xref: /linux/kernel/bpf/btf.c (revision f412eed9dfdeeb6becd7de2ffe8b5d0a8b3f81ca)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/errno.h>
9 #include <linux/slab.h>
10 #include <linux/anon_inodes.h>
11 #include <linux/file.h>
12 #include <linux/uaccess.h>
13 #include <linux/kernel.h>
14 #include <linux/bpf_verifier.h>
15 #include <linux/btf.h>
16 
17 /* BTF (BPF Type Format) is the meta data format which describes
18  * the data types of BPF program/map.  Hence, it basically focus
19  * on the C programming language which the modern BPF is primary
20  * using.
21  *
22  * ELF Section:
23  * ~~~~~~~~~~~
24  * The BTF data is stored under the ".BTF" ELF section
25  *
26  * struct btf_type:
27  * ~~~~~~~~~~~~~~~
28  * Each 'struct btf_type' object describes a C data type.
29  * Depending on the type it is describing, a 'struct btf_type'
30  * object may be followed by more data.  F.e.
31  * To describe an array, 'struct btf_type' is followed by
32  * 'struct btf_array'.
33  *
34  * 'struct btf_type' and any extra data following it are
35  * 4 bytes aligned.
36  *
37  * Type section:
38  * ~~~~~~~~~~~~~
39  * The BTF type section contains a list of 'struct btf_type' objects.
40  * Each one describes a C type.  Recall from the above section
41  * that a 'struct btf_type' object could be immediately followed by extra
42  * data in order to desribe some particular C types.
43  *
44  * type_id:
45  * ~~~~~~~
46  * Each btf_type object is identified by a type_id.  The type_id
47  * is implicitly implied by the location of the btf_type object in
48  * the BTF type section.  The first one has type_id 1.  The second
49  * one has type_id 2...etc.  Hence, an earlier btf_type has
50  * a smaller type_id.
51  *
52  * A btf_type object may refer to another btf_type object by using
53  * type_id (i.e. the "type" in the "struct btf_type").
54  *
55  * NOTE that we cannot assume any reference-order.
56  * A btf_type object can refer to an earlier btf_type object
57  * but it can also refer to a later btf_type object.
58  *
59  * For example, to describe "const void *".  A btf_type
60  * object describing "const" may refer to another btf_type
61  * object describing "void *".  This type-reference is done
62  * by specifying type_id:
63  *
64  * [1] CONST (anon) type_id=2
65  * [2] PTR (anon) type_id=0
66  *
67  * The above is the btf_verifier debug log:
68  *   - Each line started with "[?]" is a btf_type object
69  *   - [?] is the type_id of the btf_type object.
70  *   - CONST/PTR is the BTF_KIND_XXX
71  *   - "(anon)" is the name of the type.  It just
72  *     happens that CONST and PTR has no name.
73  *   - type_id=XXX is the 'u32 type' in btf_type
74  *
75  * NOTE: "void" has type_id 0
76  *
77  * String section:
78  * ~~~~~~~~~~~~~~
79  * The BTF string section contains the names used by the type section.
80  * Each string is referred by an "offset" from the beginning of the
81  * string section.
82  *
83  * Each string is '\0' terminated.
84  *
85  * The first character in the string section must be '\0'
86  * which is used to mean 'anonymous'. Some btf_type may not
87  * have a name.
88  */
89 
90 /* BTF verification:
91  *
92  * To verify BTF data, two passes are needed.
93  *
94  * Pass #1
95  * ~~~~~~~
96  * The first pass is to collect all btf_type objects to
97  * an array: "btf->types".
98  *
99  * Depending on the C type that a btf_type is describing,
100  * a btf_type may be followed by extra data.  We don't know
101  * how many btf_type is there, and more importantly we don't
102  * know where each btf_type is located in the type section.
103  *
104  * Without knowing the location of each type_id, most verifications
105  * cannot be done.  e.g. an earlier btf_type may refer to a later
106  * btf_type (recall the "const void *" above), so we cannot
107  * check this type-reference in the first pass.
108  *
109  * In the first pass, it still does some verifications (e.g.
110  * checking the name is a valid offset to the string section).
111  *
112  * Pass #2
113  * ~~~~~~~
114  * The main focus is to resolve a btf_type that is referring
115  * to another type.
116  *
117  * We have to ensure the referring type:
118  * 1) does exist in the BTF (i.e. in btf->types[])
119  * 2) does not cause a loop:
120  *	struct A {
121  *		struct B b;
122  *	};
123  *
124  *	struct B {
125  *		struct A a;
126  *	};
127  *
128  * btf_type_needs_resolve() decides if a btf_type needs
129  * to be resolved.
130  *
131  * The needs_resolve type implements the "resolve()" ops which
132  * essentially does a DFS and detects backedge.
133  *
134  * During resolve (or DFS), different C types have different
135  * "RESOLVED" conditions.
136  *
137  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
138  * members because a member is always referring to another
139  * type.  A struct's member can be treated as "RESOLVED" if
140  * it is referring to a BTF_KIND_PTR.  Otherwise, the
141  * following valid C struct would be rejected:
142  *
143  *	struct A {
144  *		int m;
145  *		struct A *a;
146  *	};
147  *
148  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
149  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
150  * detect a pointer loop, e.g.:
151  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
152  *                        ^                                         |
153  *                        +-----------------------------------------+
154  *
155  */
156 
157 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
158 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
159 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
160 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
161 #define BITS_ROUNDUP_BYTES(bits) \
162 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
163 
164 /* 16MB for 64k structs and each has 16 members and
165  * a few MB spaces for the string section.
166  * The hard limit is S32_MAX.
167  */
168 #define BTF_MAX_SIZE (16 * 1024 * 1024)
169 /* 64k. We can raise it later. The hard limit is S32_MAX. */
170 #define BTF_MAX_NR_TYPES 65535
171 
172 #define for_each_member(i, struct_type, member)			\
173 	for (i = 0, member = btf_type_member(struct_type);	\
174 	     i < btf_type_vlen(struct_type);			\
175 	     i++, member++)
176 
177 #define for_each_member_from(i, from, struct_type, member)		\
178 	for (i = from, member = btf_type_member(struct_type) + from;	\
179 	     i < btf_type_vlen(struct_type);				\
180 	     i++, member++)
181 
182 struct btf {
183 	union {
184 		struct btf_header *hdr;
185 		void *data;
186 	};
187 	struct btf_type **types;
188 	u32 *resolved_ids;
189 	u32 *resolved_sizes;
190 	const char *strings;
191 	void *nohdr_data;
192 	u32 nr_types;
193 	u32 types_size;
194 	u32 data_size;
195 	refcount_t refcnt;
196 };
197 
198 enum verifier_phase {
199 	CHECK_META,
200 	CHECK_TYPE,
201 };
202 
203 struct resolve_vertex {
204 	const struct btf_type *t;
205 	u32 type_id;
206 	u16 next_member;
207 };
208 
209 enum visit_state {
210 	NOT_VISITED,
211 	VISITED,
212 	RESOLVED,
213 };
214 
215 enum resolve_mode {
216 	RESOLVE_TBD,	/* To Be Determined */
217 	RESOLVE_PTR,	/* Resolving for Pointer */
218 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
219 					 * or array
220 					 */
221 };
222 
223 #define MAX_RESOLVE_DEPTH 32
224 
225 struct btf_verifier_env {
226 	struct btf *btf;
227 	u8 *visit_states;
228 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
229 	struct bpf_verifier_log log;
230 	u32 log_type_id;
231 	u32 top_stack;
232 	enum verifier_phase phase;
233 	enum resolve_mode resolve_mode;
234 };
235 
236 static const char * const btf_kind_str[NR_BTF_KINDS] = {
237 	[BTF_KIND_UNKN]		= "UNKNOWN",
238 	[BTF_KIND_INT]		= "INT",
239 	[BTF_KIND_PTR]		= "PTR",
240 	[BTF_KIND_ARRAY]	= "ARRAY",
241 	[BTF_KIND_STRUCT]	= "STRUCT",
242 	[BTF_KIND_UNION]	= "UNION",
243 	[BTF_KIND_ENUM]		= "ENUM",
244 	[BTF_KIND_FWD]		= "FWD",
245 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
246 	[BTF_KIND_VOLATILE]	= "VOLATILE",
247 	[BTF_KIND_CONST]	= "CONST",
248 	[BTF_KIND_RESTRICT]	= "RESTRICT",
249 };
250 
251 struct btf_kind_operations {
252 	s32 (*check_meta)(struct btf_verifier_env *env,
253 			  const struct btf_type *t,
254 			  u32 meta_left);
255 	int (*resolve)(struct btf_verifier_env *env,
256 		       const struct resolve_vertex *v);
257 	int (*check_member)(struct btf_verifier_env *env,
258 			    const struct btf_type *struct_type,
259 			    const struct btf_member *member,
260 			    const struct btf_type *member_type);
261 	void (*log_details)(struct btf_verifier_env *env,
262 			    const struct btf_type *t);
263 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
264 			 u32 type_id, void *data, u8 bits_offsets,
265 			 struct seq_file *m);
266 };
267 
268 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
269 static struct btf_type btf_void;
270 
271 static bool btf_type_is_modifier(const struct btf_type *t)
272 {
273 	/* Some of them is not strictly a C modifier
274 	 * but they are grouped into the same bucket
275 	 * for BTF concern:
276 	 *   A type (t) that refers to another
277 	 *   type through t->type AND its size cannot
278 	 *   be determined without following the t->type.
