xref: /linux/kernel/bpf/btf.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP_SKB,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_MAX,
222 };
223 
224 enum {
225 	BTF_KFUNC_SET_MAX_CNT = 256,
226 	BTF_DTOR_KFUNC_MAX_CNT = 256,
227 	BTF_KFUNC_FILTER_MAX_CNT = 16,
228 };
229 
230 struct btf_kfunc_hook_filter {
231 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
232 	u32 nr_filters;
233 };
234 
235 struct btf_kfunc_set_tab {
236 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
237 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
238 };
239 
240 struct btf_id_dtor_kfunc_tab {
241 	u32 cnt;
242 	struct btf_id_dtor_kfunc dtors[];
243 };
244 
245 struct btf_struct_ops_tab {
246 	u32 cnt;
247 	u32 capacity;
248 	struct bpf_struct_ops_desc ops[];
249 };
250 
251 struct btf {
252 	void *data;
253 	struct btf_type **types;
254 	u32 *resolved_ids;
255 	u32 *resolved_sizes;
256 	const char *strings;
257 	void *nohdr_data;
258 	struct btf_header hdr;
259 	u32 nr_types; /* includes VOID for base BTF */
260 	u32 types_size;
261 	u32 data_size;
262 	refcount_t refcnt;
263 	u32 id;
264 	struct rcu_head rcu;
265 	struct btf_kfunc_set_tab *kfunc_set_tab;
266 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
267 	struct btf_struct_metas *struct_meta_tab;
268 	struct btf_struct_ops_tab *struct_ops_tab;
269 
270 	/* split BTF support */
271 	struct btf *base_btf;
272 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
273 	u32 start_str_off; /* first string offset (0 for base BTF) */
274 	char name[MODULE_NAME_LEN];
275 	bool kernel_btf;
276 };
277 
278 enum verifier_phase {
279 	CHECK_META,
280 	CHECK_TYPE,
281 };
282 
283 struct resolve_vertex {
284 	const struct btf_type *t;
285 	u32 type_id;
286 	u16 next_member;
287 };
288 
289 enum visit_state {
290 	NOT_VISITED,
291 	VISITED,
292 	RESOLVED,
293 };
294 
295 enum resolve_mode {
296 	RESOLVE_TBD,	/* To Be Determined */
297 	RESOLVE_PTR,	/* Resolving for Pointer */
298 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
299 					 * or array
300 					 */
301 };
302 
303 #define MAX_RESOLVE_DEPTH 32
304 
305 struct btf_sec_info {
306 	u32 off;
307 	u32 len;
308 };
309 
310 struct btf_verifier_env {
311 	struct btf *btf;
312 	u8 *visit_states;
313 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
314 	struct bpf_verifier_log log;
315 	u32 log_type_id;
316 	u32 top_stack;
317 	enum verifier_phase phase;
318 	enum resolve_mode resolve_mode;
319 };
320 
321 static const char * const btf_kind_str[NR_BTF_KINDS] = {
322 	[BTF_KIND_UNKN]		= "UNKNOWN",
323 	[BTF_KIND_INT]		= "INT",
324 	[BTF_KIND_PTR]		= "PTR",
325 	[BTF_KIND_ARRAY]	= "ARRAY",
326 	[BTF_KIND_STRUCT]	= "STRUCT",
327 	[BTF_KIND_UNION]	= "UNION",
328 	[BTF_KIND_ENUM]		= "ENUM",
329 	[BTF_KIND_FWD]		= "FWD",
330 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
331 	[BTF_KIND_VOLATILE]	= "VOLATILE",
332 	[BTF_KIND_CONST]	= "CONST",
333 	[BTF_KIND_RESTRICT]	= "RESTRICT",
334 	[BTF_KIND_FUNC]		= "FUNC",
335 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
336 	[BTF_KIND_VAR]		= "VAR",
337 	[BTF_KIND_DATASEC]	= "DATASEC",
338 	[BTF_KIND_FLOAT]	= "FLOAT",
339 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
340 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
341 	[BTF_KIND_ENUM64]	= "ENUM64",
342 };
343 
344 const char *btf_type_str(const struct btf_type *t)
345 {
346 	return btf_kind_str[BTF_INFO_KIND(t->info)];
347 }
348 
349 /* Chunk size we use in safe copy of data to be shown. */
350 #define BTF_SHOW_OBJ_SAFE_SIZE		32
351 
352 /*
353  * This is the maximum size of a base type value (equivalent to a
354  * 128-bit int); if we are at the end of our safe buffer and have
355  * less than 16 bytes space we can't be assured of being able
356  * to copy the next type safely, so in such cases we will initiate
357  * a new copy.
358  */
359 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
360 
361 /* Type name size */
362 #define BTF_SHOW_NAME_SIZE		80
363 
364 /*
365  * The suffix of a type that indicates it cannot alias another type when
366  * comparing BTF IDs for kfunc invocations.
367  */
368 #define NOCAST_ALIAS_SUFFIX		"___init"
369 
370 /*
371  * Common data to all BTF show operations. Private show functions can add
372  * their own data to a structure containing a struct btf_show and consult it
373  * in the show callback.  See btf_type_show() below.
374  *
375  * One challenge with showing nested data is we want to skip 0-valued
376  * data, but in order to figure out whether a nested object is all zeros
377  * we need to walk through it.  As a result, we need to make two passes
378  * when handling structs, unions and arrays; the first path simply looks
379  * for nonzero data, while the second actually does the display.  The first
380  * pass is signalled by show->state.depth_check being set, and if we
381  * encounter a non-zero value we set show->state.depth_to_show to
382  * the depth at which we encountered it.  When we have completed the
383  * first pass, we will know if anything needs to be displayed if
384  * depth_to_show > depth.  See btf_[struct,array]_show() for the
385  * implementation of this.
386  *
387  * Another problem is we want to ensure the data for display is safe to
388  * access.  To support this, the anonymous "struct {} obj" tracks the data
389  * object and our safe copy of it.  We copy portions of the data needed
390  * to the object "copy" buffer, but because its size is limited to
391  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
392  * traverse larger objects for display.
393  *
394  * The various data type show functions all start with a call to
395  * btf_show_start_type() which returns a pointer to the safe copy
396  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
397  * raw data itself).  btf_show_obj_safe() is responsible for
398  * using copy_from_kernel_nofault() to update the safe data if necessary
399  * as we traverse the object's data.  skbuff-like semantics are
400  * used:
401  *
402  * - obj.head points to the start of the toplevel object for display
403  * - obj.size is the size of the toplevel object
404  * - obj.data points to the current point in the original data at
405  *   which our safe data starts.  obj.data will advance as we copy
406  *   portions of the data.
407  *
408  * In most cases a single copy will suffice, but larger data structures
409  * such as "struct task_struct" will require many copies.  The logic in
410  * btf_show_obj_safe() handles the logic that determines if a new
411  * copy_from_kernel_nofault() is needed.
412  */
413 struct btf_show {
414 	u64 flags;
415 	void *target;	/* target of show operation (seq file, buffer) */
416 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
417 	const struct btf *btf;
418 	/* below are used during iteration */
419 	struct {
420 		u8 depth;
421 		u8 depth_to_show;
422 		u8 depth_check;
423 		u8 array_member:1,
424 		   array_terminated:1;
425 		u16 array_encoding;
426 		u32 type_id;
427 		int status;			/* non-zero for error */
428 		const struct btf_type *type;
429 		const struct btf_member *member;
430 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
431 	} state;
432 	struct {
433 		u32 size;
434 		void *head;
435 		void *data;
436 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
437 	} obj;
438 };
439 
440 struct btf_kind_operations {
441 	s32 (*check_meta)(struct btf_verifier_env *env,
442 			  const struct btf_type *t,
443 			  u32 meta_left);
444 	int (*resolve)(struct btf_verifier_env *env,
445 		       const struct resolve_vertex *v);
446 	int (*check_member)(struct btf_verifier_env *env,
447 			    const struct btf_type *struct_type,
448 			    const struct btf_member *member,
449 			    const struct btf_type *member_type);
450 	int (*check_kflag_member)(struct btf_verifier_env *env,
451 				  const struct btf_type *struct_type,
452 				  const struct btf_member *member,
453 				  const struct btf_type *member_type);
454 	void (*log_details)(struct btf_verifier_env *env,
455 			    const struct btf_type *t);
456 	void (*show)(const struct btf *btf, const struct btf_type *t,
457 			 u32 type_id, void *data, u8 bits_offsets,
458 			 struct btf_show *show);
459 };
460 
461 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
462 static struct btf_type btf_void;
463 
464 static int btf_resolve(struct btf_verifier_env *env,
465 		       const struct btf_type *t, u32 type_id);
466 
467 static int btf_func_check(struct btf_verifier_env *env,
468 			  const struct btf_type *t);
469 
470 static bool btf_type_is_modifier(const struct btf_type *t)
471 {
472 	/* Some of them is not strictly a C modifier
473 	 * but they are grouped into the same bucket
474 	 * for BTF concern:
475 	 *   A type (t) that refers to another
476 	 *   type through t->type AND its size cannot
477 	 *   be determined without following the t->type.
478 	 *
479 	 * ptr does not fall into this bucket
480 	 * because its size is always sizeof(void *).
481 	 */
482 	switch (BTF_INFO_KIND(t->info)) {
483 	case BTF_KIND_TYPEDEF:
484 	case BTF_KIND_VOLATILE:
485 	case BTF_KIND_CONST:
486 	case BTF_KIND_RESTRICT:
487 	case BTF_KIND_TYPE_TAG:
488 		return true;
489 	}
490 
491 	return false;
492 }
493 
494 bool btf_type_is_void(const struct btf_type *t)
495 {
496 	return t == &btf_void;
497 }
498 
499 static bool btf_type_is_fwd(const struct btf_type *t)
500 {
501 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
502 }
503 
504 static bool btf_type_is_datasec(const struct btf_type *t)
505 {
506 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
507 }
508 
509 static bool btf_type_is_decl_tag(const struct btf_type *t)
510 {
511 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
512 }
513 
514 static bool btf_type_nosize(const struct btf_type *t)
515 {
516 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
517 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
518 	       btf_type_is_decl_tag(t);
519 }
520 
521 static bool btf_type_nosize_or_null(const struct btf_type *t)
522 {
523 	return !t || btf_type_nosize(t);
524 }
525 
526 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
527 {
528 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
529 	       btf_type_is_var(t) || btf_type_is_typedef(t);
530 }
531 
532 u32 btf_nr_types(const struct btf *btf)
533 {
534 	u32 total = 0;
535 
536 	while (btf) {
537 		total += btf->nr_types;
538 		btf = btf->base_btf;
539 	}
540 
541 	return total;
542 }
543 
544 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
545 {
546 	const struct btf_type *t;
547 	const char *tname;
548 	u32 i, total;
549 
550 	total = btf_nr_types(btf);
551 	for (i = 1; i < total; i++) {
552 		t = btf_type_by_id(btf, i);
553 		if (BTF_INFO_KIND(t->info) != kind)
554 			continue;
555 
556 		tname = btf_name_by_offset(btf, t->name_off);
557 		if (!strcmp(tname, name))
558 			return i;
559 	}
560 
561 	return -ENOENT;
562 }
563 
564 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
565 {
566 	struct btf *btf;
567 	s32 ret;
568 	int id;
569 
570 	btf = bpf_get_btf_vmlinux();
571 	if (IS_ERR(btf))
572 		return PTR_ERR(btf);
573 	if (!btf)
574 		return -EINVAL;
575 
576 	ret = btf_find_by_name_kind(btf, name, kind);
577 	/* ret is never zero, since btf_find_by_name_kind returns
578 	 * positive btf_id or negative error.
579 	 */
580 	if (ret > 0) {
581 		btf_get(btf);
582 		*btf_p = btf;
583 		return ret;
584 	}
585 
586 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
587 	spin_lock_bh(&btf_idr_lock);
588 	idr_for_each_entry(&btf_idr, btf, id) {
589 		if (!btf_is_module(btf))
590 			continue;
591 		/* linear search could be slow hence unlock/lock
592 		 * the IDR to avoiding holding it for too long
593 		 */
594 		btf_get(btf);
595 		spin_unlock_bh(&btf_idr_lock);
596 		ret = btf_find_by_name_kind(btf, name, kind);
597 		if (ret > 0) {
598 			*btf_p = btf;
599 			return ret;
600 		}
601 		btf_put(btf);
602 		spin_lock_bh(&btf_idr_lock);
603 	}
604 	spin_unlock_bh(&btf_idr_lock);
605 	return ret;
606 }
607 
608 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
609 					       u32 id, u32 *res_id)
610 {
611 	const struct btf_type *t = btf_type_by_id(btf, id);
612 
613 	while (btf_type_is_modifier(t)) {
614 		id = t->type;
615 		t = btf_type_by_id(btf, t->type);
616 	}
617 
618 	if (res_id)
619 		*res_id = id;
620 
621 	return t;
622 }
623 
624 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
625 					    u32 id, u32 *res_id)
626 {
627 	const struct btf_type *t;
628 
629 	t = btf_type_skip_modifiers(btf, id, NULL);
630 	if (!btf_type_is_ptr(t))
631 		return NULL;
632 
633 	return btf_type_skip_modifiers(btf, t->type, res_id);
634 }
635 
636 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
637 						 u32 id, u32 *res_id)
638 {
639 	const struct btf_type *ptype;
640 
641 	ptype = btf_type_resolve_ptr(btf, id, res_id);
642 	if (ptype && btf_type_is_func_proto(ptype))
643 		return ptype;
644 
645 	return NULL;
646 }
647 
648 /* Types that act only as a source, not sink or intermediate
649  * type when resolving.
650  */
651 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
652 {
653 	return btf_type_is_var(t) ||
654 	       btf_type_is_decl_tag(t) ||
655 	       btf_type_is_datasec(t);
656 }
657 
658 /* What types need to be resolved?
659  *
660  * btf_type_is_modifier() is an obvious one.
661  *
662  * btf_type_is_struct() because its member refers to
663  * another type (through member->type).
664  *
665  * btf_type_is_var() because the variable refers to
666  * another type. btf_type_is_datasec() holds multiple
667  * btf_type_is_var() types that need resolving.
668  *
669  * btf_type_is_array() because its element (array->type)
670  * refers to another type.  Array can be thought of a
671  * special case of struct while array just has the same
672  * member-type repeated by array->nelems of times.
673  */
674 static bool btf_type_needs_resolve(const struct btf_type *t)
675 {
676 	return btf_type_is_modifier(t) ||
677 	       btf_type_is_ptr(t) ||
678 	       btf_type_is_struct(t) ||
679 	       btf_type_is_array(t) ||
680 	       btf_type_is_var(t) ||
681 	       btf_type_is_func(t) ||
682 	       btf_type_is_decl_tag(t) ||
683 	       btf_type_is_datasec(t);
684 }
685 
686 /* t->size can be used */
687 static bool btf_type_has_size(const struct btf_type *t)
688 {
689 	switch (BTF_INFO_KIND(t->info)) {
690 	case BTF_KIND_INT:
691 	case BTF_KIND_STRUCT:
692 	case BTF_KIND_UNION:
693 	case BTF_KIND_ENUM:
694 	case BTF_KIND_DATASEC:
695 	case BTF_KIND_FLOAT:
696 	case BTF_KIND_ENUM64:
697 		return true;
698 	}
699 
700 	return false;
701 }
702 
703 static const char *btf_int_encoding_str(u8 encoding)
704 {
705 	if (encoding == 0)
706 		return "(none)";
707 	else if (encoding == BTF_INT_SIGNED)
708 		return "SIGNED";
709 	else if (encoding == BTF_INT_CHAR)
710 		return "CHAR";
711 	else if (encoding == BTF_INT_BOOL)
712 		return "BOOL";
713 	else
714 		return "UNKN";
715 }
716 
717 static u32 btf_type_int(const struct btf_type *t)
718 {
719 	return *(u32 *)(t + 1);
720 }
721 
722 static const struct btf_array *btf_type_array(const struct btf_type *t)
723 {
724 	return (const struct btf_array *)(t + 1);
725 }
726 
727 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
728 {
729 	return (const struct btf_enum *)(t + 1);
730 }
731 
732 static const struct btf_var *btf_type_var(const struct btf_type *t)
733 {
734 	return (const struct btf_var *)(t + 1);
735 }
736 
737 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
738 {
739 	return (const struct btf_decl_tag *)(t + 1);
740 }
741 
742 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
743 {
744 	return (const struct btf_enum64 *)(t + 1);
745 }
746 
747 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
748 {
749 	return kind_ops[BTF_INFO_KIND(t->info)];
750 }
751 
752 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
753 {
754 	if (!BTF_STR_OFFSET_VALID(offset))
755 		return false;
756 
757 	while (offset < btf->start_str_off)
758 		btf = btf->base_btf;
759 
760 	offset -= btf->start_str_off;
761 	return offset < btf->hdr.str_len;
762 }
763 
764 static bool __btf_name_char_ok(char c, bool first)
765 {
766 	if ((first ? !isalpha(c) :
767 		     !isalnum(c)) &&
768 	    c != '_' &&
769 	    c != '.')
770 		return false;
771 	return true;
772 }
773 
774 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
775 {
776 	while (offset < btf->start_str_off)
777 		btf = btf->base_btf;
778 
779 	offset -= btf->start_str_off;
780 	if (offset < btf->hdr.str_len)
781 		return &btf->strings[offset];
782 
783 	return NULL;
784 }
785 
786 static bool __btf_name_valid(const struct btf *btf, u32 offset)
787 {
788 	/* offset must be valid */
789 	const char *src = btf_str_by_offset(btf, offset);
790 	const char *src_limit;
791 
792 	if (!__btf_name_char_ok(*src, true))
793 		return false;
794 
795 	/* set a limit on identifier length */
796 	src_limit = src + KSYM_NAME_LEN;
797 	src++;
798 	while (*src && src < src_limit) {
799 		if (!__btf_name_char_ok(*src, false))
800 			return false;
801 		src++;
802 	}
803 
804 	return !*src;
805 }
806 
807 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
808 {
809 	return __btf_name_valid(btf, offset);
810 }
811 
812 /* Allow any printable character in DATASEC names */
813 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
814 {
815 	/* offset must be valid */
816 	const char *src = btf_str_by_offset(btf, offset);
817 	const char *src_limit;
818 
819 	/* set a limit on identifier length */
820 	src_limit = src + KSYM_NAME_LEN;
821 	src++;
822 	while (*src && src < src_limit) {
823 		if (!isprint(*src))
824 			return false;
825 		src++;
826 	}
827 
828 	return !*src;
829 }
830 
831 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
832 {
833 	const char *name;
834 
835 	if (!offset)
836 		return "(anon)";
837 
838 	name = btf_str_by_offset(btf, offset);
839 	return name ?: "(invalid-name-offset)";
840 }
841 
842 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
843 {
844 	return btf_str_by_offset(btf, offset);
845 }
846 
847 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
848 {
849 	while (type_id < btf->start_id)
850 		btf = btf->base_btf;
851 
852 	type_id -= btf->start_id;
853 	if (type_id >= btf->nr_types)
854 		return NULL;
855 	return btf->types[type_id];
856 }
857 EXPORT_SYMBOL_GPL(btf_type_by_id);
858 
859 /*
860  * Regular int is not a bit field and it must be either
861  * u8/u16/u32/u64 or __int128.
862  */
863 static bool btf_type_int_is_regular(const struct btf_type *t)
864 {
865 	u8 nr_bits, nr_bytes;
866 	u32 int_data;
867 
868 	int_data = btf_type_int(t);
869 	nr_bits = BTF_INT_BITS(int_data);
870 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
871 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
872 	    BTF_INT_OFFSET(int_data) ||
873 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
874 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
875 	     nr_bytes != (2 * sizeof(u64)))) {
876 		return false;
877 	}
878 
879 	return true;
880 }
881 
882 /*
883  * Check that given struct member is a regular int with expected
884  * offset and size.
885  */
886 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
887 			   const struct btf_member *m,
888 			   u32 expected_offset, u32 expected_size)
889 {
890 	const struct btf_type *t;
891 	u32 id, int_data;
892 	u8 nr_bits;
893 
894 	id = m->type;
895 	t = btf_type_id_size(btf, &id, NULL);
896 	if (!t || !btf_type_is_int(t))
897 		return false;
898 
899 	int_data = btf_type_int(t);
900 	nr_bits = BTF_INT_BITS(int_data);
901 	if (btf_type_kflag(s)) {
902 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
903 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
904 
905 		/* if kflag set, int should be a regular int and
906 		 * bit offset should be at byte boundary.
907 		 */
908 		return !bitfield_size &&
909 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
910 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
911 	}
912 
913 	if (BTF_INT_OFFSET(int_data) ||
914 	    BITS_PER_BYTE_MASKED(m->offset) ||
915 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
916 	    BITS_PER_BYTE_MASKED(nr_bits) ||
917 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
918 		return false;
919 
920 	return true;
921 }
922 
923 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
924 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
925 						       u32 id)
926 {
927 	const struct btf_type *t = btf_type_by_id(btf, id);
928 
929 	while (btf_type_is_modifier(t) &&
930 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
931 		t = btf_type_by_id(btf, t->type);
932 	}
933 
934 	return t;
935 }
936 
937 #define BTF_SHOW_MAX_ITER	10
938 
939 #define BTF_KIND_BIT(kind)	(1ULL << kind)
940 
941 /*
942  * Populate show->state.name with type name information.
943  * Format of type name is
944  *
945  * [.member_name = ] (type_name)
946  */
947 static const char *btf_show_name(struct btf_show *show)
948 {
949 	/* BTF_MAX_ITER array suffixes "[]" */
950 	const char *array_suffixes = "[][][][][][][][][][]";
951 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
952 	/* BTF_MAX_ITER pointer suffixes "*" */
953 	const char *ptr_suffixes = "**********";
954 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
955 	const char *name = NULL, *prefix = "", *parens = "";
956 	const struct btf_member *m = show->state.member;
957 	const struct btf_type *t;
958 	const struct btf_array *array;
959 	u32 id = show->state.type_id;
960 	const char *member = NULL;
961 	bool show_member = false;
962 	u64 kinds = 0;
963 	int i;
964 
965 	show->state.name[0] = '\0';
966 
967 	/*
968 	 * Don't show type name if we're showing an array member;
969 	 * in that case we show the array type so don't need to repeat
970 	 * ourselves for each member.
971 	 */
972 	if (show->state.array_member)
973 		return "";
974 
975 	/* Retrieve member name, if any. */
976 	if (m) {
977 		member = btf_name_by_offset(show->btf, m->name_off);
978 		show_member = strlen(member) > 0;
979 		id = m->type;
980 	}
981 
982 	/*
983 	 * Start with type_id, as we have resolved the struct btf_type *
984 	 * via btf_modifier_show() past the parent typedef to the child
985 	 * struct, int etc it is defined as.  In such cases, the type_id
986 	 * still represents the starting type while the struct btf_type *
987 	 * in our show->state points at the resolved type of the typedef.
988 	 */
989 	t = btf_type_by_id(show->btf, id);
990 	if (!t)
991 		return "";
992 
993 	/*
994 	 * The goal here is to build up the right number of pointer and
995 	 * array suffixes while ensuring the type name for a typedef
996 	 * is represented.  Along the way we accumulate a list of
997 	 * BTF kinds we have encountered, since these will inform later
998 	 * display; for example, pointer types will not require an
999 	 * opening "{" for struct, we will just display the pointer value.
1000 	 *
1001 	 * We also want to accumulate the right number of pointer or array
1002 	 * indices in the format string while iterating until we get to
1003 	 * the typedef/pointee/array member target type.
1004 	 *
1005 	 * We start by pointing at the end of pointer and array suffix
1006 	 * strings; as we accumulate pointers and arrays we move the pointer
1007 	 * or array string backwards so it will show the expected number of
1008 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1009 	 * and/or arrays and typedefs are supported as a precaution.
1010 	 *
1011 	 * We also want to get typedef name while proceeding to resolve
1012 	 * type it points to so that we can add parentheses if it is a
1013 	 * "typedef struct" etc.
1014 	 */
1015 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1016 
1017 		switch (BTF_INFO_KIND(t->info)) {
1018 		case BTF_KIND_TYPEDEF:
1019 			if (!name)
1020 				name = btf_name_by_offset(show->btf,
1021 							       t->name_off);
1022 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1023 			id = t->type;
1024 			break;
1025 		case BTF_KIND_ARRAY:
1026 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1027 			parens = "[";
1028 			if (!t)
1029 				return "";
1030 			array = btf_type_array(t);
1031 			if (array_suffix > array_suffixes)
1032 				array_suffix -= 2;
1033 			id = array->type;
1034 			break;
1035 		case BTF_KIND_PTR:
1036 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1037 			if (ptr_suffix > ptr_suffixes)
1038 				ptr_suffix -= 1;
1039 			id = t->type;
1040 			break;
1041 		default:
1042 			id = 0;
1043 			break;
1044 		}
1045 		if (!id)
1046 			break;
1047 		t = btf_type_skip_qualifiers(show->btf, id);
1048 	}
1049 	/* We may not be able to represent this type; bail to be safe */
1050 	if (i == BTF_SHOW_MAX_ITER)
1051 		return "";
1052 
1053 	if (!name)
1054 		name = btf_name_by_offset(show->btf, t->name_off);
1055 
1056 	switch (BTF_INFO_KIND(t->info)) {
1057 	case BTF_KIND_STRUCT:
1058 	case BTF_KIND_UNION:
1059 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1060 			 "struct" : "union";
1061 		/* if it's an array of struct/union, parens is already set */
1062 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1063 			parens = "{";
1064 		break;
1065 	case BTF_KIND_ENUM:
1066 	case BTF_KIND_ENUM64:
1067 		prefix = "enum";
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	/* pointer does not require parens */
1074 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1075 		parens = "";
1076 	/* typedef does not require struct/union/enum prefix */
1077 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1078 		prefix = "";
1079 
1080 	if (!name)
1081 		name = "";
1082 
1083 	/* Even if we don't want type name info, we want parentheses etc */
1084 	if (show->flags & BTF_SHOW_NONAME)
1085 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1086 			 parens);
1087 	else
1088 		snprintf(show->state.name, sizeof(show->state.name),
1089 			 "%s%s%s(%s%s%s%s%s%s)%s",
1090 			 /* first 3 strings comprise ".member = " */
1091 			 show_member ? "." : "",
1092 			 show_member ? member : "",
1093 			 show_member ? " = " : "",
1094 			 /* ...next is our prefix (struct, enum, etc) */
1095 			 prefix,
1096 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1097 			 /* ...this is the type name itself */
1098 			 name,
1099 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1100 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1101 			 array_suffix, parens);
1102 
1103 	return show->state.name;
1104 }
1105 
1106 static const char *__btf_show_indent(struct btf_show *show)
1107 {
1108 	const char *indents = "                                ";
1109 	const char *indent = &indents[strlen(indents)];
1110 
1111 	if ((indent - show->state.depth) >= indents)
1112 		return indent - show->state.depth;
1113 	return indents;
1114 }
1115 
1116 static const char *btf_show_indent(struct btf_show *show)
1117 {
1118 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1119 }
1120 
1121 static const char *btf_show_newline(struct btf_show *show)
1122 {
1123 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1124 }
1125 
1126 static const char *btf_show_delim(struct btf_show *show)
1127 {
1128 	if (show->state.depth == 0)
1129 		return "";
1130 
1131 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1132 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1133 		return "|";
1134 
1135 	return ",";
1136 }
1137 
1138 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1139 {
1140 	va_list args;
1141 
1142 	if (!show->state.depth_check) {
1143 		va_start(args, fmt);
1144 		show->showfn(show, fmt, args);
1145 		va_end(args);
1146 	}
1147 }
1148 
1149 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1150  * format specifiers to the format specifier passed in; these do the work of
1151  * adding indentation, delimiters etc while the caller simply has to specify
1152  * the type value(s) in the format specifier + value(s).
1153  */
1154 #define btf_show_type_value(show, fmt, value)				       \
1155 	do {								       \
1156 		if ((value) != (__typeof__(value))0 ||			       \
1157 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1158 		    show->state.depth == 0) {				       \
1159 			btf_show(show, "%s%s" fmt "%s%s",		       \
1160 				 btf_show_indent(show),			       \
1161 				 btf_show_name(show),			       \
1162 				 value, btf_show_delim(show),		       \
1163 				 btf_show_newline(show));		       \
1164 			if (show->state.depth > show->state.depth_to_show)     \
1165 				show->state.depth_to_show = show->state.depth; \
1166 		}							       \
1167 	} while (0)
1168 
1169 #define btf_show_type_values(show, fmt, ...)				       \
1170 	do {								       \
1171 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1172 			 btf_show_name(show),				       \
1173 			 __VA_ARGS__, btf_show_delim(show),		       \
1174 			 btf_show_newline(show));			       \
1175 		if (show->state.depth > show->state.depth_to_show)	       \
1176 			show->state.depth_to_show = show->state.depth;	       \
1177 	} while (0)
1178 
1179 /* How much is left to copy to safe buffer after @data? */
1180 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1181 {
1182 	return show->obj.head + show->obj.size - data;
1183 }
1184 
1185 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1186 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1187 {
1188 	return data >= show->obj.data &&
1189 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1190 }
1191 
1192 /*
1193  * If object pointed to by @data of @size falls within our safe buffer, return
1194  * the equivalent pointer to the same safe data.  Assumes
1195  * copy_from_kernel_nofault() has already happened and our safe buffer is
1196  * populated.
1197  */
1198 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1199 {
1200 	if (btf_show_obj_is_safe(show, data, size))
1201 		return show->obj.safe + (data - show->obj.data);
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * Return a safe-to-access version of data pointed to by @data.
1207  * We do this by copying the relevant amount of information
1208  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1209  *
1210  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1211  * safe copy is needed.
1212  *
1213  * Otherwise we need to determine if we have the required amount
1214  * of data (determined by the @data pointer and the size of the
1215  * largest base type we can encounter (represented by
1216  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1217  * that we will be able to print some of the current object,
1218  * and if more is needed a copy will be triggered.
1219  * Some objects such as structs will not fit into the buffer;
1220  * in such cases additional copies when we iterate over their
1221  * members may be needed.
1222  *
1223  * btf_show_obj_safe() is used to return a safe buffer for
1224  * btf_show_start_type(); this ensures that as we recurse into
1225  * nested types we always have safe data for the given type.
1226  * This approach is somewhat wasteful; it's possible for example
1227  * that when iterating over a large union we'll end up copying the
1228  * same data repeatedly, but the goal is safety not performance.
1229  * We use stack data as opposed to per-CPU buffers because the
1230  * iteration over a type can take some time, and preemption handling
1231  * would greatly complicate use of the safe buffer.
1232  */
1233 static void *btf_show_obj_safe(struct btf_show *show,
1234 			       const struct btf_type *t,
1235 			       void *data)
1236 {
1237 	const struct btf_type *rt;
1238 	int size_left, size;
1239 	void *safe = NULL;
1240 
1241 	if (show->flags & BTF_SHOW_UNSAFE)
1242 		return data;
1243 
1244 	rt = btf_resolve_size(show->btf, t, &size);
1245 	if (IS_ERR(rt)) {
1246 		show->state.status = PTR_ERR(rt);
1247 		return NULL;
1248 	}
1249 
1250 	/*
1251 	 * Is this toplevel object? If so, set total object size and
1252 	 * initialize pointers.  Otherwise check if we still fall within
1253 	 * our safe object data.
1254 	 */
1255 	if (show->state.depth == 0) {
1256 		show->obj.size = size;
1257 		show->obj.head = data;
1258 	} else {
1259 		/*
1260 		 * If the size of the current object is > our remaining
1261 		 * safe buffer we _may_ need to do a new copy.  However
1262 		 * consider the case of a nested struct; it's size pushes
1263 		 * us over the safe buffer limit, but showing any individual
1264 		 * struct members does not.  In such cases, we don't need
1265 		 * to initiate a fresh copy yet; however we definitely need
1266 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1267 		 * in our buffer, regardless of the current object size.
1268 		 * The logic here is that as we resolve types we will
1269 		 * hit a base type at some point, and we need to be sure
1270 		 * the next chunk of data is safely available to display
1271 		 * that type info safely.  We cannot rely on the size of
1272 		 * the current object here because it may be much larger
1273 		 * than our current buffer (e.g. task_struct is 8k).
1274 		 * All we want to do here is ensure that we can print the
1275 		 * next basic type, which we can if either
1276 		 * - the current type size is within the safe buffer; or
1277 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1278 		 *   the safe buffer.
1279 		 */
1280 		safe = __btf_show_obj_safe(show, data,
1281 					   min(size,
1282 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1283 	}
1284 
1285 	/*
1286 	 * We need a new copy to our safe object, either because we haven't
1287 	 * yet copied and are initializing safe data, or because the data
1288 	 * we want falls outside the boundaries of the safe object.
1289 	 */
1290 	if (!safe) {
1291 		size_left = btf_show_obj_size_left(show, data);
1292 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1293 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1294 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1295 							      data, size_left);
1296 		if (!show->state.status) {
1297 			show->obj.data = data;
1298 			safe = show->obj.safe;
1299 		}
1300 	}
1301 
1302 	return safe;
1303 }
1304 
1305 /*
1306  * Set the type we are starting to show and return a safe data pointer
1307  * to be used for showing the associated data.
