1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/bpf_lsm.h> 18 #include <linux/bpf_verifier.h> 19 #include <net/sock.h> 20 #include <net/bpf_sk_storage.h> 21 22 #include "../cgroup/cgroup-internal.h" 23 24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 25 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 26 27 /* 28 * cgroup bpf destruction makes heavy use of work items and there can be a lot 29 * of concurrent destructions. Use a separate workqueue so that cgroup bpf 30 * destruction work items don't end up filling up max_active of system_wq 31 * which may lead to deadlock. 32 */ 33 static struct workqueue_struct *cgroup_bpf_destroy_wq; 34 35 static int __init cgroup_bpf_wq_init(void) 36 { 37 cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", 0, 1); 38 if (!cgroup_bpf_destroy_wq) 39 panic("Failed to alloc workqueue for cgroup bpf destroy.\n"); 40 return 0; 41 } 42 core_initcall(cgroup_bpf_wq_init); 43 44 static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, 45 unsigned long action, void *data); 46 47 static struct notifier_block cgroup_bpf_lifetime_nb = { 48 .notifier_call = cgroup_bpf_lifetime_notify, 49 }; 50 51 void __init cgroup_bpf_lifetime_notifier_init(void) 52 { 53 BUG_ON(blocking_notifier_chain_register(&cgroup_lifetime_notifier, 54 &cgroup_bpf_lifetime_nb)); 55 } 56 57 /* __always_inline is necessary to prevent indirect call through run_prog 58 * function pointer. 59 */ 60 static __always_inline int 61 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 62 enum cgroup_bpf_attach_type atype, 63 const void *ctx, bpf_prog_run_fn run_prog, 64 int retval, u32 *ret_flags) 65 { 66 const struct bpf_prog_array_item *item; 67 const struct bpf_prog *prog; 68 const struct bpf_prog_array *array; 69 struct bpf_run_ctx *old_run_ctx; 70 struct bpf_cg_run_ctx run_ctx; 71 u32 func_ret; 72 73 run_ctx.retval = retval; 74 migrate_disable(); 75 rcu_read_lock(); 76 array = rcu_dereference(cgrp->effective[atype]); 77 item = &array->items[0]; 78 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 79 while ((prog = READ_ONCE(item->prog))) { 80 run_ctx.prog_item = item; 81 func_ret = run_prog(prog, ctx); 82 if (ret_flags) { 83 *(ret_flags) |= (func_ret >> 1); 84 func_ret &= 1; 85 } 86 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 87 run_ctx.retval = -EPERM; 88 item++; 89 } 90 bpf_reset_run_ctx(old_run_ctx); 91 rcu_read_unlock(); 92 migrate_enable(); 93 return run_ctx.retval; 94 } 95 96 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, 97 const struct bpf_insn *insn) 98 { 99 const struct bpf_prog *shim_prog; 100 struct sock *sk; 101 struct cgroup *cgrp; 102 int ret = 0; 103 u64 *args; 104 105 args = (u64 *)ctx; 106 sk = (void *)(unsigned long)args[0]; 107 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 108 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 109 110 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 111 if (likely(cgrp)) 112 ret = bpf_prog_run_array_cg(&cgrp->bpf, 113 shim_prog->aux->cgroup_atype, 114 ctx, bpf_prog_run, 0, NULL); 115 return ret; 116 } 117 118 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, 119 const struct bpf_insn *insn) 120 { 121 const struct bpf_prog *shim_prog; 122 struct socket *sock; 123 struct cgroup *cgrp; 124 int ret = 0; 125 u64 *args; 126 127 args = (u64 *)ctx; 128 sock = (void *)(unsigned long)args[0]; 129 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 130 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 131 132 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); 133 if (likely(cgrp)) 134 ret = bpf_prog_run_array_cg(&cgrp->bpf, 135 shim_prog->aux->cgroup_atype, 136 ctx, bpf_prog_run, 0, NULL); 137 return ret; 138 } 139 140 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, 141 const struct bpf_insn *insn) 142 { 143 const struct bpf_prog *shim_prog; 144 struct cgroup *cgrp; 145 int ret = 0; 146 147 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 148 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 149 150 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ 151 cgrp = task_dfl_cgroup(current); 152 if (likely(cgrp)) 153 ret = bpf_prog_run_array_cg(&cgrp->bpf, 154 shim_prog->aux->cgroup_atype, 155 ctx, bpf_prog_run, 0, NULL); 156 return ret; 157 } 158 159 #ifdef CONFIG_BPF_LSM 160 struct cgroup_lsm_atype { 161 u32 attach_btf_id; 162 int refcnt; 163 }; 164 165 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; 166 167 static enum cgroup_bpf_attach_type 168 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 169 { 170 int i; 171 172 lockdep_assert_held(&cgroup_mutex); 173 174 if (attach_type != BPF_LSM_CGROUP) 175 return to_cgroup_bpf_attach_type(attach_type); 176 177 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 178 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) 179 return CGROUP_LSM_START + i; 180 181 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 182 if (cgroup_lsm_atype[i].attach_btf_id == 0) 183 return CGROUP_LSM_START + i; 184 185 return -E2BIG; 186 187 } 188 189 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) 190 { 191 int i = cgroup_atype - CGROUP_LSM_START; 192 193 lockdep_assert_held(&cgroup_mutex); 194 195 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && 196 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); 197 198 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; 199 cgroup_lsm_atype[i].refcnt++; 200 } 201 202 void bpf_cgroup_atype_put(int cgroup_atype) 203 { 204 int i = cgroup_atype - CGROUP_LSM_START; 205 206 cgroup_lock(); 207 if (--cgroup_lsm_atype[i].refcnt <= 0) 208 cgroup_lsm_atype[i].attach_btf_id = 0; 209 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); 210 cgroup_unlock(); 211 } 212 #else 213 static enum cgroup_bpf_attach_type 214 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 215 { 216 if (attach_type != BPF_LSM_CGROUP) 217 return to_cgroup_bpf_attach_type(attach_type); 218 return -EOPNOTSUPP; 219 } 220 #endif /* CONFIG_BPF_LSM */ 221 222 static void cgroup_bpf_offline(struct cgroup *cgrp) 223 { 224 cgroup_get(cgrp); 225 percpu_ref_kill(&cgrp->bpf.refcnt); 226 } 227 228 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 229 { 230 enum bpf_cgroup_storage_type stype; 231 232 for_each_cgroup_storage_type(stype) 233 bpf_cgroup_storage_free(storages[stype]); 234 } 235 236 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 237 struct bpf_cgroup_storage *new_storages[], 238 enum bpf_attach_type type, 239 struct bpf_prog *prog, 240 struct cgroup *cgrp) 241 { 242 enum bpf_cgroup_storage_type stype; 243 struct bpf_cgroup_storage_key key; 244 struct bpf_map *map; 245 246 key.cgroup_inode_id = cgroup_id(cgrp); 247 key.attach_type = type; 248 249 for_each_cgroup_storage_type(stype) { 250 map = prog->aux->cgroup_storage[stype]; 251 if (!map) 252 continue; 253 254 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 255 if (storages[stype]) 256 continue; 257 258 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 259 if (IS_ERR(storages[stype])) { 260 bpf_cgroup_storages_free(new_storages); 261 return -ENOMEM; 262 } 263 264 new_storages[stype] = storages[stype]; 265 } 266 267 return 0; 268 } 269 270 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 271 struct bpf_cgroup_storage *src[]) 272 { 273 enum bpf_cgroup_storage_type stype; 274 275 for_each_cgroup_storage_type(stype) 276 dst[stype] = src[stype]; 277 } 278 279 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 280 struct cgroup *cgrp, 281 enum bpf_attach_type attach_type) 282 { 283 enum bpf_cgroup_storage_type stype; 284 285 for_each_cgroup_storage_type(stype) 286 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 287 } 288 289 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 290 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 291 * doesn't free link memory, which will eventually be done by bpf_link's 292 * release() callback, when its last FD is closed. 293 */ 294 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 295 { 296 cgroup_put(link->cgroup); 297 link->cgroup = NULL; 298 } 299 300 /** 301 * cgroup_bpf_release() - put references of all bpf programs and 302 * release all cgroup bpf data 303 * @work: work structure embedded into the cgroup to modify 304 */ 305 static void cgroup_bpf_release(struct work_struct *work) 306 { 307 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 308 bpf.release_work); 309 struct bpf_prog_array *old_array; 310 struct list_head *storages = &cgrp->bpf.storages; 311 struct bpf_cgroup_storage *storage, *stmp; 312 313 unsigned int atype; 314 315 cgroup_lock(); 316 317 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 318 struct hlist_head *progs = &cgrp->bpf.progs[atype]; 319 struct bpf_prog_list *pl; 320 struct hlist_node *pltmp; 321 322 hlist_for_each_entry_safe(pl, pltmp, progs, node) { 323 hlist_del(&pl->node); 324 if (pl->prog) { 325 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) 326 bpf_trampoline_unlink_cgroup_shim(pl->prog); 327 bpf_prog_put(pl->prog); 328 } 329 if (pl->link) { 330 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) 331 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); 332 bpf_cgroup_link_auto_detach(pl->link); 333 } 334 kfree(pl); 335 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 336 } 337 old_array = rcu_dereference_protected( 338 cgrp->bpf.effective[atype], 339 lockdep_is_held(&cgroup_mutex)); 340 bpf_prog_array_free(old_array); 341 } 342 343 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 344 bpf_cgroup_storage_unlink(storage); 345 bpf_cgroup_storage_free(storage); 346 } 347 348 cgroup_unlock(); 349 350 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 351 cgroup_bpf_put(p); 352 353 percpu_ref_exit(&cgrp->bpf.refcnt); 354 cgroup_put(cgrp); 355 } 356 357 /** 358 * cgroup_bpf_release_fn() - callback used to schedule releasing 359 * of bpf cgroup data 360 * @ref: percpu ref counter structure 361 */ 362 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 363 { 364 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 365 366 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 367 queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work); 368 } 369 370 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 371 * link or direct prog. 372 */ 373 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 374 { 375 if (pl->prog) 376 return pl->prog; 377 if (pl->link) 378 return pl->link->link.prog; 379 return NULL; 380 } 381 382 /* count number of elements in the list. 383 * it's slow but the list cannot be long 384 */ 385 static u32 prog_list_length(struct hlist_head *head, int *preorder_cnt) 386 { 387 struct bpf_prog_list *pl; 388 u32 cnt = 0; 389 390 hlist_for_each_entry(pl, head, node) { 391 if (!prog_list_prog(pl)) 392 continue; 393 if (preorder_cnt && (pl->flags & BPF_F_PREORDER)) 394 (*preorder_cnt)++; 395 cnt++; 396 } 397 return cnt; 398 } 399 400 /* if parent has non-overridable prog attached, 401 * disallow attaching new programs to the descendent cgroup. 