xref: /linux/kernel/bpf/btf.c (revision bfcb94aacc92f7025bd86a545037e5eb8db00e32)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 #include <net/sock.h>
29 #include "../tools/lib/bpf/relo_core.h"
30 
31 /* BTF (BPF Type Format) is the meta data format which describes
32  * the data types of BPF program/map.  Hence, it basically focus
33  * on the C programming language which the modern BPF is primary
34  * using.
35  *
36  * ELF Section:
37  * ~~~~~~~~~~~
38  * The BTF data is stored under the ".BTF" ELF section
39  *
40  * struct btf_type:
41  * ~~~~~~~~~~~~~~~
42  * Each 'struct btf_type' object describes a C data type.
43  * Depending on the type it is describing, a 'struct btf_type'
44  * object may be followed by more data.  F.e.
45  * To describe an array, 'struct btf_type' is followed by
46  * 'struct btf_array'.
47  *
48  * 'struct btf_type' and any extra data following it are
49  * 4 bytes aligned.
50  *
51  * Type section:
52  * ~~~~~~~~~~~~~
53  * The BTF type section contains a list of 'struct btf_type' objects.
54  * Each one describes a C type.  Recall from the above section
55  * that a 'struct btf_type' object could be immediately followed by extra
56  * data in order to describe some particular C types.
57  *
58  * type_id:
59  * ~~~~~~~
60  * Each btf_type object is identified by a type_id.  The type_id
61  * is implicitly implied by the location of the btf_type object in
62  * the BTF type section.  The first one has type_id 1.  The second
63  * one has type_id 2...etc.  Hence, an earlier btf_type has
64  * a smaller type_id.
65  *
66  * A btf_type object may refer to another btf_type object by using
67  * type_id (i.e. the "type" in the "struct btf_type").
68  *
69  * NOTE that we cannot assume any reference-order.
70  * A btf_type object can refer to an earlier btf_type object
71  * but it can also refer to a later btf_type object.
72  *
73  * For example, to describe "const void *".  A btf_type
74  * object describing "const" may refer to another btf_type
75  * object describing "void *".  This type-reference is done
76  * by specifying type_id:
77  *
78  * [1] CONST (anon) type_id=2
79  * [2] PTR (anon) type_id=0
80  *
81  * The above is the btf_verifier debug log:
82  *   - Each line started with "[?]" is a btf_type object
83  *   - [?] is the type_id of the btf_type object.
84  *   - CONST/PTR is the BTF_KIND_XXX
85  *   - "(anon)" is the name of the type.  It just
86  *     happens that CONST and PTR has no name.
87  *   - type_id=XXX is the 'u32 type' in btf_type
88  *
89  * NOTE: "void" has type_id 0
90  *
91  * String section:
92  * ~~~~~~~~~~~~~~
93  * The BTF string section contains the names used by the type section.
94  * Each string is referred by an "offset" from the beginning of the
95  * string section.
96  *
97  * Each string is '\0' terminated.
98  *
99  * The first character in the string section must be '\0'
100  * which is used to mean 'anonymous'. Some btf_type may not
101  * have a name.
102  */
103 
104 /* BTF verification:
105  *
106  * To verify BTF data, two passes are needed.
107  *
108  * Pass #1
109  * ~~~~~~~
110  * The first pass is to collect all btf_type objects to
111  * an array: "btf->types".
112  *
113  * Depending on the C type that a btf_type is describing,
114  * a btf_type may be followed by extra data.  We don't know
115  * how many btf_type is there, and more importantly we don't
116  * know where each btf_type is located in the type section.
117  *
118  * Without knowing the location of each type_id, most verifications
119  * cannot be done.  e.g. an earlier btf_type may refer to a later
120  * btf_type (recall the "const void *" above), so we cannot
121  * check this type-reference in the first pass.
122  *
123  * In the first pass, it still does some verifications (e.g.
124  * checking the name is a valid offset to the string section).
125  *
126  * Pass #2
127  * ~~~~~~~
128  * The main focus is to resolve a btf_type that is referring
129  * to another type.
130  *
131  * We have to ensure the referring type:
132  * 1) does exist in the BTF (i.e. in btf->types[])
133  * 2) does not cause a loop:
134  *	struct A {
135  *		struct B b;
136  *	};
137  *
138  *	struct B {
139  *		struct A a;
140  *	};
141  *
142  * btf_type_needs_resolve() decides if a btf_type needs
143  * to be resolved.
144  *
145  * The needs_resolve type implements the "resolve()" ops which
146  * essentially does a DFS and detects backedge.
147  *
148  * During resolve (or DFS), different C types have different
149  * "RESOLVED" conditions.
150  *
151  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
152  * members because a member is always referring to another
153  * type.  A struct's member can be treated as "RESOLVED" if
154  * it is referring to a BTF_KIND_PTR.  Otherwise, the
155  * following valid C struct would be rejected:
156  *
157  *	struct A {
158  *		int m;
159  *		struct A *a;
160  *	};
161  *
162  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
163  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
164  * detect a pointer loop, e.g.:
165  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
166  *                        ^                                         |
167  *                        +-----------------------------------------+
168  *
169  */
170 
171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
175 #define BITS_ROUNDUP_BYTES(bits) \
176 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
177 
178 #define BTF_INFO_MASK 0x9f00ffff
179 #define BTF_INT_MASK 0x0fffffff
180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
182 
183 /* 16MB for 64k structs and each has 16 members and
184  * a few MB spaces for the string section.
185  * The hard limit is S32_MAX.
186  */
187 #define BTF_MAX_SIZE (16 * 1024 * 1024)
188 
189 #define for_each_member_from(i, from, struct_type, member)		\
190 	for (i = from, member = btf_type_member(struct_type) + from;	\
191 	     i < btf_type_vlen(struct_type);				\
192 	     i++, member++)
193 
194 #define for_each_vsi_from(i, from, struct_type, member)				\
195 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);					\
197 	     i++, member++)
198 
199 DEFINE_IDR(btf_idr);
200 DEFINE_SPINLOCK(btf_idr_lock);
201 
202 enum btf_kfunc_hook {
203 	BTF_KFUNC_HOOK_COMMON,
204 	BTF_KFUNC_HOOK_XDP,
205 	BTF_KFUNC_HOOK_TC,
206 	BTF_KFUNC_HOOK_STRUCT_OPS,
207 	BTF_KFUNC_HOOK_TRACING,
208 	BTF_KFUNC_HOOK_SYSCALL,
209 	BTF_KFUNC_HOOK_FMODRET,
210 	BTF_KFUNC_HOOK_CGROUP_SKB,
211 	BTF_KFUNC_HOOK_SCHED_ACT,
212 	BTF_KFUNC_HOOK_SK_SKB,
213 	BTF_KFUNC_HOOK_SOCKET_FILTER,
214 	BTF_KFUNC_HOOK_LWT,
215 	BTF_KFUNC_HOOK_MAX,
216 };
217 
218 enum {
219 	BTF_KFUNC_SET_MAX_CNT = 256,
220 	BTF_DTOR_KFUNC_MAX_CNT = 256,
221 };
222 
223 struct btf_kfunc_set_tab {
224 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
225 };
226 
227 struct btf_id_dtor_kfunc_tab {
228 	u32 cnt;
229 	struct btf_id_dtor_kfunc dtors[];
230 };
231 
232 struct btf {
233 	void *data;
234 	struct btf_type **types;
235 	u32 *resolved_ids;
236 	u32 *resolved_sizes;
237 	const char *strings;
238 	void *nohdr_data;
239 	struct btf_header hdr;
240 	u32 nr_types; /* includes VOID for base BTF */
241 	u32 types_size;
242 	u32 data_size;
243 	refcount_t refcnt;
244 	u32 id;
245 	struct rcu_head rcu;
246 	struct btf_kfunc_set_tab *kfunc_set_tab;
247 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
248 	struct btf_struct_metas *struct_meta_tab;
249 
250 	/* split BTF support */
251 	struct btf *base_btf;
252 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
253 	u32 start_str_off; /* first string offset (0 for base BTF) */
254 	char name[MODULE_NAME_LEN];
255 	bool kernel_btf;
256 };
257 
258 enum verifier_phase {
259 	CHECK_META,
260 	CHECK_TYPE,
261 };
262 
263 struct resolve_vertex {
264 	const struct btf_type *t;
265 	u32 type_id;
266 	u16 next_member;
267 };
268 
269 enum visit_state {
270 	NOT_VISITED,
271 	VISITED,
272 	RESOLVED,
273 };
274 
275 enum resolve_mode {
276 	RESOLVE_TBD,	/* To Be Determined */
277 	RESOLVE_PTR,	/* Resolving for Pointer */
278 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
279 					 * or array
280 					 */
281 };
282 
283 #define MAX_RESOLVE_DEPTH 32
284 
285 struct btf_sec_info {
286 	u32 off;
287 	u32 len;
288 };
289 
290 struct btf_verifier_env {
291 	struct btf *btf;
292 	u8 *visit_states;
293 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
294 	struct bpf_verifier_log log;
295 	u32 log_type_id;
296 	u32 top_stack;
297 	enum verifier_phase phase;
298 	enum resolve_mode resolve_mode;
299 };
300 
301 static const char * const btf_kind_str[NR_BTF_KINDS] = {
302 	[BTF_KIND_UNKN]		= "UNKNOWN",
303 	[BTF_KIND_INT]		= "INT",
304 	[BTF_KIND_PTR]		= "PTR",
305 	[BTF_KIND_ARRAY]	= "ARRAY",
306 	[BTF_KIND_STRUCT]	= "STRUCT",
307 	[BTF_KIND_UNION]	= "UNION",
308 	[BTF_KIND_ENUM]		= "ENUM",
309 	[BTF_KIND_FWD]		= "FWD",
310 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
311 	[BTF_KIND_VOLATILE]	= "VOLATILE",
312 	[BTF_KIND_CONST]	= "CONST",
313 	[BTF_KIND_RESTRICT]	= "RESTRICT",
314 	[BTF_KIND_FUNC]		= "FUNC",
315 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
316 	[BTF_KIND_VAR]		= "VAR",
317 	[BTF_KIND_DATASEC]	= "DATASEC",
318 	[BTF_KIND_FLOAT]	= "FLOAT",
319 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
320 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
321 	[BTF_KIND_ENUM64]	= "ENUM64",
322 };
323 
324 const char *btf_type_str(const struct btf_type *t)
325 {
326 	return btf_kind_str[BTF_INFO_KIND(t->info)];
327 }
328 
329 /* Chunk size we use in safe copy of data to be shown. */
330 #define BTF_SHOW_OBJ_SAFE_SIZE		32
331 
332 /*
333  * This is the maximum size of a base type value (equivalent to a
334  * 128-bit int); if we are at the end of our safe buffer and have
335  * less than 16 bytes space we can't be assured of being able
336  * to copy the next type safely, so in such cases we will initiate
337  * a new copy.
338  */
339 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
340 
341 /* Type name size */
342 #define BTF_SHOW_NAME_SIZE		80
343 
344 /*
345  * The suffix of a type that indicates it cannot alias another type when
346  * comparing BTF IDs for kfunc invocations.
347  */
348 #define NOCAST_ALIAS_SUFFIX		"___init"
349 
350 /*
351  * Common data to all BTF show operations. Private show functions can add
352  * their own data to a structure containing a struct btf_show and consult it
353  * in the show callback.  See btf_type_show() below.
354  *
355  * One challenge with showing nested data is we want to skip 0-valued
356  * data, but in order to figure out whether a nested object is all zeros
357  * we need to walk through it.  As a result, we need to make two passes
358  * when handling structs, unions and arrays; the first path simply looks
359  * for nonzero data, while the second actually does the display.  The first
360  * pass is signalled by show->state.depth_check being set, and if we
361  * encounter a non-zero value we set show->state.depth_to_show to
362  * the depth at which we encountered it.  When we have completed the
363  * first pass, we will know if anything needs to be displayed if
364  * depth_to_show > depth.  See btf_[struct,array]_show() for the
365  * implementation of this.
366  *
367  * Another problem is we want to ensure the data for display is safe to
368  * access.  To support this, the anonymous "struct {} obj" tracks the data
369  * object and our safe copy of it.  We copy portions of the data needed
370  * to the object "copy" buffer, but because its size is limited to
371  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
372  * traverse larger objects for display.
373  *
374  * The various data type show functions all start with a call to
375  * btf_show_start_type() which returns a pointer to the safe copy
376  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
377  * raw data itself).  btf_show_obj_safe() is responsible for
378  * using copy_from_kernel_nofault() to update the safe data if necessary
379  * as we traverse the object's data.  skbuff-like semantics are
380  * used:
381  *
382  * - obj.head points to the start of the toplevel object for display
383  * - obj.size is the size of the toplevel object
384  * - obj.data points to the current point in the original data at
385  *   which our safe data starts.  obj.data will advance as we copy
386  *   portions of the data.
387  *
388  * In most cases a single copy will suffice, but larger data structures
389  * such as "struct task_struct" will require many copies.  The logic in
390  * btf_show_obj_safe() handles the logic that determines if a new
391  * copy_from_kernel_nofault() is needed.
392  */
393 struct btf_show {
394 	u64 flags;
395 	void *target;	/* target of show operation (seq file, buffer) */
396 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
397 	const struct btf *btf;
398 	/* below are used during iteration */
399 	struct {
400 		u8 depth;
401 		u8 depth_to_show;
402 		u8 depth_check;
403 		u8 array_member:1,
404 		   array_terminated:1;
405 		u16 array_encoding;
406 		u32 type_id;
407 		int status;			/* non-zero for error */
408 		const struct btf_type *type;
409 		const struct btf_member *member;
410 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
411 	} state;
412 	struct {
413 		u32 size;
414 		void *head;
415 		void *data;
416 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
417 	} obj;
418 };
419 
420 struct btf_kind_operations {
421 	s32 (*check_meta)(struct btf_verifier_env *env,
422 			  const struct btf_type *t,
423 			  u32 meta_left);
424 	int (*resolve)(struct btf_verifier_env *env,
425 		       const struct resolve_vertex *v);
426 	int (*check_member)(struct btf_verifier_env *env,
427 			    const struct btf_type *struct_type,
428 			    const struct btf_member *member,
429 			    const struct btf_type *member_type);
430 	int (*check_kflag_member)(struct btf_verifier_env *env,
431 				  const struct btf_type *struct_type,
432 				  const struct btf_member *member,
433 				  const struct btf_type *member_type);
434 	void (*log_details)(struct btf_verifier_env *env,
435 			    const struct btf_type *t);
436 	void (*show)(const struct btf *btf, const struct btf_type *t,
437 			 u32 type_id, void *data, u8 bits_offsets,
438 			 struct btf_show *show);
439 };
440 
441 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
442 static struct btf_type btf_void;
443 
444 static int btf_resolve(struct btf_verifier_env *env,
445 		       const struct btf_type *t, u32 type_id);
446 
447 static int btf_func_check(struct btf_verifier_env *env,
448 			  const struct btf_type *t);
449 
450 static bool btf_type_is_modifier(const struct btf_type *t)
451 {
452 	/* Some of them is not strictly a C modifier
453 	 * but they are grouped into the same bucket
454 	 * for BTF concern:
455 	 *   A type (t) that refers to another
456 	 *   type through t->type AND its size cannot
457 	 *   be determined without following the t->type.
458 	 *
459 	 * ptr does not fall into this bucket
460 	 * because its size is always sizeof(void *).
461 	 */
462 	switch (BTF_INFO_KIND(t->info)) {
463 	case BTF_KIND_TYPEDEF:
464 	case BTF_KIND_VOLATILE:
465 	case BTF_KIND_CONST:
466 	case BTF_KIND_RESTRICT:
467 	case BTF_KIND_TYPE_TAG:
468 		return true;
469 	}
470 
471 	return false;
472 }
473 
474 bool btf_type_is_void(const struct btf_type *t)
475 {
476 	return t == &btf_void;
477 }
478 
479 static bool btf_type_is_fwd(const struct btf_type *t)
480 {
481 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
482 }
483 
484 static bool btf_type_nosize(const struct btf_type *t)
485 {
486 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
487 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
488 }
489 
490 static bool btf_type_nosize_or_null(const struct btf_type *t)
491 {
492 	return !t || btf_type_nosize(t);
493 }
494 
495 static bool btf_type_is_datasec(const struct btf_type *t)
496 {
497 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
498 }
499 
500 static bool btf_type_is_decl_tag(const struct btf_type *t)
501 {
502 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
503 }
504 
505 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
506 {
507 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
508 	       btf_type_is_var(t) || btf_type_is_typedef(t);
509 }
510 
511 u32 btf_nr_types(const struct btf *btf)
512 {
513 	u32 total = 0;
514 
515 	while (btf) {
516 		total += btf->nr_types;
517 		btf = btf->base_btf;
518 	}
519 
520 	return total;
521 }
522 
523 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
524 {
525 	const struct btf_type *t;
526 	const char *tname;
527 	u32 i, total;
528 
529 	total = btf_nr_types(btf);
530 	for (i = 1; i < total; i++) {
531 		t = btf_type_by_id(btf, i);
532 		if (BTF_INFO_KIND(t->info) != kind)
533 			continue;
534 
535 		tname = btf_name_by_offset(btf, t->name_off);
536 		if (!strcmp(tname, name))
537 			return i;
538 	}
539 
540 	return -ENOENT;
541 }
542 
543 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
544 {
545 	struct btf *btf;
546 	s32 ret;
547 	int id;
548 
549 	btf = bpf_get_btf_vmlinux();
550 	if (IS_ERR(btf))
551 		return PTR_ERR(btf);
552 	if (!btf)
553 		return -EINVAL;
554 
555 	ret = btf_find_by_name_kind(btf, name, kind);
556 	/* ret is never zero, since btf_find_by_name_kind returns
557 	 * positive btf_id or negative error.
558 	 */
559 	if (ret > 0) {
560 		btf_get(btf);
561 		*btf_p = btf;
562 		return ret;
563 	}
564 
565 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
566 	spin_lock_bh(&btf_idr_lock);
567 	idr_for_each_entry(&btf_idr, btf, id) {
568 		if (!btf_is_module(btf))
569 			continue;
570 		/* linear search could be slow hence unlock/lock
571 		 * the IDR to avoiding holding it for too long
572 		 */
573 		btf_get(btf);
574 		spin_unlock_bh(&btf_idr_lock);
575 		ret = btf_find_by_name_kind(btf, name, kind);
576 		if (ret > 0) {
577 			*btf_p = btf;
578 			return ret;
579 		}
580 		spin_lock_bh(&btf_idr_lock);
581 		btf_put(btf);
582 	}
583 	spin_unlock_bh(&btf_idr_lock);
584 	return ret;
585 }
586 
587 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
588 					       u32 id, u32 *res_id)
589 {
590 	const struct btf_type *t = btf_type_by_id(btf, id);
591 
592 	while (btf_type_is_modifier(t)) {
593 		id = t->type;
594 		t = btf_type_by_id(btf, t->type);
595 	}
596 
597 	if (res_id)
598 		*res_id = id;
599 
600 	return t;
601 }
602 
603 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
604 					    u32 id, u32 *res_id)
605 {
606 	const struct btf_type *t;
607 
608 	t = btf_type_skip_modifiers(btf, id, NULL);
609 	if (!btf_type_is_ptr(t))
610 		return NULL;
611 
612 	return btf_type_skip_modifiers(btf, t->type, res_id);
613 }
614 
615 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
616 						 u32 id, u32 *res_id)
617 {
618 	const struct btf_type *ptype;
619 
620 	ptype = btf_type_resolve_ptr(btf, id, res_id);
621 	if (ptype && btf_type_is_func_proto(ptype))
622 		return ptype;
623 
624 	return NULL;
625 }
626 
627 /* Types that act only as a source, not sink or intermediate
628  * type when resolving.
629  */
630 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
631 {
632 	return btf_type_is_var(t) ||
633 	       btf_type_is_decl_tag(t) ||
634 	       btf_type_is_datasec(t);
635 }
636 
637 /* What types need to be resolved?
638  *
639  * btf_type_is_modifier() is an obvious one.
640  *
641  * btf_type_is_struct() because its member refers to
642  * another type (through member->type).
643  *
644  * btf_type_is_var() because the variable refers to
645  * another type. btf_type_is_datasec() holds multiple
646  * btf_type_is_var() types that need resolving.
647  *
648  * btf_type_is_array() because its element (array->type)
649  * refers to another type.  Array can be thought of a
650  * special case of struct while array just has the same
651  * member-type repeated by array->nelems of times.
652  */
653 static bool btf_type_needs_resolve(const struct btf_type *t)
654 {
655 	return btf_type_is_modifier(t) ||
656 	       btf_type_is_ptr(t) ||
657 	       btf_type_is_struct(t) ||
658 	       btf_type_is_array(t) ||
659 	       btf_type_is_var(t) ||
660 	       btf_type_is_func(t) ||
661 	       btf_type_is_decl_tag(t) ||
662 	       btf_type_is_datasec(t);
663 }
664 
665 /* t->size can be used */
666 static bool btf_type_has_size(const struct btf_type *t)
667 {
668 	switch (BTF_INFO_KIND(t->info)) {
669 	case BTF_KIND_INT:
670 	case BTF_KIND_STRUCT:
671 	case BTF_KIND_UNION:
672 	case BTF_KIND_ENUM:
673 	case BTF_KIND_DATASEC:
674 	case BTF_KIND_FLOAT:
675 	case BTF_KIND_ENUM64:
676 		return true;
677 	}
678 
679 	return false;
680 }
681 
682 static const char *btf_int_encoding_str(u8 encoding)
683 {
684 	if (encoding == 0)
685 		return "(none)";
686 	else if (encoding == BTF_INT_SIGNED)
687 		return "SIGNED";
688 	else if (encoding == BTF_INT_CHAR)
689 		return "CHAR";
690 	else if (encoding == BTF_INT_BOOL)
691 		return "BOOL";
692 	else
693 		return "UNKN";
694 }
695 
696 static u32 btf_type_int(const struct btf_type *t)
697 {
698 	return *(u32 *)(t + 1);
699 }
700 
701 static const struct btf_array *btf_type_array(const struct btf_type *t)
702 {
703 	return (const struct btf_array *)(t + 1);
704 }
705 
706 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
707 {
708 	return (const struct btf_enum *)(t + 1);
709 }
710 
711 static const struct btf_var *btf_type_var(const struct btf_type *t)
712 {
713 	return (const struct btf_var *)(t + 1);
714 }
715 
716 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
717 {
718 	return (const struct btf_decl_tag *)(t + 1);
719 }
720 
721 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
722 {
723 	return (const struct btf_enum64 *)(t + 1);
724 }
725 
726 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
727 {
728 	return kind_ops[BTF_INFO_KIND(t->info)];
729 }
730 
731 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
732 {
733 	if (!BTF_STR_OFFSET_VALID(offset))
734 		return false;
735 
736 	while (offset < btf->start_str_off)
737 		btf = btf->base_btf;
738 
739 	offset -= btf->start_str_off;
740 	return offset < btf->hdr.str_len;
741 }
742 
743 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
744 {
745 	if ((first ? !isalpha(c) :
746 		     !isalnum(c)) &&
747 	    c != '_' &&
748 	    ((c == '.' && !dot_ok) ||
749 	      c != '.'))
750 		return false;
751 	return true;
752 }
753 
754 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
755 {
756 	while (offset < btf->start_str_off)
757 		btf = btf->base_btf;
758 
759 	offset -= btf->start_str_off;
760 	if (offset < btf->hdr.str_len)
761 		return &btf->strings[offset];
762 
763 	return NULL;
764 }
765 
766 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
767 {
768 	/* offset must be valid */
769 	const char *src = btf_str_by_offset(btf, offset);
770 	const char *src_limit;
771 
772 	if (!__btf_name_char_ok(*src, true, dot_ok))
773 		return false;
774 
775 	/* set a limit on identifier length */
776 	src_limit = src + KSYM_NAME_LEN;
777 	src++;
778 	while (*src && src < src_limit) {
779 		if (!__btf_name_char_ok(*src, false, dot_ok))
780 			return false;
781 		src++;
782 	}
783 
784 	return !*src;
785 }
786 
787 /* Only C-style identifier is permitted. This can be relaxed if
788  * necessary.
789  */
790 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
791 {
792 	return __btf_name_valid(btf, offset, false);
793 }
794 
795 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
796 {
797 	return __btf_name_valid(btf, offset, true);
798 }
799 
800 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
801 {
802 	const char *name;
803 
804 	if (!offset)
805 		return "(anon)";
806 
807 	name = btf_str_by_offset(btf, offset);
808 	return name ?: "(invalid-name-offset)";
809 }
810 
811 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
812 {
813 	return btf_str_by_offset(btf, offset);
814 }
815 
816 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
817 {
818 	while (type_id < btf->start_id)
819 		btf = btf->base_btf;
820 
821 	type_id -= btf->start_id;
822 	if (type_id >= btf->nr_types)
823 		return NULL;
824 	return btf->types[type_id];
825 }
826 EXPORT_SYMBOL_GPL(btf_type_by_id);
827 
828 /*
829  * Regular int is not a bit field and it must be either
830  * u8/u16/u32/u64 or __int128.
831  */
832 static bool btf_type_int_is_regular(const struct btf_type *t)
833 {
834 	u8 nr_bits, nr_bytes;
835 	u32 int_data;
836 
837 	int_data = btf_type_int(t);
838 	nr_bits = BTF_INT_BITS(int_data);
839 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
840 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
841 	    BTF_INT_OFFSET(int_data) ||
842 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
843 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
844 	     nr_bytes != (2 * sizeof(u64)))) {
845 		return false;
846 	}
847 
848 	return true;
849 }
850 
851 /*
852  * Check that given struct member is a regular int with expected
853  * offset and size.
854  */
855 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
856 			   const struct btf_member *m,
857 			   u32 expected_offset, u32 expected_size)
858 {
859 	const struct btf_type *t;
860 	u32 id, int_data;
861 	u8 nr_bits;
862 
863 	id = m->type;
864 	t = btf_type_id_size(btf, &id, NULL);
865 	if (!t || !btf_type_is_int(t))
866 		return false;
867 
868 	int_data = btf_type_int(t);
869 	nr_bits = BTF_INT_BITS(int_data);
870 	if (btf_type_kflag(s)) {
871 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
872 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
873 
874 		/* if kflag set, int should be a regular int and
875 		 * bit offset should be at byte boundary.
876 		 */
877 		return !bitfield_size &&
878 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
879 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
880 	}
881 
882 	if (BTF_INT_OFFSET(int_data) ||
883 	    BITS_PER_BYTE_MASKED(m->offset) ||
884 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
885 	    BITS_PER_BYTE_MASKED(nr_bits) ||
886 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
887 		return false;
888 
889 	return true;
890 }
891 
892 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
893 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
894 						       u32 id)
895 {
896 	const struct btf_type *t = btf_type_by_id(btf, id);
897 
898 	while (btf_type_is_modifier(t) &&
899 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
900 		t = btf_type_by_id(btf, t->type);
901 	}
902 
903 	return t;
904 }
905 
906 #define BTF_SHOW_MAX_ITER	10
907 
908 #define BTF_KIND_BIT(kind)	(1ULL << kind)
909 
910 /*
911  * Populate show->state.name with type name information.
912  * Format of type name is
913  *
914  * [.member_name = ] (type_name)
915  */
916 static const char *btf_show_name(struct btf_show *show)
917 {
918 	/* BTF_MAX_ITER array suffixes "[]" */
919 	const char *array_suffixes = "[][][][][][][][][][]";
920 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
921 	/* BTF_MAX_ITER pointer suffixes "*" */
922 	const char *ptr_suffixes = "**********";
923 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
924 	const char *name = NULL, *prefix = "", *parens = "";
925 	const struct btf_member *m = show->state.member;
926 	const struct btf_type *t;
927 	const struct btf_array *array;
928 	u32 id = show->state.type_id;
929 	const char *member = NULL;
930 	bool show_member = false;
931 	u64 kinds = 0;
932 	int i;
933 
934 	show->state.name[0] = '\0';
935 
936 	/*
937 	 * Don't show type name if we're showing an array member;
938 	 * in that case we show the array type so don't need to repeat
939 	 * ourselves for each member.
940 	 */
941 	if (show->state.array_member)
942 		return "";
943 
944 	/* Retrieve member name, if any. */
945 	if (m) {
946 		member = btf_name_by_offset(show->btf, m->name_off);
947 		show_member = strlen(member) > 0;
948 		id = m->type;
949 	}
950 
951 	/*
952 	 * Start with type_id, as we have resolved the struct btf_type *
953 	 * via btf_modifier_show() past the parent typedef to the child
954 	 * struct, int etc it is defined as.  In such cases, the type_id
955 	 * still represents the starting type while the struct btf_type *
956 	 * in our show->state points at the resolved type of the typedef.
957 	 */
958 	t = btf_type_by_id(show->btf, id);
959 	if (!t)
960 		return "";
961 
962 	/*
963 	 * The goal here is to build up the right number of pointer and
964 	 * array suffixes while ensuring the type name for a typedef
965 	 * is represented.  Along the way we accumulate a list of
966 	 * BTF kinds we have encountered, since these will inform later
967 	 * display; for example, pointer types will not require an
968 	 * opening "{" for struct, we will just display the pointer value.
969 	 *
970 	 * We also want to accumulate the right number of pointer or array
971 	 * indices in the format string while iterating until we get to
972 	 * the typedef/pointee/array member target type.
973 	 *
974 	 * We start by pointing at the end of pointer and array suffix
975 	 * strings; as we accumulate pointers and arrays we move the pointer
976 	 * or array string backwards so it will show the expected number of
977 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
978 	 * and/or arrays and typedefs are supported as a precaution.
979 	 *
980 	 * We also want to get typedef name while proceeding to resolve
981 	 * type it points to so that we can add parentheses if it is a
982 	 * "typedef struct" etc.
983 	 */
984 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
985 
986 		switch (BTF_INFO_KIND(t->info)) {
987 		case BTF_KIND_TYPEDEF:
988 			if (!name)
989 				name = btf_name_by_offset(show->btf,
990 							       t->name_off);
991 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
992 			id = t->type;
993 			break;
994 		case BTF_KIND_ARRAY:
995 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
996 			parens = "[";
997 			if (!t)
998 				return "";
999 			array = btf_type_array(t);
1000 			if (array_suffix > array_suffixes)
1001 				array_suffix -= 2;
1002 			id = array->type;
1003 			break;
1004 		case BTF_KIND_PTR:
1005 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1006 			if (ptr_suffix > ptr_suffixes)
1007 				ptr_suffix -= 1;
1008 			id = t->type;
1009 			break;
1010 		default:
1011 			id = 0;
1012 			break;
1013 		}
1014 		if (!id)
1015 			break;
1016 		t = btf_type_skip_qualifiers(show->btf, id);
1017 	}
1018 	/* We may not be able to represent this type; bail to be safe */
1019 	if (i == BTF_SHOW_MAX_ITER)
1020 		return "";
1021 
1022 	if (!name)
1023 		name = btf_name_by_offset(show->btf, t->name_off);
1024 
1025 	switch (BTF_INFO_KIND(t->info)) {
1026 	case BTF_KIND_STRUCT:
1027 	case BTF_KIND_UNION:
1028 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1029 			 "struct" : "union";
1030 		/* if it's an array of struct/union, parens is already set */
1031 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1032 			parens = "{";
1033 		break;
1034 	case BTF_KIND_ENUM:
1035 	case BTF_KIND_ENUM64:
1036 		prefix = "enum";
1037 		break;
1038 	default:
1039 		break;
1040 	}
1041 
1042 	/* pointer does not require parens */
1043 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1044 		parens = "";
1045 	/* typedef does not require struct/union/enum prefix */
1046 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1047 		prefix = "";
1048 
1049 	if (!name)
1050 		name = "";
1051 
1052 	/* Even if we don't want type name info, we want parentheses etc */
1053 	if (show->flags & BTF_SHOW_NONAME)
1054 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1055 			 parens);
1056 	else
1057 		snprintf(show->state.name, sizeof(show->state.name),
1058 			 "%s%s%s(%s%s%s%s%s%s)%s",
1059 			 /* first 3 strings comprise ".member = " */
1060 			 show_member ? "." : "",
1061 			 show_member ? member : "",
1062 			 show_member ? " = " : "",
1063 			 /* ...next is our prefix (struct, enum, etc) */
1064 			 prefix,
1065 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1066 			 /* ...this is the type name itself */
1067 			 name,
1068 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1069 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1070 			 array_suffix, parens);
1071 
1072 	return show->state.name;
1073 }
1074 
1075 static const char *__btf_show_indent(struct btf_show *show)
1076 {
1077 	const char *indents = "                                ";
1078 	const char *indent = &indents[strlen(indents)];
1079 
1080 	if ((indent - show->state.depth) >= indents)
1081 		return indent - show->state.depth;
1082 	return indents;
1083 }
1084 
1085 static const char *btf_show_indent(struct btf_show *show)
1086 {
1087 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1088 }
1089 
1090 static const char *btf_show_newline(struct btf_show *show)
1091 {
1092 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1093 }
1094 
1095 static const char *btf_show_delim(struct btf_show *show)
1096 {
1097 	if (show->state.depth == 0)
1098 		return "";
1099 
1100 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1101 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1102 		return "|";
1103 
1104 	return ",";
1105 }
1106 
1107 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1108 {
1109 	va_list args;
1110 
1111 	if (!show->state.depth_check) {
1112 		va_start(args, fmt);
1113 		show->showfn(show, fmt, args);
1114 		va_end(args);
1115 	}
1116 }
1117 
1118 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1119  * format specifiers to the format specifier passed in; these do the work of
1120  * adding indentation, delimiters etc while the caller simply has to specify
1121  * the type value(s) in the format specifier + value(s).
