1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP_SKB, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 }; 278 279 enum verifier_phase { 280 CHECK_META, 281 CHECK_TYPE, 282 }; 283 284 struct resolve_vertex { 285 const struct btf_type *t; 286 u32 type_id; 287 u16 next_member; 288 }; 289 290 enum visit_state { 291 NOT_VISITED, 292 VISITED, 293 RESOLVED, 294 }; 295 296 enum resolve_mode { 297 RESOLVE_TBD, /* To Be Determined */ 298 RESOLVE_PTR, /* Resolving for Pointer */ 299 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 300 * or array 301 */ 302 }; 303 304 #define MAX_RESOLVE_DEPTH 32 305 306 struct btf_sec_info { 307 u32 off; 308 u32 len; 309 }; 310 311 struct btf_verifier_env { 312 struct btf *btf; 313 u8 *visit_states; 314 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 315 struct bpf_verifier_log log; 316 u32 log_type_id; 317 u32 top_stack; 318 enum verifier_phase phase; 319 enum resolve_mode resolve_mode; 320 }; 321 322 static const char * const btf_kind_str[NR_BTF_KINDS] = { 323 [BTF_KIND_UNKN] = "UNKNOWN", 324 [BTF_KIND_INT] = "INT", 325 [BTF_KIND_PTR] = "PTR", 326 [BTF_KIND_ARRAY] = "ARRAY", 327 [BTF_KIND_STRUCT] = "STRUCT", 328 [BTF_KIND_UNION] = "UNION", 329 [BTF_KIND_ENUM] = "ENUM", 330 [BTF_KIND_FWD] = "FWD", 331 [BTF_KIND_TYPEDEF] = "TYPEDEF", 332 [BTF_KIND_VOLATILE] = "VOLATILE", 333 [BTF_KIND_CONST] = "CONST", 334 [BTF_KIND_RESTRICT] = "RESTRICT", 335 [BTF_KIND_FUNC] = "FUNC", 336 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 337 [BTF_KIND_VAR] = "VAR", 338 [BTF_KIND_DATASEC] = "DATASEC", 339 [BTF_KIND_FLOAT] = "FLOAT", 340 [BTF_KIND_DECL_TAG] = "DECL_TAG", 341 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 342 [BTF_KIND_ENUM64] = "ENUM64", 343 }; 344 345 const char *btf_type_str(const struct btf_type *t) 346 { 347 return btf_kind_str[BTF_INFO_KIND(t->info)]; 348 } 349 350 /* Chunk size we use in safe copy of data to be shown. */ 351 #define BTF_SHOW_OBJ_SAFE_SIZE 32 352 353 /* 354 * This is the maximum size of a base type value (equivalent to a 355 * 128-bit int); if we are at the end of our safe buffer and have 356 * less than 16 bytes space we can't be assured of being able 357 * to copy the next type safely, so in such cases we will initiate 358 * a new copy. 359 */ 360 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 361 362 /* Type name size */ 363 #define BTF_SHOW_NAME_SIZE 80 364 365 /* 366 * The suffix of a type that indicates it cannot alias another type when 367 * comparing BTF IDs for kfunc invocations. 368 */ 369 #define NOCAST_ALIAS_SUFFIX "___init" 370 371 /* 372 * Common data to all BTF show operations. Private show functions can add 373 * their own data to a structure containing a struct btf_show and consult it 374 * in the show callback. See btf_type_show() below. 375 * 376 * One challenge with showing nested data is we want to skip 0-valued 377 * data, but in order to figure out whether a nested object is all zeros 378 * we need to walk through it. As a result, we need to make two passes 379 * when handling structs, unions and arrays; the first path simply looks 380 * for nonzero data, while the second actually does the display. The first 381 * pass is signalled by show->state.depth_check being set, and if we 382 * encounter a non-zero value we set show->state.depth_to_show to 383 * the depth at which we encountered it. When we have completed the 384 * first pass, we will know if anything needs to be displayed if 385 * depth_to_show > depth. See btf_[struct,array]_show() for the 386 * implementation of this. 387 * 388 * Another problem is we want to ensure the data for display is safe to 389 * access. To support this, the anonymous "struct {} obj" tracks the data 390 * object and our safe copy of it. We copy portions of the data needed 391 * to the object "copy" buffer, but because its size is limited to 392 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 393 * traverse larger objects for display. 394 * 395 * The various data type show functions all start with a call to 396 * btf_show_start_type() which returns a pointer to the safe copy 397 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 398 * raw data itself). btf_show_obj_safe() is responsible for 399 * using copy_from_kernel_nofault() to update the safe data if necessary 400 * as we traverse the object's data. skbuff-like semantics are 401 * used: 402 * 403 * - obj.head points to the start of the toplevel object for display 404 * - obj.size is the size of the toplevel object 405 * - obj.data points to the current point in the original data at 406 * which our safe data starts. obj.data will advance as we copy 407 * portions of the data. 408 * 409 * In most cases a single copy will suffice, but larger data structures 410 * such as "struct task_struct" will require many copies. The logic in 411 * btf_show_obj_safe() handles the logic that determines if a new 412 * copy_from_kernel_nofault() is needed. 413 */ 414 struct btf_show { 415 u64 flags; 416 void *target; /* target of show operation (seq file, buffer) */ 417 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 418 const struct btf *btf; 419 /* below are used during iteration */ 420 struct { 421 u8 depth; 422 u8 depth_to_show; 423 u8 depth_check; 424 u8 array_member:1, 425 array_terminated:1; 426 u16 array_encoding; 427 u32 type_id; 428 int status; /* non-zero for error */ 429 const struct btf_type *type; 430 const struct btf_member *member; 431 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 432 } state; 433 struct { 434 u32 size; 435 void *head; 436 void *data; 437 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 438 } obj; 439 }; 440 441 struct btf_kind_operations { 442 s32 (*check_meta)(struct btf_verifier_env *env, 443 const struct btf_type *t, 444 u32 meta_left); 445 int (*resolve)(struct btf_verifier_env *env, 446 const struct resolve_vertex *v); 447 int (*check_member)(struct btf_verifier_env *env, 448 const struct btf_type *struct_type, 449 const struct btf_member *member, 450 const struct btf_type *member_type); 451 int (*check_kflag_member)(struct btf_verifier_env *env, 452 const struct btf_type *struct_type, 453 const struct btf_member *member, 454 const struct btf_type *member_type); 455 void (*log_details)(struct btf_verifier_env *env, 456 const struct btf_type *t); 457 void (*show)(const struct btf *btf, const struct btf_type *t, 458 u32 type_id, void *data, u8 bits_offsets, 459 struct btf_show *show); 460 }; 461 462 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 463 static struct btf_type btf_void; 464 465 static int btf_resolve(struct btf_verifier_env *env, 466 const struct btf_type *t, u32 type_id); 467 468 static int btf_func_check(struct btf_verifier_env *env, 469 const struct btf_type *t); 470 471 static bool btf_type_is_modifier(const struct btf_type *t) 472 { 473 /* Some of them is not strictly a C modifier 474 * but they are grouped into the same bucket 475 * for BTF concern: 476 * A type (t) that refers to another 477 * type through t->type AND its size cannot 478 * be determined without following the t->type. 479 * 480 * ptr does not fall into this bucket 481 * because its size is always sizeof(void *). 482 */ 483 switch (BTF_INFO_KIND(t->info)) { 484 case BTF_KIND_TYPEDEF: 485 case BTF_KIND_VOLATILE: 486 case BTF_KIND_CONST: 487 case BTF_KIND_RESTRICT: 488 case BTF_KIND_TYPE_TAG: 489 return true; 490 } 491 492 return false; 493 } 494 495 bool btf_type_is_void(const struct btf_type *t) 496 { 497 return t == &btf_void; 498 } 499 500 static bool btf_type_is_fwd(const struct btf_type *t) 501 { 502 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 503 } 504 505 static bool btf_type_is_datasec(const struct btf_type *t) 506 { 507 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 508 } 509 510 static bool btf_type_is_decl_tag(const struct btf_type *t) 511 { 512 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 513 } 514 515 static bool btf_type_nosize(const struct btf_type *t) 516 { 517 return btf_type_is_void(t) || btf_type_is_fwd(t) || 518 btf_type_is_func(t) || btf_type_is_func_proto(t) || 519 btf_type_is_decl_tag(t); 520 } 521 522 static bool btf_type_nosize_or_null(const struct btf_type *t) 523 { 524 return !t || btf_type_nosize(t); 525 } 526 527 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 528 { 529 return btf_type_is_func(t) || btf_type_is_struct(t) || 530 btf_type_is_var(t) || btf_type_is_typedef(t); 531 } 532 533 u32 btf_nr_types(const struct btf *btf) 534 { 535 u32 total = 0; 536 537 while (btf) { 538 total += btf->nr_types; 539 btf = btf->base_btf; 540 } 541 542 return total; 543 } 544 545 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 546 { 547 const struct btf_type *t; 548 const char *tname; 549 u32 i, total; 550 551 total = btf_nr_types(btf); 552 for (i = 1; i < total; i++) { 553 t = btf_type_by_id(btf, i); 554 if (BTF_INFO_KIND(t->info) != kind) 555 continue; 556 557 tname = btf_name_by_offset(btf, t->name_off); 558 if (!strcmp(tname, name)) 559 return i; 560 } 561 562 return -ENOENT; 563 } 564 565 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 566 { 567 struct btf *btf; 568 s32 ret; 569 int id; 570 571 btf = bpf_get_btf_vmlinux(); 572 if (IS_ERR(btf)) 573 return PTR_ERR(btf); 574 if (!btf) 575 return -EINVAL; 576 577 ret = btf_find_by_name_kind(btf, name, kind); 578 /* ret is never zero, since btf_find_by_name_kind returns 579 * positive btf_id or negative error. 580 */ 581 if (ret > 0) { 582 btf_get(btf); 583 *btf_p = btf; 584 return ret; 585 } 586 587 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 588 spin_lock_bh(&btf_idr_lock); 589 idr_for_each_entry(&btf_idr, btf, id) { 590 if (!btf_is_module(btf)) 591 continue; 592 /* linear search could be slow hence unlock/lock 593 * the IDR to avoiding holding it for too long 594 */ 595 btf_get(btf); 596 spin_unlock_bh(&btf_idr_lock); 597 ret = btf_find_by_name_kind(btf, name, kind); 598 if (ret > 0) { 599 *btf_p = btf; 600 return ret; 601 } 602 btf_put(btf); 603 spin_lock_bh(&btf_idr_lock); 604 } 605 spin_unlock_bh(&btf_idr_lock); 606 return ret; 607 } 608 609 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 610 u32 id, u32 *res_id) 611 { 612 const struct btf_type *t = btf_type_by_id(btf, id); 613 614 while (btf_type_is_modifier(t)) { 615 id = t->type; 616 t = btf_type_by_id(btf, t->type); 617 } 618 619 if (res_id) 620 *res_id = id; 621 622 return t; 623 } 624 625 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 626 u32 id, u32 *res_id) 627 { 628 const struct btf_type *t; 629 630 t = btf_type_skip_modifiers(btf, id, NULL); 631 if (!btf_type_is_ptr(t)) 632 return NULL; 633 634 return btf_type_skip_modifiers(btf, t->type, res_id); 635 } 636 637 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 638 u32 id, u32 *res_id) 639 { 640 const struct btf_type *ptype; 641 642 ptype = btf_type_resolve_ptr(btf, id, res_id); 643 if (ptype && btf_type_is_func_proto(ptype)) 644 return ptype; 645 646 return NULL; 647 } 648 649 /* Types that act only as a source, not sink or intermediate 650 * type when resolving. 651 */ 652 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 653 { 654 return btf_type_is_var(t) || 655 btf_type_is_decl_tag(t) || 656 btf_type_is_datasec(t); 657 } 658 659 /* What types need to be resolved? 660 * 661 * btf_type_is_modifier() is an obvious one. 662 * 663 * btf_type_is_struct() because its member refers to 664 * another type (through member->type). 665 * 666 * btf_type_is_var() because the variable refers to 667 * another type. btf_type_is_datasec() holds multiple 668 * btf_type_is_var() types that need resolving. 669 * 670 * btf_type_is_array() because its element (array->type) 671 * refers to another type. Array can be thought of a 672 * special case of struct while array just has the same 673 * member-type repeated by array->nelems of times. 674 */ 675 static bool btf_type_needs_resolve(const struct btf_type *t) 676 { 677 return btf_type_is_modifier(t) || 678 btf_type_is_ptr(t) || 679 btf_type_is_struct(t) || 680 btf_type_is_array(t) || 681 btf_type_is_var(t) || 682 btf_type_is_func(t) || 683 btf_type_is_decl_tag(t) || 684 btf_type_is_datasec(t); 685 } 686 687 /* t->size can be used */ 688 static bool btf_type_has_size(const struct btf_type *t) 689 { 690 switch (BTF_INFO_KIND(t->info)) { 691 case BTF_KIND_INT: 692 case BTF_KIND_STRUCT: 693 case BTF_KIND_UNION: 694 case BTF_KIND_ENUM: 695 case BTF_KIND_DATASEC: 696 case BTF_KIND_FLOAT: 697 case BTF_KIND_ENUM64: 698 return true; 699 } 700 701 return false; 702 } 703 704 static const char *btf_int_encoding_str(u8 encoding) 705 { 706 if (encoding == 0) 707 return "(none)"; 708 else if (encoding == BTF_INT_SIGNED) 709 return "SIGNED"; 710 else if (encoding == BTF_INT_CHAR) 711 return "CHAR"; 712 else if (encoding == BTF_INT_BOOL) 713 return "BOOL"; 714 else 715 return "UNKN"; 716 } 717 718 static u32 btf_type_int(const struct btf_type *t) 719 { 720 return *(u32 *)(t + 1); 721 } 722 723 static const struct btf_array *btf_type_array(const struct btf_type *t) 724 { 725 return (const struct btf_array *)(t + 1); 726 } 727 728 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 729 { 730 return (const struct btf_enum *)(t + 1); 731 } 732 733 static const struct btf_var *btf_type_var(const struct btf_type *t) 734 { 735 return (const struct btf_var *)(t + 1); 736 } 737 738 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 739 { 740 return (const struct btf_decl_tag *)(t + 1); 741 } 742 743 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 744 { 745 return (const struct btf_enum64 *)(t + 1); 746 } 747 748 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 749 { 750 return kind_ops[BTF_INFO_KIND(t->info)]; 751 } 752 753 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 754 { 755 if (!BTF_STR_OFFSET_VALID(offset)) 756 return false; 757 758 while (offset < btf->start_str_off) 759 btf = btf->base_btf; 760 761 offset -= btf->start_str_off; 762 return offset < btf->hdr.str_len; 763 } 764 765 static bool __btf_name_char_ok(char c, bool first) 766 { 767 if ((first ? !isalpha(c) : 768 !isalnum(c)) && 769 c != '_' && 770 c != '.') 771 return false; 772 return true; 773 } 774 775 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 776 { 777 while (offset < btf->start_str_off) 778 btf = btf->base_btf; 779 780 offset -= btf->start_str_off; 781 if (offset < btf->hdr.str_len) 782 return &btf->strings[offset]; 783 784 return NULL; 785 } 786 787 static bool __btf_name_valid(const struct btf *btf, u32 offset) 788 { 789 /* offset must be valid */ 790 const char *src = btf_str_by_offset(btf, offset); 791 const char *src_limit; 792 793 if (!__btf_name_char_ok(*src, true)) 794 return false; 795 796 /* set a limit on identifier length */ 797 src_limit = src + KSYM_NAME_LEN; 798 src++; 799 while (*src && src < src_limit) { 800 if (!__btf_name_char_ok(*src, false)) 801 return false; 802 src++; 803 } 804 805 return !*src; 806 } 807 808 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 809 { 810 return __btf_name_valid(btf, offset); 811 } 812 813 /* Allow any printable character in DATASEC names */ 814 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 815 { 816 /* offset must be valid */ 817 const char *src = btf_str_by_offset(btf, offset); 818 const char *src_limit; 819 820 /* set a limit on identifier length */ 821 src_limit = src + KSYM_NAME_LEN; 822 src++; 823 while (*src && src < src_limit) { 824 if (!isprint(*src)) 825 return false; 826 src++; 827 } 828 829 return !*src; 830 } 831 832 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 833 { 834 const char *name; 835 836 if (!offset) 837 return "(anon)"; 838 839 name = btf_str_by_offset(btf, offset); 840 return name ?: "(invalid-name-offset)"; 841 } 842 843 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 844 { 845 return btf_str_by_offset(btf, offset); 846 } 847 848 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 849 { 850 while (type_id < btf->start_id) 851 btf = btf->base_btf; 852 853 type_id -= btf->start_id; 854 if (type_id >= btf->nr_types) 855 return NULL; 856 return btf->types[type_id]; 857 } 858 EXPORT_SYMBOL_GPL(btf_type_by_id); 859 860 /* 861 * Regular int is not a bit field and it must be either 862 * u8/u16/u32/u64 or __int128. 863 */ 864 static bool btf_type_int_is_regular(const struct btf_type *t) 865 { 866 u8 nr_bits, nr_bytes; 867 u32 int_data; 868 869 int_data = btf_type_int(t); 870 nr_bits = BTF_INT_BITS(int_data); 871 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 872 if (BITS_PER_BYTE_MASKED(nr_bits) || 873 BTF_INT_OFFSET(int_data) || 874 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 875 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 876 nr_bytes != (2 * sizeof(u64)))) { 877 return false; 878 } 879 880 return true; 881 } 882 883 /* 884 * Check that given struct member is a regular int with expected 885 * offset and size. 886 */ 887 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 888 const struct btf_member *m, 889 u32 expected_offset, u32 expected_size) 890 { 891 const struct btf_type *t; 892 u32 id, int_data; 893 u8 nr_bits; 894 895 id = m->type; 896 t = btf_type_id_size(btf, &id, NULL); 897 if (!t || !btf_type_is_int(t)) 898 return false; 899 900 int_data = btf_type_int(t); 901 nr_bits = BTF_INT_BITS(int_data); 902 if (btf_type_kflag(s)) { 903 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 904 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 905 906 /* if kflag set, int should be a regular int and 907 * bit offset should be at byte boundary. 908 */ 909 return !bitfield_size && 910 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 911 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 912 } 913 914 if (BTF_INT_OFFSET(int_data) || 915 BITS_PER_BYTE_MASKED(m->offset) || 916 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 917 BITS_PER_BYTE_MASKED(nr_bits) || 918 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 919 return false; 920 921 return true; 922 } 923 924 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 925 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 926 u32 id) 927 { 928 const struct btf_type *t = btf_type_by_id(btf, id); 929 930 while (btf_type_is_modifier(t) && 931 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 932 t = btf_type_by_id(btf, t->type); 933 } 934 935 return t; 936 } 937 938 #define BTF_SHOW_MAX_ITER 10 939 940 #define BTF_KIND_BIT(kind) (1ULL << kind) 941 942 /* 943 * Populate show->state.name with type name information. 944 * Format of type name is 945 * 946 * [.member_name = ] (type_name) 947 */ 948 static const char *btf_show_name(struct btf_show *show) 949 { 950 /* BTF_MAX_ITER array suffixes "[]" */ 951 const char *array_suffixes = "[][][][][][][][][][]"; 952 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 953 /* BTF_MAX_ITER pointer suffixes "*" */ 954 const char *ptr_suffixes = "**********"; 955 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 956 const char *name = NULL, *prefix = "", *parens = ""; 957 const struct btf_member *m = show->state.member; 958 const struct btf_type *t; 959 const struct btf_array *array; 960 u32 id = show->state.type_id; 961 const char *member = NULL; 962 bool show_member = false; 963 u64 kinds = 0; 964 int i; 965 966 show->state.name[0] = '\0'; 967 968 /* 969 * Don't show type name if we're showing an array member; 970 * in that case we show the array type so don't need to repeat 971 * ourselves for each member. 972 */ 973 if (show->state.array_member) 974 return ""; 975 976 /* Retrieve member name, if any. */ 977 if (m) { 978 member = btf_name_by_offset(show->btf, m->name_off); 979 show_member = strlen(member) > 0; 980 id = m->type; 981 } 982 983 /* 984 * Start with type_id, as we have resolved the struct btf_type * 985 * via btf_modifier_show() past the parent typedef to the child 986 * struct, int etc it is defined as. In such cases, the type_id 987 * still represents the starting type while the struct btf_type * 988 * in our show->state points at the resolved type of the typedef. 989 */ 990 t = btf_type_by_id(show->btf, id); 991 if (!t) 992 return ""; 993 994 /* 995 * The goal here is to build up the right number of pointer and 996 * array suffixes while ensuring the type name for a typedef 997 * is represented. Along the way we accumulate a list of 998 * BTF kinds we have encountered, since these will inform later 999 * display; for example, pointer types will not require an 1000 * opening "{" for struct, we will just display the pointer value. 1001 * 1002 * We also want to accumulate the right number of pointer or array 1003 * indices in the format string while iterating until we get to 1004 * the typedef/pointee/array member target type. 1005 * 1006 * We start by pointing at the end of pointer and array suffix 1007 * strings; as we accumulate pointers and arrays we move the pointer 1008 * or array string backwards so it will show the expected number of 1009 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1010 * and/or arrays and typedefs are supported as a precaution. 1011 * 1012 * We also want to get typedef name while proceeding to resolve 1013 * type it points to so that we can add parentheses if it is a 1014 * "typedef struct" etc. 1015 */ 1016 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1017 1018 switch (BTF_INFO_KIND(t->info)) { 1019 case BTF_KIND_TYPEDEF: 1020 if (!name) 1021 name = btf_name_by_offset(show->btf, 1022 t->name_off); 1023 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1024 id = t->type; 1025 break; 1026 case BTF_KIND_ARRAY: 1027 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1028 parens = "["; 1029 if (!t) 1030 return ""; 1031 array = btf_type_array(t); 1032 if (array_suffix > array_suffixes) 1033 array_suffix -= 2; 1034 id = array->type; 1035 break; 1036 case BTF_KIND_PTR: 1037 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1038 if (ptr_suffix > ptr_suffixes) 1039 ptr_suffix -= 1; 1040 id = t->type; 1041 break; 1042 default: 1043 id = 0; 1044 break; 1045 } 1046 if (!id) 1047 break; 1048 t = btf_type_skip_qualifiers(show->btf, id); 1049 } 1050 /* We may not be able to represent this type; bail to be safe */ 1051 if (i == BTF_SHOW_MAX_ITER) 1052 return ""; 1053 1054 if (!name) 1055 name = btf_name_by_offset(show->btf, t->name_off); 1056 1057 switch (BTF_INFO_KIND(t->info)) { 1058 case BTF_KIND_STRUCT: 1059 case BTF_KIND_UNION: 1060 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1061 "struct" : "union"; 1062 /* if it's an array of struct/union, parens is already set */ 1063 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1064 parens = "{"; 1065 break; 1066 case BTF_KIND_ENUM: 1067 case BTF_KIND_ENUM64: 1068 prefix = "enum"; 1069 break; 1070 default: 1071 break; 1072 } 1073 1074 /* pointer does not require parens */ 1075 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1076 parens = ""; 1077 /* typedef does not require struct/union/enum prefix */ 1078 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1079 prefix = ""; 1080 1081 if (!name) 1082 name = ""; 1083 1084 /* Even if we don't want type name info, we want parentheses etc */ 1085 if (show->flags & BTF_SHOW_NONAME) 1086 snprintf(show->state.name, sizeof(show->state.name), "%s", 1087 parens); 1088 else 1089 snprintf(show->state.name, sizeof(show->state.name), 1090 "%s%s%s(%s%s%s%s%s%s)%s", 1091 /* first 3 strings comprise ".member = " */ 1092 show_member ? "." : "", 1093 show_member ? member : "", 1094 show_member ? " = " : "", 1095 /* ...next is our prefix (struct, enum, etc) */ 1096 prefix, 1097 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1098 /* ...this is the type name itself */ 1099 name, 1100 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1101 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1102 array_suffix, parens); 1103 1104 return show->state.name; 1105 } 1106 1107 static const char *__btf_show_indent(struct btf_show *show) 1108 { 1109 const char *indents = " "; 1110 const char *indent = &indents[strlen(indents)]; 1111 1112 if ((indent - show->state.depth) >= indents) 1113 return indent - show->state.depth; 1114 return indents; 1115 } 1116 1117 static const char *btf_show_indent(struct btf_show *show) 1118 { 1119 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1120 } 1121 1122 static const char *btf_show_newline(struct btf_show *show) 1123 { 1124 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1125 } 1126 1127 static const char *btf_show_delim(struct btf_show *show) 1128 { 1129 if (show->state.depth == 0) 1130 return ""; 1131 1132 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1133 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1134 return "|"; 1135 1136 return ","; 1137 } 1138 1139 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1140 { 1141 va_list args; 1142 1143 if (!show->state.depth_check) { 1144 va_start(args, fmt); 1145 show->showfn(show, fmt, args); 1146 va_end(args); 1147 } 1148 } 1149 1150 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1151 * format specifiers to the format specifier passed in; these do the work of 1152 * adding indentation, delimiters etc while the caller simply has to specify 1153 * the type value(s) in the format specifier + value(s). 1154 */ 1155 #define btf_show_type_value(show, fmt, value) \ 1156 do { \ 1157 if ((value) != (__typeof__(value))0 || \ 1158 (show->flags & BTF_SHOW_ZERO) || \ 1159 show->state.depth == 0) { \ 1160 btf_show(show, "%s%s" fmt "%s%s", \ 1161 btf_show_indent(show), \ 1162 btf_show_name(show), \ 1163 value, btf_show_delim(show), \ 1164 btf_show_newline(show)); \ 1165 if (show->state.depth > show->state.depth_to_show) \ 1166 show->state.depth_to_show = show->state.depth; \ 1167 } \ 1168 } while (0) 1169 1170 #define btf_show_type_values(show, fmt, ...) \ 1171 do { \ 1172 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1173 btf_show_name(show), \ 1174 __VA_ARGS__, btf_show_delim(show), \ 1175 btf_show_newline(show)); \ 1176 if (show->state.depth > show->state.depth_to_show) \ 1177 show->state.depth_to_show = show->state.depth; \ 1178 } while (0) 1179 1180 /* How much is left to copy to safe buffer after @data? */ 1181 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1182 { 1183 return show->obj.head + show->obj.size - data; 1184 } 1185 1186 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1187 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1188 { 1189 return data >= show->obj.data && 1190 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1191 } 1192 1193 /* 1194 * If object pointed to by @data of @size falls within our safe buffer, return 1195 * the equivalent pointer to the same safe data. Assumes 1196 * copy_from_kernel_nofault() has already happened and our safe buffer is 1197 * populated. 1198 */ 1199 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1200 { 1201 if (btf_show_obj_is_safe(show, data, size)) 1202 return show->obj.safe + (data - show->obj.data); 1203 return NULL; 1204 } 1205 1206 /* 1207 * Return a safe-to-access version of data pointed to by @data. 1208 * We do this by copying the relevant amount of information 1209 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1210 * 1211 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1212 * safe copy is needed. 1213 * 1214 * Otherwise we need to determine if we have the required amount 1215 * of data (determined by the @data pointer and the size of the 1216 * largest base type we can encounter (represented by 1217 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1218 * that we will be able to print some of the current object, 1219 * and if more is needed a copy will be triggered. 1220 * Some objects such as structs will not fit into the buffer; 1221 * in such cases additional copies when we iterate over their 1222 * members may be needed. 1223 * 1224 * btf_show_obj_safe() is used to return a safe buffer for 1225 * btf_show_start_type(); this ensures that as we recurse into 1226 * nested types we always have safe data for the given type. 1227 * This approach is somewhat wasteful; it's possible for example 1228 * that when iterating over a large union we'll end up copying the 1229 * same data repeatedly, but the goal is safety not performance. 1230 * We use stack data as opposed to per-CPU buffers because the 1231 * iteration over a type can take some time, and preemption handling 1232 * would greatly complicate use of the safe buffer. 1233 */ 1234 static void *btf_show_obj_safe(struct btf_show *show, 1235 const struct btf_type *t, 1236 void *data) 1237 { 1238 const struct btf_type *rt; 1239 int size_left, size; 1240 void *safe = NULL; 1241 1242 if (show->flags & BTF_SHOW_UNSAFE) 1243 return data; 1244 1245 rt = btf_resolve_size(show->btf, t, &size); 1246 if (IS_ERR(rt)) { 1247 show->state.status = PTR_ERR(rt); 1248 return NULL; 1249 } 1250 1251 /* 1252 * Is this toplevel object? If so, set total object size and 1253 * initialize pointers. Otherwise check if we still fall within 1254 * our safe object data. 1255 */ 1256 if (show->state.depth == 0) { 1257 show->obj.size = size; 1258 show->obj.head = data; 1259 } else { 1260 /* 1261 * If the size of the current object is > our remaining 1262 * safe buffer we _may_ need to do a new copy. However 1263 * consider the case of a nested struct; it's size pushes 1264 * us over the safe buffer limit, but showing any individual 1265 * struct members does not. In such cases, we don't need 1266 * to initiate a fresh copy yet; however we definitely need 1267 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1268 * in our buffer, regardless of the current object size. 1269 * The logic here is that as we resolve types we will 1270 * hit a base type at some point, and we need to be sure 1271 * the next chunk of data is safely available to display 1272 * that type info safely. We cannot rely on the size of 1273 * the current object here because it may be much larger 1274 * than our current buffer (e.g. task_struct is 8k). 1275 * All we want to do here is ensure that we can print the 1276 * next basic type, which we can if either 1277 * - the current type size is within the safe buffer; or 1278 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1279 * the safe buffer. 1280 */ 1281 safe = __btf_show_obj_safe(show, data, 1282 min(size, 1283 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1284 } 1285 1286 /* 1287 * We need a new copy to our safe object, either because we haven't 1288 * yet copied and are initializing safe data, or because the data 1289 * we want falls outside the boundaries of the safe object. 