xref: /linux/kernel/bpf/cgroup.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 /**
32  * cgroup_bpf_release() - put references of all bpf programs and
33  *                        release all cgroup bpf data
34  * @work: work structure embedded into the cgroup to modify
35  */
36 static void cgroup_bpf_release(struct work_struct *work)
37 {
38 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
39 					       bpf.release_work);
40 	enum bpf_cgroup_storage_type stype;
41 	struct bpf_prog_array *old_array;
42 	unsigned int type;
43 
44 	mutex_lock(&cgroup_mutex);
45 
46 	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
47 		struct list_head *progs = &cgrp->bpf.progs[type];
48 		struct bpf_prog_list *pl, *tmp;
49 
50 		list_for_each_entry_safe(pl, tmp, progs, node) {
51 			list_del(&pl->node);
52 			bpf_prog_put(pl->prog);
53 			for_each_cgroup_storage_type(stype) {
54 				bpf_cgroup_storage_unlink(pl->storage[stype]);
55 				bpf_cgroup_storage_free(pl->storage[stype]);
56 			}
57 			kfree(pl);
58 			static_branch_dec(&cgroup_bpf_enabled_key);
59 		}
60 		old_array = rcu_dereference_protected(
61 				cgrp->bpf.effective[type],
62 				lockdep_is_held(&cgroup_mutex));
63 		bpf_prog_array_free(old_array);
64 	}
65 
66 	mutex_unlock(&cgroup_mutex);
67 
68 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
69 		cgroup_bpf_put(p);
70 
71 	percpu_ref_exit(&cgrp->bpf.refcnt);
72 	cgroup_put(cgrp);
73 }
74 
75 /**
76  * cgroup_bpf_release_fn() - callback used to schedule releasing
77  *                           of bpf cgroup data
78  * @ref: percpu ref counter structure
79  */
80 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
81 {
82 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
83 
84 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
85 	queue_work(system_wq, &cgrp->bpf.release_work);
86 }
87 
88 /* count number of elements in the list.
89  * it's slow but the list cannot be long
90  */
91 static u32 prog_list_length(struct list_head *head)
92 {
93 	struct bpf_prog_list *pl;
94 	u32 cnt = 0;
95 
96 	list_for_each_entry(pl, head, node) {
97 		if (!pl->prog)
98 			continue;
99 		cnt++;
100 	}
101 	return cnt;
102 }
103 
104 /* if parent has non-overridable prog attached,
105  * disallow attaching new programs to the descendent cgroup.
106  * if parent has overridable or multi-prog, allow attaching
107  */
108 static bool hierarchy_allows_attach(struct cgroup *cgrp,
109 				    enum bpf_attach_type type)
110 {
111 	struct cgroup *p;
112 
113 	p = cgroup_parent(cgrp);
114 	if (!p)
115 		return true;
116 	do {
117 		u32 flags = p->bpf.flags[type];
118 		u32 cnt;
119 
120 		if (flags & BPF_F_ALLOW_MULTI)
121 			return true;
122 		cnt = prog_list_length(&p->bpf.progs[type]);
123 		WARN_ON_ONCE(cnt > 1);
124 		if (cnt == 1)
125 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
126 		p = cgroup_parent(p);
127 	} while (p);
128 	return true;
129 }
130 
131 /* compute a chain of effective programs for a given cgroup:
132  * start from the list of programs in this cgroup and add
133  * all parent programs.
134  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
135  * to programs in this cgroup
136  */
137 static int compute_effective_progs(struct cgroup *cgrp,
138 				   enum bpf_attach_type type,
139 				   struct bpf_prog_array **array)
140 {
141 	enum bpf_cgroup_storage_type stype;
142 	struct bpf_prog_array *progs;
143 	struct bpf_prog_list *pl;
144 	struct cgroup *p = cgrp;
145 	int cnt = 0;
146 
147 	/* count number of effective programs by walking parents */
148 	do {
149 		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
150 			cnt += prog_list_length(&p->bpf.progs[type]);
151 		p = cgroup_parent(p);
152 	} while (p);
153 
154 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
155 	if (!progs)
156 		return -ENOMEM;
157 
158 	/* populate the array with effective progs */
159 	cnt = 0;
160 	p = cgrp;
161 	do {
162 		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
163 			continue;
164 
165 		list_for_each_entry(pl, &p->bpf.progs[type], node) {
166 			if (!pl->prog)
167 				continue;
168 
169 			progs->items[cnt].prog = pl->prog;
170 			for_each_cgroup_storage_type(stype)
171 				progs->items[cnt].cgroup_storage[stype] =
172 					pl->storage[stype];
173 			cnt++;
174 		}
175 	} while ((p = cgroup_parent(p)));
176 
177 	*array = progs;
178 	return 0;
179 }
180 
181 static void activate_effective_progs(struct cgroup *cgrp,
182 				     enum bpf_attach_type type,
183 				     struct bpf_prog_array *old_array)
184 {
185 	old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
186 					lockdep_is_held(&cgroup_mutex));
187 	/* free prog array after grace period, since __cgroup_bpf_run_*()
188 	 * might be still walking the array
189 	 */
190 	bpf_prog_array_free(old_array);
191 }
192 
193 /**
194  * cgroup_bpf_inherit() - inherit effective programs from parent
195  * @cgrp: the cgroup to modify
196  */
197 int cgroup_bpf_inherit(struct cgroup *cgrp)
198 {
199 /* has to use marco instead of const int, since compiler thinks
200  * that array below is variable length
201  */
202 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
203 	struct bpf_prog_array *arrays[NR] = {};
204 	struct cgroup *p;
205 	int ret, i;
206 
207 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
208 			      GFP_KERNEL);
209 	if (ret)
210 		return ret;
211 
212 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
213 		cgroup_bpf_get(p);
214 
215 	for (i = 0; i < NR; i++)
216 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
217 
218 	for (i = 0; i < NR; i++)
219 		if (compute_effective_progs(cgrp, i, &arrays[i]))
220 			goto cleanup;
221 
222 	for (i = 0; i < NR; i++)
223 		activate_effective_progs(cgrp, i, arrays[i]);
224 
225 	return 0;
226 cleanup:
227 	for (i = 0; i < NR; i++)
228 		bpf_prog_array_free(arrays[i]);
