1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 29 /* BTF (BPF Type Format) is the meta data format which describes 30 * the data types of BPF program/map. Hence, it basically focus 31 * on the C programming language which the modern BPF is primary 32 * using. 33 * 34 * ELF Section: 35 * ~~~~~~~~~~~ 36 * The BTF data is stored under the ".BTF" ELF section 37 * 38 * struct btf_type: 39 * ~~~~~~~~~~~~~~~ 40 * Each 'struct btf_type' object describes a C data type. 41 * Depending on the type it is describing, a 'struct btf_type' 42 * object may be followed by more data. F.e. 43 * To describe an array, 'struct btf_type' is followed by 44 * 'struct btf_array'. 45 * 46 * 'struct btf_type' and any extra data following it are 47 * 4 bytes aligned. 48 * 49 * Type section: 50 * ~~~~~~~~~~~~~ 51 * The BTF type section contains a list of 'struct btf_type' objects. 52 * Each one describes a C type. Recall from the above section 53 * that a 'struct btf_type' object could be immediately followed by extra 54 * data in order to desribe some particular C types. 55 * 56 * type_id: 57 * ~~~~~~~ 58 * Each btf_type object is identified by a type_id. The type_id 59 * is implicitly implied by the location of the btf_type object in 60 * the BTF type section. The first one has type_id 1. The second 61 * one has type_id 2...etc. Hence, an earlier btf_type has 62 * a smaller type_id. 63 * 64 * A btf_type object may refer to another btf_type object by using 65 * type_id (i.e. the "type" in the "struct btf_type"). 66 * 67 * NOTE that we cannot assume any reference-order. 68 * A btf_type object can refer to an earlier btf_type object 69 * but it can also refer to a later btf_type object. 70 * 71 * For example, to describe "const void *". A btf_type 72 * object describing "const" may refer to another btf_type 73 * object describing "void *". This type-reference is done 74 * by specifying type_id: 75 * 76 * [1] CONST (anon) type_id=2 77 * [2] PTR (anon) type_id=0 78 * 79 * The above is the btf_verifier debug log: 80 * - Each line started with "[?]" is a btf_type object 81 * - [?] is the type_id of the btf_type object. 82 * - CONST/PTR is the BTF_KIND_XXX 83 * - "(anon)" is the name of the type. It just 84 * happens that CONST and PTR has no name. 85 * - type_id=XXX is the 'u32 type' in btf_type 86 * 87 * NOTE: "void" has type_id 0 88 * 89 * String section: 90 * ~~~~~~~~~~~~~~ 91 * The BTF string section contains the names used by the type section. 92 * Each string is referred by an "offset" from the beginning of the 93 * string section. 94 * 95 * Each string is '\0' terminated. 96 * 97 * The first character in the string section must be '\0' 98 * which is used to mean 'anonymous'. Some btf_type may not 99 * have a name. 100 */ 101 102 /* BTF verification: 103 * 104 * To verify BTF data, two passes are needed. 105 * 106 * Pass #1 107 * ~~~~~~~ 108 * The first pass is to collect all btf_type objects to 109 * an array: "btf->types". 110 * 111 * Depending on the C type that a btf_type is describing, 112 * a btf_type may be followed by extra data. We don't know 113 * how many btf_type is there, and more importantly we don't 114 * know where each btf_type is located in the type section. 115 * 116 * Without knowing the location of each type_id, most verifications 117 * cannot be done. e.g. an earlier btf_type may refer to a later 118 * btf_type (recall the "const void *" above), so we cannot 119 * check this type-reference in the first pass. 120 * 121 * In the first pass, it still does some verifications (e.g. 122 * checking the name is a valid offset to the string section). 123 * 124 * Pass #2 125 * ~~~~~~~ 126 * The main focus is to resolve a btf_type that is referring 127 * to another type. 128 * 129 * We have to ensure the referring type: 130 * 1) does exist in the BTF (i.e. in btf->types[]) 131 * 2) does not cause a loop: 132 * struct A { 133 * struct B b; 134 * }; 135 * 136 * struct B { 137 * struct A a; 138 * }; 139 * 140 * btf_type_needs_resolve() decides if a btf_type needs 141 * to be resolved. 142 * 143 * The needs_resolve type implements the "resolve()" ops which 144 * essentially does a DFS and detects backedge. 145 * 146 * During resolve (or DFS), different C types have different 147 * "RESOLVED" conditions. 148 * 149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 150 * members because a member is always referring to another 151 * type. A struct's member can be treated as "RESOLVED" if 152 * it is referring to a BTF_KIND_PTR. Otherwise, the 153 * following valid C struct would be rejected: 154 * 155 * struct A { 156 * int m; 157 * struct A *a; 158 * }; 159 * 160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 162 * detect a pointer loop, e.g.: 163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 164 * ^ | 165 * +-----------------------------------------+ 166 * 167 */ 168 169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 173 #define BITS_ROUNDUP_BYTES(bits) \ 174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 175 176 #define BTF_INFO_MASK 0x8f00ffff 177 #define BTF_INT_MASK 0x0fffffff 178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 180 181 /* 16MB for 64k structs and each has 16 members and 182 * a few MB spaces for the string section. 183 * The hard limit is S32_MAX. 184 */ 185 #define BTF_MAX_SIZE (16 * 1024 * 1024) 186 187 #define for_each_member_from(i, from, struct_type, member) \ 188 for (i = from, member = btf_type_member(struct_type) + from; \ 189 i < btf_type_vlen(struct_type); \ 190 i++, member++) 191 192 #define for_each_vsi_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 DEFINE_IDR(btf_idr); 198 DEFINE_SPINLOCK(btf_idr_lock); 199 200 struct btf { 201 void *data; 202 struct btf_type **types; 203 u32 *resolved_ids; 204 u32 *resolved_sizes; 205 const char *strings; 206 void *nohdr_data; 207 struct btf_header hdr; 208 u32 nr_types; /* includes VOID for base BTF */ 209 u32 types_size; 210 u32 data_size; 211 refcount_t refcnt; 212 u32 id; 213 struct rcu_head rcu; 214 215 /* split BTF support */ 216 struct btf *base_btf; 217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 218 u32 start_str_off; /* first string offset (0 for base BTF) */ 219 char name[MODULE_NAME_LEN]; 220 bool kernel_btf; 221 }; 222 223 enum verifier_phase { 224 CHECK_META, 225 CHECK_TYPE, 226 }; 227 228 struct resolve_vertex { 229 const struct btf_type *t; 230 u32 type_id; 231 u16 next_member; 232 }; 233 234 enum visit_state { 235 NOT_VISITED, 236 VISITED, 237 RESOLVED, 238 }; 239 240 enum resolve_mode { 241 RESOLVE_TBD, /* To Be Determined */ 242 RESOLVE_PTR, /* Resolving for Pointer */ 243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 244 * or array 245 */ 246 }; 247 248 #define MAX_RESOLVE_DEPTH 32 249 250 struct btf_sec_info { 251 u32 off; 252 u32 len; 253 }; 254 255 struct btf_verifier_env { 256 struct btf *btf; 257 u8 *visit_states; 258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 259 struct bpf_verifier_log log; 260 u32 log_type_id; 261 u32 top_stack; 262 enum verifier_phase phase; 263 enum resolve_mode resolve_mode; 264 }; 265 266 static const char * const btf_kind_str[NR_BTF_KINDS] = { 267 [BTF_KIND_UNKN] = "UNKNOWN", 268 [BTF_KIND_INT] = "INT", 269 [BTF_KIND_PTR] = "PTR", 270 [BTF_KIND_ARRAY] = "ARRAY", 271 [BTF_KIND_STRUCT] = "STRUCT", 272 [BTF_KIND_UNION] = "UNION", 273 [BTF_KIND_ENUM] = "ENUM", 274 [BTF_KIND_FWD] = "FWD", 275 [BTF_KIND_TYPEDEF] = "TYPEDEF", 276 [BTF_KIND_VOLATILE] = "VOLATILE", 277 [BTF_KIND_CONST] = "CONST", 278 [BTF_KIND_RESTRICT] = "RESTRICT", 279 [BTF_KIND_FUNC] = "FUNC", 280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 281 [BTF_KIND_VAR] = "VAR", 282 [BTF_KIND_DATASEC] = "DATASEC", 283 }; 284 285 static const char *btf_type_str(const struct btf_type *t) 286 { 287 return btf_kind_str[BTF_INFO_KIND(t->info)]; 288 } 289 290 /* Chunk size we use in safe copy of data to be shown. */ 291 #define BTF_SHOW_OBJ_SAFE_SIZE 32 292 293 /* 294 * This is the maximum size of a base type value (equivalent to a 295 * 128-bit int); if we are at the end of our safe buffer and have 296 * less than 16 bytes space we can't be assured of being able 297 * to copy the next type safely, so in such cases we will initiate 298 * a new copy. 299 */ 300 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 301 302 /* Type name size */ 303 #define BTF_SHOW_NAME_SIZE 80 304 305 /* 306 * Common data to all BTF show operations. Private show functions can add 307 * their own data to a structure containing a struct btf_show and consult it 308 * in the show callback. See btf_type_show() below. 309 * 310 * One challenge with showing nested data is we want to skip 0-valued 311 * data, but in order to figure out whether a nested object is all zeros 312 * we need to walk through it. As a result, we need to make two passes 313 * when handling structs, unions and arrays; the first path simply looks 314 * for nonzero data, while the second actually does the display. The first 315 * pass is signalled by show->state.depth_check being set, and if we 316 * encounter a non-zero value we set show->state.depth_to_show to 317 * the depth at which we encountered it. When we have completed the 318 * first pass, we will know if anything needs to be displayed if 319 * depth_to_show > depth. See btf_[struct,array]_show() for the 320 * implementation of this. 321 * 322 * Another problem is we want to ensure the data for display is safe to 323 * access. To support this, the anonymous "struct {} obj" tracks the data 324 * object and our safe copy of it. We copy portions of the data needed 325 * to the object "copy" buffer, but because its size is limited to 326 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 327 * traverse larger objects for display. 328 * 329 * The various data type show functions all start with a call to 330 * btf_show_start_type() which returns a pointer to the safe copy 331 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 332 * raw data itself). btf_show_obj_safe() is responsible for 333 * using copy_from_kernel_nofault() to update the safe data if necessary 334 * as we traverse the object's data. skbuff-like semantics are 335 * used: 336 * 337 * - obj.head points to the start of the toplevel object for display 338 * - obj.size is the size of the toplevel object 339 * - obj.data points to the current point in the original data at 340 * which our safe data starts. obj.data will advance as we copy 341 * portions of the data. 342 * 343 * In most cases a single copy will suffice, but larger data structures 344 * such as "struct task_struct" will require many copies. The logic in 345 * btf_show_obj_safe() handles the logic that determines if a new 346 * copy_from_kernel_nofault() is needed. 347 */ 348 struct btf_show { 349 u64 flags; 350 void *target; /* target of show operation (seq file, buffer) */ 351 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 352 const struct btf *btf; 353 /* below are used during iteration */ 354 struct { 355 u8 depth; 356 u8 depth_to_show; 357 u8 depth_check; 358 u8 array_member:1, 359 array_terminated:1; 360 u16 array_encoding; 361 u32 type_id; 362 int status; /* non-zero for error */ 363 const struct btf_type *type; 364 const struct btf_member *member; 365 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 366 } state; 367 struct { 368 u32 size; 369 void *head; 370 void *data; 371 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 372 } obj; 373 }; 374 375 struct btf_kind_operations { 376 s32 (*check_meta)(struct btf_verifier_env *env, 377 const struct btf_type *t, 378 u32 meta_left); 379 int (*resolve)(struct btf_verifier_env *env, 380 const struct resolve_vertex *v); 381 int (*check_member)(struct btf_verifier_env *env, 382 const struct btf_type *struct_type, 383 const struct btf_member *member, 384 const struct btf_type *member_type); 385 int (*check_kflag_member)(struct btf_verifier_env *env, 386 const struct btf_type *struct_type, 387 const struct btf_member *member, 388 const struct btf_type *member_type); 389 void (*log_details)(struct btf_verifier_env *env, 390 const struct btf_type *t); 391 void (*show)(const struct btf *btf, const struct btf_type *t, 392 u32 type_id, void *data, u8 bits_offsets, 393 struct btf_show *show); 394 }; 395 396 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 397 static struct btf_type btf_void; 398 399 static int btf_resolve(struct btf_verifier_env *env, 400 const struct btf_type *t, u32 type_id); 401 402 static bool btf_type_is_modifier(const struct btf_type *t) 403 { 404 /* Some of them is not strictly a C modifier 405 * but they are grouped into the same bucket 406 * for BTF concern: 407 * A type (t) that refers to another 408 * type through t->type AND its size cannot 409 * be determined without following the t->type. 410 * 411 * ptr does not fall into this bucket 412 * because its size is always sizeof(void *). 413 */ 414 switch (BTF_INFO_KIND(t->info)) { 415 case BTF_KIND_TYPEDEF: 416 case BTF_KIND_VOLATILE: 417 case BTF_KIND_CONST: 418 case BTF_KIND_RESTRICT: 419 return true; 420 } 421 422 return false; 423 } 424 425 bool btf_type_is_void(const struct btf_type *t) 426 { 427 return t == &btf_void; 428 } 429 430 static bool btf_type_is_fwd(const struct btf_type *t) 431 { 432 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 433 } 434 435 static bool btf_type_nosize(const struct btf_type *t) 436 { 437 return btf_type_is_void(t) || btf_type_is_fwd(t) || 438 btf_type_is_func(t) || btf_type_is_func_proto(t); 439 } 440 441 static bool btf_type_nosize_or_null(const struct btf_type *t) 442 { 443 return !t || btf_type_nosize(t); 444 } 445 446 static bool __btf_type_is_struct(const struct btf_type *t) 447 { 448 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 449 } 450 451 static bool btf_type_is_array(const struct btf_type *t) 452 { 453 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 454 } 455 456 static bool btf_type_is_datasec(const struct btf_type *t) 457 { 458 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 459 } 460 461 static u32 btf_nr_types_total(const struct btf *btf) 462 { 463 u32 total = 0; 464 465 while (btf) { 466 total += btf->nr_types; 467 btf = btf->base_btf; 468 } 469 470 return total; 471 } 472 473 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 474 { 475 const struct btf_type *t; 476 const char *tname; 477 u32 i, total; 478 479 total = btf_nr_types_total(btf); 480 for (i = 1; i < total; i++) { 481 t = btf_type_by_id(btf, i); 482 if (BTF_INFO_KIND(t->info) != kind) 483 continue; 484 485 tname = btf_name_by_offset(btf, t->name_off); 486 if (!strcmp(tname, name)) 487 return i; 488 } 489 490 return -ENOENT; 491 } 492 493 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 494 u32 id, u32 *res_id) 495 { 496 const struct btf_type *t = btf_type_by_id(btf, id); 497 498 while (btf_type_is_modifier(t)) { 499 id = t->type; 500 t = btf_type_by_id(btf, t->type); 501 } 502 503 if (res_id) 504 *res_id = id; 505 506 return t; 507 } 508 509 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 510 u32 id, u32 *res_id) 511 { 512 const struct btf_type *t; 513 514 t = btf_type_skip_modifiers(btf, id, NULL); 515 if (!btf_type_is_ptr(t)) 516 return NULL; 517 518 return btf_type_skip_modifiers(btf, t->type, res_id); 519 } 520 521 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 522 u32 id, u32 *res_id) 523 { 524 const struct btf_type *ptype; 525 526 ptype = btf_type_resolve_ptr(btf, id, res_id); 527 if (ptype && btf_type_is_func_proto(ptype)) 528 return ptype; 529 530 return NULL; 531 } 532 533 /* Types that act only as a source, not sink or intermediate 534 * type when resolving. 535 */ 536 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 537 { 538 return btf_type_is_var(t) || 539 btf_type_is_datasec(t); 540 } 541 542 /* What types need to be resolved? 543 * 544 * btf_type_is_modifier() is an obvious one. 545 * 546 * btf_type_is_struct() because its member refers to 547 * another type (through member->type). 548 * 549 * btf_type_is_var() because the variable refers to 550 * another type. btf_type_is_datasec() holds multiple 551 * btf_type_is_var() types that need resolving. 552 * 553 * btf_type_is_array() because its element (array->type) 554 * refers to another type. Array can be thought of a 555 * special case of struct while array just has the same 556 * member-type repeated by array->nelems of times. 557 */ 558 static bool btf_type_needs_resolve(const struct btf_type *t) 559 { 560 return btf_type_is_modifier(t) || 561 btf_type_is_ptr(t) || 562 btf_type_is_struct(t) || 563 btf_type_is_array(t) || 564 btf_type_is_var(t) || 565 btf_type_is_datasec(t); 566 } 567 568 /* t->size can be used */ 569 static bool btf_type_has_size(const struct btf_type *t) 570 { 571 switch (BTF_INFO_KIND(t->info)) { 572 case BTF_KIND_INT: 573 case BTF_KIND_STRUCT: 574 case BTF_KIND_UNION: 575 case BTF_KIND_ENUM: 576 case BTF_KIND_DATASEC: 577 return true; 578 } 579 580 return false; 581 } 582 583 static const char *btf_int_encoding_str(u8 encoding) 584 { 585 if (encoding == 0) 586 return "(none)"; 587 else if (encoding == BTF_INT_SIGNED) 588 return "SIGNED"; 589 else if (encoding == BTF_INT_CHAR) 590 return "CHAR"; 591 else if (encoding == BTF_INT_BOOL) 592 return "BOOL"; 593 else 594 return "UNKN"; 595 } 596 597 static u32 btf_type_int(const struct btf_type *t) 598 { 599 return *(u32 *)(t + 1); 600 } 601 602 static const struct btf_array *btf_type_array(const struct btf_type *t) 603 { 604 return (const struct btf_array *)(t + 1); 605 } 606 607 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 608 { 609 return (const struct btf_enum *)(t + 1); 610 } 611 612 static const struct btf_var *btf_type_var(const struct btf_type *t) 613 { 614 return (const struct btf_var *)(t + 1); 615 } 616 617 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 618 { 619 return kind_ops[BTF_INFO_KIND(t->info)]; 620 } 621 622 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 623 { 624 if (!BTF_STR_OFFSET_VALID(offset)) 625 return false; 626 627 while (offset < btf->start_str_off) 628 btf = btf->base_btf; 629 630 offset -= btf->start_str_off; 631 return offset < btf->hdr.str_len; 632 } 633 634 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 635 { 636 if ((first ? !isalpha(c) : 637 !isalnum(c)) && 638 c != '_' && 639 ((c == '.' && !dot_ok) || 640 c != '.')) 641 return false; 642 return true; 643 } 644 645 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 646 { 647 while (offset < btf->start_str_off) 648 btf = btf->base_btf; 649 650 offset -= btf->start_str_off; 651 if (offset < btf->hdr.str_len) 652 return &btf->strings[offset]; 653 654 return NULL; 655 } 656 657 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 658 { 659 /* offset must be valid */ 660 const char *src = btf_str_by_offset(btf, offset); 661 const char *src_limit; 662 663 if (!__btf_name_char_ok(*src, true, dot_ok)) 664 return false; 665 666 /* set a limit on identifier length */ 667 src_limit = src + KSYM_NAME_LEN; 668 src++; 669 while (*src && src < src_limit) { 670 if (!__btf_name_char_ok(*src, false, dot_ok)) 671 return false; 672 src++; 673 } 674 675 return !*src; 676 } 677 678 /* Only C-style identifier is permitted. This can be relaxed if 679 * necessary. 680 */ 681 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 682 { 683 return __btf_name_valid(btf, offset, false); 684 } 685 686 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 687 { 688 return __btf_name_valid(btf, offset, true); 689 } 690 691 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 692 { 693 const char *name; 694 695 if (!offset) 696 return "(anon)"; 697 698 name = btf_str_by_offset(btf, offset); 699 return name ?: "(invalid-name-offset)"; 700 } 701 702 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 703 { 704 return btf_str_by_offset(btf, offset); 705 } 706 707 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 708 { 709 while (type_id < btf->start_id) 710 btf = btf->base_btf; 711 712 type_id -= btf->start_id; 713 if (type_id >= btf->nr_types) 714 return NULL; 715 return btf->types[type_id]; 716 } 717 718 /* 719 * Regular int is not a bit field and it must be either 720 * u8/u16/u32/u64 or __int128. 721 */ 722 static bool btf_type_int_is_regular(const struct btf_type *t) 723 { 724 u8 nr_bits, nr_bytes; 725 u32 int_data; 726 727 int_data = btf_type_int(t); 728 nr_bits = BTF_INT_BITS(int_data); 729 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 730 if (BITS_PER_BYTE_MASKED(nr_bits) || 731 BTF_INT_OFFSET(int_data) || 732 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 733 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 734 nr_bytes != (2 * sizeof(u64)))) { 735 return false; 736 } 737 738 return true; 739 } 740 741 /* 742 * Check that given struct member is a regular int with expected 743 * offset and size. 744 */ 745 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 746 const struct btf_member *m, 747 u32 expected_offset, u32 expected_size) 748 { 749 const struct btf_type *t; 750 u32 id, int_data; 751 u8 nr_bits; 752 753 id = m->type; 754 t = btf_type_id_size(btf, &id, NULL); 755 if (!t || !btf_type_is_int(t)) 756 return false; 757 758 int_data = btf_type_int(t); 759 nr_bits = BTF_INT_BITS(int_data); 760 if (btf_type_kflag(s)) { 761 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 762 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 763 764 /* if kflag set, int should be a regular int and 765 * bit offset should be at byte boundary. 