1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/bpf_lsm.h> 18 #include <linux/bpf_verifier.h> 19 #include <net/sock.h> 20 #include <net/bpf_sk_storage.h> 21 22 #include "../cgroup/cgroup-internal.h" 23 24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 25 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 26 27 /* 28 * cgroup bpf destruction makes heavy use of work items and there can be a lot 29 * of concurrent destructions. Use a separate workqueue so that cgroup bpf 30 * destruction work items don't end up filling up max_active of system_wq 31 * which may lead to deadlock. 32 */ 33 static struct workqueue_struct *cgroup_bpf_destroy_wq; 34 35 static int __init cgroup_bpf_wq_init(void) 36 { 37 cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", 0, 1); 38 if (!cgroup_bpf_destroy_wq) 39 panic("Failed to alloc workqueue for cgroup bpf destroy.\n"); 40 return 0; 41 } 42 core_initcall(cgroup_bpf_wq_init); 43 44 static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, 45 unsigned long action, void *data); 46 47 static struct notifier_block cgroup_bpf_lifetime_nb = { 48 .notifier_call = cgroup_bpf_lifetime_notify, 49 }; 50 51 void __init cgroup_bpf_lifetime_notifier_init(void) 52 { 53 BUG_ON(blocking_notifier_chain_register(&cgroup_lifetime_notifier, 54 &cgroup_bpf_lifetime_nb)); 55 } 56 57 /* __always_inline is necessary to prevent indirect call through run_prog 58 * function pointer. 59 */ 60 static __always_inline int 61 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 62 enum cgroup_bpf_attach_type atype, 63 const void *ctx, bpf_prog_run_fn run_prog, 64 int retval, u32 *ret_flags) 65 { 66 const struct bpf_prog_array_item *item; 67 const struct bpf_prog *prog; 68 const struct bpf_prog_array *array; 69 struct bpf_run_ctx *old_run_ctx; 70 struct bpf_cg_run_ctx run_ctx; 71 u32 func_ret; 72 73 run_ctx.retval = retval; 74 migrate_disable(); 75 rcu_read_lock(); 76 array = rcu_dereference(cgrp->effective[atype]); 77 item = &array->items[0]; 78 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 79 while ((prog = READ_ONCE(item->prog))) { 80 run_ctx.prog_item = item; 81 func_ret = run_prog(prog, ctx); 82 if (ret_flags) { 83 *(ret_flags) |= (func_ret >> 1); 84 func_ret &= 1; 85 } 86 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 87 run_ctx.retval = -EPERM; 88 item++; 89 } 90 bpf_reset_run_ctx(old_run_ctx); 91 rcu_read_unlock(); 92 migrate_enable(); 93 return run_ctx.retval; 94 } 95 96 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, 97 const struct bpf_insn *insn) 98 { 99 const struct bpf_prog *shim_prog; 100 struct sock *sk; 101 struct cgroup *cgrp; 102 int ret = 0; 103 u64 *args; 104 105 args = (u64 *)ctx; 106 sk = (void *)(unsigned long)args[0]; 107 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 108 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 109 110 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 111 if (likely(cgrp)) 112 ret = bpf_prog_run_array_cg(&cgrp->bpf, 113 shim_prog->aux->cgroup_atype, 114 ctx, bpf_prog_run, 0, NULL); 115 return ret; 116 } 117 118 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, 119 const struct bpf_insn *insn) 120 { 121 const struct bpf_prog *shim_prog; 122 struct socket *sock; 123 struct cgroup *cgrp; 124 int ret = 0; 125 u64 *args; 126 127 args = (u64 *)ctx; 128 sock = (void *)(unsigned long)args[0]; 129 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 130 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 131 132 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); 133 if (likely(cgrp)) 134 ret = bpf_prog_run_array_cg(&cgrp->bpf, 135 shim_prog->aux->cgroup_atype, 136 ctx, bpf_prog_run, 0, NULL); 137 return ret; 138 } 139 140 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, 141 const struct bpf_insn *insn) 142 { 143 const struct bpf_prog *shim_prog; 144 struct cgroup *cgrp; 145 int ret = 0; 146 147 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 148 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 149 150 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ 151 cgrp = task_dfl_cgroup(current); 152 if (likely(cgrp)) 153 ret = bpf_prog_run_array_cg(&cgrp->bpf, 154 shim_prog->aux->cgroup_atype, 155 ctx, bpf_prog_run, 0, NULL); 156 return ret; 157 } 158 159 #ifdef CONFIG_BPF_LSM 160 struct cgroup_lsm_atype { 161 u32 attach_btf_id; 162 int refcnt; 163 }; 164 165 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; 166 167 static enum cgroup_bpf_attach_type 168 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 169 { 170 int i; 171 172 lockdep_assert_held(&cgroup_mutex); 173 174 if (attach_type != BPF_LSM_CGROUP) 175 return to_cgroup_bpf_attach_type(attach_type); 176 177 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 178 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) 179 return CGROUP_LSM_START + i; 180 181 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 182 if (cgroup_lsm_atype[i].attach_btf_id == 0) 183 return CGROUP_LSM_START + i; 184 185 return -E2BIG; 186 187 } 188 189 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) 190 { 191 int i = cgroup_atype - CGROUP_LSM_START; 192 193 lockdep_assert_held(&cgroup_mutex); 194 195 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && 196 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); 197 198 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; 199 cgroup_lsm_atype[i].refcnt++; 200 } 201 202 void bpf_cgroup_atype_put(int cgroup_atype) 203 { 204 int i = cgroup_atype - CGROUP_LSM_START; 205 206 cgroup_lock(); 207 if (--cgroup_lsm_atype[i].refcnt <= 0) 208 cgroup_lsm_atype[i].attach_btf_id = 0; 209 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); 210 cgroup_unlock(); 211 } 212 #else 213 static enum cgroup_bpf_attach_type 214 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 215 { 216 if (attach_type != BPF_LSM_CGROUP) 217 return to_cgroup_bpf_attach_type(attach_type); 218 return -EOPNOTSUPP; 219 } 220 #endif /* CONFIG_BPF_LSM */ 221 222 static void cgroup_bpf_offline(struct cgroup *cgrp) 223 { 224 cgroup_get(cgrp); 225 percpu_ref_kill(&cgrp->bpf.refcnt); 226 } 227 228 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 229 { 230 enum bpf_cgroup_storage_type stype; 231 232 for_each_cgroup_storage_type(stype) 233 bpf_cgroup_storage_free(storages[stype]); 234 } 235 236 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 237 struct bpf_cgroup_storage *new_storages[], 238 enum bpf_attach_type type, 239 struct bpf_prog *prog, 240 struct cgroup *cgrp) 241 { 242 enum bpf_cgroup_storage_type stype; 243 struct bpf_cgroup_storage_key key; 244 struct bpf_map *map; 245 246 key.cgroup_inode_id = cgroup_id(cgrp); 247 key.attach_type = type; 248 249 for_each_cgroup_storage_type(stype) { 250 map = prog->aux->cgroup_storage[stype]; 251 if (!map) 252 continue; 253 254 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 255 if (storages[stype]) 256 continue; 257 258 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 259 if (IS_ERR(storages[stype])) { 260 bpf_cgroup_storages_free(new_storages); 261 return -ENOMEM; 262 } 263 264 new_storages[stype] = storages[stype]; 265 } 266 267 return 0; 268 } 269 270 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 271 struct bpf_cgroup_storage *src[]) 272 { 273 enum bpf_cgroup_storage_type stype; 274 275 for_each_cgroup_storage_type(stype) 276 dst[stype] = src[stype]; 277 } 278 279 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 280 struct cgroup *cgrp, 281 enum bpf_attach_type attach_type) 282 { 283 enum bpf_cgroup_storage_type stype; 284 285 for_each_cgroup_storage_type(stype) 286 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 287 } 288 289 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 290 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 291 * doesn't free link memory, which will eventually be done by bpf_link's 292 * release() callback, when its last FD is closed. 293 */ 294 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 295 { 296 cgroup_put(link->cgroup); 297 link->cgroup = NULL; 298 } 299 300 /** 301 * cgroup_bpf_release() - put references of all bpf programs and 302 * release all cgroup bpf data 303 * @work: work structure embedded into the cgroup to modify 304 */ 305 static void cgroup_bpf_release(struct work_struct *work) 306 { 307 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 308 bpf.release_work); 309 struct bpf_prog_array *old_array; 310 struct list_head *storages = &cgrp->bpf.storages; 311 struct bpf_cgroup_storage *storage, *stmp; 312 313 unsigned int atype; 314 315 cgroup_lock(); 316 317 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 318 struct hlist_head *progs = &cgrp->bpf.progs[atype]; 319 struct bpf_prog_list *pl; 320 struct hlist_node *pltmp; 321 322 hlist_for_each_entry_safe(pl, pltmp, progs, node) { 323 hlist_del(&pl->node); 324 if (pl->prog) { 325 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) 326 bpf_trampoline_unlink_cgroup_shim(pl->prog); 327 bpf_prog_put(pl->prog); 328 } 329 if (pl->link) { 330 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) 331 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); 332 bpf_cgroup_link_auto_detach(pl->link); 333 } 334 kfree(pl); 335 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 336 } 337 old_array = rcu_dereference_protected( 338 cgrp->bpf.effective[atype], 339 lockdep_is_held(&cgroup_mutex)); 340 bpf_prog_array_free(old_array); 341 } 342 343 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 344 bpf_cgroup_storage_unlink(storage); 345 bpf_cgroup_storage_free(storage); 346 } 347 348 cgroup_unlock(); 349 350 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 351 cgroup_bpf_put(p); 352 353 percpu_ref_exit(&cgrp->bpf.refcnt); 354 cgroup_put(cgrp); 355 } 356 357 /** 358 * cgroup_bpf_release_fn() - callback used to schedule releasing 359 * of bpf cgroup data 360 * @ref: percpu ref counter structure 361 */ 362 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 363 { 364 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 365 366 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 367 queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work); 368 } 369 370 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 371 * link or direct prog. 372 */ 373 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 374 { 375 if (pl->prog) 376 return pl->prog; 377 if (pl->link) 378 return pl->link->link.prog; 379 return NULL; 380 } 381 382 /* count number of elements in the list. 383 * it's slow but the list cannot be long 384 */ 385 static u32 prog_list_length(struct hlist_head *head, int *preorder_cnt) 386 { 387 struct bpf_prog_list *pl; 388 u32 cnt = 0; 389 390 hlist_for_each_entry(pl, head, node) { 391 if (!prog_list_prog(pl)) 392 continue; 393 if (preorder_cnt && (pl->flags & BPF_F_PREORDER)) 394 (*preorder_cnt)++; 395 cnt++; 396 } 397 return cnt; 398 } 399 400 /* if parent has non-overridable prog attached, 401 * disallow attaching new programs to the descendent cgroup. 