xref: /linux/kernel/bpf/cgroup.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
32 {
33 	enum bpf_cgroup_storage_type stype;
34 
35 	for_each_cgroup_storage_type(stype)
36 		bpf_cgroup_storage_free(storages[stype]);
37 }
38 
39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 				     struct bpf_cgroup_storage *new_storages[],
41 				     enum bpf_attach_type type,
42 				     struct bpf_prog *prog,
43 				     struct cgroup *cgrp)
44 {
45 	enum bpf_cgroup_storage_type stype;
46 	struct bpf_cgroup_storage_key key;
47 	struct bpf_map *map;
48 
49 	key.cgroup_inode_id = cgroup_id(cgrp);
50 	key.attach_type = type;
51 
52 	for_each_cgroup_storage_type(stype) {
53 		map = prog->aux->cgroup_storage[stype];
54 		if (!map)
55 			continue;
56 
57 		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 		if (storages[stype])
59 			continue;
60 
61 		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 		if (IS_ERR(storages[stype])) {
63 			bpf_cgroup_storages_free(new_storages);
64 			return -ENOMEM;
65 		}
66 
67 		new_storages[stype] = storages[stype];
68 	}
69 
70 	return 0;
71 }
72 
73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 				       struct bpf_cgroup_storage *src[])
75 {
76 	enum bpf_cgroup_storage_type stype;
77 
78 	for_each_cgroup_storage_type(stype)
79 		dst[stype] = src[stype];
80 }
81 
82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 				     struct cgroup *cgrp,
84 				     enum bpf_attach_type attach_type)
85 {
86 	enum bpf_cgroup_storage_type stype;
87 
88 	for_each_cgroup_storage_type(stype)
89 		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
90 }
91 
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93  * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94  * doesn't free link memory, which will eventually be done by bpf_link's
95  * release() callback, when its last FD is closed.
96  */
97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
98 {
99 	cgroup_put(link->cgroup);
100 	link->cgroup = NULL;
101 }
102 
103 /**
104  * cgroup_bpf_release() - put references of all bpf programs and
105  *                        release all cgroup bpf data
106  * @work: work structure embedded into the cgroup to modify
107  */
108 static void cgroup_bpf_release(struct work_struct *work)
109 {
110 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 					       bpf.release_work);
112 	struct bpf_prog_array *old_array;
113 	struct list_head *storages = &cgrp->bpf.storages;
114 	struct bpf_cgroup_storage *storage, *stmp;
115 
116 	unsigned int atype;
117 
118 	mutex_lock(&cgroup_mutex);
119 
120 	for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
121 		struct list_head *progs = &cgrp->bpf.progs[atype];
122 		struct bpf_prog_list *pl, *pltmp;
123 
124 		list_for_each_entry_safe(pl, pltmp, progs, node) {
125 			list_del(&pl->node);
126 			if (pl->prog)
127 				bpf_prog_put(pl->prog);
128 			if (pl->link)
129 				bpf_cgroup_link_auto_detach(pl->link);
130 			kfree(pl);
131 			static_branch_dec(&cgroup_bpf_enabled_key[atype]);
132 		}
133 		old_array = rcu_dereference_protected(
134 				cgrp->bpf.effective[atype],
135 				lockdep_is_held(&cgroup_mutex));
136 		bpf_prog_array_free(old_array);
137 	}
138 
139 	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 		bpf_cgroup_storage_unlink(storage);
141 		bpf_cgroup_storage_free(storage);
142 	}
143 
144 	mutex_unlock(&cgroup_mutex);
145 
146 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 		cgroup_bpf_put(p);
148 
149 	percpu_ref_exit(&cgrp->bpf.refcnt);
150 	cgroup_put(cgrp);
151 }
152 
153 /**
154  * cgroup_bpf_release_fn() - callback used to schedule releasing
155  *                           of bpf cgroup data
156  * @ref: percpu ref counter structure
157  */
158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
159 {
160 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
161 
162 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 	queue_work(system_wq, &cgrp->bpf.release_work);
164 }
165 
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167  * link or direct prog.
168  */
169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
170 {
171 	if (pl->prog)
172 		return pl->prog;
173 	if (pl->link)
174 		return pl->link->link.prog;
175 	return NULL;
176 }
177 
178 /* count number of elements in the list.
179  * it's slow but the list cannot be long
180  */
181 static u32 prog_list_length(struct list_head *head)
182 {
183 	struct bpf_prog_list *pl;
184 	u32 cnt = 0;
185 
186 	list_for_each_entry(pl, head, node) {
187 		if (!prog_list_prog(pl))
188 			continue;
189 		cnt++;
190 	}
191 	return cnt;
192 }
193 
194 /* if parent has non-overridable prog attached,
195  * disallow attaching new programs to the descendent cgroup.
196  * if parent has overridable or multi-prog, allow attaching
197  */
198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 				    enum cgroup_bpf_attach_type atype)
200 {
201 	struct cgroup *p;
202 
203 	p = cgroup_parent(cgrp);
204 	if (!p)
205 		return true;
206 	do {
207 		u32 flags = p->bpf.flags[atype];
208 		u32 cnt;
209 
210 		if (flags & BPF_F_ALLOW_MULTI)
211 			return true;
212 		cnt = prog_list_length(&p->bpf.progs[atype]);
213 		WARN_ON_ONCE(cnt > 1);
214 		if (cnt == 1)
215 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 		p = cgroup_parent(p);
217 	} while (p);
218 	return true;
219 }
220 
221 /* compute a chain of effective programs for a given cgroup:
222  * start from the list of programs in this cgroup and add
223  * all parent programs.
