1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP_SKB, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 }; 278 279 enum verifier_phase { 280 CHECK_META, 281 CHECK_TYPE, 282 }; 283 284 struct resolve_vertex { 285 const struct btf_type *t; 286 u32 type_id; 287 u16 next_member; 288 }; 289 290 enum visit_state { 291 NOT_VISITED, 292 VISITED, 293 RESOLVED, 294 }; 295 296 enum resolve_mode { 297 RESOLVE_TBD, /* To Be Determined */ 298 RESOLVE_PTR, /* Resolving for Pointer */ 299 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 300 * or array 301 */ 302 }; 303 304 #define MAX_RESOLVE_DEPTH 32 305 306 struct btf_sec_info { 307 u32 off; 308 u32 len; 309 }; 310 311 struct btf_verifier_env { 312 struct btf *btf; 313 u8 *visit_states; 314 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 315 struct bpf_verifier_log log; 316 u32 log_type_id; 317 u32 top_stack; 318 enum verifier_phase phase; 319 enum resolve_mode resolve_mode; 320 }; 321 322 static const char * const btf_kind_str[NR_BTF_KINDS] = { 323 [BTF_KIND_UNKN] = "UNKNOWN", 324 [BTF_KIND_INT] = "INT", 325 [BTF_KIND_PTR] = "PTR", 326 [BTF_KIND_ARRAY] = "ARRAY", 327 [BTF_KIND_STRUCT] = "STRUCT", 328 [BTF_KIND_UNION] = "UNION", 329 [BTF_KIND_ENUM] = "ENUM", 330 [BTF_KIND_FWD] = "FWD", 331 [BTF_KIND_TYPEDEF] = "TYPEDEF", 332 [BTF_KIND_VOLATILE] = "VOLATILE", 333 [BTF_KIND_CONST] = "CONST", 334 [BTF_KIND_RESTRICT] = "RESTRICT", 335 [BTF_KIND_FUNC] = "FUNC", 336 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 337 [BTF_KIND_VAR] = "VAR", 338 [BTF_KIND_DATASEC] = "DATASEC", 339 [BTF_KIND_FLOAT] = "FLOAT", 340 [BTF_KIND_DECL_TAG] = "DECL_TAG", 341 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 342 [BTF_KIND_ENUM64] = "ENUM64", 343 }; 344 345 const char *btf_type_str(const struct btf_type *t) 346 { 347 return btf_kind_str[BTF_INFO_KIND(t->info)]; 348 } 349 350 /* Chunk size we use in safe copy of data to be shown. */ 351 #define BTF_SHOW_OBJ_SAFE_SIZE 32 352 353 /* 354 * This is the maximum size of a base type value (equivalent to a 355 * 128-bit int); if we are at the end of our safe buffer and have 356 * less than 16 bytes space we can't be assured of being able 357 * to copy the next type safely, so in such cases we will initiate 358 * a new copy. 359 */ 360 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 361 362 /* Type name size */ 363 #define BTF_SHOW_NAME_SIZE 80 364 365 /* 366 * The suffix of a type that indicates it cannot alias another type when 367 * comparing BTF IDs for kfunc invocations. 368 */ 369 #define NOCAST_ALIAS_SUFFIX "___init" 370 371 /* 372 * Common data to all BTF show operations. Private show functions can add 373 * their own data to a structure containing a struct btf_show and consult it 374 * in the show callback. See btf_type_show() below. 375 * 376 * One challenge with showing nested data is we want to skip 0-valued 377 * data, but in order to figure out whether a nested object is all zeros 378 * we need to walk through it. As a result, we need to make two passes 379 * when handling structs, unions and arrays; the first path simply looks 380 * for nonzero data, while the second actually does the display. The first 381 * pass is signalled by show->state.depth_check being set, and if we 382 * encounter a non-zero value we set show->state.depth_to_show to 383 * the depth at which we encountered it. When we have completed the 384 * first pass, we will know if anything needs to be displayed if 385 * depth_to_show > depth. See btf_[struct,array]_show() for the 386 * implementation of this. 387 * 388 * Another problem is we want to ensure the data for display is safe to 389 * access. To support this, the anonymous "struct {} obj" tracks the data 390 * object and our safe copy of it. We copy portions of the data needed 391 * to the object "copy" buffer, but because its size is limited to 392 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 393 * traverse larger objects for display. 