766 */ 767 return !bitfield_size && 768 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 769 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 770 } 771 772 if (BTF_INT_OFFSET(int_data) || 773 BITS_PER_BYTE_MASKED(m->offset) || 774 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 775 BITS_PER_BYTE_MASKED(nr_bits) || 776 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 777 return false; 778 779 return true; 780 } 781 782 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 783 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 784 u32 id) 785 { 786 const struct btf_type *t = btf_type_by_id(btf, id); 787 788 while (btf_type_is_modifier(t) && 789 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 790 id = t->type; 791 t = btf_type_by_id(btf, t->type); 792 } 793 794 return t; 795 } 796 797 #define BTF_SHOW_MAX_ITER 10 798 799 #define BTF_KIND_BIT(kind) (1ULL << kind) 800 801 /* 802 * Populate show->state.name with type name information. 803 * Format of type name is 804 * 805 * [.member_name = ] (type_name) 806 */ 807 static const char *btf_show_name(struct btf_show *show) 808 { 809 /* BTF_MAX_ITER array suffixes "[]" */ 810 const char *array_suffixes = "[][][][][][][][][][]"; 811 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 812 /* BTF_MAX_ITER pointer suffixes "*" */ 813 const char *ptr_suffixes = "**********"; 814 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 815 const char *name = NULL, *prefix = "", *parens = ""; 816 const struct btf_member *m = show->state.member; 817 const struct btf_type *t = show->state.type; 818 const struct btf_array *array; 819 u32 id = show->state.type_id; 820 const char *member = NULL; 821 bool show_member = false; 822 u64 kinds = 0; 823 int i; 824 825 show->state.name[0] = '\0'; 826 827 /* 828 * Don't show type name if we're showing an array member; 829 * in that case we show the array type so don't need to repeat 830 * ourselves for each member. 831 */ 832 if (show->state.array_member) 833 return ""; 834 835 /* Retrieve member name, if any. */ 836 if (m) { 837 member = btf_name_by_offset(show->btf, m->name_off); 838 show_member = strlen(member) > 0; 839 id = m->type; 840 } 841 842 /* 843 * Start with type_id, as we have resolved the struct btf_type * 844 * via btf_modifier_show() past the parent typedef to the child 845 * struct, int etc it is defined as. In such cases, the type_id 846 * still represents the starting type while the struct btf_type * 847 * in our show->state points at the resolved type of the typedef. 848 */ 849 t = btf_type_by_id(show->btf, id); 850 if (!t) 851 return ""; 852 853 /* 854 * The goal here is to build up the right number of pointer and 855 * array suffixes while ensuring the type name for a typedef 856 * is represented. Along the way we accumulate a list of 857 * BTF kinds we have encountered, since these will inform later 858 * display; for example, pointer types will not require an 859 * opening "{" for struct, we will just display the pointer value. 860 * 861 * We also want to accumulate the right number of pointer or array 862 * indices in the format string while iterating until we get to 863 * the typedef/pointee/array member target type. 864 * 865 * We start by pointing at the end of pointer and array suffix 866 * strings; as we accumulate pointers and arrays we move the pointer 867 * or array string backwards so it will show the expected number of 868 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 869 * and/or arrays and typedefs are supported as a precaution. 870 * 871 * We also want to get typedef name while proceeding to resolve 872 * type it points to so that we can add parentheses if it is a 873 * "typedef struct" etc. 874 */ 875 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 876 877 switch (BTF_INFO_KIND(t->info)) { 878 case BTF_KIND_TYPEDEF: 879 if (!name) 880 name = btf_name_by_offset(show->btf, 881 t->name_off); 882 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 883 id = t->type; 884 break; 885 case BTF_KIND_ARRAY: 886 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 887 parens = "["; 888 if (!t) 889 return ""; 890 array = btf_type_array(t); 891 if (array_suffix > array_suffixes) 892 array_suffix -= 2; 893 id = array->type; 894 break; 895 case BTF_KIND_PTR: 896 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 897 if (ptr_suffix > ptr_suffixes) 898 ptr_suffix -= 1; 899 id = t->type; 900 break; 901 default: 902 id = 0; 903 break; 904 } 905 if (!id) 906 break; 907 t = btf_type_skip_qualifiers(show->btf, id); 908 } 909 /* We may not be able to represent this type; bail to be safe */ 910 if (i == BTF_SHOW_MAX_ITER) 911 return ""; 912 913 if (!name) 914 name = btf_name_by_offset(show->btf, t->name_off); 915 916 switch (BTF_INFO_KIND(t->info)) { 917 case BTF_KIND_STRUCT: 918 case BTF_KIND_UNION: 919 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 920 "struct" : "union"; 921 /* if it's an array of struct/union, parens is already set */ 922 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 923 parens = "{"; 924 break; 925 case BTF_KIND_ENUM: 926 prefix = "enum"; 927 break; 928 default: 929 break; 930 } 931 932 /* pointer does not require parens */ 933 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 934 parens = ""; 935 /* typedef does not require struct/union/enum prefix */ 936 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 937 prefix = ""; 938 939 if (!name) 940 name = ""; 941 942 /* Even if we don't want type name info, we want parentheses etc */ 943 if (show->flags & BTF_SHOW_NONAME) 944 snprintf(show->state.name, sizeof(show->state.name), "%s", 945 parens); 946 else 947 snprintf(show->state.name, sizeof(show->state.name), 948 "%s%s%s(%s%s%s%s%s%s)%s", 949 /* first 3 strings comprise ".member = " */ 950 show_member ? "." : "", 951 show_member ? member : "", 952 show_member ? " = " : "", 953 /* ...next is our prefix (struct, enum, etc) */ 954 prefix, 955 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 956 /* ...this is the type name itself */ 957 name, 958 /* ...suffixed by the appropriate '*', '[]' suffixes */ 959 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 960 array_suffix, parens); 961 962 return show->state.name; 963 } 964 965 static const char *__btf_show_indent(struct btf_show *show) 966 { 967 const char *indents = " "; 968 const char *indent = &indents[strlen(indents)]; 969 970 if ((indent - show->state.depth) >= indents) 971 return indent - show->state.depth; 972 return indents; 973 } 974 975 static const char *btf_show_indent(struct btf_show *show) 976 { 977 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 978 } 979 980 static const char *btf_show_newline(struct btf_show *show) 981 { 982 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 983 } 984 985 static const char *btf_show_delim(struct btf_show *show) 986 { 987 if (show->state.depth == 0) 988 return ""; 989 990 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 991 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 992 return "|"; 993 994 return ","; 995 } 996 997 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 998 { 999 va_list args; 1000 1001 if (!show->state.depth_check) { 1002 va_start(args, fmt); 1003 show->showfn(show, fmt, args); 1004 va_end(args); 1005 } 1006 } 1007 1008 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1009 * format specifiers to the format specifier passed in; these do the work of 1010 * adding indentation, delimiters etc while the caller simply has to specify 1011 * the type value(s) in the format specifier + value(s). 1012 */ 1013 #define btf_show_type_value(show, fmt, value) \ 1014 do { \ 1015 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1016 show->state.depth == 0) { \ 1017 btf_show(show, "%s%s" fmt "%s%s", \ 1018 btf_show_indent(show), \ 1019 btf_show_name(show), \ 1020 value, btf_show_delim(show), \ 1021 btf_show_newline(show)); \ 1022 if (show->state.depth > show->state.depth_to_show) \ 1023 show->state.depth_to_show = show->state.depth; \ 1024 } \ 1025 } while (0) 1026 1027 #define btf_show_type_values(show, fmt, ...) \ 1028 do { \ 1029 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1030 btf_show_name(show), \ 1031 __VA_ARGS__, btf_show_delim(show), \ 1032 btf_show_newline(show)); \ 1033 if (show->state.depth > show->state.depth_to_show) \ 1034 show->state.depth_to_show = show->state.depth; \ 1035 } while (0) 1036 1037 /* How much is left to copy to safe buffer after @data? */ 1038 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1039 { 1040 return show->obj.head + show->obj.size - data; 1041 } 1042 1043 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1044 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1045 { 1046 return data >= show->obj.data && 1047 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1048 } 1049 1050 /* 1051 * If object pointed to by @data of @size falls within our safe buffer, return 1052 * the equivalent pointer to the same safe data. Assumes 1053 * copy_from_kernel_nofault() has already happened and our safe buffer is 1054 * populated. 1055 */ 1056 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1057 { 1058 if (btf_show_obj_is_safe(show, data, size)) 1059 return show->obj.safe + (data - show->obj.data); 1060 return NULL; 1061 } 1062 1063 /* 1064 * Return a safe-to-access version of data pointed to by @data. 1065 * We do this by copying the relevant amount of information 1066 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1067 * 1068 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1069 * safe copy is needed. 1070 * 1071 * Otherwise we need to determine if we have the required amount 1072 * of data (determined by the @data pointer and the size of the 1073 * largest base type we can encounter (represented by 1074 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1075 * that we will be able to print some of the current object, 1076 * and if more is needed a copy will be triggered. 1077 * Some objects such as structs will not fit into the buffer; 1078 * in such cases additional copies when we iterate over their 1079 * members may be needed. 1080 * 1081 * btf_show_obj_safe() is used to return a safe buffer for 1082 * btf_show_start_type(); this ensures that as we recurse into 1083 * nested types we always have safe data for the given type. 1084 * This approach is somewhat wasteful; it's possible for example 1085 * that when iterating over a large union we'll end up copying the 1086 * same data repeatedly, but the goal is safety not performance. 1087 * We use stack data as opposed to per-CPU buffers because the 1088 * iteration over a type can take some time, and preemption handling 1089 * would greatly complicate use of the safe buffer. 1090 */ 1091 static void *btf_show_obj_safe(struct btf_show *show, 1092 const struct btf_type *t, 1093 void *data) 1094 { 1095 const struct btf_type *rt; 1096 int size_left, size; 1097 void *safe = NULL; 1098 1099 if (show->flags & BTF_SHOW_UNSAFE) 1100 return data; 1101 1102 rt = btf_resolve_size(show->btf, t, &size); 1103 if (IS_ERR(rt)) { 1104 show->state.status = PTR_ERR(rt); 1105 return NULL; 1106 } 1107 1108 /* 1109 * Is this toplevel object? If so, set total object size and 1110 * initialize pointers. Otherwise check if we still fall within 1111 * our safe object data. 1112 */ 1113 if (show->state.depth == 0) { 1114 show->obj.size = size; 1115 show->obj.head = data; 1116 } else { 1117 /* 1118 * If the size of the current object is > our remaining 1119 * safe buffer we _may_ need to do a new copy. However 1120 * consider the case of a nested struct; it's size pushes 1121 * us over the safe buffer limit, but showing any individual 1122 * struct members does not. In such cases, we don't need 1123 * to initiate a fresh copy yet; however we definitely need 1124 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1125 * in our buffer, regardless of the current object size. 1126 * The logic here is that as we resolve types we will 1127 * hit a base type at some point, and we need to be sure 1128 * the next chunk of data is safely available to display 1129 * that type info safely. We cannot rely on the size of 1130 * the current object here because it may be much larger 1131 * than our current buffer (e.g. task_struct is 8k). 1132 * All we want to do here is ensure that we can print the 1133 * next basic type, which we can if either 1134 * - the current type size is within the safe buffer; or 1135 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1136 * the safe buffer. 1137 */ 1138 safe = __btf_show_obj_safe(show, data, 1139 min(size, 1140 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1141 } 1142 1143 /* 1144 * We need a new copy to our safe object, either because we haven't 1145 * yet copied and are intializing safe data, or because the data 1146 * we want falls outside the boundaries of the safe object. 1147 */ 1148 if (!safe) { 1149 size_left = btf_show_obj_size_left(show, data); 1150 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1151 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1152 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1153 data, size_left); 1154 if (!show->state.status) { 1155 show->obj.data = data; 1156 safe = show->obj.safe; 1157 } 1158 } 1159 1160 return safe; 1161 } 1162 1163 /* 1164 * Set the type we are starting to show and return a safe data pointer 1165 * to be used for showing the associated data. 1166 */ 1167 static void *btf_show_start_type(struct btf_show *show, 1168 const struct btf_type *t, 1169 u32 type_id, void *data) 1170 { 1171 show->state.type = t; 1172 show->state.type_id = type_id; 1173 show->state.name[0] = '\0'; 1174 1175 return btf_show_obj_safe(show, t, data); 1176 } 1177 1178 static void btf_show_end_type(struct btf_show *show) 1179 { 1180 show->state.type = NULL; 1181 show->state.type_id = 0; 1182 show->state.name[0] = '\0'; 1183 } 1184 1185 static void *btf_show_start_aggr_type(struct btf_show *show, 1186 const struct btf_type *t, 1187 u32 type_id, void *data) 1188 { 1189 void *safe_data = btf_show_start_type(show, t, type_id, data); 1190 1191 if (!safe_data) 1192 return safe_data; 1193 1194 btf_show(show, "%s%s%s", btf_show_indent(show), 1195 btf_show_name(show), 1196 btf_show_newline(show)); 1197 show->state.depth++; 1198 return safe_data; 1199 } 1200 1201 static void btf_show_end_aggr_type(struct btf_show *show, 1202 const char *suffix) 1203 { 1204 show->state.depth--; 1205 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1206 btf_show_delim(show), btf_show_newline(show)); 1207 btf_show_end_type(show); 1208 } 1209 1210 static void btf_show_start_member(struct btf_show *show, 1211 const struct btf_member *m) 1212 { 1213 show->state.member = m; 1214 } 1215 1216 static void btf_show_start_array_member(struct btf_show *show) 1217 { 1218 show->state.array_member = 1; 1219 btf_show_start_member(show, NULL); 1220 } 1221 1222 static void btf_show_end_member(struct btf_show *show) 1223 { 1224 show->state.member = NULL; 1225 } 1226 1227 static void btf_show_end_array_member(struct btf_show *show) 1228 { 1229 show->state.array_member = 0; 1230 btf_show_end_member(show); 1231 } 1232 1233 static void *btf_show_start_array_type(struct btf_show *show, 1234 const struct btf_type *t, 1235 u32 type_id, 1236 u16 array_encoding, 1237 void *data) 1238 { 1239 show->state.array_encoding = array_encoding; 1240 show->state.array_terminated = 0; 1241 return btf_show_start_aggr_type(show, t, type_id, data); 1242 } 1243 1244 static void btf_show_end_array_type(struct btf_show *show) 1245 { 1246 show->state.array_encoding = 0; 1247 show->state.array_terminated = 0; 1248 btf_show_end_aggr_type(show, "]"); 1249 } 1250 1251 static void *btf_show_start_struct_type(struct btf_show *show, 1252 const struct btf_type *t, 1253 u32 type_id, 1254 void *data) 1255 { 1256 return btf_show_start_aggr_type(show, t, type_id, data); 1257 } 1258 1259 static void btf_show_end_struct_type(struct btf_show *show) 1260 { 1261 btf_show_end_aggr_type(show, "}"); 1262 } 1263 1264 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1265 const char *fmt, ...) 1266 { 1267 va_list args; 1268 1269 va_start(args, fmt); 1270 bpf_verifier_vlog(log, fmt, args); 1271 va_end(args); 1272 } 1273 1274 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1275 const char *fmt, ...) 1276 { 1277 struct bpf_verifier_log *log = &env->log; 1278 va_list args; 1279 1280 if (!bpf_verifier_log_needed(log)) 1281 return; 1282 1283 va_start(args, fmt); 1284 bpf_verifier_vlog(log, fmt, args); 1285 va_end(args); 1286 } 1287 1288 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1289 const struct btf_type *t, 1290 bool log_details, 1291 const char *fmt, ...) 1292 { 1293 struct bpf_verifier_log *log = &env->log; 1294 u8 kind = BTF_INFO_KIND(t->info); 1295 struct btf *btf = env->btf; 1296 va_list args; 1297 1298 if (!bpf_verifier_log_needed(log)) 1299 return; 1300 1301 /* btf verifier prints all types it is processing via 1302 * btf_verifier_log_type(..., fmt = NULL). 1303 * Skip those prints for in-kernel BTF verification. 1304 */ 1305 if (log->level == BPF_LOG_KERNEL && !fmt) 1306 return; 1307 1308 __btf_verifier_log(log, "[%u] %s %s%s", 1309 env->log_type_id, 1310 btf_kind_str[kind], 1311 __btf_name_by_offset(btf, t->name_off), 1312 log_details ? " " : ""); 1313 1314 if (log_details) 1315 btf_type_ops(t)->log_details(env, t); 1316 1317 if (fmt && *fmt) { 1318 __btf_verifier_log(log, " "); 1319 va_start(args, fmt); 1320 bpf_verifier_vlog(log, fmt, args); 1321 va_end(args); 1322 } 1323 1324 __btf_verifier_log(log, "\n"); 1325 } 1326 1327 #define btf_verifier_log_type(env, t, ...) \ 1328 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1329 #define btf_verifier_log_basic(env, t, ...) \ 1330 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1331 1332 __printf(4, 5) 1333 static void btf_verifier_log_member(struct btf_verifier_env *env, 1334 const struct btf_type *struct_type, 1335 const struct btf_member *member, 1336 const char *fmt, ...) 1337 { 1338 struct bpf_verifier_log *log = &env->log; 1339 struct btf *btf = env->btf; 1340 va_list args; 1341 1342 if (!bpf_verifier_log_needed(log)) 1343 return; 1344 1345 if (log->level == BPF_LOG_KERNEL && !fmt) 1346 return; 1347 /* The CHECK_META phase already did a btf dump. 1348 * 1349 * If member is logged again, it must hit an error in 1350 * parsing this member. It is useful to print out which 1351 * struct this member belongs to. 1352 */ 1353 if (env->phase != CHECK_META) 1354 btf_verifier_log_type(env, struct_type, NULL); 1355 1356 if (btf_type_kflag(struct_type)) 1357 __btf_verifier_log(log, 1358 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1359 __btf_name_by_offset(btf, member->name_off), 1360 member->type, 1361 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1362 BTF_MEMBER_BIT_OFFSET(member->offset)); 1363 else 1364 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1365 __btf_name_by_offset(btf, member->name_off), 1366 member->type, member->offset); 1367 1368 if (fmt && *fmt) { 1369 __btf_verifier_log(log, " "); 1370 va_start(args, fmt); 1371 bpf_verifier_vlog(log, fmt, args); 1372 va_end(args); 1373 } 1374 1375 __btf_verifier_log(log, "\n"); 1376 } 1377 1378 __printf(4, 5) 1379 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1380 const struct btf_type *datasec_type, 1381 const struct btf_var_secinfo *vsi, 1382 const char *fmt, ...) 