402 * if parent has overridable or multi-prog, allow attaching 403 */ 404 static bool hierarchy_allows_attach(struct cgroup *cgrp, 405 enum cgroup_bpf_attach_type atype) 406 { 407 struct cgroup *p; 408 409 p = cgroup_parent(cgrp); 410 if (!p) 411 return true; 412 do { 413 u32 flags = p->bpf.flags[atype]; 414 u32 cnt; 415 416 if (flags & BPF_F_ALLOW_MULTI) 417 return true; 418 cnt = prog_list_length(&p->bpf.progs[atype], NULL); 419 WARN_ON_ONCE(cnt > 1); 420 if (cnt == 1) 421 return !!(flags & BPF_F_ALLOW_OVERRIDE); 422 p = cgroup_parent(p); 423 } while (p); 424 return true; 425 } 426 427 /* compute a chain of effective programs for a given cgroup: 428 * start from the list of programs in this cgroup and add 429 * all parent programs. 430 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 431 * to programs in this cgroup 432 */ 433 static int compute_effective_progs(struct cgroup *cgrp, 434 enum cgroup_bpf_attach_type atype, 435 struct bpf_prog_array **array) 436 { 437 struct bpf_prog_array_item *item; 438 struct bpf_prog_array *progs; 439 struct bpf_prog_list *pl; 440 struct cgroup *p = cgrp; 441 int i, j, cnt = 0, preorder_cnt = 0, fstart, bstart, init_bstart; 442 443 /* count number of effective programs by walking parents */ 444 do { 445 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 446 cnt += prog_list_length(&p->bpf.progs[atype], &preorder_cnt); 447 p = cgroup_parent(p); 448 } while (p); 449 450 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 451 if (!progs) 452 return -ENOMEM; 453 454 /* populate the array with effective progs */ 455 cnt = 0; 456 p = cgrp; 457 fstart = preorder_cnt; 458 bstart = preorder_cnt - 1; 459 do { 460 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 461 continue; 462 463 init_bstart = bstart; 464 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { 465 if (!prog_list_prog(pl)) 466 continue; 467 468 if (pl->flags & BPF_F_PREORDER) { 469 item = &progs->items[bstart]; 470 bstart--; 471 } else { 472 item = &progs->items[fstart]; 473 fstart++; 474 } 475 item->prog = prog_list_prog(pl); 476 bpf_cgroup_storages_assign(item->cgroup_storage, 477 pl->storage); 478 cnt++; 479 } 480 481 /* reverse pre-ordering progs at this cgroup level */ 482 for (i = bstart + 1, j = init_bstart; i < j; i++, j--) 483 swap(progs->items[i], progs->items[j]); 484 485 } while ((p = cgroup_parent(p))); 486 487 *array = progs; 488 return 0; 489 } 490 491 static void activate_effective_progs(struct cgroup *cgrp, 492 enum cgroup_bpf_attach_type atype, 493 struct bpf_prog_array *old_array) 494 { 495 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 496 lockdep_is_held(&cgroup_mutex)); 497 /* free prog array after grace period, since __cgroup_bpf_run_*() 498 * might be still walking the array 499 */ 500 bpf_prog_array_free(old_array); 501 } 502 503 /** 504 * cgroup_bpf_inherit() - inherit effective programs from parent 505 * @cgrp: the cgroup to modify 506 */ 507 static int cgroup_bpf_inherit(struct cgroup *cgrp) 508 { 509 /* has to use marco instead of const int, since compiler thinks 510 * that array below is variable length 511 */ 512 #define NR ARRAY_SIZE(cgrp->bpf.effective) 513 struct bpf_prog_array *arrays[NR] = {}; 514 struct cgroup *p; 515 int ret, i; 516 517 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 518 GFP_KERNEL); 519 if (ret) 520 return ret; 521 522 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 523 cgroup_bpf_get(p); 524 525 for (i = 0; i < NR; i++) 526 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); 527 528 INIT_LIST_HEAD(&cgrp->bpf.storages); 529 530 for (i = 0; i < NR; i++) 531 if (compute_effective_progs(cgrp, i, &arrays[i])) 532 goto cleanup; 533 534 for (i = 0; i < NR; i++) 535 activate_effective_progs(cgrp, i, arrays[i]); 536 537 return 0; 538 cleanup: 539 for (i = 0; i < NR; i++) 540 bpf_prog_array_free(arrays[i]); 541 542 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 543 cgroup_bpf_put(p); 544 545 percpu_ref_exit(&cgrp->bpf.refcnt); 546 547 return -ENOMEM; 548 } 549 550 static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, 551 unsigned long action, void *data) 552 { 553 struct cgroup *cgrp = data; 554 int ret = 0; 555 556 if (cgrp->root != &cgrp_dfl_root) 557 return NOTIFY_OK; 558 559 switch (action) { 560 case CGROUP_LIFETIME_ONLINE: 561 ret = cgroup_bpf_inherit(cgrp); 562 break; 563 case CGROUP_LIFETIME_OFFLINE: 564 cgroup_bpf_offline(cgrp); 565 break; 566 } 567 568 return notifier_from_errno(ret); 569 } 570 571 static int update_effective_progs(struct cgroup *cgrp, 572 enum cgroup_bpf_attach_type atype) 573 { 574 struct cgroup_subsys_state *css; 575 int err; 576 577 /* allocate and recompute effective prog arrays */ 578 css_for_each_descendant_pre(css, &cgrp->self) { 579 struct cgroup *desc = container_of(css, struct cgroup, self); 580 581 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 582 continue; 583 584 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 585 if (err) 586 goto cleanup; 587 } 588 589 /* all allocations were successful. Activate all prog arrays */ 590 css_for_each_descendant_pre(css, &cgrp->self) { 591 struct cgroup *desc = container_of(css, struct cgroup, self); 592 593 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 594 if (unlikely(desc->bpf.inactive)) { 595 bpf_prog_array_free(desc->bpf.inactive); 596 desc->bpf.inactive = NULL; 597 } 598 continue; 599 } 600 601 activate_effective_progs(desc, atype, desc->bpf.inactive); 602 desc->bpf.inactive = NULL; 603 } 604 605 return 0; 606 607 cleanup: 608 /* oom while computing effective. Free all computed effective arrays 609 * since they were not activated 610 */ 611 css_for_each_descendant_pre(css, &cgrp->self) { 612 struct cgroup *desc = container_of(css, struct cgroup, self); 613 614 bpf_prog_array_free(desc->bpf.inactive); 615 desc->bpf.inactive = NULL; 616 } 617 618 return err; 619 } 620 621 #define BPF_CGROUP_MAX_PROGS 64 622 623 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, 624 struct bpf_prog *prog, 625 struct bpf_cgroup_link *link, 626 struct bpf_prog *replace_prog, 627 bool allow_multi) 628 { 629 struct bpf_prog_list *pl; 630 631 /* single-attach case */ 632 if (!allow_multi) { 633 if (hlist_empty(progs)) 634 return NULL; 635 return hlist_entry(progs->first, typeof(*pl), node); 636 } 637 638 hlist_for_each_entry(pl, progs, node) { 639 if (prog && pl->prog == prog && prog != replace_prog) 640 /* disallow attaching the same prog twice */ 641 return ERR_PTR(-EINVAL); 642 if (link && pl->link == link) 643 /* disallow attaching the same link twice */ 644 return ERR_PTR(-EINVAL); 645 } 646 647 /* direct prog multi-attach w/ replacement case */ 648 if (replace_prog) { 649 hlist_for_each_entry(pl, progs, node) { 650 if (pl->prog == replace_prog) 651 /* a match found */ 652 return pl; 653 } 654 /* prog to replace not found for cgroup */ 655 return ERR_PTR(-ENOENT); 656 } 657 658 return NULL; 659 } 660 661 static struct bpf_link *bpf_get_anchor_link(u32 flags, u32 id_or_fd) 662 { 663 struct bpf_link *link = ERR_PTR(-EINVAL); 664 665 if (flags & BPF_F_ID) 666 link = bpf_link_by_id(id_or_fd); 667 else if (id_or_fd) 668 link = bpf_link_get_from_fd(id_or_fd); 669 return link; 670 } 671 672 static struct bpf_prog *bpf_get_anchor_prog(u32 flags, u32 id_or_fd) 673 { 674 struct bpf_prog *prog = ERR_PTR(-EINVAL); 675 676 if (flags & BPF_F_ID) 677 prog = bpf_prog_by_id(id_or_fd); 678 else if (id_or_fd) 679 prog = bpf_prog_get(id_or_fd); 680 return prog; 681 } 682 683 static struct bpf_prog_list *get_prog_list(struct hlist_head *progs, struct bpf_prog *prog, 684 struct bpf_cgroup_link *link, u32 flags, u32 id_or_fd) 685 { 686 bool is_link = flags & BPF_F_LINK, is_id = flags & BPF_F_ID; 687 struct bpf_prog_list *pltmp, *pl = ERR_PTR(-EINVAL); 688 bool preorder = flags & BPF_F_PREORDER; 689 struct bpf_link *anchor_link = NULL; 690 struct bpf_prog *anchor_prog = NULL; 691 bool is_before, is_after; 692 693 is_before = flags & BPF_F_BEFORE; 694 is_after = flags & BPF_F_AFTER; 695 if (is_link || is_id || id_or_fd) { 696 /* flags must have either BPF_F_BEFORE or BPF_F_AFTER */ 697 if (is_before == is_after) 698 return ERR_PTR(-EINVAL); 699 if ((is_link && !link) || (!is_link && !prog)) 700 return ERR_PTR(-EINVAL); 701 } else if (!hlist_empty(progs)) { 702 /* flags cannot have both BPF_F_BEFORE and BPF_F_AFTER */ 703 if (is_before && is_after) 704 return ERR_PTR(-EINVAL); 705 } 706 707 if (is_link) { 708 anchor_link = bpf_get_anchor_link(flags, id_or_fd); 709 if (IS_ERR(anchor_link)) 710 return ERR_CAST(anchor_link); 711 } else if (is_id || id_or_fd) { 712 anchor_prog = bpf_get_anchor_prog(flags, id_or_fd); 713 if (IS_ERR(anchor_prog)) 714 return ERR_CAST(anchor_prog); 715 } 716 717 if (!anchor_prog && !anchor_link) { 718 /* if there is no anchor_prog/anchor_link, then BPF_F_PREORDER 719 * doesn't matter since either prepend or append to a combined 720 * list of progs will end up with correct result. 