229 
230 	percpu_ref_exit(&cgrp->bpf.refcnt);
231 
232 	return -ENOMEM;
233 }
234 
235 static int update_effective_progs(struct cgroup *cgrp,
236 				  enum bpf_attach_type type)
237 {
238 	struct cgroup_subsys_state *css;
239 	int err;
240 
241 	/* allocate and recompute effective prog arrays */
242 	css_for_each_descendant_pre(css, &cgrp->self) {
243 		struct cgroup *desc = container_of(css, struct cgroup, self);
244 
245 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
246 			continue;
247 
248 		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
249 		if (err)
250 			goto cleanup;
251 	}
252 
253 	/* all allocations were successful. Activate all prog arrays */
254 	css_for_each_descendant_pre(css, &cgrp->self) {
255 		struct cgroup *desc = container_of(css, struct cgroup, self);
256 
257 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
258 			if (unlikely(desc->bpf.inactive)) {
259 				bpf_prog_array_free(desc->bpf.inactive);
260 				desc->bpf.inactive = NULL;
261 			}
262 			continue;
263 		}
264 
265 		activate_effective_progs(desc, type, desc->bpf.inactive);
266 		desc->bpf.inactive = NULL;
267 	}
268 
269 	return 0;
270 
271 cleanup:
272 	/* oom while computing effective. Free all computed effective arrays
273 	 * since they were not activated
274 	 */
275 	css_for_each_descendant_pre(css, &cgrp->self) {
276 		struct cgroup *desc = container_of(css, struct cgroup, self);
277 
278 		bpf_prog_array_free(desc->bpf.inactive);
279 		desc->bpf.inactive = NULL;
280 	}
281 
282 	return err;
283 }
284 
285 #define BPF_CGROUP_MAX_PROGS 64
286 
287 /**
288  * __cgroup_bpf_attach() - Attach the program to a cgroup, and
289  *                         propagate the change to descendants
290  * @cgrp: The cgroup which descendants to traverse
291  * @prog: A program to attach
292  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
293  * @type: Type of attach operation
294  * @flags: Option flags
295  *
296  * Must be called with cgroup_mutex held.
297  */
298 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
299 			struct bpf_prog *replace_prog,
300 			enum bpf_attach_type type, u32 flags)
301 {
302 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
303 	struct list_head *progs = &cgrp->bpf.progs[type];
304 	struct bpf_prog *old_prog = NULL;
305 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE],
306 		*old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL};
307 	struct bpf_prog_list *pl, *replace_pl = NULL;
308 	enum bpf_cgroup_storage_type stype;
309 	int err;
310 
311 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
312 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
313 		/* invalid combination */
314 		return -EINVAL;
315 
316 	if (!hierarchy_allows_attach(cgrp, type))
317 		return -EPERM;
318 
319 	if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags)
320 		/* Disallow attaching non-overridable on top
321 		 * of existing overridable in this cgroup.
322 		 * Disallow attaching multi-prog if overridable or none
323 		 */
324 		return -EPERM;
325 
326 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
327 		return -E2BIG;
328 
329 	if (flags & BPF_F_ALLOW_MULTI) {
330 		list_for_each_entry(pl, progs, node) {
331 			if (pl->prog == prog)
332 				/* disallow attaching the same prog twice */
333 				return -EINVAL;
334 			if (pl->prog == replace_prog)
335 				replace_pl = pl;
336 		}
337 		if ((flags & BPF_F_REPLACE) && !replace_pl)
338 			/* prog to replace not found for cgroup */
339 			return -ENOENT;
340 	} else if (!list_empty(progs)) {
341 		replace_pl = list_first_entry(progs, typeof(*pl), node);
342 	}
343 
344 	for_each_cgroup_storage_type(stype) {
345 		storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
346 		if (IS_ERR(storage[stype])) {
347 			storage[stype] = NULL;
348 			for_each_cgroup_storage_type(stype)
349 				bpf_cgroup_storage_free(storage[stype]);
350 			return -ENOMEM;
351 		}
352 	}
353 
354 	if (replace_pl) {
355 		pl = replace_pl;
356 		old_prog = pl->prog;
357 		for_each_cgroup_storage_type(stype) {
358 			old_storage[stype] = pl->storage[stype];
359 			bpf_cgroup_storage_unlink(old_storage[stype]);
360 		}
361 	} else {
362 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
363 		if (!pl) {
364 			for_each_cgroup_storage_type(stype)
365 				bpf_cgroup_storage_free(storage[stype]);
366 			return -ENOMEM;
367 		}
368 		list_add_tail(&pl->node, progs);
369 	}
370 
371 	pl->prog = prog;
372 	for_each_cgroup_storage_type(stype)
373 		pl->storage[stype] = storage[stype];
374 
375 	cgrp->bpf.flags[type] = saved_flags;
376 
377 	err = update_effective_progs(cgrp, type);
378 	if (err)
379 		goto cleanup;
380 
381 	static_branch_inc(&cgroup_bpf_enabled_key);
382 	for_each_cgroup_storage_type(stype) {
383 		if (!old_storage[stype])
384 			continue;
385 		bpf_cgroup_storage_free(old_storage[stype]);
386 	}
387 	if (old_prog) {
388 		bpf_prog_put(old_prog);
389 		static_branch_dec(&cgroup_bpf_enabled_key);
390 	}
391 	for_each_cgroup_storage_type(stype)
392 		bpf_cgroup_storage_link(storage[stype], cgrp, type);
393 	return 0;
394 
395 cleanup:
396 	/* and cleanup the prog list */
397 	pl->prog = old_prog;
398 	for_each_cgroup_storage_type(stype) {
399 		bpf_cgroup_storage_free(pl->storage[stype]);
400 		pl->storage[stype] = old_storage[stype];
401 		bpf_cgroup_storage_link(old_storage[stype], cgrp, type);
402 	}
403 	if (!replace_pl) {
404 		list_del(&pl->node);
405 		kfree(pl);
406 	}
407 	return err;
408 }
409 
410 /**
411  * __cgroup_bpf_detach() - Detach the program from a cgroup, and
412  *                         propagate the change to descendants
413  * @cgrp: The cgroup which descendants to traverse
414  * @prog: A program to detach or NULL
415  * @type: Type of detach operation
416  *
417  * Must be called with cgroup_mutex held.