402 * if parent has overridable or multi-prog, allow attaching 403 */ 404 static bool hierarchy_allows_attach(struct cgroup *cgrp, 405 enum cgroup_bpf_attach_type atype) 406 { 407 struct cgroup *p; 408 409 p = cgroup_parent(cgrp); 410 if (!p) 411 return true; 412 do { 413 u32 flags = p->bpf.flags[atype]; 414 u32 cnt; 415 416 if (flags & BPF_F_ALLOW_MULTI) 417 return true; 418 cnt = prog_list_length(&p->bpf.progs[atype], NULL); 419 WARN_ON_ONCE(cnt > 1); 420 if (cnt == 1) 421 return !!(flags & BPF_F_ALLOW_OVERRIDE); 422 p = cgroup_parent(p); 423 } while (p); 424 return true; 425 } 426 427 /* compute a chain of effective programs for a given cgroup: 428 * start from the list of programs in this cgroup and add 429 * all parent programs. 430 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 431 * to programs in this cgroup 432 */ 433 static int compute_effective_progs(struct cgroup *cgrp, 434 enum cgroup_bpf_attach_type atype, 435 struct bpf_prog_array **array) 436 { 437 struct bpf_prog_array_item *item; 438 struct bpf_prog_array *progs; 439 struct bpf_prog_list *pl; 440 struct cgroup *p = cgrp; 441 int i, j, cnt = 0, preorder_cnt = 0, fstart, bstart, init_bstart; 442 443 /* count number of effective programs by walking parents */ 444 do { 445 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 446 cnt += prog_list_length(&p->bpf.progs[atype], &preorder_cnt); 447 p = cgroup_parent(p); 448 } while (p); 449 450 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 451 if (!progs) 452 return -ENOMEM; 453 454 /* populate the array with effective progs */ 455 cnt = 0; 456 p = cgrp; 457 fstart = preorder_cnt; 458 bstart = preorder_cnt - 1; 459 do { 460 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 461 continue; 462 463 init_bstart = bstart; 464 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { 465 if (!prog_list_prog(pl)) 466 continue; 467 468 if (pl->flags & BPF_F_PREORDER) { 469 item = &progs->items[bstart]; 470 bstart--; 471 } else { 472 item = &progs->items[fstart]; 473 fstart++; 474 } 475 item->prog = prog_list_prog(pl); 476 bpf_cgroup_storages_assign(item->cgroup_storage, 477 pl->storage); 478 cnt++; 479 } 480 481 /* reverse pre-ordering progs at this cgroup level */ 482 for (i = bstart + 1, j = init_bstart; i < j; i++, j--) 483 swap(progs->items[i], progs->items[j]); 484 485 } while ((p = cgroup_parent(p))); 486 487 *array = progs; 488 return 0; 489 } 490 491 static void activate_effective_progs(struct cgroup *cgrp, 492 enum cgroup_bpf_attach_type atype, 493 struct bpf_prog_array *old_array) 494 { 495 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 496 lockdep_is_held(&cgroup_mutex)); 497 /* free prog array after grace period, since __cgroup_bpf_run_*() 498 * might be still walking the array 499 */ 500 bpf_prog_array_free(old_array); 501 } 502 503 /** 504 * cgroup_bpf_inherit() - inherit effective programs from parent 505 * @cgrp: the cgroup to modify 506 */ 507 static int cgroup_bpf_inherit(struct cgroup *cgrp) 508 { 509 /* has to use marco instead of const int, since compiler thinks 510 * that array below is variable length 511 */ 512 #define NR ARRAY_SIZE(cgrp->bpf.effective) 513 struct bpf_prog_array *arrays[NR] = {}; 514 struct cgroup *p; 515 int ret, i; 516 517 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 518 GFP_KERNEL); 519 if (ret) 520 return ret; 521 522 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 523 cgroup_bpf_get(p); 524 525 for (i = 0; i < NR; i++) 526 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); 527 528 INIT_LIST_HEAD(&cgrp->bpf.storages); 529 530 for (i = 0; i < NR; i++) 531 if (compute_effective_progs(cgrp, i, &arrays[i])) 532 goto cleanup; 533 534 for (i = 0; i < NR; i++) 535 activate_effective_progs(cgrp, i, arrays[i]); 536 537 return 0; 538 cleanup: 539 for (i = 0; i < NR; i++) 540 bpf_prog_array_free(arrays[i]); 541 542 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 543 cgroup_bpf_put(p); 544 545 percpu_ref_exit(&cgrp->bpf.refcnt); 546 547 return -ENOMEM; 548 } 549 550 static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, 551 unsigned long action, void *data) 552 { 553 struct cgroup *cgrp = data; 554 int ret = 0; 555 556 if (cgrp->root != &cgrp_dfl_root) 557 return NOTIFY_OK; 558 559 switch (action) { 560 case CGROUP_LIFETIME_ONLINE: 561 ret = cgroup_bpf_inherit(cgrp); 562 break; 563 case CGROUP_LIFETIME_OFFLINE: 564 cgroup_bpf_offline(cgrp); 565 break; 566 } 567 568 return notifier_from_errno(ret); 569 } 570 571 static int update_effective_progs(struct cgroup *cgrp, 572 enum cgroup_bpf_attach_type atype) 573 { 574 struct cgroup_subsys_state *css; 575 int err; 576 577 /* allocate and recompute effective prog arrays */ 578 css_for_each_descendant_pre(css, &cgrp->self) { 579 struct cgroup *desc = container_of(css, struct cgroup, self); 580 581 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 582 continue; 583 584 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 585 if (err) 586 goto cleanup; 587 } 588 589 /* all allocations were successful. Activate all prog arrays */ 590 css_for_each_descendant_pre(css, &cgrp->self) { 591 struct cgroup *desc = container_of(css, struct cgroup, self); 592 593 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 594 if (unlikely(desc->bpf.inactive)) { 595 bpf_prog_array_free(desc->bpf.inactive); 596 desc->bpf.inactive = NULL; 597 } 598 continue; 599 } 600 601 activate_effective_progs(desc, atype, desc->bpf.inactive); 602 desc->bpf.inactive = NULL; 603 } 604 605 return 0; 606 607 cleanup: 608 /* oom while computing effective. Free all computed effective arrays 609 * since they were not activated 610 */ 611 css_for_each_descendant_pre(css, &cgrp->self) { 612 struct cgroup *desc = container_of(css, struct cgroup, self); 613 614 bpf_prog_array_free(desc->bpf.inactive); 615 desc->bpf.inactive = NULL; 616 } 617 618 return err; 619 } 620 621 #define BPF_CGROUP_MAX_PROGS 64 622 623 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, 624 struct bpf_prog *prog, 625 struct bpf_cgroup_link *link, 626 struct bpf_prog *replace_prog, 627 bool allow_multi) 628 { 629 struct bpf_prog_list *pl; 630 631 /* single-attach case */ 632 if (!allow_multi) { 633 if (hlist_empty(progs)) 634 return NULL; 635 return hlist_entry(progs->first, typeof(*pl), node); 636 } 637 638 hlist_for_each_entry(pl, progs, node) { 639 if (prog && pl->prog == prog && prog != replace_prog) 640 /* disallow attaching the same prog twice */ 641 return ERR_PTR(-EINVAL); 642 if (link && pl->link == link) 643 /* disallow attaching the same link twice */ 644 return ERR_PTR(-EINVAL); 645 } 646 647 /* direct prog multi-attach w/ replacement case */ 648 if (replace_prog) { 649 hlist_for_each_entry(pl, progs, node) { 650 if (pl->prog == replace_prog) 651 /* a match found */ 652 return pl; 653 } 654 /* prog to replace not found for cgroup */ 655 return ERR_PTR(-ENOENT); 656 } 657 658 return NULL; 659 } 660 661 static struct bpf_link *bpf_get_anchor_link(u32 flags, u32 id_or_fd) 662 { 663 struct bpf_link *link = ERR_PTR(-EINVAL); 664 665 if (flags & BPF_F_ID) 666 link = bpf_link_by_id(id_or_fd); 667 else if (id_or_fd) 668 link = bpf_link_get_from_fd(id_or_fd); 669 return link; 670 } 671 672 static struct bpf_prog *bpf_get_anchor_prog(u32 flags, u32 id_or_fd) 673 { 674 struct bpf_prog *prog = ERR_PTR(-EINVAL); 675 676 if (flags & BPF_F_ID) 677 prog = bpf_prog_by_id(id_or_fd); 678 else if (id_or_fd) 679 prog = bpf_prog_get(id_or_fd); 680 return prog; 681 } 682 683 static struct bpf_prog_list *get_prog_list(struct hlist_head *progs, struct bpf_prog *prog, 684 struct bpf_cgroup_link *link, u32 flags, u32 id_or_fd) 685 { 686 bool is_link = flags & BPF_F_LINK, is_id = flags & BPF_F_ID; 687 struct bpf_prog_list *pltmp, *pl = ERR_PTR(-EINVAL); 688 bool preorder = flags & BPF_F_PREORDER; 689 struct bpf_link *anchor_link = NULL; 690 struct bpf_prog *anchor_prog = NULL; 691 bool is_before, is_after; 692 693 is_before = flags & BPF_F_BEFORE; 694 is_after = flags & BPF_F_AFTER; 695 if (is_link || is_id || id_or_fd) { 696 /* flags must have either BPF_F_BEFORE or BPF_F_AFTER */ 697 if (is_before == is_after) 698 return ERR_PTR(-EINVAL); 699 if ((is_link && !link) || (!is_link && !prog)) 700 return ERR_PTR(-EINVAL); 701 } else if (!hlist_empty(progs)) { 702 /* flags cannot have both BPF_F_BEFORE and BPF_F_AFTER */ 703 if (is_before && is_after) 704 return ERR_PTR(-EINVAL); 705 } 706 707 if (is_link) { 708 anchor_link = bpf_get_anchor_link(flags, id_or_fd); 709 if (IS_ERR(anchor_link)) 710 return ERR_PTR(PTR_ERR(anchor_link)); 711 } else if (is_id || id_or_fd) { 712 anchor_prog = bpf_get_anchor_prog(flags, id_or_fd); 713 if (IS_ERR(anchor_prog)) 714 return ERR_PTR(PTR_ERR(anchor_prog)); 715 } 716 717 if (!anchor_prog && !anchor_link) { 718 /* if there is no anchor_prog/anchor_link, then BPF_F_PREORDER 719 * doesn't matter since either prepend or append to a combined 720 * list of progs will end up with correct result. 