1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 #include <net/sock.h> 29 #include "../tools/lib/bpf/relo_core.h" 30 31 /* BTF (BPF Type Format) is the meta data format which describes 32 * the data types of BPF program/map. Hence, it basically focus 33 * on the C programming language which the modern BPF is primary 34 * using. 35 * 36 * ELF Section: 37 * ~~~~~~~~~~~ 38 * The BTF data is stored under the ".BTF" ELF section 39 * 40 * struct btf_type: 41 * ~~~~~~~~~~~~~~~ 42 * Each 'struct btf_type' object describes a C data type. 43 * Depending on the type it is describing, a 'struct btf_type' 44 * object may be followed by more data. F.e. 45 * To describe an array, 'struct btf_type' is followed by 46 * 'struct btf_array'. 47 * 48 * 'struct btf_type' and any extra data following it are 49 * 4 bytes aligned. 50 * 51 * Type section: 52 * ~~~~~~~~~~~~~ 53 * The BTF type section contains a list of 'struct btf_type' objects. 54 * Each one describes a C type. Recall from the above section 55 * that a 'struct btf_type' object could be immediately followed by extra 56 * data in order to describe some particular C types. 57 * 58 * type_id: 59 * ~~~~~~~ 60 * Each btf_type object is identified by a type_id. The type_id 61 * is implicitly implied by the location of the btf_type object in 62 * the BTF type section. The first one has type_id 1. The second 63 * one has type_id 2...etc. Hence, an earlier btf_type has 64 * a smaller type_id. 65 * 66 * A btf_type object may refer to another btf_type object by using 67 * type_id (i.e. the "type" in the "struct btf_type"). 68 * 69 * NOTE that we cannot assume any reference-order. 70 * A btf_type object can refer to an earlier btf_type object 71 * but it can also refer to a later btf_type object. 72 * 73 * For example, to describe "const void *". A btf_type 74 * object describing "const" may refer to another btf_type 75 * object describing "void *". This type-reference is done 76 * by specifying type_id: 77 * 78 * [1] CONST (anon) type_id=2 79 * [2] PTR (anon) type_id=0 80 * 81 * The above is the btf_verifier debug log: 82 * - Each line started with "[?]" is a btf_type object 83 * - [?] is the type_id of the btf_type object. 84 * - CONST/PTR is the BTF_KIND_XXX 85 * - "(anon)" is the name of the type. It just 86 * happens that CONST and PTR has no name. 87 * - type_id=XXX is the 'u32 type' in btf_type 88 * 89 * NOTE: "void" has type_id 0 90 * 91 * String section: 92 * ~~~~~~~~~~~~~~ 93 * The BTF string section contains the names used by the type section. 94 * Each string is referred by an "offset" from the beginning of the 95 * string section. 96 * 97 * Each string is '\0' terminated. 98 * 99 * The first character in the string section must be '\0' 100 * which is used to mean 'anonymous'. Some btf_type may not 101 * have a name. 102 */ 103 104 /* BTF verification: 105 * 106 * To verify BTF data, two passes are needed. 107 * 108 * Pass #1 109 * ~~~~~~~ 110 * The first pass is to collect all btf_type objects to 111 * an array: "btf->types". 112 * 113 * Depending on the C type that a btf_type is describing, 114 * a btf_type may be followed by extra data. We don't know 115 * how many btf_type is there, and more importantly we don't 116 * know where each btf_type is located in the type section. 117 * 118 * Without knowing the location of each type_id, most verifications 119 * cannot be done. e.g. an earlier btf_type may refer to a later 120 * btf_type (recall the "const void *" above), so we cannot 121 * check this type-reference in the first pass. 122 * 123 * In the first pass, it still does some verifications (e.g. 124 * checking the name is a valid offset to the string section). 125 * 126 * Pass #2 127 * ~~~~~~~ 128 * The main focus is to resolve a btf_type that is referring 129 * to another type. 130 * 131 * We have to ensure the referring type: 132 * 1) does exist in the BTF (i.e. in btf->types[]) 133 * 2) does not cause a loop: 134 * struct A { 135 * struct B b; 136 * }; 137 * 138 * struct B { 139 * struct A a; 140 * }; 141 * 142 * btf_type_needs_resolve() decides if a btf_type needs 143 * to be resolved. 144 * 145 * The needs_resolve type implements the "resolve()" ops which 146 * essentially does a DFS and detects backedge. 147 * 148 * During resolve (or DFS), different C types have different 149 * "RESOLVED" conditions. 150 * 151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 152 * members because a member is always referring to another 153 * type. A struct's member can be treated as "RESOLVED" if 154 * it is referring to a BTF_KIND_PTR. Otherwise, the 155 * following valid C struct would be rejected: 156 * 157 * struct A { 158 * int m; 159 * struct A *a; 160 * }; 161 * 162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 164 * detect a pointer loop, e.g.: 165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 166 * ^ | 167 * +-----------------------------------------+ 168 * 169 */ 170 171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 175 #define BITS_ROUNDUP_BYTES(bits) \ 176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 177 178 #define BTF_INFO_MASK 0x9f00ffff 179 #define BTF_INT_MASK 0x0fffffff 180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 182 183 /* 16MB for 64k structs and each has 16 members and 184 * a few MB spaces for the string section. 185 * The hard limit is S32_MAX. 186 */ 187 #define BTF_MAX_SIZE (16 * 1024 * 1024) 188 189 #define for_each_member_from(i, from, struct_type, member) \ 190 for (i = from, member = btf_type_member(struct_type) + from; \ 191 i < btf_type_vlen(struct_type); \ 192 i++, member++) 193 194 #define for_each_vsi_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 DEFINE_IDR(btf_idr); 200 DEFINE_SPINLOCK(btf_idr_lock); 201 202 enum btf_kfunc_hook { 203 BTF_KFUNC_HOOK_COMMON, 204 BTF_KFUNC_HOOK_XDP, 205 BTF_KFUNC_HOOK_TC, 206 BTF_KFUNC_HOOK_STRUCT_OPS, 207 BTF_KFUNC_HOOK_TRACING, 208 BTF_KFUNC_HOOK_SYSCALL, 209 BTF_KFUNC_HOOK_FMODRET, 210 BTF_KFUNC_HOOK_MAX, 211 }; 212 213 enum { 214 BTF_KFUNC_SET_MAX_CNT = 256, 215 BTF_DTOR_KFUNC_MAX_CNT = 256, 216 }; 217 218 struct btf_kfunc_set_tab { 219 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 220 }; 221 222 struct btf_id_dtor_kfunc_tab { 223 u32 cnt; 224 struct btf_id_dtor_kfunc dtors[]; 225 }; 226 227 struct btf { 228 void *data; 229 struct btf_type **types; 230 u32 *resolved_ids; 231 u32 *resolved_sizes; 232 const char *strings; 233 void *nohdr_data; 234 struct btf_header hdr; 235 u32 nr_types; /* includes VOID for base BTF */ 236 u32 types_size; 237 u32 data_size; 238 refcount_t refcnt; 239 u32 id; 240 struct rcu_head rcu; 241 struct btf_kfunc_set_tab *kfunc_set_tab; 242 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 243 struct btf_struct_metas *struct_meta_tab; 244 245 /* split BTF support */ 246 struct btf *base_btf; 247 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 248 u32 start_str_off; /* first string offset (0 for base BTF) */ 249 char name[MODULE_NAME_LEN]; 250 bool kernel_btf; 251 }; 252 253 enum verifier_phase { 254 CHECK_META, 255 CHECK_TYPE, 256 }; 257 258 struct resolve_vertex { 259 const struct btf_type *t; 260 u32 type_id; 261 u16 next_member; 262 }; 263 264 enum visit_state { 265 NOT_VISITED, 266 VISITED, 267 RESOLVED, 268 }; 269 270 enum resolve_mode { 271 RESOLVE_TBD, /* To Be Determined */ 272 RESOLVE_PTR, /* Resolving for Pointer */ 273 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 274 * or array 275 */ 276 }; 277 278 #define MAX_RESOLVE_DEPTH 32 279 280 struct btf_sec_info { 281 u32 off; 282 u32 len; 283 }; 284 285 struct btf_verifier_env { 286 struct btf *btf; 287 u8 *visit_states; 288 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 289 struct bpf_verifier_log log; 290 u32 log_type_id; 291 u32 top_stack; 292 enum verifier_phase phase; 293 enum resolve_mode resolve_mode; 294 }; 295 296 static const char * const btf_kind_str[NR_BTF_KINDS] = { 297 [BTF_KIND_UNKN] = "UNKNOWN", 298 [BTF_KIND_INT] = "INT", 299 [BTF_KIND_PTR] = "PTR", 300 [BTF_KIND_ARRAY] = "ARRAY", 301 [BTF_KIND_STRUCT] = "STRUCT", 302 [BTF_KIND_UNION] = "UNION", 303 [BTF_KIND_ENUM] = "ENUM", 304 [BTF_KIND_FWD] = "FWD", 305 [BTF_KIND_TYPEDEF] = "TYPEDEF", 306 [BTF_KIND_VOLATILE] = "VOLATILE", 307 [BTF_KIND_CONST] = "CONST", 308 [BTF_KIND_RESTRICT] = "RESTRICT", 309 [BTF_KIND_FUNC] = "FUNC", 310 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 311 [BTF_KIND_VAR] = "VAR", 312 [BTF_KIND_DATASEC] = "DATASEC", 313 [BTF_KIND_FLOAT] = "FLOAT", 314 [BTF_KIND_DECL_TAG] = "DECL_TAG", 315 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 316 [BTF_KIND_ENUM64] = "ENUM64", 317 }; 318 319 const char *btf_type_str(const struct btf_type *t) 320 { 321 return btf_kind_str[BTF_INFO_KIND(t->info)]; 322 } 323 324 /* Chunk size we use in safe copy of data to be shown. */ 325 #define BTF_SHOW_OBJ_SAFE_SIZE 32 326 327 /* 328 * This is the maximum size of a base type value (equivalent to a 329 * 128-bit int); if we are at the end of our safe buffer and have 330 * less than 16 bytes space we can't be assured of being able 331 * to copy the next type safely, so in such cases we will initiate 332 * a new copy. 333 */ 334 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 335 336 /* Type name size */ 337 #define BTF_SHOW_NAME_SIZE 80 338 339 /* 340 * Common data to all BTF show operations. Private show functions can add 341 * their own data to a structure containing a struct btf_show and consult it 342 * in the show callback. See btf_type_show() below. 343 * 344 * One challenge with showing nested data is we want to skip 0-valued 345 * data, but in order to figure out whether a nested object is all zeros 346 * we need to walk through it. As a result, we need to make two passes 347 * when handling structs, unions and arrays; the first path simply looks 348 * for nonzero data, while the second actually does the display. The first 349 * pass is signalled by show->state.depth_check being set, and if we 350 * encounter a non-zero value we set show->state.depth_to_show to 351 * the depth at which we encountered it. When we have completed the 352 * first pass, we will know if anything needs to be displayed if 353 * depth_to_show > depth. See btf_[struct,array]_show() for the 354 * implementation of this. 355 * 356 * Another problem is we want to ensure the data for display is safe to 357 * access. To support this, the anonymous "struct {} obj" tracks the data 358 * object and our safe copy of it. We copy portions of the data needed 359 * to the object "copy" buffer, but because its size is limited to 360 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 361 * traverse larger objects for display. 362 * 363 * The various data type show functions all start with a call to 364 * btf_show_start_type() which returns a pointer to the safe copy 365 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 366 * raw data itself). btf_show_obj_safe() is responsible for 367 * using copy_from_kernel_nofault() to update the safe data if necessary 368 * as we traverse the object's data. skbuff-like semantics are 369 * used: 370 * 371 * - obj.head points to the start of the toplevel object for display 372 * - obj.size is the size of the toplevel object 373 * - obj.data points to the current point in the original data at 374 * which our safe data starts. obj.data will advance as we copy 375 * portions of the data. 376 * 377 * In most cases a single copy will suffice, but larger data structures 378 * such as "struct task_struct" will require many copies. The logic in 379 * btf_show_obj_safe() handles the logic that determines if a new 380 * copy_from_kernel_nofault() is needed. 381 */ 382 struct btf_show { 383 u64 flags; 384 void *target; /* target of show operation (seq file, buffer) */ 385 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 386 const struct btf *btf; 387 /* below are used during iteration */ 388 struct { 389 u8 depth; 390 u8 depth_to_show; 391 u8 depth_check; 392 u8 array_member:1, 393 array_terminated:1; 394 u16 array_encoding; 395 u32 type_id; 396 int status; /* non-zero for error */ 397 const struct btf_type *type; 398 const struct btf_member *member; 399 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 400 } state; 401 struct { 402 u32 size; 403 void *head; 404 void *data; 405 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 406 } obj; 407 }; 408 409 struct btf_kind_operations { 410 s32 (*check_meta)(struct btf_verifier_env *env, 411 const struct btf_type *t, 412 u32 meta_left); 413 int (*resolve)(struct btf_verifier_env *env, 414 const struct resolve_vertex *v); 415 int (*check_member)(struct btf_verifier_env *env, 416 const struct btf_type *struct_type, 417 const struct btf_member *member, 418 const struct btf_type *member_type); 419 int (*check_kflag_member)(struct btf_verifier_env *env, 420 const struct btf_type *struct_type, 421 const struct btf_member *member, 422 const struct btf_type *member_type); 423 void (*log_details)(struct btf_verifier_env *env, 424 const struct btf_type *t); 425 void (*show)(const struct btf *btf, const struct btf_type *t, 426 u32 type_id, void *data, u8 bits_offsets, 427 struct btf_show *show); 428 }; 429 430 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 431 static struct btf_type btf_void; 432 433 static int btf_resolve(struct btf_verifier_env *env, 434 const struct btf_type *t, u32 type_id); 435 436 static int btf_func_check(struct btf_verifier_env *env, 437 const struct btf_type *t); 438 439 static bool btf_type_is_modifier(const struct btf_type *t) 440 { 441 /* Some of them is not strictly a C modifier 442 * but they are grouped into the same bucket 443 * for BTF concern: 444 * A type (t) that refers to another 445 * type through t->type AND its size cannot 446 * be determined without following the t->type. 447 * 448 * ptr does not fall into this bucket 449 * because its size is always sizeof(void *). 450 */ 451 switch (BTF_INFO_KIND(t->info)) { 452 case BTF_KIND_TYPEDEF: 453 case BTF_KIND_VOLATILE: 454 case BTF_KIND_CONST: 455 case BTF_KIND_RESTRICT: 456 case BTF_KIND_TYPE_TAG: 457 return true; 458 } 459 460 return false; 461 } 462 463 bool btf_type_is_void(const struct btf_type *t) 464 { 465 return t == &btf_void; 466 } 467 468 static bool btf_type_is_fwd(const struct btf_type *t) 469 { 470 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 471 } 472 473 static bool btf_type_nosize(const struct btf_type *t) 474 { 475 return btf_type_is_void(t) || btf_type_is_fwd(t) || 476 btf_type_is_func(t) || btf_type_is_func_proto(t); 477 } 478 479 static bool btf_type_nosize_or_null(const struct btf_type *t) 480 { 481 return !t || btf_type_nosize(t); 482 } 483 484 static bool btf_type_is_datasec(const struct btf_type *t) 485 { 486 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 487 } 488 489 static bool btf_type_is_decl_tag(const struct btf_type *t) 490 { 491 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 492 } 493 494 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 495 { 496 return btf_type_is_func(t) || btf_type_is_struct(t) || 497 btf_type_is_var(t) || btf_type_is_typedef(t); 498 } 499 500 u32 btf_nr_types(const struct btf *btf) 501 { 502 u32 total = 0; 503 504 while (btf) { 505 total += btf->nr_types; 506 btf = btf->base_btf; 507 } 508 509 return total; 510 } 511 512 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 513 { 514 const struct btf_type *t; 515 const char *tname; 516 u32 i, total; 517 518 total = btf_nr_types(btf); 519 for (i = 1; i < total; i++) { 520 t = btf_type_by_id(btf, i); 521 if (BTF_INFO_KIND(t->info) != kind) 522 continue; 523 524 tname = btf_name_by_offset(btf, t->name_off); 525 if (!strcmp(tname, name)) 526 return i; 527 } 528 529 return -ENOENT; 530 } 531 532 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 533 { 534 struct btf *btf; 535 s32 ret; 536 int id; 537 538 btf = bpf_get_btf_vmlinux(); 539 if (IS_ERR(btf)) 540 return PTR_ERR(btf); 541 if (!btf) 542 return -EINVAL; 543 544 ret = btf_find_by_name_kind(btf, name, kind); 545 /* ret is never zero, since btf_find_by_name_kind returns 546 * positive btf_id or negative error. 547 */ 548 if (ret > 0) { 549 btf_get(btf); 550 *btf_p = btf; 551 return ret; 552 } 553 554 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 555 spin_lock_bh(&btf_idr_lock); 556 idr_for_each_entry(&btf_idr, btf, id) { 557 if (!btf_is_module(btf)) 558 continue; 559 /* linear search could be slow hence unlock/lock 560 * the IDR to avoiding holding it for too long 561 */ 562 btf_get(btf); 563 spin_unlock_bh(&btf_idr_lock); 564 ret = btf_find_by_name_kind(btf, name, kind); 565 if (ret > 0) { 566 *btf_p = btf; 567 return ret; 568 } 569 spin_lock_bh(&btf_idr_lock); 570 btf_put(btf); 571 } 572 spin_unlock_bh(&btf_idr_lock); 573 return ret; 574 } 575 576 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 577 u32 id, u32 *res_id) 578 { 579 const struct btf_type *t = btf_type_by_id(btf, id); 580 581 while (btf_type_is_modifier(t)) { 582 id = t->type; 583 t = btf_type_by_id(btf, t->type); 584 } 585 586 if (res_id) 587 *res_id = id; 588 589 return t; 590 } 591 592 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 593 u32 id, u32 *res_id) 594 { 595 const struct btf_type *t; 596 597 t = btf_type_skip_modifiers(btf, id, NULL); 598 if (!btf_type_is_ptr(t)) 599 return NULL; 600 601 return btf_type_skip_modifiers(btf, t->type, res_id); 602 } 603 604 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 605 u32 id, u32 *res_id) 606 { 607 const struct btf_type *ptype; 608 609 ptype = btf_type_resolve_ptr(btf, id, res_id); 610 if (ptype && btf_type_is_func_proto(ptype)) 611 return ptype; 612 613 return NULL; 614 } 615 616 /* Types that act only as a source, not sink or intermediate 617 * type when resolving. 618 */ 619 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 620 { 621 return btf_type_is_var(t) || 622 btf_type_is_decl_tag(t) || 623 btf_type_is_datasec(t); 624 } 625 626 /* What types need to be resolved? 627 * 628 * btf_type_is_modifier() is an obvious one. 629 * 630 * btf_type_is_struct() because its member refers to 631 * another type (through member->type). 632 * 633 * btf_type_is_var() because the variable refers to 634 * another type. btf_type_is_datasec() holds multiple 635 * btf_type_is_var() types that need resolving. 636 * 637 * btf_type_is_array() because its element (array->type) 638 * refers to another type. Array can be thought of a 639 * special case of struct while array just has the same 640 * member-type repeated by array->nelems of times. 641 */ 642 static bool btf_type_needs_resolve(const struct btf_type *t) 643 { 644 return btf_type_is_modifier(t) || 645 btf_type_is_ptr(t) || 646 btf_type_is_struct(t) || 647 btf_type_is_array(t) || 648 btf_type_is_var(t) || 649 btf_type_is_func(t) || 650 btf_type_is_decl_tag(t) || 651 btf_type_is_datasec(t); 652 } 653 654 /* t->size can be used */ 655 static bool btf_type_has_size(const struct btf_type *t) 656 { 657 switch (BTF_INFO_KIND(t->info)) { 658 case BTF_KIND_INT: 659 case BTF_KIND_STRUCT: 660 case BTF_KIND_UNION: 661 case BTF_KIND_ENUM: 662 case BTF_KIND_DATASEC: 663 case BTF_KIND_FLOAT: 664 case BTF_KIND_ENUM64: 665 return true; 666 } 667 668 return false; 669 } 670 671 static const char *btf_int_encoding_str(u8 encoding) 672 { 673 if (encoding == 0) 674 return "(none)"; 675 else if (encoding == BTF_INT_SIGNED) 676 return "SIGNED"; 677 else if (encoding == BTF_INT_CHAR) 678 return "CHAR"; 679 else if (encoding == BTF_INT_BOOL) 680 return "BOOL"; 681 else 682 return "UNKN"; 683 } 684 685 static u32 btf_type_int(const struct btf_type *t) 686 { 687 return *(u32 *)(t + 1); 688 } 689 690 static const struct btf_array *btf_type_array(const struct btf_type *t) 691 { 692 return (const struct btf_array *)(t + 1); 693 } 694 695 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 696 { 697 return (const struct btf_enum *)(t + 1); 698 } 699 700 static const struct btf_var *btf_type_var(const struct btf_type *t) 701 { 702 return (const struct btf_var *)(t + 1); 703 } 704 705 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 706 { 707 return (const struct btf_decl_tag *)(t + 1); 708 } 709 710 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 711 { 712 return (const struct btf_enum64 *)(t + 1); 713 } 714 715 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 716 { 717 return kind_ops[BTF_INFO_KIND(t->info)]; 718 } 719 720 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 721 { 722 if (!BTF_STR_OFFSET_VALID(offset)) 723 return false; 724 725 while (offset < btf->start_str_off) 726 btf = btf->base_btf; 727 728 offset -= btf->start_str_off; 729 return offset < btf->hdr.str_len; 730 } 731 732 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 733 { 734 if ((first ? !isalpha(c) : 735 !isalnum(c)) && 736 c != '_' && 737 ((c == '.' && !dot_ok) || 738 c != '.')) 739 return false; 740 return true; 741 } 742 743 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 744 { 745 while (offset < btf->start_str_off) 746 btf = btf->base_btf; 747 748 offset -= btf->start_str_off; 749 if (offset < btf->hdr.str_len) 750 return &btf->strings[offset]; 751 752 return NULL; 753 } 754 755 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 756 { 757 /* offset must be valid */ 758 const char *src = btf_str_by_offset(btf, offset); 759 const char *src_limit; 760 761 if (!__btf_name_char_ok(*src, true, dot_ok)) 762 return false; 763 764 /* set a limit on identifier length */ 765 src_limit = src + KSYM_NAME_LEN; 766 src++; 767 while (*src && src < src_limit) { 768 if (!__btf_name_char_ok(*src, false, dot_ok)) 769 return false; 770 src++; 771 } 772 773 return !*src; 774 } 775 776 /* Only C-style identifier is permitted. This can be relaxed if 777 * necessary. 778 */ 779 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 780 { 781 return __btf_name_valid(btf, offset, false); 782 } 783 784 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 785 { 786 return __btf_name_valid(btf, offset, true); 787 } 788 789 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 790 { 791 const char *name; 792 793 if (!offset) 794 return "(anon)"; 795 796 name = btf_str_by_offset(btf, offset); 797 return name ?: "(invalid-name-offset)"; 798 } 799 800 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 801 { 802 return btf_str_by_offset(btf, offset); 803 } 804 805 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 806 { 807 while (type_id < btf->start_id) 808 btf = btf->base_btf; 809 810 type_id -= btf->start_id; 811 if (type_id >= btf->nr_types) 812 return NULL; 813 return btf->types[type_id]; 814 } 815 EXPORT_SYMBOL_GPL(btf_type_by_id); 816 817 /* 818 * Regular int is not a bit field and it must be either 819 * u8/u16/u32/u64 or __int128. 820 */ 821 static bool btf_type_int_is_regular(const struct btf_type *t) 822 { 823 u8 nr_bits, nr_bytes; 824 u32 int_data; 825 826 int_data = btf_type_int(t); 827 nr_bits = BTF_INT_BITS(int_data); 828 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 829 if (BITS_PER_BYTE_MASKED(nr_bits) || 830 BTF_INT_OFFSET(int_data) || 831 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 832 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 833 nr_bytes != (2 * sizeof(u64)))) { 834 return false; 835 } 836 837 return true; 838 } 839 840 /* 841 * Check that given struct member is a regular int with expected 842 * offset and size. 843 */ 844 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 845 const struct btf_member *m, 846 u32 expected_offset, u32 expected_size) 847 { 848 const struct btf_type *t; 849 u32 id, int_data; 850 u8 nr_bits; 851 852 id = m->type; 853 t = btf_type_id_size(btf, &id, NULL); 854 if (!t || !btf_type_is_int(t)) 855 return false; 856 857 int_data = btf_type_int(t); 858 nr_bits = BTF_INT_BITS(int_data); 859 if (btf_type_kflag(s)) { 860 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 861 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 862 863 /* if kflag set, int should be a regular int and 864 * bit offset should be at byte boundary. 865 */ 866 return !bitfield_size && 867 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 868 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 869 } 870 871 if (BTF_INT_OFFSET(int_data) || 872 BITS_PER_BYTE_MASKED(m->offset) || 873 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 874 BITS_PER_BYTE_MASKED(nr_bits) || 875 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 876 return false; 877 878 return true; 879 } 880 881 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 882 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 883 u32 id) 884 { 885 const struct btf_type *t = btf_type_by_id(btf, id); 886 887 while (btf_type_is_modifier(t) && 888 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 889 t = btf_type_by_id(btf, t->type); 890 } 891 892 return t; 893 } 894 895 #define BTF_SHOW_MAX_ITER 10 896 897 #define BTF_KIND_BIT(kind) (1ULL << kind) 898 899 /* 900 * Populate show->state.name with type name information. 901 * Format of type name is 902 * 903 * [.member_name = ] (type_name) 904 */ 905 static const char *btf_show_name(struct btf_show *show) 906 { 907 /* BTF_MAX_ITER array suffixes "[]" */ 908 const char *array_suffixes = "[][][][][][][][][][]"; 909 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 910 /* BTF_MAX_ITER pointer suffixes "*" */ 911 const char *ptr_suffixes = "**********"; 912 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 913 const char *name = NULL, *prefix = "", *parens = ""; 914 const struct btf_member *m = show->state.member; 915 const struct btf_type *t; 916 const struct btf_array *array; 917 u32 id = show->state.type_id; 918 const char *member = NULL; 919 bool show_member = false; 920 u64 kinds = 0; 921 int i; 922 923 show->state.name[0] = '\0'; 924 925 /* 926 * Don't show type name if we're showing an array member; 927 * in that case we show the array type so don't need to repeat 928 * ourselves for each member. 929 */ 930 if (show->state.array_member) 931 return ""; 932 933 /* Retrieve member name, if any. */ 934 if (m) { 935 member = btf_name_by_offset(show->btf, m->name_off); 936 show_member = strlen(member) > 0; 937 id = m->type; 938 } 939 940 /* 941 * Start with type_id, as we have resolved the struct btf_type * 942 * via btf_modifier_show() past the parent typedef to the child 943 * struct, int etc it is defined as. In such cases, the type_id 944 * still represents the starting type while the struct btf_type * 945 * in our show->state points at the resolved type of the typedef. 946 */ 947 t = btf_type_by_id(show->btf, id); 948 if (!t) 949 return ""; 950 951 /* 952 * The goal here is to build up the right number of pointer and 953 * array suffixes while ensuring the type name for a typedef 954 * is represented. Along the way we accumulate a list of 955 * BTF kinds we have encountered, since these will inform later 956 * display; for example, pointer types will not require an 957 * opening "{" for struct, we will just display the pointer value. 958 * 959 * We also want to accumulate the right number of pointer or array 960 * indices in the format string while iterating until we get to 961 * the typedef/pointee/array member target type. 962 * 963 * We start by pointing at the end of pointer and array suffix 964 * strings; as we accumulate pointers and arrays we move the pointer 965 * or array string backwards so it will show the expected number of 966 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 967 * and/or arrays and typedefs are supported as a precaution. 