394 * 395 * The various data type show functions all start with a call to 396 * btf_show_start_type() which returns a pointer to the safe copy 397 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 398 * raw data itself). btf_show_obj_safe() is responsible for 399 * using copy_from_kernel_nofault() to update the safe data if necessary 400 * as we traverse the object's data. skbuff-like semantics are 401 * used: 402 * 403 * - obj.head points to the start of the toplevel object for display 404 * - obj.size is the size of the toplevel object 405 * - obj.data points to the current point in the original data at 406 * which our safe data starts. obj.data will advance as we copy 407 * portions of the data. 408 * 409 * In most cases a single copy will suffice, but larger data structures 410 * such as "struct task_struct" will require many copies. The logic in 411 * btf_show_obj_safe() handles the logic that determines if a new 412 * copy_from_kernel_nofault() is needed. 413 */ 414 struct btf_show { 415 u64 flags; 416 void *target; /* target of show operation (seq file, buffer) */ 417 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 418 const struct btf *btf; 419 /* below are used during iteration */ 420 struct { 421 u8 depth; 422 u8 depth_to_show; 423 u8 depth_check; 424 u8 array_member:1, 425 array_terminated:1; 426 u16 array_encoding; 427 u32 type_id; 428 int status; /* non-zero for error */ 429 const struct btf_type *type; 430 const struct btf_member *member; 431 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 432 } state; 433 struct { 434 u32 size; 435 void *head; 436 void *data; 437 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 438 } obj; 439 }; 440 441 struct btf_kind_operations { 442 s32 (*check_meta)(struct btf_verifier_env *env, 443 const struct btf_type *t, 444 u32 meta_left); 445 int (*resolve)(struct btf_verifier_env *env, 446 const struct resolve_vertex *v); 447 int (*check_member)(struct btf_verifier_env *env, 448 const struct btf_type *struct_type, 449 const struct btf_member *member, 450 const struct btf_type *member_type); 451 int (*check_kflag_member)(struct btf_verifier_env *env, 452 const struct btf_type *struct_type, 453 const struct btf_member *member, 454 const struct btf_type *member_type); 455 void (*log_details)(struct btf_verifier_env *env, 456 const struct btf_type *t); 457 void (*show)(const struct btf *btf, const struct btf_type *t, 458 u32 type_id, void *data, u8 bits_offsets, 459 struct btf_show *show); 460 }; 461 462 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 463 static struct btf_type btf_void; 464 465 static int btf_resolve(struct btf_verifier_env *env, 466 const struct btf_type *t, u32 type_id); 467 468 static int btf_func_check(struct btf_verifier_env *env, 469 const struct btf_type *t); 470 471 static bool btf_type_is_modifier(const struct btf_type *t) 472 { 473 /* Some of them is not strictly a C modifier 474 * but they are grouped into the same bucket 475 * for BTF concern: 476 * A type (t) that refers to another 477 * type through t->type AND its size cannot 478 * be determined without following the t->type. 479 * 480 * ptr does not fall into this bucket 481 * because its size is always sizeof(void *). 