721 */ 722 hlist_for_each_entry(pltmp, progs, node) { 723 if (is_before) 724 return pltmp; 725 if (pltmp->node.next) 726 continue; 727 return pltmp; 728 } 729 return NULL; 730 } 731 732 hlist_for_each_entry(pltmp, progs, node) { 733 if ((anchor_prog && anchor_prog == pltmp->prog) || 734 (anchor_link && anchor_link == &pltmp->link->link)) { 735 if (!!(pltmp->flags & BPF_F_PREORDER) != preorder) 736 goto out; 737 pl = pltmp; 738 goto out; 739 } 740 } 741 742 pl = ERR_PTR(-ENOENT); 743 out: 744 if (anchor_link) 745 bpf_link_put(anchor_link); 746 else 747 bpf_prog_put(anchor_prog); 748 return pl; 749 } 750 751 static int insert_pl_to_hlist(struct bpf_prog_list *pl, struct hlist_head *progs, 752 struct bpf_prog *prog, struct bpf_cgroup_link *link, 753 u32 flags, u32 id_or_fd) 754 { 755 struct bpf_prog_list *pltmp; 756 757 pltmp = get_prog_list(progs, prog, link, flags, id_or_fd); 758 if (IS_ERR(pltmp)) 759 return PTR_ERR(pltmp); 760 761 if (!pltmp) 762 hlist_add_head(&pl->node, progs); 763 else if (flags & BPF_F_BEFORE) 764 hlist_add_before(&pl->node, &pltmp->node); 765 else 766 hlist_add_behind(&pl->node, &pltmp->node); 767 768 return 0; 769 } 770 771 /** 772 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 773 * propagate the change to descendants 774 * @cgrp: The cgroup which descendants to traverse 775 * @prog: A program to attach 776 * @link: A link to attach 777 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 778 * @type: Type of attach operation 779 * @flags: Option flags 780 * @id_or_fd: Relative prog id or fd 781 * @revision: bpf_prog_list revision 782 * 783 * Exactly one of @prog or @link can be non-null. 784 * Must be called with cgroup_mutex held. 785 */ 786 static int __cgroup_bpf_attach(struct cgroup *cgrp, 787 struct bpf_prog *prog, struct bpf_prog *replace_prog, 788 struct bpf_cgroup_link *link, 789 enum bpf_attach_type type, u32 flags, u32 id_or_fd, 790 u64 revision) 791 { 792 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 793 struct bpf_prog *old_prog = NULL; 794 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 795 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 796 struct bpf_prog *new_prog = prog ? : link->link.prog; 797 enum cgroup_bpf_attach_type atype; 798 struct bpf_prog_list *pl; 799 struct hlist_head *progs; 800 int err; 801 802 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 803 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 804 /* invalid combination */ 805 return -EINVAL; 806 if ((flags & BPF_F_REPLACE) && (flags & (BPF_F_BEFORE | BPF_F_AFTER))) 807 /* only either replace or insertion with before/after */ 808 return -EINVAL; 809 if (link && (prog || replace_prog)) 810 /* only either link or prog/replace_prog can be specified */ 811 return -EINVAL; 812 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 813 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 814 return -EINVAL; 815 816 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); 817 if (atype < 0) 818 return -EINVAL; 819 if (revision && revision != cgrp->bpf.revisions[atype]) 820 return -ESTALE; 821 822 progs = &cgrp->bpf.progs[atype]; 823 824 if (!hierarchy_allows_attach(cgrp, atype)) 825 return -EPERM; 826 827 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 828 /* Disallow attaching non-overridable on top 829 * of existing overridable in this cgroup. 830 * Disallow attaching multi-prog if overridable or none 831 */ 832 return -EPERM; 833 834 if (prog_list_length(progs, NULL) >= BPF_CGROUP_MAX_PROGS) 835 return -E2BIG; 836 837 pl = find_attach_entry(progs, prog, link, replace_prog, 838 flags & BPF_F_ALLOW_MULTI); 839 if (IS_ERR(pl)) 840 return PTR_ERR(pl); 841 842 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 843 prog ? : link->link.prog, cgrp)) 844 return -ENOMEM; 845 846 if (pl) { 847 old_prog = pl->prog; 848 } else { 849 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 850 if (!pl) { 851 bpf_cgroup_storages_free(new_storage); 852 return -ENOMEM; 853 } 854 855 err = insert_pl_to_hlist(pl, progs, prog, link, flags, id_or_fd); 856 if (err) { 857 kfree(pl); 858 bpf_cgroup_storages_free(new_storage); 859 return err; 860 } 861 } 862 863 pl->prog = prog; 864 pl->link = link; 865 pl->flags = flags; 866 bpf_cgroup_storages_assign(pl->storage, storage); 867 cgrp->bpf.flags[atype] = saved_flags; 868 869 if (type == BPF_LSM_CGROUP) { 870 err = bpf_trampoline_link_cgroup_shim(new_prog, atype); 871 if (err) 872 goto cleanup; 873 } 874 875 err = update_effective_progs(cgrp, atype); 876 if (err) 877 goto cleanup_trampoline; 878 879 cgrp->bpf.revisions[atype] += 1; 880 if (old_prog) { 881 if (type == BPF_LSM_CGROUP) 882 bpf_trampoline_unlink_cgroup_shim(old_prog); 883 bpf_prog_put(old_prog); 884 } else { 885 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 886 } 887 bpf_cgroup_storages_link(new_storage, cgrp, type); 888 return 0; 889 890 cleanup_trampoline: 891 if (type == BPF_LSM_CGROUP) 892 bpf_trampoline_unlink_cgroup_shim(new_prog); 893 894 cleanup: 895 if (old_prog) { 896 pl->prog = old_prog; 897 pl->link = NULL; 898 } 899 bpf_cgroup_storages_free(new_storage); 900 if (!old_prog) { 901 hlist_del(&pl->node); 902 kfree(pl); 903 } 904 return err; 905 } 906 907 static int cgroup_bpf_attach(struct cgroup *cgrp, 908 struct bpf_prog *prog, struct bpf_prog *replace_prog, 909 struct bpf_cgroup_link *link, 910 enum bpf_attach_type type, 911 u32 flags, u32 id_or_fd, u64 revision) 912 { 913 int ret; 914 915 cgroup_lock(); 916 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags, 917 id_or_fd, revision); 918 cgroup_unlock(); 919 return ret; 920 } 921 922 /* Swap updated BPF program for given link in effective program arrays across 923 * all descendant cgroups. This function is guaranteed to succeed. 924 */ 925 static void replace_effective_prog(struct cgroup *cgrp, 926 enum cgroup_bpf_attach_type atype, 927 struct bpf_cgroup_link *link) 928 { 929 struct bpf_prog_array_item *item; 930 struct cgroup_subsys_state *css; 931 struct bpf_prog_array *progs; 932 struct bpf_prog_list *pl; 933 struct hlist_head *head; 934 struct cgroup *cg; 935 int pos; 936 937 css_for_each_descendant_pre(css, &cgrp->self) { 938 struct cgroup *desc = container_of(css, struct cgroup, self); 939 940 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 941 continue; 942 943 /* find position of link in effective progs array */ 944 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 945 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 946 continue; 947 948 head = &cg->bpf.progs[atype]; 949 hlist_for_each_entry(pl, head, node) { 950 if (!prog_list_prog(pl)) 951 continue; 952 if (pl->link == link) 953 goto found; 954 pos++; 955 } 956 } 957 found: 958 BUG_ON(!cg); 959 progs = rcu_dereference_protected( 960 desc->bpf.effective[atype], 961 lockdep_is_held(&cgroup_mutex)); 962 item = &progs->items[pos]; 963 WRITE_ONCE(item->prog, link->link.prog); 964 } 965 } 966 967 /** 968 * __cgroup_bpf_replace() - Replace link's program and propagate the change 969 * to descendants 970 * @cgrp: The cgroup which descendants to traverse 971 * @link: A link for which to replace BPF program 972 * @new_prog: &struct bpf_prog for the target BPF program with its refcnt 973 * incremented 974 * 975 * Must be called with cgroup_mutex held. 976 */ 977 static int __cgroup_bpf_replace(struct cgroup *cgrp, 978 struct bpf_cgroup_link *link, 979 struct bpf_prog *new_prog) 980 { 981 enum cgroup_bpf_attach_type atype; 982 struct bpf_prog *old_prog; 983 struct bpf_prog_list *pl; 984 struct hlist_head *progs; 985 bool found = false; 986 987 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id); 988 if (atype < 0) 989 return -EINVAL; 990 991 progs = &cgrp->bpf.progs[atype]; 992 993 if (link->link.prog->type != new_prog->type) 994 return -EINVAL; 995 996 hlist_for_each_entry(pl, progs, node) { 997 if (pl->link == link) { 998 found = true; 999 break; 1000 } 1001 } 1002 if (!found) 1003 return -ENOENT; 1004 1005 cgrp->bpf.revisions[atype] += 1; 1006 old_prog = xchg(&link->link.prog, new_prog); 1007 replace_effective_prog(cgrp, atype, link); 1008 bpf_prog_put(old_prog); 1009 return 0; 1010 } 1011 1012 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 1013 struct bpf_prog *old_prog) 1014 { 1015 struct bpf_cgroup_link *cg_link; 1016 int ret; 1017 1018 cg_link = container_of(link, struct bpf_cgroup_link, link); 1019 1020 cgroup_lock(); 1021 /* link might have been auto-released by dying cgroup, so fail */ 1022 if (!cg_link->cgroup) { 1023 ret = -ENOLINK; 1024 goto out_unlock; 1025 } 1026 if (old_prog && link->prog != old_prog) { 1027 ret = -EPERM; 1028 goto out_unlock; 1029 } 1030 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 1031 out_unlock: 1032 cgroup_unlock(); 1033 return ret; 1034 } 1035 1036 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, 1037 struct bpf_prog *prog, 1038 struct bpf_cgroup_link *link, 1039 bool allow_multi) 1040 { 1041 struct bpf_prog_list *pl; 1042 1043 if (!allow_multi) { 1044 if (hlist_empty(progs)) 1045 /* report error when trying to detach and nothing is attached */ 1046 return ERR_PTR(-ENOENT); 1047 1048 /* to maintain backward compatibility NONE and OVERRIDE cgroups 1049 * allow detaching with invalid FD (prog==NULL) in legacy mode 1050 */ 1051 return hlist_entry(progs->first, typeof(*pl), node); 1052 } 1053 1054 if (!prog && !link) 1055 /* to detach MULTI prog the user has to specify valid FD 1056 * of the program or link to be detached 1057 */ 1058 return ERR_PTR(-EINVAL); 1059 1060 /* find the prog or link and detach it */ 1061 hlist_for_each_entry(pl, progs, node) { 1062 if (pl->prog == prog && pl->link == link) 1063 return pl; 1064 } 1065 return ERR_PTR(-ENOENT); 1066 } 1067 1068 /** 1069 * purge_effective_progs() - After compute_effective_progs fails to alloc new 1070 * cgrp->bpf.inactive table we can recover by 1071 * recomputing the array in place. 