xref: /linux/kernel/bpf/btf.c (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 
29 #include <net/netfilter/nf_bpf_link.h>
30 
31 #include <net/sock.h>
32 #include <net/xdp.h>
33 #include "../tools/lib/bpf/relo_core.h"
34 
35 /* BTF (BPF Type Format) is the meta data format which describes
36  * the data types of BPF program/map.  Hence, it basically focus
37  * on the C programming language which the modern BPF is primary
38  * using.
39  *
40  * ELF Section:
41  * ~~~~~~~~~~~
42  * The BTF data is stored under the ".BTF" ELF section
43  *
44  * struct btf_type:
45  * ~~~~~~~~~~~~~~~
46  * Each 'struct btf_type' object describes a C data type.
47  * Depending on the type it is describing, a 'struct btf_type'
48  * object may be followed by more data.  F.e.
49  * To describe an array, 'struct btf_type' is followed by
50  * 'struct btf_array'.
51  *
52  * 'struct btf_type' and any extra data following it are
53  * 4 bytes aligned.
54  *
55  * Type section:
56  * ~~~~~~~~~~~~~
57  * The BTF type section contains a list of 'struct btf_type' objects.
58  * Each one describes a C type.  Recall from the above section
59  * that a 'struct btf_type' object could be immediately followed by extra
60  * data in order to describe some particular C types.
61  *
62  * type_id:
63  * ~~~~~~~
64  * Each btf_type object is identified by a type_id.  The type_id
65  * is implicitly implied by the location of the btf_type object in
66  * the BTF type section.  The first one has type_id 1.  The second
67  * one has type_id 2...etc.  Hence, an earlier btf_type has
68  * a smaller type_id.
69  *
70  * A btf_type object may refer to another btf_type object by using
71  * type_id (i.e. the "type" in the "struct btf_type").
72  *
73  * NOTE that we cannot assume any reference-order.
74  * A btf_type object can refer to an earlier btf_type object
75  * but it can also refer to a later btf_type object.
76  *
77  * For example, to describe "const void *".  A btf_type
78  * object describing "const" may refer to another btf_type
79  * object describing "void *".  This type-reference is done
80  * by specifying type_id:
81  *
82  * [1] CONST (anon) type_id=2
83  * [2] PTR (anon) type_id=0
84  *
85  * The above is the btf_verifier debug log:
86  *   - Each line started with "[?]" is a btf_type object
87  *   - [?] is the type_id of the btf_type object.
88  *   - CONST/PTR is the BTF_KIND_XXX
89  *   - "(anon)" is the name of the type.  It just
90  *     happens that CONST and PTR has no name.
91  *   - type_id=XXX is the 'u32 type' in btf_type
92  *
93  * NOTE: "void" has type_id 0
94  *
95  * String section:
96  * ~~~~~~~~~~~~~~
97  * The BTF string section contains the names used by the type section.
98  * Each string is referred by an "offset" from the beginning of the
99  * string section.
100  *
101  * Each string is '\0' terminated.
102  *
103  * The first character in the string section must be '\0'
104  * which is used to mean 'anonymous'. Some btf_type may not
105  * have a name.
106  */
107 
108 /* BTF verification:
109  *
110  * To verify BTF data, two passes are needed.
111  *
112  * Pass #1
113  * ~~~~~~~
114  * The first pass is to collect all btf_type objects to
115  * an array: "btf->types".
116  *
117  * Depending on the C type that a btf_type is describing,
118  * a btf_type may be followed by extra data.  We don't know
119  * how many btf_type is there, and more importantly we don't
120  * know where each btf_type is located in the type section.
121  *
122  * Without knowing the location of each type_id, most verifications
123  * cannot be done.  e.g. an earlier btf_type may refer to a later
124  * btf_type (recall the "const void *" above), so we cannot
125  * check this type-reference in the first pass.
126  *
127  * In the first pass, it still does some verifications (e.g.
128  * checking the name is a valid offset to the string section).
129  *
130  * Pass #2
131  * ~~~~~~~
132  * The main focus is to resolve a btf_type that is referring
133  * to another type.
134  *
135  * We have to ensure the referring type:
136  * 1) does exist in the BTF (i.e. in btf->types[])
137  * 2) does not cause a loop:
138  *	struct A {
139  *		struct B b;
140  *	};
141  *
142  *	struct B {
143  *		struct A a;
144  *	};
145  *
146  * btf_type_needs_resolve() decides if a btf_type needs
147  * to be resolved.
148  *
149  * The needs_resolve type implements the "resolve()" ops which
150  * essentially does a DFS and detects backedge.
151  *
152  * During resolve (or DFS), different C types have different
153  * "RESOLVED" conditions.
154  *
155  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
156  * members because a member is always referring to another
157  * type.  A struct's member can be treated as "RESOLVED" if
158  * it is referring to a BTF_KIND_PTR.  Otherwise, the
159  * following valid C struct would be rejected:
160  *
161  *	struct A {
162  *		int m;
163  *		struct A *a;
164  *	};
165  *
166  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
167  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
168  * detect a pointer loop, e.g.:
169  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
170  *                        ^                                         |
171  *                        +-----------------------------------------+
172  *
173  */
174 
175 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
176 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
177 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
178 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
179 #define BITS_ROUNDUP_BYTES(bits) \
180 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
181 
182 #define BTF_INFO_MASK 0x9f00ffff
183 #define BTF_INT_MASK 0x0fffffff
184 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
185 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
186 
187 /* 16MB for 64k structs and each has 16 members and
188  * a few MB spaces for the string section.
189  * The hard limit is S32_MAX.
190  */
191 #define BTF_MAX_SIZE (16 * 1024 * 1024)
192 
193 #define for_each_member_from(i, from, struct_type, member)		\
194 	for (i = from, member = btf_type_member(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);				\
196 	     i++, member++)
197 
198 #define for_each_vsi_from(i, from, struct_type, member)				\
199 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
200 	     i < btf_type_vlen(struct_type);					\
201 	     i++, member++)
202 
203 DEFINE_IDR(btf_idr);
204 DEFINE_SPINLOCK(btf_idr_lock);
205 
206 enum btf_kfunc_hook {
207 	BTF_KFUNC_HOOK_COMMON,
208 	BTF_KFUNC_HOOK_XDP,
209 	BTF_KFUNC_HOOK_TC,
210 	BTF_KFUNC_HOOK_STRUCT_OPS,
211 	BTF_KFUNC_HOOK_TRACING,
212 	BTF_KFUNC_HOOK_SYSCALL,
213 	BTF_KFUNC_HOOK_FMODRET,
214 	BTF_KFUNC_HOOK_CGROUP_SKB,
215 	BTF_KFUNC_HOOK_SCHED_ACT,
216 	BTF_KFUNC_HOOK_SK_SKB,
217 	BTF_KFUNC_HOOK_SOCKET_FILTER,
218 	BTF_KFUNC_HOOK_LWT,
219 	BTF_KFUNC_HOOK_NETFILTER,
220 	BTF_KFUNC_HOOK_MAX,
221 };
222 
223 enum {
224 	BTF_KFUNC_SET_MAX_CNT = 256,
225 	BTF_DTOR_KFUNC_MAX_CNT = 256,
226 	BTF_KFUNC_FILTER_MAX_CNT = 16,
227 };
228 
229 struct btf_kfunc_hook_filter {
230 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
231 	u32 nr_filters;
232 };
233 
234 struct btf_kfunc_set_tab {
235 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
236 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
237 };
238 
239 struct btf_id_dtor_kfunc_tab {
240 	u32 cnt;
241 	struct btf_id_dtor_kfunc dtors[];
242 };
243 
244 struct btf {
245 	void *data;
246 	struct btf_type **types;
247 	u32 *resolved_ids;
248 	u32 *resolved_sizes;
249 	const char *strings;
250 	void *nohdr_data;
251 	struct btf_header hdr;
252 	u32 nr_types; /* includes VOID for base BTF */
253 	u32 types_size;
254 	u32 data_size;
255 	refcount_t refcnt;
256 	u32 id;
257 	struct rcu_head rcu;
258 	struct btf_kfunc_set_tab *kfunc_set_tab;
259 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
260 	struct btf_struct_metas *struct_meta_tab;
261 
262 	/* split BTF support */
263 	struct btf *base_btf;
264 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
265 	u32 start_str_off; /* first string offset (0 for base BTF) */
266 	char name[MODULE_NAME_LEN];
267 	bool kernel_btf;
268 };
269 
270 enum verifier_phase {
271 	CHECK_META,
272 	CHECK_TYPE,
273 };
274 
275 struct resolve_vertex {
276 	const struct btf_type *t;
277 	u32 type_id;
278 	u16 next_member;
279 };
280 
281 enum visit_state {
282 	NOT_VISITED,
283 	VISITED,
284 	RESOLVED,
285 };
286 
287 enum resolve_mode {
288 	RESOLVE_TBD,	/* To Be Determined */
289 	RESOLVE_PTR,	/* Resolving for Pointer */
290 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
291 					 * or array
292 					 */
293 };
294 
295 #define MAX_RESOLVE_DEPTH 32
296 
297 struct btf_sec_info {
298 	u32 off;
299 	u32 len;
300 };
301 
302 struct btf_verifier_env {
303 	struct btf *btf;
304 	u8 *visit_states;
305 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
306 	struct bpf_verifier_log log;
307 	u32 log_type_id;
308 	u32 top_stack;
309 	enum verifier_phase phase;
310 	enum resolve_mode resolve_mode;
311 };
312 
313 static const char * const btf_kind_str[NR_BTF_KINDS] = {
314 	[BTF_KIND_UNKN]		= "UNKNOWN",
315 	[BTF_KIND_INT]		= "INT",
316 	[BTF_KIND_PTR]		= "PTR",
317 	[BTF_KIND_ARRAY]	= "ARRAY",
318 	[BTF_KIND_STRUCT]	= "STRUCT",
319 	[BTF_KIND_UNION]	= "UNION",
320 	[BTF_KIND_ENUM]		= "ENUM",
321 	[BTF_KIND_FWD]		= "FWD",
322 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
323 	[BTF_KIND_VOLATILE]	= "VOLATILE",
324 	[BTF_KIND_CONST]	= "CONST",
325 	[BTF_KIND_RESTRICT]	= "RESTRICT",
326 	[BTF_KIND_FUNC]		= "FUNC",
327 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
328 	[BTF_KIND_VAR]		= "VAR",
329 	[BTF_KIND_DATASEC]	= "DATASEC",
330 	[BTF_KIND_FLOAT]	= "FLOAT",
331 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
332 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
333 	[BTF_KIND_ENUM64]	= "ENUM64",
334 };
335 
336 const char *btf_type_str(const struct btf_type *t)
337 {
338 	return btf_kind_str[BTF_INFO_KIND(t->info)];
339 }
340 
341 /* Chunk size we use in safe copy of data to be shown. */
342 #define BTF_SHOW_OBJ_SAFE_SIZE		32
343 
344 /*
345  * This is the maximum size of a base type value (equivalent to a
346  * 128-bit int); if we are at the end of our safe buffer and have
347  * less than 16 bytes space we can't be assured of being able
348  * to copy the next type safely, so in such cases we will initiate
349  * a new copy.
350  */
351 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
352 
353 /* Type name size */
354 #define BTF_SHOW_NAME_SIZE		80
355 
356 /*
357  * The suffix of a type that indicates it cannot alias another type when
358  * comparing BTF IDs for kfunc invocations.
359  */
360 #define NOCAST_ALIAS_SUFFIX		"___init"
361 
362 /*
363  * Common data to all BTF show operations. Private show functions can add
364  * their own data to a structure containing a struct btf_show and consult it
365  * in the show callback.  See btf_type_show() below.
366  *
367  * One challenge with showing nested data is we want to skip 0-valued
368  * data, but in order to figure out whether a nested object is all zeros
369  * we need to walk through it.  As a result, we need to make two passes
370  * when handling structs, unions and arrays; the first path simply looks
371  * for nonzero data, while the second actually does the display.  The first
372  * pass is signalled by show->state.depth_check being set, and if we
373  * encounter a non-zero value we set show->state.depth_to_show to
374  * the depth at which we encountered it.  When we have completed the
375  * first pass, we will know if anything needs to be displayed if
376  * depth_to_show > depth.  See btf_[struct,array]_show() for the
377  * implementation of this.
378  *
379  * Another problem is we want to ensure the data for display is safe to
380  * access.  To support this, the anonymous "struct {} obj" tracks the data
381  * object and our safe copy of it.  We copy portions of the data needed
382  * to the object "copy" buffer, but because its size is limited to
383  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
384  * traverse larger objects for display.
385  *
386  * The various data type show functions all start with a call to
387  * btf_show_start_type() which returns a pointer to the safe copy
388  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
389  * raw data itself).  btf_show_obj_safe() is responsible for
390  * using copy_from_kernel_nofault() to update the safe data if necessary
391  * as we traverse the object's data.  skbuff-like semantics are
392  * used:
393  *
394  * - obj.head points to the start of the toplevel object for display
395  * - obj.size is the size of the toplevel object
396  * - obj.data points to the current point in the original data at
397  *   which our safe data starts.  obj.data will advance as we copy
398  *   portions of the data.
399  *
400  * In most cases a single copy will suffice, but larger data structures
401  * such as "struct task_struct" will require many copies.  The logic in
402  * btf_show_obj_safe() handles the logic that determines if a new
403  * copy_from_kernel_nofault() is needed.
404  */
405 struct btf_show {
406 	u64 flags;
407 	void *target;	/* target of show operation (seq file, buffer) */
408 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
409 	const struct btf *btf;
410 	/* below are used during iteration */
411 	struct {
412 		u8 depth;
413 		u8 depth_to_show;
414 		u8 depth_check;
415 		u8 array_member:1,
416 		   array_terminated:1;
417 		u16 array_encoding;
418 		u32 type_id;
419 		int status;			/* non-zero for error */
420 		const struct btf_type *type;
421 		const struct btf_member *member;
422 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
423 	} state;
424 	struct {
425 		u32 size;
426 		void *head;
427 		void *data;
428 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
429 	} obj;
430 };
431 
432 struct btf_kind_operations {
433 	s32 (*check_meta)(struct btf_verifier_env *env,
434 			  const struct btf_type *t,
435 			  u32 meta_left);
436 	int (*resolve)(struct btf_verifier_env *env,
437 		       const struct resolve_vertex *v);
438 	int (*check_member)(struct btf_verifier_env *env,
439 			    const struct btf_type *struct_type,
440 			    const struct btf_member *member,
441 			    const struct btf_type *member_type);
442 	int (*check_kflag_member)(struct btf_verifier_env *env,
443 				  const struct btf_type *struct_type,
444 				  const struct btf_member *member,
445 				  const struct btf_type *member_type);
446 	void (*log_details)(struct btf_verifier_env *env,
447 			    const struct btf_type *t);
448 	void (*show)(const struct btf *btf, const struct btf_type *t,
449 			 u32 type_id, void *data, u8 bits_offsets,
450 			 struct btf_show *show);
451 };
452 
453 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
454 static struct btf_type btf_void;
455 
456 static int btf_resolve(struct btf_verifier_env *env,
457 		       const struct btf_type *t, u32 type_id);
458 
459 static int btf_func_check(struct btf_verifier_env *env,
460 			  const struct btf_type *t);
461 
462 static bool btf_type_is_modifier(const struct btf_type *t)
463 {
464 	/* Some of them is not strictly a C modifier
465 	 * but they are grouped into the same bucket
466 	 * for BTF concern:
467 	 *   A type (t) that refers to another
468 	 *   type through t->type AND its size cannot
469 	 *   be determined without following the t->type.
470 	 *
471 	 * ptr does not fall into this bucket
472 	 * because its size is always sizeof(void *).
473 	 */
474 	switch (BTF_INFO_KIND(t->info)) {
475 	case BTF_KIND_TYPEDEF:
476 	case BTF_KIND_VOLATILE:
477 	case BTF_KIND_CONST:
478 	case BTF_KIND_RESTRICT:
479 	case BTF_KIND_TYPE_TAG:
480 		return true;
481 	}
482 
483 	return false;
484 }
485 
486 bool btf_type_is_void(const struct btf_type *t)
487 {
488 	return t == &btf_void;
489 }
490 
491 static bool btf_type_is_fwd(const struct btf_type *t)
492 {
493 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
494 }
495 
496 static bool btf_type_is_datasec(const struct btf_type *t)
497 {
498 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
499 }
500 
501 static bool btf_type_is_decl_tag(const struct btf_type *t)
502 {
503 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
504 }
505 
506 static bool btf_type_nosize(const struct btf_type *t)
507 {
508 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
509 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
510 	       btf_type_is_decl_tag(t);
511 }
512 
513 static bool btf_type_nosize_or_null(const struct btf_type *t)
514 {
515 	return !t || btf_type_nosize(t);
516 }
517 
518 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
519 {
520 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
521 	       btf_type_is_var(t) || btf_type_is_typedef(t);
522 }
523 
524 u32 btf_nr_types(const struct btf *btf)
525 {
526 	u32 total = 0;
527 
528 	while (btf) {
529 		total += btf->nr_types;
530 		btf = btf->base_btf;
531 	}
532 
533 	return total;
534 }
535 
536 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
537 {
538 	const struct btf_type *t;
539 	const char *tname;
540 	u32 i, total;
541 
542 	total = btf_nr_types(btf);
543 	for (i = 1; i < total; i++) {
544 		t = btf_type_by_id(btf, i);
545 		if (BTF_INFO_KIND(t->info) != kind)
546 			continue;
547 
548 		tname = btf_name_by_offset(btf, t->name_off);
549 		if (!strcmp(tname, name))
550 			return i;
551 	}
552 
553 	return -ENOENT;
554 }
555 
556 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
557 {
558 	struct btf *btf;
559 	s32 ret;
560 	int id;
561 
562 	btf = bpf_get_btf_vmlinux();
563 	if (IS_ERR(btf))
564 		return PTR_ERR(btf);
565 	if (!btf)
566 		return -EINVAL;
567 
568 	ret = btf_find_by_name_kind(btf, name, kind);
569 	/* ret is never zero, since btf_find_by_name_kind returns
570 	 * positive btf_id or negative error.
571 	 */
572 	if (ret > 0) {
573 		btf_get(btf);
574 		*btf_p = btf;
575 		return ret;
576 	}
577 
578 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
579 	spin_lock_bh(&btf_idr_lock);
580 	idr_for_each_entry(&btf_idr, btf, id) {
581 		if (!btf_is_module(btf))
582 			continue;
583 		/* linear search could be slow hence unlock/lock
584 		 * the IDR to avoiding holding it for too long
585 		 */
586 		btf_get(btf);
587 		spin_unlock_bh(&btf_idr_lock);
588 		ret = btf_find_by_name_kind(btf, name, kind);
589 		if (ret > 0) {
590 			*btf_p = btf;
591 			return ret;
592 		}
593 		btf_put(btf);
594 		spin_lock_bh(&btf_idr_lock);
595 	}
596 	spin_unlock_bh(&btf_idr_lock);
597 	return ret;
598 }
599 
600 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
601 					       u32 id, u32 *res_id)
602 {
603 	const struct btf_type *t = btf_type_by_id(btf, id);
604 
605 	while (btf_type_is_modifier(t)) {
606 		id = t->type;
607 		t = btf_type_by_id(btf, t->type);
608 	}
609 
610 	if (res_id)
611 		*res_id = id;
612 
613 	return t;
614 }
615 
616 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
617 					    u32 id, u32 *res_id)
618 {
619 	const struct btf_type *t;
620 
621 	t = btf_type_skip_modifiers(btf, id, NULL);
622 	if (!btf_type_is_ptr(t))
623 		return NULL;
624 
625 	return btf_type_skip_modifiers(btf, t->type, res_id);
626 }
627 
628 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
629 						 u32 id, u32 *res_id)
630 {
631 	const struct btf_type *ptype;
632 
633 	ptype = btf_type_resolve_ptr(btf, id, res_id);
634 	if (ptype && btf_type_is_func_proto(ptype))
635 		return ptype;
636 
637 	return NULL;
638 }
639 
640 /* Types that act only as a source, not sink or intermediate
641  * type when resolving.
642  */
643 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
644 {
645 	return btf_type_is_var(t) ||
646 	       btf_type_is_decl_tag(t) ||
647 	       btf_type_is_datasec(t);
648 }
649 
650 /* What types need to be resolved?
651  *
652  * btf_type_is_modifier() is an obvious one.
653  *
654  * btf_type_is_struct() because its member refers to
655  * another type (through member->type).
656  *
657  * btf_type_is_var() because the variable refers to
658  * another type. btf_type_is_datasec() holds multiple
659  * btf_type_is_var() types that need resolving.
660  *
661  * btf_type_is_array() because its element (array->type)
662  * refers to another type.  Array can be thought of a
663  * special case of struct while array just has the same
664  * member-type repeated by array->nelems of times.
665  */
666 static bool btf_type_needs_resolve(const struct btf_type *t)
667 {
668 	return btf_type_is_modifier(t) ||
669 	       btf_type_is_ptr(t) ||
670 	       btf_type_is_struct(t) ||
671 	       btf_type_is_array(t) ||
672 	       btf_type_is_var(t) ||
673 	       btf_type_is_func(t) ||
674 	       btf_type_is_decl_tag(t) ||
675 	       btf_type_is_datasec(t);
676 }
677 
678 /* t->size can be used */
679 static bool btf_type_has_size(const struct btf_type *t)
680 {
681 	switch (BTF_INFO_KIND(t->info)) {
682 	case BTF_KIND_INT:
683 	case BTF_KIND_STRUCT:
684 	case BTF_KIND_UNION:
685 	case BTF_KIND_ENUM:
686 	case BTF_KIND_DATASEC:
687 	case BTF_KIND_FLOAT:
688 	case BTF_KIND_ENUM64:
689 		return true;
690 	}
691 
692 	return false;
693 }
694 
695 static const char *btf_int_encoding_str(u8 encoding)
696 {
697 	if (encoding == 0)
698 		return "(none)";
699 	else if (encoding == BTF_INT_SIGNED)
700 		return "SIGNED";
701 	else if (encoding == BTF_INT_CHAR)
702 		return "CHAR";
703 	else if (encoding == BTF_INT_BOOL)
704 		return "BOOL";
705 	else
706 		return "UNKN";
707 }
708 
709 static u32 btf_type_int(const struct btf_type *t)
710 {
711 	return *(u32 *)(t + 1);
712 }
713 
714 static const struct btf_array *btf_type_array(const struct btf_type *t)
715 {
716 	return (const struct btf_array *)(t + 1);
717 }
718 
719 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
720 {
721 	return (const struct btf_enum *)(t + 1);
722 }
723 
724 static const struct btf_var *btf_type_var(const struct btf_type *t)
725 {
726 	return (const struct btf_var *)(t + 1);
727 }
728 
729 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
730 {
731 	return (const struct btf_decl_tag *)(t + 1);
732 }
733 
734 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
735 {
736 	return (const struct btf_enum64 *)(t + 1);
737 }
738 
739 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
740 {
741 	return kind_ops[BTF_INFO_KIND(t->info)];
742 }
743 
744 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
745 {
746 	if (!BTF_STR_OFFSET_VALID(offset))
747 		return false;
748 
749 	while (offset < btf->start_str_off)
750 		btf = btf->base_btf;
751 
752 	offset -= btf->start_str_off;
753 	return offset < btf->hdr.str_len;
754 }
755 
756 static bool __btf_name_char_ok(char c, bool first)
757 {
758 	if ((first ? !isalpha(c) :
759 		     !isalnum(c)) &&
760 	    c != '_' &&
761 	    c != '.')
762 		return false;
763 	return true;
764 }
765 
766 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
767 {
768 	while (offset < btf->start_str_off)
769 		btf = btf->base_btf;
770 
771 	offset -= btf->start_str_off;
772 	if (offset < btf->hdr.str_len)
773 		return &btf->strings[offset];
774 
775 	return NULL;
776 }
777 
778 static bool __btf_name_valid(const struct btf *btf, u32 offset)
779 {
780 	/* offset must be valid */
781 	const char *src = btf_str_by_offset(btf, offset);
782 	const char *src_limit;
783 
784 	if (!__btf_name_char_ok(*src, true))
785 		return false;
786 
787 	/* set a limit on identifier length */
788 	src_limit = src + KSYM_NAME_LEN;
789 	src++;
790 	while (*src && src < src_limit) {
791 		if (!__btf_name_char_ok(*src, false))
792 			return false;
793 		src++;
794 	}
795 
796 	return !*src;
797 }
798 
799 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
800 {
801 	return __btf_name_valid(btf, offset);
802 }
803 
804 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
805 {
806 	return __btf_name_valid(btf, offset);
807 }
808 
809 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
810 {
811 	const char *name;
812 
813 	if (!offset)
814 		return "(anon)";
815 
816 	name = btf_str_by_offset(btf, offset);
817 	return name ?: "(invalid-name-offset)";
818 }
819 
820 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
821 {
822 	return btf_str_by_offset(btf, offset);
823 }
824 
825 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
826 {
827 	while (type_id < btf->start_id)
828 		btf = btf->base_btf;
829 
830 	type_id -= btf->start_id;
831 	if (type_id >= btf->nr_types)
832 		return NULL;
833 	return btf->types[type_id];
834 }
835 EXPORT_SYMBOL_GPL(btf_type_by_id);
836 
837 /*
838  * Regular int is not a bit field and it must be either
839  * u8/u16/u32/u64 or __int128.
840  */
841 static bool btf_type_int_is_regular(const struct btf_type *t)
842 {
843 	u8 nr_bits, nr_bytes;
844 	u32 int_data;
845 
846 	int_data = btf_type_int(t);
847 	nr_bits = BTF_INT_BITS(int_data);
848 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
849 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
850 	    BTF_INT_OFFSET(int_data) ||
851 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
852 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
853 	     nr_bytes != (2 * sizeof(u64)))) {
854 		return false;
855 	}
856 
857 	return true;
858 }
859 
860 /*
861  * Check that given struct member is a regular int with expected
862  * offset and size.
863  */
864 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
865 			   const struct btf_member *m,
866 			   u32 expected_offset, u32 expected_size)
867 {
868 	const struct btf_type *t;
869 	u32 id, int_data;
870 	u8 nr_bits;
871 
872 	id = m->type;
873 	t = btf_type_id_size(btf, &id, NULL);
874 	if (!t || !btf_type_is_int(t))
875 		return false;
876 
877 	int_data = btf_type_int(t);
878 	nr_bits = BTF_INT_BITS(int_data);
879 	if (btf_type_kflag(s)) {
880 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
881 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
882 
883 		/* if kflag set, int should be a regular int and
884 		 * bit offset should be at byte boundary.
885 		 */
886 		return !bitfield_size &&
887 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
888 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
889 	}
890 
891 	if (BTF_INT_OFFSET(int_data) ||
892 	    BITS_PER_BYTE_MASKED(m->offset) ||
893 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
894 	    BITS_PER_BYTE_MASKED(nr_bits) ||
895 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
896 		return false;
897 
898 	return true;
899 }
900 
901 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
902 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
903 						       u32 id)
904 {
905 	const struct btf_type *t = btf_type_by_id(btf, id);
906 
907 	while (btf_type_is_modifier(t) &&
908 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
909 		t = btf_type_by_id(btf, t->type);
910 	}
911 
912 	return t;
913 }
914 
915 #define BTF_SHOW_MAX_ITER	10
916 
917 #define BTF_KIND_BIT(kind)	(1ULL << kind)
918 
919 /*
920  * Populate show->state.name with type name information.
921  * Format of type name is
922  *
923  * [.member_name = ] (type_name)
924  */
925 static const char *btf_show_name(struct btf_show *show)
926 {
927 	/* BTF_MAX_ITER array suffixes "[]" */
928 	const char *array_suffixes = "[][][][][][][][][][]";
929 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
930 	/* BTF_MAX_ITER pointer suffixes "*" */
931 	const char *ptr_suffixes = "**********";
932 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
933 	const char *name = NULL, *prefix = "", *parens = "";
934 	const struct btf_member *m = show->state.member;
935 	const struct btf_type *t;
936 	const struct btf_array *array;
937 	u32 id = show->state.type_id;
938 	const char *member = NULL;
939 	bool show_member = false;
940 	u64 kinds = 0;
941 	int i;
942 
943 	show->state.name[0] = '\0';
944 
945 	/*
946 	 * Don't show type name if we're showing an array member;
947 	 * in that case we show the array type so don't need to repeat
948 	 * ourselves for each member.
949 	 */
950 	if (show->state.array_member)
951 		return "";
952 
953 	/* Retrieve member name, if any. */
954 	if (m) {
955 		member = btf_name_by_offset(show->btf, m->name_off);
956 		show_member = strlen(member) > 0;
957 		id = m->type;
958 	}
959 
960 	/*
961 	 * Start with type_id, as we have resolved the struct btf_type *
962 	 * via btf_modifier_show() past the parent typedef to the child
963 	 * struct, int etc it is defined as.  In such cases, the type_id
964 	 * still represents the starting type while the struct btf_type *
965 	 * in our show->state points at the resolved type of the typedef.
966 	 */
967 	t = btf_type_by_id(show->btf, id);
968 	if (!t)
969 		return "";
970 
971 	/*
972 	 * The goal here is to build up the right number of pointer and
973 	 * array suffixes while ensuring the type name for a typedef
974 	 * is represented.  Along the way we accumulate a list of
975 	 * BTF kinds we have encountered, since these will inform later
976 	 * display; for example, pointer types will not require an
977 	 * opening "{" for struct, we will just display the pointer value.
978 	 *
979 	 * We also want to accumulate the right number of pointer or array
980 	 * indices in the format string while iterating until we get to
981 	 * the typedef/pointee/array member target type.
982 	 *
983 	 * We start by pointing at the end of pointer and array suffix
984 	 * strings; as we accumulate pointers and arrays we move the pointer
985 	 * or array string backwards so it will show the expected number of
986 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
987 	 * and/or arrays and typedefs are supported as a precaution.
988 	 *
989 	 * We also want to get typedef name while proceeding to resolve
990 	 * type it points to so that we can add parentheses if it is a
991 	 * "typedef struct" etc.
992 	 */
993 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
994 
995 		switch (BTF_INFO_KIND(t->info)) {
996 		case BTF_KIND_TYPEDEF:
997 			if (!name)
998 				name = btf_name_by_offset(show->btf,
999 							       t->name_off);
1000 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1001 			id = t->type;
1002 			break;
1003 		case BTF_KIND_ARRAY:
1004 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1005 			parens = "[";
1006 			if (!t)
1007 				return "";
1008 			array = btf_type_array(t);
1009 			if (array_suffix > array_suffixes)
1010 				array_suffix -= 2;
1011 			id = array->type;
1012 			break;
1013 		case BTF_KIND_PTR:
1014 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1015 			if (ptr_suffix > ptr_suffixes)
1016 				ptr_suffix -= 1;
1017 			id = t->type;
1018 			break;
1019 		default:
1020 			id = 0;
1021 			break;
1022 		}
1023 		if (!id)
1024 			break;
1025 		t = btf_type_skip_qualifiers(show->btf, id);
1026 	}
1027 	/* We may not be able to represent this type; bail to be safe */
1028 	if (i == BTF_SHOW_MAX_ITER)
1029 		return "";
1030 
1031 	if (!name)
1032 		name = btf_name_by_offset(show->btf, t->name_off);
1033 
1034 	switch (BTF_INFO_KIND(t->info)) {
1035 	case BTF_KIND_STRUCT:
1036 	case BTF_KIND_UNION:
1037 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1038 			 "struct" : "union";
1039 		/* if it's an array of struct/union, parens is already set */
1040 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1041 			parens = "{";
1042 		break;
1043 	case BTF_KIND_ENUM:
1044 	case BTF_KIND_ENUM64:
1045 		prefix = "enum";
1046 		break;
1047 	default:
1048 		break;
1049 	}
1050 
1051 	/* pointer does not require parens */
1052 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1053 		parens = "";
1054 	/* typedef does not require struct/union/enum prefix */
1055 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1056 		prefix = "";
1057 
1058 	if (!name)
1059 		name = "";
1060 
1061 	/* Even if we don't want type name info, we want parentheses etc */
1062 	if (show->flags & BTF_SHOW_NONAME)
1063 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1064 			 parens);
1065 	else
1066 		snprintf(show->state.name, sizeof(show->state.name),
1067 			 "%s%s%s(%s%s%s%s%s%s)%s",
1068 			 /* first 3 strings comprise ".member = " */
1069 			 show_member ? "." : "",
1070 			 show_member ? member : "",
1071 			 show_member ? " = " : "",
1072 			 /* ...next is our prefix (struct, enum, etc) */
1073 			 prefix,
1074 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1075 			 /* ...this is the type name itself */
1076 			 name,
1077 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1078 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1079 			 array_suffix, parens);
1080 
1081 	return show->state.name;
1082 }
1083 
1084 static const char *__btf_show_indent(struct btf_show *show)
1085 {
1086 	const char *indents = "                                ";
1087 	const char *indent = &indents[strlen(indents)];
1088 
1089 	if ((indent - show->state.depth) >= indents)
1090 		return indent - show->state.depth;
1091 	return indents;
1092 }
1093 
1094 static const char *btf_show_indent(struct btf_show *show)
1095 {
1096 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1097 }
1098 
1099 static const char *btf_show_newline(struct btf_show *show)
1100 {
1101 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1102 }
1103 
1104 static const char *btf_show_delim(struct btf_show *show)
1105 {
1106 	if (show->state.depth == 0)
1107 		return "";
1108 
1109 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1110 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1111 		return "|";
1112 
1113 	return ",";
1114 }
1115 
1116 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1117 {
1118 	va_list args;
1119 
1120 	if (!show->state.depth_check) {
1121 		va_start(args, fmt);
1122 		show->showfn(show, fmt, args);
1123 		va_end(args);
1124 	}
1125 }
1126 
1127 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1128  * format specifiers to the format specifier passed in; these do the work of
1129  * adding indentation, delimiters etc while the caller simply has to specify
1130  * the type value(s) in the format specifier + value(s).