1290 */ 1291 if (!safe) { 1292 size_left = btf_show_obj_size_left(show, data); 1293 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1294 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1295 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1296 data, size_left); 1297 if (!show->state.status) { 1298 show->obj.data = data; 1299 safe = show->obj.safe; 1300 } 1301 } 1302 1303 return safe; 1304 } 1305 1306 /* 1307 * Set the type we are starting to show and return a safe data pointer 1308 * to be used for showing the associated data. 1309 */ 1310 static void *btf_show_start_type(struct btf_show *show, 1311 const struct btf_type *t, 1312 u32 type_id, void *data) 1313 { 1314 show->state.type = t; 1315 show->state.type_id = type_id; 1316 show->state.name[0] = '\0'; 1317 1318 return btf_show_obj_safe(show, t, data); 1319 } 1320 1321 static void btf_show_end_type(struct btf_show *show) 1322 { 1323 show->state.type = NULL; 1324 show->state.type_id = 0; 1325 show->state.name[0] = '\0'; 1326 } 1327 1328 static void *btf_show_start_aggr_type(struct btf_show *show, 1329 const struct btf_type *t, 1330 u32 type_id, void *data) 1331 { 1332 void *safe_data = btf_show_start_type(show, t, type_id, data); 1333 1334 if (!safe_data) 1335 return safe_data; 1336 1337 btf_show(show, "%s%s%s", btf_show_indent(show), 1338 btf_show_name(show), 1339 btf_show_newline(show)); 1340 show->state.depth++; 1341 return safe_data; 1342 } 1343 1344 static void btf_show_end_aggr_type(struct btf_show *show, 1345 const char *suffix) 1346 { 1347 show->state.depth--; 1348 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1349 btf_show_delim(show), btf_show_newline(show)); 1350 btf_show_end_type(show); 1351 } 1352 1353 static void btf_show_start_member(struct btf_show *show, 1354 const struct btf_member *m) 1355 { 1356 show->state.member = m; 1357 } 1358 1359 static void btf_show_start_array_member(struct btf_show *show) 1360 { 1361 show->state.array_member = 1; 1362 btf_show_start_member(show, NULL); 1363 } 1364 1365 static void btf_show_end_member(struct btf_show *show) 1366 { 1367 show->state.member = NULL; 1368 } 1369 1370 static void btf_show_end_array_member(struct btf_show *show) 1371 { 1372 show->state.array_member = 0; 1373 btf_show_end_member(show); 1374 } 1375 1376 static void *btf_show_start_array_type(struct btf_show *show, 1377 const struct btf_type *t, 1378 u32 type_id, 1379 u16 array_encoding, 1380 void *data) 1381 { 1382 show->state.array_encoding = array_encoding; 1383 show->state.array_terminated = 0; 1384 return btf_show_start_aggr_type(show, t, type_id, data); 1385 } 1386 1387 static void btf_show_end_array_type(struct btf_show *show) 1388 { 1389 show->state.array_encoding = 0; 1390 show->state.array_terminated = 0; 1391 btf_show_end_aggr_type(show, "]"); 1392 } 1393 1394 static void *btf_show_start_struct_type(struct btf_show *show, 1395 const struct btf_type *t, 1396 u32 type_id, 1397 void *data) 1398 { 1399 return btf_show_start_aggr_type(show, t, type_id, data); 1400 } 1401 1402 static void btf_show_end_struct_type(struct btf_show *show) 1403 { 1404 btf_show_end_aggr_type(show, "}"); 1405 } 1406 1407 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1408 const char *fmt, ...) 1409 { 1410 va_list args; 1411 1412 va_start(args, fmt); 1413 bpf_verifier_vlog(log, fmt, args); 1414 va_end(args); 1415 } 1416 1417 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1418 const char *fmt, ...) 1419 { 1420 struct bpf_verifier_log *log = &env->log; 1421 va_list args; 1422 1423 if (!bpf_verifier_log_needed(log)) 1424 return; 1425 1426 va_start(args, fmt); 1427 bpf_verifier_vlog(log, fmt, args); 1428 va_end(args); 1429 } 1430 1431 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1432 const struct btf_type *t, 1433 bool log_details, 1434 const char *fmt, ...) 1435 { 1436 struct bpf_verifier_log *log = &env->log; 1437 struct btf *btf = env->btf; 1438 va_list args; 1439 1440 if (!bpf_verifier_log_needed(log)) 1441 return; 1442 1443 if (log->level == BPF_LOG_KERNEL) { 1444 /* btf verifier prints all types it is processing via 1445 * btf_verifier_log_type(..., fmt = NULL). 1446 * Skip those prints for in-kernel BTF verification. 1447 */ 1448 if (!fmt) 1449 return; 1450 1451 /* Skip logging when loading module BTF with mismatches permitted */ 1452 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1453 return; 1454 } 1455 1456 __btf_verifier_log(log, "[%u] %s %s%s", 1457 env->log_type_id, 1458 btf_type_str(t), 1459 __btf_name_by_offset(btf, t->name_off), 1460 log_details ? " " : ""); 1461 1462 if (log_details) 1463 btf_type_ops(t)->log_details(env, t); 1464 1465 if (fmt && *fmt) { 1466 __btf_verifier_log(log, " "); 1467 va_start(args, fmt); 1468 bpf_verifier_vlog(log, fmt, args); 1469 va_end(args); 1470 } 1471 1472 __btf_verifier_log(log, "\n"); 1473 } 1474 1475 #define btf_verifier_log_type(env, t, ...) \ 1476 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1477 #define btf_verifier_log_basic(env, t, ...) \ 1478 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1479 1480 __printf(4, 5) 1481 static void btf_verifier_log_member(struct btf_verifier_env *env, 1482 const struct btf_type *struct_type, 1483 const struct btf_member *member, 1484 const char *fmt, ...) 1485 { 1486 struct bpf_verifier_log *log = &env->log; 1487 struct btf *btf = env->btf; 1488 va_list args; 1489 1490 if (!bpf_verifier_log_needed(log)) 1491 return; 1492 1493 if (log->level == BPF_LOG_KERNEL) { 1494 if (!fmt) 1495 return; 1496 1497 /* Skip logging when loading module BTF with mismatches permitted */ 1498 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1499 return; 1500 } 1501 1502 /* The CHECK_META phase already did a btf dump. 1503 * 1504 * If member is logged again, it must hit an error in 1505 * parsing this member. It is useful to print out which 1506 * struct this member belongs to. 1507 */ 1508 if (env->phase != CHECK_META) 1509 btf_verifier_log_type(env, struct_type, NULL); 1510 1511 if (btf_type_kflag(struct_type)) 1512 __btf_verifier_log(log, 1513 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1514 __btf_name_by_offset(btf, member->name_off), 1515 member->type, 1516 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1517 BTF_MEMBER_BIT_OFFSET(member->offset)); 1518 else 1519 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1520 __btf_name_by_offset(btf, member->name_off), 1521 member->type, member->offset); 1522 1523 if (fmt && *fmt) { 1524 __btf_verifier_log(log, " "); 1525 va_start(args, fmt); 1526 bpf_verifier_vlog(log, fmt, args); 1527 va_end(args); 1528 } 1529 1530 __btf_verifier_log(log, "\n"); 1531 } 1532 1533 __printf(4, 5) 1534 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1535 const struct btf_type *datasec_type, 1536 const struct btf_var_secinfo *vsi, 1537 const char *fmt, ...) 1538 { 1539 struct bpf_verifier_log *log = &env->log; 1540 va_list args; 1541 1542 if (!bpf_verifier_log_needed(log)) 1543 return; 1544 if (log->level == BPF_LOG_KERNEL && !fmt) 1545 return; 1546 if (env->phase != CHECK_META) 1547 btf_verifier_log_type(env, datasec_type, NULL); 1548 1549 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1550 vsi->type, vsi->offset, vsi->size); 1551 if (fmt && *fmt) { 1552 __btf_verifier_log(log, " "); 1553 va_start(args, fmt); 1554 bpf_verifier_vlog(log, fmt, args); 1555 va_end(args); 1556 } 1557 1558 __btf_verifier_log(log, "\n"); 1559 } 1560 1561 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1562 u32 btf_data_size) 1563 { 1564 struct bpf_verifier_log *log = &env->log; 1565 const struct btf *btf = env->btf; 1566 const struct btf_header *hdr; 1567 1568 if (!bpf_verifier_log_needed(log)) 1569 return; 1570 1571 if (log->level == BPF_LOG_KERNEL) 1572 return; 1573 hdr = &btf->hdr; 1574 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1575 __btf_verifier_log(log, "version: %u\n", hdr->version); 1576 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1577 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1578 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1579 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1580 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1581 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1582 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1583 } 1584 1585 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1586 { 1587 struct btf *btf = env->btf; 1588 1589 if (btf->types_size == btf->nr_types) { 1590 /* Expand 'types' array */ 1591 1592 struct btf_type **new_types; 1593 u32 expand_by, new_size; 1594 1595 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1596 btf_verifier_log(env, "Exceeded max num of types"); 1597 return -E2BIG; 1598 } 1599 1600 expand_by = max_t(u32, btf->types_size >> 2, 16); 1601 new_size = min_t(u32, BTF_MAX_TYPE, 1602 btf->types_size + expand_by); 1603 1604 new_types = kvcalloc(new_size, sizeof(*new_types), 1605 GFP_KERNEL | __GFP_NOWARN); 1606 if (!new_types) 1607 return -ENOMEM; 1608 1609 if (btf->nr_types == 0) { 1610 if (!btf->base_btf) { 1611 /* lazily init VOID type */ 1612 new_types[0] = &btf_void; 1613 btf->nr_types++; 1614 } 1615 } else { 1616 memcpy(new_types, btf->types, 1617 sizeof(*btf->types) * btf->nr_types); 1618 } 1619 1620 kvfree(btf->types); 1621 btf->types = new_types; 1622 btf->types_size = new_size; 1623 } 1624 1625 btf->types[btf->nr_types++] = t; 1626 1627 return 0; 1628 } 1629 1630 static int btf_alloc_id(struct btf *btf) 1631 { 1632 int id; 1633 1634 idr_preload(GFP_KERNEL); 1635 spin_lock_bh(&btf_idr_lock); 1636 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1637 if (id > 0) 1638 btf->id = id; 1639 spin_unlock_bh(&btf_idr_lock); 1640 idr_preload_end(); 1641 1642 if (WARN_ON_ONCE(!id)) 1643 return -ENOSPC; 1644 1645 return id > 0 ? 0 : id; 1646 } 1647 1648 static void btf_free_id(struct btf *btf) 1649 { 1650 unsigned long flags; 1651 1652 /* 1653 * In map-in-map, calling map_delete_elem() on outer 1654 * map will call bpf_map_put on the inner map. 1655 * It will then eventually call btf_free_id() 1656 * on the inner map. Some of the map_delete_elem() 1657 * implementation may have irq disabled, so 1658 * we need to use the _irqsave() version instead 1659 * of the _bh() version. 1660 */ 1661 spin_lock_irqsave(&btf_idr_lock, flags); 1662 idr_remove(&btf_idr, btf->id); 1663 spin_unlock_irqrestore(&btf_idr_lock, flags); 1664 } 1665 1666 static void btf_free_kfunc_set_tab(struct btf *btf) 1667 { 1668 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1669 int hook; 1670 1671 if (!tab) 1672 return; 1673 /* For module BTF, we directly assign the sets being registered, so 1674 * there is nothing to free except kfunc_set_tab. 1675 */ 1676 if (btf_is_module(btf)) 1677 goto free_tab; 1678 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1679 kfree(tab->sets[hook]); 1680 free_tab: 1681 kfree(tab); 1682 btf->kfunc_set_tab = NULL; 1683 } 1684 1685 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1686 { 1687 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1688 1689 if (!tab) 1690 return; 1691 kfree(tab); 1692 btf->dtor_kfunc_tab = NULL; 1693 } 1694 1695 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1696 { 1697 int i; 1698 1699 if (!tab) 1700 return; 1701 for (i = 0; i < tab->cnt; i++) 1702 btf_record_free(tab->types[i].record); 1703 kfree(tab); 1704 } 1705 1706 static void btf_free_struct_meta_tab(struct btf *btf) 1707 { 1708 struct btf_struct_metas *tab = btf->struct_meta_tab; 1709 1710 btf_struct_metas_free(tab); 1711 btf->struct_meta_tab = NULL; 1712 } 1713 1714 static void btf_free_struct_ops_tab(struct btf *btf) 1715 { 1716 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1717 u32 i; 1718 1719 if (!tab) 1720 return; 1721 1722 for (i = 0; i < tab->cnt; i++) 1723 bpf_struct_ops_desc_release(&tab->ops[i]); 1724 1725 kfree(tab); 1726 btf->struct_ops_tab = NULL; 1727 } 1728 1729 static void btf_free(struct btf *btf) 1730 { 1731 btf_free_struct_meta_tab(btf); 1732 btf_free_dtor_kfunc_tab(btf); 1733 btf_free_kfunc_set_tab(btf); 1734 btf_free_struct_ops_tab(btf); 1735 kvfree(btf->types); 1736 kvfree(btf->resolved_sizes); 1737 kvfree(btf->resolved_ids); 1738 kvfree(btf->data); 1739 kfree(btf); 1740 } 1741 1742 static void btf_free_rcu(struct rcu_head *rcu) 1743 { 1744 struct btf *btf = container_of(rcu, struct btf, rcu); 1745 1746 btf_free(btf); 1747 } 1748 1749 const char *btf_get_name(const struct btf *btf) 1750 { 1751 return btf->name; 1752 } 1753 1754 void btf_get(struct btf *btf) 1755 { 1756 refcount_inc(&btf->refcnt); 1757 } 1758 1759 void btf_put(struct btf *btf) 1760 { 1761 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1762 btf_free_id(btf); 1763 call_rcu(&btf->rcu, btf_free_rcu); 1764 } 1765 } 1766 1767 static int env_resolve_init(struct btf_verifier_env *env) 1768 { 1769 struct btf *btf = env->btf; 1770 u32 nr_types = btf->nr_types; 1771 u32 *resolved_sizes = NULL; 1772 u32 *resolved_ids = NULL; 1773 u8 *visit_states = NULL; 1774 1775 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1776 GFP_KERNEL | __GFP_NOWARN); 1777 if (!resolved_sizes) 1778 goto nomem; 1779 1780 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1781 GFP_KERNEL | __GFP_NOWARN); 1782 if (!resolved_ids) 1783 goto nomem; 1784 1785 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1786 GFP_KERNEL | __GFP_NOWARN); 1787 if (!visit_states) 1788 goto nomem; 1789 1790 btf->resolved_sizes = resolved_sizes; 1791 btf->resolved_ids = resolved_ids; 1792 env->visit_states = visit_states; 1793 1794 return 0; 1795 1796 nomem: 1797 kvfree(resolved_sizes); 1798 kvfree(resolved_ids); 1799 kvfree(visit_states); 1800 return -ENOMEM; 1801 } 1802 1803 static void btf_verifier_env_free(struct btf_verifier_env *env) 1804 { 1805 kvfree(env->visit_states); 1806 kfree(env); 1807 } 1808 1809 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1810 const struct btf_type *next_type) 1811 { 1812 switch (env->resolve_mode) { 1813 case RESOLVE_TBD: 1814 /* int, enum or void is a sink */ 1815 return !btf_type_needs_resolve(next_type); 1816 case RESOLVE_PTR: 1817 /* int, enum, void, struct, array, func or func_proto is a sink 1818 * for ptr 1819 */ 1820 return !btf_type_is_modifier(next_type) && 1821 !btf_type_is_ptr(next_type); 1822 case RESOLVE_STRUCT_OR_ARRAY: 1823 /* int, enum, void, ptr, func or func_proto is a sink 1824 * for struct and array 1825 */ 1826 return !btf_type_is_modifier(next_type) && 1827 !btf_type_is_array(next_type) && 1828 !btf_type_is_struct(next_type); 1829 default: 1830 BUG(); 1831 } 1832 } 1833 1834 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1835 u32 type_id) 1836 { 1837 /* base BTF types should be resolved by now */ 1838 if (type_id < env->btf->start_id) 1839 return true; 1840 1841 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1842 } 1843 1844 static int env_stack_push(struct btf_verifier_env *env, 1845 const struct btf_type *t, u32 type_id) 1846 { 1847 const struct btf *btf = env->btf; 1848 struct resolve_vertex *v; 1849 1850 if (env->top_stack == MAX_RESOLVE_DEPTH) 1851 return -E2BIG; 1852 1853 if (type_id < btf->start_id 1854 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1855 return -EEXIST; 1856 1857 env->visit_states[type_id - btf->start_id] = VISITED; 1858 1859 v = &env->stack[env->top_stack++]; 1860 v->t = t; 1861 v->type_id = type_id; 1862 v->next_member = 0; 1863 1864 if (env->resolve_mode == RESOLVE_TBD) { 1865 if (btf_type_is_ptr(t)) 1866 env->resolve_mode = RESOLVE_PTR; 1867 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1868 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1869 } 1870 1871 return 0; 1872 } 1873 1874 static void env_stack_set_next_member(struct btf_verifier_env *env, 1875 u16 next_member) 1876 { 1877 env->stack[env->top_stack - 1].next_member = next_member; 1878 } 1879 1880 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1881 u32 resolved_type_id, 1882 u32 resolved_size) 1883 { 1884 u32 type_id = env->stack[--(env->top_stack)].type_id; 1885 struct btf *btf = env->btf; 1886 1887 type_id -= btf->start_id; /* adjust to local type id */ 1888 btf->resolved_sizes[type_id] = resolved_size; 1889 btf->resolved_ids[type_id] = resolved_type_id; 1890 env->visit_states[type_id] = RESOLVED; 1891 } 1892 1893 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1894 { 1895 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1896 } 1897 1898 /* Resolve the size of a passed-in "type" 1899 * 1900 * type: is an array (e.g. u32 array[x][y]) 1901 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1902 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1903 * corresponds to the return type. 1904 * *elem_type: u32 1905 * *elem_id: id of u32 1906 * *total_nelems: (x * y). Hence, individual elem size is 1907 * (*type_size / *total_nelems) 1908 * *type_id: id of type if it's changed within the function, 0 if not 1909 * 1910 * type: is not an array (e.g. const struct X) 1911 * return type: type "struct X" 1912 * *type_size: sizeof(struct X) 1913 * *elem_type: same as return type ("struct X") 1914 * *elem_id: 0 1915 * *total_nelems: 1 1916 * *type_id: id of type if it's changed within the function, 0 if not 1917 */ 1918 static const struct btf_type * 1919 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1920 u32 *type_size, const struct btf_type **elem_type, 1921 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1922 { 1923 const struct btf_type *array_type = NULL; 1924 const struct btf_array *array = NULL; 1925 u32 i, size, nelems = 1, id = 0; 1926 1927 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1928 switch (BTF_INFO_KIND(type->info)) { 1929 /* type->size can be used */ 1930 case BTF_KIND_INT: 1931 case BTF_KIND_STRUCT: 1932 case BTF_KIND_UNION: 1933 case BTF_KIND_ENUM: 1934 case BTF_KIND_FLOAT: 1935 case BTF_KIND_ENUM64: 1936 size = type->size; 1937 goto resolved; 1938 1939 case BTF_KIND_PTR: 1940 size = sizeof(void *); 1941 goto resolved; 1942 1943 /* Modifiers */ 1944 case BTF_KIND_TYPEDEF: 1945 case BTF_KIND_VOLATILE: 1946 case BTF_KIND_CONST: 1947 case BTF_KIND_RESTRICT: 1948 case BTF_KIND_TYPE_TAG: 1949 id = type->type; 1950 type = btf_type_by_id(btf, type->type); 1951 break; 1952 1953 case BTF_KIND_ARRAY: 1954 if (!array_type) 1955 array_type = type; 1956 array = btf_type_array(type); 1957 if (nelems && array->nelems > U32_MAX / nelems) 1958 return ERR_PTR(-EINVAL); 1959 nelems *= array->nelems; 1960 type = btf_type_by_id(btf, array->type); 1961 break; 1962 1963 /* type without size */ 1964 default: 1965 return ERR_PTR(-EINVAL); 1966 } 1967 } 1968 1969 return ERR_PTR(-EINVAL); 1970 1971 resolved: 1972 if (nelems && size > U32_MAX / nelems) 1973 return ERR_PTR(-EINVAL); 1974 1975 *type_size = nelems * size; 1976 if (total_nelems) 1977 *total_nelems = nelems; 1978 if (elem_type) 1979 *elem_type = type; 1980 if (elem_id) 1981 *elem_id = array ? array->type : 0; 1982 if (type_id && id) 1983 *type_id = id; 1984 1985 return array_type ? : type; 1986 } 1987 1988 const struct btf_type * 1989 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1990 u32 *type_size) 1991 { 1992 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1993 } 1994 1995 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1996 { 1997 while (type_id < btf->start_id) 1998 btf = btf->base_btf; 1999 2000 return btf->resolved_ids[type_id - btf->start_id]; 2001 } 2002 2003 /* The input param "type_id" must point to a needs_resolve type */ 2004 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2005 u32 *type_id) 2006 { 2007 *type_id = btf_resolved_type_id(btf, *type_id); 2008 return btf_type_by_id(btf, *type_id); 2009 } 2010 2011 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2012 { 2013 while (type_id < btf->start_id) 2014 btf = btf->base_btf; 2015 2016 return btf->resolved_sizes[type_id - btf->start_id]; 2017 } 2018 2019 const struct btf_type *btf_type_id_size(const struct btf *btf, 2020 u32 *type_id, u32 *ret_size) 2021 { 2022 const struct btf_type *size_type; 2023 u32 size_type_id = *type_id; 2024 u32 size = 0; 2025 2026 size_type = btf_type_by_id(btf, size_type_id); 2027 if (btf_type_nosize_or_null(size_type)) 2028 return NULL; 2029 2030 if (btf_type_has_size(size_type)) { 2031 size = size_type->size; 2032 } else if (btf_type_is_array(size_type)) { 2033 size = btf_resolved_type_size(btf, size_type_id); 2034 } else if (btf_type_is_ptr(size_type)) { 2035 size = sizeof(void *); 2036 } else { 2037 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2038 !btf_type_is_var(size_type))) 2039 return NULL; 2040 2041 size_type_id = btf_resolved_type_id(btf, size_type_id); 2042 size_type = btf_type_by_id(btf, size_type_id); 2043 if (btf_type_nosize_or_null(size_type)) 2044 return NULL; 2045 else if (btf_type_has_size(size_type)) 2046 size = size_type->size; 2047 else if (btf_type_is_array(size_type)) 2048 size = btf_resolved_type_size(btf, size_type_id); 2049 else if (btf_type_is_ptr(size_type)) 2050 size = sizeof(void *); 2051 else 2052 return NULL; 2053 } 2054 2055 *type_id = size_type_id; 2056 if (ret_size) 2057 *ret_size = size; 2058 2059 return size_type; 2060 } 2061 2062 static int btf_df_check_member(struct btf_verifier_env *env, 2063 const struct btf_type *struct_type, 2064 const struct btf_member *member, 2065 const struct btf_type *member_type) 2066 { 2067 btf_verifier_log_basic(env, struct_type, 2068 "Unsupported check_member"); 2069 return -EINVAL; 2070 } 2071 2072 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2073 const struct btf_type *struct_type, 2074 const struct btf_member *member, 2075 const struct btf_type *member_type) 2076 { 2077 btf_verifier_log_basic(env, struct_type, 2078 "Unsupported check_kflag_member"); 2079 return -EINVAL; 2080 } 2081 2082 /* Used for ptr, array struct/union and float type members. 2083 * int, enum and modifier types have their specific callback functions. 2084 */ 2085 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2086 const struct btf_type *struct_type, 2087 const struct btf_member *member, 2088 const struct btf_type *member_type) 2089 { 2090 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2091 btf_verifier_log_member(env, struct_type, member, 2092 "Invalid member bitfield_size"); 2093 return -EINVAL; 2094 } 2095 2096 /* bitfield size is 0, so member->offset represents bit offset only. 2097 * It is safe to call non kflag check_member variants. 2098 */ 2099 return btf_type_ops(member_type)->check_member(env, struct_type, 2100 member, 2101 member_type); 2102 } 2103 2104 static int btf_df_resolve(struct btf_verifier_env *env, 2105 const struct resolve_vertex *v) 2106 { 2107 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2108 return -EINVAL; 2109 } 2110 2111 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2112 u32 type_id, void *data, u8 bits_offsets, 2113 struct btf_show *show) 2114 { 2115 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2116 } 2117 2118 static int btf_int_check_member(struct btf_verifier_env *env, 2119 const struct btf_type *struct_type, 2120 const struct btf_member *member, 2121 const struct btf_type *member_type) 2122 { 2123 u32 int_data = btf_type_int(member_type); 2124 u32 struct_bits_off = member->offset; 2125 u32 struct_size = struct_type->size; 2126 u32 nr_copy_bits; 2127 u32 bytes_offset; 2128 2129 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2130 btf_verifier_log_member(env, struct_type, member, 2131 "bits_offset exceeds U32_MAX"); 2132 return -EINVAL; 2133 } 2134 2135 struct_bits_off += BTF_INT_OFFSET(int_data); 2136 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2137 nr_copy_bits = BTF_INT_BITS(int_data) + 2138 BITS_PER_BYTE_MASKED(struct_bits_off); 2139 2140 if (nr_copy_bits > BITS_PER_U128) { 2141 btf_verifier_log_member(env, struct_type, member, 2142 "nr_copy_bits exceeds 128"); 2143 return -EINVAL; 2144 } 2145 2146 if (struct_size < bytes_offset || 2147 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2148 btf_verifier_log_member(env, struct_type, member, 2149 "Member exceeds struct_size"); 2150 return -EINVAL; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2157 const struct btf_type *struct_type, 2158 const struct btf_member *member, 2159 const struct btf_type *member_type) 2160 { 2161 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2162 u32 int_data = btf_type_int(member_type); 2163 u32 struct_size = struct_type->size; 2164 u32 nr_copy_bits; 2165 2166 /* a regular int type is required for the kflag int member */ 2167 if (!btf_type_int_is_regular(member_type)) { 2168 btf_verifier_log_member(env, struct_type, member, 2169 "Invalid member base type"); 2170 return -EINVAL; 2171 } 2172 2173 /* check sanity of bitfield size */ 2174 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2175 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2176 nr_int_data_bits = BTF_INT_BITS(int_data); 2177 if (!nr_bits) { 2178 /* Not a bitfield member, member offset must be at byte 2179 * boundary. 2180 */ 2181 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2182 btf_verifier_log_member(env, struct_type, member, 2183 "Invalid member offset"); 2184 return -EINVAL; 2185 } 2186 2187 nr_bits = nr_int_data_bits; 2188 } else if (nr_bits > nr_int_data_bits) { 2189 btf_verifier_log_member(env, struct_type, member, 2190 "Invalid member bitfield_size"); 2191 return -EINVAL; 2192 } 2193 2194 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2195 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2196 if (nr_copy_bits > BITS_PER_U128) { 2197 btf_verifier_log_member(env, struct_type, member, 2198 "nr_copy_bits exceeds 128"); 2199 return -EINVAL; 2200 } 2201 2202 if (struct_size < bytes_offset || 2203 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2204 btf_verifier_log_member(env, struct_type, member, 2205 "Member exceeds struct_size"); 2206 return -EINVAL; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2213 const struct btf_type *t, 2214 u32 meta_left) 2215 { 2216 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2217 u16 encoding; 2218 2219 if (meta_left < meta_needed) { 2220 btf_verifier_log_basic(env, t, 2221 "meta_left:%u meta_needed:%u", 2222 meta_left, meta_needed); 2223 return -EINVAL; 2224 } 2225 2226 if (btf_type_vlen(t)) { 2227 btf_verifier_log_type(env, t, "vlen != 0"); 2228 return -EINVAL; 2229 } 2230 2231 if (btf_type_kflag(t)) { 2232 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2233 return -EINVAL; 2234 } 2235 2236 int_data = btf_type_int(t); 2237 if (int_data & ~BTF_INT_MASK) { 2238 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2239 int_data); 2240 return -EINVAL; 2241 } 2242 2243 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2244 2245 if (nr_bits > BITS_PER_U128) { 2246 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2247 BITS_PER_U128); 2248 return -EINVAL; 2249 } 2250 2251 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2252 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2253 return -EINVAL; 2254 } 2255 2256 /* 2257 * Only one of the encoding bits is allowed and it 2258 * should be sufficient for the pretty print purpose (i.e. decoding). 2259 * Multiple bits can be allowed later if it is found 2260 * to be insufficient. 2261 */ 2262 encoding = BTF_INT_ENCODING(int_data); 2263 if (encoding && 2264 encoding != BTF_INT_SIGNED && 2265 encoding != BTF_INT_CHAR && 2266 encoding != BTF_INT_BOOL) { 2267 btf_verifier_log_type(env, t, "Unsupported encoding"); 2268 return -ENOTSUPP; 2269 } 2270 2271 btf_verifier_log_type(env, t, NULL); 2272 2273 return meta_needed; 2274 } 2275 2276 static void btf_int_log(struct btf_verifier_env *env, 2277 const struct btf_type *t) 2278 { 2279 int int_data = btf_type_int(t); 2280 2281 btf_verifier_log(env, 2282 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2283 t->size, BTF_INT_OFFSET(int_data), 2284 BTF_INT_BITS(int_data), 2285 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2286 } 2287 2288 static void btf_int128_print(struct btf_show *show, void *data) 2289 { 2290 /* data points to a __int128 number. 2291 * Suppose 2292 * int128_num = *(__int128 *)data; 2293 * The below formulas shows what upper_num and lower_num represents: 2294 * upper_num = int128_num >> 64; 2295 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2296 */ 2297 u64 upper_num, lower_num; 2298 2299 #ifdef __BIG_ENDIAN_BITFIELD 2300 upper_num = *(u64 *)data; 2301 lower_num = *(u64 *)(data + 8); 2302 #else 2303 upper_num = *(u64 *)(data + 8); 2304 lower_num = *(u64 *)data; 2305 #endif 2306 if (upper_num == 0) 2307 btf_show_type_value(show, "0x%llx", lower_num); 2308 else 2309 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2310 lower_num); 2311 } 2312 2313 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2314 u16 right_shift_bits) 2315 { 2316 u64 upper_num, lower_num; 2317 2318 #ifdef __BIG_ENDIAN_BITFIELD 2319 upper_num = print_num[0]; 2320 lower_num = print_num[1]; 2321 #else 2322 upper_num = print_num[1]; 2323 lower_num = print_num[0]; 2324 #endif 2325 2326 /* shake out un-needed bits by shift/or operations */ 2327 if (left_shift_bits >= 64) { 2328 upper_num = lower_num << (left_shift_bits - 64); 2329 lower_num = 0; 2330 } else { 2331 upper_num = (upper_num << left_shift_bits) | 2332 (lower_num >> (64 - left_shift_bits)); 2333 lower_num = lower_num << left_shift_bits; 2334 } 2335 2336 if (right_shift_bits >= 64) { 2337 lower_num = upper_num >> (right_shift_bits - 64); 2338 upper_num = 0; 2339 } else { 2340 lower_num = (lower_num >> right_shift_bits) | 2341 (upper_num << (64 - right_shift_bits)); 2342 upper_num = upper_num >> right_shift_bits; 2343 } 2344 2345 #ifdef __BIG_ENDIAN_BITFIELD 2346 print_num[0] = upper_num; 2347 print_num[1] = lower_num; 2348 #else 2349 print_num[0] = lower_num; 2350 print_num[1] = upper_num; 2351 #endif 2352 } 2353 2354 static void btf_bitfield_show(void *data, u8 bits_offset, 2355 u8 nr_bits, struct btf_show *show) 2356 { 2357 u16 left_shift_bits, right_shift_bits; 2358 u8 nr_copy_bytes; 2359 u8 nr_copy_bits; 2360 u64 print_num[2] = {}; 2361 2362 nr_copy_bits = nr_bits + bits_offset; 2363 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2364 2365 memcpy(print_num, data, nr_copy_bytes); 2366 2367 #ifdef __BIG_ENDIAN_BITFIELD 2368 left_shift_bits = bits_offset; 2369 #else 2370 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2371 #endif 2372 right_shift_bits = BITS_PER_U128 - nr_bits; 2373 2374 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2375 btf_int128_print(show, print_num); 2376 } 2377 2378 2379 static void btf_int_bits_show(const struct btf *btf, 2380 const struct btf_type *t, 2381 void *data, u8 bits_offset, 2382 struct btf_show *show) 2383 { 2384 u32 int_data = btf_type_int(t); 2385 u8 nr_bits = BTF_INT_BITS(int_data); 2386 u8 total_bits_offset; 2387 2388 /* 2389 * bits_offset is at most 7. 