1072 * 1073 * @cgrp: The cgroup which descendants to travers 1074 * @prog: A program to detach or NULL 1075 * @link: A link to detach or NULL 1076 * @atype: Type of detach operation 1077 */ 1078 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, 1079 struct bpf_cgroup_link *link, 1080 enum cgroup_bpf_attach_type atype) 1081 { 1082 struct cgroup_subsys_state *css; 1083 struct bpf_prog_array *progs; 1084 struct bpf_prog_list *pl; 1085 struct hlist_head *head; 1086 struct cgroup *cg; 1087 int pos; 1088 1089 /* recompute effective prog array in place */ 1090 css_for_each_descendant_pre(css, &cgrp->self) { 1091 struct cgroup *desc = container_of(css, struct cgroup, self); 1092 1093 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 1094 continue; 1095 1096 /* find position of link or prog in effective progs array */ 1097 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 1098 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 1099 continue; 1100 1101 head = &cg->bpf.progs[atype]; 1102 hlist_for_each_entry(pl, head, node) { 1103 if (!prog_list_prog(pl)) 1104 continue; 1105 if (pl->prog == prog && pl->link == link) 1106 goto found; 1107 pos++; 1108 } 1109 } 1110 1111 /* no link or prog match, skip the cgroup of this layer */ 1112 continue; 1113 found: 1114 progs = rcu_dereference_protected( 1115 desc->bpf.effective[atype], 1116 lockdep_is_held(&cgroup_mutex)); 1117 1118 /* Remove the program from the array */ 1119 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), 1120 "Failed to purge a prog from array at index %d", pos); 1121 } 1122 } 1123 1124 /** 1125 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 1126 * propagate the change to descendants 1127 * @cgrp: The cgroup which descendants to traverse 1128 * @prog: A program to detach or NULL 1129 * @link: A link to detach or NULL 1130 * @type: Type of detach operation 1131 * @revision: bpf_prog_list revision 1132 * 1133 * At most one of @prog or @link can be non-NULL. 1134 * Must be called with cgroup_mutex held. 1135 */ 1136 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1137 struct bpf_cgroup_link *link, enum bpf_attach_type type, 1138 u64 revision) 1139 { 1140 enum cgroup_bpf_attach_type atype; 1141 struct bpf_prog *old_prog; 1142 struct bpf_prog_list *pl; 1143 struct hlist_head *progs; 1144 u32 attach_btf_id = 0; 1145 u32 flags; 1146 1147 if (prog) 1148 attach_btf_id = prog->aux->attach_btf_id; 1149 if (link) 1150 attach_btf_id = link->link.prog->aux->attach_btf_id; 1151 1152 atype = bpf_cgroup_atype_find(type, attach_btf_id); 1153 if (atype < 0) 1154 return -EINVAL; 1155 1156 if (revision && revision != cgrp->bpf.revisions[atype]) 1157 return -ESTALE; 1158 1159 progs = &cgrp->bpf.progs[atype]; 1160 flags = cgrp->bpf.flags[atype]; 1161 1162 if (prog && link) 1163 /* only one of prog or link can be specified */ 1164 return -EINVAL; 1165 1166 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 1167 if (IS_ERR(pl)) 1168 return PTR_ERR(pl); 1169 1170 /* mark it deleted, so it's ignored while recomputing effective */ 1171 old_prog = pl->prog; 1172 pl->prog = NULL; 1173 pl->link = NULL; 1174 1175 if (update_effective_progs(cgrp, atype)) { 1176 /* if update effective array failed replace the prog with a dummy prog*/ 1177 pl->prog = old_prog; 1178 pl->link = link; 1179 purge_effective_progs(cgrp, old_prog, link, atype); 1180 } 1181 1182 /* now can actually delete it from this cgroup list */ 1183 hlist_del(&pl->node); 1184 cgrp->bpf.revisions[atype] += 1; 1185 1186 kfree(pl); 1187 if (hlist_empty(progs)) 1188 /* last program was detached, reset flags to zero */ 1189 cgrp->bpf.flags[atype] = 0; 1190 if (old_prog) { 1191 if (type == BPF_LSM_CGROUP) 1192 bpf_trampoline_unlink_cgroup_shim(old_prog); 1193 bpf_prog_put(old_prog); 1194 } 1195 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 1196 return 0; 1197 } 1198 1199 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1200 enum bpf_attach_type type, u64 revision) 1201 { 1202 int ret; 1203 1204 cgroup_lock(); 1205 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type, revision); 1206 cgroup_unlock(); 1207 return ret; 1208 } 1209 1210 /* Must be called with cgroup_mutex held to avoid races. */ 1211 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1212 union bpf_attr __user *uattr) 1213 { 1214 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); 1215 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE; 1216 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 1217 enum bpf_attach_type type = attr->query.attach_type; 1218 enum cgroup_bpf_attach_type from_atype, to_atype; 1219 enum cgroup_bpf_attach_type atype; 1220 struct bpf_prog_array *effective; 1221 int cnt, ret = 0, i; 1222 int total_cnt = 0; 1223 u64 revision = 0; 1224 u32 flags; 1225 1226 if (effective_query && prog_attach_flags) 1227 return -EINVAL; 1228 1229 if (type == BPF_LSM_CGROUP) { 1230 if (!effective_query && attr->query.prog_cnt && 1231 prog_ids && !prog_attach_flags) 1232 return -EINVAL; 1233 1234 from_atype = CGROUP_LSM_START; 1235 to_atype = CGROUP_LSM_END; 1236 flags = 0; 1237 } else { 1238 from_atype = to_cgroup_bpf_attach_type(type); 1239 if (from_atype < 0) 1240 return -EINVAL; 1241 to_atype = from_atype; 1242 flags = cgrp->bpf.flags[from_atype]; 1243 } 1244 1245 for (atype = from_atype; atype <= to_atype; atype++) { 1246 if (effective_query) { 1247 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1248 lockdep_is_held(&cgroup_mutex)); 1249 total_cnt += bpf_prog_array_length(effective); 1250 } else { 1251 total_cnt += prog_list_length(&cgrp->bpf.progs[atype], NULL); 1252 } 1253 } 1254 1255 /* always output uattr->query.attach_flags as 0 during effective query */ 1256 flags = effective_query ? 0 : flags; 1257 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 1258 return -EFAULT; 1259 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) 1260 return -EFAULT; 1261 if (!effective_query && from_atype == to_atype) 1262 revision = cgrp->bpf.revisions[from_atype]; 1263 if (copy_to_user(&uattr->query.revision, &revision, sizeof(revision))) 1264 return -EFAULT; 1265 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) 1266 /* return early if user requested only program count + flags */ 1267 return 0; 1268 1269 if (attr->query.prog_cnt < total_cnt) { 1270 total_cnt = attr->query.prog_cnt; 1271 ret = -ENOSPC; 1272 } 1273 1274 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { 1275 if (effective_query) { 1276 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1277 lockdep_is_held(&cgroup_mutex)); 1278 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); 1279 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 1280 } else { 1281 struct hlist_head *progs; 1282 struct bpf_prog_list *pl; 1283 struct bpf_prog *prog; 1284 u32 id; 1285 1286 progs = &cgrp->bpf.progs[atype]; 1287 cnt = min_t(int, prog_list_length(progs, NULL), total_cnt); 1288 i = 0; 1289 hlist_for_each_entry(pl, progs, node) { 1290 prog = prog_list_prog(pl); 1291 id = prog->aux->id; 1292 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 1293 return -EFAULT; 1294 if (++i == cnt) 1295 break; 1296 } 1297 1298 if (prog_attach_flags) { 1299 flags = cgrp->bpf.flags[atype]; 1300 1301 for (i = 0; i < cnt; i++) 1302 if (copy_to_user(prog_attach_flags + i, 1303 &flags, sizeof(flags))) 1304 return -EFAULT; 1305 prog_attach_flags += cnt; 1306 } 1307 } 1308 1309 prog_ids += cnt; 1310 total_cnt -= cnt; 1311 } 1312 return ret; 1313 } 1314 1315 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1316 union bpf_attr __user *uattr) 1317 { 1318 int ret; 1319 1320 cgroup_lock(); 1321 ret = __cgroup_bpf_query(cgrp, attr, uattr); 1322 cgroup_unlock(); 1323 return ret; 1324 } 1325 1326 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 1327 enum bpf_prog_type ptype, struct bpf_prog *prog) 1328 { 1329 struct bpf_prog *replace_prog = NULL; 1330 struct cgroup *cgrp; 1331 int ret; 1332 1333 cgrp = cgroup_get_from_fd(attr->target_fd); 1334 if (IS_ERR(cgrp)) 1335 return PTR_ERR(cgrp); 1336 1337 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 1338 (attr->attach_flags & BPF_F_REPLACE)) { 1339 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 1340 if (IS_ERR(replace_prog)) { 1341 cgroup_put(cgrp); 1342 return PTR_ERR(replace_prog); 1343 } 1344 } 1345 1346 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 1347 attr->attach_type, attr->attach_flags, 1348 attr->relative_fd, attr->expected_revision); 1349 1350 if (replace_prog) 1351 bpf_prog_put(replace_prog); 1352 cgroup_put(cgrp); 1353 return ret; 1354 } 1355 1356 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 1357 { 1358 struct bpf_prog *prog; 1359 struct cgroup *cgrp; 1360 int ret; 1361 1362 cgrp = cgroup_get_from_fd(attr->target_fd); 1363 if (IS_ERR(cgrp)) 1364 return PTR_ERR(cgrp); 1365 1366 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 1367 if (IS_ERR(prog)) 1368 prog = NULL; 1369 1370 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, attr->expected_revision); 1371 if (prog) 1372 bpf_prog_put(prog); 1373 1374 cgroup_put(cgrp); 1375 return ret; 1376 } 1377 1378 static void bpf_cgroup_link_release(struct bpf_link *link) 1379 { 1380 struct bpf_cgroup_link *cg_link = 1381 container_of(link, struct bpf_cgroup_link, link); 1382 struct cgroup *cg; 1383 1384 /* link might have been auto-detached by dying cgroup already, 1385 * in that case our work is done here 1386 */ 1387 if (!cg_link->cgroup) 1388 return; 1389 1390 cgroup_lock(); 1391 1392 /* re-check cgroup under lock again */ 1393 if (!cg_link->cgroup) { 1394 cgroup_unlock(); 1395 return; 1396 } 1397 1398 