721 */ 722 hlist_for_each_entry(pltmp, progs, node) { 723 if (is_before) 724 return pltmp; 725 if (pltmp->node.next) 726 continue; 727 return pltmp; 728 } 729 return NULL; 730 } 731 732 hlist_for_each_entry(pltmp, progs, node) { 733 if ((anchor_prog && anchor_prog == pltmp->prog) || 734 (anchor_link && anchor_link == &pltmp->link->link)) { 735 if (!!(pltmp->flags & BPF_F_PREORDER) != preorder) 736 goto out; 737 pl = pltmp; 738 goto out; 739 } 740 } 741 742 pl = ERR_PTR(-ENOENT); 743 out: 744 if (anchor_link) 745 bpf_link_put(anchor_link); 746 else 747 bpf_prog_put(anchor_prog); 748 return pl; 749 } 750 751 static int insert_pl_to_hlist(struct bpf_prog_list *pl, struct hlist_head *progs, 752 struct bpf_prog *prog, struct bpf_cgroup_link *link, 753 u32 flags, u32 id_or_fd) 754 { 755 struct bpf_prog_list *pltmp; 756 757 pltmp = get_prog_list(progs, prog, link, flags, id_or_fd); 758 if (IS_ERR(pltmp)) 759 return PTR_ERR(pltmp); 760 761 if (!pltmp) 762 hlist_add_head(&pl->node, progs); 763 else if (flags & BPF_F_BEFORE) 764 hlist_add_before(&pl->node, &pltmp->node); 765 else 766 hlist_add_behind(&pl->node, &pltmp->node); 767 768 return 0; 769 } 770 771 /** 772 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 773 * propagate the change to descendants 774 * @cgrp: The cgroup which descendants to traverse 775 * @prog: A program to attach 776 * @link: A link to attach 777 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 778 * @type: Type of attach operation 779 * @flags: Option flags 780 * @id_or_fd: Relative prog id or fd 781 * @revision: bpf_prog_list revision 782 * 783 * Exactly one of @prog or @link can be non-null. 784 * Must be called with cgroup_mutex held. 785 */ 786 static int __cgroup_bpf_attach(struct cgroup *cgrp, 787 struct bpf_prog *prog, struct bpf_prog *replace_prog, 788 struct bpf_cgroup_link *link, 789 enum bpf_attach_type type, u32 flags, u32 id_or_fd, 790 u64 revision) 791 { 792 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 793 struct bpf_prog *old_prog = NULL; 794 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 795 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 796 struct bpf_prog *new_prog = prog ? : link->link.prog; 797 enum cgroup_bpf_attach_type atype; 798 struct bpf_prog_list *pl; 799 struct hlist_head *progs; 800 int err; 801 802 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 803 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 804 /* invalid combination */ 805 return -EINVAL; 806 if ((flags & BPF_F_REPLACE) && (flags & (BPF_F_BEFORE | BPF_F_AFTER))) 807 /* only either replace or insertion with before/after */ 808 return -EINVAL; 809 if (link && (prog || replace_prog)) 810 /* only either link or prog/replace_prog can be specified */ 811 return -EINVAL; 812 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 813 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 814 return -EINVAL; 815 816 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); 817 if (atype < 0) 818 return -EINVAL; 819 if (revision && revision != cgrp->bpf.revisions[atype]) 820 return -ESTALE; 821 822 progs = &cgrp->bpf.progs[atype]; 823 824 if (!hierarchy_allows_attach(cgrp, atype)) 825 return -EPERM; 826 827 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 828 /* Disallow attaching non-overridable on top 829 * of existing overridable in this cgroup. 830 * Disallow attaching multi-prog if overridable or none 831 */ 832 return -EPERM; 833 834 if (prog_list_length(progs, NULL) >= BPF_CGROUP_MAX_PROGS) 835 return -E2BIG; 836 837 pl = find_attach_entry(progs, prog, link, replace_prog, 838 flags & BPF_F_ALLOW_MULTI); 839 if (IS_ERR(pl)) 840 return PTR_ERR(pl); 841 842 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 843 prog ? : link->link.prog, cgrp)) 844 return -ENOMEM; 845 846 if (pl) { 847 old_prog = pl->prog; 848 } else { 849 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 850 if (!pl) { 851 bpf_cgroup_storages_free(new_storage); 852 return -ENOMEM; 853 } 854 855 err = insert_pl_to_hlist(pl, progs, prog, link, flags, id_or_fd); 856 if (err) { 857 kfree(pl); 858 bpf_cgroup_storages_free(new_storage); 859 return err; 860 } 861 } 862 863 pl->prog = prog; 864 pl->link = link; 865 pl->flags = flags; 866 bpf_cgroup_storages_assign(pl->storage, storage); 867 cgrp->bpf.flags[atype] = saved_flags; 868 869 if (type == BPF_LSM_CGROUP) { 870 err = bpf_trampoline_link_cgroup_shim(new_prog, atype, type); 871 if (err) 872 goto cleanup; 873 } 874 875 err = update_effective_progs(cgrp, atype); 876 if (err) 877 goto cleanup_trampoline; 878 879 cgrp->bpf.revisions[atype] += 1; 880 if (old_prog) { 881 if (type == BPF_LSM_CGROUP) 882 bpf_trampoline_unlink_cgroup_shim(old_prog); 883 bpf_prog_put(old_prog); 884 } else { 885 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 886 } 887 bpf_cgroup_storages_link(new_storage, cgrp, type); 888 return 0; 889 890 cleanup_trampoline: 891 if (type == BPF_LSM_CGROUP) 892 bpf_trampoline_unlink_cgroup_shim(new_prog); 893 894 cleanup: 895 if (old_prog) { 896 pl->prog = old_prog; 897 pl->link = NULL; 898 } 899 bpf_cgroup_storages_free(new_storage); 900 if (!old_prog) { 901 hlist_del(&pl->node); 902 kfree(pl); 903 } 904 return err; 905 } 906 907 static int cgroup_bpf_attach(struct cgroup *cgrp, 908 struct bpf_prog *prog, struct bpf_prog *replace_prog, 909 struct bpf_cgroup_link *link, 910 enum bpf_attach_type type, 911 u32 flags, u32 id_or_fd, u64 revision) 912 { 913 int ret; 914 915 cgroup_lock(); 916 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags, 917 id_or_fd, revision); 918 cgroup_unlock(); 919 return ret; 920 } 921 922 /* Swap updated BPF program for given link in effective program arrays across 923 * all descendant cgroups. This function is guaranteed to succeed. 924 */ 925 static void replace_effective_prog(struct cgroup *cgrp, 926 enum cgroup_bpf_attach_type atype, 927 struct bpf_cgroup_link *link) 928 { 929 struct bpf_prog_array_item *item; 930 struct cgroup_subsys_state *css; 931 struct bpf_prog_array *progs; 932 struct bpf_prog_list *pl; 933 struct hlist_head *head; 934 struct cgroup *cg; 935 int pos; 936 937 css_for_each_descendant_pre(css, &cgrp->self) { 938 struct cgroup *desc = container_of(css, struct cgroup, self); 939 940 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 941 continue; 942 943 /* find position of link in effective progs array */ 944 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 945 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 946 continue; 947 948 head = &cg->bpf.progs[atype]; 949 hlist_for_each_entry(pl, head, node) { 950 if (!prog_list_prog(pl)) 951 continue; 952 if (pl->link == link) 953 goto found; 954 pos++; 955 } 956 } 957 found: 958 BUG_ON(!cg); 959 progs = rcu_dereference_protected( 960 desc->bpf.effective[atype], 961 lockdep_is_held(&cgroup_mutex)); 962 item = &progs->items[pos]; 963 WRITE_ONCE(item->prog, link->link.prog); 964 } 965 } 966 967 /** 968 * __cgroup_bpf_replace() - Replace link's program and propagate the change 969 * to descendants 970 * @cgrp: The cgroup which descendants to traverse 971 * @link: A link for which to replace BPF program 972 * @new_prog: &struct bpf_prog for the target BPF program with its refcnt 973 * incremented 974 * 975 * Must be called with cgroup_mutex held. 976 */ 977 static int __cgroup_bpf_replace(struct cgroup *cgrp, 978 struct bpf_cgroup_link *link, 979 struct bpf_prog *new_prog) 980 { 981 enum cgroup_bpf_attach_type atype; 982 struct bpf_prog *old_prog; 983 struct bpf_prog_list *pl; 984 struct hlist_head *progs; 985 bool found = false; 986 987 atype = bpf_cgroup_atype_find(link->link.attach_type, new_prog->aux->attach_btf_id); 988 if (atype < 0) 989 return -EINVAL; 990 991 progs = &cgrp->bpf.progs[atype]; 992 993 if (link->link.prog->type != new_prog->type) 994 return -EINVAL; 995 996 hlist_for_each_entry(pl, progs, node) { 997 if (pl->link == link) { 998 found = true; 999 break; 1000 } 1001 } 1002 if (!found) 1003 return -ENOENT; 1004 1005 cgrp->bpf.revisions[atype] += 1; 1006 old_prog = xchg(&link->link.prog, new_prog); 1007 replace_effective_prog(cgrp, atype, link); 1008 bpf_prog_put(old_prog); 1009 return 0; 1010 } 1011 1012 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 1013 struct bpf_prog *old_prog) 1014 { 1015 struct bpf_cgroup_link *cg_link; 1016 int ret; 1017 1018 cg_link = container_of(link, struct bpf_cgroup_link, link); 1019 1020 cgroup_lock(); 1021 /* link might have been auto-released by dying cgroup, so fail */ 1022 if (!cg_link->cgroup) { 1023 ret = -ENOLINK; 1024 goto out_unlock; 1025 } 1026 if (old_prog && link->prog != old_prog) { 1027 ret = -EPERM; 1028 goto out_unlock; 1029 } 1030 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 1031 out_unlock: 1032 cgroup_unlock(); 1033 return ret; 1034 } 1035 1036 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, 1037 struct bpf_prog *prog, 1038 struct bpf_cgroup_link *link, 1039 bool allow_multi) 1040 { 1041 struct bpf_prog_list *pl; 1042 1043 if (!allow_multi) { 1044 if (hlist_empty(progs)) 1045 /* report error when trying to detach and nothing is attached */ 1046 return ERR_PTR(-ENOENT); 1047 1048 /* to maintain backward compatibility NONE and OVERRIDE cgroups 1049 * allow detaching with invalid FD (prog==NULL) in legacy mode 1050 */ 1051 return hlist_entry(progs->first, typeof(*pl), node); 1052 } 1053 1054 if (!prog && !link) 1055 /* to detach MULTI prog the user has to specify valid FD 1056 * of the program or link to be detached 1057 */ 1058 return ERR_PTR(-EINVAL); 1059 1060 /* find the prog or link and detach it */ 1061 hlist_for_each_entry(pl, progs, node) { 1062 if (pl->prog == prog && pl->link == link) 1063 return pl; 1064 } 1065 return ERR_PTR(-ENOENT); 1066 } 1067 1068 /** 1069 * purge_effective_progs() - After compute_effective_progs fails to alloc new 1070 * cgrp->bpf.inactive table we can recover by 1071 * recomputing the array in place. 