1383 { 1384 struct bpf_verifier_log *log = &env->log; 1385 va_list args; 1386 1387 if (!bpf_verifier_log_needed(log)) 1388 return; 1389 if (log->level == BPF_LOG_KERNEL && !fmt) 1390 return; 1391 if (env->phase != CHECK_META) 1392 btf_verifier_log_type(env, datasec_type, NULL); 1393 1394 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1395 vsi->type, vsi->offset, vsi->size); 1396 if (fmt && *fmt) { 1397 __btf_verifier_log(log, " "); 1398 va_start(args, fmt); 1399 bpf_verifier_vlog(log, fmt, args); 1400 va_end(args); 1401 } 1402 1403 __btf_verifier_log(log, "\n"); 1404 } 1405 1406 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1407 u32 btf_data_size) 1408 { 1409 struct bpf_verifier_log *log = &env->log; 1410 const struct btf *btf = env->btf; 1411 const struct btf_header *hdr; 1412 1413 if (!bpf_verifier_log_needed(log)) 1414 return; 1415 1416 if (log->level == BPF_LOG_KERNEL) 1417 return; 1418 hdr = &btf->hdr; 1419 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1420 __btf_verifier_log(log, "version: %u\n", hdr->version); 1421 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1422 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1423 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1424 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1425 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1426 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1427 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1428 } 1429 1430 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1431 { 1432 struct btf *btf = env->btf; 1433 1434 if (btf->types_size == btf->nr_types) { 1435 /* Expand 'types' array */ 1436 1437 struct btf_type **new_types; 1438 u32 expand_by, new_size; 1439 1440 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1441 btf_verifier_log(env, "Exceeded max num of types"); 1442 return -E2BIG; 1443 } 1444 1445 expand_by = max_t(u32, btf->types_size >> 2, 16); 1446 new_size = min_t(u32, BTF_MAX_TYPE, 1447 btf->types_size + expand_by); 1448 1449 new_types = kvcalloc(new_size, sizeof(*new_types), 1450 GFP_KERNEL | __GFP_NOWARN); 1451 if (!new_types) 1452 return -ENOMEM; 1453 1454 if (btf->nr_types == 0) { 1455 if (!btf->base_btf) { 1456 /* lazily init VOID type */ 1457 new_types[0] = &btf_void; 1458 btf->nr_types++; 1459 } 1460 } else { 1461 memcpy(new_types, btf->types, 1462 sizeof(*btf->types) * btf->nr_types); 1463 } 1464 1465 kvfree(btf->types); 1466 btf->types = new_types; 1467 btf->types_size = new_size; 1468 } 1469 1470 btf->types[btf->nr_types++] = t; 1471 1472 return 0; 1473 } 1474 1475 static int btf_alloc_id(struct btf *btf) 1476 { 1477 int id; 1478 1479 idr_preload(GFP_KERNEL); 1480 spin_lock_bh(&btf_idr_lock); 1481 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1482 if (id > 0) 1483 btf->id = id; 1484 spin_unlock_bh(&btf_idr_lock); 1485 idr_preload_end(); 1486 1487 if (WARN_ON_ONCE(!id)) 1488 return -ENOSPC; 1489 1490 return id > 0 ? 0 : id; 1491 } 1492 1493 static void btf_free_id(struct btf *btf) 1494 { 1495 unsigned long flags; 1496 1497 /* 1498 * In map-in-map, calling map_delete_elem() on outer 1499 * map will call bpf_map_put on the inner map. 1500 * It will then eventually call btf_free_id() 1501 * on the inner map. Some of the map_delete_elem() 1502 * implementation may have irq disabled, so 1503 * we need to use the _irqsave() version instead 1504 * of the _bh() version. 1505 */ 1506 spin_lock_irqsave(&btf_idr_lock, flags); 1507 idr_remove(&btf_idr, btf->id); 1508 spin_unlock_irqrestore(&btf_idr_lock, flags); 1509 } 1510 1511 static void btf_free(struct btf *btf) 1512 { 1513 kvfree(btf->types); 1514 kvfree(btf->resolved_sizes); 1515 kvfree(btf->resolved_ids); 1516 kvfree(btf->data); 1517 kfree(btf); 1518 } 1519 1520 static void btf_free_rcu(struct rcu_head *rcu) 1521 { 1522 struct btf *btf = container_of(rcu, struct btf, rcu); 1523 1524 btf_free(btf); 1525 } 1526 1527 void btf_get(struct btf *btf) 1528 { 1529 refcount_inc(&btf->refcnt); 1530 } 1531 1532 void btf_put(struct btf *btf) 1533 { 1534 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1535 btf_free_id(btf); 1536 call_rcu(&btf->rcu, btf_free_rcu); 1537 } 1538 } 1539 1540 static int env_resolve_init(struct btf_verifier_env *env) 1541 { 1542 struct btf *btf = env->btf; 1543 u32 nr_types = btf->nr_types; 1544 u32 *resolved_sizes = NULL; 1545 u32 *resolved_ids = NULL; 1546 u8 *visit_states = NULL; 1547 1548 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1549 GFP_KERNEL | __GFP_NOWARN); 1550 if (!resolved_sizes) 1551 goto nomem; 1552 1553 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1554 GFP_KERNEL | __GFP_NOWARN); 1555 if (!resolved_ids) 1556 goto nomem; 1557 1558 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1559 GFP_KERNEL | __GFP_NOWARN); 1560 if (!visit_states) 1561 goto nomem; 1562 1563 btf->resolved_sizes = resolved_sizes; 1564 btf->resolved_ids = resolved_ids; 1565 env->visit_states = visit_states; 1566 1567 return 0; 1568 1569 nomem: 1570 kvfree(resolved_sizes); 1571 kvfree(resolved_ids); 1572 kvfree(visit_states); 1573 return -ENOMEM; 1574 } 1575 1576 static void btf_verifier_env_free(struct btf_verifier_env *env) 1577 { 1578 kvfree(env->visit_states); 1579 kfree(env); 1580 } 1581 1582 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1583 const struct btf_type *next_type) 1584 { 1585 switch (env->resolve_mode) { 1586 case RESOLVE_TBD: 1587 /* int, enum or void is a sink */ 1588 return !btf_type_needs_resolve(next_type); 1589 case RESOLVE_PTR: 1590 /* int, enum, void, struct, array, func or func_proto is a sink 1591 * for ptr 1592 */ 1593 return !btf_type_is_modifier(next_type) && 1594 !btf_type_is_ptr(next_type); 1595 case RESOLVE_STRUCT_OR_ARRAY: 1596 /* int, enum, void, ptr, func or func_proto is a sink 1597 * for struct and array 1598 */ 1599 return !btf_type_is_modifier(next_type) && 1600 !btf_type_is_array(next_type) && 1601 !btf_type_is_struct(next_type); 1602 default: 1603 BUG(); 1604 } 1605 } 1606 1607 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1608 u32 type_id) 1609 { 1610 /* base BTF types should be resolved by now */ 1611 if (type_id < env->btf->start_id) 1612 return true; 1613 1614 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1615 } 1616 1617 static int env_stack_push(struct btf_verifier_env *env, 1618 const struct btf_type *t, u32 type_id) 1619 { 1620 const struct btf *btf = env->btf; 1621 struct resolve_vertex *v; 1622 1623 if (env->top_stack == MAX_RESOLVE_DEPTH) 1624 return -E2BIG; 1625 1626 if (type_id < btf->start_id 1627 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1628 return -EEXIST; 1629 1630 env->visit_states[type_id - btf->start_id] = VISITED; 1631 1632 v = &env->stack[env->top_stack++]; 1633 v->t = t; 1634 v->type_id = type_id; 1635 v->next_member = 0; 1636 1637 if (env->resolve_mode == RESOLVE_TBD) { 1638 if (btf_type_is_ptr(t)) 1639 env->resolve_mode = RESOLVE_PTR; 1640 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1641 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1642 } 1643 1644 return 0; 1645 } 1646 1647 static void env_stack_set_next_member(struct btf_verifier_env *env, 1648 u16 next_member) 1649 { 1650 env->stack[env->top_stack - 1].next_member = next_member; 1651 } 1652 1653 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1654 u32 resolved_type_id, 1655 u32 resolved_size) 1656 { 1657 u32 type_id = env->stack[--(env->top_stack)].type_id; 1658 struct btf *btf = env->btf; 1659 1660 type_id -= btf->start_id; /* adjust to local type id */ 1661 btf->resolved_sizes[type_id] = resolved_size; 1662 btf->resolved_ids[type_id] = resolved_type_id; 1663 env->visit_states[type_id] = RESOLVED; 1664 } 1665 1666 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1667 { 1668 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1669 } 1670 1671 /* Resolve the size of a passed-in "type" 1672 * 1673 * type: is an array (e.g. u32 array[x][y]) 1674 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1675 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1676 * corresponds to the return type. 1677 * *elem_type: u32 1678 * *elem_id: id of u32 1679 * *total_nelems: (x * y). Hence, individual elem size is 1680 * (*type_size / *total_nelems) 1681 * *type_id: id of type if it's changed within the function, 0 if not 1682 * 1683 * type: is not an array (e.g. const struct X) 1684 * return type: type "struct X" 1685 * *type_size: sizeof(struct X) 1686 * *elem_type: same as return type ("struct X") 1687 * *elem_id: 0 1688 * *total_nelems: 1 1689 * *type_id: id of type if it's changed within the function, 0 if not 1690 */ 1691 static const struct btf_type * 1692 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1693 u32 *type_size, const struct btf_type **elem_type, 1694 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1695 { 1696 const struct btf_type *array_type = NULL; 1697 const struct btf_array *array = NULL; 1698 u32 i, size, nelems = 1, id = 0; 1699 1700 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1701 switch (BTF_INFO_KIND(type->info)) { 1702 /* type->size can be used */ 1703 case BTF_KIND_INT: 1704 case BTF_KIND_STRUCT: 1705 case BTF_KIND_UNION: 1706 case BTF_KIND_ENUM: 1707 size = type->size; 1708 goto resolved; 1709 1710 case BTF_KIND_PTR: 1711 size = sizeof(void *); 1712 goto resolved; 1713 1714 /* Modifiers */ 1715 case BTF_KIND_TYPEDEF: 1716 case BTF_KIND_VOLATILE: 1717 case BTF_KIND_CONST: 1718 case BTF_KIND_RESTRICT: 1719 id = type->type; 1720 type = btf_type_by_id(btf, type->type); 1721 break; 1722 1723 case BTF_KIND_ARRAY: 1724 if (!array_type) 1725 array_type = type; 1726 array = btf_type_array(type); 1727 if (nelems && array->nelems > U32_MAX / nelems) 1728 return ERR_PTR(-EINVAL); 1729 nelems *= array->nelems; 1730 type = btf_type_by_id(btf, array->type); 1731 break; 1732 1733 /* type without size */ 1734 default: 1735 return ERR_PTR(-EINVAL); 1736 } 1737 } 1738 1739 return ERR_PTR(-EINVAL); 1740 1741 resolved: 1742 if (nelems && size > U32_MAX / nelems) 1743 return ERR_PTR(-EINVAL); 1744 1745 *type_size = nelems * size; 1746 if (total_nelems) 1747 *total_nelems = nelems; 1748 if (elem_type) 1749 *elem_type = type; 1750 if (elem_id) 1751 *elem_id = array ? array->type : 0; 1752 if (type_id && id) 1753 *type_id = id; 1754 1755 return array_type ? : type; 1756 } 1757 1758 const struct btf_type * 1759 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1760 u32 *type_size) 1761 { 1762 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1763 } 1764 1765 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1766 { 1767 while (type_id < btf->start_id) 1768 btf = btf->base_btf; 1769 1770 return btf->resolved_ids[type_id - btf->start_id]; 1771 } 1772 1773 /* The input param "type_id" must point to a needs_resolve type */ 1774 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1775 u32 *type_id) 1776 { 1777 *type_id = btf_resolved_type_id(btf, *type_id); 1778 return btf_type_by_id(btf, *type_id); 1779 } 1780 1781 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1782 { 1783 while (type_id < btf->start_id) 1784 btf = btf->base_btf; 1785 1786 return btf->resolved_sizes[type_id - btf->start_id]; 1787 } 1788 1789 const struct btf_type *btf_type_id_size(const struct btf *btf, 1790 u32 *type_id, u32 *ret_size) 1791 { 1792 const struct btf_type *size_type; 1793 u32 size_type_id = *type_id; 1794 u32 size = 0; 1795 1796 size_type = btf_type_by_id(btf, size_type_id); 1797 if (btf_type_nosize_or_null(size_type)) 1798 return NULL; 1799 1800 if (btf_type_has_size(size_type)) { 1801 size = size_type->size; 1802 } else if (btf_type_is_array(size_type)) { 1803 size = btf_resolved_type_size(btf, size_type_id); 1804 } else if (btf_type_is_ptr(size_type)) { 1805 size = sizeof(void *); 1806 } else { 1807 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1808 !btf_type_is_var(size_type))) 1809 return NULL; 1810 1811 size_type_id = btf_resolved_type_id(btf, size_type_id); 1812 size_type = btf_type_by_id(btf, size_type_id); 1813 if (btf_type_nosize_or_null(size_type)) 1814 return NULL; 1815 else if (btf_type_has_size(size_type)) 1816 size = size_type->size; 1817 else if (btf_type_is_array(size_type)) 1818 size = btf_resolved_type_size(btf, size_type_id); 1819 else if (btf_type_is_ptr(size_type)) 1820 size = sizeof(void *); 1821 else 1822 return NULL; 1823 } 1824 1825 *type_id = size_type_id; 1826 if (ret_size) 1827 *ret_size = size; 1828 1829 return size_type; 1830 } 1831 1832 static int btf_df_check_member(struct btf_verifier_env *env, 1833 const struct btf_type *struct_type, 1834 const struct btf_member *member, 1835 const struct btf_type *member_type) 1836 { 1837 btf_verifier_log_basic(env, struct_type, 1838 "Unsupported check_member"); 1839 return -EINVAL; 1840 } 1841 1842 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1843 const struct btf_type *struct_type, 1844 const struct btf_member *member, 1845 const struct btf_type *member_type) 1846 { 1847 btf_verifier_log_basic(env, struct_type, 1848 "Unsupported check_kflag_member"); 1849 return -EINVAL; 1850 } 1851 1852 /* Used for ptr, array and struct/union type members. 1853 * int, enum and modifier types have their specific callback functions. 1854 */ 1855 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1856 const struct btf_type *struct_type, 1857 const struct btf_member *member, 1858 const struct btf_type *member_type) 1859 { 1860 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1861 btf_verifier_log_member(env, struct_type, member, 1862 "Invalid member bitfield_size"); 1863 return -EINVAL; 1864 } 1865 1866 /* bitfield size is 0, so member->offset represents bit offset only. 1867 * It is safe to call non kflag check_member variants. 1868 */ 1869 return btf_type_ops(member_type)->check_member(env, struct_type, 1870 member, 1871 member_type); 1872 } 1873 1874 static int btf_df_resolve(struct btf_verifier_env *env, 1875 const struct resolve_vertex *v) 1876 { 1877 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1878 return -EINVAL; 1879 } 1880 1881 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1882 u32 type_id, void *data, u8 bits_offsets, 1883 struct btf_show *show) 1884 { 1885 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1886 } 1887 1888 static int btf_int_check_member(struct btf_verifier_env *env, 1889 const struct btf_type *struct_type, 1890 const struct btf_member *member, 1891 const struct btf_type *member_type) 1892 { 1893 u32 int_data = btf_type_int(member_type); 1894 u32 struct_bits_off = member->offset; 1895 u32 struct_size = struct_type->size; 1896 u32 nr_copy_bits; 1897 u32 bytes_offset; 1898 1899 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1900 btf_verifier_log_member(env, struct_type, member, 1901 "bits_offset exceeds U32_MAX"); 1902 return -EINVAL; 1903 } 1904 1905 struct_bits_off += BTF_INT_OFFSET(int_data); 1906 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1907 nr_copy_bits = BTF_INT_BITS(int_data) + 1908 BITS_PER_BYTE_MASKED(struct_bits_off); 1909 1910 if (nr_copy_bits > BITS_PER_U128) { 1911 btf_verifier_log_member(env, struct_type, member, 1912 "nr_copy_bits exceeds 128"); 1913 return -EINVAL; 1914 } 1915 1916 if (struct_size < bytes_offset || 1917 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1918 btf_verifier_log_member(env, struct_type, member, 1919 "Member exceeds struct_size"); 1920 return -EINVAL; 1921 } 1922 1923 return 0; 1924 } 1925 1926 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1927 const struct btf_type *struct_type, 1928 const struct btf_member *member, 1929 const struct btf_type *member_type) 1930 { 1931 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1932 u32 int_data = btf_type_int(member_type); 1933 u32 struct_size = struct_type->size; 1934 u32 nr_copy_bits; 1935 1936 /* a regular int type is required for the kflag int member */ 1937 if (!btf_type_int_is_regular(member_type)) { 1938 btf_verifier_log_member(env, struct_type, member, 1939 "Invalid member base type"); 1940 return -EINVAL; 1941 } 1942 1943 /* check sanity of bitfield size */ 1944 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1945 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1946 nr_int_data_bits = BTF_INT_BITS(int_data); 1947 if (!nr_bits) { 1948 /* Not a bitfield member, member offset must be at byte 1949 * boundary. 1950 */ 1951 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1952 btf_verifier_log_member(env, struct_type, member, 1953 "Invalid member offset"); 1954 return -EINVAL; 1955 } 1956 1957 nr_bits = nr_int_data_bits; 1958 } else if (nr_bits > nr_int_data_bits) { 1959 btf_verifier_log_member(env, struct_type, member, 1960 "Invalid member bitfield_size"); 1961 return -EINVAL; 1962 } 1963 1964 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1965 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1966 if (nr_copy_bits > BITS_PER_U128) { 1967 btf_verifier_log_member(env, struct_type, member, 1968 "nr_copy_bits exceeds 128"); 1969 return -EINVAL; 1970 } 1971 1972 if (struct_size < bytes_offset || 1973 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1974 btf_verifier_log_member(env, struct_type, member, 1975 "Member exceeds struct_size"); 1976 return -EINVAL; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1983 const struct btf_type *t, 1984 u32 meta_left) 1985 { 1986 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1987 u16 encoding; 1988 1989 if (meta_left < meta_needed) { 1990 btf_verifier_log_basic(env, t, 1991 "meta_left:%u meta_needed:%u", 1992 meta_left, meta_needed); 1993 return -EINVAL; 1994 } 1995 1996 if (btf_type_vlen(t)) { 1997 btf_verifier_log_type(env, t, "vlen != 0"); 1998 return -EINVAL; 1999 } 2000 2001 if (btf_type_kflag(t)) { 2002 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2003 return -EINVAL; 2004 } 2005 2006 int_data = btf_type_int(t); 2007 if (int_data & ~BTF_INT_MASK) { 2008 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2009 int_data); 2010 return -EINVAL; 2011 } 2012 2013 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2014 2015 if (nr_bits > BITS_PER_U128) { 2016 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2017 BITS_PER_U128); 2018 return -EINVAL; 2019 } 2020 2021 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2022 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2023 return -EINVAL; 2024 } 2025 2026 /* 2027 * Only one of the encoding bits is allowed and it 2028 * should be sufficient for the pretty print purpose (i.e. decoding). 2029 * Multiple bits can be allowed later if it is found 2030 * to be insufficient. 2031 */ 2032 encoding = BTF_INT_ENCODING(int_data); 2033 if (encoding && 2034 encoding != BTF_INT_SIGNED && 2035 encoding != BTF_INT_CHAR && 2036 encoding != BTF_INT_BOOL) { 2037 btf_verifier_log_type(env, t, "Unsupported encoding"); 2038 return -ENOTSUPP; 2039 } 2040 2041 btf_verifier_log_type(env, t, NULL); 2042 2043 return meta_needed; 2044 } 2045 2046 static void btf_int_log(struct btf_verifier_env *env, 2047 const struct btf_type *t) 2048 { 2049 int int_data = btf_type_int(t); 2050 2051 btf_verifier_log(env, 2052 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2053 t->size, BTF_INT_OFFSET(int_data), 2054 BTF_INT_BITS(int_data), 2055 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2056 } 2057 2058 static void btf_int128_print(struct btf_show *show, void *data) 2059 { 2060 /* data points to a __int128 number. 2061 * Suppose 2062 * int128_num = *(__int128 *)data; 2063 * The below formulas shows what upper_num and lower_num represents: 2064 * upper_num = int128_num >> 64; 2065 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2066 */ 2067 u64 upper_num, lower_num; 2068 2069 #ifdef __BIG_ENDIAN_BITFIELD 2070 upper_num = *(u64 *)data; 2071 lower_num = *(u64 *)(data + 8); 2072 #else 2073 upper_num = *(u64 *)(data + 8); 2074 lower_num = *(u64 *)data; 2075 #endif 2076 if (upper_num == 0) 2077 btf_show_type_value(show, "0x%llx", lower_num); 2078 else 2079 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2080 lower_num); 2081 } 2082 2083 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2084 u16 right_shift_bits) 2085 { 2086 u64 upper_num, lower_num; 2087 2088 #ifdef __BIG_ENDIAN_BITFIELD 2089 upper_num = print_num[0]; 2090 lower_num = print_num[1]; 2091 #else 2092 upper_num = print_num[1]; 2093 lower_num = print_num[0]; 2094 #endif 2095 2096 /* shake out un-needed bits by shift/or operations */ 2097 if (left_shift_bits >= 64) { 2098 upper_num = lower_num << (left_shift_bits - 64); 2099 lower_num = 0; 2100 } else { 2101 upper_num = (upper_num << left_shift_bits) | 2102 (lower_num >> (64 - left_shift_bits)); 2103 lower_num = lower_num << left_shift_bits; 2104 } 2105 2106 if (right_shift_bits >= 64) { 2107 lower_num = upper_num >> (right_shift_bits - 64); 2108 upper_num = 0; 2109 } else { 2110 lower_num = (lower_num >> right_shift_bits) | 2111 (upper_num << (64 - right_shift_bits)); 2112 upper_num = upper_num >> right_shift_bits; 2113 } 2114 2115 #ifdef __BIG_ENDIAN_BITFIELD 2116 print_num[0] = upper_num; 2117 print_num[1] = lower_num; 2118 #else 2119 print_num[0] = lower_num; 2120 print_num[1] = upper_num; 2121 #endif 2122 } 2123 2124 static void btf_bitfield_show(void *data, u8 bits_offset, 2125 u8 nr_bits, struct btf_show *show) 2126 { 2127 u16 left_shift_bits, right_shift_bits; 2128 u8 nr_copy_bytes; 2129 u8 nr_copy_bits; 2130 u64 print_num[2] = {}; 2131 2132 nr_copy_bits = nr_bits + bits_offset; 2133 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2134 2135 memcpy(print_num, data, nr_copy_bytes); 2136 2137 #ifdef __BIG_ENDIAN_BITFIELD 2138 left_shift_bits = bits_offset; 2139 #else 2140 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2141 #endif 2142 right_shift_bits = BITS_PER_U128 - nr_bits; 2143 2144 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2145 btf_int128_print(show, print_num); 2146 } 2147 2148 2149 static void btf_int_bits_show(const struct btf *btf, 2150 const struct btf_type *t, 2151 void *data, u8 bits_offset, 2152 struct btf_show *show) 2153 { 2154 u32 int_data = btf_type_int(t); 2155 u8 nr_bits = BTF_INT_BITS(int_data); 2156 u8 total_bits_offset; 2157 2158 /* 2159 * bits_offset is at most 7. 