2390 * BTF_INT_OFFSET() cannot exceed 128 bits. 2391 */ 2392 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2393 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2394 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2395 btf_bitfield_show(data, bits_offset, nr_bits, show); 2396 } 2397 2398 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2399 u32 type_id, void *data, u8 bits_offset, 2400 struct btf_show *show) 2401 { 2402 u32 int_data = btf_type_int(t); 2403 u8 encoding = BTF_INT_ENCODING(int_data); 2404 bool sign = encoding & BTF_INT_SIGNED; 2405 u8 nr_bits = BTF_INT_BITS(int_data); 2406 void *safe_data; 2407 2408 safe_data = btf_show_start_type(show, t, type_id, data); 2409 if (!safe_data) 2410 return; 2411 2412 if (bits_offset || BTF_INT_OFFSET(int_data) || 2413 BITS_PER_BYTE_MASKED(nr_bits)) { 2414 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2415 goto out; 2416 } 2417 2418 switch (nr_bits) { 2419 case 128: 2420 btf_int128_print(show, safe_data); 2421 break; 2422 case 64: 2423 if (sign) 2424 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2425 else 2426 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2427 break; 2428 case 32: 2429 if (sign) 2430 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2431 else 2432 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2433 break; 2434 case 16: 2435 if (sign) 2436 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2437 else 2438 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2439 break; 2440 case 8: 2441 if (show->state.array_encoding == BTF_INT_CHAR) { 2442 /* check for null terminator */ 2443 if (show->state.array_terminated) 2444 break; 2445 if (*(char *)data == '\0') { 2446 show->state.array_terminated = 1; 2447 break; 2448 } 2449 if (isprint(*(char *)data)) { 2450 btf_show_type_value(show, "'%c'", 2451 *(char *)safe_data); 2452 break; 2453 } 2454 } 2455 if (sign) 2456 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2457 else 2458 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2459 break; 2460 default: 2461 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2462 break; 2463 } 2464 out: 2465 btf_show_end_type(show); 2466 } 2467 2468 static const struct btf_kind_operations int_ops = { 2469 .check_meta = btf_int_check_meta, 2470 .resolve = btf_df_resolve, 2471 .check_member = btf_int_check_member, 2472 .check_kflag_member = btf_int_check_kflag_member, 2473 .log_details = btf_int_log, 2474 .show = btf_int_show, 2475 }; 2476 2477 static int btf_modifier_check_member(struct btf_verifier_env *env, 2478 const struct btf_type *struct_type, 2479 const struct btf_member *member, 2480 const struct btf_type *member_type) 2481 { 2482 const struct btf_type *resolved_type; 2483 u32 resolved_type_id = member->type; 2484 struct btf_member resolved_member; 2485 struct btf *btf = env->btf; 2486 2487 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2488 if (!resolved_type) { 2489 btf_verifier_log_member(env, struct_type, member, 2490 "Invalid member"); 2491 return -EINVAL; 2492 } 2493 2494 resolved_member = *member; 2495 resolved_member.type = resolved_type_id; 2496 2497 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2498 &resolved_member, 2499 resolved_type); 2500 } 2501 2502 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2503 const struct btf_type *struct_type, 2504 const struct btf_member *member, 2505 const struct btf_type *member_type) 2506 { 2507 const struct btf_type *resolved_type; 2508 u32 resolved_type_id = member->type; 2509 struct btf_member resolved_member; 2510 struct btf *btf = env->btf; 2511 2512 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2513 if (!resolved_type) { 2514 btf_verifier_log_member(env, struct_type, member, 2515 "Invalid member"); 2516 return -EINVAL; 2517 } 2518 2519 resolved_member = *member; 2520 resolved_member.type = resolved_type_id; 2521 2522 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2523 &resolved_member, 2524 resolved_type); 2525 } 2526 2527 static int btf_ptr_check_member(struct btf_verifier_env *env, 2528 const struct btf_type *struct_type, 2529 const struct btf_member *member, 2530 const struct btf_type *member_type) 2531 { 2532 u32 struct_size, struct_bits_off, bytes_offset; 2533 2534 struct_size = struct_type->size; 2535 struct_bits_off = member->offset; 2536 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2537 2538 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2539 btf_verifier_log_member(env, struct_type, member, 2540 "Member is not byte aligned"); 2541 return -EINVAL; 2542 } 2543 2544 if (struct_size - bytes_offset < sizeof(void *)) { 2545 btf_verifier_log_member(env, struct_type, member, 2546 "Member exceeds struct_size"); 2547 return -EINVAL; 2548 } 2549 2550 return 0; 2551 } 2552 2553 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2554 const struct btf_type *t, 2555 u32 meta_left) 2556 { 2557 const char *value; 2558 2559 if (btf_type_vlen(t)) { 2560 btf_verifier_log_type(env, t, "vlen != 0"); 2561 return -EINVAL; 2562 } 2563 2564 if (btf_type_kflag(t)) { 2565 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2566 return -EINVAL; 2567 } 2568 2569 if (!BTF_TYPE_ID_VALID(t->type)) { 2570 btf_verifier_log_type(env, t, "Invalid type_id"); 2571 return -EINVAL; 2572 } 2573 2574 /* typedef/type_tag type must have a valid name, and other ref types, 2575 * volatile, const, restrict, should have a null name. 2576 */ 2577 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2578 if (!t->name_off || 2579 !btf_name_valid_identifier(env->btf, t->name_off)) { 2580 btf_verifier_log_type(env, t, "Invalid name"); 2581 return -EINVAL; 2582 } 2583 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2584 value = btf_name_by_offset(env->btf, t->name_off); 2585 if (!value || !value[0]) { 2586 btf_verifier_log_type(env, t, "Invalid name"); 2587 return -EINVAL; 2588 } 2589 } else { 2590 if (t->name_off) { 2591 btf_verifier_log_type(env, t, "Invalid name"); 2592 return -EINVAL; 2593 } 2594 } 2595 2596 btf_verifier_log_type(env, t, NULL); 2597 2598 return 0; 2599 } 2600 2601 static int btf_modifier_resolve(struct btf_verifier_env *env, 2602 const struct resolve_vertex *v) 2603 { 2604 const struct btf_type *t = v->t; 2605 const struct btf_type *next_type; 2606 u32 next_type_id = t->type; 2607 struct btf *btf = env->btf; 2608 2609 next_type = btf_type_by_id(btf, next_type_id); 2610 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2611 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2612 return -EINVAL; 2613 } 2614 2615 if (!env_type_is_resolve_sink(env, next_type) && 2616 !env_type_is_resolved(env, next_type_id)) 2617 return env_stack_push(env, next_type, next_type_id); 2618 2619 /* Figure out the resolved next_type_id with size. 2620 * They will be stored in the current modifier's 2621 * resolved_ids and resolved_sizes such that it can 2622 * save us a few type-following when we use it later (e.g. in 2623 * pretty print). 2624 */ 2625 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2626 if (env_type_is_resolved(env, next_type_id)) 2627 next_type = btf_type_id_resolve(btf, &next_type_id); 2628 2629 /* "typedef void new_void", "const void"...etc */ 2630 if (!btf_type_is_void(next_type) && 2631 !btf_type_is_fwd(next_type) && 2632 !btf_type_is_func_proto(next_type)) { 2633 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2634 return -EINVAL; 2635 } 2636 } 2637 2638 env_stack_pop_resolved(env, next_type_id, 0); 2639 2640 return 0; 2641 } 2642 2643 static int btf_var_resolve(struct btf_verifier_env *env, 2644 const struct resolve_vertex *v) 2645 { 2646 const struct btf_type *next_type; 2647 const struct btf_type *t = v->t; 2648 u32 next_type_id = t->type; 2649 struct btf *btf = env->btf; 2650 2651 next_type = btf_type_by_id(btf, next_type_id); 2652 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2653 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2654 return -EINVAL; 2655 } 2656 2657 if (!env_type_is_resolve_sink(env, next_type) && 2658 !env_type_is_resolved(env, next_type_id)) 2659 return env_stack_push(env, next_type, next_type_id); 2660 2661 if (btf_type_is_modifier(next_type)) { 2662 const struct btf_type *resolved_type; 2663 u32 resolved_type_id; 2664 2665 resolved_type_id = next_type_id; 2666 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2667 2668 if (btf_type_is_ptr(resolved_type) && 2669 !env_type_is_resolve_sink(env, resolved_type) && 2670 !env_type_is_resolved(env, resolved_type_id)) 2671 return env_stack_push(env, resolved_type, 2672 resolved_type_id); 2673 } 2674 2675 /* We must resolve to something concrete at this point, no 2676 * forward types or similar that would resolve to size of 2677 * zero is allowed. 2678 */ 2679 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2680 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2681 return -EINVAL; 2682 } 2683 2684 env_stack_pop_resolved(env, next_type_id, 0); 2685 2686 return 0; 2687 } 2688 2689 static int btf_ptr_resolve(struct btf_verifier_env *env, 2690 const struct resolve_vertex *v) 2691 { 2692 const struct btf_type *next_type; 2693 const struct btf_type *t = v->t; 2694 u32 next_type_id = t->type; 2695 struct btf *btf = env->btf; 2696 2697 next_type = btf_type_by_id(btf, next_type_id); 2698 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2699 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2700 return -EINVAL; 2701 } 2702 2703 if (!env_type_is_resolve_sink(env, next_type) && 2704 !env_type_is_resolved(env, next_type_id)) 2705 return env_stack_push(env, next_type, next_type_id); 2706 2707 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2708 * the modifier may have stopped resolving when it was resolved 2709 * to a ptr (last-resolved-ptr). 2710 * 2711 * We now need to continue from the last-resolved-ptr to 2712 * ensure the last-resolved-ptr will not referring back to 2713 * the current ptr (t). 2714 */ 2715 if (btf_type_is_modifier(next_type)) { 2716 const struct btf_type *resolved_type; 2717 u32 resolved_type_id; 2718 2719 resolved_type_id = next_type_id; 2720 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2721 2722 if (btf_type_is_ptr(resolved_type) && 2723 !env_type_is_resolve_sink(env, resolved_type) && 2724 !env_type_is_resolved(env, resolved_type_id)) 2725 return env_stack_push(env, resolved_type, 2726 resolved_type_id); 2727 } 2728 2729 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2730 if (env_type_is_resolved(env, next_type_id)) 2731 next_type = btf_type_id_resolve(btf, &next_type_id); 2732 2733 if (!btf_type_is_void(next_type) && 2734 !btf_type_is_fwd(next_type) && 2735 !btf_type_is_func_proto(next_type)) { 2736 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2737 return -EINVAL; 2738 } 2739 } 2740 2741 env_stack_pop_resolved(env, next_type_id, 0); 2742 2743 return 0; 2744 } 2745 2746 static void btf_modifier_show(const struct btf *btf, 2747 const struct btf_type *t, 2748 u32 type_id, void *data, 2749 u8 bits_offset, struct btf_show *show) 2750 { 2751 if (btf->resolved_ids) 2752 t = btf_type_id_resolve(btf, &type_id); 2753 else 2754 t = btf_type_skip_modifiers(btf, type_id, NULL); 2755 2756 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2757 } 2758 2759 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2760 u32 type_id, void *data, u8 bits_offset, 2761 struct btf_show *show) 2762 { 2763 t = btf_type_id_resolve(btf, &type_id); 2764 2765 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2766 } 2767 2768 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2769 u32 type_id, void *data, u8 bits_offset, 2770 struct btf_show *show) 2771 { 2772 void *safe_data; 2773 2774 safe_data = btf_show_start_type(show, t, type_id, data); 2775 if (!safe_data) 2776 return; 2777 2778 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2779 if (show->flags & BTF_SHOW_PTR_RAW) 2780 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2781 else 2782 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2783 btf_show_end_type(show); 2784 } 2785 2786 static void btf_ref_type_log(struct btf_verifier_env *env, 2787 const struct btf_type *t) 2788 { 2789 btf_verifier_log(env, "type_id=%u", t->type); 2790 } 2791 2792 static struct btf_kind_operations modifier_ops = { 2793 .check_meta = btf_ref_type_check_meta, 2794 .resolve = btf_modifier_resolve, 2795 .check_member = btf_modifier_check_member, 2796 .check_kflag_member = btf_modifier_check_kflag_member, 2797 .log_details = btf_ref_type_log, 2798 .show = btf_modifier_show, 2799 }; 2800 2801 static struct btf_kind_operations ptr_ops = { 2802 .check_meta = btf_ref_type_check_meta, 2803 .resolve = btf_ptr_resolve, 2804 .check_member = btf_ptr_check_member, 2805 .check_kflag_member = btf_generic_check_kflag_member, 2806 .log_details = btf_ref_type_log, 2807 .show = btf_ptr_show, 2808 }; 2809 2810 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2811 const struct btf_type *t, 2812 u32 meta_left) 2813 { 2814 if (btf_type_vlen(t)) { 2815 btf_verifier_log_type(env, t, "vlen != 0"); 2816 return -EINVAL; 2817 } 2818 2819 if (t->type) { 2820 btf_verifier_log_type(env, t, "type != 0"); 2821 return -EINVAL; 2822 } 2823 2824 /* fwd type must have a valid name */ 2825 if (!t->name_off || 2826 !btf_name_valid_identifier(env->btf, t->name_off)) { 2827 btf_verifier_log_type(env, t, "Invalid name"); 2828 return -EINVAL; 2829 } 2830 2831 btf_verifier_log_type(env, t, NULL); 2832 2833 return 0; 2834 } 2835 2836 static void btf_fwd_type_log(struct btf_verifier_env *env, 2837 const struct btf_type *t) 2838 { 2839 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2840 } 2841 2842 static struct btf_kind_operations fwd_ops = { 2843 .check_meta = btf_fwd_check_meta, 2844 .resolve = btf_df_resolve, 2845 .check_member = btf_df_check_member, 2846 .check_kflag_member = btf_df_check_kflag_member, 2847 .log_details = btf_fwd_type_log, 2848 .show = btf_df_show, 2849 }; 2850 2851 static int btf_array_check_member(struct btf_verifier_env *env, 2852 const struct btf_type *struct_type, 2853 const struct btf_member *member, 2854 const struct btf_type *member_type) 2855 { 2856 u32 struct_bits_off = member->offset; 2857 u32 struct_size, bytes_offset; 2858 u32 array_type_id, array_size; 2859 struct btf *btf = env->btf; 2860 2861 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2862 btf_verifier_log_member(env, struct_type, member, 2863 "Member is not byte aligned"); 2864 return -EINVAL; 2865 } 2866 2867 array_type_id = member->type; 2868 btf_type_id_size(btf, &array_type_id, &array_size); 2869 struct_size = struct_type->size; 2870 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2871 if (struct_size - bytes_offset < array_size) { 2872 btf_verifier_log_member(env, struct_type, member, 2873 "Member exceeds struct_size"); 2874 return -EINVAL; 2875 } 2876 2877 return 0; 2878 } 2879 2880 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2881 const struct btf_type *t, 2882 u32 meta_left) 2883 { 2884 const struct btf_array *array = btf_type_array(t); 2885 u32 meta_needed = sizeof(*array); 2886 2887 if (meta_left < meta_needed) { 2888 btf_verifier_log_basic(env, t, 2889 "meta_left:%u meta_needed:%u", 2890 meta_left, meta_needed); 2891 return -EINVAL; 2892 } 2893 2894 /* array type should not have a name */ 2895 if (t->name_off) { 2896 btf_verifier_log_type(env, t, "Invalid name"); 2897 return -EINVAL; 2898 } 2899 2900 if (btf_type_vlen(t)) { 2901 btf_verifier_log_type(env, t, "vlen != 0"); 2902 return -EINVAL; 2903 } 2904 2905 if (btf_type_kflag(t)) { 2906 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2907 return -EINVAL; 2908 } 2909 2910 if (t->size) { 2911 btf_verifier_log_type(env, t, "size != 0"); 2912 return -EINVAL; 2913 } 2914 2915 /* Array elem type and index type cannot be in type void, 2916 * so !array->type and !array->index_type are not allowed. 2917 */ 2918 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2919 btf_verifier_log_type(env, t, "Invalid elem"); 2920 return -EINVAL; 2921 } 2922 2923 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2924 btf_verifier_log_type(env, t, "Invalid index"); 2925 return -EINVAL; 2926 } 2927 2928 btf_verifier_log_type(env, t, NULL); 2929 2930 return meta_needed; 2931 } 2932 2933 static int btf_array_resolve(struct btf_verifier_env *env, 2934 const struct resolve_vertex *v) 2935 { 2936 const struct btf_array *array = btf_type_array(v->t); 2937 const struct btf_type *elem_type, *index_type; 2938 u32 elem_type_id, index_type_id; 2939 struct btf *btf = env->btf; 2940 u32 elem_size; 2941 2942 /* Check array->index_type */ 2943 index_type_id = array->index_type; 2944 index_type = btf_type_by_id(btf, index_type_id); 2945 if (btf_type_nosize_or_null(index_type) || 2946 btf_type_is_resolve_source_only(index_type)) { 2947 btf_verifier_log_type(env, v->t, "Invalid index"); 2948 return -EINVAL; 2949 } 2950 2951 if (!env_type_is_resolve_sink(env, index_type) && 2952 !env_type_is_resolved(env, index_type_id)) 2953 return env_stack_push(env, index_type, index_type_id); 2954 2955 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2956 if (!index_type || !btf_type_is_int(index_type) || 2957 !btf_type_int_is_regular(index_type)) { 2958 btf_verifier_log_type(env, v->t, "Invalid index"); 2959 return -EINVAL; 2960 } 2961 2962 /* Check array->type */ 2963 elem_type_id = array->type; 2964 elem_type = btf_type_by_id(btf, elem_type_id); 2965 if (btf_type_nosize_or_null(elem_type) || 2966 btf_type_is_resolve_source_only(elem_type)) { 2967 btf_verifier_log_type(env, v->t, 2968 "Invalid elem"); 2969 return -EINVAL; 2970 } 2971 2972 if (!env_type_is_resolve_sink(env, elem_type) && 2973 !env_type_is_resolved(env, elem_type_id)) 2974 return env_stack_push(env, elem_type, elem_type_id); 2975 2976 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2977 if (!elem_type) { 2978 btf_verifier_log_type(env, v->t, "Invalid elem"); 2979 return -EINVAL; 2980 } 2981 2982 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2983 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2984 return -EINVAL; 2985 } 2986 2987 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2988 btf_verifier_log_type(env, v->t, 2989 "Array size overflows U32_MAX"); 2990 return -EINVAL; 2991 } 2992 2993 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2994 2995 return 0; 2996 } 2997 2998 static void btf_array_log(struct btf_verifier_env *env, 2999 const struct btf_type *t) 3000 { 3001 const struct btf_array *array = btf_type_array(t); 3002 3003 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3004 array->type, array->index_type, array->nelems); 3005 } 3006 3007 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3008 u32 type_id, void *data, u8 bits_offset, 3009 struct btf_show *show) 3010 { 3011 const struct btf_array *array = btf_type_array(t); 3012 const struct btf_kind_operations *elem_ops; 3013 const struct btf_type *elem_type; 3014 u32 i, elem_size = 0, elem_type_id; 3015 u16 encoding = 0; 3016 3017 elem_type_id = array->type; 3018 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3019 if (elem_type && btf_type_has_size(elem_type)) 3020 elem_size = elem_type->size; 3021 3022 if (elem_type && btf_type_is_int(elem_type)) { 3023 u32 int_type = btf_type_int(elem_type); 3024 3025 encoding = BTF_INT_ENCODING(int_type); 3026 3027 /* 3028 * BTF_INT_CHAR encoding never seems to be set for 3029 * char arrays, so if size is 1 and element is 3030 * printable as a char, we'll do that. 3031 */ 3032 if (elem_size == 1) 3033 encoding = BTF_INT_CHAR; 3034 } 3035 3036 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3037 return; 3038 3039 if (!elem_type) 3040 goto out; 3041 elem_ops = btf_type_ops(elem_type); 3042 3043 for (i = 0; i < array->nelems; i++) { 3044 3045 btf_show_start_array_member(show); 3046 3047 elem_ops->show(btf, elem_type, elem_type_id, data, 3048 bits_offset, show); 3049 data += elem_size; 3050 3051 btf_show_end_array_member(show); 3052 3053 if (show->state.array_terminated) 3054 break; 3055 } 3056 out: 3057 btf_show_end_array_type(show); 3058 } 3059 3060 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3061 u32 type_id, void *data, u8 bits_offset, 3062 struct btf_show *show) 3063 { 3064 const struct btf_member *m = show->state.member; 3065 3066 /* 3067 * First check if any members would be shown (are non-zero). 3068 * See comments above "struct btf_show" definition for more 3069 * details on how this works at a high-level. 3070 */ 3071 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3072 if (!show->state.depth_check) { 3073 show->state.depth_check = show->state.depth + 1; 3074 show->state.depth_to_show = 0; 3075 } 3076 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3077 show->state.member = m; 3078 3079 if (show->state.depth_check != show->state.depth + 1) 3080 return; 3081 show->state.depth_check = 0; 3082 3083 if (show->state.depth_to_show <= show->state.depth) 3084 return; 3085 /* 3086 * Reaching here indicates we have recursed and found 3087 * non-zero array member(s). 3088 */ 3089 } 3090 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3091 } 3092 3093 static struct btf_kind_operations array_ops = { 3094 .check_meta = btf_array_check_meta, 3095 .resolve = btf_array_resolve, 3096 .check_member = btf_array_check_member, 3097 .check_kflag_member = btf_generic_check_kflag_member, 3098 .log_details = btf_array_log, 3099 .show = btf_array_show, 3100 }; 3101 3102 static int btf_struct_check_member(struct btf_verifier_env *env, 3103 const struct btf_type *struct_type, 3104 const struct btf_member *member, 3105 const struct btf_type *member_type) 3106 { 3107 u32 struct_bits_off = member->offset; 3108 u32 struct_size, bytes_offset; 3109 3110 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3111 btf_verifier_log_member(env, struct_type, member, 3112 "Member is not byte aligned"); 3113 return -EINVAL; 3114 } 3115 3116 struct_size = struct_type->size; 3117 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3118 if (struct_size - bytes_offset < member_type->size) { 3119 btf_verifier_log_member(env, struct_type, member, 3120 "Member exceeds struct_size"); 3121 return -EINVAL; 3122 } 3123 3124 return 0; 3125 } 3126 3127 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3128 const struct btf_type *t, 3129 u32 meta_left) 3130 { 3131 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3132 const struct btf_member *member; 3133 u32 meta_needed, last_offset; 3134 struct btf *btf = env->btf; 3135 u32 struct_size = t->size; 3136 u32 offset; 3137 u16 i; 3138 3139 meta_needed = btf_type_vlen(t) * sizeof(*member); 3140 if (meta_left < meta_needed) { 3141 btf_verifier_log_basic(env, t, 3142 "meta_left:%u meta_needed:%u", 3143 meta_left, meta_needed); 3144 return -EINVAL; 3145 } 3146 3147 /* struct type either no name or a valid one */ 3148 if (t->name_off && 3149 !btf_name_valid_identifier(env->btf, t->name_off)) { 3150 btf_verifier_log_type(env, t, "Invalid name"); 3151 return -EINVAL; 3152 } 3153 3154 btf_verifier_log_type(env, t, NULL); 3155 3156 last_offset = 0; 3157 for_each_member(i, t, member) { 3158 if (!btf_name_offset_valid(btf, member->name_off)) { 3159 btf_verifier_log_member(env, t, member, 3160 "Invalid member name_offset:%u", 3161 member->name_off); 3162 return -EINVAL; 3163 } 3164 3165 /* struct member either no name or a valid one */ 3166 if (member->name_off && 3167 !btf_name_valid_identifier(btf, member->name_off)) { 3168 btf_verifier_log_member(env, t, member, "Invalid name"); 3169 return -EINVAL; 3170 } 3171 /* A member cannot be in type void */ 3172 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3173 btf_verifier_log_member(env, t, member, 3174 "Invalid type_id"); 3175 return -EINVAL; 3176 } 3177 3178 offset = __btf_member_bit_offset(t, member); 3179 if (is_union && offset) { 3180 btf_verifier_log_member(env, t, member, 3181 "Invalid member bits_offset"); 3182 return -EINVAL; 3183 } 3184 3185 /* 3186 * ">" instead of ">=" because the last member could be 3187 * "char a[0];" 3188 */ 3189 if (last_offset > offset) { 3190 btf_verifier_log_member(env, t, member, 3191 "Invalid member bits_offset"); 3192 return -EINVAL; 3193 } 3194 3195 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3196 btf_verifier_log_member(env, t, member, 3197 "Member bits_offset exceeds its struct size"); 3198 return -EINVAL; 3199 } 3200 3201 btf_verifier_log_member(env, t, member, NULL); 3202 last_offset = offset; 3203 } 3204 3205 return meta_needed; 3206 } 3207 3208 static int btf_struct_resolve(struct btf_verifier_env *env, 3209 const struct resolve_vertex *v) 3210 { 3211 const struct btf_member *member; 3212 int err; 3213 u16 i; 3214 3215 /* Before continue resolving the next_member, 3216 * ensure the last member is indeed resolved to a 3217 * type with size info. 3218 */ 3219 if (v->next_member) { 3220 const struct btf_type *last_member_type; 3221 const struct btf_member *last_member; 3222 u32 last_member_type_id; 3223 3224 last_member = btf_type_member(v->t) + v->next_member - 1; 3225 last_member_type_id = last_member->type; 3226 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3227 last_member_type_id))) 3228 return -EINVAL; 3229 3230 last_member_type = btf_type_by_id(env->btf, 3231 last_member_type_id); 3232 if (btf_type_kflag(v->t)) 3233 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3234 last_member, 3235 last_member_type); 3236 else 3237 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3238 last_member, 3239 last_member_type); 3240 if (err) 3241 return err; 3242 } 3243 3244 for_each_member_from(i, v->next_member, v->t, member) { 3245 u32 member_type_id = member->type; 3246 const struct btf_type *member_type = btf_type_by_id(env->btf, 3247 member_type_id); 3248 3249 if (btf_type_nosize_or_null(member_type) || 3250 btf_type_is_resolve_source_only(member_type)) { 3251 btf_verifier_log_member(env, v->t, member, 3252 "Invalid member"); 3253 return -EINVAL; 3254 } 3255 3256 if (!env_type_is_resolve_sink(env, member_type) && 3257 !env_type_is_resolved(env, member_type_id)) { 3258 env_stack_set_next_member(env, i + 1); 3259 return env_stack_push(env, member_type, member_type_id); 3260 } 3261 3262 if (btf_type_kflag(v->t)) 3263 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3264 member, 3265 member_type); 3266 else 3267 err = btf_type_ops(member_type)->check_member(env, v->t, 3268 member, 3269 member_type); 3270 if (err) 3271 return err; 3272 } 3273 3274 env_stack_pop_resolved(env, 0, 0); 3275 3276 return 0; 3277 } 3278 3279 static void btf_struct_log(struct btf_verifier_env *env, 3280 const struct btf_type *t) 3281 { 3282 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3283 } 3284 3285 enum { 3286 BTF_FIELD_IGNORE = 0, 3287 BTF_FIELD_FOUND = 1, 3288 }; 3289 3290 struct btf_field_info { 3291 enum btf_field_type type; 3292 u32 off; 3293 union { 3294 struct { 3295 u32 type_id; 3296 } kptr; 3297 struct { 3298 const char *node_name; 3299 u32 value_btf_id; 3300 } graph_root; 3301 }; 3302 }; 3303 3304 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3305 u32 off, int sz, enum btf_field_type field_type, 3306 struct btf_field_info *info) 3307 { 3308 if (!__btf_type_is_struct(t)) 3309 return BTF_FIELD_IGNORE; 3310 if (t->size != sz) 3311 return BTF_FIELD_IGNORE; 3312 info->type = field_type; 3313 info->off = off; 3314 return BTF_FIELD_FOUND; 3315 } 3316 3317 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3318 u32 off, int sz, struct btf_field_info *info) 3319 { 3320 enum btf_field_type type; 3321 u32 res_id; 3322 3323 /* Permit modifiers on the pointer itself */ 3324 if (btf_type_is_volatile(t)) 3325 t = btf_type_by_id(btf, t->type); 3326 /* For PTR, sz is always == 8 */ 3327 if (!btf_type_is_ptr(t)) 3328 return BTF_FIELD_IGNORE; 3329 t = btf_type_by_id(btf, t->type); 3330 3331 if (!btf_type_is_type_tag(t)) 3332 return BTF_FIELD_IGNORE; 3333 /* Reject extra tags */ 3334 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3335 return -EINVAL; 3336 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3337 type = BPF_KPTR_UNREF; 3338 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3339 type = BPF_KPTR_REF; 3340 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3341 type = BPF_KPTR_PERCPU; 3342 else 3343 return -EINVAL; 3344 3345 /* Get the base type */ 3346 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3347 /* Only pointer to struct is allowed */ 3348 if (!__btf_type_is_struct(t)) 3349 return -EINVAL; 3350 3351 info->type = type; 3352 info->off = off; 3353 info->kptr.type_id = res_id; 3354 return BTF_FIELD_FOUND; 3355 } 3356 3357 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3358 int comp_idx, const char *tag_key, int last_id) 3359 { 3360 int len = strlen(tag_key); 3361 int i, n; 3362 3363 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3364 const struct btf_type *t = btf_type_by_id(btf, i); 3365 3366 if (!btf_type_is_decl_tag(t)) 3367 continue; 3368 if (pt != btf_type_by_id(btf, t->type)) 3369 continue; 3370 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3371 continue; 3372 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3373 continue; 3374 return i; 3375 } 3376 return -ENOENT; 3377 } 3378 3379 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3380 int comp_idx, const char *tag_key) 3381 { 3382 const char *value = NULL; 3383 const struct btf_type *t; 3384 int len, id; 3385 3386 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3387 if (id < 0) 3388 return ERR_PTR(id); 3389 3390 t = btf_type_by_id(btf, id); 3391 len = strlen(tag_key); 3392 value = __btf_name_by_offset(btf, t->name_off) + len; 3393 3394 /* Prevent duplicate entries for same type */ 3395 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3396 if (id >= 0) 3397 return ERR_PTR(-EEXIST); 3398 3399 return value; 3400 } 3401 3402 static int 3403 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3404 const struct btf_type *t, int comp_idx, u32 off, 3405 int sz, struct btf_field_info *info, 3406 enum btf_field_type head_type) 3407 { 3408 const char *node_field_name; 3409 const char *value_type; 3410 s32 id; 3411 3412 if (!__btf_type_is_struct(t)) 3413 return BTF_FIELD_IGNORE; 3414 if (t->size != sz) 3415 return BTF_FIELD_IGNORE; 3416 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3417 if (IS_ERR(value_type)) 3418 return -EINVAL; 3419 node_field_name = strstr(value_type, ":"); 3420 if (!node_field_name) 3421 return -EINVAL; 3422 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3423 if (!value_type) 3424 return -ENOMEM; 3425 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3426 kfree(value_type); 3427 if (id < 0) 3428 return id; 3429 node_field_name++; 3430 if (str_is_empty(node_field_name)) 3431 return -EINVAL; 3432 info->type = head_type; 3433 info->off = off; 3434 info->graph_root.value_btf_id = id; 3435 info->graph_root.node_name = node_field_name; 3436 return BTF_FIELD_FOUND; 3437 } 3438 3439 #define field_mask_test_name(field_type, field_type_str) \ 3440 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3441 type = field_type; \ 3442 goto end; \ 3443 } 3444 3445 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3446 u32 field_mask, u32 *seen_mask, 3447 int *align, int *sz) 3448 { 3449 int type = 0; 3450 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3451 3452 if (field_mask & BPF_SPIN_LOCK) { 3453 if (!strcmp(name, "bpf_spin_lock")) { 3454 if (*seen_mask & BPF_SPIN_LOCK) 3455 return -E2BIG; 3456 *seen_mask |= BPF_SPIN_LOCK; 3457 type = BPF_SPIN_LOCK; 3458 goto end; 3459 } 3460 } 3461 if (field_mask & BPF_TIMER) { 3462 if (!strcmp(name, "bpf_timer")) { 3463 if (*seen_mask & BPF_TIMER) 3464 return -E2BIG; 3465 *seen_mask |= BPF_TIMER; 3466 type = BPF_TIMER; 3467 goto end; 3468 } 3469 } 3470 if (field_mask & BPF_WORKQUEUE) { 3471 if (!strcmp(name, "bpf_wq")) { 3472 if (*seen_mask & BPF_WORKQUEUE) 3473 return -E2BIG; 3474 *seen_mask |= BPF_WORKQUEUE; 3475 type = BPF_WORKQUEUE; 3476 goto end; 3477 } 3478 } 3479 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3480 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3481 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3482 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3483 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3484 3485 /* Only return BPF_KPTR when all other types with matchable names fail */ 3486 if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) { 3487 type = BPF_KPTR_REF; 3488 goto end; 3489 } 3490 return 0; 3491 end: 3492 *sz = btf_field_type_size(type); 3493 *align = btf_field_type_align(type); 3494 return type; 3495 } 3496 3497 #undef field_mask_test_name 3498 3499 /* Repeat a number of fields for a specified number of times. 3500 * 3501 * Copy the fields starting from the first field and repeat them for 3502 * repeat_cnt times. The fields are repeated by adding the offset of each 3503 * field with 3504 * (i + 1) * elem_size 3505 * where i is the repeat index and elem_size is the size of an element. 