279 	 *
280 	 * ptr does not fall into this bucket
281 	 * because its size is always sizeof(void *).
282 	 */
283 	switch (BTF_INFO_KIND(t->info)) {
284 	case BTF_KIND_TYPEDEF:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_CONST:
287 	case BTF_KIND_RESTRICT:
288 		return true;
289 	}
290 
291 	return false;
292 }
293 
294 static bool btf_type_is_void(const struct btf_type *t)
295 {
296 	/* void => no type and size info.
297 	 * Hence, FWD is also treated as void.
298 	 */
299 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
300 }
301 
302 static bool btf_type_is_void_or_null(const struct btf_type *t)
303 {
304 	return !t || btf_type_is_void(t);
305 }
306 
307 /* union is only a special case of struct:
308  * all its offsetof(member) == 0
309  */
310 static bool btf_type_is_struct(const struct btf_type *t)
311 {
312 	u8 kind = BTF_INFO_KIND(t->info);
313 
314 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
315 }
316 
317 static bool btf_type_is_array(const struct btf_type *t)
318 {
319 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
320 }
321 
322 static bool btf_type_is_ptr(const struct btf_type *t)
323 {
324 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
325 }
326 
327 static bool btf_type_is_int(const struct btf_type *t)
328 {
329 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
330 }
331 
332 /* What types need to be resolved?
333  *
334  * btf_type_is_modifier() is an obvious one.
335  *
336  * btf_type_is_struct() because its member refers to
337  * another type (through member->type).
338 
339  * btf_type_is_array() because its element (array->type)
340  * refers to another type.  Array can be thought of a
341  * special case of struct while array just has the same
342  * member-type repeated by array->nelems of times.
343  */
344 static bool btf_type_needs_resolve(const struct btf_type *t)
345 {
346 	return btf_type_is_modifier(t) ||
347 		btf_type_is_ptr(t) ||
348 		btf_type_is_struct(t) ||
349 		btf_type_is_array(t);
350 }
351 
352 /* t->size can be used */
353 static bool btf_type_has_size(const struct btf_type *t)
354 {
355 	switch (BTF_INFO_KIND(t->info)) {
356 	case BTF_KIND_INT:
357 	case BTF_KIND_STRUCT:
358 	case BTF_KIND_UNION:
359 	case BTF_KIND_ENUM:
360 		return true;
361 	}
362 
363 	return false;
364 }
365 
366 static const char *btf_int_encoding_str(u8 encoding)
367 {
368 	if (encoding == 0)
369 		return "(none)";
370 	else if (encoding == BTF_INT_SIGNED)
371 		return "SIGNED";
372 	else if (encoding == BTF_INT_CHAR)
373 		return "CHAR";
374 	else if (encoding == BTF_INT_BOOL)
375 		return "BOOL";
376 	else if (encoding == BTF_INT_VARARGS)
377 		return "VARARGS";
378 	else
379 		return "UNKN";
380 }
381 
382 static u16 btf_type_vlen(const struct btf_type *t)
383 {
384 	return BTF_INFO_VLEN(t->info);
385 }
386 
387 static u32 btf_type_int(const struct btf_type *t)
388 {
389 	return *(u32 *)(t + 1);
390 }
391 
392 static const struct btf_array *btf_type_array(const struct btf_type *t)
393 {
394 	return (const struct btf_array *)(t + 1);
395 }
396 
397 static const struct btf_member *btf_type_member(const struct btf_type *t)
398 {
399 	return (const struct btf_member *)(t + 1);
400 }
401 
402 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
403 {
404 	return (const struct btf_enum *)(t + 1);
405 }
406 
407 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
408 {
409 	return kind_ops[BTF_INFO_KIND(t->info)];
410 }
411 
412 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
413 {
414 	return !BTF_STR_TBL_ELF_ID(offset) &&
415 		BTF_STR_OFFSET(offset) < btf->hdr->str_len;
416 }
417 
418 static const char *btf_name_by_offset(const struct btf *btf, u32 offset)
419 {
420 	if (!BTF_STR_OFFSET(offset))
421 		return "(anon)";
422 	else if (BTF_STR_OFFSET(offset) < btf->hdr->str_len)
423 		return &btf->strings[BTF_STR_OFFSET(offset)];
424 	else
425 		return "(invalid-name-offset)";
426 }
427 
428 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
429 {
430 	if (type_id > btf->nr_types)
431 		return NULL;
432 
433 	return btf->types[type_id];
434 }
435 
436 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
437 					      const char *fmt, ...)
438 {
439 	va_list args;
440 
441 	va_start(args, fmt);
442 	bpf_verifier_vlog(log, fmt, args);
443 	va_end(args);
444 }
445 
446 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
447 					    const char *fmt, ...)
448 {
449 	struct bpf_verifier_log *log = &env->log;
450 	va_list args;
451 
452 	if (!bpf_verifier_log_needed(log))
453 		return;
454 
455 	va_start(args, fmt);
456 	bpf_verifier_vlog(log, fmt, args);
457 	va_end(args);
458 }
459 
460 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
461 						   const struct btf_type *t,
462 						   bool log_details,
463 						   const char *fmt, ...)
464 {
465 	struct bpf_verifier_log *log = &env->log;
466 	u8 kind = BTF_INFO_KIND(t->info);
467 	struct btf *btf = env->btf;
468 	va_list args;
469 
470 	if (!bpf_verifier_log_needed(log))
471 		return;
472 
473 	__btf_verifier_log(log, "[%u] %s %s%s",
474 			   env->log_type_id,
475 			   btf_kind_str[kind],
476 			   btf_name_by_offset(btf, t->name_off),
477 			   log_details ? " " : "");
478 
479 	if (log_details)
480 		btf_type_ops(t)->log_details(env, t);
481 
482 	if (fmt && *fmt) {
483 		__btf_verifier_log(log, " ");
484 		va_start(args, fmt);
485 		bpf_verifier_vlog(log, fmt, args);
486 		va_end(args);
487 	}
488 
489 	__btf_verifier_log(log, "\n");
490 }
491 
492 #define btf_verifier_log_type(env, t, ...) \
493 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
494 #define btf_verifier_log_basic(env, t, ...) \
495 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
496 
497 __printf(4, 5)
498 static void btf_verifier_log_member(struct btf_verifier_env *env,
499 				    const struct btf_type *struct_type,
500 				    const struct btf_member *member,
501 				    const char *fmt, ...)
502 {
503 	struct bpf_verifier_log *log = &env->log;
504 	struct btf *btf = env->btf;
505 	va_list args;
506 
507 	if (!bpf_verifier_log_needed(log))
508 		return;
509 
510 	/* The CHECK_META phase already did a btf dump.
511 	 *
512 	 * If member is logged again, it must hit an error in
513 	 * parsing this member.  It is useful to print out which
514 	 * struct this member belongs to.