224  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225  * to programs in this cgroup
226  */
227 static int compute_effective_progs(struct cgroup *cgrp,
228 				   enum cgroup_bpf_attach_type atype,
229 				   struct bpf_prog_array **array)
230 {
231 	struct bpf_prog_array_item *item;
232 	struct bpf_prog_array *progs;
233 	struct bpf_prog_list *pl;
234 	struct cgroup *p = cgrp;
235 	int cnt = 0;
236 
237 	/* count number of effective programs by walking parents */
238 	do {
239 		if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
240 			cnt += prog_list_length(&p->bpf.progs[atype]);
241 		p = cgroup_parent(p);
242 	} while (p);
243 
244 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 	if (!progs)
246 		return -ENOMEM;
247 
248 	/* populate the array with effective progs */
249 	cnt = 0;
250 	p = cgrp;
251 	do {
252 		if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
253 			continue;
254 
255 		list_for_each_entry(pl, &p->bpf.progs[atype], node) {
256 			if (!prog_list_prog(pl))
257 				continue;
258 
259 			item = &progs->items[cnt];
260 			item->prog = prog_list_prog(pl);
261 			bpf_cgroup_storages_assign(item->cgroup_storage,
262 						   pl->storage);
263 			cnt++;
264 		}
265 	} while ((p = cgroup_parent(p)));
266 
267 	*array = progs;
268 	return 0;
269 }
270 
271 static void activate_effective_progs(struct cgroup *cgrp,
272 				     enum cgroup_bpf_attach_type atype,
273 				     struct bpf_prog_array *old_array)
274 {
275 	old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
276 					lockdep_is_held(&cgroup_mutex));
277 	/* free prog array after grace period, since __cgroup_bpf_run_*()
278 	 * might be still walking the array
279 	 */
280 	bpf_prog_array_free(old_array);
281 }
282 
283 /**
284  * cgroup_bpf_inherit() - inherit effective programs from parent
285  * @cgrp: the cgroup to modify
286  */
287 int cgroup_bpf_inherit(struct cgroup *cgrp)
288 {
289 /* has to use marco instead of const int, since compiler thinks
290  * that array below is variable length
291  */
292 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
293 	struct bpf_prog_array *arrays[NR] = {};
294 	struct cgroup *p;
295 	int ret, i;
296 
297 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 			      GFP_KERNEL);
299 	if (ret)
300 		return ret;
301 
302 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 		cgroup_bpf_get(p);
304 
305 	for (i = 0; i < NR; i++)
306 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
307 
308 	INIT_LIST_HEAD(&cgrp->bpf.storages);
309 
310 	for (i = 0; i < NR; i++)
311 		if (compute_effective_progs(cgrp, i, &arrays[i]))
312 			goto cleanup;
313 
314 	for (i = 0; i < NR; i++)
315 		activate_effective_progs(cgrp, i, arrays[i]);
316 
317 	return 0;
318 cleanup:
319 	for (i = 0; i < NR; i++)
320 		bpf_prog_array_free(arrays[i]);
321 
322 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 		cgroup_bpf_put(p);
324 
325 	percpu_ref_exit(&cgrp->bpf.refcnt);
326 
327 	return -ENOMEM;
328 }
329 
330 static int update_effective_progs(struct cgroup *cgrp,
331 				  enum cgroup_bpf_attach_type atype)
332 {
333 	struct cgroup_subsys_state *css;
334 	int err;
335 
336 	/* allocate and recompute effective prog arrays */
337 	css_for_each_descendant_pre(css, &cgrp->self) {
338 		struct cgroup *desc = container_of(css, struct cgroup, self);
339 
340 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 			continue;
342 
343 		err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
344 		if (err)
345 			goto cleanup;
346 	}
347 
348 	/* all allocations were successful. Activate all prog arrays */
349 	css_for_each_descendant_pre(css, &cgrp->self) {
350 		struct cgroup *desc = container_of(css, struct cgroup, self);
351 
352 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 			if (unlikely(desc->bpf.inactive)) {
354 				bpf_prog_array_free(desc->bpf.inactive);
355 				desc->bpf.inactive = NULL;
356 			}
357 			continue;
358 		}
359 
360 		activate_effective_progs(desc, atype, desc->bpf.inactive);
361 		desc->bpf.inactive = NULL;
362 	}
363 
364 	return 0;
365 
366 cleanup:
367 	/* oom while computing effective. Free all computed effective arrays
368 	 * since they were not activated
369 	 */
370 	css_for_each_descendant_pre(css, &cgrp->self) {
371 		struct cgroup *desc = container_of(css, struct cgroup, self);
372 
373 		bpf_prog_array_free(desc->bpf.inactive);
374 		desc->bpf.inactive = NULL;
375 	}
376 
377 	return err;
378 }
379 
380 #define BPF_CGROUP_MAX_PROGS 64
381 
382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 					       struct bpf_prog *prog,
384 					       struct bpf_cgroup_link *link,
385 					       struct bpf_prog *replace_prog,
386 					       bool allow_multi)
387 {
388 	struct bpf_prog_list *pl;
389 
390 	/* single-attach case */
391 	if (!allow_multi) {
392 		if (list_empty(progs))
393 			return NULL;
394 		return list_first_entry(progs, typeof(*pl), node);
395 	}
396 
397 	list_for_each_entry(pl, progs, node) {
398 		if (prog && pl->prog == prog && prog != replace_prog)
399 			/* disallow attaching the same prog twice */
400 			return ERR_PTR(-EINVAL);
401 		if (link && pl->link == link)
402 			/* disallow attaching the same link twice */
403 			return ERR_PTR(-EINVAL);
404 	}
405 
406 	/* direct prog multi-attach w/ replacement case */
407 	if (replace_prog) {
408 		list_for_each_entry(pl, progs, node) {
409 			if (pl->prog == replace_prog)
410 				/* a match found */
411 				return pl;
412 		}
413 		/* prog to replace not found for cgroup */
414 		return ERR_PTR(-ENOENT);
415 	}
416 
417 	return NULL;
418 }
419 
420 /**
421  * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422  *                         propagate the change to descendants
423  * @cgrp: The cgroup which descendants to traverse
424  * @prog: A program to attach
425  * @link: A link to attach
426  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427  * @type: Type of attach operation
428  * @flags: Option flags
429  *
430  * Exactly one of @prog or @link can be non-null.
431  * Must be called with cgroup_mutex held.
432  */
433 int __cgroup_bpf_attach(struct cgroup *cgrp,
434 			struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 			struct bpf_cgroup_link *link,
436 			enum bpf_attach_type type, u32 flags)
437 {
438 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 	struct bpf_prog *old_prog = NULL;
440 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
441 	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 	enum cgroup_bpf_attach_type atype;
443 	struct bpf_prog_list *pl;
444 	struct list_head *progs;
445 	int err;
446 
447 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
448 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
449 		/* invalid combination */
450 		return -EINVAL;
451 	if (link && (prog || replace_prog))
452 		/* only either link or prog/replace_prog can be specified */
453 		return -EINVAL;
454 	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
455 		/* replace_prog implies BPF_F_REPLACE, and vice versa */
456 		return -EINVAL;
457 
458 	atype = to_cgroup_bpf_attach_type(type);
459 	if (atype < 0)
460 		return -EINVAL;
461 
462 	progs = &cgrp->bpf.progs[atype];
463 
464 	if (!hierarchy_allows_attach(cgrp, atype))
465 		return -EPERM;
466 
467 	if (!list_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
468 		/* Disallow attaching non-overridable on top
469 		 * of existing overridable in this cgroup.
470 		 * Disallow attaching multi-prog if overridable or none
471 		 */
472 		return -EPERM;
473 
474 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
475 		return -E2BIG;
476 
477 	pl = find_attach_entry(progs, prog, link, replace_prog,
478 			       flags & BPF_F_ALLOW_MULTI);
479 	if (IS_ERR(pl))
480 		return PTR_ERR(pl);
481 
482 	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
483 				      prog ? : link->link.prog, cgrp))
484 		return -ENOMEM;
485 
486 	if (pl) {
487 		old_prog = pl->prog;
488 	} else {
489 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
490 		if (!pl) {
491 			bpf_cgroup_storages_free(new_storage);
492 			return -ENOMEM;
493 		}
494 		list_add_tail(&pl->node, progs);
495 	}
496 
497 	pl->prog = prog;
498 	pl->link = link;
499 	bpf_cgroup_storages_assign(pl->storage, storage);
500 	cgrp->bpf.flags[atype] = saved_flags;
501 
502 	err = update_effective_progs(cgrp, atype);
503 	if (err)
504 		goto cleanup;
505 
506 	if (old_prog)
507 		bpf_prog_put(old_prog);
508 	else
509 		static_branch_inc(&cgroup_bpf_enabled_key[atype]);
510 	bpf_cgroup_storages_link(new_storage, cgrp, type);
511 	return 0;
512 
513 cleanup:
514 	if (old_prog) {
515 		pl->prog = old_prog;
516 		pl->link = NULL;
517 	}
518 	bpf_cgroup_storages_free(new_storage);
519 	if (!old_prog) {
520 		list_del(&pl->node);
521 		kfree(pl);
522 	}
523 	return err;
524 }
525 
526 /* Swap updated BPF program for given link in effective program arrays across
527  * all descendant cgroups. This function is guaranteed to succeed.