1072 * 1073 * @cgrp: The cgroup which descendants to travers 1074 * @prog: A program to detach or NULL 1075 * @link: A link to detach or NULL 1076 * @atype: Type of detach operation 1077 */ 1078 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, 1079 struct bpf_cgroup_link *link, 1080 enum cgroup_bpf_attach_type atype) 1081 { 1082 struct cgroup_subsys_state *css; 1083 struct bpf_prog_array *progs; 1084 struct bpf_prog_list *pl; 1085 struct hlist_head *head; 1086 struct cgroup *cg; 1087 int pos; 1088 1089 /* recompute effective prog array in place */ 1090 css_for_each_descendant_pre(css, &cgrp->self) { 1091 struct cgroup *desc = container_of(css, struct cgroup, self); 1092 1093 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 1094 continue; 1095 1096 /* find position of link or prog in effective progs array */ 1097 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 1098 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 1099 continue; 1100 1101 head = &cg->bpf.progs[atype]; 1102 hlist_for_each_entry(pl, head, node) { 1103 if (!prog_list_prog(pl)) 1104 continue; 1105 if (pl->prog == prog && pl->link == link) 1106 goto found; 1107 pos++; 1108 } 1109 } 1110 1111 /* no link or prog match, skip the cgroup of this layer */ 1112 continue; 1113 found: 1114 progs = rcu_dereference_protected( 1115 desc->bpf.effective[atype], 1116 lockdep_is_held(&cgroup_mutex)); 1117 1118 /* Remove the program from the array */ 1119 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), 1120 "Failed to purge a prog from array at index %d", pos); 1121 } 1122 } 1123 1124 /** 1125 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 1126 * propagate the change to descendants 1127 * @cgrp: The cgroup which descendants to traverse 1128 * @prog: A program to detach or NULL 1129 * @link: A link to detach or NULL 1130 * @type: Type of detach operation 1131 * @revision: bpf_prog_list revision 1132 * 1133 * At most one of @prog or @link can be non-NULL. 1134 * Must be called with cgroup_mutex held. 1135 */ 1136 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1137 struct bpf_cgroup_link *link, enum bpf_attach_type type, 1138 u64 revision) 1139 { 1140 enum cgroup_bpf_attach_type atype; 1141 struct bpf_prog *old_prog; 1142 struct bpf_prog_list *pl; 1143 struct hlist_head *progs; 1144 u32 attach_btf_id = 0; 1145 u32 flags; 1146 1147 if (prog) 1148 attach_btf_id = prog->aux->attach_btf_id; 1149 if (link) 1150 attach_btf_id = link->link.prog->aux->attach_btf_id; 1151 1152 atype = bpf_cgroup_atype_find(type, attach_btf_id); 1153 if (atype < 0) 1154 return -EINVAL; 1155 1156 if (revision && revision != cgrp->bpf.revisions[atype]) 1157 return -ESTALE; 1158 1159 progs = &cgrp->bpf.progs[atype]; 1160 flags = cgrp->bpf.flags[atype]; 1161 1162 if (prog && link) 1163 /* only one of prog or link can be specified */ 1164 return -EINVAL; 1165 1166 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 1167 if (IS_ERR(pl)) 1168 return PTR_ERR(pl); 1169 1170 /* mark it deleted, so it's ignored while recomputing effective */ 1171 old_prog = pl->prog; 1172 pl->prog = NULL; 1173 pl->link = NULL; 1174 1175 if (update_effective_progs(cgrp, atype)) { 1176 /* if update effective array failed replace the prog with a dummy prog*/ 1177 pl->prog = old_prog; 1178 pl->link = link; 1179 purge_effective_progs(cgrp, old_prog, link, atype); 1180 } 1181 1182 /* now can actually delete it from this cgroup list */ 1183 hlist_del(&pl->node); 1184 cgrp->bpf.revisions[atype] += 1; 1185 1186 kfree(pl); 1187 if (hlist_empty(progs)) 1188 /* last program was detached, reset flags to zero */ 1189 cgrp->bpf.flags[atype] = 0; 1190 if (old_prog) { 1191 if (type == BPF_LSM_CGROUP) 1192 bpf_trampoline_unlink_cgroup_shim(old_prog); 1193 bpf_prog_put(old_prog); 1194 } 1195 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 1196 return 0; 1197 } 1198 1199 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1200 enum bpf_attach_type type, u64 revision) 1201 { 1202 int ret; 1203 1204 cgroup_lock(); 1205 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type, revision); 1206 cgroup_unlock(); 1207 return ret; 1208 } 1209 1210 /* Must be called with cgroup_mutex held to avoid races. */ 1211 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1212 union bpf_attr __user *uattr) 1213 { 1214 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); 1215 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE; 1216 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 1217 enum bpf_attach_type type = attr->query.attach_type; 1218 enum cgroup_bpf_attach_type from_atype, to_atype; 1219 enum cgroup_bpf_attach_type atype; 1220 struct bpf_prog_array *effective; 1221 int cnt, ret = 0, i; 1222 int total_cnt = 0; 1223 u64 revision = 0; 1224 u32 flags; 1225 1226 if (effective_query && prog_attach_flags) 1227 return -EINVAL; 1228 1229 if (type == BPF_LSM_CGROUP) { 1230 if (!effective_query && attr->query.prog_cnt && 1231 prog_ids && !prog_attach_flags) 1232 return -EINVAL; 1233 1234 from_atype = CGROUP_LSM_START; 1235 to_atype = CGROUP_LSM_END; 1236 flags = 0; 1237 } else { 1238 from_atype = to_cgroup_bpf_attach_type(type); 1239 if (from_atype < 0) 1240 return -EINVAL; 1241 to_atype = from_atype; 1242 flags = cgrp->bpf.flags[from_atype]; 1243 } 1244 1245 for (atype = from_atype; atype <= to_atype; atype++) { 1246 if (effective_query) { 1247 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1248 lockdep_is_held(&cgroup_mutex)); 1249 total_cnt += bpf_prog_array_length(effective); 1250 } else { 1251 total_cnt += prog_list_length(&cgrp->bpf.progs[atype], NULL); 1252 } 1253 } 1254 1255 /* always output uattr->query.attach_flags as 0 during effective query */ 1256 flags = effective_query ? 0 : flags; 1257 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 1258 return -EFAULT; 1259 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) 1260 return -EFAULT; 1261 if (!effective_query && from_atype == to_atype) 1262 revision = cgrp->bpf.revisions[from_atype]; 1263 if (copy_to_user(&uattr->query.revision, &revision, sizeof(revision))) 1264 return -EFAULT; 1265 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) 1266 /* return early if user requested only program count + flags */ 1267 return 0; 1268 1269 if (attr->query.prog_cnt < total_cnt) { 1270 total_cnt = attr->query.prog_cnt; 1271 ret = -ENOSPC; 1272 } 1273 1274 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { 1275 if (effective_query) { 1276 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1277 lockdep_is_held(&cgroup_mutex)); 1278 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); 1279 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 1280 } else { 1281 struct hlist_head *progs; 1282 struct bpf_prog_list *pl; 1283 struct bpf_prog *prog; 1284 u32 id; 1285 1286 progs = &cgrp->bpf.progs[atype]; 1287 cnt = min_t(int, prog_list_length(progs, NULL), total_cnt); 1288 i = 0; 1289 hlist_for_each_entry(pl, progs, node) { 1290 prog = prog_list_prog(pl); 1291 id = prog->aux->id; 1292 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 1293 return -EFAULT; 1294 if (++i == cnt) 1295 break; 1296 } 1297 1298 if (prog_attach_flags) { 1299 flags = cgrp->bpf.flags[atype]; 1300 1301 for (i = 0; i < cnt; i++) 1302 if (copy_to_user(prog_attach_flags + i, 1303 &flags, sizeof(flags))) 1304 return -EFAULT; 1305 prog_attach_flags += cnt; 1306 } 1307 } 1308 1309 prog_ids += cnt; 1310 total_cnt -= cnt; 1311 } 1312 return ret; 1313 } 1314 1315 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1316 union bpf_attr __user *uattr) 1317 { 1318 int ret; 1319 1320 cgroup_lock(); 1321 ret = __cgroup_bpf_query(cgrp, attr, uattr); 1322 cgroup_unlock(); 1323 return ret; 1324 } 1325 1326 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 1327 enum bpf_prog_type ptype, struct bpf_prog *prog) 1328 { 1329 struct bpf_prog *replace_prog = NULL; 1330 struct cgroup *cgrp; 1331 int ret; 1332 1333 cgrp = cgroup_get_from_fd(attr->target_fd); 1334 if (IS_ERR(cgrp)) 1335 return PTR_ERR(cgrp); 1336 1337 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 1338 (attr->attach_flags & BPF_F_REPLACE)) { 1339 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 1340 if (IS_ERR(replace_prog)) { 1341 cgroup_put(cgrp); 1342 return PTR_ERR(replace_prog); 1343 } 1344 } 1345 1346 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 1347 attr->attach_type, attr->attach_flags, 1348 attr->relative_fd, attr->expected_revision); 1349 1350 if (replace_prog) 1351 bpf_prog_put(replace_prog); 1352 cgroup_put(cgrp); 1353 return ret; 1354 } 1355 1356 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 1357 { 1358 struct bpf_prog *prog; 1359 struct cgroup *cgrp; 1360 int ret; 1361 1362 cgrp = cgroup_get_from_fd(attr->target_fd); 1363 if (IS_ERR(cgrp)) 1364 return PTR_ERR(cgrp); 1365 1366 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 1367 if (IS_ERR(prog)) 1368 prog = NULL; 1369 1370 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, attr->expected_revision); 1371 if (prog) 1372 bpf_prog_put(prog); 1373 1374 cgroup_put(cgrp); 1375 return ret; 1376 } 1377 1378 static void bpf_cgroup_link_release(struct bpf_link *link) 1379 { 1380 struct bpf_cgroup_link *cg_link = 1381 container_of(link, struct bpf_cgroup_link, link); 1382 struct cgroup *cg; 1383 1384 /* link might have been auto-detached by dying cgroup already, 1385 * in that case our work is done here 1386 */ 1387 if (!cg_link->cgroup) 1388 return; 1389 1390 cgroup_lock(); 1391 1392 /* re-check cgroup under lock again */ 1393 if (!cg_link->cgroup) { 1394 cgroup_unlock(); 1395 return; 1396 } 1397 1398 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 