1131  */
1132 #define btf_show_type_value(show, fmt, value)				       \
1133 	do {								       \
1134 		if ((value) != (__typeof__(value))0 ||			       \
1135 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1136 		    show->state.depth == 0) {				       \
1137 			btf_show(show, "%s%s" fmt "%s%s",		       \
1138 				 btf_show_indent(show),			       \
1139 				 btf_show_name(show),			       \
1140 				 value, btf_show_delim(show),		       \
1141 				 btf_show_newline(show));		       \
1142 			if (show->state.depth > show->state.depth_to_show)     \
1143 				show->state.depth_to_show = show->state.depth; \
1144 		}							       \
1145 	} while (0)
1146 
1147 #define btf_show_type_values(show, fmt, ...)				       \
1148 	do {								       \
1149 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1150 			 btf_show_name(show),				       \
1151 			 __VA_ARGS__, btf_show_delim(show),		       \
1152 			 btf_show_newline(show));			       \
1153 		if (show->state.depth > show->state.depth_to_show)	       \
1154 			show->state.depth_to_show = show->state.depth;	       \
1155 	} while (0)
1156 
1157 /* How much is left to copy to safe buffer after @data? */
1158 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1159 {
1160 	return show->obj.head + show->obj.size - data;
1161 }
1162 
1163 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1164 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1165 {
1166 	return data >= show->obj.data &&
1167 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1168 }
1169 
1170 /*
1171  * If object pointed to by @data of @size falls within our safe buffer, return
1172  * the equivalent pointer to the same safe data.  Assumes
1173  * copy_from_kernel_nofault() has already happened and our safe buffer is
1174  * populated.
1175  */
1176 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1177 {
1178 	if (btf_show_obj_is_safe(show, data, size))
1179 		return show->obj.safe + (data - show->obj.data);
1180 	return NULL;
1181 }
1182 
1183 /*
1184  * Return a safe-to-access version of data pointed to by @data.
1185  * We do this by copying the relevant amount of information
1186  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1187  *
1188  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1189  * safe copy is needed.
1190  *
1191  * Otherwise we need to determine if we have the required amount
1192  * of data (determined by the @data pointer and the size of the
1193  * largest base type we can encounter (represented by
1194  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1195  * that we will be able to print some of the current object,
1196  * and if more is needed a copy will be triggered.
1197  * Some objects such as structs will not fit into the buffer;
1198  * in such cases additional copies when we iterate over their
1199  * members may be needed.
1200  *
1201  * btf_show_obj_safe() is used to return a safe buffer for
1202  * btf_show_start_type(); this ensures that as we recurse into
1203  * nested types we always have safe data for the given type.
1204  * This approach is somewhat wasteful; it's possible for example
1205  * that when iterating over a large union we'll end up copying the
1206  * same data repeatedly, but the goal is safety not performance.
1207  * We use stack data as opposed to per-CPU buffers because the
1208  * iteration over a type can take some time, and preemption handling
1209  * would greatly complicate use of the safe buffer.
1210  */
1211 static void *btf_show_obj_safe(struct btf_show *show,
1212 			       const struct btf_type *t,
1213 			       void *data)
1214 {
1215 	const struct btf_type *rt;
1216 	int size_left, size;
1217 	void *safe = NULL;
1218 
1219 	if (show->flags & BTF_SHOW_UNSAFE)
1220 		return data;
1221 
1222 	rt = btf_resolve_size(show->btf, t, &size);
1223 	if (IS_ERR(rt)) {
1224 		show->state.status = PTR_ERR(rt);
1225 		return NULL;
1226 	}
1227 
1228 	/*
1229 	 * Is this toplevel object? If so, set total object size and
1230 	 * initialize pointers.  Otherwise check if we still fall within
1231 	 * our safe object data.
1232 	 */
1233 	if (show->state.depth == 0) {
1234 		show->obj.size = size;
1235 		show->obj.head = data;
1236 	} else {
1237 		/*
1238 		 * If the size of the current object is > our remaining
1239 		 * safe buffer we _may_ need to do a new copy.  However
1240 		 * consider the case of a nested struct; it's size pushes
1241 		 * us over the safe buffer limit, but showing any individual
1242 		 * struct members does not.  In such cases, we don't need
1243 		 * to initiate a fresh copy yet; however we definitely need
1244 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1245 		 * in our buffer, regardless of the current object size.
1246 		 * The logic here is that as we resolve types we will
1247 		 * hit a base type at some point, and we need to be sure
1248 		 * the next chunk of data is safely available to display
1249 		 * that type info safely.  We cannot rely on the size of
1250 		 * the current object here because it may be much larger
1251 		 * than our current buffer (e.g. task_struct is 8k).
1252 		 * All we want to do here is ensure that we can print the
1253 		 * next basic type, which we can if either
1254 		 * - the current type size is within the safe buffer; or
1255 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1256 		 *   the safe buffer.
1257 		 */
1258 		safe = __btf_show_obj_safe(show, data,
1259 					   min(size,
1260 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1261 	}
1262 
1263 	/*
1264 	 * We need a new copy to our safe object, either because we haven't
1265 	 * yet copied and are initializing safe data, or because the data
1266 	 * we want falls outside the boundaries of the safe object.
1267 	 */
1268 	if (!safe) {
1269 		size_left = btf_show_obj_size_left(show, data);
1270 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1271 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1272 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1273 							      data, size_left);
1274 		if (!show->state.status) {
1275 			show->obj.data = data;
1276 			safe = show->obj.safe;
1277 		}
1278 	}
1279 
1280 	return safe;
1281 }
1282 
1283 /*
1284  * Set the type we are starting to show and return a safe data pointer
1285  * to be used for showing the associated data.
1286  */
1287 static void *btf_show_start_type(struct btf_show *show,
1288 				 const struct btf_type *t,
1289 				 u32 type_id, void *data)
1290 {
1291 	show->state.type = t;
1292 	show->state.type_id = type_id;
1293 	show->state.name[0] = '\0';
1294 
1295 	return btf_show_obj_safe(show, t, data);
1296 }
1297 
1298 static void btf_show_end_type(struct btf_show *show)
1299 {
1300 	show->state.type = NULL;
1301 	show->state.type_id = 0;
1302 	show->state.name[0] = '\0';
1303 }
1304 
1305 static void *btf_show_start_aggr_type(struct btf_show *show,
1306 				      const struct btf_type *t,
1307 				      u32 type_id, void *data)
1308 {
1309 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1310 
1311 	if (!safe_data)
1312 		return safe_data;
1313 
1314 	btf_show(show, "%s%s%s", btf_show_indent(show),
1315 		 btf_show_name(show),
1316 		 btf_show_newline(show));
1317 	show->state.depth++;
1318 	return safe_data;
1319 }
1320 
1321 static void btf_show_end_aggr_type(struct btf_show *show,
1322 				   const char *suffix)
1323 {
1324 	show->state.depth--;
1325 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1326 		 btf_show_delim(show), btf_show_newline(show));
1327 	btf_show_end_type(show);
1328 }
1329 
1330 static void btf_show_start_member(struct btf_show *show,
1331 				  const struct btf_member *m)
1332 {
1333 	show->state.member = m;
1334 }
1335 
1336 static void btf_show_start_array_member(struct btf_show *show)
1337 {
1338 	show->state.array_member = 1;
1339 	btf_show_start_member(show, NULL);
1340 }
1341 
1342 static void btf_show_end_member(struct btf_show *show)
1343 {
1344 	show->state.member = NULL;
1345 }
1346 
1347 static void btf_show_end_array_member(struct btf_show *show)
1348 {
1349 	show->state.array_member = 0;
1350 	btf_show_end_member(show);
1351 }
1352 
1353 static void *btf_show_start_array_type(struct btf_show *show,
1354 				       const struct btf_type *t,
1355 				       u32 type_id,
1356 				       u16 array_encoding,
1357 				       void *data)
1358 {
1359 	show->state.array_encoding = array_encoding;
1360 	show->state.array_terminated = 0;
1361 	return btf_show_start_aggr_type(show, t, type_id, data);
1362 }
1363 
1364 static void btf_show_end_array_type(struct btf_show *show)
1365 {
1366 	show->state.array_encoding = 0;
1367 	show->state.array_terminated = 0;
1368 	btf_show_end_aggr_type(show, "]");
1369 }
1370 
1371 static void *btf_show_start_struct_type(struct btf_show *show,
1372 					const struct btf_type *t,
1373 					u32 type_id,
1374 					void *data)
1375 {
1376 	return btf_show_start_aggr_type(show, t, type_id, data);
1377 }
1378 
1379 static void btf_show_end_struct_type(struct btf_show *show)
1380 {
1381 	btf_show_end_aggr_type(show, "}");
1382 }
1383 
1384 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1385 					      const char *fmt, ...)
1386 {
1387 	va_list args;
1388 
1389 	va_start(args, fmt);
1390 	bpf_verifier_vlog(log, fmt, args);
1391 	va_end(args);
1392 }
1393 
1394 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1395 					    const char *fmt, ...)
1396 {
1397 	struct bpf_verifier_log *log = &env->log;
1398 	va_list args;
1399 
1400 	if (!bpf_verifier_log_needed(log))
1401 		return;
1402 
1403 	va_start(args, fmt);
1404 	bpf_verifier_vlog(log, fmt, args);
1405 	va_end(args);
1406 }
1407 
1408 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1409 						   const struct btf_type *t,
1410 						   bool log_details,
1411 						   const char *fmt, ...)
1412 {
1413 	struct bpf_verifier_log *log = &env->log;
1414 	struct btf *btf = env->btf;
1415 	va_list args;
1416 
1417 	if (!bpf_verifier_log_needed(log))
1418 		return;
1419 
1420 	if (log->level == BPF_LOG_KERNEL) {
1421 		/* btf verifier prints all types it is processing via
1422 		 * btf_verifier_log_type(..., fmt = NULL).
1423 		 * Skip those prints for in-kernel BTF verification.
1424 		 */
1425 		if (!fmt)
1426 			return;
1427 
1428 		/* Skip logging when loading module BTF with mismatches permitted */
1429 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1430 			return;
1431 	}
1432 
1433 	__btf_verifier_log(log, "[%u] %s %s%s",
1434 			   env->log_type_id,
1435 			   btf_type_str(t),
1436 			   __btf_name_by_offset(btf, t->name_off),
1437 			   log_details ? " " : "");
1438 
1439 	if (log_details)
1440 		btf_type_ops(t)->log_details(env, t);
1441 
1442 	if (fmt && *fmt) {
1443 		__btf_verifier_log(log, " ");
1444 		va_start(args, fmt);
1445 		bpf_verifier_vlog(log, fmt, args);
1446 		va_end(args);
1447 	}
1448 
1449 	__btf_verifier_log(log, "\n");
1450 }
1451 
1452 #define btf_verifier_log_type(env, t, ...) \
1453 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1454 #define btf_verifier_log_basic(env, t, ...) \
1455 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1456 
1457 __printf(4, 5)
1458 static void btf_verifier_log_member(struct btf_verifier_env *env,
1459 				    const struct btf_type *struct_type,
1460 				    const struct btf_member *member,
1461 				    const char *fmt, ...)
1462 {
1463 	struct bpf_verifier_log *log = &env->log;
1464 	struct btf *btf = env->btf;
1465 	va_list args;
1466 
1467 	if (!bpf_verifier_log_needed(log))
1468 		return;
1469 
1470 	if (log->level == BPF_LOG_KERNEL) {
1471 		if (!fmt)
1472 			return;
1473 
1474 		/* Skip logging when loading module BTF with mismatches permitted */
1475 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1476 			return;
1477 	}
1478 
1479 	/* The CHECK_META phase already did a btf dump.
1480 	 *
1481 	 * If member is logged again, it must hit an error in
1482 	 * parsing this member.  It is useful to print out which
1483 	 * struct this member belongs to.
1484 	 */
1485 	if (env->phase != CHECK_META)
1486 		btf_verifier_log_type(env, struct_type, NULL);
1487 
1488 	if (btf_type_kflag(struct_type))
1489 		__btf_verifier_log(log,
1490 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1491 				   __btf_name_by_offset(btf, member->name_off),
1492 				   member->type,
1493 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1494 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1495 	else
1496 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1497 				   __btf_name_by_offset(btf, member->name_off),
1498 				   member->type, member->offset);
1499 
1500 	if (fmt && *fmt) {
1501 		__btf_verifier_log(log, " ");
1502 		va_start(args, fmt);
1503 		bpf_verifier_vlog(log, fmt, args);
1504 		va_end(args);
1505 	}
1506 
1507 	__btf_verifier_log(log, "\n");
1508 }
1509 
1510 __printf(4, 5)
1511 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1512 				 const struct btf_type *datasec_type,
1513 				 const struct btf_var_secinfo *vsi,
1514 				 const char *fmt, ...)
1515 {
1516 	struct bpf_verifier_log *log = &env->log;
1517 	va_list args;
1518 
1519 	if (!bpf_verifier_log_needed(log))
1520 		return;
1521 	if (log->level == BPF_LOG_KERNEL && !fmt)
1522 		return;
1523 	if (env->phase != CHECK_META)
1524 		btf_verifier_log_type(env, datasec_type, NULL);
1525 
1526 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1527 			   vsi->type, vsi->offset, vsi->size);
1528 	if (fmt && *fmt) {
1529 		__btf_verifier_log(log, " ");
1530 		va_start(args, fmt);
1531 		bpf_verifier_vlog(log, fmt, args);
1532 		va_end(args);
1533 	}
1534 
1535 	__btf_verifier_log(log, "\n");
1536 }
1537 
1538 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1539 				 u32 btf_data_size)
1540 {
1541 	struct bpf_verifier_log *log = &env->log;
1542 	const struct btf *btf = env->btf;
1543 	const struct btf_header *hdr;
1544 
1545 	if (!bpf_verifier_log_needed(log))
1546 		return;
1547 
1548 	if (log->level == BPF_LOG_KERNEL)
1549 		return;
1550 	hdr = &btf->hdr;
1551 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1552 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1553 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1554 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1555 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1556 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1557 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1558 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1559 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1560 }
1561 
1562 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1563 {
1564 	struct btf *btf = env->btf;
1565 
1566 	if (btf->types_size == btf->nr_types) {
1567 		/* Expand 'types' array */
1568 
1569 		struct btf_type **new_types;
1570 		u32 expand_by, new_size;
1571 
1572 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1573 			btf_verifier_log(env, "Exceeded max num of types");
1574 			return -E2BIG;
1575 		}
1576 
1577 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1578 		new_size = min_t(u32, BTF_MAX_TYPE,
1579 				 btf->types_size + expand_by);
1580 
1581 		new_types = kvcalloc(new_size, sizeof(*new_types),
1582 				     GFP_KERNEL | __GFP_NOWARN);
1583 		if (!new_types)
1584 			return -ENOMEM;
1585 
1586 		if (btf->nr_types == 0) {
1587 			if (!btf->base_btf) {
1588 				/* lazily init VOID type */
1589 				new_types[0] = &btf_void;
1590 				btf->nr_types++;
1591 			}
1592 		} else {
1593 			memcpy(new_types, btf->types,
1594 			       sizeof(*btf->types) * btf->nr_types);
1595 		}
1596 
1597 		kvfree(btf->types);
1598 		btf->types = new_types;
1599 		btf->types_size = new_size;
1600 	}
1601 
1602 	btf->types[btf->nr_types++] = t;
1603 
1604 	return 0;
1605 }
1606 
1607 static int btf_alloc_id(struct btf *btf)
1608 {
1609 	int id;
1610 
1611 	idr_preload(GFP_KERNEL);
1612 	spin_lock_bh(&btf_idr_lock);
1613 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1614 	if (id > 0)
1615 		btf->id = id;
1616 	spin_unlock_bh(&btf_idr_lock);
1617 	idr_preload_end();
1618 
1619 	if (WARN_ON_ONCE(!id))
1620 		return -ENOSPC;
1621 
1622 	return id > 0 ? 0 : id;
1623 }
1624 
1625 static void btf_free_id(struct btf *btf)
1626 {
1627 	unsigned long flags;
1628 
1629 	/*
1630 	 * In map-in-map, calling map_delete_elem() on outer
1631 	 * map will call bpf_map_put on the inner map.
1632 	 * It will then eventually call btf_free_id()
1633 	 * on the inner map.  Some of the map_delete_elem()
1634 	 * implementation may have irq disabled, so
1635 	 * we need to use the _irqsave() version instead
1636 	 * of the _bh() version.
1637 	 */
1638 	spin_lock_irqsave(&btf_idr_lock, flags);
1639 	idr_remove(&btf_idr, btf->id);
1640 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1641 }
1642 
1643 static void btf_free_kfunc_set_tab(struct btf *btf)
1644 {
1645 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1646 	int hook;
1647 
1648 	if (!tab)
1649 		return;
1650 	/* For module BTF, we directly assign the sets being registered, so
1651 	 * there is nothing to free except kfunc_set_tab.
1652 	 */
1653 	if (btf_is_module(btf))
1654 		goto free_tab;
1655 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1656 		kfree(tab->sets[hook]);
1657 free_tab:
1658 	kfree(tab);
1659 	btf->kfunc_set_tab = NULL;
1660 }
1661 
1662 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1663 {
1664 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1665 
1666 	if (!tab)
1667 		return;
1668 	kfree(tab);
1669 	btf->dtor_kfunc_tab = NULL;
1670 }
1671 
1672 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1673 {
1674 	int i;
1675 
1676 	if (!tab)
1677 		return;
1678 	for (i = 0; i < tab->cnt; i++)
1679 		btf_record_free(tab->types[i].record);
1680 	kfree(tab);
1681 }
1682 
1683 static void btf_free_struct_meta_tab(struct btf *btf)
1684 {
1685 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1686 
1687 	btf_struct_metas_free(tab);
1688 	btf->struct_meta_tab = NULL;
1689 }
1690 
1691 static void btf_free(struct btf *btf)
1692 {
1693 	btf_free_struct_meta_tab(btf);
1694 	btf_free_dtor_kfunc_tab(btf);
1695 	btf_free_kfunc_set_tab(btf);
1696 	kvfree(btf->types);
1697 	kvfree(btf->resolved_sizes);
1698 	kvfree(btf->resolved_ids);
1699 	kvfree(btf->data);
1700 	kfree(btf);
1701 }
1702 
1703 static void btf_free_rcu(struct rcu_head *rcu)
1704 {
1705 	struct btf *btf = container_of(rcu, struct btf, rcu);
1706 
1707 	btf_free(btf);
1708 }
1709 
1710 void btf_get(struct btf *btf)
1711 {
1712 	refcount_inc(&btf->refcnt);
1713 }
1714 
1715 void btf_put(struct btf *btf)
1716 {
1717 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1718 		btf_free_id(btf);
1719 		call_rcu(&btf->rcu, btf_free_rcu);
1720 	}
1721 }
1722 
1723 static int env_resolve_init(struct btf_verifier_env *env)
1724 {
1725 	struct btf *btf = env->btf;
1726 	u32 nr_types = btf->nr_types;
1727 	u32 *resolved_sizes = NULL;
1728 	u32 *resolved_ids = NULL;
1729 	u8 *visit_states = NULL;
1730 
1731 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1732 				  GFP_KERNEL | __GFP_NOWARN);
1733 	if (!resolved_sizes)
1734 		goto nomem;
1735 
1736 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1737 				GFP_KERNEL | __GFP_NOWARN);
1738 	if (!resolved_ids)
1739 		goto nomem;
1740 
1741 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1742 				GFP_KERNEL | __GFP_NOWARN);
1743 	if (!visit_states)
1744 		goto nomem;
1745 
1746 	btf->resolved_sizes = resolved_sizes;
1747 	btf->resolved_ids = resolved_ids;
1748 	env->visit_states = visit_states;
1749 
1750 	return 0;
1751 
1752 nomem:
1753 	kvfree(resolved_sizes);
1754 	kvfree(resolved_ids);
1755 	kvfree(visit_states);
1756 	return -ENOMEM;
1757 }
1758 
1759 static void btf_verifier_env_free(struct btf_verifier_env *env)
1760 {
1761 	kvfree(env->visit_states);
1762 	kfree(env);
1763 }
1764 
1765 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1766 				     const struct btf_type *next_type)
1767 {
1768 	switch (env->resolve_mode) {
1769 	case RESOLVE_TBD:
1770 		/* int, enum or void is a sink */
1771 		return !btf_type_needs_resolve(next_type);
1772 	case RESOLVE_PTR:
1773 		/* int, enum, void, struct, array, func or func_proto is a sink
1774 		 * for ptr
1775 		 */
1776 		return !btf_type_is_modifier(next_type) &&
1777 			!btf_type_is_ptr(next_type);
1778 	case RESOLVE_STRUCT_OR_ARRAY:
1779 		/* int, enum, void, ptr, func or func_proto is a sink
1780 		 * for struct and array
1781 		 */
1782 		return !btf_type_is_modifier(next_type) &&
1783 			!btf_type_is_array(next_type) &&
1784 			!btf_type_is_struct(next_type);
1785 	default:
1786 		BUG();
1787 	}
1788 }
1789 
1790 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1791 				 u32 type_id)
1792 {
1793 	/* base BTF types should be resolved by now */
1794 	if (type_id < env->btf->start_id)
1795 		return true;
1796 
1797 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1798 }
1799 
1800 static int env_stack_push(struct btf_verifier_env *env,
1801 			  const struct btf_type *t, u32 type_id)
1802 {
1803 	const struct btf *btf = env->btf;
1804 	struct resolve_vertex *v;
1805 
1806 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1807 		return -E2BIG;
1808 
1809 	if (type_id < btf->start_id
1810 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1811 		return -EEXIST;
1812 
1813 	env->visit_states[type_id - btf->start_id] = VISITED;
1814 
1815 	v = &env->stack[env->top_stack++];
1816 	v->t = t;
1817 	v->type_id = type_id;
1818 	v->next_member = 0;
1819 
1820 	if (env->resolve_mode == RESOLVE_TBD) {
1821 		if (btf_type_is_ptr(t))
1822 			env->resolve_mode = RESOLVE_PTR;
1823 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1824 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static void env_stack_set_next_member(struct btf_verifier_env *env,
1831 				      u16 next_member)
1832 {
1833 	env->stack[env->top_stack - 1].next_member = next_member;
1834 }
1835 
1836 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1837 				   u32 resolved_type_id,
1838 				   u32 resolved_size)
1839 {
1840 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1841 	struct btf *btf = env->btf;
1842 
1843 	type_id -= btf->start_id; /* adjust to local type id */
1844 	btf->resolved_sizes[type_id] = resolved_size;
1845 	btf->resolved_ids[type_id] = resolved_type_id;
1846 	env->visit_states[type_id] = RESOLVED;
1847 }
1848 
1849 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1850 {
1851 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1852 }
1853 
1854 /* Resolve the size of a passed-in "type"
1855  *
1856  * type: is an array (e.g. u32 array[x][y])
1857  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1858  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1859  *             corresponds to the return type.
1860  * *elem_type: u32
1861  * *elem_id: id of u32
1862  * *total_nelems: (x * y).  Hence, individual elem size is
1863  *                (*type_size / *total_nelems)
1864  * *type_id: id of type if it's changed within the function, 0 if not
1865  *
1866  * type: is not an array (e.g. const struct X)
1867  * return type: type "struct X"
1868  * *type_size: sizeof(struct X)
1869  * *elem_type: same as return type ("struct X")
1870  * *elem_id: 0
1871  * *total_nelems: 1
1872  * *type_id: id of type if it's changed within the function, 0 if not
1873  */
1874 static const struct btf_type *
1875 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1876 		   u32 *type_size, const struct btf_type **elem_type,
1877 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1878 {
1879 	const struct btf_type *array_type = NULL;
1880 	const struct btf_array *array = NULL;
1881 	u32 i, size, nelems = 1, id = 0;
1882 
1883 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1884 		switch (BTF_INFO_KIND(type->info)) {
1885 		/* type->size can be used */
1886 		case BTF_KIND_INT:
1887 		case BTF_KIND_STRUCT:
1888 		case BTF_KIND_UNION:
1889 		case BTF_KIND_ENUM:
1890 		case BTF_KIND_FLOAT:
1891 		case BTF_KIND_ENUM64:
1892 			size = type->size;
1893 			goto resolved;
1894 
1895 		case BTF_KIND_PTR:
1896 			size = sizeof(void *);
1897 			goto resolved;
1898 
1899 		/* Modifiers */
1900 		case BTF_KIND_TYPEDEF:
1901 		case BTF_KIND_VOLATILE:
1902 		case BTF_KIND_CONST:
1903 		case BTF_KIND_RESTRICT:
1904 		case BTF_KIND_TYPE_TAG:
1905 			id = type->type;
1906 			type = btf_type_by_id(btf, type->type);
1907 			break;
1908 
1909 		case BTF_KIND_ARRAY:
1910 			if (!array_type)
1911 				array_type = type;
1912 			array = btf_type_array(type);
1913 			if (nelems && array->nelems > U32_MAX / nelems)
1914 				return ERR_PTR(-EINVAL);
1915 			nelems *= array->nelems;
1916 			type = btf_type_by_id(btf, array->type);
1917 			break;
1918 
1919 		/* type without size */
1920 		default:
1921 			return ERR_PTR(-EINVAL);
1922 		}
1923 	}
1924 
1925 	return ERR_PTR(-EINVAL);
1926 
1927 resolved:
1928 	if (nelems && size > U32_MAX / nelems)
1929 		return ERR_PTR(-EINVAL);
1930 
1931 	*type_size = nelems * size;
1932 	if (total_nelems)
1933 		*total_nelems = nelems;
1934 	if (elem_type)
1935 		*elem_type = type;
1936 	if (elem_id)
1937 		*elem_id = array ? array->type : 0;
1938 	if (type_id && id)
1939 		*type_id = id;
1940 
1941 	return array_type ? : type;
1942 }
1943 
1944 const struct btf_type *
1945 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1946 		 u32 *type_size)
1947 {
1948 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1949 }
1950 
1951 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1952 {
1953 	while (type_id < btf->start_id)
1954 		btf = btf->base_btf;
1955 
1956 	return btf->resolved_ids[type_id - btf->start_id];
1957 }
1958 
1959 /* The input param "type_id" must point to a needs_resolve type */
1960 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1961 						  u32 *type_id)
1962 {
1963 	*type_id = btf_resolved_type_id(btf, *type_id);
1964 	return btf_type_by_id(btf, *type_id);
1965 }
1966 
1967 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1968 {
1969 	while (type_id < btf->start_id)
1970 		btf = btf->base_btf;
1971 
1972 	return btf->resolved_sizes[type_id - btf->start_id];
1973 }
1974 
1975 const struct btf_type *btf_type_id_size(const struct btf *btf,
1976 					u32 *type_id, u32 *ret_size)
1977 {
1978 	const struct btf_type *size_type;
1979 	u32 size_type_id = *type_id;
1980 	u32 size = 0;
1981 
1982 	size_type = btf_type_by_id(btf, size_type_id);
1983 	if (btf_type_nosize_or_null(size_type))
1984 		return NULL;
1985 
1986 	if (btf_type_has_size(size_type)) {
1987 		size = size_type->size;
1988 	} else if (btf_type_is_array(size_type)) {
1989 		size = btf_resolved_type_size(btf, size_type_id);
1990 	} else if (btf_type_is_ptr(size_type)) {
1991 		size = sizeof(void *);
1992 	} else {
1993 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1994 				 !btf_type_is_var(size_type)))
1995 			return NULL;
1996 
1997 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1998 		size_type = btf_type_by_id(btf, size_type_id);
1999 		if (btf_type_nosize_or_null(size_type))
2000 			return NULL;
2001 		else if (btf_type_has_size(size_type))
2002 			size = size_type->size;
2003 		else if (btf_type_is_array(size_type))
2004 			size = btf_resolved_type_size(btf, size_type_id);
2005 		else if (btf_type_is_ptr(size_type))
2006 			size = sizeof(void *);
2007 		else
2008 			return NULL;
2009 	}
2010 
2011 	*type_id = size_type_id;
2012 	if (ret_size)
2013 		*ret_size = size;
2014 
2015 	return size_type;
2016 }
2017 
2018 static int btf_df_check_member(struct btf_verifier_env *env,
2019 			       const struct btf_type *struct_type,
2020 			       const struct btf_member *member,
2021 			       const struct btf_type *member_type)
2022 {
2023 	btf_verifier_log_basic(env, struct_type,
2024 			       "Unsupported check_member");
2025 	return -EINVAL;
2026 }
2027 
2028 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2029 				     const struct btf_type *struct_type,
2030 				     const struct btf_member *member,
2031 				     const struct btf_type *member_type)
2032 {
2033 	btf_verifier_log_basic(env, struct_type,
2034 			       "Unsupported check_kflag_member");
2035 	return -EINVAL;
2036 }
2037 
2038 /* Used for ptr, array struct/union and float type members.
2039  * int, enum and modifier types have their specific callback functions.
2040  */
2041 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2042 					  const struct btf_type *struct_type,
2043 					  const struct btf_member *member,
2044 					  const struct btf_type *member_type)
2045 {
2046 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2047 		btf_verifier_log_member(env, struct_type, member,
2048 					"Invalid member bitfield_size");
2049 		return -EINVAL;
2050 	}
2051 
2052 	/* bitfield size is 0, so member->offset represents bit offset only.
2053 	 * It is safe to call non kflag check_member variants.
2054 	 */
2055 	return btf_type_ops(member_type)->check_member(env, struct_type,
2056 						       member,
2057 						       member_type);
2058 }
2059 
2060 static int btf_df_resolve(struct btf_verifier_env *env,
2061 			  const struct resolve_vertex *v)
2062 {
2063 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2064 	return -EINVAL;
2065 }
2066 
2067 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2068 			u32 type_id, void *data, u8 bits_offsets,
2069 			struct btf_show *show)
2070 {
2071 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2072 }
2073 
2074 static int btf_int_check_member(struct btf_verifier_env *env,
2075 				const struct btf_type *struct_type,
2076 				const struct btf_member *member,
2077 				const struct btf_type *member_type)
2078 {
2079 	u32 int_data = btf_type_int(member_type);
2080 	u32 struct_bits_off = member->offset;
2081 	u32 struct_size = struct_type->size;
2082 	u32 nr_copy_bits;
2083 	u32 bytes_offset;
2084 
2085 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2086 		btf_verifier_log_member(env, struct_type, member,
2087 					"bits_offset exceeds U32_MAX");
2088 		return -EINVAL;
2089 	}
2090 
2091 	struct_bits_off += BTF_INT_OFFSET(int_data);
2092 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2093 	nr_copy_bits = BTF_INT_BITS(int_data) +
2094 		BITS_PER_BYTE_MASKED(struct_bits_off);
2095 
2096 	if (nr_copy_bits > BITS_PER_U128) {
2097 		btf_verifier_log_member(env, struct_type, member,
2098 					"nr_copy_bits exceeds 128");
2099 		return -EINVAL;
2100 	}
2101 
2102 	if (struct_size < bytes_offset ||
2103 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2104 		btf_verifier_log_member(env, struct_type, member,
2105 					"Member exceeds struct_size");
2106 		return -EINVAL;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2113 				      const struct btf_type *struct_type,
2114 				      const struct btf_member *member,
2115 				      const struct btf_type *member_type)
2116 {
2117 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2118 	u32 int_data = btf_type_int(member_type);
2119 	u32 struct_size = struct_type->size;
2120 	u32 nr_copy_bits;
2121 
2122 	/* a regular int type is required for the kflag int member */
2123 	if (!btf_type_int_is_regular(member_type)) {
2124 		btf_verifier_log_member(env, struct_type, member,
2125 					"Invalid member base type");
2126 		return -EINVAL;
2127 	}
2128 
2129 	/* check sanity of bitfield size */
2130 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2131 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2132 	nr_int_data_bits = BTF_INT_BITS(int_data);
2133 	if (!nr_bits) {
2134 		/* Not a bitfield member, member offset must be at byte
2135 		 * boundary.