515 	 */
516 	if (env->phase != CHECK_META)
517 		btf_verifier_log_type(env, struct_type, NULL);
518 
519 	__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
520 			   btf_name_by_offset(btf, member->name_off),
521 			   member->type, member->offset);
522 
523 	if (fmt && *fmt) {
524 		__btf_verifier_log(log, " ");
525 		va_start(args, fmt);
526 		bpf_verifier_vlog(log, fmt, args);
527 		va_end(args);
528 	}
529 
530 	__btf_verifier_log(log, "\n");
531 }
532 
533 static void btf_verifier_log_hdr(struct btf_verifier_env *env)
534 {
535 	struct bpf_verifier_log *log = &env->log;
536 	const struct btf *btf = env->btf;
537 	const struct btf_header *hdr;
538 
539 	if (!bpf_verifier_log_needed(log))
540 		return;
541 
542 	hdr = btf->hdr;
543 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
544 	__btf_verifier_log(log, "version: %u\n", hdr->version);
545 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
546 	__btf_verifier_log(log, "parent_label: %u\n", hdr->parent_label);
547 	__btf_verifier_log(log, "parent_name: %u\n", hdr->parent_name);
548 	__btf_verifier_log(log, "label_off: %u\n", hdr->label_off);
549 	__btf_verifier_log(log, "object_off: %u\n", hdr->object_off);
550 	__btf_verifier_log(log, "func_off: %u\n", hdr->func_off);
551 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
552 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
553 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
554 	__btf_verifier_log(log, "btf_total_size: %u\n", btf->data_size);
555 }
556 
557 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
558 {
559 	struct btf *btf = env->btf;
560 
561 	/* < 2 because +1 for btf_void which is always in btf->types[0].
562 	 * btf_void is not accounted in btf->nr_types because btf_void
563 	 * does not come from the BTF file.
564 	 */
565 	if (btf->types_size - btf->nr_types < 2) {
566 		/* Expand 'types' array */
567 
568 		struct btf_type **new_types;
569 		u32 expand_by, new_size;
570 
571 		if (btf->types_size == BTF_MAX_NR_TYPES) {
572 			btf_verifier_log(env, "Exceeded max num of types");
573 			return -E2BIG;
574 		}
575 
576 		expand_by = max_t(u32, btf->types_size >> 2, 16);
577 		new_size = min_t(u32, BTF_MAX_NR_TYPES,
578 				 btf->types_size + expand_by);
579 
580 		new_types = kvzalloc(new_size * sizeof(*new_types),
581 				     GFP_KERNEL | __GFP_NOWARN);
582 		if (!new_types)
583 			return -ENOMEM;
584 
585 		if (btf->nr_types == 0)
586 			new_types[0] = &btf_void;
587 		else
588 			memcpy(new_types, btf->types,
589 			       sizeof(*btf->types) * (btf->nr_types + 1));
590 
591 		kvfree(btf->types);
592 		btf->types = new_types;
593 		btf->types_size = new_size;
594 	}
595 
596 	btf->types[++(btf->nr_types)] = t;
597 
598 	return 0;
599 }
600 
601 static void btf_free(struct btf *btf)
602 {
603 	kvfree(btf->types);
604 	kvfree(btf->resolved_sizes);
605 	kvfree(btf->resolved_ids);
606 	kvfree(btf->data);
607 	kfree(btf);
608 }
609 
610 static void btf_get(struct btf *btf)
611 {
612 	refcount_inc(&btf->refcnt);
613 }
614 
615 void btf_put(struct btf *btf)
616 {
617 	if (btf && refcount_dec_and_test(&btf->refcnt))
618 		btf_free(btf);
619 }
620 
621 static int env_resolve_init(struct btf_verifier_env *env)
622 {
623 	struct btf *btf = env->btf;
624 	u32 nr_types = btf->nr_types;
625 	u32 *resolved_sizes = NULL;
626 	u32 *resolved_ids = NULL;
627 	u8 *visit_states = NULL;
628 
629 	/* +1 for btf_void */
630 	resolved_sizes = kvzalloc((nr_types + 1) * sizeof(*resolved_sizes),
631 				  GFP_KERNEL | __GFP_NOWARN);
632 	if (!resolved_sizes)
633 		goto nomem;
634 
635 	resolved_ids = kvzalloc((nr_types + 1) * sizeof(*resolved_ids),
636 				GFP_KERNEL | __GFP_NOWARN);
637 	if (!resolved_ids)
638 		goto nomem;
639 
640 	visit_states = kvzalloc((nr_types + 1) * sizeof(*visit_states),
641 				GFP_KERNEL | __GFP_NOWARN);
642 	if (!visit_states)
643 		goto nomem;
644 
645 	btf->resolved_sizes = resolved_sizes;
646 	btf->resolved_ids = resolved_ids;
647 	env->visit_states = visit_states;
648 
649 	return 0;
650 
651 nomem:
652 	kvfree(resolved_sizes);
653 	kvfree(resolved_ids);
654 	kvfree(visit_states);
655 	return -ENOMEM;
656 }
657 
658 static void btf_verifier_env_free(struct btf_verifier_env *env)
659 {
660 	kvfree(env->visit_states);
661 	kfree(env);
662 }
663 
664 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
665 				     const struct btf_type *next_type)
666 {
667 	switch (env->resolve_mode) {
668 	case RESOLVE_TBD:
669 		/* int, enum or void is a sink */
670 		return !btf_type_needs_resolve(next_type);
671 	case RESOLVE_PTR:
672 		/* int, enum, void, struct or array is a sink for ptr */
673 		return !btf_type_is_modifier(next_type) &&
674 			!btf_type_is_ptr(next_type);
675 	case RESOLVE_STRUCT_OR_ARRAY:
676 		/* int, enum, void or ptr is a sink for struct and array */
677 		return !btf_type_is_modifier(next_type) &&
678 			!btf_type_is_array(next_type) &&
679 			!btf_type_is_struct(next_type);
680 	default:
681 		BUG_ON(1);
682 	}
683 }
684 
685 static bool env_type_is_resolved(const struct btf_verifier_env *env,
686 				 u32 type_id)
687 {
688 	return env->visit_states[type_id] == RESOLVED;
689 }
690 
691 static int env_stack_push(struct btf_verifier_env *env,
692 			  const struct btf_type *t, u32 type_id)
693 {
694 	struct resolve_vertex *v;
695 
696 	if (env->top_stack == MAX_RESOLVE_DEPTH)
697 		return -E2BIG;
698 
699 	if (env->visit_states[type_id] != NOT_VISITED)
700 		return -EEXIST;
701 
702 	env->visit_states[type_id] = VISITED;
703 
704 	v = &env->stack[env->top_stack++];
705 	v->t = t;
706 	v->type_id = type_id;
707 	v->next_member = 0;
708 
709 	if (env->resolve_mode == RESOLVE_TBD) {
710 		if (btf_type_is_ptr(t))
711 			env->resolve_mode = RESOLVE_PTR;
712 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
713 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
714 	}
715 
716 	return 0;
717 }
718 
719 static void env_stack_set_next_member(struct btf_verifier_env *env,
720 				      u16 next_member)
721 {
722 	env->stack[env->top_stack - 1].next_member = next_member;
723 }
724 
725 static void env_stack_pop_resolved(struct btf_verifier_env *env,
726 				   u32 resolved_type_id,
727 				   u32 resolved_size)
728 {
729 	u32 type_id = env->stack[--(env->top_stack)].type_id;
730 	struct btf *btf = env->btf;
731 
732 	btf->resolved_sizes[type_id] = resolved_size;
733 	btf->resolved_ids[type_id] = resolved_type_id;
734 	env->visit_states[type_id] = RESOLVED;
735 }
736 
737 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
738 {
739 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
740 }
741 
742 /* The input param "type_id" must point to a needs_resolve type */
743 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
744 						  u32 *type_id)
745 {
746 	*type_id = btf->resolved_ids[*type_id];
747 	return btf_type_by_id(btf, *type_id);
748 }
749 
750 const struct btf_type *btf_type_id_size(const struct btf *btf,
751 					u32 *type_id, u32 *ret_size)
752 {
753 	const struct btf_type *size_type;
754 	u32 size_type_id = *type_id;
755 	u32 size = 0;
756 
757 	size_type = btf_type_by_id(btf, size_type_id);
758 	if (btf_type_is_void_or_null(size_type))
759 		return NULL;
760 
761 	if (btf_type_has_size(size_type)) {
762 		size = size_type->size;
763 	} else if (btf_type_is_array(size_type)) {
764 		size = btf->resolved_sizes[size_type_id];
765 	} else if (btf_type_is_ptr(size_type)) {
766 		size = sizeof(void *);
767 	} else {
768 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
769 			return NULL;
770 
771 		size = btf->resolved_sizes[size_type_id];
772 		size_type_id = btf->resolved_ids[size_type_id];
773 		size_type = btf_type_by_id(btf, size_type_id);
774 		if (btf_type_is_void(size_type))
775 			return NULL;
776 	}
777 
778 	*type_id = size_type_id;
779 	if (ret_size)
780 		*ret_size = size;
781 
782 	return size_type;
783 }
784 
785 static int btf_df_check_member(struct btf_verifier_env *env,
786 			       const struct btf_type *struct_type,
787 			       const struct btf_member *member,
788 			       const struct btf_type *member_type)
789 {
790 	btf_verifier_log_basic(env, struct_type,
791 			       "Unsupported check_member");
792 	return -EINVAL;
793 }
794 
795 static int btf_df_resolve(struct btf_verifier_env *env,
796 			  const struct resolve_vertex *v)
797 {
798 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
799 	return -EINVAL;
800 }
801 
802 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
803 			    u32 type_id, void *data, u8 bits_offsets,