3506 */ 3507 static int btf_repeat_fields(struct btf_field_info *info, 3508 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3509 { 3510 u32 i, j; 3511 u32 cur; 3512 3513 /* Ensure not repeating fields that should not be repeated. */ 3514 for (i = 0; i < field_cnt; i++) { 3515 switch (info[i].type) { 3516 case BPF_KPTR_UNREF: 3517 case BPF_KPTR_REF: 3518 case BPF_KPTR_PERCPU: 3519 case BPF_LIST_HEAD: 3520 case BPF_RB_ROOT: 3521 break; 3522 default: 3523 return -EINVAL; 3524 } 3525 } 3526 3527 cur = field_cnt; 3528 for (i = 0; i < repeat_cnt; i++) { 3529 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3530 for (j = 0; j < field_cnt; j++) 3531 info[cur++].off += (i + 1) * elem_size; 3532 } 3533 3534 return 0; 3535 } 3536 3537 static int btf_find_struct_field(const struct btf *btf, 3538 const struct btf_type *t, u32 field_mask, 3539 struct btf_field_info *info, int info_cnt, 3540 u32 level); 3541 3542 /* Find special fields in the struct type of a field. 3543 * 3544 * This function is used to find fields of special types that is not a 3545 * global variable or a direct field of a struct type. It also handles the 3546 * repetition if it is the element type of an array. 3547 */ 3548 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3549 u32 off, u32 nelems, 3550 u32 field_mask, struct btf_field_info *info, 3551 int info_cnt, u32 level) 3552 { 3553 int ret, err, i; 3554 3555 level++; 3556 if (level >= MAX_RESOLVE_DEPTH) 3557 return -E2BIG; 3558 3559 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3560 3561 if (ret <= 0) 3562 return ret; 3563 3564 /* Shift the offsets of the nested struct fields to the offsets 3565 * related to the container. 3566 */ 3567 for (i = 0; i < ret; i++) 3568 info[i].off += off; 3569 3570 if (nelems > 1) { 3571 err = btf_repeat_fields(info, ret, nelems - 1, t->size); 3572 if (err == 0) 3573 ret *= nelems; 3574 else 3575 ret = err; 3576 } 3577 3578 return ret; 3579 } 3580 3581 static int btf_find_field_one(const struct btf *btf, 3582 const struct btf_type *var, 3583 const struct btf_type *var_type, 3584 int var_idx, 3585 u32 off, u32 expected_size, 3586 u32 field_mask, u32 *seen_mask, 3587 struct btf_field_info *info, int info_cnt, 3588 u32 level) 3589 { 3590 int ret, align, sz, field_type; 3591 struct btf_field_info tmp; 3592 const struct btf_array *array; 3593 u32 i, nelems = 1; 3594 3595 /* Walk into array types to find the element type and the number of 3596 * elements in the (flattened) array. 3597 */ 3598 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3599 array = btf_array(var_type); 3600 nelems *= array->nelems; 3601 var_type = btf_type_by_id(btf, array->type); 3602 } 3603 if (i == MAX_RESOLVE_DEPTH) 3604 return -E2BIG; 3605 if (nelems == 0) 3606 return 0; 3607 3608 field_type = btf_get_field_type(btf, var_type, 3609 field_mask, seen_mask, &align, &sz); 3610 /* Look into variables of struct types */ 3611 if (!field_type && __btf_type_is_struct(var_type)) { 3612 sz = var_type->size; 3613 if (expected_size && expected_size != sz * nelems) 3614 return 0; 3615 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3616 &info[0], info_cnt, level); 3617 return ret; 3618 } 3619 3620 if (field_type == 0) 3621 return 0; 3622 if (field_type < 0) 3623 return field_type; 3624 3625 if (expected_size && expected_size != sz * nelems) 3626 return 0; 3627 if (off % align) 3628 return 0; 3629 3630 switch (field_type) { 3631 case BPF_SPIN_LOCK: 3632 case BPF_TIMER: 3633 case BPF_WORKQUEUE: 3634 case BPF_LIST_NODE: 3635 case BPF_RB_NODE: 3636 case BPF_REFCOUNT: 3637 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3638 info_cnt ? &info[0] : &tmp); 3639 if (ret < 0) 3640 return ret; 3641 break; 3642 case BPF_KPTR_UNREF: 3643 case BPF_KPTR_REF: 3644 case BPF_KPTR_PERCPU: 3645 ret = btf_find_kptr(btf, var_type, off, sz, 3646 info_cnt ? &info[0] : &tmp); 3647 if (ret < 0) 3648 return ret; 3649 break; 3650 case BPF_LIST_HEAD: 3651 case BPF_RB_ROOT: 3652 ret = btf_find_graph_root(btf, var, var_type, 3653 var_idx, off, sz, 3654 info_cnt ? &info[0] : &tmp, 3655 field_type); 3656 if (ret < 0) 3657 return ret; 3658 break; 3659 default: 3660 return -EFAULT; 3661 } 3662 3663 if (ret == BTF_FIELD_IGNORE) 3664 return 0; 3665 if (nelems > info_cnt) 3666 return -E2BIG; 3667 if (nelems > 1) { 3668 ret = btf_repeat_fields(info, 1, nelems - 1, sz); 3669 if (ret < 0) 3670 return ret; 3671 } 3672 return nelems; 3673 } 3674 3675 static int btf_find_struct_field(const struct btf *btf, 3676 const struct btf_type *t, u32 field_mask, 3677 struct btf_field_info *info, int info_cnt, 3678 u32 level) 3679 { 3680 int ret, idx = 0; 3681 const struct btf_member *member; 3682 u32 i, off, seen_mask = 0; 3683 3684 for_each_member(i, t, member) { 3685 const struct btf_type *member_type = btf_type_by_id(btf, 3686 member->type); 3687 3688 off = __btf_member_bit_offset(t, member); 3689 if (off % 8) 3690 /* valid C code cannot generate such BTF */ 3691 return -EINVAL; 3692 off /= 8; 3693 3694 ret = btf_find_field_one(btf, t, member_type, i, 3695 off, 0, 3696 field_mask, &seen_mask, 3697 &info[idx], info_cnt - idx, level); 3698 if (ret < 0) 3699 return ret; 3700 idx += ret; 3701 } 3702 return idx; 3703 } 3704 3705 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3706 u32 field_mask, struct btf_field_info *info, 3707 int info_cnt, u32 level) 3708 { 3709 int ret, idx = 0; 3710 const struct btf_var_secinfo *vsi; 3711 u32 i, off, seen_mask = 0; 3712 3713 for_each_vsi(i, t, vsi) { 3714 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3715 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3716 3717 off = vsi->offset; 3718 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3719 field_mask, &seen_mask, 3720 &info[idx], info_cnt - idx, 3721 level); 3722 if (ret < 0) 3723 return ret; 3724 idx += ret; 3725 } 3726 return idx; 3727 } 3728 3729 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3730 u32 field_mask, struct btf_field_info *info, 3731 int info_cnt) 3732 { 3733 if (__btf_type_is_struct(t)) 3734 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3735 else if (btf_type_is_datasec(t)) 3736 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3737 return -EINVAL; 3738 } 3739 3740 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3741 struct btf_field_info *info) 3742 { 3743 struct module *mod = NULL; 3744 const struct btf_type *t; 3745 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3746 * is that BTF, otherwise it's program BTF 3747 */ 3748 struct btf *kptr_btf; 3749 int ret; 3750 s32 id; 3751 3752 /* Find type in map BTF, and use it to look up the matching type 3753 * in vmlinux or module BTFs, by name and kind. 3754 */ 3755 t = btf_type_by_id(btf, info->kptr.type_id); 3756 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3757 &kptr_btf); 3758 if (id == -ENOENT) { 3759 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3760 WARN_ON_ONCE(btf_is_kernel(btf)); 3761 3762 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3763 * kptr allocated via bpf_obj_new 3764 */ 3765 field->kptr.dtor = NULL; 3766 id = info->kptr.type_id; 3767 kptr_btf = (struct btf *)btf; 3768 btf_get(kptr_btf); 3769 goto found_dtor; 3770 } 3771 if (id < 0) 3772 return id; 3773 3774 /* Find and stash the function pointer for the destruction function that 3775 * needs to be eventually invoked from the map free path. 3776 */ 3777 if (info->type == BPF_KPTR_REF) { 3778 const struct btf_type *dtor_func; 3779 const char *dtor_func_name; 3780 unsigned long addr; 3781 s32 dtor_btf_id; 3782 3783 /* This call also serves as a whitelist of allowed objects that 3784 * can be used as a referenced pointer and be stored in a map at 3785 * the same time. 3786 */ 3787 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3788 if (dtor_btf_id < 0) { 3789 ret = dtor_btf_id; 3790 goto end_btf; 3791 } 3792 3793 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3794 if (!dtor_func) { 3795 ret = -ENOENT; 3796 goto end_btf; 3797 } 3798 3799 if (btf_is_module(kptr_btf)) { 3800 mod = btf_try_get_module(kptr_btf); 3801 if (!mod) { 3802 ret = -ENXIO; 3803 goto end_btf; 3804 } 3805 } 3806 3807 /* We already verified dtor_func to be btf_type_is_func 3808 * in register_btf_id_dtor_kfuncs. 3809 */ 3810 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3811 addr = kallsyms_lookup_name(dtor_func_name); 3812 if (!addr) { 3813 ret = -EINVAL; 3814 goto end_mod; 3815 } 3816 field->kptr.dtor = (void *)addr; 3817 } 3818 3819 found_dtor: 3820 field->kptr.btf_id = id; 3821 field->kptr.btf = kptr_btf; 3822 field->kptr.module = mod; 3823 return 0; 3824 end_mod: 3825 module_put(mod); 3826 end_btf: 3827 btf_put(kptr_btf); 3828 return ret; 3829 } 3830 3831 static int btf_parse_graph_root(const struct btf *btf, 3832 struct btf_field *field, 3833 struct btf_field_info *info, 3834 const char *node_type_name, 3835 size_t node_type_align) 3836 { 3837 const struct btf_type *t, *n = NULL; 3838 const struct btf_member *member; 3839 u32 offset; 3840 int i; 3841 3842 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3843 /* We've already checked that value_btf_id is a struct type. We 3844 * just need to figure out the offset of the list_node, and 3845 * verify its type. 3846 */ 3847 for_each_member(i, t, member) { 3848 if (strcmp(info->graph_root.node_name, 3849 __btf_name_by_offset(btf, member->name_off))) 3850 continue; 3851 /* Invalid BTF, two members with same name */ 3852 if (n) 3853 return -EINVAL; 3854 n = btf_type_by_id(btf, member->type); 3855 if (!__btf_type_is_struct(n)) 3856 return -EINVAL; 3857 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3858 return -EINVAL; 3859 offset = __btf_member_bit_offset(n, member); 3860 if (offset % 8) 3861 return -EINVAL; 3862 offset /= 8; 3863 if (offset % node_type_align) 3864 return -EINVAL; 3865 3866 field->graph_root.btf = (struct btf *)btf; 3867 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3868 field->graph_root.node_offset = offset; 3869 } 3870 if (!n) 3871 return -ENOENT; 3872 return 0; 3873 } 3874 3875 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3876 struct btf_field_info *info) 3877 { 3878 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3879 __alignof__(struct bpf_list_node)); 3880 } 3881 3882 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3883 struct btf_field_info *info) 3884 { 3885 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3886 __alignof__(struct bpf_rb_node)); 3887 } 3888 3889 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3890 { 3891 const struct btf_field *a = (const struct btf_field *)_a; 3892 const struct btf_field *b = (const struct btf_field *)_b; 3893 3894 if (a->offset < b->offset) 3895 return -1; 3896 else if (a->offset > b->offset) 3897 return 1; 3898 return 0; 3899 } 3900 3901 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3902 u32 field_mask, u32 value_size) 3903 { 3904 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3905 u32 next_off = 0, field_type_size; 3906 struct btf_record *rec; 3907 int ret, i, cnt; 3908 3909 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3910 if (ret < 0) 3911 return ERR_PTR(ret); 3912 if (!ret) 3913 return NULL; 3914 3915 cnt = ret; 3916 /* This needs to be kzalloc to zero out padding and unused fields, see 3917 * comment in btf_record_equal. 3918 */ 3919 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3920 if (!rec) 3921 return ERR_PTR(-ENOMEM); 3922 3923 rec->spin_lock_off = -EINVAL; 3924 rec->timer_off = -EINVAL; 3925 rec->wq_off = -EINVAL; 3926 rec->refcount_off = -EINVAL; 3927 for (i = 0; i < cnt; i++) { 3928 field_type_size = btf_field_type_size(info_arr[i].type); 3929 if (info_arr[i].off + field_type_size > value_size) { 3930 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3931 ret = -EFAULT; 3932 goto end; 3933 } 3934 if (info_arr[i].off < next_off) { 3935 ret = -EEXIST; 3936 goto end; 3937 } 3938 next_off = info_arr[i].off + field_type_size; 3939 3940 rec->field_mask |= info_arr[i].type; 3941 rec->fields[i].offset = info_arr[i].off; 3942 rec->fields[i].type = info_arr[i].type; 3943 rec->fields[i].size = field_type_size; 3944 3945 switch (info_arr[i].type) { 3946 case BPF_SPIN_LOCK: 3947 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3948 /* Cache offset for faster lookup at runtime */ 3949 rec->spin_lock_off = rec->fields[i].offset; 3950 break; 3951 case BPF_TIMER: 3952 WARN_ON_ONCE(rec->timer_off >= 0); 3953 /* Cache offset for faster lookup at runtime */ 3954 rec->timer_off = rec->fields[i].offset; 3955 break; 3956 case BPF_WORKQUEUE: 3957 WARN_ON_ONCE(rec->wq_off >= 0); 3958 /* Cache offset for faster lookup at runtime */ 3959 rec->wq_off = rec->fields[i].offset; 3960 break; 3961 case BPF_REFCOUNT: 3962 WARN_ON_ONCE(rec->refcount_off >= 0); 3963 /* Cache offset for faster lookup at runtime */ 3964 rec->refcount_off = rec->fields[i].offset; 3965 break; 3966 case BPF_KPTR_UNREF: 3967 case BPF_KPTR_REF: 3968 case BPF_KPTR_PERCPU: 3969 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3970 if (ret < 0) 3971 goto end; 3972 break; 3973 case BPF_LIST_HEAD: 3974 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3975 if (ret < 0) 3976 goto end; 3977 break; 3978 case BPF_RB_ROOT: 3979 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3980 if (ret < 0) 3981 goto end; 3982 break; 3983 case BPF_LIST_NODE: 3984 case BPF_RB_NODE: 3985 break; 3986 default: 3987 ret = -EFAULT; 3988 goto end; 3989 } 3990 rec->cnt++; 3991 } 3992 3993 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3994 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3995 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3996 ret = -EINVAL; 3997 goto end; 3998 } 3999 4000 if (rec->refcount_off < 0 && 4001 btf_record_has_field(rec, BPF_LIST_NODE) && 4002 btf_record_has_field(rec, BPF_RB_NODE)) { 4003 ret = -EINVAL; 4004 goto end; 4005 } 4006 4007 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4008 NULL, rec); 4009 4010 return rec; 4011 end: 4012 btf_record_free(rec); 4013 return ERR_PTR(ret); 4014 } 4015 4016 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4017 { 4018 int i; 4019 4020 /* There are three types that signify ownership of some other type: 4021 * kptr_ref, bpf_list_head, bpf_rb_root. 4022 * kptr_ref only supports storing kernel types, which can't store 4023 * references to program allocated local types. 4024 * 4025 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4026 * does not form cycles. 4027 */ 4028 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT)) 4029 return 0; 4030 for (i = 0; i < rec->cnt; i++) { 4031 struct btf_struct_meta *meta; 4032 u32 btf_id; 4033 4034 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4035 continue; 4036 btf_id = rec->fields[i].graph_root.value_btf_id; 4037 meta = btf_find_struct_meta(btf, btf_id); 4038 if (!meta) 4039 return -EFAULT; 4040 rec->fields[i].graph_root.value_rec = meta->record; 4041 4042 /* We need to set value_rec for all root types, but no need 4043 * to check ownership cycle for a type unless it's also a 4044 * node type. 4045 */ 4046 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4047 continue; 4048 4049 /* We need to ensure ownership acyclicity among all types. The 4050 * proper way to do it would be to topologically sort all BTF 4051 * IDs based on the ownership edges, since there can be multiple 4052 * bpf_{list_head,rb_node} in a type. Instead, we use the 4053 * following resaoning: 4054 * 4055 * - A type can only be owned by another type in user BTF if it 4056 * has a bpf_{list,rb}_node. Let's call these node types. 4057 * - A type can only _own_ another type in user BTF if it has a 4058 * bpf_{list_head,rb_root}. Let's call these root types. 4059 * 4060 * We ensure that if a type is both a root and node, its 4061 * element types cannot be root types. 4062 * 4063 * To ensure acyclicity: 4064 * 4065 * When A is an root type but not a node, its ownership 4066 * chain can be: 4067 * A -> B -> C 4068 * Where: 4069 * - A is an root, e.g. has bpf_rb_root. 4070 * - B is both a root and node, e.g. has bpf_rb_node and 4071 * bpf_list_head. 4072 * - C is only an root, e.g. has bpf_list_node 4073 * 4074 * When A is both a root and node, some other type already 4075 * owns it in the BTF domain, hence it can not own 4076 * another root type through any of the ownership edges. 4077 * A -> B 4078 * Where: 4079 * - A is both an root and node. 4080 * - B is only an node. 4081 */ 4082 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4083 return -ELOOP; 4084 } 4085 return 0; 4086 } 4087 4088 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4089 u32 type_id, void *data, u8 bits_offset, 4090 struct btf_show *show) 4091 { 4092 const struct btf_member *member; 4093 void *safe_data; 4094 u32 i; 4095 4096 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4097 if (!safe_data) 4098 return; 4099 4100 for_each_member(i, t, member) { 4101 const struct btf_type *member_type = btf_type_by_id(btf, 4102 member->type); 4103 const struct btf_kind_operations *ops; 4104 u32 member_offset, bitfield_size; 4105 u32 bytes_offset; 4106 u8 bits8_offset; 4107 4108 btf_show_start_member(show, member); 4109 4110 member_offset = __btf_member_bit_offset(t, member); 4111 bitfield_size = __btf_member_bitfield_size(t, member); 4112 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4113 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4114 if (bitfield_size) { 4115 safe_data = btf_show_start_type(show, member_type, 4116 member->type, 4117 data + bytes_offset); 4118 if (safe_data) 4119 btf_bitfield_show(safe_data, 4120 bits8_offset, 4121 bitfield_size, show); 4122 btf_show_end_type(show); 4123 } else { 4124 ops = btf_type_ops(member_type); 4125 ops->show(btf, member_type, member->type, 4126 data + bytes_offset, bits8_offset, show); 4127 } 4128 4129 btf_show_end_member(show); 4130 } 4131 4132 btf_show_end_struct_type(show); 4133 } 4134 4135 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4136 u32 type_id, void *data, u8 bits_offset, 4137 struct btf_show *show) 4138 { 4139 const struct btf_member *m = show->state.member; 4140 4141 /* 4142 * First check if any members would be shown (are non-zero). 4143 * See comments above "struct btf_show" definition for more 4144 * details on how this works at a high-level. 4145 */ 4146 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4147 if (!show->state.depth_check) { 4148 show->state.depth_check = show->state.depth + 1; 4149 show->state.depth_to_show = 0; 4150 } 4151 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4152 /* Restore saved member data here */ 4153 show->state.member = m; 4154 if (show->state.depth_check != show->state.depth + 1) 4155 return; 4156 show->state.depth_check = 0; 4157 4158 if (show->state.depth_to_show <= show->state.depth) 4159 return; 4160 /* 4161 * Reaching here indicates we have recursed and found 4162 * non-zero child values. 4163 */ 4164 } 4165 4166 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4167 } 4168 4169 static struct btf_kind_operations struct_ops = { 4170 .check_meta = btf_struct_check_meta, 4171 .resolve = btf_struct_resolve, 4172 .check_member = btf_struct_check_member, 4173 .check_kflag_member = btf_generic_check_kflag_member, 4174 .log_details = btf_struct_log, 4175 .show = btf_struct_show, 4176 }; 4177 4178 static int btf_enum_check_member(struct btf_verifier_env *env, 4179 const struct btf_type *struct_type, 4180 const struct btf_member *member, 4181 const struct btf_type *member_type) 4182 { 4183 u32 struct_bits_off = member->offset; 4184 u32 struct_size, bytes_offset; 4185 4186 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4187 btf_verifier_log_member(env, struct_type, member, 4188 "Member is not byte aligned"); 4189 return -EINVAL; 4190 } 4191 4192 struct_size = struct_type->size; 4193 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4194 if (struct_size - bytes_offset < member_type->size) { 4195 btf_verifier_log_member(env, struct_type, member, 4196 "Member exceeds struct_size"); 4197 return -EINVAL; 4198 } 4199 4200 return 0; 4201 } 4202 4203 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4204 const struct btf_type *struct_type, 4205 const struct btf_member *member, 4206 const struct btf_type *member_type) 4207 { 4208 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4209 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4210 4211 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4212 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4213 if (!nr_bits) { 4214 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4215 btf_verifier_log_member(env, struct_type, member, 4216 "Member is not byte aligned"); 4217 return -EINVAL; 4218 } 4219 4220 nr_bits = int_bitsize; 4221 } else if (nr_bits > int_bitsize) { 4222 btf_verifier_log_member(env, struct_type, member, 4223 "Invalid member bitfield_size"); 4224 return -EINVAL; 4225 } 4226 4227 struct_size = struct_type->size; 4228 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4229 if (struct_size < bytes_end) { 4230 btf_verifier_log_member(env, struct_type, member, 4231 "Member exceeds struct_size"); 4232 return -EINVAL; 4233 } 4234 4235 return 0; 4236 } 4237 4238 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4239 const struct btf_type *t, 4240 u32 meta_left) 4241 { 4242 const struct btf_enum *enums = btf_type_enum(t); 4243 struct btf *btf = env->btf; 4244 const char *fmt_str; 4245 u16 i, nr_enums; 4246 u32 meta_needed; 4247 4248 nr_enums = btf_type_vlen(t); 4249 meta_needed = nr_enums * sizeof(*enums); 4250 4251 if (meta_left < meta_needed) { 4252 btf_verifier_log_basic(env, t, 4253 "meta_left:%u meta_needed:%u", 4254 meta_left, meta_needed); 4255 return -EINVAL; 4256 } 4257 4258 if (t->size > 8 || !is_power_of_2(t->size)) { 4259 btf_verifier_log_type(env, t, "Unexpected size"); 4260 return -EINVAL; 4261 } 4262 4263 /* enum type either no name or a valid one */ 4264 if (t->name_off && 4265 !btf_name_valid_identifier(env->btf, t->name_off)) { 4266 btf_verifier_log_type(env, t, "Invalid name"); 4267 return -EINVAL; 4268 } 4269 4270 btf_verifier_log_type(env, t, NULL); 4271 4272 for (i = 0; i < nr_enums; i++) { 4273 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4274 btf_verifier_log(env, "\tInvalid name_offset:%u", 4275 enums[i].name_off); 4276 return -EINVAL; 4277 } 4278 4279 /* enum member must have a valid name */ 4280 if (!enums[i].name_off || 4281 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4282 btf_verifier_log_type(env, t, "Invalid name"); 4283 return -EINVAL; 4284 } 4285 4286 if (env->log.level == BPF_LOG_KERNEL) 4287 continue; 4288 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4289 btf_verifier_log(env, fmt_str, 4290 __btf_name_by_offset(btf, enums[i].name_off), 4291 enums[i].val); 4292 } 4293 4294 return meta_needed; 4295 } 4296 4297 static void btf_enum_log(struct btf_verifier_env *env, 4298 const struct btf_type *t) 4299 { 4300 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4301 } 4302 4303 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4304 u32 type_id, void *data, u8 bits_offset, 4305 struct btf_show *show) 4306 { 4307 const struct btf_enum *enums = btf_type_enum(t); 4308 u32 i, nr_enums = btf_type_vlen(t); 4309 void *safe_data; 4310 int v; 4311 4312 safe_data = btf_show_start_type(show, t, type_id, data); 4313 if (!safe_data) 4314 return; 4315 4316 v = *(int *)safe_data; 4317 4318 for (i = 0; i < nr_enums; i++) { 4319 if (v != enums[i].val) 4320 continue; 4321 4322 btf_show_type_value(show, "%s", 4323 __btf_name_by_offset(btf, 4324 enums[i].name_off)); 4325 4326 btf_show_end_type(show); 4327 return; 4328 } 4329 4330 if (btf_type_kflag(t)) 4331 btf_show_type_value(show, "%d", v); 4332 else 4333 btf_show_type_value(show, "%u", v); 4334 btf_show_end_type(show); 4335 } 4336 4337 static struct btf_kind_operations enum_ops = { 4338 .check_meta = btf_enum_check_meta, 4339 .resolve = btf_df_resolve, 4340 .check_member = btf_enum_check_member, 4341 .check_kflag_member = btf_enum_check_kflag_member, 4342 .log_details = btf_enum_log, 4343 .show = btf_enum_show, 4344 }; 4345 4346 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4347 const struct btf_type *t, 4348 u32 meta_left) 4349 { 4350 const struct btf_enum64 *enums = btf_type_enum64(t); 4351 struct btf *btf = env->btf; 4352 const char *fmt_str; 4353 u16 i, nr_enums; 4354 u32 meta_needed; 4355 4356 nr_enums = btf_type_vlen(t); 4357 meta_needed = nr_enums * sizeof(*enums); 4358 4359 if (meta_left < meta_needed) { 4360 btf_verifier_log_basic(env, t, 4361 "meta_left:%u meta_needed:%u", 4362 meta_left, meta_needed); 4363 return -EINVAL; 4364 } 4365 4366 if (t->size > 8 || !is_power_of_2(t->size)) { 4367 btf_verifier_log_type(env, t, "Unexpected size"); 4368 return -EINVAL; 4369 } 4370 4371 /* enum type either no name or a valid one */ 4372 if (t->name_off && 4373 !btf_name_valid_identifier(env->btf, t->name_off)) { 4374 btf_verifier_log_type(env, t, "Invalid name"); 4375 return -EINVAL; 4376 } 4377 4378 btf_verifier_log_type(env, t, NULL); 4379 4380 for (i = 0; i < nr_enums; i++) { 4381 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4382 btf_verifier_log(env, "\tInvalid name_offset:%u", 4383 enums[i].name_off); 4384 return -EINVAL; 4385 } 4386 4387 /* enum member must have a valid name */ 4388 if (!enums[i].name_off || 4389 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4390 btf_verifier_log_type(env, t, "Invalid name"); 4391 return -EINVAL; 4392 } 4393 4394 if (env->log.level == BPF_LOG_KERNEL) 4395 continue; 4396 4397 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4398 btf_verifier_log(env, fmt_str, 4399 __btf_name_by_offset(btf, enums[i].name_off), 4400 btf_enum64_value(enums + i)); 4401 } 4402 4403 return meta_needed; 4404 } 4405 4406 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4407 u32 type_id, void *data, u8 bits_offset, 4408 struct btf_show *show) 4409 { 4410 const struct btf_enum64 *enums = btf_type_enum64(t); 4411 u32 i, nr_enums = btf_type_vlen(t); 4412 void *safe_data; 4413 s64 v; 4414 4415 safe_data = btf_show_start_type(show, t, type_id, data); 4416 if (!safe_data) 4417 return; 4418 4419 v = *(u64 *)safe_data; 4420 4421 for (i = 0; i < nr_enums; i++) { 4422 if (v != btf_enum64_value(enums + i)) 4423 continue; 4424 4425 btf_show_type_value(show, "%s", 4426 __btf_name_by_offset(btf, 4427 enums[i].name_off)); 4428 4429 btf_show_end_type(show); 4430 return; 4431 } 4432 4433 if (btf_type_kflag(t)) 4434 btf_show_type_value(show, "%lld", v); 4435 else 4436 btf_show_type_value(show, "%llu", v); 4437 btf_show_end_type(show); 4438 } 4439 4440 static struct btf_kind_operations enum64_ops = { 4441 .check_meta = btf_enum64_check_meta, 4442 .resolve = btf_df_resolve, 4443 .check_member = btf_enum_check_member, 4444 .check_kflag_member = btf_enum_check_kflag_member, 4445 .log_details = btf_enum_log, 4446 .show = btf_enum64_show, 4447 }; 4448 4449 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4450 const struct btf_type *t, 4451 u32 meta_left) 4452 { 4453 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4454 4455 if (meta_left < meta_needed) { 4456 btf_verifier_log_basic(env, t, 4457 "meta_left:%u meta_needed:%u", 4458 meta_left, meta_needed); 4459 return -EINVAL; 4460 } 4461 4462 if (t->name_off) { 4463 btf_verifier_log_type(env, t, "Invalid name"); 4464 return -EINVAL; 4465 } 4466 4467 if (btf_type_kflag(t)) { 4468 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4469 return -EINVAL; 4470 } 4471 4472 btf_verifier_log_type(env, t, NULL); 4473 4474 return meta_needed; 4475 } 4476 4477 static void btf_func_proto_log(struct btf_verifier_env *env, 4478 const struct btf_type *t) 4479 { 4480 const struct btf_param *args = (const struct btf_param *)(t + 1); 4481 u16 nr_args = btf_type_vlen(t), i; 4482 4483 btf_verifier_log(env, "return=%u args=(", t->type); 4484 if (!nr_args) { 4485 btf_verifier_log(env, "void"); 4486 goto done; 4487 } 4488 4489 if (nr_args == 1 && !args[0].type) { 4490 /* Only one vararg */ 4491 btf_verifier_log(env, "vararg"); 4492 goto done; 4493 } 4494 4495 btf_verifier_log(env, "%u %s", args[0].type, 4496 __btf_name_by_offset(env->btf, 4497 args[0].name_off)); 4498 for (i = 1; i < nr_args - 1; i++) 4499 btf_verifier_log(env, ", %u %s", args[i].type, 4500 __btf_name_by_offset(env->btf, 4501 args[i].name_off)); 4502 4503 if (nr_args > 1) { 4504 const struct btf_param *last_arg = &args[nr_args - 1]; 4505 4506 if (last_arg->type) 4507 btf_verifier_log(env, ", %u %s", last_arg->type, 4508 __btf_name_by_offset(env->btf, 4509 last_arg->name_off)); 4510 else 4511 btf_verifier_log(env, ", vararg"); 4512 } 4513 4514 done: 4515 btf_verifier_log(env, ")"); 4516 } 4517 4518 static struct btf_kind_operations func_proto_ops = { 4519 .check_meta = btf_func_proto_check_meta, 4520 .resolve = btf_df_resolve, 4521 /* 4522 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4523 * a struct's member. 4524 * 4525 * It should be a function pointer instead. 4526 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4527 * 4528 * Hence, there is no btf_func_check_member(). 4529 */ 4530 .check_member = btf_df_check_member, 4531 .check_kflag_member = btf_df_check_kflag_member, 4532 .log_details = btf_func_proto_log, 4533 .show = btf_df_show, 4534 }; 4535 4536 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4537 const struct btf_type *t, 4538 u32 meta_left) 4539 { 4540 if (!t->name_off || 4541 !btf_name_valid_identifier(env->btf, t->name_off)) { 4542 btf_verifier_log_type(env, t, "Invalid name"); 4543 return -EINVAL; 4544 } 4545 4546 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4547 btf_verifier_log_type(env, t, "Invalid func linkage"); 4548 return -EINVAL; 4549 } 4550 4551 if (btf_type_kflag(t)) { 4552 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4553 return -EINVAL; 4554 } 4555 4556 btf_verifier_log_type(env, t, NULL); 4557 4558 return 0; 4559 } 4560 4561 static int btf_func_resolve(struct btf_verifier_env *env, 4562 const struct resolve_vertex *v) 4563 { 4564 const struct btf_type *t = v->t; 4565 u32 next_type_id = t->type; 4566 int err; 4567 4568 err = btf_func_check(env, t); 4569 if (err) 4570 return err; 4571 4572 env_stack_pop_resolved(env, next_type_id, 0); 4573 return 0; 4574 } 4575 4576 static struct btf_kind_operations func_ops = { 4577 .check_meta = btf_func_check_meta, 4578 .resolve = btf_func_resolve, 4579 .check_member = btf_df_check_member, 4580 .check_kflag_member = btf_df_check_kflag_member, 4581 .log_details = btf_ref_type_log, 4582 .show = btf_df_show, 4583 }; 4584 4585 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4586 const struct btf_type *t, 4587 u32 meta_left) 4588 { 4589 const struct btf_var *var; 4590 u32 meta_needed = sizeof(*var); 4591 4592 if (meta_left < meta_needed) { 4593 btf_verifier_log_basic(env, t, 4594 "meta_left:%u meta_needed:%u", 4595 meta_left, meta_needed); 4596 return -EINVAL; 4597 } 4598 4599 if (btf_type_vlen(t)) { 4600 btf_verifier_log_type(env, t, "vlen != 0"); 4601 return -EINVAL; 4602 } 4603 4604 if (btf_type_kflag(t)) { 4605 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4606 return -EINVAL; 4607 } 4608 4609 if (!t->name_off || 4610 !