2136 		 */
2137 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2138 			btf_verifier_log_member(env, struct_type, member,
2139 						"Invalid member offset");
2140 			return -EINVAL;
2141 		}
2142 
2143 		nr_bits = nr_int_data_bits;
2144 	} else if (nr_bits > nr_int_data_bits) {
2145 		btf_verifier_log_member(env, struct_type, member,
2146 					"Invalid member bitfield_size");
2147 		return -EINVAL;
2148 	}
2149 
2150 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2151 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2152 	if (nr_copy_bits > BITS_PER_U128) {
2153 		btf_verifier_log_member(env, struct_type, member,
2154 					"nr_copy_bits exceeds 128");
2155 		return -EINVAL;
2156 	}
2157 
2158 	if (struct_size < bytes_offset ||
2159 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2160 		btf_verifier_log_member(env, struct_type, member,
2161 					"Member exceeds struct_size");
2162 		return -EINVAL;
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2169 			      const struct btf_type *t,
2170 			      u32 meta_left)
2171 {
2172 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2173 	u16 encoding;
2174 
2175 	if (meta_left < meta_needed) {
2176 		btf_verifier_log_basic(env, t,
2177 				       "meta_left:%u meta_needed:%u",
2178 				       meta_left, meta_needed);
2179 		return -EINVAL;
2180 	}
2181 
2182 	if (btf_type_vlen(t)) {
2183 		btf_verifier_log_type(env, t, "vlen != 0");
2184 		return -EINVAL;
2185 	}
2186 
2187 	if (btf_type_kflag(t)) {
2188 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2189 		return -EINVAL;
2190 	}
2191 
2192 	int_data = btf_type_int(t);
2193 	if (int_data & ~BTF_INT_MASK) {
2194 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2195 				       int_data);
2196 		return -EINVAL;
2197 	}
2198 
2199 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2200 
2201 	if (nr_bits > BITS_PER_U128) {
2202 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2203 				      BITS_PER_U128);
2204 		return -EINVAL;
2205 	}
2206 
2207 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2208 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2209 		return -EINVAL;
2210 	}
2211 
2212 	/*
2213 	 * Only one of the encoding bits is allowed and it
2214 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2215 	 * Multiple bits can be allowed later if it is found
2216 	 * to be insufficient.
2217 	 */
2218 	encoding = BTF_INT_ENCODING(int_data);
2219 	if (encoding &&
2220 	    encoding != BTF_INT_SIGNED &&
2221 	    encoding != BTF_INT_CHAR &&
2222 	    encoding != BTF_INT_BOOL) {
2223 		btf_verifier_log_type(env, t, "Unsupported encoding");
2224 		return -ENOTSUPP;
2225 	}
2226 
2227 	btf_verifier_log_type(env, t, NULL);
2228 
2229 	return meta_needed;
2230 }
2231 
2232 static void btf_int_log(struct btf_verifier_env *env,
2233 			const struct btf_type *t)
2234 {
2235 	int int_data = btf_type_int(t);
2236 
2237 	btf_verifier_log(env,
2238 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2239 			 t->size, BTF_INT_OFFSET(int_data),
2240 			 BTF_INT_BITS(int_data),
2241 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2242 }
2243 
2244 static void btf_int128_print(struct btf_show *show, void *data)
2245 {
2246 	/* data points to a __int128 number.
2247 	 * Suppose
2248 	 *     int128_num = *(__int128 *)data;
2249 	 * The below formulas shows what upper_num and lower_num represents:
2250 	 *     upper_num = int128_num >> 64;
2251 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2252 	 */
2253 	u64 upper_num, lower_num;
2254 
2255 #ifdef __BIG_ENDIAN_BITFIELD
2256 	upper_num = *(u64 *)data;
2257 	lower_num = *(u64 *)(data + 8);
2258 #else
2259 	upper_num = *(u64 *)(data + 8);
2260 	lower_num = *(u64 *)data;
2261 #endif
2262 	if (upper_num == 0)
2263 		btf_show_type_value(show, "0x%llx", lower_num);
2264 	else
2265 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2266 				     lower_num);
2267 }
2268 
2269 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2270 			     u16 right_shift_bits)
2271 {
2272 	u64 upper_num, lower_num;
2273 
2274 #ifdef __BIG_ENDIAN_BITFIELD
2275 	upper_num = print_num[0];
2276 	lower_num = print_num[1];
2277 #else
2278 	upper_num = print_num[1];
2279 	lower_num = print_num[0];
2280 #endif
2281 
2282 	/* shake out un-needed bits by shift/or operations */
2283 	if (left_shift_bits >= 64) {
2284 		upper_num = lower_num << (left_shift_bits - 64);
2285 		lower_num = 0;
2286 	} else {
2287 		upper_num = (upper_num << left_shift_bits) |
2288 			    (lower_num >> (64 - left_shift_bits));
2289 		lower_num = lower_num << left_shift_bits;
2290 	}
2291 
2292 	if (right_shift_bits >= 64) {
2293 		lower_num = upper_num >> (right_shift_bits - 64);
2294 		upper_num = 0;
2295 	} else {
2296 		lower_num = (lower_num >> right_shift_bits) |
2297 			    (upper_num << (64 - right_shift_bits));
2298 		upper_num = upper_num >> right_shift_bits;
2299 	}
2300 
2301 #ifdef __BIG_ENDIAN_BITFIELD
2302 	print_num[0] = upper_num;
2303 	print_num[1] = lower_num;
2304 #else
2305 	print_num[0] = lower_num;
2306 	print_num[1] = upper_num;
2307 #endif
2308 }
2309 
2310 static void btf_bitfield_show(void *data, u8 bits_offset,
2311 			      u8 nr_bits, struct btf_show *show)
2312 {
2313 	u16 left_shift_bits, right_shift_bits;
2314 	u8 nr_copy_bytes;
2315 	u8 nr_copy_bits;
2316 	u64 print_num[2] = {};
2317 
2318 	nr_copy_bits = nr_bits + bits_offset;
2319 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2320 
2321 	memcpy(print_num, data, nr_copy_bytes);
2322 
2323 #ifdef __BIG_ENDIAN_BITFIELD
2324 	left_shift_bits = bits_offset;
2325 #else
2326 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2327 #endif
2328 	right_shift_bits = BITS_PER_U128 - nr_bits;
2329 
2330 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2331 	btf_int128_print(show, print_num);
2332 }
2333 
2334 
2335 static void btf_int_bits_show(const struct btf *btf,
2336 			      const struct btf_type *t,
2337 			      void *data, u8 bits_offset,
2338 			      struct btf_show *show)
2339 {
2340 	u32 int_data = btf_type_int(t);
2341 	u8 nr_bits = BTF_INT_BITS(int_data);
2342 	u8 total_bits_offset;
2343 
2344 	/*
2345 	 * bits_offset is at most 7.
2346 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2347 	 */
2348 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2349 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2350 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2351 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2352 }
2353 
2354 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2355 			 u32 type_id, void *data, u8 bits_offset,
2356 			 struct btf_show *show)
2357 {
2358 	u32 int_data = btf_type_int(t);
2359 	u8 encoding = BTF_INT_ENCODING(int_data);
2360 	bool sign = encoding & BTF_INT_SIGNED;
2361 	u8 nr_bits = BTF_INT_BITS(int_data);
2362 	void *safe_data;
2363 
2364 	safe_data = btf_show_start_type(show, t, type_id, data);
2365 	if (!safe_data)
2366 		return;
2367 
2368 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2369 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2370 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2371 		goto out;
2372 	}
2373 
2374 	switch (nr_bits) {
2375 	case 128:
2376 		btf_int128_print(show, safe_data);
2377 		break;
2378 	case 64:
2379 		if (sign)
2380 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2381 		else
2382 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2383 		break;
2384 	case 32:
2385 		if (sign)
2386 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2387 		else
2388 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2389 		break;
2390 	case 16:
2391 		if (sign)
2392 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2393 		else
2394 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2395 		break;
2396 	case 8:
2397 		if (show->state.array_encoding == BTF_INT_CHAR) {
2398 			/* check for null terminator */
2399 			if (show->state.array_terminated)
2400 				break;
2401 			if (*(char *)data == '\0') {
2402 				show->state.array_terminated = 1;
2403 				break;
2404 			}
2405 			if (isprint(*(char *)data)) {
2406 				btf_show_type_value(show, "'%c'",
2407 						    *(char *)safe_data);
2408 				break;
2409 			}
2410 		}
2411 		if (sign)
2412 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2413 		else
2414 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2415 		break;
2416 	default:
2417 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2418 		break;
2419 	}
2420 out:
2421 	btf_show_end_type(show);
2422 }
2423 
2424 static const struct btf_kind_operations int_ops = {
2425 	.check_meta = btf_int_check_meta,
2426 	.resolve = btf_df_resolve,
2427 	.check_member = btf_int_check_member,
2428 	.check_kflag_member = btf_int_check_kflag_member,
2429 	.log_details = btf_int_log,
2430 	.show = btf_int_show,
2431 };
2432 
2433 static int btf_modifier_check_member(struct btf_verifier_env *env,
2434 				     const struct btf_type *struct_type,
2435 				     const struct btf_member *member,
2436 				     const struct btf_type *member_type)
2437 {
2438 	const struct btf_type *resolved_type;
2439 	u32 resolved_type_id = member->type;
2440 	struct btf_member resolved_member;
2441 	struct btf *btf = env->btf;
2442 
2443 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2444 	if (!resolved_type) {
2445 		btf_verifier_log_member(env, struct_type, member,
2446 					"Invalid member");
2447 		return -EINVAL;
2448 	}
2449 
2450 	resolved_member = *member;
2451 	resolved_member.type = resolved_type_id;
2452 
2453 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2454 							 &resolved_member,
2455 							 resolved_type);
2456 }
2457 
2458 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2459 					   const struct btf_type *struct_type,
2460 					   const struct btf_member *member,
2461 					   const struct btf_type *member_type)
2462 {
2463 	const struct btf_type *resolved_type;
2464 	u32 resolved_type_id = member->type;
2465 	struct btf_member resolved_member;
2466 	struct btf *btf = env->btf;
2467 
2468 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2469 	if (!resolved_type) {
2470 		btf_verifier_log_member(env, struct_type, member,
2471 					"Invalid member");
2472 		return -EINVAL;
2473 	}
2474 
2475 	resolved_member = *member;
2476 	resolved_member.type = resolved_type_id;
2477 
2478 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2479 							       &resolved_member,
2480 							       resolved_type);
2481 }
2482 
2483 static int btf_ptr_check_member(struct btf_verifier_env *env,
2484 				const struct btf_type *struct_type,
2485 				const struct btf_member *member,
2486 				const struct btf_type *member_type)
2487 {
2488 	u32 struct_size, struct_bits_off, bytes_offset;
2489 
2490 	struct_size = struct_type->size;
2491 	struct_bits_off = member->offset;
2492 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2493 
2494 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2495 		btf_verifier_log_member(env, struct_type, member,
2496 					"Member is not byte aligned");
2497 		return -EINVAL;
2498 	}
2499 
2500 	if (struct_size - bytes_offset < sizeof(void *)) {
2501 		btf_verifier_log_member(env, struct_type, member,
2502 					"Member exceeds struct_size");
2503 		return -EINVAL;
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2510 				   const struct btf_type *t,
2511 				   u32 meta_left)
2512 {
2513 	const char *value;
2514 
2515 	if (btf_type_vlen(t)) {
2516 		btf_verifier_log_type(env, t, "vlen != 0");
2517 		return -EINVAL;
2518 	}
2519 
2520 	if (btf_type_kflag(t)) {
2521 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2522 		return -EINVAL;
2523 	}
2524 
2525 	if (!BTF_TYPE_ID_VALID(t->type)) {
2526 		btf_verifier_log_type(env, t, "Invalid type_id");
2527 		return -EINVAL;
2528 	}
2529 
2530 	/* typedef/type_tag type must have a valid name, and other ref types,
2531 	 * volatile, const, restrict, should have a null name.
2532 	 */
2533 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2534 		if (!t->name_off ||
2535 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2536 			btf_verifier_log_type(env, t, "Invalid name");
2537 			return -EINVAL;
2538 		}
2539 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2540 		value = btf_name_by_offset(env->btf, t->name_off);
2541 		if (!value || !value[0]) {
2542 			btf_verifier_log_type(env, t, "Invalid name");
2543 			return -EINVAL;
2544 		}
2545 	} else {
2546 		if (t->name_off) {
2547 			btf_verifier_log_type(env, t, "Invalid name");
2548 			return -EINVAL;
2549 		}
2550 	}
2551 
2552 	btf_verifier_log_type(env, t, NULL);
2553 
2554 	return 0;
2555 }
2556 
2557 static int btf_modifier_resolve(struct btf_verifier_env *env,
2558 				const struct resolve_vertex *v)
2559 {
2560 	const struct btf_type *t = v->t;
2561 	const struct btf_type *next_type;
2562 	u32 next_type_id = t->type;
2563 	struct btf *btf = env->btf;
2564 
2565 	next_type = btf_type_by_id(btf, next_type_id);
2566 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2567 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2568 		return -EINVAL;
2569 	}
2570 
2571 	if (!env_type_is_resolve_sink(env, next_type) &&
2572 	    !env_type_is_resolved(env, next_type_id))
2573 		return env_stack_push(env, next_type, next_type_id);
2574 
2575 	/* Figure out the resolved next_type_id with size.
2576 	 * They will be stored in the current modifier's
2577 	 * resolved_ids and resolved_sizes such that it can
2578 	 * save us a few type-following when we use it later (e.g. in
2579 	 * pretty print).
2580 	 */
2581 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2582 		if (env_type_is_resolved(env, next_type_id))
2583 			next_type = btf_type_id_resolve(btf, &next_type_id);
2584 
2585 		/* "typedef void new_void", "const void"...etc */
2586 		if (!btf_type_is_void(next_type) &&
2587 		    !btf_type_is_fwd(next_type) &&
2588 		    !btf_type_is_func_proto(next_type)) {
2589 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2590 			return -EINVAL;
2591 		}
2592 	}
2593 
2594 	env_stack_pop_resolved(env, next_type_id, 0);
2595 
2596 	return 0;
2597 }
2598 
2599 static int btf_var_resolve(struct btf_verifier_env *env,
2600 			   const struct resolve_vertex *v)
2601 {
2602 	const struct btf_type *next_type;
2603 	const struct btf_type *t = v->t;
2604 	u32 next_type_id = t->type;
2605 	struct btf *btf = env->btf;
2606 
2607 	next_type = btf_type_by_id(btf, next_type_id);
2608 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2609 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (!env_type_is_resolve_sink(env, next_type) &&
2614 	    !env_type_is_resolved(env, next_type_id))
2615 		return env_stack_push(env, next_type, next_type_id);
2616 
2617 	if (btf_type_is_modifier(next_type)) {
2618 		const struct btf_type *resolved_type;
2619 		u32 resolved_type_id;
2620 
2621 		resolved_type_id = next_type_id;
2622 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2623 
2624 		if (btf_type_is_ptr(resolved_type) &&
2625 		    !env_type_is_resolve_sink(env, resolved_type) &&
2626 		    !env_type_is_resolved(env, resolved_type_id))
2627 			return env_stack_push(env, resolved_type,
2628 					      resolved_type_id);
2629 	}
2630 
2631 	/* We must resolve to something concrete at this point, no
2632 	 * forward types or similar that would resolve to size of
2633 	 * zero is allowed.
2634 	 */
2635 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2636 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2637 		return -EINVAL;
2638 	}
2639 
2640 	env_stack_pop_resolved(env, next_type_id, 0);
2641 
2642 	return 0;
2643 }
2644 
2645 static int btf_ptr_resolve(struct btf_verifier_env *env,
2646 			   const struct resolve_vertex *v)
2647 {
2648 	const struct btf_type *next_type;
2649 	const struct btf_type *t = v->t;
2650 	u32 next_type_id = t->type;
2651 	struct btf *btf = env->btf;
2652 
2653 	next_type = btf_type_by_id(btf, next_type_id);
2654 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2655 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (!env_type_is_resolve_sink(env, next_type) &&
2660 	    !env_type_is_resolved(env, next_type_id))
2661 		return env_stack_push(env, next_type, next_type_id);
2662 
2663 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2664 	 * the modifier may have stopped resolving when it was resolved
2665 	 * to a ptr (last-resolved-ptr).
2666 	 *
2667 	 * We now need to continue from the last-resolved-ptr to
2668 	 * ensure the last-resolved-ptr will not referring back to
2669 	 * the current ptr (t).
2670 	 */
2671 	if (btf_type_is_modifier(next_type)) {
2672 		const struct btf_type *resolved_type;
2673 		u32 resolved_type_id;
2674 
2675 		resolved_type_id = next_type_id;
2676 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2677 
2678 		if (btf_type_is_ptr(resolved_type) &&
2679 		    !env_type_is_resolve_sink(env, resolved_type) &&
2680 		    !env_type_is_resolved(env, resolved_type_id))
2681 			return env_stack_push(env, resolved_type,
2682 					      resolved_type_id);
2683 	}
2684 
2685 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2686 		if (env_type_is_resolved(env, next_type_id))
2687 			next_type = btf_type_id_resolve(btf, &next_type_id);
2688 
2689 		if (!btf_type_is_void(next_type) &&
2690 		    !btf_type_is_fwd(next_type) &&
2691 		    !btf_type_is_func_proto(next_type)) {
2692 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2693 			return -EINVAL;
2694 		}
2695 	}
2696 
2697 	env_stack_pop_resolved(env, next_type_id, 0);
2698 
2699 	return 0;
2700 }
2701 
2702 static void btf_modifier_show(const struct btf *btf,
2703 			      const struct btf_type *t,
2704 			      u32 type_id, void *data,
2705 			      u8 bits_offset, struct btf_show *show)
2706 {
2707 	if (btf->resolved_ids)
2708 		t = btf_type_id_resolve(btf, &type_id);
2709 	else
2710 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2711 
2712 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2713 }
2714 
2715 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2716 			 u32 type_id, void *data, u8 bits_offset,
2717 			 struct btf_show *show)
2718 {
2719 	t = btf_type_id_resolve(btf, &type_id);
2720 
2721 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2722 }
2723 
2724 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2725 			 u32 type_id, void *data, u8 bits_offset,
2726 			 struct btf_show *show)
2727 {
2728 	void *safe_data;
2729 
2730 	safe_data = btf_show_start_type(show, t, type_id, data);
2731 	if (!safe_data)
2732 		return;
2733 
2734 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2735 	if (show->flags & BTF_SHOW_PTR_RAW)
2736 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2737 	else
2738 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2739 	btf_show_end_type(show);
2740 }
2741 
2742 static void btf_ref_type_log(struct btf_verifier_env *env,
2743 			     const struct btf_type *t)
2744 {
2745 	btf_verifier_log(env, "type_id=%u", t->type);
2746 }
2747 
2748 static struct btf_kind_operations modifier_ops = {
2749 	.check_meta = btf_ref_type_check_meta,
2750 	.resolve = btf_modifier_resolve,
2751 	.check_member = btf_modifier_check_member,
2752 	.check_kflag_member = btf_modifier_check_kflag_member,
2753 	.log_details = btf_ref_type_log,
2754 	.show = btf_modifier_show,
2755 };
2756 
2757 static struct btf_kind_operations ptr_ops = {
2758 	.check_meta = btf_ref_type_check_meta,
2759 	.resolve = btf_ptr_resolve,
2760 	.check_member = btf_ptr_check_member,
2761 	.check_kflag_member = btf_generic_check_kflag_member,
2762 	.log_details = btf_ref_type_log,
2763 	.show = btf_ptr_show,
2764 };
2765 
2766 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2767 			      const struct btf_type *t,
2768 			      u32 meta_left)
2769 {
2770 	if (btf_type_vlen(t)) {
2771 		btf_verifier_log_type(env, t, "vlen != 0");
2772 		return -EINVAL;
2773 	}
2774 
2775 	if (t->type) {
2776 		btf_verifier_log_type(env, t, "type != 0");
2777 		return -EINVAL;
2778 	}
2779 
2780 	/* fwd type must have a valid name */
2781 	if (!t->name_off ||
2782 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2783 		btf_verifier_log_type(env, t, "Invalid name");
2784 		return -EINVAL;
2785 	}
2786 
2787 	btf_verifier_log_type(env, t, NULL);
2788 
2789 	return 0;
2790 }
2791 
2792 static void btf_fwd_type_log(struct btf_verifier_env *env,
2793 			     const struct btf_type *t)
2794 {
2795 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2796 }
2797 
2798 static struct btf_kind_operations fwd_ops = {
2799 	.check_meta = btf_fwd_check_meta,
2800 	.resolve = btf_df_resolve,
2801 	.check_member = btf_df_check_member,
2802 	.check_kflag_member = btf_df_check_kflag_member,
2803 	.log_details = btf_fwd_type_log,
2804 	.show = btf_df_show,
2805 };
2806 
2807 static int btf_array_check_member(struct btf_verifier_env *env,
2808 				  const struct btf_type *struct_type,
2809 				  const struct btf_member *member,
2810 				  const struct btf_type *member_type)
2811 {
2812 	u32 struct_bits_off = member->offset;
2813 	u32 struct_size, bytes_offset;
2814 	u32 array_type_id, array_size;
2815 	struct btf *btf = env->btf;
2816 
2817 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2818 		btf_verifier_log_member(env, struct_type, member,
2819 					"Member is not byte aligned");
2820 		return -EINVAL;
2821 	}
2822 
2823 	array_type_id = member->type;
2824 	btf_type_id_size(btf, &array_type_id, &array_size);
2825 	struct_size = struct_type->size;
2826 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2827 	if (struct_size - bytes_offset < array_size) {
2828 		btf_verifier_log_member(env, struct_type, member,
2829 					"Member exceeds struct_size");
2830 		return -EINVAL;
2831 	}
2832 
2833 	return 0;
2834 }
2835 
2836 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2837 				const struct btf_type *t,
2838 				u32 meta_left)
2839 {
2840 	const struct btf_array *array = btf_type_array(t);
2841 	u32 meta_needed = sizeof(*array);
2842 
2843 	if (meta_left < meta_needed) {
2844 		btf_verifier_log_basic(env, t,
2845 				       "meta_left:%u meta_needed:%u",
2846 				       meta_left, meta_needed);
2847 		return -EINVAL;
2848 	}
2849 
2850 	/* array type should not have a name */
2851 	if (t->name_off) {
2852 		btf_verifier_log_type(env, t, "Invalid name");
2853 		return -EINVAL;
2854 	}
2855 
2856 	if (btf_type_vlen(t)) {
2857 		btf_verifier_log_type(env, t, "vlen != 0");
2858 		return -EINVAL;
2859 	}
2860 
2861 	if (btf_type_kflag(t)) {
2862 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2863 		return -EINVAL;
2864 	}
2865 
2866 	if (t->size) {
2867 		btf_verifier_log_type(env, t, "size != 0");
2868 		return -EINVAL;
2869 	}
2870 
2871 	/* Array elem type and index type cannot be in type void,
2872 	 * so !array->type and !array->index_type are not allowed.
2873 	 */
2874 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2875 		btf_verifier_log_type(env, t, "Invalid elem");
2876 		return -EINVAL;
2877 	}
2878 
2879 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2880 		btf_verifier_log_type(env, t, "Invalid index");
2881 		return -EINVAL;
2882 	}
2883 
2884 	btf_verifier_log_type(env, t, NULL);
2885 
2886 	return meta_needed;
2887 }
2888 
2889 static int btf_array_resolve(struct btf_verifier_env *env,
2890 			     const struct resolve_vertex *v)
2891 {
2892 	const struct btf_array *array = btf_type_array(v->t);
2893 	const struct btf_type *elem_type, *index_type;
2894 	u32 elem_type_id, index_type_id;
2895 	struct btf *btf = env->btf;
2896 	u32 elem_size;
2897 
2898 	/* Check array->index_type */
2899 	index_type_id = array->index_type;
2900 	index_type = btf_type_by_id(btf, index_type_id);
2901 	if (btf_type_nosize_or_null(index_type) ||
2902 	    btf_type_is_resolve_source_only(index_type)) {
2903 		btf_verifier_log_type(env, v->t, "Invalid index");
2904 		return -EINVAL;
2905 	}
2906 
2907 	if (!env_type_is_resolve_sink(env, index_type) &&
2908 	    !env_type_is_resolved(env, index_type_id))
2909 		return env_stack_push(env, index_type, index_type_id);
2910 
2911 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2912 	if (!index_type || !btf_type_is_int(index_type) ||
2913 	    !btf_type_int_is_regular(index_type)) {
2914 		btf_verifier_log_type(env, v->t, "Invalid index");
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* Check array->type */
2919 	elem_type_id = array->type;
2920 	elem_type = btf_type_by_id(btf, elem_type_id);
2921 	if (btf_type_nosize_or_null(elem_type) ||
2922 	    btf_type_is_resolve_source_only(elem_type)) {
2923 		btf_verifier_log_type(env, v->t,
2924 				      "Invalid elem");
2925 		return -EINVAL;
2926 	}
2927 
2928 	if (!env_type_is_resolve_sink(env, elem_type) &&
2929 	    !env_type_is_resolved(env, elem_type_id))
2930 		return env_stack_push(env, elem_type, elem_type_id);
2931 
2932 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2933 	if (!elem_type) {
2934 		btf_verifier_log_type(env, v->t, "Invalid elem");
2935 		return -EINVAL;
2936 	}
2937 
2938 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2939 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2940 		return -EINVAL;
2941 	}
2942 
2943 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2944 		btf_verifier_log_type(env, v->t,
2945 				      "Array size overflows U32_MAX");
2946 		return -EINVAL;
2947 	}
2948 
2949 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2950 
2951 	return 0;
2952 }
2953 
2954 static void btf_array_log(struct btf_verifier_env *env,
2955 			  const struct btf_type *t)
2956 {
2957 	const struct btf_array *array = btf_type_array(t);
2958 
2959 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2960 			 array->type, array->index_type, array->nelems);
2961 }
2962 
2963 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2964 			     u32 type_id, void *data, u8 bits_offset,
2965 			     struct btf_show *show)
2966 {
2967 	const struct btf_array *array = btf_type_array(t);
2968 	const struct btf_kind_operations *elem_ops;
2969 	const struct btf_type *elem_type;
2970 	u32 i, elem_size = 0, elem_type_id;
2971 	u16 encoding = 0;
2972 
2973 	elem_type_id = array->type;
2974 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2975 	if (elem_type && btf_type_has_size(elem_type))
2976 		elem_size = elem_type->size;
2977 
2978 	if (elem_type && btf_type_is_int(elem_type)) {
2979 		u32 int_type = btf_type_int(elem_type);
2980 
2981 		encoding = BTF_INT_ENCODING(int_type);
2982 
2983 		/*
2984 		 * BTF_INT_CHAR encoding never seems to be set for
2985 		 * char arrays, so if size is 1 and element is
2986 		 * printable as a char, we'll do that.
2987 		 */
2988 		if (elem_size == 1)
2989 			encoding = BTF_INT_CHAR;
2990 	}
2991 
2992 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2993 		return;
2994 
2995 	if (!elem_type)
2996 		goto out;
2997 	elem_ops = btf_type_ops(elem_type);
2998 
2999 	for (i = 0; i < array->nelems; i++) {
3000 
3001 		btf_show_start_array_member(show);
3002 
3003 		elem_ops->show(btf, elem_type, elem_type_id, data,
3004 			       bits_offset, show);
3005 		data += elem_size;
3006 
3007 		btf_show_end_array_member(show);
3008 
3009 		if (show->state.array_terminated)
3010 			break;
3011 	}
3012 out:
3013 	btf_show_end_array_type(show);
3014 }
3015 
3016 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3017 			   u32 type_id, void *data, u8 bits_offset,
3018 			   struct btf_show *show)
3019 {
3020 	const struct btf_member *m = show->state.member;
3021 
3022 	/*
3023 	 * First check if any members would be shown (are non-zero).
3024 	 * See comments above "struct btf_show" definition for more
3025 	 * details on how this works at a high-level.
3026 	 */
3027 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3028 		if (!show->state.depth_check) {
3029 			show->state.depth_check = show->state.depth + 1;
3030 			show->state.depth_to_show = 0;
3031 		}
3032 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3033 		show->state.member = m;
3034 
3035 		if (show->state.depth_check != show->state.depth + 1)
3036 			return;
3037 		show->state.depth_check = 0;
3038 
3039 		if (show->state.depth_to_show <= show->state.depth)
3040 			return;
3041 		/*
3042 		 * Reaching here indicates we have recursed and found
3043 		 * non-zero array member(s).
3044 		 */
3045 	}
3046 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3047 }
3048 
3049 static struct btf_kind_operations array_ops = {
3050 	.check_meta = btf_array_check_meta,
3051 	.resolve = btf_array_resolve,
3052 	.check_member = btf_array_check_member,
3053 	.check_kflag_member = btf_generic_check_kflag_member,
3054 	.log_details = btf_array_log,
3055 	.show = btf_array_show,
3056 };
3057 
3058 static int btf_struct_check_member(struct btf_verifier_env *env,
3059 				   const struct btf_type *struct_type,
3060 				   const struct btf_member *member,
3061 				   const struct btf_type *member_type)
3062 {
3063 	u32 struct_bits_off = member->offset;
3064 	u32 struct_size, bytes_offset;
3065 
3066 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3067 		btf_verifier_log_member(env, struct_type, member,
3068 					"Member is not byte aligned");
3069 		return -EINVAL;
3070 	}
3071 
3072 	struct_size = struct_type->size;
3073 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3074 	if (struct_size - bytes_offset < member_type->size) {
3075 		btf_verifier_log_member(env, struct_type, member,
3076 					"Member exceeds struct_size");
3077 		return -EINVAL;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3084 				 const struct btf_type *t,
3085 				 u32 meta_left)
3086 {
3087 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3088 	const struct btf_member *member;
3089 	u32 meta_needed, last_offset;
3090 	struct btf *btf = env->btf;
3091 	u32 struct_size = t->size;
3092 	u32 offset;
3093 	u16 i;
3094 
3095 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3096 	if (meta_left < meta_needed) {
3097 		btf_verifier_log_basic(env, t,
3098 				       "meta_left:%u meta_needed:%u",
3099 				       meta_left, meta_needed);
3100 		return -EINVAL;
3101 	}
3102 
3103 	/* struct type either no name or a valid one */
3104 	if (t->name_off &&
3105 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3106 		btf_verifier_log_type(env, t, "Invalid name");
3107 		return -EINVAL;
3108 	}
3109 
3110 	btf_verifier_log_type(env, t, NULL);
3111 
3112 	last_offset = 0;
3113 	for_each_member(i, t, member) {
3114 		if (!btf_name_offset_valid(btf, member->name_off)) {
3115 			btf_verifier_log_member(env, t, member,
3116 						"Invalid member name_offset:%u",
3117 						member->name_off);
3118 			return -EINVAL;
3119 		}
3120 
3121 		/* struct member either no name or a valid one */
3122 		if (member->name_off &&
3123 		    !btf_name_valid_identifier(btf, member->name_off)) {
3124 			btf_verifier_log_member(env, t, member, "Invalid name");
3125 			return -EINVAL;
3126 		}
3127 		/* A member cannot be in type void */
3128 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3129 			btf_verifier_log_member(env, t, member,
3130 						"Invalid type_id");
3131 			return -EINVAL;
3132 		}
3133 
3134 		offset = __btf_member_bit_offset(t, member);
3135 		if (is_union && offset) {
3136 			btf_verifier_log_member(env, t, member,
3137 						"Invalid member bits_offset");
3138 			return -EINVAL;
3139 		}
3140 
3141 		/*
3142 		 * ">" instead of ">=" because the last member could be
3143 		 * "char a[0];"
3144 		 */
3145 		if (last_offset > offset) {
3146 			btf_verifier_log_member(env, t, member,
3147 						"Invalid member bits_offset");
3148 			return -EINVAL;
3149 		}
3150 
3151 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3152 			btf_verifier_log_member(env, t, member,
3153 						"Member bits_offset exceeds its struct size");
3154 			return -EINVAL;
3155 		}
3156 
3157 		btf_verifier_log_member(env, t, member, NULL);
3158 		last_offset = offset;
3159 	}
3160 
3161 	return meta_needed;
3162 }
3163 
3164 static int btf_struct_resolve(struct btf_verifier_env *env,
3165 			      const struct resolve_vertex *v)
3166 {
3167 	const struct btf_member *member;
3168 	int err;
3169 	u16 i;
3170 
3171 	/* Before continue resolving the next_member,
3172 	 * ensure the last member is indeed resolved to a
3173 	 * type with size info.