418  */
419 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
420 			enum bpf_attach_type type)
421 {
422 	struct list_head *progs = &cgrp->bpf.progs[type];
423 	enum bpf_cgroup_storage_type stype;
424 	u32 flags = cgrp->bpf.flags[type];
425 	struct bpf_prog *old_prog = NULL;
426 	struct bpf_prog_list *pl;
427 	int err;
428 
429 	if (flags & BPF_F_ALLOW_MULTI) {
430 		if (!prog)
431 			/* to detach MULTI prog the user has to specify valid FD
432 			 * of the program to be detached
433 			 */
434 			return -EINVAL;
435 	} else {
436 		if (list_empty(progs))
437 			/* report error when trying to detach and nothing is attached */
438 			return -ENOENT;
439 	}
440 
441 	if (flags & BPF_F_ALLOW_MULTI) {
442 		/* find the prog and detach it */
443 		list_for_each_entry(pl, progs, node) {
444 			if (pl->prog != prog)
445 				continue;
446 			old_prog = prog;
447 			/* mark it deleted, so it's ignored while
448 			 * recomputing effective
449 			 */
450 			pl->prog = NULL;
451 			break;
452 		}
453 		if (!old_prog)
454 			return -ENOENT;
455 	} else {
456 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
457 		 * allow detaching with invalid FD (prog==NULL)
458 		 */
459 		pl = list_first_entry(progs, typeof(*pl), node);
460 		old_prog = pl->prog;
461 		pl->prog = NULL;
462 	}
463 
464 	err = update_effective_progs(cgrp, type);
465 	if (err)
466 		goto cleanup;
467 
468 	/* now can actually delete it from this cgroup list */
469 	list_del(&pl->node);
470 	for_each_cgroup_storage_type(stype) {
471 		bpf_cgroup_storage_unlink(pl->storage[stype]);
472 		bpf_cgroup_storage_free(pl->storage[stype]);
473 	}
474 	kfree(pl);
475 	if (list_empty(progs))
476 		/* last program was detached, reset flags to zero */
477 		cgrp->bpf.flags[type] = 0;
478 
479 	bpf_prog_put(old_prog);
480 	static_branch_dec(&cgroup_bpf_enabled_key);
481 	return 0;
482 
483 cleanup:
484 	/* and restore back old_prog */
485 	pl->prog = old_prog;
486 	return err;
487 }
488 
489 /* Must be called with cgroup_mutex held to avoid races. */
490 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
491 		       union bpf_attr __user *uattr)
492 {
493 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
494 	enum bpf_attach_type type = attr->query.attach_type;
495 	struct list_head *progs = &cgrp->bpf.progs[type];
496 	u32 flags = cgrp->bpf.flags[type];
497 	struct bpf_prog_array *effective;
498 	int cnt, ret = 0, i;
499 
500 	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
501 					      lockdep_is_held(&cgroup_mutex));
502 
503 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
504 		cnt = bpf_prog_array_length(effective);
505 	else
506 		cnt = prog_list_length(progs);
507 
508 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
509 		return -EFAULT;
510 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
511 		return -EFAULT;
512 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
513 		/* return early if user requested only program count + flags */
514 		return 0;
515 	if (attr->query.prog_cnt < cnt) {
516 		cnt = attr->query.prog_cnt;
517 		ret = -ENOSPC;
518 	}
519 
520 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
521 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
522 	} else {
523 		struct bpf_prog_list *pl;
524 		u32 id;
525 
526 		i = 0;
527 		list_for_each_entry(pl, progs, node) {
528 			id = pl->prog->aux->id;
529 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
530 				return -EFAULT;
531 			if (++i == cnt)
532 				break;
533 		}
534 	}
535 	return ret;
536 }
537 
538 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
539 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
540 {
541 	struct bpf_prog *replace_prog = NULL;
542 	struct cgroup *cgrp;
543 	int ret;
544 
545 	cgrp = cgroup_get_from_fd(attr->target_fd);
546 	if (IS_ERR(cgrp))
547 		return PTR_ERR(cgrp);
548 
549 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
550 	    (attr->attach_flags & BPF_F_REPLACE)) {
551 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
552 		if (IS_ERR(replace_prog)) {
553 			cgroup_put(cgrp);
554 			return PTR_ERR(replace_prog);
555 		}
556 	}
557 
558 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, attr->attach_type,
559 				attr->attach_flags);
560 
561 	if (replace_prog)
562 		bpf_prog_put(replace_prog);
563 	cgroup_put(cgrp);
564 	return ret;
565 }
566 
567 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
568 {
569 	struct bpf_prog *prog;
570 	struct cgroup *cgrp;
571 	int ret;
572 
573 	cgrp = cgroup_get_from_fd(attr->target_fd);
574 	if (IS_ERR(cgrp))
575 		return PTR_ERR(cgrp);
576 
577 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
578 	if (IS_ERR(prog))
579 		prog = NULL;
580 
581 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0);
582 	if (prog)
583 		bpf_prog_put(prog);
584 
585 	cgroup_put(cgrp);
586 	return ret;
587 }
588 
589 int cgroup_bpf_prog_query(const union bpf_attr *attr,
590 			  union bpf_attr __user *uattr)
591 {
592 	struct cgroup *cgrp;
593 	int ret;
594 
595 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
596 	if (IS_ERR(cgrp))
597 		return PTR_ERR(cgrp);
598 
599 	ret = cgroup_bpf_query(cgrp, attr, uattr);
600 
601 	cgroup_put(cgrp);
602 	return ret;
603 }
604 
605 /**
606  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
607  * @sk: The socket sending or receiving traffic
608  * @skb: The skb that is being sent or received
609  * @type: The type of program to be exectuted
610  *
611  * If no socket is passed, or the socket is not of type INET or INET6,
612  * this function does nothing and returns 0.