968 * 969 * We also want to get typedef name while proceeding to resolve 970 * type it points to so that we can add parentheses if it is a 971 * "typedef struct" etc. 972 */ 973 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 974 975 switch (BTF_INFO_KIND(t->info)) { 976 case BTF_KIND_TYPEDEF: 977 if (!name) 978 name = btf_name_by_offset(show->btf, 979 t->name_off); 980 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 981 id = t->type; 982 break; 983 case BTF_KIND_ARRAY: 984 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 985 parens = "["; 986 if (!t) 987 return ""; 988 array = btf_type_array(t); 989 if (array_suffix > array_suffixes) 990 array_suffix -= 2; 991 id = array->type; 992 break; 993 case BTF_KIND_PTR: 994 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 995 if (ptr_suffix > ptr_suffixes) 996 ptr_suffix -= 1; 997 id = t->type; 998 break; 999 default: 1000 id = 0; 1001 break; 1002 } 1003 if (!id) 1004 break; 1005 t = btf_type_skip_qualifiers(show->btf, id); 1006 } 1007 /* We may not be able to represent this type; bail to be safe */ 1008 if (i == BTF_SHOW_MAX_ITER) 1009 return ""; 1010 1011 if (!name) 1012 name = btf_name_by_offset(show->btf, t->name_off); 1013 1014 switch (BTF_INFO_KIND(t->info)) { 1015 case BTF_KIND_STRUCT: 1016 case BTF_KIND_UNION: 1017 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1018 "struct" : "union"; 1019 /* if it's an array of struct/union, parens is already set */ 1020 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1021 parens = "{"; 1022 break; 1023 case BTF_KIND_ENUM: 1024 case BTF_KIND_ENUM64: 1025 prefix = "enum"; 1026 break; 1027 default: 1028 break; 1029 } 1030 1031 /* pointer does not require parens */ 1032 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1033 parens = ""; 1034 /* typedef does not require struct/union/enum prefix */ 1035 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1036 prefix = ""; 1037 1038 if (!name) 1039 name = ""; 1040 1041 /* Even if we don't want type name info, we want parentheses etc */ 1042 if (show->flags & BTF_SHOW_NONAME) 1043 snprintf(show->state.name, sizeof(show->state.name), "%s", 1044 parens); 1045 else 1046 snprintf(show->state.name, sizeof(show->state.name), 1047 "%s%s%s(%s%s%s%s%s%s)%s", 1048 /* first 3 strings comprise ".member = " */ 1049 show_member ? "." : "", 1050 show_member ? member : "", 1051 show_member ? " = " : "", 1052 /* ...next is our prefix (struct, enum, etc) */ 1053 prefix, 1054 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1055 /* ...this is the type name itself */ 1056 name, 1057 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1058 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1059 array_suffix, parens); 1060 1061 return show->state.name; 1062 } 1063 1064 static const char *__btf_show_indent(struct btf_show *show) 1065 { 1066 const char *indents = " "; 1067 const char *indent = &indents[strlen(indents)]; 1068 1069 if ((indent - show->state.depth) >= indents) 1070 return indent - show->state.depth; 1071 return indents; 1072 } 1073 1074 static const char *btf_show_indent(struct btf_show *show) 1075 { 1076 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1077 } 1078 1079 static const char *btf_show_newline(struct btf_show *show) 1080 { 1081 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1082 } 1083 1084 static const char *btf_show_delim(struct btf_show *show) 1085 { 1086 if (show->state.depth == 0) 1087 return ""; 1088 1089 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1090 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1091 return "|"; 1092 1093 return ","; 1094 } 1095 1096 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1097 { 1098 va_list args; 1099 1100 if (!show->state.depth_check) { 1101 va_start(args, fmt); 1102 show->showfn(show, fmt, args); 1103 va_end(args); 1104 } 1105 } 1106 1107 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1108 * format specifiers to the format specifier passed in; these do the work of 1109 * adding indentation, delimiters etc while the caller simply has to specify 1110 * the type value(s) in the format specifier + value(s). 1111 */ 1112 #define btf_show_type_value(show, fmt, value) \ 1113 do { \ 1114 if ((value) != (__typeof__(value))0 || \ 1115 (show->flags & BTF_SHOW_ZERO) || \ 1116 show->state.depth == 0) { \ 1117 btf_show(show, "%s%s" fmt "%s%s", \ 1118 btf_show_indent(show), \ 1119 btf_show_name(show), \ 1120 value, btf_show_delim(show), \ 1121 btf_show_newline(show)); \ 1122 if (show->state.depth > show->state.depth_to_show) \ 1123 show->state.depth_to_show = show->state.depth; \ 1124 } \ 1125 } while (0) 1126 1127 #define btf_show_type_values(show, fmt, ...) \ 1128 do { \ 1129 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1130 btf_show_name(show), \ 1131 __VA_ARGS__, btf_show_delim(show), \ 1132 btf_show_newline(show)); \ 1133 if (show->state.depth > show->state.depth_to_show) \ 1134 show->state.depth_to_show = show->state.depth; \ 1135 } while (0) 1136 1137 /* How much is left to copy to safe buffer after @data? */ 1138 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1139 { 1140 return show->obj.head + show->obj.size - data; 1141 } 1142 1143 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1144 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1145 { 1146 return data >= show->obj.data && 1147 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1148 } 1149 1150 /* 1151 * If object pointed to by @data of @size falls within our safe buffer, return 1152 * the equivalent pointer to the same safe data. Assumes 1153 * copy_from_kernel_nofault() has already happened and our safe buffer is 1154 * populated. 1155 */ 1156 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1157 { 1158 if (btf_show_obj_is_safe(show, data, size)) 1159 return show->obj.safe + (data - show->obj.data); 1160 return NULL; 1161 } 1162 1163 /* 1164 * Return a safe-to-access version of data pointed to by @data. 1165 * We do this by copying the relevant amount of information 1166 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1167 * 1168 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1169 * safe copy is needed. 1170 * 1171 * Otherwise we need to determine if we have the required amount 1172 * of data (determined by the @data pointer and the size of the 1173 * largest base type we can encounter (represented by 1174 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1175 * that we will be able to print some of the current object, 1176 * and if more is needed a copy will be triggered. 1177 * Some objects such as structs will not fit into the buffer; 1178 * in such cases additional copies when we iterate over their 1179 * members may be needed. 1180 * 1181 * btf_show_obj_safe() is used to return a safe buffer for 1182 * btf_show_start_type(); this ensures that as we recurse into 1183 * nested types we always have safe data for the given type. 1184 * This approach is somewhat wasteful; it's possible for example 1185 * that when iterating over a large union we'll end up copying the 1186 * same data repeatedly, but the goal is safety not performance. 1187 * We use stack data as opposed to per-CPU buffers because the 1188 * iteration over a type can take some time, and preemption handling 1189 * would greatly complicate use of the safe buffer. 1190 */ 1191 static void *btf_show_obj_safe(struct btf_show *show, 1192 const struct btf_type *t, 1193 void *data) 1194 { 1195 const struct btf_type *rt; 1196 int size_left, size; 1197 void *safe = NULL; 1198 1199 if (show->flags & BTF_SHOW_UNSAFE) 1200 return data; 1201 1202 rt = btf_resolve_size(show->btf, t, &size); 1203 if (IS_ERR(rt)) { 1204 show->state.status = PTR_ERR(rt); 1205 return NULL; 1206 } 1207 1208 /* 1209 * Is this toplevel object? If so, set total object size and 1210 * initialize pointers. Otherwise check if we still fall within 1211 * our safe object data. 1212 */ 1213 if (show->state.depth == 0) { 1214 show->obj.size = size; 1215 show->obj.head = data; 1216 } else { 1217 /* 1218 * If the size of the current object is > our remaining 1219 * safe buffer we _may_ need to do a new copy. However 1220 * consider the case of a nested struct; it's size pushes 1221 * us over the safe buffer limit, but showing any individual 1222 * struct members does not. In such cases, we don't need 1223 * to initiate a fresh copy yet; however we definitely need 1224 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1225 * in our buffer, regardless of the current object size. 1226 * The logic here is that as we resolve types we will 1227 * hit a base type at some point, and we need to be sure 1228 * the next chunk of data is safely available to display 1229 * that type info safely. We cannot rely on the size of 1230 * the current object here because it may be much larger 1231 * than our current buffer (e.g. task_struct is 8k). 1232 * All we want to do here is ensure that we can print the 1233 * next basic type, which we can if either 1234 * - the current type size is within the safe buffer; or 1235 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1236 * the safe buffer. 1237 */ 1238 safe = __btf_show_obj_safe(show, data, 1239 min(size, 1240 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1241 } 1242 1243 /* 1244 * We need a new copy to our safe object, either because we haven't 1245 * yet copied and are initializing safe data, or because the data 1246 * we want falls outside the boundaries of the safe object. 1247 */ 1248 if (!safe) { 1249 size_left = btf_show_obj_size_left(show, data); 1250 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1251 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1252 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1253 data, size_left); 1254 if (!show->state.status) { 1255 show->obj.data = data; 1256 safe = show->obj.safe; 1257 } 1258 } 1259 1260 return safe; 1261 } 1262 1263 /* 1264 * Set the type we are starting to show and return a safe data pointer 1265 * to be used for showing the associated data. 1266 */ 1267 static void *btf_show_start_type(struct btf_show *show, 1268 const struct btf_type *t, 1269 u32 type_id, void *data) 1270 { 1271 show->state.type = t; 1272 show->state.type_id = type_id; 1273 show->state.name[0] = '\0'; 1274 1275 return btf_show_obj_safe(show, t, data); 1276 } 1277 1278 static void btf_show_end_type(struct btf_show *show) 1279 { 1280 show->state.type = NULL; 1281 show->state.type_id = 0; 1282 show->state.name[0] = '\0'; 1283 } 1284 1285 static void *btf_show_start_aggr_type(struct btf_show *show, 1286 const struct btf_type *t, 1287 u32 type_id, void *data) 1288 { 1289 void *safe_data = btf_show_start_type(show, t, type_id, data); 1290 1291 if (!safe_data) 1292 return safe_data; 1293 1294 btf_show(show, "%s%s%s", btf_show_indent(show), 1295 btf_show_name(show), 1296 btf_show_newline(show)); 1297 show->state.depth++; 1298 return safe_data; 1299 } 1300 1301 static void btf_show_end_aggr_type(struct btf_show *show, 1302 const char *suffix) 1303 { 1304 show->state.depth--; 1305 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1306 btf_show_delim(show), btf_show_newline(show)); 1307 btf_show_end_type(show); 1308 } 1309 1310 static void btf_show_start_member(struct btf_show *show, 1311 const struct btf_member *m) 1312 { 1313 show->state.member = m; 1314 } 1315 1316 static void btf_show_start_array_member(struct btf_show *show) 1317 { 1318 show->state.array_member = 1; 1319 btf_show_start_member(show, NULL); 1320 } 1321 1322 static void btf_show_end_member(struct btf_show *show) 1323 { 1324 show->state.member = NULL; 1325 } 1326 1327 static void btf_show_end_array_member(struct btf_show *show) 1328 { 1329 show->state.array_member = 0; 1330 btf_show_end_member(show); 1331 } 1332 1333 static void *btf_show_start_array_type(struct btf_show *show, 1334 const struct btf_type *t, 1335 u32 type_id, 1336 u16 array_encoding, 1337 void *data) 1338 { 1339 show->state.array_encoding = array_encoding; 1340 show->state.array_terminated = 0; 1341 return btf_show_start_aggr_type(show, t, type_id, data); 1342 } 1343 1344 static void btf_show_end_array_type(struct btf_show *show) 1345 { 1346 show->state.array_encoding = 0; 1347 show->state.array_terminated = 0; 1348 btf_show_end_aggr_type(show, "]"); 1349 } 1350 1351 static void *btf_show_start_struct_type(struct btf_show *show, 1352 const struct btf_type *t, 1353 u32 type_id, 1354 void *data) 1355 { 1356 return btf_show_start_aggr_type(show, t, type_id, data); 1357 } 1358 1359 static void btf_show_end_struct_type(struct btf_show *show) 1360 { 1361 btf_show_end_aggr_type(show, "}"); 1362 } 1363 1364 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1365 const char *fmt, ...) 1366 { 1367 va_list args; 1368 1369 va_start(args, fmt); 1370 bpf_verifier_vlog(log, fmt, args); 1371 va_end(args); 1372 } 1373 1374 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1375 const char *fmt, ...) 1376 { 1377 struct bpf_verifier_log *log = &env->log; 1378 va_list args; 1379 1380 if (!bpf_verifier_log_needed(log)) 1381 return; 1382 1383 va_start(args, fmt); 1384 bpf_verifier_vlog(log, fmt, args); 1385 va_end(args); 1386 } 1387 1388 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1389 const struct btf_type *t, 1390 bool log_details, 1391 const char *fmt, ...) 1392 { 1393 struct bpf_verifier_log *log = &env->log; 1394 struct btf *btf = env->btf; 1395 va_list args; 1396 1397 if (!bpf_verifier_log_needed(log)) 1398 return; 1399 1400 /* btf verifier prints all types it is processing via 1401 * btf_verifier_log_type(..., fmt = NULL). 1402 * Skip those prints for in-kernel BTF verification. 1403 */ 1404 if (log->level == BPF_LOG_KERNEL && !fmt) 1405 return; 1406 1407 __btf_verifier_log(log, "[%u] %s %s%s", 1408 env->log_type_id, 1409 btf_type_str(t), 1410 __btf_name_by_offset(btf, t->name_off), 1411 log_details ? " " : ""); 1412 1413 if (log_details) 1414 btf_type_ops(t)->log_details(env, t); 1415 1416 if (fmt && *fmt) { 1417 __btf_verifier_log(log, " "); 1418 va_start(args, fmt); 1419 bpf_verifier_vlog(log, fmt, args); 1420 va_end(args); 1421 } 1422 1423 __btf_verifier_log(log, "\n"); 1424 } 1425 1426 #define btf_verifier_log_type(env, t, ...) \ 1427 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1428 #define btf_verifier_log_basic(env, t, ...) \ 1429 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1430 1431 __printf(4, 5) 1432 static void btf_verifier_log_member(struct btf_verifier_env *env, 1433 const struct btf_type *struct_type, 1434 const struct btf_member *member, 1435 const char *fmt, ...) 1436 { 1437 struct bpf_verifier_log *log = &env->log; 1438 struct btf *btf = env->btf; 1439 va_list args; 1440 1441 if (!bpf_verifier_log_needed(log)) 1442 return; 1443 1444 if (log->level == BPF_LOG_KERNEL && !fmt) 1445 return; 1446 /* The CHECK_META phase already did a btf dump. 1447 * 1448 * If member is logged again, it must hit an error in 1449 * parsing this member. It is useful to print out which 1450 * struct this member belongs to. 1451 */ 1452 if (env->phase != CHECK_META) 1453 btf_verifier_log_type(env, struct_type, NULL); 1454 1455 if (btf_type_kflag(struct_type)) 1456 __btf_verifier_log(log, 1457 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1458 __btf_name_by_offset(btf, member->name_off), 1459 member->type, 1460 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1461 BTF_MEMBER_BIT_OFFSET(member->offset)); 1462 else 1463 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1464 __btf_name_by_offset(btf, member->name_off), 1465 member->type, member->offset); 1466 1467 if (fmt && *fmt) { 1468 __btf_verifier_log(log, " "); 1469 va_start(args, fmt); 1470 bpf_verifier_vlog(log, fmt, args); 1471 va_end(args); 1472 } 1473 1474 __btf_verifier_log(log, "\n"); 1475 } 1476 1477 __printf(4, 5) 1478 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1479 const struct btf_type *datasec_type, 1480 const struct btf_var_secinfo *vsi, 1481 const char *fmt, ...) 1482 { 1483 struct bpf_verifier_log *log = &env->log; 1484 va_list args; 1485 1486 if (!bpf_verifier_log_needed(log)) 1487 return; 1488 if (log->level == BPF_LOG_KERNEL && !fmt) 1489 return; 1490 if (env->phase != CHECK_META) 1491 btf_verifier_log_type(env, datasec_type, NULL); 1492 1493 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1494 vsi->type, vsi->offset, vsi->size); 1495 if (fmt && *fmt) { 1496 __btf_verifier_log(log, " "); 1497 va_start(args, fmt); 1498 bpf_verifier_vlog(log, fmt, args); 1499 va_end(args); 1500 } 1501 1502 __btf_verifier_log(log, "\n"); 1503 } 1504 1505 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1506 u32 btf_data_size) 1507 { 1508 struct bpf_verifier_log *log = &env->log; 1509 const struct btf *btf = env->btf; 1510 const struct btf_header *hdr; 1511 1512 if (!bpf_verifier_log_needed(log)) 1513 return; 1514 1515 if (log->level == BPF_LOG_KERNEL) 1516 return; 1517 hdr = &btf->hdr; 1518 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1519 __btf_verifier_log(log, "version: %u\n", hdr->version); 1520 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1521 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1522 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1523 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1524 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1525 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1526 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1527 } 1528 1529 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1530 { 1531 struct btf *btf = env->btf; 1532 1533 if (btf->types_size == btf->nr_types) { 1534 /* Expand 'types' array */ 1535 1536 struct btf_type **new_types; 1537 u32 expand_by, new_size; 1538 1539 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1540 btf_verifier_log(env, "Exceeded max num of types"); 1541 return -E2BIG; 1542 } 1543 1544 expand_by = max_t(u32, btf->types_size >> 2, 16); 1545 new_size = min_t(u32, BTF_MAX_TYPE, 1546 btf->types_size + expand_by); 1547 1548 new_types = kvcalloc(new_size, sizeof(*new_types), 1549 GFP_KERNEL | __GFP_NOWARN); 1550 if (!new_types) 1551 return -ENOMEM; 1552 1553 if (btf->nr_types == 0) { 1554 if (!btf->base_btf) { 1555 /* lazily init VOID type */ 1556 new_types[0] = &btf_void; 1557 btf->nr_types++; 1558 } 1559 } else { 1560 memcpy(new_types, btf->types, 1561 sizeof(*btf->types) * btf->nr_types); 1562 } 1563 1564 kvfree(btf->types); 1565 btf->types = new_types; 1566 btf->types_size = new_size; 1567 } 1568 1569 btf->types[btf->nr_types++] = t; 1570 1571 return 0; 1572 } 1573 1574 static int btf_alloc_id(struct btf *btf) 1575 { 1576 int id; 1577 1578 idr_preload(GFP_KERNEL); 1579 spin_lock_bh(&btf_idr_lock); 1580 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1581 if (id > 0) 1582 btf->id = id; 1583 spin_unlock_bh(&btf_idr_lock); 1584 idr_preload_end(); 1585 1586 if (WARN_ON_ONCE(!id)) 1587 return -ENOSPC; 1588 1589 return id > 0 ? 0 : id; 1590 } 1591 1592 static void btf_free_id(struct btf *btf) 1593 { 1594 unsigned long flags; 1595 1596 /* 1597 * In map-in-map, calling map_delete_elem() on outer 1598 * map will call bpf_map_put on the inner map. 1599 * It will then eventually call btf_free_id() 1600 * on the inner map. Some of the map_delete_elem() 1601 * implementation may have irq disabled, so 1602 * we need to use the _irqsave() version instead 1603 * of the _bh() version. 1604 */ 1605 spin_lock_irqsave(&btf_idr_lock, flags); 1606 idr_remove(&btf_idr, btf->id); 1607 spin_unlock_irqrestore(&btf_idr_lock, flags); 1608 } 1609 1610 static void btf_free_kfunc_set_tab(struct btf *btf) 1611 { 1612 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1613 int hook; 1614 1615 if (!tab) 1616 return; 1617 /* For module BTF, we directly assign the sets being registered, so 1618 * there is nothing to free except kfunc_set_tab. 1619 */ 1620 if (btf_is_module(btf)) 1621 goto free_tab; 1622 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1623 kfree(tab->sets[hook]); 1624 free_tab: 1625 kfree(tab); 1626 btf->kfunc_set_tab = NULL; 1627 } 1628 1629 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1630 { 1631 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1632 1633 if (!tab) 1634 return; 1635 kfree(tab); 1636 btf->dtor_kfunc_tab = NULL; 1637 } 1638 1639 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1640 { 1641 int i; 1642 1643 if (!tab) 1644 return; 1645 for (i = 0; i < tab->cnt; i++) { 1646 btf_record_free(tab->types[i].record); 1647 kfree(tab->types[i].field_offs); 1648 } 1649 kfree(tab); 1650 } 1651 1652 static void btf_free_struct_meta_tab(struct btf *btf) 1653 { 1654 struct btf_struct_metas *tab = btf->struct_meta_tab; 1655 1656 btf_struct_metas_free(tab); 1657 btf->struct_meta_tab = NULL; 1658 } 1659 1660 static void btf_free(struct btf *btf) 1661 { 1662 btf_free_struct_meta_tab(btf); 1663 btf_free_dtor_kfunc_tab(btf); 1664 btf_free_kfunc_set_tab(btf); 1665 kvfree(btf->types); 1666 kvfree(btf->resolved_sizes); 1667 kvfree(btf->resolved_ids); 1668 kvfree(btf->data); 1669 kfree(btf); 1670 } 1671 1672 static void btf_free_rcu(struct rcu_head *rcu) 1673 { 1674 struct btf *btf = container_of(rcu, struct btf, rcu); 1675 1676 btf_free(btf); 1677 } 1678 1679 void btf_get(struct btf *btf) 1680 { 1681 refcount_inc(&btf->refcnt); 1682 } 1683 1684 void btf_put(struct btf *btf) 1685 { 1686 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1687 btf_free_id(btf); 1688 call_rcu(&btf->rcu, btf_free_rcu); 1689 } 1690 } 1691 1692 static int env_resolve_init(struct btf_verifier_env *env) 1693 { 1694 struct btf *btf = env->btf; 1695 u32 nr_types = btf->nr_types; 1696 u32 *resolved_sizes = NULL; 1697 u32 *resolved_ids = NULL; 1698 u8 *visit_states = NULL; 1699 1700 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1701 GFP_KERNEL | __GFP_NOWARN); 1702 if (!resolved_sizes) 1703 goto nomem; 1704 1705 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1706 GFP_KERNEL | __GFP_NOWARN); 1707 if (!resolved_ids) 1708 goto nomem; 1709 1710 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1711 GFP_KERNEL | __GFP_NOWARN); 1712 if (!visit_states) 1713 goto nomem; 1714 1715 btf->resolved_sizes = resolved_sizes; 1716 btf->resolved_ids = resolved_ids; 1717 env->visit_states = visit_states; 1718 1719 return 0; 1720 1721 nomem: 1722 kvfree(resolved_sizes); 1723 kvfree(resolved_ids); 1724 kvfree(visit_states); 1725 return -ENOMEM; 1726 } 1727 1728 static void btf_verifier_env_free(struct btf_verifier_env *env) 1729 { 1730 kvfree(env->visit_states); 1731 kfree(env); 1732 } 1733 1734 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1735 const struct btf_type *next_type) 1736 { 1737 switch (env->resolve_mode) { 1738 case RESOLVE_TBD: 1739 /* int, enum or void is a sink */ 1740 return !btf_type_needs_resolve(next_type); 1741 case RESOLVE_PTR: 1742 /* int, enum, void, struct, array, func or func_proto is a sink 1743 * for ptr 1744 */ 1745 return !btf_type_is_modifier(next_type) && 1746 !btf_type_is_ptr(next_type); 1747 case RESOLVE_STRUCT_OR_ARRAY: 1748 /* int, enum, void, ptr, func or func_proto is a sink 1749 * for struct and array 1750 */ 1751 return !btf_type_is_modifier(next_type) && 1752 !btf_type_is_array(next_type) && 1753 !btf_type_is_struct(next_type); 1754 default: 1755 BUG(); 1756 } 1757 } 1758 1759 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1760 u32 type_id) 1761 { 1762 /* base BTF types should be resolved by now */ 1763 if (type_id < env->btf->start_id) 1764 return true; 1765 1766 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1767 } 1768 1769 static int env_stack_push(struct btf_verifier_env *env, 1770 const struct btf_type *t, u32 type_id) 1771 { 1772 const struct btf *btf = env->btf; 1773 struct resolve_vertex *v; 1774 1775 if (env->top_stack == MAX_RESOLVE_DEPTH) 1776 return -E2BIG; 1777 1778 if (type_id < btf->start_id 1779 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1780 return -EEXIST; 1781 1782 env->visit_states[type_id - btf->start_id] = VISITED; 1783 1784 v = &env->stack[env->top_stack++]; 1785 v->t = t; 1786 v->type_id = type_id; 1787 v->next_member = 0; 1788 1789 if (env->resolve_mode == RESOLVE_TBD) { 1790 if (btf_type_is_ptr(t)) 1791 env->resolve_mode = RESOLVE_PTR; 1792 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1793 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1794 } 1795 1796 return 0; 1797 } 1798 1799 static void env_stack_set_next_member(struct btf_verifier_env *env, 1800 u16 next_member) 1801 { 1802 env->stack[env->top_stack - 1].next_member = next_member; 1803 } 1804 1805 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1806 u32 resolved_type_id, 1807 u32 resolved_size) 1808 { 1809 u32 type_id = env->stack[--(env->top_stack)].type_id; 1810 struct btf *btf = env->btf; 1811 1812 type_id -= btf->start_id; /* adjust to local type id */ 1813 btf->resolved_sizes[type_id] = resolved_size; 1814 btf->resolved_ids[type_id] = resolved_type_id; 1815 env->visit_states[type_id] = RESOLVED; 1816 } 1817 1818 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1819 { 1820 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1821 } 1822 1823 /* Resolve the size of a passed-in "type" 1824 * 1825 * type: is an array (e.g. u32 array[x][y]) 1826 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1827 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1828 * corresponds to the return type. 1829 * *elem_type: u32 1830 * *elem_id: id of u32 1831 * *total_nelems: (x * y). Hence, individual elem size is 1832 * (*type_size / *total_nelems) 1833 * *type_id: id of type if it's changed within the function, 0 if not 1834 * 1835 * type: is not an array (e.g. const struct X) 1836 * return type: type "struct X" 1837 * *type_size: sizeof(struct X) 1838 * *elem_type: same as return type ("struct X") 1839 * *elem_id: 0 1840 * *total_nelems: 1 1841 * *type_id: id of type if it's changed within the function, 0 if not 1842 */ 1843 static const struct btf_type * 1844 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1845 u32 *type_size, const struct btf_type **elem_type, 1846 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1847 { 1848 const struct btf_type *array_type = NULL; 1849 const struct btf_array *array = NULL; 1850 u32 i, size, nelems = 1, id = 0; 1851 1852 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1853 switch (BTF_INFO_KIND(type->info)) { 1854 /* type->size can be used */ 1855 case BTF_KIND_INT: 1856 case BTF_KIND_STRUCT: 1857 case BTF_KIND_UNION: 1858 case BTF_KIND_ENUM: 1859 case BTF_KIND_FLOAT: 1860 case BTF_KIND_ENUM64: 1861 size = type->size; 1862 goto resolved; 1863 1864 case BTF_KIND_PTR: 1865 size = sizeof(void *); 1866 goto resolved; 1867 1868 /* Modifiers */ 1869 case BTF_KIND_TYPEDEF: 1870 case BTF_KIND_VOLATILE: 1871 case BTF_KIND_CONST: 1872 case BTF_KIND_RESTRICT: 1873 case BTF_KIND_TYPE_TAG: 1874 id = type->type; 1875 type = btf_type_by_id(btf, type->type); 1876 break; 1877 1878 case BTF_KIND_ARRAY: 1879 if (!array_type) 1880 array_type = type; 1881 array = btf_type_array(type); 1882 if (nelems && array->nelems > U32_MAX / nelems) 1883 return ERR_PTR(-EINVAL); 1884 nelems *= array->nelems; 1885 type = btf_type_by_id(btf, array->type); 1886 break; 1887 1888 /* type without size */ 1889 default: 1890 return ERR_PTR(-EINVAL); 1891 } 1892 } 1893 1894 return ERR_PTR(-EINVAL); 1895 1896 resolved: 1897 if (nelems && size > U32_MAX / nelems) 1898 return ERR_PTR(-EINVAL); 1899 1900 *type_size = nelems * size; 1901 if (total_nelems) 1902 *total_nelems = nelems; 1903 if (elem_type) 1904 *elem_type = type; 1905 if (elem_id) 1906 *elem_id = array ? array->type : 0; 1907 if (type_id && id) 1908 *type_id = id; 1909 1910 return array_type ? : type; 1911 } 1912 1913 const struct btf_type * 1914 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1915 u32 *type_size) 1916 { 1917 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1918 } 1919 1920 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1921 { 1922 while (type_id < btf->start_id) 1923 btf = btf->base_btf; 1924 1925 return btf->resolved_ids[type_id - btf->start_id]; 1926 } 1927 1928 /* The input param "type_id" must point to a needs_resolve type */ 1929 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1930 u32 *type_id) 1931 { 1932 *type_id = btf_resolved_type_id(btf, *type_id); 1933 return btf_type_by_id(btf, *type_id); 1934 } 1935 1936 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1937 { 1938 while (type_id < btf->start_id) 1939 btf = btf->base_btf; 1940 1941 return btf->resolved_sizes[type_id - btf->start_id]; 1942 } 1943 1944 const struct btf_type *btf_type_id_size(const struct btf *btf, 1945 u32 *type_id, u32 *ret_size) 1946 { 1947 const struct btf_type *size_type; 1948 u32 size_type_id = *type_id; 1949 u32 size = 0; 1950 1951 size_type = btf_type_by_id(btf, size_type_id); 1952 if (btf_type_nosize_or_null(size_type)) 1953 return NULL; 1954 1955 if (btf_type_has_size(size_type)) { 1956 size = size_type->size; 1957 } else if (btf_type_is_array(size_type)) { 1958 size = btf_resolved_type_size(btf, size_type_id); 1959 } else if (btf_type_is_ptr(size_type)) { 1960 size = sizeof(void *); 1961 } else { 1962 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1963 !btf_type_is_var(size_type))) 1964 return NULL; 1965 1966 size_type_id = btf_resolved_type_id(btf, size_type_id); 1967 size_type = btf_type_by_id(btf, size_type_id); 1968 if (btf_type_nosize_or_null(size_type)) 1969 return NULL; 1970 else if (btf_type_has_size(size_type)) 1971 size = size_type->size; 1972 else if (btf_type_is_array(size_type)) 1973 size = btf_resolved_type_size(btf, size_type_id); 1974 else if (btf_type_is_ptr(size_type)) 1975 size = sizeof(void *); 1976 else 1977 return NULL; 1978 } 1979 1980 *type_id = size_type_id; 1981 if (ret_size) 1982 *ret_size = size; 1983 1984 return size_type; 1985 } 1986 1987 static int btf_df_check_member(struct btf_verifier_env *env, 1988 const struct btf_type *struct_type, 1989 const struct btf_member *member, 1990 const struct btf_type *member_type) 1991 { 1992 btf_verifier_log_basic(env, struct_type, 1993 "Unsupported check_member"); 1994 return -EINVAL; 1995 } 1996 1997 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1998 const struct btf_type *struct_type, 1999 const struct btf_member *member, 2000 const struct btf_type *member_type) 2001 { 2002 btf_verifier_log_basic(env, struct_type, 2003 "Unsupported check_kflag_member"); 2004 return -EINVAL; 2005 } 2006 2007 /* Used for ptr, array struct/union and float type members. 2008 * int, enum and modifier types have their specific callback functions. 