1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/bpf_lsm.h> 18 #include <linux/bpf_verifier.h> 19 #include <net/sock.h> 20 #include <net/bpf_sk_storage.h> 21 22 #include "../cgroup/cgroup-internal.h" 23 24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 25 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 26 27 /* __always_inline is necessary to prevent indirect call through run_prog 28 * function pointer. 29 */ 30 static __always_inline int 31 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 32 enum cgroup_bpf_attach_type atype, 33 const void *ctx, bpf_prog_run_fn run_prog, 34 int retval, u32 *ret_flags) 35 { 36 const struct bpf_prog_array_item *item; 37 const struct bpf_prog *prog; 38 const struct bpf_prog_array *array; 39 struct bpf_run_ctx *old_run_ctx; 40 struct bpf_cg_run_ctx run_ctx; 41 u32 func_ret; 42 43 run_ctx.retval = retval; 44 migrate_disable(); 45 rcu_read_lock(); 46 array = rcu_dereference(cgrp->effective[atype]); 47 item = &array->items[0]; 48 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 49 while ((prog = READ_ONCE(item->prog))) { 50 run_ctx.prog_item = item; 51 func_ret = run_prog(prog, ctx); 52 if (ret_flags) { 53 *(ret_flags) |= (func_ret >> 1); 54 func_ret &= 1; 55 } 56 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 57 run_ctx.retval = -EPERM; 58 item++; 59 } 60 bpf_reset_run_ctx(old_run_ctx); 61 rcu_read_unlock(); 62 migrate_enable(); 63 return run_ctx.retval; 64 } 65 66 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, 67 const struct bpf_insn *insn) 68 { 69 const struct bpf_prog *shim_prog; 70 struct sock *sk; 71 struct cgroup *cgrp; 72 int ret = 0; 73 u64 *args; 74 75 args = (u64 *)ctx; 76 sk = (void *)(unsigned long)args[0]; 77 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 78 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 79 80 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 81 if (likely(cgrp)) 82 ret = bpf_prog_run_array_cg(&cgrp->bpf, 83 shim_prog->aux->cgroup_atype, 84 ctx, bpf_prog_run, 0, NULL); 85 return ret; 86 } 87 88 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, 89 const struct bpf_insn *insn) 90 { 91 const struct bpf_prog *shim_prog; 92 struct socket *sock; 93 struct cgroup *cgrp; 94 int ret = 0; 95 u64 *args; 96 97 args = (u64 *)ctx; 98 sock = (void *)(unsigned long)args[0]; 99 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 100 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 101 102 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); 103 if (likely(cgrp)) 104 ret = bpf_prog_run_array_cg(&cgrp->bpf, 105 shim_prog->aux->cgroup_atype, 106 ctx, bpf_prog_run, 0, NULL); 107 return ret; 108 } 109 110 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, 111 const struct bpf_insn *insn) 112 { 113 const struct bpf_prog *shim_prog; 114 struct cgroup *cgrp; 115 int ret = 0; 116 117 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 118 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 119 120 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ 121 cgrp = task_dfl_cgroup(current); 122 if (likely(cgrp)) 123 ret = bpf_prog_run_array_cg(&cgrp->bpf, 124 shim_prog->aux->cgroup_atype, 125 ctx, bpf_prog_run, 0, NULL); 126 return ret; 127 } 128 129 #ifdef CONFIG_BPF_LSM 130 struct cgroup_lsm_atype { 131 u32 attach_btf_id; 132 int refcnt; 133 }; 134 135 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; 136 137 static enum cgroup_bpf_attach_type 138 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 139 { 140 int i; 141 142 lockdep_assert_held(&cgroup_mutex); 143 144 if (attach_type != BPF_LSM_CGROUP) 145 return to_cgroup_bpf_attach_type(attach_type); 146 147 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 148 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) 149 return CGROUP_LSM_START + i; 150 151 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 152 if (cgroup_lsm_atype[i].attach_btf_id == 0) 153 return CGROUP_LSM_START + i; 154 155 return -E2BIG; 156 157 } 158 159 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) 160 { 161 int i = cgroup_atype - CGROUP_LSM_START; 162 163 lockdep_assert_held(&cgroup_mutex); 164 165 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && 166 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); 167 168 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; 169 cgroup_lsm_atype[i].refcnt++; 170 } 171 172 void bpf_cgroup_atype_put(int cgroup_atype) 173 { 174 int i = cgroup_atype - CGROUP_LSM_START; 175 176 mutex_lock(&cgroup_mutex); 177 if (--cgroup_lsm_atype[i].refcnt <= 0) 178 cgroup_lsm_atype[i].attach_btf_id = 0; 179 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); 180 mutex_unlock(&cgroup_mutex); 181 } 182 #else 183 static enum cgroup_bpf_attach_type 184 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 185 { 186 if (attach_type != BPF_LSM_CGROUP) 187 return to_cgroup_bpf_attach_type(attach_type); 188 return -EOPNOTSUPP; 189 } 190 #endif /* CONFIG_BPF_LSM */ 191 192 void cgroup_bpf_offline(struct cgroup *cgrp) 193 { 194 cgroup_get(cgrp); 195 percpu_ref_kill(&cgrp->bpf.refcnt); 196 } 197 198 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 199 { 200 enum bpf_cgroup_storage_type stype; 201 202 for_each_cgroup_storage_type(stype) 203 bpf_cgroup_storage_free(storages[stype]); 204 } 205 206 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 207 struct bpf_cgroup_storage *new_storages[], 208 enum bpf_attach_type type, 209 struct bpf_prog *prog, 210 struct cgroup *cgrp) 211 { 212 enum bpf_cgroup_storage_type stype; 213 struct bpf_cgroup_storage_key key; 214 struct bpf_map *map; 215 216 key.cgroup_inode_id = cgroup_id(cgrp); 217 key.attach_type = type; 218 219 for_each_cgroup_storage_type(stype) { 220 map = prog->aux->cgroup_storage[stype]; 221 if (!map) 222 continue; 223 224 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 225 if (storages[stype]) 226 continue; 227 228 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 229 if (IS_ERR(storages[stype])) { 230 bpf_cgroup_storages_free(new_storages); 231 return -ENOMEM; 232 } 233 234 new_storages[stype] = storages[stype]; 235 } 236 237 return 0; 238 } 239 240 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 241 struct bpf_cgroup_storage *src[]) 242 { 243 enum bpf_cgroup_storage_type stype; 244 245 for_each_cgroup_storage_type(stype) 246 dst[stype] = src[stype]; 247 } 248 249 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 250 struct cgroup *cgrp, 251 enum bpf_attach_type attach_type) 252 { 253 enum bpf_cgroup_storage_type stype; 254 255 for_each_cgroup_storage_type(stype) 256 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 257 } 258 259 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 260 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 261 * doesn't free link memory, which will eventually be done by bpf_link's 262 * release() callback, when its last FD is closed. 263 */ 264 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 265 { 266 cgroup_put(link->cgroup); 267 link->cgroup = NULL; 268 } 269 270 /** 271 * cgroup_bpf_release() - put references of all bpf programs and 272 * release all cgroup bpf data 273 * @work: work structure embedded into the cgroup to modify 274 */ 275 static void cgroup_bpf_release(struct work_struct *work) 276 { 277 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 278 bpf.release_work); 279 struct bpf_prog_array *old_array; 280 struct list_head *storages = &cgrp->bpf.storages; 281 struct bpf_cgroup_storage *storage, *stmp; 282 283 unsigned int atype; 284 285 mutex_lock(&cgroup_mutex); 286 287 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 288 struct hlist_head *progs = &cgrp->bpf.progs[atype]; 289 struct bpf_prog_list *pl; 290 struct hlist_node *pltmp; 291 292 hlist_for_each_entry_safe(pl, pltmp, progs, node) { 293 hlist_del(&pl->node); 294 if (pl->prog) { 295 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) 296 bpf_trampoline_unlink_cgroup_shim(pl->prog); 297 bpf_prog_put(pl->prog); 298 } 299 if (pl->link) { 300 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) 301 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); 302 bpf_cgroup_link_auto_detach(pl->link); 303 } 304 kfree(pl); 305 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 306 } 307 old_array = rcu_dereference_protected( 308 cgrp->bpf.effective[atype], 309 lockdep_is_held(&cgroup_mutex)); 310 bpf_prog_array_free(old_array); 311 } 312 313 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 314 bpf_cgroup_storage_unlink(storage); 315 bpf_cgroup_storage_free(storage); 316 } 317 318 mutex_unlock(&cgroup_mutex); 319 320 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 321 cgroup_bpf_put(p); 322 323 percpu_ref_exit(&cgrp->bpf.refcnt); 324 cgroup_put(cgrp); 325 } 326 327 /** 328 * cgroup_bpf_release_fn() - callback used to schedule releasing 329 * of bpf cgroup data 330 * @ref: percpu ref counter structure 331 */ 332 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 333 { 334 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 335 336 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 337 queue_work(system_wq, &cgrp->bpf.release_work); 338 } 339 340 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 341 * link or direct prog. 342 */ 343 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 344 { 345 if (pl->prog) 346 return pl->prog; 347 if (pl->link) 348 return pl->link->link.prog; 349 return NULL; 350 } 351 352 /* count number of elements in the list. 353 * it's slow but the list cannot be long 354 */ 355 static u32 prog_list_length(struct hlist_head *head) 356 { 357 struct bpf_prog_list *pl; 358 u32 cnt = 0; 359 360 hlist_for_each_entry(pl, head, node) { 361 if (!prog_list_prog(pl)) 362 continue; 363 cnt++; 364 } 365 return cnt; 366 } 367 368 /* if parent has non-overridable prog attached, 369 * disallow attaching new programs to the descendent cgroup. 