1122  */
1123 #define btf_show_type_value(show, fmt, value)				       \
1124 	do {								       \
1125 		if ((value) != (__typeof__(value))0 ||			       \
1126 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1127 		    show->state.depth == 0) {				       \
1128 			btf_show(show, "%s%s" fmt "%s%s",		       \
1129 				 btf_show_indent(show),			       \
1130 				 btf_show_name(show),			       \
1131 				 value, btf_show_delim(show),		       \
1132 				 btf_show_newline(show));		       \
1133 			if (show->state.depth > show->state.depth_to_show)     \
1134 				show->state.depth_to_show = show->state.depth; \
1135 		}							       \
1136 	} while (0)
1137 
1138 #define btf_show_type_values(show, fmt, ...)				       \
1139 	do {								       \
1140 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1141 			 btf_show_name(show),				       \
1142 			 __VA_ARGS__, btf_show_delim(show),		       \
1143 			 btf_show_newline(show));			       \
1144 		if (show->state.depth > show->state.depth_to_show)	       \
1145 			show->state.depth_to_show = show->state.depth;	       \
1146 	} while (0)
1147 
1148 /* How much is left to copy to safe buffer after @data? */
1149 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1150 {
1151 	return show->obj.head + show->obj.size - data;
1152 }
1153 
1154 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1155 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1156 {
1157 	return data >= show->obj.data &&
1158 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1159 }
1160 
1161 /*
1162  * If object pointed to by @data of @size falls within our safe buffer, return
1163  * the equivalent pointer to the same safe data.  Assumes
1164  * copy_from_kernel_nofault() has already happened and our safe buffer is
1165  * populated.
1166  */
1167 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1168 {
1169 	if (btf_show_obj_is_safe(show, data, size))
1170 		return show->obj.safe + (data - show->obj.data);
1171 	return NULL;
1172 }
1173 
1174 /*
1175  * Return a safe-to-access version of data pointed to by @data.
1176  * We do this by copying the relevant amount of information
1177  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1178  *
1179  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1180  * safe copy is needed.
1181  *
1182  * Otherwise we need to determine if we have the required amount
1183  * of data (determined by the @data pointer and the size of the
1184  * largest base type we can encounter (represented by
1185  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1186  * that we will be able to print some of the current object,
1187  * and if more is needed a copy will be triggered.
1188  * Some objects such as structs will not fit into the buffer;
1189  * in such cases additional copies when we iterate over their
1190  * members may be needed.
1191  *
1192  * btf_show_obj_safe() is used to return a safe buffer for
1193  * btf_show_start_type(); this ensures that as we recurse into
1194  * nested types we always have safe data for the given type.
1195  * This approach is somewhat wasteful; it's possible for example
1196  * that when iterating over a large union we'll end up copying the
1197  * same data repeatedly, but the goal is safety not performance.
1198  * We use stack data as opposed to per-CPU buffers because the
1199  * iteration over a type can take some time, and preemption handling
1200  * would greatly complicate use of the safe buffer.
1201  */
1202 static void *btf_show_obj_safe(struct btf_show *show,
1203 			       const struct btf_type *t,
1204 			       void *data)
1205 {
1206 	const struct btf_type *rt;
1207 	int size_left, size;
1208 	void *safe = NULL;
1209 
1210 	if (show->flags & BTF_SHOW_UNSAFE)
1211 		return data;
1212 
1213 	rt = btf_resolve_size(show->btf, t, &size);
1214 	if (IS_ERR(rt)) {
1215 		show->state.status = PTR_ERR(rt);
1216 		return NULL;
1217 	}
1218 
1219 	/*
1220 	 * Is this toplevel object? If so, set total object size and
1221 	 * initialize pointers.  Otherwise check if we still fall within
1222 	 * our safe object data.
1223 	 */
1224 	if (show->state.depth == 0) {
1225 		show->obj.size = size;
1226 		show->obj.head = data;
1227 	} else {
1228 		/*
1229 		 * If the size of the current object is > our remaining
1230 		 * safe buffer we _may_ need to do a new copy.  However
1231 		 * consider the case of a nested struct; it's size pushes
1232 		 * us over the safe buffer limit, but showing any individual
1233 		 * struct members does not.  In such cases, we don't need
1234 		 * to initiate a fresh copy yet; however we definitely need
1235 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1236 		 * in our buffer, regardless of the current object size.
1237 		 * The logic here is that as we resolve types we will
1238 		 * hit a base type at some point, and we need to be sure
1239 		 * the next chunk of data is safely available to display
1240 		 * that type info safely.  We cannot rely on the size of
1241 		 * the current object here because it may be much larger
1242 		 * than our current buffer (e.g. task_struct is 8k).
1243 		 * All we want to do here is ensure that we can print the
1244 		 * next basic type, which we can if either
1245 		 * - the current type size is within the safe buffer; or
1246 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1247 		 *   the safe buffer.
1248 		 */
1249 		safe = __btf_show_obj_safe(show, data,
1250 					   min(size,
1251 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1252 	}
1253 
1254 	/*
1255 	 * We need a new copy to our safe object, either because we haven't
1256 	 * yet copied and are initializing safe data, or because the data
1257 	 * we want falls outside the boundaries of the safe object.
1258 	 */
1259 	if (!safe) {
1260 		size_left = btf_show_obj_size_left(show, data);
1261 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1262 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1263 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1264 							      data, size_left);
1265 		if (!show->state.status) {
1266 			show->obj.data = data;
1267 			safe = show->obj.safe;
1268 		}
1269 	}
1270 
1271 	return safe;
1272 }
1273 
1274 /*
1275  * Set the type we are starting to show and return a safe data pointer
1276  * to be used for showing the associated data.
1277  */
1278 static void *btf_show_start_type(struct btf_show *show,
1279 				 const struct btf_type *t,
1280 				 u32 type_id, void *data)
1281 {
1282 	show->state.type = t;
1283 	show->state.type_id = type_id;
1284 	show->state.name[0] = '\0';
1285 
1286 	return btf_show_obj_safe(show, t, data);
1287 }
1288 
1289 static void btf_show_end_type(struct btf_show *show)
1290 {
1291 	show->state.type = NULL;
1292 	show->state.type_id = 0;
1293 	show->state.name[0] = '\0';
1294 }
1295 
1296 static void *btf_show_start_aggr_type(struct btf_show *show,
1297 				      const struct btf_type *t,
1298 				      u32 type_id, void *data)
1299 {
1300 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1301 
1302 	if (!safe_data)
1303 		return safe_data;
1304 
1305 	btf_show(show, "%s%s%s", btf_show_indent(show),
1306 		 btf_show_name(show),
1307 		 btf_show_newline(show));
1308 	show->state.depth++;
1309 	return safe_data;
1310 }
1311 
1312 static void btf_show_end_aggr_type(struct btf_show *show,
1313 				   const char *suffix)
1314 {
1315 	show->state.depth--;
1316 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1317 		 btf_show_delim(show), btf_show_newline(show));
1318 	btf_show_end_type(show);
1319 }
1320 
1321 static void btf_show_start_member(struct btf_show *show,
1322 				  const struct btf_member *m)
1323 {
1324 	show->state.member = m;
1325 }
1326 
1327 static void btf_show_start_array_member(struct btf_show *show)
1328 {
1329 	show->state.array_member = 1;
1330 	btf_show_start_member(show, NULL);
1331 }
1332 
1333 static void btf_show_end_member(struct btf_show *show)
1334 {
1335 	show->state.member = NULL;
1336 }
1337 
1338 static void btf_show_end_array_member(struct btf_show *show)
1339 {
1340 	show->state.array_member = 0;
1341 	btf_show_end_member(show);
1342 }
1343 
1344 static void *btf_show_start_array_type(struct btf_show *show,
1345 				       const struct btf_type *t,
1346 				       u32 type_id,
1347 				       u16 array_encoding,
1348 				       void *data)
1349 {
1350 	show->state.array_encoding = array_encoding;
1351 	show->state.array_terminated = 0;
1352 	return btf_show_start_aggr_type(show, t, type_id, data);
1353 }
1354 
1355 static void btf_show_end_array_type(struct btf_show *show)
1356 {
1357 	show->state.array_encoding = 0;
1358 	show->state.array_terminated = 0;
1359 	btf_show_end_aggr_type(show, "]");
1360 }
1361 
1362 static void *btf_show_start_struct_type(struct btf_show *show,
1363 					const struct btf_type *t,
1364 					u32 type_id,
1365 					void *data)
1366 {
1367 	return btf_show_start_aggr_type(show, t, type_id, data);
1368 }
1369 
1370 static void btf_show_end_struct_type(struct btf_show *show)
1371 {
1372 	btf_show_end_aggr_type(show, "}");
1373 }
1374 
1375 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1376 					      const char *fmt, ...)
1377 {
1378 	va_list args;
1379 
1380 	va_start(args, fmt);
1381 	bpf_verifier_vlog(log, fmt, args);
1382 	va_end(args);
1383 }
1384 
1385 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1386 					    const char *fmt, ...)
1387 {
1388 	struct bpf_verifier_log *log = &env->log;
1389 	va_list args;
1390 
1391 	if (!bpf_verifier_log_needed(log))
1392 		return;
1393 
1394 	va_start(args, fmt);
1395 	bpf_verifier_vlog(log, fmt, args);
1396 	va_end(args);
1397 }
1398 
1399 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1400 						   const struct btf_type *t,
1401 						   bool log_details,
1402 						   const char *fmt, ...)
1403 {
1404 	struct bpf_verifier_log *log = &env->log;
1405 	struct btf *btf = env->btf;
1406 	va_list args;
1407 
1408 	if (!bpf_verifier_log_needed(log))
1409 		return;
1410 
1411 	if (log->level == BPF_LOG_KERNEL) {
1412 		/* btf verifier prints all types it is processing via
1413 		 * btf_verifier_log_type(..., fmt = NULL).
1414 		 * Skip those prints for in-kernel BTF verification.
1415 		 */
1416 		if (!fmt)
1417 			return;
1418 
1419 		/* Skip logging when loading module BTF with mismatches permitted */
1420 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1421 			return;
1422 	}
1423 
1424 	__btf_verifier_log(log, "[%u] %s %s%s",
1425 			   env->log_type_id,
1426 			   btf_type_str(t),
1427 			   __btf_name_by_offset(btf, t->name_off),
1428 			   log_details ? " " : "");
1429 
1430 	if (log_details)
1431 		btf_type_ops(t)->log_details(env, t);
1432 
1433 	if (fmt && *fmt) {
1434 		__btf_verifier_log(log, " ");
1435 		va_start(args, fmt);
1436 		bpf_verifier_vlog(log, fmt, args);
1437 		va_end(args);
1438 	}
1439 
1440 	__btf_verifier_log(log, "\n");
1441 }
1442 
1443 #define btf_verifier_log_type(env, t, ...) \
1444 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1445 #define btf_verifier_log_basic(env, t, ...) \
1446 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1447 
1448 __printf(4, 5)
1449 static void btf_verifier_log_member(struct btf_verifier_env *env,
1450 				    const struct btf_type *struct_type,
1451 				    const struct btf_member *member,
1452 				    const char *fmt, ...)
1453 {
1454 	struct bpf_verifier_log *log = &env->log;
1455 	struct btf *btf = env->btf;
1456 	va_list args;
1457 
1458 	if (!bpf_verifier_log_needed(log))
1459 		return;
1460 
1461 	if (log->level == BPF_LOG_KERNEL) {
1462 		if (!fmt)
1463 			return;
1464 
1465 		/* Skip logging when loading module BTF with mismatches permitted */
1466 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1467 			return;
1468 	}
1469 
1470 	/* The CHECK_META phase already did a btf dump.
1471 	 *
1472 	 * If member is logged again, it must hit an error in
1473 	 * parsing this member.  It is useful to print out which
1474 	 * struct this member belongs to.
1475 	 */
1476 	if (env->phase != CHECK_META)
1477 		btf_verifier_log_type(env, struct_type, NULL);
1478 
1479 	if (btf_type_kflag(struct_type))
1480 		__btf_verifier_log(log,
1481 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1482 				   __btf_name_by_offset(btf, member->name_off),
1483 				   member->type,
1484 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1485 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1486 	else
1487 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1488 				   __btf_name_by_offset(btf, member->name_off),
1489 				   member->type, member->offset);
1490 
1491 	if (fmt && *fmt) {
1492 		__btf_verifier_log(log, " ");
1493 		va_start(args, fmt);
1494 		bpf_verifier_vlog(log, fmt, args);
1495 		va_end(args);
1496 	}
1497 
1498 	__btf_verifier_log(log, "\n");
1499 }
1500 
1501 __printf(4, 5)
1502 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1503 				 const struct btf_type *datasec_type,
1504 				 const struct btf_var_secinfo *vsi,
1505 				 const char *fmt, ...)
1506 {
1507 	struct bpf_verifier_log *log = &env->log;
1508 	va_list args;
1509 
1510 	if (!bpf_verifier_log_needed(log))
1511 		return;
1512 	if (log->level == BPF_LOG_KERNEL && !fmt)
1513 		return;
1514 	if (env->phase != CHECK_META)
1515 		btf_verifier_log_type(env, datasec_type, NULL);
1516 
1517 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1518 			   vsi->type, vsi->offset, vsi->size);
1519 	if (fmt && *fmt) {
1520 		__btf_verifier_log(log, " ");
1521 		va_start(args, fmt);
1522 		bpf_verifier_vlog(log, fmt, args);
1523 		va_end(args);
1524 	}
1525 
1526 	__btf_verifier_log(log, "\n");
1527 }
1528 
1529 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1530 				 u32 btf_data_size)
1531 {
1532 	struct bpf_verifier_log *log = &env->log;
1533 	const struct btf *btf = env->btf;
1534 	const struct btf_header *hdr;
1535 
1536 	if (!bpf_verifier_log_needed(log))
1537 		return;
1538 
1539 	if (log->level == BPF_LOG_KERNEL)
1540 		return;
1541 	hdr = &btf->hdr;
1542 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1543 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1544 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1545 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1546 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1547 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1548 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1549 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1550 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1551 }
1552 
1553 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1554 {
1555 	struct btf *btf = env->btf;
1556 
1557 	if (btf->types_size == btf->nr_types) {
1558 		/* Expand 'types' array */
1559 
1560 		struct btf_type **new_types;
1561 		u32 expand_by, new_size;
1562 
1563 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1564 			btf_verifier_log(env, "Exceeded max num of types");
1565 			return -E2BIG;
1566 		}
1567 
1568 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1569 		new_size = min_t(u32, BTF_MAX_TYPE,
1570 				 btf->types_size + expand_by);
1571 
1572 		new_types = kvcalloc(new_size, sizeof(*new_types),
1573 				     GFP_KERNEL | __GFP_NOWARN);
1574 		if (!new_types)
1575 			return -ENOMEM;
1576 
1577 		if (btf->nr_types == 0) {
1578 			if (!btf->base_btf) {
1579 				/* lazily init VOID type */
1580 				new_types[0] = &btf_void;
1581 				btf->nr_types++;
1582 			}
1583 		} else {
1584 			memcpy(new_types, btf->types,
1585 			       sizeof(*btf->types) * btf->nr_types);
1586 		}
1587 
1588 		kvfree(btf->types);
1589 		btf->types = new_types;
1590 		btf->types_size = new_size;
1591 	}
1592 
1593 	btf->types[btf->nr_types++] = t;
1594 
1595 	return 0;
1596 }
1597 
1598 static int btf_alloc_id(struct btf *btf)
1599 {
1600 	int id;
1601 
1602 	idr_preload(GFP_KERNEL);
1603 	spin_lock_bh(&btf_idr_lock);
1604 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1605 	if (id > 0)
1606 		btf->id = id;
1607 	spin_unlock_bh(&btf_idr_lock);
1608 	idr_preload_end();
1609 
1610 	if (WARN_ON_ONCE(!id))
1611 		return -ENOSPC;
1612 
1613 	return id > 0 ? 0 : id;
1614 }
1615 
1616 static void btf_free_id(struct btf *btf)
1617 {
1618 	unsigned long flags;
1619 
1620 	/*
1621 	 * In map-in-map, calling map_delete_elem() on outer
1622 	 * map will call bpf_map_put on the inner map.
1623 	 * It will then eventually call btf_free_id()
1624 	 * on the inner map.  Some of the map_delete_elem()
1625 	 * implementation may have irq disabled, so
1626 	 * we need to use the _irqsave() version instead
1627 	 * of the _bh() version.
1628 	 */
1629 	spin_lock_irqsave(&btf_idr_lock, flags);
1630 	idr_remove(&btf_idr, btf->id);
1631 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1632 }
1633 
1634 static void btf_free_kfunc_set_tab(struct btf *btf)
1635 {
1636 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1637 	int hook;
1638 
1639 	if (!tab)
1640 		return;
1641 	/* For module BTF, we directly assign the sets being registered, so
1642 	 * there is nothing to free except kfunc_set_tab.
1643 	 */
1644 	if (btf_is_module(btf))
1645 		goto free_tab;
1646 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1647 		kfree(tab->sets[hook]);
1648 free_tab:
1649 	kfree(tab);
1650 	btf->kfunc_set_tab = NULL;
1651 }
1652 
1653 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1654 {
1655 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1656 
1657 	if (!tab)
1658 		return;
1659 	kfree(tab);
1660 	btf->dtor_kfunc_tab = NULL;
1661 }
1662 
1663 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1664 {
1665 	int i;
1666 
1667 	if (!tab)
1668 		return;
1669 	for (i = 0; i < tab->cnt; i++) {
1670 		btf_record_free(tab->types[i].record);
1671 		kfree(tab->types[i].field_offs);
1672 	}
1673 	kfree(tab);
1674 }
1675 
1676 static void btf_free_struct_meta_tab(struct btf *btf)
1677 {
1678 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1679 
1680 	btf_struct_metas_free(tab);
1681 	btf->struct_meta_tab = NULL;
1682 }
1683 
1684 static void btf_free(struct btf *btf)
1685 {
1686 	btf_free_struct_meta_tab(btf);
1687 	btf_free_dtor_kfunc_tab(btf);
1688 	btf_free_kfunc_set_tab(btf);
1689 	kvfree(btf->types);
1690 	kvfree(btf->resolved_sizes);
1691 	kvfree(btf->resolved_ids);
1692 	kvfree(btf->data);
1693 	kfree(btf);
1694 }
1695 
1696 static void btf_free_rcu(struct rcu_head *rcu)
1697 {
1698 	struct btf *btf = container_of(rcu, struct btf, rcu);
1699 
1700 	btf_free(btf);
1701 }
1702 
1703 void btf_get(struct btf *btf)
1704 {
1705 	refcount_inc(&btf->refcnt);
1706 }
1707 
1708 void btf_put(struct btf *btf)
1709 {
1710 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1711 		btf_free_id(btf);
1712 		call_rcu(&btf->rcu, btf_free_rcu);
1713 	}
1714 }
1715 
1716 static int env_resolve_init(struct btf_verifier_env *env)
1717 {
1718 	struct btf *btf = env->btf;
1719 	u32 nr_types = btf->nr_types;
1720 	u32 *resolved_sizes = NULL;
1721 	u32 *resolved_ids = NULL;
1722 	u8 *visit_states = NULL;
1723 
1724 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1725 				  GFP_KERNEL | __GFP_NOWARN);
1726 	if (!resolved_sizes)
1727 		goto nomem;
1728 
1729 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1730 				GFP_KERNEL | __GFP_NOWARN);
1731 	if (!resolved_ids)
1732 		goto nomem;
1733 
1734 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1735 				GFP_KERNEL | __GFP_NOWARN);
1736 	if (!visit_states)
1737 		goto nomem;
1738 
1739 	btf->resolved_sizes = resolved_sizes;
1740 	btf->resolved_ids = resolved_ids;
1741 	env->visit_states = visit_states;
1742 
1743 	return 0;
1744 
1745 nomem:
1746 	kvfree(resolved_sizes);
1747 	kvfree(resolved_ids);
1748 	kvfree(visit_states);
1749 	return -ENOMEM;
1750 }
1751 
1752 static void btf_verifier_env_free(struct btf_verifier_env *env)
1753 {
1754 	kvfree(env->visit_states);
1755 	kfree(env);
1756 }
1757 
1758 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1759 				     const struct btf_type *next_type)
1760 {
1761 	switch (env->resolve_mode) {
1762 	case RESOLVE_TBD:
1763 		/* int, enum or void is a sink */
1764 		return !btf_type_needs_resolve(next_type);
1765 	case RESOLVE_PTR:
1766 		/* int, enum, void, struct, array, func or func_proto is a sink
1767 		 * for ptr
1768 		 */
1769 		return !btf_type_is_modifier(next_type) &&
1770 			!btf_type_is_ptr(next_type);
1771 	case RESOLVE_STRUCT_OR_ARRAY:
1772 		/* int, enum, void, ptr, func or func_proto is a sink
1773 		 * for struct and array
1774 		 */
1775 		return !btf_type_is_modifier(next_type) &&
1776 			!btf_type_is_array(next_type) &&
1777 			!btf_type_is_struct(next_type);
1778 	default:
1779 		BUG();
1780 	}
1781 }
1782 
1783 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1784 				 u32 type_id)
1785 {
1786 	/* base BTF types should be resolved by now */
1787 	if (type_id < env->btf->start_id)
1788 		return true;
1789 
1790 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1791 }
1792 
1793 static int env_stack_push(struct btf_verifier_env *env,
1794 			  const struct btf_type *t, u32 type_id)
1795 {
1796 	const struct btf *btf = env->btf;
1797 	struct resolve_vertex *v;
1798 
1799 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1800 		return -E2BIG;
1801 
1802 	if (type_id < btf->start_id
1803 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1804 		return -EEXIST;
1805 
1806 	env->visit_states[type_id - btf->start_id] = VISITED;
1807 
1808 	v = &env->stack[env->top_stack++];
1809 	v->t = t;
1810 	v->type_id = type_id;
1811 	v->next_member = 0;
1812 
1813 	if (env->resolve_mode == RESOLVE_TBD) {
1814 		if (btf_type_is_ptr(t))
1815 			env->resolve_mode = RESOLVE_PTR;
1816 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1817 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 static void env_stack_set_next_member(struct btf_verifier_env *env,
1824 				      u16 next_member)
1825 {
1826 	env->stack[env->top_stack - 1].next_member = next_member;
1827 }
1828 
1829 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1830 				   u32 resolved_type_id,
1831 				   u32 resolved_size)
1832 {
1833 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1834 	struct btf *btf = env->btf;
1835 
1836 	type_id -= btf->start_id; /* adjust to local type id */
1837 	btf->resolved_sizes[type_id] = resolved_size;
1838 	btf->resolved_ids[type_id] = resolved_type_id;
1839 	env->visit_states[type_id] = RESOLVED;
1840 }
1841 
1842 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1843 {
1844 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1845 }
1846 
1847 /* Resolve the size of a passed-in "type"
1848  *
1849  * type: is an array (e.g. u32 array[x][y])
1850  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1851  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1852  *             corresponds to the return type.
1853  * *elem_type: u32
1854  * *elem_id: id of u32
1855  * *total_nelems: (x * y).  Hence, individual elem size is
1856  *                (*type_size / *total_nelems)
1857  * *type_id: id of type if it's changed within the function, 0 if not
1858  *
1859  * type: is not an array (e.g. const struct X)
1860  * return type: type "struct X"
1861  * *type_size: sizeof(struct X)
1862  * *elem_type: same as return type ("struct X")
1863  * *elem_id: 0
1864  * *total_nelems: 1
1865  * *type_id: id of type if it's changed within the function, 0 if not
1866  */
1867 static const struct btf_type *
1868 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1869 		   u32 *type_size, const struct btf_type **elem_type,
1870 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1871 {
1872 	const struct btf_type *array_type = NULL;
1873 	const struct btf_array *array = NULL;
1874 	u32 i, size, nelems = 1, id = 0;
1875 
1876 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1877 		switch (BTF_INFO_KIND(type->info)) {
1878 		/* type->size can be used */
1879 		case BTF_KIND_INT:
1880 		case BTF_KIND_STRUCT:
1881 		case BTF_KIND_UNION:
1882 		case BTF_KIND_ENUM:
1883 		case BTF_KIND_FLOAT:
1884 		case BTF_KIND_ENUM64:
1885 			size = type->size;
1886 			goto resolved;
1887 
1888 		case BTF_KIND_PTR:
1889 			size = sizeof(void *);
1890 			goto resolved;
1891 
1892 		/* Modifiers */
1893 		case BTF_KIND_TYPEDEF:
1894 		case BTF_KIND_VOLATILE:
1895 		case BTF_KIND_CONST:
1896 		case BTF_KIND_RESTRICT:
1897 		case BTF_KIND_TYPE_TAG:
1898 			id = type->type;
1899 			type = btf_type_by_id(btf, type->type);
1900 			break;
1901 
1902 		case BTF_KIND_ARRAY:
1903 			if (!array_type)
1904 				array_type = type;
1905 			array = btf_type_array(type);
1906 			if (nelems && array->nelems > U32_MAX / nelems)
1907 				return ERR_PTR(-EINVAL);
1908 			nelems *= array->nelems;
1909 			type = btf_type_by_id(btf, array->type);
1910 			break;
1911 
1912 		/* type without size */
1913 		default:
1914 			return ERR_PTR(-EINVAL);
1915 		}
1916 	}
1917 
1918 	return ERR_PTR(-EINVAL);
1919 
1920 resolved:
1921 	if (nelems && size > U32_MAX / nelems)
1922 		return ERR_PTR(-EINVAL);
1923 
1924 	*type_size = nelems * size;
1925 	if (total_nelems)
1926 		*total_nelems = nelems;
1927 	if (elem_type)
1928 		*elem_type = type;
1929 	if (elem_id)
1930 		*elem_id = array ? array->type : 0;
1931 	if (type_id && id)
1932 		*type_id = id;
1933 
1934 	return array_type ? : type;
1935 }
1936 
1937 const struct btf_type *
1938 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1939 		 u32 *type_size)
1940 {
1941 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1942 }
1943 
1944 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1945 {
1946 	while (type_id < btf->start_id)
1947 		btf = btf->base_btf;
1948 
1949 	return btf->resolved_ids[type_id - btf->start_id];
1950 }
1951 
1952 /* The input param "type_id" must point to a needs_resolve type */
1953 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1954 						  u32 *type_id)
1955 {
1956 	*type_id = btf_resolved_type_id(btf, *type_id);
1957 	return btf_type_by_id(btf, *type_id);
1958 }
1959 
1960 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1961 {
1962 	while (type_id < btf->start_id)
1963 		btf = btf->base_btf;
1964 
1965 	return btf->resolved_sizes[type_id - btf->start_id];
1966 }
1967 
1968 const struct btf_type *btf_type_id_size(const struct btf *btf,
1969 					u32 *type_id, u32 *ret_size)
1970 {
1971 	const struct btf_type *size_type;
1972 	u32 size_type_id = *type_id;
1973 	u32 size = 0;
1974 
1975 	size_type = btf_type_by_id(btf, size_type_id);
1976 	if (btf_type_nosize_or_null(size_type))
1977 		return NULL;
1978 
1979 	if (btf_type_has_size(size_type)) {
1980 		size = size_type->size;
1981 	} else if (btf_type_is_array(size_type)) {
1982 		size = btf_resolved_type_size(btf, size_type_id);
1983 	} else if (btf_type_is_ptr(size_type)) {
1984 		size = sizeof(void *);
1985 	} else {
1986 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1987 				 !btf_type_is_var(size_type)))
1988 			return NULL;
1989 
1990 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1991 		size_type = btf_type_by_id(btf, size_type_id);
1992 		if (btf_type_nosize_or_null(size_type))
1993 			return NULL;
1994 		else if (btf_type_has_size(size_type))
1995 			size = size_type->size;
1996 		else if (btf_type_is_array(size_type))
1997 			size = btf_resolved_type_size(btf, size_type_id);
1998 		else if (btf_type_is_ptr(size_type))
1999 			size = sizeof(void *);
2000 		else
2001 			return NULL;
2002 	}
2003 
2004 	*type_id = size_type_id;
2005 	if (ret_size)
2006 		*ret_size = size;
2007 
2008 	return size_type;
2009 }
2010 
2011 static int btf_df_check_member(struct btf_verifier_env *env,
2012 			       const struct btf_type *struct_type,
2013 			       const struct btf_member *member,
2014 			       const struct btf_type *member_type)
2015 {
2016 	btf_verifier_log_basic(env, struct_type,
2017 			       "Unsupported check_member");
2018 	return -EINVAL;
2019 }
2020 
2021 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2022 				     const struct btf_type *struct_type,
2023 				     const struct btf_member *member,
2024 				     const struct btf_type *member_type)
2025 {
2026 	btf_verifier_log_basic(env, struct_type,
2027 			       "Unsupported check_kflag_member");
2028 	return -EINVAL;
2029 }
2030 
2031 /* Used for ptr, array struct/union and float type members.
2032  * int, enum and modifier types have their specific callback functions.
2033  */
2034 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2035 					  const struct btf_type *struct_type,
2036 					  const struct btf_member *member,
2037 					  const struct btf_type *member_type)
2038 {
2039 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2040 		btf_verifier_log_member(env, struct_type, member,
2041 					"Invalid member bitfield_size");
2042 		return -EINVAL;
2043 	}
2044 
2045 	/* bitfield size is 0, so member->offset represents bit offset only.
2046 	 * It is safe to call non kflag check_member variants.
2047 	 */
2048 	return btf_type_ops(member_type)->check_member(env, struct_type,
2049 						       member,
2050 						       member_type);
2051 }
2052 
2053 static int btf_df_resolve(struct btf_verifier_env *env,
2054 			  const struct resolve_vertex *v)
2055 {
2056 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2057 	return -EINVAL;
2058 }
2059 
2060 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2061 			u32 type_id, void *data, u8 bits_offsets,
2062 			struct btf_show *show)
2063 {
2064 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2065 }
2066 
2067 static int btf_int_check_member(struct btf_verifier_env *env,
2068 				const struct btf_type *struct_type,
2069 				const struct btf_member *member,
2070 				const struct btf_type *member_type)
2071 {
2072 	u32 int_data = btf_type_int(member_type);
2073 	u32 struct_bits_off = member->offset;
2074 	u32 struct_size = struct_type->size;
2075 	u32 nr_copy_bits;
2076 	u32 bytes_offset;
2077 
2078 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2079 		btf_verifier_log_member(env, struct_type, member,
2080 					"bits_offset exceeds U32_MAX");
2081 		return -EINVAL;
2082 	}
2083 
2084 	struct_bits_off += BTF_INT_OFFSET(int_data);
2085 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2086 	nr_copy_bits = BTF_INT_BITS(int_data) +
2087 		BITS_PER_BYTE_MASKED(struct_bits_off);
2088 
2089 	if (nr_copy_bits > BITS_PER_U128) {
2090 		btf_verifier_log_member(env, struct_type, member,
2091 					"nr_copy_bits exceeds 128");
2092 		return -EINVAL;
2093 	}
2094 
2095 	if (struct_size < bytes_offset ||
2096 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2097 		btf_verifier_log_member(env, struct_type, member,
2098 					"Member exceeds struct_size");
2099 		return -EINVAL;
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2106 				      const struct btf_type *struct_type,
2107 				      const struct btf_member *member,
2108 				      const struct btf_type *member_type)
2109 {
2110 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2111 	u32 int_data = btf_type_int(member_type);
2112 	u32 struct_size = struct_type->size;
2113 	u32 nr_copy_bits;
2114 
2115 	/* a regular int type is required for the kflag int member */
2116 	if (!btf_type_int_is_regular(member_type)) {
2117 		btf_verifier_log_member(env, struct_type, member,
2118 					"Invalid member base type");
2119 		return -EINVAL;
2120 	}
2121 
2122 	/* check sanity of bitfield size */
2123 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2124 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2125 	nr_int_data_bits = BTF_INT_BITS(int_data);
2126 	if (!nr_bits) {
2127 		/* Not a bitfield member, member offset must be at byte
2128 		 * boundary.