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 1399 cg_link->type, 0)); 1400 if (cg_link->type == BPF_LSM_CGROUP) 1401 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); 1402 1403 cg = cg_link->cgroup; 1404 cg_link->cgroup = NULL; 1405 1406 cgroup_unlock(); 1407 1408 cgroup_put(cg); 1409 } 1410 1411 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 1412 { 1413 struct bpf_cgroup_link *cg_link = 1414 container_of(link, struct bpf_cgroup_link, link); 1415 1416 kfree(cg_link); 1417 } 1418 1419 static int bpf_cgroup_link_detach(struct bpf_link *link) 1420 { 1421 bpf_cgroup_link_release(link); 1422 1423 return 0; 1424 } 1425 1426 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 1427 struct seq_file *seq) 1428 { 1429 struct bpf_cgroup_link *cg_link = 1430 container_of(link, struct bpf_cgroup_link, link); 1431 u64 cg_id = 0; 1432 1433 cgroup_lock(); 1434 if (cg_link->cgroup) 1435 cg_id = cgroup_id(cg_link->cgroup); 1436 cgroup_unlock(); 1437 1438 seq_printf(seq, 1439 "cgroup_id:\t%llu\n" 1440 "attach_type:\t%d\n", 1441 cg_id, 1442 cg_link->type); 1443 } 1444 1445 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 1446 struct bpf_link_info *info) 1447 { 1448 struct bpf_cgroup_link *cg_link = 1449 container_of(link, struct bpf_cgroup_link, link); 1450 u64 cg_id = 0; 1451 1452 cgroup_lock(); 1453 if (cg_link->cgroup) 1454 cg_id = cgroup_id(cg_link->cgroup); 1455 cgroup_unlock(); 1456 1457 info->cgroup.cgroup_id = cg_id; 1458 info->cgroup.attach_type = cg_link->type; 1459 return 0; 1460 } 1461 1462 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1463 .release = bpf_cgroup_link_release, 1464 .dealloc = bpf_cgroup_link_dealloc, 1465 .detach = bpf_cgroup_link_detach, 1466 .update_prog = cgroup_bpf_replace, 1467 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1468 .fill_link_info = bpf_cgroup_link_fill_link_info, 1469 }; 1470 1471 #define BPF_F_LINK_ATTACH_MASK \ 1472 (BPF_F_ID | \ 1473 BPF_F_BEFORE | \ 1474 BPF_F_AFTER | \ 1475 BPF_F_PREORDER | \ 1476 BPF_F_LINK) 1477 1478 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1479 { 1480 struct bpf_link_primer link_primer; 1481 struct bpf_cgroup_link *link; 1482 struct cgroup *cgrp; 1483 int err; 1484 1485 if (attr->link_create.flags & (~BPF_F_LINK_ATTACH_MASK)) 1486 return -EINVAL; 1487 1488 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1489 if (IS_ERR(cgrp)) 1490 return PTR_ERR(cgrp); 1491 1492 link = kzalloc(sizeof(*link), GFP_USER); 1493 if (!link) { 1494 err = -ENOMEM; 1495 goto out_put_cgroup; 1496 } 1497 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1498 prog); 1499 link->cgroup = cgrp; 1500 link->type = attr->link_create.attach_type; 1501 1502 err = bpf_link_prime(&link->link, &link_primer); 1503 if (err) { 1504 kfree(link); 1505 goto out_put_cgroup; 1506 } 1507 1508 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1509 link->type, BPF_F_ALLOW_MULTI | attr->link_create.flags, 1510 attr->link_create.cgroup.relative_fd, 1511 attr->link_create.cgroup.expected_revision); 1512 if (err) { 1513 bpf_link_cleanup(&link_primer); 1514 goto out_put_cgroup; 1515 } 1516 1517 return bpf_link_settle(&link_primer); 1518 1519 out_put_cgroup: 1520 cgroup_put(cgrp); 1521 return err; 1522 } 1523 1524 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1525 union bpf_attr __user *uattr) 1526 { 1527 struct cgroup *cgrp; 1528 int ret; 1529 1530 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1531 if (IS_ERR(cgrp)) 1532 return PTR_ERR(cgrp); 1533 1534 ret = cgroup_bpf_query(cgrp, attr, uattr); 1535 1536 cgroup_put(cgrp); 1537 return ret; 1538 } 1539 1540 /** 1541 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1542 * @sk: The socket sending or receiving traffic 1543 * @skb: The skb that is being sent or received 1544 * @atype: The type of program to be executed 1545 * 1546 * If no socket is passed, or the socket is not of type INET or INET6, 1547 * this function does nothing and returns 0. 1548 * 1549 * The program type passed in via @type must be suitable for network 1550 * filtering. No further check is performed to assert that. 1551 * 1552 * For egress packets, this function can return: 1553 * NET_XMIT_SUCCESS (0) - continue with packet output 1554 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1555 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1556 * to call cwr 1557 * -err - drop packet 1558 * 1559 * For ingress packets, this function will return -EPERM if any 1560 * attached program was found and if it returned != 1 during execution. 1561 * Otherwise 0 is returned. 1562 */ 1563 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1564 struct sk_buff *skb, 1565 enum cgroup_bpf_attach_type atype) 1566 { 1567 unsigned int offset = -skb_network_offset(skb); 1568 struct sock *save_sk; 1569 void *saved_data_end; 1570 struct cgroup *cgrp; 1571 int ret; 1572 1573 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1574 return 0; 1575 1576 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1577 save_sk = skb->sk; 1578 skb->sk = sk; 1579 __skb_push(skb, offset); 1580 1581 /* compute pointers for the bpf prog */ 1582 bpf_compute_and_save_data_end(skb, &saved_data_end); 1583 1584 if (atype == CGROUP_INET_EGRESS) { 1585 u32 flags = 0; 1586 bool cn; 1587 1588 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1589 __bpf_prog_run_save_cb, 0, &flags); 1590 1591 /* Return values of CGROUP EGRESS BPF programs are: 1592 * 0: drop packet 1593 * 1: keep packet 1594 * 2: drop packet and cn 1595 * 3: keep packet and cn 1596 * 1597 * The returned value is then converted to one of the NET_XMIT 1598 * or an error code that is then interpreted as drop packet 1599 * (and no cn): 1600 * 0: NET_XMIT_SUCCESS skb should be transmitted 1601 * 1: NET_XMIT_DROP skb should be dropped and cn 1602 * 2: NET_XMIT_CN skb should be transmitted and cn 1603 * 3: -err skb should be dropped 1604 */ 1605 1606 cn = flags & BPF_RET_SET_CN; 1607 if (ret && !IS_ERR_VALUE((long)ret)) 1608 ret = -EFAULT; 1609 if (!ret) 1610 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1611 else 1612 ret = (cn ? NET_XMIT_DROP : ret); 1613 } else { 1614 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1615 skb, __bpf_prog_run_save_cb, 0, 1616 NULL); 1617 if (ret && !IS_ERR_VALUE((long)ret)) 1618 ret = -EFAULT; 1619 } 1620 bpf_restore_data_end(skb, saved_data_end); 1621 __skb_pull(skb, offset); 1622 skb->sk = save_sk; 1623 1624 return ret; 1625 } 1626 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1627 1628 /** 1629 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1630 * @sk: sock structure to manipulate 1631 * @atype: The type of program to be executed 1632 * 1633 * socket is passed is expected to be of type INET or INET6. 1634 * 1635 * The program type passed in via @type must be suitable for sock 1636 * filtering. No further check is performed to assert that. 1637 * 1638 * This function will return %-EPERM if any if an attached program was found 1639 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1640 */ 1641 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1642 enum cgroup_bpf_attach_type atype) 1643 { 1644 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1645 1646 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1647 NULL); 1648 } 1649 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1650 1651 /** 1652 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1653 * provided by user sockaddr 1654 * @sk: sock struct that will use sockaddr 1655 * @uaddr: sockaddr struct provided by user 1656 * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is 1657 * read-only for AF_INET[6] uaddr but can be modified for AF_UNIX 1658 * uaddr. 1659 * @atype: The type of program to be executed 1660 * @t_ctx: Pointer to attach type specific context 1661 * @flags: Pointer to u32 which contains higher bits of BPF program 1662 * return value (OR'ed together). 1663 * 1664 * socket is expected to be of type INET, INET6 or UNIX. 1665 * 1666 * This function will return %-EPERM if an attached program is found and 1667 * returned value != 1 during execution. In all other cases, 0 is returned. 1668 */ 1669 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1670 struct sockaddr *uaddr, 1671 int *uaddrlen, 1672 enum cgroup_bpf_attach_type atype, 1673 void *t_ctx, 1674 u32 *flags) 1675 { 1676 struct bpf_sock_addr_kern ctx = { 1677 .sk = sk, 1678 .uaddr = uaddr, 1679 .t_ctx = t_ctx, 1680 }; 1681 struct sockaddr_storage unspec; 1682 struct cgroup *cgrp; 1683 int ret; 1684 1685 /* Check socket family since not all sockets represent network 1686 * endpoint (e.g. AF_UNIX). 1687 */ 1688 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6 && 1689 sk->sk_family != AF_UNIX) 1690 return 0; 1691 1692 if (!ctx.uaddr) { 1693 memset(&unspec, 0, sizeof(unspec)); 1694 ctx.uaddr = (struct sockaddr *)&unspec; 1695 ctx.uaddrlen = 0; 1696 } else { 1697 ctx.uaddrlen = *uaddrlen; 1698 } 1699 1700 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1701 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1702 0, flags); 1703 1704 if (!ret && uaddr) 1705 *uaddrlen = ctx.uaddrlen; 1706 1707 return ret; 1708 } 1709 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1710 1711 /** 1712 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1713 * @sk: socket to get cgroup from 1714 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1715 * sk with connection information (IP addresses, etc.) May not contain 1716 * cgroup info if it is a req sock. 1717 * @atype: The type of program to be executed 1718 * 1719 * socket passed is expected to be of type INET or INET6. 