370 * if parent has overridable or multi-prog, allow attaching 371 */ 372 static bool hierarchy_allows_attach(struct cgroup *cgrp, 373 enum cgroup_bpf_attach_type atype) 374 { 375 struct cgroup *p; 376 377 p = cgroup_parent(cgrp); 378 if (!p) 379 return true; 380 do { 381 u32 flags = p->bpf.flags[atype]; 382 u32 cnt; 383 384 if (flags & BPF_F_ALLOW_MULTI) 385 return true; 386 cnt = prog_list_length(&p->bpf.progs[atype]); 387 WARN_ON_ONCE(cnt > 1); 388 if (cnt == 1) 389 return !!(flags & BPF_F_ALLOW_OVERRIDE); 390 p = cgroup_parent(p); 391 } while (p); 392 return true; 393 } 394 395 /* compute a chain of effective programs for a given cgroup: 396 * start from the list of programs in this cgroup and add 397 * all parent programs. 398 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 399 * to programs in this cgroup 400 */ 401 static int compute_effective_progs(struct cgroup *cgrp, 402 enum cgroup_bpf_attach_type atype, 403 struct bpf_prog_array **array) 404 { 405 struct bpf_prog_array_item *item; 406 struct bpf_prog_array *progs; 407 struct bpf_prog_list *pl; 408 struct cgroup *p = cgrp; 409 int cnt = 0; 410 411 /* count number of effective programs by walking parents */ 412 do { 413 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 414 cnt += prog_list_length(&p->bpf.progs[atype]); 415 p = cgroup_parent(p); 416 } while (p); 417 418 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 419 if (!progs) 420 return -ENOMEM; 421 422 /* populate the array with effective progs */ 423 cnt = 0; 424 p = cgrp; 425 do { 426 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 427 continue; 428 429 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { 430 if (!prog_list_prog(pl)) 431 continue; 432 433 item = &progs->items[cnt]; 434 item->prog = prog_list_prog(pl); 435 bpf_cgroup_storages_assign(item->cgroup_storage, 436 pl->storage); 437 cnt++; 438 } 439 } while ((p = cgroup_parent(p))); 440 441 *array = progs; 442 return 0; 443 } 444 445 static void activate_effective_progs(struct cgroup *cgrp, 446 enum cgroup_bpf_attach_type atype, 447 struct bpf_prog_array *old_array) 448 { 449 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 450 lockdep_is_held(&cgroup_mutex)); 451 /* free prog array after grace period, since __cgroup_bpf_run_*() 452 * might be still walking the array 453 */ 454 bpf_prog_array_free(old_array); 455 } 456 457 /** 458 * cgroup_bpf_inherit() - inherit effective programs from parent 459 * @cgrp: the cgroup to modify 460 */ 461 int cgroup_bpf_inherit(struct cgroup *cgrp) 462 { 463 /* has to use marco instead of const int, since compiler thinks 464 * that array below is variable length 465 */ 466 #define NR ARRAY_SIZE(cgrp->bpf.effective) 467 struct bpf_prog_array *arrays[NR] = {}; 468 struct cgroup *p; 469 int ret, i; 470 471 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 472 GFP_KERNEL); 473 if (ret) 474 return ret; 475 476 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 477 cgroup_bpf_get(p); 478 479 for (i = 0; i < NR; i++) 480 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); 481 482 INIT_LIST_HEAD(&cgrp->bpf.storages); 483 484 for (i = 0; i < NR; i++) 485 if (compute_effective_progs(cgrp, i, &arrays[i])) 486 goto cleanup; 487 488 for (i = 0; i < NR; i++) 489 activate_effective_progs(cgrp, i, arrays[i]); 490 491 return 0; 492 cleanup: 493 for (i = 0; i < NR; i++) 494 bpf_prog_array_free(arrays[i]); 495 496 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 497 cgroup_bpf_put(p); 498 499 percpu_ref_exit(&cgrp->bpf.refcnt); 500 501 return -ENOMEM; 502 } 503 504 static int update_effective_progs(struct cgroup *cgrp, 505 enum cgroup_bpf_attach_type atype) 506 { 507 struct cgroup_subsys_state *css; 508 int err; 509 510 /* allocate and recompute effective prog arrays */ 511 css_for_each_descendant_pre(css, &cgrp->self) { 512 struct cgroup *desc = container_of(css, struct cgroup, self); 513 514 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 515 continue; 516 517 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 518 if (err) 519 goto cleanup; 520 } 521 522 /* all allocations were successful. Activate all prog arrays */ 523 css_for_each_descendant_pre(css, &cgrp->self) { 524 struct cgroup *desc = container_of(css, struct cgroup, self); 525 526 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 527 if (unlikely(desc->bpf.inactive)) { 528 bpf_prog_array_free(desc->bpf.inactive); 529 desc->bpf.inactive = NULL; 530 } 531 continue; 532 } 533 534 activate_effective_progs(desc, atype, desc->bpf.inactive); 535 desc->bpf.inactive = NULL; 536 } 537 538 return 0; 539 540 cleanup: 541 /* oom while computing effective. Free all computed effective arrays 542 * since they were not activated 543 */ 544 css_for_each_descendant_pre(css, &cgrp->self) { 545 struct cgroup *desc = container_of(css, struct cgroup, self); 546 547 bpf_prog_array_free(desc->bpf.inactive); 548 desc->bpf.inactive = NULL; 549 } 550 551 return err; 552 } 553 554 #define BPF_CGROUP_MAX_PROGS 64 555 556 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, 557 struct bpf_prog *prog, 558 struct bpf_cgroup_link *link, 559 struct bpf_prog *replace_prog, 560 bool allow_multi) 561 { 562 struct bpf_prog_list *pl; 563 564 /* single-attach case */ 565 if (!allow_multi) { 566 if (hlist_empty(progs)) 567 return NULL; 568 return hlist_entry(progs->first, typeof(*pl), node); 569 } 570 571 hlist_for_each_entry(pl, progs, node) { 572 if (prog && pl->prog == prog && prog != replace_prog) 573 /* disallow attaching the same prog twice */ 574 return ERR_PTR(-EINVAL); 575 if (link && pl->link == link) 576 /* disallow attaching the same link twice */ 577 return ERR_PTR(-EINVAL); 578 } 579 580 /* direct prog multi-attach w/ replacement case */ 581 if (replace_prog) { 582 hlist_for_each_entry(pl, progs, node) { 583 if (pl->prog == replace_prog) 584 /* a match found */ 585 return pl; 586 } 587 /* prog to replace not found for cgroup */ 588 return ERR_PTR(-ENOENT); 589 } 590 591 return NULL; 592 } 593 594 /** 595 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 596 * propagate the change to descendants 597 * @cgrp: The cgroup which descendants to traverse 598 * @prog: A program to attach 599 * @link: A link to attach 600 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 601 * @type: Type of attach operation 602 * @flags: Option flags 603 * 604 * Exactly one of @prog or @link can be non-null. 605 * Must be called with cgroup_mutex held. 606 */ 607 static int __cgroup_bpf_attach(struct cgroup *cgrp, 608 struct bpf_prog *prog, struct bpf_prog *replace_prog, 609 struct bpf_cgroup_link *link, 610 enum bpf_attach_type type, u32 flags) 611 { 612 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 613 struct bpf_prog *old_prog = NULL; 614 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 615 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 616 struct bpf_prog *new_prog = prog ? : link->link.prog; 617 enum cgroup_bpf_attach_type atype; 618 struct bpf_prog_list *pl; 619 struct hlist_head *progs; 620 int err; 621 622 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 623 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 624 /* invalid combination */ 625 return -EINVAL; 626 if (link && (prog || replace_prog)) 627 /* only either link or prog/replace_prog can be specified */ 628 return -EINVAL; 629 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 630 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 631 return -EINVAL; 632 633 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); 634 if (atype < 0) 635 return -EINVAL; 636 637 progs = &cgrp->bpf.progs[atype]; 638 639 if (!hierarchy_allows_attach(cgrp, atype)) 640 return -EPERM; 641 642 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 643 /* Disallow attaching non-overridable on top 644 * of existing overridable in this cgroup. 