3174 	 */
3175 	if (v->next_member) {
3176 		const struct btf_type *last_member_type;
3177 		const struct btf_member *last_member;
3178 		u32 last_member_type_id;
3179 
3180 		last_member = btf_type_member(v->t) + v->next_member - 1;
3181 		last_member_type_id = last_member->type;
3182 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3183 						       last_member_type_id)))
3184 			return -EINVAL;
3185 
3186 		last_member_type = btf_type_by_id(env->btf,
3187 						  last_member_type_id);
3188 		if (btf_type_kflag(v->t))
3189 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3190 								last_member,
3191 								last_member_type);
3192 		else
3193 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3194 								last_member,
3195 								last_member_type);
3196 		if (err)
3197 			return err;
3198 	}
3199 
3200 	for_each_member_from(i, v->next_member, v->t, member) {
3201 		u32 member_type_id = member->type;
3202 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3203 								member_type_id);
3204 
3205 		if (btf_type_nosize_or_null(member_type) ||
3206 		    btf_type_is_resolve_source_only(member_type)) {
3207 			btf_verifier_log_member(env, v->t, member,
3208 						"Invalid member");
3209 			return -EINVAL;
3210 		}
3211 
3212 		if (!env_type_is_resolve_sink(env, member_type) &&
3213 		    !env_type_is_resolved(env, member_type_id)) {
3214 			env_stack_set_next_member(env, i + 1);
3215 			return env_stack_push(env, member_type, member_type_id);
3216 		}
3217 
3218 		if (btf_type_kflag(v->t))
3219 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3220 									    member,
3221 									    member_type);
3222 		else
3223 			err = btf_type_ops(member_type)->check_member(env, v->t,
3224 								      member,
3225 								      member_type);
3226 		if (err)
3227 			return err;
3228 	}
3229 
3230 	env_stack_pop_resolved(env, 0, 0);
3231 
3232 	return 0;
3233 }
3234 
3235 static void btf_struct_log(struct btf_verifier_env *env,
3236 			   const struct btf_type *t)
3237 {
3238 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3239 }
3240 
3241 enum {
3242 	BTF_FIELD_IGNORE = 0,
3243 	BTF_FIELD_FOUND  = 1,
3244 };
3245 
3246 struct btf_field_info {
3247 	enum btf_field_type type;
3248 	u32 off;
3249 	union {
3250 		struct {
3251 			u32 type_id;
3252 		} kptr;
3253 		struct {
3254 			const char *node_name;
3255 			u32 value_btf_id;
3256 		} graph_root;
3257 	};
3258 };
3259 
3260 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3261 			   u32 off, int sz, enum btf_field_type field_type,
3262 			   struct btf_field_info *info)
3263 {
3264 	if (!__btf_type_is_struct(t))
3265 		return BTF_FIELD_IGNORE;
3266 	if (t->size != sz)
3267 		return BTF_FIELD_IGNORE;
3268 	info->type = field_type;
3269 	info->off = off;
3270 	return BTF_FIELD_FOUND;
3271 }
3272 
3273 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3274 			 u32 off, int sz, struct btf_field_info *info)
3275 {
3276 	enum btf_field_type type;
3277 	u32 res_id;
3278 
3279 	/* Permit modifiers on the pointer itself */
3280 	if (btf_type_is_volatile(t))
3281 		t = btf_type_by_id(btf, t->type);
3282 	/* For PTR, sz is always == 8 */
3283 	if (!btf_type_is_ptr(t))
3284 		return BTF_FIELD_IGNORE;
3285 	t = btf_type_by_id(btf, t->type);
3286 
3287 	if (!btf_type_is_type_tag(t))
3288 		return BTF_FIELD_IGNORE;
3289 	/* Reject extra tags */
3290 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3291 		return -EINVAL;
3292 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3293 		type = BPF_KPTR_UNREF;
3294 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3295 		type = BPF_KPTR_REF;
3296 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3297 		type = BPF_KPTR_PERCPU;
3298 	else
3299 		return -EINVAL;
3300 
3301 	/* Get the base type */
3302 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3303 	/* Only pointer to struct is allowed */
3304 	if (!__btf_type_is_struct(t))
3305 		return -EINVAL;
3306 
3307 	info->type = type;
3308 	info->off = off;
3309 	info->kptr.type_id = res_id;
3310 	return BTF_FIELD_FOUND;
3311 }
3312 
3313 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3314 				    int comp_idx, const char *tag_key)
3315 {
3316 	const char *value = NULL;
3317 	int i;
3318 
3319 	for (i = 1; i < btf_nr_types(btf); i++) {
3320 		const struct btf_type *t = btf_type_by_id(btf, i);
3321 		int len = strlen(tag_key);
3322 
3323 		if (!btf_type_is_decl_tag(t))
3324 			continue;
3325 		if (pt != btf_type_by_id(btf, t->type) ||
3326 		    btf_type_decl_tag(t)->component_idx != comp_idx)
3327 			continue;
3328 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3329 			continue;
3330 		/* Prevent duplicate entries for same type */
3331 		if (value)
3332 			return ERR_PTR(-EEXIST);
3333 		value = __btf_name_by_offset(btf, t->name_off) + len;
3334 	}
3335 	if (!value)
3336 		return ERR_PTR(-ENOENT);
3337 	return value;
3338 }
3339 
3340 static int
3341 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3342 		    const struct btf_type *t, int comp_idx, u32 off,
3343 		    int sz, struct btf_field_info *info,
3344 		    enum btf_field_type head_type)
3345 {
3346 	const char *node_field_name;
3347 	const char *value_type;
3348 	s32 id;
3349 
3350 	if (!__btf_type_is_struct(t))
3351 		return BTF_FIELD_IGNORE;
3352 	if (t->size != sz)
3353 		return BTF_FIELD_IGNORE;
3354 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3355 	if (IS_ERR(value_type))
3356 		return -EINVAL;
3357 	node_field_name = strstr(value_type, ":");
3358 	if (!node_field_name)
3359 		return -EINVAL;
3360 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3361 	if (!value_type)
3362 		return -ENOMEM;
3363 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3364 	kfree(value_type);
3365 	if (id < 0)
3366 		return id;
3367 	node_field_name++;
3368 	if (str_is_empty(node_field_name))
3369 		return -EINVAL;
3370 	info->type = head_type;
3371 	info->off = off;
3372 	info->graph_root.value_btf_id = id;
3373 	info->graph_root.node_name = node_field_name;
3374 	return BTF_FIELD_FOUND;
3375 }
3376 
3377 #define field_mask_test_name(field_type, field_type_str) \
3378 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3379 		type = field_type;					\
3380 		goto end;						\
3381 	}
3382 
3383 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3384 			      int *align, int *sz)
3385 {
3386 	int type = 0;
3387 
3388 	if (field_mask & BPF_SPIN_LOCK) {
3389 		if (!strcmp(name, "bpf_spin_lock")) {
3390 			if (*seen_mask & BPF_SPIN_LOCK)
3391 				return -E2BIG;
3392 			*seen_mask |= BPF_SPIN_LOCK;
3393 			type = BPF_SPIN_LOCK;
3394 			goto end;
3395 		}
3396 	}
3397 	if (field_mask & BPF_TIMER) {
3398 		if (!strcmp(name, "bpf_timer")) {
3399 			if (*seen_mask & BPF_TIMER)
3400 				return -E2BIG;
3401 			*seen_mask |= BPF_TIMER;
3402 			type = BPF_TIMER;
3403 			goto end;
3404 		}
3405 	}
3406 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3407 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3408 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3409 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3410 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3411 
3412 	/* Only return BPF_KPTR when all other types with matchable names fail */
3413 	if (field_mask & BPF_KPTR) {
3414 		type = BPF_KPTR_REF;
3415 		goto end;
3416 	}
3417 	return 0;
3418 end:
3419 	*sz = btf_field_type_size(type);
3420 	*align = btf_field_type_align(type);
3421 	return type;
3422 }
3423 
3424 #undef field_mask_test_name
3425 
3426 static int btf_find_struct_field(const struct btf *btf,
3427 				 const struct btf_type *t, u32 field_mask,
3428 				 struct btf_field_info *info, int info_cnt)
3429 {
3430 	int ret, idx = 0, align, sz, field_type;
3431 	const struct btf_member *member;
3432 	struct btf_field_info tmp;
3433 	u32 i, off, seen_mask = 0;
3434 
3435 	for_each_member(i, t, member) {
3436 		const struct btf_type *member_type = btf_type_by_id(btf,
3437 								    member->type);
3438 
3439 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3440 						field_mask, &seen_mask, &align, &sz);
3441 		if (field_type == 0)
3442 			continue;
3443 		if (field_type < 0)
3444 			return field_type;
3445 
3446 		off = __btf_member_bit_offset(t, member);
3447 		if (off % 8)
3448 			/* valid C code cannot generate such BTF */
3449 			return -EINVAL;
3450 		off /= 8;
3451 		if (off % align)
3452 			continue;
3453 
3454 		switch (field_type) {
3455 		case BPF_SPIN_LOCK:
3456 		case BPF_TIMER:
3457 		case BPF_LIST_NODE:
3458 		case BPF_RB_NODE:
3459 		case BPF_REFCOUNT:
3460 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3461 					      idx < info_cnt ? &info[idx] : &tmp);
3462 			if (ret < 0)
3463 				return ret;
3464 			break;
3465 		case BPF_KPTR_UNREF:
3466 		case BPF_KPTR_REF:
3467 		case BPF_KPTR_PERCPU:
3468 			ret = btf_find_kptr(btf, member_type, off, sz,
3469 					    idx < info_cnt ? &info[idx] : &tmp);
3470 			if (ret < 0)
3471 				return ret;
3472 			break;
3473 		case BPF_LIST_HEAD:
3474 		case BPF_RB_ROOT:
3475 			ret = btf_find_graph_root(btf, t, member_type,
3476 						  i, off, sz,
3477 						  idx < info_cnt ? &info[idx] : &tmp,
3478 						  field_type);
3479 			if (ret < 0)
3480 				return ret;
3481 			break;
3482 		default:
3483 			return -EFAULT;
3484 		}
3485 
3486 		if (ret == BTF_FIELD_IGNORE)
3487 			continue;
3488 		if (idx >= info_cnt)
3489 			return -E2BIG;
3490 		++idx;
3491 	}
3492 	return idx;
3493 }
3494 
3495 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3496 				u32 field_mask, struct btf_field_info *info,
3497 				int info_cnt)
3498 {
3499 	int ret, idx = 0, align, sz, field_type;
3500 	const struct btf_var_secinfo *vsi;
3501 	struct btf_field_info tmp;
3502 	u32 i, off, seen_mask = 0;
3503 
3504 	for_each_vsi(i, t, vsi) {
3505 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3506 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3507 
3508 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3509 						field_mask, &seen_mask, &align, &sz);
3510 		if (field_type == 0)
3511 			continue;
3512 		if (field_type < 0)
3513 			return field_type;
3514 
3515 		off = vsi->offset;
3516 		if (vsi->size != sz)
3517 			continue;
3518 		if (off % align)
3519 			continue;
3520 
3521 		switch (field_type) {
3522 		case BPF_SPIN_LOCK:
3523 		case BPF_TIMER:
3524 		case BPF_LIST_NODE:
3525 		case BPF_RB_NODE:
3526 		case BPF_REFCOUNT:
3527 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3528 					      idx < info_cnt ? &info[idx] : &tmp);
3529 			if (ret < 0)
3530 				return ret;
3531 			break;
3532 		case BPF_KPTR_UNREF:
3533 		case BPF_KPTR_REF:
3534 		case BPF_KPTR_PERCPU:
3535 			ret = btf_find_kptr(btf, var_type, off, sz,
3536 					    idx < info_cnt ? &info[idx] : &tmp);
3537 			if (ret < 0)
3538 				return ret;
3539 			break;
3540 		case BPF_LIST_HEAD:
3541 		case BPF_RB_ROOT:
3542 			ret = btf_find_graph_root(btf, var, var_type,
3543 						  -1, off, sz,
3544 						  idx < info_cnt ? &info[idx] : &tmp,
3545 						  field_type);
3546 			if (ret < 0)
3547 				return ret;
3548 			break;
3549 		default:
3550 			return -EFAULT;
3551 		}
3552 
3553 		if (ret == BTF_FIELD_IGNORE)
3554 			continue;
3555 		if (idx >= info_cnt)
3556 			return -E2BIG;
3557 		++idx;
3558 	}
3559 	return idx;
3560 }
3561 
3562 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3563 			  u32 field_mask, struct btf_field_info *info,
3564 			  int info_cnt)
3565 {
3566 	if (__btf_type_is_struct(t))
3567 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3568 	else if (btf_type_is_datasec(t))
3569 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3570 	return -EINVAL;
3571 }
3572 
3573 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3574 			  struct btf_field_info *info)
3575 {
3576 	struct module *mod = NULL;
3577 	const struct btf_type *t;
3578 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3579 	 * is that BTF, otherwise it's program BTF
3580 	 */
3581 	struct btf *kptr_btf;
3582 	int ret;
3583 	s32 id;
3584 
3585 	/* Find type in map BTF, and use it to look up the matching type
3586 	 * in vmlinux or module BTFs, by name and kind.
3587 	 */
3588 	t = btf_type_by_id(btf, info->kptr.type_id);
3589 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3590 			     &kptr_btf);
3591 	if (id == -ENOENT) {
3592 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3593 		WARN_ON_ONCE(btf_is_kernel(btf));
3594 
3595 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3596 		 * kptr allocated via bpf_obj_new
3597 		 */
3598 		field->kptr.dtor = NULL;
3599 		id = info->kptr.type_id;
3600 		kptr_btf = (struct btf *)btf;
3601 		btf_get(kptr_btf);
3602 		goto found_dtor;
3603 	}
3604 	if (id < 0)
3605 		return id;
3606 
3607 	/* Find and stash the function pointer for the destruction function that
3608 	 * needs to be eventually invoked from the map free path.
3609 	 */
3610 	if (info->type == BPF_KPTR_REF) {
3611 		const struct btf_type *dtor_func;
3612 		const char *dtor_func_name;
3613 		unsigned long addr;
3614 		s32 dtor_btf_id;
3615 
3616 		/* This call also serves as a whitelist of allowed objects that
3617 		 * can be used as a referenced pointer and be stored in a map at
3618 		 * the same time.
3619 		 */
3620 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3621 		if (dtor_btf_id < 0) {
3622 			ret = dtor_btf_id;
3623 			goto end_btf;
3624 		}
3625 
3626 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3627 		if (!dtor_func) {
3628 			ret = -ENOENT;
3629 			goto end_btf;
3630 		}
3631 
3632 		if (btf_is_module(kptr_btf)) {
3633 			mod = btf_try_get_module(kptr_btf);
3634 			if (!mod) {
3635 				ret = -ENXIO;
3636 				goto end_btf;
3637 			}
3638 		}
3639 
3640 		/* We already verified dtor_func to be btf_type_is_func
3641 		 * in register_btf_id_dtor_kfuncs.
3642 		 */
3643 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3644 		addr = kallsyms_lookup_name(dtor_func_name);
3645 		if (!addr) {
3646 			ret = -EINVAL;
3647 			goto end_mod;
3648 		}
3649 		field->kptr.dtor = (void *)addr;
3650 	}
3651 
3652 found_dtor:
3653 	field->kptr.btf_id = id;
3654 	field->kptr.btf = kptr_btf;
3655 	field->kptr.module = mod;
3656 	return 0;
3657 end_mod:
3658 	module_put(mod);
3659 end_btf:
3660 	btf_put(kptr_btf);
3661 	return ret;
3662 }
3663 
3664 static int btf_parse_graph_root(const struct btf *btf,
3665 				struct btf_field *field,
3666 				struct btf_field_info *info,
3667 				const char *node_type_name,
3668 				size_t node_type_align)
3669 {
3670 	const struct btf_type *t, *n = NULL;
3671 	const struct btf_member *member;
3672 	u32 offset;
3673 	int i;
3674 
3675 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3676 	/* We've already checked that value_btf_id is a struct type. We
3677 	 * just need to figure out the offset of the list_node, and
3678 	 * verify its type.
3679 	 */
3680 	for_each_member(i, t, member) {
3681 		if (strcmp(info->graph_root.node_name,
3682 			   __btf_name_by_offset(btf, member->name_off)))
3683 			continue;
3684 		/* Invalid BTF, two members with same name */
3685 		if (n)
3686 			return -EINVAL;
3687 		n = btf_type_by_id(btf, member->type);
3688 		if (!__btf_type_is_struct(n))
3689 			return -EINVAL;
3690 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3691 			return -EINVAL;
3692 		offset = __btf_member_bit_offset(n, member);
3693 		if (offset % 8)
3694 			return -EINVAL;
3695 		offset /= 8;
3696 		if (offset % node_type_align)
3697 			return -EINVAL;
3698 
3699 		field->graph_root.btf = (struct btf *)btf;
3700 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3701 		field->graph_root.node_offset = offset;
3702 	}
3703 	if (!n)
3704 		return -ENOENT;
3705 	return 0;
3706 }
3707 
3708 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3709 			       struct btf_field_info *info)
3710 {
3711 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3712 					    __alignof__(struct bpf_list_node));
3713 }
3714 
3715 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3716 			     struct btf_field_info *info)
3717 {
3718 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3719 					    __alignof__(struct bpf_rb_node));
3720 }
3721 
3722 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3723 {
3724 	const struct btf_field *a = (const struct btf_field *)_a;
3725 	const struct btf_field *b = (const struct btf_field *)_b;
3726 
3727 	if (a->offset < b->offset)
3728 		return -1;
3729 	else if (a->offset > b->offset)
3730 		return 1;
3731 	return 0;
3732 }
3733 
3734 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3735 				    u32 field_mask, u32 value_size)
3736 {
3737 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3738 	u32 next_off = 0, field_type_size;
3739 	struct btf_record *rec;
3740 	int ret, i, cnt;
3741 
3742 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3743 	if (ret < 0)
3744 		return ERR_PTR(ret);
3745 	if (!ret)
3746 		return NULL;
3747 
3748 	cnt = ret;
3749 	/* This needs to be kzalloc to zero out padding and unused fields, see
3750 	 * comment in btf_record_equal.
3751 	 */
3752 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3753 	if (!rec)
3754 		return ERR_PTR(-ENOMEM);
3755 
3756 	rec->spin_lock_off = -EINVAL;
3757 	rec->timer_off = -EINVAL;
3758 	rec->refcount_off = -EINVAL;
3759 	for (i = 0; i < cnt; i++) {
3760 		field_type_size = btf_field_type_size(info_arr[i].type);
3761 		if (info_arr[i].off + field_type_size > value_size) {
3762 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3763 			ret = -EFAULT;
3764 			goto end;
3765 		}
3766 		if (info_arr[i].off < next_off) {
3767 			ret = -EEXIST;
3768 			goto end;
3769 		}
3770 		next_off = info_arr[i].off + field_type_size;
3771 
3772 		rec->field_mask |= info_arr[i].type;
3773 		rec->fields[i].offset = info_arr[i].off;
3774 		rec->fields[i].type = info_arr[i].type;
3775 		rec->fields[i].size = field_type_size;
3776 
3777 		switch (info_arr[i].type) {
3778 		case BPF_SPIN_LOCK:
3779 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3780 			/* Cache offset for faster lookup at runtime */
3781 			rec->spin_lock_off = rec->fields[i].offset;
3782 			break;
3783 		case BPF_TIMER:
3784 			WARN_ON_ONCE(rec->timer_off >= 0);
3785 			/* Cache offset for faster lookup at runtime */
3786 			rec->timer_off = rec->fields[i].offset;
3787 			break;
3788 		case BPF_REFCOUNT:
3789 			WARN_ON_ONCE(rec->refcount_off >= 0);
3790 			/* Cache offset for faster lookup at runtime */
3791 			rec->refcount_off = rec->fields[i].offset;
3792 			break;
3793 		case BPF_KPTR_UNREF:
3794 		case BPF_KPTR_REF:
3795 		case BPF_KPTR_PERCPU:
3796 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3797 			if (ret < 0)
3798 				goto end;
3799 			break;
3800 		case BPF_LIST_HEAD:
3801 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3802 			if (ret < 0)
3803 				goto end;
3804 			break;
3805 		case BPF_RB_ROOT:
3806 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3807 			if (ret < 0)
3808 				goto end;
3809 			break;
3810 		case BPF_LIST_NODE:
3811 		case BPF_RB_NODE:
3812 			break;
3813 		default:
3814 			ret = -EFAULT;
3815 			goto end;
3816 		}
3817 		rec->cnt++;
3818 	}
3819 
3820 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3821 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3822 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3823 		ret = -EINVAL;
3824 		goto end;
3825 	}
3826 
3827 	if (rec->refcount_off < 0 &&
3828 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3829 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3830 		ret = -EINVAL;
3831 		goto end;
3832 	}
3833 
3834 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3835 	       NULL, rec);
3836 
3837 	return rec;
3838 end:
3839 	btf_record_free(rec);
3840 	return ERR_PTR(ret);
3841 }
3842 
3843 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3844 {
3845 	int i;
3846 
3847 	/* There are three types that signify ownership of some other type:
3848 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3849 	 * kptr_ref only supports storing kernel types, which can't store
3850 	 * references to program allocated local types.
3851 	 *
3852 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3853 	 * does not form cycles.
3854 	 */
3855 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3856 		return 0;
3857 	for (i = 0; i < rec->cnt; i++) {
3858 		struct btf_struct_meta *meta;
3859 		u32 btf_id;
3860 
3861 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3862 			continue;
3863 		btf_id = rec->fields[i].graph_root.value_btf_id;
3864 		meta = btf_find_struct_meta(btf, btf_id);
3865 		if (!meta)
3866 			return -EFAULT;
3867 		rec->fields[i].graph_root.value_rec = meta->record;
3868 
3869 		/* We need to set value_rec for all root types, but no need
3870 		 * to check ownership cycle for a type unless it's also a
3871 		 * node type.
3872 		 */
3873 		if (!(rec->field_mask & BPF_GRAPH_NODE))
3874 			continue;
3875 
3876 		/* We need to ensure ownership acyclicity among all types. The
3877 		 * proper way to do it would be to topologically sort all BTF
3878 		 * IDs based on the ownership edges, since there can be multiple
3879 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3880 		 * following resaoning:
3881 		 *
3882 		 * - A type can only be owned by another type in user BTF if it
3883 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3884 		 * - A type can only _own_ another type in user BTF if it has a
3885 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3886 		 *
3887 		 * We ensure that if a type is both a root and node, its
3888 		 * element types cannot be root types.
3889 		 *
3890 		 * To ensure acyclicity:
3891 		 *
3892 		 * When A is an root type but not a node, its ownership
3893 		 * chain can be:
3894 		 *	A -> B -> C
3895 		 * Where:
3896 		 * - A is an root, e.g. has bpf_rb_root.
3897 		 * - B is both a root and node, e.g. has bpf_rb_node and
3898 		 *   bpf_list_head.
3899 		 * - C is only an root, e.g. has bpf_list_node
3900 		 *
3901 		 * When A is both a root and node, some other type already
3902 		 * owns it in the BTF domain, hence it can not own
3903 		 * another root type through any of the ownership edges.
3904 		 *	A -> B
3905 		 * Where:
3906 		 * - A is both an root and node.
3907 		 * - B is only an node.
3908 		 */
3909 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
3910 			return -ELOOP;
3911 	}
3912 	return 0;
3913 }
3914 
3915 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3916 			      u32 type_id, void *data, u8 bits_offset,
3917 			      struct btf_show *show)
3918 {
3919 	const struct btf_member *member;
3920 	void *safe_data;
3921 	u32 i;
3922 
3923 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3924 	if (!safe_data)
3925 		return;
3926 
3927 	for_each_member(i, t, member) {
3928 		const struct btf_type *member_type = btf_type_by_id(btf,
3929 								member->type);
3930 		const struct btf_kind_operations *ops;
3931 		u32 member_offset, bitfield_size;
3932 		u32 bytes_offset;
3933 		u8 bits8_offset;
3934 
3935 		btf_show_start_member(show, member);
3936 
3937 		member_offset = __btf_member_bit_offset(t, member);
3938 		bitfield_size = __btf_member_bitfield_size(t, member);
3939 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3940 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3941 		if (bitfield_size) {
3942 			safe_data = btf_show_start_type(show, member_type,
3943 							member->type,
3944 							data + bytes_offset);
3945 			if (safe_data)
3946 				btf_bitfield_show(safe_data,
3947 						  bits8_offset,
3948 						  bitfield_size, show);
3949 			btf_show_end_type(show);
3950 		} else {
3951 			ops = btf_type_ops(member_type);
3952 			ops->show(btf, member_type, member->type,
3953 				  data + bytes_offset, bits8_offset, show);
3954 		}
3955 
3956 		btf_show_end_member(show);
3957 	}
3958 
3959 	btf_show_end_struct_type(show);
3960 }
3961 
3962 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3963 			    u32 type_id, void *data, u8 bits_offset,
3964 			    struct btf_show *show)
3965 {
3966 	const struct btf_member *m = show->state.member;
3967 
3968 	/*
3969 	 * First check if any members would be shown (are non-zero).
3970 	 * See comments above "struct btf_show" definition for more
3971 	 * details on how this works at a high-level.
3972 	 */
3973 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3974 		if (!show->state.depth_check) {
3975 			show->state.depth_check = show->state.depth + 1;
3976 			show->state.depth_to_show = 0;
3977 		}
3978 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3979 		/* Restore saved member data here */
3980 		show->state.member = m;
3981 		if (show->state.depth_check != show->state.depth + 1)
3982 			return;
3983 		show->state.depth_check = 0;
3984 
3985 		if (show->state.depth_to_show <= show->state.depth)
3986 			return;
3987 		/*
3988 		 * Reaching here indicates we have recursed and found
3989 		 * non-zero child values.
3990 		 */
3991 	}
3992 
3993 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3994 }
3995 
3996 static struct btf_kind_operations struct_ops = {
3997 	.check_meta = btf_struct_check_meta,
3998 	.resolve = btf_struct_resolve,
3999 	.check_member = btf_struct_check_member,
4000 	.check_kflag_member = btf_generic_check_kflag_member,
4001 	.log_details = btf_struct_log,
4002 	.show = btf_struct_show,
4003 };
4004 
4005 static int btf_enum_check_member(struct btf_verifier_env *env,
4006 				 const struct btf_type *struct_type,
4007 				 const struct btf_member *member,
4008 				 const struct btf_type *member_type)
4009 {
4010 	u32 struct_bits_off = member->offset;
4011 	u32 struct_size, bytes_offset;
4012 
4013 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4014 		btf_verifier_log_member(env, struct_type, member,
4015 					"Member is not byte aligned");
4016 		return -EINVAL;
4017 	}
4018 
4019 	struct_size = struct_type->size;
4020 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4021 	if (struct_size - bytes_offset < member_type->size) {
4022 		btf_verifier_log_member(env, struct_type, member,
4023 					"Member exceeds struct_size");
4024 		return -EINVAL;
4025 	}
4026 
4027 	return 0;
4028 }
4029 
4030 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4031 				       const struct btf_type *struct_type,
4032 				       const struct btf_member *member,
4033 				       const struct btf_type *member_type)
4034 {
4035 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4036 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4037 
4038 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4039 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4040 	if (!nr_bits) {
4041 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4042 			btf_verifier_log_member(env, struct_type, member,
4043 						"Member is not byte aligned");
4044 			return -EINVAL;
4045 		}
4046 
4047 		nr_bits = int_bitsize;
4048 	} else if (nr_bits > int_bitsize) {
4049 		btf_verifier_log_member(env, struct_type, member,
4050 					"Invalid member bitfield_size");
4051 		return -EINVAL;
4052 	}
4053 
4054 	struct_size = struct_type->size;
4055 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4056 	if (struct_size < bytes_end) {
4057 		btf_verifier_log_member(env, struct_type, member,
4058 					"Member exceeds struct_size");
4059 		return -EINVAL;
4060 	}
4061 
4062 	return 0;
4063 }
4064 
4065 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4066 			       const struct btf_type *t,
4067 			       u32 meta_left)
4068 {
4069 	const struct btf_enum *enums = btf_type_enum(t);
4070 	struct btf *btf = env->btf;
4071 	const char *fmt_str;
4072 	u16 i, nr_enums;
4073 	u32 meta_needed;
4074 
4075 	nr_enums = btf_type_vlen(t);
4076 	meta_needed = nr_enums * sizeof(*enums);
4077 
4078 	if (meta_left < meta_needed) {
4079 		btf_verifier_log_basic(env, t,
4080 				       "meta_left:%u meta_needed:%u",
4081 				       meta_left, meta_needed);
4082 		return -EINVAL;
4083 	}
4084 
4085 	if (t->size > 8 || !is_power_of_2(t->size)) {
4086 		btf_verifier_log_type(env, t, "Unexpected size");
4087 		return -EINVAL;
4088 	}
4089 
4090 	/* enum type either no name or a valid one */
4091 	if (t->name_off &&
4092 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4093 		btf_verifier_log_type(env, t, "Invalid name");
4094 		return -EINVAL;
4095 	}
4096 
4097 	btf_verifier_log_type(env, t, NULL);
4098 
4099 	for (i = 0; i < nr_enums; i++) {
4100 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4101 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4102 					 enums[i].name_off);
4103 			return -EINVAL;
4104 		}
4105 
4106 		/* enum member must have a valid name */
4107 		if (!enums[i].name_off ||
4108 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4109 			btf_verifier_log_type(env, t, "Invalid name");
4110 			return -EINVAL;
4111 		}
4112 
4113 		if (env->log.level == BPF_LOG_KERNEL)
4114 			continue;
4115 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4116 		btf_verifier_log(env, fmt_str,
4117 				 __btf_name_by_offset(btf, enums[i].name_off),
4118 				 enums[i].val);
4119 	}
4120 
4121 	return meta_needed;
4122 }
4123 
4124 static void btf_enum_log(struct btf_verifier_env *env,
4125 			 const struct btf_type *t)
4126 {
4127 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4128 }
4129 
4130 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4131 			  u32 type_id, void *data, u8 bits_offset,
4132 			  struct btf_show *show)
4133 {
4134 	const struct btf_enum *enums = btf_type_enum(t);
4135 	u32 i, nr_enums = btf_type_vlen(t);
4136 	void *safe_data;
4137 	int v;
4138 
4139 	safe_data = btf_show_start_type(show, t, type_id, data);
4140 	if (!safe_data)
4141 		return;
4142 
4143 	v = *(int *)safe_data;
4144 
4145 	for (i = 0; i < nr_enums; i++) {
4146 		if (v != enums[i].val)
4147 			continue;
4148 
4149 		btf_show_type_value(show, "%s",
4150 				    __btf_name_by_offset(btf,
4151 							 enums[i].name_off));
4152 
4153 		btf_show_end_type(show);
4154 		return;
4155 	}
4156 
4157 	if (btf_type_kflag(t))
4158 		btf_show_type_value(show, "%d", v);
4159 	else
4160 		btf_show_type_value(show, "%u", v);
4161 	btf_show_end_type(show);
4162 }
4163 
4164 static struct btf_kind_operations enum_ops = {
4165 	.check_meta = btf_enum_check_meta,
4166 	.resolve = btf_df_resolve,
4167 	.check_member = btf_enum_check_member,
4168 	.check_kflag_member = btf_enum_check_kflag_member,
4169 	.log_details = btf_enum_log,
4170 	.show = btf_enum_show,
4171 };
4172 
4173 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4174 				 const struct btf_type *t,
4175 				 u32 meta_left)
4176 {
4177 	const struct btf_enum64 *enums = btf_type_enum64(t);
4178 	struct btf *btf = env->btf;
4179 	const char *fmt_str;
4180 	u16 i, nr_enums;
4181 	u32 meta_needed;
4182 
4183 	nr_enums = btf_type_vlen(t);
4184 	meta_needed = nr_enums * sizeof(*enums);
4185 
4186 	if (meta_left < meta_needed) {
4187 		btf_verifier_log_basic(env, t,
4188 				       "meta_left:%u meta_needed:%u",
4189 				       meta_left, meta_needed);
4190 		return -EINVAL;
4191 	}
4192 
4193 	if (t->size > 8 || !is_power_of_2(t->size)) {
4194 		btf_verifier_log_type(env, t, "Unexpected size");
4195 		return -EINVAL;
4196 	}
4197 
4198 	/* enum type either no name or a valid one */
4199 	if (t->name_off &&
4200 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4201 		btf_verifier_log_type(env, t, "Invalid name");
4202 		return -EINVAL;
4203 	}
4204 
4205 	btf_verifier_log_type(env, t, NULL);
4206 
4207 	for (i = 0; i < nr_enums; i++) {
4208 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4209 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4210 					 enums[i].name_off);
4211 			return -EINVAL;
4212 		}
4213 
4214 		/* enum member must have a valid name */
4215 		if (!enums[i].name_off ||
4216 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4217 			btf_verifier_log_type(env, t, "Invalid name");
4218 			return -EINVAL;
4219 		}
4220 
4221 		if (env->log.level == BPF_LOG_KERNEL)
4222 			continue;
4223 
4224 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4225 		btf_verifier_log(env, fmt_str,
4226 				 __btf_name_by_offset(btf, enums[i].name_off),
4227 				 btf_enum64_value(enums + i));
4228 	}
4229 
4230 	return meta_needed;
4231 }
4232 
4233 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4234 			    u32 type_id, void *data, u8 bits_offset,
4235 			    struct btf_show *show)
4236 {
4237 	const struct btf_enum64 *enums = btf_type_enum64(t);
4238 	u32 i, nr_enums = btf_type_vlen(t);
4239 	void *safe_data;
4240 	s64 v;
4241 
4242 	safe_data = btf_show_start_type(show, t, type_id, data);
4243 	if (!safe_data)
4244 		return;
4245 
4246 	v = *(u64 *)safe_data;
4247 
4248 	for (i = 0; i < nr_enums; i++) {
4249 		if (v != btf_enum64_value(enums + i))
4250 			continue;
4251 
4252 		btf_show_type_value(show, "%s",
4253 				    __btf_name_by_offset(btf,
4254 							 enums[i].name_off));
4255 
4256 		btf_show_end_type(show);
4257 		return;
4258 	}
4259 
4260 	if (btf_type_kflag(t))
4261 		btf_show_type_value(show, "%lld", v);
4262 	else
4263 		btf_show_type_value(show, "%llu", v);
4264 	btf_show_end_type(show);
4265 }
4266 
4267 static struct btf_kind_operations enum64_ops = {
4268 	.check_meta = btf_enum64_check_meta,
4269 	.resolve = btf_df_resolve,
4270 	.check_member = btf_enum_check_member,
4271 	.check_kflag_member = btf_enum_check_kflag_member,
4272 	.log_details = btf_enum_log,
4273 	.show = btf_enum64_show,
4274 };
4275 
4276 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4277 				     const struct btf_type *t,
4278 				     u32 meta_left)
4279 {
4280 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4281 
4282 	if (meta_left < meta_needed) {
4283 		btf_verifier_log_basic(env, t,
4284 				       "meta_left:%u meta_needed:%u",
4285 				       meta_left, meta_needed);
4286 		return -EINVAL;
4287 	}
4288 
4289 	if (t->name_off) {
4290 		btf_verifier_log_type(env, t, "Invalid name");
4291 		return -EINVAL;
4292 	}
4293 
4294 	if (btf_type_kflag(t)) {
4295 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4296 		return -EINVAL;
4297 	}
4298 
4299 	btf_verifier_log_type(env, t, NULL);
4300 
4301 	return meta_needed;
4302 }
4303 
4304 static void btf_func_proto_log(struct btf_verifier_env *env,
4305 			       const struct btf_type *t)
4306 {
4307 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4308 	u16 nr_args = btf_type_vlen(t), i;
4309 
4310 	btf_verifier_log(env, "return=%u args=(", t->type);
4311 	if (!nr_args) {
4312 		btf_verifier_log(env, "void");
4313 		goto done;
4314 	}
4315 
4316 	if (nr_args == 1 && !args[0].type) {
4317 		/* Only one vararg */
4318 		btf_verifier_log(env, "vararg");
4319 		goto done;
4320 	}
4321 
4322 	btf_verifier_log(env, "%u %s", args[0].type,
4323 			 __btf_name_by_offset(env->btf,
4324 					      args[0].name_off));
4325 	for (i = 1; i < nr_args - 1; i++)
4326 		btf_verifier_log(env, ", %u %s", args[i].type,
4327 				 __btf_name_by_offset(env->btf,
4328 						      args[i].name_off));
4329 
4330 	if (nr_args > 1) {
4331 		const struct btf_param *last_arg = &args[nr_args - 1];
4332 
4333 		if (last_arg->type)
4334 			btf_verifier_log(env, ", %u %s", last_arg->type,
4335 					 __btf_name_by_offset(env->btf,
4336 							      last_arg->name_off));
4337 		else
4338 			btf_verifier_log(env, ", vararg");
4339 	}
4340 
4341 done:
4342 	btf_verifier_log(env, ")");
4343 }
4344 
4345 static struct btf_kind_operations func_proto_ops = {
4346 	.check_meta = btf_func_proto_check_meta,
4347 	.resolve = btf_df_resolve,
4348 	/*
4349 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4350 	 * a struct's member.