2160 * BTF_INT_OFFSET() cannot exceed 128 bits. 2161 */ 2162 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2163 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2164 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2165 btf_bitfield_show(data, bits_offset, nr_bits, show); 2166 } 2167 2168 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2169 u32 type_id, void *data, u8 bits_offset, 2170 struct btf_show *show) 2171 { 2172 u32 int_data = btf_type_int(t); 2173 u8 encoding = BTF_INT_ENCODING(int_data); 2174 bool sign = encoding & BTF_INT_SIGNED; 2175 u8 nr_bits = BTF_INT_BITS(int_data); 2176 void *safe_data; 2177 2178 safe_data = btf_show_start_type(show, t, type_id, data); 2179 if (!safe_data) 2180 return; 2181 2182 if (bits_offset || BTF_INT_OFFSET(int_data) || 2183 BITS_PER_BYTE_MASKED(nr_bits)) { 2184 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2185 goto out; 2186 } 2187 2188 switch (nr_bits) { 2189 case 128: 2190 btf_int128_print(show, safe_data); 2191 break; 2192 case 64: 2193 if (sign) 2194 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2195 else 2196 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2197 break; 2198 case 32: 2199 if (sign) 2200 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2201 else 2202 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2203 break; 2204 case 16: 2205 if (sign) 2206 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2207 else 2208 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2209 break; 2210 case 8: 2211 if (show->state.array_encoding == BTF_INT_CHAR) { 2212 /* check for null terminator */ 2213 if (show->state.array_terminated) 2214 break; 2215 if (*(char *)data == '\0') { 2216 show->state.array_terminated = 1; 2217 break; 2218 } 2219 if (isprint(*(char *)data)) { 2220 btf_show_type_value(show, "'%c'", 2221 *(char *)safe_data); 2222 break; 2223 } 2224 } 2225 if (sign) 2226 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2227 else 2228 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2229 break; 2230 default: 2231 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2232 break; 2233 } 2234 out: 2235 btf_show_end_type(show); 2236 } 2237 2238 static const struct btf_kind_operations int_ops = { 2239 .check_meta = btf_int_check_meta, 2240 .resolve = btf_df_resolve, 2241 .check_member = btf_int_check_member, 2242 .check_kflag_member = btf_int_check_kflag_member, 2243 .log_details = btf_int_log, 2244 .show = btf_int_show, 2245 }; 2246 2247 static int btf_modifier_check_member(struct btf_verifier_env *env, 2248 const struct btf_type *struct_type, 2249 const struct btf_member *member, 2250 const struct btf_type *member_type) 2251 { 2252 const struct btf_type *resolved_type; 2253 u32 resolved_type_id = member->type; 2254 struct btf_member resolved_member; 2255 struct btf *btf = env->btf; 2256 2257 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2258 if (!resolved_type) { 2259 btf_verifier_log_member(env, struct_type, member, 2260 "Invalid member"); 2261 return -EINVAL; 2262 } 2263 2264 resolved_member = *member; 2265 resolved_member.type = resolved_type_id; 2266 2267 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2268 &resolved_member, 2269 resolved_type); 2270 } 2271 2272 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2273 const struct btf_type *struct_type, 2274 const struct btf_member *member, 2275 const struct btf_type *member_type) 2276 { 2277 const struct btf_type *resolved_type; 2278 u32 resolved_type_id = member->type; 2279 struct btf_member resolved_member; 2280 struct btf *btf = env->btf; 2281 2282 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2283 if (!resolved_type) { 2284 btf_verifier_log_member(env, struct_type, member, 2285 "Invalid member"); 2286 return -EINVAL; 2287 } 2288 2289 resolved_member = *member; 2290 resolved_member.type = resolved_type_id; 2291 2292 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2293 &resolved_member, 2294 resolved_type); 2295 } 2296 2297 static int btf_ptr_check_member(struct btf_verifier_env *env, 2298 const struct btf_type *struct_type, 2299 const struct btf_member *member, 2300 const struct btf_type *member_type) 2301 { 2302 u32 struct_size, struct_bits_off, bytes_offset; 2303 2304 struct_size = struct_type->size; 2305 struct_bits_off = member->offset; 2306 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2307 2308 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2309 btf_verifier_log_member(env, struct_type, member, 2310 "Member is not byte aligned"); 2311 return -EINVAL; 2312 } 2313 2314 if (struct_size - bytes_offset < sizeof(void *)) { 2315 btf_verifier_log_member(env, struct_type, member, 2316 "Member exceeds struct_size"); 2317 return -EINVAL; 2318 } 2319 2320 return 0; 2321 } 2322 2323 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2324 const struct btf_type *t, 2325 u32 meta_left) 2326 { 2327 if (btf_type_vlen(t)) { 2328 btf_verifier_log_type(env, t, "vlen != 0"); 2329 return -EINVAL; 2330 } 2331 2332 if (btf_type_kflag(t)) { 2333 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2334 return -EINVAL; 2335 } 2336 2337 if (!BTF_TYPE_ID_VALID(t->type)) { 2338 btf_verifier_log_type(env, t, "Invalid type_id"); 2339 return -EINVAL; 2340 } 2341 2342 /* typedef type must have a valid name, and other ref types, 2343 * volatile, const, restrict, should have a null name. 2344 */ 2345 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2346 if (!t->name_off || 2347 !btf_name_valid_identifier(env->btf, t->name_off)) { 2348 btf_verifier_log_type(env, t, "Invalid name"); 2349 return -EINVAL; 2350 } 2351 } else { 2352 if (t->name_off) { 2353 btf_verifier_log_type(env, t, "Invalid name"); 2354 return -EINVAL; 2355 } 2356 } 2357 2358 btf_verifier_log_type(env, t, NULL); 2359 2360 return 0; 2361 } 2362 2363 static int btf_modifier_resolve(struct btf_verifier_env *env, 2364 const struct resolve_vertex *v) 2365 { 2366 const struct btf_type *t = v->t; 2367 const struct btf_type *next_type; 2368 u32 next_type_id = t->type; 2369 struct btf *btf = env->btf; 2370 2371 next_type = btf_type_by_id(btf, next_type_id); 2372 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2373 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2374 return -EINVAL; 2375 } 2376 2377 if (!env_type_is_resolve_sink(env, next_type) && 2378 !env_type_is_resolved(env, next_type_id)) 2379 return env_stack_push(env, next_type, next_type_id); 2380 2381 /* Figure out the resolved next_type_id with size. 2382 * They will be stored in the current modifier's 2383 * resolved_ids and resolved_sizes such that it can 2384 * save us a few type-following when we use it later (e.g. in 2385 * pretty print). 2386 */ 2387 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2388 if (env_type_is_resolved(env, next_type_id)) 2389 next_type = btf_type_id_resolve(btf, &next_type_id); 2390 2391 /* "typedef void new_void", "const void"...etc */ 2392 if (!btf_type_is_void(next_type) && 2393 !btf_type_is_fwd(next_type) && 2394 !btf_type_is_func_proto(next_type)) { 2395 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2396 return -EINVAL; 2397 } 2398 } 2399 2400 env_stack_pop_resolved(env, next_type_id, 0); 2401 2402 return 0; 2403 } 2404 2405 static int btf_var_resolve(struct btf_verifier_env *env, 2406 const struct resolve_vertex *v) 2407 { 2408 const struct btf_type *next_type; 2409 const struct btf_type *t = v->t; 2410 u32 next_type_id = t->type; 2411 struct btf *btf = env->btf; 2412 2413 next_type = btf_type_by_id(btf, next_type_id); 2414 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2415 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2416 return -EINVAL; 2417 } 2418 2419 if (!env_type_is_resolve_sink(env, next_type) && 2420 !env_type_is_resolved(env, next_type_id)) 2421 return env_stack_push(env, next_type, next_type_id); 2422 2423 if (btf_type_is_modifier(next_type)) { 2424 const struct btf_type *resolved_type; 2425 u32 resolved_type_id; 2426 2427 resolved_type_id = next_type_id; 2428 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2429 2430 if (btf_type_is_ptr(resolved_type) && 2431 !env_type_is_resolve_sink(env, resolved_type) && 2432 !env_type_is_resolved(env, resolved_type_id)) 2433 return env_stack_push(env, resolved_type, 2434 resolved_type_id); 2435 } 2436 2437 /* We must resolve to something concrete at this point, no 2438 * forward types or similar that would resolve to size of 2439 * zero is allowed. 2440 */ 2441 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2442 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2443 return -EINVAL; 2444 } 2445 2446 env_stack_pop_resolved(env, next_type_id, 0); 2447 2448 return 0; 2449 } 2450 2451 static int btf_ptr_resolve(struct btf_verifier_env *env, 2452 const struct resolve_vertex *v) 2453 { 2454 const struct btf_type *next_type; 2455 const struct btf_type *t = v->t; 2456 u32 next_type_id = t->type; 2457 struct btf *btf = env->btf; 2458 2459 next_type = btf_type_by_id(btf, next_type_id); 2460 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2461 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2462 return -EINVAL; 2463 } 2464 2465 if (!env_type_is_resolve_sink(env, next_type) && 2466 !env_type_is_resolved(env, next_type_id)) 2467 return env_stack_push(env, next_type, next_type_id); 2468 2469 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2470 * the modifier may have stopped resolving when it was resolved 2471 * to a ptr (last-resolved-ptr). 2472 * 2473 * We now need to continue from the last-resolved-ptr to 2474 * ensure the last-resolved-ptr will not referring back to 2475 * the currenct ptr (t). 2476 */ 2477 if (btf_type_is_modifier(next_type)) { 2478 const struct btf_type *resolved_type; 2479 u32 resolved_type_id; 2480 2481 resolved_type_id = next_type_id; 2482 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2483 2484 if (btf_type_is_ptr(resolved_type) && 2485 !env_type_is_resolve_sink(env, resolved_type) && 2486 !env_type_is_resolved(env, resolved_type_id)) 2487 return env_stack_push(env, resolved_type, 2488 resolved_type_id); 2489 } 2490 2491 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2492 if (env_type_is_resolved(env, next_type_id)) 2493 next_type = btf_type_id_resolve(btf, &next_type_id); 2494 2495 if (!btf_type_is_void(next_type) && 2496 !btf_type_is_fwd(next_type) && 2497 !btf_type_is_func_proto(next_type)) { 2498 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2499 return -EINVAL; 2500 } 2501 } 2502 2503 env_stack_pop_resolved(env, next_type_id, 0); 2504 2505 return 0; 2506 } 2507 2508 static void btf_modifier_show(const struct btf *btf, 2509 const struct btf_type *t, 2510 u32 type_id, void *data, 2511 u8 bits_offset, struct btf_show *show) 2512 { 2513 if (btf->resolved_ids) 2514 t = btf_type_id_resolve(btf, &type_id); 2515 else 2516 t = btf_type_skip_modifiers(btf, type_id, NULL); 2517 2518 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2519 } 2520 2521 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2522 u32 type_id, void *data, u8 bits_offset, 2523 struct btf_show *show) 2524 { 2525 t = btf_type_id_resolve(btf, &type_id); 2526 2527 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2528 } 2529 2530 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2531 u32 type_id, void *data, u8 bits_offset, 2532 struct btf_show *show) 2533 { 2534 void *safe_data; 2535 2536 safe_data = btf_show_start_type(show, t, type_id, data); 2537 if (!safe_data) 2538 return; 2539 2540 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2541 if (show->flags & BTF_SHOW_PTR_RAW) 2542 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2543 else 2544 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2545 btf_show_end_type(show); 2546 } 2547 2548 static void btf_ref_type_log(struct btf_verifier_env *env, 2549 const struct btf_type *t) 2550 { 2551 btf_verifier_log(env, "type_id=%u", t->type); 2552 } 2553 2554 static struct btf_kind_operations modifier_ops = { 2555 .check_meta = btf_ref_type_check_meta, 2556 .resolve = btf_modifier_resolve, 2557 .check_member = btf_modifier_check_member, 2558 .check_kflag_member = btf_modifier_check_kflag_member, 2559 .log_details = btf_ref_type_log, 2560 .show = btf_modifier_show, 2561 }; 2562 2563 static struct btf_kind_operations ptr_ops = { 2564 .check_meta = btf_ref_type_check_meta, 2565 .resolve = btf_ptr_resolve, 2566 .check_member = btf_ptr_check_member, 2567 .check_kflag_member = btf_generic_check_kflag_member, 2568 .log_details = btf_ref_type_log, 2569 .show = btf_ptr_show, 2570 }; 2571 2572 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2573 const struct btf_type *t, 2574 u32 meta_left) 2575 { 2576 if (btf_type_vlen(t)) { 2577 btf_verifier_log_type(env, t, "vlen != 0"); 2578 return -EINVAL; 2579 } 2580 2581 if (t->type) { 2582 btf_verifier_log_type(env, t, "type != 0"); 2583 return -EINVAL; 2584 } 2585 2586 /* fwd type must have a valid name */ 2587 if (!t->name_off || 2588 !btf_name_valid_identifier(env->btf, t->name_off)) { 2589 btf_verifier_log_type(env, t, "Invalid name"); 2590 return -EINVAL; 2591 } 2592 2593 btf_verifier_log_type(env, t, NULL); 2594 2595 return 0; 2596 } 2597 2598 static void btf_fwd_type_log(struct btf_verifier_env *env, 2599 const struct btf_type *t) 2600 { 2601 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2602 } 2603 2604 static struct btf_kind_operations fwd_ops = { 2605 .check_meta = btf_fwd_check_meta, 2606 .resolve = btf_df_resolve, 2607 .check_member = btf_df_check_member, 2608 .check_kflag_member = btf_df_check_kflag_member, 2609 .log_details = btf_fwd_type_log, 2610 .show = btf_df_show, 2611 }; 2612 2613 static int btf_array_check_member(struct btf_verifier_env *env, 2614 const struct btf_type *struct_type, 2615 const struct btf_member *member, 2616 const struct btf_type *member_type) 2617 { 2618 u32 struct_bits_off = member->offset; 2619 u32 struct_size, bytes_offset; 2620 u32 array_type_id, array_size; 2621 struct btf *btf = env->btf; 2622 2623 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2624 btf_verifier_log_member(env, struct_type, member, 2625 "Member is not byte aligned"); 2626 return -EINVAL; 2627 } 2628 2629 array_type_id = member->type; 2630 btf_type_id_size(btf, &array_type_id, &array_size); 2631 struct_size = struct_type->size; 2632 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2633 if (struct_size - bytes_offset < array_size) { 2634 btf_verifier_log_member(env, struct_type, member, 2635 "Member exceeds struct_size"); 2636 return -EINVAL; 2637 } 2638 2639 return 0; 2640 } 2641 2642 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2643 const struct btf_type *t, 2644 u32 meta_left) 2645 { 2646 const struct btf_array *array = btf_type_array(t); 2647 u32 meta_needed = sizeof(*array); 2648 2649 if (meta_left < meta_needed) { 2650 btf_verifier_log_basic(env, t, 2651 "meta_left:%u meta_needed:%u", 2652 meta_left, meta_needed); 2653 return -EINVAL; 2654 } 2655 2656 /* array type should not have a name */ 2657 if (t->name_off) { 2658 btf_verifier_log_type(env, t, "Invalid name"); 2659 return -EINVAL; 2660 } 2661 2662 if (btf_type_vlen(t)) { 2663 btf_verifier_log_type(env, t, "vlen != 0"); 2664 return -EINVAL; 2665 } 2666 2667 if (btf_type_kflag(t)) { 2668 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2669 return -EINVAL; 2670 } 2671 2672 if (t->size) { 2673 btf_verifier_log_type(env, t, "size != 0"); 2674 return -EINVAL; 2675 } 2676 2677 /* Array elem type and index type cannot be in type void, 2678 * so !array->type and !array->index_type are not allowed. 2679 */ 2680 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2681 btf_verifier_log_type(env, t, "Invalid elem"); 2682 return -EINVAL; 2683 } 2684 2685 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2686 btf_verifier_log_type(env, t, "Invalid index"); 2687 return -EINVAL; 2688 } 2689 2690 btf_verifier_log_type(env, t, NULL); 2691 2692 return meta_needed; 2693 } 2694 2695 static int btf_array_resolve(struct btf_verifier_env *env, 2696 const struct resolve_vertex *v) 2697 { 2698 const struct btf_array *array = btf_type_array(v->t); 2699 const struct btf_type *elem_type, *index_type; 2700 u32 elem_type_id, index_type_id; 2701 struct btf *btf = env->btf; 2702 u32 elem_size; 2703 2704 /* Check array->index_type */ 2705 index_type_id = array->index_type; 2706 index_type = btf_type_by_id(btf, index_type_id); 2707 if (btf_type_nosize_or_null(index_type) || 2708 btf_type_is_resolve_source_only(index_type)) { 2709 btf_verifier_log_type(env, v->t, "Invalid index"); 2710 return -EINVAL; 2711 } 2712 2713 if (!env_type_is_resolve_sink(env, index_type) && 2714 !env_type_is_resolved(env, index_type_id)) 2715 return env_stack_push(env, index_type, index_type_id); 2716 2717 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2718 if (!index_type || !btf_type_is_int(index_type) || 2719 !btf_type_int_is_regular(index_type)) { 2720 btf_verifier_log_type(env, v->t, "Invalid index"); 2721 return -EINVAL; 2722 } 2723 2724 /* Check array->type */ 2725 elem_type_id = array->type; 2726 elem_type = btf_type_by_id(btf, elem_type_id); 2727 if (btf_type_nosize_or_null(elem_type) || 2728 btf_type_is_resolve_source_only(elem_type)) { 2729 btf_verifier_log_type(env, v->t, 2730 "Invalid elem"); 2731 return -EINVAL; 2732 } 2733 2734 if (!env_type_is_resolve_sink(env, elem_type) && 2735 !env_type_is_resolved(env, elem_type_id)) 2736 return env_stack_push(env, elem_type, elem_type_id); 2737 2738 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2739 if (!elem_type) { 2740 btf_verifier_log_type(env, v->t, "Invalid elem"); 2741 return -EINVAL; 2742 } 2743 2744 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2745 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2746 return -EINVAL; 2747 } 2748 2749 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2750 btf_verifier_log_type(env, v->t, 2751 "Array size overflows U32_MAX"); 2752 return -EINVAL; 2753 } 2754 2755 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2756 2757 return 0; 2758 } 2759 2760 static void btf_array_log(struct btf_verifier_env *env, 2761 const struct btf_type *t) 2762 { 2763 const struct btf_array *array = btf_type_array(t); 2764 2765 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2766 array->type, array->index_type, array->nelems); 2767 } 2768 2769 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2770 u32 type_id, void *data, u8 bits_offset, 2771 struct btf_show *show) 2772 { 2773 const struct btf_array *array = btf_type_array(t); 2774 const struct btf_kind_operations *elem_ops; 2775 const struct btf_type *elem_type; 2776 u32 i, elem_size = 0, elem_type_id; 2777 u16 encoding = 0; 2778 2779 elem_type_id = array->type; 2780 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2781 if (elem_type && btf_type_has_size(elem_type)) 2782 elem_size = elem_type->size; 2783 2784 if (elem_type && btf_type_is_int(elem_type)) { 2785 u32 int_type = btf_type_int(elem_type); 2786 2787 encoding = BTF_INT_ENCODING(int_type); 2788 2789 /* 2790 * BTF_INT_CHAR encoding never seems to be set for 2791 * char arrays, so if size is 1 and element is 2792 * printable as a char, we'll do that. 2793 */ 2794 if (elem_size == 1) 2795 encoding = BTF_INT_CHAR; 2796 } 2797 2798 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2799 return; 2800 2801 if (!elem_type) 2802 goto out; 2803 elem_ops = btf_type_ops(elem_type); 2804 2805 for (i = 0; i < array->nelems; i++) { 2806 2807 btf_show_start_array_member(show); 2808 2809 elem_ops->show(btf, elem_type, elem_type_id, data, 2810 bits_offset, show); 2811 data += elem_size; 2812 2813 btf_show_end_array_member(show); 2814 2815 if (show->state.array_terminated) 2816 break; 2817 } 2818 out: 2819 btf_show_end_array_type(show); 2820 } 2821 2822 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2823 u32 type_id, void *data, u8 bits_offset, 2824 struct btf_show *show) 2825 { 2826 const struct btf_member *m = show->state.member; 2827 2828 /* 2829 * First check if any members would be shown (are non-zero). 2830 * See comments above "struct btf_show" definition for more 2831 * details on how this works at a high-level. 2832 */ 2833 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2834 if (!show->state.depth_check) { 2835 show->state.depth_check = show->state.depth + 1; 2836 show->state.depth_to_show = 0; 2837 } 2838 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2839 show->state.member = m; 2840 2841 if (show->state.depth_check != show->state.depth + 1) 2842 return; 2843 show->state.depth_check = 0; 2844 2845 if (show->state.depth_to_show <= show->state.depth) 2846 return; 2847 /* 2848 * Reaching here indicates we have recursed and found 2849 * non-zero array member(s). 