645 * Disallow attaching multi-prog if overridable or none 646 */ 647 return -EPERM; 648 649 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 650 return -E2BIG; 651 652 pl = find_attach_entry(progs, prog, link, replace_prog, 653 flags & BPF_F_ALLOW_MULTI); 654 if (IS_ERR(pl)) 655 return PTR_ERR(pl); 656 657 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 658 prog ? : link->link.prog, cgrp)) 659 return -ENOMEM; 660 661 if (pl) { 662 old_prog = pl->prog; 663 } else { 664 struct hlist_node *last = NULL; 665 666 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 667 if (!pl) { 668 bpf_cgroup_storages_free(new_storage); 669 return -ENOMEM; 670 } 671 if (hlist_empty(progs)) 672 hlist_add_head(&pl->node, progs); 673 else 674 hlist_for_each(last, progs) { 675 if (last->next) 676 continue; 677 hlist_add_behind(&pl->node, last); 678 break; 679 } 680 } 681 682 pl->prog = prog; 683 pl->link = link; 684 bpf_cgroup_storages_assign(pl->storage, storage); 685 cgrp->bpf.flags[atype] = saved_flags; 686 687 if (type == BPF_LSM_CGROUP) { 688 err = bpf_trampoline_link_cgroup_shim(new_prog, atype); 689 if (err) 690 goto cleanup; 691 } 692 693 err = update_effective_progs(cgrp, atype); 694 if (err) 695 goto cleanup_trampoline; 696 697 if (old_prog) { 698 if (type == BPF_LSM_CGROUP) 699 bpf_trampoline_unlink_cgroup_shim(old_prog); 700 bpf_prog_put(old_prog); 701 } else { 702 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 703 } 704 bpf_cgroup_storages_link(new_storage, cgrp, type); 705 return 0; 706 707 cleanup_trampoline: 708 if (type == BPF_LSM_CGROUP) 709 bpf_trampoline_unlink_cgroup_shim(new_prog); 710 711 cleanup: 712 if (old_prog) { 713 pl->prog = old_prog; 714 pl->link = NULL; 715 } 716 bpf_cgroup_storages_free(new_storage); 717 if (!old_prog) { 718 hlist_del(&pl->node); 719 kfree(pl); 720 } 721 return err; 722 } 723 724 static int cgroup_bpf_attach(struct cgroup *cgrp, 725 struct bpf_prog *prog, struct bpf_prog *replace_prog, 726 struct bpf_cgroup_link *link, 727 enum bpf_attach_type type, 728 u32 flags) 729 { 730 int ret; 731 732 mutex_lock(&cgroup_mutex); 733 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 734 mutex_unlock(&cgroup_mutex); 735 return ret; 736 } 737 738 /* Swap updated BPF program for given link in effective program arrays across 739 * all descendant cgroups. This function is guaranteed to succeed. 740 */ 741 static void replace_effective_prog(struct cgroup *cgrp, 742 enum cgroup_bpf_attach_type atype, 743 struct bpf_cgroup_link *link) 744 { 745 struct bpf_prog_array_item *item; 746 struct cgroup_subsys_state *css; 747 struct bpf_prog_array *progs; 748 struct bpf_prog_list *pl; 749 struct hlist_head *head; 750 struct cgroup *cg; 751 int pos; 752 753 css_for_each_descendant_pre(css, &cgrp->self) { 754 struct cgroup *desc = container_of(css, struct cgroup, self); 755 756 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 757 continue; 758 759 /* find position of link in effective progs array */ 760 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 761 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 762 continue; 763 764 head = &cg->bpf.progs[atype]; 765 hlist_for_each_entry(pl, head, node) { 766 if (!prog_list_prog(pl)) 767 continue; 768 if (pl->link == link) 769 goto found; 770 pos++; 771 } 772 } 773 found: 774 BUG_ON(!cg); 775 progs = rcu_dereference_protected( 776 desc->bpf.effective[atype], 777 lockdep_is_held(&cgroup_mutex)); 778 item = &progs->items[pos]; 779 WRITE_ONCE(item->prog, link->link.prog); 780 } 781 } 782 783 /** 784 * __cgroup_bpf_replace() - Replace link's program and propagate the change 785 * to descendants 786 * @cgrp: The cgroup which descendants to traverse 787 * @link: A link for which to replace BPF program 788 * @type: Type of attach operation 789 * 790 * Must be called with cgroup_mutex held. 791 */ 792 static int __cgroup_bpf_replace(struct cgroup *cgrp, 793 struct bpf_cgroup_link *link, 794 struct bpf_prog *new_prog) 795 { 796 enum cgroup_bpf_attach_type atype; 797 struct bpf_prog *old_prog; 798 struct bpf_prog_list *pl; 799 struct hlist_head *progs; 800 bool found = false; 801 802 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id); 803 if (atype < 0) 804 return -EINVAL; 805 806 progs = &cgrp->bpf.progs[atype]; 807 808 if (link->link.prog->type != new_prog->type) 809 return -EINVAL; 810 811 hlist_for_each_entry(pl, progs, node) { 812 if (pl->link == link) { 813 found = true; 814 break; 815 } 816 } 817 if (!found) 818 return -ENOENT; 819 820 old_prog = xchg(&link->link.prog, new_prog); 821 replace_effective_prog(cgrp, atype, link); 822 bpf_prog_put(old_prog); 823 return 0; 824 } 825 826 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 827 struct bpf_prog *old_prog) 828 { 829 struct bpf_cgroup_link *cg_link; 830 int ret; 831 832 cg_link = container_of(link, struct bpf_cgroup_link, link); 833 834 mutex_lock(&cgroup_mutex); 835 /* link might have been auto-released by dying cgroup, so fail */ 836 if (!cg_link->cgroup) { 837 ret = -ENOLINK; 838 goto out_unlock; 839 } 840 if (old_prog && link->prog != old_prog) { 841 ret = -EPERM; 842 goto out_unlock; 843 } 844 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 845 out_unlock: 846 mutex_unlock(&cgroup_mutex); 847 return ret; 848 } 849 850 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, 851 struct bpf_prog *prog, 852 struct bpf_cgroup_link *link, 853 bool allow_multi) 854 { 855 struct bpf_prog_list *pl; 856 857 if (!allow_multi) { 858 if (hlist_empty(progs)) 859 /* report error when trying to detach and nothing is attached */ 860 return ERR_PTR(-ENOENT); 861 862 /* to maintain backward compatibility NONE and OVERRIDE cgroups 863 * allow detaching with invalid FD (prog==NULL) in legacy mode 864 */ 865 return hlist_entry(progs->first, typeof(*pl), node); 866 } 867 868 if (!prog && !link) 869 /* to detach MULTI prog the user has to specify valid FD 870 * of the program or link to be detached 871 */ 872 return ERR_PTR(-EINVAL); 873 874 /* find the prog or link and detach it */ 875 hlist_for_each_entry(pl, progs, node) { 876 if (pl->prog == prog && pl->link == link) 877 return pl; 878 } 879 return ERR_PTR(-ENOENT); 880 } 881 882 /** 883 * purge_effective_progs() - After compute_effective_progs fails to alloc new 884 * cgrp->bpf.inactive table we can recover by 885 * recomputing the array in place. 886 * 887 * @cgrp: The cgroup which descendants to travers 888 * @prog: A program to detach or NULL 889 * @link: A link to detach or NULL 890 * @atype: Type of detach operation 891 */ 892 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, 893 struct bpf_cgroup_link *link, 894 enum cgroup_bpf_attach_type atype) 895 { 896 struct cgroup_subsys_state *css; 897 struct bpf_prog_array *progs; 898 struct bpf_prog_list *pl; 899 struct hlist_head *head; 900 struct cgroup *cg; 901 int pos; 902 903 /* recompute effective prog array in place */ 904 css_for_each_descendant_pre(css, &cgrp->self) { 905 struct cgroup *desc = container_of(css, struct cgroup, self); 906 907 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 908 continue; 909 910 /* find position of link or prog in effective progs array */ 911 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 912 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 913 continue; 914 915 head = &cg->bpf.progs[atype]; 916 hlist_for_each_entry(pl, head, node) { 917 if (!prog_list_prog(pl)) 918 continue; 919 if (pl->prog == prog && pl->link == link) 920 goto found; 921 pos++; 922 } 923 } 924 925 /* no link or prog match, skip the cgroup of this layer */ 926 continue; 927 found: 928 progs = rcu_dereference_protected( 929 desc->bpf.effective[atype], 930 lockdep_is_held(&cgroup_mutex)); 931 932 /* Remove the program from the array */ 933 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), 934 "Failed to purge a prog from array at index %d", pos); 935 } 936 } 937 938 /** 939 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 940 * propagate the change to descendants 941 * @cgrp: The cgroup which descendants to traverse 942 * @prog: A program to detach or NULL 943 * @link: A link to detach or NULL 944 * @type: Type of detach operation 945 * 946 * At most one of @prog or @link can be non-NULL. 947 * Must be called with cgroup_mutex held. 948 */ 949 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 950 struct bpf_cgroup_link *link, enum bpf_attach_type type) 951 { 952 enum cgroup_bpf_attach_type atype; 953 struct bpf_prog *old_prog; 954 struct bpf_prog_list *pl; 955 struct hlist_head *progs; 956 u32 attach_btf_id = 0; 957 u32 flags; 958 959 if (prog) 960 attach_btf_id = prog->aux->attach_btf_id; 961 if (link) 962 attach_btf_id = link->link.prog->aux->attach_btf_id; 963 964 atype = bpf_cgroup_atype_find(type, attach_btf_id); 965 if (atype < 0) 966 return -EINVAL; 967 968 progs = &cgrp->bpf.progs[atype]; 969 flags = cgrp->bpf.flags[atype]; 970 971 if (prog && link) 972 /* only one of prog or link can be specified */ 973 return -EINVAL; 974 975 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 976 if (IS_ERR(pl)) 977 return PTR_ERR(pl); 978 979 /* mark it deleted, so it's ignored while recomputing effective */ 980 old_prog = pl->prog; 981 pl->prog = NULL; 982 pl->link = NULL; 983 984 if (update_effective_progs(cgrp, atype)) { 985 /* if update effective array failed replace