4351 	 *
4352 	 * It should be a function pointer instead.
4353 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4354 	 *
4355 	 * Hence, there is no btf_func_check_member().
4356 	 */
4357 	.check_member = btf_df_check_member,
4358 	.check_kflag_member = btf_df_check_kflag_member,
4359 	.log_details = btf_func_proto_log,
4360 	.show = btf_df_show,
4361 };
4362 
4363 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4364 			       const struct btf_type *t,
4365 			       u32 meta_left)
4366 {
4367 	if (!t->name_off ||
4368 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4369 		btf_verifier_log_type(env, t, "Invalid name");
4370 		return -EINVAL;
4371 	}
4372 
4373 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4374 		btf_verifier_log_type(env, t, "Invalid func linkage");
4375 		return -EINVAL;
4376 	}
4377 
4378 	if (btf_type_kflag(t)) {
4379 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4380 		return -EINVAL;
4381 	}
4382 
4383 	btf_verifier_log_type(env, t, NULL);
4384 
4385 	return 0;
4386 }
4387 
4388 static int btf_func_resolve(struct btf_verifier_env *env,
4389 			    const struct resolve_vertex *v)
4390 {
4391 	const struct btf_type *t = v->t;
4392 	u32 next_type_id = t->type;
4393 	int err;
4394 
4395 	err = btf_func_check(env, t);
4396 	if (err)
4397 		return err;
4398 
4399 	env_stack_pop_resolved(env, next_type_id, 0);
4400 	return 0;
4401 }
4402 
4403 static struct btf_kind_operations func_ops = {
4404 	.check_meta = btf_func_check_meta,
4405 	.resolve = btf_func_resolve,
4406 	.check_member = btf_df_check_member,
4407 	.check_kflag_member = btf_df_check_kflag_member,
4408 	.log_details = btf_ref_type_log,
4409 	.show = btf_df_show,
4410 };
4411 
4412 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4413 			      const struct btf_type *t,
4414 			      u32 meta_left)
4415 {
4416 	const struct btf_var *var;
4417 	u32 meta_needed = sizeof(*var);
4418 
4419 	if (meta_left < meta_needed) {
4420 		btf_verifier_log_basic(env, t,
4421 				       "meta_left:%u meta_needed:%u",
4422 				       meta_left, meta_needed);
4423 		return -EINVAL;
4424 	}
4425 
4426 	if (btf_type_vlen(t)) {
4427 		btf_verifier_log_type(env, t, "vlen != 0");
4428 		return -EINVAL;
4429 	}
4430 
4431 	if (btf_type_kflag(t)) {
4432 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4433 		return -EINVAL;
4434 	}
4435 
4436 	if (!t->name_off ||
4437 	    !__btf_name_valid(env->btf, t->name_off)) {
4438 		btf_verifier_log_type(env, t, "Invalid name");
4439 		return -EINVAL;
4440 	}
4441 
4442 	/* A var cannot be in type void */
4443 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4444 		btf_verifier_log_type(env, t, "Invalid type_id");
4445 		return -EINVAL;
4446 	}
4447 
4448 	var = btf_type_var(t);
4449 	if (var->linkage != BTF_VAR_STATIC &&
4450 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4451 		btf_verifier_log_type(env, t, "Linkage not supported");
4452 		return -EINVAL;
4453 	}
4454 
4455 	btf_verifier_log_type(env, t, NULL);
4456 
4457 	return meta_needed;
4458 }
4459 
4460 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4461 {
4462 	const struct btf_var *var = btf_type_var(t);
4463 
4464 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4465 }
4466 
4467 static const struct btf_kind_operations var_ops = {
4468 	.check_meta		= btf_var_check_meta,
4469 	.resolve		= btf_var_resolve,
4470 	.check_member		= btf_df_check_member,
4471 	.check_kflag_member	= btf_df_check_kflag_member,
4472 	.log_details		= btf_var_log,
4473 	.show			= btf_var_show,
4474 };
4475 
4476 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4477 				  const struct btf_type *t,
4478 				  u32 meta_left)
4479 {
4480 	const struct btf_var_secinfo *vsi;
4481 	u64 last_vsi_end_off = 0, sum = 0;
4482 	u32 i, meta_needed;
4483 
4484 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4485 	if (meta_left < meta_needed) {
4486 		btf_verifier_log_basic(env, t,
4487 				       "meta_left:%u meta_needed:%u",
4488 				       meta_left, meta_needed);
4489 		return -EINVAL;
4490 	}
4491 
4492 	if (!t->size) {
4493 		btf_verifier_log_type(env, t, "size == 0");
4494 		return -EINVAL;
4495 	}
4496 
4497 	if (btf_type_kflag(t)) {
4498 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4499 		return -EINVAL;
4500 	}
4501 
4502 	if (!t->name_off ||
4503 	    !btf_name_valid_section(env->btf, t->name_off)) {
4504 		btf_verifier_log_type(env, t, "Invalid name");
4505 		return -EINVAL;
4506 	}
4507 
4508 	btf_verifier_log_type(env, t, NULL);
4509 
4510 	for_each_vsi(i, t, vsi) {
4511 		/* A var cannot be in type void */
4512 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4513 			btf_verifier_log_vsi(env, t, vsi,
4514 					     "Invalid type_id");
4515 			return -EINVAL;
4516 		}
4517 
4518 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4519 			btf_verifier_log_vsi(env, t, vsi,
4520 					     "Invalid offset");
4521 			return -EINVAL;
4522 		}
4523 
4524 		if (!vsi->size || vsi->size > t->size) {
4525 			btf_verifier_log_vsi(env, t, vsi,
4526 					     "Invalid size");
4527 			return -EINVAL;
4528 		}
4529 
4530 		last_vsi_end_off = vsi->offset + vsi->size;
4531 		if (last_vsi_end_off > t->size) {
4532 			btf_verifier_log_vsi(env, t, vsi,
4533 					     "Invalid offset+size");
4534 			return -EINVAL;
4535 		}
4536 
4537 		btf_verifier_log_vsi(env, t, vsi, NULL);
4538 		sum += vsi->size;
4539 	}
4540 
4541 	if (t->size < sum) {
4542 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4543 		return -EINVAL;
4544 	}
4545 
4546 	return meta_needed;
4547 }
4548 
4549 static int btf_datasec_resolve(struct btf_verifier_env *env,
4550 			       const struct resolve_vertex *v)
4551 {
4552 	const struct btf_var_secinfo *vsi;
4553 	struct btf *btf = env->btf;
4554 	u16 i;
4555 
4556 	env->resolve_mode = RESOLVE_TBD;
4557 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4558 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4559 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4560 								 var_type_id);
4561 		if (!var_type || !btf_type_is_var(var_type)) {
4562 			btf_verifier_log_vsi(env, v->t, vsi,
4563 					     "Not a VAR kind member");
4564 			return -EINVAL;
4565 		}
4566 
4567 		if (!env_type_is_resolve_sink(env, var_type) &&
4568 		    !env_type_is_resolved(env, var_type_id)) {
4569 			env_stack_set_next_member(env, i + 1);
4570 			return env_stack_push(env, var_type, var_type_id);
4571 		}
4572 
4573 		type_id = var_type->type;
4574 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4575 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4576 			return -EINVAL;
4577 		}
4578 
4579 		if (vsi->size < type_size) {
4580 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4581 			return -EINVAL;
4582 		}
4583 	}
4584 
4585 	env_stack_pop_resolved(env, 0, 0);
4586 	return 0;
4587 }
4588 
4589 static void btf_datasec_log(struct btf_verifier_env *env,
4590 			    const struct btf_type *t)
4591 {
4592 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4593 }
4594 
4595 static void btf_datasec_show(const struct btf *btf,
4596 			     const struct btf_type *t, u32 type_id,
4597 			     void *data, u8 bits_offset,
4598 			     struct btf_show *show)
4599 {
4600 	const struct btf_var_secinfo *vsi;
4601 	const struct btf_type *var;
4602 	u32 i;
4603 
4604 	if (!btf_show_start_type(show, t, type_id, data))
4605 		return;
4606 
4607 	btf_show_type_value(show, "section (\"%s\") = {",
4608 			    __btf_name_by_offset(btf, t->name_off));
4609 	for_each_vsi(i, t, vsi) {
4610 		var = btf_type_by_id(btf, vsi->type);
4611 		if (i)
4612 			btf_show(show, ",");
4613 		btf_type_ops(var)->show(btf, var, vsi->type,
4614 					data + vsi->offset, bits_offset, show);
4615 	}
4616 	btf_show_end_type(show);
4617 }
4618 
4619 static const struct btf_kind_operations datasec_ops = {
4620 	.check_meta		= btf_datasec_check_meta,
4621 	.resolve		= btf_datasec_resolve,
4622 	.check_member		= btf_df_check_member,
4623 	.check_kflag_member	= btf_df_check_kflag_member,
4624 	.log_details		= btf_datasec_log,
4625 	.show			= btf_datasec_show,
4626 };
4627 
4628 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4629 				const struct btf_type *t,
4630 				u32 meta_left)
4631 {
4632 	if (btf_type_vlen(t)) {
4633 		btf_verifier_log_type(env, t, "vlen != 0");
4634 		return -EINVAL;
4635 	}
4636 
4637 	if (btf_type_kflag(t)) {
4638 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4639 		return -EINVAL;
4640 	}
4641 
4642 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4643 	    t->size != 16) {
4644 		btf_verifier_log_type(env, t, "Invalid type_size");
4645 		return -EINVAL;
4646 	}
4647 
4648 	btf_verifier_log_type(env, t, NULL);
4649 
4650 	return 0;
4651 }
4652 
4653 static int btf_float_check_member(struct btf_verifier_env *env,
4654 				  const struct btf_type *struct_type,
4655 				  const struct btf_member *member,
4656 				  const struct btf_type *member_type)
4657 {
4658 	u64 start_offset_bytes;
4659 	u64 end_offset_bytes;
4660 	u64 misalign_bits;
4661 	u64 align_bytes;
4662 	u64 align_bits;
4663 
4664 	/* Different architectures have different alignment requirements, so
4665 	 * here we check only for the reasonable minimum. This way we ensure
4666 	 * that types after CO-RE can pass the kernel BTF verifier.
4667 	 */
4668 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4669 	align_bits = align_bytes * BITS_PER_BYTE;
4670 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4671 	if (misalign_bits) {
4672 		btf_verifier_log_member(env, struct_type, member,
4673 					"Member is not properly aligned");
4674 		return -EINVAL;
4675 	}
4676 
4677 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4678 	end_offset_bytes = start_offset_bytes + member_type->size;
4679 	if (end_offset_bytes > struct_type->size) {
4680 		btf_verifier_log_member(env, struct_type, member,
4681 					"Member exceeds struct_size");
4682 		return -EINVAL;
4683 	}
4684 
4685 	return 0;
4686 }
4687 
4688 static void btf_float_log(struct btf_verifier_env *env,
4689 			  const struct btf_type *t)
4690 {
4691 	btf_verifier_log(env, "size=%u", t->size);
4692 }
4693 
4694 static const struct btf_kind_operations float_ops = {
4695 	.check_meta = btf_float_check_meta,
4696 	.resolve = btf_df_resolve,
4697 	.check_member = btf_float_check_member,
4698 	.check_kflag_member = btf_generic_check_kflag_member,
4699 	.log_details = btf_float_log,
4700 	.show = btf_df_show,
4701 };
4702 
4703 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4704 			      const struct btf_type *t,
4705 			      u32 meta_left)
4706 {
4707 	const struct btf_decl_tag *tag;
4708 	u32 meta_needed = sizeof(*tag);
4709 	s32 component_idx;
4710 	const char *value;
4711 
4712 	if (meta_left < meta_needed) {
4713 		btf_verifier_log_basic(env, t,
4714 				       "meta_left:%u meta_needed:%u",
4715 				       meta_left, meta_needed);
4716 		return -EINVAL;
4717 	}
4718 
4719 	value = btf_name_by_offset(env->btf, t->name_off);
4720 	if (!value || !value[0]) {
4721 		btf_verifier_log_type(env, t, "Invalid value");
4722 		return -EINVAL;
4723 	}
4724 
4725 	if (btf_type_vlen(t)) {
4726 		btf_verifier_log_type(env, t, "vlen != 0");
4727 		return -EINVAL;
4728 	}
4729 
4730 	if (btf_type_kflag(t)) {
4731 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4732 		return -EINVAL;
4733 	}
4734 
4735 	component_idx = btf_type_decl_tag(t)->component_idx;
4736 	if (component_idx < -1) {
4737 		btf_verifier_log_type(env, t, "Invalid component_idx");
4738 		return -EINVAL;
4739 	}
4740 
4741 	btf_verifier_log_type(env, t, NULL);
4742 
4743 	return meta_needed;
4744 }
4745 
4746 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4747 			   const struct resolve_vertex *v)
4748 {
4749 	const struct btf_type *next_type;
4750 	const struct btf_type *t = v->t;
4751 	u32 next_type_id = t->type;
4752 	struct btf *btf = env->btf;
4753 	s32 component_idx;
4754 	u32 vlen;
4755 
4756 	next_type = btf_type_by_id(btf, next_type_id);
4757 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4758 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4759 		return -EINVAL;
4760 	}
4761 
4762 	if (!env_type_is_resolve_sink(env, next_type) &&
4763 	    !env_type_is_resolved(env, next_type_id))
4764 		return env_stack_push(env, next_type, next_type_id);
4765 
4766 	component_idx = btf_type_decl_tag(t)->component_idx;
4767 	if (component_idx != -1) {
4768 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4769 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4770 			return -EINVAL;
4771 		}
4772 
4773 		if (btf_type_is_struct(next_type)) {
4774 			vlen = btf_type_vlen(next_type);
4775 		} else {
4776 			/* next_type should be a function */
4777 			next_type = btf_type_by_id(btf, next_type->type);
4778 			vlen = btf_type_vlen(next_type);
4779 		}
4780 
4781 		if ((u32)component_idx >= vlen) {
4782 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4783 			return -EINVAL;
4784 		}
4785 	}
4786 
4787 	env_stack_pop_resolved(env, next_type_id, 0);
4788 
4789 	return 0;
4790 }
4791 
4792 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4793 {
4794 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4795 			 btf_type_decl_tag(t)->component_idx);
4796 }
4797 
4798 static const struct btf_kind_operations decl_tag_ops = {
4799 	.check_meta = btf_decl_tag_check_meta,
4800 	.resolve = btf_decl_tag_resolve,
4801 	.check_member = btf_df_check_member,
4802 	.check_kflag_member = btf_df_check_kflag_member,
4803 	.log_details = btf_decl_tag_log,
4804 	.show = btf_df_show,
4805 };
4806 
4807 static int btf_func_proto_check(struct btf_verifier_env *env,
4808 				const struct btf_type *t)
4809 {
4810 	const struct btf_type *ret_type;
4811 	const struct btf_param *args;
4812 	const struct btf *btf;
4813 	u16 nr_args, i;
4814 	int err;
4815 
4816 	btf = env->btf;
4817 	args = (const struct btf_param *)(t + 1);
4818 	nr_args = btf_type_vlen(t);
4819 
4820 	/* Check func return type which could be "void" (t->type == 0) */
4821 	if (t->type) {
4822 		u32 ret_type_id = t->type;
4823 
4824 		ret_type = btf_type_by_id(btf, ret_type_id);
4825 		if (!ret_type) {
4826 			btf_verifier_log_type(env, t, "Invalid return type");
4827 			return -EINVAL;
4828 		}
4829 
4830 		if (btf_type_is_resolve_source_only(ret_type)) {
4831 			btf_verifier_log_type(env, t, "Invalid return type");
4832 			return -EINVAL;
4833 		}
4834 
4835 		if (btf_type_needs_resolve(ret_type) &&
4836 		    !env_type_is_resolved(env, ret_type_id)) {
4837 			err = btf_resolve(env, ret_type, ret_type_id);
4838 			if (err)
4839 				return err;
4840 		}
4841 
4842 		/* Ensure the return type is a type that has a size */
4843 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4844 			btf_verifier_log_type(env, t, "Invalid return type");
4845 			return -EINVAL;
4846 		}
4847 	}
4848 
4849 	if (!nr_args)
4850 		return 0;
4851 
4852 	/* Last func arg type_id could be 0 if it is a vararg */
4853 	if (!args[nr_args - 1].type) {
4854 		if (args[nr_args - 1].name_off) {
4855 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4856 					      nr_args);
4857 			return -EINVAL;
4858 		}
4859 		nr_args--;
4860 	}
4861 
4862 	for (i = 0; i < nr_args; i++) {
4863 		const struct btf_type *arg_type;
4864 		u32 arg_type_id;
4865 
4866 		arg_type_id = args[i].type;
4867 		arg_type = btf_type_by_id(btf, arg_type_id);
4868 		if (!arg_type) {
4869 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4870 			return -EINVAL;
4871 		}
4872 
4873 		if (btf_type_is_resolve_source_only(arg_type)) {
4874 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4875 			return -EINVAL;
4876 		}
4877 
4878 		if (args[i].name_off &&
4879 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4880 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4881 			btf_verifier_log_type(env, t,
4882 					      "Invalid arg#%u", i + 1);
4883 			return -EINVAL;
4884 		}
4885 
4886 		if (btf_type_needs_resolve(arg_type) &&
4887 		    !env_type_is_resolved(env, arg_type_id)) {
4888 			err = btf_resolve(env, arg_type, arg_type_id);
4889 			if (err)
4890 				return err;
4891 		}
4892 
4893 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4894 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4895 			return -EINVAL;
4896 		}
4897 	}
4898 
4899 	return 0;
4900 }
4901 
4902 static int btf_func_check(struct btf_verifier_env *env,
4903 			  const struct btf_type *t)
4904 {
4905 	const struct btf_type *proto_type;
4906 	const struct btf_param *args;
4907 	const struct btf *btf;
4908 	u16 nr_args, i;
4909 
4910 	btf = env->btf;
4911 	proto_type = btf_type_by_id(btf, t->type);
4912 
4913 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4914 		btf_verifier_log_type(env, t, "Invalid type_id");
4915 		return -EINVAL;
4916 	}
4917 
4918 	args = (const struct btf_param *)(proto_type + 1);
4919 	nr_args = btf_type_vlen(proto_type);
4920 	for (i = 0; i < nr_args; i++) {
4921 		if (!args[i].name_off && args[i].type) {
4922 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4923 			return -EINVAL;
4924 		}
4925 	}
4926 
4927 	return 0;
4928 }
4929 
4930 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4931 	[BTF_KIND_INT] = &int_ops,
4932 	[BTF_KIND_PTR] = &ptr_ops,
4933 	[BTF_KIND_ARRAY] = &array_ops,
4934 	[BTF_KIND_STRUCT] = &struct_ops,
4935 	[BTF_KIND_UNION] = &struct_ops,
4936 	[BTF_KIND_ENUM] = &enum_ops,
4937 	[BTF_KIND_FWD] = &fwd_ops,
4938 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4939 	[BTF_KIND_VOLATILE] = &modifier_ops,
4940 	[BTF_KIND_CONST] = &modifier_ops,
4941 	[BTF_KIND_RESTRICT] = &modifier_ops,
4942 	[BTF_KIND_FUNC] = &func_ops,
4943 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4944 	[BTF_KIND_VAR] = &var_ops,
4945 	[BTF_KIND_DATASEC] = &datasec_ops,
4946 	[BTF_KIND_FLOAT] = &float_ops,
4947 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4948 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4949 	[BTF_KIND_ENUM64] = &enum64_ops,
4950 };
4951 
4952 static s32 btf_check_meta(struct btf_verifier_env *env,
4953 			  const struct btf_type *t,
4954 			  u32 meta_left)
4955 {
4956 	u32 saved_meta_left = meta_left;
4957 	s32 var_meta_size;
4958 
4959 	if (meta_left < sizeof(*t)) {
4960 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4961 				 env->log_type_id, meta_left, sizeof(*t));
4962 		return -EINVAL;
4963 	}
4964 	meta_left -= sizeof(*t);
4965 
4966 	if (t->info & ~BTF_INFO_MASK) {
4967 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4968 				 env->log_type_id, t->info);
4969 		return -EINVAL;
4970 	}
4971 
4972 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4973 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4974 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4975 				 env->log_type_id, BTF_INFO_KIND(t->info));
4976 		return -EINVAL;
4977 	}
4978 
4979 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4980 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4981 				 env->log_type_id, t->name_off);
4982 		return -EINVAL;
4983 	}
4984 
4985 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4986 	if (var_meta_size < 0)
4987 		return var_meta_size;
4988 
4989 	meta_left -= var_meta_size;
4990 
4991 	return saved_meta_left - meta_left;
4992 }
4993 
4994 static int btf_check_all_metas(struct btf_verifier_env *env)
4995 {
4996 	struct btf *btf = env->btf;
4997 	struct btf_header *hdr;
4998 	void *cur, *end;
4999 
5000 	hdr = &btf->hdr;
5001 	cur = btf->nohdr_data + hdr->type_off;
5002 	end = cur + hdr->type_len;
5003 
5004 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5005 	while (cur < end) {
5006 		struct btf_type *t = cur;
5007 		s32 meta_size;
5008 
5009 		meta_size = btf_check_meta(env, t, end - cur);
5010 		if (meta_size < 0)
5011 			return meta_size;
5012 
5013 		btf_add_type(env, t);
5014 		cur += meta_size;
5015 		env->log_type_id++;
5016 	}
5017 
5018 	return 0;
5019 }
5020 
5021 static bool btf_resolve_valid(struct btf_verifier_env *env,
5022 			      const struct btf_type *t,
5023 			      u32 type_id)
5024 {
5025 	struct btf *btf = env->btf;
5026 
5027 	if (!env_type_is_resolved(env, type_id))
5028 		return false;
5029 
5030 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5031 		return !btf_resolved_type_id(btf, type_id) &&
5032 		       !btf_resolved_type_size(btf, type_id);
5033 
5034 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5035 		return btf_resolved_type_id(btf, type_id) &&
5036 		       !btf_resolved_type_size(btf, type_id);
5037 
5038 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5039 	    btf_type_is_var(t)) {
5040 		t = btf_type_id_resolve(btf, &type_id);
5041 		return t &&
5042 		       !btf_type_is_modifier(t) &&
5043 		       !btf_type_is_var(t) &&
5044 		       !btf_type_is_datasec(t);
5045 	}
5046 
5047 	if (btf_type_is_array(t)) {
5048 		const struct btf_array *array = btf_type_array(t);
5049 		const struct btf_type *elem_type;
5050 		u32 elem_type_id = array->type;
5051 		u32 elem_size;
5052 
5053 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5054 		return elem_type && !btf_type_is_modifier(elem_type) &&
5055 			(array->nelems * elem_size ==
5056 			 btf_resolved_type_size(btf, type_id));
5057 	}
5058 
5059 	return false;
5060 }
5061 
5062 static int btf_resolve(struct btf_verifier_env *env,
5063 		       const struct btf_type *t, u32 type_id)
5064 {
5065 	u32 save_log_type_id = env->log_type_id;
5066 	const struct resolve_vertex *v;
5067 	int err = 0;
5068 
5069 	env->resolve_mode = RESOLVE_TBD;
5070 	env_stack_push(env, t, type_id);
5071 	while (!err && (v = env_stack_peak(env))) {
5072 		env->log_type_id = v->type_id;
5073 		err = btf_type_ops(v->t)->resolve(env, v);
5074 	}
5075 
5076 	env->log_type_id = type_id;
5077 	if (err == -E2BIG) {
5078 		btf_verifier_log_type(env, t,
5079 				      "Exceeded max resolving depth:%u",
5080 				      MAX_RESOLVE_DEPTH);
5081 	} else if (err == -EEXIST) {
5082 		btf_verifier_log_type(env, t, "Loop detected");
5083 	}
5084 
5085 	/* Final sanity check */
5086 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5087 		btf_verifier_log_type(env, t, "Invalid resolve state");
5088 		err = -EINVAL;
5089 	}
5090 
5091 	env->log_type_id = save_log_type_id;
5092 	return err;
5093 }
5094 
5095 static int btf_check_all_types(struct btf_verifier_env *env)
5096 {
5097 	struct btf *btf = env->btf;
5098 	const struct btf_type *t;
5099 	u32 type_id, i;
5100 	int err;
5101 
5102 	err = env_resolve_init(env);
5103 	if (err)
5104 		return err;
5105 
5106 	env->phase++;
5107 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5108 		type_id = btf->start_id + i;
5109 		t = btf_type_by_id(btf, type_id);
5110 
5111 		env->log_type_id = type_id;
5112 		if (btf_type_needs_resolve(t) &&
5113 		    !env_type_is_resolved(env, type_id)) {
5114 			err = btf_resolve(env, t, type_id);
5115 			if (err)
5116 				return err;
5117 		}
5118 
5119 		if (btf_type_is_func_proto(t)) {
5120 			err = btf_func_proto_check(env, t);
5121 			if (err)
5122 				return err;
5123 		}
5124 	}
5125 
5126 	return 0;
5127 }
5128 
5129 static int btf_parse_type_sec(struct btf_verifier_env *env)
5130 {
5131 	const struct btf_header *hdr = &env->btf->hdr;
5132 	int err;
5133 
5134 	/* Type section must align to 4 bytes */
5135 	if (hdr->type_off & (sizeof(u32) - 1)) {
5136 		btf_verifier_log(env, "Unaligned type_off");
5137 		return -EINVAL;
5138 	}
5139 
5140 	if (!env->btf->base_btf && !hdr->type_len) {
5141 		btf_verifier_log(env, "No type found");
5142 		return -EINVAL;
5143 	}
5144 
5145 	err = btf_check_all_metas(env);
5146 	if (err)
5147 		return err;
5148 
5149 	return btf_check_all_types(env);
5150 }
5151 
5152 static int btf_parse_str_sec(struct btf_verifier_env *env)
5153 {
5154 	const struct btf_header *hdr;
5155 	struct btf *btf = env->btf;
5156 	const char *start, *end;
5157 
5158 	hdr = &btf->hdr;
5159 	start = btf->nohdr_data + hdr->str_off;
5160 	end = start + hdr->str_len;
5161 
5162 	if (end != btf->data + btf->data_size) {
5163 		btf_verifier_log(env, "String section is not at the end");
5164 		return -EINVAL;
5165 	}
5166 
5167 	btf->strings = start;
5168 
5169 	if (btf->base_btf && !hdr->str_len)
5170 		return 0;
5171 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5172 		btf_verifier_log(env, "Invalid string section");
5173 		return -EINVAL;
5174 	}
5175 	if (!btf->base_btf && start[0]) {
5176 		btf_verifier_log(env, "Invalid string section");
5177 		return -EINVAL;
5178 	}
5179 
5180 	return 0;
5181 }
5182 
5183 static const size_t btf_sec_info_offset[] = {
5184 	offsetof(struct btf_header, type_off),
5185 	offsetof(struct btf_header, str_off),
5186 };
5187 
5188 static int btf_sec_info_cmp(const void *a, const void *b)
5189 {
5190 	const struct btf_sec_info *x = a;
5191 	const struct btf_sec_info *y = b;
5192 
5193 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5194 }
5195 
5196 static int btf_check_sec_info(struct btf_verifier_env *env,
5197 			      u32 btf_data_size)
5198 {
5199 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5200 	u32 total, expected_total, i;
5201 	const struct btf_header *hdr;
5202 	const struct btf *btf;
5203 
5204 	btf = env->btf;
5205 	hdr = &btf->hdr;
5206 
5207 	/* Populate the secs from hdr */
5208 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5209 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5210 						   btf_sec_info_offset[i]);
5211 
5212 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5213 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5214 
5215 	/* Check for gaps and overlap among sections */
5216 	total = 0;
5217 	expected_total = btf_data_size - hdr->hdr_len;
5218 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5219 		if (expected_total < secs[i].off) {
5220 			btf_verifier_log(env, "Invalid section offset");
5221 			return -EINVAL;
5222 		}
5223 		if (total < secs[i].off) {
5224 			/* gap */
5225 			btf_verifier_log(env, "Unsupported section found");
5226 			return -EINVAL;
5227 		}
5228 		if (total > secs[i].off) {
5229 			btf_verifier_log(env, "Section overlap found");
5230 			return -EINVAL;
5231 		}
5232 		if (expected_total - total < secs[i].len) {
5233 			btf_verifier_log(env,
5234 					 "Total section length too long");
5235 			return -EINVAL;
5236 		}
5237 		total += secs[i].len;
5238 	}
5239 
5240 	/* There is data other than hdr and known sections */
5241 	if (expected_total != total) {
5242 		btf_verifier_log(env, "Unsupported section found");
5243 		return -EINVAL;
5244 	}
5245 
5246 	return 0;
5247 }
5248 
5249 static int btf_parse_hdr(struct btf_verifier_env *env)
5250 {
5251 	u32 hdr_len, hdr_copy, btf_data_size;
5252 	const struct btf_header *hdr;
5253 	struct btf *btf;
5254 
5255 	btf = env->btf;
5256 	btf_data_size = btf->data_size;
5257 
5258 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5259 		btf_verifier_log(env, "hdr_len not found");
5260 		return -EINVAL;
5261 	}
5262 
5263 	hdr = btf->data;
5264 	hdr_len = hdr->hdr_len;
5265 	if (btf_data_size < hdr_len) {
5266 		btf_verifier_log(env, "btf_header not found");
5267 		return -EINVAL;
5268 	}
5269 
5270 	/* Ensure the unsupported header fields are zero */
5271 	if (hdr_len > sizeof(btf->hdr)) {
5272 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5273 		u8 *end = btf->data + hdr_len;
5274 
5275 		for (; expected_zero < end; expected_zero++) {
5276 			if (*expected_zero) {
5277 				btf_verifier_log(env, "Unsupported btf_header");
5278 				return -E2BIG;
5279 			}
5280 		}
5281 	}
5282 
5283 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5284 	memcpy(&btf->hdr, btf->data, hdr_copy);
5285 
5286 	hdr = &btf->hdr;
5287 
5288 	btf_verifier_log_hdr(env, btf_data_size);
5289 
5290 	if (hdr->magic != BTF_MAGIC) {
5291 		btf_verifier_log(env, "Invalid magic");
5292 		return -EINVAL;
5293 	}
5294 
5295 	if (hdr->version != BTF_VERSION) {
5296 		btf_verifier_log(env, "Unsupported version");
5297 		return -ENOTSUPP;
5298 	}
5299 
5300 	if (hdr->flags) {
5301 		btf_verifier_log(env, "Unsupported flags");
5302 		return -ENOTSUPP;
5303 	}
5304 
5305 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5306 		btf_verifier_log(env, "No data");
5307 		return -EINVAL;
5308 	}
5309 
5310 	return btf_check_sec_info(env, btf_data_size);
5311 }
5312 
5313 static const char *alloc_obj_fields[] = {
5314 	"bpf_spin_lock",
5315 	"bpf_list_head",
5316 	"bpf_list_node",
5317 	"bpf_rb_root",
5318 	"bpf_rb_node",
5319 	"bpf_refcount",
5320 };
5321 
5322 static struct btf_struct_metas *
5323 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5324 {
5325 	union {
5326 		struct btf_id_set set;
5327 		struct {
5328 			u32 _cnt;
5329 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5330 		} _arr;
5331 	} aof;
5332 	struct btf_struct_metas *tab = NULL;
5333 	int i, n, id, ret;
5334 
5335 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5336 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5337 
5338 	memset(&aof, 0, sizeof(aof));
5339 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5340 		/* Try to find whether this special type exists in user BTF, and
5341 		 * if so remember its ID so we can easily find it among members
5342 		 * of structs that we iterate in the next loop.