482 */ 483 switch (BTF_INFO_KIND(t->info)) { 484 case BTF_KIND_TYPEDEF: 485 case BTF_KIND_VOLATILE: 486 case BTF_KIND_CONST: 487 case BTF_KIND_RESTRICT: 488 case BTF_KIND_TYPE_TAG: 489 return true; 490 } 491 492 return false; 493 } 494 495 bool btf_type_is_void(const struct btf_type *t) 496 { 497 return t == &btf_void; 498 } 499 500 static bool btf_type_is_fwd(const struct btf_type *t) 501 { 502 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 503 } 504 505 static bool btf_type_is_datasec(const struct btf_type *t) 506 { 507 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 508 } 509 510 static bool btf_type_is_decl_tag(const struct btf_type *t) 511 { 512 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 513 } 514 515 static bool btf_type_nosize(const struct btf_type *t) 516 { 517 return btf_type_is_void(t) || btf_type_is_fwd(t) || 518 btf_type_is_func(t) || btf_type_is_func_proto(t) || 519 btf_type_is_decl_tag(t); 520 } 521 522 static bool btf_type_nosize_or_null(const struct btf_type *t) 523 { 524 return !t || btf_type_nosize(t); 525 } 526 527 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 528 { 529 return btf_type_is_func(t) || btf_type_is_struct(t) || 530 btf_type_is_var(t) || btf_type_is_typedef(t); 531 } 532 533 u32 btf_nr_types(const struct btf *btf) 534 { 535 u32 total = 0; 536 537 while (btf) { 538 total += btf->nr_types; 539 btf = btf->base_btf; 540 } 541 542 return total; 543 } 544 545 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 546 { 547 const struct btf_type *t; 548 const char *tname; 549 u32 i, total; 550 551 total = btf_nr_types(btf); 552 for (i = 1; i < total; i++) { 553 t = btf_type_by_id(btf, i); 554 if (BTF_INFO_KIND(t->info) != kind) 555 continue; 556 557 tname = btf_name_by_offset(btf, t->name_off); 558 if (!strcmp(tname, name)) 559 return i; 560 } 561 562 return -ENOENT; 563 } 564 565 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 566 { 567 struct btf *btf; 568 s32 ret; 569 int id; 570 571 btf = bpf_get_btf_vmlinux(); 572 if (IS_ERR(btf)) 573 return PTR_ERR(btf); 574 if (!btf) 575 return -EINVAL; 576 577 ret = btf_find_by_name_kind(btf, name, kind); 578 /* ret is never zero, since btf_find_by_name_kind returns 579 * positive btf_id or negative error. 580 */ 581 if (ret > 0) { 582 btf_get(btf); 583 *btf_p = btf; 584 return ret; 585 } 586 587 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 588 spin_lock_bh(&btf_idr_lock); 589 idr_for_each_entry(&btf_idr, btf, id) { 590 if (!btf_is_module(btf)) 591 continue; 592 /* linear search could be slow hence unlock/lock 593 * the IDR to avoiding holding it for too long 594 */ 595 btf_get(btf); 596 spin_unlock_bh(&btf_idr_lock); 597 ret = btf_find_by_name_kind(btf, name, kind); 598 if (ret > 0) { 599 *btf_p = btf; 600 return ret; 601 } 602 btf_put(btf); 603 spin_lock_bh(&btf_idr_lock); 604 } 605 spin_unlock_bh(&btf_idr_lock); 606 return ret; 607 } 608 609 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 610 u32 id, u32 *res_id) 611 { 612 const struct btf_type *t = btf_type_by_id(btf, id); 613 614 while (btf_type_is_modifier(t)) { 615 id = t->type; 616 t = btf_type_by_id(btf, t->type); 617 } 618 619 if (res_id) 620 *res_id = id; 621 622 return t; 623 } 624 625 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 626 u32 id, u32 *res_id) 627 { 628 const struct btf_type *t; 629 630 t = btf_type_skip_modifiers(btf, id, NULL); 631 if (!btf_type_is_ptr(t)) 632 return NULL; 633 634 return btf_type_skip_modifiers(btf, t->type, res_id); 635 } 636 637 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 638 u32 id, u32 *res_id) 639 { 640 const struct btf_type *ptype; 641 642 ptype = btf_type_resolve_ptr(btf, id, res_id); 643 if (ptype && btf_type_is_func_proto(ptype)) 644 return ptype; 645 646 return NULL; 647 } 648 649 /* Types that act only as a source, not sink or intermediate 650 * type when resolving. 651 */ 652 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 653 { 654 return btf_type_is_var(t) || 655 btf_type_is_decl_tag(t) || 656 btf_type_is_datasec(t); 657 } 658 659 /* What types need to be resolved? 