1399 link->attach_type, 0)); 1400 if (link->attach_type == BPF_LSM_CGROUP) 1401 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); 1402 1403 cg = cg_link->cgroup; 1404 cg_link->cgroup = NULL; 1405 1406 cgroup_unlock(); 1407 1408 cgroup_put(cg); 1409 } 1410 1411 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 1412 { 1413 struct bpf_cgroup_link *cg_link = 1414 container_of(link, struct bpf_cgroup_link, link); 1415 1416 kfree(cg_link); 1417 } 1418 1419 static int bpf_cgroup_link_detach(struct bpf_link *link) 1420 { 1421 bpf_cgroup_link_release(link); 1422 1423 return 0; 1424 } 1425 1426 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 1427 struct seq_file *seq) 1428 { 1429 struct bpf_cgroup_link *cg_link = 1430 container_of(link, struct bpf_cgroup_link, link); 1431 u64 cg_id = 0; 1432 1433 cgroup_lock(); 1434 if (cg_link->cgroup) 1435 cg_id = cgroup_id(cg_link->cgroup); 1436 cgroup_unlock(); 1437 1438 seq_printf(seq, 1439 "cgroup_id:\t%llu\n" 1440 "attach_type:\t%d\n", 1441 cg_id, 1442 link->attach_type); 1443 } 1444 1445 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 1446 struct bpf_link_info *info) 1447 { 1448 struct bpf_cgroup_link *cg_link = 1449 container_of(link, struct bpf_cgroup_link, link); 1450 u64 cg_id = 0; 1451 1452 cgroup_lock(); 1453 if (cg_link->cgroup) 1454 cg_id = cgroup_id(cg_link->cgroup); 1455 cgroup_unlock(); 1456 1457 info->cgroup.cgroup_id = cg_id; 1458 info->cgroup.attach_type = link->attach_type; 1459 return 0; 1460 } 1461 1462 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1463 .release = bpf_cgroup_link_release, 1464 .dealloc = bpf_cgroup_link_dealloc, 1465 .detach = bpf_cgroup_link_detach, 1466 .update_prog = cgroup_bpf_replace, 1467 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1468 .fill_link_info = bpf_cgroup_link_fill_link_info, 1469 }; 1470 1471 #define BPF_F_LINK_ATTACH_MASK \ 1472 (BPF_F_ID | \ 1473 BPF_F_BEFORE | \ 1474 BPF_F_AFTER | \ 1475 BPF_F_PREORDER | \ 1476 BPF_F_LINK) 1477 1478 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1479 { 1480 struct bpf_link_primer link_primer; 1481 struct bpf_cgroup_link *link; 1482 struct cgroup *cgrp; 1483 int err; 1484 1485 if (attr->link_create.flags & (~BPF_F_LINK_ATTACH_MASK)) 1486 return -EINVAL; 1487 1488 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1489 if (IS_ERR(cgrp)) 1490 return PTR_ERR(cgrp); 1491 1492 link = kzalloc(sizeof(*link), GFP_USER); 1493 if (!link) { 1494 err = -ENOMEM; 1495 goto out_put_cgroup; 1496 } 1497 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1498 prog, attr->link_create.attach_type); 1499 link->cgroup = cgrp; 1500 1501 err = bpf_link_prime(&link->link, &link_primer); 1502 if (err) { 1503 kfree(link); 1504 goto out_put_cgroup; 1505 } 1506 1507 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1508 link->link.attach_type, BPF_F_ALLOW_MULTI | attr->link_create.flags, 1509 attr->link_create.cgroup.relative_fd, 1510 attr->link_create.cgroup.expected_revision); 1511 if (err) { 1512 bpf_link_cleanup(&link_primer); 1513 goto out_put_cgroup; 1514 } 1515 1516 return bpf_link_settle(&link_primer); 1517 1518 out_put_cgroup: 1519 cgroup_put(cgrp); 1520 return err; 1521 } 1522 1523 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1524 union bpf_attr __user *uattr) 1525 { 1526 struct cgroup *cgrp; 1527 int ret; 1528 1529 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1530 if (IS_ERR(cgrp)) 1531 return PTR_ERR(cgrp); 1532 1533 ret = cgroup_bpf_query(cgrp, attr, uattr); 1534 1535 cgroup_put(cgrp); 1536 return ret; 1537 } 1538 1539 /** 1540 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1541 * @sk: The socket sending or receiving traffic 1542 * @skb: The skb that is being sent or received 1543 * @atype: The type of program to be executed 1544 * 1545 * If no socket is passed, or the socket is not of type INET or INET6, 1546 * this function does nothing and returns 0. 1547 * 1548 * The program type passed in via @type must be suitable for network 1549 * filtering. No further check is performed to assert that. 1550 * 1551 * For egress packets, this function can return: 1552 * NET_XMIT_SUCCESS (0) - continue with packet output 1553 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1554 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1555 * to call cwr 1556 * -err - drop packet 1557 * 1558 * For ingress packets, this function will return -EPERM if any 1559 * attached program was found and if it returned != 1 during execution. 1560 * Otherwise 0 is returned. 1561 */ 1562 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1563 struct sk_buff *skb, 1564 enum cgroup_bpf_attach_type atype) 1565 { 1566 unsigned int offset = -skb_network_offset(skb); 1567 struct sock *save_sk; 1568 void *saved_data_end; 1569 struct cgroup *cgrp; 1570 int ret; 1571 1572 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1573 return 0; 1574 1575 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1576 save_sk = skb->sk; 1577 skb->sk = sk; 1578 __skb_push(skb, offset); 1579 1580 /* compute pointers for the bpf prog */ 1581 bpf_compute_and_save_data_end(skb, &saved_data_end); 1582 1583 if (atype == CGROUP_INET_EGRESS) { 1584 u32 flags = 0; 1585 bool cn; 1586 1587 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1588 __bpf_prog_run_save_cb, 0, &flags); 1589 1590 /* Return values of CGROUP EGRESS BPF programs are: 1591 * 0: drop packet 1592 * 1: keep packet 1593 * 2: drop packet and cn 1594 * 3: keep packet and cn 1595 * 1596 * The returned value is then converted to one of the NET_XMIT 1597 * or an error code that is then interpreted as drop packet 1598 * (and no cn): 1599 * 0: NET_XMIT_SUCCESS skb should be transmitted 1600 * 1: NET_XMIT_DROP skb should be dropped and cn 1601 * 2: NET_XMIT_CN skb should be transmitted and cn 1602 * 3: -err skb should be dropped 1603 */ 1604 1605 cn = flags & BPF_RET_SET_CN; 1606 if (ret && !IS_ERR_VALUE((long)ret)) 1607 ret = -EFAULT; 1608 if (!ret) 1609 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1610 else 1611 ret = (cn ? NET_XMIT_DROP : ret); 1612 } else { 1613 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1614 skb, __bpf_prog_run_save_cb, 0, 1615 NULL); 1616 if (ret && !IS_ERR_VALUE((long)ret)) 1617 ret = -EFAULT; 1618 } 1619 bpf_restore_data_end(skb, saved_data_end); 1620 __skb_pull(skb, offset); 1621 skb->sk = save_sk; 1622 1623 return ret; 1624 } 1625 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1626 1627 /** 1628 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1629 * @sk: sock structure to manipulate 1630 * @atype: The type of program to be executed 1631 * 1632 * socket is passed is expected to be of type INET or INET6. 1633 * 1634 * The program type passed in via @type must be suitable for sock 1635 * filtering. No further check is performed to assert that. 1636 * 1637 * This function will return %-EPERM if any if an attached program was found 1638 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1639 */ 1640 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1641 enum cgroup_bpf_attach_type atype) 1642 { 1643 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1644 1645 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1646 NULL); 1647 } 1648 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1649 1650 /** 1651 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1652 * provided by user sockaddr 1653 * @sk: sock struct that will use sockaddr 1654 * @uaddr: sockaddr struct provided by user 1655 * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is 1656 * read-only for AF_INET[6] uaddr but can be modified for AF_UNIX 1657 * uaddr. 1658 * @atype: The type of program to be executed 1659 * @t_ctx: Pointer to attach type specific context 1660 * @flags: Pointer to u32 which contains higher bits of BPF program 1661 * return value (OR'ed together). 1662 * 1663 * socket is expected to be of type INET, INET6 or UNIX. 1664 * 1665 * This function will return %-EPERM if an attached program is found and 1666 * returned value != 1 during execution. In all other cases, 0 is returned. 1667 */ 1668 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1669 struct sockaddr *uaddr, 1670 int *uaddrlen, 1671 enum cgroup_bpf_attach_type atype, 1672 void *t_ctx, 1673 u32 *flags) 1674 { 1675 struct bpf_sock_addr_kern ctx = { 1676 .sk = sk, 1677 .uaddr = uaddr, 1678 .t_ctx = t_ctx, 1679 }; 1680 struct sockaddr_storage unspec; 1681 struct cgroup *cgrp; 1682 int ret; 1683 1684 /* Check socket family since not all sockets represent network 1685 * endpoint (e.g. AF_UNIX). 1686 */ 1687 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6 && 1688 sk->sk_family != AF_UNIX) 1689 return 0; 1690 1691 if (!ctx.uaddr) { 1692 memset(&unspec, 0, sizeof(unspec)); 1693 ctx.uaddr = (struct sockaddr *)&unspec; 1694 ctx.uaddrlen = 0; 1695 } else { 1696 ctx.uaddrlen = *uaddrlen; 1697 } 1698 1699 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1700 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1701 0, flags); 1702 1703 if (!ret && uaddr) 1704 *uaddrlen = ctx.uaddrlen; 1705 1706 return ret; 1707 } 1708 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1709 1710 /** 1711 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1712 * @sk: socket to get cgroup from 1713 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1714 * sk with connection information (IP addresses, etc.) May not contain 1715 * cgroup info if it is a req sock. 1716 * @atype: The type of program to be executed 1717 * 1718 * socket passed is expected to be of type INET or INET6. 