5343 		 */
5344 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5345 		if (id < 0)
5346 			continue;
5347 		aof.set.ids[aof.set.cnt++] = id;
5348 	}
5349 
5350 	if (!aof.set.cnt)
5351 		return NULL;
5352 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5353 
5354 	n = btf_nr_types(btf);
5355 	for (i = 1; i < n; i++) {
5356 		struct btf_struct_metas *new_tab;
5357 		const struct btf_member *member;
5358 		struct btf_struct_meta *type;
5359 		struct btf_record *record;
5360 		const struct btf_type *t;
5361 		int j, tab_cnt;
5362 
5363 		t = btf_type_by_id(btf, i);
5364 		if (!t) {
5365 			ret = -EINVAL;
5366 			goto free;
5367 		}
5368 		if (!__btf_type_is_struct(t))
5369 			continue;
5370 
5371 		cond_resched();
5372 
5373 		for_each_member(j, t, member) {
5374 			if (btf_id_set_contains(&aof.set, member->type))
5375 				goto parse;
5376 		}
5377 		continue;
5378 	parse:
5379 		tab_cnt = tab ? tab->cnt : 0;
5380 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5381 				   GFP_KERNEL | __GFP_NOWARN);
5382 		if (!new_tab) {
5383 			ret = -ENOMEM;
5384 			goto free;
5385 		}
5386 		if (!tab)
5387 			new_tab->cnt = 0;
5388 		tab = new_tab;
5389 
5390 		type = &tab->types[tab->cnt];
5391 		type->btf_id = i;
5392 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5393 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5394 		/* The record cannot be unset, treat it as an error if so */
5395 		if (IS_ERR_OR_NULL(record)) {
5396 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5397 			goto free;
5398 		}
5399 		type->record = record;
5400 		tab->cnt++;
5401 	}
5402 	return tab;
5403 free:
5404 	btf_struct_metas_free(tab);
5405 	return ERR_PTR(ret);
5406 }
5407 
5408 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5409 {
5410 	struct btf_struct_metas *tab;
5411 
5412 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5413 	tab = btf->struct_meta_tab;
5414 	if (!tab)
5415 		return NULL;
5416 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5417 }
5418 
5419 static int btf_check_type_tags(struct btf_verifier_env *env,
5420 			       struct btf *btf, int start_id)
5421 {
5422 	int i, n, good_id = start_id - 1;
5423 	bool in_tags;
5424 
5425 	n = btf_nr_types(btf);
5426 	for (i = start_id; i < n; i++) {
5427 		const struct btf_type *t;
5428 		int chain_limit = 32;
5429 		u32 cur_id = i;
5430 
5431 		t = btf_type_by_id(btf, i);
5432 		if (!t)
5433 			return -EINVAL;
5434 		if (!btf_type_is_modifier(t))
5435 			continue;
5436 
5437 		cond_resched();
5438 
5439 		in_tags = btf_type_is_type_tag(t);
5440 		while (btf_type_is_modifier(t)) {
5441 			if (!chain_limit--) {
5442 				btf_verifier_log(env, "Max chain length or cycle detected");
5443 				return -ELOOP;
5444 			}
5445 			if (btf_type_is_type_tag(t)) {
5446 				if (!in_tags) {
5447 					btf_verifier_log(env, "Type tags don't precede modifiers");
5448 					return -EINVAL;
5449 				}
5450 			} else if (in_tags) {
5451 				in_tags = false;
5452 			}
5453 			if (cur_id <= good_id)
5454 				break;
5455 			/* Move to next type */
5456 			cur_id = t->type;
5457 			t = btf_type_by_id(btf, cur_id);
5458 			if (!t)
5459 				return -EINVAL;
5460 		}
5461 		good_id = i;
5462 	}
5463 	return 0;
5464 }
5465 
5466 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5467 {
5468 	u32 log_true_size;
5469 	int err;
5470 
5471 	err = bpf_vlog_finalize(log, &log_true_size);
5472 
5473 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5474 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5475 				  &log_true_size, sizeof(log_true_size)))
5476 		err = -EFAULT;
5477 
5478 	return err;
5479 }
5480 
5481 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5482 {
5483 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5484 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5485 	struct btf_struct_metas *struct_meta_tab;
5486 	struct btf_verifier_env *env = NULL;
5487 	struct btf *btf = NULL;
5488 	u8 *data;
5489 	int err, ret;
5490 
5491 	if (attr->btf_size > BTF_MAX_SIZE)
5492 		return ERR_PTR(-E2BIG);
5493 
5494 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5495 	if (!env)
5496 		return ERR_PTR(-ENOMEM);
5497 
5498 	/* user could have requested verbose verifier output
5499 	 * and supplied buffer to store the verification trace
5500 	 */
5501 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5502 			    log_ubuf, attr->btf_log_size);
5503 	if (err)
5504 		goto errout_free;
5505 
5506 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5507 	if (!btf) {
5508 		err = -ENOMEM;
5509 		goto errout;
5510 	}
5511 	env->btf = btf;
5512 
5513 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5514 	if (!data) {
5515 		err = -ENOMEM;
5516 		goto errout;
5517 	}
5518 
5519 	btf->data = data;
5520 	btf->data_size = attr->btf_size;
5521 
5522 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5523 		err = -EFAULT;
5524 		goto errout;
5525 	}
5526 
5527 	err = btf_parse_hdr(env);
5528 	if (err)
5529 		goto errout;
5530 
5531 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5532 
5533 	err = btf_parse_str_sec(env);
5534 	if (err)
5535 		goto errout;
5536 
5537 	err = btf_parse_type_sec(env);
5538 	if (err)
5539 		goto errout;
5540 
5541 	err = btf_check_type_tags(env, btf, 1);
5542 	if (err)
5543 		goto errout;
5544 
5545 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5546 	if (IS_ERR(struct_meta_tab)) {
5547 		err = PTR_ERR(struct_meta_tab);
5548 		goto errout;
5549 	}
5550 	btf->struct_meta_tab = struct_meta_tab;
5551 
5552 	if (struct_meta_tab) {
5553 		int i;
5554 
5555 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5556 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5557 			if (err < 0)
5558 				goto errout_meta;
5559 		}
5560 	}
5561 
5562 	err = finalize_log(&env->log, uattr, uattr_size);
5563 	if (err)
5564 		goto errout_free;
5565 
5566 	btf_verifier_env_free(env);
5567 	refcount_set(&btf->refcnt, 1);
5568 	return btf;
5569 
5570 errout_meta:
5571 	btf_free_struct_meta_tab(btf);
5572 errout:
5573 	/* overwrite err with -ENOSPC or -EFAULT */
5574 	ret = finalize_log(&env->log, uattr, uattr_size);
5575 	if (ret)
5576 		err = ret;
5577 errout_free:
5578 	btf_verifier_env_free(env);
5579 	if (btf)
5580 		btf_free(btf);
5581 	return ERR_PTR(err);
5582 }
5583 
5584 extern char __weak __start_BTF[];
5585 extern char __weak __stop_BTF[];
5586 extern struct btf *btf_vmlinux;
5587 
5588 #define BPF_MAP_TYPE(_id, _ops)
5589 #define BPF_LINK_TYPE(_id, _name)
5590 static union {
5591 	struct bpf_ctx_convert {
5592 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5593 	prog_ctx_type _id##_prog; \
5594 	kern_ctx_type _id##_kern;
5595 #include <linux/bpf_types.h>
5596 #undef BPF_PROG_TYPE
5597 	} *__t;
5598 	/* 't' is written once under lock. Read many times. */
5599 	const struct btf_type *t;
5600 } bpf_ctx_convert;
5601 enum {
5602 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5603 	__ctx_convert##_id,
5604 #include <linux/bpf_types.h>
5605 #undef BPF_PROG_TYPE
5606 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5607 };
5608 static u8 bpf_ctx_convert_map[] = {
5609 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5610 	[_id] = __ctx_convert##_id,
5611 #include <linux/bpf_types.h>
5612 #undef BPF_PROG_TYPE
5613 	0, /* avoid empty array */
5614 };
5615 #undef BPF_MAP_TYPE
5616 #undef BPF_LINK_TYPE
5617 
5618 const struct btf_member *
5619 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5620 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5621 		      int arg)
5622 {
5623 	const struct btf_type *conv_struct;
5624 	const struct btf_type *ctx_struct;
5625 	const struct btf_member *ctx_type;
5626 	const char *tname, *ctx_tname;
5627 
5628 	conv_struct = bpf_ctx_convert.t;
5629 	if (!conv_struct) {
5630 		bpf_log(log, "btf_vmlinux is malformed\n");
5631 		return NULL;
5632 	}
5633 	t = btf_type_by_id(btf, t->type);
5634 	while (btf_type_is_modifier(t))
5635 		t = btf_type_by_id(btf, t->type);
5636 	if (!btf_type_is_struct(t)) {
5637 		/* Only pointer to struct is supported for now.
5638 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5639 		 * is not supported yet.
5640 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5641 		 */
5642 		return NULL;
5643 	}
5644 	tname = btf_name_by_offset(btf, t->name_off);
5645 	if (!tname) {
5646 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5647 		return NULL;
5648 	}
5649 	/* prog_type is valid bpf program type. No need for bounds check. */
5650 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5651 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5652 	 * Like 'struct __sk_buff'
5653 	 */
5654 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5655 	if (!ctx_struct)
5656 		/* should not happen */
5657 		return NULL;
5658 again:
5659 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5660 	if (!ctx_tname) {
5661 		/* should not happen */
5662 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5663 		return NULL;
5664 	}
5665 	/* only compare that prog's ctx type name is the same as
5666 	 * kernel expects. No need to compare field by field.
5667 	 * It's ok for bpf prog to do:
5668 	 * struct __sk_buff {};
5669 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5670 	 * { // no fields of skb are ever used }
5671 	 */
5672 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5673 		return ctx_type;
5674 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5675 		return ctx_type;
5676 	if (strcmp(ctx_tname, tname)) {
5677 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5678 		 * underlying struct and check name again
5679 		 */
5680 		if (!btf_type_is_modifier(ctx_struct))
5681 			return NULL;
5682 		while (btf_type_is_modifier(ctx_struct))
5683 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5684 		goto again;
5685 	}
5686 	return ctx_type;
5687 }
5688 
5689 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5690 				     struct btf *btf,
5691 				     const struct btf_type *t,
5692 				     enum bpf_prog_type prog_type,
5693 				     int arg)
5694 {
5695 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5696 
5697 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5698 	if (!prog_ctx_type)
5699 		return -ENOENT;
5700 	kern_ctx_type = prog_ctx_type + 1;
5701 	return kern_ctx_type->type;
5702 }
5703 
5704 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5705 {
5706 	const struct btf_member *kctx_member;
5707 	const struct btf_type *conv_struct;
5708 	const struct btf_type *kctx_type;
5709 	u32 kctx_type_id;
5710 
5711 	conv_struct = bpf_ctx_convert.t;
5712 	/* get member for kernel ctx type */
5713 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5714 	kctx_type_id = kctx_member->type;
5715 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5716 	if (!btf_type_is_struct(kctx_type)) {
5717 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5718 		return -EINVAL;
5719 	}
5720 
5721 	return kctx_type_id;
5722 }
5723 
5724 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5725 BTF_ID(struct, bpf_ctx_convert)
5726 
5727 struct btf *btf_parse_vmlinux(void)
5728 {
5729 	struct btf_verifier_env *env = NULL;
5730 	struct bpf_verifier_log *log;
5731 	struct btf *btf = NULL;
5732 	int err;
5733 
5734 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5735 	if (!env)
5736 		return ERR_PTR(-ENOMEM);
5737 
5738 	log = &env->log;
5739 	log->level = BPF_LOG_KERNEL;
5740 
5741 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5742 	if (!btf) {
5743 		err = -ENOMEM;
5744 		goto errout;
5745 	}
5746 	env->btf = btf;
5747 
5748 	btf->data = __start_BTF;
5749 	btf->data_size = __stop_BTF - __start_BTF;
5750 	btf->kernel_btf = true;
5751 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5752 
5753 	err = btf_parse_hdr(env);
5754 	if (err)
5755 		goto errout;
5756 
5757 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5758 
5759 	err = btf_parse_str_sec(env);
5760 	if (err)
5761 		goto errout;
5762 
5763 	err = btf_check_all_metas(env);
5764 	if (err)
5765 		goto errout;
5766 
5767 	err = btf_check_type_tags(env, btf, 1);
5768 	if (err)
5769 		goto errout;
5770 
5771 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5772 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5773 
5774 	bpf_struct_ops_init(btf, log);
5775 
5776 	refcount_set(&btf->refcnt, 1);
5777 
5778 	err = btf_alloc_id(btf);
5779 	if (err)
5780 		goto errout;
5781 
5782 	btf_verifier_env_free(env);
5783 	return btf;
5784 
5785 errout:
5786 	btf_verifier_env_free(env);
5787 	if (btf) {
5788 		kvfree(btf->types);
5789 		kfree(btf);
5790 	}
5791 	return ERR_PTR(err);
5792 }
5793 
5794 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5795 
5796 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5797 {
5798 	struct btf_verifier_env *env = NULL;
5799 	struct bpf_verifier_log *log;
5800 	struct btf *btf = NULL, *base_btf;
5801 	int err;
5802 
5803 	base_btf = bpf_get_btf_vmlinux();
5804 	if (IS_ERR(base_btf))
5805 		return base_btf;
5806 	if (!base_btf)
5807 		return ERR_PTR(-EINVAL);
5808 
5809 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5810 	if (!env)
5811 		return ERR_PTR(-ENOMEM);
5812 
5813 	log = &env->log;
5814 	log->level = BPF_LOG_KERNEL;
5815 
5816 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5817 	if (!btf) {
5818 		err = -ENOMEM;
5819 		goto errout;
5820 	}
5821 	env->btf = btf;
5822 
5823 	btf->base_btf = base_btf;
5824 	btf->start_id = base_btf->nr_types;
5825 	btf->start_str_off = base_btf->hdr.str_len;
5826 	btf->kernel_btf = true;
5827 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5828 
5829 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5830 	if (!btf->data) {
5831 		err = -ENOMEM;
5832 		goto errout;
5833 	}
5834 	memcpy(btf->data, data, data_size);
5835 	btf->data_size = data_size;
5836 
5837 	err = btf_parse_hdr(env);
5838 	if (err)
5839 		goto errout;
5840 
5841 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5842 
5843 	err = btf_parse_str_sec(env);
5844 	if (err)
5845 		goto errout;
5846 
5847 	err = btf_check_all_metas(env);
5848 	if (err)
5849 		goto errout;
5850 
5851 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5852 	if (err)
5853 		goto errout;
5854 
5855 	btf_verifier_env_free(env);
5856 	refcount_set(&btf->refcnt, 1);
5857 	return btf;
5858 
5859 errout:
5860 	btf_verifier_env_free(env);
5861 	if (btf) {
5862 		kvfree(btf->data);
5863 		kvfree(btf->types);
5864 		kfree(btf);
5865 	}
5866 	return ERR_PTR(err);
5867 }
5868 
5869 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5870 
5871 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5872 {
5873 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5874 
5875 	if (tgt_prog)
5876 		return tgt_prog->aux->btf;
5877 	else
5878 		return prog->aux->attach_btf;
5879 }
5880 
5881 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5882 {
5883 	/* skip modifiers */
5884 	t = btf_type_skip_modifiers(btf, t->type, NULL);
5885 
5886 	return btf_type_is_int(t);
5887 }
5888 
5889 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5890 			   int off)
5891 {
5892 	const struct btf_param *args;
5893 	const struct btf_type *t;
5894 	u32 offset = 0, nr_args;
5895 	int i;
5896 
5897 	if (!func_proto)
5898 		return off / 8;
5899 
5900 	nr_args = btf_type_vlen(func_proto);
5901 	args = (const struct btf_param *)(func_proto + 1);
5902 	for (i = 0; i < nr_args; i++) {
5903 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5904 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5905 		if (off < offset)
5906 			return i;
5907 	}
5908 
5909 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5910 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5911 	if (off < offset)
5912 		return nr_args;
5913 
5914 	return nr_args + 1;
5915 }
5916 
5917 static bool prog_args_trusted(const struct bpf_prog *prog)
5918 {
5919 	enum bpf_attach_type atype = prog->expected_attach_type;
5920 
5921 	switch (prog->type) {
5922 	case BPF_PROG_TYPE_TRACING:
5923 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5924 	case BPF_PROG_TYPE_LSM:
5925 		return bpf_lsm_is_trusted(prog);
5926 	case BPF_PROG_TYPE_STRUCT_OPS:
5927 		return true;
5928 	default:
5929 		return false;
5930 	}
5931 }
5932 
5933 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5934 		    const struct bpf_prog *prog,
5935 		    struct bpf_insn_access_aux *info)
5936 {
5937 	const struct btf_type *t = prog->aux->attach_func_proto;
5938 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5939 	struct btf *btf = bpf_prog_get_target_btf(prog);
5940 	const char *tname = prog->aux->attach_func_name;
5941 	struct bpf_verifier_log *log = info->log;
5942 	const struct btf_param *args;
5943 	const char *tag_value;
5944 	u32 nr_args, arg;
5945 	int i, ret;
5946 
5947 	if (off % 8) {
5948 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5949 			tname, off);
5950 		return false;
5951 	}
5952 	arg = get_ctx_arg_idx(btf, t, off);
5953 	args = (const struct btf_param *)(t + 1);
5954 	/* if (t == NULL) Fall back to default BPF prog with
5955 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5956 	 */
5957 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5958 	if (prog->aux->attach_btf_trace) {
5959 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5960 		args++;
5961 		nr_args--;
5962 	}
5963 
5964 	if (arg > nr_args) {
5965 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5966 			tname, arg + 1);
5967 		return false;
5968 	}
5969 
5970 	if (arg == nr_args) {
5971 		switch (prog->expected_attach_type) {
5972 		case BPF_LSM_CGROUP:
5973 		case BPF_LSM_MAC:
5974 		case BPF_TRACE_FEXIT:
5975 			/* When LSM programs are attached to void LSM hooks
5976 			 * they use FEXIT trampolines and when attached to
5977 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5978 			 *
5979 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5980 			 * the check:
5981 			 *
5982 			 *	if (ret_type != 'int')
5983 			 *		return -EINVAL;
5984 			 *
5985 			 * is _not_ done here. This is still safe as LSM hooks
5986 			 * have only void and int return types.
5987 			 */
5988 			if (!t)
5989 				return true;
5990 			t = btf_type_by_id(btf, t->type);
5991 			break;
5992 		case BPF_MODIFY_RETURN:
5993 			/* For now the BPF_MODIFY_RETURN can only be attached to
5994 			 * functions that return an int.
5995 			 */
5996 			if (!t)
5997 				return false;
5998 
5999 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6000 			if (!btf_type_is_small_int(t)) {
6001 				bpf_log(log,
6002 					"ret type %s not allowed for fmod_ret\n",
6003 					btf_type_str(t));
6004 				return false;
6005 			}
6006 			break;
6007 		default:
6008 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6009 				tname, arg + 1);
6010 			return false;
6011 		}
6012 	} else {
6013 		if (!t)
6014 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6015 			return true;
6016 		t = btf_type_by_id(btf, args[arg].type);
6017 	}
6018 
6019 	/* skip modifiers */
6020 	while (btf_type_is_modifier(t))
6021 		t = btf_type_by_id(btf, t->type);
6022 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6023 		/* accessing a scalar */
6024 		return true;
6025 	if (!btf_type_is_ptr(t)) {
6026 		bpf_log(log,
6027 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6028 			tname, arg,
6029 			__btf_name_by_offset(btf, t->name_off),
6030 			btf_type_str(t));
6031 		return false;
6032 	}
6033 
6034 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6035 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6036 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6037 		u32 type, flag;
6038 
6039 		type = base_type(ctx_arg_info->reg_type);
6040 		flag = type_flag(ctx_arg_info->reg_type);
6041 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6042 		    (flag & PTR_MAYBE_NULL)) {
6043 			info->reg_type = ctx_arg_info->reg_type;
6044 			return true;
6045 		}
6046 	}
6047 
6048 	if (t->type == 0)
6049 		/* This is a pointer to void.
6050 		 * It is the same as scalar from the verifier safety pov.
6051 		 * No further pointer walking is allowed.
6052 		 */
6053 		return true;
6054 
6055 	if (is_int_ptr(btf, t))
6056 		return true;
6057 
6058 	/* this is a pointer to another type */
6059 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6060 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6061 
6062 		if (ctx_arg_info->offset == off) {
6063 			if (!ctx_arg_info->btf_id) {
6064 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6065 				return false;
6066 			}
6067 
6068 			info->reg_type = ctx_arg_info->reg_type;
6069 			info->btf = btf_vmlinux;
6070 			info->btf_id = ctx_arg_info->btf_id;
6071 			return true;
6072 		}
6073 	}
6074 
6075 	info->reg_type = PTR_TO_BTF_ID;
6076 	if (prog_args_trusted(prog))
6077 		info->reg_type |= PTR_TRUSTED;
6078 
6079 	if (tgt_prog) {
6080 		enum bpf_prog_type tgt_type;
6081 
6082 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6083 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6084 		else
6085 			tgt_type = tgt_prog->type;
6086 
6087 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6088 		if (ret > 0) {
6089 			info->btf = btf_vmlinux;
6090 			info->btf_id = ret;
6091 			return true;
6092 		} else {
6093 			return false;
6094 		}
6095 	}
6096 
6097 	info->btf = btf;
6098 	info->btf_id = t->type;
6099 	t = btf_type_by_id(btf, t->type);
6100 
6101 	if (btf_type_is_type_tag(t)) {
6102 		tag_value = __btf_name_by_offset(btf, t->name_off);
6103 		if (strcmp(tag_value, "user") == 0)
6104 			info->reg_type |= MEM_USER;
6105 		if (strcmp(tag_value, "percpu") == 0)
6106 			info->reg_type |= MEM_PERCPU;
6107 	}
6108 
6109 	/* skip modifiers */
6110 	while (btf_type_is_modifier(t)) {
6111 		info->btf_id = t->type;
6112 		t = btf_type_by_id(btf, t->type);
6113 	}
6114 	if (!btf_type_is_struct(t)) {
6115 		bpf_log(log,
6116 			"func '%s' arg%d type %s is not a struct\n",
6117 			tname, arg, btf_type_str(t));
6118 		return false;
6119 	}
6120 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6121 		tname, arg, info->btf_id, btf_type_str(t),
6122 		__btf_name_by_offset(btf, t->name_off));
6123 	return true;
6124 }
6125 
6126 enum bpf_struct_walk_result {
6127 	/* < 0 error */
6128 	WALK_SCALAR = 0,
6129 	WALK_PTR,
6130 	WALK_STRUCT,
6131 };
6132 
6133 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6134 			   const struct btf_type *t, int off, int size,
6135 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6136 			   const char **field_name)
6137 {
6138 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6139 	const struct btf_type *mtype, *elem_type = NULL;
6140 	const struct btf_member *member;
6141 	const char *tname, *mname, *tag_value;
6142 	u32 vlen, elem_id, mid;
6143 
6144 again:
6145 	if (btf_type_is_modifier(t))
6146 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6147 	tname = __btf_name_by_offset(btf, t->name_off);
6148 	if (!btf_type_is_struct(t)) {
6149 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6150 		return -EINVAL;
6151 	}
6152 
6153 	vlen = btf_type_vlen(t);
6154 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6155 		/*
6156 		 * walking unions yields untrusted pointers
6157 		 * with exception of __bpf_md_ptr and other
6158 		 * unions with a single member
6159 		 */
6160 		*flag |= PTR_UNTRUSTED;
6161 
6162 	if (off + size > t->size) {
6163 		/* If the last element is a variable size array, we may
6164 		 * need to relax the rule.
6165 		 */
6166 		struct btf_array *array_elem;
6167 
6168 		if (vlen == 0)
6169 			goto error;
6170 
6171 		member = btf_type_member(t) + vlen - 1;
6172 		mtype = btf_type_skip_modifiers(btf, member->type,
6173 						NULL);
6174 		if (!btf_type_is_array(mtype))
6175 			goto error;
6176 
6177 		array_elem = (struct btf_array *)(mtype + 1);
6178 		if (array_elem->nelems != 0)
6179 			goto error;
6180 
6181 		moff = __btf_member_bit_offset(t, member) / 8;
6182 		if (off < moff)
6183 			goto error;
6184 
6185 		/* allow structure and integer */
6186 		t = btf_type_skip_modifiers(btf, array_elem->type,
6187 					    NULL);
6188 
6189 		if (btf_type_is_int(t))
6190 			return WALK_SCALAR;
6191 
6192 		if (!btf_type_is_struct(t))
6193 			goto error;
6194 
6195 		off = (off - moff) % t->size;
6196 		goto again;
6197 
6198 error:
6199 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6200 			tname, off, size);
6201 		return -EACCES;
6202 	}
6203 
6204 	for_each_member(i, t, member) {
6205 		/* offset of the field in bytes */
6206 		moff = __btf_member_bit_offset(t, member) / 8;
6207 		if (off + size <= moff)
6208 			/* won't find anything, field is already too far */
6209 			break;
6210 
6211 		if (__btf_member_bitfield_size(t, member)) {
6212 			u32 end_bit = __btf_member_bit_offset(t, member) +
6213 				__btf_member_bitfield_size(t, member);
6214 
6215 			/* off <= moff instead of off == moff because clang
6216 			 * does not generate a BTF member for anonymous
6217 			 * bitfield like the ":16" here:
6218 			 * struct {
6219 			 *	int :16;
6220 			 *	int x:8;
6221 			 * };
6222 			 */
6223 			if (off <= moff &&
6224 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6225 				return WALK_SCALAR;
6226 
6227 			/* off may be accessing a following member
6228 			 *
6229 			 * or
6230 			 *
6231 			 * Doing partial access at either end of this
6232 			 * bitfield.  Continue on this case also to
6233 			 * treat it as not accessing this bitfield
6234 			 * and eventually error out as field not
6235 			 * found to keep it simple.
6236 			 * It could be relaxed if there was a legit
6237 			 * partial access case later.
6238 			 */
6239 			continue;
6240 		}
6241 
6242 		/* In case of "off" is pointing to holes of a struct */
6243 		if (off < moff)
6244 			break;
6245 
6246 		/* type of the field */
6247 		mid = member->type;
6248 		mtype = btf_type_by_id(btf, member->type);
6249 		mname = __btf_name_by_offset(btf, member->name_off);
6250 
6251 		mtype = __btf_resolve_size(btf, mtype, &msize,
6252 					   &elem_type, &elem_id, &total_nelems,
6253 					   &mid);
6254 		if (IS_ERR(mtype)) {
6255 			bpf_log(log, "field %s doesn't have size\n", mname);
6256 			return -EFAULT;
6257 		}
6258 
6259 		mtrue_end = moff + msize;
6260 		if (off >= mtrue_end)
6261 			/* no overlap with member, keep iterating */
6262 			continue;
6263 
6264 		if (btf_type_is_array(mtype)) {
6265 			u32 elem_idx;
6266 
6267 			/* __btf_resolve_size() above helps to
6268 			 * linearize a multi-dimensional array.
6269 			 *
6270 			 * The logic here is treating an array
6271 			 * in a struct as the following way:
6272 			 *
6273 			 * struct outer {
6274 			 *	struct inner array[2][2];
6275 			 * };
6276 			 *
6277 			 * looks like:
6278 			 *
6279 			 * struct outer {
6280 			 *	struct inner array_elem0;
6281 			 *	struct inner array_elem1;
6282 			 *	struct inner array_elem2;
6283 			 *	struct inner array_elem3;
6284 			 * };
6285 			 *
6286 			 * When accessing outer->array[1][0], it moves
6287 			 * moff to "array_elem2", set mtype to
6288 			 * "struct inner", and msize also becomes
6289 			 * sizeof(struct inner).  Then most of the
6290 			 * remaining logic will fall through without
6291 			 * caring the current member is an array or
6292 			 * not.
6293 			 *
6294 			 * Unlike mtype/msize/moff, mtrue_end does not
6295 			 * change.  The naming difference ("_true") tells
6296 			 * that it is not always corresponding to
6297 			 * the current mtype/msize/moff.
6298 			 * It is the true end of the current
6299 			 * member (i.e. array in this case).  That
6300 			 * will allow an int array to be accessed like
6301 			 * a scratch space,
6302 			 * i.e. allow access beyond the size of
6303 			 *      the array's element as long as it is
6304 			 *      within the mtrue_end boundary.
6305 			 */
6306 
6307 			/* skip empty array */
6308 			if (moff == mtrue_end)
6309 				continue;
6310 
6311 			msize /= total_nelems;
6312 			elem_idx = (off - moff) / msize;
6313 			moff += elem_idx * msize;
6314 			mtype = elem_type;
6315 			mid = elem_id;
6316 		}
6317 
6318 		/* the 'off' we're looking for is either equal to start
6319 		 * of this field or inside of this struct
6320 		 */
6321 		if (btf_type_is_struct(mtype)) {
6322 			/* our field must be inside that union or struct */
6323 			t = mtype;
6324 
6325 			/* return if the offset matches the member offset */
6326 			if (off == moff) {
6327 				*next_btf_id = mid;
6328 				return WALK_STRUCT;
6329 			}
6330 
6331 			/* adjust offset we're looking for */
6332 			off -= moff;
6333 			goto again;
6334 		}
6335 
6336 		if (btf_type_is_ptr(mtype)) {
6337 			const struct btf_type *stype, *t;
6338 			enum bpf_type_flag tmp_flag = 0;
6339 			u32 id;
6340 
6341 			if (msize != size || off != moff) {
6342 				bpf_log(log,
6343 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6344 					mname, moff, tname, off, size);
6345 				return -EACCES;
6346 			}
6347 
6348 			/* check type tag */
6349 			t = btf_type_by_id(btf, mtype->type);
6350 			if (btf_type_is_type_tag(t)) {
6351 				tag_value = __btf_name_by_offset(btf, t->name_off);
6352 				/* check __user tag */
6353 				if (strcmp(tag_value, "user") == 0)
6354 					tmp_flag = MEM_USER;
6355 				/* check __percpu tag */
6356 				if (strcmp(tag_value, "percpu") == 0)
6357 					tmp_flag = MEM_PERCPU;
6358 				/* check __rcu tag */
6359 				if (strcmp(tag_value, "rcu") == 0)
6360 					tmp_flag = MEM_RCU;
6361 			}
6362 
6363 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6364 			if (btf_type_is_struct(stype)) {
6365 				*next_btf_id = id;
6366 				*flag |= tmp_flag;
6367 				if (field_name)
6368 					*field_name = mname;
6369 				return WALK_PTR;
6370 			}
6371 		}
6372 
6373 		/* Allow more flexible access within an int as long as
6374 		 * it is within mtrue_end.
6375 		 * Since mtrue_end could be the end of an array,
6376 		 * that also allows using an array of int as a scratch
6377 		 * space. e.g. skb->cb[].
6378 		 */
6379 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6380 			bpf_log(log,
6381 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6382 				mname, mtrue_end, tname, off, size);
6383 			return -EACCES;
6384 		}
6385 
6386 		return WALK_SCALAR;
6387 	}
6388 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6389 	return -EINVAL;
6390 }
6391 
6392 int btf_struct_access(struct bpf_verifier_log *log,
6393 		      const struct bpf_reg_state *reg,
6394 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6395 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6396 		      const char **field_name)
6397 {
6398 	const struct btf *btf = reg->btf;
6399 	enum bpf_type_flag tmp_flag = 0;
6400 	const struct btf_type *t;
6401 	u32 id = reg->btf_id;
6402 	int err;
6403 
6404 	while (type_is_alloc(reg->type)) {
6405 		struct btf_struct_meta *meta;
6406 		struct btf_record *rec;
6407 		int i;
6408 
6409 		meta = btf_find_struct_meta(btf, id);
6410 		if (!meta)
6411 			break;
6412 		rec = meta->record;
6413 		for (i = 0; i < rec->cnt; i++) {
6414 			struct btf_field *field = &rec->fields[i];
6415 			u32 offset = field->offset;
6416 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6417 				bpf_log(log,
6418 					"direct access to %s is disallowed\n",
6419 					btf_field_type_name(field->type));
6420 				return -EACCES;
6421 			}
6422 		}
6423 		break;
6424 	}
6425 
6426 	t = btf_type_by_id(btf, id);
6427 	do {
6428 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6429 
6430 		switch (err) {
6431 		case WALK_PTR:
6432 			/* For local types, the destination register cannot
6433 			 * become a pointer again.