2850 */ 2851 } 2852 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2853 } 2854 2855 static struct btf_kind_operations array_ops = { 2856 .check_meta = btf_array_check_meta, 2857 .resolve = btf_array_resolve, 2858 .check_member = btf_array_check_member, 2859 .check_kflag_member = btf_generic_check_kflag_member, 2860 .log_details = btf_array_log, 2861 .show = btf_array_show, 2862 }; 2863 2864 static int btf_struct_check_member(struct btf_verifier_env *env, 2865 const struct btf_type *struct_type, 2866 const struct btf_member *member, 2867 const struct btf_type *member_type) 2868 { 2869 u32 struct_bits_off = member->offset; 2870 u32 struct_size, bytes_offset; 2871 2872 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2873 btf_verifier_log_member(env, struct_type, member, 2874 "Member is not byte aligned"); 2875 return -EINVAL; 2876 } 2877 2878 struct_size = struct_type->size; 2879 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2880 if (struct_size - bytes_offset < member_type->size) { 2881 btf_verifier_log_member(env, struct_type, member, 2882 "Member exceeds struct_size"); 2883 return -EINVAL; 2884 } 2885 2886 return 0; 2887 } 2888 2889 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2890 const struct btf_type *t, 2891 u32 meta_left) 2892 { 2893 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2894 const struct btf_member *member; 2895 u32 meta_needed, last_offset; 2896 struct btf *btf = env->btf; 2897 u32 struct_size = t->size; 2898 u32 offset; 2899 u16 i; 2900 2901 meta_needed = btf_type_vlen(t) * sizeof(*member); 2902 if (meta_left < meta_needed) { 2903 btf_verifier_log_basic(env, t, 2904 "meta_left:%u meta_needed:%u", 2905 meta_left, meta_needed); 2906 return -EINVAL; 2907 } 2908 2909 /* struct type either no name or a valid one */ 2910 if (t->name_off && 2911 !btf_name_valid_identifier(env->btf, t->name_off)) { 2912 btf_verifier_log_type(env, t, "Invalid name"); 2913 return -EINVAL; 2914 } 2915 2916 btf_verifier_log_type(env, t, NULL); 2917 2918 last_offset = 0; 2919 for_each_member(i, t, member) { 2920 if (!btf_name_offset_valid(btf, member->name_off)) { 2921 btf_verifier_log_member(env, t, member, 2922 "Invalid member name_offset:%u", 2923 member->name_off); 2924 return -EINVAL; 2925 } 2926 2927 /* struct member either no name or a valid one */ 2928 if (member->name_off && 2929 !btf_name_valid_identifier(btf, member->name_off)) { 2930 btf_verifier_log_member(env, t, member, "Invalid name"); 2931 return -EINVAL; 2932 } 2933 /* A member cannot be in type void */ 2934 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2935 btf_verifier_log_member(env, t, member, 2936 "Invalid type_id"); 2937 return -EINVAL; 2938 } 2939 2940 offset = btf_member_bit_offset(t, member); 2941 if (is_union && offset) { 2942 btf_verifier_log_member(env, t, member, 2943 "Invalid member bits_offset"); 2944 return -EINVAL; 2945 } 2946 2947 /* 2948 * ">" instead of ">=" because the last member could be 2949 * "char a[0];" 2950 */ 2951 if (last_offset > offset) { 2952 btf_verifier_log_member(env, t, member, 2953 "Invalid member bits_offset"); 2954 return -EINVAL; 2955 } 2956 2957 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2958 btf_verifier_log_member(env, t, member, 2959 "Member bits_offset exceeds its struct size"); 2960 return -EINVAL; 2961 } 2962 2963 btf_verifier_log_member(env, t, member, NULL); 2964 last_offset = offset; 2965 } 2966 2967 return meta_needed; 2968 } 2969 2970 static int btf_struct_resolve(struct btf_verifier_env *env, 2971 const struct resolve_vertex *v) 2972 { 2973 const struct btf_member *member; 2974 int err; 2975 u16 i; 2976 2977 /* Before continue resolving the next_member, 2978 * ensure the last member is indeed resolved to a 2979 * type with size info. 2980 */ 2981 if (v->next_member) { 2982 const struct btf_type *last_member_type; 2983 const struct btf_member *last_member; 2984 u16 last_member_type_id; 2985 2986 last_member = btf_type_member(v->t) + v->next_member - 1; 2987 last_member_type_id = last_member->type; 2988 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2989 last_member_type_id))) 2990 return -EINVAL; 2991 2992 last_member_type = btf_type_by_id(env->btf, 2993 last_member_type_id); 2994 if (btf_type_kflag(v->t)) 2995 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2996 last_member, 2997 last_member_type); 2998 else 2999 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3000 last_member, 3001 last_member_type); 3002 if (err) 3003 return err; 3004 } 3005 3006 for_each_member_from(i, v->next_member, v->t, member) { 3007 u32 member_type_id = member->type; 3008 const struct btf_type *member_type = btf_type_by_id(env->btf, 3009 member_type_id); 3010 3011 if (btf_type_nosize_or_null(member_type) || 3012 btf_type_is_resolve_source_only(member_type)) { 3013 btf_verifier_log_member(env, v->t, member, 3014 "Invalid member"); 3015 return -EINVAL; 3016 } 3017 3018 if (!env_type_is_resolve_sink(env, member_type) && 3019 !env_type_is_resolved(env, member_type_id)) { 3020 env_stack_set_next_member(env, i + 1); 3021 return env_stack_push(env, member_type, member_type_id); 3022 } 3023 3024 if (btf_type_kflag(v->t)) 3025 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3026 member, 3027 member_type); 3028 else 3029 err = btf_type_ops(member_type)->check_member(env, v->t, 3030 member, 3031 member_type); 3032 if (err) 3033 return err; 3034 } 3035 3036 env_stack_pop_resolved(env, 0, 0); 3037 3038 return 0; 3039 } 3040 3041 static void btf_struct_log(struct btf_verifier_env *env, 3042 const struct btf_type *t) 3043 { 3044 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3045 } 3046 3047 /* find 'struct bpf_spin_lock' in map value. 3048 * return >= 0 offset if found 3049 * and < 0 in case of error 3050 */ 3051 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3052 { 3053 const struct btf_member *member; 3054 u32 i, off = -ENOENT; 3055 3056 if (!__btf_type_is_struct(t)) 3057 return -EINVAL; 3058 3059 for_each_member(i, t, member) { 3060 const struct btf_type *member_type = btf_type_by_id(btf, 3061 member->type); 3062 if (!__btf_type_is_struct(member_type)) 3063 continue; 3064 if (member_type->size != sizeof(struct bpf_spin_lock)) 3065 continue; 3066 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 3067 "bpf_spin_lock")) 3068 continue; 3069 if (off != -ENOENT) 3070 /* only one 'struct bpf_spin_lock' is allowed */ 3071 return -E2BIG; 3072 off = btf_member_bit_offset(t, member); 3073 if (off % 8) 3074 /* valid C code cannot generate such BTF */ 3075 return -EINVAL; 3076 off /= 8; 3077 if (off % __alignof__(struct bpf_spin_lock)) 3078 /* valid struct bpf_spin_lock will be 4 byte aligned */ 3079 return -EINVAL; 3080 } 3081 return off; 3082 } 3083 3084 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3085 u32 type_id, void *data, u8 bits_offset, 3086 struct btf_show *show) 3087 { 3088 const struct btf_member *member; 3089 void *safe_data; 3090 u32 i; 3091 3092 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3093 if (!safe_data) 3094 return; 3095 3096 for_each_member(i, t, member) { 3097 const struct btf_type *member_type = btf_type_by_id(btf, 3098 member->type); 3099 const struct btf_kind_operations *ops; 3100 u32 member_offset, bitfield_size; 3101 u32 bytes_offset; 3102 u8 bits8_offset; 3103 3104 btf_show_start_member(show, member); 3105 3106 member_offset = btf_member_bit_offset(t, member); 3107 bitfield_size = btf_member_bitfield_size(t, member); 3108 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3109 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3110 if (bitfield_size) { 3111 safe_data = btf_show_start_type(show, member_type, 3112 member->type, 3113 data + bytes_offset); 3114 if (safe_data) 3115 btf_bitfield_show(safe_data, 3116 bits8_offset, 3117 bitfield_size, show); 3118 btf_show_end_type(show); 3119 } else { 3120 ops = btf_type_ops(member_type); 3121 ops->show(btf, member_type, member->type, 3122 data + bytes_offset, bits8_offset, show); 3123 } 3124 3125 btf_show_end_member(show); 3126 } 3127 3128 btf_show_end_struct_type(show); 3129 } 3130 3131 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3132 u32 type_id, void *data, u8 bits_offset, 3133 struct btf_show *show) 3134 { 3135 const struct btf_member *m = show->state.member; 3136 3137 /* 3138 * First check if any members would be shown (are non-zero). 3139 * See comments above "struct btf_show" definition for more 3140 * details on how this works at a high-level. 3141 */ 3142 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3143 if (!show->state.depth_check) { 3144 show->state.depth_check = show->state.depth + 1; 3145 show->state.depth_to_show = 0; 3146 } 3147 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3148 /* Restore saved member data here */ 3149 show->state.member = m; 3150 if (show->state.depth_check != show->state.depth + 1) 3151 return; 3152 show->state.depth_check = 0; 3153 3154 if (show->state.depth_to_show <= show->state.depth) 3155 return; 3156 /* 3157 * Reaching here indicates we have recursed and found 3158 * non-zero child values. 3159 */ 3160 } 3161 3162 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3163 } 3164 3165 static struct btf_kind_operations struct_ops = { 3166 .check_meta = btf_struct_check_meta, 3167 .resolve = btf_struct_resolve, 3168 .check_member = btf_struct_check_member, 3169 .check_kflag_member = btf_generic_check_kflag_member, 3170 .log_details = btf_struct_log, 3171 .show = btf_struct_show, 3172 }; 3173 3174 static int btf_enum_check_member(struct btf_verifier_env *env, 3175 const struct btf_type *struct_type, 3176 const struct btf_member *member, 3177 const struct btf_type *member_type) 3178 { 3179 u32 struct_bits_off = member->offset; 3180 u32 struct_size, bytes_offset; 3181 3182 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3183 btf_verifier_log_member(env, struct_type, member, 3184 "Member is not byte aligned"); 3185 return -EINVAL; 3186 } 3187 3188 struct_size = struct_type->size; 3189 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3190 if (struct_size - bytes_offset < member_type->size) { 3191 btf_verifier_log_member(env, struct_type, member, 3192 "Member exceeds struct_size"); 3193 return -EINVAL; 3194 } 3195 3196 return 0; 3197 } 3198 3199 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3200 const struct btf_type *struct_type, 3201 const struct btf_member *member, 3202 const struct btf_type *member_type) 3203 { 3204 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3205 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3206 3207 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3208 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3209 if (!nr_bits) { 3210 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3211 btf_verifier_log_member(env, struct_type, member, 3212 "Member is not byte aligned"); 3213 return -EINVAL; 3214 } 3215 3216 nr_bits = int_bitsize; 3217 } else if (nr_bits > int_bitsize) { 3218 btf_verifier_log_member(env, struct_type, member, 3219 "Invalid member bitfield_size"); 3220 return -EINVAL; 3221 } 3222 3223 struct_size = struct_type->size; 3224 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3225 if (struct_size < bytes_end) { 3226 btf_verifier_log_member(env, struct_type, member, 3227 "Member exceeds struct_size"); 3228 return -EINVAL; 3229 } 3230 3231 return 0; 3232 } 3233 3234 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3235 const struct btf_type *t, 3236 u32 meta_left) 3237 { 3238 const struct btf_enum *enums = btf_type_enum(t); 3239 struct btf *btf = env->btf; 3240 u16 i, nr_enums; 3241 u32 meta_needed; 3242 3243 nr_enums = btf_type_vlen(t); 3244 meta_needed = nr_enums * sizeof(*enums); 3245 3246 if (meta_left < meta_needed) { 3247 btf_verifier_log_basic(env, t, 3248 "meta_left:%u meta_needed:%u", 3249 meta_left, meta_needed); 3250 return -EINVAL; 3251 } 3252 3253 if (btf_type_kflag(t)) { 3254 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3255 return -EINVAL; 3256 } 3257 3258 if (t->size > 8 || !is_power_of_2(t->size)) { 3259 btf_verifier_log_type(env, t, "Unexpected size"); 3260 return -EINVAL; 3261 } 3262 3263 /* enum type either no name or a valid one */ 3264 if (t->name_off && 3265 !btf_name_valid_identifier(env->btf, t->name_off)) { 3266 btf_verifier_log_type(env, t, "Invalid name"); 3267 return -EINVAL; 3268 } 3269 3270 btf_verifier_log_type(env, t, NULL); 3271 3272 for (i = 0; i < nr_enums; i++) { 3273 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3274 btf_verifier_log(env, "\tInvalid name_offset:%u", 3275 enums[i].name_off); 3276 return -EINVAL; 3277 } 3278 3279 /* enum member must have a valid name */ 3280 if (!enums[i].name_off || 3281 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3282 btf_verifier_log_type(env, t, "Invalid name"); 3283 return -EINVAL; 3284 } 3285 3286 if (env->log.level == BPF_LOG_KERNEL) 3287 continue; 3288 btf_verifier_log(env, "\t%s val=%d\n", 3289 __btf_name_by_offset(btf, enums[i].name_off), 3290 enums[i].val); 3291 } 3292 3293 return meta_needed; 3294 } 3295 3296 static void btf_enum_log(struct btf_verifier_env *env, 3297 const struct btf_type *t) 3298 { 3299 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3300 } 3301 3302 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3303 u32 type_id, void *data, u8 bits_offset, 3304 struct btf_show *show) 3305 { 3306 const struct btf_enum *enums = btf_type_enum(t); 3307 u32 i, nr_enums = btf_type_vlen(t); 3308 void *safe_data; 3309 int v; 3310 3311 safe_data = btf_show_start_type(show, t, type_id, data); 3312 if (!safe_data) 3313 return; 3314 3315 v = *(int *)safe_data; 3316 3317 for (i = 0; i < nr_enums; i++) { 3318 if (v != enums[i].val) 3319 continue; 3320 3321 btf_show_type_value(show, "%s", 3322 __btf_name_by_offset(btf, 3323 enums[i].name_off)); 3324 3325 btf_show_end_type(show); 3326 return; 3327 } 3328 3329 btf_show_type_value(show, "%d", v); 3330 btf_show_end_type(show); 3331 } 3332 3333 static struct btf_kind_operations enum_ops = { 3334 .check_meta = btf_enum_check_meta, 3335 .resolve = btf_df_resolve, 3336 .check_member = btf_enum_check_member, 3337 .check_kflag_member = btf_enum_check_kflag_member, 3338 .log_details = btf_enum_log, 3339 .show = btf_enum_show, 3340 }; 3341 3342 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3343 const struct btf_type *t, 3344 u32 meta_left) 3345 { 3346 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3347 3348 if (meta_left < meta_needed) { 3349 btf_verifier_log_basic(env, t, 3350 "meta_left:%u meta_needed:%u", 3351 meta_left, meta_needed); 3352 return -EINVAL; 3353 } 3354 3355 if (t->name_off) { 3356 btf_verifier_log_type(env, t, "Invalid name"); 3357 return -EINVAL; 3358 } 3359 3360 if (btf_type_kflag(t)) { 3361 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3362 return -EINVAL; 3363 } 3364 3365 btf_verifier_log_type(env, t, NULL); 3366 3367 return meta_needed; 3368 } 3369 3370 static void btf_func_proto_log(struct btf_verifier_env *env, 3371 const struct btf_type *t) 3372 { 3373 const struct btf_param *args = (const struct btf_param *)(t + 1); 3374 u16 nr_args = btf_type_vlen(t), i; 3375 3376 btf_verifier_log(env, "return=%u args=(", t->type); 3377 if (!nr_args) { 3378 btf_verifier_log(env, "void"); 3379 goto done; 3380 } 3381 3382 if (nr_args == 1 && !args[0].type) { 3383 /* Only one vararg */ 3384 btf_verifier_log(env, "vararg"); 3385 goto done; 3386 } 3387 3388 btf_verifier_log(env, "%u %s", args[0].type, 3389 __btf_name_by_offset(env->btf, 3390 args[0].name_off)); 3391 for (i = 1; i < nr_args - 1; i++) 3392 btf_verifier_log(env, ", %u %s", args[i].type, 3393 __btf_name_by_offset(env->btf, 3394 args[i].name_off)); 3395 3396 if (nr_args > 1) { 3397 const struct btf_param *last_arg = &args[nr_args - 1]; 3398 3399 if (last_arg->type) 3400 btf_verifier_log(env, ", %u %s", last_arg->type, 3401 __btf_name_by_offset(env->btf, 3402 last_arg->name_off)); 3403 else 3404 btf_verifier_log(env, ", vararg"); 3405 } 3406 3407 done: 3408 btf_verifier_log(env, ")"); 3409 } 3410 3411 static struct btf_kind_operations func_proto_ops = { 3412 .check_meta = btf_func_proto_check_meta, 3413 .resolve = btf_df_resolve, 3414 /* 3415 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3416 * a struct's member. 3417 * 3418 * It should be a funciton pointer instead. 3419 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3420 * 3421 * Hence, there is no btf_func_check_member(). 3422 */ 3423 .check_member = btf_df_check_member, 3424 .check_kflag_member = btf_df_check_kflag_member, 3425 .log_details = btf_func_proto_log, 3426 .show = btf_df_show, 3427 }; 3428 3429 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3430 const struct btf_type *t, 3431 u32 meta_left) 3432 { 3433 if (!t->name_off || 3434 !btf_name_valid_identifier(env->btf, t->name_off)) { 3435 btf_verifier_log_type(env, t, "Invalid name"); 3436 return -EINVAL; 3437 } 3438 3439 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3440 btf_verifier_log_type(env, t, "Invalid func linkage"); 3441 return -EINVAL; 3442 } 3443 3444 if (btf_type_kflag(t)) { 3445 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3446 return -EINVAL; 3447 } 3448 3449 btf_verifier_log_type(env, t, NULL); 3450 3451 return 0; 3452 } 3453 3454 static struct btf_kind_operations func_ops = { 3455 .check_meta = btf_func_check_meta, 3456 .resolve = btf_df_resolve, 3457 .check_member = btf_df_check_member, 3458 .check_kflag_member = btf_df_check_kflag_member, 3459 .log_details = btf_ref_type_log, 3460 .show = btf_df_show, 3461 }; 3462 3463 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3464 const struct btf_type *t, 3465 u32 meta_left) 3466 { 3467 const struct btf_var *var; 3468 u32 meta_needed = sizeof(*var); 3469 3470 if (meta_left < meta_needed) { 3471 btf_verifier_log_basic(env, t, 3472 "meta_left:%u meta_needed:%u", 3473 meta_left, meta_needed); 3474 return -EINVAL; 3475 } 3476 3477 if (btf_type_vlen(t)) { 3478 btf_verifier_log_type(env, t, "vlen != 0"); 3479 return -EINVAL; 3480 } 3481 3482 if (btf_type_kflag(t)) { 3483 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3484 return -EINVAL; 3485 } 3486 3487 if (!t->name_off || 3488 !