1720 * 1721 * The program type passed in via @type must be suitable for sock_ops 1722 * filtering. No further check is performed to assert that. 1723 * 1724 * This function will return %-EPERM if any if an attached program was found 1725 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1726 */ 1727 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1728 struct bpf_sock_ops_kern *sock_ops, 1729 enum cgroup_bpf_attach_type atype) 1730 { 1731 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1732 1733 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1734 0, NULL); 1735 } 1736 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1737 1738 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1739 short access, enum cgroup_bpf_attach_type atype) 1740 { 1741 struct cgroup *cgrp; 1742 struct bpf_cgroup_dev_ctx ctx = { 1743 .access_type = (access << 16) | dev_type, 1744 .major = major, 1745 .minor = minor, 1746 }; 1747 int ret; 1748 1749 rcu_read_lock(); 1750 cgrp = task_dfl_cgroup(current); 1751 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1752 NULL); 1753 rcu_read_unlock(); 1754 1755 return ret; 1756 } 1757 1758 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 1759 { 1760 /* flags argument is not used now, 1761 * but provides an ability to extend the API. 1762 * verifier checks that its value is correct. 1763 */ 1764 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 1765 struct bpf_cgroup_storage *storage; 1766 struct bpf_cg_run_ctx *ctx; 1767 void *ptr; 1768 1769 /* get current cgroup storage from BPF run context */ 1770 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1771 storage = ctx->prog_item->cgroup_storage[stype]; 1772 1773 if (stype == BPF_CGROUP_STORAGE_SHARED) 1774 ptr = &READ_ONCE(storage->buf)->data[0]; 1775 else 1776 ptr = this_cpu_ptr(storage->percpu_buf); 1777 1778 return (unsigned long)ptr; 1779 } 1780 1781 const struct bpf_func_proto bpf_get_local_storage_proto = { 1782 .func = bpf_get_local_storage, 1783 .gpl_only = false, 1784 .ret_type = RET_PTR_TO_MAP_VALUE, 1785 .arg1_type = ARG_CONST_MAP_PTR, 1786 .arg2_type = ARG_ANYTHING, 1787 }; 1788 1789 BPF_CALL_0(bpf_get_retval) 1790 { 1791 struct bpf_cg_run_ctx *ctx = 1792 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1793 1794 return ctx->retval; 1795 } 1796 1797 const struct bpf_func_proto bpf_get_retval_proto = { 1798 .func = bpf_get_retval, 1799 .gpl_only = false, 1800 .ret_type = RET_INTEGER, 1801 }; 1802 1803 BPF_CALL_1(bpf_set_retval, int, retval) 1804 { 1805 struct bpf_cg_run_ctx *ctx = 1806 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1807 1808 ctx->retval = retval; 1809 return 0; 1810 } 1811 1812 const struct bpf_func_proto bpf_set_retval_proto = { 1813 .func = bpf_set_retval, 1814 .gpl_only = false, 1815 .ret_type = RET_INTEGER, 1816 .arg1_type = ARG_ANYTHING, 1817 }; 1818 1819 static const struct bpf_func_proto * 1820 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1821 { 1822 const struct bpf_func_proto *func_proto; 1823 1824 func_proto = cgroup_common_func_proto(func_id, prog); 1825 if (func_proto) 1826 return func_proto; 1827 1828 switch (func_id) { 1829 case BPF_FUNC_perf_event_output: 1830 return &bpf_event_output_data_proto; 1831 default: 1832 return bpf_base_func_proto(func_id, prog); 1833 } 1834 } 1835 1836 static bool cgroup_dev_is_valid_access(int off, int size, 1837 enum bpf_access_type type, 1838 const struct bpf_prog *prog, 1839 struct bpf_insn_access_aux *info) 1840 { 1841 const int size_default = sizeof(__u32); 1842 1843 if (type == BPF_WRITE) 1844 return false; 1845 1846 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1847 return false; 1848 /* The verifier guarantees that size > 0. */ 1849 if (off % size != 0) 1850 return false; 1851 1852 switch (off) { 1853 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1854 bpf_ctx_record_field_size(info, size_default); 1855 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1856 return false; 1857 break; 1858 default: 1859 if (size != size_default) 1860 return false; 1861 } 1862 1863 return true; 1864 } 1865 1866 const struct bpf_prog_ops cg_dev_prog_ops = { 1867 }; 1868 1869 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1870 .get_func_proto = cgroup_dev_func_proto, 1871 .is_valid_access = cgroup_dev_is_valid_access, 1872 }; 1873 1874 /** 1875 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1876 * 1877 * @head: sysctl table header 1878 * @table: sysctl table 1879 * @write: sysctl is being read (= 0) or written (= 1) 1880 * @buf: pointer to buffer (in and out) 1881 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1882 * result is size of @new_buf if program set new value, initial value 1883 * otherwise 1884 * @ppos: value-result argument: value is position at which read from or write 1885 * to sysctl is happening, result is new position if program overrode it, 1886 * initial value otherwise 1887 * @atype: type of program to be executed 1888 * 1889 * Program is run when sysctl is being accessed, either read or written, and 1890 * can allow or deny such access. 1891 * 1892 * This function will return %-EPERM if an attached program is found and 1893 * returned value != 1 during execution. In all other cases 0 is returned. 1894 */ 1895 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1896 const struct ctl_table *table, int write, 1897 char **buf, size_t *pcount, loff_t *ppos, 1898 enum cgroup_bpf_attach_type atype) 1899 { 1900 struct bpf_sysctl_kern ctx = { 1901 .head = head, 1902 .table = table, 1903 .write = write, 1904 .ppos = ppos, 1905 .cur_val = NULL, 1906 .cur_len = PAGE_SIZE, 1907 .new_val = NULL, 1908 .new_len = 0, 1909 .new_updated = 0, 1910 }; 1911 struct cgroup *cgrp; 1912 loff_t pos = 0; 1913 int ret; 1914 1915 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1916 if (!ctx.cur_val || 1917 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1918 /* Let BPF program decide how to proceed. */ 1919 ctx.cur_len = 0; 1920 } 1921 1922 if (write && *buf && *pcount) { 1923 /* BPF program should be able to override new value with a 1924 * buffer bigger than provided by user. 1925 */ 1926 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1927 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1928 if (ctx.new_val) { 1929 memcpy(ctx.new_val, *buf, ctx.new_len); 1930 } else { 1931 /* Let BPF program decide how to proceed. */ 1932 ctx.new_len = 0; 1933 } 1934 } 1935 1936 rcu_read_lock(); 1937 cgrp = task_dfl_cgroup(current); 1938 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1939 NULL); 1940 rcu_read_unlock(); 1941 1942 kfree(ctx.cur_val); 1943 1944 if (ret == 1 && ctx.new_updated) { 1945 kfree(*buf); 1946 *buf = ctx.new_val; 1947 *pcount = ctx.new_len; 1948 } else { 1949 kfree(ctx.new_val); 1950 } 1951 1952 return ret; 1953 } 1954 1955 #ifdef CONFIG_NET 1956 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1957 struct bpf_sockopt_buf *buf) 1958 { 1959 if (unlikely(max_optlen < 0)) 1960 return -EINVAL; 1961 1962 if (unlikely(max_optlen > PAGE_SIZE)) { 1963 /* We don't expose optvals that are greater than PAGE_SIZE 1964 * to the BPF program. 1965 */ 1966 max_optlen = PAGE_SIZE; 1967 } 1968 1969 if (max_optlen <= sizeof(buf->data)) { 1970 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1971 * bytes avoid the cost of kzalloc. 1972 */ 1973 ctx->optval = buf->data; 1974 ctx->optval_end = ctx->optval + max_optlen; 1975 return max_optlen; 1976 } 1977 1978 ctx->optval = kzalloc(max_optlen, GFP_USER); 1979 if (!ctx->optval) 1980 return -ENOMEM; 1981 1982 ctx->optval_end = ctx->optval + max_optlen; 1983 1984 return max_optlen; 1985 } 1986 1987 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1988 struct bpf_sockopt_buf *buf) 1989 { 1990 if (ctx->optval == buf->data) 1991 return; 1992 kfree(ctx->optval); 1993 } 1994 1995 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1996 struct bpf_sockopt_buf *buf) 1997 { 1998 return ctx->optval != buf->data; 1999 } 2000 2001 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 2002 int *optname, sockptr_t optval, 2003 int *optlen, char **kernel_optval) 2004 { 2005 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2006 struct bpf_sockopt_buf buf = {}; 2007 struct bpf_sockopt_kern ctx = { 2008 .sk = sk, 2009 .level = *level, 2010 .optname = *optname, 2011 }; 2012 int ret, max_optlen; 2013 2014 /* Allocate a bit more than the initial user buffer for 2015 * BPF program. The canonical use case is overriding 2016 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 2017 */ 2018 max_optlen = max_t(int, 16, *optlen); 2019 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 2020 if (max_optlen < 0) 2021 return max_optlen; 2022 2023 ctx.optlen = *optlen; 2024 2025 if (copy_from_sockptr(ctx.optval, optval, 2026 min(*optlen, max_optlen))) { 2027 ret = -EFAULT; 2028 goto out; 2029 } 2030 2031 lock_sock(sk); 2032 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 2033 &ctx, bpf_prog_run, 0, NULL); 2034 release_sock(sk); 2035 2036 if (ret) 2037 goto out; 2038 2039 if (ctx.optlen == -1) { 2040 /* optlen set to -1, bypass kernel */ 2041 ret = 1; 2042 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 2043 /* optlen is out of bounds */ 2044 if (*optlen > PAGE_SIZE && ctx.optlen >= 0) { 2045 pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 2046 ctx.optlen, max_optlen); 2047 ret = 0; 2048 goto out; 2049 } 2050 ret = -EFAULT; 2051 } else { 2052 /* optlen within bounds, run kernel handler */ 2053 ret = 0; 2054 2055 /* export any potential modifications */ 2056 *level = ctx.level; 2057 *optname = ctx.optname; 2058 2059 /* optlen == 0 from BPF indicates that we should 2060 * use original userspace data. 2061 */ 2062 if (ctx.optlen != 0) { 2063 *optlen = ctx.optlen; 2064 /* We've used bpf_sockopt_kern->buf as an intermediary 2065 * storage, but the BPF program indicates that we need 2066 * to pass this data to the kernel setsockopt handler. 2067 * No way to export on-stack buf, have to allocate a 2068 * new buffer. 