__btf_name_valid(env->btf, t->name_off)) { 4611 btf_verifier_log_type(env, t, "Invalid name"); 4612 return -EINVAL; 4613 } 4614 4615 /* A var cannot be in type void */ 4616 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4617 btf_verifier_log_type(env, t, "Invalid type_id"); 4618 return -EINVAL; 4619 } 4620 4621 var = btf_type_var(t); 4622 if (var->linkage != BTF_VAR_STATIC && 4623 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4624 btf_verifier_log_type(env, t, "Linkage not supported"); 4625 return -EINVAL; 4626 } 4627 4628 btf_verifier_log_type(env, t, NULL); 4629 4630 return meta_needed; 4631 } 4632 4633 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4634 { 4635 const struct btf_var *var = btf_type_var(t); 4636 4637 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4638 } 4639 4640 static const struct btf_kind_operations var_ops = { 4641 .check_meta = btf_var_check_meta, 4642 .resolve = btf_var_resolve, 4643 .check_member = btf_df_check_member, 4644 .check_kflag_member = btf_df_check_kflag_member, 4645 .log_details = btf_var_log, 4646 .show = btf_var_show, 4647 }; 4648 4649 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4650 const struct btf_type *t, 4651 u32 meta_left) 4652 { 4653 const struct btf_var_secinfo *vsi; 4654 u64 last_vsi_end_off = 0, sum = 0; 4655 u32 i, meta_needed; 4656 4657 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4658 if (meta_left < meta_needed) { 4659 btf_verifier_log_basic(env, t, 4660 "meta_left:%u meta_needed:%u", 4661 meta_left, meta_needed); 4662 return -EINVAL; 4663 } 4664 4665 if (!t->size) { 4666 btf_verifier_log_type(env, t, "size == 0"); 4667 return -EINVAL; 4668 } 4669 4670 if (btf_type_kflag(t)) { 4671 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4672 return -EINVAL; 4673 } 4674 4675 if (!t->name_off || 4676 !btf_name_valid_section(env->btf, t->name_off)) { 4677 btf_verifier_log_type(env, t, "Invalid name"); 4678 return -EINVAL; 4679 } 4680 4681 btf_verifier_log_type(env, t, NULL); 4682 4683 for_each_vsi(i, t, vsi) { 4684 /* A var cannot be in type void */ 4685 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4686 btf_verifier_log_vsi(env, t, vsi, 4687 "Invalid type_id"); 4688 return -EINVAL; 4689 } 4690 4691 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4692 btf_verifier_log_vsi(env, t, vsi, 4693 "Invalid offset"); 4694 return -EINVAL; 4695 } 4696 4697 if (!vsi->size || vsi->size > t->size) { 4698 btf_verifier_log_vsi(env, t, vsi, 4699 "Invalid size"); 4700 return -EINVAL; 4701 } 4702 4703 last_vsi_end_off = vsi->offset + vsi->size; 4704 if (last_vsi_end_off > t->size) { 4705 btf_verifier_log_vsi(env, t, vsi, 4706 "Invalid offset+size"); 4707 return -EINVAL; 4708 } 4709 4710 btf_verifier_log_vsi(env, t, vsi, NULL); 4711 sum += vsi->size; 4712 } 4713 4714 if (t->size < sum) { 4715 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4716 return -EINVAL; 4717 } 4718 4719 return meta_needed; 4720 } 4721 4722 static int btf_datasec_resolve(struct btf_verifier_env *env, 4723 const struct resolve_vertex *v) 4724 { 4725 const struct btf_var_secinfo *vsi; 4726 struct btf *btf = env->btf; 4727 u16 i; 4728 4729 env->resolve_mode = RESOLVE_TBD; 4730 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4731 u32 var_type_id = vsi->type, type_id, type_size = 0; 4732 const struct btf_type *var_type = btf_type_by_id(env->btf, 4733 var_type_id); 4734 if (!var_type || !btf_type_is_var(var_type)) { 4735 btf_verifier_log_vsi(env, v->t, vsi, 4736 "Not a VAR kind member"); 4737 return -EINVAL; 4738 } 4739 4740 if (!env_type_is_resolve_sink(env, var_type) && 4741 !env_type_is_resolved(env, var_type_id)) { 4742 env_stack_set_next_member(env, i + 1); 4743 return env_stack_push(env, var_type, var_type_id); 4744 } 4745 4746 type_id = var_type->type; 4747 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4748 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4749 return -EINVAL; 4750 } 4751 4752 if (vsi->size < type_size) { 4753 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4754 return -EINVAL; 4755 } 4756 } 4757 4758 env_stack_pop_resolved(env, 0, 0); 4759 return 0; 4760 } 4761 4762 static void btf_datasec_log(struct btf_verifier_env *env, 4763 const struct btf_type *t) 4764 { 4765 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4766 } 4767 4768 static void btf_datasec_show(const struct btf *btf, 4769 const struct btf_type *t, u32 type_id, 4770 void *data, u8 bits_offset, 4771 struct btf_show *show) 4772 { 4773 const struct btf_var_secinfo *vsi; 4774 const struct btf_type *var; 4775 u32 i; 4776 4777 if (!btf_show_start_type(show, t, type_id, data)) 4778 return; 4779 4780 btf_show_type_value(show, "section (\"%s\") = {", 4781 __btf_name_by_offset(btf, t->name_off)); 4782 for_each_vsi(i, t, vsi) { 4783 var = btf_type_by_id(btf, vsi->type); 4784 if (i) 4785 btf_show(show, ","); 4786 btf_type_ops(var)->show(btf, var, vsi->type, 4787 data + vsi->offset, bits_offset, show); 4788 } 4789 btf_show_end_type(show); 4790 } 4791 4792 static const struct btf_kind_operations datasec_ops = { 4793 .check_meta = btf_datasec_check_meta, 4794 .resolve = btf_datasec_resolve, 4795 .check_member = btf_df_check_member, 4796 .check_kflag_member = btf_df_check_kflag_member, 4797 .log_details = btf_datasec_log, 4798 .show = btf_datasec_show, 4799 }; 4800 4801 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4802 const struct btf_type *t, 4803 u32 meta_left) 4804 { 4805 if (btf_type_vlen(t)) { 4806 btf_verifier_log_type(env, t, "vlen != 0"); 4807 return -EINVAL; 4808 } 4809 4810 if (btf_type_kflag(t)) { 4811 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4812 return -EINVAL; 4813 } 4814 4815 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4816 t->size != 16) { 4817 btf_verifier_log_type(env, t, "Invalid type_size"); 4818 return -EINVAL; 4819 } 4820 4821 btf_verifier_log_type(env, t, NULL); 4822 4823 return 0; 4824 } 4825 4826 static int btf_float_check_member(struct btf_verifier_env *env, 4827 const struct btf_type *struct_type, 4828 const struct btf_member *member, 4829 const struct btf_type *member_type) 4830 { 4831 u64 start_offset_bytes; 4832 u64 end_offset_bytes; 4833 u64 misalign_bits; 4834 u64 align_bytes; 4835 u64 align_bits; 4836 4837 /* Different architectures have different alignment requirements, so 4838 * here we check only for the reasonable minimum. This way we ensure 4839 * that types after CO-RE can pass the kernel BTF verifier. 4840 */ 4841 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4842 align_bits = align_bytes * BITS_PER_BYTE; 4843 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4844 if (misalign_bits) { 4845 btf_verifier_log_member(env, struct_type, member, 4846 "Member is not properly aligned"); 4847 return -EINVAL; 4848 } 4849 4850 start_offset_bytes = member->offset / BITS_PER_BYTE; 4851 end_offset_bytes = start_offset_bytes + member_type->size; 4852 if (end_offset_bytes > struct_type->size) { 4853 btf_verifier_log_member(env, struct_type, member, 4854 "Member exceeds struct_size"); 4855 return -EINVAL; 4856 } 4857 4858 return 0; 4859 } 4860 4861 static void btf_float_log(struct btf_verifier_env *env, 4862 const struct btf_type *t) 4863 { 4864 btf_verifier_log(env, "size=%u", t->size); 4865 } 4866 4867 static const struct btf_kind_operations float_ops = { 4868 .check_meta = btf_float_check_meta, 4869 .resolve = btf_df_resolve, 4870 .check_member = btf_float_check_member, 4871 .check_kflag_member = btf_generic_check_kflag_member, 4872 .log_details = btf_float_log, 4873 .show = btf_df_show, 4874 }; 4875 4876 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4877 const struct btf_type *t, 4878 u32 meta_left) 4879 { 4880 const struct btf_decl_tag *tag; 4881 u32 meta_needed = sizeof(*tag); 4882 s32 component_idx; 4883 const char *value; 4884 4885 if (meta_left < meta_needed) { 4886 btf_verifier_log_basic(env, t, 4887 "meta_left:%u meta_needed:%u", 4888 meta_left, meta_needed); 4889 return -EINVAL; 4890 } 4891 4892 value = btf_name_by_offset(env->btf, t->name_off); 4893 if (!value || !value[0]) { 4894 btf_verifier_log_type(env, t, "Invalid value"); 4895 return -EINVAL; 4896 } 4897 4898 if (btf_type_vlen(t)) { 4899 btf_verifier_log_type(env, t, "vlen != 0"); 4900 return -EINVAL; 4901 } 4902 4903 if (btf_type_kflag(t)) { 4904 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4905 return -EINVAL; 4906 } 4907 4908 component_idx = btf_type_decl_tag(t)->component_idx; 4909 if (component_idx < -1) { 4910 btf_verifier_log_type(env, t, "Invalid component_idx"); 4911 return -EINVAL; 4912 } 4913 4914 btf_verifier_log_type(env, t, NULL); 4915 4916 return meta_needed; 4917 } 4918 4919 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4920 const struct resolve_vertex *v) 4921 { 4922 const struct btf_type *next_type; 4923 const struct btf_type *t = v->t; 4924 u32 next_type_id = t->type; 4925 struct btf *btf = env->btf; 4926 s32 component_idx; 4927 u32 vlen; 4928 4929 next_type = btf_type_by_id(btf, next_type_id); 4930 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4931 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4932 return -EINVAL; 4933 } 4934 4935 if (!env_type_is_resolve_sink(env, next_type) && 4936 !env_type_is_resolved(env, next_type_id)) 4937 return env_stack_push(env, next_type, next_type_id); 4938 4939 component_idx = btf_type_decl_tag(t)->component_idx; 4940 if (component_idx != -1) { 4941 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4942 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4943 return -EINVAL; 4944 } 4945 4946 if (btf_type_is_struct(next_type)) { 4947 vlen = btf_type_vlen(next_type); 4948 } else { 4949 /* next_type should be a function */ 4950 next_type = btf_type_by_id(btf, next_type->type); 4951 vlen = btf_type_vlen(next_type); 4952 } 4953 4954 if ((u32)component_idx >= vlen) { 4955 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4956 return -EINVAL; 4957 } 4958 } 4959 4960 env_stack_pop_resolved(env, next_type_id, 0); 4961 4962 return 0; 4963 } 4964 4965 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4966 { 4967 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4968 btf_type_decl_tag(t)->component_idx); 4969 } 4970 4971 static const struct btf_kind_operations decl_tag_ops = { 4972 .check_meta = btf_decl_tag_check_meta, 4973 .resolve = btf_decl_tag_resolve, 4974 .check_member = btf_df_check_member, 4975 .check_kflag_member = btf_df_check_kflag_member, 4976 .log_details = btf_decl_tag_log, 4977 .show = btf_df_show, 4978 }; 4979 4980 static int btf_func_proto_check(struct btf_verifier_env *env, 4981 const struct btf_type *t) 4982 { 4983 const struct btf_type *ret_type; 4984 const struct btf_param *args; 4985 const struct btf *btf; 4986 u16 nr_args, i; 4987 int err; 4988 4989 btf = env->btf; 4990 args = (const struct btf_param *)(t + 1); 4991 nr_args = btf_type_vlen(t); 4992 4993 /* Check func return type which could be "void" (t->type == 0) */ 4994 if (t->type) { 4995 u32 ret_type_id = t->type; 4996 4997 ret_type = btf_type_by_id(btf, ret_type_id); 4998 if (!ret_type) { 4999 btf_verifier_log_type(env, t, "Invalid return type"); 5000 return -EINVAL; 5001 } 5002 5003 if (btf_type_is_resolve_source_only(ret_type)) { 5004 btf_verifier_log_type(env, t, "Invalid return type"); 5005 return -EINVAL; 5006 } 5007 5008 if (btf_type_needs_resolve(ret_type) && 5009 !env_type_is_resolved(env, ret_type_id)) { 5010 err = btf_resolve(env, ret_type, ret_type_id); 5011 if (err) 5012 return err; 5013 } 5014 5015 /* Ensure the return type is a type that has a size */ 5016 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5017 btf_verifier_log_type(env, t, "Invalid return type"); 5018 return -EINVAL; 5019 } 5020 } 5021 5022 if (!nr_args) 5023 return 0; 5024 5025 /* Last func arg type_id could be 0 if it is a vararg */ 5026 if (!args[nr_args - 1].type) { 5027 if (args[nr_args - 1].name_off) { 5028 btf_verifier_log_type(env, t, "Invalid arg#%u", 5029 nr_args); 5030 return -EINVAL; 5031 } 5032 nr_args--; 5033 } 5034 5035 for (i = 0; i < nr_args; i++) { 5036 const struct btf_type *arg_type; 5037 u32 arg_type_id; 5038 5039 arg_type_id = args[i].type; 5040 arg_type = btf_type_by_id(btf, arg_type_id); 5041 if (!arg_type) { 5042 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5043 return -EINVAL; 5044 } 5045 5046 if (btf_type_is_resolve_source_only(arg_type)) { 5047 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5048 return -EINVAL; 5049 } 5050 5051 if (args[i].name_off && 5052 (!btf_name_offset_valid(btf, args[i].name_off) || 5053 !btf_name_valid_identifier(btf, args[i].name_off))) { 5054 btf_verifier_log_type(env, t, 5055 "Invalid arg#%u", i + 1); 5056 return -EINVAL; 5057 } 5058 5059 if (btf_type_needs_resolve(arg_type) && 5060 !env_type_is_resolved(env, arg_type_id)) { 5061 err = btf_resolve(env, arg_type, arg_type_id); 5062 if (err) 5063 return err; 5064 } 5065 5066 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5067 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5068 return -EINVAL; 5069 } 5070 } 5071 5072 return 0; 5073 } 5074 5075 static int btf_func_check(struct btf_verifier_env *env, 5076 const struct btf_type *t) 5077 { 5078 const struct btf_type *proto_type; 5079 const struct btf_param *args; 5080 const struct btf *btf; 5081 u16 nr_args, i; 5082 5083 btf = env->btf; 5084 proto_type = btf_type_by_id(btf, t->type); 5085 5086 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5087 btf_verifier_log_type(env, t, "Invalid type_id"); 5088 return -EINVAL; 5089 } 5090 5091 args = (const struct btf_param *)(proto_type + 1); 5092 nr_args = btf_type_vlen(proto_type); 5093 for (i = 0; i < nr_args; i++) { 5094 if (!args[i].name_off && args[i].type) { 5095 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5096 return -EINVAL; 5097 } 5098 } 5099 5100 return 0; 5101 } 5102 5103 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5104 [BTF_KIND_INT] = &int_ops, 5105 [BTF_KIND_PTR] = &ptr_ops, 5106 [BTF_KIND_ARRAY] = &array_ops, 5107 [BTF_KIND_STRUCT] = &struct_ops, 5108 [BTF_KIND_UNION] = &struct_ops, 5109 [BTF_KIND_ENUM] = &enum_ops, 5110 [BTF_KIND_FWD] = &fwd_ops, 5111 [BTF_KIND_TYPEDEF] = &modifier_ops, 5112 [BTF_KIND_VOLATILE] = &modifier_ops, 5113 [BTF_KIND_CONST] = &modifier_ops, 5114 [BTF_KIND_RESTRICT] = &modifier_ops, 5115 [BTF_KIND_FUNC] = &func_ops, 5116 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5117 [BTF_KIND_VAR] = &var_ops, 5118 [BTF_KIND_DATASEC] = &datasec_ops, 5119 [BTF_KIND_FLOAT] = &float_ops, 5120 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5121 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5122 [BTF_KIND_ENUM64] = &enum64_ops, 5123 }; 5124 5125 static s32 btf_check_meta(struct btf_verifier_env *env, 5126 const struct btf_type *t, 5127 u32 meta_left) 5128 { 5129 u32 saved_meta_left = meta_left; 5130 s32 var_meta_size; 5131 5132 if (meta_left < sizeof(*t)) { 5133 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5134 env->log_type_id, meta_left, sizeof(*t)); 5135 return -EINVAL; 5136 } 5137 meta_left -= sizeof(*t); 5138 5139 if (t->info & ~BTF_INFO_MASK) { 5140 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5141 env->log_type_id, t->info); 5142 return -EINVAL; 5143 } 5144 5145 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5146 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5147 btf_verifier_log(env, "[%u] Invalid kind:%u", 5148 env->log_type_id, BTF_INFO_KIND(t->info)); 5149 return -EINVAL; 5150 } 5151 5152 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5153 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5154 env->log_type_id, t->name_off); 5155 return -EINVAL; 5156 } 5157 5158 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5159 if (var_meta_size < 0) 5160 return var_meta_size; 5161 5162 meta_left -= var_meta_size; 5163 5164 return saved_meta_left - meta_left; 5165 } 5166 5167 static int btf_check_all_metas(struct btf_verifier_env *env) 5168 { 5169 struct btf *btf = env->btf; 5170 struct btf_header *hdr; 5171 void *cur, *end; 5172 5173 hdr = &btf->hdr; 5174 cur = btf->nohdr_data + hdr->type_off; 5175 end = cur + hdr->type_len; 5176 5177 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5178 while (cur < end) { 5179 struct btf_type *t = cur; 5180 s32 meta_size; 5181 5182 meta_size = btf_check_meta(env, t, end - cur); 5183 if (meta_size < 0) 5184 return meta_size; 5185 5186 btf_add_type(env, t); 5187 cur += meta_size; 5188 env->log_type_id++; 5189 } 5190 5191 return 0; 5192 } 5193 5194 static bool btf_resolve_valid(struct btf_verifier_env *env, 5195 const struct btf_type *t, 5196 u32 type_id) 5197 { 5198 struct btf *btf = env->btf; 5199 5200 if (!env_type_is_resolved(env, type_id)) 5201 return false; 5202 5203 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5204 return !btf_resolved_type_id(btf, type_id) && 5205 !btf_resolved_type_size(btf, type_id); 5206 5207 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5208 return btf_resolved_type_id(btf, type_id) && 5209 !btf_resolved_type_size(btf, type_id); 5210 5211 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5212 btf_type_is_var(t)) { 5213 t = btf_type_id_resolve(btf, &type_id); 5214 return t && 5215 !btf_type_is_modifier(t) && 5216 !btf_type_is_var(t) && 5217 !btf_type_is_datasec(t); 5218 } 5219 5220 if (btf_type_is_array(t)) { 5221 const struct btf_array *array = btf_type_array(t); 5222 const struct btf_type *elem_type; 5223 u32 elem_type_id = array->type; 5224 u32 elem_size; 5225 5226 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5227 return elem_type && !btf_type_is_modifier(elem_type) && 5228 (array->nelems * elem_size == 5229 btf_resolved_type_size(btf, type_id)); 5230 } 5231 5232 return false; 5233 } 5234 5235 static int btf_resolve(struct btf_verifier_env *env, 5236 const struct btf_type *t, u32 type_id) 5237 { 5238 u32 save_log_type_id = env->log_type_id; 5239 const struct resolve_vertex *v; 5240 int err = 0; 5241 5242 env->resolve_mode = RESOLVE_TBD; 5243 env_stack_push(env, t, type_id); 5244 while (!err && (v = env_stack_peak(env))) { 5245 env->log_type_id = v->type_id; 5246 err = btf_type_ops(v->t)->resolve(env, v); 5247 } 5248 5249 env->log_type_id = type_id; 5250 if (err == -E2BIG) { 5251 btf_verifier_log_type(env, t, 5252 "Exceeded max resolving depth:%u", 5253 MAX_RESOLVE_DEPTH); 5254 } else if (err == -EEXIST) { 5255 btf_verifier_log_type(env, t, "Loop detected"); 5256 } 5257 5258 /* Final sanity check */ 5259 if (!err && !btf_resolve_valid(env, t, type_id)) { 5260 btf_verifier_log_type(env, t, "Invalid resolve state"); 5261 err = -EINVAL; 5262 } 5263 5264 env->log_type_id = save_log_type_id; 5265 return err; 5266 } 5267 5268 static int btf_check_all_types(struct btf_verifier_env *env) 5269 { 5270 struct btf *btf = env->btf; 5271 const struct btf_type *t; 5272 u32 type_id, i; 5273 int err; 5274 5275 err = env_resolve_init(env); 5276 if (err) 5277 return err; 5278 5279 env->phase++; 5280 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5281 type_id = btf->start_id + i; 5282 t = btf_type_by_id(btf, type_id); 5283 5284 env->log_type_id = type_id; 5285 if (btf_type_needs_resolve(t) && 5286 !env_type_is_resolved(env, type_id)) { 5287 err = btf_resolve(env, t, type_id); 5288 if (err) 5289 return err; 5290 } 5291 5292 if (btf_type_is_func_proto(t)) { 5293 err = btf_func_proto_check(env, t); 5294 if (err) 5295 return err; 5296 } 5297 } 5298 5299 return 0; 5300 } 5301 5302 static int btf_parse_type_sec(struct btf_verifier_env *env) 5303 { 5304 const struct btf_header *hdr = &env->btf->hdr; 5305 int err; 5306 5307 /* Type section must align to 4 bytes */ 5308 if (hdr->type_off & (sizeof(u32) - 1)) { 5309 btf_verifier_log(env, "Unaligned type_off"); 5310 return -EINVAL; 5311 } 5312 5313 if (!env->btf->base_btf && !hdr->type_len) { 5314 btf_verifier_log(env, "No type found"); 5315 return -EINVAL; 5316 } 5317 5318 err = btf_check_all_metas(env); 5319 if (err) 5320 return err; 5321 5322 return btf_check_all_types(env); 5323 } 5324 5325 static int btf_parse_str_sec(struct btf_verifier_env *env) 5326 { 5327 const struct btf_header *hdr; 5328 struct btf *btf = env->btf; 5329 const char *start, *end; 5330 5331 hdr = &btf->hdr; 5332 start = btf->nohdr_data + hdr->str_off; 5333 end = start + hdr->str_len; 5334 5335 if (end != btf->data + btf->data_size) { 5336 btf_verifier_log(env, "String section is not at the end"); 5337 return -EINVAL; 5338 } 5339 5340 btf->strings = start; 5341 5342 if (btf->base_btf && !hdr->str_len) 5343 return 0; 5344 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5345 btf_verifier_log(env, "Invalid string section"); 5346 return -EINVAL; 5347 } 5348 if (!btf->base_btf && start[0]) { 5349 btf_verifier_log(env, "Invalid string section"); 5350 return -EINVAL; 5351 } 5352 5353 return 0; 5354 } 5355 5356 static const size_t btf_sec_info_offset[] = { 5357 offsetof(struct btf_header, type_off), 5358 offsetof(struct btf_header, str_off), 5359 }; 5360 5361 static int btf_sec_info_cmp(const void *a, const void *b) 5362 { 5363 const struct btf_sec_info *x = a; 5364 const struct btf_sec_info *y = b; 5365 5366 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5367 } 5368 5369 static int btf_check_sec_info(struct btf_verifier_env *env, 5370 u32 btf_data_size) 5371 { 5372 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5373 u32 total, expected_total, i; 5374 const struct btf_header *hdr; 5375 const struct btf *btf; 5376 5377 btf = env->btf; 5378 hdr = &btf->hdr; 5379 5380 /* Populate the secs from hdr */ 5381 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5382 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5383 btf_sec_info_offset[i]); 5384 5385 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5386 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5387 5388 /* Check for gaps and overlap among sections */ 5389 total = 0; 5390 expected_total = btf_data_size - hdr->hdr_len; 5391 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5392 if (expected_total < secs[i].off) { 5393 btf_verifier_log(env, "Invalid section offset"); 5394 return -EINVAL; 5395 } 5396 if (total < secs[i].off) { 5397 /* gap */ 5398 btf_verifier_log(env, "Unsupported section found"); 5399 return -EINVAL; 5400 } 5401 if (total > secs[i].off) { 5402 btf_verifier_log(env, "Section overlap found"); 5403 return -EINVAL; 5404 } 5405 if (expected_total - total < secs[i].len) { 5406 btf_verifier_log(env, 5407 "Total section length too long"); 5408 return -EINVAL; 5409 } 5410 total += secs[i].len; 5411 } 5412 5413 /* There is data other than hdr and known sections */ 5414 if (expected_total != total) { 5415 btf_verifier_log(env, "Unsupported section found"); 5416 return -EINVAL; 5417 } 5418 5419 return 0; 5420 } 5421 5422 static int btf_parse_hdr(struct btf_verifier_env *env) 5423 { 5424 u32 hdr_len, hdr_copy, btf_data_size; 5425 const struct btf_header *hdr; 5426 struct btf *btf; 5427 5428 btf = env->btf; 5429 btf_data_size = btf->data_size; 5430 5431 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5432 btf_verifier_log(env, "hdr_len not found"); 5433 return -EINVAL; 5434 } 5435 5436 hdr = btf->data; 5437 hdr_len = hdr->hdr_len; 5438 if (btf_data_size < hdr_len) { 5439 btf_verifier_log(env, "btf_header not found"); 5440 return -EINVAL; 5441 } 5442 5443 /* Ensure the unsupported header fields are zero */ 5444 if (hdr_len > sizeof(btf->hdr)) { 5445 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5446 u8 *end = btf->data + hdr_len; 5447 5448 for (; expected_zero < end; expected_zero++) { 5449 if (*expected_zero) { 5450 btf_verifier_log(env, "Unsupported btf_header"); 5451 return -E2BIG; 5452 } 5453 } 5454 } 5455 5456 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5457 memcpy(&btf->hdr, btf->data, hdr_copy); 5458 5459 hdr = &btf->hdr; 5460 5461 btf_verifier_log_hdr(env, btf_data_size); 5462 5463 if (hdr->magic != BTF_MAGIC) { 5464 btf_verifier_log(env, "Invalid magic"); 5465 return -EINVAL; 5466 } 5467 5468 if (hdr->version != BTF_VERSION) { 5469 btf_verifier_log(env, "Unsupported version"); 5470 return -ENOTSUPP; 5471 } 5472 5473 if (hdr->flags) { 5474 btf_verifier_log(env, "Unsupported flags"); 5475 return -ENOTSUPP; 5476 } 5477 5478 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5479 btf_verifier_log(env, "No data"); 5480 return -EINVAL; 5481 } 5482 5483 return btf_check_sec_info(env, btf_data_size); 5484 } 5485 5486 static const char *alloc_obj_fields[] = { 5487 "bpf_spin_lock", 5488 "bpf_list_head", 5489 "bpf_list_node", 5490 "bpf_rb_root", 5491 "bpf_rb_node", 5492 "bpf_refcount", 5493 }; 5494 5495 static struct btf_struct_metas * 5496 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5497 { 5498 union { 5499 struct btf_id_set set; 5500 struct { 5501 u32 _cnt; 5502 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5503 } _arr; 5504 } aof; 5505 struct btf_struct_metas *tab = NULL; 5506 int i, n, id, ret; 5507 5508 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5509 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5510 5511 memset(&aof, 0, sizeof(aof)); 5512 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5513 /* Try to find whether this special type exists in user BTF, and 5514 * if so remember its ID so we can easily find it among members 5515 * of structs that we iterate in the next loop. 5516 */ 5517 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5518 if (id < 0) 5519 continue; 5520 aof.set.ids[aof.set.cnt++] = id; 5521 } 5522 5523 if (!aof.set.cnt) 5524 return NULL; 5525 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5526 5527 n = btf_nr_types(btf); 5528 for (i = 1; i < n; i++) { 5529 struct btf_struct_metas *new_tab; 5530 const struct btf_member *member; 5531 struct btf_struct_meta *type; 5532 struct btf_record *record; 5533 const struct btf_type *t; 5534 int j, tab_cnt; 5535 5536 t = btf_type_by_id(btf, i); 5537 if (!t) { 5538 ret = -EINVAL; 5539 goto free; 5540 } 5541 if (!__btf_type_is_struct(t)) 5542 continue; 5543 5544 cond_resched(); 5545 5546 for_each_member(j, t, member) { 5547 if (btf_id_set_contains(&aof.set, member->type)) 5548 goto parse; 5549 } 5550 continue; 5551 parse: 5552 tab_cnt = tab ? tab->cnt : 0; 5553 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5554 GFP_KERNEL | __GFP_NOWARN); 5555 if (!new_tab) { 5556 ret = -ENOMEM; 5557 goto free; 5558 } 5559 if (!tab) 5560 new_tab->cnt = 0; 5561 tab = new_tab; 5562 5563 type = &tab->types[tab->cnt]; 5564 type->btf_id = i; 5565 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5566 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5567 /* The record cannot be unset, treat it as an error if so */ 5568 if (IS_ERR_OR_NULL(record)) { 5569 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5570 goto free; 5571 } 5572 type->record = record; 5573 tab->cnt++; 5574 } 5575 return tab; 5576 free: 5577 btf_struct_metas_free(tab); 5578 return ERR_PTR(ret); 5579 } 5580 5581 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5582 { 5583 struct btf_struct_metas *tab; 5584 5585 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5586 tab = btf->struct_meta_tab; 5587 if (!tab) 5588 return NULL; 5589 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5590 } 5591 5592 static int btf_check_type_tags(struct btf_verifier_env *env, 5593 struct btf *btf, int start_id) 5594 { 5595 int i, n, good_id = start_id - 1; 5596 bool in_tags; 5597 5598 n = btf_nr_types(btf); 5599 for (i = start_id; i < n; i++) { 5600 const struct btf_type *t; 5601 int chain_limit = 32; 5602 u32 cur_id = i; 5603 5604 t = btf_type_by_id(btf, i); 5605 if (!t) 5606 return -EINVAL; 5607 if (!btf_type_is_modifier(t)) 5608 continue; 5609 5610 cond_resched(); 5611 5612 in_tags = btf_type_is_type_tag(t); 5613 while (btf_type_is_modifier(t)) { 5614 if (!chain_limit--) { 5615 btf_verifier_log(env, "Max chain length or cycle detected"); 5616 return -ELOOP; 5617 } 5618 if (btf_type_is_type_tag(t)) { 5619 if (!in_tags) { 5620 btf_verifier_log(env, "Type tags don't precede modifiers"); 5621 return -EINVAL; 5622 } 5623 } else if (in_tags) { 5624 in_tags = false; 5625 } 5626 if (cur_id <= good_id) 5627 break; 5628 /* Move to next type */ 5629 cur_id = t->type; 5630 t = btf_type_by_id(btf, cur_id); 5631 if (!t) 5632 return -EINVAL; 5633 } 5634 good_id = i; 5635 } 5636 return 0; 5637 } 5638 5639 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5640 { 5641 u32 log_true_size; 5642 int err; 5643 5644 err = bpf_vlog_finalize(log, &log_true_size); 5645 5646 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5647 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5648 &log_true_size, sizeof(log_true_size))) 5649 err = -EFAULT; 5650 5651 return err; 5652 } 5653 5654 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5655 { 5656 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5657 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5658 struct btf_struct_metas *struct_meta_tab; 5659 struct btf_verifier_env *env = NULL; 5660 struct btf *btf = NULL; 5661 u8 *data; 5662 int err, ret; 5663 5664 if (attr->btf_size > BTF_MAX_SIZE) 5665 return ERR_PTR(-E2BIG); 5666 5667 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5668 if (!env) 5669 return ERR_PTR(-ENOMEM); 5670 5671 /* user could have requested verbose verifier output 5672 * and supplied buffer to store the verification trace 5673 */ 5674 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5675 log_ubuf, attr->btf_log_size); 5676 if (err) 5677 goto errout_free; 5678 5679 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5680 if (!btf) { 5681 err = -ENOMEM; 5682 goto errout; 5683 } 5684 env->btf = btf; 5685 5686 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5687 if (!data) { 5688 err = -ENOMEM; 5689 goto errout; 5690 } 5691 5692 btf->data = data; 5693 btf->data_size = attr->btf_size; 5694 5695 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5696 err = -EFAULT; 5697 goto errout; 5698 } 5699 5700 err = btf_parse_hdr(env); 5701 if (err) 5702 goto errout; 5703 5704 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5705 5706 err = btf_parse_str_sec(env); 5707 if (err) 5708 goto errout; 5709 5710 err = btf_parse_type_sec(env); 5711 if (err) 5712 goto errout; 5713 5714 err = btf_check_type_tags(env, btf, 1); 5715 if (err) 5716 goto errout; 5717 5718 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5719 if (IS_ERR(struct_meta_tab)) { 5720 err = PTR_ERR(struct_meta_tab); 5721 goto errout; 5722 } 5723 btf->struct_meta_tab = struct_meta_tab; 5724 5725 if (struct_meta_tab) { 5726 int i; 5727 5728 for (i = 0; i < struct_meta_tab->cnt; i++) { 5729 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5730 if (err < 0) 5731 goto errout_meta; 5732 } 5733 } 5734 5735 err = finalize_log(&env->log, uattr, uattr_size); 5736 if (err) 5737 goto errout_free; 5738 5739 btf_verifier_env_free(env); 5740 refcount_set(&btf->refcnt, 1); 5741 return btf; 5742 5743 errout_meta: 5744 btf_free_struct_meta_tab(btf); 5745 errout: 5746 /* overwrite err with -ENOSPC or -EFAULT */ 5747 ret = finalize_log(&env->log, uattr, uattr_size); 5748 if (ret) 5749 err = ret; 5750 errout_free: 5751 btf_verifier_env_free(env); 5752 if (btf) 5753 btf_free(btf); 5754 return ERR_PTR(err); 5755 } 5756 5757 extern char __start_BTF[]; 5758 extern char __stop_BTF[]; 5759 extern struct btf *btf_vmlinux; 5760 5761 #define BPF_MAP_TYPE(_id, _ops) 5762 #define BPF_LINK_TYPE(_id, _name) 5763 static union { 5764 struct bpf_ctx_convert { 5765 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5766 prog_ctx_type _id##_prog; \ 5767 kern_ctx_type _id##_kern; 5768 #include <linux/bpf_types.h> 5769 #undef BPF_PROG_TYPE 5770 } *__t; 5771 /* 't' is written once under lock. Read many times. */ 5772 const struct btf_type *t; 5773 } bpf_ctx_convert; 5774 enum { 5775 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5776 __ctx_convert##_id, 5777 #include <linux/bpf_types.h> 5778 #undef BPF_PROG_TYPE 5779 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5780 }; 5781 static u8 bpf_ctx_convert_map[] = { 5782 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5783 [_id] = __ctx_convert##_id, 5784 #include <linux/bpf_types.h> 5785 #undef BPF_PROG_TYPE 5786 0, /* avoid empty array */ 5787 }; 5788 #undef BPF_MAP_TYPE 5789 #undef BPF_LINK_TYPE 5790 5791 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5792 { 5793 const struct btf_type *conv_struct; 5794 const struct btf_member *ctx_type; 5795 5796 conv_struct = bpf_ctx_convert.t; 5797 if (!conv_struct) 5798 return NULL; 5799 /* prog_type is valid bpf program type. No need for bounds check. */ 5800 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5801 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5802 * Like 'struct __sk_buff' 5803 */ 5804 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5805 } 5806 5807 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5808 { 5809 const struct btf_type *conv_struct; 5810 const struct btf_member *ctx_type; 5811 5812 conv_struct = bpf_ctx_convert.t; 5813 if (!conv_struct) 5814 return -EFAULT; 5815 /* prog_type is valid bpf program type. No need for bounds check. */ 5816 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5817 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5818 * Like 'struct sk_buff' 5819 */ 5820 return ctx_type->type; 5821 } 5822 5823 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5824 const struct btf_type *t, enum bpf_prog_type prog_type, 5825 int arg) 5826 { 5827 const struct btf_type *ctx_type; 5828 const char *tname, *ctx_tname; 5829 5830 t = btf_type_by_id(btf, t->type); 5831 5832 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5833 * check before we skip all the typedef below. 