2129 		 */
2130 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2131 			btf_verifier_log_member(env, struct_type, member,
2132 						"Invalid member offset");
2133 			return -EINVAL;
2134 		}
2135 
2136 		nr_bits = nr_int_data_bits;
2137 	} else if (nr_bits > nr_int_data_bits) {
2138 		btf_verifier_log_member(env, struct_type, member,
2139 					"Invalid member bitfield_size");
2140 		return -EINVAL;
2141 	}
2142 
2143 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2144 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2145 	if (nr_copy_bits > BITS_PER_U128) {
2146 		btf_verifier_log_member(env, struct_type, member,
2147 					"nr_copy_bits exceeds 128");
2148 		return -EINVAL;
2149 	}
2150 
2151 	if (struct_size < bytes_offset ||
2152 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2153 		btf_verifier_log_member(env, struct_type, member,
2154 					"Member exceeds struct_size");
2155 		return -EINVAL;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2162 			      const struct btf_type *t,
2163 			      u32 meta_left)
2164 {
2165 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2166 	u16 encoding;
2167 
2168 	if (meta_left < meta_needed) {
2169 		btf_verifier_log_basic(env, t,
2170 				       "meta_left:%u meta_needed:%u",
2171 				       meta_left, meta_needed);
2172 		return -EINVAL;
2173 	}
2174 
2175 	if (btf_type_vlen(t)) {
2176 		btf_verifier_log_type(env, t, "vlen != 0");
2177 		return -EINVAL;
2178 	}
2179 
2180 	if (btf_type_kflag(t)) {
2181 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2182 		return -EINVAL;
2183 	}
2184 
2185 	int_data = btf_type_int(t);
2186 	if (int_data & ~BTF_INT_MASK) {
2187 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2188 				       int_data);
2189 		return -EINVAL;
2190 	}
2191 
2192 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2193 
2194 	if (nr_bits > BITS_PER_U128) {
2195 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2196 				      BITS_PER_U128);
2197 		return -EINVAL;
2198 	}
2199 
2200 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2201 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2202 		return -EINVAL;
2203 	}
2204 
2205 	/*
2206 	 * Only one of the encoding bits is allowed and it
2207 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2208 	 * Multiple bits can be allowed later if it is found
2209 	 * to be insufficient.
2210 	 */
2211 	encoding = BTF_INT_ENCODING(int_data);
2212 	if (encoding &&
2213 	    encoding != BTF_INT_SIGNED &&
2214 	    encoding != BTF_INT_CHAR &&
2215 	    encoding != BTF_INT_BOOL) {
2216 		btf_verifier_log_type(env, t, "Unsupported encoding");
2217 		return -ENOTSUPP;
2218 	}
2219 
2220 	btf_verifier_log_type(env, t, NULL);
2221 
2222 	return meta_needed;
2223 }
2224 
2225 static void btf_int_log(struct btf_verifier_env *env,
2226 			const struct btf_type *t)
2227 {
2228 	int int_data = btf_type_int(t);
2229 
2230 	btf_verifier_log(env,
2231 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2232 			 t->size, BTF_INT_OFFSET(int_data),
2233 			 BTF_INT_BITS(int_data),
2234 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2235 }
2236 
2237 static void btf_int128_print(struct btf_show *show, void *data)
2238 {
2239 	/* data points to a __int128 number.
2240 	 * Suppose
2241 	 *     int128_num = *(__int128 *)data;
2242 	 * The below formulas shows what upper_num and lower_num represents:
2243 	 *     upper_num = int128_num >> 64;
2244 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2245 	 */
2246 	u64 upper_num, lower_num;
2247 
2248 #ifdef __BIG_ENDIAN_BITFIELD
2249 	upper_num = *(u64 *)data;
2250 	lower_num = *(u64 *)(data + 8);
2251 #else
2252 	upper_num = *(u64 *)(data + 8);
2253 	lower_num = *(u64 *)data;
2254 #endif
2255 	if (upper_num == 0)
2256 		btf_show_type_value(show, "0x%llx", lower_num);
2257 	else
2258 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2259 				     lower_num);
2260 }
2261 
2262 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2263 			     u16 right_shift_bits)
2264 {
2265 	u64 upper_num, lower_num;
2266 
2267 #ifdef __BIG_ENDIAN_BITFIELD
2268 	upper_num = print_num[0];
2269 	lower_num = print_num[1];
2270 #else
2271 	upper_num = print_num[1];
2272 	lower_num = print_num[0];
2273 #endif
2274 
2275 	/* shake out un-needed bits by shift/or operations */
2276 	if (left_shift_bits >= 64) {
2277 		upper_num = lower_num << (left_shift_bits - 64);
2278 		lower_num = 0;
2279 	} else {
2280 		upper_num = (upper_num << left_shift_bits) |
2281 			    (lower_num >> (64 - left_shift_bits));
2282 		lower_num = lower_num << left_shift_bits;
2283 	}
2284 
2285 	if (right_shift_bits >= 64) {
2286 		lower_num = upper_num >> (right_shift_bits - 64);
2287 		upper_num = 0;
2288 	} else {
2289 		lower_num = (lower_num >> right_shift_bits) |
2290 			    (upper_num << (64 - right_shift_bits));
2291 		upper_num = upper_num >> right_shift_bits;
2292 	}
2293 
2294 #ifdef __BIG_ENDIAN_BITFIELD
2295 	print_num[0] = upper_num;
2296 	print_num[1] = lower_num;
2297 #else
2298 	print_num[0] = lower_num;
2299 	print_num[1] = upper_num;
2300 #endif
2301 }
2302 
2303 static void btf_bitfield_show(void *data, u8 bits_offset,
2304 			      u8 nr_bits, struct btf_show *show)
2305 {
2306 	u16 left_shift_bits, right_shift_bits;
2307 	u8 nr_copy_bytes;
2308 	u8 nr_copy_bits;
2309 	u64 print_num[2] = {};
2310 
2311 	nr_copy_bits = nr_bits + bits_offset;
2312 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2313 
2314 	memcpy(print_num, data, nr_copy_bytes);
2315 
2316 #ifdef __BIG_ENDIAN_BITFIELD
2317 	left_shift_bits = bits_offset;
2318 #else
2319 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2320 #endif
2321 	right_shift_bits = BITS_PER_U128 - nr_bits;
2322 
2323 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2324 	btf_int128_print(show, print_num);
2325 }
2326 
2327 
2328 static void btf_int_bits_show(const struct btf *btf,
2329 			      const struct btf_type *t,
2330 			      void *data, u8 bits_offset,
2331 			      struct btf_show *show)
2332 {
2333 	u32 int_data = btf_type_int(t);
2334 	u8 nr_bits = BTF_INT_BITS(int_data);
2335 	u8 total_bits_offset;
2336 
2337 	/*
2338 	 * bits_offset is at most 7.
2339 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2340 	 */
2341 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2342 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2343 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2344 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2345 }
2346 
2347 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2348 			 u32 type_id, void *data, u8 bits_offset,
2349 			 struct btf_show *show)
2350 {
2351 	u32 int_data = btf_type_int(t);
2352 	u8 encoding = BTF_INT_ENCODING(int_data);
2353 	bool sign = encoding & BTF_INT_SIGNED;
2354 	u8 nr_bits = BTF_INT_BITS(int_data);
2355 	void *safe_data;
2356 
2357 	safe_data = btf_show_start_type(show, t, type_id, data);
2358 	if (!safe_data)
2359 		return;
2360 
2361 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2362 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2363 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2364 		goto out;
2365 	}
2366 
2367 	switch (nr_bits) {
2368 	case 128:
2369 		btf_int128_print(show, safe_data);
2370 		break;
2371 	case 64:
2372 		if (sign)
2373 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2374 		else
2375 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2376 		break;
2377 	case 32:
2378 		if (sign)
2379 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2380 		else
2381 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2382 		break;
2383 	case 16:
2384 		if (sign)
2385 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2386 		else
2387 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2388 		break;
2389 	case 8:
2390 		if (show->state.array_encoding == BTF_INT_CHAR) {
2391 			/* check for null terminator */
2392 			if (show->state.array_terminated)
2393 				break;
2394 			if (*(char *)data == '\0') {
2395 				show->state.array_terminated = 1;
2396 				break;
2397 			}
2398 			if (isprint(*(char *)data)) {
2399 				btf_show_type_value(show, "'%c'",
2400 						    *(char *)safe_data);
2401 				break;
2402 			}
2403 		}
2404 		if (sign)
2405 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2406 		else
2407 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2408 		break;
2409 	default:
2410 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2411 		break;
2412 	}
2413 out:
2414 	btf_show_end_type(show);
2415 }
2416 
2417 static const struct btf_kind_operations int_ops = {
2418 	.check_meta = btf_int_check_meta,
2419 	.resolve = btf_df_resolve,
2420 	.check_member = btf_int_check_member,
2421 	.check_kflag_member = btf_int_check_kflag_member,
2422 	.log_details = btf_int_log,
2423 	.show = btf_int_show,
2424 };
2425 
2426 static int btf_modifier_check_member(struct btf_verifier_env *env,
2427 				     const struct btf_type *struct_type,
2428 				     const struct btf_member *member,
2429 				     const struct btf_type *member_type)
2430 {
2431 	const struct btf_type *resolved_type;
2432 	u32 resolved_type_id = member->type;
2433 	struct btf_member resolved_member;
2434 	struct btf *btf = env->btf;
2435 
2436 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2437 	if (!resolved_type) {
2438 		btf_verifier_log_member(env, struct_type, member,
2439 					"Invalid member");
2440 		return -EINVAL;
2441 	}
2442 
2443 	resolved_member = *member;
2444 	resolved_member.type = resolved_type_id;
2445 
2446 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2447 							 &resolved_member,
2448 							 resolved_type);
2449 }
2450 
2451 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2452 					   const struct btf_type *struct_type,
2453 					   const struct btf_member *member,
2454 					   const struct btf_type *member_type)
2455 {
2456 	const struct btf_type *resolved_type;
2457 	u32 resolved_type_id = member->type;
2458 	struct btf_member resolved_member;
2459 	struct btf *btf = env->btf;
2460 
2461 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2462 	if (!resolved_type) {
2463 		btf_verifier_log_member(env, struct_type, member,
2464 					"Invalid member");
2465 		return -EINVAL;
2466 	}
2467 
2468 	resolved_member = *member;
2469 	resolved_member.type = resolved_type_id;
2470 
2471 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2472 							       &resolved_member,
2473 							       resolved_type);
2474 }
2475 
2476 static int btf_ptr_check_member(struct btf_verifier_env *env,
2477 				const struct btf_type *struct_type,
2478 				const struct btf_member *member,
2479 				const struct btf_type *member_type)
2480 {
2481 	u32 struct_size, struct_bits_off, bytes_offset;
2482 
2483 	struct_size = struct_type->size;
2484 	struct_bits_off = member->offset;
2485 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2486 
2487 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2488 		btf_verifier_log_member(env, struct_type, member,
2489 					"Member is not byte aligned");
2490 		return -EINVAL;
2491 	}
2492 
2493 	if (struct_size - bytes_offset < sizeof(void *)) {
2494 		btf_verifier_log_member(env, struct_type, member,
2495 					"Member exceeds struct_size");
2496 		return -EINVAL;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2503 				   const struct btf_type *t,
2504 				   u32 meta_left)
2505 {
2506 	const char *value;
2507 
2508 	if (btf_type_vlen(t)) {
2509 		btf_verifier_log_type(env, t, "vlen != 0");
2510 		return -EINVAL;
2511 	}
2512 
2513 	if (btf_type_kflag(t)) {
2514 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2515 		return -EINVAL;
2516 	}
2517 
2518 	if (!BTF_TYPE_ID_VALID(t->type)) {
2519 		btf_verifier_log_type(env, t, "Invalid type_id");
2520 		return -EINVAL;
2521 	}
2522 
2523 	/* typedef/type_tag type must have a valid name, and other ref types,
2524 	 * volatile, const, restrict, should have a null name.
2525 	 */
2526 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2527 		if (!t->name_off ||
2528 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2529 			btf_verifier_log_type(env, t, "Invalid name");
2530 			return -EINVAL;
2531 		}
2532 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2533 		value = btf_name_by_offset(env->btf, t->name_off);
2534 		if (!value || !value[0]) {
2535 			btf_verifier_log_type(env, t, "Invalid name");
2536 			return -EINVAL;
2537 		}
2538 	} else {
2539 		if (t->name_off) {
2540 			btf_verifier_log_type(env, t, "Invalid name");
2541 			return -EINVAL;
2542 		}
2543 	}
2544 
2545 	btf_verifier_log_type(env, t, NULL);
2546 
2547 	return 0;
2548 }
2549 
2550 static int btf_modifier_resolve(struct btf_verifier_env *env,
2551 				const struct resolve_vertex *v)
2552 {
2553 	const struct btf_type *t = v->t;
2554 	const struct btf_type *next_type;
2555 	u32 next_type_id = t->type;
2556 	struct btf *btf = env->btf;
2557 
2558 	next_type = btf_type_by_id(btf, next_type_id);
2559 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2560 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2561 		return -EINVAL;
2562 	}
2563 
2564 	if (!env_type_is_resolve_sink(env, next_type) &&
2565 	    !env_type_is_resolved(env, next_type_id))
2566 		return env_stack_push(env, next_type, next_type_id);
2567 
2568 	/* Figure out the resolved next_type_id with size.
2569 	 * They will be stored in the current modifier's
2570 	 * resolved_ids and resolved_sizes such that it can
2571 	 * save us a few type-following when we use it later (e.g. in
2572 	 * pretty print).
2573 	 */
2574 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2575 		if (env_type_is_resolved(env, next_type_id))
2576 			next_type = btf_type_id_resolve(btf, &next_type_id);
2577 
2578 		/* "typedef void new_void", "const void"...etc */
2579 		if (!btf_type_is_void(next_type) &&
2580 		    !btf_type_is_fwd(next_type) &&
2581 		    !btf_type_is_func_proto(next_type)) {
2582 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2583 			return -EINVAL;
2584 		}
2585 	}
2586 
2587 	env_stack_pop_resolved(env, next_type_id, 0);
2588 
2589 	return 0;
2590 }
2591 
2592 static int btf_var_resolve(struct btf_verifier_env *env,
2593 			   const struct resolve_vertex *v)
2594 {
2595 	const struct btf_type *next_type;
2596 	const struct btf_type *t = v->t;
2597 	u32 next_type_id = t->type;
2598 	struct btf *btf = env->btf;
2599 
2600 	next_type = btf_type_by_id(btf, next_type_id);
2601 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2602 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2603 		return -EINVAL;
2604 	}
2605 
2606 	if (!env_type_is_resolve_sink(env, next_type) &&
2607 	    !env_type_is_resolved(env, next_type_id))
2608 		return env_stack_push(env, next_type, next_type_id);
2609 
2610 	if (btf_type_is_modifier(next_type)) {
2611 		const struct btf_type *resolved_type;
2612 		u32 resolved_type_id;
2613 
2614 		resolved_type_id = next_type_id;
2615 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2616 
2617 		if (btf_type_is_ptr(resolved_type) &&
2618 		    !env_type_is_resolve_sink(env, resolved_type) &&
2619 		    !env_type_is_resolved(env, resolved_type_id))
2620 			return env_stack_push(env, resolved_type,
2621 					      resolved_type_id);
2622 	}
2623 
2624 	/* We must resolve to something concrete at this point, no
2625 	 * forward types or similar that would resolve to size of
2626 	 * zero is allowed.
2627 	 */
2628 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2629 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2630 		return -EINVAL;
2631 	}
2632 
2633 	env_stack_pop_resolved(env, next_type_id, 0);
2634 
2635 	return 0;
2636 }
2637 
2638 static int btf_ptr_resolve(struct btf_verifier_env *env,
2639 			   const struct resolve_vertex *v)
2640 {
2641 	const struct btf_type *next_type;
2642 	const struct btf_type *t = v->t;
2643 	u32 next_type_id = t->type;
2644 	struct btf *btf = env->btf;
2645 
2646 	next_type = btf_type_by_id(btf, next_type_id);
2647 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2648 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2649 		return -EINVAL;
2650 	}
2651 
2652 	if (!env_type_is_resolve_sink(env, next_type) &&
2653 	    !env_type_is_resolved(env, next_type_id))
2654 		return env_stack_push(env, next_type, next_type_id);
2655 
2656 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2657 	 * the modifier may have stopped resolving when it was resolved
2658 	 * to a ptr (last-resolved-ptr).
2659 	 *
2660 	 * We now need to continue from the last-resolved-ptr to
2661 	 * ensure the last-resolved-ptr will not referring back to
2662 	 * the current ptr (t).
2663 	 */
2664 	if (btf_type_is_modifier(next_type)) {
2665 		const struct btf_type *resolved_type;
2666 		u32 resolved_type_id;
2667 
2668 		resolved_type_id = next_type_id;
2669 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2670 
2671 		if (btf_type_is_ptr(resolved_type) &&
2672 		    !env_type_is_resolve_sink(env, resolved_type) &&
2673 		    !env_type_is_resolved(env, resolved_type_id))
2674 			return env_stack_push(env, resolved_type,
2675 					      resolved_type_id);
2676 	}
2677 
2678 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2679 		if (env_type_is_resolved(env, next_type_id))
2680 			next_type = btf_type_id_resolve(btf, &next_type_id);
2681 
2682 		if (!btf_type_is_void(next_type) &&
2683 		    !btf_type_is_fwd(next_type) &&
2684 		    !btf_type_is_func_proto(next_type)) {
2685 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2686 			return -EINVAL;
2687 		}
2688 	}
2689 
2690 	env_stack_pop_resolved(env, next_type_id, 0);
2691 
2692 	return 0;
2693 }
2694 
2695 static void btf_modifier_show(const struct btf *btf,
2696 			      const struct btf_type *t,
2697 			      u32 type_id, void *data,
2698 			      u8 bits_offset, struct btf_show *show)
2699 {
2700 	if (btf->resolved_ids)
2701 		t = btf_type_id_resolve(btf, &type_id);
2702 	else
2703 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2704 
2705 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2706 }
2707 
2708 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2709 			 u32 type_id, void *data, u8 bits_offset,
2710 			 struct btf_show *show)
2711 {
2712 	t = btf_type_id_resolve(btf, &type_id);
2713 
2714 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2715 }
2716 
2717 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2718 			 u32 type_id, void *data, u8 bits_offset,
2719 			 struct btf_show *show)
2720 {
2721 	void *safe_data;
2722 
2723 	safe_data = btf_show_start_type(show, t, type_id, data);
2724 	if (!safe_data)
2725 		return;
2726 
2727 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2728 	if (show->flags & BTF_SHOW_PTR_RAW)
2729 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2730 	else
2731 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2732 	btf_show_end_type(show);
2733 }
2734 
2735 static void btf_ref_type_log(struct btf_verifier_env *env,
2736 			     const struct btf_type *t)
2737 {
2738 	btf_verifier_log(env, "type_id=%u", t->type);
2739 }
2740 
2741 static struct btf_kind_operations modifier_ops = {
2742 	.check_meta = btf_ref_type_check_meta,
2743 	.resolve = btf_modifier_resolve,
2744 	.check_member = btf_modifier_check_member,
2745 	.check_kflag_member = btf_modifier_check_kflag_member,
2746 	.log_details = btf_ref_type_log,
2747 	.show = btf_modifier_show,
2748 };
2749 
2750 static struct btf_kind_operations ptr_ops = {
2751 	.check_meta = btf_ref_type_check_meta,
2752 	.resolve = btf_ptr_resolve,
2753 	.check_member = btf_ptr_check_member,
2754 	.check_kflag_member = btf_generic_check_kflag_member,
2755 	.log_details = btf_ref_type_log,
2756 	.show = btf_ptr_show,
2757 };
2758 
2759 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2760 			      const struct btf_type *t,
2761 			      u32 meta_left)
2762 {
2763 	if (btf_type_vlen(t)) {
2764 		btf_verifier_log_type(env, t, "vlen != 0");
2765 		return -EINVAL;
2766 	}
2767 
2768 	if (t->type) {
2769 		btf_verifier_log_type(env, t, "type != 0");
2770 		return -EINVAL;
2771 	}
2772 
2773 	/* fwd type must have a valid name */
2774 	if (!t->name_off ||
2775 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2776 		btf_verifier_log_type(env, t, "Invalid name");
2777 		return -EINVAL;
2778 	}
2779 
2780 	btf_verifier_log_type(env, t, NULL);
2781 
2782 	return 0;
2783 }
2784 
2785 static void btf_fwd_type_log(struct btf_verifier_env *env,
2786 			     const struct btf_type *t)
2787 {
2788 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2789 }
2790 
2791 static struct btf_kind_operations fwd_ops = {
2792 	.check_meta = btf_fwd_check_meta,
2793 	.resolve = btf_df_resolve,
2794 	.check_member = btf_df_check_member,
2795 	.check_kflag_member = btf_df_check_kflag_member,
2796 	.log_details = btf_fwd_type_log,
2797 	.show = btf_df_show,
2798 };
2799 
2800 static int btf_array_check_member(struct btf_verifier_env *env,
2801 				  const struct btf_type *struct_type,
2802 				  const struct btf_member *member,
2803 				  const struct btf_type *member_type)
2804 {
2805 	u32 struct_bits_off = member->offset;
2806 	u32 struct_size, bytes_offset;
2807 	u32 array_type_id, array_size;
2808 	struct btf *btf = env->btf;
2809 
2810 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2811 		btf_verifier_log_member(env, struct_type, member,
2812 					"Member is not byte aligned");
2813 		return -EINVAL;
2814 	}
2815 
2816 	array_type_id = member->type;
2817 	btf_type_id_size(btf, &array_type_id, &array_size);
2818 	struct_size = struct_type->size;
2819 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2820 	if (struct_size - bytes_offset < array_size) {
2821 		btf_verifier_log_member(env, struct_type, member,
2822 					"Member exceeds struct_size");
2823 		return -EINVAL;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2830 				const struct btf_type *t,
2831 				u32 meta_left)
2832 {
2833 	const struct btf_array *array = btf_type_array(t);
2834 	u32 meta_needed = sizeof(*array);
2835 
2836 	if (meta_left < meta_needed) {
2837 		btf_verifier_log_basic(env, t,
2838 				       "meta_left:%u meta_needed:%u",
2839 				       meta_left, meta_needed);
2840 		return -EINVAL;
2841 	}
2842 
2843 	/* array type should not have a name */
2844 	if (t->name_off) {
2845 		btf_verifier_log_type(env, t, "Invalid name");
2846 		return -EINVAL;
2847 	}
2848 
2849 	if (btf_type_vlen(t)) {
2850 		btf_verifier_log_type(env, t, "vlen != 0");
2851 		return -EINVAL;
2852 	}
2853 
2854 	if (btf_type_kflag(t)) {
2855 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2856 		return -EINVAL;
2857 	}
2858 
2859 	if (t->size) {
2860 		btf_verifier_log_type(env, t, "size != 0");
2861 		return -EINVAL;
2862 	}
2863 
2864 	/* Array elem type and index type cannot be in type void,
2865 	 * so !array->type and !array->index_type are not allowed.
2866 	 */
2867 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2868 		btf_verifier_log_type(env, t, "Invalid elem");
2869 		return -EINVAL;
2870 	}
2871 
2872 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2873 		btf_verifier_log_type(env, t, "Invalid index");
2874 		return -EINVAL;
2875 	}
2876 
2877 	btf_verifier_log_type(env, t, NULL);
2878 
2879 	return meta_needed;
2880 }
2881 
2882 static int btf_array_resolve(struct btf_verifier_env *env,
2883 			     const struct resolve_vertex *v)
2884 {
2885 	const struct btf_array *array = btf_type_array(v->t);
2886 	const struct btf_type *elem_type, *index_type;
2887 	u32 elem_type_id, index_type_id;
2888 	struct btf *btf = env->btf;
2889 	u32 elem_size;
2890 
2891 	/* Check array->index_type */
2892 	index_type_id = array->index_type;
2893 	index_type = btf_type_by_id(btf, index_type_id);
2894 	if (btf_type_nosize_or_null(index_type) ||
2895 	    btf_type_is_resolve_source_only(index_type)) {
2896 		btf_verifier_log_type(env, v->t, "Invalid index");
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (!env_type_is_resolve_sink(env, index_type) &&
2901 	    !env_type_is_resolved(env, index_type_id))
2902 		return env_stack_push(env, index_type, index_type_id);
2903 
2904 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2905 	if (!index_type || !btf_type_is_int(index_type) ||
2906 	    !btf_type_int_is_regular(index_type)) {
2907 		btf_verifier_log_type(env, v->t, "Invalid index");
2908 		return -EINVAL;
2909 	}
2910 
2911 	/* Check array->type */
2912 	elem_type_id = array->type;
2913 	elem_type = btf_type_by_id(btf, elem_type_id);
2914 	if (btf_type_nosize_or_null(elem_type) ||
2915 	    btf_type_is_resolve_source_only(elem_type)) {
2916 		btf_verifier_log_type(env, v->t,
2917 				      "Invalid elem");
2918 		return -EINVAL;
2919 	}
2920 
2921 	if (!env_type_is_resolve_sink(env, elem_type) &&
2922 	    !env_type_is_resolved(env, elem_type_id))
2923 		return env_stack_push(env, elem_type, elem_type_id);
2924 
2925 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2926 	if (!elem_type) {
2927 		btf_verifier_log_type(env, v->t, "Invalid elem");
2928 		return -EINVAL;
2929 	}
2930 
2931 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2932 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2933 		return -EINVAL;
2934 	}
2935 
2936 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2937 		btf_verifier_log_type(env, v->t,
2938 				      "Array size overflows U32_MAX");
2939 		return -EINVAL;
2940 	}
2941 
2942 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2943 
2944 	return 0;
2945 }
2946 
2947 static void btf_array_log(struct btf_verifier_env *env,
2948 			  const struct btf_type *t)
2949 {
2950 	const struct btf_array *array = btf_type_array(t);
2951 
2952 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2953 			 array->type, array->index_type, array->nelems);
2954 }
2955 
2956 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2957 			     u32 type_id, void *data, u8 bits_offset,
2958 			     struct btf_show *show)
2959 {
2960 	const struct btf_array *array = btf_type_array(t);
2961 	const struct btf_kind_operations *elem_ops;
2962 	const struct btf_type *elem_type;
2963 	u32 i, elem_size = 0, elem_type_id;
2964 	u16 encoding = 0;
2965 
2966 	elem_type_id = array->type;
2967 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2968 	if (elem_type && btf_type_has_size(elem_type))
2969 		elem_size = elem_type->size;
2970 
2971 	if (elem_type && btf_type_is_int(elem_type)) {
2972 		u32 int_type = btf_type_int(elem_type);
2973 
2974 		encoding = BTF_INT_ENCODING(int_type);
2975 
2976 		/*
2977 		 * BTF_INT_CHAR encoding never seems to be set for
2978 		 * char arrays, so if size is 1 and element is
2979 		 * printable as a char, we'll do that.
2980 		 */
2981 		if (elem_size == 1)
2982 			encoding = BTF_INT_CHAR;
2983 	}
2984 
2985 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2986 		return;
2987 
2988 	if (!elem_type)
2989 		goto out;
2990 	elem_ops = btf_type_ops(elem_type);
2991 
2992 	for (i = 0; i < array->nelems; i++) {
2993 
2994 		btf_show_start_array_member(show);
2995 
2996 		elem_ops->show(btf, elem_type, elem_type_id, data,
2997 			       bits_offset, show);
2998 		data += elem_size;
2999 
3000 		btf_show_end_array_member(show);
3001 
3002 		if (show->state.array_terminated)
3003 			break;
3004 	}
3005 out:
3006 	btf_show_end_array_type(show);
3007 }
3008 
3009 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3010 			   u32 type_id, void *data, u8 bits_offset,
3011 			   struct btf_show *show)
3012 {
3013 	const struct btf_member *m = show->state.member;
3014 
3015 	/*
3016 	 * First check if any members would be shown (are non-zero).
3017 	 * See comments above "struct btf_show" definition for more
3018 	 * details on how this works at a high-level.
3019 	 */
3020 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3021 		if (!show->state.depth_check) {
3022 			show->state.depth_check = show->state.depth + 1;
3023 			show->state.depth_to_show = 0;
3024 		}
3025 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3026 		show->state.member = m;
3027 
3028 		if (show->state.depth_check != show->state.depth + 1)
3029 			return;
3030 		show->state.depth_check = 0;
3031 
3032 		if (show->state.depth_to_show <= show->state.depth)
3033 			return;
3034 		/*
3035 		 * Reaching here indicates we have recursed and found
3036 		 * non-zero array member(s).
3037 		 */
3038 	}
3039 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3040 }
3041 
3042 static struct btf_kind_operations array_ops = {
3043 	.check_meta = btf_array_check_meta,
3044 	.resolve = btf_array_resolve,
3045 	.check_member = btf_array_check_member,
3046 	.check_kflag_member = btf_generic_check_kflag_member,
3047 	.log_details = btf_array_log,
3048 	.show = btf_array_show,
3049 };
3050 
3051 static int btf_struct_check_member(struct btf_verifier_env *env,
3052 				   const struct btf_type *struct_type,
3053 				   const struct btf_member *member,
3054 				   const struct btf_type *member_type)
3055 {
3056 	u32 struct_bits_off = member->offset;
3057 	u32 struct_size, bytes_offset;
3058 
3059 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3060 		btf_verifier_log_member(env, struct_type, member,
3061 					"Member is not byte aligned");
3062 		return -EINVAL;
3063 	}
3064 
3065 	struct_size = struct_type->size;
3066 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3067 	if (struct_size - bytes_offset < member_type->size) {
3068 		btf_verifier_log_member(env, struct_type, member,
3069 					"Member exceeds struct_size");
3070 		return -EINVAL;
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3077 				 const struct btf_type *t,
3078 				 u32 meta_left)
3079 {
3080 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3081 	const struct btf_member *member;
3082 	u32 meta_needed, last_offset;
3083 	struct btf *btf = env->btf;
3084 	u32 struct_size = t->size;
3085 	u32 offset;
3086 	u16 i;
3087 
3088 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3089 	if (meta_left < meta_needed) {
3090 		btf_verifier_log_basic(env, t,
3091 				       "meta_left:%u meta_needed:%u",
3092 				       meta_left, meta_needed);
3093 		return -EINVAL;
3094 	}
3095 
3096 	/* struct type either no name or a valid one */
3097 	if (t->name_off &&
3098 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3099 		btf_verifier_log_type(env, t, "Invalid name");
3100 		return -EINVAL;
3101 	}
3102 
3103 	btf_verifier_log_type(env, t, NULL);
3104 
3105 	last_offset = 0;
3106 	for_each_member(i, t, member) {
3107 		if (!btf_name_offset_valid(btf, member->name_off)) {
3108 			btf_verifier_log_member(env, t, member,
3109 						"Invalid member name_offset:%u",
3110 						member->name_off);
3111 			return -EINVAL;
3112 		}
3113 
3114 		/* struct member either no name or a valid one */
3115 		if (member->name_off &&
3116 		    !btf_name_valid_identifier(btf, member->name_off)) {
3117 			btf_verifier_log_member(env, t, member, "Invalid name");
3118 			return -EINVAL;
3119 		}
3120 		/* A member cannot be in type void */
3121 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3122 			btf_verifier_log_member(env, t, member,
3123 						"Invalid type_id");
3124 			return -EINVAL;
3125 		}
3126 
3127 		offset = __btf_member_bit_offset(t, member);
3128 		if (is_union && offset) {
3129 			btf_verifier_log_member(env, t, member,
3130 						"Invalid member bits_offset");
3131 			return -EINVAL;
3132 		}
3133 
3134 		/*
3135 		 * ">" instead of ">=" because the last member could be
3136 		 * "char a[0];"
3137 		 */
3138 		if (last_offset > offset) {
3139 			btf_verifier_log_member(env, t, member,
3140 						"Invalid member bits_offset");
3141 			return -EINVAL;
3142 		}
3143 
3144 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3145 			btf_verifier_log_member(env, t, member,
3146 						"Member bits_offset exceeds its struct size");
3147 			return -EINVAL;
3148 		}
3149 
3150 		btf_verifier_log_member(env, t, member, NULL);
3151 		last_offset = offset;
3152 	}
3153 
3154 	return meta_needed;
3155 }
3156 
3157 static int btf_struct_resolve(struct btf_verifier_env *env,
3158 			      const struct resolve_vertex *v)
3159 {
3160 	const struct btf_member *member;
3161 	int err;
3162 	u16 i;
3163 
3164 	/* Before continue resolving the next_member,
3165 	 * ensure the last member is indeed resolved to a
3166 	 * type with size info.
