgrp; 107 int cnt = 0; 108 109 /* count number of effective programs by walking parents */ 110 do { 111 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 112 cnt += prog_list_length(&p->bpf.progs[type]); 113 p = cgroup_parent(p); 114 } while (p); 115 116 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 117 if (!progs) 118 return -ENOMEM; 119 120 /* populate the array with effective progs */ 121 cnt = 0; 122 p = cgrp; 123 do { 124 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 125 continue; 126 127 list_for_each_entry(pl, &p->bpf.progs[type], node) { 128 if (!pl->prog) 129 continue; 130 131 progs->items[cnt].prog = pl->prog; 132 for_each_cgroup_storage_type(stype) 133 progs->items[cnt].cgroup_storage[stype] = 134 pl->storage[stype]; 135 cnt++; 136 } 137 } while ((p = cgroup_parent(p))); 138 139 rcu_assign_pointer(*array, progs); 140 return 0; 141 } 142 143 static void activate_effective_progs(struct cgroup *cgrp, 144 enum bpf_attach_type type, 145 struct bpf_prog_array __rcu *array) 146 { 147 struct bpf_prog_array __rcu *old_array; 148 149 old_array = xchg(&cgrp->bpf.effective[type], array); 150 /* free prog array after grace period, since __cgroup_bpf_run_*() 151 * might be still walking the array 152 */ 153 bpf_prog_array_free(old_array); 154 } 155 156 /** 157 * cgroup_bpf_inherit() - inherit effective programs from parent 158 * @cgrp: the cgroup to modify 159 */ 160 int cgroup_bpf_inherit(struct cgroup *cgrp) 161 { 162 /* has to use marco instead of const int, since compiler thinks 163 * that array below is variable length 164 */ 165 #define NR ARRAY_SIZE(cgrp->bpf.effective) 166 struct bpf_prog_array __rcu *arrays[NR] = {}; 167 int i; 168 169 for (i = 0; i < NR; i++) 170 INIT_LIST_HEAD(&cgrp->bpf.progs[i]); 171 172 for (i = 0; i < NR; i++) 173 if (compute_effective_progs(cgrp, i, &arrays[i])) 174 goto cleanup; 175 176 for (i = 0; i < NR; i++) 177 activate_effective_progs(cgrp, i, arrays[i]); 178 179 return 0; 180 cleanup: 181 for (i = 0; i < NR; i++) 182 bpf_prog_array_free(arrays[i]); 183 return -ENOMEM; 184 } 185 186 static int update_effective_progs(struct cgroup *cgrp, 187 enum bpf_attach_type type) 188 { 189 struct cgroup_subsys_state *css; 190 int err; 191 192 /* allocate and recompute effective prog arrays */ 193 css_for_each_descendant_pre(css, &cgrp->self) { 194 struct cgroup *desc = container_of(css, struct cgroup, self); 195 196 err = compute_effective_progs(desc, type, &desc->bpf.inactive); 197 if (err) 198 goto cleanup; 199 } 200 201 /* all allocations were successful. Activate all prog arrays */ 202 css_for_each_descendant_pre(css, &cgrp->self) { 203 struct cgroup *desc = container_of(css, struct cgroup, self); 204 205 activate_effective_progs(desc, type, desc->bpf.inactive); 206 desc->bpf.inactive = NULL; 207 } 208 209 return 0; 210 211 cleanup: 212 /* oom while computing effective. Free all computed effective arrays 213 * since they were not activated 214 */ 215 css_for_each_descendant_pre(css, &cgrp->self) { 216 struct cgroup *desc = container_of(css, struct cgroup, self); 217 218 bpf_prog_array_free(desc->bpf.inactive); 219 desc->bpf.inactive = NULL; 220 } 221 222 return err; 223 } 224 225 #define BPF_CGROUP_MAX_PROGS 64 226 227 /** 228 * __cgroup_bpf_attach() - Attach the program to a cgroup, and 229 * propagate the change to descendants 230 * @cgrp: The cgroup which descendants to traverse 231 * @prog: A program to attach 232 * @type: Type of attach operation 233 * 234 * Must be called with cgroup_mutex held. 235 */ 236 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 237 enum bpf_attach_type type, u32 flags) 238 { 239 struct list_head *progs = &cgrp->bpf.progs[type]; 240 struct bpf_prog *old_prog = NULL; 241 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE], 242 *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL}; 243 enum bpf_cgroup_storage_type stype; 244 struct bpf_prog_list *pl; 245 bool pl_was_allocated; 246 int err; 247 248 if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) 249 /* invalid combination */ 250 return -EINVAL; 251 252 if (!hierarchy_allows_attach(cgrp, type, flags)) 253 return -EPERM; 254 255 if (!list_empty(progs) && cgrp->bpf.flags[type] != flags) 256 /* Disallow attaching non-overridable on top 257 * of existing overridable in this cgroup. 