5834 */ 5835 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5836 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5837 t = btf_type_by_id(btf, t->type); 5838 5839 if (btf_type_is_typedef(t)) { 5840 tname = btf_name_by_offset(btf, t->name_off); 5841 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5842 return true; 5843 } 5844 } 5845 5846 while (btf_type_is_modifier(t)) 5847 t = btf_type_by_id(btf, t->type); 5848 if (!btf_type_is_struct(t)) { 5849 /* Only pointer to struct is supported for now. 5850 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5851 * is not supported yet. 5852 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5853 */ 5854 return false; 5855 } 5856 tname = btf_name_by_offset(btf, t->name_off); 5857 if (!tname) { 5858 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5859 return false; 5860 } 5861 5862 ctx_type = find_canonical_prog_ctx_type(prog_type); 5863 if (!ctx_type) { 5864 bpf_log(log, "btf_vmlinux is malformed\n"); 5865 /* should not happen */ 5866 return false; 5867 } 5868 again: 5869 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5870 if (!ctx_tname) { 5871 /* should not happen */ 5872 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5873 return false; 5874 } 5875 /* program types without named context types work only with arg:ctx tag */ 5876 if (ctx_tname[0] == '\0') 5877 return false; 5878 /* only compare that prog's ctx type name is the same as 5879 * kernel expects. No need to compare field by field. 5880 * It's ok for bpf prog to do: 5881 * struct __sk_buff {}; 5882 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5883 * { // no fields of skb are ever used } 5884 */ 5885 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5886 return true; 5887 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5888 return true; 5889 if (strcmp(ctx_tname, tname)) { 5890 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5891 * underlying struct and check name again 5892 */ 5893 if (!btf_type_is_modifier(ctx_type)) 5894 return false; 5895 while (btf_type_is_modifier(ctx_type)) 5896 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5897 goto again; 5898 } 5899 return true; 5900 } 5901 5902 /* forward declarations for arch-specific underlying types of 5903 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5904 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5905 * works correctly with __builtin_types_compatible_p() on respective 5906 * architectures 5907 */ 5908 struct user_regs_struct; 5909 struct user_pt_regs; 5910 5911 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5912 const struct btf_type *t, int arg, 5913 enum bpf_prog_type prog_type, 5914 enum bpf_attach_type attach_type) 5915 { 5916 const struct btf_type *ctx_type; 5917 const char *tname, *ctx_tname; 5918 5919 if (!btf_is_ptr(t)) { 5920 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 5921 return -EINVAL; 5922 } 5923 t = btf_type_by_id(btf, t->type); 5924 5925 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 5926 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 5927 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5928 t = btf_type_by_id(btf, t->type); 5929 5930 if (btf_type_is_typedef(t)) { 5931 tname = btf_name_by_offset(btf, t->name_off); 5932 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5933 return 0; 5934 } 5935 } 5936 5937 /* all other program types don't use typedefs for context type */ 5938 while (btf_type_is_modifier(t)) 5939 t = btf_type_by_id(btf, t->type); 5940 5941 /* `void *ctx __arg_ctx` is always valid */ 5942 if (btf_type_is_void(t)) 5943 return 0; 5944 5945 tname = btf_name_by_offset(btf, t->name_off); 5946 if (str_is_empty(tname)) { 5947 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 5948 return -EINVAL; 5949 } 5950 5951 /* special cases */ 5952 switch (prog_type) { 5953 case BPF_PROG_TYPE_KPROBE: 5954 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 5955 return 0; 5956 break; 5957 case BPF_PROG_TYPE_PERF_EVENT: 5958 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 5959 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 5960 return 0; 5961 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 5962 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 5963 return 0; 5964 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 5965 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 5966 return 0; 5967 break; 5968 case BPF_PROG_TYPE_RAW_TRACEPOINT: 5969 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 5970 /* allow u64* as ctx */ 5971 if (btf_is_int(t) && t->size == 8) 5972 return 0; 5973 break; 5974 case BPF_PROG_TYPE_TRACING: 5975 switch (attach_type) { 5976 case BPF_TRACE_RAW_TP: 5977 /* tp_btf program is TRACING, so need special case here */ 5978 if (__btf_type_is_struct(t) && 5979 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 5980 return 0; 5981 /* allow u64* as ctx */ 5982 if (btf_is_int(t) && t->size == 8) 5983 return 0; 5984 break; 5985 case BPF_TRACE_ITER: 5986 /* allow struct bpf_iter__xxx types only */ 5987 if (__btf_type_is_struct(t) && 5988 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 5989 return 0; 5990 break; 5991 case BPF_TRACE_FENTRY: 5992 case BPF_TRACE_FEXIT: 5993 case BPF_MODIFY_RETURN: 5994 /* allow u64* as ctx */ 5995 if (btf_is_int(t) && t->size == 8) 5996 return 0; 5997 break; 5998 default: 5999 break; 6000 } 6001 break; 6002 case BPF_PROG_TYPE_LSM: 6003 case BPF_PROG_TYPE_STRUCT_OPS: 6004 /* allow u64* as ctx */ 6005 if (btf_is_int(t) && t->size == 8) 6006 return 0; 6007 break; 6008 case BPF_PROG_TYPE_TRACEPOINT: 6009 case BPF_PROG_TYPE_SYSCALL: 6010 case BPF_PROG_TYPE_EXT: 6011 return 0; /* anything goes */ 6012 default: 6013 break; 6014 } 6015 6016 ctx_type = find_canonical_prog_ctx_type(prog_type); 6017 if (!ctx_type) { 6018 /* should not happen */ 6019 bpf_log(log, "btf_vmlinux is malformed\n"); 6020 return -EINVAL; 6021 } 6022 6023 /* resolve typedefs and check that underlying structs are matching as well */ 6024 while (btf_type_is_modifier(ctx_type)) 6025 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6026 6027 /* if program type doesn't have distinctly named struct type for 6028 * context, then __arg_ctx argument can only be `void *`, which we 6029 * already checked above 6030 */ 6031 if (!__btf_type_is_struct(ctx_type)) { 6032 bpf_log(log, "arg#%d should be void pointer\n", arg); 6033 return -EINVAL; 6034 } 6035 6036 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6037 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6038 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6039 return -EINVAL; 6040 } 6041 6042 return 0; 6043 } 6044 6045 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6046 struct btf *btf, 6047 const struct btf_type *t, 6048 enum bpf_prog_type prog_type, 6049 int arg) 6050 { 6051 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6052 return -ENOENT; 6053 return find_kern_ctx_type_id(prog_type); 6054 } 6055 6056 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6057 { 6058 const struct btf_member *kctx_member; 6059 const struct btf_type *conv_struct; 6060 const struct btf_type *kctx_type; 6061 u32 kctx_type_id; 6062 6063 conv_struct = bpf_ctx_convert.t; 6064 /* get member for kernel ctx type */ 6065 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6066 kctx_type_id = kctx_member->type; 6067 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6068 if (!btf_type_is_struct(kctx_type)) { 6069 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6070 return -EINVAL; 6071 } 6072 6073 return kctx_type_id; 6074 } 6075 6076 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6077 BTF_ID(struct, bpf_ctx_convert) 6078 6079 struct btf *btf_parse_vmlinux(void) 6080 { 6081 struct btf_verifier_env *env = NULL; 6082 struct bpf_verifier_log *log; 6083 struct btf *btf = NULL; 6084 int err; 6085 6086 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6087 return ERR_PTR(-ENOENT); 6088 6089 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6090 if (!env) 6091 return ERR_PTR(-ENOMEM); 6092 6093 log = &env->log; 6094 log->level = BPF_LOG_KERNEL; 6095 6096 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6097 if (!btf) { 6098 err = -ENOMEM; 6099 goto errout; 6100 } 6101 env->btf = btf; 6102 6103 btf->data = __start_BTF; 6104 btf->data_size = __stop_BTF - __start_BTF; 6105 btf->kernel_btf = true; 6106 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 6107 6108 err = btf_parse_hdr(env); 6109 if (err) 6110 goto errout; 6111 6112 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6113 6114 err = btf_parse_str_sec(env); 6115 if (err) 6116 goto errout; 6117 6118 err = btf_check_all_metas(env); 6119 if (err) 6120 goto errout; 6121 6122 err = btf_check_type_tags(env, btf, 1); 6123 if (err) 6124 goto errout; 6125 6126 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6127 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6128 6129 refcount_set(&btf->refcnt, 1); 6130 6131 err = btf_alloc_id(btf); 6132 if (err) 6133 goto errout; 6134 6135 btf_verifier_env_free(env); 6136 return btf; 6137 6138 errout: 6139 btf_verifier_env_free(env); 6140 if (btf) { 6141 kvfree(btf->types); 6142 kfree(btf); 6143 } 6144 return ERR_PTR(err); 6145 } 6146 6147 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6148 6149 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 6150 { 6151 struct btf_verifier_env *env = NULL; 6152 struct bpf_verifier_log *log; 6153 struct btf *btf = NULL, *base_btf; 6154 int err; 6155 6156 base_btf = bpf_get_btf_vmlinux(); 6157 if (IS_ERR(base_btf)) 6158 return base_btf; 6159 if (!base_btf) 6160 return ERR_PTR(-EINVAL); 6161 6162 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6163 if (!env) 6164 return ERR_PTR(-ENOMEM); 6165 6166 log = &env->log; 6167 log->level = BPF_LOG_KERNEL; 6168 6169 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6170 if (!btf) { 6171 err = -ENOMEM; 6172 goto errout; 6173 } 6174 env->btf = btf; 6175 6176 btf->base_btf = base_btf; 6177 btf->start_id = base_btf->nr_types; 6178 btf->start_str_off = base_btf->hdr.str_len; 6179 btf->kernel_btf = true; 6180 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6181 6182 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 6183 if (!btf->data) { 6184 err = -ENOMEM; 6185 goto errout; 6186 } 6187 memcpy(btf->data, data, data_size); 6188 btf->data_size = data_size; 6189 6190 err = btf_parse_hdr(env); 6191 if (err) 6192 goto errout; 6193 6194 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6195 6196 err = btf_parse_str_sec(env); 6197 if (err) 6198 goto errout; 6199 6200 err = btf_check_all_metas(env); 6201 if (err) 6202 goto errout; 6203 6204 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6205 if (err) 6206 goto errout; 6207 6208 btf_verifier_env_free(env); 6209 refcount_set(&btf->refcnt, 1); 6210 return btf; 6211 6212 errout: 6213 btf_verifier_env_free(env); 6214 if (btf) { 6215 kvfree(btf->data); 6216 kvfree(btf->types); 6217 kfree(btf); 6218 } 6219 return ERR_PTR(err); 6220 } 6221 6222 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6223 6224 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6225 { 6226 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6227 6228 if (tgt_prog) 6229 return tgt_prog->aux->btf; 6230 else 6231 return prog->aux->attach_btf; 6232 } 6233 6234 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6235 { 6236 /* skip modifiers */ 6237 t = btf_type_skip_modifiers(btf, t->type, NULL); 6238 6239 return btf_type_is_int(t); 6240 } 6241 6242 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6243 int off) 6244 { 6245 const struct btf_param *args; 6246 const struct btf_type *t; 6247 u32 offset = 0, nr_args; 6248 int i; 6249 6250 if (!func_proto) 6251 return off / 8; 6252 6253 nr_args = btf_type_vlen(func_proto); 6254 args = (const struct btf_param *)(func_proto + 1); 6255 for (i = 0; i < nr_args; i++) { 6256 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6257 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6258 if (off < offset) 6259 return i; 6260 } 6261 6262 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6263 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6264 if (off < offset) 6265 return nr_args; 6266 6267 return nr_args + 1; 6268 } 6269 6270 static bool prog_args_trusted(const struct bpf_prog *prog) 6271 { 6272 enum bpf_attach_type atype = prog->expected_attach_type; 6273 6274 switch (prog->type) { 6275 case BPF_PROG_TYPE_TRACING: 6276 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6277 case BPF_PROG_TYPE_LSM: 6278 return bpf_lsm_is_trusted(prog); 6279 case BPF_PROG_TYPE_STRUCT_OPS: 6280 return true; 6281 default: 6282 return false; 6283 } 6284 } 6285 6286 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6287 u32 arg_no) 6288 { 6289 const struct btf_param *args; 6290 const struct btf_type *t; 6291 int off = 0, i; 6292 u32 sz; 6293 6294 args = btf_params(func_proto); 6295 for (i = 0; i < arg_no; i++) { 6296 t = btf_type_by_id(btf, args[i].type); 6297 t = btf_resolve_size(btf, t, &sz); 6298 if (IS_ERR(t)) 6299 return PTR_ERR(t); 6300 off += roundup(sz, 8); 6301 } 6302 6303 return off; 6304 } 6305 6306 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6307 const struct bpf_prog *prog, 6308 struct bpf_insn_access_aux *info) 6309 { 6310 const struct btf_type *t = prog->aux->attach_func_proto; 6311 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6312 struct btf *btf = bpf_prog_get_target_btf(prog); 6313 const char *tname = prog->aux->attach_func_name; 6314 struct bpf_verifier_log *log = info->log; 6315 const struct btf_param *args; 6316 const char *tag_value; 6317 u32 nr_args, arg; 6318 int i, ret; 6319 6320 if (off % 8) { 6321 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6322 tname, off); 6323 return false; 6324 } 6325 arg = get_ctx_arg_idx(btf, t, off); 6326 args = (const struct btf_param *)(t + 1); 6327 /* if (t == NULL) Fall back to default BPF prog with 6328 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6329 */ 6330 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6331 if (prog->aux->attach_btf_trace) { 6332 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6333 args++; 6334 nr_args--; 6335 } 6336 6337 if (arg > nr_args) { 6338 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6339 tname, arg + 1); 6340 return false; 6341 } 6342 6343 if (arg == nr_args) { 6344 switch (prog->expected_attach_type) { 6345 case BPF_LSM_CGROUP: 6346 case BPF_LSM_MAC: 6347 case BPF_TRACE_FEXIT: 6348 /* When LSM programs are attached to void LSM hooks 6349 * they use FEXIT trampolines and when attached to 6350 * int LSM hooks, they use MODIFY_RETURN trampolines. 6351 * 6352 * While the LSM programs are BPF_MODIFY_RETURN-like 6353 * the check: 6354 * 6355 * if (ret_type != 'int') 6356 * return -EINVAL; 6357 * 6358 * is _not_ done here. This is still safe as LSM hooks 6359 * have only void and int return types. 6360 */ 6361 if (!t) 6362 return true; 6363 t = btf_type_by_id(btf, t->type); 6364 break; 6365 case BPF_MODIFY_RETURN: 6366 /* For now the BPF_MODIFY_RETURN can only be attached to 6367 * functions that return an int. 6368 */ 6369 if (!t) 6370 return false; 6371 6372 t = btf_type_skip_modifiers(btf, t->type, NULL); 6373 if (!btf_type_is_small_int(t)) { 6374 bpf_log(log, 6375 "ret type %s not allowed for fmod_ret\n", 6376 btf_type_str(t)); 6377 return false; 6378 } 6379 break; 6380 default: 6381 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6382 tname, arg + 1); 6383 return false; 6384 } 6385 } else { 6386 if (!t) 6387 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6388 return true; 6389 t = btf_type_by_id(btf, args[arg].type); 6390 } 6391 6392 /* skip modifiers */ 6393 while (btf_type_is_modifier(t)) 6394 t = btf_type_by_id(btf, t->type); 6395 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6396 /* accessing a scalar */ 6397 return true; 6398 if (!btf_type_is_ptr(t)) { 6399 bpf_log(log, 6400 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6401 tname, arg, 6402 __btf_name_by_offset(btf, t->name_off), 6403 btf_type_str(t)); 6404 return false; 6405 } 6406 6407 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6408 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6409 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6410 u32 type, flag; 6411 6412 type = base_type(ctx_arg_info->reg_type); 6413 flag = type_flag(ctx_arg_info->reg_type); 6414 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6415 (flag & PTR_MAYBE_NULL)) { 6416 info->reg_type = ctx_arg_info->reg_type; 6417 return true; 6418 } 6419 } 6420 6421 if (t->type == 0) 6422 /* This is a pointer to void. 6423 * It is the same as scalar from the verifier safety pov. 6424 * No further pointer walking is allowed. 6425 */ 6426 return true; 6427 6428 if (is_int_ptr(btf, t)) 6429 return true; 6430 6431 /* this is a pointer to another type */ 6432 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6433 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6434 6435 if (ctx_arg_info->offset == off) { 6436 if (!ctx_arg_info->btf_id) { 6437 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6438 return false; 6439 } 6440 6441 info->reg_type = ctx_arg_info->reg_type; 6442 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6443 info->btf_id = ctx_arg_info->btf_id; 6444 return true; 6445 } 6446 } 6447 6448 info->reg_type = PTR_TO_BTF_ID; 6449 if (prog_args_trusted(prog)) 6450 info->reg_type |= PTR_TRUSTED; 6451 6452 if (tgt_prog) { 6453 enum bpf_prog_type tgt_type; 6454 6455 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6456 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6457 else 6458 tgt_type = tgt_prog->type; 6459 6460 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6461 if (ret > 0) { 6462 info->btf = btf_vmlinux; 6463 info->btf_id = ret; 6464 return true; 6465 } else { 6466 return false; 6467 } 6468 } 6469 6470 info->btf = btf; 6471 info->btf_id = t->type; 6472 t = btf_type_by_id(btf, t->type); 6473 6474 if (btf_type_is_type_tag(t)) { 6475 tag_value = __btf_name_by_offset(btf, t->name_off); 6476 if (strcmp(tag_value, "user") == 0) 6477 info->reg_type |= MEM_USER; 6478 if (strcmp(tag_value, "percpu") == 0) 6479 info->reg_type |= MEM_PERCPU; 6480 } 6481 6482 /* skip modifiers */ 6483 while (btf_type_is_modifier(t)) { 6484 info->btf_id = t->type; 6485 t = btf_type_by_id(btf, t->type); 6486 } 6487 if (!btf_type_is_struct(t)) { 6488 bpf_log(log, 6489 "func '%s' arg%d type %s is not a struct\n", 6490 tname, arg, btf_type_str(t)); 6491 return false; 6492 } 6493 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6494 tname, arg, info->btf_id, btf_type_str(t), 6495 __btf_name_by_offset(btf, t->name_off)); 6496 return true; 6497 } 6498 EXPORT_SYMBOL_GPL(btf_ctx_access); 6499 6500 enum bpf_struct_walk_result { 6501 /* < 0 error */ 6502 WALK_SCALAR = 0, 6503 WALK_PTR, 6504 WALK_STRUCT, 6505 }; 6506 6507 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6508 const struct btf_type *t, int off, int size, 6509 u32 *next_btf_id, enum bpf_type_flag *flag, 6510 const char **field_name) 6511 { 6512 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6513 const struct btf_type *mtype, *elem_type = NULL; 6514 const struct btf_member *member; 6515 const char *tname, *mname, *tag_value; 6516 u32 vlen, elem_id, mid; 6517 6518 again: 6519 if (btf_type_is_modifier(t)) 6520 t = btf_type_skip_modifiers(btf, t->type, NULL); 6521 tname = __btf_name_by_offset(btf, t->name_off); 6522 if (!btf_type_is_struct(t)) { 6523 bpf_log(log, "Type '%s' is not a struct\n", tname); 6524 return -EINVAL; 6525 } 6526 6527 vlen = btf_type_vlen(t); 6528 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6529 /* 6530 * walking unions yields untrusted pointers 6531 * with exception of __bpf_md_ptr and other 6532 * unions with a single member 6533 */ 6534 *flag |= PTR_UNTRUSTED; 6535 6536 if (off + size > t->size) { 6537 /* If the last element is a variable size array, we may 6538 * need to relax the rule. 6539 */ 6540 struct btf_array *array_elem; 6541 6542 if (vlen == 0) 6543 goto error; 6544 6545 member = btf_type_member(t) + vlen - 1; 6546 mtype = btf_type_skip_modifiers(btf, member->type, 6547 NULL); 6548 if (!btf_type_is_array(mtype)) 6549 goto error; 6550 6551 array_elem = (struct btf_array *)(mtype + 1); 6552 if (array_elem->nelems != 0) 6553 goto error; 6554 6555 moff = __btf_member_bit_offset(t, member) / 8; 6556 if (off < moff) 6557 goto error; 6558 6559 /* allow structure and integer */ 6560 t = btf_type_skip_modifiers(btf, array_elem->type, 6561 NULL); 6562 6563 if (btf_type_is_int(t)) 6564 return WALK_SCALAR; 6565 6566 if (!btf_type_is_struct(t)) 6567 goto error; 6568 6569 off = (off - moff) % t->size; 6570 goto again; 6571 6572 error: 6573 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6574 tname, off, size); 6575 return -EACCES; 6576 } 6577 6578 for_each_member(i, t, member) { 6579 /* offset of the field in bytes */ 6580 moff = __btf_member_bit_offset(t, member) / 8; 6581 if (off + size <= moff) 6582 /* won't find anything, field is already too far */ 6583 break; 6584 6585 if (__btf_member_bitfield_size(t, member)) { 6586 u32 end_bit = __btf_member_bit_offset(t, member) + 6587 __btf_member_bitfield_size(t, member); 6588 6589 /* off <= moff instead of off == moff because clang 6590 * does not generate a BTF member for anonymous 6591 * bitfield like the ":16" here: 6592 * struct { 6593 * int :16; 6594 * int x:8; 6595 * }; 6596 */ 6597 if (off <= moff && 6598 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6599 return WALK_SCALAR; 6600 6601 /* off may be accessing a following member 6602 * 6603 * or 6604 * 6605 * Doing partial access at either end of this 6606 * bitfield. Continue on this case also to 6607 * treat it as not accessing this bitfield 6608 * and eventually error out as field not 6609 * found to keep it simple. 6610 * It could be relaxed if there was a legit 6611 * partial access case later. 6612 */ 6613 continue; 6614 } 6615 6616 /* In case of "off" is pointing to holes of a struct */ 6617 if (off < moff) 6618 break; 6619 6620 /* type of the field */ 6621 mid = member->type; 6622 mtype = btf_type_by_id(btf, member->type); 6623 mname = __btf_name_by_offset(btf, member->name_off); 6624 6625 mtype = __btf_resolve_size(btf, mtype, &msize, 6626 &elem_type, &elem_id, &total_nelems, 6627 &mid); 6628 if (IS_ERR(mtype)) { 6629 bpf_log(log, "field %s doesn't have size\n", mname); 6630 return -EFAULT; 6631 } 6632 6633 mtrue_end = moff + msize; 6634 if (off >= mtrue_end) 6635 /* no overlap with member, keep iterating */ 6636 continue; 6637 6638 if (btf_type_is_array(mtype)) { 6639 u32 elem_idx; 6640 6641 /* __btf_resolve_size() above helps to 6642 * linearize a multi-dimensional array. 6643 * 6644 * The logic here is treating an array 6645 * in a struct as the following way: 6646 * 6647 * struct outer { 6648 * struct inner array[2][2]; 6649 * }; 6650 * 6651 * looks like: 6652 * 6653 * struct outer { 6654 * struct inner array_elem0; 6655 * struct inner array_elem1; 6656 * struct inner array_elem2; 6657 * struct inner array_elem3; 6658 * }; 6659 * 6660 * When accessing outer->array[1][0], it moves 6661 * moff to "array_elem2", set mtype to 6662 * "struct inner", and msize also becomes 6663 * sizeof(struct inner). Then most of the 6664 * remaining logic will fall through without 6665 * caring the current member is an array or 6666 * not. 6667 * 6668 * Unlike mtype/msize/moff, mtrue_end does not 6669 * change. The naming difference ("_true") tells 6670 * that it is not always corresponding to 6671 * the current mtype/msize/moff. 6672 * It is the true end of the current 6673 * member (i.e. array in this case). That 6674 * will allow an int array to be accessed like 6675 * a scratch space, 6676 * i.e. allow access beyond the size of 6677 * the array's element as long as it is 6678 * within the mtrue_end boundary. 6679 */ 6680 6681 /* skip empty array */ 6682 if (moff == mtrue_end) 6683 continue; 6684 6685 msize /= total_nelems; 6686 elem_idx = (off - moff) / msize; 6687 moff += elem_idx * msize; 6688 mtype = elem_type; 6689 mid = elem_id; 6690 } 6691 6692 /* the 'off' we're looking for is either equal to start 6693 * of this field or inside of this struct 6694 */ 6695 if (btf_type_is_struct(mtype)) { 6696 /* our field must be inside that union or struct */ 6697 t = mtype; 6698 6699 /* return if the offset matches the member offset */ 6700 if (off == moff) { 6701 *next_btf_id = mid; 6702 return WALK_STRUCT; 6703 } 6704 6705 /* adjust offset we're looking for */ 6706 off -= moff; 6707 goto again; 6708 } 6709 6710 if (btf_type_is_ptr(mtype)) { 6711 const struct btf_type *stype, *t; 6712 enum bpf_type_flag tmp_flag = 0; 6713 u32 id; 6714 6715 if (msize != size || off != moff) { 6716 bpf_log(log, 6717 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6718 mname, moff, tname, off, size); 6719 return -EACCES; 6720 } 6721 6722 /* check type tag */ 6723 t = btf_type_by_id(btf, mtype->type); 6724 if (btf_type_is_type_tag(t)) { 6725 tag_value = __btf_name_by_offset(btf, t->name_off); 6726 /* check __user tag */ 6727 if (strcmp(tag_value, "user") == 0) 6728 tmp_flag = MEM_USER; 6729 /* check __percpu tag */ 6730 if (strcmp(tag_value, "percpu") == 0) 6731 tmp_flag = MEM_PERCPU; 6732 /* check __rcu tag */ 6733 if (strcmp(tag_value, "rcu") == 0) 6734 tmp_flag = MEM_RCU; 6735 } 6736 6737 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6738 if (btf_type_is_struct(stype)) { 6739 *next_btf_id = id; 6740 *flag |= tmp_flag; 6741 if (field_name) 6742 *field_name = mname; 6743 return WALK_PTR; 6744 } 6745 } 6746 6747 /* Allow more flexible access within an int as long as 6748 * it is within mtrue_end. 6749 * Since mtrue_end could be the end of an array, 6750 * that also allows using an array of int as a scratch 6751 * space. e.g. skb->cb[]. 6752 */ 6753 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 6754 bpf_log(log, 6755 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6756 mname, mtrue_end, tname, off, size); 6757 return -EACCES; 6758 } 6759 6760 return WALK_SCALAR; 6761 } 6762 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6763 return -EINVAL; 6764 } 6765 6766 int btf_struct_access(struct bpf_verifier_log *log, 6767 const struct bpf_reg_state *reg, 6768 int off, int size, enum bpf_access_type atype __maybe_unused, 6769 u32 *next_btf_id, enum bpf_type_flag *flag, 6770 const char **field_name) 6771 { 6772 const struct btf *btf = reg->btf; 6773 enum bpf_type_flag tmp_flag = 0; 6774 const struct btf_type *t; 6775 u32 id = reg->btf_id; 6776 int err; 6777 6778 while (type_is_alloc(reg->type)) { 6779 struct btf_struct_meta *meta; 6780 struct btf_record *rec; 6781 int i; 6782 6783 meta = btf_find_struct_meta(btf, id); 6784 if (!meta) 6785 break; 6786 rec = meta->record; 6787 for (i = 0; i < rec->cnt; i++) { 6788 struct btf_field *field = &rec->fields[i]; 6789 u32 offset = field->offset; 6790 if (off < offset + field->size && offset < off + size) { 6791 bpf_log(log, 6792 "direct access to %s is disallowed\n", 6793 btf_field_type_name(field->type)); 6794 return -EACCES; 6795 } 6796 } 6797 break; 6798 } 6799 6800 t = btf_type_by_id(btf, id); 6801 do { 6802 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6803 6804 switch (err) { 6805 case WALK_PTR: 6806 /* For local types, the destination register cannot 6807 * become a pointer again. 6808 */ 6809 if (type_is_alloc(reg->type)) 6810 return SCALAR_VALUE; 6811 /* If we found the pointer or scalar on t+off, 6812 * we're done. 6813 */ 6814 *next_btf_id = id; 6815 *flag = tmp_flag; 6816 return PTR_TO_BTF_ID; 6817 case WALK_SCALAR: 6818 return SCALAR_VALUE; 6819 case WALK_STRUCT: 6820 /* We found nested struct, so continue the search 6821 * by diving in it. At this point the offset is 6822 * aligned with the new type, so set it to 0. 6823 */ 6824 t = btf_type_by_id(btf, id); 6825 off = 0; 6826 break; 6827 default: 6828 /* It's either error or unknown return value.. 6829 * scream and leave. 6830 */ 6831 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6832 return -EINVAL; 6833 return err; 6834 } 6835 } while (t); 6836 6837 return -EINVAL; 6838 } 6839 6840 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6841 * the same. Trivial ID check is not enough due to module BTFs, because we can 6842 * end up with two different module BTFs, but IDs point to the common type in 6843 * vmlinux BTF. 6844 */ 6845 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6846 const struct btf *btf2, u32 id2) 6847 { 6848 if (id1 != id2) 6849 return false; 6850 if (btf1 == btf2) 6851 return true; 6852 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6853 } 6854 6855 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6856 const struct btf *btf, u32 id, int off, 6857 const struct btf *need_btf, u32 need_type_id, 6858 bool strict) 6859 { 6860 const struct btf_type *type; 6861 enum bpf_type_flag flag = 0; 6862 int err; 6863 6864 /* Are we already done? */ 6865 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6866 return true; 6867 /* In case of strict type match, we do not walk struct, the top level 6868 * type match must succeed. When strict is true, off should have already 6869 * been 0. 