528  */
529 static void replace_effective_prog(struct cgroup *cgrp,
530 				   enum cgroup_bpf_attach_type atype,
531 				   struct bpf_cgroup_link *link)
532 {
533 	struct bpf_prog_array_item *item;
534 	struct cgroup_subsys_state *css;
535 	struct bpf_prog_array *progs;
536 	struct bpf_prog_list *pl;
537 	struct list_head *head;
538 	struct cgroup *cg;
539 	int pos;
540 
541 	css_for_each_descendant_pre(css, &cgrp->self) {
542 		struct cgroup *desc = container_of(css, struct cgroup, self);
543 
544 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
545 			continue;
546 
547 		/* find position of link in effective progs array */
548 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
549 			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
550 				continue;
551 
552 			head = &cg->bpf.progs[atype];
553 			list_for_each_entry(pl, head, node) {
554 				if (!prog_list_prog(pl))
555 					continue;
556 				if (pl->link == link)
557 					goto found;
558 				pos++;
559 			}
560 		}
561 found:
562 		BUG_ON(!cg);
563 		progs = rcu_dereference_protected(
564 				desc->bpf.effective[atype],
565 				lockdep_is_held(&cgroup_mutex));
566 		item = &progs->items[pos];
567 		WRITE_ONCE(item->prog, link->link.prog);
568 	}
569 }
570 
571 /**
572  * __cgroup_bpf_replace() - Replace link's program and propagate the change
573  *                          to descendants
574  * @cgrp: The cgroup which descendants to traverse
575  * @link: A link for which to replace BPF program
576  * @type: Type of attach operation
577  *
578  * Must be called with cgroup_mutex held.
579  */
580 static int __cgroup_bpf_replace(struct cgroup *cgrp,
581 				struct bpf_cgroup_link *link,
582 				struct bpf_prog *new_prog)
583 {
584 	enum cgroup_bpf_attach_type atype;
585 	struct bpf_prog *old_prog;
586 	struct bpf_prog_list *pl;
587 	struct list_head *progs;
588 	bool found = false;
589 
590 	atype = to_cgroup_bpf_attach_type(link->type);
591 	if (atype < 0)
592 		return -EINVAL;
593 
594 	progs = &cgrp->bpf.progs[atype];
595 
596 	if (link->link.prog->type != new_prog->type)
597 		return -EINVAL;
598 
599 	list_for_each_entry(pl, progs, node) {
600 		if (pl->link == link) {
601 			found = true;
602 			break;
603 		}
604 	}
605 	if (!found)
606 		return -ENOENT;
607 
608 	old_prog = xchg(&link->link.prog, new_prog);
609 	replace_effective_prog(cgrp, atype, link);
610 	bpf_prog_put(old_prog);
611 	return 0;
612 }
613 
614 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
615 			      struct bpf_prog *old_prog)
616 {
617 	struct bpf_cgroup_link *cg_link;
618 	int ret;
619 
620 	cg_link = container_of(link, struct bpf_cgroup_link, link);
621 
622 	mutex_lock(&cgroup_mutex);
623 	/* link might have been auto-released by dying cgroup, so fail */
624 	if (!cg_link->cgroup) {
625 		ret = -ENOLINK;
626 		goto out_unlock;
627 	}
628 	if (old_prog && link->prog != old_prog) {
629 		ret = -EPERM;
630 		goto out_unlock;
631 	}
632 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
633 out_unlock:
634 	mutex_unlock(&cgroup_mutex);
635 	return ret;
636 }
637 
638 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
639 					       struct bpf_prog *prog,
640 					       struct bpf_cgroup_link *link,
641 					       bool allow_multi)
642 {
643 	struct bpf_prog_list *pl;
644 
645 	if (!allow_multi) {
646 		if (list_empty(progs))
647 			/* report error when trying to detach and nothing is attached */
648 			return ERR_PTR(-ENOENT);
649 
650 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
651 		 * allow detaching with invalid FD (prog==NULL) in legacy mode
652 		 */
653 		return list_first_entry(progs, typeof(*pl), node);
654 	}
655 
656 	if (!prog && !link)
657 		/* to detach MULTI prog the user has to specify valid FD
658 		 * of the program or link to be detached
659 		 */
660 		return ERR_PTR(-EINVAL);
661 
662 	/* find the prog or link and detach it */
663 	list_for_each_entry(pl, progs, node) {
664 		if (pl->prog == prog && pl->link == link)
665 			return pl;
666 	}
667 	return ERR_PTR(-ENOENT);
668 }
669 
670 /**
671  * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
672  *                         propagate the change to descendants
673  * @cgrp: The cgroup which descendants to traverse
674  * @prog: A program to detach or NULL
675  * @prog: A link to detach or NULL
676  * @type: Type of detach operation
677  *
678  * At most one of @prog or @link can be non-NULL.
679  * Must be called with cgroup_mutex held.
680  */
681 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
682 			struct bpf_cgroup_link *link, enum bpf_attach_type type)
683 {
684 	enum cgroup_bpf_attach_type atype;
685 	struct bpf_prog *old_prog;
686 	struct bpf_prog_list *pl;
687 	struct list_head *progs;
688 	u32 flags;
689 	int err;
690 
691 	atype = to_cgroup_bpf_attach_type(type);
692 	if (atype < 0)
693 		return -EINVAL;
694 
695 	progs = &cgrp->bpf.progs[atype];
696 	flags = cgrp->bpf.flags[atype];
697 
698 	if (prog && link)
699 		/* only one of prog or link can be specified */
700 		return -EINVAL;
701 
702 	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
703 	if (IS_ERR(pl))
704 		return PTR_ERR(pl);
705 
706 	/* mark it deleted, so it's ignored while recomputing effective */
707 	old_prog = pl->prog;
708 	pl->prog = NULL;
709 	pl->link = NULL;
710 
711 	err = update_effective_progs(cgrp, atype);
712 	if (err)
713 		goto cleanup;
714 
715 	/* now can actually delete it from this cgroup list */
716 	list_del(&pl->node);
717 	kfree(pl);
718 	if (list_empty(progs))
719 		/* last program was detached, reset flags to zero */
720 		cgrp->bpf.flags[atype] = 0;
721 	if (old_prog)
722 		bpf_prog_put(old_prog);
723 	static_branch_dec(&cgroup_bpf_enabled_key[atype]);
724 	return 0;
725 
726 cleanup:
727 	/* restore back prog or link */
728 	pl->prog = old_prog;
729 	pl->link = link;
730 	return err;
731 }
732 
733 /* Must be called with cgroup_mutex held to avoid races. */
734 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
735 		       union bpf_attr __user *uattr)
736 {
737 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
738 	enum bpf_attach_type type = attr->query.attach_type;
739 	enum cgroup_bpf_attach_type atype;
740 	struct bpf_prog_array *effective;
741 	struct list_head *progs;
742 	struct bpf_prog *prog;
743 	int cnt, ret = 0, i;
744 	u32 flags;
745 
746 	atype = to_cgroup_bpf_attach_type(type);
747 	if (atype < 0)
748 		return -EINVAL;
749 
750 	progs = &cgrp->bpf.progs[atype];
751 	flags = cgrp->bpf.flags[atype];
752 
753 	effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
754 					      lockdep_is_held(&cgroup_mutex));
755 
756 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
757 		cnt = bpf_prog_array_length(effective);
758 	else
759 		cnt = prog_list_length(progs);
760 
761 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
762 		return -EFAULT;
763 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
764 		return -EFAULT;
765 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
766 		/* return early if user requested only program count + flags */
767 		return 0;
768 	if (attr->query.prog_cnt < cnt) {
769 		cnt = attr->query.prog_cnt;
770 		ret = -ENOSPC;
771 	}
772 
773 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
774 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
775 	} else {
776 		struct bpf_prog_list *pl;
777 		u32 id;
778 
779 		i = 0;
780 		list_for_each_entry(pl, progs, node) {
781 			prog = prog_list_prog(pl);
782 			id = prog->aux->id;
783 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
784 				return -EFAULT;
785 			if (++i == cnt)
786 				break;
787 		}
788 	}
789 	return ret;
790 }
791 
792 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