2069 */ 2070 if (!sockopt_buf_allocated(&ctx, &buf)) { 2071 void *p = kmalloc(ctx.optlen, GFP_USER); 2072 2073 if (!p) { 2074 ret = -ENOMEM; 2075 goto out; 2076 } 2077 memcpy(p, ctx.optval, ctx.optlen); 2078 *kernel_optval = p; 2079 } else { 2080 *kernel_optval = ctx.optval; 2081 } 2082 /* export and don't free sockopt buf */ 2083 return 0; 2084 } 2085 } 2086 2087 out: 2088 sockopt_free_buf(&ctx, &buf); 2089 return ret; 2090 } 2091 2092 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 2093 int optname, sockptr_t optval, 2094 sockptr_t optlen, int max_optlen, 2095 int retval) 2096 { 2097 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2098 struct bpf_sockopt_buf buf = {}; 2099 struct bpf_sockopt_kern ctx = { 2100 .sk = sk, 2101 .level = level, 2102 .optname = optname, 2103 .current_task = current, 2104 }; 2105 int orig_optlen; 2106 int ret; 2107 2108 orig_optlen = max_optlen; 2109 ctx.optlen = max_optlen; 2110 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 2111 if (max_optlen < 0) 2112 return max_optlen; 2113 2114 if (!retval) { 2115 /* If kernel getsockopt finished successfully, 2116 * copy whatever was returned to the user back 2117 * into our temporary buffer. Set optlen to the 2118 * one that kernel returned as well to let 2119 * BPF programs inspect the value. 2120 */ 2121 if (copy_from_sockptr(&ctx.optlen, optlen, 2122 sizeof(ctx.optlen))) { 2123 ret = -EFAULT; 2124 goto out; 2125 } 2126 2127 if (ctx.optlen < 0) { 2128 ret = -EFAULT; 2129 goto out; 2130 } 2131 orig_optlen = ctx.optlen; 2132 2133 if (copy_from_sockptr(ctx.optval, optval, 2134 min(ctx.optlen, max_optlen))) { 2135 ret = -EFAULT; 2136 goto out; 2137 } 2138 } 2139 2140 lock_sock(sk); 2141 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2142 &ctx, bpf_prog_run, retval, NULL); 2143 release_sock(sk); 2144 2145 if (ret < 0) 2146 goto out; 2147 2148 if (!sockptr_is_null(optval) && 2149 (ctx.optlen > max_optlen || ctx.optlen < 0)) { 2150 if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) { 2151 pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 2152 ctx.optlen, max_optlen); 2153 ret = retval; 2154 goto out; 2155 } 2156 ret = -EFAULT; 2157 goto out; 2158 } 2159 2160 if (ctx.optlen != 0) { 2161 if (!sockptr_is_null(optval) && 2162 copy_to_sockptr(optval, ctx.optval, ctx.optlen)) { 2163 ret = -EFAULT; 2164 goto out; 2165 } 2166 if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) { 2167 ret = -EFAULT; 2168 goto out; 2169 } 2170 } 2171 2172 out: 2173 sockopt_free_buf(&ctx, &buf); 2174 return ret; 2175 } 2176 2177 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 2178 int optname, void *optval, 2179 int *optlen, int retval) 2180 { 2181 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2182 struct bpf_sockopt_kern ctx = { 2183 .sk = sk, 2184 .level = level, 2185 .optname = optname, 2186 .optlen = *optlen, 2187 .optval = optval, 2188 .optval_end = optval + *optlen, 2189 .current_task = current, 2190 }; 2191 int ret; 2192 2193 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 2194 * user data back into BPF buffer when reval != 0. This is 2195 * done as an optimization to avoid extra copy, assuming 2196 * kernel won't populate the data in case of an error. 2197 * Here we always pass the data and memset() should 2198 * be called if that data shouldn't be "exported". 2199 */ 2200 2201 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2202 &ctx, bpf_prog_run, retval, NULL); 2203 if (ret < 0) 2204 return ret; 2205 2206 if (ctx.optlen > *optlen) 2207 return -EFAULT; 2208 2209 /* BPF programs can shrink the buffer, export the modifications. 2210 */ 2211 if (ctx.optlen != 0) 2212 *optlen = ctx.optlen; 2213 2214 return ret; 2215 } 2216 #endif 2217 2218 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 2219 size_t *lenp) 2220 { 2221 ssize_t tmp_ret = 0, ret; 2222 2223 if (dir->header.parent) { 2224 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 2225 if (tmp_ret < 0) 2226 return tmp_ret; 2227 } 2228 2229 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 2230 if (ret < 0) 2231 return ret; 2232 *bufp += ret; 2233 *lenp -= ret; 2234 ret += tmp_ret; 2235 2236 /* Avoid leading slash. */ 2237 if (!ret) 2238 return ret; 2239 2240 tmp_ret = strscpy(*bufp, "/", *lenp); 2241 if (tmp_ret < 0) 2242 return tmp_ret; 2243 *bufp += tmp_ret; 2244 *lenp -= tmp_ret; 2245 2246 return ret + tmp_ret; 2247 } 2248 2249 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 2250 size_t, buf_len, u64, flags) 2251 { 2252 ssize_t tmp_ret = 0, ret; 2253 2254 if (!buf) 2255 return -EINVAL; 2256 2257 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 2258 if (!ctx->head) 2259 return -EINVAL; 2260 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 2261 if (tmp_ret < 0) 2262 return tmp_ret; 2263 } 2264 2265 ret = strscpy(buf, ctx->table->procname, buf_len); 2266 2267 return ret < 0 ? ret : tmp_ret + ret; 2268 } 2269 2270 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 2271 .func = bpf_sysctl_get_name, 2272 .gpl_only = false, 2273 .ret_type = RET_INTEGER, 2274 .arg1_type = ARG_PTR_TO_CTX, 2275 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 2276 .arg3_type = ARG_CONST_SIZE, 2277 .arg4_type = ARG_ANYTHING, 2278 }; 2279 2280 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 2281 size_t src_len) 2282 { 2283 if (!dst) 2284 return -EINVAL; 2285 2286 if (!dst_len) 2287 return -E2BIG; 2288 2289 if (!src || !src_len) { 2290 memset(dst, 0, dst_len); 2291 return -EINVAL; 2292 } 2293 2294 memcpy(dst, src, min(dst_len, src_len)); 2295 2296 if (dst_len > src_len) { 2297 memset(dst + src_len, '\0', dst_len - src_len); 2298 return src_len; 2299 } 2300 2301 dst[dst_len - 1] = '\0'; 2302 2303 return -E2BIG; 2304 } 2305 2306 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 2307 char *, buf, size_t, buf_len) 2308 { 2309 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 2310 } 2311 2312 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 2313 .func = bpf_sysctl_get_current_value, 2314 .gpl_only = false, 2315 .ret_type = RET_INTEGER, 2316 .arg1_type = ARG_PTR_TO_CTX, 2317 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2318 .arg3_type = ARG_CONST_SIZE, 2319 }; 2320 2321 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 2322 size_t, buf_len) 2323 { 2324 if (!ctx->write) { 2325 if (buf && buf_len) 2326 memset(buf, '\0', buf_len); 2327 return -EINVAL; 2328 } 2329 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 2330 } 2331 2332 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 2333 .func = bpf_sysctl_get_new_value, 2334 .gpl_only = false, 2335 .ret_type = RET_INTEGER, 2336 .arg1_type = ARG_PTR_TO_CTX, 2337 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2338 .arg3_type = ARG_CONST_SIZE, 2339 }; 2340 2341 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 2342 const char *, buf, size_t, buf_len) 2343 { 2344 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 2345 return -EINVAL; 2346 2347 if (buf_len > PAGE_SIZE - 1) 2348 return -E2BIG; 2349 2350 memcpy(ctx->new_val, buf, buf_len); 2351 ctx->new_len = buf_len; 2352 ctx->new_updated = 1; 2353 2354 return 0; 2355 } 2356 2357 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 2358 .func = bpf_sysctl_set_new_value, 2359 .gpl_only = false, 2360 .ret_type = RET_INTEGER, 2361 .arg1_type = ARG_PTR_TO_CTX, 2362 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 2363 .arg3_type = ARG_CONST_SIZE, 2364 }; 2365 2366 static const struct bpf_func_proto * 2367 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2368 { 2369 const struct bpf_func_proto *func_proto; 2370 2371 func_proto = cgroup_common_func_proto(func_id, prog); 2372 if (func_proto) 2373 return func_proto; 2374 2375 switch (func_id) { 2376 case BPF_FUNC_sysctl_get_name: 2377 return &bpf_sysctl_get_name_proto; 2378 case BPF_FUNC_sysctl_get_current_value: 2379 return &bpf_sysctl_get_current_value_proto; 2380 case BPF_FUNC_sysctl_get_new_value: 2381 return &bpf_sysctl_get_new_value_proto; 2382 case BPF_FUNC_sysctl_set_new_value: 2383 return &bpf_sysctl_set_new_value_proto; 2384 case BPF_FUNC_ktime_get_coarse_ns: 2385 return &bpf_ktime_get_coarse_ns_proto; 2386 case BPF_FUNC_perf_event_output: 2387 return &bpf_event_output_data_proto; 2388 default: 2389 return bpf_base_func_proto(func_id, prog); 2390 } 2391 } 2392 2393 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 2394 const struct bpf_prog *prog, 2395 struct bpf_insn_access_aux *info) 2396 { 2397 const int size_default = sizeof(__u32); 2398 2399 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 2400 return false; 2401 2402 switch (off) { 2403 case bpf_ctx_range(struct bpf_sysctl, write): 2404 if (type != BPF_READ) 2405 return false; 2406 bpf_ctx_record_field_size(info, size_default); 2407 return bpf_ctx_narrow_access_ok(off, size, size_default); 2408 case bpf_ctx_range(struct bpf_sysctl, file_pos): 2409 if (type == BPF_READ) { 2410 bpf_ctx_record_field_size(info, size_default); 2411 return bpf_ctx_narrow_access_ok(off, size, size_default); 2412 } else { 2413 return size == size_default; 2414 } 2415 default: 2416 return false; 2417 } 2418 } 2419 2420 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 2421 const struct bpf_insn *si, 2422 struct bpf_insn *insn_buf, 2423 struct bpf_prog *prog, u32 *target_size) 2424 { 2425 struct bpf_insn *insn = insn_buf; 2426 u32 read_size; 2427 2428 switch (si->off) { 2429 case offsetof(struct bpf_sysctl, write): 2430 *insn++ = BPF_LDX_MEM( 2431 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 2432 bpf_target_off(struct bpf_sysctl_kern, write, 2433 sizeof_field(struct bpf_sysctl_kern, 2434 write), 2435 target_size)); 2436 break; 2437 case offsetof(struct bpf_sysctl, file_pos): 2438 /* ppos is a pointer so it should be accessed via indirect 2439 * loads and stores. Also for stores additional temporary 2440 * register is used since neither src_reg nor dst_reg can be 2441 * overridden. 