1308  */
1309 static void *btf_show_start_type(struct btf_show *show,
1310 				 const struct btf_type *t,
1311 				 u32 type_id, void *data)
1312 {
1313 	show->state.type = t;
1314 	show->state.type_id = type_id;
1315 	show->state.name[0] = '\0';
1316 
1317 	return btf_show_obj_safe(show, t, data);
1318 }
1319 
1320 static void btf_show_end_type(struct btf_show *show)
1321 {
1322 	show->state.type = NULL;
1323 	show->state.type_id = 0;
1324 	show->state.name[0] = '\0';
1325 }
1326 
1327 static void *btf_show_start_aggr_type(struct btf_show *show,
1328 				      const struct btf_type *t,
1329 				      u32 type_id, void *data)
1330 {
1331 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1332 
1333 	if (!safe_data)
1334 		return safe_data;
1335 
1336 	btf_show(show, "%s%s%s", btf_show_indent(show),
1337 		 btf_show_name(show),
1338 		 btf_show_newline(show));
1339 	show->state.depth++;
1340 	return safe_data;
1341 }
1342 
1343 static void btf_show_end_aggr_type(struct btf_show *show,
1344 				   const char *suffix)
1345 {
1346 	show->state.depth--;
1347 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1348 		 btf_show_delim(show), btf_show_newline(show));
1349 	btf_show_end_type(show);
1350 }
1351 
1352 static void btf_show_start_member(struct btf_show *show,
1353 				  const struct btf_member *m)
1354 {
1355 	show->state.member = m;
1356 }
1357 
1358 static void btf_show_start_array_member(struct btf_show *show)
1359 {
1360 	show->state.array_member = 1;
1361 	btf_show_start_member(show, NULL);
1362 }
1363 
1364 static void btf_show_end_member(struct btf_show *show)
1365 {
1366 	show->state.member = NULL;
1367 }
1368 
1369 static void btf_show_end_array_member(struct btf_show *show)
1370 {
1371 	show->state.array_member = 0;
1372 	btf_show_end_member(show);
1373 }
1374 
1375 static void *btf_show_start_array_type(struct btf_show *show,
1376 				       const struct btf_type *t,
1377 				       u32 type_id,
1378 				       u16 array_encoding,
1379 				       void *data)
1380 {
1381 	show->state.array_encoding = array_encoding;
1382 	show->state.array_terminated = 0;
1383 	return btf_show_start_aggr_type(show, t, type_id, data);
1384 }
1385 
1386 static void btf_show_end_array_type(struct btf_show *show)
1387 {
1388 	show->state.array_encoding = 0;
1389 	show->state.array_terminated = 0;
1390 	btf_show_end_aggr_type(show, "]");
1391 }
1392 
1393 static void *btf_show_start_struct_type(struct btf_show *show,
1394 					const struct btf_type *t,
1395 					u32 type_id,
1396 					void *data)
1397 {
1398 	return btf_show_start_aggr_type(show, t, type_id, data);
1399 }
1400 
1401 static void btf_show_end_struct_type(struct btf_show *show)
1402 {
1403 	btf_show_end_aggr_type(show, "}");
1404 }
1405 
1406 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1407 					      const char *fmt, ...)
1408 {
1409 	va_list args;
1410 
1411 	va_start(args, fmt);
1412 	bpf_verifier_vlog(log, fmt, args);
1413 	va_end(args);
1414 }
1415 
1416 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1417 					    const char *fmt, ...)
1418 {
1419 	struct bpf_verifier_log *log = &env->log;
1420 	va_list args;
1421 
1422 	if (!bpf_verifier_log_needed(log))
1423 		return;
1424 
1425 	va_start(args, fmt);
1426 	bpf_verifier_vlog(log, fmt, args);
1427 	va_end(args);
1428 }
1429 
1430 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1431 						   const struct btf_type *t,
1432 						   bool log_details,
1433 						   const char *fmt, ...)
1434 {
1435 	struct bpf_verifier_log *log = &env->log;
1436 	struct btf *btf = env->btf;
1437 	va_list args;
1438 
1439 	if (!bpf_verifier_log_needed(log))
1440 		return;
1441 
1442 	if (log->level == BPF_LOG_KERNEL) {
1443 		/* btf verifier prints all types it is processing via
1444 		 * btf_verifier_log_type(..., fmt = NULL).
1445 		 * Skip those prints for in-kernel BTF verification.
1446 		 */
1447 		if (!fmt)
1448 			return;
1449 
1450 		/* Skip logging when loading module BTF with mismatches permitted */
1451 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1452 			return;
1453 	}
1454 
1455 	__btf_verifier_log(log, "[%u] %s %s%s",
1456 			   env->log_type_id,
1457 			   btf_type_str(t),
1458 			   __btf_name_by_offset(btf, t->name_off),
1459 			   log_details ? " " : "");
1460 
1461 	if (log_details)
1462 		btf_type_ops(t)->log_details(env, t);
1463 
1464 	if (fmt && *fmt) {
1465 		__btf_verifier_log(log, " ");
1466 		va_start(args, fmt);
1467 		bpf_verifier_vlog(log, fmt, args);
1468 		va_end(args);
1469 	}
1470 
1471 	__btf_verifier_log(log, "\n");
1472 }
1473 
1474 #define btf_verifier_log_type(env, t, ...) \
1475 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1476 #define btf_verifier_log_basic(env, t, ...) \
1477 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1478 
1479 __printf(4, 5)
1480 static void btf_verifier_log_member(struct btf_verifier_env *env,
1481 				    const struct btf_type *struct_type,
1482 				    const struct btf_member *member,
1483 				    const char *fmt, ...)
1484 {
1485 	struct bpf_verifier_log *log = &env->log;
1486 	struct btf *btf = env->btf;
1487 	va_list args;
1488 
1489 	if (!bpf_verifier_log_needed(log))
1490 		return;
1491 
1492 	if (log->level == BPF_LOG_KERNEL) {
1493 		if (!fmt)
1494 			return;
1495 
1496 		/* Skip logging when loading module BTF with mismatches permitted */
1497 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1498 			return;
1499 	}
1500 
1501 	/* The CHECK_META phase already did a btf dump.
1502 	 *
1503 	 * If member is logged again, it must hit an error in
1504 	 * parsing this member.  It is useful to print out which
1505 	 * struct this member belongs to.
1506 	 */
1507 	if (env->phase != CHECK_META)
1508 		btf_verifier_log_type(env, struct_type, NULL);
1509 
1510 	if (btf_type_kflag(struct_type))
1511 		__btf_verifier_log(log,
1512 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1513 				   __btf_name_by_offset(btf, member->name_off),
1514 				   member->type,
1515 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1516 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1517 	else
1518 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1519 				   __btf_name_by_offset(btf, member->name_off),
1520 				   member->type, member->offset);
1521 
1522 	if (fmt && *fmt) {
1523 		__btf_verifier_log(log, " ");
1524 		va_start(args, fmt);
1525 		bpf_verifier_vlog(log, fmt, args);
1526 		va_end(args);
1527 	}
1528 
1529 	__btf_verifier_log(log, "\n");
1530 }
1531 
1532 __printf(4, 5)
1533 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1534 				 const struct btf_type *datasec_type,
1535 				 const struct btf_var_secinfo *vsi,
1536 				 const char *fmt, ...)
1537 {
1538 	struct bpf_verifier_log *log = &env->log;
1539 	va_list args;
1540 
1541 	if (!bpf_verifier_log_needed(log))
1542 		return;
1543 	if (log->level == BPF_LOG_KERNEL && !fmt)
1544 		return;
1545 	if (env->phase != CHECK_META)
1546 		btf_verifier_log_type(env, datasec_type, NULL);
1547 
1548 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1549 			   vsi->type, vsi->offset, vsi->size);
1550 	if (fmt && *fmt) {
1551 		__btf_verifier_log(log, " ");
1552 		va_start(args, fmt);
1553 		bpf_verifier_vlog(log, fmt, args);
1554 		va_end(args);
1555 	}
1556 
1557 	__btf_verifier_log(log, "\n");
1558 }
1559 
1560 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1561 				 u32 btf_data_size)
1562 {
1563 	struct bpf_verifier_log *log = &env->log;
1564 	const struct btf *btf = env->btf;
1565 	const struct btf_header *hdr;
1566 
1567 	if (!bpf_verifier_log_needed(log))
1568 		return;
1569 
1570 	if (log->level == BPF_LOG_KERNEL)
1571 		return;
1572 	hdr = &btf->hdr;
1573 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1574 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1575 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1576 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1577 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1578 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1579 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1580 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1581 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1582 }
1583 
1584 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1585 {
1586 	struct btf *btf = env->btf;
1587 
1588 	if (btf->types_size == btf->nr_types) {
1589 		/* Expand 'types' array */
1590 
1591 		struct btf_type **new_types;
1592 		u32 expand_by, new_size;
1593 
1594 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1595 			btf_verifier_log(env, "Exceeded max num of types");
1596 			return -E2BIG;
1597 		}
1598 
1599 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1600 		new_size = min_t(u32, BTF_MAX_TYPE,
1601 				 btf->types_size + expand_by);
1602 
1603 		new_types = kvcalloc(new_size, sizeof(*new_types),
1604 				     GFP_KERNEL | __GFP_NOWARN);
1605 		if (!new_types)
1606 			return -ENOMEM;
1607 
1608 		if (btf->nr_types == 0) {
1609 			if (!btf->base_btf) {
1610 				/* lazily init VOID type */
1611 				new_types[0] = &btf_void;
1612 				btf->nr_types++;
1613 			}
1614 		} else {
1615 			memcpy(new_types, btf->types,
1616 			       sizeof(*btf->types) * btf->nr_types);
1617 		}
1618 
1619 		kvfree(btf->types);
1620 		btf->types = new_types;
1621 		btf->types_size = new_size;
1622 	}
1623 
1624 	btf->types[btf->nr_types++] = t;
1625 
1626 	return 0;
1627 }
1628 
1629 static int btf_alloc_id(struct btf *btf)
1630 {
1631 	int id;
1632 
1633 	idr_preload(GFP_KERNEL);
1634 	spin_lock_bh(&btf_idr_lock);
1635 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1636 	if (id > 0)
1637 		btf->id = id;
1638 	spin_unlock_bh(&btf_idr_lock);
1639 	idr_preload_end();
1640 
1641 	if (WARN_ON_ONCE(!id))
1642 		return -ENOSPC;
1643 
1644 	return id > 0 ? 0 : id;
1645 }
1646 
1647 static void btf_free_id(struct btf *btf)
1648 {
1649 	unsigned long flags;
1650 
1651 	/*
1652 	 * In map-in-map, calling map_delete_elem() on outer
1653 	 * map will call bpf_map_put on the inner map.
1654 	 * It will then eventually call btf_free_id()
1655 	 * on the inner map.  Some of the map_delete_elem()
1656 	 * implementation may have irq disabled, so
1657 	 * we need to use the _irqsave() version instead
1658 	 * of the _bh() version.
1659 	 */
1660 	spin_lock_irqsave(&btf_idr_lock, flags);
1661 	idr_remove(&btf_idr, btf->id);
1662 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1663 }
1664 
1665 static void btf_free_kfunc_set_tab(struct btf *btf)
1666 {
1667 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1668 	int hook;
1669 
1670 	if (!tab)
1671 		return;
1672 	/* For module BTF, we directly assign the sets being registered, so
1673 	 * there is nothing to free except kfunc_set_tab.
1674 	 */
1675 	if (btf_is_module(btf))
1676 		goto free_tab;
1677 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1678 		kfree(tab->sets[hook]);
1679 free_tab:
1680 	kfree(tab);
1681 	btf->kfunc_set_tab = NULL;
1682 }
1683 
1684 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1685 {
1686 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1687 
1688 	if (!tab)
1689 		return;
1690 	kfree(tab);
1691 	btf->dtor_kfunc_tab = NULL;
1692 }
1693 
1694 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1695 {
1696 	int i;
1697 
1698 	if (!tab)
1699 		return;
1700 	for (i = 0; i < tab->cnt; i++)
1701 		btf_record_free(tab->types[i].record);
1702 	kfree(tab);
1703 }
1704 
1705 static void btf_free_struct_meta_tab(struct btf *btf)
1706 {
1707 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1708 
1709 	btf_struct_metas_free(tab);
1710 	btf->struct_meta_tab = NULL;
1711 }
1712 
1713 static void btf_free_struct_ops_tab(struct btf *btf)
1714 {
1715 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1716 	u32 i;
1717 
1718 	if (!tab)
1719 		return;
1720 
1721 	for (i = 0; i < tab->cnt; i++)
1722 		bpf_struct_ops_desc_release(&tab->ops[i]);
1723 
1724 	kfree(tab);
1725 	btf->struct_ops_tab = NULL;
1726 }
1727 
1728 static void btf_free(struct btf *btf)
1729 {
1730 	btf_free_struct_meta_tab(btf);
1731 	btf_free_dtor_kfunc_tab(btf);
1732 	btf_free_kfunc_set_tab(btf);
1733 	btf_free_struct_ops_tab(btf);
1734 	kvfree(btf->types);
1735 	kvfree(btf->resolved_sizes);
1736 	kvfree(btf->resolved_ids);
1737 	kvfree(btf->data);
1738 	kfree(btf);
1739 }
1740 
1741 static void btf_free_rcu(struct rcu_head *rcu)
1742 {
1743 	struct btf *btf = container_of(rcu, struct btf, rcu);
1744 
1745 	btf_free(btf);
1746 }
1747 
1748 const char *btf_get_name(const struct btf *btf)
1749 {
1750 	return btf->name;
1751 }
1752 
1753 void btf_get(struct btf *btf)
1754 {
1755 	refcount_inc(&btf->refcnt);
1756 }
1757 
1758 void btf_put(struct btf *btf)
1759 {
1760 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1761 		btf_free_id(btf);
1762 		call_rcu(&btf->rcu, btf_free_rcu);
1763 	}
1764 }
1765 
1766 static int env_resolve_init(struct btf_verifier_env *env)
1767 {
1768 	struct btf *btf = env->btf;
1769 	u32 nr_types = btf->nr_types;
1770 	u32 *resolved_sizes = NULL;
1771 	u32 *resolved_ids = NULL;
1772 	u8 *visit_states = NULL;
1773 
1774 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1775 				  GFP_KERNEL | __GFP_NOWARN);
1776 	if (!resolved_sizes)
1777 		goto nomem;
1778 
1779 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1780 				GFP_KERNEL | __GFP_NOWARN);
1781 	if (!resolved_ids)
1782 		goto nomem;
1783 
1784 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1785 				GFP_KERNEL | __GFP_NOWARN);
1786 	if (!visit_states)
1787 		goto nomem;
1788 
1789 	btf->resolved_sizes = resolved_sizes;
1790 	btf->resolved_ids = resolved_ids;
1791 	env->visit_states = visit_states;
1792 
1793 	return 0;
1794 
1795 nomem:
1796 	kvfree(resolved_sizes);
1797 	kvfree(resolved_ids);
1798 	kvfree(visit_states);
1799 	return -ENOMEM;
1800 }
1801 
1802 static void btf_verifier_env_free(struct btf_verifier_env *env)
1803 {
1804 	kvfree(env->visit_states);
1805 	kfree(env);
1806 }
1807 
1808 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1809 				     const struct btf_type *next_type)
1810 {
1811 	switch (env->resolve_mode) {
1812 	case RESOLVE_TBD:
1813 		/* int, enum or void is a sink */
1814 		return !btf_type_needs_resolve(next_type);
1815 	case RESOLVE_PTR:
1816 		/* int, enum, void, struct, array, func or func_proto is a sink
1817 		 * for ptr
1818 		 */
1819 		return !btf_type_is_modifier(next_type) &&
1820 			!btf_type_is_ptr(next_type);
1821 	case RESOLVE_STRUCT_OR_ARRAY:
1822 		/* int, enum, void, ptr, func or func_proto is a sink
1823 		 * for struct and array
1824 		 */
1825 		return !btf_type_is_modifier(next_type) &&
1826 			!btf_type_is_array(next_type) &&
1827 			!btf_type_is_struct(next_type);
1828 	default:
1829 		BUG();
1830 	}
1831 }
1832 
1833 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1834 				 u32 type_id)
1835 {
1836 	/* base BTF types should be resolved by now */
1837 	if (type_id < env->btf->start_id)
1838 		return true;
1839 
1840 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1841 }
1842 
1843 static int env_stack_push(struct btf_verifier_env *env,
1844 			  const struct btf_type *t, u32 type_id)
1845 {
1846 	const struct btf *btf = env->btf;
1847 	struct resolve_vertex *v;
1848 
1849 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1850 		return -E2BIG;
1851 
1852 	if (type_id < btf->start_id
1853 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1854 		return -EEXIST;
1855 
1856 	env->visit_states[type_id - btf->start_id] = VISITED;
1857 
1858 	v = &env->stack[env->top_stack++];
1859 	v->t = t;
1860 	v->type_id = type_id;
1861 	v->next_member = 0;
1862 
1863 	if (env->resolve_mode == RESOLVE_TBD) {
1864 		if (btf_type_is_ptr(t))
1865 			env->resolve_mode = RESOLVE_PTR;
1866 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1867 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static void env_stack_set_next_member(struct btf_verifier_env *env,
1874 				      u16 next_member)
1875 {
1876 	env->stack[env->top_stack - 1].next_member = next_member;
1877 }
1878 
1879 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1880 				   u32 resolved_type_id,
1881 				   u32 resolved_size)
1882 {
1883 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1884 	struct btf *btf = env->btf;
1885 
1886 	type_id -= btf->start_id; /* adjust to local type id */
1887 	btf->resolved_sizes[type_id] = resolved_size;
1888 	btf->resolved_ids[type_id] = resolved_type_id;
1889 	env->visit_states[type_id] = RESOLVED;
1890 }
1891 
1892 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1893 {
1894 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1895 }
1896 
1897 /* Resolve the size of a passed-in "type"
1898  *
1899  * type: is an array (e.g. u32 array[x][y])
1900  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1901  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1902  *             corresponds to the return type.
1903  * *elem_type: u32
1904  * *elem_id: id of u32
1905  * *total_nelems: (x * y).  Hence, individual elem size is
1906  *                (*type_size / *total_nelems)
1907  * *type_id: id of type if it's changed within the function, 0 if not
1908  *
1909  * type: is not an array (e.g. const struct X)
1910  * return type: type "struct X"
1911  * *type_size: sizeof(struct X)
1912  * *elem_type: same as return type ("struct X")
1913  * *elem_id: 0
1914  * *total_nelems: 1
1915  * *type_id: id of type if it's changed within the function, 0 if not
1916  */
1917 static const struct btf_type *
1918 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1919 		   u32 *type_size, const struct btf_type **elem_type,
1920 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1921 {
1922 	const struct btf_type *array_type = NULL;
1923 	const struct btf_array *array = NULL;
1924 	u32 i, size, nelems = 1, id = 0;
1925 
1926 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1927 		switch (BTF_INFO_KIND(type->info)) {
1928 		/* type->size can be used */
1929 		case BTF_KIND_INT:
1930 		case BTF_KIND_STRUCT:
1931 		case BTF_KIND_UNION:
1932 		case BTF_KIND_ENUM:
1933 		case BTF_KIND_FLOAT:
1934 		case BTF_KIND_ENUM64:
1935 			size = type->size;
1936 			goto resolved;
1937 
1938 		case BTF_KIND_PTR:
1939 			size = sizeof(void *);
1940 			goto resolved;
1941 
1942 		/* Modifiers */
1943 		case BTF_KIND_TYPEDEF:
1944 		case BTF_KIND_VOLATILE:
1945 		case BTF_KIND_CONST:
1946 		case BTF_KIND_RESTRICT:
1947 		case BTF_KIND_TYPE_TAG:
1948 			id = type->type;
1949 			type = btf_type_by_id(btf, type->type);
1950 			break;
1951 
1952 		case BTF_KIND_ARRAY:
1953 			if (!array_type)
1954 				array_type = type;
1955 			array = btf_type_array(type);
1956 			if (nelems && array->nelems > U32_MAX / nelems)
1957 				return ERR_PTR(-EINVAL);
1958 			nelems *= array->nelems;
1959 			type = btf_type_by_id(btf, array->type);
1960 			break;
1961 
1962 		/* type without size */
1963 		default:
1964 			return ERR_PTR(-EINVAL);
1965 		}
1966 	}
1967 
1968 	return ERR_PTR(-EINVAL);
1969 
1970 resolved:
1971 	if (nelems && size > U32_MAX / nelems)
1972 		return ERR_PTR(-EINVAL);
1973 
1974 	*type_size = nelems * size;
1975 	if (total_nelems)
1976 		*total_nelems = nelems;
1977 	if (elem_type)
1978 		*elem_type = type;
1979 	if (elem_id)
1980 		*elem_id = array ? array->type : 0;
1981 	if (type_id && id)
1982 		*type_id = id;
1983 
1984 	return array_type ? : type;
1985 }
1986 
1987 const struct btf_type *
1988 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1989 		 u32 *type_size)
1990 {
1991 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1992 }
1993 
1994 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1995 {
1996 	while (type_id < btf->start_id)
1997 		btf = btf->base_btf;
1998 
1999 	return btf->resolved_ids[type_id - btf->start_id];
2000 }
2001 
2002 /* The input param "type_id" must point to a needs_resolve type */
2003 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2004 						  u32 *type_id)
2005 {
2006 	*type_id = btf_resolved_type_id(btf, *type_id);
2007 	return btf_type_by_id(btf, *type_id);
2008 }
2009 
2010 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2011 {
2012 	while (type_id < btf->start_id)
2013 		btf = btf->base_btf;
2014 
2015 	return btf->resolved_sizes[type_id - btf->start_id];
2016 }
2017 
2018 const struct btf_type *btf_type_id_size(const struct btf *btf,
2019 					u32 *type_id, u32 *ret_size)
2020 {
2021 	const struct btf_type *size_type;
2022 	u32 size_type_id = *type_id;
2023 	u32 size = 0;
2024 
2025 	size_type = btf_type_by_id(btf, size_type_id);
2026 	if (btf_type_nosize_or_null(size_type))
2027 		return NULL;
2028 
2029 	if (btf_type_has_size(size_type)) {
2030 		size = size_type->size;
2031 	} else if (btf_type_is_array(size_type)) {
2032 		size = btf_resolved_type_size(btf, size_type_id);
2033 	} else if (btf_type_is_ptr(size_type)) {
2034 		size = sizeof(void *);
2035 	} else {
2036 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2037 				 !btf_type_is_var(size_type)))
2038 			return NULL;
2039 
2040 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2041 		size_type = btf_type_by_id(btf, size_type_id);
2042 		if (btf_type_nosize_or_null(size_type))
2043 			return NULL;
2044 		else if (btf_type_has_size(size_type))
2045 			size = size_type->size;
2046 		else if (btf_type_is_array(size_type))
2047 			size = btf_resolved_type_size(btf, size_type_id);
2048 		else if (btf_type_is_ptr(size_type))
2049 			size = sizeof(void *);
2050 		else
2051 			return NULL;
2052 	}
2053 
2054 	*type_id = size_type_id;
2055 	if (ret_size)
2056 		*ret_size = size;
2057 
2058 	return size_type;
2059 }
2060 
2061 static int btf_df_check_member(struct btf_verifier_env *env,
2062 			       const struct btf_type *struct_type,
2063 			       const struct btf_member *member,
2064 			       const struct btf_type *member_type)
2065 {
2066 	btf_verifier_log_basic(env, struct_type,
2067 			       "Unsupported check_member");
2068 	return -EINVAL;
2069 }
2070 
2071 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2072 				     const struct btf_type *struct_type,
2073 				     const struct btf_member *member,
2074 				     const struct btf_type *member_type)
2075 {
2076 	btf_verifier_log_basic(env, struct_type,
2077 			       "Unsupported check_kflag_member");
2078 	return -EINVAL;
2079 }
2080 
2081 /* Used for ptr, array struct/union and float type members.
2082  * int, enum and modifier types have their specific callback functions.
2083  */
2084 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2085 					  const struct btf_type *struct_type,
2086 					  const struct btf_member *member,
2087 					  const struct btf_type *member_type)
2088 {
2089 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2090 		btf_verifier_log_member(env, struct_type, member,
2091 					"Invalid member bitfield_size");
2092 		return -EINVAL;
2093 	}
2094 
2095 	/* bitfield size is 0, so member->offset represents bit offset only.
2096 	 * It is safe to call non kflag check_member variants.
2097 	 */
2098 	return btf_type_ops(member_type)->check_member(env, struct_type,
2099 						       member,
2100 						       member_type);
2101 }
2102 
2103 static int btf_df_resolve(struct btf_verifier_env *env,
2104 			  const struct resolve_vertex *v)
2105 {
2106 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2107 	return -EINVAL;
2108 }
2109 
2110 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2111 			u32 type_id, void *data, u8 bits_offsets,
2112 			struct btf_show *show)
2113 {
2114 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2115 }
2116 
2117 static int btf_int_check_member(struct btf_verifier_env *env,
2118 				const struct btf_type *struct_type,
2119 				const struct btf_member *member,
2120 				const struct btf_type *member_type)
2121 {
2122 	u32 int_data = btf_type_int(member_type);
2123 	u32 struct_bits_off = member->offset;
2124 	u32 struct_size = struct_type->size;
2125 	u32 nr_copy_bits;
2126 	u32 bytes_offset;
2127 
2128 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2129 		btf_verifier_log_member(env, struct_type, member,
2130 					"bits_offset exceeds U32_MAX");
2131 		return -EINVAL;
2132 	}
2133 
2134 	struct_bits_off += BTF_INT_OFFSET(int_data);
2135 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2136 	nr_copy_bits = BTF_INT_BITS(int_data) +
2137 		BITS_PER_BYTE_MASKED(struct_bits_off);
2138 
2139 	if (nr_copy_bits > BITS_PER_U128) {
2140 		btf_verifier_log_member(env, struct_type, member,
2141 					"nr_copy_bits exceeds 128");
2142 		return -EINVAL;
2143 	}
2144 
2145 	if (struct_size < bytes_offset ||
2146 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2147 		btf_verifier_log_member(env, struct_type, member,
2148 					"Member exceeds struct_size");
2149 		return -EINVAL;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2156 				      const struct btf_type *struct_type,
2157 				      const struct btf_member *member,
2158 				      const struct btf_type *member_type)
2159 {
2160 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2161 	u32 int_data = btf_type_int(member_type);
2162 	u32 struct_size = struct_type->size;
2163 	u32 nr_copy_bits;
2164 
2165 	/* a regular int type is required for the kflag int member */
2166 	if (!btf_type_int_is_regular(member_type)) {
2167 		btf_verifier_log_member(env, struct_type, member,
2168 					"Invalid member base type");
2169 		return -EINVAL;
2170 	}
2171 
2172 	/* check sanity of bitfield size */
2173 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2174 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2175 	nr_int_data_bits = BTF_INT_BITS(int_data);
2176 	if (!nr_bits) {
2177 		/* Not a bitfield member, member offset must be at byte
2178 		 * boundary.
2179 		 */
2180 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2181 			btf_verifier_log_member(env, struct_type, member,
2182 						"Invalid member offset");
2183 			return -EINVAL;
2184 		}
2185 
2186 		nr_bits = nr_int_data_bits;
2187 	} else if (nr_bits > nr_int_data_bits) {
2188 		btf_verifier_log_member(env, struct_type, member,
2189 					"Invalid member bitfield_size");
2190 		return -EINVAL;
2191 	}
2192 
2193 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2194 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2195 	if (nr_copy_bits > BITS_PER_U128) {
2196 		btf_verifier_log_member(env, struct_type, member,
2197 					"nr_copy_bits exceeds 128");
2198 		return -EINVAL;
2199 	}
2200 
2201 	if (struct_size < bytes_offset ||
2202 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2203 		btf_verifier_log_member(env, struct_type, member,
2204 					"Member exceeds struct_size");
2205 		return -EINVAL;
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2212 			      const struct btf_type *t,
2213 			      u32 meta_left)
2214 {
2215 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2216 	u16 encoding;
2217 
2218 	if (meta_left < meta_needed) {
2219 		btf_verifier_log_basic(env, t,
2220 				       "meta_left:%u meta_needed:%u",
2221 				       meta_left, meta_needed);
2222 		return -EINVAL;
2223 	}
2224 
2225 	if (btf_type_vlen(t)) {
2226 		btf_verifier_log_type(env, t, "vlen != 0");
2227 		return -EINVAL;
2228 	}
2229 
2230 	if (btf_type_kflag(t)) {
2231 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2232 		return -EINVAL;
2233 	}
2234 
2235 	int_data = btf_type_int(t);
2236 	if (int_data & ~BTF_INT_MASK) {
2237 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2238 				       int_data);
2239 		return -EINVAL;
2240 	}
2241 
2242 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2243 
2244 	if (nr_bits > BITS_PER_U128) {
2245 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2246 				      BITS_PER_U128);
2247 		return -EINVAL;
2248 	}
2249 
2250 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2251 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2252 		return -EINVAL;
2253 	}
2254 
2255 	/*
2256 	 * Only one of the encoding bits is allowed and it
2257 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2258 	 * Multiple bits can be allowed later if it is found
2259 	 * to be insufficient.
2260 	 */
2261 	encoding = BTF_INT_ENCODING(int_data);
2262 	if (encoding &&
2263 	    encoding != BTF_INT_SIGNED &&
2264 	    encoding != BTF_INT_CHAR &&
2265 	    encoding != BTF_INT_BOOL) {
2266 		btf_verifier_log_type(env, t, "Unsupported encoding");
2267 		return -ENOTSUPP;
2268 	}
2269 
2270 	btf_verifier_log_type(env, t, NULL);
2271 
2272 	return meta_needed;
2273 }
2274 
2275 static void btf_int_log(struct btf_verifier_env *env,
2276 			const struct btf_type *t)
2277 {
2278 	int int_data = btf_type_int(t);
2279 
2280 	btf_verifier_log(env,
2281 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2282 			 t->size, BTF_INT_OFFSET(int_data),
2283 			 BTF_INT_BITS(int_data),
2284 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2285 }
2286 
2287 static void btf_int128_print(struct btf_show *show, void *data)
2288 {
2289 	/* data points to a __int128 number.
2290 	 * Suppose
2291 	 *     int128_num = *(__int128 *)data;
2292 	 * The below formulas shows what upper_num and lower_num represents:
2293 	 *     upper_num = int128_num >> 64;
2294 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2295 	 */
2296 	u64 upper_num, lower_num;
2297 
2298 #ifdef __BIG_ENDIAN_BITFIELD
2299 	upper_num = *(u64 *)data;
2300 	lower_num = *(u64 *)(data + 8);
2301 #else
2302 	upper_num = *(u64 *)(data + 8);
2303 	lower_num = *(u64 *)data;
2304 #endif
2305 	if (upper_num == 0)
2306 		btf_show_type_value(show, "0x%llx", lower_num);
2307 	else
2308 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2309 				     lower_num);
2310 }
2311 
2312 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2313 			     u16 right_shift_bits)
2314 {
2315 	u64 upper_num, lower_num;
2316 
2317 #ifdef __BIG_ENDIAN_BITFIELD
2318 	upper_num = print_num[0];
2319 	lower_num = print_num[1];
2320 #else
2321 	upper_num = print_num[1];
2322 	lower_num = print_num[0];
2323 #endif
2324 
2325 	/* shake out un-needed bits by shift/or operations */
2326 	if (left_shift_bits >= 64) {
2327 		upper_num = lower_num << (left_shift_bits - 64);
2328 		lower_num = 0;
2329 	} else {
2330 		upper_num = (upper_num << left_shift_bits) |
2331 			    (lower_num >> (64 - left_shift_bits));
2332 		lower_num = lower_num << left_shift_bits;
2333 	}
2334 
2335 	if (right_shift_bits >= 64) {
2336 		lower_num = upper_num >> (right_shift_bits - 64);
2337 		upper_num = 0;
2338 	} else {
2339 		lower_num = (lower_num >> right_shift_bits) |
2340 			    (upper_num << (64 - right_shift_bits));
2341 		upper_num = upper_num >> right_shift_bits;
2342 	}
2343 
2344 #ifdef __BIG_ENDIAN_BITFIELD
2345 	print_num[0] = upper_num;
2346 	print_num[1] = lower_num;
2347 #else
2348 	print_num[0] = lower_num;
2349 	print_num[1] = upper_num;
2350 #endif
2351 }
2352 
2353 static void btf_bitfield_show(void *data, u8 bits_offset,
2354 			      u8 nr_bits, struct btf_show *show)
2355 {
2356 	u16 left_shift_bits, right_shift_bits;
2357 	u8 nr_copy_bytes;
2358 	u8 nr_copy_bits;
2359 	u64 print_num[2] = {};
2360 
2361 	nr_copy_bits = nr_bits + bits_offset;
2362 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2363 
2364 	memcpy(print_num, data, nr_copy_bytes);
2365 
2366 #ifdef __BIG_ENDIAN_BITFIELD
2367 	left_shift_bits = bits_offset;
2368 #else
2369 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2370 #endif
2371 	right_shift_bits = BITS_PER_U128 - nr_bits;
2372 
2373 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2374 	btf_int128_print(show, print_num);
2375 }
2376 
2377 
2378 static void btf_int_bits_show(const struct btf *btf,
2379 			      const struct btf_type *t,
2380 			      void *data, u8 bits_offset,
2381 			      struct btf_show *show)
2382 {
2383 	u32 int_data = btf_type_int(t);
2384 	u8 nr_bits = BTF_INT_BITS(int_data);
2385 	u8 total_bits_offset;
2386 
2387 	/*
2388 	 * bits_offset is at most 7.