1719 * 1720 * The program type passed in via @type must be suitable for sock_ops 1721 * filtering. No further check is performed to assert that. 1722 * 1723 * This function will return %-EPERM if any if an attached program was found 1724 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1725 */ 1726 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1727 struct bpf_sock_ops_kern *sock_ops, 1728 enum cgroup_bpf_attach_type atype) 1729 { 1730 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1731 1732 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1733 0, NULL); 1734 } 1735 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1736 1737 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1738 short access, enum cgroup_bpf_attach_type atype) 1739 { 1740 struct cgroup *cgrp; 1741 struct bpf_cgroup_dev_ctx ctx = { 1742 .access_type = (access << 16) | dev_type, 1743 .major = major, 1744 .minor = minor, 1745 }; 1746 int ret; 1747 1748 rcu_read_lock(); 1749 cgrp = task_dfl_cgroup(current); 1750 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1751 NULL); 1752 rcu_read_unlock(); 1753 1754 return ret; 1755 } 1756 1757 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 1758 { 1759 /* flags argument is not used now, 1760 * but provides an ability to extend the API. 1761 * verifier checks that its value is correct. 1762 */ 1763 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 1764 struct bpf_cgroup_storage *storage; 1765 struct bpf_cg_run_ctx *ctx; 1766 void *ptr; 1767 1768 /* get current cgroup storage from BPF run context */ 1769 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1770 storage = ctx->prog_item->cgroup_storage[stype]; 1771 1772 if (stype == BPF_CGROUP_STORAGE_SHARED) 1773 ptr = &READ_ONCE(storage->buf)->data[0]; 1774 else 1775 ptr = this_cpu_ptr(storage->percpu_buf); 1776 1777 return (unsigned long)ptr; 1778 } 1779 1780 const struct bpf_func_proto bpf_get_local_storage_proto = { 1781 .func = bpf_get_local_storage, 1782 .gpl_only = false, 1783 .ret_type = RET_PTR_TO_MAP_VALUE, 1784 .arg1_type = ARG_CONST_MAP_PTR, 1785 .arg2_type = ARG_ANYTHING, 1786 }; 1787 1788 BPF_CALL_0(bpf_get_retval) 1789 { 1790 struct bpf_cg_run_ctx *ctx = 1791 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1792 1793 return ctx->retval; 1794 } 1795 1796 const struct bpf_func_proto bpf_get_retval_proto = { 1797 .func = bpf_get_retval, 1798 .gpl_only = false, 1799 .ret_type = RET_INTEGER, 1800 }; 1801 1802 BPF_CALL_1(bpf_set_retval, int, retval) 1803 { 1804 struct bpf_cg_run_ctx *ctx = 1805 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1806 1807 ctx->retval = retval; 1808 return 0; 1809 } 1810 1811 const struct bpf_func_proto bpf_set_retval_proto = { 1812 .func = bpf_set_retval, 1813 .gpl_only = false, 1814 .ret_type = RET_INTEGER, 1815 .arg1_type = ARG_ANYTHING, 1816 }; 1817 1818 static const struct bpf_func_proto * 1819 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1820 { 1821 const struct bpf_func_proto *func_proto; 1822 1823 func_proto = cgroup_common_func_proto(func_id, prog); 1824 if (func_proto) 1825 return func_proto; 1826 1827 switch (func_id) { 1828 case BPF_FUNC_perf_event_output: 1829 return &bpf_event_output_data_proto; 1830 default: 1831 return bpf_base_func_proto(func_id, prog); 1832 } 1833 } 1834 1835 static bool cgroup_dev_is_valid_access(int off, int size, 1836 enum bpf_access_type type, 1837 const struct bpf_prog *prog, 1838 struct bpf_insn_access_aux *info) 1839 { 1840 const int size_default = sizeof(__u32); 1841 1842 if (type == BPF_WRITE) 1843 return false; 1844 1845 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1846 return false; 1847 /* The verifier guarantees that size > 0. */ 1848 if (off % size != 0) 1849 return false; 1850 1851 switch (off) { 1852 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1853 bpf_ctx_record_field_size(info, size_default); 1854 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1855 return false; 1856 break; 1857 default: 1858 if (size != size_default) 1859 return false; 1860 } 1861 1862 return true; 1863 } 1864 1865 const struct bpf_prog_ops cg_dev_prog_ops = { 1866 }; 1867 1868 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1869 .get_func_proto = cgroup_dev_func_proto, 1870 .is_valid_access = cgroup_dev_is_valid_access, 1871 }; 1872 1873 /** 1874 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1875 * 1876 * @head: sysctl table header 1877 * @table: sysctl table 1878 * @write: sysctl is being read (= 0) or written (= 1) 1879 * @buf: pointer to buffer (in and out) 1880 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1881 * result is size of @new_buf if program set new value, initial value 1882 * otherwise 1883 * @ppos: value-result argument: value is position at which read from or write 1884 * to sysctl is happening, result is new position if program overrode it, 1885 * initial value otherwise 1886 * @atype: type of program to be executed 1887 * 1888 * Program is run when sysctl is being accessed, either read or written, and 1889 * can allow or deny such access. 1890 * 1891 * This function will return %-EPERM if an attached program is found and 1892 * returned value != 1 during execution. In all other cases 0 is returned. 1893 */ 1894 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1895 const struct ctl_table *table, int write, 1896 char **buf, size_t *pcount, loff_t *ppos, 1897 enum cgroup_bpf_attach_type atype) 1898 { 1899 struct bpf_sysctl_kern ctx = { 1900 .head = head, 1901 .table = table, 1902 .write = write, 1903 .ppos = ppos, 1904 .cur_val = NULL, 1905 .cur_len = PAGE_SIZE, 1906 .new_val = NULL, 1907 .new_len = 0, 1908 .new_updated = 0, 1909 }; 1910 struct cgroup *cgrp; 1911 loff_t pos = 0; 1912 int ret; 1913 1914 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1915 if (!ctx.cur_val || 1916 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1917 /* Let BPF program decide how to proceed. */ 1918 ctx.cur_len = 0; 1919 } 1920 1921 if (write && *buf && *pcount) { 1922 /* BPF program should be able to override new value with a 1923 * buffer bigger than provided by user. 1924 */ 1925 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1926 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1927 if (ctx.new_val) { 1928 memcpy(ctx.new_val, *buf, ctx.new_len); 1929 } else { 1930 /* Let BPF program decide how to proceed. */ 1931 ctx.new_len = 0; 1932 } 1933 } 1934 1935 rcu_read_lock(); 1936 cgrp = task_dfl_cgroup(current); 1937 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1938 NULL); 1939 rcu_read_unlock(); 1940 1941 kfree(ctx.cur_val); 1942 1943 if (ret == 1 && ctx.new_updated) { 1944 kfree(*buf); 1945 *buf = ctx.new_val; 1946 *pcount = ctx.new_len; 1947 } else { 1948 kfree(ctx.new_val); 1949 } 1950 1951 return ret; 1952 } 1953 1954 #ifdef CONFIG_NET 1955 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1956 struct bpf_sockopt_buf *buf) 1957 { 1958 if (unlikely(max_optlen < 0)) 1959 return -EINVAL; 1960 1961 if (unlikely(max_optlen > PAGE_SIZE)) { 1962 /* We don't expose optvals that are greater than PAGE_SIZE 1963 * to the BPF program. 1964 */ 1965 max_optlen = PAGE_SIZE; 1966 } 1967 1968 if (max_optlen <= sizeof(buf->data)) { 1969 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1970 * bytes avoid the cost of kzalloc. 1971 */ 1972 ctx->optval = buf->data; 1973 ctx->optval_end = ctx->optval + max_optlen; 1974 return max_optlen; 1975 } 1976 1977 ctx->optval = kzalloc(max_optlen, GFP_USER); 1978 if (!ctx->optval) 1979 return -ENOMEM; 1980 1981 ctx->optval_end = ctx->optval + max_optlen; 1982 1983 return max_optlen; 1984 } 1985 1986 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1987 struct bpf_sockopt_buf *buf) 1988 { 1989 if (ctx->optval == buf->data) 1990 return; 1991 kfree(ctx->optval); 1992 } 1993 1994 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1995 struct bpf_sockopt_buf *buf) 1996 { 1997 return ctx->optval != buf->data; 1998 } 1999 2000 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 2001 int *optname, sockptr_t optval, 2002 int *optlen, char **kernel_optval) 2003 { 2004 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2005 struct bpf_sockopt_buf buf = {}; 2006 struct bpf_sockopt_kern ctx = { 2007 .sk = sk, 2008 .level = *level, 2009 .optname = *optname, 2010 }; 2011 int ret, max_optlen; 2012 2013 /* Allocate a bit more than the initial user buffer for 2014 * BPF program. The canonical use case is overriding 2015 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 2016 */ 2017 max_optlen = max_t(int, 16, *optlen); 2018 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 2019 if (max_optlen < 0) 2020 return max_optlen; 2021 2022 ctx.optlen = *optlen; 2023 2024 if (copy_from_sockptr(ctx.optval, optval, 2025 min(*optlen, max_optlen))) { 2026 ret = -EFAULT; 2027 goto out; 2028 } 2029 2030 lock_sock(sk); 2031 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 2032 &ctx, bpf_prog_run, 0, NULL); 2033 release_sock(sk); 2034 2035 if (ret) 2036 goto out; 2037 2038 if (ctx.optlen == -1) { 2039 /* optlen set to -1, bypass kernel */ 2040 ret = 1; 2041 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 2042 /* optlen is out of bounds */ 2043 if (*optlen > PAGE_SIZE && ctx.optlen >= 0) { 2044 pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 2045 ctx.optlen, max_optlen); 2046 ret = 0; 2047 goto out; 2048 } 2049 ret = -EFAULT; 2050 } else { 2051 /* optlen within bounds, run kernel handler */ 2052 ret = 0; 2053 2054 /* export any potential modifications */ 2055 *level = ctx.level; 2056 *optname = ctx.optname; 2057 2058 /* optlen == 0 from BPF indicates that we should 2059 * use original userspace data. 2060 */ 2061 if (ctx.optlen != 0) { 2062 *optlen = ctx.optlen; 2063 /* We've used bpf_sockopt_kern->buf as an intermediary 2064 * storage, but the BPF program indicates that we need 2065 * to pass this data to the kernel setsockopt handler. 2066 * No way to export on-stack buf, have to allocate a 2067 * new buffer. 