2442 */ 2443 if (type == BPF_WRITE) { 2444 int treg = BPF_REG_9; 2445 2446 if (si->src_reg == treg || si->dst_reg == treg) 2447 --treg; 2448 if (si->src_reg == treg || si->dst_reg == treg) 2449 --treg; 2450 *insn++ = BPF_STX_MEM( 2451 BPF_DW, si->dst_reg, treg, 2452 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2453 *insn++ = BPF_LDX_MEM( 2454 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2455 treg, si->dst_reg, 2456 offsetof(struct bpf_sysctl_kern, ppos)); 2457 *insn++ = BPF_RAW_INSN( 2458 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32), 2459 treg, si->src_reg, 2460 bpf_ctx_narrow_access_offset( 2461 0, sizeof(u32), sizeof(loff_t)), 2462 si->imm); 2463 *insn++ = BPF_LDX_MEM( 2464 BPF_DW, treg, si->dst_reg, 2465 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2466 } else { 2467 *insn++ = BPF_LDX_MEM( 2468 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2469 si->dst_reg, si->src_reg, 2470 offsetof(struct bpf_sysctl_kern, ppos)); 2471 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 2472 *insn++ = BPF_LDX_MEM( 2473 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 2474 bpf_ctx_narrow_access_offset( 2475 0, read_size, sizeof(loff_t))); 2476 } 2477 *target_size = sizeof(u32); 2478 break; 2479 } 2480 2481 return insn - insn_buf; 2482 } 2483 2484 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 2485 .get_func_proto = sysctl_func_proto, 2486 .is_valid_access = sysctl_is_valid_access, 2487 .convert_ctx_access = sysctl_convert_ctx_access, 2488 }; 2489 2490 const struct bpf_prog_ops cg_sysctl_prog_ops = { 2491 }; 2492 2493 #ifdef CONFIG_NET 2494 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 2495 { 2496 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 2497 2498 return net->net_cookie; 2499 } 2500 2501 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 2502 .func = bpf_get_netns_cookie_sockopt, 2503 .gpl_only = false, 2504 .ret_type = RET_INTEGER, 2505 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 2506 }; 2507 #endif 2508 2509 static const struct bpf_func_proto * 2510 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2511 { 2512 const struct bpf_func_proto *func_proto; 2513 2514 func_proto = cgroup_common_func_proto(func_id, prog); 2515 if (func_proto) 2516 return func_proto; 2517 2518 switch (func_id) { 2519 #ifdef CONFIG_NET 2520 case BPF_FUNC_get_netns_cookie: 2521 return &bpf_get_netns_cookie_sockopt_proto; 2522 case BPF_FUNC_sk_storage_get: 2523 return &bpf_sk_storage_get_proto; 2524 case BPF_FUNC_sk_storage_delete: 2525 return &bpf_sk_storage_delete_proto; 2526 case BPF_FUNC_setsockopt: 2527 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2528 return &bpf_sk_setsockopt_proto; 2529 return NULL; 2530 case BPF_FUNC_getsockopt: 2531 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2532 return &bpf_sk_getsockopt_proto; 2533 return NULL; 2534 #endif 2535 #ifdef CONFIG_INET 2536 case BPF_FUNC_tcp_sock: 2537 return &bpf_tcp_sock_proto; 2538 #endif 2539 case BPF_FUNC_perf_event_output: 2540 return &bpf_event_output_data_proto; 2541 default: 2542 return bpf_base_func_proto(func_id, prog); 2543 } 2544 } 2545 2546 static bool cg_sockopt_is_valid_access(int off, int size, 2547 enum bpf_access_type type, 2548 const struct bpf_prog *prog, 2549 struct bpf_insn_access_aux *info) 2550 { 2551 const int size_default = sizeof(__u32); 2552 2553 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2554 return false; 2555 2556 if (off % size != 0) 2557 return false; 2558 2559 if (type == BPF_WRITE) { 2560 switch (off) { 2561 case offsetof(struct bpf_sockopt, retval): 2562 if (size != size_default) 2563 return false; 2564 return prog->expected_attach_type == 2565 BPF_CGROUP_GETSOCKOPT; 2566 case offsetof(struct bpf_sockopt, optname): 2567 fallthrough; 2568 case offsetof(struct bpf_sockopt, level): 2569 if (size != size_default) 2570 return false; 2571 return prog->expected_attach_type == 2572 BPF_CGROUP_SETSOCKOPT; 2573 case offsetof(struct bpf_sockopt, optlen): 2574 return size == size_default; 2575 default: 2576 return false; 2577 } 2578 } 2579 2580 switch (off) { 2581 case offsetof(struct bpf_sockopt, sk): 2582 if (size != sizeof(__u64)) 2583 return false; 2584 info->reg_type = PTR_TO_SOCKET; 2585 break; 2586 case offsetof(struct bpf_sockopt, optval): 2587 if (size != sizeof(__u64)) 2588 return false; 2589 info->reg_type = PTR_TO_PACKET; 2590 break; 2591 case offsetof(struct bpf_sockopt, optval_end): 2592 if (size != sizeof(__u64)) 2593 return false; 2594 info->reg_type = PTR_TO_PACKET_END; 2595 break; 2596 case offsetof(struct bpf_sockopt, retval): 2597 if (size != size_default) 2598 return false; 2599 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2600 default: 2601 if (size != size_default) 2602 return false; 2603 break; 2604 } 2605 return true; 2606 } 2607 2608 #define CG_SOCKOPT_READ_FIELD(F) \ 2609 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2610 si->dst_reg, si->src_reg, \ 2611 offsetof(struct bpf_sockopt_kern, F)) 2612 2613 #define CG_SOCKOPT_WRITE_FIELD(F) \ 2614 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \ 2615 BPF_MEM | BPF_CLASS(si->code)), \ 2616 si->dst_reg, si->src_reg, \ 2617 offsetof(struct bpf_sockopt_kern, F), \ 2618 si->imm) 2619 2620 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2621 const struct bpf_insn *si, 2622 struct bpf_insn *insn_buf, 2623 struct bpf_prog *prog, 2624 u32 *target_size) 2625 { 2626 struct bpf_insn *insn = insn_buf; 2627 2628 switch (si->off) { 2629 case offsetof(struct bpf_sockopt, sk): 2630 *insn++ = CG_SOCKOPT_READ_FIELD(sk); 2631 break; 2632 case offsetof(struct bpf_sockopt, level): 2633 if (type == BPF_WRITE) 2634 *insn++ = CG_SOCKOPT_WRITE_FIELD(level); 2635 else 2636 *insn++ = CG_SOCKOPT_READ_FIELD(level); 2637 break; 2638 case offsetof(struct bpf_sockopt, optname): 2639 if (type == BPF_WRITE) 2640 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname); 2641 else 2642 *insn++ = CG_SOCKOPT_READ_FIELD(optname); 2643 break; 2644 case offsetof(struct bpf_sockopt, optlen): 2645 if (type == BPF_WRITE) 2646 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen); 2647 else 2648 *insn++ = CG_SOCKOPT_READ_FIELD(optlen); 2649 break; 2650 case offsetof(struct bpf_sockopt, retval): 2651 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2652 2653 if (type == BPF_WRITE) { 2654 int treg = BPF_REG_9; 2655 2656 if (si->src_reg == treg || si->dst_reg == treg) 2657 --treg; 2658 if (si->src_reg == treg || si->dst_reg == treg) 2659 --treg; 2660 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2661 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2662 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2663 treg, si->dst_reg, 2664 offsetof(struct bpf_sockopt_kern, current_task)); 2665 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2666 treg, treg, 2667 offsetof(struct task_struct, bpf_ctx)); 2668 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM | 2669 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2670 treg, si->src_reg, 2671 offsetof(struct bpf_cg_run_ctx, retval), 2672 si->imm); 2673 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2674 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2675 } else { 2676 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2677 si->dst_reg, si->src_reg, 2678 offsetof(struct bpf_sockopt_kern, current_task)); 2679 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2680 si->dst_reg, si->dst_reg, 2681 offsetof(struct task_struct, bpf_ctx)); 2682 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2683 si->dst_reg, si->dst_reg, 2684 offsetof(struct bpf_cg_run_ctx, retval)); 2685 } 2686 break; 2687 case offsetof(struct bpf_sockopt, optval): 2688 *insn++ = CG_SOCKOPT_READ_FIELD(optval); 2689 break; 2690 case offsetof(struct bpf_sockopt, optval_end): 2691 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end); 2692 break; 2693 } 2694 2695 return insn - insn_buf; 2696 } 2697 2698 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2699 bool direct_write, 2700 const struct bpf_prog *prog) 2701 { 2702 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2703 */ 2704 return 0; 2705 } 2706 2707 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2708 .get_func_proto = cg_sockopt_func_proto, 2709 .is_valid_access = cg_sockopt_is_valid_access, 2710 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2711 .gen_prologue = cg_sockopt_get_prologue, 2712 }; 2713 2714 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2715 }; 2716 2717 /* Common helpers for cgroup hooks. */ 2718 const struct bpf_func_proto * 2719 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2720 { 2721 switch (func_id) { 2722 case BPF_FUNC_get_local_storage: 2723 return &bpf_get_local_storage_proto; 2724 case BPF_FUNC_get_retval: 2725 switch (prog->expected_attach_type) { 2726 case BPF_CGROUP_INET_INGRESS: 2727 case BPF_CGROUP_INET_EGRESS: 2728 case BPF_CGROUP_SOCK_OPS: 2729 case BPF_CGROUP_UDP4_RECVMSG: 2730 case BPF_CGROUP_UDP6_RECVMSG: 2731 case BPF_CGROUP_UNIX_RECVMSG: 2732 case BPF_CGROUP_INET4_GETPEERNAME: 2733 case BPF_CGROUP_INET6_GETPEERNAME: 2734 case BPF_CGROUP_UNIX_GETPEERNAME: 2735 case BPF_CGROUP_INET4_GETSOCKNAME: 2736 case BPF_CGROUP_INET6_GETSOCKNAME: 2737 case BPF_CGROUP_UNIX_GETSOCKNAME: 2738 return NULL; 2739 default: 2740 return &bpf_get_retval_proto; 2741 } 2742 case BPF_FUNC_set_retval: 2743 switch (prog->expected_attach_type) { 2744 case BPF_CGROUP_INET_INGRESS: 2745 case BPF_CGROUP_INET_EGRESS: 2746 case BPF_CGROUP_SOCK_OPS: 2747 case BPF_CGROUP_UDP4_RECVMSG: 2748 case BPF_CGROUP_UDP6_RECVMSG: 2749 case BPF_CGROUP_UNIX_RECVMSG: 2750 case BPF_CGROUP_INET4_GETPEERNAME: 2751 case BPF_CGROUP_INET6_GETPEERNAME: 2752 case BPF_CGROUP_UNIX_GETPEERNAME: 2753 case BPF_CGROUP_INET4_GETSOCKNAME: 2754 case BPF_CGROUP_INET6_GETSOCKNAME: 2755 case BPF_CGROUP_UNIX_GETSOCKNAME: 2756 return NULL; 2757 default: 2758 return &bpf_set_retval_proto; 2759 } 2760 default: 2761 return NULL; 2762 } 2763 } 2764