613  *
614  * The program type passed in via @type must be suitable for network
615  * filtering. No further check is performed to assert that.
616  *
617  * For egress packets, this function can return:
618  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
619  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
620  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
621  *				  to call cwr
622  *   -EPERM			- drop packet
623  *
624  * For ingress packets, this function will return -EPERM if any
625  * attached program was found and if it returned != 1 during execution.
626  * Otherwise 0 is returned.
627  */
628 int __cgroup_bpf_run_filter_skb(struct sock *sk,
629 				struct sk_buff *skb,
630 				enum bpf_attach_type type)
631 {
632 	unsigned int offset = skb->data - skb_network_header(skb);
633 	struct sock *save_sk;
634 	void *saved_data_end;
635 	struct cgroup *cgrp;
636 	int ret;
637 
638 	if (!sk || !sk_fullsock(sk))
639 		return 0;
640 
641 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
642 		return 0;
643 
644 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
645 	save_sk = skb->sk;
646 	skb->sk = sk;
647 	__skb_push(skb, offset);
648 
649 	/* compute pointers for the bpf prog */
650 	bpf_compute_and_save_data_end(skb, &saved_data_end);
651 
652 	if (type == BPF_CGROUP_INET_EGRESS) {
653 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
654 			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
655 	} else {
656 		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
657 					  __bpf_prog_run_save_cb);
658 		ret = (ret == 1 ? 0 : -EPERM);
659 	}
660 	bpf_restore_data_end(skb, saved_data_end);
661 	__skb_pull(skb, offset);
662 	skb->sk = save_sk;
663 
664 	return ret;
665 }
666 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
667 
668 /**
669  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
670  * @sk: sock structure to manipulate
671  * @type: The type of program to be exectuted
672  *
673  * socket is passed is expected to be of type INET or INET6.
674  *
675  * The program type passed in via @type must be suitable for sock
676  * filtering. No further check is performed to assert that.
677  *
678  * This function will return %-EPERM if any if an attached program was found
679  * and if it returned != 1 during execution. In all other cases, 0 is returned.
680  */
681 int __cgroup_bpf_run_filter_sk(struct sock *sk,
682 			       enum bpf_attach_type type)
683 {
684 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
685 	int ret;
686 
687 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
688 	return ret == 1 ? 0 : -EPERM;
689 }
690 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
691 
692 /**
693  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
694  *                                       provided by user sockaddr
695  * @sk: sock struct that will use sockaddr
696  * @uaddr: sockaddr struct provided by user
697  * @type: The type of program to be exectuted
698  * @t_ctx: Pointer to attach type specific context
699  *
700  * socket is expected to be of type INET or INET6.
701  *
702  * This function will return %-EPERM if an attached program is found and
703  * returned value != 1 during execution. In all other cases, 0 is returned.
704  */
705 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
706 				      struct sockaddr *uaddr,
707 				      enum bpf_attach_type type,
708 				      void *t_ctx)
709 {
710 	struct bpf_sock_addr_kern ctx = {
711 		.sk = sk,
712 		.uaddr = uaddr,
713 		.t_ctx = t_ctx,
714 	};
715 	struct sockaddr_storage unspec;
716 	struct cgroup *cgrp;
717 	int ret;
718 
719 	/* Check socket family since not all sockets represent network
720 	 * endpoint (e.g. AF_UNIX).
721 	 */
722 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
723 		return 0;
724 
725 	if (!ctx.uaddr) {
726 		memset(&unspec, 0, sizeof(unspec));
727 		ctx.uaddr = (struct sockaddr *)&unspec;
728 	}
729 
730 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
731 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
732 
733 	return ret == 1 ? 0 : -EPERM;
734 }
735 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
736 
737 /**
738  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
739  * @sk: socket to get cgroup from
740  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
741  * sk with connection information (IP addresses, etc.) May not contain
742  * cgroup info if it is a req sock.
743  * @type: The type of program to be exectuted
744  *
745  * socket passed is expected to be of type INET or INET6.
746  *
747  * The program type passed in via @type must be suitable for sock_ops
748  * filtering. No further check is performed to assert that.
749  *
750  * This function will return %-EPERM if any if an attached program was found
751  * and if it returned != 1 during execution. In all other cases, 0 is returned.