2009 */ 2010 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2011 const struct btf_type *struct_type, 2012 const struct btf_member *member, 2013 const struct btf_type *member_type) 2014 { 2015 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2016 btf_verifier_log_member(env, struct_type, member, 2017 "Invalid member bitfield_size"); 2018 return -EINVAL; 2019 } 2020 2021 /* bitfield size is 0, so member->offset represents bit offset only. 2022 * It is safe to call non kflag check_member variants. 2023 */ 2024 return btf_type_ops(member_type)->check_member(env, struct_type, 2025 member, 2026 member_type); 2027 } 2028 2029 static int btf_df_resolve(struct btf_verifier_env *env, 2030 const struct resolve_vertex *v) 2031 { 2032 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2033 return -EINVAL; 2034 } 2035 2036 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2037 u32 type_id, void *data, u8 bits_offsets, 2038 struct btf_show *show) 2039 { 2040 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2041 } 2042 2043 static int btf_int_check_member(struct btf_verifier_env *env, 2044 const struct btf_type *struct_type, 2045 const struct btf_member *member, 2046 const struct btf_type *member_type) 2047 { 2048 u32 int_data = btf_type_int(member_type); 2049 u32 struct_bits_off = member->offset; 2050 u32 struct_size = struct_type->size; 2051 u32 nr_copy_bits; 2052 u32 bytes_offset; 2053 2054 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2055 btf_verifier_log_member(env, struct_type, member, 2056 "bits_offset exceeds U32_MAX"); 2057 return -EINVAL; 2058 } 2059 2060 struct_bits_off += BTF_INT_OFFSET(int_data); 2061 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2062 nr_copy_bits = BTF_INT_BITS(int_data) + 2063 BITS_PER_BYTE_MASKED(struct_bits_off); 2064 2065 if (nr_copy_bits > BITS_PER_U128) { 2066 btf_verifier_log_member(env, struct_type, member, 2067 "nr_copy_bits exceeds 128"); 2068 return -EINVAL; 2069 } 2070 2071 if (struct_size < bytes_offset || 2072 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2073 btf_verifier_log_member(env, struct_type, member, 2074 "Member exceeds struct_size"); 2075 return -EINVAL; 2076 } 2077 2078 return 0; 2079 } 2080 2081 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2082 const struct btf_type *struct_type, 2083 const struct btf_member *member, 2084 const struct btf_type *member_type) 2085 { 2086 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2087 u32 int_data = btf_type_int(member_type); 2088 u32 struct_size = struct_type->size; 2089 u32 nr_copy_bits; 2090 2091 /* a regular int type is required for the kflag int member */ 2092 if (!btf_type_int_is_regular(member_type)) { 2093 btf_verifier_log_member(env, struct_type, member, 2094 "Invalid member base type"); 2095 return -EINVAL; 2096 } 2097 2098 /* check sanity of bitfield size */ 2099 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2100 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2101 nr_int_data_bits = BTF_INT_BITS(int_data); 2102 if (!nr_bits) { 2103 /* Not a bitfield member, member offset must be at byte 2104 * boundary. 2105 */ 2106 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2107 btf_verifier_log_member(env, struct_type, member, 2108 "Invalid member offset"); 2109 return -EINVAL; 2110 } 2111 2112 nr_bits = nr_int_data_bits; 2113 } else if (nr_bits > nr_int_data_bits) { 2114 btf_verifier_log_member(env, struct_type, member, 2115 "Invalid member bitfield_size"); 2116 return -EINVAL; 2117 } 2118 2119 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2120 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2121 if (nr_copy_bits > BITS_PER_U128) { 2122 btf_verifier_log_member(env, struct_type, member, 2123 "nr_copy_bits exceeds 128"); 2124 return -EINVAL; 2125 } 2126 2127 if (struct_size < bytes_offset || 2128 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2129 btf_verifier_log_member(env, struct_type, member, 2130 "Member exceeds struct_size"); 2131 return -EINVAL; 2132 } 2133 2134 return 0; 2135 } 2136 2137 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2138 const struct btf_type *t, 2139 u32 meta_left) 2140 { 2141 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2142 u16 encoding; 2143 2144 if (meta_left < meta_needed) { 2145 btf_verifier_log_basic(env, t, 2146 "meta_left:%u meta_needed:%u", 2147 meta_left, meta_needed); 2148 return -EINVAL; 2149 } 2150 2151 if (btf_type_vlen(t)) { 2152 btf_verifier_log_type(env, t, "vlen != 0"); 2153 return -EINVAL; 2154 } 2155 2156 if (btf_type_kflag(t)) { 2157 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2158 return -EINVAL; 2159 } 2160 2161 int_data = btf_type_int(t); 2162 if (int_data & ~BTF_INT_MASK) { 2163 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2164 int_data); 2165 return -EINVAL; 2166 } 2167 2168 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2169 2170 if (nr_bits > BITS_PER_U128) { 2171 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2172 BITS_PER_U128); 2173 return -EINVAL; 2174 } 2175 2176 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2177 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2178 return -EINVAL; 2179 } 2180 2181 /* 2182 * Only one of the encoding bits is allowed and it 2183 * should be sufficient for the pretty print purpose (i.e. decoding). 2184 * Multiple bits can be allowed later if it is found 2185 * to be insufficient. 2186 */ 2187 encoding = BTF_INT_ENCODING(int_data); 2188 if (encoding && 2189 encoding != BTF_INT_SIGNED && 2190 encoding != BTF_INT_CHAR && 2191 encoding != BTF_INT_BOOL) { 2192 btf_verifier_log_type(env, t, "Unsupported encoding"); 2193 return -ENOTSUPP; 2194 } 2195 2196 btf_verifier_log_type(env, t, NULL); 2197 2198 return meta_needed; 2199 } 2200 2201 static void btf_int_log(struct btf_verifier_env *env, 2202 const struct btf_type *t) 2203 { 2204 int int_data = btf_type_int(t); 2205 2206 btf_verifier_log(env, 2207 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2208 t->size, BTF_INT_OFFSET(int_data), 2209 BTF_INT_BITS(int_data), 2210 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2211 } 2212 2213 static void btf_int128_print(struct btf_show *show, void *data) 2214 { 2215 /* data points to a __int128 number. 2216 * Suppose 2217 * int128_num = *(__int128 *)data; 2218 * The below formulas shows what upper_num and lower_num represents: 2219 * upper_num = int128_num >> 64; 2220 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2221 */ 2222 u64 upper_num, lower_num; 2223 2224 #ifdef __BIG_ENDIAN_BITFIELD 2225 upper_num = *(u64 *)data; 2226 lower_num = *(u64 *)(data + 8); 2227 #else 2228 upper_num = *(u64 *)(data + 8); 2229 lower_num = *(u64 *)data; 2230 #endif 2231 if (upper_num == 0) 2232 btf_show_type_value(show, "0x%llx", lower_num); 2233 else 2234 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2235 lower_num); 2236 } 2237 2238 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2239 u16 right_shift_bits) 2240 { 2241 u64 upper_num, lower_num; 2242 2243 #ifdef __BIG_ENDIAN_BITFIELD 2244 upper_num = print_num[0]; 2245 lower_num = print_num[1]; 2246 #else 2247 upper_num = print_num[1]; 2248 lower_num = print_num[0]; 2249 #endif 2250 2251 /* shake out un-needed bits by shift/or operations */ 2252 if (left_shift_bits >= 64) { 2253 upper_num = lower_num << (left_shift_bits - 64); 2254 lower_num = 0; 2255 } else { 2256 upper_num = (upper_num << left_shift_bits) | 2257 (lower_num >> (64 - left_shift_bits)); 2258 lower_num = lower_num << left_shift_bits; 2259 } 2260 2261 if (right_shift_bits >= 64) { 2262 lower_num = upper_num >> (right_shift_bits - 64); 2263 upper_num = 0; 2264 } else { 2265 lower_num = (lower_num >> right_shift_bits) | 2266 (upper_num << (64 - right_shift_bits)); 2267 upper_num = upper_num >> right_shift_bits; 2268 } 2269 2270 #ifdef __BIG_ENDIAN_BITFIELD 2271 print_num[0] = upper_num; 2272 print_num[1] = lower_num; 2273 #else 2274 print_num[0] = lower_num; 2275 print_num[1] = upper_num; 2276 #endif 2277 } 2278 2279 static void btf_bitfield_show(void *data, u8 bits_offset, 2280 u8 nr_bits, struct btf_show *show) 2281 { 2282 u16 left_shift_bits, right_shift_bits; 2283 u8 nr_copy_bytes; 2284 u8 nr_copy_bits; 2285 u64 print_num[2] = {}; 2286 2287 nr_copy_bits = nr_bits + bits_offset; 2288 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2289 2290 memcpy(print_num, data, nr_copy_bytes); 2291 2292 #ifdef __BIG_ENDIAN_BITFIELD 2293 left_shift_bits = bits_offset; 2294 #else 2295 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2296 #endif 2297 right_shift_bits = BITS_PER_U128 - nr_bits; 2298 2299 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2300 btf_int128_print(show, print_num); 2301 } 2302 2303 2304 static void btf_int_bits_show(const struct btf *btf, 2305 const struct btf_type *t, 2306 void *data, u8 bits_offset, 2307 struct btf_show *show) 2308 { 2309 u32 int_data = btf_type_int(t); 2310 u8 nr_bits = BTF_INT_BITS(int_data); 2311 u8 total_bits_offset; 2312 2313 /* 2314 * bits_offset is at most 7. 2315 * BTF_INT_OFFSET() cannot exceed 128 bits. 2316 */ 2317 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2318 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2319 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2320 btf_bitfield_show(data, bits_offset, nr_bits, show); 2321 } 2322 2323 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2324 u32 type_id, void *data, u8 bits_offset, 2325 struct btf_show *show) 2326 { 2327 u32 int_data = btf_type_int(t); 2328 u8 encoding = BTF_INT_ENCODING(int_data); 2329 bool sign = encoding & BTF_INT_SIGNED; 2330 u8 nr_bits = BTF_INT_BITS(int_data); 2331 void *safe_data; 2332 2333 safe_data = btf_show_start_type(show, t, type_id, data); 2334 if (!safe_data) 2335 return; 2336 2337 if (bits_offset || BTF_INT_OFFSET(int_data) || 2338 BITS_PER_BYTE_MASKED(nr_bits)) { 2339 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2340 goto out; 2341 } 2342 2343 switch (nr_bits) { 2344 case 128: 2345 btf_int128_print(show, safe_data); 2346 break; 2347 case 64: 2348 if (sign) 2349 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2350 else 2351 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2352 break; 2353 case 32: 2354 if (sign) 2355 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2356 else 2357 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2358 break; 2359 case 16: 2360 if (sign) 2361 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2362 else 2363 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2364 break; 2365 case 8: 2366 if (show->state.array_encoding == BTF_INT_CHAR) { 2367 /* check for null terminator */ 2368 if (show->state.array_terminated) 2369 break; 2370 if (*(char *)data == '\0') { 2371 show->state.array_terminated = 1; 2372 break; 2373 } 2374 if (isprint(*(char *)data)) { 2375 btf_show_type_value(show, "'%c'", 2376 *(char *)safe_data); 2377 break; 2378 } 2379 } 2380 if (sign) 2381 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2382 else 2383 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2384 break; 2385 default: 2386 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2387 break; 2388 } 2389 out: 2390 btf_show_end_type(show); 2391 } 2392 2393 static const struct btf_kind_operations int_ops = { 2394 .check_meta = btf_int_check_meta, 2395 .resolve = btf_df_resolve, 2396 .check_member = btf_int_check_member, 2397 .check_kflag_member = btf_int_check_kflag_member, 2398 .log_details = btf_int_log, 2399 .show = btf_int_show, 2400 }; 2401 2402 static int btf_modifier_check_member(struct btf_verifier_env *env, 2403 const struct btf_type *struct_type, 2404 const struct btf_member *member, 2405 const struct btf_type *member_type) 2406 { 2407 const struct btf_type *resolved_type; 2408 u32 resolved_type_id = member->type; 2409 struct btf_member resolved_member; 2410 struct btf *btf = env->btf; 2411 2412 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2413 if (!resolved_type) { 2414 btf_verifier_log_member(env, struct_type, member, 2415 "Invalid member"); 2416 return -EINVAL; 2417 } 2418 2419 resolved_member = *member; 2420 resolved_member.type = resolved_type_id; 2421 2422 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2423 &resolved_member, 2424 resolved_type); 2425 } 2426 2427 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2428 const struct btf_type *struct_type, 2429 const struct btf_member *member, 2430 const struct btf_type *member_type) 2431 { 2432 const struct btf_type *resolved_type; 2433 u32 resolved_type_id = member->type; 2434 struct btf_member resolved_member; 2435 struct btf *btf = env->btf; 2436 2437 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2438 if (!resolved_type) { 2439 btf_verifier_log_member(env, struct_type, member, 2440 "Invalid member"); 2441 return -EINVAL; 2442 } 2443 2444 resolved_member = *member; 2445 resolved_member.type = resolved_type_id; 2446 2447 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2448 &resolved_member, 2449 resolved_type); 2450 } 2451 2452 static int btf_ptr_check_member(struct btf_verifier_env *env, 2453 const struct btf_type *struct_type, 2454 const struct btf_member *member, 2455 const struct btf_type *member_type) 2456 { 2457 u32 struct_size, struct_bits_off, bytes_offset; 2458 2459 struct_size = struct_type->size; 2460 struct_bits_off = member->offset; 2461 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2462 2463 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2464 btf_verifier_log_member(env, struct_type, member, 2465 "Member is not byte aligned"); 2466 return -EINVAL; 2467 } 2468 2469 if (struct_size - bytes_offset < sizeof(void *)) { 2470 btf_verifier_log_member(env, struct_type, member, 2471 "Member exceeds struct_size"); 2472 return -EINVAL; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2479 const struct btf_type *t, 2480 u32 meta_left) 2481 { 2482 const char *value; 2483 2484 if (btf_type_vlen(t)) { 2485 btf_verifier_log_type(env, t, "vlen != 0"); 2486 return -EINVAL; 2487 } 2488 2489 if (btf_type_kflag(t)) { 2490 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2491 return -EINVAL; 2492 } 2493 2494 if (!BTF_TYPE_ID_VALID(t->type)) { 2495 btf_verifier_log_type(env, t, "Invalid type_id"); 2496 return -EINVAL; 2497 } 2498 2499 /* typedef/type_tag type must have a valid name, and other ref types, 2500 * volatile, const, restrict, should have a null name. 2501 */ 2502 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2503 if (!t->name_off || 2504 !btf_name_valid_identifier(env->btf, t->name_off)) { 2505 btf_verifier_log_type(env, t, "Invalid name"); 2506 return -EINVAL; 2507 } 2508 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2509 value = btf_name_by_offset(env->btf, t->name_off); 2510 if (!value || !value[0]) { 2511 btf_verifier_log_type(env, t, "Invalid name"); 2512 return -EINVAL; 2513 } 2514 } else { 2515 if (t->name_off) { 2516 btf_verifier_log_type(env, t, "Invalid name"); 2517 return -EINVAL; 2518 } 2519 } 2520 2521 btf_verifier_log_type(env, t, NULL); 2522 2523 return 0; 2524 } 2525 2526 static int btf_modifier_resolve(struct btf_verifier_env *env, 2527 const struct resolve_vertex *v) 2528 { 2529 const struct btf_type *t = v->t; 2530 const struct btf_type *next_type; 2531 u32 next_type_id = t->type; 2532 struct btf *btf = env->btf; 2533 2534 next_type = btf_type_by_id(btf, next_type_id); 2535 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2536 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2537 return -EINVAL; 2538 } 2539 2540 if (!env_type_is_resolve_sink(env, next_type) && 2541 !env_type_is_resolved(env, next_type_id)) 2542 return env_stack_push(env, next_type, next_type_id); 2543 2544 /* Figure out the resolved next_type_id with size. 2545 * They will be stored in the current modifier's 2546 * resolved_ids and resolved_sizes such that it can 2547 * save us a few type-following when we use it later (e.g. in 2548 * pretty print). 2549 */ 2550 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2551 if (env_type_is_resolved(env, next_type_id)) 2552 next_type = btf_type_id_resolve(btf, &next_type_id); 2553 2554 /* "typedef void new_void", "const void"...etc */ 2555 if (!btf_type_is_void(next_type) && 2556 !btf_type_is_fwd(next_type) && 2557 !btf_type_is_func_proto(next_type)) { 2558 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2559 return -EINVAL; 2560 } 2561 } 2562 2563 env_stack_pop_resolved(env, next_type_id, 0); 2564 2565 return 0; 2566 } 2567 2568 static int btf_var_resolve(struct btf_verifier_env *env, 2569 const struct resolve_vertex *v) 2570 { 2571 const struct btf_type *next_type; 2572 const struct btf_type *t = v->t; 2573 u32 next_type_id = t->type; 2574 struct btf *btf = env->btf; 2575 2576 next_type = btf_type_by_id(btf, next_type_id); 2577 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2578 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2579 return -EINVAL; 2580 } 2581 2582 if (!env_type_is_resolve_sink(env, next_type) && 2583 !env_type_is_resolved(env, next_type_id)) 2584 return env_stack_push(env, next_type, next_type_id); 2585 2586 if (btf_type_is_modifier(next_type)) { 2587 const struct btf_type *resolved_type; 2588 u32 resolved_type_id; 2589 2590 resolved_type_id = next_type_id; 2591 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2592 2593 if (btf_type_is_ptr(resolved_type) && 2594 !env_type_is_resolve_sink(env, resolved_type) && 2595 !env_type_is_resolved(env, resolved_type_id)) 2596 return env_stack_push(env, resolved_type, 2597 resolved_type_id); 2598 } 2599 2600 /* We must resolve to something concrete at this point, no 2601 * forward types or similar that would resolve to size of 2602 * zero is allowed. 2603 */ 2604 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2605 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2606 return -EINVAL; 2607 } 2608 2609 env_stack_pop_resolved(env, next_type_id, 0); 2610 2611 return 0; 2612 } 2613 2614 static int btf_ptr_resolve(struct btf_verifier_env *env, 2615 const struct resolve_vertex *v) 2616 { 2617 const struct btf_type *next_type; 2618 const struct btf_type *t = v->t; 2619 u32 next_type_id = t->type; 2620 struct btf *btf = env->btf; 2621 2622 next_type = btf_type_by_id(btf, next_type_id); 2623 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2624 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2625 return -EINVAL; 2626 } 2627 2628 if (!env_type_is_resolve_sink(env, next_type) && 2629 !env_type_is_resolved(env, next_type_id)) 2630 return env_stack_push(env, next_type, next_type_id); 2631 2632 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2633 * the modifier may have stopped resolving when it was resolved 2634 * to a ptr (last-resolved-ptr). 2635 * 2636 * We now need to continue from the last-resolved-ptr to 2637 * ensure the last-resolved-ptr will not referring back to 2638 * the current ptr (t). 2639 */ 2640 if (btf_type_is_modifier(next_type)) { 2641 const struct btf_type *resolved_type; 2642 u32 resolved_type_id; 2643 2644 resolved_type_id = next_type_id; 2645 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2646 2647 if (btf_type_is_ptr(resolved_type) && 2648 !env_type_is_resolve_sink(env, resolved_type) && 2649 !env_type_is_resolved(env, resolved_type_id)) 2650 return env_stack_push(env, resolved_type, 2651 resolved_type_id); 2652 } 2653 2654 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2655 if (env_type_is_resolved(env, next_type_id)) 2656 next_type = btf_type_id_resolve(btf, &next_type_id); 2657 2658 if (!btf_type_is_void(next_type) && 2659 !btf_type_is_fwd(next_type) && 2660 !btf_type_is_func_proto(next_type)) { 2661 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2662 return -EINVAL; 2663 } 2664 } 2665 2666 env_stack_pop_resolved(env, next_type_id, 0); 2667 2668 return 0; 2669 } 2670 2671 static void btf_modifier_show(const struct btf *btf, 2672 const struct btf_type *t, 2673 u32 type_id, void *data, 2674 u8 bits_offset, struct btf_show *show) 2675 { 2676 if (btf->resolved_ids) 2677 t = btf_type_id_resolve(btf, &type_id); 2678 else 2679 t = btf_type_skip_modifiers(btf, type_id, NULL); 2680 2681 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2682 } 2683 2684 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2685 u32 type_id, void *data, u8 bits_offset, 2686 struct btf_show *show) 2687 { 2688 t = btf_type_id_resolve(btf, &type_id); 2689 2690 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2691 } 2692 2693 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2694 u32 type_id, void *data, u8 bits_offset, 2695 struct btf_show *show) 2696 { 2697 void *safe_data; 2698 2699 safe_data = btf_show_start_type(show, t, type_id, data); 2700 if (!safe_data) 2701 return; 2702 2703 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2704 if (show->flags & BTF_SHOW_PTR_RAW) 2705 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2706 else 2707 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2708 btf_show_end_type(show); 2709 } 2710 2711 static void btf_ref_type_log(struct btf_verifier_env *env, 2712 const struct btf_type *t) 2713 { 2714 btf_verifier_log(env, "type_id=%u", t->type); 2715 } 2716 2717 static struct btf_kind_operations modifier_ops = { 2718 .check_meta = btf_ref_type_check_meta, 2719 .resolve = btf_modifier_resolve, 2720 .check_member = btf_modifier_check_member, 2721 .check_kflag_member = btf_modifier_check_kflag_member, 2722 .log_details = btf_ref_type_log, 2723 .show = btf_modifier_show, 2724 }; 2725 2726 static struct btf_kind_operations ptr_ops = { 2727 .check_meta = btf_ref_type_check_meta, 2728 .resolve = btf_ptr_resolve, 2729 .check_member = btf_ptr_check_member, 2730 .check_kflag_member = btf_generic_check_kflag_member, 2731 .log_details = btf_ref_type_log, 2732 .show = btf_ptr_show, 2733 }; 2734 2735 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2736 const struct btf_type *t, 2737 u32 meta_left) 2738 { 2739 if (btf_type_vlen(t)) { 2740 btf_verifier_log_type(env, t, "vlen != 0"); 2741 return -EINVAL; 2742 } 2743 2744 if (t->type) { 2745 btf_verifier_log_type(env, t, "type != 0"); 2746 return -EINVAL; 2747 } 2748 2749 /* fwd type must have a valid name */ 2750 if (!t->name_off || 2751 !btf_name_valid_identifier(env->btf, t->name_off)) { 2752 btf_verifier_log_type(env, t, "Invalid name"); 2753 return -EINVAL; 2754 } 2755 2756 btf_verifier_log_type(env, t, NULL); 2757 2758 return 0; 2759 } 2760 2761 static void btf_fwd_type_log(struct btf_verifier_env *env, 2762 const struct btf_type *t) 2763 { 2764 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2765 } 2766 2767 static struct btf_kind_operations fwd_ops = { 2768 .check_meta = btf_fwd_check_meta, 2769 .resolve = btf_df_resolve, 2770 .check_member = btf_df_check_member, 2771 .check_kflag_member = btf_df_check_kflag_member, 2772 .log_details = btf_fwd_type_log, 2773 .show = btf_df_show, 2774 }; 2775 2776 static int btf_array_check_member(struct btf_verifier_env *env, 2777 const struct btf_type *struct_type, 2778 const struct btf_member *member, 2779 const struct btf_type *member_type) 2780 { 2781 u32 struct_bits_off = member->offset; 2782 u32 struct_size, bytes_offset; 2783 u32 array_type_id, array_size; 2784 struct btf *btf = env->btf; 2785 2786 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2787 btf_verifier_log_member(env, struct_type, member, 2788 "Member is not byte aligned"); 2789 return -EINVAL; 2790 } 2791 2792 array_type_id = member->type; 2793 btf_type_id_size(btf, &array_type_id, &array_size); 2794 struct_size = struct_type->size; 2795 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2796 if (struct_size - bytes_offset < array_size) { 2797 btf_verifier_log_member(env, struct_type, member, 2798 "Member exceeds struct_size"); 2799 return -EINVAL; 2800 } 2801 2802 return 0; 2803 } 2804 2805 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2806 const struct btf_type *t, 2807 u32 meta_left) 2808 { 2809 const struct btf_array *array = btf_type_array(t); 2810 u32 meta_needed = sizeof(*array); 2811 2812 if (meta_left < meta_needed) { 2813 btf_verifier_log_basic(env, t, 2814 "meta_left:%u meta_needed:%u", 2815 meta_left, meta_needed); 2816 return -EINVAL; 2817 } 2818 2819 /* array type should not have a name */ 2820 if (t->name_off) { 2821 btf_verifier_log_type(env, t, "Invalid name"); 2822 return -EINVAL; 2823 } 2824 2825 if (btf_type_vlen(t)) { 2826 btf_verifier_log_type(env, t, "vlen != 0"); 2827 return -EINVAL; 2828 } 2829 2830 if (btf_type_kflag(t)) { 2831 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2832 return -EINVAL; 2833 } 2834 2835 if (t->size) { 2836 btf_verifier_log_type(env, t, "size != 0"); 2837 return -EINVAL; 2838 } 2839 2840 /* Array elem type and index type cannot be in type void, 2841 * so !array->type and !array->index_type are not allowed. 2842 */ 2843 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2844 btf_verifier_log_type(env, t, "Invalid elem"); 2845 return -EINVAL; 2846 } 2847 2848 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2849 btf_verifier_log_type(env, t, "Invalid index"); 2850 return -EINVAL; 2851 } 2852 2853 btf_verifier_log_type(env, t, NULL); 2854 2855 return meta_needed; 2856 } 2857 2858 static int btf_array_resolve(struct btf_verifier_env *env, 2859 const struct resolve_vertex *v) 2860 { 2861 const struct btf_array *array = btf_type_array(v->t); 2862 const struct btf_type *elem_type, *index_type; 2863 u32 elem_type_id, index_type_id; 2864 struct btf *btf = env->btf; 2865 u32 elem_size; 2866 2867 /* Check array->index_type */ 2868 index_type_id = array->index_type; 2869 index_type = btf_type_by_id(btf, index_type_id); 2870 if (btf_type_nosize_or_null(index_type) || 2871 btf_type_is_resolve_source_only(index_type)) { 2872 btf_verifier_log_type(env, v->t, "Invalid index"); 2873 return -EINVAL; 2874 } 2875 2876 if (!env_type_is_resolve_sink(env, index_type) && 2877 !env_type_is_resolved(env, index_type_id)) 2878 return env_stack_push(env, index_type, index_type_id); 2879 2880 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2881 if (!index_type || !btf_type_is_int(index_type) || 2882 !btf_type_int_is_regular(index_type)) { 2883 btf_verifier_log_type(env, v->t, "Invalid index"); 2884 return -EINVAL; 2885 } 2886 2887 /* Check array->type */ 2888 elem_type_id = array->type; 2889 elem_type = btf_type_by_id(btf, elem_type_id); 2890 if (btf_type_nosize_or_null(elem_type) || 2891 btf_type_is_resolve_source_only(elem_type)) { 2892 btf_verifier_log_type(env, v->t, 2893 "Invalid elem"); 2894 return -EINVAL; 2895 } 2896 2897 if (!env_type_is_resolve_sink(env, elem_type) && 2898 !env_type_is_resolved(env, elem_type_id)) 2899 return env_stack_push(env, elem_type, elem_type_id); 2900 2901 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2902 if (!elem_type) { 2903 btf_verifier_log_type(env, v->t, "Invalid elem"); 2904 return -EINVAL; 2905 } 2906 2907 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2908 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2909 return -EINVAL; 2910 } 2911 2912 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2913 btf_verifier_log_type(env, v->t, 2914 "Array size overflows U32_MAX"); 2915 return -EINVAL; 2916 } 2917 2918 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2919 2920 return 0; 2921 } 2922 2923 static void btf_array_log(struct btf_verifier_env *env, 2924 const struct btf_type *t) 2925 { 2926 const struct btf_array *array = btf_type_array(t); 2927 2928 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2929 array->type, array->index_type, array->nelems); 2930 } 2931 2932 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2933 u32 type_id, void *data, u8 bits_offset, 2934 struct btf_show *show) 2935 { 2936 const struct btf_array *array = btf_type_array(t); 2937 const struct btf_kind_operations *elem_ops; 2938 const struct btf_type *elem_type; 2939 u32 i, elem_size = 0, elem_type_id; 2940 u16 encoding = 0; 2941 2942 elem_type_id = array->type; 2943 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2944 if (elem_type && btf_type_has_size(elem_type)) 2945 elem_size = elem_type->size; 2946 2947 if (elem_type && btf_type_is_int(elem_type)) { 2948 u32 int_type = btf_type_int(elem_type); 2949 2950 encoding = BTF_INT_ENCODING(int_type); 2951 2952 /* 2953 * BTF_INT_CHAR encoding never seems to be set for 2954 * char arrays, so if size is 1 and element is 2955 * printable as a char, we'll do that. 2956 */ 2957 if (elem_size == 1) 2958 encoding = BTF_INT_CHAR; 2959 } 2960 2961 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2962 return; 2963 2964 if (!elem_type) 2965 goto out; 2966 elem_ops = btf_type_ops(elem_type); 2967 2968 for (i = 0; i < array->nelems; i++) { 2969 2970 btf_show_start_array_member(show); 2971 2972 elem_ops->show(btf, elem_type, elem_type_id, data, 2973 bits_offset, show); 2974 data += elem_size; 2975 2976 btf_show_end_array_member(show); 2977 2978 if (show->state.array_terminated) 2979 break; 2980 } 2981 out: 2982 btf_show_end_array_type(show); 2983 } 2984 2985 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2986 u32 type_id, void *data, u8 bits_offset, 2987 struct btf_show *show) 2988 { 2989 const struct btf_member *m = show->state.member; 2990 2991 /* 2992 * First check if any members would be shown (are non-zero). 2993 * See comments above "struct btf_show" definition for more 2994 * details on how this works at a high-level. 