804 			    struct seq_file *m)
805 {
806 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
807 }
808 
809 static int btf_int_check_member(struct btf_verifier_env *env,
810 				const struct btf_type *struct_type,
811 				const struct btf_member *member,
812 				const struct btf_type *member_type)
813 {
814 	u32 int_data = btf_type_int(member_type);
815 	u32 struct_bits_off = member->offset;
816 	u32 struct_size = struct_type->size;
817 	u32 nr_copy_bits;
818 	u32 bytes_offset;
819 
820 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
821 		btf_verifier_log_member(env, struct_type, member,
822 					"bits_offset exceeds U32_MAX");
823 		return -EINVAL;
824 	}
825 
826 	struct_bits_off += BTF_INT_OFFSET(int_data);
827 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
828 	nr_copy_bits = BTF_INT_BITS(int_data) +
829 		BITS_PER_BYTE_MASKED(struct_bits_off);
830 
831 	if (nr_copy_bits > BITS_PER_U64) {
832 		btf_verifier_log_member(env, struct_type, member,
833 					"nr_copy_bits exceeds 64");
834 		return -EINVAL;
835 	}
836 
837 	if (struct_size < bytes_offset ||
838 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
839 		btf_verifier_log_member(env, struct_type, member,
840 					"Member exceeds struct_size");
841 		return -EINVAL;
842 	}
843 
844 	return 0;
845 }
846 
847 static s32 btf_int_check_meta(struct btf_verifier_env *env,
848 			      const struct btf_type *t,
849 			      u32 meta_left)
850 {
851 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
852 	u16 encoding;
853 
854 	if (meta_left < meta_needed) {
855 		btf_verifier_log_basic(env, t,
856 				       "meta_left:%u meta_needed:%u",
857 				       meta_left, meta_needed);
858 		return -EINVAL;
859 	}
860 
861 	if (btf_type_vlen(t)) {
862 		btf_verifier_log_type(env, t, "vlen != 0");
863 		return -EINVAL;
864 	}
865 
866 	int_data = btf_type_int(t);
867 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
868 
869 	if (nr_bits > BITS_PER_U64) {
870 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
871 				      BITS_PER_U64);
872 		return -EINVAL;
873 	}
874 
875 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
876 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
877 		return -EINVAL;
878 	}
879 
880 	encoding = BTF_INT_ENCODING(int_data);
881 	if (encoding &&
882 	    encoding != BTF_INT_SIGNED &&
883 	    encoding != BTF_INT_CHAR &&
884 	    encoding != BTF_INT_BOOL &&
885 	    encoding != BTF_INT_VARARGS) {
886 		btf_verifier_log_type(env, t, "Unsupported encoding");
887 		return -ENOTSUPP;
888 	}
889 
890 	btf_verifier_log_type(env, t, NULL);
891 
892 	return meta_needed;
893 }
894 
895 static void btf_int_log(struct btf_verifier_env *env,
896 			const struct btf_type *t)
897 {
898 	int int_data = btf_type_int(t);
899 
900 	btf_verifier_log(env,
901 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
902 			 t->size, BTF_INT_OFFSET(int_data),
903 			 BTF_INT_BITS(int_data),
904 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
905 }
906 
907 static void btf_int_bits_seq_show(const struct btf *btf,
908 				  const struct btf_type *t,
909 				  void *data, u8 bits_offset,
910 				  struct seq_file *m)
911 {
912 	u32 int_data = btf_type_int(t);
913 	u16 nr_bits = BTF_INT_BITS(int_data);
914 	u16 total_bits_offset;
915 	u16 nr_copy_bytes;
916 	u16 nr_copy_bits;
917 	u8 nr_upper_bits;
918 	union {
919 		u64 u64_num;
920 		u8  u8_nums[8];
921 	} print_num;
922 
923 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
924 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
925 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
926 	nr_copy_bits = nr_bits + bits_offset;
927 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
928 
929 	print_num.u64_num = 0;
930 	memcpy(&print_num.u64_num, data, nr_copy_bytes);
931 
932 	/* Ditch the higher order bits */
933 	nr_upper_bits = BITS_PER_BYTE_MASKED(nr_copy_bits);
934 	if (nr_upper_bits) {
935 		/* We need to mask out some bits of the upper byte. */
936 		u8 mask = (1 << nr_upper_bits) - 1;
937 
938 		print_num.u8_nums[nr_copy_bytes - 1] &= mask;
939 	}
940 
941 	print_num.u64_num >>= bits_offset;
942 
943 	seq_printf(m, "0x%llx", print_num.u64_num);
944 }
945 
946 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
947 			     u32 type_id, void *data, u8 bits_offset,
948 			     struct seq_file *m)
949 {
950 	u32 int_data = btf_type_int(t);
951 	u8 encoding = BTF_INT_ENCODING(int_data);
952 	bool sign = encoding & BTF_INT_SIGNED;
953 	u32 nr_bits = BTF_INT_BITS(int_data);
954 
955 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
956 	    BITS_PER_BYTE_MASKED(nr_bits)) {
957 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
958 		return;
959 	}
960 
961 	switch (nr_bits) {
962 	case 64:
963 		if (sign)
964 			seq_printf(m, "%lld", *(s64 *)data);
965 		else
966 			seq_printf(m, "%llu", *(u64 *)data);
967 		break;
968 	case 32:
969 		if (sign)
970 			seq_printf(m, "%d", *(s32 *)data);
971 		else
972 			seq_printf(m, "%u", *(u32 *)data);
973 		break;
974 	case 16:
975 		if (sign)
976 			seq_printf(m, "%d", *(s16 *)data);
977 		else
978 			seq_printf(m, "%u", *(u16 *)data);
979 		break;
980 	case 8:
981 		if (sign)
982 			seq_printf(m, "%d", *(s8 *)data);
983 		else
984 			seq_printf(m, "%u", *(u8 *)data);
985 		break;
986 	default:
987 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
988 	}
989 }
990 
991 static const struct btf_kind_operations int_ops = {
992 	.check_meta = btf_int_check_meta,
993 	.resolve = btf_df_resolve,
994 	.check_member = btf_int_check_member,
995 	.log_details = btf_int_log,
996 	.seq_show = btf_int_seq_show,
997 };
998 
999 static int btf_modifier_check_member(struct btf_verifier_env *env,
1000 				     const struct btf_type *struct_type,
1001 				     const struct btf_member *member,
1002 				     const struct btf_type *member_type)
1003 {
1004 	const struct btf_type *resolved_type;
1005 	u32 resolved_type_id = member->type;
1006 	struct btf_member resolved_member;
1007 	struct btf *btf = env->btf;
1008 
1009 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1010 	if (!resolved_type) {
1011 		btf_verifier_log_member(env, struct_type, member,
1012 					"Invalid member");
1013 		return -EINVAL;
1014 	}
1015 
1016 	resolved_member = *member;
1017 	resolved_member.type = resolved_type_id;
1018 
1019 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1020 							 &resolved_member,
1021 							 resolved_type);
1022 }
1023 
1024 static int btf_ptr_check_member(struct btf_verifier_env *env,
1025 				const struct btf_type *struct_type,
1026 				const struct btf_member *member,
1027 				const struct btf_type *member_type)
1028 {
1029 	u32 struct_size, struct_bits_off, bytes_offset;
1030 
1031 	struct_size = struct_type->size;
1032 	struct_bits_off = member->offset;
1033 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1034 
1035 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1036 		btf_verifier_log_member(env, struct_type, member,
1037 					"Member is not byte aligned");
1038 		return -EINVAL;
1039 	}
1040 
1041 	if (struct_size - bytes_offset < sizeof(void *)) {
1042 		btf_verifier_log_member(env, struct_type, member,
1043 					"Member exceeds struct_size");
1044 		return -EINVAL;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1051 				   const struct btf_type *t,
1052 				   u32 meta_left)
1053 {
1054 	if (btf_type_vlen(t)) {
1055 		btf_verifier_log_type(env, t, "vlen != 0");
1056 		return -EINVAL;
1057 	}
1058 
1059 	if (BTF_TYPE_PARENT(t->type)) {
1060 		btf_verifier_log_type(env, t, "Invalid type_id");
1061 		return -EINVAL;
1062 	}
1063 
1064 	btf_verifier_log_type(env, t, NULL);
1065 
1066 	return 0;
1067 }
1068 
1069 static int btf_modifier_resolve(struct btf_verifier_env *env,
1070 				const struct resolve_vertex *v)
1071 {
1072 	const struct btf_type *t = v->t;
1073 	const struct btf_type *next_type;
1074 	u32 next_type_id = t->type;
1075 	struct btf *btf = env->btf;
1076 	u32 next_type_size = 0;
1077 
1078 	next_type = btf_type_by_id(btf, next_type_id);
1079 	if (!next_type) {
1080 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1081 		return -EINVAL;
1082 	}
1083 
1084 	/* "typedef void new_void", "const void"...etc */
1085 	if (btf_type_is_void(next_type))
1086 		goto resolved;
1087 
1088 	if (!env_type_is_resolve_sink(env, next_type) &&
1089 	    !env_type_is_resolved(env, next_type_id))
1090 		return env_stack_push(env, next_type, next_type_id);
1091 
1092 	/* Figure out the resolved next_type_id with size.