793 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
794 {
795 	struct bpf_prog *replace_prog = NULL;
796 	struct cgroup *cgrp;
797 	int ret;
798 
799 	cgrp = cgroup_get_from_fd(attr->target_fd);
800 	if (IS_ERR(cgrp))
801 		return PTR_ERR(cgrp);
802 
803 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
804 	    (attr->attach_flags & BPF_F_REPLACE)) {
805 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
806 		if (IS_ERR(replace_prog)) {
807 			cgroup_put(cgrp);
808 			return PTR_ERR(replace_prog);
809 		}
810 	}
811 
812 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
813 				attr->attach_type, attr->attach_flags);
814 
815 	if (replace_prog)
816 		bpf_prog_put(replace_prog);
817 	cgroup_put(cgrp);
818 	return ret;
819 }
820 
821 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
822 {
823 	struct bpf_prog *prog;
824 	struct cgroup *cgrp;
825 	int ret;
826 
827 	cgrp = cgroup_get_from_fd(attr->target_fd);
828 	if (IS_ERR(cgrp))
829 		return PTR_ERR(cgrp);
830 
831 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
832 	if (IS_ERR(prog))
833 		prog = NULL;
834 
835 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
836 	if (prog)
837 		bpf_prog_put(prog);
838 
839 	cgroup_put(cgrp);
840 	return ret;
841 }
842 
843 static void bpf_cgroup_link_release(struct bpf_link *link)
844 {
845 	struct bpf_cgroup_link *cg_link =
846 		container_of(link, struct bpf_cgroup_link, link);
847 	struct cgroup *cg;
848 
849 	/* link might have been auto-detached by dying cgroup already,
850 	 * in that case our work is done here
851 	 */
852 	if (!cg_link->cgroup)
853 		return;
854 
855 	mutex_lock(&cgroup_mutex);
856 
857 	/* re-check cgroup under lock again */
858 	if (!cg_link->cgroup) {
859 		mutex_unlock(&cgroup_mutex);
860 		return;
861 	}
862 
863 	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
864 				    cg_link->type));
865 
866 	cg = cg_link->cgroup;
867 	cg_link->cgroup = NULL;
868 
869 	mutex_unlock(&cgroup_mutex);
870 
871 	cgroup_put(cg);
872 }
873 
874 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
875 {
876 	struct bpf_cgroup_link *cg_link =
877 		container_of(link, struct bpf_cgroup_link, link);
878 
879 	kfree(cg_link);
880 }
881 
882 static int bpf_cgroup_link_detach(struct bpf_link *link)
883 {
884 	bpf_cgroup_link_release(link);
885 
886 	return 0;
887 }
888 
889 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
890 					struct seq_file *seq)
891 {
892 	struct bpf_cgroup_link *cg_link =
893 		container_of(link, struct bpf_cgroup_link, link);
894 	u64 cg_id = 0;
895 
896 	mutex_lock(&cgroup_mutex);
897 	if (cg_link->cgroup)
898 		cg_id = cgroup_id(cg_link->cgroup);
899 	mutex_unlock(&cgroup_mutex);
900 
901 	seq_printf(seq,
902 		   "cgroup_id:\t%llu\n"
903 		   "attach_type:\t%d\n",
904 		   cg_id,
905 		   cg_link->type);
906 }
907 
908 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
909 					  struct bpf_link_info *info)
910 {
911 	struct bpf_cgroup_link *cg_link =
912 		container_of(link, struct bpf_cgroup_link, link);
913 	u64 cg_id = 0;
914 
915 	mutex_lock(&cgroup_mutex);
916 	if (cg_link->cgroup)
917 		cg_id = cgroup_id(cg_link->cgroup);
918 	mutex_unlock(&cgroup_mutex);
919 
920 	info->cgroup.cgroup_id = cg_id;
921 	info->cgroup.attach_type = cg_link->type;
922 	return 0;
923 }
924 
925 static const struct bpf_link_ops bpf_cgroup_link_lops = {
926 	.release = bpf_cgroup_link_release,
927 	.dealloc = bpf_cgroup_link_dealloc,
928 	.detach = bpf_cgroup_link_detach,
929 	.update_prog = cgroup_bpf_replace,
930 	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
931 	.fill_link_info = bpf_cgroup_link_fill_link_info,
932 };
933 
934 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
935 {
936 	struct bpf_link_primer link_primer;
937 	struct bpf_cgroup_link *link;
938 	struct cgroup *cgrp;
939 	int err;
940 
941 	if (attr->link_create.flags)
942 		return -EINVAL;
943 
944 	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
945 	if (IS_ERR(cgrp))
946 		return PTR_ERR(cgrp);
947 
948 	link = kzalloc(sizeof(*link), GFP_USER);
949 	if (!link) {
950 		err = -ENOMEM;
951 		goto out_put_cgroup;
952 	}
953 	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
954 		      prog);
955 	link->cgroup = cgrp;
956 	link->type = attr->link_create.attach_type;
957 
958 	err = bpf_link_prime(&link->link, &link_primer);
959 	if (err) {
960 		kfree(link);
961 		goto out_put_cgroup;
962 	}
963 
964 	err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
965 				link->type, BPF_F_ALLOW_MULTI);
966 	if (err) {
967 		bpf_link_cleanup(&link_primer);
968 		goto out_put_cgroup;
969 	}
970 
971 	return bpf_link_settle(&link_primer);
972 
973 out_put_cgroup:
974 	cgroup_put(cgrp);
975 	return err;
976 }
977 
978 int cgroup_bpf_prog_query(const union bpf_attr *attr,
979 			  union bpf_attr __user *uattr)
980 {
981 	struct cgroup *cgrp;
982 	int ret;
983 
984 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
985 	if (IS_ERR(cgrp))
986 		return PTR_ERR(cgrp);
987 
988 	ret = cgroup_bpf_query(cgrp, attr, uattr);
989 
990 	cgroup_put(cgrp);
991 	return ret;
992 }
993 
994 /**
995  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
996  * @sk: The socket sending or receiving traffic
997  * @skb: The skb that is being sent or received
998  * @type: The type of program to be exectuted
999  *
1000  * If no socket is passed, or the socket is not of type INET or INET6,
1001  * this function does nothing and returns 0.
1002  *
1003  * The program type passed in via @type must be suitable for network
1004  * filtering. No further check is performed to assert that.
1005  *
1006  * For egress packets, this function can return:
1007  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
1008  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
1009  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
1010  *				  to call cwr
1011  *   -EPERM			- drop packet
1012  *
1013  * For ingress packets, this function will return -EPERM if any
1014  * attached program was found and if it returned != 1 during execution.
1015  * Otherwise 0 is returned.
1016  */
1017 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1018 				struct sk_buff *skb,
1019 				enum cgroup_bpf_attach_type atype)
1020 {
1021 	unsigned int offset = skb->data - skb_network_header(skb);
1022 	struct sock *save_sk;
1023 	void *saved_data_end;
1024 	struct cgroup *cgrp;
1025 	int ret;
1026 
1027 	if (!sk || !sk_fullsock(sk))
1028 		return 0;
1029 
1030 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1031 		return 0;
1032 
1033 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1034 	save_sk = skb->sk;
1035 	skb->sk = sk;
1036 	__skb_push(skb, offset);
1037 
1038 	/* compute pointers for the bpf prog */
1039 	bpf_compute_and_save_data_end(skb, &saved_data_end);
1040 
1041 	if (atype == CGROUP_INET_EGRESS) {
1042 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1043 			cgrp->bpf.effective[atype], skb, __bpf_prog_run_save_cb);
1044 	} else {
1045 		ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], skb,
1046 					    __bpf_prog_run_save_cb);
1047 		ret = (ret == 1 ? 0 : -EPERM);
1048 	}
1049 	bpf_restore_data_end(skb, saved_data_end);
1050 	__skb_pull(skb, offset);
1051 	skb->sk = save_sk;
1052 
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1056 
1057 /**
1058  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1059  * @sk: sock structure to manipulate
1060  * @type: The type of program to be exectuted
1061  *
1062  * socket is passed is expected to be of type INET or INET6.
1063  *
1064  * The program type passed in via @type must be suitable for sock
1065  * filtering. No further check is performed to assert that.