2995 */ 2996 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2997 if (!show->state.depth_check) { 2998 show->state.depth_check = show->state.depth + 1; 2999 show->state.depth_to_show = 0; 3000 } 3001 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3002 show->state.member = m; 3003 3004 if (show->state.depth_check != show->state.depth + 1) 3005 return; 3006 show->state.depth_check = 0; 3007 3008 if (show->state.depth_to_show <= show->state.depth) 3009 return; 3010 /* 3011 * Reaching here indicates we have recursed and found 3012 * non-zero array member(s). 3013 */ 3014 } 3015 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3016 } 3017 3018 static struct btf_kind_operations array_ops = { 3019 .check_meta = btf_array_check_meta, 3020 .resolve = btf_array_resolve, 3021 .check_member = btf_array_check_member, 3022 .check_kflag_member = btf_generic_check_kflag_member, 3023 .log_details = btf_array_log, 3024 .show = btf_array_show, 3025 }; 3026 3027 static int btf_struct_check_member(struct btf_verifier_env *env, 3028 const struct btf_type *struct_type, 3029 const struct btf_member *member, 3030 const struct btf_type *member_type) 3031 { 3032 u32 struct_bits_off = member->offset; 3033 u32 struct_size, bytes_offset; 3034 3035 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3036 btf_verifier_log_member(env, struct_type, member, 3037 "Member is not byte aligned"); 3038 return -EINVAL; 3039 } 3040 3041 struct_size = struct_type->size; 3042 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3043 if (struct_size - bytes_offset < member_type->size) { 3044 btf_verifier_log_member(env, struct_type, member, 3045 "Member exceeds struct_size"); 3046 return -EINVAL; 3047 } 3048 3049 return 0; 3050 } 3051 3052 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3053 const struct btf_type *t, 3054 u32 meta_left) 3055 { 3056 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3057 const struct btf_member *member; 3058 u32 meta_needed, last_offset; 3059 struct btf *btf = env->btf; 3060 u32 struct_size = t->size; 3061 u32 offset; 3062 u16 i; 3063 3064 meta_needed = btf_type_vlen(t) * sizeof(*member); 3065 if (meta_left < meta_needed) { 3066 btf_verifier_log_basic(env, t, 3067 "meta_left:%u meta_needed:%u", 3068 meta_left, meta_needed); 3069 return -EINVAL; 3070 } 3071 3072 /* struct type either no name or a valid one */ 3073 if (t->name_off && 3074 !btf_name_valid_identifier(env->btf, t->name_off)) { 3075 btf_verifier_log_type(env, t, "Invalid name"); 3076 return -EINVAL; 3077 } 3078 3079 btf_verifier_log_type(env, t, NULL); 3080 3081 last_offset = 0; 3082 for_each_member(i, t, member) { 3083 if (!btf_name_offset_valid(btf, member->name_off)) { 3084 btf_verifier_log_member(env, t, member, 3085 "Invalid member name_offset:%u", 3086 member->name_off); 3087 return -EINVAL; 3088 } 3089 3090 /* struct member either no name or a valid one */ 3091 if (member->name_off && 3092 !btf_name_valid_identifier(btf, member->name_off)) { 3093 btf_verifier_log_member(env, t, member, "Invalid name"); 3094 return -EINVAL; 3095 } 3096 /* A member cannot be in type void */ 3097 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3098 btf_verifier_log_member(env, t, member, 3099 "Invalid type_id"); 3100 return -EINVAL; 3101 } 3102 3103 offset = __btf_member_bit_offset(t, member); 3104 if (is_union && offset) { 3105 btf_verifier_log_member(env, t, member, 3106 "Invalid member bits_offset"); 3107 return -EINVAL; 3108 } 3109 3110 /* 3111 * ">" instead of ">=" because the last member could be 3112 * "char a[0];" 3113 */ 3114 if (last_offset > offset) { 3115 btf_verifier_log_member(env, t, member, 3116 "Invalid member bits_offset"); 3117 return -EINVAL; 3118 } 3119 3120 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3121 btf_verifier_log_member(env, t, member, 3122 "Member bits_offset exceeds its struct size"); 3123 return -EINVAL; 3124 } 3125 3126 btf_verifier_log_member(env, t, member, NULL); 3127 last_offset = offset; 3128 } 3129 3130 return meta_needed; 3131 } 3132 3133 static int btf_struct_resolve(struct btf_verifier_env *env, 3134 const struct resolve_vertex *v) 3135 { 3136 const struct btf_member *member; 3137 int err; 3138 u16 i; 3139 3140 /* Before continue resolving the next_member, 3141 * ensure the last member is indeed resolved to a 3142 * type with size info. 3143 */ 3144 if (v->next_member) { 3145 const struct btf_type *last_member_type; 3146 const struct btf_member *last_member; 3147 u32 last_member_type_id; 3148 3149 last_member = btf_type_member(v->t) + v->next_member - 1; 3150 last_member_type_id = last_member->type; 3151 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3152 last_member_type_id))) 3153 return -EINVAL; 3154 3155 last_member_type = btf_type_by_id(env->btf, 3156 last_member_type_id); 3157 if (btf_type_kflag(v->t)) 3158 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3159 last_member, 3160 last_member_type); 3161 else 3162 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3163 last_member, 3164 last_member_type); 3165 if (err) 3166 return err; 3167 } 3168 3169 for_each_member_from(i, v->next_member, v->t, member) { 3170 u32 member_type_id = member->type; 3171 const struct btf_type *member_type = btf_type_by_id(env->btf, 3172 member_type_id); 3173 3174 if (btf_type_nosize_or_null(member_type) || 3175 btf_type_is_resolve_source_only(member_type)) { 3176 btf_verifier_log_member(env, v->t, member, 3177 "Invalid member"); 3178 return -EINVAL; 3179 } 3180 3181 if (!env_type_is_resolve_sink(env, member_type) && 3182 !env_type_is_resolved(env, member_type_id)) { 3183 env_stack_set_next_member(env, i + 1); 3184 return env_stack_push(env, member_type, member_type_id); 3185 } 3186 3187 if (btf_type_kflag(v->t)) 3188 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3189 member, 3190 member_type); 3191 else 3192 err = btf_type_ops(member_type)->check_member(env, v->t, 3193 member, 3194 member_type); 3195 if (err) 3196 return err; 3197 } 3198 3199 env_stack_pop_resolved(env, 0, 0); 3200 3201 return 0; 3202 } 3203 3204 static void btf_struct_log(struct btf_verifier_env *env, 3205 const struct btf_type *t) 3206 { 3207 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3208 } 3209 3210 enum btf_field_info_type { 3211 BTF_FIELD_SPIN_LOCK, 3212 BTF_FIELD_TIMER, 3213 BTF_FIELD_KPTR, 3214 }; 3215 3216 enum { 3217 BTF_FIELD_IGNORE = 0, 3218 BTF_FIELD_FOUND = 1, 3219 }; 3220 3221 struct btf_field_info { 3222 enum btf_field_type type; 3223 u32 off; 3224 union { 3225 struct { 3226 u32 type_id; 3227 } kptr; 3228 struct { 3229 const char *node_name; 3230 u32 value_btf_id; 3231 } list_head; 3232 }; 3233 }; 3234 3235 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3236 u32 off, int sz, enum btf_field_type field_type, 3237 struct btf_field_info *info) 3238 { 3239 if (!__btf_type_is_struct(t)) 3240 return BTF_FIELD_IGNORE; 3241 if (t->size != sz) 3242 return BTF_FIELD_IGNORE; 3243 info->type = field_type; 3244 info->off = off; 3245 return BTF_FIELD_FOUND; 3246 } 3247 3248 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3249 u32 off, int sz, struct btf_field_info *info) 3250 { 3251 enum btf_field_type type; 3252 u32 res_id; 3253 3254 /* Permit modifiers on the pointer itself */ 3255 if (btf_type_is_volatile(t)) 3256 t = btf_type_by_id(btf, t->type); 3257 /* For PTR, sz is always == 8 */ 3258 if (!btf_type_is_ptr(t)) 3259 return BTF_FIELD_IGNORE; 3260 t = btf_type_by_id(btf, t->type); 3261 3262 if (!btf_type_is_type_tag(t)) 3263 return BTF_FIELD_IGNORE; 3264 /* Reject extra tags */ 3265 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3266 return -EINVAL; 3267 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3268 type = BPF_KPTR_UNREF; 3269 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) 3270 type = BPF_KPTR_REF; 3271 else 3272 return -EINVAL; 3273 3274 /* Get the base type */ 3275 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3276 /* Only pointer to struct is allowed */ 3277 if (!__btf_type_is_struct(t)) 3278 return -EINVAL; 3279 3280 info->type = type; 3281 info->off = off; 3282 info->kptr.type_id = res_id; 3283 return BTF_FIELD_FOUND; 3284 } 3285 3286 static const char *btf_find_decl_tag_value(const struct btf *btf, 3287 const struct btf_type *pt, 3288 int comp_idx, const char *tag_key) 3289 { 3290 int i; 3291 3292 for (i = 1; i < btf_nr_types(btf); i++) { 3293 const struct btf_type *t = btf_type_by_id(btf, i); 3294 int len = strlen(tag_key); 3295 3296 if (!btf_type_is_decl_tag(t)) 3297 continue; 3298 if (pt != btf_type_by_id(btf, t->type) || 3299 btf_type_decl_tag(t)->component_idx != comp_idx) 3300 continue; 3301 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3302 continue; 3303 return __btf_name_by_offset(btf, t->name_off) + len; 3304 } 3305 return NULL; 3306 } 3307 3308 static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt, 3309 const struct btf_type *t, int comp_idx, 3310 u32 off, int sz, struct btf_field_info *info) 3311 { 3312 const char *value_type; 3313 const char *list_node; 3314 s32 id; 3315 3316 if (!__btf_type_is_struct(t)) 3317 return BTF_FIELD_IGNORE; 3318 if (t->size != sz) 3319 return BTF_FIELD_IGNORE; 3320 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3321 if (!value_type) 3322 return -EINVAL; 3323 list_node = strstr(value_type, ":"); 3324 if (!list_node) 3325 return -EINVAL; 3326 value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN); 3327 if (!value_type) 3328 return -ENOMEM; 3329 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3330 kfree(value_type); 3331 if (id < 0) 3332 return id; 3333 list_node++; 3334 if (str_is_empty(list_node)) 3335 return -EINVAL; 3336 info->type = BPF_LIST_HEAD; 3337 info->off = off; 3338 info->list_head.value_btf_id = id; 3339 info->list_head.node_name = list_node; 3340 return BTF_FIELD_FOUND; 3341 } 3342 3343 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3344 int *align, int *sz) 3345 { 3346 int type = 0; 3347 3348 if (field_mask & BPF_SPIN_LOCK) { 3349 if (!strcmp(name, "bpf_spin_lock")) { 3350 if (*seen_mask & BPF_SPIN_LOCK) 3351 return -E2BIG; 3352 *seen_mask |= BPF_SPIN_LOCK; 3353 type = BPF_SPIN_LOCK; 3354 goto end; 3355 } 3356 } 3357 if (field_mask & BPF_TIMER) { 3358 if (!strcmp(name, "bpf_timer")) { 3359 if (*seen_mask & BPF_TIMER) 3360 return -E2BIG; 3361 *seen_mask |= BPF_TIMER; 3362 type = BPF_TIMER; 3363 goto end; 3364 } 3365 } 3366 if (field_mask & BPF_LIST_HEAD) { 3367 if (!strcmp(name, "bpf_list_head")) { 3368 type = BPF_LIST_HEAD; 3369 goto end; 3370 } 3371 } 3372 if (field_mask & BPF_LIST_NODE) { 3373 if (!strcmp(name, "bpf_list_node")) { 3374 type = BPF_LIST_NODE; 3375 goto end; 3376 } 3377 } 3378 /* Only return BPF_KPTR when all other types with matchable names fail */ 3379 if (field_mask & BPF_KPTR) { 3380 type = BPF_KPTR_REF; 3381 goto end; 3382 } 3383 return 0; 3384 end: 3385 *sz = btf_field_type_size(type); 3386 *align = btf_field_type_align(type); 3387 return type; 3388 } 3389 3390 static int btf_find_struct_field(const struct btf *btf, 3391 const struct btf_type *t, u32 field_mask, 3392 struct btf_field_info *info, int info_cnt) 3393 { 3394 int ret, idx = 0, align, sz, field_type; 3395 const struct btf_member *member; 3396 struct btf_field_info tmp; 3397 u32 i, off, seen_mask = 0; 3398 3399 for_each_member(i, t, member) { 3400 const struct btf_type *member_type = btf_type_by_id(btf, 3401 member->type); 3402 3403 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3404 field_mask, &seen_mask, &align, &sz); 3405 if (field_type == 0) 3406 continue; 3407 if (field_type < 0) 3408 return field_type; 3409 3410 off = __btf_member_bit_offset(t, member); 3411 if (off % 8) 3412 /* valid C code cannot generate such BTF */ 3413 return -EINVAL; 3414 off /= 8; 3415 if (off % align) 3416 continue; 3417 3418 switch (field_type) { 3419 case BPF_SPIN_LOCK: 3420 case BPF_TIMER: 3421 case BPF_LIST_NODE: 3422 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3423 idx < info_cnt ? &info[idx] : &tmp); 3424 if (ret < 0) 3425 return ret; 3426 break; 3427 case BPF_KPTR_UNREF: 3428 case BPF_KPTR_REF: 3429 ret = btf_find_kptr(btf, member_type, off, sz, 3430 idx < info_cnt ? &info[idx] : &tmp); 3431 if (ret < 0) 3432 return ret; 3433 break; 3434 case BPF_LIST_HEAD: 3435 ret = btf_find_list_head(btf, t, member_type, i, off, sz, 3436 idx < info_cnt ? &info[idx] : &tmp); 3437 if (ret < 0) 3438 return ret; 3439 break; 3440 default: 3441 return -EFAULT; 3442 } 3443 3444 if (ret == BTF_FIELD_IGNORE) 3445 continue; 3446 if (idx >= info_cnt) 3447 return -E2BIG; 3448 ++idx; 3449 } 3450 return idx; 3451 } 3452 3453 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3454 u32 field_mask, struct btf_field_info *info, 3455 int info_cnt) 3456 { 3457 int ret, idx = 0, align, sz, field_type; 3458 const struct btf_var_secinfo *vsi; 3459 struct btf_field_info tmp; 3460 u32 i, off, seen_mask = 0; 3461 3462 for_each_vsi(i, t, vsi) { 3463 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3464 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3465 3466 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3467 field_mask, &seen_mask, &align, &sz); 3468 if (field_type == 0) 3469 continue; 3470 if (field_type < 0) 3471 return field_type; 3472 3473 off = vsi->offset; 3474 if (vsi->size != sz) 3475 continue; 3476 if (off % align) 3477 continue; 3478 3479 switch (field_type) { 3480 case BPF_SPIN_LOCK: 3481 case BPF_TIMER: 3482 case BPF_LIST_NODE: 3483 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3484 idx < info_cnt ? &info[idx] : &tmp); 3485 if (ret < 0) 3486 return ret; 3487 break; 3488 case BPF_KPTR_UNREF: 3489 case BPF_KPTR_REF: 3490 ret = btf_find_kptr(btf, var_type, off, sz, 3491 idx < info_cnt ? &info[idx] : &tmp); 3492 if (ret < 0) 3493 return ret; 3494 break; 3495 case BPF_LIST_HEAD: 3496 ret = btf_find_list_head(btf, var, var_type, -1, off, sz, 3497 idx < info_cnt ? &info[idx] : &tmp); 3498 if (ret < 0) 3499 return ret; 3500 break; 3501 default: 3502 return -EFAULT; 3503 } 3504 3505 if (ret == BTF_FIELD_IGNORE) 3506 continue; 3507 if (idx >= info_cnt) 3508 return -E2BIG; 3509 ++idx; 3510 } 3511 return idx; 3512 } 3513 3514 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3515 u32 field_mask, struct btf_field_info *info, 3516 int info_cnt) 3517 { 3518 if (__btf_type_is_struct(t)) 3519 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3520 else if (btf_type_is_datasec(t)) 3521 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3522 return -EINVAL; 3523 } 3524 3525 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3526 struct btf_field_info *info) 3527 { 3528 struct module *mod = NULL; 3529 const struct btf_type *t; 3530 struct btf *kernel_btf; 3531 int ret; 3532 s32 id; 3533 3534 /* Find type in map BTF, and use it to look up the matching type 3535 * in vmlinux or module BTFs, by name and kind. 3536 */ 3537 t = btf_type_by_id(btf, info->kptr.type_id); 3538 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3539 &kernel_btf); 3540 if (id < 0) 3541 return id; 3542 3543 /* Find and stash the function pointer for the destruction function that 3544 * needs to be eventually invoked from the map free path. 3545 */ 3546 if (info->type == BPF_KPTR_REF) { 3547 const struct btf_type *dtor_func; 3548 const char *dtor_func_name; 3549 unsigned long addr; 3550 s32 dtor_btf_id; 3551 3552 /* This call also serves as a whitelist of allowed objects that 3553 * can be used as a referenced pointer and be stored in a map at 3554 * the same time. 3555 */ 3556 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); 3557 if (dtor_btf_id < 0) { 3558 ret = dtor_btf_id; 3559 goto end_btf; 3560 } 3561 3562 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); 3563 if (!dtor_func) { 3564 ret = -ENOENT; 3565 goto end_btf; 3566 } 3567 3568 if (btf_is_module(kernel_btf)) { 3569 mod = btf_try_get_module(kernel_btf); 3570 if (!mod) { 3571 ret = -ENXIO; 3572 goto end_btf; 3573 } 3574 } 3575 3576 /* We already verified dtor_func to be btf_type_is_func 3577 * in register_btf_id_dtor_kfuncs. 3578 */ 3579 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); 3580 addr = kallsyms_lookup_name(dtor_func_name); 3581 if (!addr) { 3582 ret = -EINVAL; 3583 goto end_mod; 3584 } 3585 field->kptr.dtor = (void *)addr; 3586 } 3587 3588 field->kptr.btf_id = id; 3589 field->kptr.btf = kernel_btf; 3590 field->kptr.module = mod; 3591 return 0; 3592 end_mod: 3593 module_put(mod); 3594 end_btf: 3595 btf_put(kernel_btf); 3596 return ret; 3597 } 3598 3599 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3600 struct btf_field_info *info) 3601 { 3602 const struct btf_type *t, *n = NULL; 3603 const struct btf_member *member; 3604 u32 offset; 3605 int i; 3606 3607 t = btf_type_by_id(btf, info->list_head.value_btf_id); 3608 /* We've already checked that value_btf_id is a struct type. We 3609 * just need to figure out the offset of the list_node, and 3610 * verify its type. 3611 */ 3612 for_each_member(i, t, member) { 3613 if (strcmp(info->list_head.node_name, __btf_name_by_offset(btf, member->name_off))) 3614 continue; 3615 /* Invalid BTF, two members with same name */ 3616 if (n) 3617 return -EINVAL; 3618 n = btf_type_by_id(btf, member->type); 3619 if (!__btf_type_is_struct(n)) 3620 return -EINVAL; 3621 if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off))) 3622 return -EINVAL; 3623 offset = __btf_member_bit_offset(n, member); 3624 if (offset % 8) 3625 return -EINVAL; 3626 offset /= 8; 3627 if (offset % __alignof__(struct bpf_list_node)) 3628 return -EINVAL; 3629 3630 field->list_head.btf = (struct btf *)btf; 3631 field->list_head.value_btf_id = info->list_head.value_btf_id; 3632 field->list_head.node_offset = offset; 3633 } 3634 if (!n) 3635 return -ENOENT; 3636 return 0; 3637 } 3638 3639 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3640 u32 field_mask, u32 value_size) 3641 { 3642 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3643 struct btf_record *rec; 3644 u32 next_off = 0; 3645 int ret, i, cnt; 3646 3647 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3648 if (ret < 0) 3649 return ERR_PTR(ret); 3650 if (!ret) 3651 return NULL; 3652 3653 cnt = ret; 3654 /* This needs to be kzalloc to zero out padding and unused fields, see 3655 * comment in btf_record_equal. 3656 */ 3657 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3658 if (!rec) 3659 return ERR_PTR(-ENOMEM); 3660 3661 rec->spin_lock_off = -EINVAL; 3662 rec->timer_off = -EINVAL; 3663 for (i = 0; i < cnt; i++) { 3664 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) { 3665 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3666 ret = -EFAULT; 3667 goto end; 3668 } 3669 if (info_arr[i].off < next_off) { 3670 ret = -EEXIST; 3671 goto end; 3672 } 3673 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type); 3674 3675 rec->field_mask |= info_arr[i].type; 3676 rec->fields[i].offset = info_arr[i].off; 3677 rec->fields[i].type = info_arr[i].type; 3678 3679 switch (info_arr[i].type) { 3680 case BPF_SPIN_LOCK: 3681 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3682 /* Cache offset for faster lookup at runtime */ 3683 rec->spin_lock_off = rec->fields[i].offset; 3684 break; 3685 case BPF_TIMER: 3686 WARN_ON_ONCE(rec->timer_off >= 0); 3687 /* Cache offset for faster lookup at runtime */ 3688 rec->timer_off = rec->fields[i].offset; 3689 break; 3690 case BPF_KPTR_UNREF: 3691 case BPF_KPTR_REF: 3692 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3693 if (ret < 0) 3694 goto end; 3695 break; 3696 case BPF_LIST_HEAD: 3697 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3698 if (ret < 0) 3699 goto end; 3700 break; 3701 case BPF_LIST_NODE: 3702 break; 3703 default: 3704 ret = -EFAULT; 3705 goto end; 3706 } 3707 rec->cnt++; 3708 } 3709 3710 /* bpf_list_head requires bpf_spin_lock */ 3711 if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) { 3712 ret = -EINVAL; 3713 goto end; 3714 } 3715 3716 return rec; 3717 end: 3718 btf_record_free(rec); 3719 return ERR_PTR(ret); 3720 } 3721 3722 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3723 { 3724 int i; 3725 3726 /* There are two owning types, kptr_ref and bpf_list_head. The former 3727 * only supports storing kernel types, which can never store references 3728 * to program allocated local types, atleast not yet. Hence we only need 3729 * to ensure that bpf_list_head ownership does not form cycles. 3730 */ 3731 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD)) 3732 return 0; 3733 for (i = 0; i < rec->cnt; i++) { 3734 struct btf_struct_meta *meta; 3735 u32 btf_id; 3736 3737 if (!(rec->fields[i].type & BPF_LIST_HEAD)) 3738 continue; 3739 btf_id = rec->fields[i].list_head.value_btf_id; 3740 meta = btf_find_struct_meta(btf, btf_id); 3741 if (!meta) 3742 return -EFAULT; 3743 rec->fields[i].list_head.value_rec = meta->record; 3744 3745 if (!(rec->field_mask & BPF_LIST_NODE)) 3746 continue; 3747 3748 /* We need to ensure ownership acyclicity among all types. The 3749 * proper way to do it would be to topologically sort all BTF 3750 * IDs based on the ownership edges, since there can be multiple 3751 * bpf_list_head in a type. Instead, we use the following 3752 * reasoning: 3753 * 3754 * - A type can only be owned by another type in user BTF if it 3755 * has a bpf_list_node. 3756 * - A type can only _own_ another type in user BTF if it has a 3757 * bpf_list_head. 3758 * 3759 * We ensure that if a type has both bpf_list_head and 3760 * bpf_list_node, its element types cannot be owning types. 3761 * 3762 * To ensure acyclicity: 3763 * 3764 * When A only has bpf_list_head, ownership chain can be: 3765 * A -> B -> C 3766 * Where: 3767 * - B has both bpf_list_head and bpf_list_node. 3768 * - C only has bpf_list_node. 3769 * 3770 * When A has both bpf_list_head and bpf_list_node, some other 3771 * type already owns it in the BTF domain, hence it can not own 3772 * another owning type through any of the bpf_list_head edges. 3773 * A -> B 3774 * Where: 3775 * - B only has bpf_list_node. 3776 */ 3777 if (meta->record->field_mask & BPF_LIST_HEAD) 3778 return -ELOOP; 3779 } 3780 return 0; 3781 } 3782 3783 static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv) 3784 { 3785 const u32 a = *(const u32 *)_a; 3786 const u32 b = *(const u32 *)_b; 3787 3788 if (a < b) 3789 return -1; 3790 else if (a > b) 3791 return 1; 3792 return 0; 3793 } 3794 3795 static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv) 3796 { 3797 struct btf_field_offs *foffs = (void *)priv; 3798 u32 *off_base = foffs->field_off; 3799 u32 *a = _a, *b = _b; 3800 u8 *sz_a, *sz_b; 3801 3802 sz_a = foffs->field_sz + (a - off_base); 3803 sz_b = foffs->field_sz + (b - off_base); 3804 3805 swap(*a, *b); 3806 swap(*sz_a, *sz_b); 3807 } 3808 3809 struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec) 3810 { 3811 struct btf_field_offs *foffs; 3812 u32 i, *off; 3813 u8 *sz; 3814 3815 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz)); 3816 if (IS_ERR_OR_NULL(rec)) 3817 return NULL; 3818 3819 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN); 3820 if (!foffs) 3821 return ERR_PTR(-ENOMEM); 3822 3823 off = foffs->field_off; 3824 sz = foffs->field_sz; 3825 for (i = 0; i < rec->cnt; i++) { 3826 off[i] = rec->fields[i].offset; 3827 sz[i] = btf_field_type_size(rec->fields[i].type); 3828 } 3829 foffs->cnt = rec->cnt; 3830 3831 if (foffs->cnt == 1) 3832 return foffs; 3833 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]), 3834 btf_field_offs_cmp, btf_field_offs_swap, foffs); 3835 return foffs; 3836 } 3837 3838 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3839 u32 type_id, void *data, u8 bits_offset, 3840 struct btf_show *show) 3841 { 3842 const struct btf_member *member; 3843 void *safe_data; 3844 u32 i; 3845 3846 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3847 if (!safe_data) 3848 return; 3849 3850 for_each_member(i, t, member) { 3851 const struct btf_type *member_type = btf_type_by_id(btf, 3852 member->type); 3853 const struct btf_kind_operations *ops; 3854 u32 member_offset, bitfield_size; 3855 u32 bytes_offset; 3856 u8 bits8_offset; 3857 3858 btf_show_start_member(show, member); 3859 3860 member_offset = __btf_member_bit_offset(t, member); 3861 bitfield_size = __btf_member_bitfield_size(t, member); 3862 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3863 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3864 if (bitfield_size) { 3865 safe_data = btf_show_start_type(show, member_type, 3866 member->type, 3867 data + bytes_offset); 3868 if (safe_data) 3869 btf_bitfield_show(safe_data, 3870 bits8_offset, 3871 bitfield_size, show); 3872 btf_show_end_type(show); 3873 } else { 3874 ops = btf_type_ops(member_type); 3875 ops->show(btf, member_type, member->type, 3876 data + bytes_offset, bits8_offset, show); 3877 } 3878 3879 btf_show_end_member(show); 3880 } 3881 3882 btf_show_end_struct_type(show); 3883 } 3884 3885 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3886 u32 type_id, void *data, u8 bits_offset, 3887 struct btf_show *show) 3888 { 3889 const struct btf_member *m = show->state.member; 3890 3891 /* 3892 * First check if any members would be shown (are non-zero). 3893 * See comments above "struct btf_show" definition for more 3894 * details on how this works at a high-level. 3895 */ 3896 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3897 if (!show->state.depth_check) { 3898 show->state.depth_check = show->state.depth + 1; 3899 show->state.depth_to_show = 0; 3900 } 3901 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3902 /* Restore saved member data here */ 3903 show->state.member = m; 3904 if (show->state.depth_check != show->state.depth + 1) 3905 return; 3906 show->state.depth_check = 0; 3907 3908 if (show->state.depth_to_show <= show->state.depth) 3909 return; 3910 /* 3911 * Reaching here indicates we have recursed and found 3912 * non-zero child values. 