3167 	 */
3168 	if (v->next_member) {
3169 		const struct btf_type *last_member_type;
3170 		const struct btf_member *last_member;
3171 		u32 last_member_type_id;
3172 
3173 		last_member = btf_type_member(v->t) + v->next_member - 1;
3174 		last_member_type_id = last_member->type;
3175 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3176 						       last_member_type_id)))
3177 			return -EINVAL;
3178 
3179 		last_member_type = btf_type_by_id(env->btf,
3180 						  last_member_type_id);
3181 		if (btf_type_kflag(v->t))
3182 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3183 								last_member,
3184 								last_member_type);
3185 		else
3186 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3187 								last_member,
3188 								last_member_type);
3189 		if (err)
3190 			return err;
3191 	}
3192 
3193 	for_each_member_from(i, v->next_member, v->t, member) {
3194 		u32 member_type_id = member->type;
3195 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3196 								member_type_id);
3197 
3198 		if (btf_type_nosize_or_null(member_type) ||
3199 		    btf_type_is_resolve_source_only(member_type)) {
3200 			btf_verifier_log_member(env, v->t, member,
3201 						"Invalid member");
3202 			return -EINVAL;
3203 		}
3204 
3205 		if (!env_type_is_resolve_sink(env, member_type) &&
3206 		    !env_type_is_resolved(env, member_type_id)) {
3207 			env_stack_set_next_member(env, i + 1);
3208 			return env_stack_push(env, member_type, member_type_id);
3209 		}
3210 
3211 		if (btf_type_kflag(v->t))
3212 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3213 									    member,
3214 									    member_type);
3215 		else
3216 			err = btf_type_ops(member_type)->check_member(env, v->t,
3217 								      member,
3218 								      member_type);
3219 		if (err)
3220 			return err;
3221 	}
3222 
3223 	env_stack_pop_resolved(env, 0, 0);
3224 
3225 	return 0;
3226 }
3227 
3228 static void btf_struct_log(struct btf_verifier_env *env,
3229 			   const struct btf_type *t)
3230 {
3231 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3232 }
3233 
3234 enum btf_field_info_type {
3235 	BTF_FIELD_SPIN_LOCK,
3236 	BTF_FIELD_TIMER,
3237 	BTF_FIELD_KPTR,
3238 };
3239 
3240 enum {
3241 	BTF_FIELD_IGNORE = 0,
3242 	BTF_FIELD_FOUND  = 1,
3243 };
3244 
3245 struct btf_field_info {
3246 	enum btf_field_type type;
3247 	u32 off;
3248 	union {
3249 		struct {
3250 			u32 type_id;
3251 		} kptr;
3252 		struct {
3253 			const char *node_name;
3254 			u32 value_btf_id;
3255 		} graph_root;
3256 	};
3257 };
3258 
3259 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3260 			   u32 off, int sz, enum btf_field_type field_type,
3261 			   struct btf_field_info *info)
3262 {
3263 	if (!__btf_type_is_struct(t))
3264 		return BTF_FIELD_IGNORE;
3265 	if (t->size != sz)
3266 		return BTF_FIELD_IGNORE;
3267 	info->type = field_type;
3268 	info->off = off;
3269 	return BTF_FIELD_FOUND;
3270 }
3271 
3272 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3273 			 u32 off, int sz, struct btf_field_info *info)
3274 {
3275 	enum btf_field_type type;
3276 	u32 res_id;
3277 
3278 	/* Permit modifiers on the pointer itself */
3279 	if (btf_type_is_volatile(t))
3280 		t = btf_type_by_id(btf, t->type);
3281 	/* For PTR, sz is always == 8 */
3282 	if (!btf_type_is_ptr(t))
3283 		return BTF_FIELD_IGNORE;
3284 	t = btf_type_by_id(btf, t->type);
3285 
3286 	if (!btf_type_is_type_tag(t))
3287 		return BTF_FIELD_IGNORE;
3288 	/* Reject extra tags */
3289 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3290 		return -EINVAL;
3291 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3292 		type = BPF_KPTR_UNREF;
3293 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3294 		type = BPF_KPTR_REF;
3295 	else
3296 		return -EINVAL;
3297 
3298 	/* Get the base type */
3299 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3300 	/* Only pointer to struct is allowed */
3301 	if (!__btf_type_is_struct(t))
3302 		return -EINVAL;
3303 
3304 	info->type = type;
3305 	info->off = off;
3306 	info->kptr.type_id = res_id;
3307 	return BTF_FIELD_FOUND;
3308 }
3309 
3310 static const char *btf_find_decl_tag_value(const struct btf *btf,
3311 					   const struct btf_type *pt,
3312 					   int comp_idx, const char *tag_key)
3313 {
3314 	int i;
3315 
3316 	for (i = 1; i < btf_nr_types(btf); i++) {
3317 		const struct btf_type *t = btf_type_by_id(btf, i);
3318 		int len = strlen(tag_key);
3319 
3320 		if (!btf_type_is_decl_tag(t))
3321 			continue;
3322 		if (pt != btf_type_by_id(btf, t->type) ||
3323 		    btf_type_decl_tag(t)->component_idx != comp_idx)
3324 			continue;
3325 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3326 			continue;
3327 		return __btf_name_by_offset(btf, t->name_off) + len;
3328 	}
3329 	return NULL;
3330 }
3331 
3332 static int
3333 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3334 		    const struct btf_type *t, int comp_idx, u32 off,
3335 		    int sz, struct btf_field_info *info,
3336 		    enum btf_field_type head_type)
3337 {
3338 	const char *node_field_name;
3339 	const char *value_type;
3340 	s32 id;
3341 
3342 	if (!__btf_type_is_struct(t))
3343 		return BTF_FIELD_IGNORE;
3344 	if (t->size != sz)
3345 		return BTF_FIELD_IGNORE;
3346 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3347 	if (!value_type)
3348 		return -EINVAL;
3349 	node_field_name = strstr(value_type, ":");
3350 	if (!node_field_name)
3351 		return -EINVAL;
3352 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3353 	if (!value_type)
3354 		return -ENOMEM;
3355 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3356 	kfree(value_type);
3357 	if (id < 0)
3358 		return id;
3359 	node_field_name++;
3360 	if (str_is_empty(node_field_name))
3361 		return -EINVAL;
3362 	info->type = head_type;
3363 	info->off = off;
3364 	info->graph_root.value_btf_id = id;
3365 	info->graph_root.node_name = node_field_name;
3366 	return BTF_FIELD_FOUND;
3367 }
3368 
3369 #define field_mask_test_name(field_type, field_type_str) \
3370 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3371 		type = field_type;					\
3372 		goto end;						\
3373 	}
3374 
3375 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3376 			      int *align, int *sz)
3377 {
3378 	int type = 0;
3379 
3380 	if (field_mask & BPF_SPIN_LOCK) {
3381 		if (!strcmp(name, "bpf_spin_lock")) {
3382 			if (*seen_mask & BPF_SPIN_LOCK)
3383 				return -E2BIG;
3384 			*seen_mask |= BPF_SPIN_LOCK;
3385 			type = BPF_SPIN_LOCK;
3386 			goto end;
3387 		}
3388 	}
3389 	if (field_mask & BPF_TIMER) {
3390 		if (!strcmp(name, "bpf_timer")) {
3391 			if (*seen_mask & BPF_TIMER)
3392 				return -E2BIG;
3393 			*seen_mask |= BPF_TIMER;
3394 			type = BPF_TIMER;
3395 			goto end;
3396 		}
3397 	}
3398 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3399 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3400 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3401 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3402 
3403 	/* Only return BPF_KPTR when all other types with matchable names fail */
3404 	if (field_mask & BPF_KPTR) {
3405 		type = BPF_KPTR_REF;
3406 		goto end;
3407 	}
3408 	return 0;
3409 end:
3410 	*sz = btf_field_type_size(type);
3411 	*align = btf_field_type_align(type);
3412 	return type;
3413 }
3414 
3415 #undef field_mask_test_name
3416 
3417 static int btf_find_struct_field(const struct btf *btf,
3418 				 const struct btf_type *t, u32 field_mask,
3419 				 struct btf_field_info *info, int info_cnt)
3420 {
3421 	int ret, idx = 0, align, sz, field_type;
3422 	const struct btf_member *member;
3423 	struct btf_field_info tmp;
3424 	u32 i, off, seen_mask = 0;
3425 
3426 	for_each_member(i, t, member) {
3427 		const struct btf_type *member_type = btf_type_by_id(btf,
3428 								    member->type);
3429 
3430 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3431 						field_mask, &seen_mask, &align, &sz);
3432 		if (field_type == 0)
3433 			continue;
3434 		if (field_type < 0)
3435 			return field_type;
3436 
3437 		off = __btf_member_bit_offset(t, member);
3438 		if (off % 8)
3439 			/* valid C code cannot generate such BTF */
3440 			return -EINVAL;
3441 		off /= 8;
3442 		if (off % align)
3443 			continue;
3444 
3445 		switch (field_type) {
3446 		case BPF_SPIN_LOCK:
3447 		case BPF_TIMER:
3448 		case BPF_LIST_NODE:
3449 		case BPF_RB_NODE:
3450 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3451 					      idx < info_cnt ? &info[idx] : &tmp);
3452 			if (ret < 0)
3453 				return ret;
3454 			break;
3455 		case BPF_KPTR_UNREF:
3456 		case BPF_KPTR_REF:
3457 			ret = btf_find_kptr(btf, member_type, off, sz,
3458 					    idx < info_cnt ? &info[idx] : &tmp);
3459 			if (ret < 0)
3460 				return ret;
3461 			break;
3462 		case BPF_LIST_HEAD:
3463 		case BPF_RB_ROOT:
3464 			ret = btf_find_graph_root(btf, t, member_type,
3465 						  i, off, sz,
3466 						  idx < info_cnt ? &info[idx] : &tmp,
3467 						  field_type);
3468 			if (ret < 0)
3469 				return ret;
3470 			break;
3471 		default:
3472 			return -EFAULT;
3473 		}
3474 
3475 		if (ret == BTF_FIELD_IGNORE)
3476 			continue;
3477 		if (idx >= info_cnt)
3478 			return -E2BIG;
3479 		++idx;
3480 	}
3481 	return idx;
3482 }
3483 
3484 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3485 				u32 field_mask, struct btf_field_info *info,
3486 				int info_cnt)
3487 {
3488 	int ret, idx = 0, align, sz, field_type;
3489 	const struct btf_var_secinfo *vsi;
3490 	struct btf_field_info tmp;
3491 	u32 i, off, seen_mask = 0;
3492 
3493 	for_each_vsi(i, t, vsi) {
3494 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3495 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3496 
3497 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3498 						field_mask, &seen_mask, &align, &sz);
3499 		if (field_type == 0)
3500 			continue;
3501 		if (field_type < 0)
3502 			return field_type;
3503 
3504 		off = vsi->offset;
3505 		if (vsi->size != sz)
3506 			continue;
3507 		if (off % align)
3508 			continue;
3509 
3510 		switch (field_type) {
3511 		case BPF_SPIN_LOCK:
3512 		case BPF_TIMER:
3513 		case BPF_LIST_NODE:
3514 		case BPF_RB_NODE:
3515 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3516 					      idx < info_cnt ? &info[idx] : &tmp);
3517 			if (ret < 0)
3518 				return ret;
3519 			break;
3520 		case BPF_KPTR_UNREF:
3521 		case BPF_KPTR_REF:
3522 			ret = btf_find_kptr(btf, var_type, off, sz,
3523 					    idx < info_cnt ? &info[idx] : &tmp);
3524 			if (ret < 0)
3525 				return ret;
3526 			break;
3527 		case BPF_LIST_HEAD:
3528 		case BPF_RB_ROOT:
3529 			ret = btf_find_graph_root(btf, var, var_type,
3530 						  -1, off, sz,
3531 						  idx < info_cnt ? &info[idx] : &tmp,
3532 						  field_type);
3533 			if (ret < 0)
3534 				return ret;
3535 			break;
3536 		default:
3537 			return -EFAULT;
3538 		}
3539 
3540 		if (ret == BTF_FIELD_IGNORE)
3541 			continue;
3542 		if (idx >= info_cnt)
3543 			return -E2BIG;
3544 		++idx;
3545 	}
3546 	return idx;
3547 }
3548 
3549 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3550 			  u32 field_mask, struct btf_field_info *info,
3551 			  int info_cnt)
3552 {
3553 	if (__btf_type_is_struct(t))
3554 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3555 	else if (btf_type_is_datasec(t))
3556 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3557 	return -EINVAL;
3558 }
3559 
3560 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3561 			  struct btf_field_info *info)
3562 {
3563 	struct module *mod = NULL;
3564 	const struct btf_type *t;
3565 	struct btf *kernel_btf;
3566 	int ret;
3567 	s32 id;
3568 
3569 	/* Find type in map BTF, and use it to look up the matching type
3570 	 * in vmlinux or module BTFs, by name and kind.
3571 	 */
3572 	t = btf_type_by_id(btf, info->kptr.type_id);
3573 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3574 			     &kernel_btf);
3575 	if (id < 0)
3576 		return id;
3577 
3578 	/* Find and stash the function pointer for the destruction function that
3579 	 * needs to be eventually invoked from the map free path.
3580 	 */
3581 	if (info->type == BPF_KPTR_REF) {
3582 		const struct btf_type *dtor_func;
3583 		const char *dtor_func_name;
3584 		unsigned long addr;
3585 		s32 dtor_btf_id;
3586 
3587 		/* This call also serves as a whitelist of allowed objects that
3588 		 * can be used as a referenced pointer and be stored in a map at
3589 		 * the same time.
3590 		 */
3591 		dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3592 		if (dtor_btf_id < 0) {
3593 			ret = dtor_btf_id;
3594 			goto end_btf;
3595 		}
3596 
3597 		dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3598 		if (!dtor_func) {
3599 			ret = -ENOENT;
3600 			goto end_btf;
3601 		}
3602 
3603 		if (btf_is_module(kernel_btf)) {
3604 			mod = btf_try_get_module(kernel_btf);
3605 			if (!mod) {
3606 				ret = -ENXIO;
3607 				goto end_btf;
3608 			}
3609 		}
3610 
3611 		/* We already verified dtor_func to be btf_type_is_func
3612 		 * in register_btf_id_dtor_kfuncs.
3613 		 */
3614 		dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3615 		addr = kallsyms_lookup_name(dtor_func_name);
3616 		if (!addr) {
3617 			ret = -EINVAL;
3618 			goto end_mod;
3619 		}
3620 		field->kptr.dtor = (void *)addr;
3621 	}
3622 
3623 	field->kptr.btf_id = id;
3624 	field->kptr.btf = kernel_btf;
3625 	field->kptr.module = mod;
3626 	return 0;
3627 end_mod:
3628 	module_put(mod);
3629 end_btf:
3630 	btf_put(kernel_btf);
3631 	return ret;
3632 }
3633 
3634 static int btf_parse_graph_root(const struct btf *btf,
3635 				struct btf_field *field,
3636 				struct btf_field_info *info,
3637 				const char *node_type_name,
3638 				size_t node_type_align)
3639 {
3640 	const struct btf_type *t, *n = NULL;
3641 	const struct btf_member *member;
3642 	u32 offset;
3643 	int i;
3644 
3645 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3646 	/* We've already checked that value_btf_id is a struct type. We
3647 	 * just need to figure out the offset of the list_node, and
3648 	 * verify its type.
3649 	 */
3650 	for_each_member(i, t, member) {
3651 		if (strcmp(info->graph_root.node_name,
3652 			   __btf_name_by_offset(btf, member->name_off)))
3653 			continue;
3654 		/* Invalid BTF, two members with same name */
3655 		if (n)
3656 			return -EINVAL;
3657 		n = btf_type_by_id(btf, member->type);
3658 		if (!__btf_type_is_struct(n))
3659 			return -EINVAL;
3660 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3661 			return -EINVAL;
3662 		offset = __btf_member_bit_offset(n, member);
3663 		if (offset % 8)
3664 			return -EINVAL;
3665 		offset /= 8;
3666 		if (offset % node_type_align)
3667 			return -EINVAL;
3668 
3669 		field->graph_root.btf = (struct btf *)btf;
3670 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3671 		field->graph_root.node_offset = offset;
3672 	}
3673 	if (!n)
3674 		return -ENOENT;
3675 	return 0;
3676 }
3677 
3678 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3679 			       struct btf_field_info *info)
3680 {
3681 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3682 					    __alignof__(struct bpf_list_node));
3683 }
3684 
3685 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3686 			     struct btf_field_info *info)
3687 {
3688 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3689 					    __alignof__(struct bpf_rb_node));
3690 }
3691 
3692 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3693 				    u32 field_mask, u32 value_size)
3694 {
3695 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3696 	struct btf_record *rec;
3697 	u32 next_off = 0;
3698 	int ret, i, cnt;
3699 
3700 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3701 	if (ret < 0)
3702 		return ERR_PTR(ret);
3703 	if (!ret)
3704 		return NULL;
3705 
3706 	cnt = ret;
3707 	/* This needs to be kzalloc to zero out padding and unused fields, see
3708 	 * comment in btf_record_equal.
3709 	 */
3710 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3711 	if (!rec)
3712 		return ERR_PTR(-ENOMEM);
3713 
3714 	rec->spin_lock_off = -EINVAL;
3715 	rec->timer_off = -EINVAL;
3716 	for (i = 0; i < cnt; i++) {
3717 		if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
3718 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3719 			ret = -EFAULT;
3720 			goto end;
3721 		}
3722 		if (info_arr[i].off < next_off) {
3723 			ret = -EEXIST;
3724 			goto end;
3725 		}
3726 		next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
3727 
3728 		rec->field_mask |= info_arr[i].type;
3729 		rec->fields[i].offset = info_arr[i].off;
3730 		rec->fields[i].type = info_arr[i].type;
3731 
3732 		switch (info_arr[i].type) {
3733 		case BPF_SPIN_LOCK:
3734 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3735 			/* Cache offset for faster lookup at runtime */
3736 			rec->spin_lock_off = rec->fields[i].offset;
3737 			break;
3738 		case BPF_TIMER:
3739 			WARN_ON_ONCE(rec->timer_off >= 0);
3740 			/* Cache offset for faster lookup at runtime */
3741 			rec->timer_off = rec->fields[i].offset;
3742 			break;
3743 		case BPF_KPTR_UNREF:
3744 		case BPF_KPTR_REF:
3745 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3746 			if (ret < 0)
3747 				goto end;
3748 			break;
3749 		case BPF_LIST_HEAD:
3750 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3751 			if (ret < 0)
3752 				goto end;
3753 			break;
3754 		case BPF_RB_ROOT:
3755 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3756 			if (ret < 0)
3757 				goto end;
3758 			break;
3759 		case BPF_LIST_NODE:
3760 		case BPF_RB_NODE:
3761 			break;
3762 		default:
3763 			ret = -EFAULT;
3764 			goto end;
3765 		}
3766 		rec->cnt++;
3767 	}
3768 
3769 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3770 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3771 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3772 		ret = -EINVAL;
3773 		goto end;
3774 	}
3775 
3776 	/* need collection identity for non-owning refs before allowing this
3777 	 *
3778 	 * Consider a node type w/ both list and rb_node fields:
3779 	 *   struct node {
3780 	 *     struct bpf_list_node l;
3781 	 *     struct bpf_rb_node r;
3782 	 *   }
3783 	 *
3784 	 * Used like so:
3785 	 *   struct node *n = bpf_obj_new(....);
3786 	 *   bpf_list_push_front(&list_head, &n->l);
3787 	 *   bpf_rbtree_remove(&rb_root, &n->r);
3788 	 *
3789 	 * It should not be possible to rbtree_remove the node since it hasn't
3790 	 * been added to a tree. But push_front converts n to a non-owning
3791 	 * reference, and rbtree_remove accepts the non-owning reference to
3792 	 * a type w/ bpf_rb_node field.
3793 	 */
3794 	if (btf_record_has_field(rec, BPF_LIST_NODE) &&
3795 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3796 		ret = -EINVAL;
3797 		goto end;
3798 	}
3799 
3800 	return rec;
3801 end:
3802 	btf_record_free(rec);
3803 	return ERR_PTR(ret);
3804 }
3805 
3806 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3807 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3808 
3809 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3810 {
3811 	int i;
3812 
3813 	/* There are three types that signify ownership of some other type:
3814 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3815 	 * kptr_ref only supports storing kernel types, which can't store
3816 	 * references to program allocated local types.
3817 	 *
3818 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3819 	 * does not form cycles.
3820 	 */
3821 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3822 		return 0;
3823 	for (i = 0; i < rec->cnt; i++) {
3824 		struct btf_struct_meta *meta;
3825 		u32 btf_id;
3826 
3827 		if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3828 			continue;
3829 		btf_id = rec->fields[i].graph_root.value_btf_id;
3830 		meta = btf_find_struct_meta(btf, btf_id);
3831 		if (!meta)
3832 			return -EFAULT;
3833 		rec->fields[i].graph_root.value_rec = meta->record;
3834 
3835 		/* We need to set value_rec for all root types, but no need
3836 		 * to check ownership cycle for a type unless it's also a
3837 		 * node type.
3838 		 */
3839 		if (!(rec->field_mask & GRAPH_NODE_MASK))
3840 			continue;
3841 
3842 		/* We need to ensure ownership acyclicity among all types. The
3843 		 * proper way to do it would be to topologically sort all BTF
3844 		 * IDs based on the ownership edges, since there can be multiple
3845 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3846 		 * following resaoning:
3847 		 *
3848 		 * - A type can only be owned by another type in user BTF if it
3849 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3850 		 * - A type can only _own_ another type in user BTF if it has a
3851 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3852 		 *
3853 		 * We ensure that if a type is both a root and node, its
3854 		 * element types cannot be root types.
3855 		 *
3856 		 * To ensure acyclicity:
3857 		 *
3858 		 * When A is an root type but not a node, its ownership
3859 		 * chain can be:
3860 		 *	A -> B -> C
3861 		 * Where:
3862 		 * - A is an root, e.g. has bpf_rb_root.
3863 		 * - B is both a root and node, e.g. has bpf_rb_node and
3864 		 *   bpf_list_head.
3865 		 * - C is only an root, e.g. has bpf_list_node
3866 		 *
3867 		 * When A is both a root and node, some other type already
3868 		 * owns it in the BTF domain, hence it can not own
3869 		 * another root type through any of the ownership edges.
3870 		 *	A -> B
3871 		 * Where:
3872 		 * - A is both an root and node.
3873 		 * - B is only an node.
3874 		 */
3875 		if (meta->record->field_mask & GRAPH_ROOT_MASK)
3876 			return -ELOOP;
3877 	}
3878 	return 0;
3879 }
3880 
3881 static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
3882 {
3883 	const u32 a = *(const u32 *)_a;
3884 	const u32 b = *(const u32 *)_b;
3885 
3886 	if (a < b)
3887 		return -1;
3888 	else if (a > b)
3889 		return 1;
3890 	return 0;
3891 }
3892 
3893 static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
3894 {
3895 	struct btf_field_offs *foffs = (void *)priv;
3896 	u32 *off_base = foffs->field_off;
3897 	u32 *a = _a, *b = _b;
3898 	u8 *sz_a, *sz_b;
3899 
3900 	sz_a = foffs->field_sz + (a - off_base);
3901 	sz_b = foffs->field_sz + (b - off_base);
3902 
3903 	swap(*a, *b);
3904 	swap(*sz_a, *sz_b);
3905 }
3906 
3907 struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
3908 {
3909 	struct btf_field_offs *foffs;
3910 	u32 i, *off;
3911 	u8 *sz;
3912 
3913 	BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
3914 	if (IS_ERR_OR_NULL(rec))
3915 		return NULL;
3916 
3917 	foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
3918 	if (!foffs)
3919 		return ERR_PTR(-ENOMEM);
3920 
3921 	off = foffs->field_off;
3922 	sz = foffs->field_sz;
3923 	for (i = 0; i < rec->cnt; i++) {
3924 		off[i] = rec->fields[i].offset;
3925 		sz[i] = btf_field_type_size(rec->fields[i].type);
3926 	}
3927 	foffs->cnt = rec->cnt;
3928 
3929 	if (foffs->cnt == 1)
3930 		return foffs;
3931 	sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
3932 	       btf_field_offs_cmp, btf_field_offs_swap, foffs);
3933 	return foffs;
3934 }
3935 
3936 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3937 			      u32 type_id, void *data, u8 bits_offset,
3938 			      struct btf_show *show)
3939 {
3940 	const struct btf_member *member;
3941 	void *safe_data;
3942 	u32 i;
3943 
3944 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3945 	if (!safe_data)
3946 		return;
3947 
3948 	for_each_member(i, t, member) {
3949 		const struct btf_type *member_type = btf_type_by_id(btf,
3950 								member->type);
3951 		const struct btf_kind_operations *ops;
3952 		u32 member_offset, bitfield_size;
3953 		u32 bytes_offset;
3954 		u8 bits8_offset;
3955 
3956 		btf_show_start_member(show, member);
3957 
3958 		member_offset = __btf_member_bit_offset(t, member);
3959 		bitfield_size = __btf_member_bitfield_size(t, member);
3960 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3961 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3962 		if (bitfield_size) {
3963 			safe_data = btf_show_start_type(show, member_type,
3964 							member->type,
3965 							data + bytes_offset);
3966 			if (safe_data)
3967 				btf_bitfield_show(safe_data,
3968 						  bits8_offset,
3969 						  bitfield_size, show);
3970 			btf_show_end_type(show);
3971 		} else {
3972 			ops = btf_type_ops(member_type);
3973 			ops->show(btf, member_type, member->type,
3974 				  data + bytes_offset, bits8_offset, show);
3975 		}
3976 
3977 		btf_show_end_member(show);
3978 	}
3979 
3980 	btf_show_end_struct_type(show);
3981 }
3982 
3983 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3984 			    u32 type_id, void *data, u8 bits_offset,
3985 			    struct btf_show *show)
3986 {
3987 	const struct btf_member *m = show->state.member;
3988 
3989 	/*
3990 	 * First check if any members would be shown (are non-zero).
3991 	 * See comments above "struct btf_show" definition for more
3992 	 * details on how this works at a high-level.
3993 	 */
3994 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3995 		if (!show->state.depth_check) {
3996 			show->state.depth_check = show->state.depth + 1;
3997 			show->state.depth_to_show = 0;
3998 		}
3999 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4000 		/* Restore saved member data here */
4001 		show->state.member = m;
4002 		if (show->state.depth_check != show->state.depth + 1)
4003 			return;
4004 		show->state.depth_check = 0;
4005 
4006 		if (show->state.depth_to_show <= show->state.depth)
4007 			return;
4008 		/*
4009 		 * Reaching here indicates we have recursed and found
4010 		 * non-zero child values.
4011 		 */
4012 	}
4013 
4014 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4015 }
4016 
4017 static struct btf_kind_operations struct_ops = {
4018 	.check_meta = btf_struct_check_meta,
4019 	.resolve = btf_struct_resolve,
4020 	.check_member = btf_struct_check_member,
4021 	.check_kflag_member = btf_generic_check_kflag_member,
4022 	.log_details = btf_struct_log,
4023 	.show = btf_struct_show,
4024 };
4025 
4026 static int btf_enum_check_member(struct btf_verifier_env *env,
4027 				 const struct btf_type *struct_type,
4028 				 const struct btf_member *member,
4029 				 const struct btf_type *member_type)
4030 {
4031 	u32 struct_bits_off = member->offset;
4032 	u32 struct_size, bytes_offset;
4033 
4034 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4035 		btf_verifier_log_member(env, struct_type, member,
4036 					"Member is not byte aligned");
4037 		return -EINVAL;
4038 	}
4039 
4040 	struct_size = struct_type->size;
4041 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4042 	if (struct_size - bytes_offset < member_type->size) {
4043 		btf_verifier_log_member(env, struct_type, member,
4044 					"Member exceeds struct_size");
4045 		return -EINVAL;
4046 	}
4047 
4048 	return 0;
4049 }
4050 
4051 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4052 				       const struct btf_type *struct_type,
4053 				       const struct btf_member *member,
4054 				       const struct btf_type *member_type)
4055 {
4056 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4057 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4058 
4059 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4060 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4061 	if (!nr_bits) {
4062 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4063 			btf_verifier_log_member(env, struct_type, member,
4064 						"Member is not byte aligned");
4065 			return -EINVAL;
4066 		}
4067 
4068 		nr_bits = int_bitsize;
4069 	} else if (nr_bits > int_bitsize) {
4070 		btf_verifier_log_member(env, struct_type, member,
4071 					"Invalid member bitfield_size");
4072 		return -EINVAL;
4073 	}
4074 
4075 	struct_size = struct_type->size;
4076 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4077 	if (struct_size < bytes_end) {
4078 		btf_verifier_log_member(env, struct_type, member,
4079 					"Member exceeds struct_size");
4080 		return -EINVAL;
4081 	}
4082 
4083 	return 0;
4084 }
4085 
4086 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4087 			       const struct btf_type *t,
4088 			       u32 meta_left)
4089 {
4090 	const struct btf_enum *enums = btf_type_enum(t);
4091 	struct btf *btf = env->btf;
4092 	const char *fmt_str;
4093 	u16 i, nr_enums;
4094 	u32 meta_needed;
4095 
4096 	nr_enums = btf_type_vlen(t);
4097 	meta_needed = nr_enums * sizeof(*enums);
4098 
4099 	if (meta_left < meta_needed) {
4100 		btf_verifier_log_basic(env, t,
4101 				       "meta_left:%u meta_needed:%u",
4102 				       meta_left, meta_needed);
4103 		return -EINVAL;
4104 	}
4105 
4106 	if (t->size > 8 || !is_power_of_2(t->size)) {
4107 		btf_verifier_log_type(env, t, "Unexpected size");
4108 		return -EINVAL;
4109 	}
4110 
4111 	/* enum type either no name or a valid one */
4112 	if (t->name_off &&
4113 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4114 		btf_verifier_log_type(env, t, "Invalid name");
4115 		return -EINVAL;
4116 	}
4117 
4118 	btf_verifier_log_type(env, t, NULL);
4119 
4120 	for (i = 0; i < nr_enums; i++) {
4121 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4122 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4123 					 enums[i].name_off);
4124 			return -EINVAL;
4125 		}
4126 
4127 		/* enum member must have a valid name */
4128 		if (!enums[i].name_off ||
4129 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4130 			btf_verifier_log_type(env, t, "Invalid name");
4131 			return -EINVAL;
4132 		}
4133 
4134 		if (env->log.level == BPF_LOG_KERNEL)
4135 			continue;
4136 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4137 		btf_verifier_log(env, fmt_str,
4138 				 __btf_name_by_offset(btf, enums[i].name_off),
4139 				 enums[i].val);
4140 	}
4141 
4142 	return meta_needed;
4143 }
4144 
4145 static void btf_enum_log(struct btf_verifier_env *env,
4146 			 const struct btf_type *t)
4147 {
4148 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4149 }
4150 
4151 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4152 			  u32 type_id, void *data, u8 bits_offset,
4153 			  struct btf_show *show)
4154 {
4155 	const struct btf_enum *enums = btf_type_enum(t);
4156 	u32 i, nr_enums = btf_type_vlen(t);
4157 	void *safe_data;
4158 	int v;
4159 
4160 	safe_data = btf_show_start_type(show, t, type_id, data);
4161 	if (!safe_data)
4162 		return;
4163 
4164 	v = *(int *)safe_data;
4165 
4166 	for (i = 0; i < nr_enums; i++) {
4167 		if (v != enums[i].val)
4168 			continue;
4169 
4170 		btf_show_type_value(show, "%s",
4171 				    __btf_name_by_offset(btf,
4172 							 enums[i].name_off));
4173 
4174 		btf_show_end_type(show);
4175 		return;
4176 	}
4177 
4178 	if (btf_type_kflag(t))
4179 		btf_show_type_value(show, "%d", v);
4180 	else
4181 		btf_show_type_value(show, "%u", v);
4182 	btf_show_end_type(show);
4183 }
4184 
4185 static struct btf_kind_operations enum_ops = {
4186 	.check_meta = btf_enum_check_meta,
4187 	.resolve = btf_df_resolve,
4188 	.check_member = btf_enum_check_member,
4189 	.check_kflag_member = btf_enum_check_kflag_member,
4190 	.log_details = btf_enum_log,
4191 	.show = btf_enum_show,
4192 };
4193 
4194 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4195 				 const struct btf_type *t,
4196 				 u32 meta_left)
4197 {
4198 	const struct btf_enum64 *enums = btf_type_enum64(t);
4199 	struct btf *btf = env->btf;
4200 	const char *fmt_str;
4201 	u16 i, nr_enums;
4202 	u32 meta_needed;
4203 
4204 	nr_enums = btf_type_vlen(t);
4205 	meta_needed = nr_enums * sizeof(*enums);
4206 
4207 	if (meta_left < meta_needed) {
4208 		btf_verifier_log_basic(env, t,
4209 				       "meta_left:%u meta_needed:%u",
4210 				       meta_left, meta_needed);
4211 		return -EINVAL;
4212 	}
4213 
4214 	if (t->size > 8 || !is_power_of_2(t->size)) {
4215 		btf_verifier_log_type(env, t, "Unexpected size");
4216 		return -EINVAL;
4217 	}
4218 
4219 	/* enum type either no name or a valid one */
4220 	if (t->name_off &&
4221 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4222 		btf_verifier_log_type(env, t, "Invalid name");
4223 		return -EINVAL;
4224 	}
4225 
4226 	btf_verifier_log_type(env, t, NULL);
4227 
4228 	for (i = 0; i < nr_enums; i++) {
4229 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4230 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4231 					 enums[i].name_off);
4232 			return -EINVAL;
4233 		}
4234 
4235 		/* enum member must have a valid name */
4236 		if (!enums[i].name_off ||
4237 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4238 			btf_verifier_log_type(env, t, "Invalid name");
4239 			return -EINVAL;
4240 		}
4241 
4242 		if (env->log.level == BPF_LOG_KERNEL)
4243 			continue;
4244 
4245 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4246 		btf_verifier_log(env, fmt_str,
4247 				 __btf_name_by_offset(btf, enums[i].name_off),
4248 				 btf_enum64_value(enums + i));
4249 	}
4250 
4251 	return meta_needed;
4252 }
4253 
4254 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4255 			    u32 type_id, void *data, u8 bits_offset,
4256 			    struct btf_show *show)
4257 {
4258 	const struct btf_enum64 *enums = btf_type_enum64(t);
4259 	u32 i, nr_enums = btf_type_vlen(t);
4260 	void *safe_data;
4261 	s64 v;
4262 
4263 	safe_data = btf_show_start_type(show, t, type_id, data);
4264 	if (!safe_data)
4265 		return;
4266 
4267 	v = *(u64 *)safe_data;
4268 
4269 	for (i = 0; i < nr_enums; i++) {
4270 		if (v != btf_enum64_value(enums + i))
4271 			continue;
4272 
4273 		btf_show_type_value(show, "%s",
4274 				    __btf_name_by_offset(btf,
4275 							 enums[i].name_off));
4276 
4277 		btf_show_end_type(show);
4278 		return;
4279 	}
4280 
4281 	if (btf_type_kflag(t))
4282 		btf_show_type_value(show, "%lld", v);
4283 	else
4284 		btf_show_type_value(show, "%llu", v);
4285 	btf_show_end_type(show);
4286 }
4287 
4288 static struct btf_kind_operations enum64_ops = {
4289 	.check_meta = btf_enum64_check_meta,
4290 	.resolve = btf_df_resolve,
4291 	.check_member = btf_enum_check_member,
4292 	.check_kflag_member = btf_enum_check_kflag_member,
4293 	.log_details = btf_enum_log,
4294 	.show = btf_enum64_show,
4295 };
4296 
4297 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4298 				     const struct btf_type *t,
4299 				     u32 meta_left)
4300 {
4301 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4302 
4303 	if (meta_left < meta_needed) {
4304 		btf_verifier_log_basic(env, t,
4305 				       "meta_left:%u meta_needed:%u",
4306 				       meta_left, meta_needed);
4307 		return -EINVAL;
4308 	}
4309 
4310 	if (t->name_off) {
4311 		btf_verifier_log_type(env, t, "Invalid name");
4312 		return -EINVAL;
4313 	}
4314 
4315 	if (btf_type_kflag(t)) {
4316 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4317 		return -EINVAL;
4318 	}
4319 
4320 	btf_verifier_log_type(env, t, NULL);
4321 
4322 	return meta_needed;
4323 }
4324 
4325 static void btf_func_proto_log(struct btf_verifier_env *env,
4326 			       const struct btf_type *t)
4327 {
4328 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4329 	u16 nr_args = btf_type_vlen(t), i;
4330 
4331 	btf_verifier_log(env, "return=%u args=(", t->type);
4332 	if (!nr_args) {
4333 		btf_verifier_log(env, "void");
4334 		goto done;
4335 	}
4336 
4337 	if (nr_args == 1 && !args[0].type) {
4338 		/* Only one vararg */
4339 		btf_verifier_log(env, "vararg");
4340 		goto done;
4341 	}
4342 
4343 	btf_verifier_log(env, "%u %s", args[0].type,
4344 			 __btf_name_by_offset(env->btf,
4345 					      args[0].name_off));
4346 	for (i = 1; i < nr_args - 1; i++)
4347 		btf_verifier_log(env, ", %u %s", args[i].type,
4348 				 __btf_name_by_offset(env->btf,
4349 						      args[i].name_off));
4350 
4351 	if (nr_args > 1) {
4352 		const struct btf_param *last_arg = &args[nr_args - 1];
4353 
4354 		if (last_arg->type)
4355 			btf_verifier_log(env, ", %u %s", last_arg->type,
4356 					 __btf_name_by_offset(env->btf,
4357 							      last_arg->name_off));
4358 		else
4359 			btf_verifier_log(env, ", vararg");
4360 	}
4361 
4362 done:
4363 	btf_verifier_log(env, ")");
4364 }
4365 
4366 static struct btf_kind_operations func_proto_ops = {
4367 	.check_meta = btf_func_proto_check_meta,
4368 	.resolve = btf_df_resolve,
4369 	/*
4370 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4371 	 * a struct's member.