1093 	 * They will be stored in the current modifier's
1094 	 * resolved_ids and resolved_sizes such that it can
1095 	 * save us a few type-following when we use it later (e.g. in
1096 	 * pretty print).
1097 	 */
1098 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1099 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1100 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1101 		return -EINVAL;
1102 	}
1103 
1104 resolved:
1105 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1106 
1107 	return 0;
1108 }
1109 
1110 static int btf_ptr_resolve(struct btf_verifier_env *env,
1111 			   const struct resolve_vertex *v)
1112 {
1113 	const struct btf_type *next_type;
1114 	const struct btf_type *t = v->t;
1115 	u32 next_type_id = t->type;
1116 	struct btf *btf = env->btf;
1117 	u32 next_type_size = 0;
1118 
1119 	next_type = btf_type_by_id(btf, next_type_id);
1120 	if (!next_type) {
1121 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1122 		return -EINVAL;
1123 	}
1124 
1125 	/* "void *" */
1126 	if (btf_type_is_void(next_type))
1127 		goto resolved;
1128 
1129 	if (!env_type_is_resolve_sink(env, next_type) &&
1130 	    !env_type_is_resolved(env, next_type_id))
1131 		return env_stack_push(env, next_type, next_type_id);
1132 
1133 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1134 	 * the modifier may have stopped resolving when it was resolved
1135 	 * to a ptr (last-resolved-ptr).
1136 	 *
1137 	 * We now need to continue from the last-resolved-ptr to
1138 	 * ensure the last-resolved-ptr will not referring back to
1139 	 * the currenct ptr (t).
1140 	 */
1141 	if (btf_type_is_modifier(next_type)) {
1142 		const struct btf_type *resolved_type;
1143 		u32 resolved_type_id;
1144 
1145 		resolved_type_id = next_type_id;
1146 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1147 
1148 		if (btf_type_is_ptr(resolved_type) &&
1149 		    !env_type_is_resolve_sink(env, resolved_type) &&
1150 		    !env_type_is_resolved(env, resolved_type_id))
1151 			return env_stack_push(env, resolved_type,
1152 					      resolved_type_id);
1153 	}
1154 
1155 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1156 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1157 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1158 		return -EINVAL;
1159 	}
1160 
1161 resolved:
1162 	env_stack_pop_resolved(env, next_type_id, 0);
1163 
1164 	return 0;
1165 }
1166 
1167 static void btf_modifier_seq_show(const struct btf *btf,
1168 				  const struct btf_type *t,
1169 				  u32 type_id, void *data,
1170 				  u8 bits_offset, struct seq_file *m)
1171 {
1172 	t = btf_type_id_resolve(btf, &type_id);
1173 
1174 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1175 }
1176 
1177 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1178 			     u32 type_id, void *data, u8 bits_offset,
1179 			     struct seq_file *m)
1180 {
1181 	/* It is a hashed value */
1182 	seq_printf(m, "%p", *(void **)data);
1183 }
1184 
1185 static void btf_ref_type_log(struct btf_verifier_env *env,
1186 			     const struct btf_type *t)
1187 {
1188 	btf_verifier_log(env, "type_id=%u", t->type);
1189 }
1190 
1191 static struct btf_kind_operations modifier_ops = {
1192 	.check_meta = btf_ref_type_check_meta,
1193 	.resolve = btf_modifier_resolve,
1194 	.check_member = btf_modifier_check_member,
1195 	.log_details = btf_ref_type_log,
1196 	.seq_show = btf_modifier_seq_show,
1197 };
1198 
1199 static struct btf_kind_operations ptr_ops = {
1200 	.check_meta = btf_ref_type_check_meta,
1201 	.resolve = btf_ptr_resolve,
1202 	.check_member = btf_ptr_check_member,
1203 	.log_details = btf_ref_type_log,
1204 	.seq_show = btf_ptr_seq_show,
1205 };
1206 
1207 static struct btf_kind_operations fwd_ops = {
1208 	.check_meta = btf_ref_type_check_meta,
1209 	.resolve = btf_df_resolve,
1210 	.check_member = btf_df_check_member,
1211 	.log_details = btf_ref_type_log,
1212 	.seq_show = btf_df_seq_show,
1213 };
1214 
1215 static int btf_array_check_member(struct btf_verifier_env *env,
1216 				  const struct btf_type *struct_type,
1217 				  const struct btf_member *member,
1218 				  const struct btf_type *member_type)
1219 {
1220 	u32 struct_bits_off = member->offset;
1221 	u32 struct_size, bytes_offset;
1222 	u32 array_type_id, array_size;
1223 	struct btf *btf = env->btf;
1224 
1225 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1226 		btf_verifier_log_member(env, struct_type, member,
1227 					"Member is not byte aligned");
1228 		return -EINVAL;
1229 	}
1230 
1231 	array_type_id = member->type;
1232 	btf_type_id_size(btf, &array_type_id, &array_size);
1233 	struct_size = struct_type->size;
1234 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1235 	if (struct_size - bytes_offset < array_size) {
1236 		btf_verifier_log_member(env, struct_type, member,
1237 					"Member exceeds struct_size");
1238 		return -EINVAL;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1245 				const struct btf_type *t,
1246 				u32 meta_left)
1247 {
1248 	const struct btf_array *array = btf_type_array(t);
1249 	u32 meta_needed = sizeof(*array);
1250 
1251 	if (meta_left < meta_needed) {
1252 		btf_verifier_log_basic(env, t,
1253 				       "meta_left:%u meta_needed:%u",
1254 				       meta_left, meta_needed);
1255 		return -EINVAL;
1256 	}
1257 
1258 	if (btf_type_vlen(t)) {
1259 		btf_verifier_log_type(env, t, "vlen != 0");
1260 		return -EINVAL;
1261 	}
1262 
1263 	/* We are a little forgiving on array->index_type since
1264 	 * the kernel is not using it.
1265 	 */
1266 	/* Array elem cannot be in type void,
1267 	 * so !array->type is not allowed.