3913 */ 3914 } 3915 3916 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3917 } 3918 3919 static struct btf_kind_operations struct_ops = { 3920 .check_meta = btf_struct_check_meta, 3921 .resolve = btf_struct_resolve, 3922 .check_member = btf_struct_check_member, 3923 .check_kflag_member = btf_generic_check_kflag_member, 3924 .log_details = btf_struct_log, 3925 .show = btf_struct_show, 3926 }; 3927 3928 static int btf_enum_check_member(struct btf_verifier_env *env, 3929 const struct btf_type *struct_type, 3930 const struct btf_member *member, 3931 const struct btf_type *member_type) 3932 { 3933 u32 struct_bits_off = member->offset; 3934 u32 struct_size, bytes_offset; 3935 3936 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3937 btf_verifier_log_member(env, struct_type, member, 3938 "Member is not byte aligned"); 3939 return -EINVAL; 3940 } 3941 3942 struct_size = struct_type->size; 3943 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3944 if (struct_size - bytes_offset < member_type->size) { 3945 btf_verifier_log_member(env, struct_type, member, 3946 "Member exceeds struct_size"); 3947 return -EINVAL; 3948 } 3949 3950 return 0; 3951 } 3952 3953 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3954 const struct btf_type *struct_type, 3955 const struct btf_member *member, 3956 const struct btf_type *member_type) 3957 { 3958 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3959 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3960 3961 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3962 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3963 if (!nr_bits) { 3964 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3965 btf_verifier_log_member(env, struct_type, member, 3966 "Member is not byte aligned"); 3967 return -EINVAL; 3968 } 3969 3970 nr_bits = int_bitsize; 3971 } else if (nr_bits > int_bitsize) { 3972 btf_verifier_log_member(env, struct_type, member, 3973 "Invalid member bitfield_size"); 3974 return -EINVAL; 3975 } 3976 3977 struct_size = struct_type->size; 3978 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3979 if (struct_size < bytes_end) { 3980 btf_verifier_log_member(env, struct_type, member, 3981 "Member exceeds struct_size"); 3982 return -EINVAL; 3983 } 3984 3985 return 0; 3986 } 3987 3988 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3989 const struct btf_type *t, 3990 u32 meta_left) 3991 { 3992 const struct btf_enum *enums = btf_type_enum(t); 3993 struct btf *btf = env->btf; 3994 const char *fmt_str; 3995 u16 i, nr_enums; 3996 u32 meta_needed; 3997 3998 nr_enums = btf_type_vlen(t); 3999 meta_needed = nr_enums * sizeof(*enums); 4000 4001 if (meta_left < meta_needed) { 4002 btf_verifier_log_basic(env, t, 4003 "meta_left:%u meta_needed:%u", 4004 meta_left, meta_needed); 4005 return -EINVAL; 4006 } 4007 4008 if (t->size > 8 || !is_power_of_2(t->size)) { 4009 btf_verifier_log_type(env, t, "Unexpected size"); 4010 return -EINVAL; 4011 } 4012 4013 /* enum type either no name or a valid one */ 4014 if (t->name_off && 4015 !btf_name_valid_identifier(env->btf, t->name_off)) { 4016 btf_verifier_log_type(env, t, "Invalid name"); 4017 return -EINVAL; 4018 } 4019 4020 btf_verifier_log_type(env, t, NULL); 4021 4022 for (i = 0; i < nr_enums; i++) { 4023 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4024 btf_verifier_log(env, "\tInvalid name_offset:%u", 4025 enums[i].name_off); 4026 return -EINVAL; 4027 } 4028 4029 /* enum member must have a valid name */ 4030 if (!enums[i].name_off || 4031 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4032 btf_verifier_log_type(env, t, "Invalid name"); 4033 return -EINVAL; 4034 } 4035 4036 if (env->log.level == BPF_LOG_KERNEL) 4037 continue; 4038 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4039 btf_verifier_log(env, fmt_str, 4040 __btf_name_by_offset(btf, enums[i].name_off), 4041 enums[i].val); 4042 } 4043 4044 return meta_needed; 4045 } 4046 4047 static void btf_enum_log(struct btf_verifier_env *env, 4048 const struct btf_type *t) 4049 { 4050 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4051 } 4052 4053 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4054 u32 type_id, void *data, u8 bits_offset, 4055 struct btf_show *show) 4056 { 4057 const struct btf_enum *enums = btf_type_enum(t); 4058 u32 i, nr_enums = btf_type_vlen(t); 4059 void *safe_data; 4060 int v; 4061 4062 safe_data = btf_show_start_type(show, t, type_id, data); 4063 if (!safe_data) 4064 return; 4065 4066 v = *(int *)safe_data; 4067 4068 for (i = 0; i < nr_enums; i++) { 4069 if (v != enums[i].val) 4070 continue; 4071 4072 btf_show_type_value(show, "%s", 4073 __btf_name_by_offset(btf, 4074 enums[i].name_off)); 4075 4076 btf_show_end_type(show); 4077 return; 4078 } 4079 4080 if (btf_type_kflag(t)) 4081 btf_show_type_value(show, "%d", v); 4082 else 4083 btf_show_type_value(show, "%u", v); 4084 btf_show_end_type(show); 4085 } 4086 4087 static struct btf_kind_operations enum_ops = { 4088 .check_meta = btf_enum_check_meta, 4089 .resolve = btf_df_resolve, 4090 .check_member = btf_enum_check_member, 4091 .check_kflag_member = btf_enum_check_kflag_member, 4092 .log_details = btf_enum_log, 4093 .show = btf_enum_show, 4094 }; 4095 4096 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4097 const struct btf_type *t, 4098 u32 meta_left) 4099 { 4100 const struct btf_enum64 *enums = btf_type_enum64(t); 4101 struct btf *btf = env->btf; 4102 const char *fmt_str; 4103 u16 i, nr_enums; 4104 u32 meta_needed; 4105 4106 nr_enums = btf_type_vlen(t); 4107 meta_needed = nr_enums * sizeof(*enums); 4108 4109 if (meta_left < meta_needed) { 4110 btf_verifier_log_basic(env, t, 4111 "meta_left:%u meta_needed:%u", 4112 meta_left, meta_needed); 4113 return -EINVAL; 4114 } 4115 4116 if (t->size > 8 || !is_power_of_2(t->size)) { 4117 btf_verifier_log_type(env, t, "Unexpected size"); 4118 return -EINVAL; 4119 } 4120 4121 /* enum type either no name or a valid one */ 4122 if (t->name_off && 4123 !btf_name_valid_identifier(env->btf, t->name_off)) { 4124 btf_verifier_log_type(env, t, "Invalid name"); 4125 return -EINVAL; 4126 } 4127 4128 btf_verifier_log_type(env, t, NULL); 4129 4130 for (i = 0; i < nr_enums; i++) { 4131 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4132 btf_verifier_log(env, "\tInvalid name_offset:%u", 4133 enums[i].name_off); 4134 return -EINVAL; 4135 } 4136 4137 /* enum member must have a valid name */ 4138 if (!enums[i].name_off || 4139 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4140 btf_verifier_log_type(env, t, "Invalid name"); 4141 return -EINVAL; 4142 } 4143 4144 if (env->log.level == BPF_LOG_KERNEL) 4145 continue; 4146 4147 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4148 btf_verifier_log(env, fmt_str, 4149 __btf_name_by_offset(btf, enums[i].name_off), 4150 btf_enum64_value(enums + i)); 4151 } 4152 4153 return meta_needed; 4154 } 4155 4156 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4157 u32 type_id, void *data, u8 bits_offset, 4158 struct btf_show *show) 4159 { 4160 const struct btf_enum64 *enums = btf_type_enum64(t); 4161 u32 i, nr_enums = btf_type_vlen(t); 4162 void *safe_data; 4163 s64 v; 4164 4165 safe_data = btf_show_start_type(show, t, type_id, data); 4166 if (!safe_data) 4167 return; 4168 4169 v = *(u64 *)safe_data; 4170 4171 for (i = 0; i < nr_enums; i++) { 4172 if (v != btf_enum64_value(enums + i)) 4173 continue; 4174 4175 btf_show_type_value(show, "%s", 4176 __btf_name_by_offset(btf, 4177 enums[i].name_off)); 4178 4179 btf_show_end_type(show); 4180 return; 4181 } 4182 4183 if (btf_type_kflag(t)) 4184 btf_show_type_value(show, "%lld", v); 4185 else 4186 btf_show_type_value(show, "%llu", v); 4187 btf_show_end_type(show); 4188 } 4189 4190 static struct btf_kind_operations enum64_ops = { 4191 .check_meta = btf_enum64_check_meta, 4192 .resolve = btf_df_resolve, 4193 .check_member = btf_enum_check_member, 4194 .check_kflag_member = btf_enum_check_kflag_member, 4195 .log_details = btf_enum_log, 4196 .show = btf_enum64_show, 4197 }; 4198 4199 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4200 const struct btf_type *t, 4201 u32 meta_left) 4202 { 4203 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4204 4205 if (meta_left < meta_needed) { 4206 btf_verifier_log_basic(env, t, 4207 "meta_left:%u meta_needed:%u", 4208 meta_left, meta_needed); 4209 return -EINVAL; 4210 } 4211 4212 if (t->name_off) { 4213 btf_verifier_log_type(env, t, "Invalid name"); 4214 return -EINVAL; 4215 } 4216 4217 if (btf_type_kflag(t)) { 4218 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4219 return -EINVAL; 4220 } 4221 4222 btf_verifier_log_type(env, t, NULL); 4223 4224 return meta_needed; 4225 } 4226 4227 static void btf_func_proto_log(struct btf_verifier_env *env, 4228 const struct btf_type *t) 4229 { 4230 const struct btf_param *args = (const struct btf_param *)(t + 1); 4231 u16 nr_args = btf_type_vlen(t), i; 4232 4233 btf_verifier_log(env, "return=%u args=(", t->type); 4234 if (!nr_args) { 4235 btf_verifier_log(env, "void"); 4236 goto done; 4237 } 4238 4239 if (nr_args == 1 && !args[0].type) { 4240 /* Only one vararg */ 4241 btf_verifier_log(env, "vararg"); 4242 goto done; 4243 } 4244 4245 btf_verifier_log(env, "%u %s", args[0].type, 4246 __btf_name_by_offset(env->btf, 4247 args[0].name_off)); 4248 for (i = 1; i < nr_args - 1; i++) 4249 btf_verifier_log(env, ", %u %s", args[i].type, 4250 __btf_name_by_offset(env->btf, 4251 args[i].name_off)); 4252 4253 if (nr_args > 1) { 4254 const struct btf_param *last_arg = &args[nr_args - 1]; 4255 4256 if (last_arg->type) 4257 btf_verifier_log(env, ", %u %s", last_arg->type, 4258 __btf_name_by_offset(env->btf, 4259 last_arg->name_off)); 4260 else 4261 btf_verifier_log(env, ", vararg"); 4262 } 4263 4264 done: 4265 btf_verifier_log(env, ")"); 4266 } 4267 4268 static struct btf_kind_operations func_proto_ops = { 4269 .check_meta = btf_func_proto_check_meta, 4270 .resolve = btf_df_resolve, 4271 /* 4272 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4273 * a struct's member. 4274 * 4275 * It should be a function pointer instead. 4276 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4277 * 4278 * Hence, there is no btf_func_check_member(). 4279 */ 4280 .check_member = btf_df_check_member, 4281 .check_kflag_member = btf_df_check_kflag_member, 4282 .log_details = btf_func_proto_log, 4283 .show = btf_df_show, 4284 }; 4285 4286 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4287 const struct btf_type *t, 4288 u32 meta_left) 4289 { 4290 if (!t->name_off || 4291 !btf_name_valid_identifier(env->btf, t->name_off)) { 4292 btf_verifier_log_type(env, t, "Invalid name"); 4293 return -EINVAL; 4294 } 4295 4296 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4297 btf_verifier_log_type(env, t, "Invalid func linkage"); 4298 return -EINVAL; 4299 } 4300 4301 if (btf_type_kflag(t)) { 4302 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4303 return -EINVAL; 4304 } 4305 4306 btf_verifier_log_type(env, t, NULL); 4307 4308 return 0; 4309 } 4310 4311 static int btf_func_resolve(struct btf_verifier_env *env, 4312 const struct resolve_vertex *v) 4313 { 4314 const struct btf_type *t = v->t; 4315 u32 next_type_id = t->type; 4316 int err; 4317 4318 err = btf_func_check(env, t); 4319 if (err) 4320 return err; 4321 4322 env_stack_pop_resolved(env, next_type_id, 0); 4323 return 0; 4324 } 4325 4326 static struct btf_kind_operations func_ops = { 4327 .check_meta = btf_func_check_meta, 4328 .resolve = btf_func_resolve, 4329 .check_member = btf_df_check_member, 4330 .check_kflag_member = btf_df_check_kflag_member, 4331 .log_details = btf_ref_type_log, 4332 .show = btf_df_show, 4333 }; 4334 4335 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4336 const struct btf_type *t, 4337 u32 meta_left) 4338 { 4339 const struct btf_var *var; 4340 u32 meta_needed = sizeof(*var); 4341 4342 if (meta_left < meta_needed) { 4343 btf_verifier_log_basic(env, t, 4344 "meta_left:%u meta_needed:%u", 4345 meta_left, meta_needed); 4346 return -EINVAL; 4347 } 4348 4349 if (btf_type_vlen(t)) { 4350 btf_verifier_log_type(env, t, "vlen != 0"); 4351 return -EINVAL; 4352 } 4353 4354 if (btf_type_kflag(t)) { 4355 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4356 return -EINVAL; 4357 } 4358 4359 if (!t->name_off || 4360 !__btf_name_valid(env->btf, t->name_off, true)) { 4361 btf_verifier_log_type(env, t, "Invalid name"); 4362 return -EINVAL; 4363 } 4364 4365 /* A var cannot be in type void */ 4366 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4367 btf_verifier_log_type(env, t, "Invalid type_id"); 4368 return -EINVAL; 4369 } 4370 4371 var = btf_type_var(t); 4372 if (var->linkage != BTF_VAR_STATIC && 4373 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4374 btf_verifier_log_type(env, t, "Linkage not supported"); 4375 return -EINVAL; 4376 } 4377 4378 btf_verifier_log_type(env, t, NULL); 4379 4380 return meta_needed; 4381 } 4382 4383 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4384 { 4385 const struct btf_var *var = btf_type_var(t); 4386 4387 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4388 } 4389 4390 static const struct btf_kind_operations var_ops = { 4391 .check_meta = btf_var_check_meta, 4392 .resolve = btf_var_resolve, 4393 .check_member = btf_df_check_member, 4394 .check_kflag_member = btf_df_check_kflag_member, 4395 .log_details = btf_var_log, 4396 .show = btf_var_show, 4397 }; 4398 4399 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4400 const struct btf_type *t, 4401 u32 meta_left) 4402 { 4403 const struct btf_var_secinfo *vsi; 4404 u64 last_vsi_end_off = 0, sum = 0; 4405 u32 i, meta_needed; 4406 4407 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4408 if (meta_left < meta_needed) { 4409 btf_verifier_log_basic(env, t, 4410 "meta_left:%u meta_needed:%u", 4411 meta_left, meta_needed); 4412 return -EINVAL; 4413 } 4414 4415 if (!t->size) { 4416 btf_verifier_log_type(env, t, "size == 0"); 4417 return -EINVAL; 4418 } 4419 4420 if (btf_type_kflag(t)) { 4421 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4422 return -EINVAL; 4423 } 4424 4425 if (!t->name_off || 4426 !btf_name_valid_section(env->btf, t->name_off)) { 4427 btf_verifier_log_type(env, t, "Invalid name"); 4428 return -EINVAL; 4429 } 4430 4431 btf_verifier_log_type(env, t, NULL); 4432 4433 for_each_vsi(i, t, vsi) { 4434 /* A var cannot be in type void */ 4435 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4436 btf_verifier_log_vsi(env, t, vsi, 4437 "Invalid type_id"); 4438 return -EINVAL; 4439 } 4440 4441 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4442 btf_verifier_log_vsi(env, t, vsi, 4443 "Invalid offset"); 4444 return -EINVAL; 4445 } 4446 4447 if (!vsi->size || vsi->size > t->size) { 4448 btf_verifier_log_vsi(env, t, vsi, 4449 "Invalid size"); 4450 return -EINVAL; 4451 } 4452 4453 last_vsi_end_off = vsi->offset + vsi->size; 4454 if (last_vsi_end_off > t->size) { 4455 btf_verifier_log_vsi(env, t, vsi, 4456 "Invalid offset+size"); 4457 return -EINVAL; 4458 } 4459 4460 btf_verifier_log_vsi(env, t, vsi, NULL); 4461 sum += vsi->size; 4462 } 4463 4464 if (t->size < sum) { 4465 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4466 return -EINVAL; 4467 } 4468 4469 return meta_needed; 4470 } 4471 4472 static int btf_datasec_resolve(struct btf_verifier_env *env, 4473 const struct resolve_vertex *v) 4474 { 4475 const struct btf_var_secinfo *vsi; 4476 struct btf *btf = env->btf; 4477 u16 i; 4478 4479 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4480 u32 var_type_id = vsi->type, type_id, type_size = 0; 4481 const struct btf_type *var_type = btf_type_by_id(env->btf, 4482 var_type_id); 4483 if (!var_type || !btf_type_is_var(var_type)) { 4484 btf_verifier_log_vsi(env, v->t, vsi, 4485 "Not a VAR kind member"); 4486 return -EINVAL; 4487 } 4488 4489 if (!env_type_is_resolve_sink(env, var_type) && 4490 !env_type_is_resolved(env, var_type_id)) { 4491 env_stack_set_next_member(env, i + 1); 4492 return env_stack_push(env, var_type, var_type_id); 4493 } 4494 4495 type_id = var_type->type; 4496 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4497 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4498 return -EINVAL; 4499 } 4500 4501 if (vsi->size < type_size) { 4502 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4503 return -EINVAL; 4504 } 4505 } 4506 4507 env_stack_pop_resolved(env, 0, 0); 4508 return 0; 4509 } 4510 4511 static void btf_datasec_log(struct btf_verifier_env *env, 4512 const struct btf_type *t) 4513 { 4514 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4515 } 4516 4517 static void btf_datasec_show(const struct btf *btf, 4518 const struct btf_type *t, u32 type_id, 4519 void *data, u8 bits_offset, 4520 struct btf_show *show) 4521 { 4522 const struct btf_var_secinfo *vsi; 4523 const struct btf_type *var; 4524 u32 i; 4525 4526 if (!btf_show_start_type(show, t, type_id, data)) 4527 return; 4528 4529 btf_show_type_value(show, "section (\"%s\") = {", 4530 __btf_name_by_offset(btf, t->name_off)); 4531 for_each_vsi(i, t, vsi) { 4532 var = btf_type_by_id(btf, vsi->type); 4533 if (i) 4534 btf_show(show, ","); 4535 btf_type_ops(var)->show(btf, var, vsi->type, 4536 data + vsi->offset, bits_offset, show); 4537 } 4538 btf_show_end_type(show); 4539 } 4540 4541 static const struct btf_kind_operations datasec_ops = { 4542 .check_meta = btf_datasec_check_meta, 4543 .resolve = btf_datasec_resolve, 4544 .check_member = btf_df_check_member, 4545 .check_kflag_member = btf_df_check_kflag_member, 4546 .log_details = btf_datasec_log, 4547 .show = btf_datasec_show, 4548 }; 4549 4550 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4551 const struct btf_type *t, 4552 u32 meta_left) 4553 { 4554 if (btf_type_vlen(t)) { 4555 btf_verifier_log_type(env, t, "vlen != 0"); 4556 return -EINVAL; 4557 } 4558 4559 if (btf_type_kflag(t)) { 4560 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4561 return -EINVAL; 4562 } 4563 4564 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4565 t->size != 16) { 4566 btf_verifier_log_type(env, t, "Invalid type_size"); 4567 return -EINVAL; 4568 } 4569 4570 btf_verifier_log_type(env, t, NULL); 4571 4572 return 0; 4573 } 4574 4575 static int btf_float_check_member(struct btf_verifier_env *env, 4576 const struct btf_type *struct_type, 4577 const struct btf_member *member, 4578 const struct btf_type *member_type) 4579 { 4580 u64 start_offset_bytes; 4581 u64 end_offset_bytes; 4582 u64 misalign_bits; 4583 u64 align_bytes; 4584 u64 align_bits; 4585 4586 /* Different architectures have different alignment requirements, so 4587 * here we check only for the reasonable minimum. This way we ensure 4588 * that types after CO-RE can pass the kernel BTF verifier. 4589 */ 4590 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4591 align_bits = align_bytes * BITS_PER_BYTE; 4592 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4593 if (misalign_bits) { 4594 btf_verifier_log_member(env, struct_type, member, 4595 "Member is not properly aligned"); 4596 return -EINVAL; 4597 } 4598 4599 start_offset_bytes = member->offset / BITS_PER_BYTE; 4600 end_offset_bytes = start_offset_bytes + member_type->size; 4601 if (end_offset_bytes > struct_type->size) { 4602 btf_verifier_log_member(env, struct_type, member, 4603 "Member exceeds struct_size"); 4604 return -EINVAL; 4605 } 4606 4607 return 0; 4608 } 4609 4610 static void btf_float_log(struct btf_verifier_env *env, 4611 const struct btf_type *t) 4612 { 4613 btf_verifier_log(env, "size=%u", t->size); 4614 } 4615 4616 static const struct btf_kind_operations float_ops = { 4617 .check_meta = btf_float_check_meta, 4618 .resolve = btf_df_resolve, 4619 .check_member = btf_float_check_member, 4620 .check_kflag_member = btf_generic_check_kflag_member, 4621 .log_details = btf_float_log, 4622 .show = btf_df_show, 4623 }; 4624 4625 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4626 const struct btf_type *t, 4627 u32 meta_left) 4628 { 4629 const struct btf_decl_tag *tag; 4630 u32 meta_needed = sizeof(*tag); 4631 s32 component_idx; 4632 const char *value; 4633 4634 if (meta_left < meta_needed) { 4635 btf_verifier_log_basic(env, t, 4636 "meta_left:%u meta_needed:%u", 4637 meta_left, meta_needed); 4638 return -EINVAL; 4639 } 4640 4641 value = btf_name_by_offset(env->btf, t->name_off); 4642 if (!value || !value[0]) { 4643 btf_verifier_log_type(env, t, "Invalid value"); 4644 return -EINVAL; 4645 } 4646 4647 if (btf_type_vlen(t)) { 4648 btf_verifier_log_type(env, t, "vlen != 0"); 4649 return -EINVAL; 4650 } 4651 4652 if (btf_type_kflag(t)) { 4653 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4654 return -EINVAL; 4655 } 4656 4657 component_idx = btf_type_decl_tag(t)->component_idx; 4658 if (component_idx < -1) { 4659 btf_verifier_log_type(env, t, "Invalid component_idx"); 4660 return -EINVAL; 4661 } 4662 4663 btf_verifier_log_type(env, t, NULL); 4664 4665 return meta_needed; 4666 } 4667 4668 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4669 const struct resolve_vertex *v) 4670 { 4671 const struct btf_type *next_type; 4672 const struct btf_type *t = v->t; 4673 u32 next_type_id = t->type; 4674 struct btf *btf = env->btf; 4675 s32 component_idx; 4676 u32 vlen; 4677 4678 next_type = btf_type_by_id(btf, next_type_id); 4679 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4680 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4681 return -EINVAL; 4682 } 4683 4684 if (!env_type_is_resolve_sink(env, next_type) && 4685 !env_type_is_resolved(env, next_type_id)) 4686 return env_stack_push(env, next_type, next_type_id); 4687 4688 component_idx = btf_type_decl_tag(t)->component_idx; 4689 if (component_idx != -1) { 4690 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4691 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4692 return -EINVAL; 4693 } 4694 4695 if (btf_type_is_struct(next_type)) { 4696 vlen = btf_type_vlen(next_type); 4697 } else { 4698 /* next_type should be a function */ 4699 next_type = btf_type_by_id(btf, next_type->type); 4700 vlen = btf_type_vlen(next_type); 4701 } 4702 4703 if ((u32)component_idx >= vlen) { 4704 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4705 return -EINVAL; 4706 } 4707 } 4708 4709 env_stack_pop_resolved(env, next_type_id, 0); 4710 4711 return 0; 4712 } 4713 4714 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4715 { 4716 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4717 btf_type_decl_tag(t)->component_idx); 4718 } 4719 4720 static const struct btf_kind_operations decl_tag_ops = { 4721 .check_meta = btf_decl_tag_check_meta, 4722 .resolve = btf_decl_tag_resolve, 4723 .check_member = btf_df_check_member, 4724 .check_kflag_member = btf_df_check_kflag_member, 4725 .log_details = btf_decl_tag_log, 4726 .show = btf_df_show, 4727 }; 4728 4729 static int btf_func_proto_check(struct btf_verifier_env *env, 4730 const struct btf_type *t) 4731 { 4732 const struct btf_type *ret_type; 4733 const struct btf_param *args; 4734 const struct btf *btf; 4735 u16 nr_args, i; 4736 int err; 4737 4738 btf = env->btf; 4739 args = (const struct btf_param *)(t + 1); 4740 nr_args = btf_type_vlen(t); 4741 4742 /* Check func return type which could be "void" (t->type == 0) */ 4743 if (t->type) { 4744 u32 ret_type_id = t->type; 4745 4746 ret_type = btf_type_by_id(btf, ret_type_id); 4747 if (!ret_type) { 4748 btf_verifier_log_type(env, t, "Invalid return type"); 4749 return -EINVAL; 4750 } 4751 4752 if (btf_type_is_resolve_source_only(ret_type)) { 4753 btf_verifier_log_type(env, t, "Invalid return type"); 4754 return -EINVAL; 4755 } 4756 4757 if (btf_type_needs_resolve(ret_type) && 4758 !env_type_is_resolved(env, ret_type_id)) { 4759 err = btf_resolve(env, ret_type, ret_type_id); 4760 if (err) 4761 return err; 4762 } 4763 4764 /* Ensure the return type is a type that has a size */ 4765 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4766 btf_verifier_log_type(env, t, "Invalid return type"); 4767 return -EINVAL; 4768 } 4769 } 4770 4771 if (!nr_args) 4772 return 0; 4773 4774 /* Last func arg type_id could be 0 if it is a vararg */ 4775 if (!args[nr_args - 1].type) { 4776 if (args[nr_args - 1].name_off) { 4777 btf_verifier_log_type(env, t, "Invalid arg#%u", 4778 nr_args); 4779 return -EINVAL; 4780 } 4781 nr_args--; 4782 } 4783 4784 for (i = 0; i < nr_args; i++) { 4785 const struct btf_type *arg_type; 4786 u32 arg_type_id; 4787 4788 arg_type_id = args[i].type; 4789 arg_type = btf_type_by_id(btf, arg_type_id); 4790 if (!arg_type) { 4791 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4792 return -EINVAL; 4793 } 4794 4795 if (btf_type_is_resolve_source_only(arg_type)) { 4796 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4797 return -EINVAL; 4798 } 4799 4800 if (args[i].name_off && 4801 (!btf_name_offset_valid(btf, args[i].name_off) || 4802 !btf_name_valid_identifier(btf, args[i].name_off))) { 4803 btf_verifier_log_type(env, t, 4804 "Invalid arg#%u", i + 1); 4805 return -EINVAL; 4806 } 4807 4808 if (btf_type_needs_resolve(arg_type) && 4809 !env_type_is_resolved(env, arg_type_id)) { 4810 err = btf_resolve(env, arg_type, arg_type_id); 4811 if (err) 4812 return err; 4813 } 4814 4815 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4816 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4817 return -EINVAL; 4818 } 4819 } 4820 4821 return 0; 4822 } 4823 4824 static int btf_func_check(struct btf_verifier_env *env, 4825 const struct btf_type *t) 4826 { 4827 const struct btf_type *proto_type; 4828 const struct btf_param *args; 4829 const struct btf *btf; 4830 u16 nr_args, i; 4831 4832 btf = env->btf; 4833 proto_type = btf_type_by_id(btf, t->type); 4834 4835 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4836 btf_verifier_log_type(env, t, "Invalid type_id"); 4837 return -EINVAL; 4838 } 4839 4840 args = (const struct btf_param *)(proto_type + 1); 4841 nr_args = btf_type_vlen(proto_type); 4842 for (i = 0; i < nr_args; i++) { 4843 if (!args[i].name_off && args[i].type) { 4844 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4845 return -EINVAL; 4846 } 4847 } 4848 4849 return 0; 4850 } 4851 4852 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4853 [BTF_KIND_INT] = &int_ops, 4854 [BTF_KIND_PTR] = &ptr_ops, 4855 [BTF_KIND_ARRAY] = &array_ops, 4856 [BTF_KIND_STRUCT] = &struct_ops, 4857 [BTF_KIND_UNION] = &struct_ops, 4858 [BTF_KIND_ENUM] = &enum_ops, 4859 [BTF_KIND_FWD] = &fwd_ops, 4860 [BTF_KIND_TYPEDEF] = &modifier_ops, 4861 [BTF_KIND_VOLATILE] = &modifier_ops, 4862 [BTF_KIND_CONST] = &modifier_ops, 4863 [BTF_KIND_RESTRICT] = &modifier_ops, 4864 [BTF_KIND_FUNC] = &func_ops, 4865 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4866 [BTF_KIND_VAR] = &var_ops, 4867 [BTF_KIND_DATASEC] = &datasec_ops, 4868 [BTF_KIND_FLOAT] = &float_ops, 4869 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4870 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4871 [BTF_KIND_ENUM64] = &enum64_ops, 4872 }; 4873 4874 static s32 btf_check_meta(struct btf_verifier_env *env, 4875 const struct btf_type *t, 4876 u32 meta_left) 4877 { 4878 u32 saved_meta_left = meta_left; 4879 s32 var_meta_size; 4880 4881 if (meta_left < sizeof(*t)) { 4882 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4883 env->log_type_id, meta_left, sizeof(*t)); 4884 return -EINVAL; 4885 } 4886 meta_left -= sizeof(*t); 4887 4888 if (t->info & ~BTF_INFO_MASK) { 4889 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4890 env->log_type_id, t->info); 4891 return -EINVAL; 4892 } 4893 4894 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4895 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4896 btf_verifier_log(env, "[%u] Invalid kind:%u", 4897 env->log_type_id, BTF_INFO_KIND(t->info)); 4898 return -EINVAL; 4899 } 4900 4901 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4902 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4903 env->log_type_id, t->name_off); 4904 return -EINVAL; 4905 } 4906 4907 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4908 if (var_meta_size < 0) 4909 return var_meta_size; 4910 4911 meta_left -= var_meta_size; 4912 4913 return saved_meta_left - meta_left; 4914 } 4915 4916 static int btf_check_all_metas(struct btf_verifier_env *env) 4917 { 4918 struct btf *btf = env->btf; 4919 struct btf_header *hdr; 4920 void *cur, *end; 4921 4922 hdr = &btf->hdr; 4923 cur = btf->nohdr_data + hdr->type_off; 4924 end = cur + hdr->type_len; 4925 4926 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4927 while (cur < end) { 4928 struct btf_type *t = cur; 4929 s32 meta_size; 4930 4931 meta_size = btf_check_meta(env, t, end - cur); 4932 if (meta_size < 0) 4933 return meta_size; 4934 4935 btf_add_type(env, t); 4936 cur += meta_size; 4937 env->log_type_id++; 4938 } 4939 4940 return 0; 4941 } 4942 4943 static bool btf_resolve_valid(struct btf_verifier_env *env, 4944 const struct btf_type *t, 4945 u32 type_id) 4946 { 4947 struct btf *btf = env->btf; 4948 4949 if (!env_type_is_resolved(env, type_id)) 4950 return false; 4951 4952 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4953 return !btf_resolved_type_id(btf, type_id) && 4954 !btf_resolved_type_size(btf, type_id); 4955 4956 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 4957 return btf_resolved_type_id(btf, type_id) && 4958 !btf_resolved_type_size(btf, type_id); 4959 4960 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4961 btf_type_is_var(t)) { 4962 t = btf_type_id_resolve(btf, &type_id); 4963 return t && 4964 !btf_type_is_modifier(t) && 4965 !btf_type_is_var(t) && 4966 !btf_type_is_datasec(t); 4967 } 4968 4969 if (btf_type_is_array(t)) { 4970 const struct btf_array *array = btf_type_array(t); 4971 const struct btf_type *elem_type; 4972 u32 elem_type_id = array->type; 4973 u32 elem_size; 4974 4975 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4976 return elem_type && !btf_type_is_modifier(elem_type) && 4977 (array->nelems * elem_size == 4978 btf_resolved_type_size(btf, type_id)); 4979 } 4980 4981 return false; 4982 } 4983 4984 static int btf_resolve(struct btf_verifier_env *env, 4985 const struct btf_type *t, u32 type_id) 4986 { 4987 u32 save_log_type_id = env->log_type_id; 4988 const struct resolve_vertex *v; 4989 int err = 0; 4990 4991 env->resolve_mode = RESOLVE_TBD; 4992 env_stack_push(env, t, type_id); 4993 while (!err && (v = env_stack_peak(env))) { 4994 env->log_type_id = v->type_id; 4995 err = btf_type_ops(v->t)->resolve(env, v); 4996 } 4997 4998 env->log_type_id = type_id; 4999 if (err == -E2BIG) { 5000 btf_verifier_log_type(env, t, 5001 "Exceeded max resolving depth:%u", 5002 MAX_RESOLVE_DEPTH); 5003 } else if (err == -EEXIST) { 5004 btf_verifier_log_type(env, t, "Loop detected"); 5005 } 5006 5007 /* Final sanity check */ 5008 if (!err && !btf_resolve_valid(env, t, type_id)) { 5009 btf_verifier_log_type(env, t, "Invalid resolve state"); 5010 err = -EINVAL; 5011 } 5012 5013 env->log_type_id = save_log_type_id; 5014 return err; 5015 } 5016 5017 static int btf_check_all_types(struct btf_verifier_env *env) 5018 { 5019 struct btf *btf = env->btf; 5020 const struct btf_type *t; 5021 u32 type_id, i; 5022 int err; 5023 5024 err = env_resolve_init(env); 5025 if (err) 5026 return err; 5027 5028 env->phase++; 5029 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5030 type_id = btf->start_id + i; 5031 t = btf_type_by_id(btf, type_id); 5032 5033 env->log_type_id = type_id; 5034 if (btf_type_needs_resolve(t) && 5035 !env_type_is_resolved(env, type_id)) { 5036 err = btf_resolve(env, t, type_id); 5037 if (err) 5038 return err; 5039 } 5040 5041 if (btf_type_is_func_proto(t)) { 5042 err = btf_func_proto_check(env, t); 5043 if (err) 5044 return err; 5045 } 5046 } 5047 5048 return 0; 5049 } 5050 5051 static int btf_parse_type_sec(struct btf_verifier_env *env) 5052 { 5053 const struct btf_header *hdr = &env->btf->hdr; 5054 int err; 5055 5056 /* Type section must align to 4 bytes */ 5057 if (hdr->type_off & (sizeof(u32) - 1)) { 5058 btf_verifier_log(env, "Unaligned type_off"); 5059 return -EINVAL; 5060 } 5061 5062 if (!env->btf->base_btf && !hdr->type_len) { 5063 btf_verifier_log(env, "No type found"); 5064 return -EINVAL; 5065 } 5066 5067 err = btf_check_all_metas(env); 5068 if (err) 5069 return err; 5070 5071 return btf_check_all_types(env); 5072 } 5073 5074 static int btf_parse_str_sec(struct btf_verifier_env *env) 5075 { 5076 const struct btf_header *hdr; 5077 struct btf *btf = env->btf; 5078 const char *start, *end; 5079 5080 hdr = &btf->hdr; 5081 start = btf->nohdr_data + hdr->str_off; 5082 end = start + hdr->str_len; 5083 5084 if (end != btf->data + btf->data_size) { 5085 btf_verifier_log(env, "String section is not at the end"); 5086 return -EINVAL; 5087 } 5088 5089 btf->strings = start; 5090 5091 if (btf->base_btf && !hdr->str_len) 5092 return 0; 5093 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5094 btf_verifier_log(env, "Invalid string section"); 5095 return -EINVAL; 5096 } 5097 if (!btf->base_btf && start[0]) { 5098 btf_verifier_log(env, "Invalid string section"); 5099 return -EINVAL; 5100 } 5101 5102 return 0; 5103 } 5104 5105 static const size_t btf_sec_info_offset[] = { 5106 offsetof(struct btf_header, type_off), 5107 offsetof(struct btf_header, str_off), 5108 }; 5109 5110 static int btf_sec_info_cmp(const void *a, const void *b) 5111 { 5112 const struct btf_sec_info *x = a; 5113 const struct btf_sec_info *y = b; 5114 5115 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5116 } 5117 5118 static int btf_check_sec_info(struct btf_verifier_env *env, 5119 u32 btf_data_size) 5120 { 5121 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5122 u32 total, expected_total, i; 5123 const struct btf_header *hdr; 5124 const struct btf *btf; 5125 5126 btf = env->btf; 5127 hdr = &btf->hdr; 5128 5129 /* Populate the secs from hdr */ 5130 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5131 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5132 btf_sec_info_offset[i]); 5133 5134 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5135 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5136 5137 /* Check for gaps and overlap among sections */ 5138 total = 0; 5139 expected_total = btf_data_size - hdr->hdr_len; 5140 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5141 if (expected_total < secs[i].off) { 5142 btf_verifier_log(env, "Invalid section offset"); 5143 return -EINVAL; 5144 } 5145 if (total < secs[i].off) { 5146 /* gap */ 5147 btf_verifier_log(env, "Unsupported section found"); 5148 return -EINVAL; 5149 } 5150 if (total > secs[i].off) { 5151 btf_verifier_log(env, "Section overlap found"); 5152 return -EINVAL; 5153 } 5154 if (expected_total - total < secs[i].len) { 5155 btf_verifier_log(env, 5156 "Total section length too long"); 5157 return -EINVAL; 5158 } 5159 total += secs[i].len; 5160 } 5161 5162 /* There is data other than hdr and known sections */ 5163 if (expected_total != total) { 5164 btf_verifier_log(env, "Unsupported section found"); 5165 return -EINVAL; 5166 } 5167 5168 return 0; 5169 } 5170 5171 static int btf_parse_hdr(struct btf_verifier_env *env) 5172 { 5173 u32 hdr_len, hdr_copy, btf_data_size; 5174 const struct btf_header *hdr; 5175 struct btf *btf; 5176 5177 btf = env->btf; 5178 btf_data_size = btf->data_size; 5179 5180 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5181 btf_verifier_log(env, "hdr_len not found"); 5182 return -EINVAL; 5183 } 5184 5185 hdr = btf->data; 5186 hdr_len = hdr->hdr_len; 5187 if (btf_data_size < hdr_len) { 5188 btf_verifier_log(env, "btf_header not found"); 5189 return -EINVAL; 5190 } 5191 5192 /* Ensure the unsupported header fields are zero */ 5193 if (hdr_len > sizeof(btf->hdr)) { 5194 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5195 u8 *end = btf->data + hdr_len; 5196 5197 for (; expected_zero < end; expected_zero++) { 5198 if (*expected_zero) { 5199 btf_verifier_log(env, "Unsupported btf_header"); 5200 return -E2BIG; 5201 } 5202 } 5203 } 5204 5205 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5206 memcpy(&btf->hdr, btf->data, hdr_copy); 5207 5208 hdr = &btf->hdr; 5209 5210 btf_verifier_log_hdr(env, btf_data_size); 5211 5212 if (hdr->magic != BTF_MAGIC) { 5213 btf_verifier_log(env, "Invalid magic"); 5214 return -EINVAL; 5215 } 5216 5217 if (hdr->version != BTF_VERSION) { 5218 btf_verifier_log(env, "Unsupported version"); 5219 return -ENOTSUPP; 5220 } 5221 5222 if (hdr->flags) { 5223 btf_verifier_log(env, "Unsupported flags"); 5224 return -ENOTSUPP; 5225 } 5226 5227 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5228 btf_verifier_log(env, "No data"); 5229 return -EINVAL; 5230 } 5231 5232 return btf_check_sec_info(env, btf_data_size); 5233 } 5234 5235 static const char *alloc_obj_fields[] = { 5236 "bpf_spin_lock", 5237 "bpf_list_head", 5238 "bpf_list_node", 5239 }; 5240 5241 static struct btf_struct_metas * 5242 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5243 { 5244 union { 5245 struct btf_id_set set; 5246 struct { 5247 u32 _cnt; 5248 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5249 } _arr; 5250 } aof; 5251 struct btf_struct_metas *tab = NULL; 5252 int i, n, id, ret; 5253 5254 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5255 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5256 5257 memset(&aof, 0, sizeof(aof)); 5258 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5259 /* Try to find whether this special type exists in user BTF, and 5260 * if so remember its ID so we can easily find it among members 5261 * of structs that we iterate in the next loop. 5262 */ 5263 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5264 if (id < 0) 5265 continue; 5266 aof.set.ids[aof.set.cnt++] = id; 5267 } 5268 5269 if (!aof.set.cnt) 5270 return NULL; 5271 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5272 5273 n = btf_nr_types(btf); 5274 for (i = 1; i < n; i++) { 5275 struct btf_struct_metas *new_tab; 5276 const struct btf_member *member; 5277 struct btf_field_offs *foffs; 5278 struct btf_struct_meta *type; 5279 struct btf_record *record; 5280 const struct btf_type *t; 5281 int j, tab_cnt; 5282 5283 t = btf_type_by_id(btf, i); 5284 if (!t) { 5285 ret = -EINVAL; 5286 goto free; 5287 } 5288 if (!__btf_type_is_struct(t)) 5289 continue; 5290 5291 cond_resched(); 5292 5293 for_each_member(j, t, member) { 5294 if (btf_id_set_contains(&aof.set, member->type)) 5295 goto parse; 5296 } 5297 continue; 5298 parse: 5299 tab_cnt = tab ? tab->cnt : 0; 5300 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5301 GFP_KERNEL | __GFP_NOWARN); 5302 if (!new_tab) { 5303 ret = -ENOMEM; 5304 goto free; 5305 } 5306 if (!tab) 5307 new_tab->cnt = 0; 5308 tab = new_tab; 5309 5310 type = &tab->types[tab->cnt]; 5311 type->btf_id = i; 5312 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size); 5313 /* The record cannot be unset, treat it as an error if so */ 5314 if (IS_ERR_OR_NULL(record)) { 5315 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5316 goto free; 5317 } 5318 foffs = btf_parse_field_offs(record); 5319 /* We need the field_offs to be valid for a valid record, 5320 * either both should be set or both should be unset. 5321 */ 5322 if (IS_ERR_OR_NULL(foffs)) { 5323 btf_record_free(record); 5324 ret = -EFAULT; 5325 goto free; 5326 } 5327 type->record = record; 5328 type->field_offs = foffs; 5329 tab->cnt++; 5330 } 5331 return tab; 5332 free: 5333 btf_struct_metas_free(tab); 5334 return ERR_PTR(ret); 5335 } 5336 5337 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5338 { 5339 struct btf_struct_metas *tab; 5340 5341 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5342 tab = btf->struct_meta_tab; 5343 if (!tab) 5344 return NULL; 5345 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5346 } 5347 5348 static int btf_check_type_tags(struct btf_verifier_env *env, 5349 struct btf *btf, int start_id) 5350 { 5351 int i, n, good_id = start_id - 1; 5352 bool in_tags; 5353 5354 n = btf_nr_types(btf); 5355 for (i = start_id; i < n; i++) { 5356 const struct btf_type *t; 5357 int chain_limit = 32; 5358 u32 cur_id = i; 5359 5360 t = btf_type_by_id(btf, i); 5361 if (!t) 5362 return -EINVAL; 5363 if (!btf_type_is_modifier(t)) 5364 continue; 5365 5366 cond_resched(); 5367 5368 in_tags = btf_type_is_type_tag(t); 5369 while (btf_type_is_modifier(t)) { 5370 if (!chain_limit--) { 5371 btf_verifier_log(env, "Max chain length or cycle detected"); 5372 return -ELOOP; 5373 } 5374 if (btf_type_is_type_tag(t)) { 5375 if (!in_tags) { 5376 btf_verifier_log(env, "Type tags don't precede modifiers"); 5377 return -EINVAL; 5378 } 5379 } else if (in_tags) { 5380 in_tags = false; 5381 } 5382 if (cur_id <= good_id) 5383 break; 5384 /* Move to next type */ 5385 cur_id = t->type; 5386 t = btf_type_by_id(btf, cur_id); 5387 if (!t) 5388 return -EINVAL; 5389 } 5390 good_id = i; 5391 } 5392 return 0; 5393 } 5394 5395 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 5396 u32 log_level, char __user *log_ubuf, u32 log_size) 5397 { 5398 struct btf_struct_metas *struct_meta_tab; 5399 struct btf_verifier_env *env = NULL; 5400 struct bpf_verifier_log *log; 5401 struct btf *btf = NULL; 5402 u8 *data; 5403 int err; 5404 5405 if (btf_data_size > BTF_MAX_SIZE) 5406 return ERR_PTR(-E2BIG); 5407 5408 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5409 if (!env) 5410 return ERR_PTR(-ENOMEM); 5411 5412 log = &env->log; 5413 if (log_level || log_ubuf || log_size) { 5414 /* user requested verbose verifier output 5415 * and supplied buffer to store the verification trace 5416 */ 5417 log->level = log_level; 5418 log->ubuf = log_ubuf; 5419 log->len_total = log_size; 5420 5421 /* log attributes have to be sane */ 5422 if (!bpf_verifier_log_attr_valid(log)) { 5423 err = -EINVAL; 5424 goto errout; 5425 } 5426 } 5427 5428 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5429 if (!btf) { 5430 err = -ENOMEM; 5431 goto errout; 5432 } 5433 env->btf = btf; 5434 5435 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 5436 if (!data) { 5437 err = -ENOMEM; 5438 goto errout; 5439 } 5440 5441 btf->data = data; 5442 btf->data_size = btf_data_size; 5443 5444 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 5445 err = -EFAULT; 5446 goto errout; 5447 } 5448 5449 err = btf_parse_hdr(env); 5450 if (err) 5451 goto errout; 5452 5453 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5454 5455 err = btf_parse_str_sec(env); 5456 if (err) 5457 goto errout; 5458 5459 err = btf_parse_type_sec(env); 5460 if (err) 5461 goto errout; 5462 5463 err = btf_check_type_tags(env, btf, 1); 5464 if (err) 5465 goto errout; 5466 5467 struct_meta_tab = btf_parse_struct_metas(log, btf); 5468 if (IS_ERR(struct_meta_tab)) { 5469 err = PTR_ERR(struct_meta_tab); 5470 goto errout; 5471 } 5472 btf->struct_meta_tab = struct_meta_tab; 5473 5474 if (struct_meta_tab) { 5475 int i; 5476 5477 for (i = 0; i < struct_meta_tab->cnt; i++) { 5478 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5479 if (err < 0) 5480 goto errout_meta; 5481 } 5482 } 5483 5484 if (log->level && bpf_verifier_log_full(log)) { 5485 err = -ENOSPC; 5486 goto errout_meta; 5487 } 5488 5489 btf_verifier_env_free(env); 5490 refcount_set(&btf->refcnt, 1); 5491 return btf; 5492 5493 errout_meta: 5494 btf_free_struct_meta_tab(btf); 5495 errout: 5496 btf_verifier_env_free(env); 5497 if (btf) 5498 btf_free(btf); 5499 return ERR_PTR(err); 5500 } 5501 5502 extern char __weak __start_BTF[]; 5503 extern char __weak __stop_BTF[]; 5504 extern struct btf *btf_vmlinux; 5505 5506 #define BPF_MAP_TYPE(_id, _ops) 5507 #define BPF_LINK_TYPE(_id, _name) 5508 static union { 5509 struct bpf_ctx_convert { 5510 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5511 prog_ctx_type _id##_prog; \ 5512 kern_ctx_type _id##_kern; 5513 #include <linux/bpf_types.h> 5514 #undef BPF_PROG_TYPE 5515 } *__t; 5516 /* 't' is written once under lock. Read many times. */ 5517 const struct btf_type *t; 5518 } bpf_ctx_convert; 5519 enum { 5520 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5521 __ctx_convert##_id, 5522 #include <linux/bpf_types.h> 5523 #undef BPF_PROG_TYPE 5524 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5525 }; 5526 static u8 bpf_ctx_convert_map[] = { 5527 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5528 [_id] = __ctx_convert##_id, 5529 #include <linux/bpf_types.h> 5530 #undef BPF_PROG_TYPE 5531 0, /* avoid empty array */ 5532 }; 5533 #undef BPF_MAP_TYPE 5534 #undef BPF_LINK_TYPE 5535 5536 const struct btf_member * 5537 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5538 const struct btf_type *t, enum bpf_prog_type prog_type, 5539 int arg) 5540 { 5541 const struct btf_type *conv_struct; 5542 const struct btf_type *ctx_struct; 5543 const struct btf_member *ctx_type; 5544 const char *tname, *ctx_tname; 5545 5546 conv_struct = bpf_ctx_convert.t; 5547 if (!conv_struct) { 5548 bpf_log(log, "btf_vmlinux is malformed\n"); 5549 return NULL; 5550 } 5551 t = btf_type_by_id(btf, t->type); 5552 while (btf_type_is_modifier(t)) 5553 t = btf_type_by_id(btf, t->type); 5554 if (!btf_type_is_struct(t)) { 5555 /* Only pointer to struct is supported for now. 5556 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5557 * is not supported yet. 5558 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5559 */ 5560 return NULL; 5561 } 5562 tname = btf_name_by_offset(btf, t->name_off); 5563 if (!tname) { 5564 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5565 return NULL; 5566 } 5567 /* prog_type is valid bpf program type. No need for bounds check. */ 5568 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5569 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5570 * Like 'struct __sk_buff' 5571 */ 5572 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5573 if (!ctx_struct) 5574 /* should not happen */ 5575 return NULL; 5576 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5577 if (!ctx_tname) { 5578 /* should not happen */ 5579 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5580 return NULL; 5581 } 5582 /* only compare that prog's ctx type name is the same as 5583 * kernel expects. No need to compare field by field. 5584 * It's ok for bpf prog to do: 5585 * struct __sk_buff {}; 5586 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5587 * { // no fields of skb are ever used } 5588 */ 5589 if (strcmp(ctx_tname, tname)) 5590 return NULL; 5591 return ctx_type; 5592 } 5593 5594 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5595 struct btf *btf, 5596 const struct btf_type *t, 5597 enum bpf_prog_type prog_type, 5598 int arg) 5599 { 5600 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5601 5602 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5603 if (!prog_ctx_type) 5604 return -ENOENT; 5605 kern_ctx_type = prog_ctx_type + 1; 5606 return kern_ctx_type->type; 5607 } 5608 5609 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5610 { 5611 const struct btf_member *kctx_member; 5612 const struct btf_type *conv_struct; 5613 const struct btf_type *kctx_type; 5614 u32 kctx_type_id; 5615 5616 conv_struct = bpf_ctx_convert.t; 5617 /* get member for kernel ctx type */ 5618 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5619 kctx_type_id = kctx_member->type; 5620 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5621 if (!btf_type_is_struct(kctx_type)) { 5622 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5623 return -EINVAL; 5624 } 5625 5626 return kctx_type_id; 5627 } 5628 5629 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5630 BTF_ID(struct, bpf_ctx_convert) 5631 5632 struct btf *btf_parse_vmlinux(void) 5633 { 5634 struct btf_verifier_env *env = NULL; 5635 struct bpf_verifier_log *log; 5636 struct btf *btf = NULL; 5637 int err; 5638 5639 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5640 if (!env) 5641 return ERR_PTR(-ENOMEM); 5642 5643 log = &env->log; 5644 log->level = BPF_LOG_KERNEL; 5645 5646 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5647 if (!btf) { 5648 err = -ENOMEM; 5649 goto errout; 5650 } 5651 env->btf = btf; 5652 5653 btf->data = __start_BTF; 5654 btf->data_size = __stop_BTF - __start_BTF; 5655 btf->kernel_btf = true; 5656 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5657 5658 err = btf_parse_hdr(env); 5659 if (err) 5660 goto errout; 5661 5662 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5663 5664 err = btf_parse_str_sec(env); 5665 if (err) 5666 goto errout; 5667 5668 err = btf_check_all_metas(env); 5669 if (err) 5670 goto errout; 5671 5672 err = btf_check_type_tags(env, btf, 1); 5673 if (err) 5674 goto errout; 5675 5676 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5677 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5678 5679 bpf_struct_ops_init(btf, log); 5680 5681 refcount_set(&btf->refcnt, 1); 5682 5683 err = btf_alloc_id(btf); 5684 if (err) 5685 goto errout; 5686 5687 btf_verifier_env_free(env); 5688 return btf; 5689 5690 errout: 5691 btf_verifier_env_free(env); 5692 if (btf) { 5693 kvfree(btf->types); 5694 kfree(btf); 5695 } 5696 return ERR_PTR(err); 5697 } 5698 5699 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5700 5701 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5702 { 5703 struct btf_verifier_env *env = NULL; 5704 struct bpf_verifier_log *log; 5705 struct btf *btf = NULL, *base_btf; 5706 int err; 5707 5708 base_btf = bpf_get_btf_vmlinux(); 5709 if (IS_ERR(base_btf)) 5710 return base_btf; 5711 if (!base_btf) 5712 return ERR_PTR(-EINVAL); 5713 5714 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5715 if (!env) 5716 return ERR_PTR(-ENOMEM); 5717 5718 log = &env->log; 5719 log->level = BPF_LOG_KERNEL; 5720 5721 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5722 if (!btf) { 5723 err = -ENOMEM; 5724 goto errout; 5725 } 5726 env->btf = btf; 5727 5728 btf->base_btf = base_btf; 5729 btf->start_id = base_btf->nr_types; 5730 btf->start_str_off = base_btf->hdr.str_len; 5731 btf->kernel_btf = true; 5732 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5733 5734 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5735 if (!btf->data) { 5736 err = -ENOMEM; 5737 goto errout; 5738 } 5739 memcpy(btf->data, data, data_size); 5740 btf->data_size = data_size; 5741 5742 err = btf_parse_hdr(env); 5743 if (err) 5744 goto errout; 5745 5746 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5747 5748 err = btf_parse_str_sec(env); 5749 if (err) 5750 goto errout; 5751 5752 err = btf_check_all_metas(env); 5753 if (err) 5754 goto errout; 5755 5756 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5757 if (err) 5758 goto errout; 5759 5760 btf_verifier_env_free(env); 5761 refcount_set(&btf->refcnt, 1); 5762 return btf; 5763 5764 errout: 5765 btf_verifier_env_free(env); 5766 if (btf) { 5767 kvfree(btf->data); 5768 kvfree(btf->types); 5769 kfree(btf); 5770 } 5771 return ERR_PTR(err); 5772 } 5773 5774 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5775 5776 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5777 { 5778 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5779 5780 if (tgt_prog) 5781 return tgt_prog->aux->btf; 5782 else 5783 return prog->aux->attach_btf; 5784 } 5785 5786 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5787 { 5788 /* t comes in already as a pointer */ 5789 t = btf_type_by_id(btf, t->type); 5790 5791 /* allow const */ 5792 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 5793 t = btf_type_by_id(btf, t->type); 5794 5795 return btf_type_is_int(t); 5796 } 5797 5798 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5799 int off) 5800 { 5801 const struct btf_param *args; 5802 const struct btf_type *t; 5803 u32 offset = 0, nr_args; 5804 int i; 5805 5806 if (!func_proto) 5807 return off / 8; 5808 5809 nr_args = btf_type_vlen(func_proto); 5810 args = (const struct btf_param *)(func_proto + 1); 5811 for (i = 0; i < nr_args; i++) { 5812 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5813 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5814 if (off < offset) 5815 return i; 5816 } 5817 5818 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5819 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5820 if (off < offset) 5821 return nr_args; 5822 5823 return nr_args + 1; 5824 } 5825 5826 static bool prog_args_trusted(const struct bpf_prog *prog) 5827 { 5828 enum bpf_attach_type atype = prog->expected_attach_type; 5829 5830 switch (prog->type) { 5831 case BPF_PROG_TYPE_TRACING: 5832 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5833 case BPF_PROG_TYPE_LSM: 5834 return bpf_lsm_is_trusted(prog); 5835 case BPF_PROG_TYPE_STRUCT_OPS: 5836 return true; 5837 default: 5838 return false; 5839 } 5840 } 5841 5842 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5843 const struct bpf_prog *prog, 5844 struct bpf_insn_access_aux *info) 5845 { 5846 const struct btf_type *t = prog->aux->attach_func_proto; 5847 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5848 struct btf *btf = bpf_prog_get_target_btf(prog); 5849 const char *tname = prog->aux->attach_func_name; 5850 struct bpf_verifier_log *log = info->log; 5851 const struct btf_param *args; 5852 const char *tag_value; 5853 u32 nr_args, arg; 5854 int i, ret; 5855 5856 if (off % 8) { 5857 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5858 tname, off); 5859 return false; 5860 } 5861 arg = get_ctx_arg_idx(btf, t, off); 5862 args = (const struct btf_param *)(t + 1); 5863 /* if (t == NULL) Fall back to default BPF prog with 5864 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5865 */ 5866 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5867 if (prog->aux->attach_btf_trace) { 5868 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5869 args++; 5870 nr_args--; 5871 } 5872 5873 if (arg > nr_args) { 5874 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5875 tname, arg + 1); 5876 return false; 5877 } 5878 5879 if (arg == nr_args) { 5880 switch (prog->expected_attach_type) { 5881 case BPF_LSM_CGROUP: 5882 case BPF_LSM_MAC: 5883 case BPF_TRACE_FEXIT: 5884 /* When LSM programs are attached to void LSM hooks 5885 * they use FEXIT trampolines and when attached to 5886 * int LSM hooks, they use MODIFY_RETURN trampolines. 5887 * 5888 * While the LSM programs are BPF_MODIFY_RETURN-like 5889 * the check: 5890 * 5891 * if (ret_type != 'int') 5892 * return -EINVAL; 5893 * 5894 * is _not_ done here. This is still safe as LSM hooks 5895 * have only void and int return types. 5896 */ 5897 if (!t) 5898 return true; 5899 t = btf_type_by_id(btf, t->type); 5900 break; 5901 case BPF_MODIFY_RETURN: 5902 /* For now the BPF_MODIFY_RETURN can only be attached to 5903 * functions that return an int. 5904 */ 5905 if (!t) 5906 return false; 5907 5908 t = btf_type_skip_modifiers(btf, t->type, NULL); 5909 if (!btf_type_is_small_int(t)) { 5910 bpf_log(log, 5911 "ret type %s not allowed for fmod_ret\n", 5912 btf_type_str(t)); 5913 return false; 5914 } 5915 break; 5916 default: 5917 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5918 tname, arg + 1); 5919 return false; 5920 } 5921 } else { 5922 if (!t) 5923 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 5924 return true; 5925 t = btf_type_by_id(btf, args[arg].type); 5926 } 5927 5928 /* skip modifiers */ 5929 while (btf_type_is_modifier(t)) 5930 t = btf_type_by_id(btf, t->type); 5931 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 5932 /* accessing a scalar */ 5933 return true; 5934 if (!btf_type_is_ptr(t)) { 5935 bpf_log(log, 5936 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 5937 tname, arg, 5938 __btf_name_by_offset(btf, t->name_off), 5939 btf_type_str(t)); 5940 return false; 5941 } 5942 5943 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 5944 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5945 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5946 u32 type, flag; 5947 5948 type = base_type(ctx_arg_info->reg_type); 5949 flag = type_flag(ctx_arg_info->reg_type); 5950 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 5951 (flag & PTR_MAYBE_NULL)) { 5952 info->reg_type = ctx_arg_info->reg_type; 5953 return true; 5954 } 5955 } 5956 5957 if (t->type == 0) 5958 /* This is a pointer to void. 5959 * It is the same as scalar from the verifier safety pov. 5960 * No further pointer walking is allowed. 5961 */ 5962 return true; 5963 5964 if (is_int_ptr(btf, t)) 5965 return true; 5966 5967 /* this is a pointer to another type */ 5968 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5969 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5970 5971 if (ctx_arg_info->offset == off) { 5972 if (!ctx_arg_info->btf_id) { 5973 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 5974 return false; 5975 } 5976 5977 info->reg_type = ctx_arg_info->reg_type; 5978 info->btf = btf_vmlinux; 5979 info->btf_id = ctx_arg_info->btf_id; 5980 return true; 5981 } 5982 } 5983 5984 info->reg_type = PTR_TO_BTF_ID; 5985 if (prog_args_trusted(prog)) 5986 info->reg_type |= PTR_TRUSTED; 5987 5988 if (tgt_prog) { 5989 enum bpf_prog_type tgt_type; 5990 5991 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 5992 tgt_type = tgt_prog->aux->saved_dst_prog_type; 5993 else 5994 tgt_type = tgt_prog->type; 5995 5996 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 5997 if (ret > 0) { 5998 info->btf = btf_vmlinux; 5999 info->btf_id = ret; 6000 return true; 6001 } else { 6002 return false; 6003 } 6004 } 6005 6006 info->btf = btf; 6007 info->btf_id = t->type; 6008 t = btf_type_by_id(btf, t->type); 6009 6010 if (btf_type_is_type_tag(t)) { 6011 tag_value = __btf_name_by_offset(btf, t->name_off); 6012 if (strcmp(tag_value, "user") == 0) 6013 info->reg_type |= MEM_USER; 6014 if (strcmp(tag_value, "percpu") == 0) 6015 info->reg_type |= MEM_PERCPU; 6016 } 6017 6018 /* skip modifiers */ 6019 while (btf_type_is_modifier(t)) { 6020 info->btf_id = t->type; 6021 t = btf_type_by_id(btf, t->type); 6022 } 6023 if (!btf_type_is_struct(t)) { 6024 bpf_log(log, 6025 "func '%s' arg%d type %s is not a struct\n", 6026 tname, arg, btf_type_str(t)); 6027 return false; 6028 } 6029 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6030 tname, arg, info->btf_id, btf_type_str(t), 6031 __btf_name_by_offset(btf, t->name_off)); 6032 return true; 6033 } 6034 6035 enum bpf_struct_walk_result { 6036 /* < 0 error */ 6037 WALK_SCALAR = 0, 6038 WALK_PTR, 6039 WALK_STRUCT, 6040 }; 6041 6042 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6043 const struct btf_type *t, int off, int size, 6044 u32 *next_btf_id, enum bpf_type_flag *flag) 6045 { 6046 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6047 const struct btf_type *mtype, *elem_type = NULL; 6048 const struct btf_member *member; 6049 const char *tname, *mname, *tag_value; 6050 u32 vlen, elem_id, mid; 6051 6052 again: 6053 tname = __btf_name_by_offset(btf, t->name_off); 6054 if (!btf_type_is_struct(t)) { 6055 bpf_log(log, "Type '%s' is not a struct\n", tname); 6056 return -EINVAL; 6057 } 6058 6059 vlen = btf_type_vlen(t); 6060 if (off + size > t->size) { 6061 /* If the last element is a variable size array, we may 6062 * need to relax the rule. 6063 */ 6064 struct btf_array *array_elem; 6065 6066 if (vlen == 0) 6067 goto error; 6068 6069 member = btf_type_member(t) + vlen - 1; 6070 mtype = btf_type_skip_modifiers(btf, member->type, 6071 NULL); 6072 if (!btf_type_is_array(mtype)) 6073 goto error; 6074 6075 array_elem = (struct btf_array *)(mtype + 1); 6076 if (array_elem->nelems != 0) 6077 goto error; 6078 6079 moff = __btf_member_bit_offset(t, member) / 8; 6080 if (off < moff) 6081 goto error; 6082 6083 /* Only allow structure for now, can be relaxed for 6084 * other types later. 6085 */ 6086 t = btf_type_skip_modifiers(btf, array_elem->type, 6087 NULL); 6088 if (!btf_type_is_struct(t)) 6089 goto error; 6090 6091 off = (off - moff) % t->size; 6092 goto again; 6093 6094 error: 6095 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6096 tname, off, size); 6097 return -EACCES; 6098 } 6099 6100 for_each_member(i, t, member) { 6101 /* offset of the field in bytes */ 6102 moff = __btf_member_bit_offset(t, member) / 8; 6103 if (off + size <= moff) 6104 /* won't find anything, field is already too far */ 6105 break; 6106 6107 if (__btf_member_bitfield_size(t, member)) { 6108 u32 end_bit = __btf_member_bit_offset(t, member) + 6109 __btf_member_bitfield_size(t, member); 6110 6111 /* off <= moff instead of off == moff because clang 6112 * does not generate a BTF member for anonymous 6113 * bitfield like the ":16" here: 6114 * struct { 6115 * int :16; 6116 * int x:8; 6117 * }; 6118 */ 6119 if (off <= moff && 6120 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6121 return WALK_SCALAR; 6122 6123 /* off may be accessing a following member 6124 * 6125 * or 6126 * 6127 * Doing partial access at either end of this 6128 * bitfield. Continue on this case also to 6129 * treat it as not accessing this bitfield 6130 * and eventually error out as field not 6131 * found to keep it simple. 6132 * It could be relaxed if there was a legit 6133 * partial access case later. 6134 */ 6135 continue; 6136 } 6137 6138 /* In case of "off" is pointing to holes of a struct */ 6139 if (off < moff) 6140 break; 6141 6142 /* type of the field */ 6143 mid = member->type; 6144 mtype = btf_type_by_id(btf, member->type); 6145 mname = __btf_name_by_offset(btf, member->name_off); 6146 6147 mtype = __btf_resolve_size(btf, mtype, &msize, 6148 &elem_type, &elem_id, &total_nelems, 6149 &mid); 6150 if (IS_ERR(mtype)) { 6151 bpf_log(log, "field %s doesn't have size\n", mname); 6152 return -EFAULT; 6153 } 6154 6155 mtrue_end = moff + msize; 6156 if (off >= mtrue_end) 6157 /* no overlap with member, keep iterating */ 6158 continue; 6159 6160 if (btf_type_is_array(mtype)) { 6161 u32 elem_idx; 6162 6163 /* __btf_resolve_size() above helps to 6164 * linearize a multi-dimensional array. 