the prog with a dummy prog*/ 986 pl->prog = old_prog; 987 pl->link = link; 988 purge_effective_progs(cgrp, old_prog, link, atype); 989 } 990 991 /* now can actually delete it from this cgroup list */ 992 hlist_del(&pl->node); 993 994 kfree(pl); 995 if (hlist_empty(progs)) 996 /* last program was detached, reset flags to zero */ 997 cgrp->bpf.flags[atype] = 0; 998 if (old_prog) { 999 if (type == BPF_LSM_CGROUP) 1000 bpf_trampoline_unlink_cgroup_shim(old_prog); 1001 bpf_prog_put(old_prog); 1002 } 1003 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 1004 return 0; 1005 } 1006 1007 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1008 enum bpf_attach_type type) 1009 { 1010 int ret; 1011 1012 mutex_lock(&cgroup_mutex); 1013 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 1014 mutex_unlock(&cgroup_mutex); 1015 return ret; 1016 } 1017 1018 /* Must be called with cgroup_mutex held to avoid races. */ 1019 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1020 union bpf_attr __user *uattr) 1021 { 1022 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); 1023 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE; 1024 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 1025 enum bpf_attach_type type = attr->query.attach_type; 1026 enum cgroup_bpf_attach_type from_atype, to_atype; 1027 enum cgroup_bpf_attach_type atype; 1028 struct bpf_prog_array *effective; 1029 int cnt, ret = 0, i; 1030 int total_cnt = 0; 1031 u32 flags; 1032 1033 if (effective_query && prog_attach_flags) 1034 return -EINVAL; 1035 1036 if (type == BPF_LSM_CGROUP) { 1037 if (!effective_query && attr->query.prog_cnt && 1038 prog_ids && !prog_attach_flags) 1039 return -EINVAL; 1040 1041 from_atype = CGROUP_LSM_START; 1042 to_atype = CGROUP_LSM_END; 1043 flags = 0; 1044 } else { 1045 from_atype = to_cgroup_bpf_attach_type(type); 1046 if (from_atype < 0) 1047 return -EINVAL; 1048 to_atype = from_atype; 1049 flags = cgrp->bpf.flags[from_atype]; 1050 } 1051 1052 for (atype = from_atype; atype <= to_atype; atype++) { 1053 if (effective_query) { 1054 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1055 lockdep_is_held(&cgroup_mutex)); 1056 total_cnt += bpf_prog_array_length(effective); 1057 } else { 1058 total_cnt += prog_list_length(&cgrp->bpf.progs[atype]); 1059 } 1060 } 1061 1062 /* always output uattr->query.attach_flags as 0 during effective query */ 1063 flags = effective_query ? 0 : flags; 1064 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 1065 return -EFAULT; 1066 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) 1067 return -EFAULT; 1068 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) 1069 /* return early if user requested only program count + flags */ 1070 return 0; 1071 1072 if (attr->query.prog_cnt < total_cnt) { 1073 total_cnt = attr->query.prog_cnt; 1074 ret = -ENOSPC; 1075 } 1076 1077 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { 1078 if (effective_query) { 1079 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1080 lockdep_is_held(&cgroup_mutex)); 1081 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); 1082 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 1083 } else { 1084 struct hlist_head *progs; 1085 struct bpf_prog_list *pl; 1086 struct bpf_prog *prog; 1087 u32 id; 1088 1089 progs = &cgrp->bpf.progs[atype]; 1090 cnt = min_t(int, prog_list_length(progs), total_cnt); 1091 i = 0; 1092 hlist_for_each_entry(pl, progs, node) { 1093 prog = prog_list_prog(pl); 1094 id = prog->aux->id; 1095 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 1096 return -EFAULT; 1097 if (++i == cnt) 1098 break; 1099 } 1100 1101 if (prog_attach_flags) { 1102 flags = cgrp->bpf.flags[atype]; 1103 1104 for (i = 0; i < cnt; i++) 1105 if (copy_to_user(prog_attach_flags + i, 1106 &flags, sizeof(flags))) 1107 return -EFAULT; 1108 prog_attach_flags += cnt; 1109 } 1110 } 1111 1112 prog_ids += cnt; 1113 total_cnt -= cnt; 1114 } 1115 return ret; 1116 } 1117 1118 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1119 union bpf_attr __user *uattr) 1120 { 1121 int ret; 1122 1123 mutex_lock(&cgroup_mutex); 1124 ret = __cgroup_bpf_query(cgrp, attr, uattr); 1125 mutex_unlock(&cgroup_mutex); 1126 return ret; 1127 } 1128 1129 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 1130 enum bpf_prog_type ptype, struct bpf_prog *prog) 1131 { 1132 struct bpf_prog *replace_prog = NULL; 1133 struct cgroup *cgrp; 1134 int ret; 1135 1136 cgrp = cgroup_get_from_fd(attr->target_fd); 1137 if (IS_ERR(cgrp)) 1138 return PTR_ERR(cgrp); 1139 1140 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 1141 (attr->attach_flags & BPF_F_REPLACE)) { 1142 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 1143 if (IS_ERR(replace_prog)) { 1144 cgroup_put(cgrp); 1145 return PTR_ERR(replace_prog); 1146 } 1147 } 1148 1149 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 1150 attr->attach_type, attr->attach_flags); 1151 1152 if (replace_prog) 1153 bpf_prog_put(replace_prog); 1154 cgroup_put(cgrp); 1155 return ret; 1156 } 1157 1158 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 1159 { 1160 struct bpf_prog *prog; 1161 struct cgroup *cgrp; 1162 int ret; 1163 1164 cgrp = cgroup_get_from_fd(attr->target_fd); 1165 if (IS_ERR(cgrp)) 1166 return PTR_ERR(cgrp); 1167 1168 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 1169 if (IS_ERR(prog)) 1170 prog = NULL; 1171 1172 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type); 1173 if (prog) 1174 bpf_prog_put(prog); 1175 1176 cgroup_put(cgrp); 1177 return ret; 1178 } 1179 1180 static void bpf_cgroup_link_release(struct bpf_link *link) 1181 { 1182 struct bpf_cgroup_link *cg_link = 1183 container_of(link, struct bpf_cgroup_link, link); 1184 struct cgroup *cg; 1185 1186 /* link might have been auto-detached by dying cgroup already, 1187 * in that case our work is done here 1188 */ 1189 if (!cg_link->cgroup) 1190 return; 1191 1192 mutex_lock(&cgroup_mutex); 1193 1194 /* re-check cgroup under lock again */ 1195 if (!cg_link->cgroup) { 1196 mutex_unlock(&cgroup_mutex); 1197 return; 1198 } 1199 1200 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 1201 cg_link->type)); 1202 if (cg_link->type == BPF_LSM_CGROUP) 1203 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); 1204 1205 cg = cg_link->cgroup; 1206 cg_link->cgroup = NULL; 1207 1208 mutex_unlock(&cgroup_mutex); 1209 1210 cgroup_put(cg); 1211 } 1212 1213 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 1214 { 1215 struct bpf_cgroup_link *cg_link = 1216 container_of(link, struct bpf_cgroup_link, link); 1217 1218 kfree(cg_link); 1219 } 1220 1221 static int bpf_cgroup_link_detach(struct bpf_link *link) 1222 { 1223 bpf_cgroup_link_release(link); 1224 1225 return 0; 1226 } 1227 1228 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 1229 struct seq_file *seq) 1230 { 1231 struct bpf_cgroup_link *cg_link = 1232 container_of(link, struct bpf_cgroup_link, link); 1233 u64 cg_id = 0; 1234 1235 mutex_lock(&cgroup_mutex); 1236 if (cg_link->cgroup) 1237 cg_id = cgroup_id(cg_link->cgroup); 1238 mutex_unlock(&cgroup_mutex); 1239 1240 seq_printf(seq, 1241 "cgroup_id:\t%llu\n" 1242 "attach_type:\t%d\n", 1243 cg_id, 1244 cg_link->type); 1245 } 1246 1247 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 1248 struct bpf_link_info *info) 1249 { 1250 struct bpf_cgroup_link *cg_link = 1251 container_of(link, struct bpf_cgroup_link, link); 1252 u64 cg_id = 0; 1253 1254 mutex_lock(&cgroup_mutex); 1255 if (cg_link->cgroup) 1256 cg_id = cgroup_id(cg_link->cgroup); 1257 mutex_unlock(&cgroup_mutex); 1258 1259 info->cgroup.cgroup_id = cg_id; 1260 info->cgroup.attach_type = cg_link->type; 1261 return 0; 1262 } 1263 1264 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1265 .release = bpf_cgroup_link_release, 1266 .dealloc = bpf_cgroup_link_dealloc, 1267 .detach = bpf_cgroup_link_detach, 1268 .update_prog = cgroup_bpf_replace, 1269 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1270 .fill_link_info = bpf_cgroup_link_fill_link_info, 1271 }; 1272 1273 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1274 { 1275 struct bpf_link_primer link_primer; 1276 struct bpf_cgroup_link *link; 1277 struct cgroup *cgrp; 1278 int err; 1279 1280 if (attr->link_create.flags) 1281 return -EINVAL; 1282 1283 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1284 if (IS_ERR(cgrp)) 1285 return PTR_ERR(cgrp); 1286 1287 link = kzalloc(sizeof(*link), GFP_USER); 1288 if (!link) { 1289 err = -ENOMEM; 1290 goto out_put_cgroup; 1291 } 1292 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1293 prog); 1294 link->cgroup = cgrp; 1295 link->type = attr->link_create.attach_type; 1296 1297 err = bpf_link_prime(&link->link, &link_primer); 1298 if (err) { 1299 kfree(link); 1300 goto out_put_cgroup; 1301 } 1302 1303 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1304 link->type, BPF_F_ALLOW_MULTI); 1305 if (err) { 1306 bpf_link_cleanup(&link_primer); 1307 goto out_put_cgroup; 1308 } 1309 1310 return bpf_link_settle(&link_primer); 1311 1312 out_put_cgroup: 1313 cgroup_put(cgrp); 1314 return err; 1315 } 1316 1317 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1318 union bpf_attr __user *uattr) 1319 { 1320 struct cgroup *cgrp; 1321 int ret; 1322 1323 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1324 if (IS_ERR(cgrp)) 1325 return PTR_ERR(cgrp); 1326 1327 ret = cgroup_bpf_query(cgrp, attr, uattr); 1328 1329 cgroup_put(cgrp); 1330 return ret; 1331 } 1332 1333 /** 1334 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1335 * @sk: The socket sending or receiving traffic 1336 * @skb: The skb that is being sent or received 1337 * @type: The type of program to be executed 1338 * 1339 * If no socket is passed, or the socket is not of type INET or INET6, 1340 * this function does nothing and returns 0. 