660 * 661 * btf_type_is_modifier() is an obvious one. 662 * 663 * btf_type_is_struct() because its member refers to 664 * another type (through member->type). 665 * 666 * btf_type_is_var() because the variable refers to 667 * another type. btf_type_is_datasec() holds multiple 668 * btf_type_is_var() types that need resolving. 669 * 670 * btf_type_is_array() because its element (array->type) 671 * refers to another type. Array can be thought of a 672 * special case of struct while array just has the same 673 * member-type repeated by array->nelems of times. 674 */ 675 static bool btf_type_needs_resolve(const struct btf_type *t) 676 { 677 return btf_type_is_modifier(t) || 678 btf_type_is_ptr(t) || 679 btf_type_is_struct(t) || 680 btf_type_is_array(t) || 681 btf_type_is_var(t) || 682 btf_type_is_func(t) || 683 btf_type_is_decl_tag(t) || 684 btf_type_is_datasec(t); 685 } 686 687 /* t->size can be used */ 688 static bool btf_type_has_size(const struct btf_type *t) 689 { 690 switch (BTF_INFO_KIND(t->info)) { 691 case BTF_KIND_INT: 692 case BTF_KIND_STRUCT: 693 case BTF_KIND_UNION: 694 case BTF_KIND_ENUM: 695 case BTF_KIND_DATASEC: 696 case BTF_KIND_FLOAT: 697 case BTF_KIND_ENUM64: 698 return true; 699 } 700 701 return false; 702 } 703 704 static const char *btf_int_encoding_str(u8 encoding) 705 { 706 if (encoding == 0) 707 return "(none)"; 708 else if (encoding == BTF_INT_SIGNED) 709 return "SIGNED"; 710 else if (encoding == BTF_INT_CHAR) 711 return "CHAR"; 712 else if (encoding == BTF_INT_BOOL) 713 return "BOOL"; 714 else 715 return "UNKN"; 716 } 717 718 static u32 btf_type_int(const struct btf_type *t) 719 { 720 return *(u32 *)(t + 1); 721 } 722 723 static const struct btf_array *btf_type_array(const struct btf_type *t) 724 { 725 return (const struct btf_array *)(t + 1); 726 } 727 728 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 729 { 730 return (const struct btf_enum *)(t + 1); 731 } 732 733 static const struct btf_var *btf_type_var(const struct btf_type *t) 734 { 735 return (const struct btf_var *)(t + 1); 736 } 737 738 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 739 { 740 return (const struct btf_decl_tag *)(t + 1); 741 } 742 743 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 744 { 745 return (const struct btf_enum64 *)(t + 1); 746 } 747 748 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 749 { 750 return kind_ops[BTF_INFO_KIND(t->info)]; 751 } 752 753 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 754 { 755 if (!BTF_STR_OFFSET_VALID(offset)) 756 return false; 757 758 while (offset < btf->start_str_off) 759 btf = btf->base_btf; 760 761 offset -= btf->start_str_off; 762 return offset < btf->hdr.str_len; 763 } 764 765 static bool __btf_name_char_ok(char c, bool first) 766 { 767 if ((first ? !isalpha(c) : 768 !isalnum(c)) && 769 c != '_' && 770 c != '.') 771 return false; 772 return true; 773 } 774 775 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 776 { 777 while (offset < btf->start_str_off) 778 btf = btf->base_btf; 779 780 offset -= btf->start_str_off; 781 if (offset < btf->hdr.str_len) 782 return &btf->strings[offset]; 783 784 return NULL; 785 } 786 787 static bool __btf_name_valid(const struct btf *btf, u32 offset) 788 { 789 /* offset must be valid */ 790 const char *src = btf_str_by_offset(btf, offset); 791 const char *src_limit; 792 793 if (!__btf_name_char_ok(*src, true)) 794 return false; 795 796 /* set a limit on identifier length */ 797 src_limit = src + KSYM_NAME_LEN; 798 src++; 799 while (*src && src < src_limit) { 800 if (!__btf_name_char_ok(*src, false)) 801 return false; 802 src++; 803 } 804 805 return !