6165 * 6166 * The logic here is treating an array 6167 * in a struct as the following way: 6168 * 6169 * struct outer { 6170 * struct inner array[2][2]; 6171 * }; 6172 * 6173 * looks like: 6174 * 6175 * struct outer { 6176 * struct inner array_elem0; 6177 * struct inner array_elem1; 6178 * struct inner array_elem2; 6179 * struct inner array_elem3; 6180 * }; 6181 * 6182 * When accessing outer->array[1][0], it moves 6183 * moff to "array_elem2", set mtype to 6184 * "struct inner", and msize also becomes 6185 * sizeof(struct inner). Then most of the 6186 * remaining logic will fall through without 6187 * caring the current member is an array or 6188 * not. 6189 * 6190 * Unlike mtype/msize/moff, mtrue_end does not 6191 * change. The naming difference ("_true") tells 6192 * that it is not always corresponding to 6193 * the current mtype/msize/moff. 6194 * It is the true end of the current 6195 * member (i.e. array in this case). That 6196 * will allow an int array to be accessed like 6197 * a scratch space, 6198 * i.e. allow access beyond the size of 6199 * the array's element as long as it is 6200 * within the mtrue_end boundary. 6201 */ 6202 6203 /* skip empty array */ 6204 if (moff == mtrue_end) 6205 continue; 6206 6207 msize /= total_nelems; 6208 elem_idx = (off - moff) / msize; 6209 moff += elem_idx * msize; 6210 mtype = elem_type; 6211 mid = elem_id; 6212 } 6213 6214 /* the 'off' we're looking for is either equal to start 6215 * of this field or inside of this struct 6216 */ 6217 if (btf_type_is_struct(mtype)) { 6218 /* our field must be inside that union or struct */ 6219 t = mtype; 6220 6221 /* return if the offset matches the member offset */ 6222 if (off == moff) { 6223 *next_btf_id = mid; 6224 return WALK_STRUCT; 6225 } 6226 6227 /* adjust offset we're looking for */ 6228 off -= moff; 6229 goto again; 6230 } 6231 6232 if (btf_type_is_ptr(mtype)) { 6233 const struct btf_type *stype, *t; 6234 enum bpf_type_flag tmp_flag = 0; 6235 u32 id; 6236 6237 if (msize != size || off != moff) { 6238 bpf_log(log, 6239 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6240 mname, moff, tname, off, size); 6241 return -EACCES; 6242 } 6243 6244 /* check type tag */ 6245 t = btf_type_by_id(btf, mtype->type); 6246 if (btf_type_is_type_tag(t)) { 6247 tag_value = __btf_name_by_offset(btf, t->name_off); 6248 /* check __user tag */ 6249 if (strcmp(tag_value, "user") == 0) 6250 tmp_flag = MEM_USER; 6251 /* check __percpu tag */ 6252 if (strcmp(tag_value, "percpu") == 0) 6253 tmp_flag = MEM_PERCPU; 6254 /* check __rcu tag */ 6255 if (strcmp(tag_value, "rcu") == 0) 6256 tmp_flag = MEM_RCU; 6257 } 6258 6259 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6260 if (btf_type_is_struct(stype)) { 6261 *next_btf_id = id; 6262 *flag = tmp_flag; 6263 return WALK_PTR; 6264 } 6265 } 6266 6267 /* Allow more flexible access within an int as long as 6268 * it is within mtrue_end. 6269 * Since mtrue_end could be the end of an array, 6270 * that also allows using an array of int as a scratch 6271 * space. e.g. skb->cb[]. 6272 */ 6273 if (off + size > mtrue_end) { 6274 bpf_log(log, 6275 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6276 mname, mtrue_end, tname, off, size); 6277 return -EACCES; 6278 } 6279 6280 return WALK_SCALAR; 6281 } 6282 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6283 return -EINVAL; 6284 } 6285 6286 int btf_struct_access(struct bpf_verifier_log *log, 6287 const struct bpf_reg_state *reg, 6288 int off, int size, enum bpf_access_type atype __maybe_unused, 6289 u32 *next_btf_id, enum bpf_type_flag *flag) 6290 { 6291 const struct btf *btf = reg->btf; 6292 enum bpf_type_flag tmp_flag = 0; 6293 const struct btf_type *t; 6294 u32 id = reg->btf_id; 6295 int err; 6296 6297 while (type_is_alloc(reg->type)) { 6298 struct btf_struct_meta *meta; 6299 struct btf_record *rec; 6300 int i; 6301 6302 meta = btf_find_struct_meta(btf, id); 6303 if (!meta) 6304 break; 6305 rec = meta->record; 6306 for (i = 0; i < rec->cnt; i++) { 6307 struct btf_field *field = &rec->fields[i]; 6308 u32 offset = field->offset; 6309 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6310 bpf_log(log, 6311 "direct access to %s is disallowed\n", 6312 btf_field_type_name(field->type)); 6313 return -EACCES; 6314 } 6315 } 6316 break; 6317 } 6318 6319 t = btf_type_by_id(btf, id); 6320 do { 6321 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); 6322 6323 switch (err) { 6324 case WALK_PTR: 6325 /* For local types, the destination register cannot 6326 * become a pointer again. 6327 */ 6328 if (type_is_alloc(reg->type)) 6329 return SCALAR_VALUE; 6330 /* If we found the pointer or scalar on t+off, 6331 * we're done. 6332 */ 6333 *next_btf_id = id; 6334 *flag = tmp_flag; 6335 return PTR_TO_BTF_ID; 6336 case WALK_SCALAR: 6337 return SCALAR_VALUE; 6338 case WALK_STRUCT: 6339 /* We found nested struct, so continue the search 6340 * by diving in it. At this point the offset is 6341 * aligned with the new type, so set it to 0. 6342 */ 6343 t = btf_type_by_id(btf, id); 6344 off = 0; 6345 break; 6346 default: 6347 /* It's either error or unknown return value.. 6348 * scream and leave. 6349 */ 6350 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6351 return -EINVAL; 6352 return err; 6353 } 6354 } while (t); 6355 6356 return -EINVAL; 6357 } 6358 6359 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6360 * the same. Trivial ID check is not enough due to module BTFs, because we can 6361 * end up with two different module BTFs, but IDs point to the common type in 6362 * vmlinux BTF. 6363 */ 6364 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6365 const struct btf *btf2, u32 id2) 6366 { 6367 if (id1 != id2) 6368 return false; 6369 if (btf1 == btf2) 6370 return true; 6371 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6372 } 6373 6374 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6375 const struct btf *btf, u32 id, int off, 6376 const struct btf *need_btf, u32 need_type_id, 6377 bool strict) 6378 { 6379 const struct btf_type *type; 6380 enum bpf_type_flag flag; 6381 int err; 6382 6383 /* Are we already done? */ 6384 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6385 return true; 6386 /* In case of strict type match, we do not walk struct, the top level 6387 * type match must succeed. When strict is true, off should have already 6388 * been 0. 6389 */ 6390 if (strict) 6391 return false; 6392 again: 6393 type = btf_type_by_id(btf, id); 6394 if (!type) 6395 return false; 6396 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); 6397 if (err != WALK_STRUCT) 6398 return false; 6399 6400 /* We found nested struct object. If it matches 6401 * the requested ID, we're done. Otherwise let's 6402 * continue the search with offset 0 in the new 6403 * type. 6404 */ 6405 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6406 off = 0; 6407 goto again; 6408 } 6409 6410 return true; 6411 } 6412 6413 static int __get_type_size(struct btf *btf, u32 btf_id, 6414 const struct btf_type **ret_type) 6415 { 6416 const struct btf_type *t; 6417 6418 *ret_type = btf_type_by_id(btf, 0); 6419 if (!btf_id) 6420 /* void */ 6421 return 0; 6422 t = btf_type_by_id(btf, btf_id); 6423 while (t && btf_type_is_modifier(t)) 6424 t = btf_type_by_id(btf, t->type); 6425 if (!t) 6426 return -EINVAL; 6427 *ret_type = t; 6428 if (btf_type_is_ptr(t)) 6429 /* kernel size of pointer. Not BPF's size of pointer*/ 6430 return sizeof(void *); 6431 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6432 return t->size; 6433 return -EINVAL; 6434 } 6435 6436 int btf_distill_func_proto(struct bpf_verifier_log *log, 6437 struct btf *btf, 6438 const struct btf_type *func, 6439 const char *tname, 6440 struct btf_func_model *m) 6441 { 6442 const struct btf_param *args; 6443 const struct btf_type *t; 6444 u32 i, nargs; 6445 int ret; 6446 6447 if (!func) { 6448 /* BTF function prototype doesn't match the verifier types. 6449 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6450 */ 6451 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6452 m->arg_size[i] = 8; 6453 m->arg_flags[i] = 0; 6454 } 6455 m->ret_size = 8; 6456 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6457 return 0; 6458 } 6459 args = (const struct btf_param *)(func + 1); 6460 nargs = btf_type_vlen(func); 6461 if (nargs > MAX_BPF_FUNC_ARGS) { 6462 bpf_log(log, 6463 "The function %s has %d arguments. Too many.\n", 6464 tname, nargs); 6465 return -EINVAL; 6466 } 6467 ret = __get_type_size(btf, func->type, &t); 6468 if (ret < 0 || __btf_type_is_struct(t)) { 6469 bpf_log(log, 6470 "The function %s return type %s is unsupported.\n", 6471 tname, btf_type_str(t)); 6472 return -EINVAL; 6473 } 6474 m->ret_size = ret; 6475 6476 for (i = 0; i < nargs; i++) { 6477 if (i == nargs - 1 && args[i].type == 0) { 6478 bpf_log(log, 6479 "The function %s with variable args is unsupported.\n", 6480 tname); 6481 return -EINVAL; 6482 } 6483 ret = __get_type_size(btf, args[i].type, &t); 6484 6485 /* No support of struct argument size greater than 16 bytes */ 6486 if (ret < 0 || ret > 16) { 6487 bpf_log(log, 6488 "The function %s arg%d type %s is unsupported.\n", 6489 tname, i, btf_type_str(t)); 6490 return -EINVAL; 6491 } 6492 if (ret == 0) { 6493 bpf_log(log, 6494 "The function %s has malformed void argument.\n", 6495 tname); 6496 return -EINVAL; 6497 } 6498 m->arg_size[i] = ret; 6499 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0; 6500 } 6501 m->nr_args = nargs; 6502 return 0; 6503 } 6504 6505 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6506 * t1 points to BTF_KIND_FUNC in btf1 6507 * t2 points to BTF_KIND_FUNC in btf2 6508 * Returns: 6509 * EINVAL - function prototype mismatch 6510 * EFAULT - verifier bug 6511 * 0 - 99% match. The last 1% is validated by the verifier. 6512 */ 6513 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6514 struct btf *btf1, const struct btf_type *t1, 6515 struct btf *btf2, const struct btf_type *t2) 6516 { 6517 const struct btf_param *args1, *args2; 6518 const char *fn1, *fn2, *s1, *s2; 6519 u32 nargs1, nargs2, i; 6520 6521 fn1 = btf_name_by_offset(btf1, t1->name_off); 6522 fn2 = btf_name_by_offset(btf2, t2->name_off); 6523 6524 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6525 bpf_log(log, "%s() is not a global function\n", fn1); 6526 return -EINVAL; 6527 } 6528 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6529 bpf_log(log, "%s() is not a global function\n", fn2); 6530 return -EINVAL; 6531 } 6532 6533 t1 = btf_type_by_id(btf1, t1->type); 6534 if (!t1 || !btf_type_is_func_proto(t1)) 6535 return -EFAULT; 6536 t2 = btf_type_by_id(btf2, t2->type); 6537 if (!t2 || !btf_type_is_func_proto(t2)) 6538 return -EFAULT; 6539 6540 args1 = (const struct btf_param *)(t1 + 1); 6541 nargs1 = btf_type_vlen(t1); 6542 args2 = (const struct btf_param *)(t2 + 1); 6543 nargs2 = btf_type_vlen(t2); 6544 6545 if (nargs1 != nargs2) { 6546 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6547 fn1, nargs1, fn2, nargs2); 6548 return -EINVAL; 6549 } 6550 6551 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6552 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6553 if (t1->info != t2->info) { 6554 bpf_log(log, 6555 "Return type %s of %s() doesn't match type %s of %s()\n", 6556 btf_type_str(t1), fn1, 6557 btf_type_str(t2), fn2); 6558 return -EINVAL; 6559 } 6560 6561 for (i = 0; i < nargs1; i++) { 6562 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6563 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6564 6565 if (t1->info != t2->info) { 6566 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6567 i, fn1, btf_type_str(t1), 6568 fn2, btf_type_str(t2)); 6569 return -EINVAL; 6570 } 6571 if (btf_type_has_size(t1) && t1->size != t2->size) { 6572 bpf_log(log, 6573 "arg%d in %s() has size %d while %s() has %d\n", 6574 i, fn1, t1->size, 6575 fn2, t2->size); 6576 return -EINVAL; 6577 } 6578 6579 /* global functions are validated with scalars and pointers 6580 * to context only. And only global functions can be replaced. 6581 * Hence type check only those types. 6582 */ 6583 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6584 continue; 6585 if (!btf_type_is_ptr(t1)) { 6586 bpf_log(log, 6587 "arg%d in %s() has unrecognized type\n", 6588 i, fn1); 6589 return -EINVAL; 6590 } 6591 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6592 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6593 if (!btf_type_is_struct(t1)) { 6594 bpf_log(log, 6595 "arg%d in %s() is not a pointer to context\n", 6596 i, fn1); 6597 return -EINVAL; 6598 } 6599 if (!btf_type_is_struct(t2)) { 6600 bpf_log(log, 6601 "arg%d in %s() is not a pointer to context\n", 6602 i, fn2); 6603 return -EINVAL; 6604 } 6605 /* This is an optional check to make program writing easier. 6606 * Compare names of structs and report an error to the user. 6607 * btf_prepare_func_args() already checked that t2 struct 6608 * is a context type. btf_prepare_func_args() will check 6609 * later that t1 struct is a context type as well. 6610 */ 6611 s1 = btf_name_by_offset(btf1, t1->name_off); 6612 s2 = btf_name_by_offset(btf2, t2->name_off); 6613 if (strcmp(s1, s2)) { 6614 bpf_log(log, 6615 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6616 i, fn1, s1, fn2, s2); 6617 return -EINVAL; 6618 } 6619 } 6620 return 0; 6621 } 6622 6623 /* Compare BTFs of given program with BTF of target program */ 6624 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6625 struct btf *btf2, const struct btf_type *t2) 6626 { 6627 struct btf *btf1 = prog->aux->btf; 6628 const struct btf_type *t1; 6629 u32 btf_id = 0; 6630 6631 if (!prog->aux->func_info) { 6632 bpf_log(log, "Program extension requires BTF\n"); 6633 return -EINVAL; 6634 } 6635 6636 btf_id = prog->aux->func_info[0].type_id; 6637 if (!btf_id) 6638 return -EFAULT; 6639 6640 t1 = btf_type_by_id(btf1, btf_id); 6641 if (!t1 || !btf_type_is_func(t1)) 6642 return -EFAULT; 6643 6644 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6645 } 6646 6647 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6648 const struct btf *btf, u32 func_id, 6649 struct bpf_reg_state *regs, 6650 bool ptr_to_mem_ok, 6651 bool processing_call) 6652 { 6653 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6654 struct bpf_verifier_log *log = &env->log; 6655 const char *func_name, *ref_tname; 6656 const struct btf_type *t, *ref_t; 6657 const struct btf_param *args; 6658 u32 i, nargs, ref_id; 6659 int ret; 6660 6661 t = btf_type_by_id(btf, func_id); 6662 if (!t || !btf_type_is_func(t)) { 6663 /* These checks were already done by the verifier while loading 6664 * struct bpf_func_info or in add_kfunc_call(). 6665 */ 6666 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6667 func_id); 6668 return -EFAULT; 6669 } 6670 func_name = btf_name_by_offset(btf, t->name_off); 6671 6672 t = btf_type_by_id(btf, t->type); 6673 if (!t || !btf_type_is_func_proto(t)) { 6674 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6675 return -EFAULT; 6676 } 6677 args = (const struct btf_param *)(t + 1); 6678 nargs = btf_type_vlen(t); 6679 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6680 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6681 MAX_BPF_FUNC_REG_ARGS); 6682 return -EINVAL; 6683 } 6684 6685 /* check that BTF function arguments match actual types that the 6686 * verifier sees. 6687 */ 6688 for (i = 0; i < nargs; i++) { 6689 enum bpf_arg_type arg_type = ARG_DONTCARE; 6690 u32 regno = i + 1; 6691 struct bpf_reg_state *reg = ®s[regno]; 6692 6693 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6694 if (btf_type_is_scalar(t)) { 6695 if (reg->type == SCALAR_VALUE) 6696 continue; 6697 bpf_log(log, "R%d is not a scalar\n", regno); 6698 return -EINVAL; 6699 } 6700 6701 if (!btf_type_is_ptr(t)) { 6702 bpf_log(log, "Unrecognized arg#%d type %s\n", 6703 i, btf_type_str(t)); 6704 return -EINVAL; 6705 } 6706 6707 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6708 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6709 6710 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6711 if (ret < 0) 6712 return ret; 6713 6714 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6715 /* If function expects ctx type in BTF check that caller 6716 * is passing PTR_TO_CTX. 6717 */ 6718 if (reg->type != PTR_TO_CTX) { 6719 bpf_log(log, 6720 "arg#%d expected pointer to ctx, but got %s\n", 6721 i, btf_type_str(t)); 6722 return -EINVAL; 6723 } 6724 } else if (ptr_to_mem_ok && processing_call) { 6725 const struct btf_type *resolve_ret; 6726 u32 type_size; 6727 6728 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6729 if (IS_ERR(resolve_ret)) { 6730 bpf_log(log, 6731 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6732 i, btf_type_str(ref_t), ref_tname, 6733 PTR_ERR(resolve_ret)); 6734 return -EINVAL; 6735 } 6736 6737 if (check_mem_reg(env, reg, regno, type_size)) 6738 return -EINVAL; 6739 } else { 6740 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6741 func_name, func_id); 6742 return -EINVAL; 6743 } 6744 } 6745 6746 return 0; 6747 } 6748 6749 /* Compare BTF of a function declaration with given bpf_reg_state. 6750 * Returns: 6751 * EFAULT - there is a verifier bug. Abort verification. 6752 * EINVAL - there is a type mismatch or BTF is not available. 6753 * 0 - BTF matches with what bpf_reg_state expects. 6754 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6755 */ 6756 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6757 struct bpf_reg_state *regs) 6758 { 6759 struct bpf_prog *prog = env->prog; 6760 struct btf *btf = prog->aux->btf; 6761 bool is_global; 6762 u32 btf_id; 6763 int err; 6764 6765 if (!prog->aux->func_info) 6766 return -EINVAL; 6767 6768 btf_id = prog->aux->func_info[subprog].type_id; 6769 if (!btf_id) 6770 return -EFAULT; 6771 6772 if (prog->aux->func_info_aux[subprog].unreliable) 6773 return -EINVAL; 6774 6775 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6776 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6777 6778 /* Compiler optimizations can remove arguments from static functions 6779 * or mismatched type can be passed into a global function. 6780 * In such cases mark the function as unreliable from BTF point of view. 6781 */ 6782 if (err) 6783 prog->aux->func_info_aux[subprog].unreliable = true; 6784 return err; 6785 } 6786 6787 /* Compare BTF of a function call with given bpf_reg_state. 6788 * Returns: 6789 * EFAULT - there is a verifier bug. Abort verification. 6790 * EINVAL - there is a type mismatch or BTF is not available. 6791 * 0 - BTF matches with what bpf_reg_state expects. 6792 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6793 * 6794 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6795 * because btf_check_func_arg_match() is still doing both. Once that 6796 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6797 * first, and then treat the calling part in a new code path. 6798 */ 6799 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6800 struct bpf_reg_state *regs) 6801 { 6802 struct bpf_prog *prog = env->prog; 6803 struct btf *btf = prog->aux->btf; 6804 bool is_global; 6805 u32 btf_id; 6806 int err; 6807 6808 if (!prog->aux->func_info) 6809 return -EINVAL; 6810 6811 btf_id = prog->aux->func_info[subprog].type_id; 6812 if (!btf_id) 6813 return -EFAULT; 6814 6815 if (prog->aux->func_info_aux[subprog].unreliable) 6816 return -EINVAL; 6817 6818 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6819 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6820 6821 /* Compiler optimizations can remove arguments from static functions 6822 * or mismatched type can be passed into a global function. 6823 * In such cases mark the function as unreliable from BTF point of view. 6824 */ 6825 if (err) 6826 prog->aux->func_info_aux[subprog].unreliable = true; 6827 return err; 6828 } 6829 6830 /* Convert BTF of a function into bpf_reg_state if possible 6831 * Returns: 6832 * EFAULT - there is a verifier bug. Abort verification. 6833 * EINVAL - cannot convert BTF. 6834 * 0 - Successfully converted BTF into bpf_reg_state 6835 * (either PTR_TO_CTX or SCALAR_VALUE). 6836 */ 6837 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6838 struct bpf_reg_state *regs) 6839 { 6840 struct bpf_verifier_log *log = &env->log; 6841 struct bpf_prog *prog = env->prog; 6842 enum bpf_prog_type prog_type = prog->type; 6843 struct btf *btf = prog->aux->btf; 6844 const struct btf_param *args; 6845 const struct btf_type *t, *ref_t; 6846 u32 i, nargs, btf_id; 6847 const char *tname; 6848 6849 if (!prog->aux->func_info || 6850 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6851 bpf_log(log, "Verifier bug\n"); 6852 return -EFAULT; 6853 } 6854 6855 btf_id = prog->aux->func_info[subprog].type_id; 6856 if (!btf_id) { 6857 bpf_log(log, "Global functions need valid BTF\n"); 6858 return -EFAULT; 6859 } 6860 6861 t = btf_type_by_id(btf, btf_id); 6862 if (!t || !btf_type_is_func(t)) { 6863 /* These checks were already done by the verifier while loading 6864 * struct bpf_func_info 6865 */ 6866 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6867 subprog); 6868 return -EFAULT; 6869 } 6870 tname = btf_name_by_offset(btf, t->name_off); 6871 6872 if (log->level & BPF_LOG_LEVEL) 6873 bpf_log(log, "Validating %s() func#%d...\n", 6874 tname, subprog); 6875 6876 if (prog->aux->func_info_aux[subprog].unreliable) { 6877 bpf_log(log, "Verifier bug in function %s()\n", tname); 6878 return -EFAULT; 6879 } 6880 if (prog_type == BPF_PROG_TYPE_EXT) 6881 prog_type = prog->aux->dst_prog->type; 6882 6883 t = btf_type_by_id(btf, t->type); 6884 if (!t || !btf_type_is_func_proto(t)) { 6885 bpf_log(log, "Invalid type of function %s()\n", tname); 6886 return -EFAULT; 6887 } 6888 args = (const struct btf_param *)(t + 1); 6889 nargs = btf_type_vlen(t); 6890 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6891 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 6892 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 6893 return -EINVAL; 6894 } 6895 /* check that function returns int */ 6896 t = btf_type_by_id(btf, t->type); 6897 while (btf_type_is_modifier(t)) 6898 t = btf_type_by_id(btf, t->type); 6899 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 6900 bpf_log(log, 6901 "Global function %s() doesn't return scalar. Only those are supported.\n", 6902 tname); 6903 return -EINVAL; 6904 } 6905 /* Convert BTF function arguments into verifier types. 6906 * Only PTR_TO_CTX and SCALAR are supported atm. 6907 */ 6908 for (i = 0; i < nargs; i++) { 6909 struct bpf_reg_state *reg = ®s[i + 1]; 6910 6911 t = btf_type_by_id(btf, args[i].type); 6912 while (btf_type_is_modifier(t)) 6913 t = btf_type_by_id(btf, t->type); 6914 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 6915 reg->type = SCALAR_VALUE; 6916 continue; 6917 } 6918 if (btf_type_is_ptr(t)) { 6919 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6920 reg->type = PTR_TO_CTX; 6921 continue; 6922 } 6923 6924 t = btf_type_skip_modifiers(btf, t->type, NULL); 6925 6926 ref_t = btf_resolve_size(btf, t, ®->mem_size); 6927 if (IS_ERR(ref_t)) { 6928 bpf_log(log, 6929 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6930 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 6931 PTR_ERR(ref_t)); 6932 return -EINVAL; 6933 } 6934 6935 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6936 reg->id = ++env->id_gen; 6937 6938 continue; 6939 } 6940 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 6941 i, btf_type_str(t), tname); 6942 return -EINVAL; 6943 } 6944 return 0; 6945 } 6946 6947 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 6948 struct btf_show *show) 6949 { 6950 const struct btf_type *t = btf_type_by_id(btf, type_id); 6951 6952 show->btf = btf; 6953 memset(&show->state, 0, sizeof(show->state)); 6954 memset(&show->obj, 0, sizeof(show->obj)); 6955 6956 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 6957 } 6958 6959 static void btf_seq_show(struct btf_show *show, const char *fmt, 6960 va_list args) 6961 { 6962 seq_vprintf((struct seq_file *)show->target, fmt, args); 6963 } 6964 6965 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 6966 void *obj, struct seq_file *m, u64 flags) 6967 { 6968 struct btf_show sseq; 6969 6970 sseq.target = m; 6971 sseq.showfn = btf_seq_show; 6972 sseq.flags = flags; 6973 6974 btf_type_show(btf, type_id, obj, &sseq); 6975 6976 return sseq.state.status; 6977 } 6978 6979 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 6980 struct seq_file *m) 6981 { 6982 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 6983 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 6984 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 6985 } 6986 6987 struct btf_show_snprintf { 6988 struct btf_show show; 6989 int len_left; /* space left in string */ 6990 int len; /* length we would have written */ 6991 }; 6992 6993 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 6994 va_list args) 6995 { 6996 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 6997 int len; 6998 6999 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7000 7001 if (len < 0) { 7002 ssnprintf->len_left = 0; 7003 ssnprintf->len = len; 7004 } else if (len >= ssnprintf->len_left) { 7005 /* no space, drive on to get length we would have written */ 7006 ssnprintf->len_left = 0; 7007 ssnprintf->len += len; 7008 } else { 7009 ssnprintf->len_left -= len; 7010 ssnprintf->len += len; 7011 show->target += len; 7012 } 7013 } 7014 7015 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7016 char *buf, int len, u64 flags) 7017 { 7018 struct btf_show_snprintf ssnprintf; 7019 7020 ssnprintf.show.target = buf; 7021 ssnprintf.show.flags = flags; 7022 ssnprintf.show.showfn = btf_snprintf_show; 7023 ssnprintf.len_left = len; 7024 ssnprintf.len = 0; 7025 7026 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7027 7028 /* If we encountered an error, return it. */ 7029 if (ssnprintf.show.state.status) 7030 return ssnprintf.show.state.status; 7031 7032 /* Otherwise return length we would have written */ 7033 return ssnprintf.len; 7034 } 7035 7036 #ifdef CONFIG_PROC_FS 7037 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7038 { 7039 const struct btf *btf = filp->private_data; 7040 7041 seq_printf(m, "btf_id:\t%u\n", btf->id); 7042 } 7043 #endif 7044 7045 static int btf_release(struct inode *inode, struct file *filp) 7046 { 7047 btf_put(filp->private_data); 7048 return 0; 7049 } 7050 7051 const struct file_operations btf_fops = { 7052 #ifdef CONFIG_PROC_FS 7053 .show_fdinfo = bpf_btf_show_fdinfo, 7054 #endif 7055 .release = btf_release, 7056 }; 7057 7058 static int __btf_new_fd(struct btf *btf) 7059 { 7060 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7061 } 7062 7063 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 7064 { 7065 struct btf *btf; 7066 int ret; 7067 7068 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 7069 attr->btf_size, attr->btf_log_level, 7070 u64_to_user_ptr(attr->btf_log_buf), 7071 attr->btf_log_size); 7072 if (IS_ERR(btf)) 7073 return PTR_ERR(btf); 7074 7075 ret = btf_alloc_id(btf); 7076 if (ret) { 7077 btf_free(btf); 7078 return ret; 7079 } 7080 7081 /* 7082 * The BTF ID is published to the userspace. 7083 * All BTF free must go through call_rcu() from 7084 * now on (i.e. free by calling btf_put()). 