2389 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2390 	 */
2391 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2392 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2393 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2394 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2395 }
2396 
2397 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2398 			 u32 type_id, void *data, u8 bits_offset,
2399 			 struct btf_show *show)
2400 {
2401 	u32 int_data = btf_type_int(t);
2402 	u8 encoding = BTF_INT_ENCODING(int_data);
2403 	bool sign = encoding & BTF_INT_SIGNED;
2404 	u8 nr_bits = BTF_INT_BITS(int_data);
2405 	void *safe_data;
2406 
2407 	safe_data = btf_show_start_type(show, t, type_id, data);
2408 	if (!safe_data)
2409 		return;
2410 
2411 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2412 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2413 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2414 		goto out;
2415 	}
2416 
2417 	switch (nr_bits) {
2418 	case 128:
2419 		btf_int128_print(show, safe_data);
2420 		break;
2421 	case 64:
2422 		if (sign)
2423 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2424 		else
2425 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2426 		break;
2427 	case 32:
2428 		if (sign)
2429 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2430 		else
2431 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2432 		break;
2433 	case 16:
2434 		if (sign)
2435 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2436 		else
2437 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2438 		break;
2439 	case 8:
2440 		if (show->state.array_encoding == BTF_INT_CHAR) {
2441 			/* check for null terminator */
2442 			if (show->state.array_terminated)
2443 				break;
2444 			if (*(char *)data == '\0') {
2445 				show->state.array_terminated = 1;
2446 				break;
2447 			}
2448 			if (isprint(*(char *)data)) {
2449 				btf_show_type_value(show, "'%c'",
2450 						    *(char *)safe_data);
2451 				break;
2452 			}
2453 		}
2454 		if (sign)
2455 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2456 		else
2457 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2458 		break;
2459 	default:
2460 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2461 		break;
2462 	}
2463 out:
2464 	btf_show_end_type(show);
2465 }
2466 
2467 static const struct btf_kind_operations int_ops = {
2468 	.check_meta = btf_int_check_meta,
2469 	.resolve = btf_df_resolve,
2470 	.check_member = btf_int_check_member,
2471 	.check_kflag_member = btf_int_check_kflag_member,
2472 	.log_details = btf_int_log,
2473 	.show = btf_int_show,
2474 };
2475 
2476 static int btf_modifier_check_member(struct btf_verifier_env *env,
2477 				     const struct btf_type *struct_type,
2478 				     const struct btf_member *member,
2479 				     const struct btf_type *member_type)
2480 {
2481 	const struct btf_type *resolved_type;
2482 	u32 resolved_type_id = member->type;
2483 	struct btf_member resolved_member;
2484 	struct btf *btf = env->btf;
2485 
2486 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2487 	if (!resolved_type) {
2488 		btf_verifier_log_member(env, struct_type, member,
2489 					"Invalid member");
2490 		return -EINVAL;
2491 	}
2492 
2493 	resolved_member = *member;
2494 	resolved_member.type = resolved_type_id;
2495 
2496 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2497 							 &resolved_member,
2498 							 resolved_type);
2499 }
2500 
2501 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2502 					   const struct btf_type *struct_type,
2503 					   const struct btf_member *member,
2504 					   const struct btf_type *member_type)
2505 {
2506 	const struct btf_type *resolved_type;
2507 	u32 resolved_type_id = member->type;
2508 	struct btf_member resolved_member;
2509 	struct btf *btf = env->btf;
2510 
2511 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2512 	if (!resolved_type) {
2513 		btf_verifier_log_member(env, struct_type, member,
2514 					"Invalid member");
2515 		return -EINVAL;
2516 	}
2517 
2518 	resolved_member = *member;
2519 	resolved_member.type = resolved_type_id;
2520 
2521 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2522 							       &resolved_member,
2523 							       resolved_type);
2524 }
2525 
2526 static int btf_ptr_check_member(struct btf_verifier_env *env,
2527 				const struct btf_type *struct_type,
2528 				const struct btf_member *member,
2529 				const struct btf_type *member_type)
2530 {
2531 	u32 struct_size, struct_bits_off, bytes_offset;
2532 
2533 	struct_size = struct_type->size;
2534 	struct_bits_off = member->offset;
2535 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2536 
2537 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2538 		btf_verifier_log_member(env, struct_type, member,
2539 					"Member is not byte aligned");
2540 		return -EINVAL;
2541 	}
2542 
2543 	if (struct_size - bytes_offset < sizeof(void *)) {
2544 		btf_verifier_log_member(env, struct_type, member,
2545 					"Member exceeds struct_size");
2546 		return -EINVAL;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2553 				   const struct btf_type *t,
2554 				   u32 meta_left)
2555 {
2556 	const char *value;
2557 
2558 	if (btf_type_vlen(t)) {
2559 		btf_verifier_log_type(env, t, "vlen != 0");
2560 		return -EINVAL;
2561 	}
2562 
2563 	if (btf_type_kflag(t)) {
2564 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2565 		return -EINVAL;
2566 	}
2567 
2568 	if (!BTF_TYPE_ID_VALID(t->type)) {
2569 		btf_verifier_log_type(env, t, "Invalid type_id");
2570 		return -EINVAL;
2571 	}
2572 
2573 	/* typedef/type_tag type must have a valid name, and other ref types,
2574 	 * volatile, const, restrict, should have a null name.
2575 	 */
2576 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2577 		if (!t->name_off ||
2578 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2579 			btf_verifier_log_type(env, t, "Invalid name");
2580 			return -EINVAL;
2581 		}
2582 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2583 		value = btf_name_by_offset(env->btf, t->name_off);
2584 		if (!value || !value[0]) {
2585 			btf_verifier_log_type(env, t, "Invalid name");
2586 			return -EINVAL;
2587 		}
2588 	} else {
2589 		if (t->name_off) {
2590 			btf_verifier_log_type(env, t, "Invalid name");
2591 			return -EINVAL;
2592 		}
2593 	}
2594 
2595 	btf_verifier_log_type(env, t, NULL);
2596 
2597 	return 0;
2598 }
2599 
2600 static int btf_modifier_resolve(struct btf_verifier_env *env,
2601 				const struct resolve_vertex *v)
2602 {
2603 	const struct btf_type *t = v->t;
2604 	const struct btf_type *next_type;
2605 	u32 next_type_id = t->type;
2606 	struct btf *btf = env->btf;
2607 
2608 	next_type = btf_type_by_id(btf, next_type_id);
2609 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2610 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2611 		return -EINVAL;
2612 	}
2613 
2614 	if (!env_type_is_resolve_sink(env, next_type) &&
2615 	    !env_type_is_resolved(env, next_type_id))
2616 		return env_stack_push(env, next_type, next_type_id);
2617 
2618 	/* Figure out the resolved next_type_id with size.
2619 	 * They will be stored in the current modifier's
2620 	 * resolved_ids and resolved_sizes such that it can
2621 	 * save us a few type-following when we use it later (e.g. in
2622 	 * pretty print).
2623 	 */
2624 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2625 		if (env_type_is_resolved(env, next_type_id))
2626 			next_type = btf_type_id_resolve(btf, &next_type_id);
2627 
2628 		/* "typedef void new_void", "const void"...etc */
2629 		if (!btf_type_is_void(next_type) &&
2630 		    !btf_type_is_fwd(next_type) &&
2631 		    !btf_type_is_func_proto(next_type)) {
2632 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2633 			return -EINVAL;
2634 		}
2635 	}
2636 
2637 	env_stack_pop_resolved(env, next_type_id, 0);
2638 
2639 	return 0;
2640 }
2641 
2642 static int btf_var_resolve(struct btf_verifier_env *env,
2643 			   const struct resolve_vertex *v)
2644 {
2645 	const struct btf_type *next_type;
2646 	const struct btf_type *t = v->t;
2647 	u32 next_type_id = t->type;
2648 	struct btf *btf = env->btf;
2649 
2650 	next_type = btf_type_by_id(btf, next_type_id);
2651 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2652 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2653 		return -EINVAL;
2654 	}
2655 
2656 	if (!env_type_is_resolve_sink(env, next_type) &&
2657 	    !env_type_is_resolved(env, next_type_id))
2658 		return env_stack_push(env, next_type, next_type_id);
2659 
2660 	if (btf_type_is_modifier(next_type)) {
2661 		const struct btf_type *resolved_type;
2662 		u32 resolved_type_id;
2663 
2664 		resolved_type_id = next_type_id;
2665 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2666 
2667 		if (btf_type_is_ptr(resolved_type) &&
2668 		    !env_type_is_resolve_sink(env, resolved_type) &&
2669 		    !env_type_is_resolved(env, resolved_type_id))
2670 			return env_stack_push(env, resolved_type,
2671 					      resolved_type_id);
2672 	}
2673 
2674 	/* We must resolve to something concrete at this point, no
2675 	 * forward types or similar that would resolve to size of
2676 	 * zero is allowed.
2677 	 */
2678 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2679 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2680 		return -EINVAL;
2681 	}
2682 
2683 	env_stack_pop_resolved(env, next_type_id, 0);
2684 
2685 	return 0;
2686 }
2687 
2688 static int btf_ptr_resolve(struct btf_verifier_env *env,
2689 			   const struct resolve_vertex *v)
2690 {
2691 	const struct btf_type *next_type;
2692 	const struct btf_type *t = v->t;
2693 	u32 next_type_id = t->type;
2694 	struct btf *btf = env->btf;
2695 
2696 	next_type = btf_type_by_id(btf, next_type_id);
2697 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2698 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2699 		return -EINVAL;
2700 	}
2701 
2702 	if (!env_type_is_resolve_sink(env, next_type) &&
2703 	    !env_type_is_resolved(env, next_type_id))
2704 		return env_stack_push(env, next_type, next_type_id);
2705 
2706 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2707 	 * the modifier may have stopped resolving when it was resolved
2708 	 * to a ptr (last-resolved-ptr).
2709 	 *
2710 	 * We now need to continue from the last-resolved-ptr to
2711 	 * ensure the last-resolved-ptr will not referring back to
2712 	 * the current ptr (t).
2713 	 */
2714 	if (btf_type_is_modifier(next_type)) {
2715 		const struct btf_type *resolved_type;
2716 		u32 resolved_type_id;
2717 
2718 		resolved_type_id = next_type_id;
2719 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2720 
2721 		if (btf_type_is_ptr(resolved_type) &&
2722 		    !env_type_is_resolve_sink(env, resolved_type) &&
2723 		    !env_type_is_resolved(env, resolved_type_id))
2724 			return env_stack_push(env, resolved_type,
2725 					      resolved_type_id);
2726 	}
2727 
2728 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2729 		if (env_type_is_resolved(env, next_type_id))
2730 			next_type = btf_type_id_resolve(btf, &next_type_id);
2731 
2732 		if (!btf_type_is_void(next_type) &&
2733 		    !btf_type_is_fwd(next_type) &&
2734 		    !btf_type_is_func_proto(next_type)) {
2735 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2736 			return -EINVAL;
2737 		}
2738 	}
2739 
2740 	env_stack_pop_resolved(env, next_type_id, 0);
2741 
2742 	return 0;
2743 }
2744 
2745 static void btf_modifier_show(const struct btf *btf,
2746 			      const struct btf_type *t,
2747 			      u32 type_id, void *data,
2748 			      u8 bits_offset, struct btf_show *show)
2749 {
2750 	if (btf->resolved_ids)
2751 		t = btf_type_id_resolve(btf, &type_id);
2752 	else
2753 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2754 
2755 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2756 }
2757 
2758 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2759 			 u32 type_id, void *data, u8 bits_offset,
2760 			 struct btf_show *show)
2761 {
2762 	t = btf_type_id_resolve(btf, &type_id);
2763 
2764 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2765 }
2766 
2767 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2768 			 u32 type_id, void *data, u8 bits_offset,
2769 			 struct btf_show *show)
2770 {
2771 	void *safe_data;
2772 
2773 	safe_data = btf_show_start_type(show, t, type_id, data);
2774 	if (!safe_data)
2775 		return;
2776 
2777 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2778 	if (show->flags & BTF_SHOW_PTR_RAW)
2779 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2780 	else
2781 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2782 	btf_show_end_type(show);
2783 }
2784 
2785 static void btf_ref_type_log(struct btf_verifier_env *env,
2786 			     const struct btf_type *t)
2787 {
2788 	btf_verifier_log(env, "type_id=%u", t->type);
2789 }
2790 
2791 static struct btf_kind_operations modifier_ops = {
2792 	.check_meta = btf_ref_type_check_meta,
2793 	.resolve = btf_modifier_resolve,
2794 	.check_member = btf_modifier_check_member,
2795 	.check_kflag_member = btf_modifier_check_kflag_member,
2796 	.log_details = btf_ref_type_log,
2797 	.show = btf_modifier_show,
2798 };
2799 
2800 static struct btf_kind_operations ptr_ops = {
2801 	.check_meta = btf_ref_type_check_meta,
2802 	.resolve = btf_ptr_resolve,
2803 	.check_member = btf_ptr_check_member,
2804 	.check_kflag_member = btf_generic_check_kflag_member,
2805 	.log_details = btf_ref_type_log,
2806 	.show = btf_ptr_show,
2807 };
2808 
2809 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2810 			      const struct btf_type *t,
2811 			      u32 meta_left)
2812 {
2813 	if (btf_type_vlen(t)) {
2814 		btf_verifier_log_type(env, t, "vlen != 0");
2815 		return -EINVAL;
2816 	}
2817 
2818 	if (t->type) {
2819 		btf_verifier_log_type(env, t, "type != 0");
2820 		return -EINVAL;
2821 	}
2822 
2823 	/* fwd type must have a valid name */
2824 	if (!t->name_off ||
2825 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2826 		btf_verifier_log_type(env, t, "Invalid name");
2827 		return -EINVAL;
2828 	}
2829 
2830 	btf_verifier_log_type(env, t, NULL);
2831 
2832 	return 0;
2833 }
2834 
2835 static void btf_fwd_type_log(struct btf_verifier_env *env,
2836 			     const struct btf_type *t)
2837 {
2838 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2839 }
2840 
2841 static struct btf_kind_operations fwd_ops = {
2842 	.check_meta = btf_fwd_check_meta,
2843 	.resolve = btf_df_resolve,
2844 	.check_member = btf_df_check_member,
2845 	.check_kflag_member = btf_df_check_kflag_member,
2846 	.log_details = btf_fwd_type_log,
2847 	.show = btf_df_show,
2848 };
2849 
2850 static int btf_array_check_member(struct btf_verifier_env *env,
2851 				  const struct btf_type *struct_type,
2852 				  const struct btf_member *member,
2853 				  const struct btf_type *member_type)
2854 {
2855 	u32 struct_bits_off = member->offset;
2856 	u32 struct_size, bytes_offset;
2857 	u32 array_type_id, array_size;
2858 	struct btf *btf = env->btf;
2859 
2860 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2861 		btf_verifier_log_member(env, struct_type, member,
2862 					"Member is not byte aligned");
2863 		return -EINVAL;
2864 	}
2865 
2866 	array_type_id = member->type;
2867 	btf_type_id_size(btf, &array_type_id, &array_size);
2868 	struct_size = struct_type->size;
2869 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2870 	if (struct_size - bytes_offset < array_size) {
2871 		btf_verifier_log_member(env, struct_type, member,
2872 					"Member exceeds struct_size");
2873 		return -EINVAL;
2874 	}
2875 
2876 	return 0;
2877 }
2878 
2879 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2880 				const struct btf_type *t,
2881 				u32 meta_left)
2882 {
2883 	const struct btf_array *array = btf_type_array(t);
2884 	u32 meta_needed = sizeof(*array);
2885 
2886 	if (meta_left < meta_needed) {
2887 		btf_verifier_log_basic(env, t,
2888 				       "meta_left:%u meta_needed:%u",
2889 				       meta_left, meta_needed);
2890 		return -EINVAL;
2891 	}
2892 
2893 	/* array type should not have a name */
2894 	if (t->name_off) {
2895 		btf_verifier_log_type(env, t, "Invalid name");
2896 		return -EINVAL;
2897 	}
2898 
2899 	if (btf_type_vlen(t)) {
2900 		btf_verifier_log_type(env, t, "vlen != 0");
2901 		return -EINVAL;
2902 	}
2903 
2904 	if (btf_type_kflag(t)) {
2905 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2906 		return -EINVAL;
2907 	}
2908 
2909 	if (t->size) {
2910 		btf_verifier_log_type(env, t, "size != 0");
2911 		return -EINVAL;
2912 	}
2913 
2914 	/* Array elem type and index type cannot be in type void,
2915 	 * so !array->type and !array->index_type are not allowed.
2916 	 */
2917 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2918 		btf_verifier_log_type(env, t, "Invalid elem");
2919 		return -EINVAL;
2920 	}
2921 
2922 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2923 		btf_verifier_log_type(env, t, "Invalid index");
2924 		return -EINVAL;
2925 	}
2926 
2927 	btf_verifier_log_type(env, t, NULL);
2928 
2929 	return meta_needed;
2930 }
2931 
2932 static int btf_array_resolve(struct btf_verifier_env *env,
2933 			     const struct resolve_vertex *v)
2934 {
2935 	const struct btf_array *array = btf_type_array(v->t);
2936 	const struct btf_type *elem_type, *index_type;
2937 	u32 elem_type_id, index_type_id;
2938 	struct btf *btf = env->btf;
2939 	u32 elem_size;
2940 
2941 	/* Check array->index_type */
2942 	index_type_id = array->index_type;
2943 	index_type = btf_type_by_id(btf, index_type_id);
2944 	if (btf_type_nosize_or_null(index_type) ||
2945 	    btf_type_is_resolve_source_only(index_type)) {
2946 		btf_verifier_log_type(env, v->t, "Invalid index");
2947 		return -EINVAL;
2948 	}
2949 
2950 	if (!env_type_is_resolve_sink(env, index_type) &&
2951 	    !env_type_is_resolved(env, index_type_id))
2952 		return env_stack_push(env, index_type, index_type_id);
2953 
2954 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2955 	if (!index_type || !btf_type_is_int(index_type) ||
2956 	    !btf_type_int_is_regular(index_type)) {
2957 		btf_verifier_log_type(env, v->t, "Invalid index");
2958 		return -EINVAL;
2959 	}
2960 
2961 	/* Check array->type */
2962 	elem_type_id = array->type;
2963 	elem_type = btf_type_by_id(btf, elem_type_id);
2964 	if (btf_type_nosize_or_null(elem_type) ||
2965 	    btf_type_is_resolve_source_only(elem_type)) {
2966 		btf_verifier_log_type(env, v->t,
2967 				      "Invalid elem");
2968 		return -EINVAL;
2969 	}
2970 
2971 	if (!env_type_is_resolve_sink(env, elem_type) &&
2972 	    !env_type_is_resolved(env, elem_type_id))
2973 		return env_stack_push(env, elem_type, elem_type_id);
2974 
2975 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2976 	if (!elem_type) {
2977 		btf_verifier_log_type(env, v->t, "Invalid elem");
2978 		return -EINVAL;
2979 	}
2980 
2981 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2982 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2983 		return -EINVAL;
2984 	}
2985 
2986 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2987 		btf_verifier_log_type(env, v->t,
2988 				      "Array size overflows U32_MAX");
2989 		return -EINVAL;
2990 	}
2991 
2992 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2993 
2994 	return 0;
2995 }
2996 
2997 static void btf_array_log(struct btf_verifier_env *env,
2998 			  const struct btf_type *t)
2999 {
3000 	const struct btf_array *array = btf_type_array(t);
3001 
3002 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3003 			 array->type, array->index_type, array->nelems);
3004 }
3005 
3006 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3007 			     u32 type_id, void *data, u8 bits_offset,
3008 			     struct btf_show *show)
3009 {
3010 	const struct btf_array *array = btf_type_array(t);
3011 	const struct btf_kind_operations *elem_ops;
3012 	const struct btf_type *elem_type;
3013 	u32 i, elem_size = 0, elem_type_id;
3014 	u16 encoding = 0;
3015 
3016 	elem_type_id = array->type;
3017 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3018 	if (elem_type && btf_type_has_size(elem_type))
3019 		elem_size = elem_type->size;
3020 
3021 	if (elem_type && btf_type_is_int(elem_type)) {
3022 		u32 int_type = btf_type_int(elem_type);
3023 
3024 		encoding = BTF_INT_ENCODING(int_type);
3025 
3026 		/*
3027 		 * BTF_INT_CHAR encoding never seems to be set for
3028 		 * char arrays, so if size is 1 and element is
3029 		 * printable as a char, we'll do that.
3030 		 */
3031 		if (elem_size == 1)
3032 			encoding = BTF_INT_CHAR;
3033 	}
3034 
3035 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3036 		return;
3037 
3038 	if (!elem_type)
3039 		goto out;
3040 	elem_ops = btf_type_ops(elem_type);
3041 
3042 	for (i = 0; i < array->nelems; i++) {
3043 
3044 		btf_show_start_array_member(show);
3045 
3046 		elem_ops->show(btf, elem_type, elem_type_id, data,
3047 			       bits_offset, show);
3048 		data += elem_size;
3049 
3050 		btf_show_end_array_member(show);
3051 
3052 		if (show->state.array_terminated)
3053 			break;
3054 	}
3055 out:
3056 	btf_show_end_array_type(show);
3057 }
3058 
3059 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3060 			   u32 type_id, void *data, u8 bits_offset,
3061 			   struct btf_show *show)
3062 {
3063 	const struct btf_member *m = show->state.member;
3064 
3065 	/*
3066 	 * First check if any members would be shown (are non-zero).
3067 	 * See comments above "struct btf_show" definition for more
3068 	 * details on how this works at a high-level.
3069 	 */
3070 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3071 		if (!show->state.depth_check) {
3072 			show->state.depth_check = show->state.depth + 1;
3073 			show->state.depth_to_show = 0;
3074 		}
3075 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3076 		show->state.member = m;
3077 
3078 		if (show->state.depth_check != show->state.depth + 1)
3079 			return;
3080 		show->state.depth_check = 0;
3081 
3082 		if (show->state.depth_to_show <= show->state.depth)
3083 			return;
3084 		/*
3085 		 * Reaching here indicates we have recursed and found
3086 		 * non-zero array member(s).
3087 		 */
3088 	}
3089 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3090 }
3091 
3092 static struct btf_kind_operations array_ops = {
3093 	.check_meta = btf_array_check_meta,
3094 	.resolve = btf_array_resolve,
3095 	.check_member = btf_array_check_member,
3096 	.check_kflag_member = btf_generic_check_kflag_member,
3097 	.log_details = btf_array_log,
3098 	.show = btf_array_show,
3099 };
3100 
3101 static int btf_struct_check_member(struct btf_verifier_env *env,
3102 				   const struct btf_type *struct_type,
3103 				   const struct btf_member *member,
3104 				   const struct btf_type *member_type)
3105 {
3106 	u32 struct_bits_off = member->offset;
3107 	u32 struct_size, bytes_offset;
3108 
3109 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3110 		btf_verifier_log_member(env, struct_type, member,
3111 					"Member is not byte aligned");
3112 		return -EINVAL;
3113 	}
3114 
3115 	struct_size = struct_type->size;
3116 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3117 	if (struct_size - bytes_offset < member_type->size) {
3118 		btf_verifier_log_member(env, struct_type, member,
3119 					"Member exceeds struct_size");
3120 		return -EINVAL;
3121 	}
3122 
3123 	return 0;
3124 }
3125 
3126 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3127 				 const struct btf_type *t,
3128 				 u32 meta_left)
3129 {
3130 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3131 	const struct btf_member *member;
3132 	u32 meta_needed, last_offset;
3133 	struct btf *btf = env->btf;
3134 	u32 struct_size = t->size;
3135 	u32 offset;
3136 	u16 i;
3137 
3138 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3139 	if (meta_left < meta_needed) {
3140 		btf_verifier_log_basic(env, t,
3141 				       "meta_left:%u meta_needed:%u",
3142 				       meta_left, meta_needed);
3143 		return -EINVAL;
3144 	}
3145 
3146 	/* struct type either no name or a valid one */
3147 	if (t->name_off &&
3148 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3149 		btf_verifier_log_type(env, t, "Invalid name");
3150 		return -EINVAL;
3151 	}
3152 
3153 	btf_verifier_log_type(env, t, NULL);
3154 
3155 	last_offset = 0;
3156 	for_each_member(i, t, member) {
3157 		if (!btf_name_offset_valid(btf, member->name_off)) {
3158 			btf_verifier_log_member(env, t, member,
3159 						"Invalid member name_offset:%u",
3160 						member->name_off);
3161 			return -EINVAL;
3162 		}
3163 
3164 		/* struct member either no name or a valid one */
3165 		if (member->name_off &&
3166 		    !btf_name_valid_identifier(btf, member->name_off)) {
3167 			btf_verifier_log_member(env, t, member, "Invalid name");
3168 			return -EINVAL;
3169 		}
3170 		/* A member cannot be in type void */
3171 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3172 			btf_verifier_log_member(env, t, member,
3173 						"Invalid type_id");
3174 			return -EINVAL;
3175 		}
3176 
3177 		offset = __btf_member_bit_offset(t, member);
3178 		if (is_union && offset) {
3179 			btf_verifier_log_member(env, t, member,
3180 						"Invalid member bits_offset");
3181 			return -EINVAL;
3182 		}
3183 
3184 		/*
3185 		 * ">" instead of ">=" because the last member could be
3186 		 * "char a[0];"
3187 		 */
3188 		if (last_offset > offset) {
3189 			btf_verifier_log_member(env, t, member,
3190 						"Invalid member bits_offset");
3191 			return -EINVAL;
3192 		}
3193 
3194 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3195 			btf_verifier_log_member(env, t, member,
3196 						"Member bits_offset exceeds its struct size");
3197 			return -EINVAL;
3198 		}
3199 
3200 		btf_verifier_log_member(env, t, member, NULL);
3201 		last_offset = offset;
3202 	}
3203 
3204 	return meta_needed;
3205 }
3206 
3207 static int btf_struct_resolve(struct btf_verifier_env *env,
3208 			      const struct resolve_vertex *v)
3209 {
3210 	const struct btf_member *member;
3211 	int err;
3212 	u16 i;
3213 
3214 	/* Before continue resolving the next_member,
3215 	 * ensure the last member is indeed resolved to a
3216 	 * type with size info.
3217 	 */
3218 	if (v->next_member) {
3219 		const struct btf_type *last_member_type;
3220 		const struct btf_member *last_member;
3221 		u32 last_member_type_id;
3222 
3223 		last_member = btf_type_member(v->t) + v->next_member - 1;
3224 		last_member_type_id = last_member->type;
3225 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3226 						       last_member_type_id)))
3227 			return -EINVAL;
3228 
3229 		last_member_type = btf_type_by_id(env->btf,
3230 						  last_member_type_id);
3231 		if (btf_type_kflag(v->t))
3232 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3233 								last_member,
3234 								last_member_type);
3235 		else
3236 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3237 								last_member,
3238 								last_member_type);
3239 		if (err)
3240 			return err;
3241 	}
3242 
3243 	for_each_member_from(i, v->next_member, v->t, member) {
3244 		u32 member_type_id = member->type;
3245 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3246 								member_type_id);
3247 
3248 		if (btf_type_nosize_or_null(member_type) ||
3249 		    btf_type_is_resolve_source_only(member_type)) {
3250 			btf_verifier_log_member(env, v->t, member,
3251 						"Invalid member");
3252 			return -EINVAL;
3253 		}
3254 
3255 		if (!env_type_is_resolve_sink(env, member_type) &&
3256 		    !env_type_is_resolved(env, member_type_id)) {
3257 			env_stack_set_next_member(env, i + 1);
3258 			return env_stack_push(env, member_type, member_type_id);
3259 		}
3260 
3261 		if (btf_type_kflag(v->t))
3262 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3263 									    member,
3264 									    member_type);
3265 		else
3266 			err = btf_type_ops(member_type)->check_member(env, v->t,
3267 								      member,
3268 								      member_type);
3269 		if (err)
3270 			return err;
3271 	}
3272 
3273 	env_stack_pop_resolved(env, 0, 0);
3274 
3275 	return 0;
3276 }
3277 
3278 static void btf_struct_log(struct btf_verifier_env *env,
3279 			   const struct btf_type *t)
3280 {
3281 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3282 }
3283 
3284 enum {
3285 	BTF_FIELD_IGNORE = 0,
3286 	BTF_FIELD_FOUND  = 1,
3287 };
3288 
3289 struct btf_field_info {
3290 	enum btf_field_type type;
3291 	u32 off;
3292 	union {
3293 		struct {
3294 			u32 type_id;
3295 		} kptr;
3296 		struct {
3297 			const char *node_name;
3298 			u32 value_btf_id;
3299 		} graph_root;
3300 	};
3301 };
3302 
3303 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3304 			   u32 off, int sz, enum btf_field_type field_type,
3305 			   struct btf_field_info *info)
3306 {
3307 	if (!__btf_type_is_struct(t))
3308 		return BTF_FIELD_IGNORE;
3309 	if (t->size != sz)
3310 		return BTF_FIELD_IGNORE;
3311 	info->type = field_type;
3312 	info->off = off;
3313 	return BTF_FIELD_FOUND;
3314 }
3315 
3316 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3317 			 u32 off, int sz, struct btf_field_info *info)
3318 {
3319 	enum btf_field_type type;
3320 	u32 res_id;
3321 
3322 	/* Permit modifiers on the pointer itself */
3323 	if (btf_type_is_volatile(t))
3324 		t = btf_type_by_id(btf, t->type);
3325 	/* For PTR, sz is always == 8 */
3326 	if (!btf_type_is_ptr(t))
3327 		return BTF_FIELD_IGNORE;
3328 	t = btf_type_by_id(btf, t->type);
3329 
3330 	if (!btf_type_is_type_tag(t))
3331 		return BTF_FIELD_IGNORE;
3332 	/* Reject extra tags */
3333 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3334 		return -EINVAL;
3335 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3336 		type = BPF_KPTR_UNREF;
3337 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3338 		type = BPF_KPTR_REF;
3339 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3340 		type = BPF_KPTR_PERCPU;
3341 	else
3342 		return -EINVAL;
3343 
3344 	/* Get the base type */
3345 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3346 	/* Only pointer to struct is allowed */
3347 	if (!__btf_type_is_struct(t))
3348 		return -EINVAL;
3349 
3350 	info->type = type;
3351 	info->off = off;
3352 	info->kptr.type_id = res_id;
3353 	return BTF_FIELD_FOUND;
3354 }
3355 
3356 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3357 			   int comp_idx, const char *tag_key, int last_id)
3358 {
3359 	int len = strlen(tag_key);
3360 	int i, n;
3361 
3362 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3363 		const struct btf_type *t = btf_type_by_id(btf, i);
3364 
3365 		if (!btf_type_is_decl_tag(t))
3366 			continue;
3367 		if (pt != btf_type_by_id(btf, t->type))
3368 			continue;
3369 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3370 			continue;
3371 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3372 			continue;
3373 		return i;
3374 	}
3375 	return -ENOENT;
3376 }
3377 
3378 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3379 				    int comp_idx, const char *tag_key)
3380 {
3381 	const char *value = NULL;
3382 	const struct btf_type *t;
3383 	int len, id;
3384 
3385 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3386 	if (id < 0)
3387 		return ERR_PTR(id);
3388 
3389 	t = btf_type_by_id(btf, id);
3390 	len = strlen(tag_key);
3391 	value = __btf_name_by_offset(btf, t->name_off) + len;
3392 
3393 	/* Prevent duplicate entries for same type */
3394 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3395 	if (id >= 0)
3396 		return ERR_PTR(-EEXIST);
3397 
3398 	return value;
3399 }
3400 
3401 static int
3402 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3403 		    const struct btf_type *t, int comp_idx, u32 off,
3404 		    int sz, struct btf_field_info *info,
3405 		    enum btf_field_type head_type)
3406 {
3407 	const char *node_field_name;
3408 	const char *value_type;
3409 	s32 id;
3410 
3411 	if (!__btf_type_is_struct(t))
3412 		return BTF_FIELD_IGNORE;
3413 	if (t->size != sz)
3414 		return BTF_FIELD_IGNORE;
3415 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3416 	if (IS_ERR(value_type))
3417 		return -EINVAL;
3418 	node_field_name = strstr(value_type, ":");
3419 	if (!node_field_name)
3420 		return -EINVAL;
3421 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3422 	if (!value_type)
3423 		return -ENOMEM;
3424 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3425 	kfree(value_type);
3426 	if (id < 0)
3427 		return id;
3428 	node_field_name++;
3429 	if (str_is_empty(node_field_name))
3430 		return -EINVAL;
3431 	info->type = head_type;
3432 	info->off = off;
3433 	info->graph_root.value_btf_id = id;
3434 	info->graph_root.node_name = node_field_name;
3435 	return BTF_FIELD_FOUND;
3436 }
3437 
3438 #define field_mask_test_name(field_type, field_type_str) \
3439 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3440 		type = field_type;					\
3441 		goto end;						\
3442 	}
3443 
3444 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3445 			      int *align, int *sz)
3446 {
3447 	int type = 0;
3448 
3449 	if (field_mask & BPF_SPIN_LOCK) {
3450 		if (!strcmp(name, "bpf_spin_lock")) {
3451 			if (*seen_mask & BPF_SPIN_LOCK)
3452 				return -E2BIG;
3453 			*seen_mask |= BPF_SPIN_LOCK;
3454 			type = BPF_SPIN_LOCK;
3455 			goto end;
3456 		}
3457 	}
3458 	if (field_mask & BPF_TIMER) {
3459 		if (!strcmp(name, "bpf_timer")) {
3460 			if (*seen_mask & BPF_TIMER)
3461 				return -E2BIG;
3462 			*seen_mask |= BPF_TIMER;
3463 			type = BPF_TIMER;
3464 			goto end;
3465 		}
3466 	}
3467 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3468 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3469 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3470 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3471 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3472 
3473 	/* Only return BPF_KPTR when all other types with matchable names fail */
3474 	if (field_mask & BPF_KPTR) {
3475 		type = BPF_KPTR_REF;
3476 		goto end;
3477 	}
3478 	return 0;
3479 end:
3480 	*sz = btf_field_type_size(type);
3481 	*align = btf_field_type_align(type);
3482 	return type;
3483 }
3484 
3485 #undef field_mask_test_name
3486 
3487 static int btf_find_struct_field(const struct btf *btf,
3488 				 const struct btf_type *t, u32 field_mask,
3489 				 struct btf_field_info *info, int info_cnt)
3490 {
3491 	int ret, idx = 0, align, sz, field_type;
3492 	const struct btf_member *member;
3493 	struct btf_field_info tmp;
3494 	u32 i, off, seen_mask = 0;
3495 
3496 	for_each_member(i, t, member) {
3497 		const struct btf_type *member_type = btf_type_by_id(btf,
3498 								    member->type);
3499 
3500 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3501 						field_mask, &seen_mask, &align, &sz);
3502 		if (field_type == 0)
3503 			continue;
3504 		if (field_type < 0)
3505 			return field_type;
3506 
3507 		off = __btf_member_bit_offset(t, member);
3508 		if (off % 8)
3509 			/* valid C code cannot generate such BTF */
3510 			return -EINVAL;
3511 		off /= 8;
3512 		if (off % align)
3513 			continue;
3514 
3515 		switch (field_type) {
3516 		case BPF_SPIN_LOCK:
3517 		case BPF_TIMER:
3518 		case BPF_LIST_NODE:
3519 		case BPF_RB_NODE:
3520 		case BPF_REFCOUNT:
3521 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3522 					      idx < info_cnt ? &info[idx] : &tmp);
3523 			if (ret < 0)
3524 				return ret;
3525 			break;
3526 		case BPF_KPTR_UNREF:
3527 		case BPF_KPTR_REF:
3528 		case BPF_KPTR_PERCPU:
3529 			ret = btf_find_kptr(btf, member_type, off, sz,
3530 					    idx < info_cnt ? &info[idx] : &tmp);
3531 			if (ret < 0)
3532 				return ret;
3533 			break;
3534 		case BPF_LIST_HEAD:
3535 		case BPF_RB_ROOT:
3536 			ret = btf_find_graph_root(btf, t, member_type,
3537 						  i, off, sz,
3538 						  idx < info_cnt ? &info[idx] : &tmp,
3539 						  field_type);
3540 			if (ret < 0)
3541 				return ret;
3542 			break;
3543 		default:
3544 			return -EFAULT;
3545 		}
3546 
3547 		if (ret == BTF_FIELD_IGNORE)
3548 			continue;
3549 		if (idx >= info_cnt)
3550 			return -E2BIG;
3551 		++idx;
3552 	}
3553 	return idx;
3554 }
3555 
3556 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3557 				u32 field_mask, struct btf_field_info *info,
3558 				int info_cnt)
3559 {
3560 	int ret, idx = 0, align, sz, field_type;
3561 	const struct btf_var_secinfo *vsi;
3562 	struct btf_field_info tmp;
3563 	u32 i, off, seen_mask = 0;
3564 
3565 	for_each_vsi(i, t, vsi) {
3566 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3567 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3568 
3569 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3570 						field_mask, &seen_mask, &align, &sz);
3571 		if (field_type == 0)
3572 			continue;
3573 		if (field_type < 0)
3574 			return field_type;
3575 
3576 		off = vsi->offset;
3577 		if (vsi->size != sz)
3578 			continue;
3579 		if (off % align)
3580 			continue;
3581 
3582 		switch (field_type) {
3583 		case BPF_SPIN_LOCK:
3584 		case BPF_TIMER:
3585 		case BPF_LIST_NODE:
3586 		case BPF_RB_NODE:
3587 		case BPF_REFCOUNT:
3588 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3589 					      idx < info_cnt ? &info[idx] : &tmp);
3590 			if (ret < 0)
3591 				return ret;
3592 			break;
3593 		case BPF_KPTR_UNREF:
3594 		case BPF_KPTR_REF:
3595 		case BPF_KPTR_PERCPU:
3596 			ret = btf_find_kptr(btf, var_type, off, sz,
3597 					    idx < info_cnt ? &info[idx] : &tmp);
3598 			if (ret < 0)
3599 				return ret;
3600 			break;
3601 		case BPF_LIST_HEAD:
3602 		case BPF_RB_ROOT:
3603 			ret = btf_find_graph_root(btf, var, var_type,
3604 						  -1, off, sz,
3605 						  idx < info_cnt ? &info[idx] : &tmp,
3606 						  field_type);
3607 			if (ret < 0)
3608 				return ret;
3609 			break;
3610 		default:
3611 			return -EFAULT;
3612 		}
3613 
3614 		if (ret == BTF_FIELD_IGNORE)
3615 			continue;
3616 		if (idx >= info_cnt)
3617 			return -E2BIG;
3618 		++idx;
3619 	}
3620 	return idx;
3621 }
3622 
3623 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3624 			  u32 field_mask, struct btf_field_info *info,
3625 			  int info_cnt)
3626 {
3627 	if (__btf_type_is_struct(t))
3628 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3629 	else if (btf_type_is_datasec(t))
3630 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3631 	return -EINVAL;
3632 }
3633 
3634 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3635 			  struct btf_field_info *info)
3636 {
3637 	struct module *mod = NULL;
3638 	const struct btf_type *t;
3639 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3640 	 * is that BTF, otherwise it's program BTF
3641 	 */
3642 	struct btf *kptr_btf;
3643 	int ret;
3644 	s32 id;
3645 
3646 	/* Find type in map BTF, and use it to look up the matching type
3647 	 * in vmlinux or module BTFs, by name and kind.