258 * Disallow attaching multi-prog if overridable or none 259 */ 260 return -EPERM; 261 262 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 263 return -E2BIG; 264 265 for_each_cgroup_storage_type(stype) { 266 storage[stype] = bpf_cgroup_storage_alloc(prog, stype); 267 if (IS_ERR(storage[stype])) { 268 storage[stype] = NULL; 269 for_each_cgroup_storage_type(stype) 270 bpf_cgroup_storage_free(storage[stype]); 271 return -ENOMEM; 272 } 273 } 274 275 if (flags & BPF_F_ALLOW_MULTI) { 276 list_for_each_entry(pl, progs, node) { 277 if (pl->prog == prog) { 278 /* disallow attaching the same prog twice */ 279 for_each_cgroup_storage_type(stype) 280 bpf_cgroup_storage_free(storage[stype]); 281 return -EINVAL; 282 } 283 } 284 285 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 286 if (!pl) { 287 for_each_cgroup_storage_type(stype) 288 bpf_cgroup_storage_free(storage[stype]); 289 return -ENOMEM; 290 } 291 292 pl_was_allocated = true; 293 pl->prog = prog; 294 for_each_cgroup_storage_type(stype) 295 pl->storage[stype] = storage[stype]; 296 list_add_tail(&pl->node, progs); 297 } else { 298 if (list_empty(progs)) { 299 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 300 if (!pl) { 301 for_each_cgroup_storage_type(stype) 302 bpf_cgroup_storage_free(storage[stype]); 303 return -ENOMEM; 304 } 305 pl_was_allocated = true; 306 list_add_tail(&pl->node, progs); 307 } else { 308 pl = list_first_entry(progs, typeof(*pl), node); 309 old_prog = pl->prog; 310 for_each_cgroup_storage_type(stype) { 311 old_storage[stype] = pl->storage[stype]; 312 bpf_cgroup_storage_unlink(old_storage[stype]); 313 } 314 pl_was_allocated = false; 315 } 316 pl->prog = prog; 317 for_each_cgroup_storage_type(stype) 318 pl->storage[stype] = storage[stype]; 319 } 320 321 cgrp->bpf.flags[type] = flags; 322 323 err = update_effective_progs(cgrp, type); 324 if (err) 325 goto cleanup; 326 327 static_branch_inc(&cgroup_bpf_enabled_key); 328 for_each_cgroup_storage_type(stype) { 329 if (!old_storage[stype]) 330 continue; 331 bpf_cgroup_storage_free(old_storage[stype]); 332 } 333 if (old_prog) { 334 bpf_prog_put(old_prog); 335 static_branch_dec(&cgroup_bpf_enabled_key); 336 } 337 for_each_cgroup_storage_type(stype) 338 bpf_cgroup_storage_link(storage[stype], cgrp, type); 339 return 0; 340 341 cleanup: 342 /* and cleanup the prog list */ 343 pl->prog = old_prog; 344 for_each_cgroup_storage_type(stype) { 345 bpf_cgroup_storage_free(pl->storage[stype]); 346 pl->storage[stype] = old_storage[stype]; 347 bpf_cgroup_storage_link(old_storage[stype], cgrp, type); 348 } 349 if (pl_was_allocated) { 350 list_del(&pl->node); 351 kfree(pl); 352 } 353 return err; 354 } 355 356 /** 357 * __cgroup_bpf_detach() - Detach the program from a cgroup, and 358 * propagate the change to descendants 359 * @cgrp: The cgroup which descendants to traverse 360 * @prog: A program to detach or NULL 361 * @type: Type of detach operation 362 * 363 * Must be called with cgroup_mutex held. 364 */ 365 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 366 enum bpf_attach_type type, u32 unused_flags) 367 { 368 struct list_head *progs = &cgrp->bpf.progs[type]; 369 enum bpf_cgroup_storage_type stype; 370 u32 flags = cgrp->bpf.flags[type]; 371 struct bpf_prog *old_prog = NULL; 372 struct bpf_prog_list *pl; 373 int err; 374 375 if (flags & BPF_F_ALLOW_MULTI) { 376 if (!prog) 377 /* to detach MULTI prog the user has to specify valid FD 378 * of the program to be detached 379 */ 380 return -EINVAL; 381 } else { 382 if (list_empty(progs)) 383 /* report error when trying to detach and nothing is attached */ 384 return -ENOENT; 385 } 386 387 if (flags & BPF_F_ALLOW_MULTI) { 388 /* find the prog and detach it */ 389 list_for_each_entry(pl, progs, node) { 390 if (pl->prog != prog) 391 continue; 392 old_prog = prog; 393 /* mark it deleted, so it's ignored while 394 * recomputing effective 395 */ 396 pl->prog = NULL; 397 break; 398 } 399 if (!old_prog) 400 return -ENOENT; 401 } else { 402 /* to maintain backward compatibility NONE and OVERRIDE cgroups 403 * allow detaching with invalid FD (prog==NULL) 404 */ 405 pl = list_first_entry(progs, typeof(*pl), node); 406 old_prog = pl->prog; 407 pl->prog = NULL; 408 } 409 410 err = update_effective_progs(cgrp, type); 411 if (err) 412 goto cleanup; 413 414 /* now can actually delete it from this cgroup list */ 415 list_del(&pl->node); 416 for_each_cgroup_storage_type(stype) { 417 bpf_cgroup_storage_unlink(pl->storage[stype]); 418 bpf_cgroup_storage_free(pl->storage[stype]); 419 } 420 kfree(pl); 421 if (list_empty(progs)) 422 /* last program was detached, reset flags to zero */ 423 cgrp->bpf.flags[type] = 0; 424 425 bpf_prog_put(old_prog); 426 static_branch_dec(&cgroup_bpf_enabled_key); 427 return 0; 428 429 cleanup: 430 /* and restore back old_prog */ 431 pl->prog = old_prog; 432 return err; 433 } 434 435 /* Must be called with cgroup_mutex held to avoid races. */ 436 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 437 union bpf_attr __user *uattr) 438 { 439 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 440 enum bpf_attach_type type = attr->query.attach_type; 441 struct list_head *progs = &cgrp->bpf.progs[type]; 442 u32 flags = cgrp->bpf.flags[type]; 443 int cnt, ret = 0, i; 444 445 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) 446 cnt = bpf_prog_array_length(cgrp->bpf.effective[type]); 447 else 448 cnt = prog_list_length(progs); 449 450 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 451 return -EFAULT; 452 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt))) 453 return -EFAULT; 454 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt) 455 /* return early if user requested only program count + flags */ 456 return 0; 457 if (attr->query.prog_cnt < cnt) { 458 cnt = attr->query.prog_cnt; 459 ret = -ENOSPC; 460 } 461 462 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 463 return bpf_prog_array_copy_to_user(cgrp->bpf.effective[type], 464 prog_ids, cnt); 465 } else { 466 struct bpf_prog_list *pl; 467 u32 id; 468 469 i = 0; 470 list_for_each_entry(pl, progs, node) { 471 id = pl->prog->aux->id; 472 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 473 return -EFAULT; 474 if (++i == cnt) 475 break; 476 } 477 } 478 return ret; 479 } 480 481 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 482 enum bpf_prog_type ptype, struct bpf_prog *prog) 483 { 484 struct cgroup *cgrp; 485 int ret; 486 487 cgrp = cgroup_get_from_fd(attr->target_fd); 488 if (IS_ERR(cgrp)) 489 return PTR_ERR(cgrp); 490 491 ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type, 492 attr->attach_flags); 493 cgroup_put(cgrp); 494 return ret; 495 } 496 497 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 498 { 499 struct bpf_prog *prog; 500 struct cgroup *cgrp; 501 int ret; 502 503 cgrp = cgroup_get_from_fd(attr->target_fd); 504 if (IS_ERR(cgrp)) 505 return PTR_ERR(cgrp); 506 507 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 508 if (IS_ERR(prog)) 509 prog = NULL; 510 511 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); 512 if (prog) 513 bpf_prog_put(prog); 