752  */
753 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
754 				     struct bpf_sock_ops_kern *sock_ops,
755 				     enum bpf_attach_type type)
756 {
757 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
758 	int ret;
759 
760 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
761 				 BPF_PROG_RUN);
762 	return ret == 1 ? 0 : -EPERM;
763 }
764 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
765 
766 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
767 				      short access, enum bpf_attach_type type)
768 {
769 	struct cgroup *cgrp;
770 	struct bpf_cgroup_dev_ctx ctx = {
771 		.access_type = (access << 16) | dev_type,
772 		.major = major,
773 		.minor = minor,
774 	};
775 	int allow = 1;
776 
777 	rcu_read_lock();
778 	cgrp = task_dfl_cgroup(current);
779 	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
780 				   BPF_PROG_RUN);
781 	rcu_read_unlock();
782 
783 	return !allow;
784 }
785 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission);
786 
787 static const struct bpf_func_proto *
788 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
789 {
790 	switch (func_id) {
791 	case BPF_FUNC_map_lookup_elem:
792 		return &bpf_map_lookup_elem_proto;
793 	case BPF_FUNC_map_update_elem:
794 		return &bpf_map_update_elem_proto;
795 	case BPF_FUNC_map_delete_elem:
796 		return &bpf_map_delete_elem_proto;
797 	case BPF_FUNC_map_push_elem:
798 		return &bpf_map_push_elem_proto;
799 	case BPF_FUNC_map_pop_elem:
800 		return &bpf_map_pop_elem_proto;
801 	case BPF_FUNC_map_peek_elem:
802 		return &bpf_map_peek_elem_proto;
803 	case BPF_FUNC_get_current_uid_gid:
804 		return &bpf_get_current_uid_gid_proto;
805 	case BPF_FUNC_get_local_storage:
806 		return &bpf_get_local_storage_proto;
807 	case BPF_FUNC_get_current_cgroup_id:
808 		return &bpf_get_current_cgroup_id_proto;
809 	case BPF_FUNC_trace_printk:
810 		if (capable(CAP_SYS_ADMIN))
811 			return bpf_get_trace_printk_proto();
812 		/* fall through */
813 	default:
814 		return NULL;
815 	}
816 }
817 
818 static const struct bpf_func_proto *
819 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
820 {
821 	return cgroup_base_func_proto(func_id, prog);
822 }
823 
824 static bool cgroup_dev_is_valid_access(int off, int size,
825 				       enum bpf_access_type type,
826 				       const struct bpf_prog *prog,
827 				       struct bpf_insn_access_aux *info)
828 {
829 	const int size_default = sizeof(__u32);
830 
831 	if (type == BPF_WRITE)
832 		return false;
833 
834 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
835 		return false;
836 	/* The verifier guarantees that size > 0. */
837 	if (off % size != 0)
838 		return false;
839 
840 	switch (off) {
841 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
842 		bpf_ctx_record_field_size(info, size_default);
843 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
844 			return false;
845 		break;
846 	default:
847 		if (size != size_default)
848 			return false;
849 	}
850 
851 	return true;
852 }
853 
854 const struct bpf_prog_ops cg_dev_prog_ops = {
855 };
856 
857 const struct bpf_verifier_ops cg_dev_verifier_ops = {
858 	.get_func_proto		= cgroup_dev_func_proto,
859 	.is_valid_access	= cgroup_dev_is_valid_access,
860 };
861 
862 /**
863  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
864  *
865  * @head: sysctl table header
866  * @table: sysctl table
867  * @write: sysctl is being read (= 0) or written (= 1)
868  * @buf: pointer to buffer passed by user space
869  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
870  *	result is size of @new_buf if program set new value, initial value
871  *	otherwise
872  * @ppos: value-result argument: value is position at which read from or write
873  *	to sysctl is happening, result is new position if program overrode it,
874  *	initial value otherwise
875  * @new_buf: pointer to pointer to new buffer that will be allocated if program
876  *	overrides new value provided by user space on sysctl write
877  *	NOTE: it's caller responsibility to free *new_buf if it was set
878  * @type: type of program to be executed
879  *
880  * Program is run when sysctl is being accessed, either read or written, and
881  * can allow or deny such access.
882  *
883  * This function will return %-EPERM if an attached program is found and
884  * returned value != 1 during execution. In all other cases 0 is returned.
885  */
886 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
887 				   struct ctl_table *table, int write,
888 				   void __user *buf, size_t *pcount,
889 				   loff_t *ppos, void **new_buf,
890 				   enum bpf_attach_type type)
891 {
892 	struct bpf_sysctl_kern ctx = {
893 		.head = head,
894 		.table = table,
895 		.write = write,
896 		.ppos = ppos,
897 		.cur_val = NULL,
898 		.cur_len = PAGE_SIZE,
899 		.new_val = NULL,
900 		.new_len = 0,
901 		.new_updated = 0,
902 	};
903 	struct cgroup *cgrp;
904 	int ret;
905 
906 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
907 	if (ctx.cur_val) {
908 		mm_segment_t old_fs;
909 		loff_t pos = 0;
910 
911 		old_fs = get_fs();
912 		set_fs(KERNEL_DS);
913 		if (table->proc_handler(table, 0, (void __user *)ctx.cur_val,
914 					&ctx.cur_len, &pos)) {
915 			/* Let BPF program decide how to proceed. */
916 			ctx.cur_len = 0;
917 		}
918 		set_fs(old_fs);
919 	} else {
920 		/* Let BPF program decide how to proceed. */
921 		ctx.cur_len = 0;
922 	}
923 
924 	if (write && buf && *pcount) {
925 		/* BPF program should be able to override new value with a
926 		 * buffer bigger than provided by user.
927 		 */
928 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
929 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
930 		if (!ctx.new_val ||
931 		    copy_from_user(ctx.new_val, buf, ctx.new_len))
932 			/* Let BPF program decide how to proceed. */
933 			ctx.new_len = 0;
934 	}
935 
936 	rcu_read_lock();
937 	cgrp = task_dfl_cgroup(current);
938 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
939 	rcu_read_unlock();
940 
941 	kfree(ctx.cur_val);
942 
943 	if (ret == 1 && ctx.new_updated) {
944 		*new_buf = ctx.new_val;
945 		*pcount = ctx.new_len;
946 	} else {
947 		kfree(ctx.new_val);
948 	}
949 
950 	return ret == 1 ? 0 : -EPERM;
951 }
952 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl);
953 
954 #ifdef CONFIG_NET
955 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
956 					     enum bpf_attach_type attach_type)
957 {
958 	struct bpf_prog_array *prog_array;
959 	bool empty;
960 
961 	rcu_read_lock();
962 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
963 	empty = bpf_prog_array_is_empty(prog_array);
964 	rcu_read_unlock();
965 
966 	return empty;
967 }
968 
969 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
970 {
971 	if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0)
972 		return -EINVAL;
973 
974 	ctx->optval = kzalloc(max_optlen, GFP_USER);
975 	if (!ctx->optval)
976 		return -ENOMEM;
977 
978 	ctx->optval_end = ctx->optval + max_optlen;
979 
980 	return 0;
981 }
982 
983 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
984 {
985 	kfree(ctx->optval);
986 }
987 
988 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
989 				       int *optname, char __user *optval,
990 				       int *optlen, char **kernel_optval)
991 {
992 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
993 	struct bpf_sockopt_kern ctx = {
994 		.sk = sk,
995 		.level = *level,
996 		.optname = *optname,
997 	};
998 	int ret, max_optlen;
999 
1000 	/* Opportunistic check to see whether we have any BPF program
1001 	 * attached to the hook so we don't waste time allocating
1002 	 * memory and locking the socket.