4372 	 *
4373 	 * It should be a function pointer instead.
4374 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4375 	 *
4376 	 * Hence, there is no btf_func_check_member().
4377 	 */
4378 	.check_member = btf_df_check_member,
4379 	.check_kflag_member = btf_df_check_kflag_member,
4380 	.log_details = btf_func_proto_log,
4381 	.show = btf_df_show,
4382 };
4383 
4384 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4385 			       const struct btf_type *t,
4386 			       u32 meta_left)
4387 {
4388 	if (!t->name_off ||
4389 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4390 		btf_verifier_log_type(env, t, "Invalid name");
4391 		return -EINVAL;
4392 	}
4393 
4394 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4395 		btf_verifier_log_type(env, t, "Invalid func linkage");
4396 		return -EINVAL;
4397 	}
4398 
4399 	if (btf_type_kflag(t)) {
4400 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4401 		return -EINVAL;
4402 	}
4403 
4404 	btf_verifier_log_type(env, t, NULL);
4405 
4406 	return 0;
4407 }
4408 
4409 static int btf_func_resolve(struct btf_verifier_env *env,
4410 			    const struct resolve_vertex *v)
4411 {
4412 	const struct btf_type *t = v->t;
4413 	u32 next_type_id = t->type;
4414 	int err;
4415 
4416 	err = btf_func_check(env, t);
4417 	if (err)
4418 		return err;
4419 
4420 	env_stack_pop_resolved(env, next_type_id, 0);
4421 	return 0;
4422 }
4423 
4424 static struct btf_kind_operations func_ops = {
4425 	.check_meta = btf_func_check_meta,
4426 	.resolve = btf_func_resolve,
4427 	.check_member = btf_df_check_member,
4428 	.check_kflag_member = btf_df_check_kflag_member,
4429 	.log_details = btf_ref_type_log,
4430 	.show = btf_df_show,
4431 };
4432 
4433 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4434 			      const struct btf_type *t,
4435 			      u32 meta_left)
4436 {
4437 	const struct btf_var *var;
4438 	u32 meta_needed = sizeof(*var);
4439 
4440 	if (meta_left < meta_needed) {
4441 		btf_verifier_log_basic(env, t,
4442 				       "meta_left:%u meta_needed:%u",
4443 				       meta_left, meta_needed);
4444 		return -EINVAL;
4445 	}
4446 
4447 	if (btf_type_vlen(t)) {
4448 		btf_verifier_log_type(env, t, "vlen != 0");
4449 		return -EINVAL;
4450 	}
4451 
4452 	if (btf_type_kflag(t)) {
4453 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4454 		return -EINVAL;
4455 	}
4456 
4457 	if (!t->name_off ||
4458 	    !__btf_name_valid(env->btf, t->name_off, true)) {
4459 		btf_verifier_log_type(env, t, "Invalid name");
4460 		return -EINVAL;
4461 	}
4462 
4463 	/* A var cannot be in type void */
4464 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4465 		btf_verifier_log_type(env, t, "Invalid type_id");
4466 		return -EINVAL;
4467 	}
4468 
4469 	var = btf_type_var(t);
4470 	if (var->linkage != BTF_VAR_STATIC &&
4471 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4472 		btf_verifier_log_type(env, t, "Linkage not supported");
4473 		return -EINVAL;
4474 	}
4475 
4476 	btf_verifier_log_type(env, t, NULL);
4477 
4478 	return meta_needed;
4479 }
4480 
4481 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4482 {
4483 	const struct btf_var *var = btf_type_var(t);
4484 
4485 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4486 }
4487 
4488 static const struct btf_kind_operations var_ops = {
4489 	.check_meta		= btf_var_check_meta,
4490 	.resolve		= btf_var_resolve,
4491 	.check_member		= btf_df_check_member,
4492 	.check_kflag_member	= btf_df_check_kflag_member,
4493 	.log_details		= btf_var_log,
4494 	.show			= btf_var_show,
4495 };
4496 
4497 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4498 				  const struct btf_type *t,
4499 				  u32 meta_left)
4500 {
4501 	const struct btf_var_secinfo *vsi;
4502 	u64 last_vsi_end_off = 0, sum = 0;
4503 	u32 i, meta_needed;
4504 
4505 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4506 	if (meta_left < meta_needed) {
4507 		btf_verifier_log_basic(env, t,
4508 				       "meta_left:%u meta_needed:%u",
4509 				       meta_left, meta_needed);
4510 		return -EINVAL;
4511 	}
4512 
4513 	if (!t->size) {
4514 		btf_verifier_log_type(env, t, "size == 0");
4515 		return -EINVAL;
4516 	}
4517 
4518 	if (btf_type_kflag(t)) {
4519 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4520 		return -EINVAL;
4521 	}
4522 
4523 	if (!t->name_off ||
4524 	    !btf_name_valid_section(env->btf, t->name_off)) {
4525 		btf_verifier_log_type(env, t, "Invalid name");
4526 		return -EINVAL;
4527 	}
4528 
4529 	btf_verifier_log_type(env, t, NULL);
4530 
4531 	for_each_vsi(i, t, vsi) {
4532 		/* A var cannot be in type void */
4533 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4534 			btf_verifier_log_vsi(env, t, vsi,
4535 					     "Invalid type_id");
4536 			return -EINVAL;
4537 		}
4538 
4539 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4540 			btf_verifier_log_vsi(env, t, vsi,
4541 					     "Invalid offset");
4542 			return -EINVAL;
4543 		}
4544 
4545 		if (!vsi->size || vsi->size > t->size) {
4546 			btf_verifier_log_vsi(env, t, vsi,
4547 					     "Invalid size");
4548 			return -EINVAL;
4549 		}
4550 
4551 		last_vsi_end_off = vsi->offset + vsi->size;
4552 		if (last_vsi_end_off > t->size) {
4553 			btf_verifier_log_vsi(env, t, vsi,
4554 					     "Invalid offset+size");
4555 			return -EINVAL;
4556 		}
4557 
4558 		btf_verifier_log_vsi(env, t, vsi, NULL);
4559 		sum += vsi->size;
4560 	}
4561 
4562 	if (t->size < sum) {
4563 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4564 		return -EINVAL;
4565 	}
4566 
4567 	return meta_needed;
4568 }
4569 
4570 static int btf_datasec_resolve(struct btf_verifier_env *env,
4571 			       const struct resolve_vertex *v)
4572 {
4573 	const struct btf_var_secinfo *vsi;
4574 	struct btf *btf = env->btf;
4575 	u16 i;
4576 
4577 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4578 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4579 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4580 								 var_type_id);
4581 		if (!var_type || !btf_type_is_var(var_type)) {
4582 			btf_verifier_log_vsi(env, v->t, vsi,
4583 					     "Not a VAR kind member");
4584 			return -EINVAL;
4585 		}
4586 
4587 		if (!env_type_is_resolve_sink(env, var_type) &&
4588 		    !env_type_is_resolved(env, var_type_id)) {
4589 			env_stack_set_next_member(env, i + 1);
4590 			return env_stack_push(env, var_type, var_type_id);
4591 		}
4592 
4593 		type_id = var_type->type;
4594 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4595 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4596 			return -EINVAL;
4597 		}
4598 
4599 		if (vsi->size < type_size) {
4600 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4601 			return -EINVAL;
4602 		}
4603 	}
4604 
4605 	env_stack_pop_resolved(env, 0, 0);
4606 	return 0;
4607 }
4608 
4609 static void btf_datasec_log(struct btf_verifier_env *env,
4610 			    const struct btf_type *t)
4611 {
4612 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4613 }
4614 
4615 static void btf_datasec_show(const struct btf *btf,
4616 			     const struct btf_type *t, u32 type_id,
4617 			     void *data, u8 bits_offset,
4618 			     struct btf_show *show)
4619 {
4620 	const struct btf_var_secinfo *vsi;
4621 	const struct btf_type *var;
4622 	u32 i;
4623 
4624 	if (!btf_show_start_type(show, t, type_id, data))
4625 		return;
4626 
4627 	btf_show_type_value(show, "section (\"%s\") = {",
4628 			    __btf_name_by_offset(btf, t->name_off));
4629 	for_each_vsi(i, t, vsi) {
4630 		var = btf_type_by_id(btf, vsi->type);
4631 		if (i)
4632 			btf_show(show, ",");
4633 		btf_type_ops(var)->show(btf, var, vsi->type,
4634 					data + vsi->offset, bits_offset, show);
4635 	}
4636 	btf_show_end_type(show);
4637 }
4638 
4639 static const struct btf_kind_operations datasec_ops = {
4640 	.check_meta		= btf_datasec_check_meta,
4641 	.resolve		= btf_datasec_resolve,
4642 	.check_member		= btf_df_check_member,
4643 	.check_kflag_member	= btf_df_check_kflag_member,
4644 	.log_details		= btf_datasec_log,
4645 	.show			= btf_datasec_show,
4646 };
4647 
4648 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4649 				const struct btf_type *t,
4650 				u32 meta_left)
4651 {
4652 	if (btf_type_vlen(t)) {
4653 		btf_verifier_log_type(env, t, "vlen != 0");
4654 		return -EINVAL;
4655 	}
4656 
4657 	if (btf_type_kflag(t)) {
4658 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4659 		return -EINVAL;
4660 	}
4661 
4662 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4663 	    t->size != 16) {
4664 		btf_verifier_log_type(env, t, "Invalid type_size");
4665 		return -EINVAL;
4666 	}
4667 
4668 	btf_verifier_log_type(env, t, NULL);
4669 
4670 	return 0;
4671 }
4672 
4673 static int btf_float_check_member(struct btf_verifier_env *env,
4674 				  const struct btf_type *struct_type,
4675 				  const struct btf_member *member,
4676 				  const struct btf_type *member_type)
4677 {
4678 	u64 start_offset_bytes;
4679 	u64 end_offset_bytes;
4680 	u64 misalign_bits;
4681 	u64 align_bytes;
4682 	u64 align_bits;
4683 
4684 	/* Different architectures have different alignment requirements, so
4685 	 * here we check only for the reasonable minimum. This way we ensure
4686 	 * that types after CO-RE can pass the kernel BTF verifier.
4687 	 */
4688 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4689 	align_bits = align_bytes * BITS_PER_BYTE;
4690 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4691 	if (misalign_bits) {
4692 		btf_verifier_log_member(env, struct_type, member,
4693 					"Member is not properly aligned");
4694 		return -EINVAL;
4695 	}
4696 
4697 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4698 	end_offset_bytes = start_offset_bytes + member_type->size;
4699 	if (end_offset_bytes > struct_type->size) {
4700 		btf_verifier_log_member(env, struct_type, member,
4701 					"Member exceeds struct_size");
4702 		return -EINVAL;
4703 	}
4704 
4705 	return 0;
4706 }
4707 
4708 static void btf_float_log(struct btf_verifier_env *env,
4709 			  const struct btf_type *t)
4710 {
4711 	btf_verifier_log(env, "size=%u", t->size);
4712 }
4713 
4714 static const struct btf_kind_operations float_ops = {
4715 	.check_meta = btf_float_check_meta,
4716 	.resolve = btf_df_resolve,
4717 	.check_member = btf_float_check_member,
4718 	.check_kflag_member = btf_generic_check_kflag_member,
4719 	.log_details = btf_float_log,
4720 	.show = btf_df_show,
4721 };
4722 
4723 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4724 			      const struct btf_type *t,
4725 			      u32 meta_left)
4726 {
4727 	const struct btf_decl_tag *tag;
4728 	u32 meta_needed = sizeof(*tag);
4729 	s32 component_idx;
4730 	const char *value;
4731 
4732 	if (meta_left < meta_needed) {
4733 		btf_verifier_log_basic(env, t,
4734 				       "meta_left:%u meta_needed:%u",
4735 				       meta_left, meta_needed);
4736 		return -EINVAL;
4737 	}
4738 
4739 	value = btf_name_by_offset(env->btf, t->name_off);
4740 	if (!value || !value[0]) {
4741 		btf_verifier_log_type(env, t, "Invalid value");
4742 		return -EINVAL;
4743 	}
4744 
4745 	if (btf_type_vlen(t)) {
4746 		btf_verifier_log_type(env, t, "vlen != 0");
4747 		return -EINVAL;
4748 	}
4749 
4750 	if (btf_type_kflag(t)) {
4751 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4752 		return -EINVAL;
4753 	}
4754 
4755 	component_idx = btf_type_decl_tag(t)->component_idx;
4756 	if (component_idx < -1) {
4757 		btf_verifier_log_type(env, t, "Invalid component_idx");
4758 		return -EINVAL;
4759 	}
4760 
4761 	btf_verifier_log_type(env, t, NULL);
4762 
4763 	return meta_needed;
4764 }
4765 
4766 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4767 			   const struct resolve_vertex *v)
4768 {
4769 	const struct btf_type *next_type;
4770 	const struct btf_type *t = v->t;
4771 	u32 next_type_id = t->type;
4772 	struct btf *btf = env->btf;
4773 	s32 component_idx;
4774 	u32 vlen;
4775 
4776 	next_type = btf_type_by_id(btf, next_type_id);
4777 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4778 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4779 		return -EINVAL;
4780 	}
4781 
4782 	if (!env_type_is_resolve_sink(env, next_type) &&
4783 	    !env_type_is_resolved(env, next_type_id))
4784 		return env_stack_push(env, next_type, next_type_id);
4785 
4786 	component_idx = btf_type_decl_tag(t)->component_idx;
4787 	if (component_idx != -1) {
4788 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4789 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4790 			return -EINVAL;
4791 		}
4792 
4793 		if (btf_type_is_struct(next_type)) {
4794 			vlen = btf_type_vlen(next_type);
4795 		} else {
4796 			/* next_type should be a function */
4797 			next_type = btf_type_by_id(btf, next_type->type);
4798 			vlen = btf_type_vlen(next_type);
4799 		}
4800 
4801 		if ((u32)component_idx >= vlen) {
4802 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4803 			return -EINVAL;
4804 		}
4805 	}
4806 
4807 	env_stack_pop_resolved(env, next_type_id, 0);
4808 
4809 	return 0;
4810 }
4811 
4812 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4813 {
4814 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4815 			 btf_type_decl_tag(t)->component_idx);
4816 }
4817 
4818 static const struct btf_kind_operations decl_tag_ops = {
4819 	.check_meta = btf_decl_tag_check_meta,
4820 	.resolve = btf_decl_tag_resolve,
4821 	.check_member = btf_df_check_member,
4822 	.check_kflag_member = btf_df_check_kflag_member,
4823 	.log_details = btf_decl_tag_log,
4824 	.show = btf_df_show,
4825 };
4826 
4827 static int btf_func_proto_check(struct btf_verifier_env *env,
4828 				const struct btf_type *t)
4829 {
4830 	const struct btf_type *ret_type;
4831 	const struct btf_param *args;
4832 	const struct btf *btf;
4833 	u16 nr_args, i;
4834 	int err;
4835 
4836 	btf = env->btf;
4837 	args = (const struct btf_param *)(t + 1);
4838 	nr_args = btf_type_vlen(t);
4839 
4840 	/* Check func return type which could be "void" (t->type == 0) */
4841 	if (t->type) {
4842 		u32 ret_type_id = t->type;
4843 
4844 		ret_type = btf_type_by_id(btf, ret_type_id);
4845 		if (!ret_type) {
4846 			btf_verifier_log_type(env, t, "Invalid return type");
4847 			return -EINVAL;
4848 		}
4849 
4850 		if (btf_type_is_resolve_source_only(ret_type)) {
4851 			btf_verifier_log_type(env, t, "Invalid return type");
4852 			return -EINVAL;
4853 		}
4854 
4855 		if (btf_type_needs_resolve(ret_type) &&
4856 		    !env_type_is_resolved(env, ret_type_id)) {
4857 			err = btf_resolve(env, ret_type, ret_type_id);
4858 			if (err)
4859 				return err;
4860 		}
4861 
4862 		/* Ensure the return type is a type that has a size */
4863 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4864 			btf_verifier_log_type(env, t, "Invalid return type");
4865 			return -EINVAL;
4866 		}
4867 	}
4868 
4869 	if (!nr_args)
4870 		return 0;
4871 
4872 	/* Last func arg type_id could be 0 if it is a vararg */
4873 	if (!args[nr_args - 1].type) {
4874 		if (args[nr_args - 1].name_off) {
4875 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4876 					      nr_args);
4877 			return -EINVAL;
4878 		}
4879 		nr_args--;
4880 	}
4881 
4882 	for (i = 0; i < nr_args; i++) {
4883 		const struct btf_type *arg_type;
4884 		u32 arg_type_id;
4885 
4886 		arg_type_id = args[i].type;
4887 		arg_type = btf_type_by_id(btf, arg_type_id);
4888 		if (!arg_type) {
4889 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4890 			return -EINVAL;
4891 		}
4892 
4893 		if (btf_type_is_resolve_source_only(arg_type)) {
4894 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4895 			return -EINVAL;
4896 		}
4897 
4898 		if (args[i].name_off &&
4899 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4900 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4901 			btf_verifier_log_type(env, t,
4902 					      "Invalid arg#%u", i + 1);
4903 			return -EINVAL;
4904 		}
4905 
4906 		if (btf_type_needs_resolve(arg_type) &&
4907 		    !env_type_is_resolved(env, arg_type_id)) {
4908 			err = btf_resolve(env, arg_type, arg_type_id);
4909 			if (err)
4910 				return err;
4911 		}
4912 
4913 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4914 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4915 			return -EINVAL;
4916 		}
4917 	}
4918 
4919 	return 0;
4920 }
4921 
4922 static int btf_func_check(struct btf_verifier_env *env,
4923 			  const struct btf_type *t)
4924 {
4925 	const struct btf_type *proto_type;
4926 	const struct btf_param *args;
4927 	const struct btf *btf;
4928 	u16 nr_args, i;
4929 
4930 	btf = env->btf;
4931 	proto_type = btf_type_by_id(btf, t->type);
4932 
4933 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4934 		btf_verifier_log_type(env, t, "Invalid type_id");
4935 		return -EINVAL;
4936 	}
4937 
4938 	args = (const struct btf_param *)(proto_type + 1);
4939 	nr_args = btf_type_vlen(proto_type);
4940 	for (i = 0; i < nr_args; i++) {
4941 		if (!args[i].name_off && args[i].type) {
4942 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4943 			return -EINVAL;
4944 		}
4945 	}
4946 
4947 	return 0;
4948 }
4949 
4950 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4951 	[BTF_KIND_INT] = &int_ops,
4952 	[BTF_KIND_PTR] = &ptr_ops,
4953 	[BTF_KIND_ARRAY] = &array_ops,
4954 	[BTF_KIND_STRUCT] = &struct_ops,
4955 	[BTF_KIND_UNION] = &struct_ops,
4956 	[BTF_KIND_ENUM] = &enum_ops,
4957 	[BTF_KIND_FWD] = &fwd_ops,
4958 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4959 	[BTF_KIND_VOLATILE] = &modifier_ops,
4960 	[BTF_KIND_CONST] = &modifier_ops,
4961 	[BTF_KIND_RESTRICT] = &modifier_ops,
4962 	[BTF_KIND_FUNC] = &func_ops,
4963 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4964 	[BTF_KIND_VAR] = &var_ops,
4965 	[BTF_KIND_DATASEC] = &datasec_ops,
4966 	[BTF_KIND_FLOAT] = &float_ops,
4967 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4968 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4969 	[BTF_KIND_ENUM64] = &enum64_ops,
4970 };
4971 
4972 static s32 btf_check_meta(struct btf_verifier_env *env,
4973 			  const struct btf_type *t,
4974 			  u32 meta_left)
4975 {
4976 	u32 saved_meta_left = meta_left;
4977 	s32 var_meta_size;
4978 
4979 	if (meta_left < sizeof(*t)) {
4980 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4981 				 env->log_type_id, meta_left, sizeof(*t));
4982 		return -EINVAL;
4983 	}
4984 	meta_left -= sizeof(*t);
4985 
4986 	if (t->info & ~BTF_INFO_MASK) {
4987 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4988 				 env->log_type_id, t->info);
4989 		return -EINVAL;
4990 	}
4991 
4992 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4993 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4994 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4995 				 env->log_type_id, BTF_INFO_KIND(t->info));
4996 		return -EINVAL;
4997 	}
4998 
4999 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5000 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5001 				 env->log_type_id, t->name_off);
5002 		return -EINVAL;
5003 	}
5004 
5005 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5006 	if (var_meta_size < 0)
5007 		return var_meta_size;
5008 
5009 	meta_left -= var_meta_size;
5010 
5011 	return saved_meta_left - meta_left;
5012 }
5013 
5014 static int btf_check_all_metas(struct btf_verifier_env *env)
5015 {
5016 	struct btf *btf = env->btf;
5017 	struct btf_header *hdr;
5018 	void *cur, *end;
5019 
5020 	hdr = &btf->hdr;
5021 	cur = btf->nohdr_data + hdr->type_off;
5022 	end = cur + hdr->type_len;
5023 
5024 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5025 	while (cur < end) {
5026 		struct btf_type *t = cur;
5027 		s32 meta_size;
5028 
5029 		meta_size = btf_check_meta(env, t, end - cur);
5030 		if (meta_size < 0)
5031 			return meta_size;
5032 
5033 		btf_add_type(env, t);
5034 		cur += meta_size;
5035 		env->log_type_id++;
5036 	}
5037 
5038 	return 0;
5039 }
5040 
5041 static bool btf_resolve_valid(struct btf_verifier_env *env,
5042 			      const struct btf_type *t,
5043 			      u32 type_id)
5044 {
5045 	struct btf *btf = env->btf;
5046 
5047 	if (!env_type_is_resolved(env, type_id))
5048 		return false;
5049 
5050 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5051 		return !btf_resolved_type_id(btf, type_id) &&
5052 		       !btf_resolved_type_size(btf, type_id);
5053 
5054 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5055 		return btf_resolved_type_id(btf, type_id) &&
5056 		       !btf_resolved_type_size(btf, type_id);
5057 
5058 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5059 	    btf_type_is_var(t)) {
5060 		t = btf_type_id_resolve(btf, &type_id);
5061 		return t &&
5062 		       !btf_type_is_modifier(t) &&
5063 		       !btf_type_is_var(t) &&
5064 		       !btf_type_is_datasec(t);
5065 	}
5066 
5067 	if (btf_type_is_array(t)) {
5068 		const struct btf_array *array = btf_type_array(t);
5069 		const struct btf_type *elem_type;
5070 		u32 elem_type_id = array->type;
5071 		u32 elem_size;
5072 
5073 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5074 		return elem_type && !btf_type_is_modifier(elem_type) &&
5075 			(array->nelems * elem_size ==
5076 			 btf_resolved_type_size(btf, type_id));
5077 	}
5078 
5079 	return false;
5080 }
5081 
5082 static int btf_resolve(struct btf_verifier_env *env,
5083 		       const struct btf_type *t, u32 type_id)
5084 {
5085 	u32 save_log_type_id = env->log_type_id;
5086 	const struct resolve_vertex *v;
5087 	int err = 0;
5088 
5089 	env->resolve_mode = RESOLVE_TBD;
5090 	env_stack_push(env, t, type_id);
5091 	while (!err && (v = env_stack_peak(env))) {
5092 		env->log_type_id = v->type_id;
5093 		err = btf_type_ops(v->t)->resolve(env, v);
5094 	}
5095 
5096 	env->log_type_id = type_id;
5097 	if (err == -E2BIG) {
5098 		btf_verifier_log_type(env, t,
5099 				      "Exceeded max resolving depth:%u",
5100 				      MAX_RESOLVE_DEPTH);
5101 	} else if (err == -EEXIST) {
5102 		btf_verifier_log_type(env, t, "Loop detected");
5103 	}
5104 
5105 	/* Final sanity check */
5106 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5107 		btf_verifier_log_type(env, t, "Invalid resolve state");
5108 		err = -EINVAL;
5109 	}
5110 
5111 	env->log_type_id = save_log_type_id;
5112 	return err;
5113 }
5114 
5115 static int btf_check_all_types(struct btf_verifier_env *env)
5116 {
5117 	struct btf *btf = env->btf;
5118 	const struct btf_type *t;
5119 	u32 type_id, i;
5120 	int err;
5121 
5122 	err = env_resolve_init(env);
5123 	if (err)
5124 		return err;
5125 
5126 	env->phase++;
5127 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5128 		type_id = btf->start_id + i;
5129 		t = btf_type_by_id(btf, type_id);
5130 
5131 		env->log_type_id = type_id;
5132 		if (btf_type_needs_resolve(t) &&
5133 		    !env_type_is_resolved(env, type_id)) {
5134 			err = btf_resolve(env, t, type_id);
5135 			if (err)
5136 				return err;
5137 		}
5138 
5139 		if (btf_type_is_func_proto(t)) {
5140 			err = btf_func_proto_check(env, t);
5141 			if (err)
5142 				return err;
5143 		}
5144 	}
5145 
5146 	return 0;
5147 }
5148 
5149 static int btf_parse_type_sec(struct btf_verifier_env *env)
5150 {
5151 	const struct btf_header *hdr = &env->btf->hdr;
5152 	int err;
5153 
5154 	/* Type section must align to 4 bytes */
5155 	if (hdr->type_off & (sizeof(u32) - 1)) {
5156 		btf_verifier_log(env, "Unaligned type_off");
5157 		return -EINVAL;
5158 	}
5159 
5160 	if (!env->btf->base_btf && !hdr->type_len) {
5161 		btf_verifier_log(env, "No type found");
5162 		return -EINVAL;
5163 	}
5164 
5165 	err = btf_check_all_metas(env);
5166 	if (err)
5167 		return err;
5168 
5169 	return btf_check_all_types(env);
5170 }
5171 
5172 static int btf_parse_str_sec(struct btf_verifier_env *env)
5173 {
5174 	const struct btf_header *hdr;
5175 	struct btf *btf = env->btf;
5176 	const char *start, *end;
5177 
5178 	hdr = &btf->hdr;
5179 	start = btf->nohdr_data + hdr->str_off;
5180 	end = start + hdr->str_len;
5181 
5182 	if (end != btf->data + btf->data_size) {
5183 		btf_verifier_log(env, "String section is not at the end");
5184 		return -EINVAL;
5185 	}
5186 
5187 	btf->strings = start;
5188 
5189 	if (btf->base_btf && !hdr->str_len)
5190 		return 0;
5191 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5192 		btf_verifier_log(env, "Invalid string section");
5193 		return -EINVAL;
5194 	}
5195 	if (!btf->base_btf && start[0]) {
5196 		btf_verifier_log(env, "Invalid string section");
5197 		return -EINVAL;
5198 	}
5199 
5200 	return 0;
5201 }
5202 
5203 static const size_t btf_sec_info_offset[] = {
5204 	offsetof(struct btf_header, type_off),
5205 	offsetof(struct btf_header, str_off),
5206 };
5207 
5208 static int btf_sec_info_cmp(const void *a, const void *b)
5209 {
5210 	const struct btf_sec_info *x = a;
5211 	const struct btf_sec_info *y = b;
5212 
5213 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5214 }
5215 
5216 static int btf_check_sec_info(struct btf_verifier_env *env,
5217 			      u32 btf_data_size)
5218 {
5219 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5220 	u32 total, expected_total, i;
5221 	const struct btf_header *hdr;
5222 	const struct btf *btf;
5223 
5224 	btf = env->btf;
5225 	hdr = &btf->hdr;
5226 
5227 	/* Populate the secs from hdr */
5228 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5229 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5230 						   btf_sec_info_offset[i]);
5231 
5232 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5233 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5234 
5235 	/* Check for gaps and overlap among sections */
5236 	total = 0;
5237 	expected_total = btf_data_size - hdr->hdr_len;
5238 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5239 		if (expected_total < secs[i].off) {
5240 			btf_verifier_log(env, "Invalid section offset");
5241 			return -EINVAL;
5242 		}
5243 		if (total < secs[i].off) {
5244 			/* gap */
5245 			btf_verifier_log(env, "Unsupported section found");
5246 			return -EINVAL;
5247 		}
5248 		if (total > secs[i].off) {
5249 			btf_verifier_log(env, "Section overlap found");
5250 			return -EINVAL;
5251 		}
5252 		if (expected_total - total < secs[i].len) {
5253 			btf_verifier_log(env,
5254 					 "Total section length too long");
5255 			return -EINVAL;
5256 		}
5257 		total += secs[i].len;
5258 	}
5259 
5260 	/* There is data other than hdr and known sections */
5261 	if (expected_total != total) {
5262 		btf_verifier_log(env, "Unsupported section found");
5263 		return -EINVAL;
5264 	}
5265 
5266 	return 0;
5267 }
5268 
5269 static int btf_parse_hdr(struct btf_verifier_env *env)
5270 {
5271 	u32 hdr_len, hdr_copy, btf_data_size;
5272 	const struct btf_header *hdr;
5273 	struct btf *btf;
5274 
5275 	btf = env->btf;
5276 	btf_data_size = btf->data_size;
5277 
5278 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5279 		btf_verifier_log(env, "hdr_len not found");
5280 		return -EINVAL;
5281 	}
5282 
5283 	hdr = btf->data;
5284 	hdr_len = hdr->hdr_len;
5285 	if (btf_data_size < hdr_len) {
5286 		btf_verifier_log(env, "btf_header not found");
5287 		return -EINVAL;
5288 	}
5289 
5290 	/* Ensure the unsupported header fields are zero */
5291 	if (hdr_len > sizeof(btf->hdr)) {
5292 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5293 		u8 *end = btf->data + hdr_len;
5294 
5295 		for (; expected_zero < end; expected_zero++) {
5296 			if (*expected_zero) {
5297 				btf_verifier_log(env, "Unsupported btf_header");
5298 				return -E2BIG;
5299 			}
5300 		}
5301 	}
5302 
5303 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5304 	memcpy(&btf->hdr, btf->data, hdr_copy);
5305 
5306 	hdr = &btf->hdr;
5307 
5308 	btf_verifier_log_hdr(env, btf_data_size);
5309 
5310 	if (hdr->magic != BTF_MAGIC) {
5311 		btf_verifier_log(env, "Invalid magic");
5312 		return -EINVAL;
5313 	}
5314 
5315 	if (hdr->version != BTF_VERSION) {
5316 		btf_verifier_log(env, "Unsupported version");
5317 		return -ENOTSUPP;
5318 	}
5319 
5320 	if (hdr->flags) {
5321 		btf_verifier_log(env, "Unsupported flags");
5322 		return -ENOTSUPP;
5323 	}
5324 
5325 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5326 		btf_verifier_log(env, "No data");
5327 		return -EINVAL;
5328 	}
5329 
5330 	return btf_check_sec_info(env, btf_data_size);
5331 }
5332 
5333 static const char *alloc_obj_fields[] = {
5334 	"bpf_spin_lock",
5335 	"bpf_list_head",
5336 	"bpf_list_node",
5337 	"bpf_rb_root",
5338 	"bpf_rb_node",
5339 };
5340 
5341 static struct btf_struct_metas *
5342 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5343 {
5344 	union {
5345 		struct btf_id_set set;
5346 		struct {
5347 			u32 _cnt;
5348 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5349 		} _arr;
5350 	} aof;
5351 	struct btf_struct_metas *tab = NULL;
5352 	int i, n, id, ret;
5353 
5354 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5355 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5356 
5357 	memset(&aof, 0, sizeof(aof));
5358 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5359 		/* Try to find whether this special type exists in user BTF, and
5360 		 * if so remember its ID so we can easily find it among members
5361 		 * of structs that we iterate in the next loop.