2068 */ 2069 if (!sockopt_buf_allocated(&ctx, &buf)) { 2070 void *p = kmalloc(ctx.optlen, GFP_USER); 2071 2072 if (!p) { 2073 ret = -ENOMEM; 2074 goto out; 2075 } 2076 memcpy(p, ctx.optval, ctx.optlen); 2077 *kernel_optval = p; 2078 } else { 2079 *kernel_optval = ctx.optval; 2080 } 2081 /* export and don't free sockopt buf */ 2082 return 0; 2083 } 2084 } 2085 2086 out: 2087 sockopt_free_buf(&ctx, &buf); 2088 return ret; 2089 } 2090 2091 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 2092 int optname, sockptr_t optval, 2093 sockptr_t optlen, int max_optlen, 2094 int retval) 2095 { 2096 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2097 struct bpf_sockopt_buf buf = {}; 2098 struct bpf_sockopt_kern ctx = { 2099 .sk = sk, 2100 .level = level, 2101 .optname = optname, 2102 .current_task = current, 2103 }; 2104 int orig_optlen; 2105 int ret; 2106 2107 orig_optlen = max_optlen; 2108 ctx.optlen = max_optlen; 2109 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 2110 if (max_optlen < 0) 2111 return max_optlen; 2112 2113 if (!retval) { 2114 /* If kernel getsockopt finished successfully, 2115 * copy whatever was returned to the user back 2116 * into our temporary buffer. Set optlen to the 2117 * one that kernel returned as well to let 2118 * BPF programs inspect the value. 2119 */ 2120 if (copy_from_sockptr(&ctx.optlen, optlen, 2121 sizeof(ctx.optlen))) { 2122 ret = -EFAULT; 2123 goto out; 2124 } 2125 2126 if (ctx.optlen < 0) { 2127 ret = -EFAULT; 2128 goto out; 2129 } 2130 orig_optlen = ctx.optlen; 2131 2132 if (copy_from_sockptr(ctx.optval, optval, 2133 min(ctx.optlen, max_optlen))) { 2134 ret = -EFAULT; 2135 goto out; 2136 } 2137 } 2138 2139 lock_sock(sk); 2140 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2141 &ctx, bpf_prog_run, retval, NULL); 2142 release_sock(sk); 2143 2144 if (ret < 0) 2145 goto out; 2146 2147 if (!sockptr_is_null(optval) && 2148 (ctx.optlen > max_optlen || ctx.optlen < 0)) { 2149 if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) { 2150 pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 2151 ctx.optlen, max_optlen); 2152 ret = retval; 2153 goto out; 2154 } 2155 ret = -EFAULT; 2156 goto out; 2157 } 2158 2159 if (ctx.optlen != 0) { 2160 if (!sockptr_is_null(optval) && 2161 copy_to_sockptr(optval, ctx.optval, ctx.optlen)) { 2162 ret = -EFAULT; 2163 goto out; 2164 } 2165 if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) { 2166 ret = -EFAULT; 2167 goto out; 2168 } 2169 } 2170 2171 out: 2172 sockopt_free_buf(&ctx, &buf); 2173 return ret; 2174 } 2175 2176 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 2177 int optname, void *optval, 2178 int *optlen, int retval) 2179 { 2180 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2181 struct bpf_sockopt_kern ctx = { 2182 .sk = sk, 2183 .level = level, 2184 .optname = optname, 2185 .optlen = *optlen, 2186 .optval = optval, 2187 .optval_end = optval + *optlen, 2188 .current_task = current, 2189 }; 2190 int ret; 2191 2192 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 2193 * user data back into BPF buffer when reval != 0. This is 2194 * done as an optimization to avoid extra copy, assuming 2195 * kernel won't populate the data in case of an error. 2196 * Here we always pass the data and memset() should 2197 * be called if that data shouldn't be "exported". 2198 */ 2199 2200 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2201 &ctx, bpf_prog_run, retval, NULL); 2202 if (ret < 0) 2203 return ret; 2204 2205 if (ctx.optlen > *optlen) 2206 return -EFAULT; 2207 2208 /* BPF programs can shrink the buffer, export the modifications. 2209 */ 2210 if (ctx.optlen != 0) 2211 *optlen = ctx.optlen; 2212 2213 return ret; 2214 } 2215 #endif 2216 2217 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 2218 size_t *lenp) 2219 { 2220 ssize_t tmp_ret = 0, ret; 2221 2222 if (dir->header.parent) { 2223 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 2224 if (tmp_ret < 0) 2225 return tmp_ret; 2226 } 2227 2228 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 2229 if (ret < 0) 2230 return ret; 2231 *bufp += ret; 2232 *lenp -= ret; 2233 ret += tmp_ret; 2234 2235 /* Avoid leading slash. */ 2236 if (!ret) 2237 return ret; 2238 2239 tmp_ret = strscpy(*bufp, "/", *lenp); 2240 if (tmp_ret < 0) 2241 return tmp_ret; 2242 *bufp += tmp_ret; 2243 *lenp -= tmp_ret; 2244 2245 return ret + tmp_ret; 2246 } 2247 2248 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 2249 size_t, buf_len, u64, flags) 2250 { 2251 ssize_t tmp_ret = 0, ret; 2252 2253 if (!buf) 2254 return -EINVAL; 2255 2256 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 2257 if (!ctx->head) 2258 return -EINVAL; 2259 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 2260 if (tmp_ret < 0) 2261 return tmp_ret; 2262 } 2263 2264 ret = strscpy(buf, ctx->table->procname, buf_len); 2265 2266 return ret < 0 ? ret : tmp_ret + ret; 2267 } 2268 2269 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 2270 .func = bpf_sysctl_get_name, 2271 .gpl_only = false, 2272 .ret_type = RET_INTEGER, 2273 .arg1_type = ARG_PTR_TO_CTX, 2274 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 2275 .arg3_type = ARG_CONST_SIZE, 2276 .arg4_type = ARG_ANYTHING, 2277 }; 2278 2279 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 2280 size_t src_len) 2281 { 2282 if (!dst) 2283 return -EINVAL; 2284 2285 if (!dst_len) 2286 return -E2BIG; 2287 2288 if (!src || !src_len) { 2289 memset(dst, 0, dst_len); 2290 return -EINVAL; 2291 } 2292 2293 memcpy(dst, src, min(dst_len, src_len)); 2294 2295 if (dst_len > src_len) { 2296 memset(dst + src_len, '\0', dst_len - src_len); 2297 return src_len; 2298 } 2299 2300 dst[dst_len - 1] = '\0'; 2301 2302 return -E2BIG; 2303 } 2304 2305 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 2306 char *, buf, size_t, buf_len) 2307 { 2308 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 2309 } 2310 2311 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 2312 .func = bpf_sysctl_get_current_value, 2313 .gpl_only = false, 2314 .ret_type = RET_INTEGER, 2315 .arg1_type = ARG_PTR_TO_CTX, 2316 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2317 .arg3_type = ARG_CONST_SIZE, 2318 }; 2319 2320 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 2321 size_t, buf_len) 2322 { 2323 if (!ctx->write) { 2324 if (buf && buf_len) 2325 memset(buf, '\0', buf_len); 2326 return -EINVAL; 2327 } 2328 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 2329 } 2330 2331 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 2332 .func = bpf_sysctl_get_new_value, 2333 .gpl_only = false, 2334 .ret_type = RET_INTEGER, 2335 .arg1_type = ARG_PTR_TO_CTX, 2336 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2337 .arg3_type = ARG_CONST_SIZE, 2338 }; 2339 2340 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 2341 const char *, buf, size_t, buf_len) 2342 { 2343 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 2344 return -EINVAL; 2345 2346 if (buf_len > PAGE_SIZE - 1) 2347 return -E2BIG; 2348 2349 memcpy(ctx->new_val, buf, buf_len); 2350 ctx->new_len = buf_len; 2351 ctx->new_updated = 1; 2352 2353 return 0; 2354 } 2355 2356 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 2357 .func = bpf_sysctl_set_new_value, 2358 .gpl_only = false, 2359 .ret_type = RET_INTEGER, 2360 .arg1_type = ARG_PTR_TO_CTX, 2361 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 2362 .arg3_type = ARG_CONST_SIZE, 2363 }; 2364 2365 static const struct bpf_func_proto * 2366 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2367 { 2368 const struct bpf_func_proto *func_proto; 2369 2370 func_proto = cgroup_common_func_proto(func_id, prog); 2371 if (func_proto) 2372 return func_proto; 2373 2374 switch (func_id) { 2375 case BPF_FUNC_sysctl_get_name: 2376 return &bpf_sysctl_get_name_proto; 2377 case BPF_FUNC_sysctl_get_current_value: 2378 return &bpf_sysctl_get_current_value_proto; 2379 case BPF_FUNC_sysctl_get_new_value: 2380 return &bpf_sysctl_get_new_value_proto; 2381 case BPF_FUNC_sysctl_set_new_value: 2382 return &bpf_sysctl_set_new_value_proto; 2383 case BPF_FUNC_ktime_get_coarse_ns: 2384 return &bpf_ktime_get_coarse_ns_proto; 2385 case BPF_FUNC_perf_event_output: 2386 return &bpf_event_output_data_proto; 2387 default: 2388 return bpf_base_func_proto(func_id, prog); 2389 } 2390 } 2391 2392 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 2393 const struct bpf_prog *prog, 2394 struct bpf_insn_access_aux *info) 2395 { 2396 const int size_default = sizeof(__u32); 2397 2398 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 2399 return false; 2400 2401 switch (off) { 2402 case bpf_ctx_range(struct bpf_sysctl, write): 2403 if (type != BPF_READ) 2404 return false; 2405 bpf_ctx_record_field_size(info, size_default); 2406 return bpf_ctx_narrow_access_ok(off, size, size_default); 2407 case bpf_ctx_range(struct bpf_sysctl, file_pos): 2408 if (type == BPF_READ) { 2409 bpf_ctx_record_field_size(info, size_default); 2410 return bpf_ctx_narrow_access_ok(off, size, size_default); 2411 } else { 2412 return size == size_default; 2413 } 2414 default: 2415 return false; 2416 } 2417 } 2418 2419 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 2420 const struct bpf_insn *si, 2421 struct bpf_insn *insn_buf, 2422 struct bpf_prog *prog, u32 *target_size) 2423 { 2424 struct bpf_insn *insn = insn_buf; 2425 u32 read_size; 2426 2427 switch (si->off) { 2428 case offsetof(struct bpf_sysctl, write): 2429 *insn++ = BPF_LDX_MEM( 2430 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 2431 bpf_target_off(struct bpf_sysctl_kern, write, 2432 sizeof_field(struct bpf_sysctl_kern, 2433 write), 2434 target_size)); 2435 break; 2436 case offsetof(struct bpf_sysctl, file_pos): 2437 /* ppos is a pointer so it should be accessed via indirect 2438 * loads and stores. Also for stores additional temporary 2439 * register is used since neither src_reg nor dst_reg can be 2440 * overridden. 