1003 	 */
1004 	if (!cgroup_bpf_enabled ||
1005 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1006 		return 0;
1007 
1008 	/* Allocate a bit more than the initial user buffer for
1009 	 * BPF program. The canonical use case is overriding
1010 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1011 	 */
1012 	max_optlen = max_t(int, 16, *optlen);
1013 
1014 	ret = sockopt_alloc_buf(&ctx, max_optlen);
1015 	if (ret)
1016 		return ret;
1017 
1018 	ctx.optlen = *optlen;
1019 
1020 	if (copy_from_user(ctx.optval, optval, *optlen) != 0) {
1021 		ret = -EFAULT;
1022 		goto out;
1023 	}
1024 
1025 	lock_sock(sk);
1026 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1027 				 &ctx, BPF_PROG_RUN);
1028 	release_sock(sk);
1029 
1030 	if (!ret) {
1031 		ret = -EPERM;
1032 		goto out;
1033 	}
1034 
1035 	if (ctx.optlen == -1) {
1036 		/* optlen set to -1, bypass kernel */
1037 		ret = 1;
1038 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1039 		/* optlen is out of bounds */
1040 		ret = -EFAULT;
1041 	} else {
1042 		/* optlen within bounds, run kernel handler */
1043 		ret = 0;
1044 
1045 		/* export any potential modifications */
1046 		*level = ctx.level;
1047 		*optname = ctx.optname;
1048 		*optlen = ctx.optlen;
1049 		*kernel_optval = ctx.optval;
1050 	}
1051 
1052 out:
1053 	if (ret)
1054 		sockopt_free_buf(&ctx);
1055 	return ret;
1056 }
1057 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt);
1058 
1059 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1060 				       int optname, char __user *optval,
1061 				       int __user *optlen, int max_optlen,
1062 				       int retval)
1063 {
1064 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1065 	struct bpf_sockopt_kern ctx = {
1066 		.sk = sk,
1067 		.level = level,
1068 		.optname = optname,
1069 		.retval = retval,
1070 	};
1071 	int ret;
1072 
1073 	/* Opportunistic check to see whether we have any BPF program
1074 	 * attached to the hook so we don't waste time allocating
1075 	 * memory and locking the socket.
1076 	 */
1077 	if (!cgroup_bpf_enabled ||
1078 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1079 		return retval;
1080 
1081 	ret = sockopt_alloc_buf(&ctx, max_optlen);
1082 	if (ret)
1083 		return ret;
1084 
1085 	ctx.optlen = max_optlen;
1086 
1087 	if (!retval) {
1088 		/* If kernel getsockopt finished successfully,
1089 		 * copy whatever was returned to the user back
1090 		 * into our temporary buffer. Set optlen to the
1091 		 * one that kernel returned as well to let
1092 		 * BPF programs inspect the value.
1093 		 */
1094 
1095 		if (get_user(ctx.optlen, optlen)) {
1096 			ret = -EFAULT;
1097 			goto out;
1098 		}
1099 
1100 		if (ctx.optlen > max_optlen)
1101 			ctx.optlen = max_optlen;
1102 
1103 		if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) {
1104 			ret = -EFAULT;
1105 			goto out;
1106 		}
1107 	}
1108 
1109 	lock_sock(sk);
1110 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1111 				 &ctx, BPF_PROG_RUN);
1112 	release_sock(sk);
1113 
1114 	if (!ret) {
1115 		ret = -EPERM;
1116 		goto out;
1117 	}
1118 
1119 	if (ctx.optlen > max_optlen) {
1120 		ret = -EFAULT;
1121 		goto out;
1122 	}
1123 
1124 	/* BPF programs only allowed to set retval to 0, not some
1125 	 * arbitrary value.
1126 	 */
1127 	if (ctx.retval != 0 && ctx.retval != retval) {
1128 		ret = -EFAULT;
1129 		goto out;
1130 	}
1131 
1132 	if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1133 	    put_user(ctx.optlen, optlen)) {
1134 		ret = -EFAULT;
1135 		goto out;
1136 	}
1137 
1138 	ret = ctx.retval;
1139 
1140 out:
1141 	sockopt_free_buf(&ctx);
1142 	return ret;
1143 }
1144 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt);
1145 #endif
1146 
1147 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1148 			      size_t *lenp)
1149 {
1150 	ssize_t tmp_ret = 0, ret;
1151 
1152 	if (dir->header.parent) {
1153 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1154 		if (tmp_ret < 0)
1155 			return tmp_ret;
1156 	}
1157 
1158 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1159 	if (ret < 0)
1160 		return ret;
1161 	*bufp += ret;
1162 	*lenp -= ret;
1163 	ret += tmp_ret;
1164 
1165 	/* Avoid leading slash. */
1166 	if (!ret)
1167 		return ret;
1168 
1169 	tmp_ret = strscpy(*bufp, "/", *lenp);
1170 	if (tmp_ret < 0)
1171 		return tmp_ret;
1172 	*bufp += tmp_ret;
1173 	*lenp -= tmp_ret;
1174 
1175 	return ret + tmp_ret;
1176 }
1177 
1178 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1179 	   size_t, buf_len, u64, flags)
1180 {
1181 	ssize_t tmp_ret = 0, ret;
1182 
1183 	if (!buf)
1184 		return -EINVAL;
1185 
1186 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1187 		if (!ctx->head)
1188 			return -EINVAL;
1189 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1190 		if (tmp_ret < 0)
1191 			return tmp_ret;
1192 	}
1193 
1194 	ret = strscpy(buf, ctx->table->procname, buf_len);
1195 
1196 	return ret < 0 ? ret : tmp_ret + ret;
1197 }
1198 