5362 		 */
5363 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5364 		if (id < 0)
5365 			continue;
5366 		aof.set.ids[aof.set.cnt++] = id;
5367 	}
5368 
5369 	if (!aof.set.cnt)
5370 		return NULL;
5371 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5372 
5373 	n = btf_nr_types(btf);
5374 	for (i = 1; i < n; i++) {
5375 		struct btf_struct_metas *new_tab;
5376 		const struct btf_member *member;
5377 		struct btf_field_offs *foffs;
5378 		struct btf_struct_meta *type;
5379 		struct btf_record *record;
5380 		const struct btf_type *t;
5381 		int j, tab_cnt;
5382 
5383 		t = btf_type_by_id(btf, i);
5384 		if (!t) {
5385 			ret = -EINVAL;
5386 			goto free;
5387 		}
5388 		if (!__btf_type_is_struct(t))
5389 			continue;
5390 
5391 		cond_resched();
5392 
5393 		for_each_member(j, t, member) {
5394 			if (btf_id_set_contains(&aof.set, member->type))
5395 				goto parse;
5396 		}
5397 		continue;
5398 	parse:
5399 		tab_cnt = tab ? tab->cnt : 0;
5400 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5401 				   GFP_KERNEL | __GFP_NOWARN);
5402 		if (!new_tab) {
5403 			ret = -ENOMEM;
5404 			goto free;
5405 		}
5406 		if (!tab)
5407 			new_tab->cnt = 0;
5408 		tab = new_tab;
5409 
5410 		type = &tab->types[tab->cnt];
5411 		type->btf_id = i;
5412 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5413 						  BPF_RB_ROOT | BPF_RB_NODE, t->size);
5414 		/* The record cannot be unset, treat it as an error if so */
5415 		if (IS_ERR_OR_NULL(record)) {
5416 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5417 			goto free;
5418 		}
5419 		foffs = btf_parse_field_offs(record);
5420 		/* We need the field_offs to be valid for a valid record,
5421 		 * either both should be set or both should be unset.
5422 		 */
5423 		if (IS_ERR_OR_NULL(foffs)) {
5424 			btf_record_free(record);
5425 			ret = -EFAULT;
5426 			goto free;
5427 		}
5428 		type->record = record;
5429 		type->field_offs = foffs;
5430 		tab->cnt++;
5431 	}
5432 	return tab;
5433 free:
5434 	btf_struct_metas_free(tab);
5435 	return ERR_PTR(ret);
5436 }
5437 
5438 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5439 {
5440 	struct btf_struct_metas *tab;
5441 
5442 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5443 	tab = btf->struct_meta_tab;
5444 	if (!tab)
5445 		return NULL;
5446 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5447 }
5448 
5449 static int btf_check_type_tags(struct btf_verifier_env *env,
5450 			       struct btf *btf, int start_id)
5451 {
5452 	int i, n, good_id = start_id - 1;
5453 	bool in_tags;
5454 
5455 	n = btf_nr_types(btf);
5456 	for (i = start_id; i < n; i++) {
5457 		const struct btf_type *t;
5458 		int chain_limit = 32;
5459 		u32 cur_id = i;
5460 
5461 		t = btf_type_by_id(btf, i);
5462 		if (!t)
5463 			return -EINVAL;
5464 		if (!btf_type_is_modifier(t))
5465 			continue;
5466 
5467 		cond_resched();
5468 
5469 		in_tags = btf_type_is_type_tag(t);
5470 		while (btf_type_is_modifier(t)) {
5471 			if (!chain_limit--) {
5472 				btf_verifier_log(env, "Max chain length or cycle detected");
5473 				return -ELOOP;
5474 			}
5475 			if (btf_type_is_type_tag(t)) {
5476 				if (!in_tags) {
5477 					btf_verifier_log(env, "Type tags don't precede modifiers");
5478 					return -EINVAL;
5479 				}
5480 			} else if (in_tags) {
5481 				in_tags = false;
5482 			}
5483 			if (cur_id <= good_id)
5484 				break;
5485 			/* Move to next type */
5486 			cur_id = t->type;
5487 			t = btf_type_by_id(btf, cur_id);
5488 			if (!t)
5489 				return -EINVAL;
5490 		}
5491 		good_id = i;
5492 	}
5493 	return 0;
5494 }
5495 
5496 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
5497 			     u32 log_level, char __user *log_ubuf, u32 log_size)
5498 {
5499 	struct btf_struct_metas *struct_meta_tab;
5500 	struct btf_verifier_env *env = NULL;
5501 	struct bpf_verifier_log *log;
5502 	struct btf *btf = NULL;
5503 	u8 *data;
5504 	int err;
5505 
5506 	if (btf_data_size > BTF_MAX_SIZE)
5507 		return ERR_PTR(-E2BIG);
5508 
5509 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5510 	if (!env)
5511 		return ERR_PTR(-ENOMEM);
5512 
5513 	log = &env->log;
5514 	if (log_level || log_ubuf || log_size) {
5515 		/* user requested verbose verifier output
5516 		 * and supplied buffer to store the verification trace
5517 		 */
5518 		log->level = log_level;
5519 		log->ubuf = log_ubuf;
5520 		log->len_total = log_size;
5521 
5522 		/* log attributes have to be sane */
5523 		if (!bpf_verifier_log_attr_valid(log)) {
5524 			err = -EINVAL;
5525 			goto errout;
5526 		}
5527 	}
5528 
5529 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5530 	if (!btf) {
5531 		err = -ENOMEM;
5532 		goto errout;
5533 	}
5534 	env->btf = btf;
5535 
5536 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5537 	if (!data) {
5538 		err = -ENOMEM;
5539 		goto errout;
5540 	}
5541 
5542 	btf->data = data;
5543 	btf->data_size = btf_data_size;
5544 
5545 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5546 		err = -EFAULT;
5547 		goto errout;
5548 	}
5549 
5550 	err = btf_parse_hdr(env);
5551 	if (err)
5552 		goto errout;
5553 
5554 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5555 
5556 	err = btf_parse_str_sec(env);
5557 	if (err)
5558 		goto errout;
5559 
5560 	err = btf_parse_type_sec(env);
5561 	if (err)
5562 		goto errout;
5563 
5564 	err = btf_check_type_tags(env, btf, 1);
5565 	if (err)
5566 		goto errout;
5567 
5568 	struct_meta_tab = btf_parse_struct_metas(log, btf);
5569 	if (IS_ERR(struct_meta_tab)) {
5570 		err = PTR_ERR(struct_meta_tab);
5571 		goto errout;
5572 	}
5573 	btf->struct_meta_tab = struct_meta_tab;
5574 
5575 	if (struct_meta_tab) {
5576 		int i;
5577 
5578 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5579 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5580 			if (err < 0)
5581 				goto errout_meta;
5582 		}
5583 	}
5584 
5585 	if (log->level && bpf_verifier_log_full(log)) {
5586 		err = -ENOSPC;
5587 		goto errout_meta;
5588 	}
5589 
5590 	btf_verifier_env_free(env);
5591 	refcount_set(&btf->refcnt, 1);
5592 	return btf;
5593 
5594 errout_meta:
5595 	btf_free_struct_meta_tab(btf);
5596 errout:
5597 	btf_verifier_env_free(env);
5598 	if (btf)
5599 		btf_free(btf);
5600 	return ERR_PTR(err);
5601 }
5602 
5603 extern char __weak __start_BTF[];
5604 extern char __weak __stop_BTF[];
5605 extern struct btf *btf_vmlinux;
5606 
5607 #define BPF_MAP_TYPE(_id, _ops)
5608 #define BPF_LINK_TYPE(_id, _name)
5609 static union {
5610 	struct bpf_ctx_convert {
5611 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5612 	prog_ctx_type _id##_prog; \
5613 	kern_ctx_type _id##_kern;
5614 #include <linux/bpf_types.h>
5615 #undef BPF_PROG_TYPE
5616 	} *__t;
5617 	/* 't' is written once under lock. Read many times. */
5618 	const struct btf_type *t;
5619 } bpf_ctx_convert;
5620 enum {
5621 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5622 	__ctx_convert##_id,
5623 #include <linux/bpf_types.h>
5624 #undef BPF_PROG_TYPE
5625 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5626 };
5627 static u8 bpf_ctx_convert_map[] = {
5628 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5629 	[_id] = __ctx_convert##_id,
5630 #include <linux/bpf_types.h>
5631 #undef BPF_PROG_TYPE
5632 	0, /* avoid empty array */
5633 };
5634 #undef BPF_MAP_TYPE
5635 #undef BPF_LINK_TYPE
5636 
5637 const struct btf_member *
5638 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5639 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5640 		      int arg)
5641 {
5642 	const struct btf_type *conv_struct;
5643 	const struct btf_type *ctx_struct;
5644 	const struct btf_member *ctx_type;
5645 	const char *tname, *ctx_tname;
5646 
5647 	conv_struct = bpf_ctx_convert.t;
5648 	if (!conv_struct) {
5649 		bpf_log(log, "btf_vmlinux is malformed\n");
5650 		return NULL;
5651 	}
5652 	t = btf_type_by_id(btf, t->type);
5653 	while (btf_type_is_modifier(t))
5654 		t = btf_type_by_id(btf, t->type);
5655 	if (!btf_type_is_struct(t)) {
5656 		/* Only pointer to struct is supported for now.
5657 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5658 		 * is not supported yet.
5659 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5660 		 */
5661 		return NULL;
5662 	}
5663 	tname = btf_name_by_offset(btf, t->name_off);
5664 	if (!tname) {
5665 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5666 		return NULL;
5667 	}
5668 	/* prog_type is valid bpf program type. No need for bounds check. */
5669 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5670 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5671 	 * Like 'struct __sk_buff'
5672 	 */
5673 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5674 	if (!ctx_struct)
5675 		/* should not happen */
5676 		return NULL;
5677 again:
5678 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5679 	if (!ctx_tname) {
5680 		/* should not happen */
5681 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5682 		return NULL;
5683 	}
5684 	/* only compare that prog's ctx type name is the same as
5685 	 * kernel expects. No need to compare field by field.
5686 	 * It's ok for bpf prog to do:
5687 	 * struct __sk_buff {};
5688 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5689 	 * { // no fields of skb are ever used }
5690 	 */
5691 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5692 		return ctx_type;
5693 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5694 		return ctx_type;
5695 	if (strcmp(ctx_tname, tname)) {
5696 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5697 		 * underlying struct and check name again
5698 		 */
5699 		if (!btf_type_is_modifier(ctx_struct))
5700 			return NULL;
5701 		while (btf_type_is_modifier(ctx_struct))
5702 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5703 		goto again;
5704 	}
5705 	return ctx_type;
5706 }
5707 
5708 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5709 				     struct btf *btf,
5710 				     const struct btf_type *t,
5711 				     enum bpf_prog_type prog_type,
5712 				     int arg)
5713 {
5714 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5715 
5716 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5717 	if (!prog_ctx_type)
5718 		return -ENOENT;
5719 	kern_ctx_type = prog_ctx_type + 1;
5720 	return kern_ctx_type->type;
5721 }
5722 
5723 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5724 {
5725 	const struct btf_member *kctx_member;
5726 	const struct btf_type *conv_struct;
5727 	const struct btf_type *kctx_type;
5728 	u32 kctx_type_id;
5729 
5730 	conv_struct = bpf_ctx_convert.t;
5731 	/* get member for kernel ctx type */
5732 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5733 	kctx_type_id = kctx_member->type;
5734 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5735 	if (!btf_type_is_struct(kctx_type)) {
5736 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5737 		return -EINVAL;
5738 	}
5739 
5740 	return kctx_type_id;
5741 }
5742 
5743 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5744 BTF_ID(struct, bpf_ctx_convert)
5745 
5746 struct btf *btf_parse_vmlinux(void)
5747 {
5748 	struct btf_verifier_env *env = NULL;
5749 	struct bpf_verifier_log *log;
5750 	struct btf *btf = NULL;
5751 	int err;
5752 
5753 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5754 	if (!env)
5755 		return ERR_PTR(-ENOMEM);
5756 
5757 	log = &env->log;
5758 	log->level = BPF_LOG_KERNEL;
5759 
5760 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5761 	if (!btf) {
5762 		err = -ENOMEM;
5763 		goto errout;
5764 	}
5765 	env->btf = btf;
5766 
5767 	btf->data = __start_BTF;
5768 	btf->data_size = __stop_BTF - __start_BTF;
5769 	btf->kernel_btf = true;
5770 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5771 
5772 	err = btf_parse_hdr(env);
5773 	if (err)
5774 		goto errout;
5775 
5776 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5777 
5778 	err = btf_parse_str_sec(env);
5779 	if (err)
5780 		goto errout;
5781 
5782 	err = btf_check_all_metas(env);
5783 	if (err)
5784 		goto errout;
5785 
5786 	err = btf_check_type_tags(env, btf, 1);
5787 	if (err)
5788 		goto errout;
5789 
5790 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5791 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5792 
5793 	bpf_struct_ops_init(btf, log);
5794 
5795 	refcount_set(&btf->refcnt, 1);
5796 
5797 	err = btf_alloc_id(btf);
5798 	if (err)
5799 		goto errout;
5800 
5801 	btf_verifier_env_free(env);
5802 	return btf;
5803 
5804 errout:
5805 	btf_verifier_env_free(env);
5806 	if (btf) {
5807 		kvfree(btf->types);
5808 		kfree(btf);
5809 	}
5810 	return ERR_PTR(err);
5811 }
5812 
5813 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5814 
5815 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5816 {
5817 	struct btf_verifier_env *env = NULL;
5818 	struct bpf_verifier_log *log;
5819 	struct btf *btf = NULL, *base_btf;
5820 	int err;
5821 
5822 	base_btf = bpf_get_btf_vmlinux();
5823 	if (IS_ERR(base_btf))
5824 		return base_btf;
5825 	if (!base_btf)
5826 		return ERR_PTR(-EINVAL);
5827 
5828 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5829 	if (!env)
5830 		return ERR_PTR(-ENOMEM);
5831 
5832 	log = &env->log;
5833 	log->level = BPF_LOG_KERNEL;
5834 
5835 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5836 	if (!btf) {
5837 		err = -ENOMEM;
5838 		goto errout;
5839 	}
5840 	env->btf = btf;
5841 
5842 	btf->base_btf = base_btf;
5843 	btf->start_id = base_btf->nr_types;
5844 	btf->start_str_off = base_btf->hdr.str_len;
5845 	btf->kernel_btf = true;
5846 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5847 
5848 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5849 	if (!btf->data) {
5850 		err = -ENOMEM;
5851 		goto errout;
5852 	}
5853 	memcpy(btf->data, data, data_size);
5854 	btf->data_size = data_size;
5855 
5856 	err = btf_parse_hdr(env);
5857 	if (err)
5858 		goto errout;
5859 
5860 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5861 
5862 	err = btf_parse_str_sec(env);
5863 	if (err)
5864 		goto errout;
5865 
5866 	err = btf_check_all_metas(env);
5867 	if (err)
5868 		goto errout;
5869 
5870 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5871 	if (err)
5872 		goto errout;
5873 
5874 	btf_verifier_env_free(env);
5875 	refcount_set(&btf->refcnt, 1);
5876 	return btf;
5877 
5878 errout:
5879 	btf_verifier_env_free(env);
5880 	if (btf) {
5881 		kvfree(btf->data);
5882 		kvfree(btf->types);
5883 		kfree(btf);
5884 	}
5885 	return ERR_PTR(err);
5886 }
5887 
5888 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5889 
5890 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5891 {
5892 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5893 
5894 	if (tgt_prog)
5895 		return tgt_prog->aux->btf;
5896 	else
5897 		return prog->aux->attach_btf;
5898 }
5899 
5900 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5901 {
5902 	/* t comes in already as a pointer */
5903 	t = btf_type_by_id(btf, t->type);
5904 
5905 	/* allow const */
5906 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5907 		t = btf_type_by_id(btf, t->type);
5908 
5909 	return btf_type_is_int(t);
5910 }
5911 
5912 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5913 			   int off)
5914 {
5915 	const struct btf_param *args;
5916 	const struct btf_type *t;
5917 	u32 offset = 0, nr_args;
5918 	int i;
5919 
5920 	if (!func_proto)
5921 		return off / 8;
5922 
5923 	nr_args = btf_type_vlen(func_proto);
5924 	args = (const struct btf_param *)(func_proto + 1);
5925 	for (i = 0; i < nr_args; i++) {
5926 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5927 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5928 		if (off < offset)
5929 			return i;
5930 	}
5931 
5932 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5933 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5934 	if (off < offset)
5935 		return nr_args;
5936 
5937 	return nr_args + 1;
5938 }
5939 
5940 static bool prog_args_trusted(const struct bpf_prog *prog)
5941 {
5942 	enum bpf_attach_type atype = prog->expected_attach_type;
5943 
5944 	switch (prog->type) {
5945 	case BPF_PROG_TYPE_TRACING:
5946 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5947 	case BPF_PROG_TYPE_LSM:
5948 		return bpf_lsm_is_trusted(prog);
5949 	case BPF_PROG_TYPE_STRUCT_OPS:
5950 		return true;
5951 	default:
5952 		return false;
5953 	}
5954 }
5955 
5956 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5957 		    const struct bpf_prog *prog,
5958 		    struct bpf_insn_access_aux *info)
5959 {
5960 	const struct btf_type *t = prog->aux->attach_func_proto;
5961 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5962 	struct btf *btf = bpf_prog_get_target_btf(prog);
5963 	const char *tname = prog->aux->attach_func_name;
5964 	struct bpf_verifier_log *log = info->log;
5965 	const struct btf_param *args;
5966 	const char *tag_value;
5967 	u32 nr_args, arg;
5968 	int i, ret;
5969 
5970 	if (off % 8) {
5971 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5972 			tname, off);
5973 		return false;
5974 	}
5975 	arg = get_ctx_arg_idx(btf, t, off);
5976 	args = (const struct btf_param *)(t + 1);
5977 	/* if (t == NULL) Fall back to default BPF prog with
5978 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5979 	 */
5980 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5981 	if (prog->aux->attach_btf_trace) {
5982 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5983 		args++;
5984 		nr_args--;
5985 	}
5986 
5987 	if (arg > nr_args) {
5988 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5989 			tname, arg + 1);
5990 		return false;
5991 	}
5992 
5993 	if (arg == nr_args) {
5994 		switch (prog->expected_attach_type) {
5995 		case BPF_LSM_CGROUP:
5996 		case BPF_LSM_MAC:
5997 		case BPF_TRACE_FEXIT:
5998 			/* When LSM programs are attached to void LSM hooks
5999 			 * they use FEXIT trampolines and when attached to
6000 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6001 			 *
6002 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6003 			 * the check:
6004 			 *
6005 			 *	if (ret_type != 'int')
6006 			 *		return -EINVAL;
6007 			 *
6008 			 * is _not_ done here. This is still safe as LSM hooks
6009 			 * have only void and int return types.
6010 			 */
6011 			if (!t)
6012 				return true;
6013 			t = btf_type_by_id(btf, t->type);
6014 			break;
6015 		case BPF_MODIFY_RETURN:
6016 			/* For now the BPF_MODIFY_RETURN can only be attached to
6017 			 * functions that return an int.
6018 			 */
6019 			if (!t)
6020 				return false;
6021 
6022 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6023 			if (!btf_type_is_small_int(t)) {
6024 				bpf_log(log,
6025 					"ret type %s not allowed for fmod_ret\n",
6026 					btf_type_str(t));
6027 				return false;
6028 			}
6029 			break;
6030 		default:
6031 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6032 				tname, arg + 1);
6033 			return false;
6034 		}
6035 	} else {
6036 		if (!t)
6037 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6038 			return true;
6039 		t = btf_type_by_id(btf, args[arg].type);
6040 	}
6041 
6042 	/* skip modifiers */
6043 	while (btf_type_is_modifier(t))
6044 		t = btf_type_by_id(btf, t->type);
6045 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6046 		/* accessing a scalar */
6047 		return true;
6048 	if (!btf_type_is_ptr(t)) {
6049 		bpf_log(log,
6050 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6051 			tname, arg,
6052 			__btf_name_by_offset(btf, t->name_off),
6053 			btf_type_str(t));
6054 		return false;
6055 	}
6056 
6057 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6058 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6059 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6060 		u32 type, flag;
6061 
6062 		type = base_type(ctx_arg_info->reg_type);
6063 		flag = type_flag(ctx_arg_info->reg_type);
6064 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6065 		    (flag & PTR_MAYBE_NULL)) {
6066 			info->reg_type = ctx_arg_info->reg_type;
6067 			return true;
6068 		}
6069 	}
6070 
6071 	if (t->type == 0)
6072 		/* This is a pointer to void.
6073 		 * It is the same as scalar from the verifier safety pov.
6074 		 * No further pointer walking is allowed.
6075 		 */
6076 		return true;
6077 
6078 	if (is_int_ptr(btf, t))
6079 		return true;
6080 
6081 	/* this is a pointer to another type */
6082 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6083 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6084 
6085 		if (ctx_arg_info->offset == off) {
6086 			if (!ctx_arg_info->btf_id) {
6087 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6088 				return false;
6089 			}
6090 
6091 			info->reg_type = ctx_arg_info->reg_type;
6092 			info->btf = btf_vmlinux;
6093 			info->btf_id = ctx_arg_info->btf_id;
6094 			return true;
6095 		}
6096 	}
6097 
6098 	info->reg_type = PTR_TO_BTF_ID;
6099 	if (prog_args_trusted(prog))
6100 		info->reg_type |= PTR_TRUSTED;
6101 
6102 	if (tgt_prog) {
6103 		enum bpf_prog_type tgt_type;
6104 
6105 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6106 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6107 		else
6108 			tgt_type = tgt_prog->type;
6109 
6110 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6111 		if (ret > 0) {
6112 			info->btf = btf_vmlinux;
6113 			info->btf_id = ret;
6114 			return true;
6115 		} else {
6116 			return false;
6117 		}
6118 	}
6119 
6120 	info->btf = btf;
6121 	info->btf_id = t->type;
6122 	t = btf_type_by_id(btf, t->type);
6123 
6124 	if (btf_type_is_type_tag(t)) {
6125 		tag_value = __btf_name_by_offset(btf, t->name_off);
6126 		if (strcmp(tag_value, "user") == 0)
6127 			info->reg_type |= MEM_USER;
6128 		if (strcmp(tag_value, "percpu") == 0)
6129 			info->reg_type |= MEM_PERCPU;
6130 	}
6131 
6132 	/* skip modifiers */
6133 	while (btf_type_is_modifier(t)) {
6134 		info->btf_id = t->type;
6135 		t = btf_type_by_id(btf, t->type);
6136 	}
6137 	if (!btf_type_is_struct(t)) {
6138 		bpf_log(log,
6139 			"func '%s' arg%d type %s is not a struct\n",
6140 			tname, arg, btf_type_str(t));
6141 		return false;
6142 	}
6143 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6144 		tname, arg, info->btf_id, btf_type_str(t),
6145 		__btf_name_by_offset(btf, t->name_off));
6146 	return true;
6147 }
6148 
6149 enum bpf_struct_walk_result {
6150 	/* < 0 error */
6151 	WALK_SCALAR = 0,
6152 	WALK_PTR,
6153 	WALK_STRUCT,
6154 };
6155 
6156 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6157 			   const struct btf_type *t, int off, int size,
6158 			   u32 *next_btf_id, enum bpf_type_flag *flag)
6159 {
6160 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6161 	const struct btf_type *mtype, *elem_type = NULL;
6162 	const struct btf_member *member;
6163 	const char *tname, *mname, *tag_value;
6164 	u32 vlen, elem_id, mid;
6165 
6166 	*flag = 0;
6167 again:
6168 	tname = __btf_name_by_offset(btf, t->name_off);
6169 	if (!btf_type_is_struct(t)) {
6170 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6171 		return -EINVAL;
6172 	}
6173 
6174 	vlen = btf_type_vlen(t);
6175 	if (off + size > t->size) {
6176 		/* If the last element is a variable size array, we may
6177 		 * need to relax the rule.
6178 		 */
6179 		struct btf_array *array_elem;
6180 
6181 		if (vlen == 0)
6182 			goto error;
6183 
6184 		member = btf_type_member(t) + vlen - 1;
6185 		mtype = btf_type_skip_modifiers(btf, member->type,
6186 						NULL);
6187 		if (!btf_type_is_array(mtype))
6188 			goto error;
6189 
6190 		array_elem = (struct btf_array *)(mtype + 1);
6191 		if (array_elem->nelems != 0)
6192 			goto error;
6193 
6194 		moff = __btf_member_bit_offset(t, member) / 8;
6195 		if (off < moff)
6196 			goto error;
6197 
6198 		/* Only allow structure for now, can be relaxed for
6199 		 * other types later.
6200 		 */
6201 		t = btf_type_skip_modifiers(btf, array_elem->type,
6202 					    NULL);
6203 		if (!btf_type_is_struct(t))
6204 			goto error;
6205 
6206 		off = (off - moff) % t->size;
6207 		goto again;
6208 
6209 error:
6210 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6211 			tname, off, size);
6212 		return -EACCES;
6213 	}
6214 
6215 	for_each_member(i, t, member) {
6216 		/* offset of the field in bytes */
6217 		moff = __btf_member_bit_offset(t, member) / 8;
6218 		if (off + size <= moff)
6219 			/* won't find anything, field is already too far */
6220 			break;
6221 
6222 		if (__btf_member_bitfield_size(t, member)) {
6223 			u32 end_bit = __btf_member_bit_offset(t, member) +
6224 				__btf_member_bitfield_size(t, member);
6225 
6226 			/* off <= moff instead of off == moff because clang
6227 			 * does not generate a BTF member for anonymous
6228 			 * bitfield like the ":16" here:
6229 			 * struct {
6230 			 *	int :16;
6231 			 *	int x:8;
6232 			 * };
6233 			 */
6234 			if (off <= moff &&
6235 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6236 				return WALK_SCALAR;
6237 
6238 			/* off may be accessing a following member
6239 			 *
6240 			 * or
6241 			 *
6242 			 * Doing partial access at either end of this
6243 			 * bitfield.  Continue on this case also to
6244 			 * treat it as not accessing this bitfield
6245 			 * and eventually error out as field not
6246 			 * found to keep it simple.
6247 			 * It could be relaxed if there was a legit
6248 			 * partial access case later.
6249 			 */
6250 			continue;
6251 		}
6252 
6253 		/* In case of "off" is pointing to holes of a struct */
6254 		if (off < moff)
6255 			break;
6256 
6257 		/* type of the field */
6258 		mid = member->type;
6259 		mtype = btf_type_by_id(btf, member->type);
6260 		mname = __btf_name_by_offset(btf, member->name_off);
6261 
6262 		mtype = __btf_resolve_size(btf, mtype, &msize,
6263 					   &elem_type, &elem_id, &total_nelems,
6264 					   &mid);
6265 		if (IS_ERR(mtype)) {
6266 			bpf_log(log, "field %s doesn't have size\n", mname);
6267 			return -EFAULT;
6268 		}
6269 
6270 		mtrue_end = moff + msize;
6271 		if (off >= mtrue_end)
6272 			/* no overlap with member, keep iterating */
6273 			continue;
6274 
6275 		if (btf_type_is_array(mtype)) {
6276 			u32 elem_idx;
6277 
6278 			/* __btf_resolve_size() above helps to
6279 			 * linearize a multi-dimensional array.
6280 			 *
6281 			 * The logic here is treating an array
6282 			 * in a struct as the following way:
6283 			 *
6284 			 * struct outer {
6285 			 *	struct inner array[2][2];
6286 			 * };
6287 			 *
6288 			 * looks like:
6289 			 *
6290 			 * struct outer {
6291 			 *	struct inner array_elem0;
6292 			 *	struct inner array_elem1;
6293 			 *	struct inner array_elem2;
6294 			 *	struct inner array_elem3;
6295 			 * };
6296 			 *
6297 			 * When accessing outer->array[1][0], it moves
6298 			 * moff to "array_elem2", set mtype to
6299 			 * "struct inner", and msize also becomes
6300 			 * sizeof(struct inner).  Then most of the
6301 			 * remaining logic will fall through without
6302 			 * caring the current member is an array or
6303 			 * not.
6304 			 *
6305 			 * Unlike mtype/msize/moff, mtrue_end does not
6306 			 * change.  The naming difference ("_true") tells
6307 			 * that it is not always corresponding to
6308 			 * the current mtype/msize/moff.
6309 			 * It is the true end of the current
6310 			 * member (i.e. array in this case).  That
6311 			 * will allow an int array to be accessed like
6312 			 * a scratch space,
6313 			 * i.e. allow access beyond the size of
6314 			 *      the array's element as long as it is
6315 			 *      within the mtrue_end boundary.