1268 	 */
1269 	if (!array->type || BTF_TYPE_PARENT(array->type)) {
1270 		btf_verifier_log_type(env, t, "Invalid type_id");
1271 		return -EINVAL;
1272 	}
1273 
1274 	btf_verifier_log_type(env, t, NULL);
1275 
1276 	return meta_needed;
1277 }
1278 
1279 static int btf_array_resolve(struct btf_verifier_env *env,
1280 			     const struct resolve_vertex *v)
1281 {
1282 	const struct btf_array *array = btf_type_array(v->t);
1283 	const struct btf_type *elem_type;
1284 	u32 elem_type_id = array->type;
1285 	struct btf *btf = env->btf;
1286 	u32 elem_size;
1287 
1288 	elem_type = btf_type_by_id(btf, elem_type_id);
1289 	if (btf_type_is_void_or_null(elem_type)) {
1290 		btf_verifier_log_type(env, v->t,
1291 				      "Invalid elem");
1292 		return -EINVAL;
1293 	}
1294 
1295 	if (!env_type_is_resolve_sink(env, elem_type) &&
1296 	    !env_type_is_resolved(env, elem_type_id))
1297 		return env_stack_push(env, elem_type, elem_type_id);
1298 
1299 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1300 	if (!elem_type) {
1301 		btf_verifier_log_type(env, v->t, "Invalid elem");
1302 		return -EINVAL;
1303 	}
1304 
1305 	if (btf_type_is_int(elem_type)) {
1306 		int int_type_data = btf_type_int(elem_type);
1307 		u16 nr_bits = BTF_INT_BITS(int_type_data);
1308 		u16 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
1309 
1310 		/* Put more restriction on array of int.  The int cannot
1311 		 * be a bit field and it must be either u8/u16/u32/u64.
1312 		 */
1313 		if (BITS_PER_BYTE_MASKED(nr_bits) ||
1314 		    BTF_INT_OFFSET(int_type_data) ||
1315 		    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
1316 		     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
1317 			btf_verifier_log_type(env, v->t,
1318 					      "Invalid array of int");
1319 			return -EINVAL;
1320 		}
1321 	}
1322 
1323 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1324 		btf_verifier_log_type(env, v->t,
1325 				      "Array size overflows U32_MAX");
1326 		return -EINVAL;
1327 	}
1328 
1329 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1330 
1331 	return 0;
1332 }
1333 
1334 static void btf_array_log(struct btf_verifier_env *env,
1335 			  const struct btf_type *t)
1336 {
1337 	const struct btf_array *array = btf_type_array(t);
1338 
1339 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1340 			 array->type, array->index_type, array->nelems);
1341 }
1342 
1343 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1344 			       u32 type_id, void *data, u8 bits_offset,
1345 			       struct seq_file *m)
1346 {
1347 	const struct btf_array *array = btf_type_array(t);
1348 	const struct btf_kind_operations *elem_ops;
1349 	const struct btf_type *elem_type;
1350 	u32 i, elem_size, elem_type_id;
1351 
1352 	elem_type_id = array->type;
1353 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1354 	elem_ops = btf_type_ops(elem_type);
1355 	seq_puts(m, "[");
1356 	for (i = 0; i < array->nelems; i++) {
1357 		if (i)
1358 			seq_puts(m, ",");
1359 
1360 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1361 				   bits_offset, m);
1362 		data += elem_size;
1363 	}
1364 	seq_puts(m, "]");
1365 }
1366 
1367 static struct btf_kind_operations array_ops = {
1368 	.check_meta = btf_array_check_meta,
1369 	.resolve = btf_array_resolve,
1370 	.check_member = btf_array_check_member,
1371 	.log_details = btf_array_log,
1372 	.seq_show = btf_array_seq_show,
1373 };
1374 
1375 static int btf_struct_check_member(struct btf_verifier_env *env,
1376 				   const struct btf_type *struct_type,
1377 				   const struct btf_member *member,
1378 				   const struct btf_type *member_type)
1379 {
1380 	u32 struct_bits_off = member->offset;
1381 	u32 struct_size, bytes_offset;
1382 
1383 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1384 		btf_verifier_log_member(env, struct_type, member,
1385 					"Member is not byte aligned");
1386 		return -EINVAL;
1387 	}
1388 
1389 	struct_size = struct_type->size;
1390 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1391 	if (struct_size - bytes_offset < member_type->size) {
1392 		btf_verifier_log_member(env, struct_type, member,
1393 					"Member exceeds struct_size");
1394 		return -EINVAL;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1401 				 const struct btf_type *t,
1402 				 u32 meta_left)
1403 {
1404 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1405 	const struct btf_member *member;
1406 	struct btf *btf = env->btf;
1407 	u32 struct_size = t->size;
1408 	u32 meta_needed;
1409 	u16 i;
1410 
1411 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1412 	if (meta_left < meta_needed) {
1413 		btf_verifier_log_basic(env, t,
1414 				       "meta_left:%u meta_needed:%u",
1415 				       meta_left, meta_needed);
1416 		return -EINVAL;
1417 	}
1418 
1419 	btf_verifier_log_type(env, t, NULL);
1420 
1421 	for_each_member(i, t, member) {
1422 		if (!btf_name_offset_valid(btf, member->name_off)) {
1423 			btf_verifier_log_member(env, t, member,
1424 						"Invalid member name_offset:%u",
1425 						member->name_off);
1426 			return -EINVAL;
1427 		}
1428 
1429 		/* A member cannot be in type void */
1430 		if (!member->type || BTF_TYPE_PARENT(member->type)) {
1431 			btf_verifier_log_member(env, t, member,
1432 						"Invalid type_id");
1433 			return -EINVAL;
1434 		}
1435 
1436 		if (is_union && member->offset) {
1437 			btf_verifier_log_member(env, t, member,
1438 						"Invalid member bits_offset");
1439 			return -EINVAL;
1440 		}
1441 
1442 		if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1443 			btf_verifier_log_member(env, t, member,
1444 						"Memmber bits_offset exceeds its struct size");
1445 			return -EINVAL;
1446 		}
1447 
1448 		btf_verifier_log_member(env, t, member, NULL);
1449 	}
1450 
1451 	return meta_needed;
1452 }
1453 
1454 static int btf_struct_resolve(struct btf_verifier_env *env,
1455 			      const struct resolve_vertex *v)
1456 {
1457 	const struct btf_member *member;
1458 	int err;
1459 	u16 i;
1460 
1461 	/* Before continue resolving the next_member,
1462 	 * ensure the last member is indeed resolved to a
1463 	 * type with size info.
1464 	 */
1465 	if (v->next_member) {
1466 		const struct btf_type *last_member_type;
1467 		const struct btf_member *last_member;
1468 		u16 last_member_type_id;
1469 
1470 		last_member = btf_type_member(v->t) + v->next_member - 1;
1471 		last_member_type_id = last_member->type;
1472 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1473 						       last_member_type_id)))
1474 			return -EINVAL;
1475 
1476 		last_member_type = btf_type_by_id(env->btf,
1477 						  last_member_type_id);
1478 		err = btf_type_ops(last_member_type)->check_member(env, v->t,
1479 							last_member,
1480 							last_member_type);
1481 		if (err)
1482 			return err;
1483 	}
1484 
1485 	for_each_member_from(i, v->next_member, v->t, member) {
1486 		u32 member_type_id = member->type;
1487 		const struct btf_type *member_type = btf_type_by_id(env->btf,
1488 								member_type_id);
1489 
1490 		if (btf_type_is_void_or_null(member_type)) {
1491 			btf_verifier_log_member(env, v->t, member,
1492 						"Invalid member");
1493 			return -EINVAL;
1494 		}
1495 
1496 		if (!env_type_is_resolve_sink(env, member_type) &&
1497 		    !env_type_is_resolved(env, member_type_id)) {
1498 			env_stack_set_next_member(env, i + 1);
1499 			return env_stack_push(env, member_type, member_type_id);
1500 		}
1501 
1502 		err = btf_type_ops(member_type)->check_member(env, v->t,
1503 							      member,
1504 							      member_type);