6434 			 */
6435 			if (type_is_alloc(reg->type))
6436 				return SCALAR_VALUE;
6437 			/* If we found the pointer or scalar on t+off,
6438 			 * we're done.
6439 			 */
6440 			*next_btf_id = id;
6441 			*flag = tmp_flag;
6442 			return PTR_TO_BTF_ID;
6443 		case WALK_SCALAR:
6444 			return SCALAR_VALUE;
6445 		case WALK_STRUCT:
6446 			/* We found nested struct, so continue the search
6447 			 * by diving in it. At this point the offset is
6448 			 * aligned with the new type, so set it to 0.
6449 			 */
6450 			t = btf_type_by_id(btf, id);
6451 			off = 0;
6452 			break;
6453 		default:
6454 			/* It's either error or unknown return value..
6455 			 * scream and leave.
6456 			 */
6457 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6458 				return -EINVAL;
6459 			return err;
6460 		}
6461 	} while (t);
6462 
6463 	return -EINVAL;
6464 }
6465 
6466 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6467  * the same. Trivial ID check is not enough due to module BTFs, because we can
6468  * end up with two different module BTFs, but IDs point to the common type in
6469  * vmlinux BTF.
6470  */
6471 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6472 			const struct btf *btf2, u32 id2)
6473 {
6474 	if (id1 != id2)
6475 		return false;
6476 	if (btf1 == btf2)
6477 		return true;
6478 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6479 }
6480 
6481 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6482 			  const struct btf *btf, u32 id, int off,
6483 			  const struct btf *need_btf, u32 need_type_id,
6484 			  bool strict)
6485 {
6486 	const struct btf_type *type;
6487 	enum bpf_type_flag flag = 0;
6488 	int err;
6489 
6490 	/* Are we already done? */
6491 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6492 		return true;
6493 	/* In case of strict type match, we do not walk struct, the top level
6494 	 * type match must succeed. When strict is true, off should have already
6495 	 * been 0.
6496 	 */
6497 	if (strict)
6498 		return false;
6499 again:
6500 	type = btf_type_by_id(btf, id);
6501 	if (!type)
6502 		return false;
6503 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6504 	if (err != WALK_STRUCT)
6505 		return false;
6506 
6507 	/* We found nested struct object. If it matches
6508 	 * the requested ID, we're done. Otherwise let's
6509 	 * continue the search with offset 0 in the new
6510 	 * type.
6511 	 */
6512 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6513 		off = 0;
6514 		goto again;
6515 	}
6516 
6517 	return true;
6518 }
6519 
6520 static int __get_type_size(struct btf *btf, u32 btf_id,
6521 			   const struct btf_type **ret_type)
6522 {
6523 	const struct btf_type *t;
6524 
6525 	*ret_type = btf_type_by_id(btf, 0);
6526 	if (!btf_id)
6527 		/* void */
6528 		return 0;
6529 	t = btf_type_by_id(btf, btf_id);
6530 	while (t && btf_type_is_modifier(t))
6531 		t = btf_type_by_id(btf, t->type);
6532 	if (!t)
6533 		return -EINVAL;
6534 	*ret_type = t;
6535 	if (btf_type_is_ptr(t))
6536 		/* kernel size of pointer. Not BPF's size of pointer*/
6537 		return sizeof(void *);
6538 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6539 		return t->size;
6540 	return -EINVAL;
6541 }
6542 
6543 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6544 {
6545 	u8 flags = 0;
6546 
6547 	if (__btf_type_is_struct(t))
6548 		flags |= BTF_FMODEL_STRUCT_ARG;
6549 	if (btf_type_is_signed_int(t))
6550 		flags |= BTF_FMODEL_SIGNED_ARG;
6551 
6552 	return flags;
6553 }
6554 
6555 int btf_distill_func_proto(struct bpf_verifier_log *log,
6556 			   struct btf *btf,
6557 			   const struct btf_type *func,
6558 			   const char *tname,
6559 			   struct btf_func_model *m)
6560 {
6561 	const struct btf_param *args;
6562 	const struct btf_type *t;
6563 	u32 i, nargs;
6564 	int ret;
6565 
6566 	if (!func) {
6567 		/* BTF function prototype doesn't match the verifier types.
6568 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6569 		 */
6570 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6571 			m->arg_size[i] = 8;
6572 			m->arg_flags[i] = 0;
6573 		}
6574 		m->ret_size = 8;
6575 		m->ret_flags = 0;
6576 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6577 		return 0;
6578 	}
6579 	args = (const struct btf_param *)(func + 1);
6580 	nargs = btf_type_vlen(func);
6581 	if (nargs > MAX_BPF_FUNC_ARGS) {
6582 		bpf_log(log,
6583 			"The function %s has %d arguments. Too many.\n",
6584 			tname, nargs);
6585 		return -EINVAL;
6586 	}
6587 	ret = __get_type_size(btf, func->type, &t);
6588 	if (ret < 0 || __btf_type_is_struct(t)) {
6589 		bpf_log(log,
6590 			"The function %s return type %s is unsupported.\n",
6591 			tname, btf_type_str(t));
6592 		return -EINVAL;
6593 	}
6594 	m->ret_size = ret;
6595 	m->ret_flags = __get_type_fmodel_flags(t);
6596 
6597 	for (i = 0; i < nargs; i++) {
6598 		if (i == nargs - 1 && args[i].type == 0) {
6599 			bpf_log(log,
6600 				"The function %s with variable args is unsupported.\n",
6601 				tname);
6602 			return -EINVAL;
6603 		}
6604 		ret = __get_type_size(btf, args[i].type, &t);
6605 
6606 		/* No support of struct argument size greater than 16 bytes */
6607 		if (ret < 0 || ret > 16) {
6608 			bpf_log(log,
6609 				"The function %s arg%d type %s is unsupported.\n",
6610 				tname, i, btf_type_str(t));
6611 			return -EINVAL;
6612 		}
6613 		if (ret == 0) {
6614 			bpf_log(log,
6615 				"The function %s has malformed void argument.\n",
6616 				tname);
6617 			return -EINVAL;
6618 		}
6619 		m->arg_size[i] = ret;
6620 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6621 	}
6622 	m->nr_args = nargs;
6623 	return 0;
6624 }
6625 
6626 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6627  * t1 points to BTF_KIND_FUNC in btf1
6628  * t2 points to BTF_KIND_FUNC in btf2
6629  * Returns:
6630  * EINVAL - function prototype mismatch
6631  * EFAULT - verifier bug
6632  * 0 - 99% match. The last 1% is validated by the verifier.
6633  */
6634 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6635 				     struct btf *btf1, const struct btf_type *t1,
6636 				     struct btf *btf2, const struct btf_type *t2)
6637 {
6638 	const struct btf_param *args1, *args2;
6639 	const char *fn1, *fn2, *s1, *s2;
6640 	u32 nargs1, nargs2, i;
6641 
6642 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6643 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6644 
6645 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6646 		bpf_log(log, "%s() is not a global function\n", fn1);
6647 		return -EINVAL;
6648 	}
6649 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6650 		bpf_log(log, "%s() is not a global function\n", fn2);
6651 		return -EINVAL;
6652 	}
6653 
6654 	t1 = btf_type_by_id(btf1, t1->type);
6655 	if (!t1 || !btf_type_is_func_proto(t1))
6656 		return -EFAULT;
6657 	t2 = btf_type_by_id(btf2, t2->type);
6658 	if (!t2 || !btf_type_is_func_proto(t2))
6659 		return -EFAULT;
6660 
6661 	args1 = (const struct btf_param *)(t1 + 1);
6662 	nargs1 = btf_type_vlen(t1);
6663 	args2 = (const struct btf_param *)(t2 + 1);
6664 	nargs2 = btf_type_vlen(t2);
6665 
6666 	if (nargs1 != nargs2) {
6667 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6668 			fn1, nargs1, fn2, nargs2);
6669 		return -EINVAL;
6670 	}
6671 
6672 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6673 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6674 	if (t1->info != t2->info) {
6675 		bpf_log(log,
6676 			"Return type %s of %s() doesn't match type %s of %s()\n",
6677 			btf_type_str(t1), fn1,
6678 			btf_type_str(t2), fn2);
6679 		return -EINVAL;
6680 	}
6681 
6682 	for (i = 0; i < nargs1; i++) {
6683 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6684 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6685 
6686 		if (t1->info != t2->info) {
6687 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6688 				i, fn1, btf_type_str(t1),
6689 				fn2, btf_type_str(t2));
6690 			return -EINVAL;
6691 		}
6692 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6693 			bpf_log(log,
6694 				"arg%d in %s() has size %d while %s() has %d\n",
6695 				i, fn1, t1->size,
6696 				fn2, t2->size);
6697 			return -EINVAL;
6698 		}
6699 
6700 		/* global functions are validated with scalars and pointers
6701 		 * to context only. And only global functions can be replaced.
6702 		 * Hence type check only those types.
6703 		 */
6704 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6705 			continue;
6706 		if (!btf_type_is_ptr(t1)) {
6707 			bpf_log(log,
6708 				"arg%d in %s() has unrecognized type\n",
6709 				i, fn1);
6710 			return -EINVAL;
6711 		}
6712 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6713 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6714 		if (!btf_type_is_struct(t1)) {
6715 			bpf_log(log,
6716 				"arg%d in %s() is not a pointer to context\n",
6717 				i, fn1);
6718 			return -EINVAL;
6719 		}
6720 		if (!btf_type_is_struct(t2)) {
6721 			bpf_log(log,
6722 				"arg%d in %s() is not a pointer to context\n",
6723 				i, fn2);
6724 			return -EINVAL;
6725 		}
6726 		/* This is an optional check to make program writing easier.
6727 		 * Compare names of structs and report an error to the user.
6728 		 * btf_prepare_func_args() already checked that t2 struct
6729 		 * is a context type. btf_prepare_func_args() will check
6730 		 * later that t1 struct is a context type as well.
6731 		 */
6732 		s1 = btf_name_by_offset(btf1, t1->name_off);
6733 		s2 = btf_name_by_offset(btf2, t2->name_off);
6734 		if (strcmp(s1, s2)) {
6735 			bpf_log(log,
6736 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6737 				i, fn1, s1, fn2, s2);
6738 			return -EINVAL;
6739 		}
6740 	}
6741 	return 0;
6742 }
6743 
6744 /* Compare BTFs of given program with BTF of target program */
6745 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6746 			 struct btf *btf2, const struct btf_type *t2)
6747 {
6748 	struct btf *btf1 = prog->aux->btf;
6749 	const struct btf_type *t1;
6750 	u32 btf_id = 0;
6751 
6752 	if (!prog->aux->func_info) {
6753 		bpf_log(log, "Program extension requires BTF\n");
6754 		return -EINVAL;
6755 	}
6756 
6757 	btf_id = prog->aux->func_info[0].type_id;
6758 	if (!btf_id)
6759 		return -EFAULT;
6760 
6761 	t1 = btf_type_by_id(btf1, btf_id);
6762 	if (!t1 || !btf_type_is_func(t1))
6763 		return -EFAULT;
6764 
6765 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6766 }
6767 
6768 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6769 				    const struct btf *btf, u32 func_id,
6770 				    struct bpf_reg_state *regs,
6771 				    bool ptr_to_mem_ok,
6772 				    bool processing_call)
6773 {
6774 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6775 	struct bpf_verifier_log *log = &env->log;
6776 	const char *func_name, *ref_tname;
6777 	const struct btf_type *t, *ref_t;
6778 	const struct btf_param *args;
6779 	u32 i, nargs, ref_id;
6780 	int ret;
6781 
6782 	t = btf_type_by_id(btf, func_id);
6783 	if (!t || !btf_type_is_func(t)) {
6784 		/* These checks were already done by the verifier while loading
6785 		 * struct bpf_func_info or in add_kfunc_call().
6786 		 */
6787 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6788 			func_id);
6789 		return -EFAULT;
6790 	}
6791 	func_name = btf_name_by_offset(btf, t->name_off);
6792 
6793 	t = btf_type_by_id(btf, t->type);
6794 	if (!t || !btf_type_is_func_proto(t)) {
6795 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6796 		return -EFAULT;
6797 	}
6798 	args = (const struct btf_param *)(t + 1);
6799 	nargs = btf_type_vlen(t);
6800 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6801 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6802 			MAX_BPF_FUNC_REG_ARGS);
6803 		return -EINVAL;
6804 	}
6805 
6806 	/* check that BTF function arguments match actual types that the
6807 	 * verifier sees.
6808 	 */
6809 	for (i = 0; i < nargs; i++) {
6810 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6811 		u32 regno = i + 1;
6812 		struct bpf_reg_state *reg = &regs[regno];
6813 
6814 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6815 		if (btf_type_is_scalar(t)) {
6816 			if (reg->type == SCALAR_VALUE)
6817 				continue;
6818 			bpf_log(log, "R%d is not a scalar\n", regno);
6819 			return -EINVAL;
6820 		}
6821 
6822 		if (!btf_type_is_ptr(t)) {
6823 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6824 				i, btf_type_str(t));
6825 			return -EINVAL;
6826 		}
6827 
6828 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6829 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6830 
6831 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6832 		if (ret < 0)
6833 			return ret;
6834 
6835 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6836 			/* If function expects ctx type in BTF check that caller
6837 			 * is passing PTR_TO_CTX.
6838 			 */
6839 			if (reg->type != PTR_TO_CTX) {
6840 				bpf_log(log,
6841 					"arg#%d expected pointer to ctx, but got %s\n",
6842 					i, btf_type_str(t));
6843 				return -EINVAL;
6844 			}
6845 		} else if (ptr_to_mem_ok && processing_call) {
6846 			const struct btf_type *resolve_ret;
6847 			u32 type_size;
6848 
6849 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6850 			if (IS_ERR(resolve_ret)) {
6851 				bpf_log(log,
6852 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6853 					i, btf_type_str(ref_t), ref_tname,
6854 					PTR_ERR(resolve_ret));
6855 				return -EINVAL;
6856 			}
6857 
6858 			if (check_mem_reg(env, reg, regno, type_size))
6859 				return -EINVAL;
6860 		} else {
6861 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6862 				func_name, func_id);
6863 			return -EINVAL;
6864 		}
6865 	}
6866 
6867 	return 0;
6868 }
6869 
6870 /* Compare BTF of a function declaration with given bpf_reg_state.
6871  * Returns:
6872  * EFAULT - there is a verifier bug. Abort verification.
6873  * EINVAL - there is a type mismatch or BTF is not available.
6874  * 0 - BTF matches with what bpf_reg_state expects.
6875  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6876  */
6877 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6878 				struct bpf_reg_state *regs)
6879 {
6880 	struct bpf_prog *prog = env->prog;
6881 	struct btf *btf = prog->aux->btf;
6882 	bool is_global;
6883 	u32 btf_id;
6884 	int err;
6885 
6886 	if (!prog->aux->func_info)
6887 		return -EINVAL;
6888 
6889 	btf_id = prog->aux->func_info[subprog].type_id;
6890 	if (!btf_id)
6891 		return -EFAULT;
6892 
6893 	if (prog->aux->func_info_aux[subprog].unreliable)
6894 		return -EINVAL;
6895 
6896 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6897 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6898 
6899 	/* Compiler optimizations can remove arguments from static functions
6900 	 * or mismatched type can be passed into a global function.
6901 	 * In such cases mark the function as unreliable from BTF point of view.
6902 	 */
6903 	if (err)
6904 		prog->aux->func_info_aux[subprog].unreliable = true;
6905 	return err;
6906 }
6907 
6908 /* Compare BTF of a function call with given bpf_reg_state.
6909  * Returns:
6910  * EFAULT - there is a verifier bug. Abort verification.
6911  * EINVAL - there is a type mismatch or BTF is not available.
6912  * 0 - BTF matches with what bpf_reg_state expects.
6913  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6914  *
6915  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6916  * because btf_check_func_arg_match() is still doing both. Once that
6917  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6918  * first, and then treat the calling part in a new code path.
6919  */
6920 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6921 			   struct bpf_reg_state *regs)
6922 {
6923 	struct bpf_prog *prog = env->prog;
6924 	struct btf *btf = prog->aux->btf;
6925 	bool is_global;
6926 	u32 btf_id;
6927 	int err;
6928 
6929 	if (!prog->aux->func_info)
6930 		return -EINVAL;
6931 
6932 	btf_id = prog->aux->func_info[subprog].type_id;
6933 	if (!btf_id)
6934 		return -EFAULT;
6935 
6936 	if (prog->aux->func_info_aux[subprog].unreliable)
6937 		return -EINVAL;
6938 
6939 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6940 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6941 
6942 	/* Compiler optimizations can remove arguments from static functions
6943 	 * or mismatched type can be passed into a global function.
6944 	 * In such cases mark the function as unreliable from BTF point of view.
6945 	 */
6946 	if (err)
6947 		prog->aux->func_info_aux[subprog].unreliable = true;
6948 	return err;
6949 }
6950 
6951 /* Convert BTF of a function into bpf_reg_state if possible
6952  * Returns:
6953  * EFAULT - there is a verifier bug. Abort verification.
6954  * EINVAL - cannot convert BTF.
6955  * 0 - Successfully converted BTF into bpf_reg_state
6956  * (either PTR_TO_CTX or SCALAR_VALUE).
6957  */
6958 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6959 			  struct bpf_reg_state *regs, u32 *arg_cnt)
6960 {
6961 	struct bpf_verifier_log *log = &env->log;
6962 	struct bpf_prog *prog = env->prog;
6963 	enum bpf_prog_type prog_type = prog->type;
6964 	struct btf *btf = prog->aux->btf;
6965 	const struct btf_param *args;
6966 	const struct btf_type *t, *ref_t;
6967 	u32 i, nargs, btf_id;
6968 	const char *tname;
6969 
6970 	if (!prog->aux->func_info ||
6971 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6972 		bpf_log(log, "Verifier bug\n");
6973 		return -EFAULT;
6974 	}
6975 
6976 	btf_id = prog->aux->func_info[subprog].type_id;
6977 	if (!btf_id) {
6978 		bpf_log(log, "Global functions need valid BTF\n");
6979 		return -EFAULT;
6980 	}
6981 
6982 	t = btf_type_by_id(btf, btf_id);
6983 	if (!t || !btf_type_is_func(t)) {
6984 		/* These checks were already done by the verifier while loading
6985 		 * struct bpf_func_info
6986 		 */
6987 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6988 			subprog);
6989 		return -EFAULT;
6990 	}
6991 	tname = btf_name_by_offset(btf, t->name_off);
6992 
6993 	if (log->level & BPF_LOG_LEVEL)
6994 		bpf_log(log, "Validating %s() func#%d...\n",
6995 			tname, subprog);
6996 
6997 	if (prog->aux->func_info_aux[subprog].unreliable) {
6998 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6999 		return -EFAULT;
7000 	}
7001 	if (prog_type == BPF_PROG_TYPE_EXT)
7002 		prog_type = prog->aux->dst_prog->type;
7003 
7004 	t = btf_type_by_id(btf, t->type);
7005 	if (!t || !btf_type_is_func_proto(t)) {
7006 		bpf_log(log, "Invalid type of function %s()\n", tname);
7007 		return -EFAULT;
7008 	}
7009 	args = (const struct btf_param *)(t + 1);
7010 	nargs = btf_type_vlen(t);
7011 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7012 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7013 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7014 		return -EINVAL;
7015 	}
7016 	*arg_cnt = nargs;
7017 	/* check that function returns int, exception cb also requires this */
7018 	t = btf_type_by_id(btf, t->type);
7019 	while (btf_type_is_modifier(t))
7020 		t = btf_type_by_id(btf, t->type);
7021 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7022 		bpf_log(log,
7023 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7024 			tname);
7025 		return -EINVAL;
7026 	}
7027 	/* Convert BTF function arguments into verifier types.
7028 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7029 	 */
7030 	for (i = 0; i < nargs; i++) {
7031 		struct bpf_reg_state *reg = &regs[i + 1];
7032 
7033 		t = btf_type_by_id(btf, args[i].type);
7034 		while (btf_type_is_modifier(t))
7035 			t = btf_type_by_id(btf, t->type);
7036 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7037 			reg->type = SCALAR_VALUE;
7038 			continue;
7039 		}
7040 		if (btf_type_is_ptr(t)) {
7041 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7042 				reg->type = PTR_TO_CTX;
7043 				continue;
7044 			}
7045 
7046 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7047 
7048 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7049 			if (IS_ERR(ref_t)) {
7050 				bpf_log(log,
7051 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7052 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7053 					PTR_ERR(ref_t));
7054 				return -EINVAL;
7055 			}
7056 
7057 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7058 			reg->id = ++env->id_gen;
7059 
7060 			continue;
7061 		}
7062 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7063 			i, btf_type_str(t), tname);
7064 		return -EINVAL;
7065 	}
7066 	return 0;
7067 }
7068 
7069 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7070 			  struct btf_show *show)
7071 {
7072 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7073 
7074 	show->btf = btf;
7075 	memset(&show->state, 0, sizeof(show->state));
7076 	memset(&show->obj, 0, sizeof(show->obj));
7077 
7078 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7079 }
7080 
7081 static void btf_seq_show(struct btf_show *show, const char *fmt,
7082 			 va_list args)
7083 {
7084 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7085 }
7086 
7087 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7088 			    void *obj, struct seq_file *m, u64 flags)
7089 {
7090 	struct btf_show sseq;
7091 
7092 	sseq.target = m;
7093 	sseq.showfn = btf_seq_show;
7094 	sseq.flags = flags;
7095 
7096 	btf_type_show(btf, type_id, obj, &sseq);
7097 
7098 	return sseq.state.status;
7099 }
7100 
7101 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7102 		       struct seq_file *m)
7103 {
7104 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7105 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7106 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7107 }
7108 
7109 struct btf_show_snprintf {
7110 	struct btf_show show;
7111 	int len_left;		/* space left in string */
7112 	int len;		/* length we would have written */
7113 };
7114 
7115 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7116 			      va_list args)
7117 {
7118 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7119 	int len;
7120 
7121 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7122 
7123 	if (len < 0) {
7124 		ssnprintf->len_left = 0;
7125 		ssnprintf->len = len;
7126 	} else if (len >= ssnprintf->len_left) {
7127 		/* no space, drive on to get length we would have written */
7128 		ssnprintf->len_left = 0;
7129 		ssnprintf->len += len;
7130 	} else {
7131 		ssnprintf->len_left -= len;
7132 		ssnprintf->len += len;
7133 		show->target += len;
7134 	}
7135 }
7136 
7137 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7138 			   char *buf, int len, u64 flags)
7139 {
7140 	struct btf_show_snprintf ssnprintf;
7141 
7142 	ssnprintf.show.target = buf;
7143 	ssnprintf.show.flags = flags;
7144 	ssnprintf.show.showfn = btf_snprintf_show;
7145 	ssnprintf.len_left = len;
7146 	ssnprintf.len = 0;
7147 
7148 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7149 
7150 	/* If we encountered an error, return it. */
7151 	if (ssnprintf.show.state.status)
7152 		return ssnprintf.show.state.status;
7153 
7154 	/* Otherwise return length we would have written */
7155 	return ssnprintf.len;
7156 }
7157 
7158 #ifdef CONFIG_PROC_FS
7159 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7160 {
7161 	const struct btf *btf = filp->private_data;
7162 
7163 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7164 }
7165 #endif
7166 
7167 static int btf_release(struct inode *inode, struct file *filp)
7168 {
7169 	btf_put(filp->private_data);
7170 	return 0;
7171 }
7172 
7173 const struct file_operations btf_fops = {
7174 #ifdef CONFIG_PROC_FS
7175 	.show_fdinfo	= bpf_btf_show_fdinfo,
7176 #endif
7177 	.release	= btf_release,
7178 };
7179 
7180 static int __btf_new_fd(struct btf *btf)
7181 {
7182 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7183 }
7184 
7185 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7186 {
7187 	struct btf *btf;
7188 	int ret;
7189 
7190 	btf = btf_parse(attr, uattr, uattr_size);
7191 	if (IS_ERR(btf))
7192 		return PTR_ERR(btf);
7193 
7194 	ret = btf_alloc_id(btf);
7195 	if (ret) {
7196 		btf_free(btf);
7197 		return ret;
7198 	}
7199 
7200 	/*
7201 	 * The BTF ID is published to the userspace.
7202 	 * All BTF free must go through call_rcu() from
7203 	 * now on (i.e. free by calling btf_put()).
7204 	 */
7205 
7206 	ret = __btf_new_fd(btf);
7207 	if (ret < 0)
7208 		btf_put(btf);
7209 
7210 	return ret;
7211 }
7212 
7213 struct btf *btf_get_by_fd(int fd)
7214 {
7215 	struct btf *btf;
7216 	struct fd f;
7217 
7218 	f = fdget(fd);
7219 
7220 	if (!f.file)
7221 		return ERR_PTR(-EBADF);
7222 
7223 	if (f.file->f_op != &btf_fops) {
7224 		fdput(f);
7225 		return ERR_PTR(-EINVAL);
7226 	}
7227 
7228 	btf = f.file->private_data;
7229 	refcount_inc(&btf->refcnt);
7230 	fdput(f);
7231 
7232 	return btf;
7233 }
7234 
7235 int btf_get_info_by_fd(const struct btf *btf,
7236 		       const union bpf_attr *attr,
7237 		       union bpf_attr __user *uattr)
7238 {
7239 	struct bpf_btf_info __user *uinfo;
7240 	struct bpf_btf_info info;
7241 	u32 info_copy, btf_copy;
7242 	void __user *ubtf;
7243 	char __user *uname;
7244 	u32 uinfo_len, uname_len, name_len;
7245 	int ret = 0;
7246 
7247 	uinfo = u64_to_user_ptr(attr->info.info);
7248 	uinfo_len = attr->info.info_len;
7249 
7250 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7251 	memset(&info, 0, sizeof(info));
7252 	if (copy_from_user(&info, uinfo, info_copy))
7253 		return -EFAULT;
7254 
7255 	info.id = btf->id;
7256 	ubtf = u64_to_user_ptr(info.btf);
7257 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7258 	if (copy_to_user(ubtf, btf->data, btf_copy))
7259 		return -EFAULT;
7260 	info.btf_size = btf->data_size;
7261 
7262 	info.kernel_btf = btf->kernel_btf;
7263 
7264 	uname = u64_to_user_ptr(info.name);
7265 	uname_len = info.name_len;
7266 	if (!uname ^ !uname_len)
7267 		return -EINVAL;
7268 
7269 	name_len = strlen(btf->name);
7270 	info.name_len = name_len;
7271 
7272 	if (uname) {
7273 		if (uname_len >= name_len + 1) {
7274 			if (copy_to_user(uname, btf->name, name_len + 1))
7275 				return -EFAULT;
7276 		} else {
7277 			char zero = '\0';
7278 
7279 			if (copy_to_user(uname, btf->name, uname_len - 1))
7280 				return -EFAULT;
7281 			if (put_user(zero, uname + uname_len - 1))
7282 				return -EFAULT;
7283 			/* let user-space know about too short buffer */
7284 			ret = -ENOSPC;
7285 		}
7286 	}
7287 
7288 	if (copy_to_user(uinfo, &info, info_copy) ||
7289 	    put_user(info_copy, &uattr->info.info_len))
7290 		return -EFAULT;
7291 
7292 	return ret;
7293 }
7294 
7295 int btf_get_fd_by_id(u32 id)
7296 {
7297 	struct btf *btf;
7298 	int fd;
7299 
7300 	rcu_read_lock();
7301 	btf = idr_find(&btf_idr, id);
7302 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7303 		btf = ERR_PTR(-ENOENT);
7304 	rcu_read_unlock();
7305 
7306 	if (IS_ERR(btf))
7307 		return PTR_ERR(btf);
7308 
7309 	fd = __btf_new_fd(btf);
7310 	if (fd < 0)
7311 		btf_put(btf);
7312 
7313 	return fd;
7314 }
7315 
7316 u32 btf_obj_id(const struct btf *btf)
7317 {
7318 	return btf->id;
7319 }
7320 
7321 bool btf_is_kernel(const struct btf *btf)
7322 {
7323 	return btf->kernel_btf;
7324 }
7325 
7326 bool btf_is_module(const struct btf *btf)
7327 {
7328 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7329 }
7330 
7331 enum {
7332 	BTF_MODULE_F_LIVE = (1 << 0),
7333 };
7334 
7335 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7336 struct btf_module {
7337 	struct list_head list;
7338 	struct module *module;
7339 	struct btf *btf;
7340 	struct bin_attribute *sysfs_attr;
7341 	int flags;
7342 };
7343 
7344 static LIST_HEAD(btf_modules);
7345 static DEFINE_MUTEX(btf_module_mutex);
7346 
7347 static ssize_t
7348 btf_module_read(struct file *file, struct kobject *kobj,
7349 		struct bin_attribute *bin_attr,
7350 		char *buf, loff_t off, size_t len)
7351 {
7352 	const struct btf *btf = bin_attr->private;
7353 
7354 	memcpy(buf, btf->data + off, len);
7355 	return len;
7356 }
7357 
7358 static void purge_cand_cache(struct btf *btf);
7359 
7360 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7361 			     void *module)
7362 {
7363 	struct btf_module *btf_mod, *tmp;
7364 	struct module *mod = module;
7365 	struct btf *btf;
7366 	int err = 0;
7367 
7368 	if (mod->btf_data_size == 0 ||
7369 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7370 	     op != MODULE_STATE_GOING))
7371 		goto out;
7372 
7373 	switch (op) {
7374 	case MODULE_STATE_COMING:
7375 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7376 		if (!btf_mod) {
7377 			err = -ENOMEM;
7378 			goto out;
7379 		}
7380 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7381 		if (IS_ERR(btf)) {
7382 			kfree(btf_mod);
7383 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7384 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7385 					mod->name, PTR_ERR(btf));
7386 				err = PTR_ERR(btf);
7387 			} else {
7388 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7389 			}
7390 			goto out;
7391 		}
7392 		err = btf_alloc_id(btf);
7393 		if (err) {
7394 			btf_free(btf);
7395 			kfree(btf_mod);
7396 			goto out;
7397 		}
7398 
7399 		purge_cand_cache(NULL);
7400 		mutex_lock(&btf_module_mutex);
7401 		btf_mod->module = module;
7402 		btf_mod->btf = btf;
7403 		list_add(&btf_mod->list, &btf_modules);
7404 		mutex_unlock(&btf_module_mutex);
7405 
7406 		if (IS_ENABLED(CONFIG_SYSFS)) {
7407 			struct bin_attribute *attr;
7408 
7409 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7410 			if (!attr)
7411 				goto out;
7412 
7413 			sysfs_bin_attr_init(attr);
7414 			attr->attr.name = btf->name;
7415 			attr->attr.mode = 0444;
7416 			attr->size = btf->data_size;
7417 			attr->private = btf;
7418 			attr->read = btf_module_read;
7419 
7420 			err = sysfs_create_bin_file(btf_kobj, attr);
7421 			if (err) {
7422 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7423 					mod->name, err);
7424 				kfree(attr);
7425 				err = 0;
7426 				goto out;
7427 			}
7428 
7429 			btf_mod->sysfs_attr = attr;
7430 		}
7431 
7432 		break;
7433 	case MODULE_STATE_LIVE:
7434 		mutex_lock(&btf_module_mutex);
7435 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7436 			if (btf_mod->module != module)
7437 				continue;
7438 
7439 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7440 			break;
7441 		}
7442 		mutex_unlock(&btf_module_mutex);
7443 		break;
7444 	case MODULE_STATE_GOING:
7445 		mutex_lock(&btf_module_mutex);
7446 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7447 			if (btf_mod->module != module)
7448 				continue;
7449 
7450 			list_del(&btf_mod->list);
7451 			if (btf_mod->sysfs_attr)
7452 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7453 			purge_cand_cache(btf_mod->btf);
7454 			btf_put(btf_mod->btf);
7455 			kfree(btf_mod->sysfs_attr);
7456 			kfree(btf_mod);
7457 			break;
7458 		}
7459 		mutex_unlock(&btf_module_mutex);
7460 		break;
7461 	}
7462 out:
7463 	return notifier_from_errno(err);
7464 }
7465 
7466 static struct notifier_block btf_module_nb = {
7467 	.notifier_call = btf_module_notify,
7468 };
7469 
7470 static int __init btf_module_init(void)
7471 {
7472 	register_module_notifier(&btf_module_nb);
7473 	return 0;
7474 }
7475 
7476 fs_initcall(btf_module_init);
7477 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7478 
7479 struct module *btf_try_get_module(const struct btf *btf)
7480 {
7481 	struct module *res = NULL;
7482 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7483 	struct btf_module *btf_mod, *tmp;
7484 
7485 	mutex_lock(&btf_module_mutex);
7486 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7487 		if (btf_mod->btf != btf)
7488 			continue;
7489 
7490 		/* We must only consider module whose __init routine has
7491 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7492 		 * which is set from the notifier callback for
7493 		 * MODULE_STATE_LIVE.
7494 		 */
7495 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7496 			res = btf_mod->module;
7497 
7498 		break;
7499 	}
7500 	mutex_unlock(&btf_module_mutex);
7501 #endif
7502 
7503 	return res;
7504 }
7505 
7506 /* Returns struct btf corresponding to the struct module.