1199 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1200 	.func		= bpf_sysctl_get_name,
1201 	.gpl_only	= false,
1202 	.ret_type	= RET_INTEGER,
1203 	.arg1_type	= ARG_PTR_TO_CTX,
1204 	.arg2_type	= ARG_PTR_TO_MEM,
1205 	.arg3_type	= ARG_CONST_SIZE,
1206 	.arg4_type	= ARG_ANYTHING,
1207 };
1208 
1209 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1210 			     size_t src_len)
1211 {
1212 	if (!dst)
1213 		return -EINVAL;
1214 
1215 	if (!dst_len)
1216 		return -E2BIG;
1217 
1218 	if (!src || !src_len) {
1219 		memset(dst, 0, dst_len);
1220 		return -EINVAL;
1221 	}
1222 
1223 	memcpy(dst, src, min(dst_len, src_len));
1224 
1225 	if (dst_len > src_len) {
1226 		memset(dst + src_len, '\0', dst_len - src_len);
1227 		return src_len;
1228 	}
1229 
1230 	dst[dst_len - 1] = '\0';
1231 
1232 	return -E2BIG;
1233 }
1234 
1235 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1236 	   char *, buf, size_t, buf_len)
1237 {
1238 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1239 }
1240 
1241 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1242 	.func		= bpf_sysctl_get_current_value,
1243 	.gpl_only	= false,
1244 	.ret_type	= RET_INTEGER,
1245 	.arg1_type	= ARG_PTR_TO_CTX,
1246 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1247 	.arg3_type	= ARG_CONST_SIZE,
1248 };
1249 
1250 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1251 	   size_t, buf_len)
1252 {
1253 	if (!ctx->write) {
1254 		if (buf && buf_len)
1255 			memset(buf, '\0', buf_len);
1256 		return -EINVAL;
1257 	}
1258 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1259 }
1260 
1261 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1262 	.func		= bpf_sysctl_get_new_value,
1263 	.gpl_only	= false,
1264 	.ret_type	= RET_INTEGER,
1265 	.arg1_type	= ARG_PTR_TO_CTX,
1266 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1267 	.arg3_type	= ARG_CONST_SIZE,
1268 };
1269 
1270 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1271 	   const char *, buf, size_t, buf_len)
1272 {
1273 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1274 		return -EINVAL;
1275 
1276 	if (buf_len > PAGE_SIZE - 1)
1277 		return -E2BIG;
1278 
1279 	memcpy(ctx->new_val, buf, buf_len);
1280 	ctx->new_len = buf_len;
1281 	ctx->new_updated = 1;
1282 
1283 	return 0;
1284 }
1285 
1286 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1287 	.func		= bpf_sysctl_set_new_value,
1288 	.gpl_only	= false,
1289 	.ret_type	= RET_INTEGER,
1290 	.arg1_type	= ARG_PTR_TO_CTX,
1291 	.arg2_type	= ARG_PTR_TO_MEM,
1292 	.arg3_type	= ARG_CONST_SIZE,
1293 };
1294 
1295 static const struct bpf_func_proto *
1296 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1297 {
1298 	switch (func_id) {
1299 	case BPF_FUNC_strtol:
1300 		return &bpf_strtol_proto;
1301 	case BPF_FUNC_strtoul:
1302 		return &bpf_strtoul_proto;
1303 	case BPF_FUNC_sysctl_get_name:
1304 		return &bpf_sysctl_get_name_proto;
1305 	case BPF_FUNC_sysctl_get_current_value:
1306 		return &bpf_sysctl_get_current_value_proto;
1307 	case BPF_FUNC_sysctl_get_new_value:
1308 		return &bpf_sysctl_get_new_value_proto;
1309 	case BPF_FUNC_sysctl_set_new_value:
1310 		return &bpf_sysctl_set_new_value_proto;
1311 	default:
1312 		return cgroup_base_func_proto(func_id, prog);
1313 	}
1314 }
1315 
1316 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1317 				   const struct bpf_prog *prog,
1318 				   struct bpf_insn_access_aux *info)
1319 {
1320 	const int size_default = sizeof(__u32);
1321 
1322 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1323 		return false;
1324 
1325 	switch (off) {
1326 	case bpf_ctx_range(struct bpf_sysctl, write):
1327 		if (type != BPF_READ)
1328 			return false;
1329 		bpf_ctx_record_field_size(info, size_default);
1330 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1331 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1332 		if (type == BPF_READ) {
1333 			bpf_ctx_record_field_size(info, size_default);
1334 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1335 		} else {
1336 			return size == size_default;
1337 		}
1338 	default:
1339 		return false;
1340 	}
1341 }
1342 
1343 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1344 				     const struct bpf_insn *si,
1345 				     struct bpf_insn *insn_buf,
1346 				     struct bpf_prog *prog, u32 *target_size)
1347 {
1348 	struct bpf_insn *insn = insn_buf;
1349 	u32 read_size;
1350 
1351 	switch (si->off) {
1352 	case offsetof(struct bpf_sysctl, write):
1353 		*insn++ = BPF_LDX_MEM(
1354 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1355 			bpf_target_off(struct bpf_sysctl_kern, write,
1356 				       sizeof_field(struct bpf_sysctl_kern,
1357 						    write),
1358 				       target_size));
1359 		break;
1360 	case offsetof(struct bpf_sysctl, file_pos):
1361 		/* ppos is a pointer so it should be accessed via indirect
1362 		 * loads and stores. Also for stores additional temporary
1363 		 * register is used since neither src_reg nor dst_reg can be
1364 		 * overridden.