6870 */ 6871 if (strict) 6872 return false; 6873 again: 6874 type = btf_type_by_id(btf, id); 6875 if (!type) 6876 return false; 6877 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6878 if (err != WALK_STRUCT) 6879 return false; 6880 6881 /* We found nested struct object. If it matches 6882 * the requested ID, we're done. Otherwise let's 6883 * continue the search with offset 0 in the new 6884 * type. 6885 */ 6886 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6887 off = 0; 6888 goto again; 6889 } 6890 6891 return true; 6892 } 6893 6894 static int __get_type_size(struct btf *btf, u32 btf_id, 6895 const struct btf_type **ret_type) 6896 { 6897 const struct btf_type *t; 6898 6899 *ret_type = btf_type_by_id(btf, 0); 6900 if (!btf_id) 6901 /* void */ 6902 return 0; 6903 t = btf_type_by_id(btf, btf_id); 6904 while (t && btf_type_is_modifier(t)) 6905 t = btf_type_by_id(btf, t->type); 6906 if (!t) 6907 return -EINVAL; 6908 *ret_type = t; 6909 if (btf_type_is_ptr(t)) 6910 /* kernel size of pointer. Not BPF's size of pointer*/ 6911 return sizeof(void *); 6912 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6913 return t->size; 6914 return -EINVAL; 6915 } 6916 6917 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6918 { 6919 u8 flags = 0; 6920 6921 if (__btf_type_is_struct(t)) 6922 flags |= BTF_FMODEL_STRUCT_ARG; 6923 if (btf_type_is_signed_int(t)) 6924 flags |= BTF_FMODEL_SIGNED_ARG; 6925 6926 return flags; 6927 } 6928 6929 int btf_distill_func_proto(struct bpf_verifier_log *log, 6930 struct btf *btf, 6931 const struct btf_type *func, 6932 const char *tname, 6933 struct btf_func_model *m) 6934 { 6935 const struct btf_param *args; 6936 const struct btf_type *t; 6937 u32 i, nargs; 6938 int ret; 6939 6940 if (!func) { 6941 /* BTF function prototype doesn't match the verifier types. 6942 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6943 */ 6944 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6945 m->arg_size[i] = 8; 6946 m->arg_flags[i] = 0; 6947 } 6948 m->ret_size = 8; 6949 m->ret_flags = 0; 6950 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6951 return 0; 6952 } 6953 args = (const struct btf_param *)(func + 1); 6954 nargs = btf_type_vlen(func); 6955 if (nargs > MAX_BPF_FUNC_ARGS) { 6956 bpf_log(log, 6957 "The function %s has %d arguments. Too many.\n", 6958 tname, nargs); 6959 return -EINVAL; 6960 } 6961 ret = __get_type_size(btf, func->type, &t); 6962 if (ret < 0 || __btf_type_is_struct(t)) { 6963 bpf_log(log, 6964 "The function %s return type %s is unsupported.\n", 6965 tname, btf_type_str(t)); 6966 return -EINVAL; 6967 } 6968 m->ret_size = ret; 6969 m->ret_flags = __get_type_fmodel_flags(t); 6970 6971 for (i = 0; i < nargs; i++) { 6972 if (i == nargs - 1 && args[i].type == 0) { 6973 bpf_log(log, 6974 "The function %s with variable args is unsupported.\n", 6975 tname); 6976 return -EINVAL; 6977 } 6978 ret = __get_type_size(btf, args[i].type, &t); 6979 6980 /* No support of struct argument size greater than 16 bytes */ 6981 if (ret < 0 || ret > 16) { 6982 bpf_log(log, 6983 "The function %s arg%d type %s is unsupported.\n", 6984 tname, i, btf_type_str(t)); 6985 return -EINVAL; 6986 } 6987 if (ret == 0) { 6988 bpf_log(log, 6989 "The function %s has malformed void argument.\n", 6990 tname); 6991 return -EINVAL; 6992 } 6993 m->arg_size[i] = ret; 6994 m->arg_flags[i] = __get_type_fmodel_flags(t); 6995 } 6996 m->nr_args = nargs; 6997 return 0; 6998 } 6999 7000 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7001 * t1 points to BTF_KIND_FUNC in btf1 7002 * t2 points to BTF_KIND_FUNC in btf2 7003 * Returns: 7004 * EINVAL - function prototype mismatch 7005 * EFAULT - verifier bug 7006 * 0 - 99% match. The last 1% is validated by the verifier. 7007 */ 7008 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7009 struct btf *btf1, const struct btf_type *t1, 7010 struct btf *btf2, const struct btf_type *t2) 7011 { 7012 const struct btf_param *args1, *args2; 7013 const char *fn1, *fn2, *s1, *s2; 7014 u32 nargs1, nargs2, i; 7015 7016 fn1 = btf_name_by_offset(btf1, t1->name_off); 7017 fn2 = btf_name_by_offset(btf2, t2->name_off); 7018 7019 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7020 bpf_log(log, "%s() is not a global function\n", fn1); 7021 return -EINVAL; 7022 } 7023 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7024 bpf_log(log, "%s() is not a global function\n", fn2); 7025 return -EINVAL; 7026 } 7027 7028 t1 = btf_type_by_id(btf1, t1->type); 7029 if (!t1 || !btf_type_is_func_proto(t1)) 7030 return -EFAULT; 7031 t2 = btf_type_by_id(btf2, t2->type); 7032 if (!t2 || !btf_type_is_func_proto(t2)) 7033 return -EFAULT; 7034 7035 args1 = (const struct btf_param *)(t1 + 1); 7036 nargs1 = btf_type_vlen(t1); 7037 args2 = (const struct btf_param *)(t2 + 1); 7038 nargs2 = btf_type_vlen(t2); 7039 7040 if (nargs1 != nargs2) { 7041 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7042 fn1, nargs1, fn2, nargs2); 7043 return -EINVAL; 7044 } 7045 7046 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7047 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7048 if (t1->info != t2->info) { 7049 bpf_log(log, 7050 "Return type %s of %s() doesn't match type %s of %s()\n", 7051 btf_type_str(t1), fn1, 7052 btf_type_str(t2), fn2); 7053 return -EINVAL; 7054 } 7055 7056 for (i = 0; i < nargs1; i++) { 7057 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7058 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7059 7060 if (t1->info != t2->info) { 7061 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7062 i, fn1, btf_type_str(t1), 7063 fn2, btf_type_str(t2)); 7064 return -EINVAL; 7065 } 7066 if (btf_type_has_size(t1) && t1->size != t2->size) { 7067 bpf_log(log, 7068 "arg%d in %s() has size %d while %s() has %d\n", 7069 i, fn1, t1->size, 7070 fn2, t2->size); 7071 return -EINVAL; 7072 } 7073 7074 /* global functions are validated with scalars and pointers 7075 * to context only. And only global functions can be replaced. 7076 * Hence type check only those types. 7077 */ 7078 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7079 continue; 7080 if (!btf_type_is_ptr(t1)) { 7081 bpf_log(log, 7082 "arg%d in %s() has unrecognized type\n", 7083 i, fn1); 7084 return -EINVAL; 7085 } 7086 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7087 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7088 if (!btf_type_is_struct(t1)) { 7089 bpf_log(log, 7090 "arg%d in %s() is not a pointer to context\n", 7091 i, fn1); 7092 return -EINVAL; 7093 } 7094 if (!btf_type_is_struct(t2)) { 7095 bpf_log(log, 7096 "arg%d in %s() is not a pointer to context\n", 7097 i, fn2); 7098 return -EINVAL; 7099 } 7100 /* This is an optional check to make program writing easier. 7101 * Compare names of structs and report an error to the user. 7102 * btf_prepare_func_args() already checked that t2 struct 7103 * is a context type. btf_prepare_func_args() will check 7104 * later that t1 struct is a context type as well. 7105 */ 7106 s1 = btf_name_by_offset(btf1, t1->name_off); 7107 s2 = btf_name_by_offset(btf2, t2->name_off); 7108 if (strcmp(s1, s2)) { 7109 bpf_log(log, 7110 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7111 i, fn1, s1, fn2, s2); 7112 return -EINVAL; 7113 } 7114 } 7115 return 0; 7116 } 7117 7118 /* Compare BTFs of given program with BTF of target program */ 7119 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7120 struct btf *btf2, const struct btf_type *t2) 7121 { 7122 struct btf *btf1 = prog->aux->btf; 7123 const struct btf_type *t1; 7124 u32 btf_id = 0; 7125 7126 if (!prog->aux->func_info) { 7127 bpf_log(log, "Program extension requires BTF\n"); 7128 return -EINVAL; 7129 } 7130 7131 btf_id = prog->aux->func_info[0].type_id; 7132 if (!btf_id) 7133 return -EFAULT; 7134 7135 t1 = btf_type_by_id(btf1, btf_id); 7136 if (!t1 || !btf_type_is_func(t1)) 7137 return -EFAULT; 7138 7139 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7140 } 7141 7142 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7143 { 7144 const char *name; 7145 7146 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7147 7148 while (btf_type_is_modifier(t)) 7149 t = btf_type_by_id(btf, t->type); 7150 7151 /* allow either struct or struct forward declaration */ 7152 if (btf_type_is_struct(t) || 7153 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7154 name = btf_str_by_offset(btf, t->name_off); 7155 return name && strcmp(name, "bpf_dynptr") == 0; 7156 } 7157 7158 return false; 7159 } 7160 7161 struct bpf_cand_cache { 7162 const char *name; 7163 u32 name_len; 7164 u16 kind; 7165 u16 cnt; 7166 struct { 7167 const struct btf *btf; 7168 u32 id; 7169 } cands[]; 7170 }; 7171 7172 static DEFINE_MUTEX(cand_cache_mutex); 7173 7174 static struct bpf_cand_cache * 7175 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7176 7177 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7178 const struct btf *btf, const struct btf_type *t) 7179 { 7180 struct bpf_cand_cache *cc; 7181 struct bpf_core_ctx ctx = { 7182 .btf = btf, 7183 .log = log, 7184 }; 7185 u32 kern_type_id, type_id; 7186 int err = 0; 7187 7188 /* skip PTR and modifiers */ 7189 type_id = t->type; 7190 t = btf_type_by_id(btf, t->type); 7191 while (btf_type_is_modifier(t)) { 7192 type_id = t->type; 7193 t = btf_type_by_id(btf, t->type); 7194 } 7195 7196 mutex_lock(&cand_cache_mutex); 7197 cc = bpf_core_find_cands(&ctx, type_id); 7198 if (IS_ERR(cc)) { 7199 err = PTR_ERR(cc); 7200 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7201 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7202 err); 7203 goto cand_cache_unlock; 7204 } 7205 if (cc->cnt != 1) { 7206 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7207 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7208 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7209 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7210 goto cand_cache_unlock; 7211 } 7212 if (btf_is_module(cc->cands[0].btf)) { 7213 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7214 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7215 err = -EOPNOTSUPP; 7216 goto cand_cache_unlock; 7217 } 7218 kern_type_id = cc->cands[0].id; 7219 7220 cand_cache_unlock: 7221 mutex_unlock(&cand_cache_mutex); 7222 if (err) 7223 return err; 7224 7225 return kern_type_id; 7226 } 7227 7228 enum btf_arg_tag { 7229 ARG_TAG_CTX = BIT_ULL(0), 7230 ARG_TAG_NONNULL = BIT_ULL(1), 7231 ARG_TAG_TRUSTED = BIT_ULL(2), 7232 ARG_TAG_NULLABLE = BIT_ULL(3), 7233 ARG_TAG_ARENA = BIT_ULL(4), 7234 }; 7235 7236 /* Process BTF of a function to produce high-level expectation of function 7237 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7238 * is cached in subprog info for reuse. 7239 * Returns: 7240 * EFAULT - there is a verifier bug. Abort verification. 7241 * EINVAL - cannot convert BTF. 7242 * 0 - Successfully processed BTF and constructed argument expectations. 7243 */ 7244 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7245 { 7246 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7247 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7248 struct bpf_verifier_log *log = &env->log; 7249 struct bpf_prog *prog = env->prog; 7250 enum bpf_prog_type prog_type = prog->type; 7251 struct btf *btf = prog->aux->btf; 7252 const struct btf_param *args; 7253 const struct btf_type *t, *ref_t, *fn_t; 7254 u32 i, nargs, btf_id; 7255 const char *tname; 7256 7257 if (sub->args_cached) 7258 return 0; 7259 7260 if (!prog->aux->func_info) { 7261 bpf_log(log, "Verifier bug\n"); 7262 return -EFAULT; 7263 } 7264 7265 btf_id = prog->aux->func_info[subprog].type_id; 7266 if (!btf_id) { 7267 if (!is_global) /* not fatal for static funcs */ 7268 return -EINVAL; 7269 bpf_log(log, "Global functions need valid BTF\n"); 7270 return -EFAULT; 7271 } 7272 7273 fn_t = btf_type_by_id(btf, btf_id); 7274 if (!fn_t || !btf_type_is_func(fn_t)) { 7275 /* These checks were already done by the verifier while loading 7276 * struct bpf_func_info 7277 */ 7278 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7279 subprog); 7280 return -EFAULT; 7281 } 7282 tname = btf_name_by_offset(btf, fn_t->name_off); 7283 7284 if (prog->aux->func_info_aux[subprog].unreliable) { 7285 bpf_log(log, "Verifier bug in function %s()\n", tname); 7286 return -EFAULT; 7287 } 7288 if (prog_type == BPF_PROG_TYPE_EXT) 7289 prog_type = prog->aux->dst_prog->type; 7290 7291 t = btf_type_by_id(btf, fn_t->type); 7292 if (!t || !btf_type_is_func_proto(t)) { 7293 bpf_log(log, "Invalid type of function %s()\n", tname); 7294 return -EFAULT; 7295 } 7296 args = (const struct btf_param *)(t + 1); 7297 nargs = btf_type_vlen(t); 7298 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7299 if (!is_global) 7300 return -EINVAL; 7301 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7302 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7303 return -EINVAL; 7304 } 7305 /* check that function returns int, exception cb also requires this */ 7306 t = btf_type_by_id(btf, t->type); 7307 while (btf_type_is_modifier(t)) 7308 t = btf_type_by_id(btf, t->type); 7309 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7310 if (!is_global) 7311 return -EINVAL; 7312 bpf_log(log, 7313 "Global function %s() doesn't return scalar. Only those are supported.\n", 7314 tname); 7315 return -EINVAL; 7316 } 7317 /* Convert BTF function arguments into verifier types. 7318 * Only PTR_TO_CTX and SCALAR are supported atm. 7319 */ 7320 for (i = 0; i < nargs; i++) { 7321 u32 tags = 0; 7322 int id = 0; 7323 7324 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7325 * register type from BTF type itself 7326 */ 7327 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7328 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7329 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7330 7331 /* disallow arg tags in static subprogs */ 7332 if (!is_global) { 7333 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7334 return -EOPNOTSUPP; 7335 } 7336 7337 if (strcmp(tag, "ctx") == 0) { 7338 tags |= ARG_TAG_CTX; 7339 } else if (strcmp(tag, "trusted") == 0) { 7340 tags |= ARG_TAG_TRUSTED; 7341 } else if (strcmp(tag, "nonnull") == 0) { 7342 tags |= ARG_TAG_NONNULL; 7343 } else if (strcmp(tag, "nullable") == 0) { 7344 tags |= ARG_TAG_NULLABLE; 7345 } else if (strcmp(tag, "arena") == 0) { 7346 tags |= ARG_TAG_ARENA; 7347 } else { 7348 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7349 return -EOPNOTSUPP; 7350 } 7351 } 7352 if (id != -ENOENT) { 7353 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7354 return id; 7355 } 7356 7357 t = btf_type_by_id(btf, args[i].type); 7358 while (btf_type_is_modifier(t)) 7359 t = btf_type_by_id(btf, t->type); 7360 if (!btf_type_is_ptr(t)) 7361 goto skip_pointer; 7362 7363 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7364 if (tags & ~ARG_TAG_CTX) { 7365 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7366 return -EINVAL; 7367 } 7368 if ((tags & ARG_TAG_CTX) && 7369 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7370 prog->expected_attach_type)) 7371 return -EINVAL; 7372 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7373 continue; 7374 } 7375 if (btf_is_dynptr_ptr(btf, t)) { 7376 if (tags) { 7377 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7378 return -EINVAL; 7379 } 7380 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7381 continue; 7382 } 7383 if (tags & ARG_TAG_TRUSTED) { 7384 int kern_type_id; 7385 7386 if (tags & ARG_TAG_NONNULL) { 7387 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7388 return -EINVAL; 7389 } 7390 7391 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7392 if (kern_type_id < 0) 7393 return kern_type_id; 7394 7395 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7396 if (tags & ARG_TAG_NULLABLE) 7397 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7398 sub->args[i].btf_id = kern_type_id; 7399 continue; 7400 } 7401 if (tags & ARG_TAG_ARENA) { 7402 if (tags & ~ARG_TAG_ARENA) { 7403 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7404 return -EINVAL; 7405 } 7406 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7407 continue; 7408 } 7409 if (is_global) { /* generic user data pointer */ 7410 u32 mem_size; 7411 7412 if (tags & ARG_TAG_NULLABLE) { 7413 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7414 return -EINVAL; 7415 } 7416 7417 t = btf_type_skip_modifiers(btf, t->type, NULL); 7418 ref_t = btf_resolve_size(btf, t, &mem_size); 7419 if (IS_ERR(ref_t)) { 7420 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7421 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7422 PTR_ERR(ref_t)); 7423 return -EINVAL; 7424 } 7425 7426 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7427 if (tags & ARG_TAG_NONNULL) 7428 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7429 sub->args[i].mem_size = mem_size; 7430 continue; 7431 } 7432 7433 skip_pointer: 7434 if (tags) { 7435 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7436 return -EINVAL; 7437 } 7438 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7439 sub->args[i].arg_type = ARG_ANYTHING; 7440 continue; 7441 } 7442 if (!is_global) 7443 return -EINVAL; 7444 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7445 i, btf_type_str(t), tname); 7446 return -EINVAL; 7447 } 7448 7449 sub->arg_cnt = nargs; 7450 sub->args_cached = true; 7451 7452 return 0; 7453 } 7454 7455 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7456 struct btf_show *show) 7457 { 7458 const struct btf_type *t = btf_type_by_id(btf, type_id); 7459 7460 show->btf = btf; 7461 memset(&show->state, 0, sizeof(show->state)); 7462 memset(&show->obj, 0, sizeof(show->obj)); 7463 7464 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7465 } 7466 7467 static void btf_seq_show(struct btf_show *show, const char *fmt, 7468 va_list args) 7469 { 7470 seq_vprintf((struct seq_file *)show->target, fmt, args); 7471 } 7472 7473 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7474 void *obj, struct seq_file *m, u64 flags) 7475 { 7476 struct btf_show sseq; 7477 7478 sseq.target = m; 7479 sseq.showfn = btf_seq_show; 7480 sseq.flags = flags; 7481 7482 btf_type_show(btf, type_id, obj, &sseq); 7483 7484 return sseq.state.status; 7485 } 7486 7487 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7488 struct seq_file *m) 7489 { 7490 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7491 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7492 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7493 } 7494 7495 struct btf_show_snprintf { 7496 struct btf_show show; 7497 int len_left; /* space left in string */ 7498 int len; /* length we would have written */ 7499 }; 7500 7501 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7502 va_list args) 7503 { 7504 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7505 int len; 7506 7507 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7508 7509 if (len < 0) { 7510 ssnprintf->len_left = 0; 7511 ssnprintf->len = len; 7512 } else if (len >= ssnprintf->len_left) { 7513 /* no space, drive on to get length we would have written */ 7514 ssnprintf->len_left = 0; 7515 ssnprintf->len += len; 7516 } else { 7517 ssnprintf->len_left -= len; 7518 ssnprintf->len += len; 7519 show->target += len; 7520 } 7521 } 7522 7523 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7524 char *buf, int len, u64 flags) 7525 { 7526 struct btf_show_snprintf ssnprintf; 7527 7528 ssnprintf.show.target = buf; 7529 ssnprintf.show.flags = flags; 7530 ssnprintf.show.showfn = btf_snprintf_show; 7531 ssnprintf.len_left = len; 7532 ssnprintf.len = 0; 7533 7534 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7535 7536 /* If we encountered an error, return it. */ 7537 if (ssnprintf.show.state.status) 7538 return ssnprintf.show.state.status; 7539 7540 /* Otherwise return length we would have written */ 7541 return ssnprintf.len; 7542 } 7543 7544 #ifdef CONFIG_PROC_FS 7545 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7546 { 7547 const struct btf *btf = filp->private_data; 7548 7549 seq_printf(m, "btf_id:\t%u\n", btf->id); 7550 } 7551 #endif 7552 7553 static int btf_release(struct inode *inode, struct file *filp) 7554 { 7555 btf_put(filp->private_data); 7556 return 0; 7557 } 7558 7559 const struct file_operations btf_fops = { 7560 #ifdef CONFIG_PROC_FS 7561 .show_fdinfo = bpf_btf_show_fdinfo, 7562 #endif 7563 .release = btf_release, 7564 }; 7565 7566 static int __btf_new_fd(struct btf *btf) 7567 { 7568 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7569 } 7570 7571 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7572 { 7573 struct btf *btf; 7574 int ret; 7575 7576 btf = btf_parse(attr, uattr, uattr_size); 7577 if (IS_ERR(btf)) 7578 return PTR_ERR(btf); 7579 7580 ret = btf_alloc_id(btf); 7581 if (ret) { 7582 btf_free(btf); 7583 return ret; 7584 } 7585 7586 /* 7587 * The BTF ID is published to the userspace. 7588 * All BTF free must go through call_rcu() from 7589 * now on (i.e. free by calling btf_put()). 7590 */ 7591 7592 ret = __btf_new_fd(btf); 7593 if (ret < 0) 7594 btf_put(btf); 7595 7596 return ret; 7597 } 7598 7599 struct btf *btf_get_by_fd(int fd) 7600 { 7601 struct btf *btf; 7602 struct fd f; 7603 7604 f = fdget(fd); 7605 7606 if (!f.file) 7607 return ERR_PTR(-EBADF); 7608 7609 if (f.file->f_op != &btf_fops) { 7610 fdput(f); 7611 return ERR_PTR(-EINVAL); 7612 } 7613 7614 btf = f.file->private_data; 7615 refcount_inc(&btf->refcnt); 7616 fdput(f); 7617 7618 return btf; 7619 } 7620 7621 int btf_get_info_by_fd(const struct btf *btf, 7622 const union bpf_attr *attr, 7623 union bpf_attr __user *uattr) 7624 { 7625 struct bpf_btf_info __user *uinfo; 7626 struct bpf_btf_info info; 7627 u32 info_copy, btf_copy; 7628 void __user *ubtf; 7629 char __user *uname; 7630 u32 uinfo_len, uname_len, name_len; 7631 int ret = 0; 7632 7633 uinfo = u64_to_user_ptr(attr->info.info); 7634 uinfo_len = attr->info.info_len; 7635 7636 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7637 memset(&info, 0, sizeof(info)); 7638 if (copy_from_user(&info, uinfo, info_copy)) 7639 return -EFAULT; 7640 7641 info.id = btf->id; 7642 ubtf = u64_to_user_ptr(info.btf); 7643 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7644 if (copy_to_user(ubtf, btf->data, btf_copy)) 7645 return -EFAULT; 7646 info.btf_size = btf->data_size; 7647 7648 info.kernel_btf = btf->kernel_btf; 7649 7650 uname = u64_to_user_ptr(info.name); 7651 uname_len = info.name_len; 7652 if (!uname ^ !uname_len) 7653 return -EINVAL; 7654 7655 name_len = strlen(btf->name); 7656 info.name_len = name_len; 7657 7658 if (uname) { 7659 if (uname_len >= name_len + 1) { 7660 if (copy_to_user(uname, btf->name, name_len + 1)) 7661 return -EFAULT; 7662 } else { 7663 char zero = '\0'; 7664 7665 if (copy_to_user(uname, btf->name, uname_len - 1)) 7666 return -EFAULT; 7667 if (put_user(zero, uname + uname_len - 1)) 7668 return -EFAULT; 7669 /* let user-space know about too short buffer */ 7670 ret = -ENOSPC; 7671 } 7672 } 7673 7674 if (copy_to_user(uinfo, &info, info_copy) || 7675 put_user(info_copy, &uattr->info.info_len)) 7676 return -EFAULT; 7677 7678 return ret; 7679 } 7680 7681 int btf_get_fd_by_id(u32 id) 7682 { 7683 struct btf *btf; 7684 int fd; 7685 7686 rcu_read_lock(); 7687 btf = idr_find(&btf_idr, id); 7688 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7689 btf = ERR_PTR(-ENOENT); 7690 rcu_read_unlock(); 7691 7692 if (IS_ERR(btf)) 7693 return PTR_ERR(btf); 7694 7695 fd = __btf_new_fd(btf); 7696 if (fd < 0) 7697 btf_put(btf); 7698 7699 return fd; 7700 } 7701 7702 u32 btf_obj_id(const struct btf *btf) 7703 { 7704 return btf->id; 7705 } 7706 7707 bool btf_is_kernel(const struct btf *btf) 7708 { 7709 return btf->kernel_btf; 7710 } 7711 7712 bool btf_is_module(const struct btf *btf) 7713 { 7714 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7715 } 7716 7717 enum { 7718 BTF_MODULE_F_LIVE = (1 << 0), 7719 }; 7720 7721 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7722 struct btf_module { 7723 struct list_head list; 7724 struct module *module; 7725 struct btf *btf; 7726 struct bin_attribute *sysfs_attr; 7727 int flags; 7728 }; 7729 7730 static LIST_HEAD(btf_modules); 7731 static DEFINE_MUTEX(btf_module_mutex); 7732 7733 static ssize_t 7734 btf_module_read(struct file *file, struct kobject *kobj, 7735 struct bin_attribute *bin_attr, 7736 char *buf, loff_t off, size_t len) 7737 { 7738 const struct btf *btf = bin_attr->private; 7739 7740 memcpy(buf, btf->data + off, len); 7741 return len; 7742 } 7743 7744 static void purge_cand_cache(struct btf *btf); 7745 7746 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7747 void *module) 7748 { 7749 struct btf_module *btf_mod, *tmp; 7750 struct module *mod = module; 7751 struct btf *btf; 7752 int err = 0; 7753 7754 if (mod->btf_data_size == 0 || 7755 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7756 op != MODULE_STATE_GOING)) 7757 goto out; 7758 7759 switch (op) { 7760 case MODULE_STATE_COMING: 7761 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7762 if (!btf_mod) { 7763 err = -ENOMEM; 7764 goto out; 7765 } 7766 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7767 if (IS_ERR(btf)) { 7768 kfree(btf_mod); 7769 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7770 pr_warn("failed to validate module [%s] BTF: %ld\n", 7771 mod->name, PTR_ERR(btf)); 7772 err = PTR_ERR(btf); 7773 } else { 7774 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7775 } 7776 goto out; 7777 } 7778 err = btf_alloc_id(btf); 7779 if (err) { 7780 btf_free(btf); 7781 kfree(btf_mod); 7782 goto out; 7783 } 7784 7785 purge_cand_cache(NULL); 7786 mutex_lock(&btf_module_mutex); 7787 btf_mod->module = module; 7788 btf_mod->btf = btf; 7789 list_add(&btf_mod->list, &btf_modules); 7790 mutex_unlock(&btf_module_mutex); 7791 7792 if (IS_ENABLED(CONFIG_SYSFS)) { 7793 struct bin_attribute *attr; 7794 7795 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7796 if (!attr) 7797 goto out; 7798 7799 sysfs_bin_attr_init(attr); 7800 attr->attr.name = btf->name; 7801 attr->attr.mode = 0444; 7802 attr->size = btf->data_size; 7803 attr->private = btf; 7804 attr->read = btf_module_read; 7805 7806 err = sysfs_create_bin_file(btf_kobj, attr); 7807 if (err) { 7808 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7809 mod->name, err); 7810 kfree(attr); 7811 err = 0; 7812 goto out; 7813 } 7814 7815 btf_mod->sysfs_attr = attr; 7816 } 7817 7818 break; 7819 case MODULE_STATE_LIVE: 7820 mutex_lock(&btf_module_mutex); 7821 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7822 if (btf_mod->module != module) 7823 continue; 7824 7825 btf_mod->flags |= BTF_MODULE_F_LIVE; 7826 break; 7827 } 7828 mutex_unlock(&btf_module_mutex); 7829 break; 7830 case MODULE_STATE_GOING: 7831 mutex_lock(&btf_module_mutex); 7832 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7833 if (btf_mod->module != module) 7834 continue; 7835 7836 list_del(&btf_mod->list); 7837 if (btf_mod->sysfs_attr) 7838 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7839 purge_cand_cache(btf_mod->btf); 7840 btf_put(btf_mod->btf); 7841 kfree(btf_mod->sysfs_attr); 7842 kfree(btf_mod); 7843 break; 7844 } 7845 mutex_unlock(&btf_module_mutex); 7846 break; 7847 } 7848 out: 7849 return notifier_from_errno(err); 7850 } 7851 7852 static struct notifier_block btf_module_nb = { 7853 .notifier_call = btf_module_notify, 7854 }; 7855 7856 static int __init btf_module_init(void) 7857 { 7858 register_module_notifier(&btf_module_nb); 7859 return 0; 7860 } 7861 7862 fs_initcall(btf_module_init); 7863 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7864 7865 struct module *btf_try_get_module(const struct btf *btf) 7866 { 7867 struct module *res = NULL; 7868 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7869 struct btf_module *btf_mod, *tmp; 7870 7871 mutex_lock(&btf_module_mutex); 7872 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7873 if (btf_mod->btf != btf) 7874 continue; 7875 7876 /* We must only consider module whose __init routine has 7877 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7878 * which is set from the notifier callback for 7879 * MODULE_STATE_LIVE. 7880 */ 7881 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7882 res = btf_mod->module; 7883 7884 break; 7885 } 7886 mutex_unlock(&btf_module_mutex); 7887 #endif 7888 7889 return res; 7890 } 7891 7892 /* Returns struct btf corresponding to the struct module. 7893 * This function can return NULL or ERR_PTR. 7894 */ 7895 static struct btf *btf_get_module_btf(const struct module *module) 7896 { 7897 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7898 struct btf_module *btf_mod, *tmp; 7899 #endif 7900 struct btf *btf = NULL; 7901 7902 if (!module) { 7903 btf = bpf_get_btf_vmlinux(); 7904 if (!IS_ERR_OR_NULL(btf)) 7905 btf_get(btf); 7906 return btf; 7907 } 7908 7909 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7910 mutex_lock(&btf_module_mutex); 7911 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7912 if (btf_mod->module != module) 7913 continue; 7914 7915 btf_get(btf_mod->btf); 7916 btf = btf_mod->btf; 7917 break; 7918 } 7919 mutex_unlock(&btf_module_mutex); 7920 #endif 7921 7922 return btf; 7923 } 7924 7925 static int check_btf_kconfigs(const struct module *module, const char *feature) 7926 { 7927 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7928 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 7929 return -ENOENT; 7930 } 7931 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 7932 pr_warn("missing module BTF, cannot register %s\n", feature); 7933 return 0; 7934 } 7935 7936 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7937 { 7938 struct btf *btf = NULL; 7939 int btf_obj_fd = 0; 7940 long ret; 7941 7942 if (flags) 7943 return -EINVAL; 7944 7945 if (name_sz <= 1 || name[name_sz - 1]) 7946 return -EINVAL; 7947 7948 ret = bpf_find_btf_id(name, kind, &btf); 7949 if (ret > 0 && btf_is_module(btf)) { 7950 btf_obj_fd = __btf_new_fd(btf); 7951 if (btf_obj_fd < 0) { 7952 btf_put(btf); 7953 return btf_obj_fd; 7954 } 7955 return ret | (((u64)btf_obj_fd) << 32); 7956 } 7957 if (ret > 0) 7958 btf_put(btf); 7959 return ret; 7960 } 7961 7962 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7963 .func = bpf_btf_find_by_name_kind, 7964 .gpl_only = false, 7965 .ret_type = RET_INTEGER, 7966 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7967 .arg2_type = ARG_CONST_SIZE, 7968 .arg3_type = ARG_ANYTHING, 7969 .arg4_type = ARG_ANYTHING, 7970 }; 7971 7972 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7973 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7974 BTF_TRACING_TYPE_xxx 7975 #undef BTF_TRACING_TYPE 7976 7977 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7978 const struct btf_type *func, u32 func_flags) 7979 { 7980 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7981 const char *name, *sfx, *iter_name; 7982 const struct btf_param *arg; 7983 const struct btf_type *t; 7984 char exp_name[128]; 7985 u32 nr_args; 7986 7987 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7988 if (!flags || (flags & (flags - 1))) 7989 return -EINVAL; 7990 7991 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7992 nr_args = btf_type_vlen(func); 7993 if (nr_args < 1) 7994 return -EINVAL; 7995 7996 arg = &btf_params(func)[0]; 7997 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7998 if (!t || !btf_type_is_ptr(t)) 7999 return -EINVAL; 8000 t = btf_type_skip_modifiers(btf, t->type, NULL); 8001 if (!t || !