1066  *
1067  * This function will return %-EPERM if any if an attached program was found
1068  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1069  */
1070 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1071 			       enum cgroup_bpf_attach_type atype)
1072 {
1073 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1074 	int ret;
1075 
1076 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sk, bpf_prog_run);
1077 	return ret == 1 ? 0 : -EPERM;
1078 }
1079 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1080 
1081 /**
1082  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1083  *                                       provided by user sockaddr
1084  * @sk: sock struct that will use sockaddr
1085  * @uaddr: sockaddr struct provided by user
1086  * @type: The type of program to be exectuted
1087  * @t_ctx: Pointer to attach type specific context
1088  * @flags: Pointer to u32 which contains higher bits of BPF program
1089  *         return value (OR'ed together).
1090  *
1091  * socket is expected to be of type INET or INET6.
1092  *
1093  * This function will return %-EPERM if an attached program is found and
1094  * returned value != 1 during execution. In all other cases, 0 is returned.
1095  */
1096 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1097 				      struct sockaddr *uaddr,
1098 				      enum cgroup_bpf_attach_type atype,
1099 				      void *t_ctx,
1100 				      u32 *flags)
1101 {
1102 	struct bpf_sock_addr_kern ctx = {
1103 		.sk = sk,
1104 		.uaddr = uaddr,
1105 		.t_ctx = t_ctx,
1106 	};
1107 	struct sockaddr_storage unspec;
1108 	struct cgroup *cgrp;
1109 	int ret;
1110 
1111 	/* Check socket family since not all sockets represent network
1112 	 * endpoint (e.g. AF_UNIX).
1113 	 */
1114 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1115 		return 0;
1116 
1117 	if (!ctx.uaddr) {
1118 		memset(&unspec, 0, sizeof(unspec));
1119 		ctx.uaddr = (struct sockaddr *)&unspec;
1120 	}
1121 
1122 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1123 	ret = BPF_PROG_RUN_ARRAY_CG_FLAGS(cgrp->bpf.effective[atype], &ctx,
1124 				          bpf_prog_run, flags);
1125 
1126 	return ret == 1 ? 0 : -EPERM;
1127 }
1128 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1129 
1130 /**
1131  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1132  * @sk: socket to get cgroup from
1133  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1134  * sk with connection information (IP addresses, etc.) May not contain
1135  * cgroup info if it is a req sock.
1136  * @type: The type of program to be exectuted
1137  *
1138  * socket passed is expected to be of type INET or INET6.
1139  *
1140  * The program type passed in via @type must be suitable for sock_ops
1141  * filtering. No further check is performed to assert that.
1142  *
1143  * This function will return %-EPERM if any if an attached program was found
1144  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1145  */
1146 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1147 				     struct bpf_sock_ops_kern *sock_ops,
1148 				     enum cgroup_bpf_attach_type atype)
1149 {
1150 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1151 	int ret;
1152 
1153 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sock_ops,
1154 				    bpf_prog_run);
1155 	return ret == 1 ? 0 : -EPERM;
1156 }
1157 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1158 
1159 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1160 				      short access, enum cgroup_bpf_attach_type atype)
1161 {
1162 	struct cgroup *cgrp;
1163 	struct bpf_cgroup_dev_ctx ctx = {
1164 		.access_type = (access << 16) | dev_type,
1165 		.major = major,
1166 		.minor = minor,
1167 	};
1168 	int allow;
1169 
1170 	rcu_read_lock();
1171 	cgrp = task_dfl_cgroup(current);
1172 	allow = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx,
1173 				      bpf_prog_run);
1174 	rcu_read_unlock();
1175 
1176 	return !allow;
1177 }
1178 
1179 static const struct bpf_func_proto *
1180 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1181 {
1182 	switch (func_id) {
1183 	case BPF_FUNC_get_current_uid_gid:
1184 		return &bpf_get_current_uid_gid_proto;
1185 	case BPF_FUNC_get_local_storage:
1186 		return &bpf_get_local_storage_proto;
1187 	case BPF_FUNC_get_current_cgroup_id:
1188 		return &bpf_get_current_cgroup_id_proto;
1189 	case BPF_FUNC_perf_event_output:
1190 		return &bpf_event_output_data_proto;
1191 	default:
1192 		return bpf_base_func_proto(func_id);
1193 	}
1194 }
1195 
1196 static const struct bpf_func_proto *
1197 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1198 {
1199 	return cgroup_base_func_proto(func_id, prog);
1200 }
1201 
1202 static bool cgroup_dev_is_valid_access(int off, int size,
1203 				       enum bpf_access_type type,
1204 				       const struct bpf_prog *prog,
1205 				       struct bpf_insn_access_aux *info)
1206 {
1207 	const int size_default = sizeof(__u32);
1208 
1209 	if (type == BPF_WRITE)
1210 		return false;
1211 
1212 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1213 		return false;
1214 	/* The verifier guarantees that size > 0. */
1215 	if (off % size != 0)
1216 		return false;
1217 
1218 	switch (off) {
1219 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1220 		bpf_ctx_record_field_size(info, size_default);
1221 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1222 			return false;
1223 		break;
1224 	default:
1225 		if (size != size_default)
1226 			return false;
1227 	}
1228 
1229 	return true;
1230 }
1231 
1232 const struct bpf_prog_ops cg_dev_prog_ops = {
1233 };
1234 
1235 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1236 	.get_func_proto		= cgroup_dev_func_proto,
1237 	.is_valid_access	= cgroup_dev_is_valid_access,
1238 };
1239 
1240 /**
1241  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1242  *
1243  * @head: sysctl table header
1244  * @table: sysctl table
1245  * @write: sysctl is being read (= 0) or written (= 1)
1246  * @buf: pointer to buffer (in and out)
1247  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1248  *	result is size of @new_buf if program set new value, initial value
1249  *	otherwise
1250  * @ppos: value-result argument: value is position at which read from or write
1251  *	to sysctl is happening, result is new position if program overrode it,
1252  *	initial value otherwise
1253  * @type: type of program to be executed
1254  *
1255  * Program is run when sysctl is being accessed, either read or written, and
1256  * can allow or deny such access.
1257  *
1258  * This function will return %-EPERM if an attached program is found and
1259  * returned value != 1 during execution. In all other cases 0 is returned.
1260  */
1261 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1262 				   struct ctl_table *table, int write,
1263 				   char **buf, size_t *pcount, loff_t *ppos,
1264 				   enum cgroup_bpf_attach_type atype)
1265 {
1266 	struct bpf_sysctl_kern ctx = {
1267 		.head = head,
1268 		.table = table,
1269 		.write = write,
1270 		.ppos = ppos,
1271 		.cur_val = NULL,
1272 		.cur_len = PAGE_SIZE,
1273 		.new_val = NULL,
1274 		.new_len = 0,
1275 		.new_updated = 0,
1276 	};
1277 	struct cgroup *cgrp;
1278 	loff_t pos = 0;
1279 	int ret;
1280 
1281 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1282 	if (!ctx.cur_val ||
1283 	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1284 		/* Let BPF program decide how to proceed. */
1285 		ctx.cur_len = 0;
1286 	}
1287 
1288 	if (write && *buf && *pcount) {
1289 		/* BPF program should be able to override new value with a
1290 		 * buffer bigger than provided by user.