1341 * 1342 * The program type passed in via @type must be suitable for network 1343 * filtering. No further check is performed to assert that. 1344 * 1345 * For egress packets, this function can return: 1346 * NET_XMIT_SUCCESS (0) - continue with packet output 1347 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1348 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1349 * to call cwr 1350 * -err - drop packet 1351 * 1352 * For ingress packets, this function will return -EPERM if any 1353 * attached program was found and if it returned != 1 during execution. 1354 * Otherwise 0 is returned. 1355 */ 1356 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1357 struct sk_buff *skb, 1358 enum cgroup_bpf_attach_type atype) 1359 { 1360 unsigned int offset = skb->data - skb_network_header(skb); 1361 struct sock *save_sk; 1362 void *saved_data_end; 1363 struct cgroup *cgrp; 1364 int ret; 1365 1366 if (!sk || !sk_fullsock(sk)) 1367 return 0; 1368 1369 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1370 return 0; 1371 1372 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1373 save_sk = skb->sk; 1374 skb->sk = sk; 1375 __skb_push(skb, offset); 1376 1377 /* compute pointers for the bpf prog */ 1378 bpf_compute_and_save_data_end(skb, &saved_data_end); 1379 1380 if (atype == CGROUP_INET_EGRESS) { 1381 u32 flags = 0; 1382 bool cn; 1383 1384 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1385 __bpf_prog_run_save_cb, 0, &flags); 1386 1387 /* Return values of CGROUP EGRESS BPF programs are: 1388 * 0: drop packet 1389 * 1: keep packet 1390 * 2: drop packet and cn 1391 * 3: keep packet and cn 1392 * 1393 * The returned value is then converted to one of the NET_XMIT 1394 * or an error code that is then interpreted as drop packet 1395 * (and no cn): 1396 * 0: NET_XMIT_SUCCESS skb should be transmitted 1397 * 1: NET_XMIT_DROP skb should be dropped and cn 1398 * 2: NET_XMIT_CN skb should be transmitted and cn 1399 * 3: -err skb should be dropped 1400 */ 1401 1402 cn = flags & BPF_RET_SET_CN; 1403 if (ret && !IS_ERR_VALUE((long)ret)) 1404 ret = -EFAULT; 1405 if (!ret) 1406 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1407 else 1408 ret = (cn ? NET_XMIT_DROP : ret); 1409 } else { 1410 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1411 skb, __bpf_prog_run_save_cb, 0, 1412 NULL); 1413 if (ret && !IS_ERR_VALUE((long)ret)) 1414 ret = -EFAULT; 1415 } 1416 bpf_restore_data_end(skb, saved_data_end); 1417 __skb_pull(skb, offset); 1418 skb->sk = save_sk; 1419 1420 return ret; 1421 } 1422 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1423 1424 /** 1425 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1426 * @sk: sock structure to manipulate 1427 * @type: The type of program to be executed 1428 * 1429 * socket is passed is expected to be of type INET or INET6. 1430 * 1431 * The program type passed in via @type must be suitable for sock 1432 * filtering. No further check is performed to assert that. 1433 * 1434 * This function will return %-EPERM if any if an attached program was found 1435 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1436 */ 1437 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1438 enum cgroup_bpf_attach_type atype) 1439 { 1440 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1441 1442 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1443 NULL); 1444 } 1445 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1446 1447 /** 1448 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1449 * provided by user sockaddr 1450 * @sk: sock struct that will use sockaddr 1451 * @uaddr: sockaddr struct provided by user 1452 * @type: The type of program to be executed 1453 * @t_ctx: Pointer to attach type specific context 1454 * @flags: Pointer to u32 which contains higher bits of BPF program 1455 * return value (OR'ed together). 1456 * 1457 * socket is expected to be of type INET or INET6. 1458 * 1459 * This function will return %-EPERM if an attached program is found and 1460 * returned value != 1 during execution. In all other cases, 0 is returned. 1461 */ 1462 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1463 struct sockaddr *uaddr, 1464 enum cgroup_bpf_attach_type atype, 1465 void *t_ctx, 1466 u32 *flags) 1467 { 1468 struct bpf_sock_addr_kern ctx = { 1469 .sk = sk, 1470 .uaddr = uaddr, 1471 .t_ctx = t_ctx, 1472 }; 1473 struct sockaddr_storage unspec; 1474 struct cgroup *cgrp; 1475 1476 /* Check socket family since not all sockets represent network 1477 * endpoint (e.g. AF_UNIX). 1478 */ 1479 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1480 return 0; 1481 1482 if (!ctx.uaddr) { 1483 memset(&unspec, 0, sizeof(unspec)); 1484 ctx.uaddr = (struct sockaddr *)&unspec; 1485 } 1486 1487 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1488 return bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1489 0, flags); 1490 } 1491 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1492 1493 /** 1494 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1495 * @sk: socket to get cgroup from 1496 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1497 * sk with connection information (IP addresses, etc.) May not contain 1498 * cgroup info if it is a req sock. 1499 * @type: The type of program to be executed 1500 * 1501 * socket passed is expected to be of type INET or INET6. 1502 * 1503 * The program type passed in via @type must be suitable for sock_ops 1504 * filtering. No further check is performed to assert that. 1505 * 1506 * This function will return %-EPERM if any if an attached program was found 1507 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1508 */ 1509 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1510 struct bpf_sock_ops_kern *sock_ops, 1511 enum cgroup_bpf_attach_type atype) 1512 { 1513 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1514 1515 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1516 0, NULL); 1517 } 1518 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1519 1520 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1521 short access, enum cgroup_bpf_attach_type atype) 1522 { 1523 struct cgroup *cgrp; 1524 struct bpf_cgroup_dev_ctx ctx = { 1525 .access_type = (access << 16) | dev_type, 1526 .major = major, 1527 .minor = minor, 1528 }; 1529 int ret; 1530 1531 rcu_read_lock(); 1532 cgrp = task_dfl_cgroup(current); 1533 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1534 NULL); 1535 rcu_read_unlock(); 1536 1537 return ret; 1538 } 1539 1540 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 1541 { 1542 /* flags argument is not used now, 1543 * but provides an ability to extend the API. 1544 * verifier checks that its value is correct. 1545 */ 1546 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 1547 struct bpf_cgroup_storage *storage; 1548 struct bpf_cg_run_ctx *ctx; 1549 void *ptr; 1550 1551 /* get current cgroup storage from BPF run context */ 1552 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1553 storage = ctx->prog_item->cgroup_storage[stype]; 1554 1555 if (stype == BPF_CGROUP_STORAGE_SHARED) 1556 ptr = &READ_ONCE(storage->buf)->data[0]; 1557 else 1558 ptr = this_cpu_ptr(storage->percpu_buf); 1559 1560 return (unsigned long)ptr; 1561 } 1562 1563 const struct bpf_func_proto bpf_get_local_storage_proto = { 1564 .func = bpf_get_local_storage, 1565 .gpl_only = false, 1566 .ret_type = RET_PTR_TO_MAP_VALUE, 1567 .arg1_type = ARG_CONST_MAP_PTR, 1568 .arg2_type = ARG_ANYTHING, 1569 }; 1570 1571 BPF_CALL_0(bpf_get_retval) 1572 { 1573 struct bpf_cg_run_ctx *ctx = 1574 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1575 1576 return ctx->retval; 1577 } 1578 1579 const struct bpf_func_proto bpf_get_retval_proto = { 1580 .func = bpf_get_retval, 1581 .gpl_only = false, 1582 .ret_type = RET_INTEGER, 1583 }; 1584 1585 BPF_CALL_1(bpf_set_retval, int, retval) 1586 { 1587 struct bpf_cg_run_ctx *ctx = 1588 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1589 1590 ctx->retval = retval; 1591 return 0; 1592 } 1593 1594 const struct bpf_func_proto bpf_set_retval_proto = { 1595 .func = bpf_set_retval, 1596 .gpl_only = false, 1597 .ret_type = RET_INTEGER, 1598 .arg1_type = ARG_ANYTHING, 1599 }; 1600 1601 static const struct bpf_func_proto * 1602 