3648 	 */
3649 	t = btf_type_by_id(btf, info->kptr.type_id);
3650 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3651 			     &kptr_btf);
3652 	if (id == -ENOENT) {
3653 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3654 		WARN_ON_ONCE(btf_is_kernel(btf));
3655 
3656 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3657 		 * kptr allocated via bpf_obj_new
3658 		 */
3659 		field->kptr.dtor = NULL;
3660 		id = info->kptr.type_id;
3661 		kptr_btf = (struct btf *)btf;
3662 		btf_get(kptr_btf);
3663 		goto found_dtor;
3664 	}
3665 	if (id < 0)
3666 		return id;
3667 
3668 	/* Find and stash the function pointer for the destruction function that
3669 	 * needs to be eventually invoked from the map free path.
3670 	 */
3671 	if (info->type == BPF_KPTR_REF) {
3672 		const struct btf_type *dtor_func;
3673 		const char *dtor_func_name;
3674 		unsigned long addr;
3675 		s32 dtor_btf_id;
3676 
3677 		/* This call also serves as a whitelist of allowed objects that
3678 		 * can be used as a referenced pointer and be stored in a map at
3679 		 * the same time.
3680 		 */
3681 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3682 		if (dtor_btf_id < 0) {
3683 			ret = dtor_btf_id;
3684 			goto end_btf;
3685 		}
3686 
3687 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3688 		if (!dtor_func) {
3689 			ret = -ENOENT;
3690 			goto end_btf;
3691 		}
3692 
3693 		if (btf_is_module(kptr_btf)) {
3694 			mod = btf_try_get_module(kptr_btf);
3695 			if (!mod) {
3696 				ret = -ENXIO;
3697 				goto end_btf;
3698 			}
3699 		}
3700 
3701 		/* We already verified dtor_func to be btf_type_is_func
3702 		 * in register_btf_id_dtor_kfuncs.
3703 		 */
3704 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3705 		addr = kallsyms_lookup_name(dtor_func_name);
3706 		if (!addr) {
3707 			ret = -EINVAL;
3708 			goto end_mod;
3709 		}
3710 		field->kptr.dtor = (void *)addr;
3711 	}
3712 
3713 found_dtor:
3714 	field->kptr.btf_id = id;
3715 	field->kptr.btf = kptr_btf;
3716 	field->kptr.module = mod;
3717 	return 0;
3718 end_mod:
3719 	module_put(mod);
3720 end_btf:
3721 	btf_put(kptr_btf);
3722 	return ret;
3723 }
3724 
3725 static int btf_parse_graph_root(const struct btf *btf,
3726 				struct btf_field *field,
3727 				struct btf_field_info *info,
3728 				const char *node_type_name,
3729 				size_t node_type_align)
3730 {
3731 	const struct btf_type *t, *n = NULL;
3732 	const struct btf_member *member;
3733 	u32 offset;
3734 	int i;
3735 
3736 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3737 	/* We've already checked that value_btf_id is a struct type. We
3738 	 * just need to figure out the offset of the list_node, and
3739 	 * verify its type.
3740 	 */
3741 	for_each_member(i, t, member) {
3742 		if (strcmp(info->graph_root.node_name,
3743 			   __btf_name_by_offset(btf, member->name_off)))
3744 			continue;
3745 		/* Invalid BTF, two members with same name */
3746 		if (n)
3747 			return -EINVAL;
3748 		n = btf_type_by_id(btf, member->type);
3749 		if (!__btf_type_is_struct(n))
3750 			return -EINVAL;
3751 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3752 			return -EINVAL;
3753 		offset = __btf_member_bit_offset(n, member);
3754 		if (offset % 8)
3755 			return -EINVAL;
3756 		offset /= 8;
3757 		if (offset % node_type_align)
3758 			return -EINVAL;
3759 
3760 		field->graph_root.btf = (struct btf *)btf;
3761 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3762 		field->graph_root.node_offset = offset;
3763 	}
3764 	if (!n)
3765 		return -ENOENT;
3766 	return 0;
3767 }
3768 
3769 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3770 			       struct btf_field_info *info)
3771 {
3772 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3773 					    __alignof__(struct bpf_list_node));
3774 }
3775 
3776 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3777 			     struct btf_field_info *info)
3778 {
3779 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3780 					    __alignof__(struct bpf_rb_node));
3781 }
3782 
3783 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3784 {
3785 	const struct btf_field *a = (const struct btf_field *)_a;
3786 	const struct btf_field *b = (const struct btf_field *)_b;
3787 
3788 	if (a->offset < b->offset)
3789 		return -1;
3790 	else if (a->offset > b->offset)
3791 		return 1;
3792 	return 0;
3793 }
3794 
3795 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3796 				    u32 field_mask, u32 value_size)
3797 {
3798 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3799 	u32 next_off = 0, field_type_size;
3800 	struct btf_record *rec;
3801 	int ret, i, cnt;
3802 
3803 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3804 	if (ret < 0)
3805 		return ERR_PTR(ret);
3806 	if (!ret)
3807 		return NULL;
3808 
3809 	cnt = ret;
3810 	/* This needs to be kzalloc to zero out padding and unused fields, see
3811 	 * comment in btf_record_equal.
3812 	 */
3813 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3814 	if (!rec)
3815 		return ERR_PTR(-ENOMEM);
3816 
3817 	rec->spin_lock_off = -EINVAL;
3818 	rec->timer_off = -EINVAL;
3819 	rec->refcount_off = -EINVAL;
3820 	for (i = 0; i < cnt; i++) {
3821 		field_type_size = btf_field_type_size(info_arr[i].type);
3822 		if (info_arr[i].off + field_type_size > value_size) {
3823 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3824 			ret = -EFAULT;
3825 			goto end;
3826 		}
3827 		if (info_arr[i].off < next_off) {
3828 			ret = -EEXIST;
3829 			goto end;
3830 		}
3831 		next_off = info_arr[i].off + field_type_size;
3832 
3833 		rec->field_mask |= info_arr[i].type;
3834 		rec->fields[i].offset = info_arr[i].off;
3835 		rec->fields[i].type = info_arr[i].type;
3836 		rec->fields[i].size = field_type_size;
3837 
3838 		switch (info_arr[i].type) {
3839 		case BPF_SPIN_LOCK:
3840 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3841 			/* Cache offset for faster lookup at runtime */
3842 			rec->spin_lock_off = rec->fields[i].offset;
3843 			break;
3844 		case BPF_TIMER:
3845 			WARN_ON_ONCE(rec->timer_off >= 0);
3846 			/* Cache offset for faster lookup at runtime */
3847 			rec->timer_off = rec->fields[i].offset;
3848 			break;
3849 		case BPF_REFCOUNT:
3850 			WARN_ON_ONCE(rec->refcount_off >= 0);
3851 			/* Cache offset for faster lookup at runtime */
3852 			rec->refcount_off = rec->fields[i].offset;
3853 			break;
3854 		case BPF_KPTR_UNREF:
3855 		case BPF_KPTR_REF:
3856 		case BPF_KPTR_PERCPU:
3857 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3858 			if (ret < 0)
3859 				goto end;
3860 			break;
3861 		case BPF_LIST_HEAD:
3862 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3863 			if (ret < 0)
3864 				goto end;
3865 			break;
3866 		case BPF_RB_ROOT:
3867 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3868 			if (ret < 0)
3869 				goto end;
3870 			break;
3871 		case BPF_LIST_NODE:
3872 		case BPF_RB_NODE:
3873 			break;
3874 		default:
3875 			ret = -EFAULT;
3876 			goto end;
3877 		}
3878 		rec->cnt++;
3879 	}
3880 
3881 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3882 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3883 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3884 		ret = -EINVAL;
3885 		goto end;
3886 	}
3887 
3888 	if (rec->refcount_off < 0 &&
3889 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3890 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3891 		ret = -EINVAL;
3892 		goto end;
3893 	}
3894 
3895 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3896 	       NULL, rec);
3897 
3898 	return rec;
3899 end:
3900 	btf_record_free(rec);
3901 	return ERR_PTR(ret);
3902 }
3903 
3904 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3905 {
3906 	int i;
3907 
3908 	/* There are three types that signify ownership of some other type:
3909 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3910 	 * kptr_ref only supports storing kernel types, which can't store
3911 	 * references to program allocated local types.
3912 	 *
3913 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3914 	 * does not form cycles.
3915 	 */
3916 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3917 		return 0;
3918 	for (i = 0; i < rec->cnt; i++) {
3919 		struct btf_struct_meta *meta;
3920 		u32 btf_id;
3921 
3922 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3923 			continue;
3924 		btf_id = rec->fields[i].graph_root.value_btf_id;
3925 		meta = btf_find_struct_meta(btf, btf_id);
3926 		if (!meta)
3927 			return -EFAULT;
3928 		rec->fields[i].graph_root.value_rec = meta->record;
3929 
3930 		/* We need to set value_rec for all root types, but no need
3931 		 * to check ownership cycle for a type unless it's also a
3932 		 * node type.
3933 		 */
3934 		if (!(rec->field_mask & BPF_GRAPH_NODE))
3935 			continue;
3936 
3937 		/* We need to ensure ownership acyclicity among all types. The
3938 		 * proper way to do it would be to topologically sort all BTF
3939 		 * IDs based on the ownership edges, since there can be multiple
3940 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3941 		 * following resaoning:
3942 		 *
3943 		 * - A type can only be owned by another type in user BTF if it
3944 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3945 		 * - A type can only _own_ another type in user BTF if it has a
3946 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3947 		 *
3948 		 * We ensure that if a type is both a root and node, its
3949 		 * element types cannot be root types.
3950 		 *
3951 		 * To ensure acyclicity:
3952 		 *
3953 		 * When A is an root type but not a node, its ownership
3954 		 * chain can be:
3955 		 *	A -> B -> C
3956 		 * Where:
3957 		 * - A is an root, e.g. has bpf_rb_root.
3958 		 * - B is both a root and node, e.g. has bpf_rb_node and
3959 		 *   bpf_list_head.
3960 		 * - C is only an root, e.g. has bpf_list_node
3961 		 *
3962 		 * When A is both a root and node, some other type already
3963 		 * owns it in the BTF domain, hence it can not own
3964 		 * another root type through any of the ownership edges.
3965 		 *	A -> B
3966 		 * Where:
3967 		 * - A is both an root and node.
3968 		 * - B is only an node.
3969 		 */
3970 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
3971 			return -ELOOP;
3972 	}
3973 	return 0;
3974 }
3975 
3976 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3977 			      u32 type_id, void *data, u8 bits_offset,
3978 			      struct btf_show *show)
3979 {
3980 	const struct btf_member *member;
3981 	void *safe_data;
3982 	u32 i;
3983 
3984 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3985 	if (!safe_data)
3986 		return;
3987 
3988 	for_each_member(i, t, member) {
3989 		const struct btf_type *member_type = btf_type_by_id(btf,
3990 								member->type);
3991 		const struct btf_kind_operations *ops;
3992 		u32 member_offset, bitfield_size;
3993 		u32 bytes_offset;
3994 		u8 bits8_offset;
3995 
3996 		btf_show_start_member(show, member);
3997 
3998 		member_offset = __btf_member_bit_offset(t, member);
3999 		bitfield_size = __btf_member_bitfield_size(t, member);
4000 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4001 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4002 		if (bitfield_size) {
4003 			safe_data = btf_show_start_type(show, member_type,
4004 							member->type,
4005 							data + bytes_offset);
4006 			if (safe_data)
4007 				btf_bitfield_show(safe_data,
4008 						  bits8_offset,
4009 						  bitfield_size, show);
4010 			btf_show_end_type(show);
4011 		} else {
4012 			ops = btf_type_ops(member_type);
4013 			ops->show(btf, member_type, member->type,
4014 				  data + bytes_offset, bits8_offset, show);
4015 		}
4016 
4017 		btf_show_end_member(show);
4018 	}
4019 
4020 	btf_show_end_struct_type(show);
4021 }
4022 
4023 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4024 			    u32 type_id, void *data, u8 bits_offset,
4025 			    struct btf_show *show)
4026 {
4027 	const struct btf_member *m = show->state.member;
4028 
4029 	/*
4030 	 * First check if any members would be shown (are non-zero).
4031 	 * See comments above "struct btf_show" definition for more
4032 	 * details on how this works at a high-level.
4033 	 */
4034 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4035 		if (!show->state.depth_check) {
4036 			show->state.depth_check = show->state.depth + 1;
4037 			show->state.depth_to_show = 0;
4038 		}
4039 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4040 		/* Restore saved member data here */
4041 		show->state.member = m;
4042 		if (show->state.depth_check != show->state.depth + 1)
4043 			return;
4044 		show->state.depth_check = 0;
4045 
4046 		if (show->state.depth_to_show <= show->state.depth)
4047 			return;
4048 		/*
4049 		 * Reaching here indicates we have recursed and found
4050 		 * non-zero child values.
4051 		 */
4052 	}
4053 
4054 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4055 }
4056 
4057 static struct btf_kind_operations struct_ops = {
4058 	.check_meta = btf_struct_check_meta,
4059 	.resolve = btf_struct_resolve,
4060 	.check_member = btf_struct_check_member,
4061 	.check_kflag_member = btf_generic_check_kflag_member,
4062 	.log_details = btf_struct_log,
4063 	.show = btf_struct_show,
4064 };
4065 
4066 static int btf_enum_check_member(struct btf_verifier_env *env,
4067 				 const struct btf_type *struct_type,
4068 				 const struct btf_member *member,
4069 				 const struct btf_type *member_type)
4070 {
4071 	u32 struct_bits_off = member->offset;
4072 	u32 struct_size, bytes_offset;
4073 
4074 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4075 		btf_verifier_log_member(env, struct_type, member,
4076 					"Member is not byte aligned");
4077 		return -EINVAL;
4078 	}
4079 
4080 	struct_size = struct_type->size;
4081 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4082 	if (struct_size - bytes_offset < member_type->size) {
4083 		btf_verifier_log_member(env, struct_type, member,
4084 					"Member exceeds struct_size");
4085 		return -EINVAL;
4086 	}
4087 
4088 	return 0;
4089 }
4090 
4091 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4092 				       const struct btf_type *struct_type,
4093 				       const struct btf_member *member,
4094 				       const struct btf_type *member_type)
4095 {
4096 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4097 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4098 
4099 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4100 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4101 	if (!nr_bits) {
4102 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4103 			btf_verifier_log_member(env, struct_type, member,
4104 						"Member is not byte aligned");
4105 			return -EINVAL;
4106 		}
4107 
4108 		nr_bits = int_bitsize;
4109 	} else if (nr_bits > int_bitsize) {
4110 		btf_verifier_log_member(env, struct_type, member,
4111 					"Invalid member bitfield_size");
4112 		return -EINVAL;
4113 	}
4114 
4115 	struct_size = struct_type->size;
4116 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4117 	if (struct_size < bytes_end) {
4118 		btf_verifier_log_member(env, struct_type, member,
4119 					"Member exceeds struct_size");
4120 		return -EINVAL;
4121 	}
4122 
4123 	return 0;
4124 }
4125 
4126 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4127 			       const struct btf_type *t,
4128 			       u32 meta_left)
4129 {
4130 	const struct btf_enum *enums = btf_type_enum(t);
4131 	struct btf *btf = env->btf;
4132 	const char *fmt_str;
4133 	u16 i, nr_enums;
4134 	u32 meta_needed;
4135 
4136 	nr_enums = btf_type_vlen(t);
4137 	meta_needed = nr_enums * sizeof(*enums);
4138 
4139 	if (meta_left < meta_needed) {
4140 		btf_verifier_log_basic(env, t,
4141 				       "meta_left:%u meta_needed:%u",
4142 				       meta_left, meta_needed);
4143 		return -EINVAL;
4144 	}
4145 
4146 	if (t->size > 8 || !is_power_of_2(t->size)) {
4147 		btf_verifier_log_type(env, t, "Unexpected size");
4148 		return -EINVAL;
4149 	}
4150 
4151 	/* enum type either no name or a valid one */
4152 	if (t->name_off &&
4153 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4154 		btf_verifier_log_type(env, t, "Invalid name");
4155 		return -EINVAL;
4156 	}
4157 
4158 	btf_verifier_log_type(env, t, NULL);
4159 
4160 	for (i = 0; i < nr_enums; i++) {
4161 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4162 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4163 					 enums[i].name_off);
4164 			return -EINVAL;
4165 		}
4166 
4167 		/* enum member must have a valid name */
4168 		if (!enums[i].name_off ||
4169 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4170 			btf_verifier_log_type(env, t, "Invalid name");
4171 			return -EINVAL;
4172 		}
4173 
4174 		if (env->log.level == BPF_LOG_KERNEL)
4175 			continue;
4176 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4177 		btf_verifier_log(env, fmt_str,
4178 				 __btf_name_by_offset(btf, enums[i].name_off),
4179 				 enums[i].val);
4180 	}
4181 
4182 	return meta_needed;
4183 }
4184 
4185 static void btf_enum_log(struct btf_verifier_env *env,
4186 			 const struct btf_type *t)
4187 {
4188 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4189 }
4190 
4191 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4192 			  u32 type_id, void *data, u8 bits_offset,
4193 			  struct btf_show *show)
4194 {
4195 	const struct btf_enum *enums = btf_type_enum(t);
4196 	u32 i, nr_enums = btf_type_vlen(t);
4197 	void *safe_data;
4198 	int v;
4199 
4200 	safe_data = btf_show_start_type(show, t, type_id, data);
4201 	if (!safe_data)
4202 		return;
4203 
4204 	v = *(int *)safe_data;
4205 
4206 	for (i = 0; i < nr_enums; i++) {
4207 		if (v != enums[i].val)
4208 			continue;
4209 
4210 		btf_show_type_value(show, "%s",
4211 				    __btf_name_by_offset(btf,
4212 							 enums[i].name_off));
4213 
4214 		btf_show_end_type(show);
4215 		return;
4216 	}
4217 
4218 	if (btf_type_kflag(t))
4219 		btf_show_type_value(show, "%d", v);
4220 	else
4221 		btf_show_type_value(show, "%u", v);
4222 	btf_show_end_type(show);
4223 }
4224 
4225 static struct btf_kind_operations enum_ops = {
4226 	.check_meta = btf_enum_check_meta,
4227 	.resolve = btf_df_resolve,
4228 	.check_member = btf_enum_check_member,
4229 	.check_kflag_member = btf_enum_check_kflag_member,
4230 	.log_details = btf_enum_log,
4231 	.show = btf_enum_show,
4232 };
4233 
4234 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4235 				 const struct btf_type *t,
4236 				 u32 meta_left)
4237 {
4238 	const struct btf_enum64 *enums = btf_type_enum64(t);
4239 	struct btf *btf = env->btf;
4240 	const char *fmt_str;
4241 	u16 i, nr_enums;
4242 	u32 meta_needed;
4243 
4244 	nr_enums = btf_type_vlen(t);
4245 	meta_needed = nr_enums * sizeof(*enums);
4246 
4247 	if (meta_left < meta_needed) {
4248 		btf_verifier_log_basic(env, t,
4249 				       "meta_left:%u meta_needed:%u",
4250 				       meta_left, meta_needed);
4251 		return -EINVAL;
4252 	}
4253 
4254 	if (t->size > 8 || !is_power_of_2(t->size)) {
4255 		btf_verifier_log_type(env, t, "Unexpected size");
4256 		return -EINVAL;
4257 	}
4258 
4259 	/* enum type either no name or a valid one */
4260 	if (t->name_off &&
4261 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4262 		btf_verifier_log_type(env, t, "Invalid name");
4263 		return -EINVAL;
4264 	}
4265 
4266 	btf_verifier_log_type(env, t, NULL);
4267 
4268 	for (i = 0; i < nr_enums; i++) {
4269 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4270 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4271 					 enums[i].name_off);
4272 			return -EINVAL;
4273 		}
4274 
4275 		/* enum member must have a valid name */
4276 		if (!enums[i].name_off ||
4277 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4278 			btf_verifier_log_type(env, t, "Invalid name");
4279 			return -EINVAL;
4280 		}
4281 
4282 		if (env->log.level == BPF_LOG_KERNEL)
4283 			continue;
4284 
4285 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4286 		btf_verifier_log(env, fmt_str,
4287 				 __btf_name_by_offset(btf, enums[i].name_off),
4288 				 btf_enum64_value(enums + i));
4289 	}
4290 
4291 	return meta_needed;
4292 }
4293 
4294 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4295 			    u32 type_id, void *data, u8 bits_offset,
4296 			    struct btf_show *show)
4297 {
4298 	const struct btf_enum64 *enums = btf_type_enum64(t);
4299 	u32 i, nr_enums = btf_type_vlen(t);
4300 	void *safe_data;
4301 	s64 v;
4302 
4303 	safe_data = btf_show_start_type(show, t, type_id, data);
4304 	if (!safe_data)
4305 		return;
4306 
4307 	v = *(u64 *)safe_data;
4308 
4309 	for (i = 0; i < nr_enums; i++) {
4310 		if (v != btf_enum64_value(enums + i))
4311 			continue;
4312 
4313 		btf_show_type_value(show, "%s",
4314 				    __btf_name_by_offset(btf,
4315 							 enums[i].name_off));
4316 
4317 		btf_show_end_type(show);
4318 		return;
4319 	}
4320 
4321 	if (btf_type_kflag(t))
4322 		btf_show_type_value(show, "%lld", v);
4323 	else
4324 		btf_show_type_value(show, "%llu", v);
4325 	btf_show_end_type(show);
4326 }
4327 
4328 static struct btf_kind_operations enum64_ops = {
4329 	.check_meta = btf_enum64_check_meta,
4330 	.resolve = btf_df_resolve,
4331 	.check_member = btf_enum_check_member,
4332 	.check_kflag_member = btf_enum_check_kflag_member,
4333 	.log_details = btf_enum_log,
4334 	.show = btf_enum64_show,
4335 };
4336 
4337 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4338 				     const struct btf_type *t,
4339 				     u32 meta_left)
4340 {
4341 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4342 
4343 	if (meta_left < meta_needed) {
4344 		btf_verifier_log_basic(env, t,
4345 				       "meta_left:%u meta_needed:%u",
4346 				       meta_left, meta_needed);
4347 		return -EINVAL;
4348 	}
4349 
4350 	if (t->name_off) {
4351 		btf_verifier_log_type(env, t, "Invalid name");
4352 		return -EINVAL;
4353 	}
4354 
4355 	if (btf_type_kflag(t)) {
4356 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4357 		return -EINVAL;
4358 	}
4359 
4360 	btf_verifier_log_type(env, t, NULL);
4361 
4362 	return meta_needed;
4363 }
4364 
4365 static void btf_func_proto_log(struct btf_verifier_env *env,
4366 			       const struct btf_type *t)
4367 {
4368 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4369 	u16 nr_args = btf_type_vlen(t), i;
4370 
4371 	btf_verifier_log(env, "return=%u args=(", t->type);
4372 	if (!nr_args) {
4373 		btf_verifier_log(env, "void");
4374 		goto done;
4375 	}
4376 
4377 	if (nr_args == 1 && !args[0].type) {
4378 		/* Only one vararg */
4379 		btf_verifier_log(env, "vararg");
4380 		goto done;
4381 	}
4382 
4383 	btf_verifier_log(env, "%u %s", args[0].type,
4384 			 __btf_name_by_offset(env->btf,
4385 					      args[0].name_off));
4386 	for (i = 1; i < nr_args - 1; i++)
4387 		btf_verifier_log(env, ", %u %s", args[i].type,
4388 				 __btf_name_by_offset(env->btf,
4389 						      args[i].name_off));
4390 
4391 	if (nr_args > 1) {
4392 		const struct btf_param *last_arg = &args[nr_args - 1];
4393 
4394 		if (last_arg->type)
4395 			btf_verifier_log(env, ", %u %s", last_arg->type,
4396 					 __btf_name_by_offset(env->btf,
4397 							      last_arg->name_off));
4398 		else
4399 			btf_verifier_log(env, ", vararg");
4400 	}
4401 
4402 done:
4403 	btf_verifier_log(env, ")");
4404 }
4405 
4406 static struct btf_kind_operations func_proto_ops = {
4407 	.check_meta = btf_func_proto_check_meta,
4408 	.resolve = btf_df_resolve,
4409 	/*
4410 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4411 	 * a struct's member.
4412 	 *
4413 	 * It should be a function pointer instead.
4414 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4415 	 *
4416 	 * Hence, there is no btf_func_check_member().