1365 		 */
1366 		if (type == BPF_WRITE) {
1367 			int treg = BPF_REG_9;
1368 
1369 			if (si->src_reg == treg || si->dst_reg == treg)
1370 				--treg;
1371 			if (si->src_reg == treg || si->dst_reg == treg)
1372 				--treg;
1373 			*insn++ = BPF_STX_MEM(
1374 				BPF_DW, si->dst_reg, treg,
1375 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1376 			*insn++ = BPF_LDX_MEM(
1377 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1378 				treg, si->dst_reg,
1379 				offsetof(struct bpf_sysctl_kern, ppos));
1380 			*insn++ = BPF_STX_MEM(
1381 				BPF_SIZEOF(u32), treg, si->src_reg,
1382 				bpf_ctx_narrow_access_offset(
1383 					0, sizeof(u32), sizeof(loff_t)));
1384 			*insn++ = BPF_LDX_MEM(
1385 				BPF_DW, treg, si->dst_reg,
1386 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1387 		} else {
1388 			*insn++ = BPF_LDX_MEM(
1389 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1390 				si->dst_reg, si->src_reg,
1391 				offsetof(struct bpf_sysctl_kern, ppos));
1392 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1393 			*insn++ = BPF_LDX_MEM(
1394 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1395 				bpf_ctx_narrow_access_offset(
1396 					0, read_size, sizeof(loff_t)));
1397 		}
1398 		*target_size = sizeof(u32);
1399 		break;
1400 	}
1401 
1402 	return insn - insn_buf;
1403 }
1404 
1405 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1406 	.get_func_proto		= sysctl_func_proto,
1407 	.is_valid_access	= sysctl_is_valid_access,
1408 	.convert_ctx_access	= sysctl_convert_ctx_access,
1409 };
1410 
1411 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1412 };
1413 
1414 static const struct bpf_func_proto *
1415 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1416 {
1417 	switch (func_id) {
1418 #ifdef CONFIG_NET
1419 	case BPF_FUNC_sk_storage_get:
1420 		return &bpf_sk_storage_get_proto;
1421 	case BPF_FUNC_sk_storage_delete:
1422 		return &bpf_sk_storage_delete_proto;
1423 #endif
1424 #ifdef CONFIG_INET
1425 	case BPF_FUNC_tcp_sock:
1426 		return &bpf_tcp_sock_proto;
1427 #endif
1428 	default:
1429 		return cgroup_base_func_proto(func_id, prog);
1430 	}
1431 }
1432 
1433 static bool cg_sockopt_is_valid_access(int off, int size,
1434 				       enum bpf_access_type type,
1435 				       const struct bpf_prog *prog,
1436 				       struct bpf_insn_access_aux *info)
1437 {
1438 	const int size_default = sizeof(__u32);
1439 
1440 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1441 		return false;
1442 
1443 	if (off % size != 0)
1444 		return false;
1445 
1446 	if (type == BPF_WRITE) {
1447 		switch (off) {
1448 		case offsetof(struct bpf_sockopt, retval):
1449 			if (size != size_default)
1450 				return false;
1451 			return prog->expected_attach_type ==
1452 				BPF_CGROUP_GETSOCKOPT;
1453 		case offsetof(struct bpf_sockopt, optname):
1454 			/* fallthrough */
1455 		case offsetof(struct bpf_sockopt, level):
1456 			if (size != size_default)
1457 				return false;
1458 			return prog->expected_attach_type ==
1459 				BPF_CGROUP_SETSOCKOPT;
1460 		case offsetof(struct bpf_sockopt, optlen):
1461 			return size == size_default;
1462 		default:
1463 			return false;
1464 		}
1465 	}
1466 
1467 	switch (off) {
1468 	case offsetof(struct bpf_sockopt, sk):
1469 		if (size != sizeof(__u64))
1470 			return false;
1471 		info->reg_type = PTR_TO_SOCKET;
1472 		break;
1473 	case offsetof(struct bpf_sockopt, optval):
1474 		if (size != sizeof(__u64))
1475 			return false;
1476 		info->reg_type = PTR_TO_PACKET;
1477 		break;
1478 	case offsetof(struct bpf_sockopt, optval_end):
1479 		if (size != sizeof(__u64))
1480 			return false;
1481 		info->reg_type = PTR_TO_PACKET_END;
1482 		break;
1483 	case offsetof(struct bpf_sockopt, retval):
1484 		if (size != size_default)
1485 			return false;
1486 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1487 	default:
1488 		if (size != size_default)
1489 			return false;
1490 		break;
1491 	}
1492 	return true;
1493 }
1494 
1495 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1496 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1497 	  si->dst_reg, si->src_reg,					\
1498 	  offsetof(struct bpf_sockopt_kern, F))
1499 
1500 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1501 					 const struct bpf_insn *si,
1502 					 struct bpf_insn *insn_buf,
1503 					 struct bpf_prog *prog,
1504 					 u32 *target_size)
1505 {
1506 	struct bpf_insn *insn = insn_buf;
1507 
1508 	switch (si->off) {
1509 	case offsetof(struct bpf_sockopt, sk):
1510 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1511 		break;
1512 	case offsetof(struct bpf_sockopt, level):
1513 		if (type == BPF_WRITE)
1514 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1515 		else
1516 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1517 		break;
1518 	case offsetof(struct bpf_sockopt, optname):
1519 		if (type == BPF_WRITE)
1520 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1521 		else
1522 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1523 		break;
1524 	case offsetof(struct bpf_sockopt, optlen):
1525 		if (type == BPF_WRITE)
1526 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1527 		else
1528 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1529 		break;
1530 	case offsetof(struct bpf_sockopt, retval):
1531 		if (type == BPF_WRITE)
1532 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1533 		else
1534 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1535 		break;
1536 	case offsetof(struct bpf_sockopt, optval):
1537 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1538 		break;
1539 	case offsetof(struct bpf_sockopt, optval_end):
1540 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1541 		break;
1542 	}
1543 
1544 	return insn - insn_buf;
1545 }
1546 
1547 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1548 				   bool direct_write,
1549 				   const struct bpf_prog *prog)
1550 {
1551 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1552 	 */
1553 	return 0;
1554 }
1555 
1556 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1557 	.get_func_proto		= cg_sockopt_func_proto,
1558 	.is_valid_access	= cg_sockopt_is_valid_access,
1559 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1560 	.gen_prologue		= cg_sockopt_get_prologue,
1561 };
1562 
1563 const struct bpf_prog_ops cg_sockopt_prog_ops = {
1564 };
1565