1291 		 */
1292 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1293 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1294 		if (ctx.new_val) {
1295 			memcpy(ctx.new_val, *buf, ctx.new_len);
1296 		} else {
1297 			/* Let BPF program decide how to proceed. */
1298 			ctx.new_len = 0;
1299 		}
1300 	}
1301 
1302 	rcu_read_lock();
1303 	cgrp = task_dfl_cgroup(current);
1304 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx, bpf_prog_run);
1305 	rcu_read_unlock();
1306 
1307 	kfree(ctx.cur_val);
1308 
1309 	if (ret == 1 && ctx.new_updated) {
1310 		kfree(*buf);
1311 		*buf = ctx.new_val;
1312 		*pcount = ctx.new_len;
1313 	} else {
1314 		kfree(ctx.new_val);
1315 	}
1316 
1317 	return ret == 1 ? 0 : -EPERM;
1318 }
1319 
1320 #ifdef CONFIG_NET
1321 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1322 					     enum cgroup_bpf_attach_type attach_type)
1323 {
1324 	struct bpf_prog_array *prog_array;
1325 	bool empty;
1326 
1327 	rcu_read_lock();
1328 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1329 	empty = bpf_prog_array_is_empty(prog_array);
1330 	rcu_read_unlock();
1331 
1332 	return empty;
1333 }
1334 
1335 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1336 			     struct bpf_sockopt_buf *buf)
1337 {
1338 	if (unlikely(max_optlen < 0))
1339 		return -EINVAL;
1340 
1341 	if (unlikely(max_optlen > PAGE_SIZE)) {
1342 		/* We don't expose optvals that are greater than PAGE_SIZE
1343 		 * to the BPF program.
1344 		 */
1345 		max_optlen = PAGE_SIZE;
1346 	}
1347 
1348 	if (max_optlen <= sizeof(buf->data)) {
1349 		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1350 		 * bytes avoid the cost of kzalloc.
1351 		 */
1352 		ctx->optval = buf->data;
1353 		ctx->optval_end = ctx->optval + max_optlen;
1354 		return max_optlen;
1355 	}
1356 
1357 	ctx->optval = kzalloc(max_optlen, GFP_USER);
1358 	if (!ctx->optval)
1359 		return -ENOMEM;
1360 
1361 	ctx->optval_end = ctx->optval + max_optlen;
1362 
1363 	return max_optlen;
1364 }
1365 
1366 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1367 			     struct bpf_sockopt_buf *buf)
1368 {
1369 	if (ctx->optval == buf->data)
1370 		return;
1371 	kfree(ctx->optval);
1372 }
1373 
1374 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1375 				  struct bpf_sockopt_buf *buf)
1376 {
1377 	return ctx->optval != buf->data;
1378 }
1379 
1380 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1381 				       int *optname, char __user *optval,
1382 				       int *optlen, char **kernel_optval)
1383 {
1384 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1385 	struct bpf_sockopt_buf buf = {};
1386 	struct bpf_sockopt_kern ctx = {
1387 		.sk = sk,
1388 		.level = *level,
1389 		.optname = *optname,
1390 	};
1391 	int ret, max_optlen;
1392 
1393 	/* Opportunistic check to see whether we have any BPF program
1394 	 * attached to the hook so we don't waste time allocating
1395 	 * memory and locking the socket.
1396 	 */
1397 	if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_SETSOCKOPT))
1398 		return 0;
1399 
1400 	/* Allocate a bit more than the initial user buffer for
1401 	 * BPF program. The canonical use case is overriding
1402 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1403 	 */
1404 	max_optlen = max_t(int, 16, *optlen);
1405 
1406 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1407 	if (max_optlen < 0)
1408 		return max_optlen;
1409 
1410 	ctx.optlen = *optlen;
1411 
1412 	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1413 		ret = -EFAULT;
1414 		goto out;
1415 	}
1416 
1417 	lock_sock(sk);
1418 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_SETSOCKOPT],
1419 				    &ctx, bpf_prog_run);
1420 	release_sock(sk);
1421 
1422 	if (!ret) {
1423 		ret = -EPERM;
1424 		goto out;
1425 	}
1426 
1427 	if (ctx.optlen == -1) {
1428 		/* optlen set to -1, bypass kernel */
1429 		ret = 1;
1430 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1431 		/* optlen is out of bounds */
1432 		ret = -EFAULT;
1433 	} else {
1434 		/* optlen within bounds, run kernel handler */
1435 		ret = 0;
1436 
1437 		/* export any potential modifications */
1438 		*level = ctx.level;
1439 		*optname = ctx.optname;
1440 
1441 		/* optlen == 0 from BPF indicates that we should
1442 		 * use original userspace data.
1443 		 */
1444 		if (ctx.optlen != 0) {
1445 			*optlen = ctx.optlen;
1446 			/* We've used bpf_sockopt_kern->buf as an intermediary
1447 			 * storage, but the BPF program indicates that we need
1448 			 * to pass this data to the kernel setsockopt handler.
1449 			 * No way to export on-stack buf, have to allocate a
1450 			 * new buffer.
1451 			 */
1452 			if (!sockopt_buf_allocated(&ctx, &buf)) {
1453 				void *p = kmalloc(ctx.optlen, GFP_USER);
1454 
1455 				if (!p) {
1456 					ret = -ENOMEM;
1457 					goto out;
1458 				}
1459 				memcpy(p, ctx.optval, ctx.optlen);
1460 				*kernel_optval = p;
1461 			} else {
1462 				*kernel_optval = ctx.optval;
1463 			}
1464 			/* export and don't free sockopt buf */
1465 			return 0;
1466 		}
1467 	}
1468 
1469 out:
1470 	sockopt_free_buf(&ctx, &buf);
1471 	return ret;
1472 }
1473 
1474 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1475 				       int optname, char __user *optval,
1476 				       int __user *optlen, int max_optlen,
1477 				       int retval)
1478 {
1479 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1480 	struct bpf_sockopt_buf buf = {};
1481 	struct bpf_sockopt_kern ctx = {
1482 		.sk = sk,
1483 		.level = level,
1484 		.optname = optname,
1485 		.retval = retval,
1486 	};
1487 	int ret;
1488 
1489 	/* Opportunistic check to see whether we have any BPF program
1490 	 * attached to the hook so we don't waste time allocating
1491 	 * memory and locking the socket.
1492 	 */
1493 	if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_GETSOCKOPT))
1494 		return retval;
1495 
1496 	ctx.optlen = max_optlen;
1497 
1498 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1499 	if (max_optlen < 0)
1500 		return max_optlen;
1501 
1502 	if (!retval) {
1503 		/* If kernel getsockopt finished successfully,
1504 		 * copy whatever was returned to the user back
1505 		 * into our temporary buffer. Set optlen to the
1506 		 * one that kernel returned as well to let
1507 		 * BPF programs inspect the value.
1508 		 */
1509 
1510 		if (get_user(ctx.optlen, optlen)) {
1511 			ret = -EFAULT;
1512 			goto out;
1513 		}
1514 
1515 		if (ctx.optlen < 0) {
1516 			ret = -EFAULT;
1517 			goto out;
1518 		}
1519 
1520 		if (copy_from_user(ctx.optval, optval,
1521 				   min(ctx.optlen, max_optlen)) != 0) {
1522 			ret = -EFAULT;
1523 			goto out;
1524 		}
1525 	}
1526 
1527 	lock_sock(sk);
1528 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1529 				    &ctx, bpf_prog_run);
1530 	release_sock(sk);
1531 
1532 	if (!ret) {
1533 		ret = -EPERM;
1534 		goto out;
1535 	}
1536 
1537 	if (ctx.optlen > max_optlen || ctx.optlen < 0) {
1538 		ret = -EFAULT;
1539 		goto out;
1540 	}
1541 
1542 	/* BPF programs only allowed to set retval to 0, not some
1543 	 * arbitrary value.