__btf_name_valid(env->btf, t->name_off, true)) { 3489 btf_verifier_log_type(env, t, "Invalid name"); 3490 return -EINVAL; 3491 } 3492 3493 /* A var cannot be in type void */ 3494 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3495 btf_verifier_log_type(env, t, "Invalid type_id"); 3496 return -EINVAL; 3497 } 3498 3499 var = btf_type_var(t); 3500 if (var->linkage != BTF_VAR_STATIC && 3501 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3502 btf_verifier_log_type(env, t, "Linkage not supported"); 3503 return -EINVAL; 3504 } 3505 3506 btf_verifier_log_type(env, t, NULL); 3507 3508 return meta_needed; 3509 } 3510 3511 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3512 { 3513 const struct btf_var *var = btf_type_var(t); 3514 3515 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3516 } 3517 3518 static const struct btf_kind_operations var_ops = { 3519 .check_meta = btf_var_check_meta, 3520 .resolve = btf_var_resolve, 3521 .check_member = btf_df_check_member, 3522 .check_kflag_member = btf_df_check_kflag_member, 3523 .log_details = btf_var_log, 3524 .show = btf_var_show, 3525 }; 3526 3527 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3528 const struct btf_type *t, 3529 u32 meta_left) 3530 { 3531 const struct btf_var_secinfo *vsi; 3532 u64 last_vsi_end_off = 0, sum = 0; 3533 u32 i, meta_needed; 3534 3535 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3536 if (meta_left < meta_needed) { 3537 btf_verifier_log_basic(env, t, 3538 "meta_left:%u meta_needed:%u", 3539 meta_left, meta_needed); 3540 return -EINVAL; 3541 } 3542 3543 if (!btf_type_vlen(t)) { 3544 btf_verifier_log_type(env, t, "vlen == 0"); 3545 return -EINVAL; 3546 } 3547 3548 if (!t->size) { 3549 btf_verifier_log_type(env, t, "size == 0"); 3550 return -EINVAL; 3551 } 3552 3553 if (btf_type_kflag(t)) { 3554 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3555 return -EINVAL; 3556 } 3557 3558 if (!t->name_off || 3559 !btf_name_valid_section(env->btf, t->name_off)) { 3560 btf_verifier_log_type(env, t, "Invalid name"); 3561 return -EINVAL; 3562 } 3563 3564 btf_verifier_log_type(env, t, NULL); 3565 3566 for_each_vsi(i, t, vsi) { 3567 /* A var cannot be in type void */ 3568 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3569 btf_verifier_log_vsi(env, t, vsi, 3570 "Invalid type_id"); 3571 return -EINVAL; 3572 } 3573 3574 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3575 btf_verifier_log_vsi(env, t, vsi, 3576 "Invalid offset"); 3577 return -EINVAL; 3578 } 3579 3580 if (!vsi->size || vsi->size > t->size) { 3581 btf_verifier_log_vsi(env, t, vsi, 3582 "Invalid size"); 3583 return -EINVAL; 3584 } 3585 3586 last_vsi_end_off = vsi->offset + vsi->size; 3587 if (last_vsi_end_off > t->size) { 3588 btf_verifier_log_vsi(env, t, vsi, 3589 "Invalid offset+size"); 3590 return -EINVAL; 3591 } 3592 3593 btf_verifier_log_vsi(env, t, vsi, NULL); 3594 sum += vsi->size; 3595 } 3596 3597 if (t->size < sum) { 3598 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3599 return -EINVAL; 3600 } 3601 3602 return meta_needed; 3603 } 3604 3605 static int btf_datasec_resolve(struct btf_verifier_env *env, 3606 const struct resolve_vertex *v) 3607 { 3608 const struct btf_var_secinfo *vsi; 3609 struct btf *btf = env->btf; 3610 u16 i; 3611 3612 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3613 u32 var_type_id = vsi->type, type_id, type_size = 0; 3614 const struct btf_type *var_type = btf_type_by_id(env->btf, 3615 var_type_id); 3616 if (!var_type || !btf_type_is_var(var_type)) { 3617 btf_verifier_log_vsi(env, v->t, vsi, 3618 "Not a VAR kind member"); 3619 return -EINVAL; 3620 } 3621 3622 if (!env_type_is_resolve_sink(env, var_type) && 3623 !env_type_is_resolved(env, var_type_id)) { 3624 env_stack_set_next_member(env, i + 1); 3625 return env_stack_push(env, var_type, var_type_id); 3626 } 3627 3628 type_id = var_type->type; 3629 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3630 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3631 return -EINVAL; 3632 } 3633 3634 if (vsi->size < type_size) { 3635 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3636 return -EINVAL; 3637 } 3638 } 3639 3640 env_stack_pop_resolved(env, 0, 0); 3641 return 0; 3642 } 3643 3644 static void btf_datasec_log(struct btf_verifier_env *env, 3645 const struct btf_type *t) 3646 { 3647 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3648 } 3649 3650 static void btf_datasec_show(const struct btf *btf, 3651 const struct btf_type *t, u32 type_id, 3652 void *data, u8 bits_offset, 3653 struct btf_show *show) 3654 { 3655 const struct btf_var_secinfo *vsi; 3656 const struct btf_type *var; 3657 u32 i; 3658 3659 if (!btf_show_start_type(show, t, type_id, data)) 3660 return; 3661 3662 btf_show_type_value(show, "section (\"%s\") = {", 3663 __btf_name_by_offset(btf, t->name_off)); 3664 for_each_vsi(i, t, vsi) { 3665 var = btf_type_by_id(btf, vsi->type); 3666 if (i) 3667 btf_show(show, ","); 3668 btf_type_ops(var)->show(btf, var, vsi->type, 3669 data + vsi->offset, bits_offset, show); 3670 } 3671 btf_show_end_type(show); 3672 } 3673 3674 static const struct btf_kind_operations datasec_ops = { 3675 .check_meta = btf_datasec_check_meta, 3676 .resolve = btf_datasec_resolve, 3677 .check_member = btf_df_check_member, 3678 .check_kflag_member = btf_df_check_kflag_member, 3679 .log_details = btf_datasec_log, 3680 .show = btf_datasec_show, 3681 }; 3682 3683 static int btf_func_proto_check(struct btf_verifier_env *env, 3684 const struct btf_type *t) 3685 { 3686 const struct btf_type *ret_type; 3687 const struct btf_param *args; 3688 const struct btf *btf; 3689 u16 nr_args, i; 3690 int err; 3691 3692 btf = env->btf; 3693 args = (const struct btf_param *)(t + 1); 3694 nr_args = btf_type_vlen(t); 3695 3696 /* Check func return type which could be "void" (t->type == 0) */ 3697 if (t->type) { 3698 u32 ret_type_id = t->type; 3699 3700 ret_type = btf_type_by_id(btf, ret_type_id); 3701 if (!ret_type) { 3702 btf_verifier_log_type(env, t, "Invalid return type"); 3703 return -EINVAL; 3704 } 3705 3706 if (btf_type_needs_resolve(ret_type) && 3707 !env_type_is_resolved(env, ret_type_id)) { 3708 err = btf_resolve(env, ret_type, ret_type_id); 3709 if (err) 3710 return err; 3711 } 3712 3713 /* Ensure the return type is a type that has a size */ 3714 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 3715 btf_verifier_log_type(env, t, "Invalid return type"); 3716 return -EINVAL; 3717 } 3718 } 3719 3720 if (!nr_args) 3721 return 0; 3722 3723 /* Last func arg type_id could be 0 if it is a vararg */ 3724 if (!args[nr_args - 1].type) { 3725 if (args[nr_args - 1].name_off) { 3726 btf_verifier_log_type(env, t, "Invalid arg#%u", 3727 nr_args); 3728 return -EINVAL; 3729 } 3730 nr_args--; 3731 } 3732 3733 err = 0; 3734 for (i = 0; i < nr_args; i++) { 3735 const struct btf_type *arg_type; 3736 u32 arg_type_id; 3737 3738 arg_type_id = args[i].type; 3739 arg_type = btf_type_by_id(btf, arg_type_id); 3740 if (!arg_type) { 3741 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3742 err = -EINVAL; 3743 break; 3744 } 3745 3746 if (args[i].name_off && 3747 (!btf_name_offset_valid(btf, args[i].name_off) || 3748 !btf_name_valid_identifier(btf, args[i].name_off))) { 3749 btf_verifier_log_type(env, t, 3750 "Invalid arg#%u", i + 1); 3751 err = -EINVAL; 3752 break; 3753 } 3754 3755 if (btf_type_needs_resolve(arg_type) && 3756 !env_type_is_resolved(env, arg_type_id)) { 3757 err = btf_resolve(env, arg_type, arg_type_id); 3758 if (err) 3759 break; 3760 } 3761 3762 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 3763 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3764 err = -EINVAL; 3765 break; 3766 } 3767 } 3768 3769 return err; 3770 } 3771 3772 static int btf_func_check(struct btf_verifier_env *env, 3773 const struct btf_type *t) 3774 { 3775 const struct btf_type *proto_type; 3776 const struct btf_param *args; 3777 const struct btf *btf; 3778 u16 nr_args, i; 3779 3780 btf = env->btf; 3781 proto_type = btf_type_by_id(btf, t->type); 3782 3783 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 3784 btf_verifier_log_type(env, t, "Invalid type_id"); 3785 return -EINVAL; 3786 } 3787 3788 args = (const struct btf_param *)(proto_type + 1); 3789 nr_args = btf_type_vlen(proto_type); 3790 for (i = 0; i < nr_args; i++) { 3791 if (!args[i].name_off && args[i].type) { 3792 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3793 return -EINVAL; 3794 } 3795 } 3796 3797 return 0; 3798 } 3799 3800 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 3801 [BTF_KIND_INT] = &int_ops, 3802 [BTF_KIND_PTR] = &ptr_ops, 3803 [BTF_KIND_ARRAY] = &array_ops, 3804 [BTF_KIND_STRUCT] = &struct_ops, 3805 [BTF_KIND_UNION] = &struct_ops, 3806 [BTF_KIND_ENUM] = &enum_ops, 3807 [BTF_KIND_FWD] = &fwd_ops, 3808 [BTF_KIND_TYPEDEF] = &modifier_ops, 3809 [BTF_KIND_VOLATILE] = &modifier_ops, 3810 [BTF_KIND_CONST] = &modifier_ops, 3811 [BTF_KIND_RESTRICT] = &modifier_ops, 3812 [BTF_KIND_FUNC] = &func_ops, 3813 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 3814 [BTF_KIND_VAR] = &var_ops, 3815 [BTF_KIND_DATASEC] = &datasec_ops, 3816 }; 3817 3818 static s32 btf_check_meta(struct btf_verifier_env *env, 3819 const struct btf_type *t, 3820 u32 meta_left) 3821 { 3822 u32 saved_meta_left = meta_left; 3823 s32 var_meta_size; 3824 3825 if (meta_left < sizeof(*t)) { 3826 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 3827 env->log_type_id, meta_left, sizeof(*t)); 3828 return -EINVAL; 3829 } 3830 meta_left -= sizeof(*t); 3831 3832 if (t->info & ~BTF_INFO_MASK) { 3833 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 3834 env->log_type_id, t->info); 3835 return -EINVAL; 3836 } 3837 3838 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 3839 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 3840 btf_verifier_log(env, "[%u] Invalid kind:%u", 3841 env->log_type_id, BTF_INFO_KIND(t->info)); 3842 return -EINVAL; 3843 } 3844 3845 if (!btf_name_offset_valid(env->btf, t->name_off)) { 3846 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 3847 env->log_type_id, t->name_off); 3848 return -EINVAL; 3849 } 3850 3851 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 3852 if (var_meta_size < 0) 3853 return var_meta_size; 3854 3855 meta_left -= var_meta_size; 3856 3857 return saved_meta_left - meta_left; 3858 } 3859 3860 static int btf_check_all_metas(struct btf_verifier_env *env) 3861 { 3862 struct btf *btf = env->btf; 3863 struct btf_header *hdr; 3864 void *cur, *end; 3865 3866 hdr = &btf->hdr; 3867 cur = btf->nohdr_data + hdr->type_off; 3868 end = cur + hdr->type_len; 3869 3870 env->log_type_id = btf->base_btf ? btf->start_id : 1; 3871 while (cur < end) { 3872 struct btf_type *t = cur; 3873 s32 meta_size; 3874 3875 meta_size = btf_check_meta(env, t, end - cur); 3876 if (meta_size < 0) 3877 return meta_size; 3878 3879 btf_add_type(env, t); 3880 cur += meta_size; 3881 env->log_type_id++; 3882 } 3883 3884 return 0; 3885 } 3886 3887 static bool btf_resolve_valid(struct btf_verifier_env *env, 3888 const struct btf_type *t, 3889 u32 type_id) 3890 { 3891 struct btf *btf = env->btf; 3892 3893 if (!env_type_is_resolved(env, type_id)) 3894 return false; 3895 3896 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 3897 return !btf_resolved_type_id(btf, type_id) && 3898 !btf_resolved_type_size(btf, type_id); 3899 3900 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3901 btf_type_is_var(t)) { 3902 t = btf_type_id_resolve(btf, &type_id); 3903 return t && 3904 !btf_type_is_modifier(t) && 3905 !btf_type_is_var(t) && 3906 !btf_type_is_datasec(t); 3907 } 3908 3909 if (btf_type_is_array(t)) { 3910 const struct btf_array *array = btf_type_array(t); 3911 const struct btf_type *elem_type; 3912 u32 elem_type_id = array->type; 3913 u32 elem_size; 3914 3915 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3916 return elem_type && !btf_type_is_modifier(elem_type) && 3917 (array->nelems * elem_size == 3918 btf_resolved_type_size(btf, type_id)); 3919 } 3920 3921 return false; 3922 } 3923 3924 static int btf_resolve(struct btf_verifier_env *env, 3925 const struct btf_type *t, u32 type_id) 3926 { 3927 u32 save_log_type_id = env->log_type_id; 3928 const struct resolve_vertex *v; 3929 int err = 0; 3930 3931 env->resolve_mode = RESOLVE_TBD; 3932 env_stack_push(env, t, type_id); 3933 while (!err && (v = env_stack_peak(env))) { 3934 env->log_type_id = v->type_id; 3935 err = btf_type_ops(v->t)->resolve(env, v); 3936 } 3937 3938 env->log_type_id = type_id; 3939 if (err == -E2BIG) { 3940 btf_verifier_log_type(env, t, 3941 "Exceeded max resolving depth:%u", 3942 MAX_RESOLVE_DEPTH); 3943 } else if (err == -EEXIST) { 3944 btf_verifier_log_type(env, t, "Loop detected"); 3945 } 3946 3947 /* Final sanity check */ 3948 if (!err && !btf_resolve_valid(env, t, type_id)) { 3949 btf_verifier_log_type(env, t, "Invalid resolve state"); 3950 err = -EINVAL; 3951 } 3952 3953 env->log_type_id = save_log_type_id; 3954 return err; 3955 } 3956 3957 static int btf_check_all_types(struct btf_verifier_env *env) 3958 { 3959 struct btf *btf = env->btf; 3960 const struct btf_type *t; 3961 u32 type_id, i; 3962 int err; 3963 3964 err = env_resolve_init(env); 3965 if (err) 3966 return err; 3967 3968 env->phase++; 3969 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 3970 type_id = btf->start_id + i; 3971 t = btf_type_by_id(btf, type_id); 3972 3973 env->log_type_id = type_id; 3974 if (btf_type_needs_resolve(t) && 3975 !env_type_is_resolved(env, type_id)) { 3976 err = btf_resolve(env, t, type_id); 3977 if (err) 3978 return err; 3979 } 3980 3981 if (btf_type_is_func_proto(t)) { 3982 err = btf_func_proto_check(env, t); 3983 if (err) 3984 return err; 3985 } 3986 3987 if (btf_type_is_func(t)) { 3988 err = btf_func_check(env, t); 3989 if (err) 3990 return err; 3991 } 3992 } 3993 3994 return 0; 3995 } 3996 3997 static int btf_parse_type_sec(struct btf_verifier_env *env) 3998 { 3999 const struct btf_header *hdr = &env->btf->hdr; 4000 int err; 4001 4002 /* Type section must align to 4 bytes */ 4003 if (hdr->type_off & (sizeof(u32) - 1)) { 4004 btf_verifier_log(env, "Unaligned type_off"); 4005 return -EINVAL; 4006 } 4007 4008 if (!env->btf->base_btf && !hdr->type_len) { 4009 btf_verifier_log(env, "No type found"); 4010 return -EINVAL; 4011 } 4012 4013 err = btf_check_all_metas(env); 4014 if (err) 4015 return err; 4016 4017 return btf_check_all_types(env); 4018 } 4019 4020 static int btf_parse_str_sec(struct btf_verifier_env *env) 4021 { 4022 const struct btf_header *hdr; 4023 struct btf *btf = env->btf; 4024 const char *start, *end; 4025 4026 hdr = &btf->hdr; 4027 start = btf->nohdr_data + hdr->str_off; 4028 end = start + hdr->str_len; 4029 4030 if (end != btf->data + btf->data_size) { 4031 btf_verifier_log(env, "String section is not at the end"); 4032 return -EINVAL; 4033 } 4034 4035 btf->strings = start; 4036 4037 if (btf->base_btf && !hdr->str_len) 4038 return 0; 4039 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4040 btf_verifier_log(env, "Invalid string section"); 4041 return -EINVAL; 4042 } 4043 if (!btf->base_btf && start[0]) { 4044 btf_verifier_log(env, "Invalid string section"); 4045 return -EINVAL; 4046 } 4047 4048 return 0; 4049 } 4050 4051 static const size_t btf_sec_info_offset[] = { 4052 offsetof(struct btf_header, type_off), 4053 offsetof(struct btf_header, str_off), 4054 }; 4055 4056 static int btf_sec_info_cmp(const void *a, const void *b) 4057 { 4058 const struct btf_sec_info *x = a; 4059 const struct btf_sec_info *y = b; 4060 4061 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4062 } 4063 4064 static int btf_check_sec_info(struct btf_verifier_env *env, 4065 u32 btf_data_size) 4066 { 4067 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4068 u32 total, expected_total, i; 4069 const struct btf_header *hdr; 4070 const struct btf *btf; 4071 4072 btf = env->btf; 4073 hdr = &btf->hdr; 4074 4075 /* Populate the secs from hdr */ 4076 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4077 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4078 btf_sec_info_offset[i]); 4079 4080 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4081 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4082 4083 /* Check for gaps and overlap among sections */ 4084 total = 0; 4085 expected_total = btf_data_size - hdr->hdr_len; 4086 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4087 if (expected_total < secs[i].off) { 4088 btf_verifier_log(env, "Invalid section offset"); 4089 return -EINVAL; 4090 } 4091 if (total < secs[i].off) { 4092 /* gap */ 4093 btf_verifier_log(env, "Unsupported section found"); 4094 return -EINVAL; 4095 } 4096 if (total > secs[i].off) { 4097 btf_verifier_log(env, "Section overlap found"); 4098 return -EINVAL; 4099 } 4100 if (expected_total - total < secs[i].len) { 4101 btf_verifier_log(env, 4102 "Total section length too long"); 4103 return -EINVAL; 4104 } 4105 total += secs[i].len; 4106 } 4107 4108 /* There is data other than hdr and known sections */ 4109 if (expected_total != total) { 4110 btf_verifier_log(env, "Unsupported section found"); 4111 return -EINVAL; 4112 } 4113 4114 return 0; 4115 } 4116 4117 static int btf_parse_hdr(struct btf_verifier_env *env) 4118 { 4119 u32 hdr_len, hdr_copy, btf_data_size; 4120 const struct btf_header *hdr; 4121 struct btf *btf; 4122 int err; 4123 4124 btf = env->btf; 4125 btf_data_size = btf->data_size; 4126 4127 if (btf_data_size < 4128 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4129 btf_verifier_log(env, "hdr_len not found"); 4130 return -EINVAL; 4131 } 4132 4133 hdr = btf->data; 4134 hdr_len = hdr->hdr_len; 4135 if (btf_data_size < hdr_len) { 4136 btf_verifier_log(env, "btf_header not found"); 4137 return -EINVAL; 4138 } 4139 4140 /* Ensure the unsupported header fields are zero */ 4141 if (hdr_len > sizeof(btf->hdr)) { 4142 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4143 u8 *end = btf->data + hdr_len; 4144 4145 for (; expected_zero < end; expected_zero++) { 4146 if (*expected_zero) { 4147 btf_verifier_log(env, "Unsupported btf_header"); 4148 return -E2BIG; 4149 } 4150 } 4151 } 4152 4153 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4154 memcpy(&btf->hdr, btf->data, hdr_copy); 4155 4156 hdr = &btf->hdr; 4157 4158 btf_verifier_log_hdr(env, btf_data_size); 4159 4160 if (hdr->magic != BTF_MAGIC) { 4161 btf_verifier_log(env, "Invalid magic"); 4162 return -EINVAL; 4163 } 4164 4165 if (hdr->version != BTF_VERSION) { 4166 btf_verifier_log(env, "Unsupported version"); 4167 return -ENOTSUPP; 4168 } 4169 4170 if (hdr->flags) { 4171 btf_verifier_log(env, "Unsupported flags"); 4172 return -ENOTSUPP; 4173 } 4174 4175 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4176 btf_verifier_log(env, "No data"); 4177 return -EINVAL; 4178 } 4179 4180 err = btf_check_sec_info(env, btf_data_size); 4181 if (err) 4182 return err; 4183 4184 return 0; 4185 } 4186 4187 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 4188 u32 log_level, char __user *log_ubuf, u32 log_size) 4189 { 4190 struct btf_verifier_env *env = NULL; 4191 struct bpf_verifier_log *log; 4192 struct btf *btf = NULL; 4193 u8 *data; 4194 int err; 4195 4196 if (btf_data_size > BTF_MAX_SIZE) 4197 return ERR_PTR(-E2BIG); 4198 4199 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4200 if (!env) 4201 return ERR_PTR(-ENOMEM); 4202 4203 log = &env->log; 4204 if (log_level || log_ubuf || log_size) { 4205 /* user requested verbose verifier output 4206 * and supplied buffer to store the verification trace 4207 */ 4208 log->level = log_level; 4209 log->ubuf = log_ubuf; 4210 log->len_total = log_size; 4211 4212 /* log attributes have to be sane */ 4213 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4214 !log->level || !log->ubuf) { 4215 err = -EINVAL; 4216 goto errout; 4217 } 4218 } 4219 4220 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4221 if (!btf) { 4222 err = -ENOMEM; 4223 goto errout; 4224 } 4225 env->btf = btf; 4226 4227 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4228 if (!data) { 4229 err = -ENOMEM; 4230 goto errout; 4231 } 4232 4233 btf->data = data; 4234 btf->data_size = btf_data_size; 4235 4236 if (copy_from_user(data, btf_data, btf_data_size)) { 4237 err = -EFAULT; 4238 goto errout; 4239 } 4240 4241 err = btf_parse_hdr(env); 4242 if (err) 4243 goto errout; 4244 4245 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4246 4247 err = btf_parse_str_sec(env); 4248 if (err) 4249 goto errout; 4250 4251 err = btf_parse_type_sec(env); 4252 if (err) 4253 goto errout; 4254 4255 if (log->level && bpf_verifier_log_full(log)) { 4256 err = -ENOSPC; 4257 goto errout; 4258 } 4259 4260 btf_verifier_env_free(env); 4261 refcount_set(&btf->refcnt, 1); 4262 return btf; 4263 4264 errout: 4265 btf_verifier_env_free(env); 4266 if (btf) 4267 btf_free(btf); 4268 return ERR_PTR(err); 4269 } 4270 4271 extern char __weak __start_BTF[]; 4272 extern char __weak __stop_BTF[]; 4273 extern struct btf *btf_vmlinux; 4274 4275 #define BPF_MAP_TYPE(_id, _ops) 4276 #define BPF_LINK_TYPE(_id, _name) 4277 static union { 4278 struct bpf_ctx_convert { 4279 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4280 prog_ctx_type _id##_prog; \ 4281 kern_ctx_type _id##_kern; 4282 #include <linux/bpf_types.h> 4283 #undef BPF_PROG_TYPE 4284 } *__t; 4285 /* 't' is written once under lock. Read many times. */ 4286 const struct btf_type *t; 4287 } bpf_ctx_convert; 4288 enum { 4289 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4290 __ctx_convert##_id, 4291 #include <linux/bpf_types.h> 4292 #undef BPF_PROG_TYPE 4293 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4294 }; 4295 static u8 bpf_ctx_convert_map[] = { 4296 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4297 [_id] = __ctx_convert##_id, 4298 #include <linux/bpf_types.h> 4299 #undef BPF_PROG_TYPE 4300 0, /* avoid empty array */ 4301 }; 4302 #undef BPF_MAP_TYPE 4303 #undef BPF_LINK_TYPE 4304 4305 static const struct btf_member * 4306 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf, 4307 const struct btf_type *t, enum bpf_prog_type prog_type, 4308 int arg) 4309 { 4310 const struct btf_type *conv_struct; 4311 const struct btf_type *ctx_struct; 4312 const struct btf_member *ctx_type; 4313 const char *tname, *ctx_tname; 4314 4315 conv_struct = bpf_ctx_convert.t; 4316 if (!conv_struct) { 4317 bpf_log(log, "btf_vmlinux is malformed\n"); 4318 return NULL; 4319 } 4320 t = btf_type_by_id(btf, t->type); 4321 while (btf_type_is_modifier(t)) 4322 t = btf_type_by_id(btf, t->type); 4323 if (!btf_type_is_struct(t)) { 4324 /* Only pointer to struct is supported for now. 4325 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4326 * is not supported yet. 4327 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4328 */ 4329 if (log->level & BPF_LOG_LEVEL) 4330 bpf_log(log, "arg#%d type is not a struct\n", arg); 4331 return NULL; 4332 } 4333 tname = btf_name_by_offset(btf, t->name_off); 4334 if (!tname) { 4335 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4336 return NULL; 4337 } 4338 /* prog_type is valid bpf program type. No need for bounds check. */ 4339 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4340 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4341 * Like 'struct __sk_buff' 4342 */ 4343 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4344 if (!ctx_struct) 4345 /* should not happen */ 4346 return NULL; 4347 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4348 if (!ctx_tname) { 4349 /* should not happen */ 4350 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4351 return NULL; 4352 } 4353 /* only compare that prog's ctx type name is the same as 4354 * kernel expects. No need to compare field by field. 