2441 */ 2442 if (type == BPF_WRITE) { 2443 int treg = BPF_REG_9; 2444 2445 if (si->src_reg == treg || si->dst_reg == treg) 2446 --treg; 2447 if (si->src_reg == treg || si->dst_reg == treg) 2448 --treg; 2449 *insn++ = BPF_STX_MEM( 2450 BPF_DW, si->dst_reg, treg, 2451 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2452 *insn++ = BPF_LDX_MEM( 2453 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2454 treg, si->dst_reg, 2455 offsetof(struct bpf_sysctl_kern, ppos)); 2456 *insn++ = BPF_RAW_INSN( 2457 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32), 2458 treg, si->src_reg, 2459 bpf_ctx_narrow_access_offset( 2460 0, sizeof(u32), sizeof(loff_t)), 2461 si->imm); 2462 *insn++ = BPF_LDX_MEM( 2463 BPF_DW, treg, si->dst_reg, 2464 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2465 } else { 2466 *insn++ = BPF_LDX_MEM( 2467 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2468 si->dst_reg, si->src_reg, 2469 offsetof(struct bpf_sysctl_kern, ppos)); 2470 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 2471 *insn++ = BPF_LDX_MEM( 2472 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 2473 bpf_ctx_narrow_access_offset( 2474 0, read_size, sizeof(loff_t))); 2475 } 2476 *target_size = sizeof(u32); 2477 break; 2478 } 2479 2480 return insn - insn_buf; 2481 } 2482 2483 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 2484 .get_func_proto = sysctl_func_proto, 2485 .is_valid_access = sysctl_is_valid_access, 2486 .convert_ctx_access = sysctl_convert_ctx_access, 2487 }; 2488 2489 const struct bpf_prog_ops cg_sysctl_prog_ops = { 2490 }; 2491 2492 #ifdef CONFIG_NET 2493 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 2494 { 2495 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 2496 2497 return net->net_cookie; 2498 } 2499 2500 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 2501 .func = bpf_get_netns_cookie_sockopt, 2502 .gpl_only = false, 2503 .ret_type = RET_INTEGER, 2504 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 2505 }; 2506 #endif 2507 2508 static const struct bpf_func_proto * 2509 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2510 { 2511 const struct bpf_func_proto *func_proto; 2512 2513 func_proto = cgroup_common_func_proto(func_id, prog); 2514 if (func_proto) 2515 return func_proto; 2516 2517 switch (func_id) { 2518 #ifdef CONFIG_NET 2519 case BPF_FUNC_get_netns_cookie: 2520 return &bpf_get_netns_cookie_sockopt_proto; 2521 case BPF_FUNC_sk_storage_get: 2522 return &bpf_sk_storage_get_proto; 2523 case BPF_FUNC_sk_storage_delete: 2524 return &bpf_sk_storage_delete_proto; 2525 case BPF_FUNC_setsockopt: 2526 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2527 return &bpf_sk_setsockopt_proto; 2528 return NULL; 2529 case BPF_FUNC_getsockopt: 2530 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2531 return &bpf_sk_getsockopt_proto; 2532 return NULL; 2533 #endif 2534 #ifdef CONFIG_INET 2535 case BPF_FUNC_tcp_sock: 2536 return &bpf_tcp_sock_proto; 2537 #endif 2538 case BPF_FUNC_perf_event_output: 2539 return &bpf_event_output_data_proto; 2540 default: 2541 return bpf_base_func_proto(func_id, prog); 2542 } 2543 } 2544 2545 static bool cg_sockopt_is_valid_access(int off, int size, 2546 enum bpf_access_type type, 2547 const struct bpf_prog *prog, 2548 struct bpf_insn_access_aux *info) 2549 { 2550 const int size_default = sizeof(__u32); 2551 2552 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2553 return false; 2554 2555 if (off % size != 0) 2556 return false; 2557 2558 if (type == BPF_WRITE) { 2559 switch (off) { 2560 case offsetof(struct bpf_sockopt, retval): 2561 if (size != size_default) 2562 return false; 2563 return prog->expected_attach_type == 2564 BPF_CGROUP_GETSOCKOPT; 2565 case offsetof(struct bpf_sockopt, optname): 2566 fallthrough; 2567 case offsetof(struct bpf_sockopt, level): 2568 if (size != size_default) 2569 return false; 2570 return prog->expected_attach_type == 2571 BPF_CGROUP_SETSOCKOPT; 2572 case offsetof(struct bpf_sockopt, optlen): 2573 return size == size_default; 2574 default: 2575 return false; 2576 } 2577 } 2578 2579 switch (off) { 2580 case bpf_ctx_range_ptr(struct bpf_sockopt, sk): 2581 if (size != sizeof(__u64)) 2582 return false; 2583 info->reg_type = PTR_TO_SOCKET; 2584 break; 2585 case bpf_ctx_range_ptr(struct bpf_sockopt, optval): 2586 if (size != sizeof(__u64)) 2587 return false; 2588 info->reg_type = PTR_TO_PACKET; 2589 break; 2590 case bpf_ctx_range_ptr(struct bpf_sockopt, optval_end): 2591 if (size != sizeof(__u64)) 2592 return false; 2593 info->reg_type = PTR_TO_PACKET_END; 2594 break; 2595 case bpf_ctx_range(struct bpf_sockopt, retval): 2596 if (size != size_default) 2597 return false; 2598 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2599 default: 2600 if (size != size_default) 2601 return false; 2602 break; 2603 } 2604 return true; 2605 } 2606 2607 #define CG_SOCKOPT_READ_FIELD(F) \ 2608 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2609 si->dst_reg, si->src_reg, \ 2610 offsetof(struct bpf_sockopt_kern, F)) 2611 2612 #define CG_SOCKOPT_WRITE_FIELD(F) \ 2613 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \ 2614 BPF_MEM | BPF_CLASS(si->code)), \ 2615 si->dst_reg, si->src_reg, \ 2616 offsetof(struct bpf_sockopt_kern, F), \ 2617 si->imm) 2618 2619 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2620 const struct bpf_insn *si, 2621 struct bpf_insn *insn_buf, 2622 struct bpf_prog *prog, 2623 u32 *target_size) 2624 { 2625 struct bpf_insn *insn = insn_buf; 2626 2627 switch (si->off) { 2628 case offsetof(struct bpf_sockopt, sk): 2629 *insn++ = CG_SOCKOPT_READ_FIELD(sk); 2630 break; 2631 case offsetof(struct bpf_sockopt, level): 2632 if (type == BPF_WRITE) 2633 *insn++ = CG_SOCKOPT_WRITE_FIELD(level); 2634 else 2635 *insn++ = CG_SOCKOPT_READ_FIELD(level); 2636 break; 2637 case offsetof(struct bpf_sockopt, optname): 2638 if (type == BPF_WRITE) 2639 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname); 2640 else 2641 *insn++ = CG_SOCKOPT_READ_FIELD(optname); 2642 break; 2643 case offsetof(struct bpf_sockopt, optlen): 2644 if (type == BPF_WRITE) 2645 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen); 2646 else 2647 *insn++ = CG_SOCKOPT_READ_FIELD(optlen); 2648 break; 2649 case offsetof(struct bpf_sockopt, retval): 2650 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2651 2652 if (type == BPF_WRITE) { 2653 int treg = BPF_REG_9; 2654 2655 if (si->src_reg == treg || si->dst_reg == treg) 2656 --treg; 2657 if (si->src_reg == treg || si->dst_reg == treg) 2658 --treg; 2659 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2660 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2661 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2662 treg, si->dst_reg, 2663 offsetof(struct bpf_sockopt_kern, current_task)); 2664 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2665 treg, treg, 2666 offsetof(struct task_struct, bpf_ctx)); 2667 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM | 2668 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2669 treg, si->src_reg, 2670 offsetof(struct bpf_cg_run_ctx, retval), 2671 si->imm); 2672 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2673 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2674 } else { 2675 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2676 si->dst_reg, si->src_reg, 2677 offsetof(struct bpf_sockopt_kern, current_task)); 2678 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2679 si->dst_reg, si->dst_reg, 2680 offsetof(struct task_struct, bpf_ctx)); 2681 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2682 si->dst_reg, si->dst_reg, 2683 offsetof(struct bpf_cg_run_ctx, retval)); 2684 } 2685 break; 2686 case offsetof(struct bpf_sockopt, optval): 2687 *insn++ = CG_SOCKOPT_READ_FIELD(optval); 2688 break; 2689 case offsetof(struct bpf_sockopt, optval_end): 2690 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end); 2691 break; 2692 } 2693 2694 return insn - insn_buf; 2695 } 2696 2697 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2698 bool direct_write, 2699 const struct bpf_prog *prog) 2700 { 2701 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2702 */ 2703 return 0; 2704 } 2705 2706 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2707 .get_func_proto = cg_sockopt_func_proto, 2708 .is_valid_access = cg_sockopt_is_valid_access, 2709 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2710 .gen_prologue = cg_sockopt_get_prologue, 2711 }; 2712 2713 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2714 }; 2715 2716 /* Common helpers for cgroup hooks. */ 2717 const struct bpf_func_proto * 2718 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2719 { 2720 switch (func_id) { 2721 case BPF_FUNC_get_local_storage: 2722 return &bpf_get_local_storage_proto; 2723 case BPF_FUNC_get_retval: 2724 switch (prog->expected_attach_type) { 2725 case BPF_CGROUP_INET_INGRESS: 2726 case BPF_CGROUP_INET_EGRESS: 2727 case BPF_CGROUP_SOCK_OPS: 2728 case BPF_CGROUP_UDP4_RECVMSG: 2729 case BPF_CGROUP_UDP6_RECVMSG: 2730 case BPF_CGROUP_UNIX_RECVMSG: 2731 case BPF_CGROUP_INET4_GETPEERNAME: 2732 case BPF_CGROUP_INET6_GETPEERNAME: 2733 case BPF_CGROUP_UNIX_GETPEERNAME: 2734 case BPF_CGROUP_INET4_GETSOCKNAME: 2735 case BPF_CGROUP_INET6_GETSOCKNAME: 2736 case BPF_CGROUP_UNIX_GETSOCKNAME: 2737 return NULL; 2738 default: 2739 return &bpf_get_retval_proto; 2740 } 2741 case BPF_FUNC_set_retval: 2742 switch (prog->expected_attach_type) { 2743 case BPF_CGROUP_INET_INGRESS: 2744 case BPF_CGROUP_INET_EGRESS: 2745 case BPF_CGROUP_SOCK_OPS: 2746 case BPF_CGROUP_UDP4_RECVMSG: 2747 case BPF_CGROUP_UDP6_RECVMSG: 2748 case BPF_CGROUP_UNIX_RECVMSG: 2749 case BPF_CGROUP_INET4_GETPEERNAME: 2750 case BPF_CGROUP_INET6_GETPEERNAME: 2751 case BPF_CGROUP_UNIX_GETPEERNAME: 2752 case BPF_CGROUP_INET4_GETSOCKNAME: 2753 case BPF_CGROUP_INET6_GETSOCKNAME: 2754 case BPF_CGROUP_UNIX_GETSOCKNAME: 2755 return NULL; 2756 default: 2757 return &bpf_set_retval_proto; 2758 } 2759 default: 2760 return NULL; 2761 } 2762 } 2763