1544 	 */
1545 	if (ctx.retval != 0 && ctx.retval != retval) {
1546 		ret = -EFAULT;
1547 		goto out;
1548 	}
1549 
1550 	if (ctx.optlen != 0) {
1551 		if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1552 		    put_user(ctx.optlen, optlen)) {
1553 			ret = -EFAULT;
1554 			goto out;
1555 		}
1556 	}
1557 
1558 	ret = ctx.retval;
1559 
1560 out:
1561 	sockopt_free_buf(&ctx, &buf);
1562 	return ret;
1563 }
1564 
1565 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1566 					    int optname, void *optval,
1567 					    int *optlen, int retval)
1568 {
1569 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1570 	struct bpf_sockopt_kern ctx = {
1571 		.sk = sk,
1572 		.level = level,
1573 		.optname = optname,
1574 		.retval = retval,
1575 		.optlen = *optlen,
1576 		.optval = optval,
1577 		.optval_end = optval + *optlen,
1578 	};
1579 	int ret;
1580 
1581 	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1582 	 * user data back into BPF buffer when reval != 0. This is
1583 	 * done as an optimization to avoid extra copy, assuming
1584 	 * kernel won't populate the data in case of an error.
1585 	 * Here we always pass the data and memset() should
1586 	 * be called if that data shouldn't be "exported".
1587 	 */
1588 
1589 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1590 				    &ctx, bpf_prog_run);
1591 	if (!ret)
1592 		return -EPERM;
1593 
1594 	if (ctx.optlen > *optlen)
1595 		return -EFAULT;
1596 
1597 	/* BPF programs only allowed to set retval to 0, not some
1598 	 * arbitrary value.
1599 	 */
1600 	if (ctx.retval != 0 && ctx.retval != retval)
1601 		return -EFAULT;
1602 
1603 	/* BPF programs can shrink the buffer, export the modifications.
1604 	 */
1605 	if (ctx.optlen != 0)
1606 		*optlen = ctx.optlen;
1607 
1608 	return ctx.retval;
1609 }
1610 #endif
1611 
1612 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1613 			      size_t *lenp)
1614 {
1615 	ssize_t tmp_ret = 0, ret;
1616 
1617 	if (dir->header.parent) {
1618 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1619 		if (tmp_ret < 0)
1620 			return tmp_ret;
1621 	}
1622 
1623 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1624 	if (ret < 0)
1625 		return ret;
1626 	*bufp += ret;
1627 	*lenp -= ret;
1628 	ret += tmp_ret;
1629 
1630 	/* Avoid leading slash. */
1631 	if (!ret)
1632 		return ret;
1633 
1634 	tmp_ret = strscpy(*bufp, "/", *lenp);
1635 	if (tmp_ret < 0)
1636 		return tmp_ret;
1637 	*bufp += tmp_ret;
1638 	*lenp -= tmp_ret;
1639 
1640 	return ret + tmp_ret;
1641 }
1642 
1643 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1644 	   size_t, buf_len, u64, flags)
1645 {
1646 	ssize_t tmp_ret = 0, ret;
1647 
1648 	if (!buf)
1649 		return -EINVAL;
1650 
1651 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1652 		if (!ctx->head)
1653 			return -EINVAL;
1654 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1655 		if (tmp_ret < 0)
1656 			return tmp_ret;
1657 	}
1658 
1659 	ret = strscpy(buf, ctx->table->procname, buf_len);
1660 
1661 	return ret < 0 ? ret : tmp_ret + ret;
1662 }
1663 
1664 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1665 	.func		= bpf_sysctl_get_name,
1666 	.gpl_only	= false,
1667 	.ret_type	= RET_INTEGER,
1668 	.arg1_type	= ARG_PTR_TO_CTX,
1669 	.arg2_type	= ARG_PTR_TO_MEM,
1670 	.arg3_type	= ARG_CONST_SIZE,
1671 	.arg4_type	= ARG_ANYTHING,
1672 };
1673 
1674 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1675 			     size_t src_len)
1676 {
1677 	if (!dst)
1678 		return -EINVAL;
1679 
1680 	if (!dst_len)
1681 		return -E2BIG;
1682 
1683 	if (!src || !src_len) {
1684 		memset(dst, 0, dst_len);
1685 		return -EINVAL;
1686 	}
1687 
1688 	memcpy(dst, src, min(dst_len, src_len));
1689 
1690 	if (dst_len > src_len) {
1691 		memset(dst + src_len, '\0', dst_len - src_len);
1692 		return src_len;
1693 	}
1694 
1695 	dst[dst_len - 1] = '\0';
1696 
1697 	return -E2BIG;
1698 }
1699 
1700 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1701 	   char *, buf, size_t, buf_len)
1702 {
1703 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1704 }
1705 
1706 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1707 	.func		= bpf_sysctl_get_current_value,
1708 	.gpl_only	= false,
1709 	.ret_type	= RET_INTEGER,
1710 	.arg1_type	= ARG_PTR_TO_CTX,
1711 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1712 	.arg3_type	= ARG_CONST_SIZE,
1713 };
1714 
1715 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1716 	   size_t, buf_len)
1717 {
1718 	if (!ctx->write) {
1719 		if (buf && buf_len)
1720 			memset(buf, '\0', buf_len);
1721 		return -EINVAL;
1722 	}
1723 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1724 }
1725 
1726 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1727 	.func		= bpf_sysctl_get_new_value,
1728 	.gpl_only	= false,
1729 	.ret_type	= RET_INTEGER,
1730 	.arg1_type	= ARG_PTR_TO_CTX,
1731 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1732 	.arg3_type	= ARG_CONST_SIZE,
1733 };
1734 
1735 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1736 	   const char *, buf, size_t, buf_len)
1737 {
1738 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1739 		return -EINVAL;
1740 
1741 	if (buf_len > PAGE_SIZE - 1)
1742 		return -E2BIG;
1743 
1744 	memcpy(ctx->new_val, buf, buf_len);
1745 	ctx->new_len = buf_len;
1746 	ctx->new_updated = 1;
1747 
1748 	return 0;
1749 }
1750 
1751 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1752 	.func		= bpf_sysctl_set_new_value,
1753 	.gpl_only	= false,
1754 	.ret_type	= RET_INTEGER,
1755 	.arg1_type	= ARG_PTR_TO_CTX,
1756 	.arg2_type	= ARG_PTR_TO_MEM,
1757 	.arg3_type	= ARG_CONST_SIZE,
1758 };
1759 
1760 static const struct bpf_func_proto *
1761 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1762 {
1763 	switch (func_id) {
1764 	case BPF_FUNC_strtol:
1765 		return &bpf_strtol_proto;
1766 	case BPF_FUNC_strtoul:
1767 		return &bpf_strtoul_proto;
1768 	case BPF_FUNC_sysctl_get_name:
1769 		return &bpf_sysctl_get_name_proto;
1770 	case BPF_FUNC_sysctl_get_current_value:
1771 		return &bpf_sysctl_get_current_value_proto;
1772 	case BPF_FUNC_sysctl_get_new_value:
1773 		return &bpf_sysctl_get_new_value_proto;
1774 	case BPF_FUNC_sysctl_set_new_value:
1775 		return &bpf_sysctl_set_new_value_proto;
1776 	default:
1777 		return cgroup_base_func_proto(func_id, prog);
1778 	}
1779 }
1780 
1781 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1782 				   const struct bpf_prog *prog,
1783 				   struct bpf_insn_access_aux *info)
1784 {
1785 	const int size_default = sizeof(__u32);
1786 
1787 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1788 		return false;
1789 
1790 	switch (off) {
1791 	case bpf_ctx_range(struct bpf_sysctl, write):
1792 		if (type != BPF_READ)
1793 			return false;
1794 		bpf_ctx_record_field_size(info, size_default);
1795 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1796 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1797 		if (type == BPF_READ) {
1798 			bpf_ctx_record_field_size(info, size_default);
1799 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1800 		} else {
1801 			return size == size_default;
1802 		}
1803 	default:
1804 		return false;
1805 	}
1806 }
1807 
1808 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1809 				     const struct bpf_insn *si,
1810 				     struct bpf_insn *insn_buf,
1811 				     struct bpf_prog *prog, u32 *target_size)
1812 {
1813 	struct bpf_insn *insn = insn_buf;
1814 	u32 read_size;
1815 
1816 	switch (si->off) {
1817 	case offsetof(struct bpf_sysctl, write):
1818 		*insn++ = BPF_LDX_MEM(
1819 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1820 			bpf_target_off(struct bpf_sysctl_kern, write,
1821 				       sizeof_field(struct bpf_sysctl_kern,
1822 						    write),
1823 				       target_size));
1824 		break;
1825 	case offsetof(struct bpf_sysctl, file_pos):
1826 		/* ppos is a pointer so it should be accessed via indirect
1827 		 * loads and stores. Also for stores additional temporary
1828 		 * register is used since neither src_reg nor dst_reg can be
1829 		 * overridden.