__btf_type_is_struct(t)) 8002 return -EINVAL; 8003 8004 name = btf_name_by_offset(btf, t->name_off); 8005 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8006 return -EINVAL; 8007 8008 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8009 * fit nicely in stack slots 8010 */ 8011 if (t->size == 0 || (t->size % 8)) 8012 return -EINVAL; 8013 8014 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8015 * naming pattern 8016 */ 8017 iter_name = name + sizeof(ITER_PREFIX) - 1; 8018 if (flags & KF_ITER_NEW) 8019 sfx = "new"; 8020 else if (flags & KF_ITER_NEXT) 8021 sfx = "next"; 8022 else /* (flags & KF_ITER_DESTROY) */ 8023 sfx = "destroy"; 8024 8025 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8026 if (strcmp(func_name, exp_name)) 8027 return -EINVAL; 8028 8029 /* only iter constructor should have extra arguments */ 8030 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8031 return -EINVAL; 8032 8033 if (flags & KF_ITER_NEXT) { 8034 /* bpf_iter_<type>_next() should return pointer */ 8035 t = btf_type_skip_modifiers(btf, func->type, NULL); 8036 if (!t || !btf_type_is_ptr(t)) 8037 return -EINVAL; 8038 } 8039 8040 if (flags & KF_ITER_DESTROY) { 8041 /* bpf_iter_<type>_destroy() should return void */ 8042 t = btf_type_by_id(btf, func->type); 8043 if (!t || !btf_type_is_void(t)) 8044 return -EINVAL; 8045 } 8046 8047 return 0; 8048 } 8049 8050 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8051 { 8052 const struct btf_type *func; 8053 const char *func_name; 8054 int err; 8055 8056 /* any kfunc should be FUNC -> FUNC_PROTO */ 8057 func = btf_type_by_id(btf, func_id); 8058 if (!func || !btf_type_is_func(func)) 8059 return -EINVAL; 8060 8061 /* sanity check kfunc name */ 8062 func_name = btf_name_by_offset(btf, func->name_off); 8063 if (!func_name || !func_name[0]) 8064 return -EINVAL; 8065 8066 func = btf_type_by_id(btf, func->type); 8067 if (!func || !btf_type_is_func_proto(func)) 8068 return -EINVAL; 8069 8070 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8071 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8072 if (err) 8073 return err; 8074 } 8075 8076 return 0; 8077 } 8078 8079 /* Kernel Function (kfunc) BTF ID set registration API */ 8080 8081 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8082 const struct btf_kfunc_id_set *kset) 8083 { 8084 struct btf_kfunc_hook_filter *hook_filter; 8085 struct btf_id_set8 *add_set = kset->set; 8086 bool vmlinux_set = !btf_is_module(btf); 8087 bool add_filter = !!kset->filter; 8088 struct btf_kfunc_set_tab *tab; 8089 struct btf_id_set8 *set; 8090 u32 set_cnt; 8091 int ret; 8092 8093 if (hook >= BTF_KFUNC_HOOK_MAX) { 8094 ret = -EINVAL; 8095 goto end; 8096 } 8097 8098 if (!add_set->cnt) 8099 return 0; 8100 8101 tab = btf->kfunc_set_tab; 8102 8103 if (tab && add_filter) { 8104 u32 i; 8105 8106 hook_filter = &tab->hook_filters[hook]; 8107 for (i = 0; i < hook_filter->nr_filters; i++) { 8108 if (hook_filter->filters[i] == kset->filter) { 8109 add_filter = false; 8110 break; 8111 } 8112 } 8113 8114 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8115 ret = -E2BIG; 8116 goto end; 8117 } 8118 } 8119 8120 if (!tab) { 8121 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8122 if (!tab) 8123 return -ENOMEM; 8124 btf->kfunc_set_tab = tab; 8125 } 8126 8127 set = tab->sets[hook]; 8128 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8129 * for module sets. 8130 */ 8131 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8132 ret = -EINVAL; 8133 goto end; 8134 } 8135 8136 /* We don't need to allocate, concatenate, and sort module sets, because 8137 * only one is allowed per hook. Hence, we can directly assign the 8138 * pointer and return. 8139 */ 8140 if (!vmlinux_set) { 8141 tab->sets[hook] = add_set; 8142 goto do_add_filter; 8143 } 8144 8145 /* In case of vmlinux sets, there may be more than one set being 8146 * registered per hook. To create a unified set, we allocate a new set 8147 * and concatenate all individual sets being registered. While each set 8148 * is individually sorted, they may become unsorted when concatenated, 8149 * hence re-sorting the final set again is required to make binary 8150 * searching the set using btf_id_set8_contains function work. 8151 */ 8152 set_cnt = set ? set->cnt : 0; 8153 8154 if (set_cnt > U32_MAX - add_set->cnt) { 8155 ret = -EOVERFLOW; 8156 goto end; 8157 } 8158 8159 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8160 ret = -E2BIG; 8161 goto end; 8162 } 8163 8164 /* Grow set */ 8165 set = krealloc(tab->sets[hook], 8166 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8167 GFP_KERNEL | __GFP_NOWARN); 8168 if (!set) { 8169 ret = -ENOMEM; 8170 goto end; 8171 } 8172 8173 /* For newly allocated set, initialize set->cnt to 0 */ 8174 if (!tab->sets[hook]) 8175 set->cnt = 0; 8176 tab->sets[hook] = set; 8177 8178 /* Concatenate the two sets */ 8179 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8180 set->cnt += add_set->cnt; 8181 8182 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8183 8184 do_add_filter: 8185 if (add_filter) { 8186 hook_filter = &tab->hook_filters[hook]; 8187 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8188 } 8189 return 0; 8190 end: 8191 btf_free_kfunc_set_tab(btf); 8192 return ret; 8193 } 8194 8195 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8196 enum btf_kfunc_hook hook, 8197 u32 kfunc_btf_id, 8198 const struct bpf_prog *prog) 8199 { 8200 struct btf_kfunc_hook_filter *hook_filter; 8201 struct btf_id_set8 *set; 8202 u32 *id, i; 8203 8204 if (hook >= BTF_KFUNC_HOOK_MAX) 8205 return NULL; 8206 if (!btf->kfunc_set_tab) 8207 return NULL; 8208 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8209 for (i = 0; i < hook_filter->nr_filters; i++) { 8210 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8211 return NULL; 8212 } 8213 set = btf->kfunc_set_tab->sets[hook]; 8214 if (!set) 8215 return NULL; 8216 id = btf_id_set8_contains(set, kfunc_btf_id); 8217 if (!id) 8218 return NULL; 8219 /* The flags for BTF ID are located next to it */ 8220 return id + 1; 8221 } 8222 8223 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8224 { 8225 switch (prog_type) { 8226 case BPF_PROG_TYPE_UNSPEC: 8227 return BTF_KFUNC_HOOK_COMMON; 8228 case BPF_PROG_TYPE_XDP: 8229 return BTF_KFUNC_HOOK_XDP; 8230 case BPF_PROG_TYPE_SCHED_CLS: 8231 return BTF_KFUNC_HOOK_TC; 8232 case BPF_PROG_TYPE_STRUCT_OPS: 8233 return BTF_KFUNC_HOOK_STRUCT_OPS; 8234 case BPF_PROG_TYPE_TRACING: 8235 case BPF_PROG_TYPE_LSM: 8236 return BTF_KFUNC_HOOK_TRACING; 8237 case BPF_PROG_TYPE_SYSCALL: 8238 return BTF_KFUNC_HOOK_SYSCALL; 8239 case BPF_PROG_TYPE_CGROUP_SKB: 8240 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8241 return BTF_KFUNC_HOOK_CGROUP_SKB; 8242 case BPF_PROG_TYPE_SCHED_ACT: 8243 return BTF_KFUNC_HOOK_SCHED_ACT; 8244 case BPF_PROG_TYPE_SK_SKB: 8245 return BTF_KFUNC_HOOK_SK_SKB; 8246 case BPF_PROG_TYPE_SOCKET_FILTER: 8247 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8248 case BPF_PROG_TYPE_LWT_OUT: 8249 case BPF_PROG_TYPE_LWT_IN: 8250 case BPF_PROG_TYPE_LWT_XMIT: 8251 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8252 return BTF_KFUNC_HOOK_LWT; 8253 case BPF_PROG_TYPE_NETFILTER: 8254 return BTF_KFUNC_HOOK_NETFILTER; 8255 case BPF_PROG_TYPE_KPROBE: 8256 return BTF_KFUNC_HOOK_KPROBE; 8257 default: 8258 return BTF_KFUNC_HOOK_MAX; 8259 } 8260 } 8261 8262 /* Caution: 8263 * Reference to the module (obtained using btf_try_get_module) corresponding to 8264 * the struct btf *MUST* be held when calling this function from verifier 8265 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8266 * keeping the reference for the duration of the call provides the necessary 8267 * protection for looking up a well-formed btf->kfunc_set_tab. 8268 */ 8269 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8270 u32 kfunc_btf_id, 8271 const struct bpf_prog *prog) 8272 { 8273 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8274 enum btf_kfunc_hook hook; 8275 u32 *kfunc_flags; 8276 8277 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8278 if (kfunc_flags) 8279 return kfunc_flags; 8280 8281 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8282 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8283 } 8284 8285 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8286 const struct bpf_prog *prog) 8287 { 8288 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8289 } 8290 8291 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8292 const struct btf_kfunc_id_set *kset) 8293 { 8294 struct btf *btf; 8295 int ret, i; 8296 8297 btf = btf_get_module_btf(kset->owner); 8298 if (!btf) 8299 return check_btf_kconfigs(kset->owner, "kfunc"); 8300 if (IS_ERR(btf)) 8301 return PTR_ERR(btf); 8302 8303 for (i = 0; i < kset->set->cnt; i++) { 8304 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 8305 kset->set->pairs[i].flags); 8306 if (ret) 8307 goto err_out; 8308 } 8309 8310 ret = btf_populate_kfunc_set(btf, hook, kset); 8311 8312 err_out: 8313 btf_put(btf); 8314 return ret; 8315 } 8316 8317 /* This function must be invoked only from initcalls/module init functions */ 8318 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8319 const struct btf_kfunc_id_set *kset) 8320 { 8321 enum btf_kfunc_hook hook; 8322 8323 /* All kfuncs need to be tagged as such in BTF. 8324 * WARN() for initcall registrations that do not check errors. 8325 */ 8326 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8327 WARN_ON(!kset->owner); 8328 return -EINVAL; 8329 } 8330 8331 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8332 return __register_btf_kfunc_id_set(hook, kset); 8333 } 8334 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8335 8336 /* This function must be invoked only from initcalls/module init functions */ 8337 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8338 { 8339 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8340 } 8341 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8342 8343 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8344 { 8345 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8346 struct btf_id_dtor_kfunc *dtor; 8347 8348 if (!tab) 8349 return -ENOENT; 8350 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8351 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8352 */ 8353 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8354 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8355 if (!dtor) 8356 return -ENOENT; 8357 return dtor->kfunc_btf_id; 8358 } 8359 8360 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8361 { 8362 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8363 const struct btf_param *args; 8364 s32 dtor_btf_id; 8365 u32 nr_args, i; 8366 8367 for (i = 0; i < cnt; i++) { 8368 dtor_btf_id = dtors[i].kfunc_btf_id; 8369 8370 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8371 if (!dtor_func || !btf_type_is_func(dtor_func)) 8372 return -EINVAL; 8373 8374 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8375 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8376 return -EINVAL; 8377 8378 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8379 t = btf_type_by_id(btf, dtor_func_proto->type); 8380 if (!t || !btf_type_is_void(t)) 8381 return -EINVAL; 8382 8383 nr_args = btf_type_vlen(dtor_func_proto); 8384 if (nr_args != 1) 8385 return -EINVAL; 8386 args = btf_params(dtor_func_proto); 8387 t = btf_type_by_id(btf, args[0].type); 8388 /* Allow any pointer type, as width on targets Linux supports 8389 * will be same for all pointer types (i.e. sizeof(void *)) 8390 */ 8391 if (!t || !btf_type_is_ptr(t)) 8392 return -EINVAL; 8393 } 8394 return 0; 8395 } 8396 8397 /* This function must be invoked only from initcalls/module init functions */ 8398 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8399 struct module *owner) 8400 { 8401 struct btf_id_dtor_kfunc_tab *tab; 8402 struct btf *btf; 8403 u32 tab_cnt; 8404 int ret; 8405 8406 btf = btf_get_module_btf(owner); 8407 if (!btf) 8408 return check_btf_kconfigs(owner, "dtor kfuncs"); 8409 if (IS_ERR(btf)) 8410 return PTR_ERR(btf); 8411 8412 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8413 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8414 ret = -E2BIG; 8415 goto end; 8416 } 8417 8418 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8419 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8420 if (ret < 0) 8421 goto end; 8422 8423 tab = btf->dtor_kfunc_tab; 8424 /* Only one call allowed for modules */ 8425 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8426 ret = -EINVAL; 8427 goto end; 8428 } 8429 8430 tab_cnt = tab ? tab->cnt : 0; 8431 if (tab_cnt > U32_MAX - add_cnt) { 8432 ret = -EOVERFLOW; 8433 goto end; 8434 } 8435 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8436 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8437 ret = -E2BIG; 8438 goto end; 8439 } 8440 8441 tab = krealloc(btf->dtor_kfunc_tab, 8442 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8443 GFP_KERNEL | __GFP_NOWARN); 8444 if (!tab) { 8445 ret = -ENOMEM; 8446 goto end; 8447 } 8448 8449 if (!btf->dtor_kfunc_tab) 8450 tab->cnt = 0; 8451 btf->dtor_kfunc_tab = tab; 8452 8453 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8454 tab->cnt += add_cnt; 8455 8456 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8457 8458 end: 8459 if (ret) 8460 btf_free_dtor_kfunc_tab(btf); 8461 btf_put(btf); 8462 return ret; 8463 } 8464 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8465 8466 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8467 8468 /* Check local and target types for compatibility. This check is used for 8469 * type-based CO-RE relocations and follow slightly different rules than 8470 * field-based relocations. This function assumes that root types were already 8471 * checked for name match. Beyond that initial root-level name check, names 8472 * are completely ignored. Compatibility rules are as follows: 8473 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8474 * kind should match for local and target types (i.e., STRUCT is not 8475 * compatible with UNION); 8476 * - for ENUMs/ENUM64s, the size is ignored; 8477 * - for INT, size and signedness are ignored; 8478 * - for ARRAY, dimensionality is ignored, element types are checked for 8479 * compatibility recursively; 8480 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8481 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8482 * - FUNC_PROTOs are compatible if they have compatible signature: same 8483 * number of input args and compatible return and argument types. 8484 * These rules are not set in stone and probably will be adjusted as we get 8485 * more experience with using BPF CO-RE relocations. 8486 */ 8487 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8488 const struct btf *targ_btf, __u32 targ_id) 8489 { 8490 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8491 MAX_TYPES_ARE_COMPAT_DEPTH); 8492 } 8493 8494 #define MAX_TYPES_MATCH_DEPTH 2 8495 8496 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8497 const struct btf *targ_btf, u32 targ_id) 8498 { 8499 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8500 MAX_TYPES_MATCH_DEPTH); 8501 } 8502 8503 static bool bpf_core_is_flavor_sep(const char *s) 8504 { 8505 /* check X___Y name pattern, where X and Y are not underscores */ 8506 return s[0] != '_' && /* X */ 8507 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8508 s[4] != '_'; /* Y */ 8509 } 8510 8511 size_t bpf_core_essential_name_len(const char *name) 8512 { 8513 size_t n = strlen(name); 8514 int i; 8515 8516 for (i = n - 5; i >= 0; i--) { 8517 if (bpf_core_is_flavor_sep(name + i)) 8518 return i + 1; 8519 } 8520 return n; 8521 } 8522 8523 static void bpf_free_cands(struct bpf_cand_cache *cands) 8524 { 8525 if (!cands->cnt) 8526 /* empty candidate array was allocated on stack */ 8527 return; 8528 kfree(cands); 8529 } 8530 8531 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8532 { 8533 kfree(cands->name); 8534 kfree(cands); 8535 } 8536 8537 #define VMLINUX_CAND_CACHE_SIZE 31 8538 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8539 8540 #define MODULE_CAND_CACHE_SIZE 31 8541 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8542 8543 static void __print_cand_cache(struct bpf_verifier_log *log, 8544 struct bpf_cand_cache **cache, 8545 int cache_size) 8546 { 8547 struct bpf_cand_cache *cc; 8548 int i, j; 8549 8550 for (i = 0; i < cache_size; i++) { 8551 cc = cache[i]; 8552 if (!cc) 8553 continue; 8554 bpf_log(log, "[%d]%s(", i, cc->name); 8555 for (j = 0; j < cc->cnt; j++) { 8556 bpf_log(log, "%d", cc->cands[j].id); 8557 if (j < cc->cnt - 1) 8558 bpf_log(log, " "); 8559 } 8560 bpf_log(log, "), "); 8561 } 8562 } 8563 8564 static void print_cand_cache(struct bpf_verifier_log *log) 8565 { 8566 mutex_lock(&cand_cache_mutex); 8567 bpf_log(log, "vmlinux_cand_cache:"); 8568 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8569 bpf_log(log, "\nmodule_cand_cache:"); 8570 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8571 bpf_log(log, "\n"); 8572 mutex_unlock(&cand_cache_mutex); 8573 } 8574 8575 static u32 hash_cands(struct bpf_cand_cache *cands) 8576 { 8577 return jhash(cands->name, cands->name_len, 0); 8578 } 8579 8580 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8581 struct bpf_cand_cache **cache, 8582 int cache_size) 8583 { 8584 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8585 8586 if (cc && cc->name_len == cands->name_len && 8587 !strncmp(cc->name, cands->name, cands->name_len)) 8588 return cc; 8589 return NULL; 8590 } 8591 8592 static size_t sizeof_cands(int cnt) 8593 { 8594 return offsetof(struct bpf_cand_cache, cands[cnt]); 8595 } 8596 8597 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8598 struct bpf_cand_cache **cache, 8599 int cache_size) 8600 { 8601 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8602 8603 if (*cc) { 8604 bpf_free_cands_from_cache(*cc); 8605 *cc = NULL; 8606 } 8607 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8608 if (!new_cands) { 8609 bpf_free_cands(cands); 8610 return ERR_PTR(-ENOMEM); 8611 } 8612 /* strdup the name, since it will stay in cache. 8613 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8614 */ 8615 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8616 bpf_free_cands(cands); 8617 if (!new_cands->name) { 8618 kfree(new_cands); 8619 return ERR_PTR(-ENOMEM); 8620 } 8621 *cc = new_cands; 8622 return new_cands; 8623 } 8624 8625 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8626 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8627 int cache_size) 8628 { 8629 struct bpf_cand_cache *cc; 8630 int i, j; 8631 8632 for (i = 0; i < cache_size; i++) { 8633 cc = cache[i]; 8634 if (!cc) 8635 continue; 8636 if (!btf) { 8637 /* when new module is loaded purge all of module_cand_cache, 8638 * since new module might have candidates with the name 8639 * that matches cached cands. 8640 */ 8641 bpf_free_cands_from_cache(cc); 8642 cache[i] = NULL; 8643 continue; 8644 } 8645 /* when module is unloaded purge cache entries 8646 * that match module's btf 8647 */ 8648 for (j = 0; j < cc->cnt; j++) 8649 if (cc->cands[j].btf == btf) { 8650 bpf_free_cands_from_cache(cc); 8651 cache[i] = NULL; 8652 break; 8653 } 8654 } 8655 8656 } 8657 8658 static void purge_cand_cache(struct btf *btf) 8659 { 8660 mutex_lock(&cand_cache_mutex); 8661 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8662 mutex_unlock(&cand_cache_mutex); 8663 } 8664 #endif 8665 8666 static struct bpf_cand_cache * 8667 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8668 int targ_start_id) 8669 { 8670 struct bpf_cand_cache *new_cands; 8671 const struct btf_type *t; 8672 const char *targ_name; 8673 size_t targ_essent_len; 8674 int n, i; 8675 8676 n = btf_nr_types(targ_btf); 8677 for (i = targ_start_id; i < n; i++) { 8678 t = btf_type_by_id(targ_btf, i); 8679 if (btf_kind(t) != cands->kind) 8680 continue; 8681 8682 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8683 if (!targ_name) 8684 continue; 8685 8686 /* the resched point is before strncmp to make sure that search 8687 * for non-existing name will have a chance to schedule(). 8688 */ 8689 cond_resched(); 8690 8691 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8692 continue; 8693 8694 targ_essent_len = bpf_core_essential_name_len(targ_name); 8695 if (targ_essent_len != cands->name_len) 8696 continue; 8697 8698 /* most of the time there is only one candidate for a given kind+name pair */ 8699 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8700 if (!new_cands) { 8701 bpf_free_cands(cands); 8702 return ERR_PTR(-ENOMEM); 8703 } 8704 8705 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8706 bpf_free_cands(cands); 8707 cands = new_cands; 8708 cands->cands[cands->cnt].btf = targ_btf; 8709 cands->cands[cands->cnt].id = i; 8710 cands->cnt++; 8711 } 8712 return cands; 8713 } 8714 8715 static struct bpf_cand_cache * 8716 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8717 { 8718 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8719 const struct btf *local_btf = ctx->btf; 8720 const struct btf_type *local_type; 8721 const struct btf *main_btf; 8722 size_t local_essent_len; 8723 struct btf *mod_btf; 8724 const char *name; 8725 int id; 8726 8727 main_btf = bpf_get_btf_vmlinux(); 8728 if (IS_ERR(main_btf)) 8729 return ERR_CAST(main_btf); 8730 if (!main_btf) 8731 return ERR_PTR(-EINVAL); 8732 8733 local_type = btf_type_by_id(local_btf, local_type_id); 8734 if (!local_type) 8735 return ERR_PTR(-EINVAL); 8736 8737 name = btf_name_by_offset(local_btf, local_type->name_off); 8738 if (str_is_empty(name)) 8739 return ERR_PTR(-EINVAL); 8740 local_essent_len = bpf_core_essential_name_len(name); 8741 8742 cands = &local_cand; 8743 cands->name = name; 8744 cands->kind = btf_kind(local_type); 8745 cands->name_len = local_essent_len; 8746 8747 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8748 /* cands is a pointer to stack here */ 8749 if (cc) { 8750 if (cc->cnt) 8751 return cc; 8752 goto check_modules; 8753 } 8754 8755 /* Attempt to find target candidates in vmlinux BTF first */ 8756 cands = bpf_core_add_cands(cands, main_btf, 1); 8757 if (IS_ERR(cands)) 8758 return ERR_CAST(cands); 8759 8760 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8761 8762 /* populate cache even when cands->cnt == 0 */ 8763 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8764 if (IS_ERR(cc)) 8765 return ERR_CAST(cc); 8766 8767 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8768 if (cc->cnt) 8769 return cc; 8770 8771 check_modules: 8772 /* cands is a pointer to stack here and cands->cnt == 0 */ 8773 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8774 if (cc) 8775 /* if cache has it return it even if cc->cnt == 0 */ 8776 return cc; 8777 8778 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8779 spin_lock_bh(&btf_idr_lock); 8780 idr_for_each_entry(&btf_idr, mod_btf, id) { 8781 if (!btf_is_module(mod_btf)) 8782 continue; 8783 /* linear search could be slow hence unlock/lock 8784 * the IDR to avoiding holding it for too long 8785 */ 8786 btf_get(mod_btf); 8787 spin_unlock_bh(&btf_idr_lock); 8788 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8789 btf_put(mod_btf); 8790 if (IS_ERR(cands)) 8791 return ERR_CAST(cands); 8792 spin_lock_bh(&btf_idr_lock); 8793 } 8794 spin_unlock_bh(&btf_idr_lock); 8795 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8796 * or pointer to stack if cands->cnd == 0. 8797 * Copy it into the cache even when cands->cnt == 0 and 8798 * return the result. 8799 */ 8800 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8801 } 8802 8803 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8804 int relo_idx, void *insn) 8805 { 8806 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8807 struct bpf_core_cand_list cands = {}; 8808 struct bpf_core_relo_res targ_res; 8809 struct bpf_core_spec *specs; 8810 int err; 8811 8812 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8813 * into arrays of btf_ids of struct fields and array indices. 8814 */ 8815 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8816 if (!specs) 8817 return -ENOMEM; 8818 8819 if (need_cands) { 8820 struct bpf_cand_cache *cc; 8821 int i; 8822 8823 mutex_lock(&cand_cache_mutex); 8824 cc = bpf_core_find_cands(ctx, relo->type_id); 8825 if (IS_ERR(cc)) { 8826 bpf_log(ctx->log, "target candidate search failed for %d\n", 8827 relo->type_id); 8828 err = PTR_ERR(cc); 8829 goto out; 8830 } 8831 if (cc->cnt) { 8832 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8833 if (!cands.cands) { 8834 err = -ENOMEM; 8835 goto out; 8836 } 8837 } 8838 for (i = 0; i < cc->cnt; i++) { 8839 bpf_log(ctx->log, 8840 "CO-RE relocating %s %s: found target candidate [%d]\n", 8841 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8842 cands.cands[i].btf = cc->cands[i].btf; 8843 cands.cands[i].id = cc->cands[i].id; 8844 } 8845 cands.len = cc->cnt; 8846 /* cand_cache_mutex needs to span the cache lookup and 8847 * copy of btf pointer into bpf_core_cand_list, 8848 * since module can be unloaded while bpf_core_calc_relo_insn 8849 * is working with module's btf. 8850 */ 8851 } 8852 8853 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8854 &targ_res); 8855 if (err) 8856 goto out; 8857 8858 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8859 &targ_res); 8860 8861 out: 8862 kfree(specs); 8863 if (need_cands) { 8864 kfree(cands.cands); 8865 mutex_unlock(&cand_cache_mutex); 8866 if (ctx->log->level & BPF_LOG_LEVEL2) 8867 print_cand_cache(ctx->log); 8868 } 8869 return err; 8870 } 8871 8872 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8873 const struct bpf_reg_state *reg, 8874 const char *field_name, u32 btf_id, const char *suffix) 8875 { 8876 struct btf *btf = reg->btf; 8877 const struct btf_type *walk_type, *safe_type; 8878 const char *tname; 8879 char safe_tname[64]; 8880 long ret, safe_id; 8881 const struct btf_member *member; 8882 u32 i; 8883 8884 walk_type = btf_type_by_id(btf, reg->btf_id); 8885 if (!walk_type) 8886 return false; 8887 8888 tname = btf_name_by_offset(btf, walk_type->name_off); 8889 8890 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8891 if (ret >= sizeof(safe_tname)) 8892 return false; 8893 8894 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8895 if (safe_id < 0) 8896 return false; 8897 8898 safe_type = btf_type_by_id(btf, safe_id); 8899 if (!safe_type) 8900 return false; 8901 8902 for_each_member(i, safe_type, member) { 8903 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8904 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8905 u32 id; 8906 8907 if (!btf_type_is_ptr(mtype)) 8908 continue; 8909 8910 btf_type_skip_modifiers(btf, mtype->type, &id); 8911 /* If we match on both type and name, the field is considered trusted. */ 8912 if (btf_id == id && !strcmp(field_name, m_name)) 8913 return true; 8914 } 8915 8916 return false; 8917 } 8918 8919 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8920 const struct btf *reg_btf, u32 reg_id, 8921 const struct btf *arg_btf, u32 arg_id) 8922 { 8923 const char *reg_name, *arg_name, *search_needle; 8924 const struct btf_type *reg_type, *arg_type; 8925 int reg_len, arg_len, cmp_len; 8926 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8927 8928 reg_type = btf_type_by_id(reg_btf, reg_id); 8929 if (!reg_type) 8930 return false; 8931 8932 arg_type = btf_type_by_id(arg_btf, arg_id); 8933 if (!arg_type) 8934 return false; 8935 8936 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8937 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8938 8939 reg_len = strlen(reg_name); 8940 arg_len = strlen(arg_name); 8941 8942 /* Exactly one of the two type names may be suffixed with ___init, so 8943 * if the strings are the same size, they can't possibly be no-cast 8944 * aliases of one another. If you have two of the same type names, e.g. 8945 * they're both nf_conn___init, it would be improper to return true 8946 * because they are _not_ no-cast aliases, they are the same type. 8947 */ 8948 if (reg_len == arg_len) 8949 return false; 8950 8951 /* Either of the two names must be the other name, suffixed with ___init. */ 8952 if ((reg_len != arg_len + pattern_len) && 8953 (arg_len != reg_len + pattern_len)) 8954 return false; 8955 8956 if (reg_len < arg_len) { 8957 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8958 cmp_len = reg_len; 8959 } else { 8960 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8961 cmp_len = arg_len; 8962 } 8963 8964 if (!search_needle) 8965 return false; 8966 8967 /* ___init suffix must come at the end of the name */ 8968 if (*(search_needle + pattern_len) != '\0') 8969 return false; 8970 8971 return !strncmp(reg_name, arg_name, cmp_len); 8972 } 8973 8974 #ifdef CONFIG_BPF_JIT 8975 static int 8976 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 8977 struct bpf_verifier_log *log) 8978 { 8979 struct btf_struct_ops_tab *tab, *new_tab; 8980 int i, err; 8981 8982 tab = btf->struct_ops_tab; 8983 if (!tab) { 8984 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 8985 GFP_KERNEL); 8986 if (!tab) 8987 return -ENOMEM; 8988 tab->capacity = 4; 8989 btf->struct_ops_tab = tab; 8990 } 8991 8992 for (i = 0; i < tab->cnt; i++) 8993 if (tab->ops[i].st_ops == st_ops) 8994 return -EEXIST; 8995 8996 if (tab->cnt == tab->capacity) { 8997 new_tab = krealloc(tab, 8998 offsetof(struct btf_struct_ops_tab, 8999 ops[tab->capacity * 2]), 9000 GFP_KERNEL); 9001 if (!new_tab) 9002 return -ENOMEM; 9003 tab = new_tab; 9004 tab->capacity *= 2; 9005 btf->struct_ops_tab = tab; 9006 } 9007 9008 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9009 9010 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9011 if (err) 9012 return err; 9013 9014 btf->struct_ops_tab->cnt++; 9015 9016 return 0; 9017 } 9018 9019 const struct bpf_struct_ops_desc * 9020 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9021 { 9022 const struct bpf_struct_ops_desc *st_ops_list; 9023 unsigned int i; 9024 u32 cnt; 9025 9026 if (!value_id) 9027 return NULL; 9028 if (!btf->struct_ops_tab) 9029 return NULL; 9030 9031 cnt = btf->struct_ops_tab->cnt; 9032 st_ops_list = btf->struct_ops_tab->ops; 9033 for (i = 0; i < cnt; i++) { 9034 if (st_ops_list[i].value_id == value_id) 9035 return &st_ops_list[i]; 9036 } 9037 9038 return NULL; 9039 } 9040 9041 const struct bpf_struct_ops_desc * 9042 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9043 { 9044 const struct bpf_struct_ops_desc *st_ops_list; 9045 unsigned int i; 9046 u32 cnt; 9047 9048 if (!type_id) 9049 return NULL; 9050 if (!btf->struct_ops_tab) 9051 return NULL; 9052 9053 cnt = btf->struct_ops_tab->cnt; 9054 st_ops_list = btf->struct_ops_tab->ops; 9055 for (i = 0; i < cnt; i++) { 9056 if (st_ops_list[i].type_id == type_id) 9057 return &st_ops_list[i]; 9058 } 9059 9060 return NULL; 9061 } 9062 9063 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9064 { 9065 struct bpf_verifier_log *log; 9066 struct btf *btf; 9067 int err = 0; 9068 9069 btf = btf_get_module_btf(st_ops->owner); 9070 if (!btf) 9071 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9072 if (IS_ERR(btf)) 9073 return PTR_ERR(btf); 9074 9075 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9076 if (!log) { 9077 err = -ENOMEM; 9078 goto errout; 9079 } 9080 9081 log->level = BPF_LOG_KERNEL; 9082 9083 err = btf_add_struct_ops(btf, st_ops, log); 9084 9085 errout: 9086 kfree(log); 9087 btf_put(btf); 9088 9089 return err; 9090 } 9091 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9092 #endif 9093 9094 bool btf_param_match_suffix(const struct btf *btf, 9095 const struct btf_param *arg, 9096 const char *suffix) 9097 { 9098 int suffix_len = strlen(suffix), len; 9099 const char *param_name; 9100 9101 /* In the future, this can be ported to use BTF tagging */ 9102 param_name = btf_name_by_offset(btf, arg->name_off); 9103 if (str_is_empty(param_name)) 9104 return false; 9105 len = strlen(param_name); 9106 if (len <= suffix_len) 9107 return false; 9108 param_name += len - suffix_len; 9109 return !strncmp(param_name, suffix, suffix_len); 9110 } 9111