4355 * It's ok for bpf prog to do: 4356 * struct __sk_buff {}; 4357 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4358 * { // no fields of skb are ever used } 4359 */ 4360 if (strcmp(ctx_tname, tname)) 4361 return NULL; 4362 return ctx_type; 4363 } 4364 4365 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4366 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4367 #define BPF_LINK_TYPE(_id, _name) 4368 #define BPF_MAP_TYPE(_id, _ops) \ 4369 [_id] = &_ops, 4370 #include <linux/bpf_types.h> 4371 #undef BPF_PROG_TYPE 4372 #undef BPF_LINK_TYPE 4373 #undef BPF_MAP_TYPE 4374 }; 4375 4376 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4377 struct bpf_verifier_log *log) 4378 { 4379 const struct bpf_map_ops *ops; 4380 int i, btf_id; 4381 4382 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4383 ops = btf_vmlinux_map_ops[i]; 4384 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4385 continue; 4386 if (!ops->map_btf_name || !ops->map_btf_id) { 4387 bpf_log(log, "map type %d is misconfigured\n", i); 4388 return -EINVAL; 4389 } 4390 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4391 BTF_KIND_STRUCT); 4392 if (btf_id < 0) 4393 return btf_id; 4394 *ops->map_btf_id = btf_id; 4395 } 4396 4397 return 0; 4398 } 4399 4400 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4401 struct btf *btf, 4402 const struct btf_type *t, 4403 enum bpf_prog_type prog_type, 4404 int arg) 4405 { 4406 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4407 4408 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4409 if (!prog_ctx_type) 4410 return -ENOENT; 4411 kern_ctx_type = prog_ctx_type + 1; 4412 return kern_ctx_type->type; 4413 } 4414 4415 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4416 BTF_ID(struct, bpf_ctx_convert) 4417 4418 struct btf *btf_parse_vmlinux(void) 4419 { 4420 struct btf_verifier_env *env = NULL; 4421 struct bpf_verifier_log *log; 4422 struct btf *btf = NULL; 4423 int err; 4424 4425 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4426 if (!env) 4427 return ERR_PTR(-ENOMEM); 4428 4429 log = &env->log; 4430 log->level = BPF_LOG_KERNEL; 4431 4432 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4433 if (!btf) { 4434 err = -ENOMEM; 4435 goto errout; 4436 } 4437 env->btf = btf; 4438 4439 btf->data = __start_BTF; 4440 btf->data_size = __stop_BTF - __start_BTF; 4441 btf->kernel_btf = true; 4442 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 4443 4444 err = btf_parse_hdr(env); 4445 if (err) 4446 goto errout; 4447 4448 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4449 4450 err = btf_parse_str_sec(env); 4451 if (err) 4452 goto errout; 4453 4454 err = btf_check_all_metas(env); 4455 if (err) 4456 goto errout; 4457 4458 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4459 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4460 4461 /* find bpf map structs for map_ptr access checking */ 4462 err = btf_vmlinux_map_ids_init(btf, log); 4463 if (err < 0) 4464 goto errout; 4465 4466 bpf_struct_ops_init(btf, log); 4467 4468 refcount_set(&btf->refcnt, 1); 4469 4470 err = btf_alloc_id(btf); 4471 if (err) 4472 goto errout; 4473 4474 btf_verifier_env_free(env); 4475 return btf; 4476 4477 errout: 4478 btf_verifier_env_free(env); 4479 if (btf) { 4480 kvfree(btf->types); 4481 kfree(btf); 4482 } 4483 return ERR_PTR(err); 4484 } 4485 4486 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 4487 4488 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 4489 { 4490 struct btf_verifier_env *env = NULL; 4491 struct bpf_verifier_log *log; 4492 struct btf *btf = NULL, *base_btf; 4493 int err; 4494 4495 base_btf = bpf_get_btf_vmlinux(); 4496 if (IS_ERR(base_btf)) 4497 return base_btf; 4498 if (!base_btf) 4499 return ERR_PTR(-EINVAL); 4500 4501 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4502 if (!env) 4503 return ERR_PTR(-ENOMEM); 4504 4505 log = &env->log; 4506 log->level = BPF_LOG_KERNEL; 4507 4508 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4509 if (!btf) { 4510 err = -ENOMEM; 4511 goto errout; 4512 } 4513 env->btf = btf; 4514 4515 btf->base_btf = base_btf; 4516 btf->start_id = base_btf->nr_types; 4517 btf->start_str_off = base_btf->hdr.str_len; 4518 btf->kernel_btf = true; 4519 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 4520 4521 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 4522 if (!btf->data) { 4523 err = -ENOMEM; 4524 goto errout; 4525 } 4526 memcpy(btf->data, data, data_size); 4527 btf->data_size = data_size; 4528 4529 err = btf_parse_hdr(env); 4530 if (err) 4531 goto errout; 4532 4533 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4534 4535 err = btf_parse_str_sec(env); 4536 if (err) 4537 goto errout; 4538 4539 err = btf_check_all_metas(env); 4540 if (err) 4541 goto errout; 4542 4543 btf_verifier_env_free(env); 4544 refcount_set(&btf->refcnt, 1); 4545 return btf; 4546 4547 errout: 4548 btf_verifier_env_free(env); 4549 if (btf) { 4550 kvfree(btf->data); 4551 kvfree(btf->types); 4552 kfree(btf); 4553 } 4554 return ERR_PTR(err); 4555 } 4556 4557 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 4558 4559 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4560 { 4561 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4562 4563 if (tgt_prog) 4564 return tgt_prog->aux->btf; 4565 else 4566 return prog->aux->attach_btf; 4567 } 4568 4569 static bool is_string_ptr(struct btf *btf, const struct btf_type *t) 4570 { 4571 /* t comes in already as a pointer */ 4572 t = btf_type_by_id(btf, t->type); 4573 4574 /* allow const */ 4575 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4576 t = btf_type_by_id(btf, t->type); 4577 4578 /* char, signed char, unsigned char */ 4579 return btf_type_is_int(t) && t->size == 1; 4580 } 4581 4582 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4583 const struct bpf_prog *prog, 4584 struct bpf_insn_access_aux *info) 4585 { 4586 const struct btf_type *t = prog->aux->attach_func_proto; 4587 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4588 struct btf *btf = bpf_prog_get_target_btf(prog); 4589 const char *tname = prog->aux->attach_func_name; 4590 struct bpf_verifier_log *log = info->log; 4591 const struct btf_param *args; 4592 u32 nr_args, arg; 4593 int i, ret; 4594 4595 if (off % 8) { 4596 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4597 tname, off); 4598 return false; 4599 } 4600 arg = off / 8; 4601 args = (const struct btf_param *)(t + 1); 4602 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */ 4603 nr_args = t ? btf_type_vlen(t) : 5; 4604 if (prog->aux->attach_btf_trace) { 4605 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4606 args++; 4607 nr_args--; 4608 } 4609 4610 if (arg > nr_args) { 4611 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4612 tname, arg + 1); 4613 return false; 4614 } 4615 4616 if (arg == nr_args) { 4617 switch (prog->expected_attach_type) { 4618 case BPF_LSM_MAC: 4619 case BPF_TRACE_FEXIT: 4620 /* When LSM programs are attached to void LSM hooks 4621 * they use FEXIT trampolines and when attached to 4622 * int LSM hooks, they use MODIFY_RETURN trampolines. 4623 * 4624 * While the LSM programs are BPF_MODIFY_RETURN-like 4625 * the check: 4626 * 4627 * if (ret_type != 'int') 4628 * return -EINVAL; 4629 * 4630 * is _not_ done here. This is still safe as LSM hooks 4631 * have only void and int return types. 4632 */ 4633 if (!t) 4634 return true; 4635 t = btf_type_by_id(btf, t->type); 4636 break; 4637 case BPF_MODIFY_RETURN: 4638 /* For now the BPF_MODIFY_RETURN can only be attached to 4639 * functions that return an int. 4640 */ 4641 if (!t) 4642 return false; 4643 4644 t = btf_type_skip_modifiers(btf, t->type, NULL); 4645 if (!btf_type_is_small_int(t)) { 4646 bpf_log(log, 4647 "ret type %s not allowed for fmod_ret\n", 4648 btf_kind_str[BTF_INFO_KIND(t->info)]); 4649 return false; 4650 } 4651 break; 4652 default: 4653 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4654 tname, arg + 1); 4655 return false; 4656 } 4657 } else { 4658 if (!t) 4659 /* Default prog with 5 args */ 4660 return true; 4661 t = btf_type_by_id(btf, args[arg].type); 4662 } 4663 4664 /* skip modifiers */ 4665 while (btf_type_is_modifier(t)) 4666 t = btf_type_by_id(btf, t->type); 4667 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4668 /* accessing a scalar */ 4669 return true; 4670 if (!btf_type_is_ptr(t)) { 4671 bpf_log(log, 4672 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4673 tname, arg, 4674 __btf_name_by_offset(btf, t->name_off), 4675 btf_kind_str[BTF_INFO_KIND(t->info)]); 4676 return false; 4677 } 4678 4679 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4680 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4681 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4682 4683 if (ctx_arg_info->offset == off && 4684 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL || 4685 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) { 4686 info->reg_type = ctx_arg_info->reg_type; 4687 return true; 4688 } 4689 } 4690 4691 if (t->type == 0) 4692 /* This is a pointer to void. 4693 * It is the same as scalar from the verifier safety pov. 4694 * No further pointer walking is allowed. 4695 */ 4696 return true; 4697 4698 if (is_string_ptr(btf, t)) 4699 return true; 4700 4701 /* this is a pointer to another type */ 4702 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4703 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4704 4705 if (ctx_arg_info->offset == off) { 4706 info->reg_type = ctx_arg_info->reg_type; 4707 info->btf = btf_vmlinux; 4708 info->btf_id = ctx_arg_info->btf_id; 4709 return true; 4710 } 4711 } 4712 4713 info->reg_type = PTR_TO_BTF_ID; 4714 if (tgt_prog) { 4715 enum bpf_prog_type tgt_type; 4716 4717 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 4718 tgt_type = tgt_prog->aux->saved_dst_prog_type; 4719 else 4720 tgt_type = tgt_prog->type; 4721 4722 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 4723 if (ret > 0) { 4724 info->btf = btf_vmlinux; 4725 info->btf_id = ret; 4726 return true; 4727 } else { 4728 return false; 4729 } 4730 } 4731 4732 info->btf = btf; 4733 info->btf_id = t->type; 4734 t = btf_type_by_id(btf, t->type); 4735 /* skip modifiers */ 4736 while (btf_type_is_modifier(t)) { 4737 info->btf_id = t->type; 4738 t = btf_type_by_id(btf, t->type); 4739 } 4740 if (!btf_type_is_struct(t)) { 4741 bpf_log(log, 4742 "func '%s' arg%d type %s is not a struct\n", 4743 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 4744 return false; 4745 } 4746 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 4747 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 4748 __btf_name_by_offset(btf, t->name_off)); 4749 return true; 4750 } 4751 4752 enum bpf_struct_walk_result { 4753 /* < 0 error */ 4754 WALK_SCALAR = 0, 4755 WALK_PTR, 4756 WALK_STRUCT, 4757 }; 4758 4759 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 4760 const struct btf_type *t, int off, int size, 4761 u32 *next_btf_id) 4762 { 4763 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 4764 const struct btf_type *mtype, *elem_type = NULL; 4765 const struct btf_member *member; 4766 const char *tname, *mname; 4767 u32 vlen, elem_id, mid; 4768 4769 again: 4770 tname = __btf_name_by_offset(btf, t->name_off); 4771 if (!btf_type_is_struct(t)) { 4772 bpf_log(log, "Type '%s' is not a struct\n", tname); 4773 return -EINVAL; 4774 } 4775 4776 vlen = btf_type_vlen(t); 4777 if (off + size > t->size) { 4778 /* If the last element is a variable size array, we may 4779 * need to relax the rule. 4780 */ 4781 struct btf_array *array_elem; 4782 4783 if (vlen == 0) 4784 goto error; 4785 4786 member = btf_type_member(t) + vlen - 1; 4787 mtype = btf_type_skip_modifiers(btf, member->type, 4788 NULL); 4789 if (!btf_type_is_array(mtype)) 4790 goto error; 4791 4792 array_elem = (struct btf_array *)(mtype + 1); 4793 if (array_elem->nelems != 0) 4794 goto error; 4795 4796 moff = btf_member_bit_offset(t, member) / 8; 4797 if (off < moff) 4798 goto error; 4799 4800 /* Only allow structure for now, can be relaxed for 4801 * other types later. 4802 */ 4803 t = btf_type_skip_modifiers(btf, array_elem->type, 4804 NULL); 4805 if (!btf_type_is_struct(t)) 4806 goto error; 4807 4808 off = (off - moff) % t->size; 4809 goto again; 4810 4811 error: 4812 bpf_log(log, "access beyond struct %s at off %u size %u\n", 4813 tname, off, size); 4814 return -EACCES; 4815 } 4816 4817 for_each_member(i, t, member) { 4818 /* offset of the field in bytes */ 4819 moff = btf_member_bit_offset(t, member) / 8; 4820 if (off + size <= moff) 4821 /* won't find anything, field is already too far */ 4822 break; 4823 4824 if (btf_member_bitfield_size(t, member)) { 4825 u32 end_bit = btf_member_bit_offset(t, member) + 4826 btf_member_bitfield_size(t, member); 4827 4828 /* off <= moff instead of off == moff because clang 4829 * does not generate a BTF member for anonymous 4830 * bitfield like the ":16" here: 4831 * struct { 4832 * int :16; 4833 * int x:8; 4834 * }; 4835 */ 4836 if (off <= moff && 4837 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 4838 return WALK_SCALAR; 4839 4840 /* off may be accessing a following member 4841 * 4842 * or 4843 * 4844 * Doing partial access at either end of this 4845 * bitfield. Continue on this case also to 4846 * treat it as not accessing this bitfield 4847 * and eventually error out as field not 4848 * found to keep it simple. 4849 * It could be relaxed if there was a legit 4850 * partial access case later. 4851 */ 4852 continue; 4853 } 4854 4855 /* In case of "off" is pointing to holes of a struct */ 4856 if (off < moff) 4857 break; 4858 4859 /* type of the field */ 4860 mid = member->type; 4861 mtype = btf_type_by_id(btf, member->type); 4862 mname = __btf_name_by_offset(btf, member->name_off); 4863 4864 mtype = __btf_resolve_size(btf, mtype, &msize, 4865 &elem_type, &elem_id, &total_nelems, 4866 &mid); 4867 if (IS_ERR(mtype)) { 4868 bpf_log(log, "field %s doesn't have size\n", mname); 4869 return -EFAULT; 4870 } 4871 4872 mtrue_end = moff + msize; 4873 if (off >= mtrue_end) 4874 /* no overlap with member, keep iterating */ 4875 continue; 4876 4877 if (btf_type_is_array(mtype)) { 4878 u32 elem_idx; 4879 4880 /* __btf_resolve_size() above helps to 4881 * linearize a multi-dimensional array. 4882 * 4883 * The logic here is treating an array 4884 * in a struct as the following way: 4885 * 4886 * struct outer { 4887 * struct inner array[2][2]; 4888 * }; 4889 * 4890 * looks like: 4891 * 4892 * struct outer { 4893 * struct inner array_elem0; 4894 * struct inner array_elem1; 4895 * struct inner array_elem2; 4896 * struct inner array_elem3; 4897 * }; 4898 * 4899 * When accessing outer->array[1][0], it moves 4900 * moff to "array_elem2", set mtype to 4901 * "struct inner", and msize also becomes 4902 * sizeof(struct inner). Then most of the 4903 * remaining logic will fall through without 4904 * caring the current member is an array or 4905 * not. 4906 * 4907 * Unlike mtype/msize/moff, mtrue_end does not 4908 * change. The naming difference ("_true") tells 4909 * that it is not always corresponding to 4910 * the current mtype/msize/moff. 4911 * It is the true end of the current 4912 * member (i.e. array in this case). That 4913 * will allow an int array to be accessed like 4914 * a scratch space, 4915 * i.e. allow access beyond the size of 4916 * the array's element as long as it is 4917 * within the mtrue_end boundary. 4918 */ 4919 4920 /* skip empty array */ 4921 if (moff == mtrue_end) 4922 continue; 4923 4924 msize /= total_nelems; 4925 elem_idx = (off - moff) / msize; 4926 moff += elem_idx * msize; 4927 mtype = elem_type; 4928 mid = elem_id; 4929 } 4930 4931 /* the 'off' we're looking for is either equal to start 4932 * of this field or inside of this struct 4933 */ 4934 if (btf_type_is_struct(mtype)) { 4935 /* our field must be inside that union or struct */ 4936 t = mtype; 4937 4938 /* return if the offset matches the member offset */ 4939 if (off == moff) { 4940 *next_btf_id = mid; 4941 return WALK_STRUCT; 4942 } 4943 4944 /* adjust offset we're looking for */ 4945 off -= moff; 4946 goto again; 4947 } 4948 4949 if (btf_type_is_ptr(mtype)) { 4950 const struct btf_type *stype; 4951 u32 id; 4952 4953 if (msize != size || off != moff) { 4954 bpf_log(log, 4955 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 4956 mname, moff, tname, off, size); 4957 return -EACCES; 4958 } 4959 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 4960 if (btf_type_is_struct(stype)) { 4961 *next_btf_id = id; 4962 return WALK_PTR; 4963 } 4964 } 4965 4966 /* Allow more flexible access within an int as long as 4967 * it is within mtrue_end. 4968 * Since mtrue_end could be the end of an array, 4969 * that also allows using an array of int as a scratch 4970 * space. e.g. skb->cb[]. 4971 */ 4972 if (off + size > mtrue_end) { 4973 bpf_log(log, 4974 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 4975 mname, mtrue_end, tname, off, size); 4976 return -EACCES; 4977 } 4978 4979 return WALK_SCALAR; 4980 } 4981 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 4982 return -EINVAL; 4983 } 4984 4985 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 4986 const struct btf_type *t, int off, int size, 4987 enum bpf_access_type atype __maybe_unused, 4988 u32 *next_btf_id) 4989 { 4990 int err; 4991 u32 id; 4992 4993 do { 4994 err = btf_struct_walk(log, btf, t, off, size, &id); 4995 4996 switch (err) { 4997 case WALK_PTR: 4998 /* If we found the pointer or scalar on t+off, 4999 * we're done. 5000 */ 5001 *next_btf_id = id; 5002 return PTR_TO_BTF_ID; 5003 case WALK_SCALAR: 5004 return SCALAR_VALUE; 5005 case WALK_STRUCT: 5006 /* We found nested struct, so continue the search 5007 * by diving in it. At this point the offset is 5008 * aligned with the new type, so set it to 0. 5009 */ 5010 t = btf_type_by_id(btf, id); 5011 off = 0; 5012 break; 5013 default: 5014 /* It's either error or unknown return value.. 5015 * scream and leave. 5016 */ 5017 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5018 return -EINVAL; 5019 return err; 5020 } 5021 } while (t); 5022 5023 return -EINVAL; 5024 } 5025 5026 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5027 * the same. Trivial ID check is not enough due to module BTFs, because we can 5028 * end up with two different module BTFs, but IDs point to the common type in 5029 * vmlinux BTF. 5030 */ 5031 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5032 const struct btf *btf2, u32 id2) 5033 { 5034 if (id1 != id2) 5035 return false; 5036 if (btf1 == btf2) 5037 return true; 5038 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5039 } 5040 5041 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5042 const struct btf *btf, u32 id, int off, 5043 const struct btf *need_btf, u32 need_type_id) 5044 { 5045 const struct btf_type *type; 5046 int err; 5047 5048 /* Are we already done? */ 5049 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5050 return true; 5051 5052 again: 5053 type = btf_type_by_id(btf, id); 5054 if (!type) 5055 return false; 5056 err = btf_struct_walk(log, btf, type, off, 1, &id); 5057 if (err != WALK_STRUCT) 5058 return false; 5059 5060 /* We found nested struct object. If it matches 5061 * the requested ID, we're done. Otherwise let's 5062 * continue the search with offset 0 in the new 5063 * type. 5064 */ 5065 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5066 off = 0; 5067 goto again; 5068 } 5069 5070 return true; 5071 } 5072 5073 static int __get_type_size(struct btf *btf, u32 btf_id, 5074 const struct btf_type **bad_type) 5075 { 5076 const struct btf_type *t; 5077 5078 if (!btf_id) 5079 /* void */ 5080 return 0; 5081 t = btf_type_by_id(btf, btf_id); 5082 while (t && btf_type_is_modifier(t)) 5083 t = btf_type_by_id(btf, t->type); 5084 if (!t) { 5085 *bad_type = btf_type_by_id(btf, 0); 5086 return -EINVAL; 5087 } 5088 if (btf_type_is_ptr(t)) 5089 /* kernel size of pointer. Not BPF's size of pointer*/ 5090 return sizeof(void *); 5091 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5092 return t->size; 5093 *bad_type = t; 5094 return -EINVAL; 5095 } 5096 5097 int btf_distill_func_proto(struct bpf_verifier_log *log, 5098 struct btf *btf, 5099 const struct btf_type *func, 5100 const char *tname, 5101 struct btf_func_model *m) 5102 { 5103 const struct btf_param *args; 5104 const struct btf_type *t; 5105 u32 i, nargs; 5106 int ret; 5107 5108 if (!func) { 5109 /* BTF function prototype doesn't match the verifier types. 5110 * Fall back to 5 u64 args. 5111 */ 5112 for (i = 0; i < 5; i++) 5113 m->arg_size[i] = 8; 5114 m->ret_size = 8; 5115 m->nr_args = 5; 5116 return 0; 5117 } 5118 args = (const struct btf_param *)(func + 1); 5119 nargs = btf_type_vlen(func); 5120 if (nargs >= MAX_BPF_FUNC_ARGS) { 5121 bpf_log(log, 5122 "The function %s has %d arguments. Too many.\n", 5123 tname, nargs); 5124 return -EINVAL; 5125 } 5126 ret = __get_type_size(btf, func->type, &t); 5127 if (ret < 0) { 5128 bpf_log(log, 5129 "The function %s return type %s is unsupported.