4417 	 */
4418 	.check_member = btf_df_check_member,
4419 	.check_kflag_member = btf_df_check_kflag_member,
4420 	.log_details = btf_func_proto_log,
4421 	.show = btf_df_show,
4422 };
4423 
4424 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4425 			       const struct btf_type *t,
4426 			       u32 meta_left)
4427 {
4428 	if (!t->name_off ||
4429 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4430 		btf_verifier_log_type(env, t, "Invalid name");
4431 		return -EINVAL;
4432 	}
4433 
4434 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4435 		btf_verifier_log_type(env, t, "Invalid func linkage");
4436 		return -EINVAL;
4437 	}
4438 
4439 	if (btf_type_kflag(t)) {
4440 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4441 		return -EINVAL;
4442 	}
4443 
4444 	btf_verifier_log_type(env, t, NULL);
4445 
4446 	return 0;
4447 }
4448 
4449 static int btf_func_resolve(struct btf_verifier_env *env,
4450 			    const struct resolve_vertex *v)
4451 {
4452 	const struct btf_type *t = v->t;
4453 	u32 next_type_id = t->type;
4454 	int err;
4455 
4456 	err = btf_func_check(env, t);
4457 	if (err)
4458 		return err;
4459 
4460 	env_stack_pop_resolved(env, next_type_id, 0);
4461 	return 0;
4462 }
4463 
4464 static struct btf_kind_operations func_ops = {
4465 	.check_meta = btf_func_check_meta,
4466 	.resolve = btf_func_resolve,
4467 	.check_member = btf_df_check_member,
4468 	.check_kflag_member = btf_df_check_kflag_member,
4469 	.log_details = btf_ref_type_log,
4470 	.show = btf_df_show,
4471 };
4472 
4473 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4474 			      const struct btf_type *t,
4475 			      u32 meta_left)
4476 {
4477 	const struct btf_var *var;
4478 	u32 meta_needed = sizeof(*var);
4479 
4480 	if (meta_left < meta_needed) {
4481 		btf_verifier_log_basic(env, t,
4482 				       "meta_left:%u meta_needed:%u",
4483 				       meta_left, meta_needed);
4484 		return -EINVAL;
4485 	}
4486 
4487 	if (btf_type_vlen(t)) {
4488 		btf_verifier_log_type(env, t, "vlen != 0");
4489 		return -EINVAL;
4490 	}
4491 
4492 	if (btf_type_kflag(t)) {
4493 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4494 		return -EINVAL;
4495 	}
4496 
4497 	if (!t->name_off ||
4498 	    !__btf_name_valid(env->btf, t->name_off)) {
4499 		btf_verifier_log_type(env, t, "Invalid name");
4500 		return -EINVAL;
4501 	}
4502 
4503 	/* A var cannot be in type void */
4504 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4505 		btf_verifier_log_type(env, t, "Invalid type_id");
4506 		return -EINVAL;
4507 	}
4508 
4509 	var = btf_type_var(t);
4510 	if (var->linkage != BTF_VAR_STATIC &&
4511 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4512 		btf_verifier_log_type(env, t, "Linkage not supported");
4513 		return -EINVAL;
4514 	}
4515 
4516 	btf_verifier_log_type(env, t, NULL);
4517 
4518 	return meta_needed;
4519 }
4520 
4521 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4522 {
4523 	const struct btf_var *var = btf_type_var(t);
4524 
4525 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4526 }
4527 
4528 static const struct btf_kind_operations var_ops = {
4529 	.check_meta		= btf_var_check_meta,
4530 	.resolve		= btf_var_resolve,
4531 	.check_member		= btf_df_check_member,
4532 	.check_kflag_member	= btf_df_check_kflag_member,
4533 	.log_details		= btf_var_log,
4534 	.show			= btf_var_show,
4535 };
4536 
4537 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4538 				  const struct btf_type *t,
4539 				  u32 meta_left)
4540 {
4541 	const struct btf_var_secinfo *vsi;
4542 	u64 last_vsi_end_off = 0, sum = 0;
4543 	u32 i, meta_needed;
4544 
4545 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4546 	if (meta_left < meta_needed) {
4547 		btf_verifier_log_basic(env, t,
4548 				       "meta_left:%u meta_needed:%u",
4549 				       meta_left, meta_needed);
4550 		return -EINVAL;
4551 	}
4552 
4553 	if (!t->size) {
4554 		btf_verifier_log_type(env, t, "size == 0");
4555 		return -EINVAL;
4556 	}
4557 
4558 	if (btf_type_kflag(t)) {
4559 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4560 		return -EINVAL;
4561 	}
4562 
4563 	if (!t->name_off ||
4564 	    !btf_name_valid_section(env->btf, t->name_off)) {
4565 		btf_verifier_log_type(env, t, "Invalid name");
4566 		return -EINVAL;
4567 	}
4568 
4569 	btf_verifier_log_type(env, t, NULL);
4570 
4571 	for_each_vsi(i, t, vsi) {
4572 		/* A var cannot be in type void */
4573 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4574 			btf_verifier_log_vsi(env, t, vsi,
4575 					     "Invalid type_id");
4576 			return -EINVAL;
4577 		}
4578 
4579 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4580 			btf_verifier_log_vsi(env, t, vsi,
4581 					     "Invalid offset");
4582 			return -EINVAL;
4583 		}
4584 
4585 		if (!vsi->size || vsi->size > t->size) {
4586 			btf_verifier_log_vsi(env, t, vsi,
4587 					     "Invalid size");
4588 			return -EINVAL;
4589 		}
4590 
4591 		last_vsi_end_off = vsi->offset + vsi->size;
4592 		if (last_vsi_end_off > t->size) {
4593 			btf_verifier_log_vsi(env, t, vsi,
4594 					     "Invalid offset+size");
4595 			return -EINVAL;
4596 		}
4597 
4598 		btf_verifier_log_vsi(env, t, vsi, NULL);
4599 		sum += vsi->size;
4600 	}
4601 
4602 	if (t->size < sum) {
4603 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4604 		return -EINVAL;
4605 	}
4606 
4607 	return meta_needed;
4608 }
4609 
4610 static int btf_datasec_resolve(struct btf_verifier_env *env,
4611 			       const struct resolve_vertex *v)
4612 {
4613 	const struct btf_var_secinfo *vsi;
4614 	struct btf *btf = env->btf;
4615 	u16 i;
4616 
4617 	env->resolve_mode = RESOLVE_TBD;
4618 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4619 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4620 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4621 								 var_type_id);
4622 		if (!var_type || !btf_type_is_var(var_type)) {
4623 			btf_verifier_log_vsi(env, v->t, vsi,
4624 					     "Not a VAR kind member");
4625 			return -EINVAL;
4626 		}
4627 
4628 		if (!env_type_is_resolve_sink(env, var_type) &&
4629 		    !env_type_is_resolved(env, var_type_id)) {
4630 			env_stack_set_next_member(env, i + 1);
4631 			return env_stack_push(env, var_type, var_type_id);
4632 		}
4633 
4634 		type_id = var_type->type;
4635 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4636 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4637 			return -EINVAL;
4638 		}
4639 
4640 		if (vsi->size < type_size) {
4641 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4642 			return -EINVAL;
4643 		}
4644 	}
4645 
4646 	env_stack_pop_resolved(env, 0, 0);
4647 	return 0;
4648 }
4649 
4650 static void btf_datasec_log(struct btf_verifier_env *env,
4651 			    const struct btf_type *t)
4652 {
4653 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4654 }
4655 
4656 static void btf_datasec_show(const struct btf *btf,
4657 			     const struct btf_type *t, u32 type_id,
4658 			     void *data, u8 bits_offset,
4659 			     struct btf_show *show)
4660 {
4661 	const struct btf_var_secinfo *vsi;
4662 	const struct btf_type *var;
4663 	u32 i;
4664 
4665 	if (!btf_show_start_type(show, t, type_id, data))
4666 		return;
4667 
4668 	btf_show_type_value(show, "section (\"%s\") = {",
4669 			    __btf_name_by_offset(btf, t->name_off));
4670 	for_each_vsi(i, t, vsi) {
4671 		var = btf_type_by_id(btf, vsi->type);
4672 		if (i)
4673 			btf_show(show, ",");
4674 		btf_type_ops(var)->show(btf, var, vsi->type,
4675 					data + vsi->offset, bits_offset, show);
4676 	}
4677 	btf_show_end_type(show);
4678 }
4679 
4680 static const struct btf_kind_operations datasec_ops = {
4681 	.check_meta		= btf_datasec_check_meta,
4682 	.resolve		= btf_datasec_resolve,
4683 	.check_member		= btf_df_check_member,
4684 	.check_kflag_member	= btf_df_check_kflag_member,
4685 	.log_details		= btf_datasec_log,
4686 	.show			= btf_datasec_show,
4687 };
4688 
4689 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4690 				const struct btf_type *t,
4691 				u32 meta_left)
4692 {
4693 	if (btf_type_vlen(t)) {
4694 		btf_verifier_log_type(env, t, "vlen != 0");
4695 		return -EINVAL;
4696 	}
4697 
4698 	if (btf_type_kflag(t)) {
4699 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4700 		return -EINVAL;
4701 	}
4702 
4703 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4704 	    t->size != 16) {
4705 		btf_verifier_log_type(env, t, "Invalid type_size");
4706 		return -EINVAL;
4707 	}
4708 
4709 	btf_verifier_log_type(env, t, NULL);
4710 
4711 	return 0;
4712 }
4713 
4714 static int btf_float_check_member(struct btf_verifier_env *env,
4715 				  const struct btf_type *struct_type,
4716 				  const struct btf_member *member,
4717 				  const struct btf_type *member_type)
4718 {
4719 	u64 start_offset_bytes;
4720 	u64 end_offset_bytes;
4721 	u64 misalign_bits;
4722 	u64 align_bytes;
4723 	u64 align_bits;
4724 
4725 	/* Different architectures have different alignment requirements, so
4726 	 * here we check only for the reasonable minimum. This way we ensure
4727 	 * that types after CO-RE can pass the kernel BTF verifier.
4728 	 */
4729 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4730 	align_bits = align_bytes * BITS_PER_BYTE;
4731 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4732 	if (misalign_bits) {
4733 		btf_verifier_log_member(env, struct_type, member,
4734 					"Member is not properly aligned");
4735 		return -EINVAL;
4736 	}
4737 
4738 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4739 	end_offset_bytes = start_offset_bytes + member_type->size;
4740 	if (end_offset_bytes > struct_type->size) {
4741 		btf_verifier_log_member(env, struct_type, member,
4742 					"Member exceeds struct_size");
4743 		return -EINVAL;
4744 	}
4745 
4746 	return 0;
4747 }
4748 
4749 static void btf_float_log(struct btf_verifier_env *env,
4750 			  const struct btf_type *t)
4751 {
4752 	btf_verifier_log(env, "size=%u", t->size);
4753 }
4754 
4755 static const struct btf_kind_operations float_ops = {
4756 	.check_meta = btf_float_check_meta,
4757 	.resolve = btf_df_resolve,
4758 	.check_member = btf_float_check_member,
4759 	.check_kflag_member = btf_generic_check_kflag_member,
4760 	.log_details = btf_float_log,
4761 	.show = btf_df_show,
4762 };
4763 
4764 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4765 			      const struct btf_type *t,
4766 			      u32 meta_left)
4767 {
4768 	const struct btf_decl_tag *tag;
4769 	u32 meta_needed = sizeof(*tag);
4770 	s32 component_idx;
4771 	const char *value;
4772 
4773 	if (meta_left < meta_needed) {
4774 		btf_verifier_log_basic(env, t,
4775 				       "meta_left:%u meta_needed:%u",
4776 				       meta_left, meta_needed);
4777 		return -EINVAL;
4778 	}
4779 
4780 	value = btf_name_by_offset(env->btf, t->name_off);
4781 	if (!value || !value[0]) {
4782 		btf_verifier_log_type(env, t, "Invalid value");
4783 		return -EINVAL;
4784 	}
4785 
4786 	if (btf_type_vlen(t)) {
4787 		btf_verifier_log_type(env, t, "vlen != 0");
4788 		return -EINVAL;
4789 	}
4790 
4791 	if (btf_type_kflag(t)) {
4792 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4793 		return -EINVAL;
4794 	}
4795 
4796 	component_idx = btf_type_decl_tag(t)->component_idx;
4797 	if (component_idx < -1) {
4798 		btf_verifier_log_type(env, t, "Invalid component_idx");
4799 		return -EINVAL;
4800 	}
4801 
4802 	btf_verifier_log_type(env, t, NULL);
4803 
4804 	return meta_needed;
4805 }
4806 
4807 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4808 			   const struct resolve_vertex *v)
4809 {
4810 	const struct btf_type *next_type;
4811 	const struct btf_type *t = v->t;
4812 	u32 next_type_id = t->type;
4813 	struct btf *btf = env->btf;
4814 	s32 component_idx;
4815 	u32 vlen;
4816 
4817 	next_type = btf_type_by_id(btf, next_type_id);
4818 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4819 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4820 		return -EINVAL;
4821 	}
4822 
4823 	if (!env_type_is_resolve_sink(env, next_type) &&
4824 	    !env_type_is_resolved(env, next_type_id))
4825 		return env_stack_push(env, next_type, next_type_id);
4826 
4827 	component_idx = btf_type_decl_tag(t)->component_idx;
4828 	if (component_idx != -1) {
4829 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4830 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4831 			return -EINVAL;
4832 		}
4833 
4834 		if (btf_type_is_struct(next_type)) {
4835 			vlen = btf_type_vlen(next_type);
4836 		} else {
4837 			/* next_type should be a function */
4838 			next_type = btf_type_by_id(btf, next_type->type);
4839 			vlen = btf_type_vlen(next_type);
4840 		}
4841 
4842 		if ((u32)component_idx >= vlen) {
4843 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4844 			return -EINVAL;
4845 		}
4846 	}
4847 
4848 	env_stack_pop_resolved(env, next_type_id, 0);
4849 
4850 	return 0;
4851 }
4852 
4853 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4854 {
4855 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4856 			 btf_type_decl_tag(t)->component_idx);
4857 }
4858 
4859 static const struct btf_kind_operations decl_tag_ops = {
4860 	.check_meta = btf_decl_tag_check_meta,
4861 	.resolve = btf_decl_tag_resolve,
4862 	.check_member = btf_df_check_member,
4863 	.check_kflag_member = btf_df_check_kflag_member,
4864 	.log_details = btf_decl_tag_log,
4865 	.show = btf_df_show,
4866 };
4867 
4868 static int btf_func_proto_check(struct btf_verifier_env *env,
4869 				const struct btf_type *t)
4870 {
4871 	const struct btf_type *ret_type;
4872 	const struct btf_param *args;
4873 	const struct btf *btf;
4874 	u16 nr_args, i;
4875 	int err;
4876 
4877 	btf = env->btf;
4878 	args = (const struct btf_param *)(t + 1);
4879 	nr_args = btf_type_vlen(t);
4880 
4881 	/* Check func return type which could be "void" (t->type == 0) */
4882 	if (t->type) {
4883 		u32 ret_type_id = t->type;
4884 
4885 		ret_type = btf_type_by_id(btf, ret_type_id);
4886 		if (!ret_type) {
4887 			btf_verifier_log_type(env, t, "Invalid return type");
4888 			return -EINVAL;
4889 		}
4890 
4891 		if (btf_type_is_resolve_source_only(ret_type)) {
4892 			btf_verifier_log_type(env, t, "Invalid return type");
4893 			return -EINVAL;
4894 		}
4895 
4896 		if (btf_type_needs_resolve(ret_type) &&
4897 		    !env_type_is_resolved(env, ret_type_id)) {
4898 			err = btf_resolve(env, ret_type, ret_type_id);
4899 			if (err)
4900 				return err;
4901 		}
4902 
4903 		/* Ensure the return type is a type that has a size */
4904 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4905 			btf_verifier_log_type(env, t, "Invalid return type");
4906 			return -EINVAL;
4907 		}
4908 	}
4909 
4910 	if (!nr_args)
4911 		return 0;
4912 
4913 	/* Last func arg type_id could be 0 if it is a vararg */
4914 	if (!args[nr_args - 1].type) {
4915 		if (args[nr_args - 1].name_off) {
4916 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4917 					      nr_args);
4918 			return -EINVAL;
4919 		}
4920 		nr_args--;
4921 	}
4922 
4923 	for (i = 0; i < nr_args; i++) {
4924 		const struct btf_type *arg_type;
4925 		u32 arg_type_id;
4926 
4927 		arg_type_id = args[i].type;
4928 		arg_type = btf_type_by_id(btf, arg_type_id);
4929 		if (!arg_type) {
4930 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4931 			return -EINVAL;
4932 		}
4933 
4934 		if (btf_type_is_resolve_source_only(arg_type)) {
4935 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4936 			return -EINVAL;
4937 		}
4938 
4939 		if (args[i].name_off &&
4940 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4941 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4942 			btf_verifier_log_type(env, t,
4943 					      "Invalid arg#%u", i + 1);
4944 			return -EINVAL;
4945 		}
4946 
4947 		if (btf_type_needs_resolve(arg_type) &&
4948 		    !env_type_is_resolved(env, arg_type_id)) {
4949 			err = btf_resolve(env, arg_type, arg_type_id);
4950 			if (err)
4951 				return err;
4952 		}
4953 
4954 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4955 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4956 			return -EINVAL;
4957 		}
4958 	}
4959 
4960 	return 0;
4961 }
4962 
4963 static int btf_func_check(struct btf_verifier_env *env,
4964 			  const struct btf_type *t)
4965 {
4966 	const struct btf_type *proto_type;
4967 	const struct btf_param *args;
4968 	const struct btf *btf;
4969 	u16 nr_args, i;
4970 
4971 	btf = env->btf;
4972 	proto_type = btf_type_by_id(btf, t->type);
4973 
4974 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4975 		btf_verifier_log_type(env, t, "Invalid type_id");
4976 		return -EINVAL;
4977 	}
4978 
4979 	args = (const struct btf_param *)(proto_type + 1);
4980 	nr_args = btf_type_vlen(proto_type);
4981 	for (i = 0; i < nr_args; i++) {
4982 		if (!args[i].name_off && args[i].type) {
4983 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4984 			return -EINVAL;
4985 		}
4986 	}
4987 
4988 	return 0;
4989 }
4990 
4991 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4992 	[BTF_KIND_INT] = &int_ops,
4993 	[BTF_KIND_PTR] = &ptr_ops,
4994 	[BTF_KIND_ARRAY] = &array_ops,
4995 	[BTF_KIND_STRUCT] = &struct_ops,
4996 	[BTF_KIND_UNION] = &struct_ops,
4997 	[BTF_KIND_ENUM] = &enum_ops,
4998 	[BTF_KIND_FWD] = &fwd_ops,
4999 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5000 	[BTF_KIND_VOLATILE] = &modifier_ops,
5001 	[BTF_KIND_CONST] = &modifier_ops,
5002 	[BTF_KIND_RESTRICT] = &modifier_ops,
5003 	[BTF_KIND_FUNC] = &func_ops,
5004 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5005 	[BTF_KIND_VAR] = &var_ops,
5006 	[BTF_KIND_DATASEC] = &datasec_ops,
5007 	[BTF_KIND_FLOAT] = &float_ops,
5008 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5009 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5010 	[BTF_KIND_ENUM64] = &enum64_ops,
5011 };
5012 
5013 static s32 btf_check_meta(struct btf_verifier_env *env,
5014 			  const struct btf_type *t,
5015 			  u32 meta_left)
5016 {
5017 	u32 saved_meta_left = meta_left;
5018 	s32 var_meta_size;
5019 
5020 	if (meta_left < sizeof(*t)) {
5021 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5022 				 env->log_type_id, meta_left, sizeof(*t));
5023 		return -EINVAL;
5024 	}
5025 	meta_left -= sizeof(*t);
5026 
5027 	if (t->info & ~BTF_INFO_MASK) {
5028 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5029 				 env->log_type_id, t->info);
5030 		return -EINVAL;
5031 	}
5032 
5033 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5034 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5035 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5036 				 env->log_type_id, BTF_INFO_KIND(t->info));
5037 		return -EINVAL;
5038 	}
5039 
5040 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5041 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5042 				 env->log_type_id, t->name_off);
5043 		return -EINVAL;
5044 	}
5045 
5046 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5047 	if (var_meta_size < 0)
5048 		return var_meta_size;
5049 
5050 	meta_left -= var_meta_size;
5051 
5052 	return saved_meta_left - meta_left;
5053 }
5054 
5055 static int btf_check_all_metas(struct btf_verifier_env *env)
5056 {
5057 	struct btf *btf = env->btf;
5058 	struct btf_header *hdr;
5059 	void *cur, *end;
5060 
5061 	hdr = &btf->hdr;
5062 	cur = btf->nohdr_data + hdr->type_off;
5063 	end = cur + hdr->type_len;
5064 
5065 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5066 	while (cur < end) {
5067 		struct btf_type *t = cur;
5068 		s32 meta_size;
5069 
5070 		meta_size = btf_check_meta(env, t, end - cur);
5071 		if (meta_size < 0)
5072 			return meta_size;
5073 
5074 		btf_add_type(env, t);
5075 		cur += meta_size;
5076 		env->log_type_id++;
5077 	}
5078 
5079 	return 0;
5080 }
5081 
5082 static bool btf_resolve_valid(struct btf_verifier_env *env,
5083 			      const struct btf_type *t,
5084 			      u32 type_id)
5085 {
5086 	struct btf *btf = env->btf;
5087 
5088 	if (!env_type_is_resolved(env, type_id))
5089 		return false;
5090 
5091 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5092 		return !btf_resolved_type_id(btf, type_id) &&
5093 		       !btf_resolved_type_size(btf, type_id);
5094 
5095 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5096 		return btf_resolved_type_id(btf, type_id) &&
5097 		       !btf_resolved_type_size(btf, type_id);
5098 
5099 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5100 	    btf_type_is_var(t)) {
5101 		t = btf_type_id_resolve(btf, &type_id);
5102 		return t &&
5103 		       !btf_type_is_modifier(t) &&
5104 		       !btf_type_is_var(t) &&
5105 		       !btf_type_is_datasec(t);
5106 	}
5107 
5108 	if (btf_type_is_array(t)) {
5109 		const struct btf_array *array = btf_type_array(t);
5110 		const struct btf_type *elem_type;
5111 		u32 elem_type_id = array->type;
5112 		u32 elem_size;
5113 
5114 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5115 		return elem_type && !btf_type_is_modifier(elem_type) &&
5116 			(array->nelems * elem_size ==
5117 			 btf_resolved_type_size(btf, type_id));
5118 	}
5119 
5120 	return false;
5121 }
5122 
5123 static int btf_resolve(struct btf_verifier_env *env,
5124 		       const struct btf_type *t, u32 type_id)
5125 {
5126 	u32 save_log_type_id = env->log_type_id;
5127 	const struct resolve_vertex *v;
5128 	int err = 0;
5129 
5130 	env->resolve_mode = RESOLVE_TBD;
5131 	env_stack_push(env, t, type_id);
5132 	while (!err && (v = env_stack_peak(env))) {
5133 		env->log_type_id = v->type_id;
5134 		err = btf_type_ops(v->t)->resolve(env, v);
5135 	}
5136 
5137 	env->log_type_id = type_id;
5138 	if (err == -E2BIG) {
5139 		btf_verifier_log_type(env, t,
5140 				      "Exceeded max resolving depth:%u",
5141 				      MAX_RESOLVE_DEPTH);
5142 	} else if (err == -EEXIST) {
5143 		btf_verifier_log_type(env, t, "Loop detected");
5144 	}
5145 
5146 	/* Final sanity check */
5147 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5148 		btf_verifier_log_type(env, t, "Invalid resolve state");
5149 		err = -EINVAL;
5150 	}
5151 
5152 	env->log_type_id = save_log_type_id;
5153 	return err;
5154 }
5155 
5156 static int btf_check_all_types(struct btf_verifier_env *env)
5157 {
5158 	struct btf *btf = env->btf;
5159 	const struct btf_type *t;
5160 	u32 type_id, i;
5161 	int err;
5162 
5163 	err = env_resolve_init(env);
5164 	if (err)
5165 		return err;
5166 
5167 	env->phase++;
5168 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5169 		type_id = btf->start_id + i;
5170 		t = btf_type_by_id(btf, type_id);
5171 
5172 		env->log_type_id = type_id;
5173 		if (btf_type_needs_resolve(t) &&
5174 		    !env_type_is_resolved(env, type_id)) {
5175 			err = btf_resolve(env, t, type_id);
5176 			if (err)
5177 				return err;
5178 		}
5179 
5180 		if (btf_type_is_func_proto(t)) {
5181 			err = btf_func_proto_check(env, t);
5182 			if (err)
5183 				return err;
5184 		}
5185 	}
5186 
5187 	return 0;
5188 }
5189 
5190 static int btf_parse_type_sec(struct btf_verifier_env *env)
5191 {
5192 	const struct btf_header *hdr = &env->btf->hdr;
5193 	int err;
5194 
5195 	/* Type section must align to 4 bytes */
5196 	if (hdr->type_off & (sizeof(u32) - 1)) {
5197 		btf_verifier_log(env, "Unaligned type_off");
5198 		return -EINVAL;
5199 	}
5200 
5201 	if (!env->btf->base_btf && !hdr->type_len) {
5202 		btf_verifier_log(env, "No type found");
5203 		return -EINVAL;
5204 	}
5205 
5206 	err = btf_check_all_metas(env);
5207 	if (err)
5208 		return err;
5209 
5210 	return btf_check_all_types(env);
5211 }
5212 
5213 static int btf_parse_str_sec(struct btf_verifier_env *env)
5214 {
5215 	const struct btf_header *hdr;
5216 	struct btf *btf = env->btf;
5217 	const char *start, *end;
5218 
5219 	hdr = &btf->hdr;
5220 	start = btf->nohdr_data + hdr->str_off;
5221 	end = start + hdr->str_len;
5222 
5223 	if (end != btf->data + btf->data_size) {
5224 		btf_verifier_log(env, "String section is not at the end");
5225 		return -EINVAL;
5226 	}
5227 
5228 	btf->strings = start;
5229 
5230 	if (btf->base_btf && !hdr->str_len)
5231 		return 0;
5232 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5233 		btf_verifier_log(env, "Invalid string section");
5234 		return -EINVAL;
5235 	}
5236 	if (!btf->base_btf && start[0]) {
5237 		btf_verifier_log(env, "Invalid string section");
5238 		return -EINVAL;
5239 	}
5240 
5241 	return 0;
5242 }
5243 
5244 static const size_t btf_sec_info_offset[] = {
5245 	offsetof(struct btf_header, type_off),
5246 	offsetof(struct btf_header, str_off),
5247 };
5248 
5249 static int btf_sec_info_cmp(const void *a, const void *b)
5250 {
5251 	const struct btf_sec_info *x = a;
5252 	const struct btf_sec_info *y = b;
5253 
5254 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5255 }
5256 
5257 static int btf_check_sec_info(struct btf_verifier_env *env,
5258 			      u32 btf_data_size)
5259 {
5260 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5261 	u32 total, expected_total, i;
5262 	const struct btf_header *hdr;
5263 	const struct btf *btf;
5264 
5265 	btf = env->btf;
5266 	hdr = &btf->hdr;
5267 
5268 	/* Populate the secs from hdr */
5269 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5270 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5271 						   btf_sec_info_offset[i]);
5272 
5273 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5274 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5275 
5276 	/* Check for gaps and overlap among sections */
5277 	total = 0;
5278 	expected_total = btf_data_size - hdr->hdr_len;
5279 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5280 		if (expected_total < secs[i].off) {
5281 			btf_verifier_log(env, "Invalid section offset");
5282 			return -EINVAL;
5283 		}
5284 		if (total < secs[i].off) {
5285 			/* gap */
5286 			btf_verifier_log(env, "Unsupported section found");
5287 			return -EINVAL;
5288 		}
5289 		if (total > secs[i].off) {
5290 			btf_verifier_log(env, "Section overlap found");
5291 			return -EINVAL;
5292 		}
5293 		if (expected_total - total < secs[i].len) {
5294 			btf_verifier_log(env,
5295 					 "Total section length too long");
5296 			return -EINVAL;
5297 		}
5298 		total += secs[i].len;
5299 	}
5300 
5301 	/* There is data other than hdr and known sections */
5302 	if (expected_total != total) {
5303 		btf_verifier_log(env, "Unsupported section found");
5304 		return -EINVAL;
5305 	}
5306 
5307 	return 0;
5308 }
5309 
5310 static int btf_parse_hdr(struct btf_verifier_env *env)
5311 {
5312 	u32 hdr_len, hdr_copy, btf_data_size;
5313 	const struct btf_header *hdr;
5314 	struct btf *btf;
5315 
5316 	btf = env->btf;
5317 	btf_data_size = btf->data_size;
5318 
5319 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5320 		btf_verifier_log(env, "hdr_len not found");
5321 		return -EINVAL;
5322 	}
5323 
5324 	hdr = btf->data;
5325 	hdr_len = hdr->hdr_len;
5326 	if (btf_data_size < hdr_len) {
5327 		btf_verifier_log(env, "btf_header not found");
5328 		return -EINVAL;
5329 	}
5330 
5331 	/* Ensure the unsupported header fields are zero */
5332 	if (hdr_len > sizeof(btf->hdr)) {
5333 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5334 		u8 *end = btf->data + hdr_len;
5335 
5336 		for (; expected_zero < end; expected_zero++) {
5337 			if (*expected_zero) {
5338 				btf_verifier_log(env, "Unsupported btf_header");
5339 				return -E2BIG;
5340 			}
5341 		}
5342 	}
5343 
5344 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5345 	memcpy(&btf->hdr, btf->data, hdr_copy);
5346 
5347 	hdr = &btf->hdr;
5348 
5349 	btf_verifier_log_hdr(env, btf_data_size);
5350 
5351 	if (hdr->magic != BTF_MAGIC) {
5352 		btf_verifier_log(env, "Invalid magic");
5353 		return -EINVAL;
5354 	}
5355 
5356 	if (hdr->version != BTF_VERSION) {
5357 		btf_verifier_log(env, "Unsupported version");
5358 		return -ENOTSUPP;
5359 	}
5360 
5361 	if (hdr->flags) {
5362 		btf_verifier_log(env, "Unsupported flags");
5363 		return -ENOTSUPP;
5364 	}
5365 
5366 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5367 		btf_verifier_log(env, "No data");
5368 		return -EINVAL;
5369 	}
5370 
5371 	return btf_check_sec_info(env, btf_data_size);
5372 }
5373 
5374 static const char *alloc_obj_fields[] = {
5375 	"bpf_spin_lock",
5376 	"bpf_list_head",
5377 	"bpf_list_node",
5378 	"bpf_rb_root",
5379 	"bpf_rb_node",
5380 	"bpf_refcount",
5381 };
5382 
5383 static struct btf_struct_metas *
5384 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5385 {
5386 	union {
5387 		struct btf_id_set set;
5388 		struct {
5389 			u32 _cnt;
5390 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5391 		} _arr;
5392 	} aof;
5393 	struct btf_struct_metas *tab = NULL;
5394 	int i, n, id, ret;
5395 
5396 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5397 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5398 
5399 	memset(&aof, 0, sizeof(aof));
5400 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5401 		/* Try to find whether this special type exists in user BTF, and
5402 		 * if so remember its ID so we can easily find it among members
5403 		 * of structs that we iterate in the next loop.
5404 		 */
5405 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5406 		if (id < 0)
5407 			continue;
5408 		aof.set.ids[aof.set.cnt++] = id;
5409 	}
5410 
5411 	if (!aof.set.cnt)
5412 		return NULL;
5413 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5414 
5415 	n = btf_nr_types(btf);
5416 	for (i = 1; i < n; i++) {
5417 		struct btf_struct_metas *new_tab;
5418 		const struct btf_member *member;
5419 		struct btf_struct_meta *type;
5420 		struct btf_record *record;
5421 		const struct btf_type *t;
5422 		int j, tab_cnt;
5423 
5424 		t = btf_type_by_id(btf, i);
5425 		if (!t) {
5426 			ret = -EINVAL;
5427 			goto free;
5428 		}
5429 		if (!__btf_type_is_struct(t))
5430 			continue;
5431 
5432 		cond_resched();
5433 
5434 		for_each_member(j, t, member) {
5435 			if (btf_id_set_contains(&aof.set, member->type))
5436 				goto parse;
5437 		}
5438 		continue;
5439 	parse:
5440 		tab_cnt = tab ? tab->cnt : 0;
5441 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5442 				   GFP_KERNEL | __GFP_NOWARN);
5443 		if (!new_tab) {
5444 			ret = -ENOMEM;
5445 			goto free;
5446 		}
5447 		if (!tab)
5448 			new_tab->cnt = 0;
5449 		tab = new_tab;
5450 
5451 		type = &tab->types[tab->cnt];
5452 		type->btf_id = i;
5453 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5454 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5455 		/* The record cannot be unset, treat it as an error if so */
5456 		if (IS_ERR_OR_NULL(record)) {
5457 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5458 			goto free;
5459 		}
5460 		type->record = record;
5461 		tab->cnt++;
5462 	}
5463 	return tab;
5464 free:
5465 	btf_struct_metas_free(tab);
5466 	return ERR_PTR(ret);
5467 }
5468 
5469 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5470 {
5471 	struct btf_struct_metas *tab;
5472 
5473 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5474 	tab = btf->struct_meta_tab;
5475 	if (!tab)
5476 		return NULL;
5477 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5478 }
5479 
5480 static int btf_check_type_tags(struct btf_verifier_env *env,
5481 			       struct btf *btf, int start_id)
5482 {
5483 	int i, n, good_id = start_id - 1;
5484 	bool in_tags;
5485 
5486 	n = btf_nr_types(btf);
5487 	for (i = start_id; i < n; i++) {
5488 		const struct btf_type *t;
5489 		int chain_limit = 32;
5490 		u32 cur_id = i;
5491 
5492 		t = btf_type_by_id(btf, i);
5493 		if (!t)
5494 			return -EINVAL;
5495 		if (!btf_type_is_modifier(t))
5496 			continue;
5497 
5498 		cond_resched();
5499 
5500 		in_tags = btf_type_is_type_tag(t);
5501 		while (btf_type_is_modifier(t)) {
5502 			if (!chain_limit--) {
5503 				btf_verifier_log(env, "Max chain length or cycle detected");
5504 				return -ELOOP;
5505 			}
5506 			if (btf_type_is_type_tag(t)) {
5507 				if (!in_tags) {
5508 					btf_verifier_log(env, "Type tags don't precede modifiers");
5509 					return -EINVAL;
5510 				}
5511 			} else if (in_tags) {
5512 				in_tags = false;
5513 			}
5514 			if (cur_id <= good_id)
5515 				break;
5516 			/* Move to next type */
5517 			cur_id = t->type;
5518 			t = btf_type_by_id(btf, cur_id);
5519 			if (!t)
5520 				return -EINVAL;
5521 		}
5522 		good_id = i;
5523 	}
5524 	return 0;
5525 }
5526 
5527 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5528 {
5529 	u32 log_true_size;
5530 	int err;
5531 
5532 	err = bpf_vlog_finalize(log, &log_true_size);
5533 
5534 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5535 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5536 				  &log_true_size, sizeof(log_true_size)))
5537 		err = -EFAULT;
5538 
5539 	return err;
5540 }
5541 
5542 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5543 {
5544 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5545 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5546 	struct btf_struct_metas *struct_meta_tab;
5547 	struct btf_verifier_env *env = NULL;
5548 	struct btf *btf = NULL;
5549 	u8 *data;
5550 	int err, ret;
5551 
5552 	if (attr->btf_size > BTF_MAX_SIZE)
5553 		return ERR_PTR(-E2BIG);
5554 
5555 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5556 	if (!env)
5557 		return ERR_PTR(-ENOMEM);
5558 
5559 	/* user could have requested verbose verifier output
5560 	 * and supplied buffer to store the verification trace
5561 	 */
5562 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5563 			    log_ubuf, attr->btf_log_size);
5564 	if (err)
5565 		goto errout_free;
5566 
5567 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5568 	if (!btf) {
5569 		err = -ENOMEM;
5570 		goto errout;
5571 	}
5572 	env->btf = btf;
5573 
5574 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5575 	if (!data) {
5576 		err = -ENOMEM;
5577 		goto errout;
5578 	}
5579 
5580 	btf->data = data;
5581 	btf->data_size = attr->btf_size;
5582 
5583 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5584 		err = -EFAULT;
5585 		goto errout;
5586 	}
5587 
5588 	err = btf_parse_hdr(env);
5589 	if (err)
5590 		goto errout;
5591 
5592 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5593 
5594 	err = btf_parse_str_sec(env);
5595 	if (err)
5596 		goto errout;
5597 
5598 	err = btf_parse_type_sec(env);
5599 	if (err)
5600 		goto errout;
5601 
5602 	err = btf_check_type_tags(env, btf, 1);
5603 	if (err)
5604 		goto errout;
5605 
5606 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5607 	if (IS_ERR(struct_meta_tab)) {
5608 		err = PTR_ERR(struct_meta_tab);
5609 		goto errout;
5610 	}
5611 	btf->struct_meta_tab = struct_meta_tab;
5612 
5613 	if (struct_meta_tab) {
5614 		int i;
5615 
5616 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5617 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5618 			if (err < 0)
5619 				goto errout_meta;
5620 		}
5621 	}
5622 
5623 	err = finalize_log(&env->log, uattr, uattr_size);
5624 	if (err)
5625 		goto errout_free;
5626 
5627 	btf_verifier_env_free(env);
5628 	refcount_set(&btf->refcnt, 1);
5629 	return btf;
5630 
5631 errout_meta:
5632 	btf_free_struct_meta_tab(btf);
5633 errout:
5634 	/* overwrite err with -ENOSPC or -EFAULT */
5635 	ret = finalize_log(&env->log, uattr, uattr_size);
5636 	if (ret)
5637 		err = ret;
5638 errout_free:
5639 	btf_verifier_env_free(env);
5640 	if (btf)
5641 		btf_free(btf);
5642 	return ERR_PTR(err);
5643 }
5644 
5645 extern char __weak __start_BTF[];
5646 extern char __weak __stop_BTF[];
5647 extern struct btf *btf_vmlinux;
5648 
5649 #define BPF_MAP_TYPE(_id, _ops)
5650 #define BPF_LINK_TYPE(_id, _name)
5651 static union {
5652 	struct bpf_ctx_convert {
5653 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5654 	prog_ctx_type _id##_prog; \
5655 	kern_ctx_type _id##_kern;
5656 #include <linux/bpf_types.h>
5657 #undef BPF_PROG_TYPE
5658 	} *__t;
5659 	/* 't' is written once under lock. Read many times. */
5660 	const struct btf_type *t;
5661 } bpf_ctx_convert;
5662 enum {
5663 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5664 	__ctx_convert##_id,
5665 #include <linux/bpf_types.h>
5666 #undef BPF_PROG_TYPE
5667 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5668 };
5669 static u8 bpf_ctx_convert_map[] = {
5670 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5671 	[_id] = __ctx_convert##_id,
5672 #include <linux/bpf_types.h>
5673 #undef BPF_PROG_TYPE
5674 	0, /* avoid empty array */
5675 };
5676 #undef BPF_MAP_TYPE
5677 #undef BPF_LINK_TYPE
5678 
5679 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5680 {
5681 	const struct btf_type *conv_struct;
5682 	const struct btf_member *ctx_type;
5683 
5684 	conv_struct = bpf_ctx_convert.t;
5685 	if (!conv_struct)
5686 		return NULL;
5687 	/* prog_type is valid bpf program type. No need for bounds check. */
5688 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5689 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5690 	 * Like 'struct __sk_buff'
5691 	 */
5692 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5693 }
5694 
5695 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5696 {
5697 	const struct btf_type *conv_struct;
5698 	const struct btf_member *ctx_type;
5699 
5700 	conv_struct = bpf_ctx_convert.t;
5701 	if (!conv_struct)
5702 		return -EFAULT;
5703 	/* prog_type is valid bpf program type. No need for bounds check. */
5704 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5705 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5706 	 * Like 'struct sk_buff'
5707 	 */
5708 	return ctx_type->type;
5709 }
5710 
5711 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5712 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5713 			  int arg)
5714 {
5715 	const struct btf_type *ctx_type;
5716 	const char *tname, *ctx_tname;
5717 
5718 	t = btf_type_by_id(btf, t->type);
5719 
5720 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5721 	 * check before we skip all the typedef below.