1505 		if (err)
1506 			return err;
1507 	}
1508 
1509 	env_stack_pop_resolved(env, 0, 0);
1510 
1511 	return 0;
1512 }
1513 
1514 static void btf_struct_log(struct btf_verifier_env *env,
1515 			   const struct btf_type *t)
1516 {
1517 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1518 }
1519 
1520 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1521 				u32 type_id, void *data, u8 bits_offset,
1522 				struct seq_file *m)
1523 {
1524 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1525 	const struct btf_member *member;
1526 	u32 i;
1527 
1528 	seq_puts(m, "{");
1529 	for_each_member(i, t, member) {
1530 		const struct btf_type *member_type = btf_type_by_id(btf,
1531 								member->type);
1532 		u32 member_offset = member->offset;
1533 		u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1534 		u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1535 		const struct btf_kind_operations *ops;
1536 
1537 		if (i)
1538 			seq_puts(m, seq);
1539 
1540 		ops = btf_type_ops(member_type);
1541 		ops->seq_show(btf, member_type, member->type,
1542 			      data + bytes_offset, bits8_offset, m);
1543 	}
1544 	seq_puts(m, "}");
1545 }
1546 
1547 static struct btf_kind_operations struct_ops = {
1548 	.check_meta = btf_struct_check_meta,
1549 	.resolve = btf_struct_resolve,
1550 	.check_member = btf_struct_check_member,
1551 	.log_details = btf_struct_log,
1552 	.seq_show = btf_struct_seq_show,
1553 };
1554 
1555 static int btf_enum_check_member(struct btf_verifier_env *env,
1556 				 const struct btf_type *struct_type,
1557 				 const struct btf_member *member,
1558 				 const struct btf_type *member_type)
1559 {
1560 	u32 struct_bits_off = member->offset;
1561 	u32 struct_size, bytes_offset;
1562 
1563 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1564 		btf_verifier_log_member(env, struct_type, member,
1565 					"Member is not byte aligned");
1566 		return -EINVAL;
1567 	}
1568 
1569 	struct_size = struct_type->size;
1570 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1571 	if (struct_size - bytes_offset < sizeof(int)) {
1572 		btf_verifier_log_member(env, struct_type, member,
1573 					"Member exceeds struct_size");
1574 		return -EINVAL;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1581 			       const struct btf_type *t,
1582 			       u32 meta_left)
1583 {
1584 	const struct btf_enum *enums = btf_type_enum(t);
1585 	struct btf *btf = env->btf;
1586 	u16 i, nr_enums;
1587 	u32 meta_needed;
1588 
1589 	nr_enums = btf_type_vlen(t);
1590 	meta_needed = nr_enums * sizeof(*enums);
1591 
1592 	if (meta_left < meta_needed) {
1593 		btf_verifier_log_basic(env, t,
1594 				       "meta_left:%u meta_needed:%u",
1595 				       meta_left, meta_needed);
1596 		return -EINVAL;
1597 	}
1598 
1599 	if (t->size != sizeof(int)) {
1600 		btf_verifier_log_type(env, t, "Expected size:%zu",
1601 				      sizeof(int));
1602 		return -EINVAL;
1603 	}
1604 
1605 	btf_verifier_log_type(env, t, NULL);
1606 
1607 	for (i = 0; i < nr_enums; i++) {
1608 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1609 			btf_verifier_log(env, "\tInvalid name_offset:%u",
1610 					 enums[i].name_off);
1611 			return -EINVAL;
1612 		}
1613 
1614 		btf_verifier_log(env, "\t%s val=%d\n",
1615 				 btf_name_by_offset(btf, enums[i].name_off),
1616 				 enums[i].val);
1617 	}
1618 
1619 	return meta_needed;
1620 }
1621 
1622 static void btf_enum_log(struct btf_verifier_env *env,
1623 			 const struct btf_type *t)
1624 {
1625 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1626 }
1627 
1628 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1629 			      u32 type_id, void *data, u8 bits_offset,
1630 			      struct seq_file *m)
1631 {
1632 	const struct btf_enum *enums = btf_type_enum(t);
1633 	u32 i, nr_enums = btf_type_vlen(t);
1634 	int v = *(int *)data;
1635 
1636 	for (i = 0; i < nr_enums; i++) {
1637 		if (v == enums[i].val) {
1638 			seq_printf(m, "%s",
1639 				   btf_name_by_offset(btf, enums[i].name_off));
1640 			return;
1641 		}
1642 	}
1643 
1644 	seq_printf(m, "%d", v);
1645 }
1646 
1647 static struct btf_kind_operations enum_ops = {
1648 	.check_meta = btf_enum_check_meta,
1649 	.resolve = btf_df_resolve,
1650 	.check_member = btf_enum_check_member,
1651 	.log_details = btf_enum_log,
1652 	.seq_show = btf_enum_seq_show,
1653 };
1654 
1655 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
1656 	[BTF_KIND_INT] = &int_ops,
1657 	[BTF_KIND_PTR] = &ptr_ops,
1658 	[BTF_KIND_ARRAY] = &array_ops,
1659 	[BTF_KIND_STRUCT] = &struct_ops,
1660 	[BTF_KIND_UNION] = &struct_ops,
1661 	[BTF_KIND_ENUM] = &enum_ops,
1662 	[BTF_KIND_FWD] = &fwd_ops,
1663 	[BTF_KIND_TYPEDEF] = &modifier_ops,
1664 	[BTF_KIND_VOLATILE] = &modifier_ops,
1665 	[BTF_KIND_CONST] = &modifier_ops,
1666 	[BTF_KIND_RESTRICT] = &modifier_ops,
1667 };
1668 
1669 static s32 btf_check_meta(struct btf_verifier_env *env,
1670 			  const struct btf_type *t,
1671 			  u32 meta_left)
1672 {
1673 	u32 saved_meta_left = meta_left;
1674 	s32 var_meta_size;
1675 
1676 	if (meta_left < sizeof(*t)) {
1677 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
1678 				 env->log_type_id, meta_left, sizeof(*t));
1679 		return -EINVAL;
1680 	}
1681 	meta_left -= sizeof(*t);
1682 
1683 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
1684 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
1685 		btf_verifier_log(env, "[%u] Invalid kind:%u",
1686 				 env->log_type_id, BTF_INFO_KIND(t->info));
1687 		return -EINVAL;
1688 	}
1689 
1690 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
1691 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
1692 				 env->log_type_id, t->name_off);
1693 		return -EINVAL;
1694 	}
1695 
1696 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
1697 	if (var_meta_size < 0)
1698 		return var_meta_size;
1699 
1700 	meta_left -= var_meta_size;
1701 
1702 	return saved_meta_left - meta_left;
1703 }
1704 
1705 static int btf_check_all_metas(struct btf_verifier_env *env)
1706 {
1707 	struct btf *btf = env->btf;
1708 	struct btf_header *hdr;
1709 	void *cur, *end;
1710 
1711 	hdr = btf->hdr;
1712 	cur = btf->nohdr_data + hdr->type_off;
1713 	end = btf->nohdr_data + hdr->str_off;
1714 
1715 	env->log_type_id = 1;
1716 	while (cur < end) {
1717 		struct btf_type *t = cur;
1718 		s32 meta_size;
1719 
1720 		meta_size = btf_check_meta(env, t, end - cur);
1721 		if (meta_size < 0)
1722 			return meta_size;
1723 
1724 		btf_add_type(env, t);
1725 		cur += meta_size;
1726 		env->log_type_id++;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static int btf_resolve(struct btf_verifier_env *env,
1733 		       const struct btf_type *t, u32 type_id)
1734 {
1735 	const struct resolve_vertex *v;
1736 	int err = 0;
1737 
1738 	env->resolve_mode = RESOLVE_TBD;
1739 	env_stack_push(env, t, type_id);
1740 	while (!err && (v = env_stack_peak(env))) {
1741 		env->log_type_id = v->type_id;
1742 		err = btf_type_ops(v->t)->resolve(env, v);
1743 	}
1744 
1745 	env->log_type_id = type_id;
1746 	if (err == -E2BIG)
1747 		btf_verifier_log_type(env, t,
1748 				      "Exceeded max resolving depth:%u",
1749 				      MAX_RESOLVE_DEPTH);
1750 	else if (err == -EEXIST)
1751 		btf_verifier_log_type(env, t, "Loop detected");
1752 
1753 	return err;
1754 }
1755 
1756 static bool btf_resolve_valid(struct btf_verifier_env *env,
1757 			      const struct btf_type *t,
1758 			      u32 type_id)
1759 {
1760 	struct btf *btf = env->btf;
1761 
1762 	if (!env_type_is_resolved(env, type_id))
1763 		return false;
1764 
1765 	if (btf_type_is_struct(t))