514 515 cgroup_put(cgrp); 516 return ret; 517 } 518 519 int cgroup_bpf_prog_query(const union bpf_attr *attr, 520 union bpf_attr __user *uattr) 521 { 522 struct cgroup *cgrp; 523 int ret; 524 525 cgrp = cgroup_get_from_fd(attr->query.target_fd); 526 if (IS_ERR(cgrp)) 527 return PTR_ERR(cgrp); 528 529 ret = cgroup_bpf_query(cgrp, attr, uattr); 530 531 cgroup_put(cgrp); 532 return ret; 533 } 534 535 /** 536 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 537 * @sk: The socket sending or receiving traffic 538 * @skb: The skb that is being sent or received 539 * @type: The type of program to be exectuted 540 * 541 * If no socket is passed, or the socket is not of type INET or INET6, 542 * this function does nothing and returns 0. 543 * 544 * The program type passed in via @type must be suitable for network 545 * filtering. No further check is performed to assert that. 546 * 547 * This function will return %-EPERM if any if an attached program was found 548 * and if it returned != 1 during execution. In all other cases, 0 is returned. 549 */ 550 int __cgroup_bpf_run_filter_skb(struct sock *sk, 551 struct sk_buff *skb, 552 enum bpf_attach_type type) 553 { 554 unsigned int offset = skb->data - skb_network_header(skb); 555 struct sock *save_sk; 556 void *saved_data_end; 557 struct cgroup *cgrp; 558 int ret; 559 560 if (!sk || !sk_fullsock(sk)) 561 return 0; 562 563 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 564 return 0; 565 566 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 567 save_sk = skb->sk; 568 skb->sk = sk; 569 __skb_push(skb, offset); 570 571 /* compute pointers for the bpf prog */ 572 bpf_compute_and_save_data_end(skb, &saved_data_end); 573 574 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb, 575 bpf_prog_run_save_cb); 576 bpf_restore_data_end(skb, saved_data_end); 577 __skb_pull(skb, offset); 578 skb->sk = save_sk; 579 return ret == 1 ? 0 : -EPERM; 580 } 581 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 582 583 /** 584 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 585 * @sk: sock structure to manipulate 586 * @type: The type of program to be exectuted 587 * 588 * socket is passed is expected to be of type INET or INET6. 589 * 590 * The program type passed in via @type must be suitable for sock 591 * filtering. No further check is performed to assert that. 592 * 593 * This function will return %-EPERM if any if an attached program was found 594 * and if it returned != 1 during execution. In all other cases, 0 is returned. 595 */ 596 int __cgroup_bpf_run_filter_sk(struct sock *sk, 597 enum bpf_attach_type type) 598 { 599 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 600 int ret; 601 602 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN); 603 return ret == 1 ? 0 : -EPERM; 604 } 605 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 606 607 /** 608 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 609 * provided by user sockaddr 610 * @sk: sock struct that will use sockaddr 611 * @uaddr: sockaddr struct provided by user 612 * @type: The type of program to be exectuted 613 * @t_ctx: Pointer to attach type specific context 614 * 615 * socket is expected to be of type INET or INET6. 616 * 617 * This function will return %-EPERM if an attached program is found and 618 * returned value != 1 during execution. In all other cases, 0 is returned. 619 */ 620 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 621 struct sockaddr *uaddr, 622 enum bpf_attach_type type, 623 void *t_ctx) 624 { 625 struct bpf_sock_addr_kern ctx = { 626 .sk = sk, 627 .uaddr = uaddr, 628 .t_ctx = t_ctx, 629 }; 630 struct sockaddr_storage unspec; 631 struct cgroup *cgrp; 632 int ret; 633 634 /* Check socket family since not all sockets represent network 635 * endpoint (e.g. AF_UNIX). 