5722 	 */
5723 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5724 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5725 			t = btf_type_by_id(btf, t->type);
5726 
5727 		if (btf_type_is_typedef(t)) {
5728 			tname = btf_name_by_offset(btf, t->name_off);
5729 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5730 				return true;
5731 		}
5732 	}
5733 
5734 	while (btf_type_is_modifier(t))
5735 		t = btf_type_by_id(btf, t->type);
5736 	if (!btf_type_is_struct(t)) {
5737 		/* Only pointer to struct is supported for now.
5738 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5739 		 * is not supported yet.
5740 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5741 		 */
5742 		return false;
5743 	}
5744 	tname = btf_name_by_offset(btf, t->name_off);
5745 	if (!tname) {
5746 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5747 		return false;
5748 	}
5749 
5750 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5751 	if (!ctx_type) {
5752 		bpf_log(log, "btf_vmlinux is malformed\n");
5753 		/* should not happen */
5754 		return false;
5755 	}
5756 again:
5757 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5758 	if (!ctx_tname) {
5759 		/* should not happen */
5760 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5761 		return false;
5762 	}
5763 	/* program types without named context types work only with arg:ctx tag */
5764 	if (ctx_tname[0] == '\0')
5765 		return false;
5766 	/* only compare that prog's ctx type name is the same as
5767 	 * kernel expects. No need to compare field by field.
5768 	 * It's ok for bpf prog to do:
5769 	 * struct __sk_buff {};
5770 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5771 	 * { // no fields of skb are ever used }
5772 	 */
5773 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5774 		return true;
5775 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5776 		return true;
5777 	if (strcmp(ctx_tname, tname)) {
5778 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5779 		 * underlying struct and check name again
5780 		 */
5781 		if (!btf_type_is_modifier(ctx_type))
5782 			return false;
5783 		while (btf_type_is_modifier(ctx_type))
5784 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5785 		goto again;
5786 	}
5787 	return true;
5788 }
5789 
5790 /* forward declarations for arch-specific underlying types of
5791  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5792  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5793  * works correctly with __builtin_types_compatible_p() on respective
5794  * architectures
5795  */
5796 struct user_regs_struct;
5797 struct user_pt_regs;
5798 
5799 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5800 				      const struct btf_type *t, int arg,
5801 				      enum bpf_prog_type prog_type,
5802 				      enum bpf_attach_type attach_type)
5803 {
5804 	const struct btf_type *ctx_type;
5805 	const char *tname, *ctx_tname;
5806 
5807 	if (!btf_is_ptr(t)) {
5808 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5809 		return -EINVAL;
5810 	}
5811 	t = btf_type_by_id(btf, t->type);
5812 
5813 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5814 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5815 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5816 			t = btf_type_by_id(btf, t->type);
5817 
5818 		if (btf_type_is_typedef(t)) {
5819 			tname = btf_name_by_offset(btf, t->name_off);
5820 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5821 				return 0;
5822 		}
5823 	}
5824 
5825 	/* all other program types don't use typedefs for context type */
5826 	while (btf_type_is_modifier(t))
5827 		t = btf_type_by_id(btf, t->type);
5828 
5829 	/* `void *ctx __arg_ctx` is always valid */
5830 	if (btf_type_is_void(t))
5831 		return 0;
5832 
5833 	tname = btf_name_by_offset(btf, t->name_off);
5834 	if (str_is_empty(tname)) {
5835 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5836 		return -EINVAL;
5837 	}
5838 
5839 	/* special cases */
5840 	switch (prog_type) {
5841 	case BPF_PROG_TYPE_KPROBE:
5842 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5843 			return 0;
5844 		break;
5845 	case BPF_PROG_TYPE_PERF_EVENT:
5846 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5847 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5848 			return 0;
5849 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5850 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5851 			return 0;
5852 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5853 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5854 			return 0;
5855 		break;
5856 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
5857 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5858 		/* allow u64* as ctx */
5859 		if (btf_is_int(t) && t->size == 8)
5860 			return 0;
5861 		break;
5862 	case BPF_PROG_TYPE_TRACING:
5863 		switch (attach_type) {
5864 		case BPF_TRACE_RAW_TP:
5865 			/* tp_btf program is TRACING, so need special case here */
5866 			if (__btf_type_is_struct(t) &&
5867 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5868 				return 0;
5869 			/* allow u64* as ctx */
5870 			if (btf_is_int(t) && t->size == 8)
5871 				return 0;
5872 			break;
5873 		case BPF_TRACE_ITER:
5874 			/* allow struct bpf_iter__xxx types only */
5875 			if (__btf_type_is_struct(t) &&
5876 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5877 				return 0;
5878 			break;
5879 		case BPF_TRACE_FENTRY:
5880 		case BPF_TRACE_FEXIT:
5881 		case BPF_MODIFY_RETURN:
5882 			/* allow u64* as ctx */
5883 			if (btf_is_int(t) && t->size == 8)
5884 				return 0;
5885 			break;
5886 		default:
5887 			break;
5888 		}
5889 		break;
5890 	case BPF_PROG_TYPE_LSM:
5891 	case BPF_PROG_TYPE_STRUCT_OPS:
5892 		/* allow u64* as ctx */
5893 		if (btf_is_int(t) && t->size == 8)
5894 			return 0;
5895 		break;
5896 	case BPF_PROG_TYPE_TRACEPOINT:
5897 	case BPF_PROG_TYPE_SYSCALL:
5898 	case BPF_PROG_TYPE_EXT:
5899 		return 0; /* anything goes */
5900 	default:
5901 		break;
5902 	}
5903 
5904 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5905 	if (!ctx_type) {
5906 		/* should not happen */
5907 		bpf_log(log, "btf_vmlinux is malformed\n");
5908 		return -EINVAL;
5909 	}
5910 
5911 	/* resolve typedefs and check that underlying structs are matching as well */
5912 	while (btf_type_is_modifier(ctx_type))
5913 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5914 
5915 	/* if program type doesn't have distinctly named struct type for
5916 	 * context, then __arg_ctx argument can only be `void *`, which we
5917 	 * already checked above
5918 	 */
5919 	if (!__btf_type_is_struct(ctx_type)) {
5920 		bpf_log(log, "arg#%d should be void pointer\n", arg);
5921 		return -EINVAL;
5922 	}
5923 
5924 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5925 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5926 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5927 		return -EINVAL;
5928 	}
5929 
5930 	return 0;
5931 }
5932 
5933 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5934 				     struct btf *btf,
5935 				     const struct btf_type *t,
5936 				     enum bpf_prog_type prog_type,
5937 				     int arg)
5938 {
5939 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
5940 		return -ENOENT;
5941 	return find_kern_ctx_type_id(prog_type);
5942 }
5943 
5944 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5945 {
5946 	const struct btf_member *kctx_member;
5947 	const struct btf_type *conv_struct;
5948 	const struct btf_type *kctx_type;
5949 	u32 kctx_type_id;
5950 
5951 	conv_struct = bpf_ctx_convert.t;
5952 	/* get member for kernel ctx type */
5953 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5954 	kctx_type_id = kctx_member->type;
5955 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5956 	if (!btf_type_is_struct(kctx_type)) {
5957 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5958 		return -EINVAL;
5959 	}
5960 
5961 	return kctx_type_id;
5962 }
5963 
5964 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5965 BTF_ID(struct, bpf_ctx_convert)
5966 
5967 struct btf *btf_parse_vmlinux(void)
5968 {
5969 	struct btf_verifier_env *env = NULL;
5970 	struct bpf_verifier_log *log;
5971 	struct btf *btf = NULL;
5972 	int err;
5973 
5974 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5975 	if (!env)
5976 		return ERR_PTR(-ENOMEM);
5977 
5978 	log = &env->log;
5979 	log->level = BPF_LOG_KERNEL;
5980 
5981 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5982 	if (!btf) {
5983 		err = -ENOMEM;
5984 		goto errout;
5985 	}
5986 	env->btf = btf;
5987 
5988 	btf->data = __start_BTF;
5989 	btf->data_size = __stop_BTF - __start_BTF;
5990 	btf->kernel_btf = true;
5991 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5992 
5993 	err = btf_parse_hdr(env);
5994 	if (err)
5995 		goto errout;
5996 
5997 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5998 
5999 	err = btf_parse_str_sec(env);
6000 	if (err)
6001 		goto errout;
6002 
6003 	err = btf_check_all_metas(env);
6004 	if (err)
6005 		goto errout;
6006 
6007 	err = btf_check_type_tags(env, btf, 1);
6008 	if (err)
6009 		goto errout;
6010 
6011 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6012 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6013 
6014 	refcount_set(&btf->refcnt, 1);
6015 
6016 	err = btf_alloc_id(btf);
6017 	if (err)
6018 		goto errout;
6019 
6020 	btf_verifier_env_free(env);
6021 	return btf;
6022 
6023 errout:
6024 	btf_verifier_env_free(env);
6025 	if (btf) {
6026 		kvfree(btf->types);
6027 		kfree(btf);
6028 	}
6029 	return ERR_PTR(err);
6030 }
6031 
6032 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6033 
6034 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
6035 {
6036 	struct btf_verifier_env *env = NULL;
6037 	struct bpf_verifier_log *log;
6038 	struct btf *btf = NULL, *base_btf;
6039 	int err;
6040 
6041 	base_btf = bpf_get_btf_vmlinux();
6042 	if (IS_ERR(base_btf))
6043 		return base_btf;
6044 	if (!base_btf)
6045 		return ERR_PTR(-EINVAL);
6046 
6047 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6048 	if (!env)
6049 		return ERR_PTR(-ENOMEM);
6050 
6051 	log = &env->log;
6052 	log->level = BPF_LOG_KERNEL;
6053 
6054 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6055 	if (!btf) {
6056 		err = -ENOMEM;
6057 		goto errout;
6058 	}
6059 	env->btf = btf;
6060 
6061 	btf->base_btf = base_btf;
6062 	btf->start_id = base_btf->nr_types;
6063 	btf->start_str_off = base_btf->hdr.str_len;
6064 	btf->kernel_btf = true;
6065 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6066 
6067 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6068 	if (!btf->data) {
6069 		err = -ENOMEM;
6070 		goto errout;
6071 	}
6072 	memcpy(btf->data, data, data_size);
6073 	btf->data_size = data_size;
6074 
6075 	err = btf_parse_hdr(env);
6076 	if (err)
6077 		goto errout;
6078 
6079 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6080 
6081 	err = btf_parse_str_sec(env);
6082 	if (err)
6083 		goto errout;
6084 
6085 	err = btf_check_all_metas(env);
6086 	if (err)
6087 		goto errout;
6088 
6089 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6090 	if (err)
6091 		goto errout;
6092 
6093 	btf_verifier_env_free(env);
6094 	refcount_set(&btf->refcnt, 1);
6095 	return btf;
6096 
6097 errout:
6098 	btf_verifier_env_free(env);
6099 	if (btf) {
6100 		kvfree(btf->data);
6101 		kvfree(btf->types);
6102 		kfree(btf);
6103 	}
6104 	return ERR_PTR(err);
6105 }
6106 
6107 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6108 
6109 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6110 {
6111 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6112 
6113 	if (tgt_prog)
6114 		return tgt_prog->aux->btf;
6115 	else
6116 		return prog->aux->attach_btf;
6117 }
6118 
6119 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6120 {
6121 	/* skip modifiers */
6122 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6123 
6124 	return btf_type_is_int(t);
6125 }
6126 
6127 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6128 			   int off)
6129 {
6130 	const struct btf_param *args;
6131 	const struct btf_type *t;
6132 	u32 offset = 0, nr_args;
6133 	int i;
6134 
6135 	if (!func_proto)
6136 		return off / 8;
6137 
6138 	nr_args = btf_type_vlen(func_proto);
6139 	args = (const struct btf_param *)(func_proto + 1);
6140 	for (i = 0; i < nr_args; i++) {
6141 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6142 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6143 		if (off < offset)
6144 			return i;
6145 	}
6146 
6147 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6148 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6149 	if (off < offset)
6150 		return nr_args;
6151 
6152 	return nr_args + 1;
6153 }
6154 
6155 static bool prog_args_trusted(const struct bpf_prog *prog)
6156 {
6157 	enum bpf_attach_type atype = prog->expected_attach_type;
6158 
6159 	switch (prog->type) {
6160 	case BPF_PROG_TYPE_TRACING:
6161 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6162 	case BPF_PROG_TYPE_LSM:
6163 		return bpf_lsm_is_trusted(prog);
6164 	case BPF_PROG_TYPE_STRUCT_OPS:
6165 		return true;
6166 	default:
6167 		return false;
6168 	}
6169 }
6170 
6171 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6172 		       u32 arg_no)
6173 {
6174 	const struct btf_param *args;
6175 	const struct btf_type *t;
6176 	int off = 0, i;
6177 	u32 sz;
6178 
6179 	args = btf_params(func_proto);
6180 	for (i = 0; i < arg_no; i++) {
6181 		t = btf_type_by_id(btf, args[i].type);
6182 		t = btf_resolve_size(btf, t, &sz);
6183 		if (IS_ERR(t))
6184 			return PTR_ERR(t);
6185 		off += roundup(sz, 8);
6186 	}
6187 
6188 	return off;
6189 }
6190 
6191 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6192 		    const struct bpf_prog *prog,
6193 		    struct bpf_insn_access_aux *info)
6194 {
6195 	const struct btf_type *t = prog->aux->attach_func_proto;
6196 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6197 	struct btf *btf = bpf_prog_get_target_btf(prog);
6198 	const char *tname = prog->aux->attach_func_name;
6199 	struct bpf_verifier_log *log = info->log;
6200 	const struct btf_param *args;
6201 	const char *tag_value;
6202 	u32 nr_args, arg;
6203 	int i, ret;
6204 
6205 	if (off % 8) {
6206 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6207 			tname, off);
6208 		return false;
6209 	}
6210 	arg = get_ctx_arg_idx(btf, t, off);
6211 	args = (const struct btf_param *)(t + 1);
6212 	/* if (t == NULL) Fall back to default BPF prog with
6213 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6214 	 */
6215 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6216 	if (prog->aux->attach_btf_trace) {
6217 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6218 		args++;
6219 		nr_args--;
6220 	}
6221 
6222 	if (arg > nr_args) {
6223 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6224 			tname, arg + 1);
6225 		return false;
6226 	}
6227 
6228 	if (arg == nr_args) {
6229 		switch (prog->expected_attach_type) {
6230 		case BPF_LSM_CGROUP:
6231 		case BPF_LSM_MAC:
6232 		case BPF_TRACE_FEXIT:
6233 			/* When LSM programs are attached to void LSM hooks
6234 			 * they use FEXIT trampolines and when attached to
6235 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6236 			 *
6237 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6238 			 * the check:
6239 			 *
6240 			 *	if (ret_type != 'int')
6241 			 *		return -EINVAL;
6242 			 *
6243 			 * is _not_ done here. This is still safe as LSM hooks
6244 			 * have only void and int return types.
6245 			 */
6246 			if (!t)
6247 				return true;
6248 			t = btf_type_by_id(btf, t->type);
6249 			break;
6250 		case BPF_MODIFY_RETURN:
6251 			/* For now the BPF_MODIFY_RETURN can only be attached to
6252 			 * functions that return an int.
6253 			 */
6254 			if (!t)
6255 				return false;
6256 
6257 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6258 			if (!btf_type_is_small_int(t)) {
6259 				bpf_log(log,
6260 					"ret type %s not allowed for fmod_ret\n",
6261 					btf_type_str(t));
6262 				return false;
6263 			}
6264 			break;
6265 		default:
6266 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6267 				tname, arg + 1);
6268 			return false;
6269 		}
6270 	} else {
6271 		if (!t)
6272 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6273 			return true;
6274 		t = btf_type_by_id(btf, args[arg].type);
6275 	}
6276 
6277 	/* skip modifiers */
6278 	while (btf_type_is_modifier(t))
6279 		t = btf_type_by_id(btf, t->type);
6280 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6281 		/* accessing a scalar */
6282 		return true;
6283 	if (!btf_type_is_ptr(t)) {
6284 		bpf_log(log,
6285 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6286 			tname, arg,
6287 			__btf_name_by_offset(btf, t->name_off),
6288 			btf_type_str(t));
6289 		return false;
6290 	}
6291 
6292 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6293 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6294 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6295 		u32 type, flag;
6296 
6297 		type = base_type(ctx_arg_info->reg_type);
6298 		flag = type_flag(ctx_arg_info->reg_type);
6299 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6300 		    (flag & PTR_MAYBE_NULL)) {
6301 			info->reg_type = ctx_arg_info->reg_type;
6302 			return true;
6303 		}
6304 	}
6305 
6306 	if (t->type == 0)
6307 		/* This is a pointer to void.
6308 		 * It is the same as scalar from the verifier safety pov.
6309 		 * No further pointer walking is allowed.
6310 		 */
6311 		return true;
6312 
6313 	if (is_int_ptr(btf, t))
6314 		return true;
6315 
6316 	/* this is a pointer to another type */
6317 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6318 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6319 
6320 		if (ctx_arg_info->offset == off) {
6321 			if (!ctx_arg_info->btf_id) {
6322 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6323 				return false;
6324 			}
6325 
6326 			info->reg_type = ctx_arg_info->reg_type;
6327 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6328 			info->btf_id = ctx_arg_info->btf_id;
6329 			return true;
6330 		}
6331 	}
6332 
6333 	info->reg_type = PTR_TO_BTF_ID;
6334 	if (prog_args_trusted(prog))
6335 		info->reg_type |= PTR_TRUSTED;
6336 
6337 	if (tgt_prog) {
6338 		enum bpf_prog_type tgt_type;
6339 
6340 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6341 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6342 		else
6343 			tgt_type = tgt_prog->type;
6344 
6345 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6346 		if (ret > 0) {
6347 			info->btf = btf_vmlinux;
6348 			info->btf_id = ret;
6349 			return true;
6350 		} else {
6351 			return false;
6352 		}
6353 	}
6354 
6355 	info->btf = btf;
6356 	info->btf_id = t->type;
6357 	t = btf_type_by_id(btf, t->type);
6358 
6359 	if (btf_type_is_type_tag(t)) {
6360 		tag_value = __btf_name_by_offset(btf, t->name_off);
6361 		if (strcmp(tag_value, "user") == 0)
6362 			info->reg_type |= MEM_USER;
6363 		if (strcmp(tag_value, "percpu") == 0)
6364 			info->reg_type |= MEM_PERCPU;
6365 	}
6366 
6367 	/* skip modifiers */
6368 	while (btf_type_is_modifier(t)) {
6369 		info->btf_id = t->type;
6370 		t = btf_type_by_id(btf, t->type);
6371 	}
6372 	if (!btf_type_is_struct(t)) {
6373 		bpf_log(log,
6374 			"func '%s' arg%d type %s is not a struct\n",
6375 			tname, arg, btf_type_str(t));
6376 		return false;
6377 	}
6378 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6379 		tname, arg, info->btf_id, btf_type_str(t),
6380 		__btf_name_by_offset(btf, t->name_off));
6381 	return true;
6382 }
6383 EXPORT_SYMBOL_GPL(btf_ctx_access);
6384 
6385 enum bpf_struct_walk_result {
6386 	/* < 0 error */
6387 	WALK_SCALAR = 0,
6388 	WALK_PTR,
6389 	WALK_STRUCT,
6390 };
6391 
6392 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6393 			   const struct btf_type *t, int off, int size,
6394 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6395 			   const char **field_name)
6396 {
6397 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6398 	const struct btf_type *mtype, *elem_type = NULL;
6399 	const struct btf_member *member;
6400 	const char *tname, *mname, *tag_value;
6401 	u32 vlen, elem_id, mid;
6402 
6403 again:
6404 	if (btf_type_is_modifier(t))
6405 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6406 	tname = __btf_name_by_offset(btf, t->name_off);
6407 	if (!btf_type_is_struct(t)) {
6408 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6409 		return -EINVAL;
6410 	}
6411 
6412 	vlen = btf_type_vlen(t);
6413 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6414 		/*
6415 		 * walking unions yields untrusted pointers
6416 		 * with exception of __bpf_md_ptr and other
6417 		 * unions with a single member
6418 		 */
6419 		*flag |= PTR_UNTRUSTED;
6420 
6421 	if (off + size > t->size) {
6422 		/* If the last element is a variable size array, we may
6423 		 * need to relax the rule.
6424 		 */
6425 		struct btf_array *array_elem;
6426 
6427 		if (vlen == 0)
6428 			goto error;
6429 
6430 		member = btf_type_member(t) + vlen - 1;
6431 		mtype = btf_type_skip_modifiers(btf, member->type,
6432 						NULL);
6433 		if (!btf_type_is_array(mtype))
6434 			goto error;
6435 
6436 		array_elem = (struct btf_array *)(mtype + 1);
6437 		if (array_elem->nelems != 0)
6438 			goto error;
6439 
6440 		moff = __btf_member_bit_offset(t, member) / 8;
6441 		if (off < moff)
6442 			goto error;
6443 
6444 		/* allow structure and integer */
6445 		t = btf_type_skip_modifiers(btf, array_elem->type,
6446 					    NULL);
6447 
6448 		if (btf_type_is_int(t))
6449 			return WALK_SCALAR;
6450 
6451 		if (!btf_type_is_struct(t))
6452 			goto error;
6453 
6454 		off = (off - moff) % t->size;
6455 		goto again;
6456 
6457 error:
6458 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6459 			tname, off, size);
6460 		return -EACCES;
6461 	}
6462 
6463 	for_each_member(i, t, member) {
6464 		/* offset of the field in bytes */
6465 		moff = __btf_member_bit_offset(t, member) / 8;
6466 		if (off + size <= moff)
6467 			/* won't find anything, field is already too far */
6468 			break;
6469 
6470 		if (__btf_member_bitfield_size(t, member)) {
6471 			u32 end_bit = __btf_member_bit_offset(t, member) +
6472 				__btf_member_bitfield_size(t, member);
6473 
6474 			/* off <= moff instead of off == moff because clang
6475 			 * does not generate a BTF member for anonymous
6476 			 * bitfield like the ":16" here:
6477 			 * struct {
6478 			 *	int :16;
6479 			 *	int x:8;
6480 			 * };
6481 			 */
6482 			if (off <= moff &&
6483 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6484 				return WALK_SCALAR;
6485 
6486 			/* off may be accessing a following member
6487 			 *
6488 			 * or
6489 			 *
6490 			 * Doing partial access at either end of this
6491 			 * bitfield.  Continue on this case also to
6492 			 * treat it as not accessing this bitfield
6493 			 * and eventually error out as field not
6494 			 * found to keep it simple.
6495 			 * It could be relaxed if there was a legit
6496 			 * partial access case later.
6497 			 */
6498 			continue;
6499 		}
6500 
6501 		/* In case of "off" is pointing to holes of a struct */
6502 		if (off < moff)
6503 			break;
6504 
6505 		/* type of the field */
6506 		mid = member->type;
6507 		mtype = btf_type_by_id(btf, member->type);
6508 		mname = __btf_name_by_offset(btf, member->name_off);
6509 
6510 		mtype = __btf_resolve_size(btf, mtype, &msize,
6511 					   &elem_type, &elem_id, &total_nelems,
6512 					   &mid);
6513 		if (IS_ERR(mtype)) {
6514 			bpf_log(log, "field %s doesn't have size\n", mname);
6515 			return -EFAULT;
6516 		}
6517 
6518 		mtrue_end = moff + msize;
6519 		if (off >= mtrue_end)
6520 			/* no overlap with member, keep iterating */
6521 			continue;
6522 
6523 		if (btf_type_is_array(mtype)) {
6524 			u32 elem_idx;
6525 
6526 			/* __btf_resolve_size() above helps to
6527 			 * linearize a multi-dimensional array.
6528 			 *
6529 			 * The logic here is treating an array
6530 			 * in a struct as the following way:
6531 			 *
6532 			 * struct outer {
6533 			 *	struct inner array[2][2];
6534 			 * };
6535 			 *
6536 			 * looks like:
6537 			 *
6538 			 * struct outer {
6539 			 *	struct inner array_elem0;
6540 			 *	struct inner array_elem1;
6541 			 *	struct inner array_elem2;
6542 			 *	struct inner array_elem3;
6543 			 * };
6544 			 *
6545 			 * When accessing outer->array[1][0], it moves
6546 			 * moff to "array_elem2", set mtype to
6547 			 * "struct inner", and msize also becomes
6548 			 * sizeof(struct inner).  Then most of the
6549 			 * remaining logic will fall through without
6550 			 * caring the current member is an array or
6551 			 * not.
6552 			 *
6553 			 * Unlike mtype/msize/moff, mtrue_end does not
6554 			 * change.  The naming difference ("_true") tells
6555 			 * that it is not always corresponding to
6556 			 * the current mtype/msize/moff.
6557 			 * It is the true end of the current
6558 			 * member (i.e. array in this case).  That
6559 			 * will allow an int array to be accessed like
6560 			 * a scratch space,
6561 			 * i.e. allow access beyond the size of
6562 			 *      the array's element as long as it is
6563 			 *      within the mtrue_end boundary.
6564 			 */
6565 
6566 			/* skip empty array */
6567 			if (moff == mtrue_end)
6568 				continue;
6569 
6570 			msize /= total_nelems;
6571 			elem_idx = (off - moff) / msize;
6572 			moff += elem_idx * msize;
6573 			mtype = elem_type;
6574 			mid = elem_id;
6575 		}
6576 
6577 		/* the 'off' we're looking for is either equal to start
6578 		 * of this field or inside of this struct
6579 		 */
6580 		if (btf_type_is_struct(mtype)) {
6581 			/* our field must be inside that union or struct */
6582 			t = mtype;
6583 
6584 			/* return if the offset matches the member offset */
6585 			if (off == moff) {
6586 				*next_btf_id = mid;
6587 				return WALK_STRUCT;
6588 			}
6589 
6590 			/* adjust offset we're looking for */
6591 			off -= moff;
6592 			goto again;
6593 		}
6594 
6595 		if (btf_type_is_ptr(mtype)) {
6596 			const struct btf_type *stype, *t;
6597 			enum bpf_type_flag tmp_flag = 0;
6598 			u32 id;
6599 
6600 			if (msize != size || off != moff) {
6601 				bpf_log(log,
6602 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6603 					mname, moff, tname, off, size);
6604 				return -EACCES;
6605 			}
6606 
6607 			/* check type tag */
6608 			t = btf_type_by_id(btf, mtype->type);
6609 			if (btf_type_is_type_tag(t)) {
6610 				tag_value = __btf_name_by_offset(btf, t->name_off);
6611 				/* check __user tag */
6612 				if (strcmp(tag_value, "user") == 0)
6613 					tmp_flag = MEM_USER;
6614 				/* check __percpu tag */
6615 				if (strcmp(tag_value, "percpu") == 0)
6616 					tmp_flag = MEM_PERCPU;
6617 				/* check __rcu tag */
6618 				if (strcmp(tag_value, "rcu") == 0)
6619 					tmp_flag = MEM_RCU;
6620 			}
6621 
6622 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6623 			if (btf_type_is_struct(stype)) {
6624 				*next_btf_id = id;
6625 				*flag |= tmp_flag;
6626 				if (field_name)
6627 					*field_name = mname;
6628 				return WALK_PTR;
6629 			}
6630 		}
6631 
6632 		/* Allow more flexible access within an int as long as
6633 		 * it is within mtrue_end.
6634 		 * Since mtrue_end could be the end of an array,
6635 		 * that also allows using an array of int as a scratch
6636 		 * space. e.g. skb->cb[].
6637 		 */
6638 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6639 			bpf_log(log,
6640 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6641 				mname, mtrue_end, tname, off, size);
6642 			return -EACCES;
6643 		}
6644 
6645 		return WALK_SCALAR;
6646 	}
6647 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6648 	return -EINVAL;
6649 }
6650 
6651 int btf_struct_access(struct bpf_verifier_log *log,
6652 		      const struct bpf_reg_state *reg,
6653 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6654 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6655 		      const char **field_name)
6656 {
6657 	const struct btf *btf = reg->btf;
6658 	enum bpf_type_flag tmp_flag = 0;
6659 	const struct btf_type *t;
6660 	u32 id = reg->btf_id;
6661 	int err;
6662 
6663 	while (type_is_alloc(reg->type)) {
6664 		struct btf_struct_meta *meta;
6665 		struct btf_record *rec;
6666 		int i;
6667 
6668 		meta = btf_find_struct_meta(btf, id);
6669 		if (!meta)
6670 			break;
6671 		rec = meta->record;
6672 		for (i = 0; i < rec->cnt; i++) {
6673 			struct btf_field *field = &rec->fields[i];
6674 			u32 offset = field->offset;
6675 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6676 				bpf_log(log,
6677 					"direct access to %s is disallowed\n",
6678 					btf_field_type_name(field->type));
6679 				return -EACCES;
6680 			}
6681 		}
6682 		break;
6683 	}
6684 
6685 	t = btf_type_by_id(btf, id);
6686 	do {
6687 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6688 
6689 		switch (err) {
6690 		case WALK_PTR:
6691 			/* For local types, the destination register cannot
6692 			 * become a pointer again.
6693 			 */
6694 			if (type_is_alloc(reg->type))
6695 				return SCALAR_VALUE;
6696 			/* If we found the pointer or scalar on t+off,
6697 			 * we're done.
6698 			 */
6699 			*next_btf_id = id;
6700 			*flag = tmp_flag;
6701 			return PTR_TO_BTF_ID;
6702 		case WALK_SCALAR:
6703 			return SCALAR_VALUE;
6704 		case WALK_STRUCT:
6705 			/* We found nested struct, so continue the search
6706 			 * by diving in it. At this point the offset is
6707 			 * aligned with the new type, so set it to 0.
6708 			 */
6709 			t = btf_type_by_id(btf, id);
6710 			off = 0;
6711 			break;
6712 		default:
6713 			/* It's either error or unknown return value..
6714 			 * scream and leave.
6715 			 */
6716 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6717 				return -EINVAL;
6718 			return err;
6719 		}
6720 	} while (t);
6721 
6722 	return -EINVAL;
6723 }
6724 
6725 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6726  * the same. Trivial ID check is not enough due to module BTFs, because we can
6727  * end up with two different module BTFs, but IDs point to the common type in
6728  * vmlinux BTF.
6729  */
6730 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6731 			const struct btf *btf2, u32 id2)
6732 {
6733 	if (id1 != id2)
6734 		return false;
6735 	if (btf1 == btf2)
6736 		return true;
6737 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6738 }
6739 
6740 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6741 			  const struct btf *btf, u32 id, int off,
6742 			  const struct btf *need_btf, u32 need_type_id,
6743 			  bool strict)
6744 {
6745 	const struct btf_type *type;
6746 	enum bpf_type_flag flag = 0;
6747 	int err;
6748 
6749 	/* Are we already done? */
6750 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6751 		return true;
6752 	/* In case of strict type match, we do not walk struct, the top level
6753 	 * type match must succeed. When strict is true, off should have already
6754 	 * been 0.
6755 	 */
6756 	if (strict)
6757 		return false;
6758 again:
6759 	type = btf_type_by_id(btf, id);
6760 	if (!type)
6761 		return false;
6762 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6763 	if (err != WALK_STRUCT)
6764 		return false;
6765 
6766 	/* We found nested struct object. If it matches
6767 	 * the requested ID, we're done. Otherwise let's
6768 	 * continue the search with offset 0 in the new
6769 	 * type.