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1603 { 1604 const struct bpf_func_proto *func_proto; 1605 1606 func_proto = cgroup_common_func_proto(func_id, prog); 1607 if (func_proto) 1608 return func_proto; 1609 1610 func_proto = cgroup_current_func_proto(func_id, prog); 1611 if (func_proto) 1612 return func_proto; 1613 1614 switch (func_id) { 1615 case BPF_FUNC_perf_event_output: 1616 return &bpf_event_output_data_proto; 1617 default: 1618 return bpf_base_func_proto(func_id); 1619 } 1620 } 1621 1622 static bool cgroup_dev_is_valid_access(int off, int size, 1623 enum bpf_access_type type, 1624 const struct bpf_prog *prog, 1625 struct bpf_insn_access_aux *info) 1626 { 1627 const int size_default = sizeof(__u32); 1628 1629 if (type == BPF_WRITE) 1630 return false; 1631 1632 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1633 return false; 1634 /* The verifier guarantees that size > 0. */ 1635 if (off % size != 0) 1636 return false; 1637 1638 switch (off) { 1639 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1640 bpf_ctx_record_field_size(info, size_default); 1641 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1642 return false; 1643 break; 1644 default: 1645 if (size != size_default) 1646 return false; 1647 } 1648 1649 return true; 1650 } 1651 1652 const struct bpf_prog_ops cg_dev_prog_ops = { 1653 }; 1654 1655 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1656 .get_func_proto = cgroup_dev_func_proto, 1657 .is_valid_access = cgroup_dev_is_valid_access, 1658 }; 1659 1660 /** 1661 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1662 * 1663 * @head: sysctl table header 1664 * @table: sysctl table 1665 * @write: sysctl is being read (= 0) or written (= 1) 1666 * @buf: pointer to buffer (in and out) 1667 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1668 * result is size of @new_buf if program set new value, initial value 1669 * otherwise 1670 * @ppos: value-result argument: value is position at which read from or write 1671 * to sysctl is happening, result is new position if program overrode it, 1672 * initial value otherwise 1673 * @type: type of program to be executed 1674 * 1675 * Program is run when sysctl is being accessed, either read or written, and 1676 * can allow or deny such access. 1677 * 1678 * This function will return %-EPERM if an attached program is found and 1679 * returned value != 1 during execution. In all other cases 0 is returned. 1680 */ 1681 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1682 struct ctl_table *table, int write, 1683 char **buf, size_t *pcount, loff_t *ppos, 1684 enum cgroup_bpf_attach_type atype) 1685 { 1686 struct bpf_sysctl_kern ctx = { 1687 .head = head, 1688 .table = table, 1689 .write = write, 1690 .ppos = ppos, 1691 .cur_val = NULL, 1692 .cur_len = PAGE_SIZE, 1693 .new_val = NULL, 1694 .new_len = 0, 1695 .new_updated = 0, 1696 }; 1697 struct cgroup *cgrp; 1698 loff_t pos = 0; 1699 int ret; 1700 1701 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1702 if (!ctx.cur_val || 1703 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1704 /* Let BPF program decide how to proceed. */ 1705 ctx.cur_len = 0; 1706 } 1707 1708 if (write && *buf && *pcount) { 1709 /* BPF program should be able to override new value with a 1710 * buffer bigger than provided by user. 1711 */ 1712 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1713 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1714 if (ctx.new_val) { 1715 memcpy(ctx.new_val, *buf, ctx.new_len); 1716 } else { 1717 /* Let BPF program decide how to proceed. */ 1718 ctx.new_len = 0; 1719 } 1720 } 1721 1722 rcu_read_lock(); 1723 cgrp = task_dfl_cgroup(current); 1724 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1725 NULL); 1726 rcu_read_unlock(); 1727 1728 kfree(ctx.cur_val); 1729 1730 if (ret == 1 && ctx.new_updated) { 1731 kfree(*buf); 1732 *buf = ctx.new_val; 1733 *pcount = ctx.new_len; 1734 } else { 1735 kfree(ctx.new_val); 1736 } 1737 1738 return ret; 1739 } 1740 1741 #ifdef CONFIG_NET 1742 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1743 struct bpf_sockopt_buf *buf) 1744 { 1745 if (unlikely(max_optlen < 0)) 1746 return -EINVAL; 1747 1748 if (unlikely(max_optlen > PAGE_SIZE)) { 1749 /* We don't expose optvals that are greater than PAGE_SIZE 1750 * to the BPF program. 1751 */ 1752 max_optlen = PAGE_SIZE; 1753 } 1754 1755 if (max_optlen <= sizeof(buf->data)) { 1756 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1757 * bytes avoid the cost of kzalloc. 1758 */ 1759 ctx->optval = buf->data; 1760 ctx->optval_end = ctx->optval + max_optlen; 1761 return max_optlen; 1762 } 1763 1764 ctx->optval = kzalloc(max_optlen, GFP_USER); 1765 if (!ctx->optval) 1766 return -ENOMEM; 1767 1768 ctx->optval_end = ctx->optval + max_optlen; 1769 1770 return max_optlen; 1771 } 1772 1773 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1774 struct bpf_sockopt_buf *buf) 1775 { 1776 if (ctx->optval == buf->data) 1777 return; 1778 kfree(ctx->optval); 1779 } 1780 1781 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1782 struct bpf_sockopt_buf *buf) 1783 { 1784 return ctx->optval != buf->data; 1785 } 1786 1787 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 1788 int *optname, char __user *optval, 1789 int *optlen, char **kernel_optval) 1790 { 1791 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1792 struct bpf_sockopt_buf buf = {}; 1793 struct bpf_sockopt_kern ctx = { 1794 .sk = sk, 1795 .level = *level, 1796 .optname = *optname, 1797 }; 1798 int ret, max_optlen; 1799 1800 /* Allocate a bit more than the initial user buffer for 1801 * BPF program. The canonical use case is overriding 1802 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1803 */ 1804 max_optlen = max_t(int, 16, *optlen); 1805 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1806 if (max_optlen < 0) 1807 return max_optlen; 1808 1809 ctx.optlen = *optlen; 1810 1811 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) { 1812 ret = -EFAULT; 1813 goto out; 1814 } 1815 1816 lock_sock(sk); 1817 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 1818 &ctx, bpf_prog_run, 0, NULL); 1819 release_sock(sk); 1820 1821 if (ret) 1822 goto out; 1823 1824 if (ctx.optlen == -1) { 1825 /* optlen set to -1, bypass kernel */ 1826 ret = 1; 1827 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1828 /* optlen is out of bounds */ 1829 ret = -EFAULT; 1830 } else { 1831 /* optlen within bounds, run kernel handler */ 1832 ret = 0; 1833 1834 /* export any potential modifications */ 1835 *level = ctx.level; 1836 *optname = ctx.optname; 1837 1838 /* optlen == 0 from BPF indicates that we should 1839 * use original userspace data. 1840 */ 1841 if (ctx.optlen != 0) { 1842 *optlen = ctx.optlen; 1843 /* We've used bpf_sockopt_kern->buf as an intermediary 1844 * storage, but the BPF program indicates that we need 1845 * to pass this data to the kernel setsockopt handler. 1846 * No way to export on-stack buf, have to allocate a 1847 * new buffer. 1848 */ 1849 if (!sockopt_buf_allocated(&ctx, &buf)) { 1850 void *p = kmalloc(ctx.optlen, GFP_USER); 1851 1852 if (!p) { 1853 ret = -ENOMEM; 1854 goto out; 1855 } 1856 memcpy(p, ctx.optval, ctx.optlen); 1857 *kernel_optval = p; 1858 } else { 1859 *kernel_optval = ctx.optval; 1860 } 1861 /* export and don't free sockopt buf */ 1862 return 0; 1863 } 1864 } 1865 1866 out: 1867 sockopt_free_buf(&ctx, &buf); 1868 return ret; 1869 } 1870 1871 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1872 int optname, char __user *optval, 1873 int __user *optlen, int max_optlen, 1874 int retval) 1875 { 1876 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1877 struct bpf_sockopt_buf buf = {}; 1878 struct bpf_sockopt_kern ctx = { 1879 .sk = sk, 1880 .level = level, 1881 .optname = optname, 1882 .current_task = current, 1883 }; 1884 int ret; 1885 1886 ctx.optlen = max_optlen; 1887 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1888 if (max_optlen < 0) 1889 return max_optlen; 1890 1891 if (!retval) { 1892 /* If kernel getsockopt finished successfully, 1893 * copy whatever was returned to the user back 1894 * into our temporary buffer. Set optlen to the 1895 * one that kernel returned as well to let 1896 * BPF programs inspect the value. 1897 */ 1898 1899 if (get_user(ctx.optlen, optlen)) { 1900 ret = -EFAULT; 1901 goto out; 1902 } 1903 1904 if (ctx.optlen < 0) { 1905 ret = -EFAULT; 1906 goto out; 1907 } 1908 1909 if (copy_from_user(ctx.optval, optval, 1910 min(ctx.optlen, max_optlen)) != 0) { 1911 ret = -EFAULT; 1912 goto out; 1913 } 1914 } 1915 1916 lock_sock(sk); 1917 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1918 &ctx, bpf_prog_run, retval, NULL); 1919 release_sock(sk); 1920 1921 if (ret < 0) 1922 goto out; 1923 1924 if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) { 1925 ret = -EFAULT; 1926 goto out; 1927 } 1928 1929 if (ctx.optlen != 0) { 1930 if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) { 1931 ret = -EFAULT; 1932 goto out; 1933 } 1934 if (put_user(ctx.optlen, optlen)) { 1935 ret = -EFAULT; 1936 goto out; 1937 } 1938 } 1939 1940 out: 1941 sockopt_free_buf(&ctx, &buf); 1942 return ret; 1943 } 1944 1945 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 1946 int optname, void *optval, 1947 int *optlen, int retval) 1948 { 1949 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1950 struct bpf_sockopt_kern ctx = { 1951 .sk = sk, 1952 .level = level, 1953 .optname = optname, 1954 .optlen = *optlen, 1955 .optval = optval, 1956 .optval_end = optval + *optlen, 1957 .current_task = current, 1958 }; 1959 int ret; 1960 1961 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 1962 * user data back into BPF buffer when reval != 0. This is 1963 * done as an optimization to avoid extra copy, assuming 1964 * kernel won't populate the data in case of an error. 