6316 			 */
6317 
6318 			/* skip empty array */
6319 			if (moff == mtrue_end)
6320 				continue;
6321 
6322 			msize /= total_nelems;
6323 			elem_idx = (off - moff) / msize;
6324 			moff += elem_idx * msize;
6325 			mtype = elem_type;
6326 			mid = elem_id;
6327 		}
6328 
6329 		/* the 'off' we're looking for is either equal to start
6330 		 * of this field or inside of this struct
6331 		 */
6332 		if (btf_type_is_struct(mtype)) {
6333 			if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION &&
6334 			    btf_type_vlen(mtype) != 1)
6335 				/*
6336 				 * walking unions yields untrusted pointers
6337 				 * with exception of __bpf_md_ptr and other
6338 				 * unions with a single member
6339 				 */
6340 				*flag |= PTR_UNTRUSTED;
6341 
6342 			/* our field must be inside that union or struct */
6343 			t = mtype;
6344 
6345 			/* return if the offset matches the member offset */
6346 			if (off == moff) {
6347 				*next_btf_id = mid;
6348 				return WALK_STRUCT;
6349 			}
6350 
6351 			/* adjust offset we're looking for */
6352 			off -= moff;
6353 			goto again;
6354 		}
6355 
6356 		if (btf_type_is_ptr(mtype)) {
6357 			const struct btf_type *stype, *t;
6358 			enum bpf_type_flag tmp_flag = 0;
6359 			u32 id;
6360 
6361 			if (msize != size || off != moff) {
6362 				bpf_log(log,
6363 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6364 					mname, moff, tname, off, size);
6365 				return -EACCES;
6366 			}
6367 
6368 			/* check type tag */
6369 			t = btf_type_by_id(btf, mtype->type);
6370 			if (btf_type_is_type_tag(t)) {
6371 				tag_value = __btf_name_by_offset(btf, t->name_off);
6372 				/* check __user tag */
6373 				if (strcmp(tag_value, "user") == 0)
6374 					tmp_flag = MEM_USER;
6375 				/* check __percpu tag */
6376 				if (strcmp(tag_value, "percpu") == 0)
6377 					tmp_flag = MEM_PERCPU;
6378 				/* check __rcu tag */
6379 				if (strcmp(tag_value, "rcu") == 0)
6380 					tmp_flag = MEM_RCU;
6381 			}
6382 
6383 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6384 			if (btf_type_is_struct(stype)) {
6385 				*next_btf_id = id;
6386 				*flag |= tmp_flag;
6387 				return WALK_PTR;
6388 			}
6389 		}
6390 
6391 		/* Allow more flexible access within an int as long as
6392 		 * it is within mtrue_end.
6393 		 * Since mtrue_end could be the end of an array,
6394 		 * that also allows using an array of int as a scratch
6395 		 * space. e.g. skb->cb[].
6396 		 */
6397 		if (off + size > mtrue_end) {
6398 			bpf_log(log,
6399 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6400 				mname, mtrue_end, tname, off, size);
6401 			return -EACCES;
6402 		}
6403 
6404 		return WALK_SCALAR;
6405 	}
6406 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6407 	return -EINVAL;
6408 }
6409 
6410 int btf_struct_access(struct bpf_verifier_log *log,
6411 		      const struct bpf_reg_state *reg,
6412 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6413 		      u32 *next_btf_id, enum bpf_type_flag *flag)
6414 {
6415 	const struct btf *btf = reg->btf;
6416 	enum bpf_type_flag tmp_flag = 0;
6417 	const struct btf_type *t;
6418 	u32 id = reg->btf_id;
6419 	int err;
6420 
6421 	while (type_is_alloc(reg->type)) {
6422 		struct btf_struct_meta *meta;
6423 		struct btf_record *rec;
6424 		int i;
6425 
6426 		meta = btf_find_struct_meta(btf, id);
6427 		if (!meta)
6428 			break;
6429 		rec = meta->record;
6430 		for (i = 0; i < rec->cnt; i++) {
6431 			struct btf_field *field = &rec->fields[i];
6432 			u32 offset = field->offset;
6433 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6434 				bpf_log(log,
6435 					"direct access to %s is disallowed\n",
6436 					btf_field_type_name(field->type));
6437 				return -EACCES;
6438 			}
6439 		}
6440 		break;
6441 	}
6442 
6443 	t = btf_type_by_id(btf, id);
6444 	do {
6445 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
6446 
6447 		switch (err) {
6448 		case WALK_PTR:
6449 			/* For local types, the destination register cannot
6450 			 * become a pointer again.
6451 			 */
6452 			if (type_is_alloc(reg->type))
6453 				return SCALAR_VALUE;
6454 			/* If we found the pointer or scalar on t+off,
6455 			 * we're done.
6456 			 */
6457 			*next_btf_id = id;
6458 			*flag = tmp_flag;
6459 			return PTR_TO_BTF_ID;
6460 		case WALK_SCALAR:
6461 			return SCALAR_VALUE;
6462 		case WALK_STRUCT:
6463 			/* We found nested struct, so continue the search
6464 			 * by diving in it. At this point the offset is
6465 			 * aligned with the new type, so set it to 0.
6466 			 */
6467 			t = btf_type_by_id(btf, id);
6468 			off = 0;
6469 			break;
6470 		default:
6471 			/* It's either error or unknown return value..
6472 			 * scream and leave.
6473 			 */
6474 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6475 				return -EINVAL;
6476 			return err;
6477 		}
6478 	} while (t);
6479 
6480 	return -EINVAL;
6481 }
6482 
6483 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6484  * the same. Trivial ID check is not enough due to module BTFs, because we can
6485  * end up with two different module BTFs, but IDs point to the common type in
6486  * vmlinux BTF.
6487  */
6488 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6489 			const struct btf *btf2, u32 id2)
6490 {
6491 	if (id1 != id2)
6492 		return false;
6493 	if (btf1 == btf2)
6494 		return true;
6495 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6496 }
6497 
6498 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6499 			  const struct btf *btf, u32 id, int off,
6500 			  const struct btf *need_btf, u32 need_type_id,
6501 			  bool strict)
6502 {
6503 	const struct btf_type *type;
6504 	enum bpf_type_flag flag;
6505 	int err;
6506 
6507 	/* Are we already done? */
6508 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6509 		return true;
6510 	/* In case of strict type match, we do not walk struct, the top level
6511 	 * type match must succeed. When strict is true, off should have already
6512 	 * been 0.
6513 	 */
6514 	if (strict)
6515 		return false;
6516 again:
6517 	type = btf_type_by_id(btf, id);
6518 	if (!type)
6519 		return false;
6520 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
6521 	if (err != WALK_STRUCT)
6522 		return false;
6523 
6524 	/* We found nested struct object. If it matches
6525 	 * the requested ID, we're done. Otherwise let's
6526 	 * continue the search with offset 0 in the new
6527 	 * type.
6528 	 */
6529 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6530 		off = 0;
6531 		goto again;
6532 	}
6533 
6534 	return true;
6535 }
6536 
6537 static int __get_type_size(struct btf *btf, u32 btf_id,
6538 			   const struct btf_type **ret_type)
6539 {
6540 	const struct btf_type *t;
6541 
6542 	*ret_type = btf_type_by_id(btf, 0);
6543 	if (!btf_id)
6544 		/* void */
6545 		return 0;
6546 	t = btf_type_by_id(btf, btf_id);
6547 	while (t && btf_type_is_modifier(t))
6548 		t = btf_type_by_id(btf, t->type);
6549 	if (!t)
6550 		return -EINVAL;
6551 	*ret_type = t;
6552 	if (btf_type_is_ptr(t))
6553 		/* kernel size of pointer. Not BPF's size of pointer*/
6554 		return sizeof(void *);
6555 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6556 		return t->size;
6557 	return -EINVAL;
6558 }
6559 
6560 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6561 {
6562 	u8 flags = 0;
6563 
6564 	if (__btf_type_is_struct(t))
6565 		flags |= BTF_FMODEL_STRUCT_ARG;
6566 	if (btf_type_is_signed_int(t))
6567 		flags |= BTF_FMODEL_SIGNED_ARG;
6568 
6569 	return flags;
6570 }
6571 
6572 int btf_distill_func_proto(struct bpf_verifier_log *log,
6573 			   struct btf *btf,
6574 			   const struct btf_type *func,
6575 			   const char *tname,
6576 			   struct btf_func_model *m)
6577 {
6578 	const struct btf_param *args;
6579 	const struct btf_type *t;
6580 	u32 i, nargs;
6581 	int ret;
6582 
6583 	if (!func) {
6584 		/* BTF function prototype doesn't match the verifier types.
6585 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6586 		 */
6587 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6588 			m->arg_size[i] = 8;
6589 			m->arg_flags[i] = 0;
6590 		}
6591 		m->ret_size = 8;
6592 		m->ret_flags = 0;
6593 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6594 		return 0;
6595 	}
6596 	args = (const struct btf_param *)(func + 1);
6597 	nargs = btf_type_vlen(func);
6598 	if (nargs > MAX_BPF_FUNC_ARGS) {
6599 		bpf_log(log,
6600 			"The function %s has %d arguments. Too many.\n",
6601 			tname, nargs);
6602 		return -EINVAL;
6603 	}
6604 	ret = __get_type_size(btf, func->type, &t);
6605 	if (ret < 0 || __btf_type_is_struct(t)) {
6606 		bpf_log(log,
6607 			"The function %s return type %s is unsupported.\n",
6608 			tname, btf_type_str(t));
6609 		return -EINVAL;
6610 	}
6611 	m->ret_size = ret;
6612 	m->ret_flags = __get_type_fmodel_flags(t);
6613 
6614 	for (i = 0; i < nargs; i++) {
6615 		if (i == nargs - 1 && args[i].type == 0) {
6616 			bpf_log(log,
6617 				"The function %s with variable args is unsupported.\n",
6618 				tname);
6619 			return -EINVAL;
6620 		}
6621 		ret = __get_type_size(btf, args[i].type, &t);
6622 
6623 		/* No support of struct argument size greater than 16 bytes */
6624 		if (ret < 0 || ret > 16) {
6625 			bpf_log(log,
6626 				"The function %s arg%d type %s is unsupported.\n",
6627 				tname, i, btf_type_str(t));
6628 			return -EINVAL;
6629 		}
6630 		if (ret == 0) {
6631 			bpf_log(log,
6632 				"The function %s has malformed void argument.\n",
6633 				tname);
6634 			return -EINVAL;
6635 		}
6636 		m->arg_size[i] = ret;
6637 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6638 	}
6639 	m->nr_args = nargs;
6640 	return 0;
6641 }
6642 
6643 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6644  * t1 points to BTF_KIND_FUNC in btf1
6645  * t2 points to BTF_KIND_FUNC in btf2
6646  * Returns:
6647  * EINVAL - function prototype mismatch
6648  * EFAULT - verifier bug
6649  * 0 - 99% match. The last 1% is validated by the verifier.
6650  */
6651 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6652 				     struct btf *btf1, const struct btf_type *t1,
6653 				     struct btf *btf2, const struct btf_type *t2)
6654 {
6655 	const struct btf_param *args1, *args2;
6656 	const char *fn1, *fn2, *s1, *s2;
6657 	u32 nargs1, nargs2, i;
6658 
6659 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6660 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6661 
6662 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6663 		bpf_log(log, "%s() is not a global function\n", fn1);
6664 		return -EINVAL;
6665 	}
6666 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6667 		bpf_log(log, "%s() is not a global function\n", fn2);
6668 		return -EINVAL;
6669 	}
6670 
6671 	t1 = btf_type_by_id(btf1, t1->type);
6672 	if (!t1 || !btf_type_is_func_proto(t1))
6673 		return -EFAULT;
6674 	t2 = btf_type_by_id(btf2, t2->type);
6675 	if (!t2 || !btf_type_is_func_proto(t2))
6676 		return -EFAULT;
6677 
6678 	args1 = (const struct btf_param *)(t1 + 1);
6679 	nargs1 = btf_type_vlen(t1);
6680 	args2 = (const struct btf_param *)(t2 + 1);
6681 	nargs2 = btf_type_vlen(t2);
6682 
6683 	if (nargs1 != nargs2) {
6684 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6685 			fn1, nargs1, fn2, nargs2);
6686 		return -EINVAL;
6687 	}
6688 
6689 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6690 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6691 	if (t1->info != t2->info) {
6692 		bpf_log(log,
6693 			"Return type %s of %s() doesn't match type %s of %s()\n",
6694 			btf_type_str(t1), fn1,
6695 			btf_type_str(t2), fn2);
6696 		return -EINVAL;
6697 	}
6698 
6699 	for (i = 0; i < nargs1; i++) {
6700 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6701 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6702 
6703 		if (t1->info != t2->info) {
6704 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6705 				i, fn1, btf_type_str(t1),
6706 				fn2, btf_type_str(t2));
6707 			return -EINVAL;
6708 		}
6709 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6710 			bpf_log(log,
6711 				"arg%d in %s() has size %d while %s() has %d\n",
6712 				i, fn1, t1->size,
6713 				fn2, t2->size);
6714 			return -EINVAL;
6715 		}
6716 
6717 		/* global functions are validated with scalars and pointers
6718 		 * to context only. And only global functions can be replaced.
6719 		 * Hence type check only those types.
6720 		 */
6721 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6722 			continue;
6723 		if (!btf_type_is_ptr(t1)) {
6724 			bpf_log(log,
6725 				"arg%d in %s() has unrecognized type\n",
6726 				i, fn1);
6727 			return -EINVAL;
6728 		}
6729 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6730 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6731 		if (!btf_type_is_struct(t1)) {
6732 			bpf_log(log,
6733 				"arg%d in %s() is not a pointer to context\n",
6734 				i, fn1);
6735 			return -EINVAL;
6736 		}
6737 		if (!btf_type_is_struct(t2)) {
6738 			bpf_log(log,
6739 				"arg%d in %s() is not a pointer to context\n",
6740 				i, fn2);
6741 			return -EINVAL;
6742 		}
6743 		/* This is an optional check to make program writing easier.
6744 		 * Compare names of structs and report an error to the user.
6745 		 * btf_prepare_func_args() already checked that t2 struct
6746 		 * is a context type. btf_prepare_func_args() will check
6747 		 * later that t1 struct is a context type as well.
6748 		 */
6749 		s1 = btf_name_by_offset(btf1, t1->name_off);
6750 		s2 = btf_name_by_offset(btf2, t2->name_off);
6751 		if (strcmp(s1, s2)) {
6752 			bpf_log(log,
6753 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6754 				i, fn1, s1, fn2, s2);
6755 			return -EINVAL;
6756 		}
6757 	}
6758 	return 0;
6759 }
6760 
6761 /* Compare BTFs of given program with BTF of target program */
6762 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6763 			 struct btf *btf2, const struct btf_type *t2)
6764 {
6765 	struct btf *btf1 = prog->aux->btf;
6766 	const struct btf_type *t1;
6767 	u32 btf_id = 0;
6768 
6769 	if (!prog->aux->func_info) {
6770 		bpf_log(log, "Program extension requires BTF\n");
6771 		return -EINVAL;
6772 	}
6773 
6774 	btf_id = prog->aux->func_info[0].type_id;
6775 	if (!btf_id)
6776 		return -EFAULT;
6777 
6778 	t1 = btf_type_by_id(btf1, btf_id);
6779 	if (!t1 || !btf_type_is_func(t1))
6780 		return -EFAULT;
6781 
6782 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6783 }
6784 
6785 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6786 				    const struct btf *btf, u32 func_id,
6787 				    struct bpf_reg_state *regs,
6788 				    bool ptr_to_mem_ok,
6789 				    bool processing_call)
6790 {
6791 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6792 	struct bpf_verifier_log *log = &env->log;
6793 	const char *func_name, *ref_tname;
6794 	const struct btf_type *t, *ref_t;
6795 	const struct btf_param *args;
6796 	u32 i, nargs, ref_id;
6797 	int ret;
6798 
6799 	t = btf_type_by_id(btf, func_id);
6800 	if (!t || !btf_type_is_func(t)) {
6801 		/* These checks were already done by the verifier while loading
6802 		 * struct bpf_func_info or in add_kfunc_call().
6803 		 */
6804 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6805 			func_id);
6806 		return -EFAULT;
6807 	}
6808 	func_name = btf_name_by_offset(btf, t->name_off);
6809 
6810 	t = btf_type_by_id(btf, t->type);
6811 	if (!t || !btf_type_is_func_proto(t)) {
6812 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6813 		return -EFAULT;
6814 	}
6815 	args = (const struct btf_param *)(t + 1);
6816 	nargs = btf_type_vlen(t);
6817 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6818 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6819 			MAX_BPF_FUNC_REG_ARGS);
6820 		return -EINVAL;
6821 	}
6822 
6823 	/* check that BTF function arguments match actual types that the
6824 	 * verifier sees.
6825 	 */
6826 	for (i = 0; i < nargs; i++) {
6827 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6828 		u32 regno = i + 1;
6829 		struct bpf_reg_state *reg = &regs[regno];
6830 
6831 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6832 		if (btf_type_is_scalar(t)) {
6833 			if (reg->type == SCALAR_VALUE)
6834 				continue;
6835 			bpf_log(log, "R%d is not a scalar\n", regno);
6836 			return -EINVAL;
6837 		}
6838 
6839 		if (!btf_type_is_ptr(t)) {
6840 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6841 				i, btf_type_str(t));
6842 			return -EINVAL;
6843 		}
6844 
6845 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6846 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6847 
6848 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6849 		if (ret < 0)
6850 			return ret;
6851 
6852 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6853 			/* If function expects ctx type in BTF check that caller
6854 			 * is passing PTR_TO_CTX.
6855 			 */
6856 			if (reg->type != PTR_TO_CTX) {
6857 				bpf_log(log,
6858 					"arg#%d expected pointer to ctx, but got %s\n",
6859 					i, btf_type_str(t));
6860 				return -EINVAL;
6861 			}
6862 		} else if (ptr_to_mem_ok && processing_call) {
6863 			const struct btf_type *resolve_ret;
6864 			u32 type_size;
6865 
6866 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6867 			if (IS_ERR(resolve_ret)) {
6868 				bpf_log(log,
6869 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6870 					i, btf_type_str(ref_t), ref_tname,
6871 					PTR_ERR(resolve_ret));
6872 				return -EINVAL;
6873 			}
6874 
6875 			if (check_mem_reg(env, reg, regno, type_size))
6876 				return -EINVAL;
6877 		} else {
6878 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6879 				func_name, func_id);
6880 			return -EINVAL;
6881 		}
6882 	}
6883 
6884 	return 0;
6885 }
6886 
6887 /* Compare BTF of a function declaration with given bpf_reg_state.
6888  * Returns:
6889  * EFAULT - there is a verifier bug. Abort verification.
6890  * EINVAL - there is a type mismatch or BTF is not available.
6891  * 0 - BTF matches with what bpf_reg_state expects.
6892  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6893  */
6894 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6895 				struct bpf_reg_state *regs)
6896 {
6897 	struct bpf_prog *prog = env->prog;
6898 	struct btf *btf = prog->aux->btf;
6899 	bool is_global;
6900 	u32 btf_id;
6901 	int err;
6902 
6903 	if (!prog->aux->func_info)
6904 		return -EINVAL;
6905 
6906 	btf_id = prog->aux->func_info[subprog].type_id;
6907 	if (!btf_id)
6908 		return -EFAULT;
6909 
6910 	if (prog->aux->func_info_aux[subprog].unreliable)
6911 		return -EINVAL;
6912 
6913 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6914 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6915 
6916 	/* Compiler optimizations can remove arguments from static functions
6917 	 * or mismatched type can be passed into a global function.
6918 	 * In such cases mark the function as unreliable from BTF point of view.
6919 	 */
6920 	if (err)
6921 		prog->aux->func_info_aux[subprog].unreliable = true;
6922 	return err;
6923 }
6924 
6925 /* Compare BTF of a function call with given bpf_reg_state.
6926  * Returns:
6927  * EFAULT - there is a verifier bug. Abort verification.
6928  * EINVAL - there is a type mismatch or BTF is not available.
6929  * 0 - BTF matches with what bpf_reg_state expects.
6930  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6931  *
6932  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6933  * because btf_check_func_arg_match() is still doing both. Once that
6934  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6935  * first, and then treat the calling part in a new code path.
6936  */
6937 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6938 			   struct bpf_reg_state *regs)
6939 {
6940 	struct bpf_prog *prog = env->prog;
6941 	struct btf *btf = prog->aux->btf;
6942 	bool is_global;
6943 	u32 btf_id;
6944 	int err;
6945 
6946 	if (!prog->aux->func_info)
6947 		return -EINVAL;
6948 
6949 	btf_id = prog->aux->func_info[subprog].type_id;
6950 	if (!btf_id)
6951 		return -EFAULT;
6952 
6953 	if (prog->aux->func_info_aux[subprog].unreliable)
6954 		return -EINVAL;
6955 
6956 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6957 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6958 
6959 	/* Compiler optimizations can remove arguments from static functions
6960 	 * or mismatched type can be passed into a global function.
6961 	 * In such cases mark the function as unreliable from BTF point of view.
6962 	 */
6963 	if (err)
6964 		prog->aux->func_info_aux[subprog].unreliable = true;
6965 	return err;
6966 }
6967 
6968 /* Convert BTF of a function into bpf_reg_state if possible
6969  * Returns:
6970  * EFAULT - there is a verifier bug. Abort verification.
6971  * EINVAL - cannot convert BTF.
6972  * 0 - Successfully converted BTF into bpf_reg_state
6973  * (either PTR_TO_CTX or SCALAR_VALUE).
6974  */
6975 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6976 			  struct bpf_reg_state *regs)
6977 {
6978 	struct bpf_verifier_log *log = &env->log;
6979 	struct bpf_prog *prog = env->prog;
6980 	enum bpf_prog_type prog_type = prog->type;
6981 	struct btf *btf = prog->aux->btf;
6982 	const struct btf_param *args;
6983 	const struct btf_type *t, *ref_t;
6984 	u32 i, nargs, btf_id;
6985 	const char *tname;
6986 
6987 	if (!prog->aux->func_info ||
6988 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6989 		bpf_log(log, "Verifier bug\n");
6990 		return -EFAULT;
6991 	}
6992 
6993 	btf_id = prog->aux->func_info[subprog].type_id;
6994 	if (!btf_id) {
6995 		bpf_log(log, "Global functions need valid BTF\n");
6996 		return -EFAULT;
6997 	}
6998 
6999 	t = btf_type_by_id(btf, btf_id);
7000 	if (!t || !btf_type_is_func(t)) {
7001 		/* These checks were already done by the verifier while loading
7002 		 * struct bpf_func_info
7003 		 */
7004 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7005 			subprog);
7006 		return -EFAULT;
7007 	}
7008 	tname = btf_name_by_offset(btf, t->name_off);
7009 
7010 	if (log->level & BPF_LOG_LEVEL)
7011 		bpf_log(log, "Validating %s() func#%d...\n",
7012 			tname, subprog);
7013 
7014 	if (prog->aux->func_info_aux[subprog].unreliable) {
7015 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7016 		return -EFAULT;
7017 	}
7018 	if (prog_type == BPF_PROG_TYPE_EXT)
7019 		prog_type = prog->aux->dst_prog->type;
7020 
7021 	t = btf_type_by_id(btf, t->type);
7022 	if (!t || !btf_type_is_func_proto(t)) {
7023 		bpf_log(log, "Invalid type of function %s()\n", tname);
7024 		return -EFAULT;
7025 	}
7026 	args = (const struct btf_param *)(t + 1);
7027 	nargs = btf_type_vlen(t);
7028 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7029 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7030 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7031 		return -EINVAL;
7032 	}
7033 	/* check that function returns int */
7034 	t = btf_type_by_id(btf, t->type);
7035 	while (btf_type_is_modifier(t))
7036 		t = btf_type_by_id(btf, t->type);
7037 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7038 		bpf_log(log,
7039 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7040 			tname);
7041 		return -EINVAL;
7042 	}
7043 	/* Convert BTF function arguments into verifier types.
7044 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7045 	 */
7046 	for (i = 0; i < nargs; i++) {
7047 		struct bpf_reg_state *reg = &regs[i + 1];
7048 
7049 		t = btf_type_by_id(btf, args[i].type);
7050 		while (btf_type_is_modifier(t))
7051 			t = btf_type_by_id(btf, t->type);
7052 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7053 			reg->type = SCALAR_VALUE;
7054 			continue;
7055 		}
7056 		if (btf_type_is_ptr(t)) {
7057 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7058 				reg->type = PTR_TO_CTX;
7059 				continue;
7060 			}
7061 
7062 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7063 
7064 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7065 			if (IS_ERR(ref_t)) {
7066 				bpf_log(log,
7067 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7068 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7069 					PTR_ERR(ref_t));
7070 				return -EINVAL;
7071 			}
7072 
7073 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7074 			reg->id = ++env->id_gen;
7075 
7076 			continue;
7077 		}
7078 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7079 			i, btf_type_str(t), tname);
7080 		return -EINVAL;
7081 	}
7082 	return 0;
7083 }
7084 
7085 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7086 			  struct btf_show *show)
7087 {
7088 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7089 
7090 	show->btf = btf;
7091 	memset(&show->state, 0, sizeof(show->state));
7092 	memset(&show->obj, 0, sizeof(show->obj));
7093 
7094 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7095 }
7096 
7097 static void btf_seq_show(struct btf_show *show, const char *fmt,
7098 			 va_list args)
7099 {
7100 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7101 }
7102 
7103 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7104 			    void *obj, struct seq_file *m, u64 flags)
7105 {
7106 	struct btf_show sseq;
7107 
7108 	sseq.target = m;
7109 	sseq.showfn = btf_seq_show;
7110 	sseq.flags = flags;
7111 
7112 	btf_type_show(btf, type_id, obj, &sseq);
7113 
7114 	return sseq.state.status;
7115 }
7116 
7117 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7118 		       struct seq_file *m)
7119 {
7120 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7121 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7122 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7123 }
7124 
7125 struct btf_show_snprintf {
7126 	struct btf_show show;
7127 	int len_left;		/* space left in string */
7128 	int len;		/* length we would have written */
7129 };
7130 
7131 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7132 			      va_list args)
7133 {
7134 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7135 	int len;
7136 
7137 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7138 
7139 	if (len < 0) {
7140 		ssnprintf->len_left = 0;
7141 		ssnprintf->len = len;
7142 	} else if (len >= ssnprintf->len_left) {
7143 		/* no space, drive on to get length we would have written */
7144 		ssnprintf->len_left = 0;
7145 		ssnprintf->len += len;
7146 	} else {
7147 		ssnprintf->len_left -= len;
7148 		ssnprintf->len += len;
7149 		show->target += len;
7150 	}
7151 }
7152 
7153 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7154 			   char *buf, int len, u64 flags)
7155 {
7156 	struct btf_show_snprintf ssnprintf;
7157 
7158 	ssnprintf.show.target = buf;
7159 	ssnprintf.show.flags = flags;
7160 	ssnprintf.show.showfn = btf_snprintf_show;
7161 	ssnprintf.len_left = len;
7162 	ssnprintf.len = 0;
7163 
7164 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7165 
7166 	/* If we encountered an error, return it. */
7167 	if (ssnprintf.show.state.status)
7168 		return ssnprintf.show.state.status;
7169 
7170 	/* Otherwise return length we would have written */
7171 	return ssnprintf.len;
7172 }
7173 
7174 #ifdef CONFIG_PROC_FS
7175 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7176 {
7177 	const struct btf *btf = filp->private_data;
7178 
7179 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7180 }
7181 #endif
7182 
7183 static int btf_release(struct inode *inode, struct file *filp)
7184 {
7185 	btf_put(filp->private_data);
7186 	return 0;
7187 }
7188 
7189 const struct file_operations btf_fops = {
7190 #ifdef CONFIG_PROC_FS
7191 	.show_fdinfo	= bpf_btf_show_fdinfo,
7192 #endif
7193 	.release	= btf_release,
7194 };
7195 
7196 static int __btf_new_fd(struct btf *btf)
7197 {
7198 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7199 }
7200 
7201 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
7202 {
7203 	struct btf *btf;
7204 	int ret;
7205 
7206 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
7207 			attr->btf_size, attr->btf_log_level,
7208 			u64_to_user_ptr(attr->btf_log_buf),
7209 			attr->btf_log_size);
7210 	if (IS_ERR(btf))
7211 		return PTR_ERR(btf);
7212 
7213 	ret = btf_alloc_id(btf);
7214 	if (ret) {
7215 		btf_free(btf);
7216 		return ret;
7217 	}
7218 
7219 	/*
7220 	 * The BTF ID is published to the userspace.
7221 	 * All BTF free must go through call_rcu() from
7222 	 * now on (i.e. free by calling btf_put()).
7223 	 */
7224 
7225 	ret = __btf_new_fd(btf);
7226 	if (ret < 0)
7227 		btf_put(btf);
7228 
7229 	return ret;
7230 }
7231 
7232 struct btf *btf_get_by_fd(int fd)
7233 {
7234 	struct btf *btf;
7235 	struct fd f;
7236 
7237 	f = fdget(fd);
7238 
7239 	if (!f.file)
7240 		return ERR_PTR(-EBADF);
7241 
7242 	if (f.file->f_op != &btf_fops) {
7243 		fdput(f);
7244 		return ERR_PTR(-EINVAL);
7245 	}
7246 
7247 	btf = f.file->private_data;
7248 	refcount_inc(&btf->refcnt);
7249 	fdput(f);
7250 
7251 	return btf;
7252 }
7253 
7254 int btf_get_info_by_fd(const struct btf *btf,
7255 		       const union bpf_attr *attr,
7256 		       union bpf_attr __user *uattr)
7257 {
7258 	struct bpf_btf_info __user *uinfo;
7259 	struct bpf_btf_info info;
7260 	u32 info_copy, btf_copy;
7261 	void __user *ubtf;
7262 	char __user *uname;
7263 	u32 uinfo_len, uname_len, name_len;
7264 	int ret = 0;
7265 
7266 	uinfo = u64_to_user_ptr(attr->info.info);
7267 	uinfo_len = attr->info.info_len;
7268 
7269 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7270 	memset(&info, 0, sizeof(info));
7271 	if (copy_from_user(&info, uinfo, info_copy))
7272 		return -EFAULT;
7273 
7274 	info.id = btf->id;
7275 	ubtf = u64_to_user_ptr(info.btf);
7276 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7277 	if (copy_to_user(ubtf, btf->data, btf_copy))
7278 		return -EFAULT;
7279 	info.btf_size = btf->data_size;
7280 
7281 	info.kernel_btf = btf->kernel_btf;
7282 
7283 	uname = u64_to_user_ptr(info.name);
7284 	uname_len = info.name_len;
7285 	if (!uname ^ !uname_len)
7286 		return -EINVAL;
7287 
7288 	name_len = strlen(btf->name);
7289 	info.name_len = name_len;
7290 
7291 	if (uname) {
7292 		if (uname_len >= name_len + 1) {
7293 			if (copy_to_user(uname, btf->name, name_len + 1))
7294 				return -EFAULT;
7295 		} else {
7296 			char zero = '\0';
7297 
7298 			if (copy_to_user(uname, btf->name, uname_len - 1))
7299 				return -EFAULT;
7300 			if (put_user(zero, uname + uname_len - 1))
7301 				return -EFAULT;
7302 			/* let user-space know about too short buffer */
7303 			ret = -ENOSPC;
7304 		}
7305 	}
7306 
7307 	if (copy_to_user(uinfo, &info, info_copy) ||
7308 	    put_user(info_copy, &uattr->info.info_len))
7309 		return -EFAULT;
7310 
7311 	return ret;
7312 }
7313 
7314 int btf_get_fd_by_id(u32 id)
7315 {
7316 	struct btf *btf;
7317 	int fd;
7318 
7319 	rcu_read_lock();
7320 	btf = idr_find(&btf_idr, id);
7321 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7322 		btf = ERR_PTR(-ENOENT);
7323 	rcu_read_unlock();
7324 
7325 	if (IS_ERR(btf))
7326 		return PTR_ERR(btf);
7327 
7328 	fd = __btf_new_fd(btf);
7329 	if (fd < 0)
7330 		btf_put(btf);
7331 
7332 	return fd;
7333 }
7334 
7335 u32 btf_obj_id(const struct btf *btf)
7336 {
7337 	return btf->id;
7338 }
7339 
7340 bool btf_is_kernel(const struct btf *btf)
7341 {
7342 	return btf->kernel_btf;
7343 }
7344 
7345 bool btf_is_module(const struct btf *btf)
7346 {
7347 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7348 }
7349 
7350 enum {
7351 	BTF_MODULE_F_LIVE = (1 << 0),
7352 };
7353 
7354 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7355 struct btf_module {
7356 	struct list_head list;
7357 	struct module *module;
7358 	struct btf *btf;
7359 	struct bin_attribute *sysfs_attr;
7360 	int flags;
7361 };
7362 
7363 static LIST_HEAD(btf_modules);
7364 static DEFINE_MUTEX(btf_module_mutex);
7365 
7366 static ssize_t
7367 btf_module_read(struct file *file, struct kobject *kobj,
7368 		struct bin_attribute *bin_attr,
7369 		char *buf, loff_t off, size_t len)
7370 {
7371 	const struct btf *btf = bin_attr->private;
7372 
7373 	memcpy(buf, btf->data + off, len);
7374 	return len;
7375 }
7376 
7377 static void purge_cand_cache(struct btf *btf);
7378 
7379 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7380 			     void *module)
7381 {
7382 	struct btf_module *btf_mod, *tmp;
7383 	struct module *mod = module;
7384 	struct btf *btf;
7385 	int err = 0;
7386 
7387 	if (mod->btf_data_size == 0 ||
7388 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7389 	     op != MODULE_STATE_GOING))
7390 		goto out;
7391 
7392 	switch (op) {
7393 	case MODULE_STATE_COMING:
7394 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7395 		if (!btf_mod) {
7396 			err = -ENOMEM;
7397 			goto out;
7398 		}
7399 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7400 		if (IS_ERR(btf)) {
7401 			kfree(btf_mod);
7402 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7403 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7404 					mod->name, PTR_ERR(btf));
7405 				err = PTR_ERR(btf);
7406 			} else {
7407 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7408 			}
7409 			goto out;
7410 		}
7411 		err = btf_alloc_id(btf);
7412 		if (err) {
7413 			btf_free(btf);
7414 			kfree(btf_mod);
7415 			goto out;
7416 		}
7417 
7418 		purge_cand_cache(NULL);
7419 		mutex_lock(&btf_module_mutex);
7420 		btf_mod->module = module;
7421 		btf_mod->btf = btf;
7422 		list_add(&btf_mod->list, &btf_modules);
7423 		mutex_unlock(&btf_module_mutex);
7424 
7425 		if (IS_ENABLED(CONFIG_SYSFS)) {
7426 			struct bin_attribute *attr;
7427 
7428 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7429 			if (!attr)
7430 				goto out;
7431 
7432 			sysfs_bin_attr_init(attr);
7433 			attr->attr.name = btf->name;
7434 			attr->attr.mode = 0444;
7435 			attr->size = btf->data_size;
7436 			attr->private = btf;
7437 			attr->read = btf_module_read;
7438 
7439 			err = sysfs_create_bin_file(btf_kobj, attr);
7440 			if (err) {
7441 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7442 					mod->name, err);
7443 				kfree(attr);
7444 				err = 0;
7445 				goto out;
7446 			}
7447 
7448 			btf_mod->sysfs_attr = attr;
7449 		}
7450 
7451 		break;
7452 	case MODULE_STATE_LIVE:
7453 		mutex_lock(&btf_module_mutex);
7454 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7455 			if (btf_mod->module != module)
7456 				continue;
7457 
7458 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7459 			break;
7460 		}
7461 		mutex_unlock(&btf_module_mutex);
7462 		break;
7463 	case MODULE_STATE_GOING:
7464 		mutex_lock(&btf_module_mutex);
7465 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7466 			if (btf_mod->module != module)
7467 				continue;
7468 
7469 			list_del(&btf_mod->list);
7470 			if (btf_mod->sysfs_attr)
7471 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7472 			purge_cand_cache(btf_mod->btf);
7473 			btf_put(btf_mod->btf);
7474 			kfree(btf_mod->sysfs_attr);
7475 			kfree(btf_mod);
7476 			break;
7477 		}
7478 		mutex_unlock(&btf_module_mutex);
7479 		break;
7480 	}
7481 out:
7482 	return notifier_from_errno(err);
7483 }
7484 
7485 static struct notifier_block btf_module_nb = {
7486 	.notifier_call = btf_module_notify,
7487 };
7488 
7489 static int __init btf_module_init(void)
7490 {
7491 	register_module_notifier(&btf_module_nb);
7492 	return 0;
7493 }
7494 
7495 fs_initcall(btf_module_init);
7496 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7497 
7498 struct module *btf_try_get_module(const struct btf *btf)
7499 {
7500 	struct module *res = NULL;
7501 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7502 	struct btf_module *btf_mod, *tmp;
7503 
7504 	mutex_lock(&btf_module_mutex);
7505 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7506 		if (btf_mod->btf != btf)
7507 			continue;
7508 
7509 		/* We must only consider module whose __init routine has
7510 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7511 		 * which is set from the notifier callback for
7512 		 * MODULE_STATE_LIVE.