1766 		return !btf->resolved_ids[type_id] &&
1767 			!btf->resolved_sizes[type_id];
1768 
1769 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
1770 		t = btf_type_id_resolve(btf, &type_id);
1771 		return t && !btf_type_is_modifier(t);
1772 	}
1773 
1774 	if (btf_type_is_array(t)) {
1775 		const struct btf_array *array = btf_type_array(t);
1776 		const struct btf_type *elem_type;
1777 		u32 elem_type_id = array->type;
1778 		u32 elem_size;
1779 
1780 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1781 		return elem_type && !btf_type_is_modifier(elem_type) &&
1782 			(array->nelems * elem_size ==
1783 			 btf->resolved_sizes[type_id]);
1784 	}
1785 
1786 	return false;
1787 }
1788 
1789 static int btf_check_all_types(struct btf_verifier_env *env)
1790 {
1791 	struct btf *btf = env->btf;
1792 	u32 type_id;
1793 	int err;
1794 
1795 	err = env_resolve_init(env);
1796 	if (err)
1797 		return err;
1798 
1799 	env->phase++;
1800 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
1801 		const struct btf_type *t = btf_type_by_id(btf, type_id);
1802 
1803 		env->log_type_id = type_id;
1804 		if (btf_type_needs_resolve(t) &&
1805 		    !env_type_is_resolved(env, type_id)) {
1806 			err = btf_resolve(env, t, type_id);
1807 			if (err)
1808 				return err;
1809 		}
1810 
1811 		if (btf_type_needs_resolve(t) &&
1812 		    !btf_resolve_valid(env, t, type_id)) {
1813 			btf_verifier_log_type(env, t, "Invalid resolve state");
1814 			return -EINVAL;
1815 		}
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 static int btf_parse_type_sec(struct btf_verifier_env *env)
1822 {
1823 	int err;
1824 
1825 	err = btf_check_all_metas(env);
1826 	if (err)
1827 		return err;
1828 
1829 	return btf_check_all_types(env);
1830 }
1831 
1832 static int btf_parse_str_sec(struct btf_verifier_env *env)
1833 {
1834 	const struct btf_header *hdr;
1835 	struct btf *btf = env->btf;
1836 	const char *start, *end;
1837 
1838 	hdr = btf->hdr;
1839 	start = btf->nohdr_data + hdr->str_off;
1840 	end = start + hdr->str_len;
1841 
1842 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
1843 	    start[0] || end[-1]) {
1844 		btf_verifier_log(env, "Invalid string section");
1845 		return -EINVAL;
1846 	}
1847 
1848 	btf->strings = start;
1849 
1850 	return 0;
1851 }
1852 
1853 static int btf_parse_hdr(struct btf_verifier_env *env)
1854 {
1855 	const struct btf_header *hdr;
1856 	struct btf *btf = env->btf;
1857 	u32 meta_left;
1858 
1859 	if (btf->data_size < sizeof(*hdr)) {
1860 		btf_verifier_log(env, "btf_header not found");
1861 		return -EINVAL;
1862 	}
1863 
1864 	btf_verifier_log_hdr(env);
1865 
1866 	hdr = btf->hdr;
1867 	if (hdr->magic != BTF_MAGIC) {
1868 		btf_verifier_log(env, "Invalid magic");
1869 		return -EINVAL;
1870 	}
1871 
1872 	if (hdr->version != BTF_VERSION) {
1873 		btf_verifier_log(env, "Unsupported version");
1874 		return -ENOTSUPP;
1875 	}
1876 
1877 	if (hdr->flags) {
1878 		btf_verifier_log(env, "Unsupported flags");
1879 		return -ENOTSUPP;
1880 	}
1881 
1882 	meta_left = btf->data_size - sizeof(*hdr);
1883 	if (!meta_left) {
1884 		btf_verifier_log(env, "No data");
1885 		return -EINVAL;
1886 	}
1887 
1888 	if (meta_left < hdr->type_off || hdr->str_off <= hdr->type_off ||
1889 	    /* Type section must align to 4 bytes */
1890 	    hdr->type_off & (sizeof(u32) - 1)) {
1891 		btf_verifier_log(env, "Invalid type_off");
1892 		return -EINVAL;
1893 	}
1894 
1895 	if (meta_left < hdr->str_off ||
1896 	    meta_left - hdr->str_off < hdr->str_len) {
1897 		btf_verifier_log(env, "Invalid str_off or str_len");
1898 		return -EINVAL;
1899 	}
1900 
1901 	btf->nohdr_data = btf->hdr + 1;
1902 
1903 	return 0;
1904 }
1905 
1906 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
1907 			     u32 log_level, char __user *log_ubuf, u32 log_size)
1908 {
1909 	struct btf_verifier_env *env = NULL;
1910 	struct bpf_verifier_log *log;
1911 	struct btf *btf = NULL;
1912 	u8 *data;
1913 	int err;
1914 
1915 	if (btf_data_size > BTF_MAX_SIZE)
1916 		return ERR_PTR(-E2BIG);
1917 
1918 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
1919 	if (!env)
1920 		return ERR_PTR(-ENOMEM);
1921 
1922 	log = &env->log;
1923 	if (log_level || log_ubuf || log_size) {
1924 		/* user requested verbose verifier output
1925 		 * and supplied buffer to store the verification trace
1926 		 */
1927 		log->level = log_level;
1928 		log->ubuf = log_ubuf;
1929 		log->len_total = log_size;
1930 
1931 		/* log attributes have to be sane */
1932 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
1933 		    !log->level || !log->ubuf) {
1934 			err = -EINVAL;
1935 			goto errout;
1936 		}
1937 	}
1938 
1939 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
1940 	if (!btf) {
1941 		err = -ENOMEM;
1942 		goto errout;
1943 	}
1944 
1945 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
1946 	if (!data) {
1947 		err = -ENOMEM;
1948 		goto errout;
1949 	}
1950 
1951 	btf->data = data;
1952 	btf->data_size = btf_data_size;
1953 
1954 	if (copy_from_user(data, btf_data, btf_data_size)) {
1955 		err = -EFAULT;
1956 		goto errout;
1957 	}
1958 
1959 	env->btf = btf;
1960 
1961 	err = btf_parse_hdr(env);
1962 	if (err)
1963 		goto errout;
1964 
1965 	err = btf_parse_str_sec(env);
1966 	if (err)
1967 		goto errout;
1968 
1969 	err = btf_parse_type_sec(env);
1970 	if (err)
1971 		goto errout;
1972 
1973 	if (!err && log->level && bpf_verifier_log_full(log)) {
1974 		err = -ENOSPC;
1975 		goto errout;
1976 	}
1977 
1978 	if (!err) {
1979 		btf_verifier_env_free(env);
1980 		btf_get(btf);
1981 		return btf;
1982 	}
1983 
1984 errout:
1985 	btf_verifier_env_free(env);
1986 	if (btf)
1987 		btf_free(btf);
1988 	return ERR_PTR(err);
1989 }
1990 
1991 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
1992 		       struct seq_file *m)
1993 {
1994 	const struct btf_type *t = btf_type_by_id(btf, type_id);
1995 
1996 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
1997 }
1998 
1999 static int btf_release(struct inode *inode, struct file *filp)
2000 {
2001 	btf_put(filp->private_data);
2002 	return 0;
2003 }
2004 
2005 const struct file_operations btf_fops = {
2006 	.release	= btf_release,
2007 };
2008 
2009 int btf_new_fd(const union bpf_attr *attr)
2010 {
2011 	struct btf *btf;
2012 	int fd;
2013 
2014 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2015 			attr->btf_size, attr->btf_log_level,
2016 			u64_to_user_ptr(attr->btf_log_buf),
2017 			attr->btf_log_size);
2018 	if (IS_ERR(btf))
2019 		return PTR_ERR(btf);
2020 
2021 	fd = anon_inode_getfd("btf", &btf_fops, btf,
2022 			      O_RDONLY | O_CLOEXEC);
2023 	if (fd < 0)
2024 		btf_put(btf);
2025 
2026 	return fd;
2027 }
2028 
2029 struct btf *btf_get_by_fd(int fd)
2030 {
2031 	struct btf *btf;
2032 	struct fd f;
2033 
2034 	f = fdget(fd);
2035 
2036 	if (!f.file)
2037 		return ERR_PTR(-EBADF);
2038 
2039 	if (f.file->f_op != &btf_fops) {
2040 		fdput(f);
2041 		return ERR_PTR(-EINVAL);
2042 	}
2043 
2044 	btf = f.file->private_data;
2045 	btf_get(btf);
2046 	fdput(f);
2047 
2048 	return btf;
2049 }
2050 
2051 int btf_get_info_by_fd(const struct btf *btf,
2052 		       const union bpf_attr *attr,
2053 		       union bpf_attr __user *uattr)
2054 {
2055 	void __user *udata = u64_to_user_ptr(attr->info.info);
2056 	u32 copy_len = min_t(u32, btf->data_size,
2057 			     attr->info.info_len);
2058 
2059 	if (copy_to_user(udata, btf->data, copy_len) ||
2060 	    put_user(btf->data_size, &uattr->info.info_len))
2061 		return -EFAULT;
2062 
2063 	return 0;
2064 }
2065