1830 		 */
1831 		if (type == BPF_WRITE) {
1832 			int treg = BPF_REG_9;
1833 
1834 			if (si->src_reg == treg || si->dst_reg == treg)
1835 				--treg;
1836 			if (si->src_reg == treg || si->dst_reg == treg)
1837 				--treg;
1838 			*insn++ = BPF_STX_MEM(
1839 				BPF_DW, si->dst_reg, treg,
1840 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1841 			*insn++ = BPF_LDX_MEM(
1842 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1843 				treg, si->dst_reg,
1844 				offsetof(struct bpf_sysctl_kern, ppos));
1845 			*insn++ = BPF_STX_MEM(
1846 				BPF_SIZEOF(u32), treg, si->src_reg,
1847 				bpf_ctx_narrow_access_offset(
1848 					0, sizeof(u32), sizeof(loff_t)));
1849 			*insn++ = BPF_LDX_MEM(
1850 				BPF_DW, treg, si->dst_reg,
1851 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1852 		} else {
1853 			*insn++ = BPF_LDX_MEM(
1854 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1855 				si->dst_reg, si->src_reg,
1856 				offsetof(struct bpf_sysctl_kern, ppos));
1857 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1858 			*insn++ = BPF_LDX_MEM(
1859 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1860 				bpf_ctx_narrow_access_offset(
1861 					0, read_size, sizeof(loff_t)));
1862 		}
1863 		*target_size = sizeof(u32);
1864 		break;
1865 	}
1866 
1867 	return insn - insn_buf;
1868 }
1869 
1870 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1871 	.get_func_proto		= sysctl_func_proto,
1872 	.is_valid_access	= sysctl_is_valid_access,
1873 	.convert_ctx_access	= sysctl_convert_ctx_access,
1874 };
1875 
1876 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1877 };
1878 
1879 #ifdef CONFIG_NET
1880 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
1881 {
1882 	const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
1883 
1884 	return net->net_cookie;
1885 }
1886 
1887 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
1888 	.func		= bpf_get_netns_cookie_sockopt,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
1892 };
1893 #endif
1894 
1895 static const struct bpf_func_proto *
1896 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1897 {
1898 	switch (func_id) {
1899 #ifdef CONFIG_NET
1900 	case BPF_FUNC_get_netns_cookie:
1901 		return &bpf_get_netns_cookie_sockopt_proto;
1902 	case BPF_FUNC_sk_storage_get:
1903 		return &bpf_sk_storage_get_proto;
1904 	case BPF_FUNC_sk_storage_delete:
1905 		return &bpf_sk_storage_delete_proto;
1906 	case BPF_FUNC_setsockopt:
1907 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1908 			return &bpf_sk_setsockopt_proto;
1909 		return NULL;
1910 	case BPF_FUNC_getsockopt:
1911 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1912 			return &bpf_sk_getsockopt_proto;
1913 		return NULL;
1914 #endif
1915 #ifdef CONFIG_INET
1916 	case BPF_FUNC_tcp_sock:
1917 		return &bpf_tcp_sock_proto;
1918 #endif
1919 	default:
1920 		return cgroup_base_func_proto(func_id, prog);
1921 	}
1922 }
1923 
1924 static bool cg_sockopt_is_valid_access(int off, int size,
1925 				       enum bpf_access_type type,
1926 				       const struct bpf_prog *prog,
1927 				       struct bpf_insn_access_aux *info)
1928 {
1929 	const int size_default = sizeof(__u32);
1930 
1931 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1932 		return false;
1933 
1934 	if (off % size != 0)
1935 		return false;
1936 
1937 	if (type == BPF_WRITE) {
1938 		switch (off) {
1939 		case offsetof(struct bpf_sockopt, retval):
1940 			if (size != size_default)
1941 				return false;
1942 			return prog->expected_attach_type ==
1943 				BPF_CGROUP_GETSOCKOPT;
1944 		case offsetof(struct bpf_sockopt, optname):
1945 			fallthrough;
1946 		case offsetof(struct bpf_sockopt, level):
1947 			if (size != size_default)
1948 				return false;
1949 			return prog->expected_attach_type ==
1950 				BPF_CGROUP_SETSOCKOPT;
1951 		case offsetof(struct bpf_sockopt, optlen):
1952 			return size == size_default;
1953 		default:
1954 			return false;
1955 		}
1956 	}
1957 
1958 	switch (off) {
1959 	case offsetof(struct bpf_sockopt, sk):
1960 		if (size != sizeof(__u64))
1961 			return false;
1962 		info->reg_type = PTR_TO_SOCKET;
1963 		break;
1964 	case offsetof(struct bpf_sockopt, optval):
1965 		if (size != sizeof(__u64))
1966 			return false;
1967 		info->reg_type = PTR_TO_PACKET;
1968 		break;
1969 	case offsetof(struct bpf_sockopt, optval_end):
1970 		if (size != sizeof(__u64))
1971 			return false;
1972 		info->reg_type = PTR_TO_PACKET_END;
1973 		break;
1974 	case offsetof(struct bpf_sockopt, retval):
1975 		if (size != size_default)
1976 			return false;
1977 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1978 	default:
1979 		if (size != size_default)
1980 			return false;
1981 		break;
1982 	}
1983 	return true;
1984 }
1985 
1986 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1987 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1988 	  si->dst_reg, si->src_reg,					\
1989 	  offsetof(struct bpf_sockopt_kern, F))
1990 
1991 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1992 					 const struct bpf_insn *si,
1993 					 struct bpf_insn *insn_buf,
1994 					 struct bpf_prog *prog,
1995 					 u32 *target_size)
1996 {
1997 	struct bpf_insn *insn = insn_buf;
1998 
1999 	switch (si->off) {
2000 	case offsetof(struct bpf_sockopt, sk):
2001 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
2002 		break;
2003 	case offsetof(struct bpf_sockopt, level):
2004 		if (type == BPF_WRITE)
2005 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
2006 		else
2007 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
2008 		break;
2009 	case offsetof(struct bpf_sockopt, optname):
2010 		if (type == BPF_WRITE)
2011 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
2012 		else
2013 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
2014 		break;
2015 	case offsetof(struct bpf_sockopt, optlen):
2016 		if (type == BPF_WRITE)
2017 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
2018 		else
2019 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
2020 		break;
2021 	case offsetof(struct bpf_sockopt, retval):
2022 		if (type == BPF_WRITE)
2023 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
2024 		else
2025 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
2026 		break;
2027 	case offsetof(struct bpf_sockopt, optval):
2028 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
2029 		break;
2030 	case offsetof(struct bpf_sockopt, optval_end):
2031 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
2032 		break;
2033 	}
2034 
2035 	return insn - insn_buf;
2036 }
2037 
2038 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2039 				   bool direct_write,
2040 				   const struct bpf_prog *prog)
2041 {
2042 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
2043 	 */
2044 	return 0;
2045 }
2046 
2047 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2048 	.get_func_proto		= cg_sockopt_func_proto,
2049 	.is_valid_access	= cg_sockopt_is_valid_access,
2050 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
2051 	.gen_prologue		= cg_sockopt_get_prologue,
2052 };
2053 
2054 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2055 };
2056