\n", 5130 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5131 return -EINVAL; 5132 } 5133 m->ret_size = ret; 5134 5135 for (i = 0; i < nargs; i++) { 5136 ret = __get_type_size(btf, args[i].type, &t); 5137 if (ret < 0) { 5138 bpf_log(log, 5139 "The function %s arg%d type %s is unsupported.\n", 5140 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5141 return -EINVAL; 5142 } 5143 m->arg_size[i] = ret; 5144 } 5145 m->nr_args = nargs; 5146 return 0; 5147 } 5148 5149 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5150 * t1 points to BTF_KIND_FUNC in btf1 5151 * t2 points to BTF_KIND_FUNC in btf2 5152 * Returns: 5153 * EINVAL - function prototype mismatch 5154 * EFAULT - verifier bug 5155 * 0 - 99% match. The last 1% is validated by the verifier. 5156 */ 5157 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5158 struct btf *btf1, const struct btf_type *t1, 5159 struct btf *btf2, const struct btf_type *t2) 5160 { 5161 const struct btf_param *args1, *args2; 5162 const char *fn1, *fn2, *s1, *s2; 5163 u32 nargs1, nargs2, i; 5164 5165 fn1 = btf_name_by_offset(btf1, t1->name_off); 5166 fn2 = btf_name_by_offset(btf2, t2->name_off); 5167 5168 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5169 bpf_log(log, "%s() is not a global function\n", fn1); 5170 return -EINVAL; 5171 } 5172 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5173 bpf_log(log, "%s() is not a global function\n", fn2); 5174 return -EINVAL; 5175 } 5176 5177 t1 = btf_type_by_id(btf1, t1->type); 5178 if (!t1 || !btf_type_is_func_proto(t1)) 5179 return -EFAULT; 5180 t2 = btf_type_by_id(btf2, t2->type); 5181 if (!t2 || !btf_type_is_func_proto(t2)) 5182 return -EFAULT; 5183 5184 args1 = (const struct btf_param *)(t1 + 1); 5185 nargs1 = btf_type_vlen(t1); 5186 args2 = (const struct btf_param *)(t2 + 1); 5187 nargs2 = btf_type_vlen(t2); 5188 5189 if (nargs1 != nargs2) { 5190 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5191 fn1, nargs1, fn2, nargs2); 5192 return -EINVAL; 5193 } 5194 5195 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5196 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5197 if (t1->info != t2->info) { 5198 bpf_log(log, 5199 "Return type %s of %s() doesn't match type %s of %s()\n", 5200 btf_type_str(t1), fn1, 5201 btf_type_str(t2), fn2); 5202 return -EINVAL; 5203 } 5204 5205 for (i = 0; i < nargs1; i++) { 5206 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5207 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5208 5209 if (t1->info != t2->info) { 5210 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5211 i, fn1, btf_type_str(t1), 5212 fn2, btf_type_str(t2)); 5213 return -EINVAL; 5214 } 5215 if (btf_type_has_size(t1) && t1->size != t2->size) { 5216 bpf_log(log, 5217 "arg%d in %s() has size %d while %s() has %d\n", 5218 i, fn1, t1->size, 5219 fn2, t2->size); 5220 return -EINVAL; 5221 } 5222 5223 /* global functions are validated with scalars and pointers 5224 * to context only. And only global functions can be replaced. 5225 * Hence type check only those types. 5226 */ 5227 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5228 continue; 5229 if (!btf_type_is_ptr(t1)) { 5230 bpf_log(log, 5231 "arg%d in %s() has unrecognized type\n", 5232 i, fn1); 5233 return -EINVAL; 5234 } 5235 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5236 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5237 if (!btf_type_is_struct(t1)) { 5238 bpf_log(log, 5239 "arg%d in %s() is not a pointer to context\n", 5240 i, fn1); 5241 return -EINVAL; 5242 } 5243 if (!btf_type_is_struct(t2)) { 5244 bpf_log(log, 5245 "arg%d in %s() is not a pointer to context\n", 5246 i, fn2); 5247 return -EINVAL; 5248 } 5249 /* This is an optional check to make program writing easier. 5250 * Compare names of structs and report an error to the user. 5251 * btf_prepare_func_args() already checked that t2 struct 5252 * is a context type. btf_prepare_func_args() will check 5253 * later that t1 struct is a context type as well. 5254 */ 5255 s1 = btf_name_by_offset(btf1, t1->name_off); 5256 s2 = btf_name_by_offset(btf2, t2->name_off); 5257 if (strcmp(s1, s2)) { 5258 bpf_log(log, 5259 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5260 i, fn1, s1, fn2, s2); 5261 return -EINVAL; 5262 } 5263 } 5264 return 0; 5265 } 5266 5267 /* Compare BTFs of given program with BTF of target program */ 5268 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5269 struct btf *btf2, const struct btf_type *t2) 5270 { 5271 struct btf *btf1 = prog->aux->btf; 5272 const struct btf_type *t1; 5273 u32 btf_id = 0; 5274 5275 if (!prog->aux->func_info) { 5276 bpf_log(log, "Program extension requires BTF\n"); 5277 return -EINVAL; 5278 } 5279 5280 btf_id = prog->aux->func_info[0].type_id; 5281 if (!btf_id) 5282 return -EFAULT; 5283 5284 t1 = btf_type_by_id(btf1, btf_id); 5285 if (!t1 || !btf_type_is_func(t1)) 5286 return -EFAULT; 5287 5288 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5289 } 5290 5291 /* Compare BTF of a function with given bpf_reg_state. 5292 * Returns: 5293 * EFAULT - there is a verifier bug. Abort verification. 5294 * EINVAL - there is a type mismatch or BTF is not available. 5295 * 0 - BTF matches with what bpf_reg_state expects. 5296 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5297 */ 5298 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 5299 struct bpf_reg_state *reg) 5300 { 5301 struct bpf_verifier_log *log = &env->log; 5302 struct bpf_prog *prog = env->prog; 5303 struct btf *btf = prog->aux->btf; 5304 const struct btf_param *args; 5305 const struct btf_type *t; 5306 u32 i, nargs, btf_id; 5307 const char *tname; 5308 5309 if (!prog->aux->func_info) 5310 return -EINVAL; 5311 5312 btf_id = prog->aux->func_info[subprog].type_id; 5313 if (!btf_id) 5314 return -EFAULT; 5315 5316 if (prog->aux->func_info_aux[subprog].unreliable) 5317 return -EINVAL; 5318 5319 t = btf_type_by_id(btf, btf_id); 5320 if (!t || !btf_type_is_func(t)) { 5321 /* These checks were already done by the verifier while loading 5322 * struct bpf_func_info 5323 */ 5324 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5325 subprog); 5326 return -EFAULT; 5327 } 5328 tname = btf_name_by_offset(btf, t->name_off); 5329 5330 t = btf_type_by_id(btf, t->type); 5331 if (!t || !btf_type_is_func_proto(t)) { 5332 bpf_log(log, "Invalid BTF of func %s\n", tname); 5333 return -EFAULT; 5334 } 5335 args = (const struct btf_param *)(t + 1); 5336 nargs = btf_type_vlen(t); 5337 if (nargs > 5) { 5338 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs); 5339 goto out; 5340 } 5341 /* check that BTF function arguments match actual types that the 5342 * verifier sees. 5343 */ 5344 for (i = 0; i < nargs; i++) { 5345 t = btf_type_by_id(btf, args[i].type); 5346 while (btf_type_is_modifier(t)) 5347 t = btf_type_by_id(btf, t->type); 5348 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5349 if (reg[i + 1].type == SCALAR_VALUE) 5350 continue; 5351 bpf_log(log, "R%d is not a scalar\n", i + 1); 5352 goto out; 5353 } 5354 if (btf_type_is_ptr(t)) { 5355 if (reg[i + 1].type == SCALAR_VALUE) { 5356 bpf_log(log, "R%d is not a pointer\n", i + 1); 5357 goto out; 5358 } 5359 /* If function expects ctx type in BTF check that caller 5360 * is passing PTR_TO_CTX. 5361 */ 5362 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) { 5363 if (reg[i + 1].type != PTR_TO_CTX) { 5364 bpf_log(log, 5365 "arg#%d expected pointer to ctx, but got %s\n", 5366 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5367 goto out; 5368 } 5369 if (check_ctx_reg(env, ®[i + 1], i + 1)) 5370 goto out; 5371 continue; 5372 } 5373 } 5374 bpf_log(log, "Unrecognized arg#%d type %s\n", 5375 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5376 goto out; 5377 } 5378 return 0; 5379 out: 5380 /* Compiler optimizations can remove arguments from static functions 5381 * or mismatched type can be passed into a global function. 5382 * In such cases mark the function as unreliable from BTF point of view. 5383 */ 5384 prog->aux->func_info_aux[subprog].unreliable = true; 5385 return -EINVAL; 5386 } 5387 5388 /* Convert BTF of a function into bpf_reg_state if possible 5389 * Returns: 5390 * EFAULT - there is a verifier bug. Abort verification. 5391 * EINVAL - cannot convert BTF. 5392 * 0 - Successfully converted BTF into bpf_reg_state 5393 * (either PTR_TO_CTX or SCALAR_VALUE). 5394 */ 5395 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5396 struct bpf_reg_state *reg) 5397 { 5398 struct bpf_verifier_log *log = &env->log; 5399 struct bpf_prog *prog = env->prog; 5400 enum bpf_prog_type prog_type = prog->type; 5401 struct btf *btf = prog->aux->btf; 5402 const struct btf_param *args; 5403 const struct btf_type *t; 5404 u32 i, nargs, btf_id; 5405 const char *tname; 5406 5407 if (!prog->aux->func_info || 5408 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5409 bpf_log(log, "Verifier bug\n"); 5410 return -EFAULT; 5411 } 5412 5413 btf_id = prog->aux->func_info[subprog].type_id; 5414 if (!btf_id) { 5415 bpf_log(log, "Global functions need valid BTF\n"); 5416 return -EFAULT; 5417 } 5418 5419 t = btf_type_by_id(btf, btf_id); 5420 if (!t || !btf_type_is_func(t)) { 5421 /* These checks were already done by the verifier while loading 5422 * struct bpf_func_info 5423 */ 5424 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5425 subprog); 5426 return -EFAULT; 5427 } 5428 tname = btf_name_by_offset(btf, t->name_off); 5429 5430 if (log->level & BPF_LOG_LEVEL) 5431 bpf_log(log, "Validating %s() func#%d...\n", 5432 tname, subprog); 5433 5434 if (prog->aux->func_info_aux[subprog].unreliable) { 5435 bpf_log(log, "Verifier bug in function %s()\n", tname); 5436 return -EFAULT; 5437 } 5438 if (prog_type == BPF_PROG_TYPE_EXT) 5439 prog_type = prog->aux->dst_prog->type; 5440 5441 t = btf_type_by_id(btf, t->type); 5442 if (!t || !btf_type_is_func_proto(t)) { 5443 bpf_log(log, "Invalid type of function %s()\n", tname); 5444 return -EFAULT; 5445 } 5446 args = (const struct btf_param *)(t + 1); 5447 nargs = btf_type_vlen(t); 5448 if (nargs > 5) { 5449 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n", 5450 tname, nargs); 5451 return -EINVAL; 5452 } 5453 /* check that function returns int */ 5454 t = btf_type_by_id(btf, t->type); 5455 while (btf_type_is_modifier(t)) 5456 t = btf_type_by_id(btf, t->type); 5457 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 5458 bpf_log(log, 5459 "Global function %s() doesn't return scalar. Only those are supported.\n", 5460 tname); 5461 return -EINVAL; 5462 } 5463 /* Convert BTF function arguments into verifier types. 5464 * Only PTR_TO_CTX and SCALAR are supported atm. 5465 */ 5466 for (i = 0; i < nargs; i++) { 5467 t = btf_type_by_id(btf, args[i].type); 5468 while (btf_type_is_modifier(t)) 5469 t = btf_type_by_id(btf, t->type); 5470 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5471 reg[i + 1].type = SCALAR_VALUE; 5472 continue; 5473 } 5474 if (btf_type_is_ptr(t) && 5475 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 5476 reg[i + 1].type = PTR_TO_CTX; 5477 continue; 5478 } 5479 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 5480 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 5481 return -EINVAL; 5482 } 5483 return 0; 5484 } 5485 5486 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 5487 struct btf_show *show) 5488 { 5489 const struct btf_type *t = btf_type_by_id(btf, type_id); 5490 5491 show->btf = btf; 5492 memset(&show->state, 0, sizeof(show->state)); 5493 memset(&show->obj, 0, sizeof(show->obj)); 5494 5495 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 5496 } 5497 5498 static void btf_seq_show(struct btf_show *show, const char *fmt, 5499 va_list args) 5500 { 5501 seq_vprintf((struct seq_file *)show->target, fmt, args); 5502 } 5503 5504 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 5505 void *obj, struct seq_file *m, u64 flags) 5506 { 5507 struct btf_show sseq; 5508 5509 sseq.target = m; 5510 sseq.showfn = btf_seq_show; 5511 sseq.flags = flags; 5512 5513 btf_type_show(btf, type_id, obj, &sseq); 5514 5515 return sseq.state.status; 5516 } 5517 5518 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 5519 struct seq_file *m) 5520 { 5521 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 5522 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 5523 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 5524 } 5525 5526 struct btf_show_snprintf { 5527 struct btf_show show; 5528 int len_left; /* space left in string */ 5529 int len; /* length we would have written */ 5530 }; 5531 5532 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 5533 va_list args) 5534 { 5535 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 5536 int len; 5537 5538 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 5539 5540 if (len < 0) { 5541 ssnprintf->len_left = 0; 5542 ssnprintf->len = len; 5543 } else if (len > ssnprintf->len_left) { 5544 /* no space, drive on to get length we would have written */ 5545 ssnprintf->len_left = 0; 5546 ssnprintf->len += len; 5547 } else { 5548 ssnprintf->len_left -= len; 5549 ssnprintf->len += len; 5550 show->target += len; 5551 } 5552 } 5553 5554 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 5555 char *buf, int len, u64 flags) 5556 { 5557 struct btf_show_snprintf ssnprintf; 5558 5559 ssnprintf.show.target = buf; 5560 ssnprintf.show.flags = flags; 5561 ssnprintf.show.showfn = btf_snprintf_show; 5562 ssnprintf.len_left = len; 5563 ssnprintf.len = 0; 5564 5565 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 5566 5567 /* If we encontered an error, return it. */ 5568 if (ssnprintf.show.state.status) 5569 return ssnprintf.show.state.status; 5570 5571 /* Otherwise return length we would have written */ 5572 return ssnprintf.len; 5573 } 5574 5575 #ifdef CONFIG_PROC_FS 5576 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 5577 { 5578 const struct btf *btf = filp->private_data; 5579 5580 seq_printf(m, "btf_id:\t%u\n", btf->id); 5581 } 5582 #endif 5583 5584 static int btf_release(struct inode *inode, struct file *filp) 5585 { 5586 btf_put(filp->private_data); 5587 return 0; 5588 } 5589 5590 const struct file_operations btf_fops = { 5591 #ifdef CONFIG_PROC_FS 5592 .show_fdinfo = bpf_btf_show_fdinfo, 5593 #endif 5594 .release = btf_release, 5595 }; 5596 5597 static int __btf_new_fd(struct btf *btf) 5598 { 5599 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 5600 } 5601 5602 int btf_new_fd(const union bpf_attr *attr) 5603 { 5604 struct btf *btf; 5605 int ret; 5606 5607 btf = btf_parse(u64_to_user_ptr(attr->btf), 5608 attr->btf_size, attr->btf_log_level, 5609 u64_to_user_ptr(attr->btf_log_buf), 5610 attr->btf_log_size); 5611 if (IS_ERR(btf)) 5612 return PTR_ERR(btf); 5613 5614 ret = btf_alloc_id(btf); 5615 if (ret) { 5616 btf_free(btf); 5617 return ret; 5618 } 5619 5620 /* 5621 * The BTF ID is published to the userspace. 5622 * All BTF free must go through call_rcu() from 5623 * now on (i.e. free by calling btf_put()). 5624 */ 5625 5626 ret = __btf_new_fd(btf); 5627 if (ret < 0) 5628 btf_put(btf); 5629 5630 return ret; 5631 } 5632 5633 struct btf *btf_get_by_fd(int fd) 5634 { 5635 struct btf *btf; 5636 struct fd f; 5637 5638 f = fdget(fd); 5639 5640 if (!f.file) 5641 return ERR_PTR(-EBADF); 5642 5643 if (f.file->f_op != &btf_fops) { 5644 fdput(f); 5645 return ERR_PTR(-EINVAL); 5646 } 5647 5648 btf = f.file->private_data; 5649 refcount_inc(&btf->refcnt); 5650 fdput(f); 5651 5652 return btf; 5653 } 5654 5655 int btf_get_info_by_fd(const struct btf *btf, 5656 const union bpf_attr *attr, 5657 union bpf_attr __user *uattr) 5658 { 5659 struct bpf_btf_info __user *uinfo; 5660 struct bpf_btf_info info; 5661 u32 info_copy, btf_copy; 5662 void __user *ubtf; 5663 char __user *uname; 5664 u32 uinfo_len, uname_len, name_len; 5665 int ret = 0; 5666 5667 uinfo = u64_to_user_ptr(attr->info.info); 5668 uinfo_len = attr->info.info_len; 5669 5670 info_copy = min_t(u32, uinfo_len, sizeof(info)); 5671 memset(&info, 0, sizeof(info)); 5672 if (copy_from_user(&info, uinfo, info_copy)) 5673 return -EFAULT; 5674 5675 info.id = btf->id; 5676 ubtf = u64_to_user_ptr(info.btf); 5677 btf_copy = min_t(u32, btf->data_size, info.btf_size); 5678 if (copy_to_user(ubtf, btf->data, btf_copy)) 5679 return -EFAULT; 5680 info.btf_size = btf->data_size; 5681 5682 info.kernel_btf = btf->kernel_btf; 5683 5684 uname = u64_to_user_ptr(info.name); 5685 uname_len = info.name_len; 5686 if (!uname ^ !uname_len) 5687 return -EINVAL; 5688 5689 name_len = strlen(btf->name); 5690 info.name_len = name_len; 5691 5692 if (uname) { 5693 if (uname_len >= name_len + 1) { 5694 if (copy_to_user(uname, btf->name, name_len + 1)) 5695 return -EFAULT; 5696 } else { 5697 char zero = '\0'; 5698 5699 if (copy_to_user(uname, btf->name, uname_len - 1)) 5700 return -EFAULT; 5701 if (put_user(zero, uname + uname_len - 1)) 5702 return -EFAULT; 5703 /* let user-space know about too short buffer */ 5704 ret = -ENOSPC; 5705 } 5706 } 5707 5708 if (copy_to_user(uinfo, &info, info_copy) || 5709 put_user(info_copy, &uattr->info.info_len)) 5710 return -EFAULT; 5711 5712 return ret; 5713 } 5714 5715 int btf_get_fd_by_id(u32 id) 5716 { 5717 struct btf *btf; 5718 int fd; 5719 5720 rcu_read_lock(); 5721 btf = idr_find(&btf_idr, id); 5722 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 5723 btf = ERR_PTR(-ENOENT); 5724 rcu_read_unlock(); 5725 5726 if (IS_ERR(btf)) 5727 return PTR_ERR(btf); 5728 5729 fd = __btf_new_fd(btf); 5730 if (fd < 0) 5731 btf_put(btf); 5732 5733 return fd; 5734 } 5735 5736 u32 btf_obj_id(const struct btf *btf) 5737 { 5738 return btf->id; 5739 } 5740 5741 bool btf_is_kernel(const struct btf *btf) 5742 { 5743 return btf->kernel_btf; 5744 } 5745 5746 static int btf_id_cmp_func(const void *a, const void *b) 5747 { 5748 const int *pa = a, *pb = b; 5749 5750 return *pa - *pb; 5751 } 5752 5753 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 5754 { 5755 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 5756 } 5757 5758 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5759 struct btf_module { 5760 struct list_head list; 5761 struct module *module; 5762 struct btf *btf; 5763 struct bin_attribute *sysfs_attr; 5764 }; 5765 5766 static LIST_HEAD(btf_modules); 5767 static DEFINE_MUTEX(btf_module_mutex); 5768 5769 static ssize_t 5770 btf_module_read(struct file *file, struct kobject *kobj, 5771 struct bin_attribute *bin_attr, 5772 char *buf, loff_t off, size_t len) 5773 { 5774 const struct btf *btf = bin_attr->private; 5775 5776 memcpy(buf, btf->data + off, len); 5777 return len; 5778 } 5779 5780 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 5781 void *module) 5782 { 5783 struct btf_module *btf_mod, *tmp; 5784 struct module *mod = module; 5785 struct btf *btf; 5786 int err = 0; 5787 5788 if (mod->btf_data_size == 0 || 5789 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 5790 goto out; 5791 5792 switch (op) { 5793 case MODULE_STATE_COMING: 5794 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 5795 if (!btf_mod) { 5796 err = -ENOMEM; 5797 goto out; 5798 } 5799 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 5800 if (IS_ERR(btf)) { 5801 pr_warn("failed to validate module [%s] BTF: %ld\n", 5802 mod->name, PTR_ERR(btf)); 5803 kfree(btf_mod); 5804 err = PTR_ERR(btf); 5805 goto out; 5806 } 5807 err = btf_alloc_id(btf); 5808 if (err) { 5809 btf_free(btf); 5810 kfree(btf_mod); 5811 goto out; 5812 } 5813 5814 mutex_lock(&btf_module_mutex); 5815 btf_mod->module = module; 5816 btf_mod->btf = btf; 5817 list_add(&btf_mod->list, &btf_modules); 5818 mutex_unlock(&btf_module_mutex); 5819 5820 if (IS_ENABLED(CONFIG_SYSFS)) { 5821 struct bin_attribute *attr; 5822 5823 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 5824 if (!attr) 5825 goto out; 5826 5827 sysfs_bin_attr_init(attr); 5828 attr->attr.name = btf->name; 5829 attr->attr.mode = 0444; 5830 attr->size = btf->data_size; 5831 attr->private = btf; 5832 attr->read = btf_module_read; 5833 5834 err = sysfs_create_bin_file(btf_kobj, attr); 5835 if (err) { 5836 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 5837 mod->name, err); 5838 kfree(attr); 5839 err = 0; 5840 goto out; 5841 } 5842 5843 btf_mod->sysfs_attr = attr; 5844 } 5845 5846 break; 5847 case MODULE_STATE_GOING: 5848 mutex_lock(&btf_module_mutex); 5849 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 5850 if (btf_mod->module != module) 5851 continue; 5852 5853 list_del(&btf_mod->list); 5854 if (btf_mod->sysfs_attr) 5855 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 5856 btf_put(btf_mod->btf); 5857 kfree(btf_mod->sysfs_attr); 5858 kfree(btf_mod); 5859 break; 5860 } 5861 mutex_unlock(&btf_module_mutex); 5862 break; 5863 } 5864 out: 5865 return notifier_from_errno(err); 5866 } 5867 5868 static struct notifier_block btf_module_nb = { 5869 .notifier_call = btf_module_notify, 5870 }; 5871 5872 static int __init btf_module_init(void) 5873 { 5874 register_module_notifier(&btf_module_nb); 5875 return 0; 5876 } 5877 5878 fs_initcall(btf_module_init); 5879 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5880