6770 	 */
6771 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6772 		off = 0;
6773 		goto again;
6774 	}
6775 
6776 	return true;
6777 }
6778 
6779 static int __get_type_size(struct btf *btf, u32 btf_id,
6780 			   const struct btf_type **ret_type)
6781 {
6782 	const struct btf_type *t;
6783 
6784 	*ret_type = btf_type_by_id(btf, 0);
6785 	if (!btf_id)
6786 		/* void */
6787 		return 0;
6788 	t = btf_type_by_id(btf, btf_id);
6789 	while (t && btf_type_is_modifier(t))
6790 		t = btf_type_by_id(btf, t->type);
6791 	if (!t)
6792 		return -EINVAL;
6793 	*ret_type = t;
6794 	if (btf_type_is_ptr(t))
6795 		/* kernel size of pointer. Not BPF's size of pointer*/
6796 		return sizeof(void *);
6797 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6798 		return t->size;
6799 	return -EINVAL;
6800 }
6801 
6802 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6803 {
6804 	u8 flags = 0;
6805 
6806 	if (__btf_type_is_struct(t))
6807 		flags |= BTF_FMODEL_STRUCT_ARG;
6808 	if (btf_type_is_signed_int(t))
6809 		flags |= BTF_FMODEL_SIGNED_ARG;
6810 
6811 	return flags;
6812 }
6813 
6814 int btf_distill_func_proto(struct bpf_verifier_log *log,
6815 			   struct btf *btf,
6816 			   const struct btf_type *func,
6817 			   const char *tname,
6818 			   struct btf_func_model *m)
6819 {
6820 	const struct btf_param *args;
6821 	const struct btf_type *t;
6822 	u32 i, nargs;
6823 	int ret;
6824 
6825 	if (!func) {
6826 		/* BTF function prototype doesn't match the verifier types.
6827 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6828 		 */
6829 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6830 			m->arg_size[i] = 8;
6831 			m->arg_flags[i] = 0;
6832 		}
6833 		m->ret_size = 8;
6834 		m->ret_flags = 0;
6835 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6836 		return 0;
6837 	}
6838 	args = (const struct btf_param *)(func + 1);
6839 	nargs = btf_type_vlen(func);
6840 	if (nargs > MAX_BPF_FUNC_ARGS) {
6841 		bpf_log(log,
6842 			"The function %s has %d arguments. Too many.\n",
6843 			tname, nargs);
6844 		return -EINVAL;
6845 	}
6846 	ret = __get_type_size(btf, func->type, &t);
6847 	if (ret < 0 || __btf_type_is_struct(t)) {
6848 		bpf_log(log,
6849 			"The function %s return type %s is unsupported.\n",
6850 			tname, btf_type_str(t));
6851 		return -EINVAL;
6852 	}
6853 	m->ret_size = ret;
6854 	m->ret_flags = __get_type_fmodel_flags(t);
6855 
6856 	for (i = 0; i < nargs; i++) {
6857 		if (i == nargs - 1 && args[i].type == 0) {
6858 			bpf_log(log,
6859 				"The function %s with variable args is unsupported.\n",
6860 				tname);
6861 			return -EINVAL;
6862 		}
6863 		ret = __get_type_size(btf, args[i].type, &t);
6864 
6865 		/* No support of struct argument size greater than 16 bytes */
6866 		if (ret < 0 || ret > 16) {
6867 			bpf_log(log,
6868 				"The function %s arg%d type %s is unsupported.\n",
6869 				tname, i, btf_type_str(t));
6870 			return -EINVAL;
6871 		}
6872 		if (ret == 0) {
6873 			bpf_log(log,
6874 				"The function %s has malformed void argument.\n",
6875 				tname);
6876 			return -EINVAL;
6877 		}
6878 		m->arg_size[i] = ret;
6879 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6880 	}
6881 	m->nr_args = nargs;
6882 	return 0;
6883 }
6884 
6885 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6886  * t1 points to BTF_KIND_FUNC in btf1
6887  * t2 points to BTF_KIND_FUNC in btf2
6888  * Returns:
6889  * EINVAL - function prototype mismatch
6890  * EFAULT - verifier bug
6891  * 0 - 99% match. The last 1% is validated by the verifier.
6892  */
6893 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6894 				     struct btf *btf1, const struct btf_type *t1,
6895 				     struct btf *btf2, const struct btf_type *t2)
6896 {
6897 	const struct btf_param *args1, *args2;
6898 	const char *fn1, *fn2, *s1, *s2;
6899 	u32 nargs1, nargs2, i;
6900 
6901 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6902 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6903 
6904 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6905 		bpf_log(log, "%s() is not a global function\n", fn1);
6906 		return -EINVAL;
6907 	}
6908 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6909 		bpf_log(log, "%s() is not a global function\n", fn2);
6910 		return -EINVAL;
6911 	}
6912 
6913 	t1 = btf_type_by_id(btf1, t1->type);
6914 	if (!t1 || !btf_type_is_func_proto(t1))
6915 		return -EFAULT;
6916 	t2 = btf_type_by_id(btf2, t2->type);
6917 	if (!t2 || !btf_type_is_func_proto(t2))
6918 		return -EFAULT;
6919 
6920 	args1 = (const struct btf_param *)(t1 + 1);
6921 	nargs1 = btf_type_vlen(t1);
6922 	args2 = (const struct btf_param *)(t2 + 1);
6923 	nargs2 = btf_type_vlen(t2);
6924 
6925 	if (nargs1 != nargs2) {
6926 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6927 			fn1, nargs1, fn2, nargs2);
6928 		return -EINVAL;
6929 	}
6930 
6931 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6932 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6933 	if (t1->info != t2->info) {
6934 		bpf_log(log,
6935 			"Return type %s of %s() doesn't match type %s of %s()\n",
6936 			btf_type_str(t1), fn1,
6937 			btf_type_str(t2), fn2);
6938 		return -EINVAL;
6939 	}
6940 
6941 	for (i = 0; i < nargs1; i++) {
6942 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6943 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6944 
6945 		if (t1->info != t2->info) {
6946 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6947 				i, fn1, btf_type_str(t1),
6948 				fn2, btf_type_str(t2));
6949 			return -EINVAL;
6950 		}
6951 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6952 			bpf_log(log,
6953 				"arg%d in %s() has size %d while %s() has %d\n",
6954 				i, fn1, t1->size,
6955 				fn2, t2->size);
6956 			return -EINVAL;
6957 		}
6958 
6959 		/* global functions are validated with scalars and pointers
6960 		 * to context only. And only global functions can be replaced.
6961 		 * Hence type check only those types.
6962 		 */
6963 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6964 			continue;
6965 		if (!btf_type_is_ptr(t1)) {
6966 			bpf_log(log,
6967 				"arg%d in %s() has unrecognized type\n",
6968 				i, fn1);
6969 			return -EINVAL;
6970 		}
6971 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6972 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6973 		if (!btf_type_is_struct(t1)) {
6974 			bpf_log(log,
6975 				"arg%d in %s() is not a pointer to context\n",
6976 				i, fn1);
6977 			return -EINVAL;
6978 		}
6979 		if (!btf_type_is_struct(t2)) {
6980 			bpf_log(log,
6981 				"arg%d in %s() is not a pointer to context\n",
6982 				i, fn2);
6983 			return -EINVAL;
6984 		}
6985 		/* This is an optional check to make program writing easier.
6986 		 * Compare names of structs and report an error to the user.
6987 		 * btf_prepare_func_args() already checked that t2 struct
6988 		 * is a context type. btf_prepare_func_args() will check
6989 		 * later that t1 struct is a context type as well.
6990 		 */
6991 		s1 = btf_name_by_offset(btf1, t1->name_off);
6992 		s2 = btf_name_by_offset(btf2, t2->name_off);
6993 		if (strcmp(s1, s2)) {
6994 			bpf_log(log,
6995 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6996 				i, fn1, s1, fn2, s2);
6997 			return -EINVAL;
6998 		}
6999 	}
7000 	return 0;
7001 }
7002 
7003 /* Compare BTFs of given program with BTF of target program */
7004 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7005 			 struct btf *btf2, const struct btf_type *t2)
7006 {
7007 	struct btf *btf1 = prog->aux->btf;
7008 	const struct btf_type *t1;
7009 	u32 btf_id = 0;
7010 
7011 	if (!prog->aux->func_info) {
7012 		bpf_log(log, "Program extension requires BTF\n");
7013 		return -EINVAL;
7014 	}
7015 
7016 	btf_id = prog->aux->func_info[0].type_id;
7017 	if (!btf_id)
7018 		return -EFAULT;
7019 
7020 	t1 = btf_type_by_id(btf1, btf_id);
7021 	if (!t1 || !btf_type_is_func(t1))
7022 		return -EFAULT;
7023 
7024 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7025 }
7026 
7027 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7028 {
7029 	const char *name;
7030 
7031 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7032 
7033 	while (btf_type_is_modifier(t))
7034 		t = btf_type_by_id(btf, t->type);
7035 
7036 	/* allow either struct or struct forward declaration */
7037 	if (btf_type_is_struct(t) ||
7038 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7039 		name = btf_str_by_offset(btf, t->name_off);
7040 		return name && strcmp(name, "bpf_dynptr") == 0;
7041 	}
7042 
7043 	return false;
7044 }
7045 
7046 struct bpf_cand_cache {
7047 	const char *name;
7048 	u32 name_len;
7049 	u16 kind;
7050 	u16 cnt;
7051 	struct {
7052 		const struct btf *btf;
7053 		u32 id;
7054 	} cands[];
7055 };
7056 
7057 static DEFINE_MUTEX(cand_cache_mutex);
7058 
7059 static struct bpf_cand_cache *
7060 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7061 
7062 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7063 				 const struct btf *btf, const struct btf_type *t)
7064 {
7065 	struct bpf_cand_cache *cc;
7066 	struct bpf_core_ctx ctx = {
7067 		.btf = btf,
7068 		.log = log,
7069 	};
7070 	u32 kern_type_id, type_id;
7071 	int err = 0;
7072 
7073 	/* skip PTR and modifiers */
7074 	type_id = t->type;
7075 	t = btf_type_by_id(btf, t->type);
7076 	while (btf_type_is_modifier(t)) {
7077 		type_id = t->type;
7078 		t = btf_type_by_id(btf, t->type);
7079 	}
7080 
7081 	mutex_lock(&cand_cache_mutex);
7082 	cc = bpf_core_find_cands(&ctx, type_id);
7083 	if (IS_ERR(cc)) {
7084 		err = PTR_ERR(cc);
7085 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7086 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7087 			err);
7088 		goto cand_cache_unlock;
7089 	}
7090 	if (cc->cnt != 1) {
7091 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7092 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7093 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7094 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7095 		goto cand_cache_unlock;
7096 	}
7097 	if (btf_is_module(cc->cands[0].btf)) {
7098 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7099 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7100 		err = -EOPNOTSUPP;
7101 		goto cand_cache_unlock;
7102 	}
7103 	kern_type_id = cc->cands[0].id;
7104 
7105 cand_cache_unlock:
7106 	mutex_unlock(&cand_cache_mutex);
7107 	if (err)
7108 		return err;
7109 
7110 	return kern_type_id;
7111 }
7112 
7113 enum btf_arg_tag {
7114 	ARG_TAG_CTX	 = BIT_ULL(0),
7115 	ARG_TAG_NONNULL  = BIT_ULL(1),
7116 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7117 	ARG_TAG_NULLABLE = BIT_ULL(3),
7118 	ARG_TAG_ARENA	 = BIT_ULL(4),
7119 };
7120 
7121 /* Process BTF of a function to produce high-level expectation of function
7122  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7123  * is cached in subprog info for reuse.
7124  * Returns:
7125  * EFAULT - there is a verifier bug. Abort verification.
7126  * EINVAL - cannot convert BTF.
7127  * 0 - Successfully processed BTF and constructed argument expectations.
7128  */
7129 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7130 {
7131 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7132 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7133 	struct bpf_verifier_log *log = &env->log;
7134 	struct bpf_prog *prog = env->prog;
7135 	enum bpf_prog_type prog_type = prog->type;
7136 	struct btf *btf = prog->aux->btf;
7137 	const struct btf_param *args;
7138 	const struct btf_type *t, *ref_t, *fn_t;
7139 	u32 i, nargs, btf_id;
7140 	const char *tname;
7141 
7142 	if (sub->args_cached)
7143 		return 0;
7144 
7145 	if (!prog->aux->func_info) {
7146 		bpf_log(log, "Verifier bug\n");
7147 		return -EFAULT;
7148 	}
7149 
7150 	btf_id = prog->aux->func_info[subprog].type_id;
7151 	if (!btf_id) {
7152 		if (!is_global) /* not fatal for static funcs */
7153 			return -EINVAL;
7154 		bpf_log(log, "Global functions need valid BTF\n");
7155 		return -EFAULT;
7156 	}
7157 
7158 	fn_t = btf_type_by_id(btf, btf_id);
7159 	if (!fn_t || !btf_type_is_func(fn_t)) {
7160 		/* These checks were already done by the verifier while loading
7161 		 * struct bpf_func_info
7162 		 */
7163 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7164 			subprog);
7165 		return -EFAULT;
7166 	}
7167 	tname = btf_name_by_offset(btf, fn_t->name_off);
7168 
7169 	if (prog->aux->func_info_aux[subprog].unreliable) {
7170 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7171 		return -EFAULT;
7172 	}
7173 	if (prog_type == BPF_PROG_TYPE_EXT)
7174 		prog_type = prog->aux->dst_prog->type;
7175 
7176 	t = btf_type_by_id(btf, fn_t->type);
7177 	if (!t || !btf_type_is_func_proto(t)) {
7178 		bpf_log(log, "Invalid type of function %s()\n", tname);
7179 		return -EFAULT;
7180 	}
7181 	args = (const struct btf_param *)(t + 1);
7182 	nargs = btf_type_vlen(t);
7183 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7184 		if (!is_global)
7185 			return -EINVAL;
7186 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7187 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7188 		return -EINVAL;
7189 	}
7190 	/* check that function returns int, exception cb also requires this */
7191 	t = btf_type_by_id(btf, t->type);
7192 	while (btf_type_is_modifier(t))
7193 		t = btf_type_by_id(btf, t->type);
7194 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7195 		if (!is_global)
7196 			return -EINVAL;
7197 		bpf_log(log,
7198 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7199 			tname);
7200 		return -EINVAL;
7201 	}
7202 	/* Convert BTF function arguments into verifier types.
7203 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7204 	 */
7205 	for (i = 0; i < nargs; i++) {
7206 		u32 tags = 0;
7207 		int id = 0;
7208 
7209 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7210 		 * register type from BTF type itself
7211 		 */
7212 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7213 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7214 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7215 
7216 			/* disallow arg tags in static subprogs */
7217 			if (!is_global) {
7218 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7219 				return -EOPNOTSUPP;
7220 			}
7221 
7222 			if (strcmp(tag, "ctx") == 0) {
7223 				tags |= ARG_TAG_CTX;
7224 			} else if (strcmp(tag, "trusted") == 0) {
7225 				tags |= ARG_TAG_TRUSTED;
7226 			} else if (strcmp(tag, "nonnull") == 0) {
7227 				tags |= ARG_TAG_NONNULL;
7228 			} else if (strcmp(tag, "nullable") == 0) {
7229 				tags |= ARG_TAG_NULLABLE;
7230 			} else if (strcmp(tag, "arena") == 0) {
7231 				tags |= ARG_TAG_ARENA;
7232 			} else {
7233 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7234 				return -EOPNOTSUPP;
7235 			}
7236 		}
7237 		if (id != -ENOENT) {
7238 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7239 			return id;
7240 		}
7241 
7242 		t = btf_type_by_id(btf, args[i].type);
7243 		while (btf_type_is_modifier(t))
7244 			t = btf_type_by_id(btf, t->type);
7245 		if (!btf_type_is_ptr(t))
7246 			goto skip_pointer;
7247 
7248 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7249 			if (tags & ~ARG_TAG_CTX) {
7250 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7251 				return -EINVAL;
7252 			}
7253 			if ((tags & ARG_TAG_CTX) &&
7254 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7255 						       prog->expected_attach_type))
7256 				return -EINVAL;
7257 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7258 			continue;
7259 		}
7260 		if (btf_is_dynptr_ptr(btf, t)) {
7261 			if (tags) {
7262 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7263 				return -EINVAL;
7264 			}
7265 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7266 			continue;
7267 		}
7268 		if (tags & ARG_TAG_TRUSTED) {
7269 			int kern_type_id;
7270 
7271 			if (tags & ARG_TAG_NONNULL) {
7272 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7273 				return -EINVAL;
7274 			}
7275 
7276 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7277 			if (kern_type_id < 0)
7278 				return kern_type_id;
7279 
7280 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7281 			if (tags & ARG_TAG_NULLABLE)
7282 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7283 			sub->args[i].btf_id = kern_type_id;
7284 			continue;
7285 		}
7286 		if (tags & ARG_TAG_ARENA) {
7287 			if (tags & ~ARG_TAG_ARENA) {
7288 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7289 				return -EINVAL;
7290 			}
7291 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7292 			continue;
7293 		}
7294 		if (is_global) { /* generic user data pointer */
7295 			u32 mem_size;
7296 
7297 			if (tags & ARG_TAG_NULLABLE) {
7298 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7299 				return -EINVAL;
7300 			}
7301 
7302 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7303 			ref_t = btf_resolve_size(btf, t, &mem_size);
7304 			if (IS_ERR(ref_t)) {
7305 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7306 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7307 					PTR_ERR(ref_t));
7308 				return -EINVAL;
7309 			}
7310 
7311 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7312 			if (tags & ARG_TAG_NONNULL)
7313 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7314 			sub->args[i].mem_size = mem_size;
7315 			continue;
7316 		}
7317 
7318 skip_pointer:
7319 		if (tags) {
7320 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7321 			return -EINVAL;
7322 		}
7323 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7324 			sub->args[i].arg_type = ARG_ANYTHING;
7325 			continue;
7326 		}
7327 		if (!is_global)
7328 			return -EINVAL;
7329 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7330 			i, btf_type_str(t), tname);
7331 		return -EINVAL;
7332 	}
7333 
7334 	sub->arg_cnt = nargs;
7335 	sub->args_cached = true;
7336 
7337 	return 0;
7338 }
7339 
7340 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7341 			  struct btf_show *show)
7342 {
7343 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7344 
7345 	show->btf = btf;
7346 	memset(&show->state, 0, sizeof(show->state));
7347 	memset(&show->obj, 0, sizeof(show->obj));
7348 
7349 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7350 }
7351 
7352 static void btf_seq_show(struct btf_show *show, const char *fmt,
7353 			 va_list args)
7354 {
7355 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7356 }
7357 
7358 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7359 			    void *obj, struct seq_file *m, u64 flags)
7360 {
7361 	struct btf_show sseq;
7362 
7363 	sseq.target = m;
7364 	sseq.showfn = btf_seq_show;
7365 	sseq.flags = flags;
7366 
7367 	btf_type_show(btf, type_id, obj, &sseq);
7368 
7369 	return sseq.state.status;
7370 }
7371 
7372 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7373 		       struct seq_file *m)
7374 {
7375 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7376 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7377 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7378 }
7379 
7380 struct btf_show_snprintf {
7381 	struct btf_show show;
7382 	int len_left;		/* space left in string */
7383 	int len;		/* length we would have written */
7384 };
7385 
7386 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7387 			      va_list args)
7388 {
7389 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7390 	int len;
7391 
7392 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7393 
7394 	if (len < 0) {
7395 		ssnprintf->len_left = 0;
7396 		ssnprintf->len = len;
7397 	} else if (len >= ssnprintf->len_left) {
7398 		/* no space, drive on to get length we would have written */
7399 		ssnprintf->len_left = 0;
7400 		ssnprintf->len += len;
7401 	} else {
7402 		ssnprintf->len_left -= len;
7403 		ssnprintf->len += len;
7404 		show->target += len;
7405 	}
7406 }
7407 
7408 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7409 			   char *buf, int len, u64 flags)
7410 {
7411 	struct btf_show_snprintf ssnprintf;
7412 
7413 	ssnprintf.show.target = buf;
7414 	ssnprintf.show.flags = flags;
7415 	ssnprintf.show.showfn = btf_snprintf_show;
7416 	ssnprintf.len_left = len;
7417 	ssnprintf.len = 0;
7418 
7419 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7420 
7421 	/* If we encountered an error, return it. */
7422 	if (ssnprintf.show.state.status)
7423 		return ssnprintf.show.state.status;
7424 
7425 	/* Otherwise return length we would have written */
7426 	return ssnprintf.len;
7427 }
7428 
7429 #ifdef CONFIG_PROC_FS
7430 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7431 {
7432 	const struct btf *btf = filp->private_data;
7433 
7434 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7435 }
7436 #endif
7437 
7438 static int btf_release(struct inode *inode, struct file *filp)
7439 {
7440 	btf_put(filp->private_data);
7441 	return 0;
7442 }
7443 
7444 const struct file_operations btf_fops = {
7445 #ifdef CONFIG_PROC_FS
7446 	.show_fdinfo	= bpf_btf_show_fdinfo,
7447 #endif
7448 	.release	= btf_release,
7449 };
7450 
7451 static int __btf_new_fd(struct btf *btf)
7452 {
7453 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7454 }
7455 
7456 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7457 {
7458 	struct btf *btf;
7459 	int ret;
7460 
7461 	btf = btf_parse(attr, uattr, uattr_size);
7462 	if (IS_ERR(btf))
7463 		return PTR_ERR(btf);
7464 
7465 	ret = btf_alloc_id(btf);
7466 	if (ret) {
7467 		btf_free(btf);
7468 		return ret;
7469 	}
7470 
7471 	/*
7472 	 * The BTF ID is published to the userspace.
7473 	 * All BTF free must go through call_rcu() from
7474 	 * now on (i.e. free by calling btf_put()).
7475 	 */
7476 
7477 	ret = __btf_new_fd(btf);
7478 	if (ret < 0)
7479 		btf_put(btf);
7480 
7481 	return ret;
7482 }
7483 
7484 struct btf *btf_get_by_fd(int fd)
7485 {
7486 	struct btf *btf;
7487 	struct fd f;
7488 
7489 	f = fdget(fd);
7490 
7491 	if (!f.file)
7492 		return ERR_PTR(-EBADF);
7493 
7494 	if (f.file->f_op != &btf_fops) {
7495 		fdput(f);
7496 		return ERR_PTR(-EINVAL);
7497 	}
7498 
7499 	btf = f.file->private_data;
7500 	refcount_inc(&btf->refcnt);
7501 	fdput(f);
7502 
7503 	return btf;
7504 }
7505 
7506 int btf_get_info_by_fd(const struct btf *btf,
7507 		       const union bpf_attr *attr,
7508 		       union bpf_attr __user *uattr)
7509 {
7510 	struct bpf_btf_info __user *uinfo;
7511 	struct bpf_btf_info info;
7512 	u32 info_copy, btf_copy;
7513 	void __user *ubtf;
7514 	char __user *uname;
7515 	u32 uinfo_len, uname_len, name_len;
7516 	int ret = 0;
7517 
7518 	uinfo = u64_to_user_ptr(attr->info.info);
7519 	uinfo_len = attr->info.info_len;
7520 
7521 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7522 	memset(&info, 0, sizeof(info));
7523 	if (copy_from_user(&info, uinfo, info_copy))
7524 		return -EFAULT;
7525 
7526 	info.id = btf->id;
7527 	ubtf = u64_to_user_ptr(info.btf);
7528 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7529 	if (copy_to_user(ubtf, btf->data, btf_copy))
7530 		return -EFAULT;
7531 	info.btf_size = btf->data_size;
7532 
7533 	info.kernel_btf = btf->kernel_btf;
7534 
7535 	uname = u64_to_user_ptr(info.name);
7536 	uname_len = info.name_len;
7537 	if (!uname ^ !uname_len)
7538 		return -EINVAL;
7539 
7540 	name_len = strlen(btf->name);
7541 	info.name_len = name_len;
7542 
7543 	if (uname) {
7544 		if (uname_len >= name_len + 1) {
7545 			if (copy_to_user(uname, btf->name, name_len + 1))
7546 				return -EFAULT;
7547 		} else {
7548 			char zero = '\0';
7549 
7550 			if (copy_to_user(uname, btf->name, uname_len - 1))
7551 				return -EFAULT;
7552 			if (put_user(zero, uname + uname_len - 1))
7553 				return -EFAULT;
7554 			/* let user-space know about too short buffer */
7555 			ret = -ENOSPC;
7556 		}
7557 	}
7558 
7559 	if (copy_to_user(uinfo, &info, info_copy) ||
7560 	    put_user(info_copy, &uattr->info.info_len))
7561 		return -EFAULT;
7562 
7563 	return ret;
7564 }
7565 
7566 int btf_get_fd_by_id(u32 id)
7567 {
7568 	struct btf *btf;
7569 	int fd;
7570 
7571 	rcu_read_lock();
7572 	btf = idr_find(&btf_idr, id);
7573 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7574 		btf = ERR_PTR(-ENOENT);
7575 	rcu_read_unlock();
7576 
7577 	if (IS_ERR(btf))
7578 		return PTR_ERR(btf);
7579 
7580 	fd = __btf_new_fd(btf);
7581 	if (fd < 0)
7582 		btf_put(btf);
7583 
7584 	return fd;
7585 }
7586 
7587 u32 btf_obj_id(const struct btf *btf)
7588 {
7589 	return btf->id;
7590 }
7591 
7592 bool btf_is_kernel(const struct btf *btf)
7593 {
7594 	return btf->kernel_btf;
7595 }
7596 
7597 bool btf_is_module(const struct btf *btf)
7598 {
7599 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7600 }
7601 
7602 enum {
7603 	BTF_MODULE_F_LIVE = (1 << 0),
7604 };
7605 
7606 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7607 struct btf_module {
7608 	struct list_head list;
7609 	struct module *module;
7610 	struct btf *btf;
7611 	struct bin_attribute *sysfs_attr;
7612 	int flags;
7613 };
7614 
7615 static LIST_HEAD(btf_modules);
7616 static DEFINE_MUTEX(btf_module_mutex);
7617 
7618 static ssize_t
7619 btf_module_read(struct file *file, struct kobject *kobj,
7620 		struct bin_attribute *bin_attr,
7621 		char *buf, loff_t off, size_t len)
7622 {
7623 	const struct btf *btf = bin_attr->private;
7624 
7625 	memcpy(buf, btf->data + off, len);
7626 	return len;
7627 }
7628 
7629 static void purge_cand_cache(struct btf *btf);
7630 
7631 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7632 			     void *module)
7633 {
7634 	struct btf_module *btf_mod, *tmp;
7635 	struct module *mod = module;
7636 	struct btf *btf;
7637 	int err = 0;
7638 
7639 	if (mod->btf_data_size == 0 ||
7640 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7641 	     op != MODULE_STATE_GOING))
7642 		goto out;
7643 
7644 	switch (op) {
7645 	case MODULE_STATE_COMING:
7646 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7647 		if (!btf_mod) {
7648 			err = -ENOMEM;
7649 			goto out;
7650 		}
7651 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7652 		if (IS_ERR(btf)) {
7653 			kfree(btf_mod);
7654 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7655 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7656 					mod->name, PTR_ERR(btf));
7657 				err = PTR_ERR(btf);
7658 			} else {
7659 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7660 			}
7661 			goto out;
7662 		}
7663 		err = btf_alloc_id(btf);
7664 		if (err) {
7665 			btf_free(btf);
7666 			kfree(btf_mod);
7667 			goto out;
7668 		}
7669 
7670 		purge_cand_cache(NULL);
7671 		mutex_lock(&btf_module_mutex);
7672 		btf_mod->module = module;
7673 		btf_mod->btf = btf;
7674 		list_add(&btf_mod->list, &btf_modules);
7675 		mutex_unlock(&btf_module_mutex);
7676 
7677 		if (IS_ENABLED(CONFIG_SYSFS)) {
7678 			struct bin_attribute *attr;
7679 
7680 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7681 			if (!attr)
7682 				goto out;
7683 
7684 			sysfs_bin_attr_init(attr);
7685 			attr->attr.name = btf->name;
7686 			attr->attr.mode = 0444;
7687 			attr->size = btf->data_size;
7688 			attr->private = btf;
7689 			attr->read = btf_module_read;
7690 
7691 			err = sysfs_create_bin_file(btf_kobj, attr);
7692 			if (err) {
7693 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7694 					mod->name, err);
7695 				kfree(attr);
7696 				err = 0;
7697 				goto out;
7698 			}
7699 
7700 			btf_mod->sysfs_attr = attr;
7701 		}
7702 
7703 		break;
7704 	case MODULE_STATE_LIVE:
7705 		mutex_lock(&btf_module_mutex);
7706 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7707 			if (btf_mod->module != module)
7708 				continue;
7709 
7710 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7711 			break;
7712 		}
7713 		mutex_unlock(&btf_module_mutex);
7714 		break;
7715 	case MODULE_STATE_GOING:
7716 		mutex_lock(&btf_module_mutex);
7717 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7718 			if (btf_mod->module != module)
7719 				continue;
7720 
7721 			list_del(&btf_mod->list);
7722 			if (btf_mod->sysfs_attr)
7723 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7724 			purge_cand_cache(btf_mod->btf);
7725 			btf_put(btf_mod->btf);
7726 			kfree(btf_mod->sysfs_attr);
7727 			kfree(btf_mod);
7728 			break;
7729 		}
7730 		mutex_unlock(&btf_module_mutex);
7731 		break;
7732 	}
7733 out:
7734 	return notifier_from_errno(err);
7735 }
7736 
7737 static struct notifier_block btf_module_nb = {
7738 	.notifier_call = btf_module_notify,
7739 };
7740 
7741 static int __init btf_module_init(void)
7742 {
7743 	register_module_notifier(&btf_module_nb);
7744 	return 0;
7745 }
7746 
7747 fs_initcall(btf_module_init);
7748 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7749 
7750 struct module *btf_try_get_module(const struct btf *btf)
7751 {
7752 	struct module *res = NULL;
7753 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7754 	struct btf_module *btf_mod, *tmp;
7755 
7756 	mutex_lock(&btf_module_mutex);
7757 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7758 		if (btf_mod->btf != btf)
7759 			continue;
7760 
7761 		/* We must only consider module whose __init routine has
7762 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7763 		 * which is set from the notifier callback for
7764 		 * MODULE_STATE_LIVE.
7765 		 */
7766 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7767 			res = btf_mod->module;
7768 
7769 		break;
7770 	}
7771 	mutex_unlock(&btf_module_mutex);
7772 #endif
7773 
7774 	return res;
7775 }
7776 
7777 /* Returns struct btf corresponding to the struct module.
7778  * This function can return NULL or ERR_PTR.