7513 		 */
7514 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7515 			res = btf_mod->module;
7516 
7517 		break;
7518 	}
7519 	mutex_unlock(&btf_module_mutex);
7520 #endif
7521 
7522 	return res;
7523 }
7524 
7525 /* Returns struct btf corresponding to the struct module.
7526  * This function can return NULL or ERR_PTR.
7527  */
7528 static struct btf *btf_get_module_btf(const struct module *module)
7529 {
7530 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7531 	struct btf_module *btf_mod, *tmp;
7532 #endif
7533 	struct btf *btf = NULL;
7534 
7535 	if (!module) {
7536 		btf = bpf_get_btf_vmlinux();
7537 		if (!IS_ERR_OR_NULL(btf))
7538 			btf_get(btf);
7539 		return btf;
7540 	}
7541 
7542 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7543 	mutex_lock(&btf_module_mutex);
7544 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7545 		if (btf_mod->module != module)
7546 			continue;
7547 
7548 		btf_get(btf_mod->btf);
7549 		btf = btf_mod->btf;
7550 		break;
7551 	}
7552 	mutex_unlock(&btf_module_mutex);
7553 #endif
7554 
7555 	return btf;
7556 }
7557 
7558 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7559 {
7560 	struct btf *btf = NULL;
7561 	int btf_obj_fd = 0;
7562 	long ret;
7563 
7564 	if (flags)
7565 		return -EINVAL;
7566 
7567 	if (name_sz <= 1 || name[name_sz - 1])
7568 		return -EINVAL;
7569 
7570 	ret = bpf_find_btf_id(name, kind, &btf);
7571 	if (ret > 0 && btf_is_module(btf)) {
7572 		btf_obj_fd = __btf_new_fd(btf);
7573 		if (btf_obj_fd < 0) {
7574 			btf_put(btf);
7575 			return btf_obj_fd;
7576 		}
7577 		return ret | (((u64)btf_obj_fd) << 32);
7578 	}
7579 	if (ret > 0)
7580 		btf_put(btf);
7581 	return ret;
7582 }
7583 
7584 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7585 	.func		= bpf_btf_find_by_name_kind,
7586 	.gpl_only	= false,
7587 	.ret_type	= RET_INTEGER,
7588 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7589 	.arg2_type	= ARG_CONST_SIZE,
7590 	.arg3_type	= ARG_ANYTHING,
7591 	.arg4_type	= ARG_ANYTHING,
7592 };
7593 
7594 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7595 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7596 BTF_TRACING_TYPE_xxx
7597 #undef BTF_TRACING_TYPE
7598 
7599 /* Kernel Function (kfunc) BTF ID set registration API */
7600 
7601 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7602 				  struct btf_id_set8 *add_set)
7603 {
7604 	bool vmlinux_set = !btf_is_module(btf);
7605 	struct btf_kfunc_set_tab *tab;
7606 	struct btf_id_set8 *set;
7607 	u32 set_cnt;
7608 	int ret;
7609 
7610 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7611 		ret = -EINVAL;
7612 		goto end;
7613 	}
7614 
7615 	if (!add_set->cnt)
7616 		return 0;
7617 
7618 	tab = btf->kfunc_set_tab;
7619 	if (!tab) {
7620 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7621 		if (!tab)
7622 			return -ENOMEM;
7623 		btf->kfunc_set_tab = tab;
7624 	}
7625 
7626 	set = tab->sets[hook];
7627 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7628 	 * for module sets.
7629 	 */
7630 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7631 		ret = -EINVAL;
7632 		goto end;
7633 	}
7634 
7635 	/* We don't need to allocate, concatenate, and sort module sets, because
7636 	 * only one is allowed per hook. Hence, we can directly assign the
7637 	 * pointer and return.
7638 	 */
7639 	if (!vmlinux_set) {
7640 		tab->sets[hook] = add_set;
7641 		return 0;
7642 	}
7643 
7644 	/* In case of vmlinux sets, there may be more than one set being
7645 	 * registered per hook. To create a unified set, we allocate a new set
7646 	 * and concatenate all individual sets being registered. While each set
7647 	 * is individually sorted, they may become unsorted when concatenated,
7648 	 * hence re-sorting the final set again is required to make binary
7649 	 * searching the set using btf_id_set8_contains function work.
7650 	 */
7651 	set_cnt = set ? set->cnt : 0;
7652 
7653 	if (set_cnt > U32_MAX - add_set->cnt) {
7654 		ret = -EOVERFLOW;
7655 		goto end;
7656 	}
7657 
7658 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7659 		ret = -E2BIG;
7660 		goto end;
7661 	}
7662 
7663 	/* Grow set */
7664 	set = krealloc(tab->sets[hook],
7665 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7666 		       GFP_KERNEL | __GFP_NOWARN);
7667 	if (!set) {
7668 		ret = -ENOMEM;
7669 		goto end;
7670 	}
7671 
7672 	/* For newly allocated set, initialize set->cnt to 0 */
7673 	if (!tab->sets[hook])
7674 		set->cnt = 0;
7675 	tab->sets[hook] = set;
7676 
7677 	/* Concatenate the two sets */
7678 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7679 	set->cnt += add_set->cnt;
7680 
7681 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7682 
7683 	return 0;
7684 end:
7685 	btf_free_kfunc_set_tab(btf);
7686 	return ret;
7687 }
7688 
7689 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7690 					enum btf_kfunc_hook hook,
7691 					u32 kfunc_btf_id)
7692 {
7693 	struct btf_id_set8 *set;
7694 	u32 *id;
7695 
7696 	if (hook >= BTF_KFUNC_HOOK_MAX)
7697 		return NULL;
7698 	if (!btf->kfunc_set_tab)
7699 		return NULL;
7700 	set = btf->kfunc_set_tab->sets[hook];
7701 	if (!set)
7702 		return NULL;
7703 	id = btf_id_set8_contains(set, kfunc_btf_id);
7704 	if (!id)
7705 		return NULL;
7706 	/* The flags for BTF ID are located next to it */
7707 	return id + 1;
7708 }
7709 
7710 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7711 {
7712 	switch (prog_type) {
7713 	case BPF_PROG_TYPE_UNSPEC:
7714 		return BTF_KFUNC_HOOK_COMMON;
7715 	case BPF_PROG_TYPE_XDP:
7716 		return BTF_KFUNC_HOOK_XDP;
7717 	case BPF_PROG_TYPE_SCHED_CLS:
7718 		return BTF_KFUNC_HOOK_TC;
7719 	case BPF_PROG_TYPE_STRUCT_OPS:
7720 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7721 	case BPF_PROG_TYPE_TRACING:
7722 	case BPF_PROG_TYPE_LSM:
7723 		return BTF_KFUNC_HOOK_TRACING;
7724 	case BPF_PROG_TYPE_SYSCALL:
7725 		return BTF_KFUNC_HOOK_SYSCALL;
7726 	case BPF_PROG_TYPE_CGROUP_SKB:
7727 		return BTF_KFUNC_HOOK_CGROUP_SKB;
7728 	case BPF_PROG_TYPE_SCHED_ACT:
7729 		return BTF_KFUNC_HOOK_SCHED_ACT;
7730 	case BPF_PROG_TYPE_SK_SKB:
7731 		return BTF_KFUNC_HOOK_SK_SKB;
7732 	case BPF_PROG_TYPE_SOCKET_FILTER:
7733 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
7734 	case BPF_PROG_TYPE_LWT_OUT:
7735 	case BPF_PROG_TYPE_LWT_IN:
7736 	case BPF_PROG_TYPE_LWT_XMIT:
7737 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7738 		return BTF_KFUNC_HOOK_LWT;
7739 	default:
7740 		return BTF_KFUNC_HOOK_MAX;
7741 	}
7742 }
7743 
7744 /* Caution:
7745  * Reference to the module (obtained using btf_try_get_module) corresponding to
7746  * the struct btf *MUST* be held when calling this function from verifier
7747  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7748  * keeping the reference for the duration of the call provides the necessary
7749  * protection for looking up a well-formed btf->kfunc_set_tab.
7750  */
7751 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7752 			       enum bpf_prog_type prog_type,
7753 			       u32 kfunc_btf_id)
7754 {
7755 	enum btf_kfunc_hook hook;
7756 	u32 *kfunc_flags;
7757 
7758 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7759 	if (kfunc_flags)
7760 		return kfunc_flags;
7761 
7762 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7763 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
7764 }
7765 
7766 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
7767 {
7768 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7769 }
7770 
7771 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7772 				       const struct btf_kfunc_id_set *kset)
7773 {
7774 	struct btf *btf;
7775 	int ret;
7776 
7777 	btf = btf_get_module_btf(kset->owner);
7778 	if (!btf) {
7779 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7780 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7781 			return -ENOENT;
7782 		}
7783 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7784 			pr_err("missing module BTF, cannot register kfuncs\n");
7785 			return -ENOENT;
7786 		}
7787 		return 0;
7788 	}
7789 	if (IS_ERR(btf))
7790 		return PTR_ERR(btf);
7791 
7792 	ret = btf_populate_kfunc_set(btf, hook, kset->set);
7793 	btf_put(btf);
7794 	return ret;
7795 }
7796 
7797 /* This function must be invoked only from initcalls/module init functions */
7798 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7799 			      const struct btf_kfunc_id_set *kset)
7800 {
7801 	enum btf_kfunc_hook hook;
7802 
7803 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7804 	return __register_btf_kfunc_id_set(hook, kset);
7805 }
7806 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7807 
7808 /* This function must be invoked only from initcalls/module init functions */
7809 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7810 {
7811 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7812 }
7813 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7814 
7815 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7816 {
7817 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7818 	struct btf_id_dtor_kfunc *dtor;
7819 
7820 	if (!tab)
7821 		return -ENOENT;
7822 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7823 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7824 	 */
7825 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7826 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7827 	if (!dtor)
7828 		return -ENOENT;
7829 	return dtor->kfunc_btf_id;
7830 }
7831 
7832 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7833 {
7834 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7835 	const struct btf_param *args;
7836 	s32 dtor_btf_id;
7837 	u32 nr_args, i;
7838 
7839 	for (i = 0; i < cnt; i++) {
7840 		dtor_btf_id = dtors[i].kfunc_btf_id;
7841 
7842 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7843 		if (!dtor_func || !btf_type_is_func(dtor_func))
7844 			return -EINVAL;
7845 
7846 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7847 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7848 			return -EINVAL;
7849 
7850 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7851 		t = btf_type_by_id(btf, dtor_func_proto->type);
7852 		if (!t || !btf_type_is_void(t))
7853 			return -EINVAL;
7854 
7855 		nr_args = btf_type_vlen(dtor_func_proto);
7856 		if (nr_args != 1)
7857 			return -EINVAL;
7858 		args = btf_params(dtor_func_proto);
7859 		t = btf_type_by_id(btf, args[0].type);
7860 		/* Allow any pointer type, as width on targets Linux supports
7861 		 * will be same for all pointer types (i.e. sizeof(void *))
7862 		 */
7863 		if (!t || !btf_type_is_ptr(t))
7864 			return -EINVAL;
7865 	}
7866 	return 0;
7867 }
7868 
7869 /* This function must be invoked only from initcalls/module init functions */
7870 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7871 				struct module *owner)
7872 {
7873 	struct btf_id_dtor_kfunc_tab *tab;
7874 	struct btf *btf;
7875 	u32 tab_cnt;
7876 	int ret;
7877 
7878 	btf = btf_get_module_btf(owner);
7879 	if (!btf) {
7880 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7881 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7882 			return -ENOENT;
7883 		}
7884 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7885 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
7886 			return -ENOENT;
7887 		}
7888 		return 0;
7889 	}
7890 	if (IS_ERR(btf))
7891 		return PTR_ERR(btf);
7892 
7893 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7894 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7895 		ret = -E2BIG;
7896 		goto end;
7897 	}
7898 
7899 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
7900 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7901 	if (ret < 0)
7902 		goto end;
7903 
7904 	tab = btf->dtor_kfunc_tab;
7905 	/* Only one call allowed for modules */
7906 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7907 		ret = -EINVAL;
7908 		goto end;
7909 	}
7910 
7911 	tab_cnt = tab ? tab->cnt : 0;
7912 	if (tab_cnt > U32_MAX - add_cnt) {
7913 		ret = -EOVERFLOW;
7914 		goto end;
7915 	}
7916 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7917 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7918 		ret = -E2BIG;
7919 		goto end;
7920 	}
7921 
7922 	tab = krealloc(btf->dtor_kfunc_tab,
7923 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7924 		       GFP_KERNEL | __GFP_NOWARN);
7925 	if (!tab) {
7926 		ret = -ENOMEM;
7927 		goto end;
7928 	}
7929 
7930 	if (!btf->dtor_kfunc_tab)
7931 		tab->cnt = 0;
7932 	btf->dtor_kfunc_tab = tab;
7933 
7934 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7935 	tab->cnt += add_cnt;
7936 
7937 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7938 
7939 end:
7940 	if (ret)
7941 		btf_free_dtor_kfunc_tab(btf);
7942 	btf_put(btf);
7943 	return ret;
7944 }
7945 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7946 
7947 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
7948 
7949 /* Check local and target types for compatibility. This check is used for
7950  * type-based CO-RE relocations and follow slightly different rules than
7951  * field-based relocations. This function assumes that root types were already
7952  * checked for name match. Beyond that initial root-level name check, names
7953  * are completely ignored. Compatibility rules are as follows:
7954  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7955  *     kind should match for local and target types (i.e., STRUCT is not
7956  *     compatible with UNION);
7957  *   - for ENUMs/ENUM64s, the size is ignored;
7958  *   - for INT, size and signedness are ignored;
7959  *   - for ARRAY, dimensionality is ignored, element types are checked for
7960  *     compatibility recursively;
7961  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
7962  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7963  *   - FUNC_PROTOs are compatible if they have compatible signature: same
7964  *     number of input args and compatible return and argument types.
7965  * These rules are not set in stone and probably will be adjusted as we get
7966  * more experience with using BPF CO-RE relocations.
7967  */
7968 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7969 			      const struct btf *targ_btf, __u32 targ_id)
7970 {
7971 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7972 					   MAX_TYPES_ARE_COMPAT_DEPTH);
7973 }
7974 
7975 #define MAX_TYPES_MATCH_DEPTH 2
7976 
7977 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7978 			 const struct btf *targ_btf, u32 targ_id)
7979 {
7980 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7981 				      MAX_TYPES_MATCH_DEPTH);
7982 }
7983 
7984 static bool bpf_core_is_flavor_sep(const char *s)
7985 {
7986 	/* check X___Y name pattern, where X and Y are not underscores */
7987 	return s[0] != '_' &&				      /* X */
7988 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
7989 	       s[4] != '_';				      /* Y */
7990 }
7991 
7992 size_t bpf_core_essential_name_len(const char *name)
7993 {
7994 	size_t n = strlen(name);
7995 	int i;
7996 
7997 	for (i = n - 5; i >= 0; i--) {
7998 		if (bpf_core_is_flavor_sep(name + i))
7999 			return i + 1;
8000 	}
8001 	return n;
8002 }
8003 
8004 struct bpf_cand_cache {
8005 	const char *name;
8006 	u32 name_len;
8007 	u16 kind;
8008 	u16 cnt;
8009 	struct {
8010 		const struct btf *btf;
8011 		u32 id;
8012 	} cands[];
8013 };
8014 
8015 static void bpf_free_cands(struct bpf_cand_cache *cands)
8016 {
8017 	if (!cands->cnt)
8018 		/* empty candidate array was allocated on stack */
8019 		return;
8020 	kfree(cands);
8021 }
8022 
8023 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8024 {
8025 	kfree(cands->name);
8026 	kfree(cands);
8027 }
8028 
8029 #define VMLINUX_CAND_CACHE_SIZE 31
8030 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8031 
8032 #define MODULE_CAND_CACHE_SIZE 31
8033 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8034 
8035 static DEFINE_MUTEX(cand_cache_mutex);
8036 
8037 static void __print_cand_cache(struct bpf_verifier_log *log,
8038 			       struct bpf_cand_cache **cache,
8039 			       int cache_size)
8040 {
8041 	struct bpf_cand_cache *cc;
8042 	int i, j;
8043 
8044 	for (i = 0; i < cache_size; i++) {
8045 		cc = cache[i];
8046 		if (!cc)
8047 			continue;
8048 		bpf_log(log, "[%d]%s(", i, cc->name);
8049 		for (j = 0; j < cc->cnt; j++) {
8050 			bpf_log(log, "%d", cc->cands[j].id);
8051 			if (j < cc->cnt - 1)
8052 				bpf_log(log, " ");
8053 		}
8054 		bpf_log(log, "), ");
8055 	}
8056 }
8057 
8058 static void print_cand_cache(struct bpf_verifier_log *log)
8059 {
8060 	mutex_lock(&cand_cache_mutex);
8061 	bpf_log(log, "vmlinux_cand_cache:");
8062 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8063 	bpf_log(log, "\nmodule_cand_cache:");
8064 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8065 	bpf_log(log, "\n");
8066 	mutex_unlock(&cand_cache_mutex);
8067 }
8068 
8069 static u32 hash_cands(struct bpf_cand_cache *cands)
8070 {
8071 	return jhash(cands->name, cands->name_len, 0);
8072 }
8073 
8074 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8075 					       struct bpf_cand_cache **cache,
8076 					       int cache_size)
8077 {
8078 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8079 
8080 	if (cc && cc->name_len == cands->name_len &&
8081 	    !strncmp(cc->name, cands->name, cands->name_len))
8082 		return cc;
8083 	return NULL;
8084 }
8085 
8086 static size_t sizeof_cands(int cnt)
8087 {
8088 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8089 }
8090 
8091 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8092 						  struct bpf_cand_cache **cache,
8093 						  int cache_size)
8094 {
8095 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8096 
8097 	if (*cc) {
8098 		bpf_free_cands_from_cache(*cc);
8099 		*cc = NULL;
8100 	}
8101 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8102 	if (!new_cands) {
8103 		bpf_free_cands(cands);
8104 		return ERR_PTR(-ENOMEM);
8105 	}
8106 	/* strdup the name, since it will stay in cache.
8107 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8108 	 */
8109 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8110 	bpf_free_cands(cands);
8111 	if (!new_cands->name) {
8112 		kfree(new_cands);
8113 		return ERR_PTR(-ENOMEM);
8114 	}
8115 	*cc = new_cands;
8116 	return new_cands;
8117 }
8118 
8119 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8120 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8121 			       int cache_size)
8122 {
8123 	struct bpf_cand_cache *cc;
8124 	int i, j;
8125 
8126 	for (i = 0; i < cache_size; i++) {
8127 		cc = cache[i];
8128 		if (!cc)
8129 			continue;
8130 		if (!btf) {
8131 			/* when new module is loaded purge all of module_cand_cache,
8132 			 * since new module might have candidates with the name
8133 			 * that matches cached cands.
8134 			 */
8135 			bpf_free_cands_from_cache(cc);
8136 			cache[i] = NULL;
8137 			continue;
8138 		}
8139 		/* when module is unloaded purge cache entries
8140 		 * that match module's btf
8141 		 */
8142 		for (j = 0; j < cc->cnt; j++)
8143 			if (cc->cands[j].btf == btf) {
8144 				bpf_free_cands_from_cache(cc);
8145 				cache[i] = NULL;
8146 				break;
8147 			}
8148 	}
8149 
8150 }
8151 
8152 static void purge_cand_cache(struct btf *btf)
8153 {
8154 	mutex_lock(&cand_cache_mutex);
8155 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8156 	mutex_unlock(&cand_cache_mutex);
8157 }
8158 #endif
8159 
8160 static struct bpf_cand_cache *
8161 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8162 		   int targ_start_id)
8163 {
8164 	struct bpf_cand_cache *new_cands;
8165 	const struct btf_type *t;
8166 	const char *targ_name;
8167 	size_t targ_essent_len;
8168 	int n, i;
8169 
8170 	n = btf_nr_types(targ_btf);
8171 	for (i = targ_start_id; i < n; i++) {
8172 		t = btf_type_by_id(targ_btf, i);
8173 		if (btf_kind(t) != cands->kind)
8174 			continue;
8175 
8176 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8177 		if (!targ_name)
8178 			continue;
8179 
8180 		/* the resched point is before strncmp to make sure that search
8181 		 * for non-existing name will have a chance to schedule().
8182 		 */
8183 		cond_resched();
8184 
8185 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8186 			continue;
8187 
8188 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8189 		if (targ_essent_len != cands->name_len)
8190 			continue;
8191 
8192 		/* most of the time there is only one candidate for a given kind+name pair */
8193 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8194 		if (!new_cands) {
8195 			bpf_free_cands(cands);
8196 			return ERR_PTR(-ENOMEM);
8197 		}
8198 
8199 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8200 		bpf_free_cands(cands);
8201 		cands = new_cands;
8202 		cands->cands[cands->cnt].btf = targ_btf;
8203 		cands->cands[cands->cnt].id = i;
8204 		cands->cnt++;
8205 	}
8206 	return cands;
8207 }
8208 
8209 static struct bpf_cand_cache *
8210 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8211 {
8212 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8213 	const struct btf *local_btf = ctx->btf;
8214 	const struct btf_type *local_type;
8215 	const struct btf *main_btf;
8216 	size_t local_essent_len;
8217 	struct btf *mod_btf;
8218 	const char *name;
8219 	int id;
8220 
8221 	main_btf = bpf_get_btf_vmlinux();
8222 	if (IS_ERR(main_btf))
8223 		return ERR_CAST(main_btf);
8224 	if (!main_btf)
8225 		return ERR_PTR(-EINVAL);
8226 
8227 	local_type = btf_type_by_id(local_btf, local_type_id);
8228 	if (!local_type)
8229 		return ERR_PTR(-EINVAL);
8230 
8231 	name = btf_name_by_offset(local_btf, local_type->name_off);
8232 	if (str_is_empty(name))
8233 		return ERR_PTR(-EINVAL);
8234 	local_essent_len = bpf_core_essential_name_len(name);
8235 
8236 	cands = &local_cand;
8237 	cands->name = name;
8238 	cands->kind = btf_kind(local_type);
8239 	cands->name_len = local_essent_len;
8240 
8241 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8242 	/* cands is a pointer to stack here */
8243 	if (cc) {
8244 		if (cc->cnt)
8245 			return cc;
8246 		goto check_modules;
8247 	}
8248 
8249 	/* Attempt to find target candidates in vmlinux BTF first */
8250 	cands = bpf_core_add_cands(cands, main_btf, 1);
8251 	if (IS_ERR(cands))
8252 		return ERR_CAST(cands);
8253 
8254 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8255 
8256 	/* populate cache even when cands->cnt == 0 */
8257 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8258 	if (IS_ERR(cc))
8259 		return ERR_CAST(cc);
8260 
8261 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8262 	if (cc->cnt)
8263 		return cc;
8264 
8265 check_modules:
8266 	/* cands is a pointer to stack here and cands->cnt == 0 */
8267 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8268 	if (cc)
8269 		/* if cache has it return it even if cc->cnt == 0 */
8270 		return cc;
8271 
8272 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8273 	spin_lock_bh(&btf_idr_lock);
8274 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8275 		if (!btf_is_module(mod_btf))
8276 			continue;
8277 		/* linear search could be slow hence unlock/lock
8278 		 * the IDR to avoiding holding it for too long
8279 		 */
8280 		btf_get(mod_btf);
8281 		spin_unlock_bh(&btf_idr_lock);
8282 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8283 		if (IS_ERR(cands)) {
8284 			btf_put(mod_btf);
8285 			return ERR_CAST(cands);
8286 		}
8287 		spin_lock_bh(&btf_idr_lock);
8288 		btf_put(mod_btf);
8289 	}
8290 	spin_unlock_bh(&btf_idr_lock);
8291 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8292 	 * or pointer to stack if cands->cnd == 0.
8293 	 * Copy it into the cache even when cands->cnt == 0 and
8294 	 * return the result.
8295 	 */
8296 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8297 }
8298 
8299 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8300 		   int relo_idx, void *insn)
8301 {
8302 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8303 	struct bpf_core_cand_list cands = {};
8304 	struct bpf_core_relo_res targ_res;
8305 	struct bpf_core_spec *specs;
8306 	int err;
8307 
8308 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8309 	 * into arrays of btf_ids of struct fields and array indices.
8310 	 */
8311 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8312 	if (!specs)
8313 		return -ENOMEM;
8314 
8315 	if (need_cands) {
8316 		struct bpf_cand_cache *cc;
8317 		int i;
8318 
8319 		mutex_lock(&cand_cache_mutex);
8320 		cc = bpf_core_find_cands(ctx, relo->type_id);
8321 		if (IS_ERR(cc)) {
8322 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8323 				relo->type_id);
8324 			err = PTR_ERR(cc);
8325 			goto out;
8326 		}
8327 		if (cc->cnt) {
8328 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8329 			if (!cands.cands) {
8330 				err = -ENOMEM;
8331 				goto out;
8332 			}
8333 		}
8334 		for (i = 0; i < cc->cnt; i++) {
8335 			bpf_log(ctx->log,
8336 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8337 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8338 			cands.cands[i].btf = cc->cands[i].btf;
8339 			cands.cands[i].id = cc->cands[i].id;
8340 		}
8341 		cands.len = cc->cnt;
8342 		/* cand_cache_mutex needs to span the cache lookup and
8343 		 * copy of btf pointer into bpf_core_cand_list,
8344 		 * since module can be unloaded while bpf_core_calc_relo_insn
8345 		 * is working with module's btf.
8346 		 */
8347 	}
8348 
8349 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8350 				      &targ_res);
8351 	if (err)
8352 		goto out;
8353 
8354 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8355 				  &targ_res);
8356 
8357 out:
8358 	kfree(specs);
8359 	if (need_cands) {
8360 		kfree(cands.cands);
8361 		mutex_unlock(&cand_cache_mutex);
8362 		if (ctx->log->level & BPF_LOG_LEVEL2)
8363 			print_cand_cache(ctx->log);
8364 	}
8365 	return err;
8366 }
8367 
8368 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8369 				const struct bpf_reg_state *reg,
8370 				int off, const char *suffix)
8371 {
8372 	struct btf *btf = reg->btf;
8373 	const struct btf_type *walk_type, *safe_type;
8374 	const char *tname;
8375 	char safe_tname[64];
8376 	long ret, safe_id;
8377 	const struct btf_member *member, *m_walk = NULL;
8378 	u32 i;
8379 	const char *walk_name;
8380 
8381 	walk_type = btf_type_by_id(btf, reg->btf_id);
8382 	if (!walk_type)
8383 		return false;
8384 
8385 	tname = btf_name_by_offset(btf, walk_type->name_off);
8386 
8387 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8388 	if (ret < 0)
8389 		return false;
8390 
8391 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8392 	if (safe_id < 0)
8393 		return false;
8394 
8395 	safe_type = btf_type_by_id(btf, safe_id);
8396 	if (!safe_type)
8397 		return false;
8398 
8399 	for_each_member(i, walk_type, member) {
8400 		u32 moff;
8401 
8402 		/* We're looking for the PTR_TO_BTF_ID member in the struct
8403 		 * type we're walking which matches the specified offset.
8404 		 * Below, we'll iterate over the fields in the safe variant of
8405 		 * the struct and see if any of them has a matching type /
8406 		 * name.
8407 		 */
8408 		moff = __btf_member_bit_offset(walk_type, member) / 8;
8409 		if (off == moff) {
8410 			m_walk = member;
8411 			break;
8412 		}
8413 	}
8414 	if (m_walk == NULL)
8415 		return false;
8416 
8417 	walk_name = __btf_name_by_offset(btf, m_walk->name_off);
8418 	for_each_member(i, safe_type, member) {
8419 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8420 
8421 		/* If we match on both type and name, the field is considered trusted. */
8422 		if (m_walk->type == member->type && !strcmp(walk_name, m_name))
8423 			return true;
8424 	}
8425 
8426 	return false;
8427 }
8428 
8429 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8430 			       const struct btf *reg_btf, u32 reg_id,
8431 			       const struct btf *arg_btf, u32 arg_id)
8432 {
8433 	const char *reg_name, *arg_name, *search_needle;
8434 	const struct btf_type *reg_type, *arg_type;
8435 	int reg_len, arg_len, cmp_len;
8436 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8437 
8438 	reg_type = btf_type_by_id(reg_btf, reg_id);
8439 	if (!reg_type)
8440 		return false;
8441 
8442 	arg_type = btf_type_by_id(arg_btf, arg_id);
8443 	if (!arg_type)
8444 		return false;
8445 
8446 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8447 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8448 
8449 	reg_len = strlen(reg_name);
8450 	arg_len = strlen(arg_name);
8451 
8452 	/* Exactly one of the two type names may be suffixed with ___init, so
8453 	 * if the strings are the same size, they can't possibly be no-cast
8454 	 * aliases of one another. If you have two of the same type names, e.g.
8455 	 * they're both nf_conn___init, it would be improper to return true
8456 	 * because they are _not_ no-cast aliases, they are the same type.
8457 	 */
8458 	if (reg_len == arg_len)
8459 		return false;
8460 
8461 	/* Either of the two names must be the other name, suffixed with ___init. */
8462 	if ((reg_len != arg_len + pattern_len) &&
8463 	    (arg_len != reg_len + pattern_len))
8464 		return false;
8465 
8466 	if (reg_len < arg_len) {
8467 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8468 		cmp_len = reg_len;
8469 	} else {
8470 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8471 		cmp_len = arg_len;
8472 	}
8473 
8474 	if (!search_needle)
8475 		return false;
8476 
8477 	/* ___init suffix must come at the end of the name */
8478 	if (*(search_needle + pattern_len) != '\0')
8479 		return false;
8480 
8481 	return !strncmp(reg_name, arg_name, cmp_len);
8482 }
8483