636 */ 637 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 638 return 0; 639 640 if (!ctx.uaddr) { 641 memset(&unspec, 0, sizeof(unspec)); 642 ctx.uaddr = (struct sockaddr *)&unspec; 643 } 644 645 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 646 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 647 648 return ret == 1 ? 0 : -EPERM; 649 } 650 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 651 652 /** 653 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 654 * @sk: socket to get cgroup from 655 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 656 * sk with connection information (IP addresses, etc.) May not contain 657 * cgroup info if it is a req sock. 658 * @type: The type of program to be exectuted 659 * 660 * socket passed is expected to be of type INET or INET6. 661 * 662 * The program type passed in via @type must be suitable for sock_ops 663 * filtering. No further check is performed to assert that. 664 * 665 * This function will return %-EPERM if any if an attached program was found 666 * and if it returned != 1 during execution. In all other cases, 0 is returned. 667 */ 668 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 669 struct bpf_sock_ops_kern *sock_ops, 670 enum bpf_attach_type type) 671 { 672 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 673 int ret; 674 675 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops, 676 BPF_PROG_RUN); 677 return ret == 1 ? 0 : -EPERM; 678 } 679 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 680 681 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 682 short access, enum bpf_attach_type type) 683 { 684 struct cgroup *cgrp; 685 struct bpf_cgroup_dev_ctx ctx = { 686 .access_type = (access << 16) | dev_type, 687 .major = major, 688 .minor = minor, 689 }; 690 int allow = 1; 691 692 rcu_read_lock(); 693 cgrp = task_dfl_cgroup(current); 694 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, 695 BPF_PROG_RUN); 696 rcu_read_unlock(); 697 698 return !allow; 699 } 700 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission); 701 702 static const struct bpf_func_proto * 703 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 704 { 705 switch (func_id) { 706 case BPF_FUNC_map_lookup_elem: 707 return &bpf_map_lookup_elem_proto; 708 case BPF_FUNC_map_update_elem: 709 return &bpf_map_update_elem_proto; 710 case BPF_FUNC_map_delete_elem: 711 return &bpf_map_delete_elem_proto; 712 case BPF_FUNC_get_current_uid_gid: 713 return &bpf_get_current_uid_gid_proto; 714 case BPF_FUNC_get_local_storage: 715 return &bpf_get_local_storage_proto; 716 case BPF_FUNC_get_current_cgroup_id: 717 return &bpf_get_current_cgroup_id_proto; 718 case BPF_FUNC_trace_printk: 719 if (capable(CAP_SYS_ADMIN)) 720 return bpf_get_trace_printk_proto(); 721 default: 722 return NULL; 723 } 724 } 725 726 static bool cgroup_dev_is_valid_access(int off, int size, 727 enum bpf_access_type type, 728 const struct bpf_prog *prog, 729 struct bpf_insn_access_aux *info) 730 { 731 const int size_default = sizeof(__u32); 732 733 if (type == BPF_WRITE) 734 return false; 735 736 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 737 return false; 738 /* The verifier guarantees that size > 0. */ 739 if (off % size != 0) 740 return false; 741 742 switch (off) { 743 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 744 bpf_ctx_record_field_size(info, size_default); 745 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 746 return false; 747 break; 748 default: 749 if (size != size_default) 750 return false; 751 } 752 753 return true; 754 } 755 756 const struct bpf_prog_ops cg_dev_prog_ops = { 757 }; 758 759 const struct bpf_verifier_ops cg_dev_verifier_ops = { 760 .get_func_proto = cgroup_dev_func_proto, 761 .is_valid_access = cgroup_dev_is_valid_access, 762 }; 763