7779  */
7780 static struct btf *btf_get_module_btf(const struct module *module)
7781 {
7782 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7783 	struct btf_module *btf_mod, *tmp;
7784 #endif
7785 	struct btf *btf = NULL;
7786 
7787 	if (!module) {
7788 		btf = bpf_get_btf_vmlinux();
7789 		if (!IS_ERR_OR_NULL(btf))
7790 			btf_get(btf);
7791 		return btf;
7792 	}
7793 
7794 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7795 	mutex_lock(&btf_module_mutex);
7796 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7797 		if (btf_mod->module != module)
7798 			continue;
7799 
7800 		btf_get(btf_mod->btf);
7801 		btf = btf_mod->btf;
7802 		break;
7803 	}
7804 	mutex_unlock(&btf_module_mutex);
7805 #endif
7806 
7807 	return btf;
7808 }
7809 
7810 static int check_btf_kconfigs(const struct module *module, const char *feature)
7811 {
7812 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7813 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
7814 		return -ENOENT;
7815 	}
7816 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7817 		pr_warn("missing module BTF, cannot register %s\n", feature);
7818 	return 0;
7819 }
7820 
7821 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7822 {
7823 	struct btf *btf = NULL;
7824 	int btf_obj_fd = 0;
7825 	long ret;
7826 
7827 	if (flags)
7828 		return -EINVAL;
7829 
7830 	if (name_sz <= 1 || name[name_sz - 1])
7831 		return -EINVAL;
7832 
7833 	ret = bpf_find_btf_id(name, kind, &btf);
7834 	if (ret > 0 && btf_is_module(btf)) {
7835 		btf_obj_fd = __btf_new_fd(btf);
7836 		if (btf_obj_fd < 0) {
7837 			btf_put(btf);
7838 			return btf_obj_fd;
7839 		}
7840 		return ret | (((u64)btf_obj_fd) << 32);
7841 	}
7842 	if (ret > 0)
7843 		btf_put(btf);
7844 	return ret;
7845 }
7846 
7847 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7848 	.func		= bpf_btf_find_by_name_kind,
7849 	.gpl_only	= false,
7850 	.ret_type	= RET_INTEGER,
7851 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7852 	.arg2_type	= ARG_CONST_SIZE,
7853 	.arg3_type	= ARG_ANYTHING,
7854 	.arg4_type	= ARG_ANYTHING,
7855 };
7856 
7857 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7858 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7859 BTF_TRACING_TYPE_xxx
7860 #undef BTF_TRACING_TYPE
7861 
7862 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7863 				 const struct btf_type *func, u32 func_flags)
7864 {
7865 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7866 	const char *name, *sfx, *iter_name;
7867 	const struct btf_param *arg;
7868 	const struct btf_type *t;
7869 	char exp_name[128];
7870 	u32 nr_args;
7871 
7872 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7873 	if (!flags || (flags & (flags - 1)))
7874 		return -EINVAL;
7875 
7876 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7877 	nr_args = btf_type_vlen(func);
7878 	if (nr_args < 1)
7879 		return -EINVAL;
7880 
7881 	arg = &btf_params(func)[0];
7882 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7883 	if (!t || !btf_type_is_ptr(t))
7884 		return -EINVAL;
7885 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7886 	if (!t || !__btf_type_is_struct(t))
7887 		return -EINVAL;
7888 
7889 	name = btf_name_by_offset(btf, t->name_off);
7890 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7891 		return -EINVAL;
7892 
7893 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7894 	 * fit nicely in stack slots
7895 	 */
7896 	if (t->size == 0 || (t->size % 8))
7897 		return -EINVAL;
7898 
7899 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7900 	 * naming pattern
7901 	 */
7902 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7903 	if (flags & KF_ITER_NEW)
7904 		sfx = "new";
7905 	else if (flags & KF_ITER_NEXT)
7906 		sfx = "next";
7907 	else /* (flags & KF_ITER_DESTROY) */
7908 		sfx = "destroy";
7909 
7910 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7911 	if (strcmp(func_name, exp_name))
7912 		return -EINVAL;
7913 
7914 	/* only iter constructor should have extra arguments */
7915 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7916 		return -EINVAL;
7917 
7918 	if (flags & KF_ITER_NEXT) {
7919 		/* bpf_iter_<type>_next() should return pointer */
7920 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7921 		if (!t || !btf_type_is_ptr(t))
7922 			return -EINVAL;
7923 	}
7924 
7925 	if (flags & KF_ITER_DESTROY) {
7926 		/* bpf_iter_<type>_destroy() should return void */
7927 		t = btf_type_by_id(btf, func->type);
7928 		if (!t || !btf_type_is_void(t))
7929 			return -EINVAL;
7930 	}
7931 
7932 	return 0;
7933 }
7934 
7935 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7936 {
7937 	const struct btf_type *func;
7938 	const char *func_name;
7939 	int err;
7940 
7941 	/* any kfunc should be FUNC -> FUNC_PROTO */
7942 	func = btf_type_by_id(btf, func_id);
7943 	if (!func || !btf_type_is_func(func))
7944 		return -EINVAL;
7945 
7946 	/* sanity check kfunc name */
7947 	func_name = btf_name_by_offset(btf, func->name_off);
7948 	if (!func_name || !func_name[0])
7949 		return -EINVAL;
7950 
7951 	func = btf_type_by_id(btf, func->type);
7952 	if (!func || !btf_type_is_func_proto(func))
7953 		return -EINVAL;
7954 
7955 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7956 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7957 		if (err)
7958 			return err;
7959 	}
7960 
7961 	return 0;
7962 }
7963 
7964 /* Kernel Function (kfunc) BTF ID set registration API */
7965 
7966 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7967 				  const struct btf_kfunc_id_set *kset)
7968 {
7969 	struct btf_kfunc_hook_filter *hook_filter;
7970 	struct btf_id_set8 *add_set = kset->set;
7971 	bool vmlinux_set = !btf_is_module(btf);
7972 	bool add_filter = !!kset->filter;
7973 	struct btf_kfunc_set_tab *tab;
7974 	struct btf_id_set8 *set;
7975 	u32 set_cnt;
7976 	int ret;
7977 
7978 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7979 		ret = -EINVAL;
7980 		goto end;
7981 	}
7982 
7983 	if (!add_set->cnt)
7984 		return 0;
7985 
7986 	tab = btf->kfunc_set_tab;
7987 
7988 	if (tab && add_filter) {
7989 		u32 i;
7990 
7991 		hook_filter = &tab->hook_filters[hook];
7992 		for (i = 0; i < hook_filter->nr_filters; i++) {
7993 			if (hook_filter->filters[i] == kset->filter) {
7994 				add_filter = false;
7995 				break;
7996 			}
7997 		}
7998 
7999 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8000 			ret = -E2BIG;
8001 			goto end;
8002 		}
8003 	}
8004 
8005 	if (!tab) {
8006 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8007 		if (!tab)
8008 			return -ENOMEM;
8009 		btf->kfunc_set_tab = tab;
8010 	}
8011 
8012 	set = tab->sets[hook];
8013 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8014 	 * for module sets.
8015 	 */
8016 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8017 		ret = -EINVAL;
8018 		goto end;
8019 	}
8020 
8021 	/* We don't need to allocate, concatenate, and sort module sets, because
8022 	 * only one is allowed per hook. Hence, we can directly assign the
8023 	 * pointer and return.
8024 	 */
8025 	if (!vmlinux_set) {
8026 		tab->sets[hook] = add_set;
8027 		goto do_add_filter;
8028 	}
8029 
8030 	/* In case of vmlinux sets, there may be more than one set being
8031 	 * registered per hook. To create a unified set, we allocate a new set
8032 	 * and concatenate all individual sets being registered. While each set
8033 	 * is individually sorted, they may become unsorted when concatenated,
8034 	 * hence re-sorting the final set again is required to make binary
8035 	 * searching the set using btf_id_set8_contains function work.
8036 	 */
8037 	set_cnt = set ? set->cnt : 0;
8038 
8039 	if (set_cnt > U32_MAX - add_set->cnt) {
8040 		ret = -EOVERFLOW;
8041 		goto end;
8042 	}
8043 
8044 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8045 		ret = -E2BIG;
8046 		goto end;
8047 	}
8048 
8049 	/* Grow set */
8050 	set = krealloc(tab->sets[hook],
8051 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8052 		       GFP_KERNEL | __GFP_NOWARN);
8053 	if (!set) {
8054 		ret = -ENOMEM;
8055 		goto end;
8056 	}
8057 
8058 	/* For newly allocated set, initialize set->cnt to 0 */
8059 	if (!tab->sets[hook])
8060 		set->cnt = 0;
8061 	tab->sets[hook] = set;
8062 
8063 	/* Concatenate the two sets */
8064 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8065 	set->cnt += add_set->cnt;
8066 
8067 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8068 
8069 do_add_filter:
8070 	if (add_filter) {
8071 		hook_filter = &tab->hook_filters[hook];
8072 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8073 	}
8074 	return 0;
8075 end:
8076 	btf_free_kfunc_set_tab(btf);
8077 	return ret;
8078 }
8079 
8080 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8081 					enum btf_kfunc_hook hook,
8082 					u32 kfunc_btf_id,
8083 					const struct bpf_prog *prog)
8084 {
8085 	struct btf_kfunc_hook_filter *hook_filter;
8086 	struct btf_id_set8 *set;
8087 	u32 *id, i;
8088 
8089 	if (hook >= BTF_KFUNC_HOOK_MAX)
8090 		return NULL;
8091 	if (!btf->kfunc_set_tab)
8092 		return NULL;
8093 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8094 	for (i = 0; i < hook_filter->nr_filters; i++) {
8095 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8096 			return NULL;
8097 	}
8098 	set = btf->kfunc_set_tab->sets[hook];
8099 	if (!set)
8100 		return NULL;
8101 	id = btf_id_set8_contains(set, kfunc_btf_id);
8102 	if (!id)
8103 		return NULL;
8104 	/* The flags for BTF ID are located next to it */
8105 	return id + 1;
8106 }
8107 
8108 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8109 {
8110 	switch (prog_type) {
8111 	case BPF_PROG_TYPE_UNSPEC:
8112 		return BTF_KFUNC_HOOK_COMMON;
8113 	case BPF_PROG_TYPE_XDP:
8114 		return BTF_KFUNC_HOOK_XDP;
8115 	case BPF_PROG_TYPE_SCHED_CLS:
8116 		return BTF_KFUNC_HOOK_TC;
8117 	case BPF_PROG_TYPE_STRUCT_OPS:
8118 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8119 	case BPF_PROG_TYPE_TRACING:
8120 	case BPF_PROG_TYPE_LSM:
8121 		return BTF_KFUNC_HOOK_TRACING;
8122 	case BPF_PROG_TYPE_SYSCALL:
8123 		return BTF_KFUNC_HOOK_SYSCALL;
8124 	case BPF_PROG_TYPE_CGROUP_SKB:
8125 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8126 		return BTF_KFUNC_HOOK_CGROUP_SKB;
8127 	case BPF_PROG_TYPE_SCHED_ACT:
8128 		return BTF_KFUNC_HOOK_SCHED_ACT;
8129 	case BPF_PROG_TYPE_SK_SKB:
8130 		return BTF_KFUNC_HOOK_SK_SKB;
8131 	case BPF_PROG_TYPE_SOCKET_FILTER:
8132 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8133 	case BPF_PROG_TYPE_LWT_OUT:
8134 	case BPF_PROG_TYPE_LWT_IN:
8135 	case BPF_PROG_TYPE_LWT_XMIT:
8136 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8137 		return BTF_KFUNC_HOOK_LWT;
8138 	case BPF_PROG_TYPE_NETFILTER:
8139 		return BTF_KFUNC_HOOK_NETFILTER;
8140 	default:
8141 		return BTF_KFUNC_HOOK_MAX;
8142 	}
8143 }
8144 
8145 /* Caution:
8146  * Reference to the module (obtained using btf_try_get_module) corresponding to
8147  * the struct btf *MUST* be held when calling this function from verifier
8148  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8149  * keeping the reference for the duration of the call provides the necessary
8150  * protection for looking up a well-formed btf->kfunc_set_tab.
8151  */
8152 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8153 			       u32 kfunc_btf_id,
8154 			       const struct bpf_prog *prog)
8155 {
8156 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8157 	enum btf_kfunc_hook hook;
8158 	u32 *kfunc_flags;
8159 
8160 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8161 	if (kfunc_flags)
8162 		return kfunc_flags;
8163 
8164 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8165 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8166 }
8167 
8168 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8169 				const struct bpf_prog *prog)
8170 {
8171 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8172 }
8173 
8174 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8175 				       const struct btf_kfunc_id_set *kset)
8176 {
8177 	struct btf *btf;
8178 	int ret, i;
8179 
8180 	btf = btf_get_module_btf(kset->owner);
8181 	if (!btf)
8182 		return check_btf_kconfigs(kset->owner, "kfunc");
8183 	if (IS_ERR(btf))
8184 		return PTR_ERR(btf);
8185 
8186 	for (i = 0; i < kset->set->cnt; i++) {
8187 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
8188 					     kset->set->pairs[i].flags);
8189 		if (ret)
8190 			goto err_out;
8191 	}
8192 
8193 	ret = btf_populate_kfunc_set(btf, hook, kset);
8194 
8195 err_out:
8196 	btf_put(btf);
8197 	return ret;
8198 }
8199 
8200 /* This function must be invoked only from initcalls/module init functions */
8201 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8202 			      const struct btf_kfunc_id_set *kset)
8203 {
8204 	enum btf_kfunc_hook hook;
8205 
8206 	/* All kfuncs need to be tagged as such in BTF.
8207 	 * WARN() for initcall registrations that do not check errors.
8208 	 */
8209 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8210 		WARN_ON(!kset->owner);
8211 		return -EINVAL;
8212 	}
8213 
8214 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8215 	return __register_btf_kfunc_id_set(hook, kset);
8216 }
8217 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8218 
8219 /* This function must be invoked only from initcalls/module init functions */
8220 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8221 {
8222 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8223 }
8224 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8225 
8226 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8227 {
8228 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8229 	struct btf_id_dtor_kfunc *dtor;
8230 
8231 	if (!tab)
8232 		return -ENOENT;
8233 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8234 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8235 	 */
8236 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8237 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8238 	if (!dtor)
8239 		return -ENOENT;
8240 	return dtor->kfunc_btf_id;
8241 }
8242 
8243 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8244 {
8245 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8246 	const struct btf_param *args;
8247 	s32 dtor_btf_id;
8248 	u32 nr_args, i;
8249 
8250 	for (i = 0; i < cnt; i++) {
8251 		dtor_btf_id = dtors[i].kfunc_btf_id;
8252 
8253 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8254 		if (!dtor_func || !btf_type_is_func(dtor_func))
8255 			return -EINVAL;
8256 
8257 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8258 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8259 			return -EINVAL;
8260 
8261 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8262 		t = btf_type_by_id(btf, dtor_func_proto->type);
8263 		if (!t || !btf_type_is_void(t))
8264 			return -EINVAL;
8265 
8266 		nr_args = btf_type_vlen(dtor_func_proto);
8267 		if (nr_args != 1)
8268 			return -EINVAL;
8269 		args = btf_params(dtor_func_proto);
8270 		t = btf_type_by_id(btf, args[0].type);
8271 		/* Allow any pointer type, as width on targets Linux supports
8272 		 * will be same for all pointer types (i.e. sizeof(void *))
8273 		 */
8274 		if (!t || !btf_type_is_ptr(t))
8275 			return -EINVAL;
8276 	}
8277 	return 0;
8278 }
8279 
8280 /* This function must be invoked only from initcalls/module init functions */
8281 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8282 				struct module *owner)
8283 {
8284 	struct btf_id_dtor_kfunc_tab *tab;
8285 	struct btf *btf;
8286 	u32 tab_cnt;
8287 	int ret;
8288 
8289 	btf = btf_get_module_btf(owner);
8290 	if (!btf)
8291 		return check_btf_kconfigs(owner, "dtor kfuncs");
8292 	if (IS_ERR(btf))
8293 		return PTR_ERR(btf);
8294 
8295 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8296 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8297 		ret = -E2BIG;
8298 		goto end;
8299 	}
8300 
8301 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8302 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8303 	if (ret < 0)
8304 		goto end;
8305 
8306 	tab = btf->dtor_kfunc_tab;
8307 	/* Only one call allowed for modules */
8308 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8309 		ret = -EINVAL;
8310 		goto end;
8311 	}
8312 
8313 	tab_cnt = tab ? tab->cnt : 0;
8314 	if (tab_cnt > U32_MAX - add_cnt) {
8315 		ret = -EOVERFLOW;
8316 		goto end;
8317 	}
8318 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8319 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8320 		ret = -E2BIG;
8321 		goto end;
8322 	}
8323 
8324 	tab = krealloc(btf->dtor_kfunc_tab,
8325 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8326 		       GFP_KERNEL | __GFP_NOWARN);
8327 	if (!tab) {
8328 		ret = -ENOMEM;
8329 		goto end;
8330 	}
8331 
8332 	if (!btf->dtor_kfunc_tab)
8333 		tab->cnt = 0;
8334 	btf->dtor_kfunc_tab = tab;
8335 
8336 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8337 	tab->cnt += add_cnt;
8338 
8339 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8340 
8341 end:
8342 	if (ret)
8343 		btf_free_dtor_kfunc_tab(btf);
8344 	btf_put(btf);
8345 	return ret;
8346 }
8347 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8348 
8349 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8350 
8351 /* Check local and target types for compatibility. This check is used for
8352  * type-based CO-RE relocations and follow slightly different rules than
8353  * field-based relocations. This function assumes that root types were already
8354  * checked for name match. Beyond that initial root-level name check, names
8355  * are completely ignored. Compatibility rules are as follows:
8356  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8357  *     kind should match for local and target types (i.e., STRUCT is not
8358  *     compatible with UNION);
8359  *   - for ENUMs/ENUM64s, the size is ignored;
8360  *   - for INT, size and signedness are ignored;
8361  *   - for ARRAY, dimensionality is ignored, element types are checked for
8362  *     compatibility recursively;
8363  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8364  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8365  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8366  *     number of input args and compatible return and argument types.
8367  * These rules are not set in stone and probably will be adjusted as we get
8368  * more experience with using BPF CO-RE relocations.
8369  */
8370 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8371 			      const struct btf *targ_btf, __u32 targ_id)
8372 {
8373 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8374 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8375 }
8376 
8377 #define MAX_TYPES_MATCH_DEPTH 2
8378 
8379 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8380 			 const struct btf *targ_btf, u32 targ_id)
8381 {
8382 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8383 				      MAX_TYPES_MATCH_DEPTH);
8384 }
8385 
8386 static bool bpf_core_is_flavor_sep(const char *s)
8387 {
8388 	/* check X___Y name pattern, where X and Y are not underscores */
8389 	return s[0] != '_' &&				      /* X */
8390 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8391 	       s[4] != '_';				      /* Y */
8392 }
8393 
8394 size_t bpf_core_essential_name_len(const char *name)
8395 {
8396 	size_t n = strlen(name);
8397 	int i;
8398 
8399 	for (i = n - 5; i >= 0; i--) {
8400 		if (bpf_core_is_flavor_sep(name + i))
8401 			return i + 1;
8402 	}
8403 	return n;
8404 }
8405 
8406 static void bpf_free_cands(struct bpf_cand_cache *cands)
8407 {
8408 	if (!cands->cnt)
8409 		/* empty candidate array was allocated on stack */
8410 		return;
8411 	kfree(cands);
8412 }
8413 
8414 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8415 {
8416 	kfree(cands->name);
8417 	kfree(cands);
8418 }
8419 
8420 #define VMLINUX_CAND_CACHE_SIZE 31
8421 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8422 
8423 #define MODULE_CAND_CACHE_SIZE 31
8424 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8425 
8426 static void __print_cand_cache(struct bpf_verifier_log *log,
8427 			       struct bpf_cand_cache **cache,
8428 			       int cache_size)
8429 {
8430 	struct bpf_cand_cache *cc;
8431 	int i, j;
8432 
8433 	for (i = 0; i < cache_size; i++) {
8434 		cc = cache[i];
8435 		if (!cc)
8436 			continue;
8437 		bpf_log(log, "[%d]%s(", i, cc->name);
8438 		for (j = 0; j < cc->cnt; j++) {
8439 			bpf_log(log, "%d", cc->cands[j].id);
8440 			if (j < cc->cnt - 1)
8441 				bpf_log(log, " ");
8442 		}
8443 		bpf_log(log, "), ");
8444 	}
8445 }
8446 
8447 static void print_cand_cache(struct bpf_verifier_log *log)
8448 {
8449 	mutex_lock(&cand_cache_mutex);
8450 	bpf_log(log, "vmlinux_cand_cache:");
8451 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8452 	bpf_log(log, "\nmodule_cand_cache:");
8453 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8454 	bpf_log(log, "\n");
8455 	mutex_unlock(&cand_cache_mutex);
8456 }
8457 
8458 static u32 hash_cands(struct bpf_cand_cache *cands)
8459 {
8460 	return jhash(cands->name, cands->name_len, 0);
8461 }
8462 
8463 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8464 					       struct bpf_cand_cache **cache,
8465 					       int cache_size)
8466 {
8467 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8468 
8469 	if (cc && cc->name_len == cands->name_len &&
8470 	    !strncmp(cc->name, cands->name, cands->name_len))
8471 		return cc;
8472 	return NULL;
8473 }
8474 
8475 static size_t sizeof_cands(int cnt)
8476 {
8477 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8478 }
8479 
8480 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8481 						  struct bpf_cand_cache **cache,
8482 						  int cache_size)
8483 {
8484 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8485 
8486 	if (*cc) {
8487 		bpf_free_cands_from_cache(*cc);
8488 		*cc = NULL;
8489 	}
8490 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8491 	if (!new_cands) {
8492 		bpf_free_cands(cands);
8493 		return ERR_PTR(-ENOMEM);
8494 	}
8495 	/* strdup the name, since it will stay in cache.
8496 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8497 	 */
8498 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8499 	bpf_free_cands(cands);
8500 	if (!new_cands->name) {
8501 		kfree(new_cands);
8502 		return ERR_PTR(-ENOMEM);
8503 	}
8504 	*cc = new_cands;
8505 	return new_cands;
8506 }
8507 
8508 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8509 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8510 			       int cache_size)
8511 {
8512 	struct bpf_cand_cache *cc;
8513 	int i, j;
8514 
8515 	for (i = 0; i < cache_size; i++) {
8516 		cc = cache[i];
8517 		if (!cc)
8518 			continue;
8519 		if (!btf) {
8520 			/* when new module is loaded purge all of module_cand_cache,
8521 			 * since new module might have candidates with the name
8522 			 * that matches cached cands.
8523 			 */
8524 			bpf_free_cands_from_cache(cc);
8525 			cache[i] = NULL;
8526 			continue;
8527 		}
8528 		/* when module is unloaded purge cache entries
8529 		 * that match module's btf
8530 		 */
8531 		for (j = 0; j < cc->cnt; j++)
8532 			if (cc->cands[j].btf == btf) {
8533 				bpf_free_cands_from_cache(cc);
8534 				cache[i] = NULL;
8535 				break;
8536 			}
8537 	}
8538 
8539 }
8540 
8541 static void purge_cand_cache(struct btf *btf)
8542 {
8543 	mutex_lock(&cand_cache_mutex);
8544 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8545 	mutex_unlock(&cand_cache_mutex);
8546 }
8547 #endif
8548 
8549 static struct bpf_cand_cache *
8550 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8551 		   int targ_start_id)
8552 {
8553 	struct bpf_cand_cache *new_cands;
8554 	const struct btf_type *t;
8555 	const char *targ_name;
8556 	size_t targ_essent_len;
8557 	int n, i;
8558 
8559 	n = btf_nr_types(targ_btf);
8560 	for (i = targ_start_id; i < n; i++) {
8561 		t = btf_type_by_id(targ_btf, i);
8562 		if (btf_kind(t) != cands->kind)
8563 			continue;
8564 
8565 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8566 		if (!targ_name)
8567 			continue;
8568 
8569 		/* the resched point is before strncmp to make sure that search
8570 		 * for non-existing name will have a chance to schedule().
8571 		 */
8572 		cond_resched();
8573 
8574 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8575 			continue;
8576 
8577 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8578 		if (targ_essent_len != cands->name_len)
8579 			continue;
8580 
8581 		/* most of the time there is only one candidate for a given kind+name pair */
8582 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8583 		if (!new_cands) {
8584 			bpf_free_cands(cands);
8585 			return ERR_PTR(-ENOMEM);
8586 		}
8587 
8588 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8589 		bpf_free_cands(cands);
8590 		cands = new_cands;
8591 		cands->cands[cands->cnt].btf = targ_btf;
8592 		cands->cands[cands->cnt].id = i;
8593 		cands->cnt++;
8594 	}
8595 	return cands;
8596 }
8597 
8598 static struct bpf_cand_cache *
8599 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8600 {
8601 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8602 	const struct btf *local_btf = ctx->btf;
8603 	const struct btf_type *local_type;
8604 	const struct btf *main_btf;
8605 	size_t local_essent_len;
8606 	struct btf *mod_btf;
8607 	const char *name;
8608 	int id;
8609 
8610 	main_btf = bpf_get_btf_vmlinux();
8611 	if (IS_ERR(main_btf))
8612 		return ERR_CAST(main_btf);
8613 	if (!main_btf)
8614 		return ERR_PTR(-EINVAL);
8615 
8616 	local_type = btf_type_by_id(local_btf, local_type_id);
8617 	if (!local_type)
8618 		return ERR_PTR(-EINVAL);
8619 
8620 	name = btf_name_by_offset(local_btf, local_type->name_off);
8621 	if (str_is_empty(name))
8622 		return ERR_PTR(-EINVAL);
8623 	local_essent_len = bpf_core_essential_name_len(name);
8624 
8625 	cands = &local_cand;
8626 	cands->name = name;
8627 	cands->kind = btf_kind(local_type);
8628 	cands->name_len = local_essent_len;
8629 
8630 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8631 	/* cands is a pointer to stack here */
8632 	if (cc) {
8633 		if (cc->cnt)
8634 			return cc;
8635 		goto check_modules;
8636 	}
8637 
8638 	/* Attempt to find target candidates in vmlinux BTF first */
8639 	cands = bpf_core_add_cands(cands, main_btf, 1);
8640 	if (IS_ERR(cands))
8641 		return ERR_CAST(cands);
8642 
8643 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8644 
8645 	/* populate cache even when cands->cnt == 0 */
8646 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8647 	if (IS_ERR(cc))
8648 		return ERR_CAST(cc);
8649 
8650 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8651 	if (cc->cnt)
8652 		return cc;
8653 
8654 check_modules:
8655 	/* cands is a pointer to stack here and cands->cnt == 0 */
8656 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8657 	if (cc)
8658 		/* if cache has it return it even if cc->cnt == 0 */
8659 		return cc;
8660 
8661 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8662 	spin_lock_bh(&btf_idr_lock);
8663 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8664 		if (!btf_is_module(mod_btf))
8665 			continue;
8666 		/* linear search could be slow hence unlock/lock
8667 		 * the IDR to avoiding holding it for too long
8668 		 */
8669 		btf_get(mod_btf);
8670 		spin_unlock_bh(&btf_idr_lock);
8671 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8672 		btf_put(mod_btf);
8673 		if (IS_ERR(cands))
8674 			return ERR_CAST(cands);
8675 		spin_lock_bh(&btf_idr_lock);
8676 	}
8677 	spin_unlock_bh(&btf_idr_lock);
8678 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8679 	 * or pointer to stack if cands->cnd == 0.
8680 	 * Copy it into the cache even when cands->cnt == 0 and
8681 	 * return the result.
8682 	 */
8683 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8684 }
8685 
8686 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8687 		   int relo_idx, void *insn)
8688 {
8689 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8690 	struct bpf_core_cand_list cands = {};
8691 	struct bpf_core_relo_res targ_res;
8692 	struct bpf_core_spec *specs;
8693 	int err;
8694 
8695 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8696 	 * into arrays of btf_ids of struct fields and array indices.
8697 	 */
8698 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8699 	if (!specs)
8700 		return -ENOMEM;
8701 
8702 	if (need_cands) {
8703 		struct bpf_cand_cache *cc;
8704 		int i;
8705 
8706 		mutex_lock(&cand_cache_mutex);
8707 		cc = bpf_core_find_cands(ctx, relo->type_id);
8708 		if (IS_ERR(cc)) {
8709 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8710 				relo->type_id);
8711 			err = PTR_ERR(cc);
8712 			goto out;
8713 		}
8714 		if (cc->cnt) {
8715 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8716 			if (!cands.cands) {
8717 				err = -ENOMEM;
8718 				goto out;
8719 			}
8720 		}
8721 		for (i = 0; i < cc->cnt; i++) {
8722 			bpf_log(ctx->log,
8723 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8724 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8725 			cands.cands[i].btf = cc->cands[i].btf;
8726 			cands.cands[i].id = cc->cands[i].id;
8727 		}
8728 		cands.len = cc->cnt;
8729 		/* cand_cache_mutex needs to span the cache lookup and
8730 		 * copy of btf pointer into bpf_core_cand_list,
8731 		 * since module can be unloaded while bpf_core_calc_relo_insn
8732 		 * is working with module's btf.
8733 		 */
8734 	}
8735 
8736 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8737 				      &targ_res);
8738 	if (err)
8739 		goto out;
8740 
8741 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8742 				  &targ_res);
8743 
8744 out:
8745 	kfree(specs);
8746 	if (need_cands) {
8747 		kfree(cands.cands);
8748 		mutex_unlock(&cand_cache_mutex);
8749 		if (ctx->log->level & BPF_LOG_LEVEL2)
8750 			print_cand_cache(ctx->log);
8751 	}
8752 	return err;
8753 }
8754 
8755 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8756 				const struct bpf_reg_state *reg,
8757 				const char *field_name, u32 btf_id, const char *suffix)
8758 {
8759 	struct btf *btf = reg->btf;
8760 	const struct btf_type *walk_type, *safe_type;
8761 	const char *tname;
8762 	char safe_tname[64];
8763 	long ret, safe_id;
8764 	const struct btf_member *member;
8765 	u32 i;
8766 
8767 	walk_type = btf_type_by_id(btf, reg->btf_id);
8768 	if (!walk_type)
8769 		return false;
8770 
8771 	tname = btf_name_by_offset(btf, walk_type->name_off);
8772 
8773 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8774 	if (ret >= sizeof(safe_tname))
8775 		return false;
8776 
8777 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8778 	if (safe_id < 0)
8779 		return false;
8780 
8781 	safe_type = btf_type_by_id(btf, safe_id);
8782 	if (!safe_type)
8783 		return false;
8784 
8785 	for_each_member(i, safe_type, member) {
8786 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8787 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8788 		u32 id;
8789 
8790 		if (!btf_type_is_ptr(mtype))
8791 			continue;
8792 
8793 		btf_type_skip_modifiers(btf, mtype->type, &id);
8794 		/* If we match on both type and name, the field is considered trusted. */
8795 		if (btf_id == id && !strcmp(field_name, m_name))
8796 			return true;
8797 	}
8798 
8799 	return false;
8800 }
8801 
8802 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8803 			       const struct btf *reg_btf, u32 reg_id,
8804 			       const struct btf *arg_btf, u32 arg_id)
8805 {
8806 	const char *reg_name, *arg_name, *search_needle;
8807 	const struct btf_type *reg_type, *arg_type;
8808 	int reg_len, arg_len, cmp_len;
8809 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8810 
8811 	reg_type = btf_type_by_id(reg_btf, reg_id);
8812 	if (!reg_type)
8813 		return false;
8814 
8815 	arg_type = btf_type_by_id(arg_btf, arg_id);
8816 	if (!arg_type)
8817 		return false;
8818 
8819 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8820 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8821 
8822 	reg_len = strlen(reg_name);
8823 	arg_len = strlen(arg_name);
8824 
8825 	/* Exactly one of the two type names may be suffixed with ___init, so
8826 	 * if the strings are the same size, they can't possibly be no-cast
8827 	 * aliases of one another. If you have two of the same type names, e.g.
8828 	 * they're both nf_conn___init, it would be improper to return true
8829 	 * because they are _not_ no-cast aliases, they are the same type.
8830 	 */
8831 	if (reg_len == arg_len)
8832 		return false;
8833 
8834 	/* Either of the two names must be the other name, suffixed with ___init. */
8835 	if ((reg_len != arg_len + pattern_len) &&
8836 	    (arg_len != reg_len + pattern_len))
8837 		return false;
8838 
8839 	if (reg_len < arg_len) {
8840 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8841 		cmp_len = reg_len;
8842 	} else {
8843 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8844 		cmp_len = arg_len;
8845 	}
8846 
8847 	if (!search_needle)
8848 		return false;
8849 
8850 	/* ___init suffix must come at the end of the name */
8851 	if (*(search_needle + pattern_len) != '\0')
8852 		return false;
8853 
8854 	return !strncmp(reg_name, arg_name, cmp_len);
8855 }
8856 
8857 #ifdef CONFIG_BPF_JIT
8858 static int
8859 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
8860 		   struct bpf_verifier_log *log)
8861 {
8862 	struct btf_struct_ops_tab *tab, *new_tab;
8863 	int i, err;
8864 
8865 	tab = btf->struct_ops_tab;
8866 	if (!tab) {
8867 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
8868 			      GFP_KERNEL);
8869 		if (!tab)
8870 			return -ENOMEM;
8871 		tab->capacity = 4;
8872 		btf->struct_ops_tab = tab;
8873 	}
8874 
8875 	for (i = 0; i < tab->cnt; i++)
8876 		if (tab->ops[i].st_ops == st_ops)
8877 			return -EEXIST;
8878 
8879 	if (tab->cnt == tab->capacity) {
8880 		new_tab = krealloc(tab,
8881 				   offsetof(struct btf_struct_ops_tab,
8882 					    ops[tab->capacity * 2]),
8883 				   GFP_KERNEL);
8884 		if (!new_tab)
8885 			return -ENOMEM;
8886 		tab = new_tab;
8887 		tab->capacity *= 2;
8888 		btf->struct_ops_tab = tab;
8889 	}
8890 
8891 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
8892 
8893 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
8894 	if (err)
8895 		return err;
8896 
8897 	btf->struct_ops_tab->cnt++;
8898 
8899 	return 0;
8900 }
8901 
8902 const struct bpf_struct_ops_desc *
8903 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
8904 {
8905 	const struct bpf_struct_ops_desc *st_ops_list;
8906 	unsigned int i;
8907 	u32 cnt;
8908 
8909 	if (!value_id)
8910 		return NULL;
8911 	if (!btf->struct_ops_tab)
8912 		return NULL;
8913 
8914 	cnt = btf->struct_ops_tab->cnt;
8915 	st_ops_list = btf->struct_ops_tab->ops;
8916 	for (i = 0; i < cnt; i++) {
8917 		if (st_ops_list[i].value_id == value_id)
8918 			return &st_ops_list[i];
8919 	}
8920 
8921 	return NULL;
8922 }
8923 
8924 const struct bpf_struct_ops_desc *
8925 bpf_struct_ops_find(struct btf *btf, u32 type_id)
8926 {
8927 	const struct bpf_struct_ops_desc *st_ops_list;
8928 	unsigned int i;
8929 	u32 cnt;
8930 
8931 	if (!type_id)
8932 		return NULL;
8933 	if (!btf->struct_ops_tab)
8934 		return NULL;
8935 
8936 	cnt = btf->struct_ops_tab->cnt;
8937 	st_ops_list = btf->struct_ops_tab->ops;
8938 	for (i = 0; i < cnt; i++) {
8939 		if (st_ops_list[i].type_id == type_id)
8940 			return &st_ops_list[i];
8941 	}
8942 
8943 	return NULL;
8944 }
8945 
8946 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
8947 {
8948 	struct bpf_verifier_log *log;
8949 	struct btf *btf;
8950 	int err = 0;
8951 
8952 	btf = btf_get_module_btf(st_ops->owner);
8953 	if (!btf)
8954 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
8955 	if (IS_ERR(btf))
8956 		return PTR_ERR(btf);
8957 
8958 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
8959 	if (!log) {
8960 		err = -ENOMEM;
8961 		goto errout;
8962 	}
8963 
8964 	log->level = BPF_LOG_KERNEL;
8965 
8966 	err = btf_add_struct_ops(btf, st_ops, log);
8967 
8968 errout:
8969 	kfree(log);
8970 	btf_put(btf);
8971 
8972 	return err;
8973 }
8974 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
8975 #endif
8976 
8977 bool btf_param_match_suffix(const struct btf *btf,
8978 			    const struct btf_param *arg,
8979 			    const char *suffix)
8980 {
8981 	int suffix_len = strlen(suffix), len;
8982 	const char *param_name;
8983 
8984 	/* In the future, this can be ported to use BTF tagging */
8985 	param_name = btf_name_by_offset(btf, arg->name_off);
8986 	if (str_is_empty(param_name))
8987 		return false;
8988 	len = strlen(param_name);
8989 	if (len <= suffix_len)
8990 		return false;
8991 	param_name += len - suffix_len;
8992 	return !strncmp(param_name, suffix, suffix_len);
8993 }
8994