7507  * This function can return NULL or ERR_PTR.
7508  */
7509 static struct btf *btf_get_module_btf(const struct module *module)
7510 {
7511 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7512 	struct btf_module *btf_mod, *tmp;
7513 #endif
7514 	struct btf *btf = NULL;
7515 
7516 	if (!module) {
7517 		btf = bpf_get_btf_vmlinux();
7518 		if (!IS_ERR_OR_NULL(btf))
7519 			btf_get(btf);
7520 		return btf;
7521 	}
7522 
7523 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7524 	mutex_lock(&btf_module_mutex);
7525 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7526 		if (btf_mod->module != module)
7527 			continue;
7528 
7529 		btf_get(btf_mod->btf);
7530 		btf = btf_mod->btf;
7531 		break;
7532 	}
7533 	mutex_unlock(&btf_module_mutex);
7534 #endif
7535 
7536 	return btf;
7537 }
7538 
7539 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7540 {
7541 	struct btf *btf = NULL;
7542 	int btf_obj_fd = 0;
7543 	long ret;
7544 
7545 	if (flags)
7546 		return -EINVAL;
7547 
7548 	if (name_sz <= 1 || name[name_sz - 1])
7549 		return -EINVAL;
7550 
7551 	ret = bpf_find_btf_id(name, kind, &btf);
7552 	if (ret > 0 && btf_is_module(btf)) {
7553 		btf_obj_fd = __btf_new_fd(btf);
7554 		if (btf_obj_fd < 0) {
7555 			btf_put(btf);
7556 			return btf_obj_fd;
7557 		}
7558 		return ret | (((u64)btf_obj_fd) << 32);
7559 	}
7560 	if (ret > 0)
7561 		btf_put(btf);
7562 	return ret;
7563 }
7564 
7565 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7566 	.func		= bpf_btf_find_by_name_kind,
7567 	.gpl_only	= false,
7568 	.ret_type	= RET_INTEGER,
7569 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7570 	.arg2_type	= ARG_CONST_SIZE,
7571 	.arg3_type	= ARG_ANYTHING,
7572 	.arg4_type	= ARG_ANYTHING,
7573 };
7574 
7575 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7576 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7577 BTF_TRACING_TYPE_xxx
7578 #undef BTF_TRACING_TYPE
7579 
7580 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7581 				 const struct btf_type *func, u32 func_flags)
7582 {
7583 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7584 	const char *name, *sfx, *iter_name;
7585 	const struct btf_param *arg;
7586 	const struct btf_type *t;
7587 	char exp_name[128];
7588 	u32 nr_args;
7589 
7590 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7591 	if (!flags || (flags & (flags - 1)))
7592 		return -EINVAL;
7593 
7594 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7595 	nr_args = btf_type_vlen(func);
7596 	if (nr_args < 1)
7597 		return -EINVAL;
7598 
7599 	arg = &btf_params(func)[0];
7600 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7601 	if (!t || !btf_type_is_ptr(t))
7602 		return -EINVAL;
7603 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7604 	if (!t || !__btf_type_is_struct(t))
7605 		return -EINVAL;
7606 
7607 	name = btf_name_by_offset(btf, t->name_off);
7608 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7609 		return -EINVAL;
7610 
7611 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7612 	 * fit nicely in stack slots
7613 	 */
7614 	if (t->size == 0 || (t->size % 8))
7615 		return -EINVAL;
7616 
7617 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7618 	 * naming pattern
7619 	 */
7620 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7621 	if (flags & KF_ITER_NEW)
7622 		sfx = "new";
7623 	else if (flags & KF_ITER_NEXT)
7624 		sfx = "next";
7625 	else /* (flags & KF_ITER_DESTROY) */
7626 		sfx = "destroy";
7627 
7628 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7629 	if (strcmp(func_name, exp_name))
7630 		return -EINVAL;
7631 
7632 	/* only iter constructor should have extra arguments */
7633 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7634 		return -EINVAL;
7635 
7636 	if (flags & KF_ITER_NEXT) {
7637 		/* bpf_iter_<type>_next() should return pointer */
7638 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7639 		if (!t || !btf_type_is_ptr(t))
7640 			return -EINVAL;
7641 	}
7642 
7643 	if (flags & KF_ITER_DESTROY) {
7644 		/* bpf_iter_<type>_destroy() should return void */
7645 		t = btf_type_by_id(btf, func->type);
7646 		if (!t || !btf_type_is_void(t))
7647 			return -EINVAL;
7648 	}
7649 
7650 	return 0;
7651 }
7652 
7653 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7654 {
7655 	const struct btf_type *func;
7656 	const char *func_name;
7657 	int err;
7658 
7659 	/* any kfunc should be FUNC -> FUNC_PROTO */
7660 	func = btf_type_by_id(btf, func_id);
7661 	if (!func || !btf_type_is_func(func))
7662 		return -EINVAL;
7663 
7664 	/* sanity check kfunc name */
7665 	func_name = btf_name_by_offset(btf, func->name_off);
7666 	if (!func_name || !func_name[0])
7667 		return -EINVAL;
7668 
7669 	func = btf_type_by_id(btf, func->type);
7670 	if (!func || !btf_type_is_func_proto(func))
7671 		return -EINVAL;
7672 
7673 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7674 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7675 		if (err)
7676 			return err;
7677 	}
7678 
7679 	return 0;
7680 }
7681 
7682 /* Kernel Function (kfunc) BTF ID set registration API */
7683 
7684 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7685 				  const struct btf_kfunc_id_set *kset)
7686 {
7687 	struct btf_kfunc_hook_filter *hook_filter;
7688 	struct btf_id_set8 *add_set = kset->set;
7689 	bool vmlinux_set = !btf_is_module(btf);
7690 	bool add_filter = !!kset->filter;
7691 	struct btf_kfunc_set_tab *tab;
7692 	struct btf_id_set8 *set;
7693 	u32 set_cnt;
7694 	int ret;
7695 
7696 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7697 		ret = -EINVAL;
7698 		goto end;
7699 	}
7700 
7701 	if (!add_set->cnt)
7702 		return 0;
7703 
7704 	tab = btf->kfunc_set_tab;
7705 
7706 	if (tab && add_filter) {
7707 		u32 i;
7708 
7709 		hook_filter = &tab->hook_filters[hook];
7710 		for (i = 0; i < hook_filter->nr_filters; i++) {
7711 			if (hook_filter->filters[i] == kset->filter) {
7712 				add_filter = false;
7713 				break;
7714 			}
7715 		}
7716 
7717 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7718 			ret = -E2BIG;
7719 			goto end;
7720 		}
7721 	}
7722 
7723 	if (!tab) {
7724 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7725 		if (!tab)
7726 			return -ENOMEM;
7727 		btf->kfunc_set_tab = tab;
7728 	}
7729 
7730 	set = tab->sets[hook];
7731 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7732 	 * for module sets.
7733 	 */
7734 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7735 		ret = -EINVAL;
7736 		goto end;
7737 	}
7738 
7739 	/* We don't need to allocate, concatenate, and sort module sets, because
7740 	 * only one is allowed per hook. Hence, we can directly assign the
7741 	 * pointer and return.
7742 	 */
7743 	if (!vmlinux_set) {
7744 		tab->sets[hook] = add_set;
7745 		goto do_add_filter;
7746 	}
7747 
7748 	/* In case of vmlinux sets, there may be more than one set being
7749 	 * registered per hook. To create a unified set, we allocate a new set
7750 	 * and concatenate all individual sets being registered. While each set
7751 	 * is individually sorted, they may become unsorted when concatenated,
7752 	 * hence re-sorting the final set again is required to make binary
7753 	 * searching the set using btf_id_set8_contains function work.
7754 	 */
7755 	set_cnt = set ? set->cnt : 0;
7756 
7757 	if (set_cnt > U32_MAX - add_set->cnt) {
7758 		ret = -EOVERFLOW;
7759 		goto end;
7760 	}
7761 
7762 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7763 		ret = -E2BIG;
7764 		goto end;
7765 	}
7766 
7767 	/* Grow set */
7768 	set = krealloc(tab->sets[hook],
7769 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7770 		       GFP_KERNEL | __GFP_NOWARN);
7771 	if (!set) {
7772 		ret = -ENOMEM;
7773 		goto end;
7774 	}
7775 
7776 	/* For newly allocated set, initialize set->cnt to 0 */
7777 	if (!tab->sets[hook])
7778 		set->cnt = 0;
7779 	tab->sets[hook] = set;
7780 
7781 	/* Concatenate the two sets */
7782 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7783 	set->cnt += add_set->cnt;
7784 
7785 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7786 
7787 do_add_filter:
7788 	if (add_filter) {
7789 		hook_filter = &tab->hook_filters[hook];
7790 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7791 	}
7792 	return 0;
7793 end:
7794 	btf_free_kfunc_set_tab(btf);
7795 	return ret;
7796 }
7797 
7798 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7799 					enum btf_kfunc_hook hook,
7800 					u32 kfunc_btf_id,
7801 					const struct bpf_prog *prog)
7802 {
7803 	struct btf_kfunc_hook_filter *hook_filter;
7804 	struct btf_id_set8 *set;
7805 	u32 *id, i;
7806 
7807 	if (hook >= BTF_KFUNC_HOOK_MAX)
7808 		return NULL;
7809 	if (!btf->kfunc_set_tab)
7810 		return NULL;
7811 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7812 	for (i = 0; i < hook_filter->nr_filters; i++) {
7813 		if (hook_filter->filters[i](prog, kfunc_btf_id))
7814 			return NULL;
7815 	}
7816 	set = btf->kfunc_set_tab->sets[hook];
7817 	if (!set)
7818 		return NULL;
7819 	id = btf_id_set8_contains(set, kfunc_btf_id);
7820 	if (!id)
7821 		return NULL;
7822 	/* The flags for BTF ID are located next to it */
7823 	return id + 1;
7824 }
7825 
7826 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7827 {
7828 	switch (prog_type) {
7829 	case BPF_PROG_TYPE_UNSPEC:
7830 		return BTF_KFUNC_HOOK_COMMON;
7831 	case BPF_PROG_TYPE_XDP:
7832 		return BTF_KFUNC_HOOK_XDP;
7833 	case BPF_PROG_TYPE_SCHED_CLS:
7834 		return BTF_KFUNC_HOOK_TC;
7835 	case BPF_PROG_TYPE_STRUCT_OPS:
7836 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7837 	case BPF_PROG_TYPE_TRACING:
7838 	case BPF_PROG_TYPE_LSM:
7839 		return BTF_KFUNC_HOOK_TRACING;
7840 	case BPF_PROG_TYPE_SYSCALL:
7841 		return BTF_KFUNC_HOOK_SYSCALL;
7842 	case BPF_PROG_TYPE_CGROUP_SKB:
7843 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7844 		return BTF_KFUNC_HOOK_CGROUP_SKB;
7845 	case BPF_PROG_TYPE_SCHED_ACT:
7846 		return BTF_KFUNC_HOOK_SCHED_ACT;
7847 	case BPF_PROG_TYPE_SK_SKB:
7848 		return BTF_KFUNC_HOOK_SK_SKB;
7849 	case BPF_PROG_TYPE_SOCKET_FILTER:
7850 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
7851 	case BPF_PROG_TYPE_LWT_OUT:
7852 	case BPF_PROG_TYPE_LWT_IN:
7853 	case BPF_PROG_TYPE_LWT_XMIT:
7854 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7855 		return BTF_KFUNC_HOOK_LWT;
7856 	case BPF_PROG_TYPE_NETFILTER:
7857 		return BTF_KFUNC_HOOK_NETFILTER;
7858 	default:
7859 		return BTF_KFUNC_HOOK_MAX;
7860 	}
7861 }
7862 
7863 /* Caution:
7864  * Reference to the module (obtained using btf_try_get_module) corresponding to
7865  * the struct btf *MUST* be held when calling this function from verifier
7866  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7867  * keeping the reference for the duration of the call provides the necessary
7868  * protection for looking up a well-formed btf->kfunc_set_tab.
7869  */
7870 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7871 			       u32 kfunc_btf_id,
7872 			       const struct bpf_prog *prog)
7873 {
7874 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
7875 	enum btf_kfunc_hook hook;
7876 	u32 *kfunc_flags;
7877 
7878 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7879 	if (kfunc_flags)
7880 		return kfunc_flags;
7881 
7882 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7883 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7884 }
7885 
7886 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7887 				const struct bpf_prog *prog)
7888 {
7889 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7890 }
7891 
7892 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7893 				       const struct btf_kfunc_id_set *kset)
7894 {
7895 	struct btf *btf;
7896 	int ret, i;
7897 
7898 	btf = btf_get_module_btf(kset->owner);
7899 	if (!btf) {
7900 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7901 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7902 			return -ENOENT;
7903 		}
7904 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7905 			pr_warn("missing module BTF, cannot register kfuncs\n");
7906 		return 0;
7907 	}
7908 	if (IS_ERR(btf))
7909 		return PTR_ERR(btf);
7910 
7911 	for (i = 0; i < kset->set->cnt; i++) {
7912 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7913 					     kset->set->pairs[i].flags);
7914 		if (ret)
7915 			goto err_out;
7916 	}
7917 
7918 	ret = btf_populate_kfunc_set(btf, hook, kset);
7919 
7920 err_out:
7921 	btf_put(btf);
7922 	return ret;
7923 }
7924 
7925 /* This function must be invoked only from initcalls/module init functions */
7926 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7927 			      const struct btf_kfunc_id_set *kset)
7928 {
7929 	enum btf_kfunc_hook hook;
7930 
7931 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7932 	return __register_btf_kfunc_id_set(hook, kset);
7933 }
7934 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7935 
7936 /* This function must be invoked only from initcalls/module init functions */
7937 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7938 {
7939 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7940 }
7941 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7942 
7943 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7944 {
7945 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7946 	struct btf_id_dtor_kfunc *dtor;
7947 
7948 	if (!tab)
7949 		return -ENOENT;
7950 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7951 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7952 	 */
7953 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7954 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7955 	if (!dtor)
7956 		return -ENOENT;
7957 	return dtor->kfunc_btf_id;
7958 }
7959 
7960 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7961 {
7962 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7963 	const struct btf_param *args;
7964 	s32 dtor_btf_id;
7965 	u32 nr_args, i;
7966 
7967 	for (i = 0; i < cnt; i++) {
7968 		dtor_btf_id = dtors[i].kfunc_btf_id;
7969 
7970 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7971 		if (!dtor_func || !btf_type_is_func(dtor_func))
7972 			return -EINVAL;
7973 
7974 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7975 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7976 			return -EINVAL;
7977 
7978 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7979 		t = btf_type_by_id(btf, dtor_func_proto->type);
7980 		if (!t || !btf_type_is_void(t))
7981 			return -EINVAL;
7982 
7983 		nr_args = btf_type_vlen(dtor_func_proto);
7984 		if (nr_args != 1)
7985 			return -EINVAL;
7986 		args = btf_params(dtor_func_proto);
7987 		t = btf_type_by_id(btf, args[0].type);
7988 		/* Allow any pointer type, as width on targets Linux supports
7989 		 * will be same for all pointer types (i.e. sizeof(void *))
7990 		 */
7991 		if (!t || !btf_type_is_ptr(t))
7992 			return -EINVAL;
7993 	}
7994 	return 0;
7995 }
7996 
7997 /* This function must be invoked only from initcalls/module init functions */
7998 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7999 				struct module *owner)
8000 {
8001 	struct btf_id_dtor_kfunc_tab *tab;
8002 	struct btf *btf;
8003 	u32 tab_cnt;
8004 	int ret;
8005 
8006 	btf = btf_get_module_btf(owner);
8007 	if (!btf) {
8008 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8009 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8010 			return -ENOENT;
8011 		}
8012 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8013 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
8014 			return -ENOENT;
8015 		}
8016 		return 0;
8017 	}
8018 	if (IS_ERR(btf))
8019 		return PTR_ERR(btf);
8020 
8021 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8022 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8023 		ret = -E2BIG;
8024 		goto end;
8025 	}
8026 
8027 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8028 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8029 	if (ret < 0)
8030 		goto end;
8031 
8032 	tab = btf->dtor_kfunc_tab;
8033 	/* Only one call allowed for modules */
8034 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8035 		ret = -EINVAL;
8036 		goto end;
8037 	}
8038 
8039 	tab_cnt = tab ? tab->cnt : 0;
8040 	if (tab_cnt > U32_MAX - add_cnt) {
8041 		ret = -EOVERFLOW;
8042 		goto end;
8043 	}
8044 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8045 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8046 		ret = -E2BIG;
8047 		goto end;
8048 	}
8049 
8050 	tab = krealloc(btf->dtor_kfunc_tab,
8051 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8052 		       GFP_KERNEL | __GFP_NOWARN);
8053 	if (!tab) {
8054 		ret = -ENOMEM;
8055 		goto end;
8056 	}
8057 
8058 	if (!btf->dtor_kfunc_tab)
8059 		tab->cnt = 0;
8060 	btf->dtor_kfunc_tab = tab;
8061 
8062 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8063 	tab->cnt += add_cnt;
8064 
8065 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8066 
8067 end:
8068 	if (ret)
8069 		btf_free_dtor_kfunc_tab(btf);
8070 	btf_put(btf);
8071 	return ret;
8072 }
8073 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8074 
8075 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8076 
8077 /* Check local and target types for compatibility. This check is used for
8078  * type-based CO-RE relocations and follow slightly different rules than
8079  * field-based relocations. This function assumes that root types were already
8080  * checked for name match. Beyond that initial root-level name check, names
8081  * are completely ignored. Compatibility rules are as follows:
8082  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8083  *     kind should match for local and target types (i.e., STRUCT is not
8084  *     compatible with UNION);
8085  *   - for ENUMs/ENUM64s, the size is ignored;
8086  *   - for INT, size and signedness are ignored;
8087  *   - for ARRAY, dimensionality is ignored, element types are checked for
8088  *     compatibility recursively;
8089  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8090  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8091  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8092  *     number of input args and compatible return and argument types.
8093  * These rules are not set in stone and probably will be adjusted as we get
8094  * more experience with using BPF CO-RE relocations.
8095  */
8096 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8097 			      const struct btf *targ_btf, __u32 targ_id)
8098 {
8099 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8100 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8101 }
8102 
8103 #define MAX_TYPES_MATCH_DEPTH 2
8104 
8105 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8106 			 const struct btf *targ_btf, u32 targ_id)
8107 {
8108 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8109 				      MAX_TYPES_MATCH_DEPTH);
8110 }
8111 
8112 static bool bpf_core_is_flavor_sep(const char *s)
8113 {
8114 	/* check X___Y name pattern, where X and Y are not underscores */
8115 	return s[0] != '_' &&				      /* X */
8116 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8117 	       s[4] != '_';				      /* Y */
8118 }
8119 
8120 size_t bpf_core_essential_name_len(const char *name)
8121 {
8122 	size_t n = strlen(name);
8123 	int i;
8124 
8125 	for (i = n - 5; i >= 0; i--) {
8126 		if (bpf_core_is_flavor_sep(name + i))
8127 			return i + 1;
8128 	}
8129 	return n;
8130 }
8131 
8132 struct bpf_cand_cache {
8133 	const char *name;
8134 	u32 name_len;
8135 	u16 kind;
8136 	u16 cnt;
8137 	struct {
8138 		const struct btf *btf;
8139 		u32 id;
8140 	} cands[];
8141 };
8142 
8143 static void bpf_free_cands(struct bpf_cand_cache *cands)
8144 {
8145 	if (!cands->cnt)
8146 		/* empty candidate array was allocated on stack */
8147 		return;
8148 	kfree(cands);
8149 }
8150 
8151 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8152 {
8153 	kfree(cands->name);
8154 	kfree(cands);
8155 }
8156 
8157 #define VMLINUX_CAND_CACHE_SIZE 31
8158 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8159 
8160 #define MODULE_CAND_CACHE_SIZE 31
8161 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8162 
8163 static DEFINE_MUTEX(cand_cache_mutex);
8164 
8165 static void __print_cand_cache(struct bpf_verifier_log *log,
8166 			       struct bpf_cand_cache **cache,
8167 			       int cache_size)
8168 {
8169 	struct bpf_cand_cache *cc;
8170 	int i, j;
8171 
8172 	for (i = 0; i < cache_size; i++) {
8173 		cc = cache[i];
8174 		if (!cc)
8175 			continue;
8176 		bpf_log(log, "[%d]%s(", i, cc->name);
8177 		for (j = 0; j < cc->cnt; j++) {
8178 			bpf_log(log, "%d", cc->cands[j].id);
8179 			if (j < cc->cnt - 1)
8180 				bpf_log(log, " ");
8181 		}
8182 		bpf_log(log, "), ");
8183 	}
8184 }
8185 
8186 static void print_cand_cache(struct bpf_verifier_log *log)
8187 {
8188 	mutex_lock(&cand_cache_mutex);
8189 	bpf_log(log, "vmlinux_cand_cache:");
8190 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8191 	bpf_log(log, "\nmodule_cand_cache:");
8192 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8193 	bpf_log(log, "\n");
8194 	mutex_unlock(&cand_cache_mutex);
8195 }
8196 
8197 static u32 hash_cands(struct bpf_cand_cache *cands)
8198 {
8199 	return jhash(cands->name, cands->name_len, 0);
8200 }
8201 
8202 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8203 					       struct bpf_cand_cache **cache,
8204 					       int cache_size)
8205 {
8206 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8207 
8208 	if (cc && cc->name_len == cands->name_len &&
8209 	    !strncmp(cc->name, cands->name, cands->name_len))
8210 		return cc;
8211 	return NULL;
8212 }
8213 
8214 static size_t sizeof_cands(int cnt)
8215 {
8216 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8217 }
8218 
8219 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8220 						  struct bpf_cand_cache **cache,
8221 						  int cache_size)
8222 {
8223 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8224 
8225 	if (*cc) {
8226 		bpf_free_cands_from_cache(*cc);
8227 		*cc = NULL;
8228 	}
8229 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8230 	if (!new_cands) {
8231 		bpf_free_cands(cands);
8232 		return ERR_PTR(-ENOMEM);
8233 	}
8234 	/* strdup the name, since it will stay in cache.
8235 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8236 	 */
8237 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8238 	bpf_free_cands(cands);
8239 	if (!new_cands->name) {
8240 		kfree(new_cands);
8241 		return ERR_PTR(-ENOMEM);
8242 	}
8243 	*cc = new_cands;
8244 	return new_cands;
8245 }
8246 
8247 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8248 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8249 			       int cache_size)
8250 {
8251 	struct bpf_cand_cache *cc;
8252 	int i, j;
8253 
8254 	for (i = 0; i < cache_size; i++) {
8255 		cc = cache[i];
8256 		if (!cc)
8257 			continue;
8258 		if (!btf) {
8259 			/* when new module is loaded purge all of module_cand_cache,
8260 			 * since new module might have candidates with the name
8261 			 * that matches cached cands.
8262 			 */
8263 			bpf_free_cands_from_cache(cc);
8264 			cache[i] = NULL;
8265 			continue;
8266 		}
8267 		/* when module is unloaded purge cache entries
8268 		 * that match module's btf
8269 		 */
8270 		for (j = 0; j < cc->cnt; j++)
8271 			if (cc->cands[j].btf == btf) {
8272 				bpf_free_cands_from_cache(cc);
8273 				cache[i] = NULL;
8274 				break;
8275 			}
8276 	}
8277 
8278 }
8279 
8280 static void purge_cand_cache(struct btf *btf)
8281 {
8282 	mutex_lock(&cand_cache_mutex);
8283 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8284 	mutex_unlock(&cand_cache_mutex);
8285 }
8286 #endif
8287 
8288 static struct bpf_cand_cache *
8289 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8290 		   int targ_start_id)
8291 {
8292 	struct bpf_cand_cache *new_cands;
8293 	const struct btf_type *t;
8294 	const char *targ_name;
8295 	size_t targ_essent_len;
8296 	int n, i;
8297 
8298 	n = btf_nr_types(targ_btf);
8299 	for (i = targ_start_id; i < n; i++) {
8300 		t = btf_type_by_id(targ_btf, i);
8301 		if (btf_kind(t) != cands->kind)
8302 			continue;
8303 
8304 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8305 		if (!targ_name)
8306 			continue;
8307 
8308 		/* the resched point is before strncmp to make sure that search
8309 		 * for non-existing name will have a chance to schedule().
8310 		 */
8311 		cond_resched();
8312 
8313 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8314 			continue;
8315 
8316 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8317 		if (targ_essent_len != cands->name_len)
8318 			continue;
8319 
8320 		/* most of the time there is only one candidate for a given kind+name pair */
8321 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8322 		if (!new_cands) {
8323 			bpf_free_cands(cands);
8324 			return ERR_PTR(-ENOMEM);
8325 		}
8326 
8327 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8328 		bpf_free_cands(cands);
8329 		cands = new_cands;
8330 		cands->cands[cands->cnt].btf = targ_btf;
8331 		cands->cands[cands->cnt].id = i;
8332 		cands->cnt++;
8333 	}
8334 	return cands;
8335 }
8336 
8337 static struct bpf_cand_cache *
8338 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8339 {
8340 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8341 	const struct btf *local_btf = ctx->btf;
8342 	const struct btf_type *local_type;
8343 	const struct btf *main_btf;
8344 	size_t local_essent_len;
8345 	struct btf *mod_btf;
8346 	const char *name;
8347 	int id;
8348 
8349 	main_btf = bpf_get_btf_vmlinux();
8350 	if (IS_ERR(main_btf))
8351 		return ERR_CAST(main_btf);
8352 	if (!main_btf)
8353 		return ERR_PTR(-EINVAL);
8354 
8355 	local_type = btf_type_by_id(local_btf, local_type_id);
8356 	if (!local_type)
8357 		return ERR_PTR(-EINVAL);
8358 
8359 	name = btf_name_by_offset(local_btf, local_type->name_off);
8360 	if (str_is_empty(name))
8361 		return ERR_PTR(-EINVAL);
8362 	local_essent_len = bpf_core_essential_name_len(name);
8363 
8364 	cands = &local_cand;
8365 	cands->name = name;
8366 	cands->kind = btf_kind(local_type);
8367 	cands->name_len = local_essent_len;
8368 
8369 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8370 	/* cands is a pointer to stack here */
8371 	if (cc) {
8372 		if (cc->cnt)
8373 			return cc;
8374 		goto check_modules;
8375 	}
8376 
8377 	/* Attempt to find target candidates in vmlinux BTF first */
8378 	cands = bpf_core_add_cands(cands, main_btf, 1);
8379 	if (IS_ERR(cands))
8380 		return ERR_CAST(cands);
8381 
8382 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8383 
8384 	/* populate cache even when cands->cnt == 0 */
8385 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8386 	if (IS_ERR(cc))
8387 		return ERR_CAST(cc);
8388 
8389 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8390 	if (cc->cnt)
8391 		return cc;
8392 
8393 check_modules:
8394 	/* cands is a pointer to stack here and cands->cnt == 0 */
8395 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8396 	if (cc)
8397 		/* if cache has it return it even if cc->cnt == 0 */
8398 		return cc;
8399 
8400 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8401 	spin_lock_bh(&btf_idr_lock);
8402 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8403 		if (!btf_is_module(mod_btf))
8404 			continue;
8405 		/* linear search could be slow hence unlock/lock
8406 		 * the IDR to avoiding holding it for too long
8407 		 */
8408 		btf_get(mod_btf);
8409 		spin_unlock_bh(&btf_idr_lock);
8410 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8411 		btf_put(mod_btf);
8412 		if (IS_ERR(cands))
8413 			return ERR_CAST(cands);
8414 		spin_lock_bh(&btf_idr_lock);
8415 	}
8416 	spin_unlock_bh(&btf_idr_lock);
8417 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8418 	 * or pointer to stack if cands->cnd == 0.
8419 	 * Copy it into the cache even when cands->cnt == 0 and
8420 	 * return the result.
8421 	 */
8422 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8423 }
8424 
8425 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8426 		   int relo_idx, void *insn)
8427 {
8428 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8429 	struct bpf_core_cand_list cands = {};
8430 	struct bpf_core_relo_res targ_res;
8431 	struct bpf_core_spec *specs;
8432 	int err;
8433 
8434 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8435 	 * into arrays of btf_ids of struct fields and array indices.
8436 	 */
8437 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8438 	if (!specs)
8439 		return -ENOMEM;
8440 
8441 	if (need_cands) {
8442 		struct bpf_cand_cache *cc;
8443 		int i;
8444 
8445 		mutex_lock(&cand_cache_mutex);
8446 		cc = bpf_core_find_cands(ctx, relo->type_id);
8447 		if (IS_ERR(cc)) {
8448 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8449 				relo->type_id);
8450 			err = PTR_ERR(cc);
8451 			goto out;
8452 		}
8453 		if (cc->cnt) {
8454 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8455 			if (!cands.cands) {
8456 				err = -ENOMEM;
8457 				goto out;
8458 			}
8459 		}
8460 		for (i = 0; i < cc->cnt; i++) {
8461 			bpf_log(ctx->log,
8462 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8463 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8464 			cands.cands[i].btf = cc->cands[i].btf;
8465 			cands.cands[i].id = cc->cands[i].id;
8466 		}
8467 		cands.len = cc->cnt;
8468 		/* cand_cache_mutex needs to span the cache lookup and
8469 		 * copy of btf pointer into bpf_core_cand_list,
8470 		 * since module can be unloaded while bpf_core_calc_relo_insn
8471 		 * is working with module's btf.
8472 		 */
8473 	}
8474 
8475 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8476 				      &targ_res);
8477 	if (err)
8478 		goto out;
8479 
8480 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8481 				  &targ_res);
8482 
8483 out:
8484 	kfree(specs);
8485 	if (need_cands) {
8486 		kfree(cands.cands);
8487 		mutex_unlock(&cand_cache_mutex);
8488 		if (ctx->log->level & BPF_LOG_LEVEL2)
8489 			print_cand_cache(ctx->log);
8490 	}
8491 	return err;
8492 }
8493 
8494 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8495 				const struct bpf_reg_state *reg,
8496 				const char *field_name, u32 btf_id, const char *suffix)
8497 {
8498 	struct btf *btf = reg->btf;
8499 	const struct btf_type *walk_type, *safe_type;
8500 	const char *tname;
8501 	char safe_tname[64];
8502 	long ret, safe_id;
8503 	const struct btf_member *member;
8504 	u32 i;
8505 
8506 	walk_type = btf_type_by_id(btf, reg->btf_id);
8507 	if (!walk_type)
8508 		return false;
8509 
8510 	tname = btf_name_by_offset(btf, walk_type->name_off);
8511 
8512 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8513 	if (ret >= sizeof(safe_tname))
8514 		return false;
8515 
8516 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8517 	if (safe_id < 0)
8518 		return false;
8519 
8520 	safe_type = btf_type_by_id(btf, safe_id);
8521 	if (!safe_type)
8522 		return false;
8523 
8524 	for_each_member(i, safe_type, member) {
8525 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8526 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8527 		u32 id;
8528 
8529 		if (!btf_type_is_ptr(mtype))
8530 			continue;
8531 
8532 		btf_type_skip_modifiers(btf, mtype->type, &id);
8533 		/* If we match on both type and name, the field is considered trusted. */
8534 		if (btf_id == id && !strcmp(field_name, m_name))
8535 			return true;
8536 	}
8537 
8538 	return false;
8539 }
8540 
8541 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8542 			       const struct btf *reg_btf, u32 reg_id,
8543 			       const struct btf *arg_btf, u32 arg_id)
8544 {
8545 	const char *reg_name, *arg_name, *search_needle;
8546 	const struct btf_type *reg_type, *arg_type;
8547 	int reg_len, arg_len, cmp_len;
8548 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8549 
8550 	reg_type = btf_type_by_id(reg_btf, reg_id);
8551 	if (!reg_type)
8552 		return false;
8553 
8554 	arg_type = btf_type_by_id(arg_btf, arg_id);
8555 	if (!arg_type)
8556 		return false;
8557 
8558 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8559 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8560 
8561 	reg_len = strlen(reg_name);
8562 	arg_len = strlen(arg_name);
8563 
8564 	/* Exactly one of the two type names may be suffixed with ___init, so
8565 	 * if the strings are the same size, they can't possibly be no-cast
8566 	 * aliases of one another. If you have two of the same type names, e.g.
8567 	 * they're both nf_conn___init, it would be improper to return true
8568 	 * because they are _not_ no-cast aliases, they are the same type.
8569 	 */
8570 	if (reg_len == arg_len)
8571 		return false;
8572 
8573 	/* Either of the two names must be the other name, suffixed with ___init. */
8574 	if ((reg_len != arg_len + pattern_len) &&
8575 	    (arg_len != reg_len + pattern_len))
8576 		return false;
8577 
8578 	if (reg_len < arg_len) {
8579 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8580 		cmp_len = reg_len;
8581 	} else {
8582 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8583 		cmp_len = arg_len;
8584 	}
8585 
8586 	if (!search_needle)
8587 		return false;
8588 
8589 	/* ___init suffix must come at the end of the name */
8590 	if (*(search_needle + pattern_len) != '\0')
8591 		return false;
8592 
8593 	return !strncmp(reg_name, arg_name, cmp_len);
8594 }
8595