1965 * Here we always pass the data and memset() should 1966 * be called if that data shouldn't be "exported". 1967 */ 1968 1969 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1970 &ctx, bpf_prog_run, retval, NULL); 1971 if (ret < 0) 1972 return ret; 1973 1974 if (ctx.optlen > *optlen) 1975 return -EFAULT; 1976 1977 /* BPF programs can shrink the buffer, export the modifications. 1978 */ 1979 if (ctx.optlen != 0) 1980 *optlen = ctx.optlen; 1981 1982 return ret; 1983 } 1984 #endif 1985 1986 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1987 size_t *lenp) 1988 { 1989 ssize_t tmp_ret = 0, ret; 1990 1991 if (dir->header.parent) { 1992 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1993 if (tmp_ret < 0) 1994 return tmp_ret; 1995 } 1996 1997 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1998 if (ret < 0) 1999 return ret; 2000 *bufp += ret; 2001 *lenp -= ret; 2002 ret += tmp_ret; 2003 2004 /* Avoid leading slash. */ 2005 if (!ret) 2006 return ret; 2007 2008 tmp_ret = strscpy(*bufp, "/", *lenp); 2009 if (tmp_ret < 0) 2010 return tmp_ret; 2011 *bufp += tmp_ret; 2012 *lenp -= tmp_ret; 2013 2014 return ret + tmp_ret; 2015 } 2016 2017 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 2018 size_t, buf_len, u64, flags) 2019 { 2020 ssize_t tmp_ret = 0, ret; 2021 2022 if (!buf) 2023 return -EINVAL; 2024 2025 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 2026 if (!ctx->head) 2027 return -EINVAL; 2028 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 2029 if (tmp_ret < 0) 2030 return tmp_ret; 2031 } 2032 2033 ret = strscpy(buf, ctx->table->procname, buf_len); 2034 2035 return ret < 0 ? ret : tmp_ret + ret; 2036 } 2037 2038 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 2039 .func = bpf_sysctl_get_name, 2040 .gpl_only = false, 2041 .ret_type = RET_INTEGER, 2042 .arg1_type = ARG_PTR_TO_CTX, 2043 .arg2_type = ARG_PTR_TO_MEM, 2044 .arg3_type = ARG_CONST_SIZE, 2045 .arg4_type = ARG_ANYTHING, 2046 }; 2047 2048 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 2049 size_t src_len) 2050 { 2051 if (!dst) 2052 return -EINVAL; 2053 2054 if (!dst_len) 2055 return -E2BIG; 2056 2057 if (!src || !src_len) { 2058 memset(dst, 0, dst_len); 2059 return -EINVAL; 2060 } 2061 2062 memcpy(dst, src, min(dst_len, src_len)); 2063 2064 if (dst_len > src_len) { 2065 memset(dst + src_len, '\0', dst_len - src_len); 2066 return src_len; 2067 } 2068 2069 dst[dst_len - 1] = '\0'; 2070 2071 return -E2BIG; 2072 } 2073 2074 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 2075 char *, buf, size_t, buf_len) 2076 { 2077 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 2078 } 2079 2080 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 2081 .func = bpf_sysctl_get_current_value, 2082 .gpl_only = false, 2083 .ret_type = RET_INTEGER, 2084 .arg1_type = ARG_PTR_TO_CTX, 2085 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2086 .arg3_type = ARG_CONST_SIZE, 2087 }; 2088 2089 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 2090 size_t, buf_len) 2091 { 2092 if (!ctx->write) { 2093 if (buf && buf_len) 2094 memset(buf, '\0', buf_len); 2095 return -EINVAL; 2096 } 2097 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 2098 } 2099 2100 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 2101 .func = bpf_sysctl_get_new_value, 2102 .gpl_only = false, 2103 .ret_type = RET_INTEGER, 2104 .arg1_type = ARG_PTR_TO_CTX, 2105 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2106 .arg3_type = ARG_CONST_SIZE, 2107 }; 2108 2109 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 2110 const char *, buf, size_t, buf_len) 2111 { 2112 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 2113 return -EINVAL; 2114 2115 if (buf_len > PAGE_SIZE - 1) 2116 return -E2BIG; 2117 2118 memcpy(ctx->new_val, buf, buf_len); 2119 ctx->new_len = buf_len; 2120 ctx->new_updated = 1; 2121 2122 return 0; 2123 } 2124 2125 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 2126 .func = bpf_sysctl_set_new_value, 2127 .gpl_only = false, 2128 .ret_type = RET_INTEGER, 2129 .arg1_type = ARG_PTR_TO_CTX, 2130 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 2131 .arg3_type = ARG_CONST_SIZE, 2132 }; 2133 2134 static const struct bpf_func_proto * 2135 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2136 { 2137 const struct bpf_func_proto *func_proto; 2138 2139 func_proto = cgroup_common_func_proto(func_id, prog); 2140 if (func_proto) 2141 return func_proto; 2142 2143 func_proto = cgroup_current_func_proto(func_id, prog); 2144 if (func_proto) 2145 return func_proto; 2146 2147 switch (func_id) { 2148 case BPF_FUNC_sysctl_get_name: 2149 return &bpf_sysctl_get_name_proto; 2150 case BPF_FUNC_sysctl_get_current_value: 2151 return &bpf_sysctl_get_current_value_proto; 2152 case BPF_FUNC_sysctl_get_new_value: 2153 return &bpf_sysctl_get_new_value_proto; 2154 case BPF_FUNC_sysctl_set_new_value: 2155 return &bpf_sysctl_set_new_value_proto; 2156 case BPF_FUNC_ktime_get_coarse_ns: 2157 return &bpf_ktime_get_coarse_ns_proto; 2158 case BPF_FUNC_perf_event_output: 2159 return &bpf_event_output_data_proto; 2160 default: 2161 return bpf_base_func_proto(func_id); 2162 } 2163 } 2164 2165 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 2166 const struct bpf_prog *prog, 2167 struct bpf_insn_access_aux *info) 2168 { 2169 const int size_default = sizeof(__u32); 2170 2171 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 2172 return false; 2173 2174 switch (off) { 2175 case bpf_ctx_range(struct bpf_sysctl, write): 2176 if (type != BPF_READ) 2177 return false; 2178 bpf_ctx_record_field_size(info, size_default); 2179 return bpf_ctx_narrow_access_ok(off, size, size_default); 2180 case bpf_ctx_range(struct bpf_sysctl, file_pos): 2181 if (type == BPF_READ) { 2182 bpf_ctx_record_field_size(info, size_default); 2183 return bpf_ctx_narrow_access_ok(off, size, size_default); 2184 } else { 2185 return size == size_default; 2186 } 2187 default: 2188 return false; 2189 } 2190 } 2191 2192 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 2193 const struct bpf_insn *si, 2194 struct bpf_insn *insn_buf, 2195 struct bpf_prog *prog, u32 *target_size) 2196 { 2197 struct bpf_insn *insn = insn_buf; 2198 u32 read_size; 2199 2200 switch (si->off) { 2201 case offsetof(struct bpf_sysctl, write): 2202 *insn++ = BPF_LDX_MEM( 2203 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 2204 bpf_target_off(struct bpf_sysctl_kern, write, 2205 sizeof_field(struct bpf_sysctl_kern, 2206 write), 2207 target_size)); 2208 break; 2209 case offsetof(struct bpf_sysctl, file_pos): 2210 /* ppos is a pointer so it should be accessed via indirect 2211 * loads and stores. Also for stores additional temporary 2212 * register is used since neither src_reg nor dst_reg can be 2213 * overridden. 2214 */ 2215 if (type == BPF_WRITE) { 2216 int treg = BPF_REG_9; 2217 2218 if (si->src_reg == treg || si->dst_reg == treg) 2219 --treg; 2220 if (si->src_reg == treg || si->dst_reg == treg) 2221 --treg; 2222 *insn++ = BPF_STX_MEM( 2223 BPF_DW, si->dst_reg, treg, 2224 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2225 *insn++ = BPF_LDX_MEM( 2226 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2227 treg, si->dst_reg, 2228 offsetof(struct bpf_sysctl_kern, ppos)); 2229 *insn++ = BPF_RAW_INSN( 2230 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32), 2231 treg, si->src_reg, 2232 bpf_ctx_narrow_access_offset( 2233 0, sizeof(u32), sizeof(loff_t)), 2234 si->imm); 2235 *insn++ = BPF_LDX_MEM( 2236 BPF_DW, treg, si->dst_reg, 2237 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2238 } else { 2239 *insn++ = BPF_LDX_MEM( 2240 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2241 si->dst_reg, si->src_reg, 2242 offsetof(struct bpf_sysctl_kern, ppos)); 2243 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 2244 *insn++ = BPF_LDX_MEM( 2245 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 2246 bpf_ctx_narrow_access_offset( 2247 0, read_size, sizeof(loff_t))); 2248 } 2249 *target_size = sizeof(u32); 2250 break; 2251 } 2252 2253 return insn - insn_buf; 2254 } 2255 2256 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 2257 .get_func_proto = sysctl_func_proto, 2258 .is_valid_access = sysctl_is_valid_access, 2259 .convert_ctx_access = sysctl_convert_ctx_access, 2260 }; 2261 2262 const struct bpf_prog_ops cg_sysctl_prog_ops = { 2263 }; 2264 2265 #ifdef CONFIG_NET 2266 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 2267 { 2268 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 2269 2270 return net->net_cookie; 2271 } 2272 2273 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 2274 .func = bpf_get_netns_cookie_sockopt, 2275 .gpl_only = false, 2276 .ret_type = RET_INTEGER, 2277 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 2278 }; 2279 #endif 2280 2281 static const struct bpf_func_proto * 2282 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2283 { 2284 const struct bpf_func_proto *func_proto; 2285 2286 func_proto = cgroup_common_func_proto(func_id, prog); 2287 if (func_proto) 2288 return func_proto; 2289 2290 func_proto = cgroup_current_func_proto(func_id, prog); 2291 if (func_proto) 2292 return func_proto; 2293 2294 switch (func_id) { 2295 #ifdef CONFIG_NET 2296 case BPF_FUNC_get_netns_cookie: 2297 return &bpf_get_netns_cookie_sockopt_proto; 2298 case BPF_FUNC_sk_storage_get: 2299 return &bpf_sk_storage_get_proto; 2300 case BPF_FUNC_sk_storage_delete: 2301 return &bpf_sk_storage_delete_proto; 2302 case BPF_FUNC_setsockopt: 2303 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2304 return &bpf_sk_setsockopt_proto; 2305 return NULL; 2306 case BPF_FUNC_getsockopt: 2307 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2308 return &bpf_sk_getsockopt_proto; 2309 return NULL; 2310 #endif 2311 #ifdef CONFIG_INET 2312 case BPF_FUNC_tcp_sock: 2313 return &bpf_tcp_sock_proto; 2314 #endif 2315 case BPF_FUNC_perf_event_output: 2316 return &bpf_event_output_data_proto; 2317 default: 2318 return bpf_base_func_proto(func_id); 2319 } 2320 } 2321 2322 static bool cg_sockopt_is_valid_access(int off, int size, 2323 enum bpf_access_type type, 2324 const struct bpf_prog *prog, 2325 struct bpf_insn_access_aux *info) 2326 { 2327 const int size_default = sizeof(__u32); 2328 2329 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2330 return false; 2331 2332 if (off % size != 0) 2333 return false; 2334 2335 if (type == BPF_WRITE) { 2336 switch (off) { 2337 case offsetof(struct bpf_sockopt, retval): 2338 if (size != size_default) 2339 return false; 2340 return prog->expected_attach_type == 2341 BPF_CGROUP_GETSOCKOPT; 2342 case offsetof(struct bpf_sockopt, optname): 2343 fallthrough; 2344 case offsetof(struct bpf_sockopt, level): 2345 if (size != size_default) 2346 return false; 2347 return prog->expected_attach_type == 2348 BPF_CGROUP_SETSOCKOPT; 2349 case offsetof(struct bpf_sockopt, optlen): 2350 return size == size_default; 2351 default: 2352 return false; 2353 } 2354 } 2355 2356 switch (off) { 2357 case offsetof(struct bpf_sockopt, sk): 2358 if (size != sizeof(__u64)) 2359 return false; 2360 info->reg_type = PTR_TO_SOCKET; 2361 break; 2362 case offsetof(struct bpf_sockopt, optval): 2363 if (size != sizeof(__u64)) 2364 return false; 2365 info->reg_type = PTR_TO_PACKET; 2366 break; 2367 case offsetof(struct bpf_sockopt, optval_end): 2368 if (size != sizeof(__u64)) 2369 return false; 2370 info->reg_type = PTR_TO_PACKET_END; 2371 break; 2372 case offsetof(struct bpf_sockopt, retval): 2373 if (size != size_default) 2374 return false; 2375 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2376 default: 2377 if (size != size_default) 2378 return false; 2379 break; 2380 } 2381 return true; 2382 } 2383 2384 #define CG_SOCKOPT_READ_FIELD(F) \ 2385 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2386 si->dst_reg, si->src_reg, \ 2387 offsetof(struct bpf_sockopt_kern, F)) 2388 2389 #define CG_SOCKOPT_WRITE_FIELD(F) \ 2390 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \ 2391 BPF_MEM | BPF_CLASS(si->code)), \ 2392 si->dst_reg, si->src_reg, \ 2393 offsetof(struct bpf_sockopt_kern, F), \ 2394 si->imm) 2395 2396 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2397 const struct bpf_insn *si, 2398 struct bpf_insn *insn_buf, 2399 struct bpf_prog *prog, 2400 u32 *target_size) 2401 { 2402 struct bpf_insn *insn = insn_buf; 2403 2404 switch (si->off) { 2405 case offsetof(struct bpf_sockopt, sk): 2406 *insn++ = CG_SOCKOPT_READ_FIELD(sk); 2407 break; 2408 case offsetof(struct bpf_sockopt, level): 2409 if (type == BPF_WRITE) 2410 *insn++ = CG_SOCKOPT_WRITE_FIELD(level); 2411 else 2412 *insn++ = CG_SOCKOPT_READ_FIELD(level); 2413 break; 2414 case offsetof(struct bpf_sockopt, optname): 2415 if (type == BPF_WRITE) 2416 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname); 2417 else 2418 *insn++ = CG_SOCKOPT_READ_FIELD(optname); 2419 break; 2420 case offsetof(struct bpf_sockopt, optlen): 2421 if (type == BPF_WRITE) 2422 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen); 2423 else 2424 *insn++ = CG_SOCKOPT_READ_FIELD(optlen); 2425 break; 2426 case offsetof(struct bpf_sockopt, retval): 2427 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2428 2429 if (type == BPF_WRITE) { 2430 int treg = BPF_REG_9; 2431 2432 if (si->src_reg == treg || si->dst_reg == treg) 2433 --treg; 2434 if (si->src_reg == treg || si->dst_reg == treg) 2435 --treg; 2436 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2437 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2438 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2439 treg, si->dst_reg, 2440 offsetof(struct bpf_sockopt_kern, current_task)); 2441 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2442 treg, treg, 2443 offsetof(struct task_struct, bpf_ctx)); 2444 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM | 2445 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2446 treg, si->src_reg, 2447 offsetof(struct bpf_cg_run_ctx, retval), 2448 si->imm); 2449 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2450 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2451 } else { 2452 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2453 si->dst_reg, si->src_reg, 2454 offsetof(struct bpf_sockopt_kern, current_task)); 2455 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2456 si->dst_reg, si->dst_reg, 2457 offsetof(struct task_struct, bpf_ctx)); 2458 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2459 si->dst_reg, si->dst_reg, 2460 offsetof(struct bpf_cg_run_ctx, retval)); 2461 } 2462 break; 2463 case offsetof(struct bpf_sockopt, optval): 2464 *insn++ = CG_SOCKOPT_READ_FIELD(optval); 2465 break; 2466 case offsetof(struct bpf_sockopt, optval_end): 2467 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end); 2468 break; 2469 } 2470 2471 return insn - insn_buf; 2472 } 2473 2474 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2475 bool direct_write, 2476 const struct bpf_prog *prog) 2477 { 2478 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2479 */ 2480 return 0; 2481 } 2482 2483 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2484 .get_func_proto = cg_sockopt_func_proto, 2485 .is_valid_access = cg_sockopt_is_valid_access, 2486 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2487 .gen_prologue = cg_sockopt_get_prologue, 2488 }; 2489 2490 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2491 }; 2492 2493 /* Common helpers for cgroup hooks. */ 2494 const struct bpf_func_proto * 2495 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2496 { 2497 switch (func_id) { 2498 case BPF_FUNC_get_local_storage: 2499 return &bpf_get_local_storage_proto; 2500 case BPF_FUNC_get_retval: 2501 switch (prog->expected_attach_type) { 2502 case BPF_CGROUP_INET_INGRESS: 2503 case BPF_CGROUP_INET_EGRESS: 2504 case BPF_CGROUP_SOCK_OPS: 2505 case BPF_CGROUP_UDP4_RECVMSG: 2506 case BPF_CGROUP_UDP6_RECVMSG: 2507 case BPF_CGROUP_INET4_GETPEERNAME: 2508 case BPF_CGROUP_INET6_GETPEERNAME: 2509 case BPF_CGROUP_INET4_GETSOCKNAME: 2510 case BPF_CGROUP_INET6_GETSOCKNAME: 2511 return NULL; 2512 default: 2513 return &bpf_get_retval_proto; 2514 } 2515 case BPF_FUNC_set_retval: 2516 switch (prog->expected_attach_type) { 2517 case BPF_CGROUP_INET_INGRESS: 2518 case BPF_CGROUP_INET_EGRESS: 2519 case BPF_CGROUP_SOCK_OPS: 2520 case BPF_CGROUP_UDP4_RECVMSG: 2521 case BPF_CGROUP_UDP6_RECVMSG: 2522 case BPF_CGROUP_INET4_GETPEERNAME: 2523 case BPF_CGROUP_INET6_GETPEERNAME: 2524 case BPF_CGROUP_INET4_GETSOCKNAME: 2525 case BPF_CGROUP_INET6_GETSOCKNAME: 2526 return NULL; 2527 default: 2528 return &bpf_set_retval_proto; 2529 } 2530 default: 2531 return NULL; 2532 } 2533 } 2534 2535 /* Common helpers for cgroup hooks with valid process context. */ 2536 const struct bpf_func_proto * 2537 cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2538 { 2539 switch (func_id) { 2540 case BPF_FUNC_get_current_uid_gid: 2541 return &bpf_get_current_uid_gid_proto; 2542 case BPF_FUNC_get_current_pid_tgid: 2543 return &bpf_get_current_pid_tgid_proto; 2544 case BPF_FUNC_get_current_comm: 2545 return &bpf_get_current_comm_proto; 2546 #ifdef CONFIG_CGROUP_NET_CLASSID 2547 case BPF_FUNC_get_cgroup_classid: 2548 return &bpf_get_cgroup_classid_curr_proto; 2549 #endif 2550 default: 2551 return NULL; 2552 } 2553 } 2554