7085 */ 7086 7087 ret = __btf_new_fd(btf); 7088 if (ret < 0) 7089 btf_put(btf); 7090 7091 return ret; 7092 } 7093 7094 struct btf *btf_get_by_fd(int fd) 7095 { 7096 struct btf *btf; 7097 struct fd f; 7098 7099 f = fdget(fd); 7100 7101 if (!f.file) 7102 return ERR_PTR(-EBADF); 7103 7104 if (f.file->f_op != &btf_fops) { 7105 fdput(f); 7106 return ERR_PTR(-EINVAL); 7107 } 7108 7109 btf = f.file->private_data; 7110 refcount_inc(&btf->refcnt); 7111 fdput(f); 7112 7113 return btf; 7114 } 7115 7116 int btf_get_info_by_fd(const struct btf *btf, 7117 const union bpf_attr *attr, 7118 union bpf_attr __user *uattr) 7119 { 7120 struct bpf_btf_info __user *uinfo; 7121 struct bpf_btf_info info; 7122 u32 info_copy, btf_copy; 7123 void __user *ubtf; 7124 char __user *uname; 7125 u32 uinfo_len, uname_len, name_len; 7126 int ret = 0; 7127 7128 uinfo = u64_to_user_ptr(attr->info.info); 7129 uinfo_len = attr->info.info_len; 7130 7131 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7132 memset(&info, 0, sizeof(info)); 7133 if (copy_from_user(&info, uinfo, info_copy)) 7134 return -EFAULT; 7135 7136 info.id = btf->id; 7137 ubtf = u64_to_user_ptr(info.btf); 7138 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7139 if (copy_to_user(ubtf, btf->data, btf_copy)) 7140 return -EFAULT; 7141 info.btf_size = btf->data_size; 7142 7143 info.kernel_btf = btf->kernel_btf; 7144 7145 uname = u64_to_user_ptr(info.name); 7146 uname_len = info.name_len; 7147 if (!uname ^ !uname_len) 7148 return -EINVAL; 7149 7150 name_len = strlen(btf->name); 7151 info.name_len = name_len; 7152 7153 if (uname) { 7154 if (uname_len >= name_len + 1) { 7155 if (copy_to_user(uname, btf->name, name_len + 1)) 7156 return -EFAULT; 7157 } else { 7158 char zero = '\0'; 7159 7160 if (copy_to_user(uname, btf->name, uname_len - 1)) 7161 return -EFAULT; 7162 if (put_user(zero, uname + uname_len - 1)) 7163 return -EFAULT; 7164 /* let user-space know about too short buffer */ 7165 ret = -ENOSPC; 7166 } 7167 } 7168 7169 if (copy_to_user(uinfo, &info, info_copy) || 7170 put_user(info_copy, &uattr->info.info_len)) 7171 return -EFAULT; 7172 7173 return ret; 7174 } 7175 7176 int btf_get_fd_by_id(u32 id) 7177 { 7178 struct btf *btf; 7179 int fd; 7180 7181 rcu_read_lock(); 7182 btf = idr_find(&btf_idr, id); 7183 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7184 btf = ERR_PTR(-ENOENT); 7185 rcu_read_unlock(); 7186 7187 if (IS_ERR(btf)) 7188 return PTR_ERR(btf); 7189 7190 fd = __btf_new_fd(btf); 7191 if (fd < 0) 7192 btf_put(btf); 7193 7194 return fd; 7195 } 7196 7197 u32 btf_obj_id(const struct btf *btf) 7198 { 7199 return btf->id; 7200 } 7201 7202 bool btf_is_kernel(const struct btf *btf) 7203 { 7204 return btf->kernel_btf; 7205 } 7206 7207 bool btf_is_module(const struct btf *btf) 7208 { 7209 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7210 } 7211 7212 enum { 7213 BTF_MODULE_F_LIVE = (1 << 0), 7214 }; 7215 7216 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7217 struct btf_module { 7218 struct list_head list; 7219 struct module *module; 7220 struct btf *btf; 7221 struct bin_attribute *sysfs_attr; 7222 int flags; 7223 }; 7224 7225 static LIST_HEAD(btf_modules); 7226 static DEFINE_MUTEX(btf_module_mutex); 7227 7228 static ssize_t 7229 btf_module_read(struct file *file, struct kobject *kobj, 7230 struct bin_attribute *bin_attr, 7231 char *buf, loff_t off, size_t len) 7232 { 7233 const struct btf *btf = bin_attr->private; 7234 7235 memcpy(buf, btf->data + off, len); 7236 return len; 7237 } 7238 7239 static void purge_cand_cache(struct btf *btf); 7240 7241 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7242 void *module) 7243 { 7244 struct btf_module *btf_mod, *tmp; 7245 struct module *mod = module; 7246 struct btf *btf; 7247 int err = 0; 7248 7249 if (mod->btf_data_size == 0 || 7250 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7251 op != MODULE_STATE_GOING)) 7252 goto out; 7253 7254 switch (op) { 7255 case MODULE_STATE_COMING: 7256 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7257 if (!btf_mod) { 7258 err = -ENOMEM; 7259 goto out; 7260 } 7261 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7262 if (IS_ERR(btf)) { 7263 pr_warn("failed to validate module [%s] BTF: %ld\n", 7264 mod->name, PTR_ERR(btf)); 7265 kfree(btf_mod); 7266 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 7267 err = PTR_ERR(btf); 7268 goto out; 7269 } 7270 err = btf_alloc_id(btf); 7271 if (err) { 7272 btf_free(btf); 7273 kfree(btf_mod); 7274 goto out; 7275 } 7276 7277 purge_cand_cache(NULL); 7278 mutex_lock(&btf_module_mutex); 7279 btf_mod->module = module; 7280 btf_mod->btf = btf; 7281 list_add(&btf_mod->list, &btf_modules); 7282 mutex_unlock(&btf_module_mutex); 7283 7284 if (IS_ENABLED(CONFIG_SYSFS)) { 7285 struct bin_attribute *attr; 7286 7287 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7288 if (!attr) 7289 goto out; 7290 7291 sysfs_bin_attr_init(attr); 7292 attr->attr.name = btf->name; 7293 attr->attr.mode = 0444; 7294 attr->size = btf->data_size; 7295 attr->private = btf; 7296 attr->read = btf_module_read; 7297 7298 err = sysfs_create_bin_file(btf_kobj, attr); 7299 if (err) { 7300 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7301 mod->name, err); 7302 kfree(attr); 7303 err = 0; 7304 goto out; 7305 } 7306 7307 btf_mod->sysfs_attr = attr; 7308 } 7309 7310 break; 7311 case MODULE_STATE_LIVE: 7312 mutex_lock(&btf_module_mutex); 7313 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7314 if (btf_mod->module != module) 7315 continue; 7316 7317 btf_mod->flags |= BTF_MODULE_F_LIVE; 7318 break; 7319 } 7320 mutex_unlock(&btf_module_mutex); 7321 break; 7322 case MODULE_STATE_GOING: 7323 mutex_lock(&btf_module_mutex); 7324 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7325 if (btf_mod->module != module) 7326 continue; 7327 7328 list_del(&btf_mod->list); 7329 if (btf_mod->sysfs_attr) 7330 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7331 purge_cand_cache(btf_mod->btf); 7332 btf_put(btf_mod->btf); 7333 kfree(btf_mod->sysfs_attr); 7334 kfree(btf_mod); 7335 break; 7336 } 7337 mutex_unlock(&btf_module_mutex); 7338 break; 7339 } 7340 out: 7341 return notifier_from_errno(err); 7342 } 7343 7344 static struct notifier_block btf_module_nb = { 7345 .notifier_call = btf_module_notify, 7346 }; 7347 7348 static int __init btf_module_init(void) 7349 { 7350 register_module_notifier(&btf_module_nb); 7351 return 0; 7352 } 7353 7354 fs_initcall(btf_module_init); 7355 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7356 7357 struct module *btf_try_get_module(const struct btf *btf) 7358 { 7359 struct module *res = NULL; 7360 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7361 struct btf_module *btf_mod, *tmp; 7362 7363 mutex_lock(&btf_module_mutex); 7364 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7365 if (btf_mod->btf != btf) 7366 continue; 7367 7368 /* We must only consider module whose __init routine has 7369 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7370 * which is set from the notifier callback for 7371 * MODULE_STATE_LIVE. 7372 */ 7373 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7374 res = btf_mod->module; 7375 7376 break; 7377 } 7378 mutex_unlock(&btf_module_mutex); 7379 #endif 7380 7381 return res; 7382 } 7383 7384 /* Returns struct btf corresponding to the struct module. 7385 * This function can return NULL or ERR_PTR. 7386 */ 7387 static struct btf *btf_get_module_btf(const struct module *module) 7388 { 7389 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7390 struct btf_module *btf_mod, *tmp; 7391 #endif 7392 struct btf *btf = NULL; 7393 7394 if (!module) { 7395 btf = bpf_get_btf_vmlinux(); 7396 if (!IS_ERR_OR_NULL(btf)) 7397 btf_get(btf); 7398 return btf; 7399 } 7400 7401 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7402 mutex_lock(&btf_module_mutex); 7403 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7404 if (btf_mod->module != module) 7405 continue; 7406 7407 btf_get(btf_mod->btf); 7408 btf = btf_mod->btf; 7409 break; 7410 } 7411 mutex_unlock(&btf_module_mutex); 7412 #endif 7413 7414 return btf; 7415 } 7416 7417 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7418 { 7419 struct btf *btf = NULL; 7420 int btf_obj_fd = 0; 7421 long ret; 7422 7423 if (flags) 7424 return -EINVAL; 7425 7426 if (name_sz <= 1 || name[name_sz - 1]) 7427 return -EINVAL; 7428 7429 ret = bpf_find_btf_id(name, kind, &btf); 7430 if (ret > 0 && btf_is_module(btf)) { 7431 btf_obj_fd = __btf_new_fd(btf); 7432 if (btf_obj_fd < 0) { 7433 btf_put(btf); 7434 return btf_obj_fd; 7435 } 7436 return ret | (((u64)btf_obj_fd) << 32); 7437 } 7438 if (ret > 0) 7439 btf_put(btf); 7440 return ret; 7441 } 7442 7443 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7444 .func = bpf_btf_find_by_name_kind, 7445 .gpl_only = false, 7446 .ret_type = RET_INTEGER, 7447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7448 .arg2_type = ARG_CONST_SIZE, 7449 .arg3_type = ARG_ANYTHING, 7450 .arg4_type = ARG_ANYTHING, 7451 }; 7452 7453 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7454 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7455 BTF_TRACING_TYPE_xxx 7456 #undef BTF_TRACING_TYPE 7457 7458 /* Kernel Function (kfunc) BTF ID set registration API */ 7459 7460 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7461 struct btf_id_set8 *add_set) 7462 { 7463 bool vmlinux_set = !btf_is_module(btf); 7464 struct btf_kfunc_set_tab *tab; 7465 struct btf_id_set8 *set; 7466 u32 set_cnt; 7467 int ret; 7468 7469 if (hook >= BTF_KFUNC_HOOK_MAX) { 7470 ret = -EINVAL; 7471 goto end; 7472 } 7473 7474 if (!add_set->cnt) 7475 return 0; 7476 7477 tab = btf->kfunc_set_tab; 7478 if (!tab) { 7479 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7480 if (!tab) 7481 return -ENOMEM; 7482 btf->kfunc_set_tab = tab; 7483 } 7484 7485 set = tab->sets[hook]; 7486 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7487 * for module sets. 7488 */ 7489 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7490 ret = -EINVAL; 7491 goto end; 7492 } 7493 7494 /* We don't need to allocate, concatenate, and sort module sets, because 7495 * only one is allowed per hook. Hence, we can directly assign the 7496 * pointer and return. 7497 */ 7498 if (!vmlinux_set) { 7499 tab->sets[hook] = add_set; 7500 return 0; 7501 } 7502 7503 /* In case of vmlinux sets, there may be more than one set being 7504 * registered per hook. To create a unified set, we allocate a new set 7505 * and concatenate all individual sets being registered. While each set 7506 * is individually sorted, they may become unsorted when concatenated, 7507 * hence re-sorting the final set again is required to make binary 7508 * searching the set using btf_id_set8_contains function work. 7509 */ 7510 set_cnt = set ? set->cnt : 0; 7511 7512 if (set_cnt > U32_MAX - add_set->cnt) { 7513 ret = -EOVERFLOW; 7514 goto end; 7515 } 7516 7517 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7518 ret = -E2BIG; 7519 goto end; 7520 } 7521 7522 /* Grow set */ 7523 set = krealloc(tab->sets[hook], 7524 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7525 GFP_KERNEL | __GFP_NOWARN); 7526 if (!set) { 7527 ret = -ENOMEM; 7528 goto end; 7529 } 7530 7531 /* For newly allocated set, initialize set->cnt to 0 */ 7532 if (!tab->sets[hook]) 7533 set->cnt = 0; 7534 tab->sets[hook] = set; 7535 7536 /* Concatenate the two sets */ 7537 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7538 set->cnt += add_set->cnt; 7539 7540 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7541 7542 return 0; 7543 end: 7544 btf_free_kfunc_set_tab(btf); 7545 return ret; 7546 } 7547 7548 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7549 enum btf_kfunc_hook hook, 7550 u32 kfunc_btf_id) 7551 { 7552 struct btf_id_set8 *set; 7553 u32 *id; 7554 7555 if (hook >= BTF_KFUNC_HOOK_MAX) 7556 return NULL; 7557 if (!btf->kfunc_set_tab) 7558 return NULL; 7559 set = btf->kfunc_set_tab->sets[hook]; 7560 if (!set) 7561 return NULL; 7562 id = btf_id_set8_contains(set, kfunc_btf_id); 7563 if (!id) 7564 return NULL; 7565 /* The flags for BTF ID are located next to it */ 7566 return id + 1; 7567 } 7568 7569 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7570 { 7571 switch (prog_type) { 7572 case BPF_PROG_TYPE_UNSPEC: 7573 return BTF_KFUNC_HOOK_COMMON; 7574 case BPF_PROG_TYPE_XDP: 7575 return BTF_KFUNC_HOOK_XDP; 7576 case BPF_PROG_TYPE_SCHED_CLS: 7577 return BTF_KFUNC_HOOK_TC; 7578 case BPF_PROG_TYPE_STRUCT_OPS: 7579 return BTF_KFUNC_HOOK_STRUCT_OPS; 7580 case BPF_PROG_TYPE_TRACING: 7581 case BPF_PROG_TYPE_LSM: 7582 return BTF_KFUNC_HOOK_TRACING; 7583 case BPF_PROG_TYPE_SYSCALL: 7584 return BTF_KFUNC_HOOK_SYSCALL; 7585 default: 7586 return BTF_KFUNC_HOOK_MAX; 7587 } 7588 } 7589 7590 /* Caution: 7591 * Reference to the module (obtained using btf_try_get_module) corresponding to 7592 * the struct btf *MUST* be held when calling this function from verifier 7593 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7594 * keeping the reference for the duration of the call provides the necessary 7595 * protection for looking up a well-formed btf->kfunc_set_tab. 7596 */ 7597 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7598 enum bpf_prog_type prog_type, 7599 u32 kfunc_btf_id) 7600 { 7601 enum btf_kfunc_hook hook; 7602 u32 *kfunc_flags; 7603 7604 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id); 7605 if (kfunc_flags) 7606 return kfunc_flags; 7607 7608 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7609 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7610 } 7611 7612 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id) 7613 { 7614 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id); 7615 } 7616 7617 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7618 const struct btf_kfunc_id_set *kset) 7619 { 7620 struct btf *btf; 7621 int ret; 7622 7623 btf = btf_get_module_btf(kset->owner); 7624 if (!btf) { 7625 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7626 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7627 return -ENOENT; 7628 } 7629 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7630 pr_err("missing module BTF, cannot register kfuncs\n"); 7631 return -ENOENT; 7632 } 7633 return 0; 7634 } 7635 if (IS_ERR(btf)) 7636 return PTR_ERR(btf); 7637 7638 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7639 btf_put(btf); 7640 return ret; 7641 } 7642 7643 /* This function must be invoked only from initcalls/module init functions */ 7644 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7645 const struct btf_kfunc_id_set *kset) 7646 { 7647 enum btf_kfunc_hook hook; 7648 7649 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7650 return __register_btf_kfunc_id_set(hook, kset); 7651 } 7652 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7653 7654 /* This function must be invoked only from initcalls/module init functions */ 7655 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7656 { 7657 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7658 } 7659 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7660 7661 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7662 { 7663 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7664 struct btf_id_dtor_kfunc *dtor; 7665 7666 if (!tab) 7667 return -ENOENT; 7668 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7669 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7670 */ 7671 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7672 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7673 if (!dtor) 7674 return -ENOENT; 7675 return dtor->kfunc_btf_id; 7676 } 7677 7678 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7679 { 7680 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7681 const struct btf_param *args; 7682 s32 dtor_btf_id; 7683 u32 nr_args, i; 7684 7685 for (i = 0; i < cnt; i++) { 7686 dtor_btf_id = dtors[i].kfunc_btf_id; 7687 7688 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7689 if (!dtor_func || !btf_type_is_func(dtor_func)) 7690 return -EINVAL; 7691 7692 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7693 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7694 return -EINVAL; 7695 7696 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7697 t = btf_type_by_id(btf, dtor_func_proto->type); 7698 if (!t || !btf_type_is_void(t)) 7699 return -EINVAL; 7700 7701 nr_args = btf_type_vlen(dtor_func_proto); 7702 if (nr_args != 1) 7703 return -EINVAL; 7704 args = btf_params(dtor_func_proto); 7705 t = btf_type_by_id(btf, args[0].type); 7706 /* Allow any pointer type, as width on targets Linux supports 7707 * will be same for all pointer types (i.e. sizeof(void *)) 7708 */ 7709 if (!t || !btf_type_is_ptr(t)) 7710 return -EINVAL; 7711 } 7712 return 0; 7713 } 7714 7715 /* This function must be invoked only from initcalls/module init functions */ 7716 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7717 struct module *owner) 7718 { 7719 struct btf_id_dtor_kfunc_tab *tab; 7720 struct btf *btf; 7721 u32 tab_cnt; 7722 int ret; 7723 7724 btf = btf_get_module_btf(owner); 7725 if (!btf) { 7726 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7727 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7728 return -ENOENT; 7729 } 7730 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7731 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7732 return -ENOENT; 7733 } 7734 return 0; 7735 } 7736 if (IS_ERR(btf)) 7737 return PTR_ERR(btf); 7738 7739 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7740 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7741 ret = -E2BIG; 7742 goto end; 7743 } 7744 7745 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7746 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7747 if (ret < 0) 7748 goto end; 7749 7750 tab = btf->dtor_kfunc_tab; 7751 /* Only one call allowed for modules */ 7752 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7753 ret = -EINVAL; 7754 goto end; 7755 } 7756 7757 tab_cnt = tab ? tab->cnt : 0; 7758 if (tab_cnt > U32_MAX - add_cnt) { 7759 ret = -EOVERFLOW; 7760 goto end; 7761 } 7762 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7763 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7764 ret = -E2BIG; 7765 goto end; 7766 } 7767 7768 tab = krealloc(btf->dtor_kfunc_tab, 7769 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 7770 GFP_KERNEL | __GFP_NOWARN); 7771 if (!tab) { 7772 ret = -ENOMEM; 7773 goto end; 7774 } 7775 7776 if (!btf->dtor_kfunc_tab) 7777 tab->cnt = 0; 7778 btf->dtor_kfunc_tab = tab; 7779 7780 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 7781 tab->cnt += add_cnt; 7782 7783 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 7784 7785 return 0; 7786 end: 7787 btf_free_dtor_kfunc_tab(btf); 7788 btf_put(btf); 7789 return ret; 7790 } 7791 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 7792 7793 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 7794 7795 /* Check local and target types for compatibility. This check is used for 7796 * type-based CO-RE relocations and follow slightly different rules than 7797 * field-based relocations. This function assumes that root types were already 7798 * checked for name match. Beyond that initial root-level name check, names 7799 * are completely ignored. Compatibility rules are as follows: 7800 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 7801 * kind should match for local and target types (i.e., STRUCT is not 7802 * compatible with UNION); 7803 * - for ENUMs/ENUM64s, the size is ignored; 7804 * - for INT, size and signedness are ignored; 7805 * - for ARRAY, dimensionality is ignored, element types are checked for 7806 * compatibility recursively; 7807 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 7808 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 7809 * - FUNC_PROTOs are compatible if they have compatible signature: same 7810 * number of input args and compatible return and argument types. 7811 * These rules are not set in stone and probably will be adjusted as we get 7812 * more experience with using BPF CO-RE relocations. 7813 */ 7814 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 7815 const struct btf *targ_btf, __u32 targ_id) 7816 { 7817 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 7818 MAX_TYPES_ARE_COMPAT_DEPTH); 7819 } 7820 7821 #define MAX_TYPES_MATCH_DEPTH 2 7822 7823 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 7824 const struct btf *targ_btf, u32 targ_id) 7825 { 7826 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 7827 MAX_TYPES_MATCH_DEPTH); 7828 } 7829 7830 static bool bpf_core_is_flavor_sep(const char *s) 7831 { 7832 /* check X___Y name pattern, where X and Y are not underscores */ 7833 return s[0] != '_' && /* X */ 7834 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 7835 s[4] != '_'; /* Y */ 7836 } 7837 7838 size_t bpf_core_essential_name_len(const char *name) 7839 { 7840 size_t n = strlen(name); 7841 int i; 7842 7843 for (i = n - 5; i >= 0; i--) { 7844 if (bpf_core_is_flavor_sep(name + i)) 7845 return i + 1; 7846 } 7847 return n; 7848 } 7849 7850 struct bpf_cand_cache { 7851 const char *name; 7852 u32 name_len; 7853 u16 kind; 7854 u16 cnt; 7855 struct { 7856 const struct btf *btf; 7857 u32 id; 7858 } cands[]; 7859 }; 7860 7861 static void bpf_free_cands(struct bpf_cand_cache *cands) 7862 { 7863 if (!cands->cnt) 7864 /* empty candidate array was allocated on stack */ 7865 return; 7866 kfree(cands); 7867 } 7868 7869 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 7870 { 7871 kfree(cands->name); 7872 kfree(cands); 7873 } 7874 7875 #define VMLINUX_CAND_CACHE_SIZE 31 7876 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 7877 7878 #define MODULE_CAND_CACHE_SIZE 31 7879 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 7880 7881 static DEFINE_MUTEX(cand_cache_mutex); 7882 7883 static void __print_cand_cache(struct bpf_verifier_log *log, 7884 struct bpf_cand_cache **cache, 7885 int cache_size) 7886 { 7887 struct bpf_cand_cache *cc; 7888 int i, j; 7889 7890 for (i = 0; i < cache_size; i++) { 7891 cc = cache[i]; 7892 if (!cc) 7893 continue; 7894 bpf_log(log, "[%d]%s(", i, cc->name); 7895 for (j = 0; j < cc->cnt; j++) { 7896 bpf_log(log, "%d", cc->cands[j].id); 7897 if (j < cc->cnt - 1) 7898 bpf_log(log, " "); 7899 } 7900 bpf_log(log, "), "); 7901 } 7902 } 7903 7904 static void print_cand_cache(struct bpf_verifier_log *log) 7905 { 7906 mutex_lock(&cand_cache_mutex); 7907 bpf_log(log, "vmlinux_cand_cache:"); 7908 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7909 bpf_log(log, "\nmodule_cand_cache:"); 7910 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7911 bpf_log(log, "\n"); 7912 mutex_unlock(&cand_cache_mutex); 7913 } 7914 7915 static u32 hash_cands(struct bpf_cand_cache *cands) 7916 { 7917 return jhash(cands->name, cands->name_len, 0); 7918 } 7919 7920 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 7921 struct bpf_cand_cache **cache, 7922 int cache_size) 7923 { 7924 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 7925 7926 if (cc && cc->name_len == cands->name_len && 7927 !strncmp(cc->name, cands->name, cands->name_len)) 7928 return cc; 7929 return NULL; 7930 } 7931 7932 static size_t sizeof_cands(int cnt) 7933 { 7934 return offsetof(struct bpf_cand_cache, cands[cnt]); 7935 } 7936 7937 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 7938 struct bpf_cand_cache **cache, 7939 int cache_size) 7940 { 7941 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 7942 7943 if (*cc) { 7944 bpf_free_cands_from_cache(*cc); 7945 *cc = NULL; 7946 } 7947 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 7948 if (!new_cands) { 7949 bpf_free_cands(cands); 7950 return ERR_PTR(-ENOMEM); 7951 } 7952 /* strdup the name, since it will stay in cache. 7953 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 7954 */ 7955 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 7956 bpf_free_cands(cands); 7957 if (!new_cands->name) { 7958 kfree(new_cands); 7959 return ERR_PTR(-ENOMEM); 7960 } 7961 *cc = new_cands; 7962 return new_cands; 7963 } 7964 7965 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7966 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 7967 int cache_size) 7968 { 7969 struct bpf_cand_cache *cc; 7970 int i, j; 7971 7972 for (i = 0; i < cache_size; i++) { 7973 cc = cache[i]; 7974 if (!cc) 7975 continue; 7976 if (!btf) { 7977 /* when new module is loaded purge all of module_cand_cache, 7978 * since new module might have candidates with the name 7979 * that matches cached cands. 7980 */ 7981 bpf_free_cands_from_cache(cc); 7982 cache[i] = NULL; 7983 continue; 7984 } 7985 /* when module is unloaded purge cache entries 7986 * that match module's btf 7987 */ 7988 for (j = 0; j < cc->cnt; j++) 7989 if (cc->cands[j].btf == btf) { 7990 bpf_free_cands_from_cache(cc); 7991 cache[i] = NULL; 7992 break; 7993 } 7994 } 7995 7996 } 7997 7998 static void purge_cand_cache(struct btf *btf) 7999 { 8000 mutex_lock(&cand_cache_mutex); 8001 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8002 mutex_unlock(&cand_cache_mutex); 8003 } 8004 #endif 8005 8006 static struct bpf_cand_cache * 8007 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8008 int targ_start_id) 8009 { 8010 struct bpf_cand_cache *new_cands; 8011 const struct btf_type *t; 8012 const char *targ_name; 8013 size_t targ_essent_len; 8014 int n, i; 8015 8016 n = btf_nr_types(targ_btf); 8017 for (i = targ_start_id; i < n; i++) { 8018 t = btf_type_by_id(targ_btf, i); 8019 if (btf_kind(t) != cands->kind) 8020 continue; 8021 8022 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8023 if (!targ_name) 8024 continue; 8025 8026 /* the resched point is before strncmp to make sure that search 8027 * for non-existing name will have a chance to schedule(). 8028 */ 8029 cond_resched(); 8030 8031 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8032 continue; 8033 8034 targ_essent_len = bpf_core_essential_name_len(targ_name); 8035 if (targ_essent_len != cands->name_len) 8036 continue; 8037 8038 /* most of the time there is only one candidate for a given kind+name pair */ 8039 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8040 if (!new_cands) { 8041 bpf_free_cands(cands); 8042 return ERR_PTR(-ENOMEM); 8043 } 8044 8045 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8046 bpf_free_cands(cands); 8047 cands = new_cands; 8048 cands->cands[cands->cnt].btf = targ_btf; 8049 cands->cands[cands->cnt].id = i; 8050 cands->cnt++; 8051 } 8052 return cands; 8053 } 8054 8055 static struct bpf_cand_cache * 8056 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8057 { 8058 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8059 const struct btf *local_btf = ctx->btf; 8060 const struct btf_type *local_type; 8061 const struct btf *main_btf; 8062 size_t local_essent_len; 8063 struct btf *mod_btf; 8064 const char *name; 8065 int id; 8066 8067 main_btf = bpf_get_btf_vmlinux(); 8068 if (IS_ERR(main_btf)) 8069 return ERR_CAST(main_btf); 8070 if (!main_btf) 8071 return ERR_PTR(-EINVAL); 8072 8073 local_type = btf_type_by_id(local_btf, local_type_id); 8074 if (!local_type) 8075 return ERR_PTR(-EINVAL); 8076 8077 name = btf_name_by_offset(local_btf, local_type->name_off); 8078 if (str_is_empty(name)) 8079 return ERR_PTR(-EINVAL); 8080 local_essent_len = bpf_core_essential_name_len(name); 8081 8082 cands = &local_cand; 8083 cands->name = name; 8084 cands->kind = btf_kind(local_type); 8085 cands->name_len = local_essent_len; 8086 8087 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8088 /* cands is a pointer to stack here */ 8089 if (cc) { 8090 if (cc->cnt) 8091 return cc; 8092 goto check_modules; 8093 } 8094 8095 /* Attempt to find target candidates in vmlinux BTF first */ 8096 cands = bpf_core_add_cands(cands, main_btf, 1); 8097 if (IS_ERR(cands)) 8098 return ERR_CAST(cands); 8099 8100 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8101 8102 /* populate cache even when cands->cnt == 0 */ 8103 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8104 if (IS_ERR(cc)) 8105 return ERR_CAST(cc); 8106 8107 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8108 if (cc->cnt) 8109 return cc; 8110 8111 check_modules: 8112 /* cands is a pointer to stack here and cands->cnt == 0 */ 8113 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8114 if (cc) 8115 /* if cache has it return it even if cc->cnt == 0 */ 8116 return cc; 8117 8118 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8119 spin_lock_bh(&btf_idr_lock); 8120 idr_for_each_entry(&btf_idr, mod_btf, id) { 8121 if (!btf_is_module(mod_btf)) 8122 continue; 8123 /* linear search could be slow hence unlock/lock 8124 * the IDR to avoiding holding it for too long 8125 */ 8126 btf_get(mod_btf); 8127 spin_unlock_bh(&btf_idr_lock); 8128 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8129 if (IS_ERR(cands)) { 8130 btf_put(mod_btf); 8131 return ERR_CAST(cands); 8132 } 8133 spin_lock_bh(&btf_idr_lock); 8134 btf_put(mod_btf); 8135 } 8136 spin_unlock_bh(&btf_idr_lock); 8137 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8138 * or pointer to stack if cands->cnd == 0. 8139 * Copy it into the cache even when cands->cnt == 0 and 8140 * return the result. 8141 */ 8142 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8143 } 8144 8145 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8146 int relo_idx, void *insn) 8147 { 8148 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8149 struct bpf_core_cand_list cands = {}; 8150 struct bpf_core_relo_res targ_res; 8151 struct bpf_core_spec *specs; 8152 int err; 8153 8154 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8155 * into arrays of btf_ids of struct fields and array indices. 8156 */ 8157 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8158 if (!specs) 8159 return -ENOMEM; 8160 8161 if (need_cands) { 8162 struct bpf_cand_cache *cc; 8163 int i; 8164 8165 mutex_lock(&cand_cache_mutex); 8166 cc = bpf_core_find_cands(ctx, relo->type_id); 8167 if (IS_ERR(cc)) { 8168 bpf_log(ctx->log, "target candidate search failed for %d\n", 8169 relo->type_id); 8170 err = PTR_ERR(cc); 8171 goto out; 8172 } 8173 if (cc->cnt) { 8174 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8175 if (!cands.cands) { 8176 err = -ENOMEM; 8177 goto out; 8178 } 8179 } 8180 for (i = 0; i < cc->cnt; i++) { 8181 bpf_log(ctx->log, 8182 "CO-RE relocating %s %s: found target candidate [%d]\n", 8183 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8184 cands.cands[i].btf = cc->cands[i].btf; 8185 cands.cands[i].id = cc->cands[i].id; 8186 } 8187 cands.len = cc->cnt; 8188 /* cand_cache_mutex needs to span the cache lookup and 8189 * copy of btf pointer into bpf_core_cand_list, 8190 * since module can be unloaded while bpf_core_calc_relo_insn 8191 * is working with module's btf. 8192 */ 8193 } 8194 8195 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8196 &targ_res); 8197 if (err) 8198 goto out; 8199 8200 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8201 &targ_res); 8202 8203 out: 8204 kfree(specs); 8205 if (need_cands) { 8206 kfree(cands.cands); 8207 mutex_unlock(&cand_cache_mutex); 8208 if (ctx->log->level & BPF_LOG_LEVEL2) 8209 print_cand_cache(ctx->log); 8210 } 8211 return err; 8212 } 8213