*src; 806 } 807 808 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 809 { 810 return __btf_name_valid(btf, offset); 811 } 812 813 /* Allow any printable character in DATASEC names */ 814 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 815 { 816 /* offset must be valid */ 817 const char *src = btf_str_by_offset(btf, offset); 818 const char *src_limit; 819 820 /* set a limit on identifier length */ 821 src_limit = src + KSYM_NAME_LEN; 822 src++; 823 while (*src && src < src_limit) { 824 if (!isprint(*src)) 825 return false; 826 src++; 827 } 828 829 return !*src; 830 } 831 832 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 833 { 834 const char *name; 835 836 if (!offset) 837 return "(anon)"; 838 839 name = btf_str_by_offset(btf, offset); 840 return name ?: "(invalid-name-offset)"; 841 } 842 843 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 844 { 845 return btf_str_by_offset(btf, offset); 846 } 847 848 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 849 { 850 while (type_id < btf->start_id) 851 btf = btf->base_btf; 852 853 type_id -= btf->start_id; 854 if (type_id >= btf->nr_types) 855 return NULL; 856 return btf->types[type_id]; 857 } 858 EXPORT_SYMBOL_GPL(btf_type_by_id); 859 860 /* 861 * Regular int is not a bit field and it must be either 862 * u8/u16/u32/u64 or __int128. 863 */ 864 static bool btf_type_int_is_regular(const struct btf_type *t) 865 { 866 u8 nr_bits, nr_bytes; 867 u32 int_data; 868 869 int_data = btf_type_int(t); 870 nr_bits = BTF_INT_BITS(int_data); 871 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 872 if (BITS_PER_BYTE_MASKED(nr_bits) || 873 BTF_INT_OFFSET(int_data) || 874 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 875 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 876 nr_bytes != (2 * sizeof(u64)))) { 877 return false; 878 } 879 880 return true; 881 } 882 883 /* 884 * Check that given struct member is a regular int with expected 885 * offset and size. 886 */ 887 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 888 const struct btf_member *m, 889 u32 expected_offset, u32 expected_size) 890 { 891 const struct btf_type *t; 892 u32 id, int_data; 893 u8 nr_bits; 894 895 id = m->type; 896 t = btf_type_id_size(btf, &id, NULL); 897 if (!t || !btf_type_is_int(t)) 898 return false; 899 900 int_data = btf_type_int(t); 901 nr_bits = BTF_INT_BITS(int_data); 902 if (btf_type_kflag(s)) { 903 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 904 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 905 906 /* if kflag set, int should be a regular int and 907 * bit offset should be at byte boundary. 908 */ 909 return !bitfield_size && 910 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 911 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 912 } 913 914 if (BTF_INT_OFFSET(int_data) || 915 BITS_PER_BYTE_MASKED(m->offset) || 916 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 917 BITS_PER_BYTE_MASKED(nr_bits) || 918 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 919 return false; 920 921 return true; 922 } 923 924 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 925 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 926 u32 id) 927 { 928 const struct btf_type *t = btf_type_by_id(btf, id); 929 930 while (btf_type_is_modifier(t) && 931 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 932 t = btf_type_by_id(btf, t->type); 933 } 934 935 return t; 936 } 937 938 #define BTF_SHOW_MAX_ITER 10 939 940 #define BTF_KIND_BIT(kind) (1ULL << kind) 941 942 /* 943 * Populate show->state.name with type name information. 944 * Format of type name is 945 * 946 * [.member_name = ] (type_name) 947 */ 948 static const char *btf_show_name(struct btf_show *show) 949 { 950 /* BTF_MAX_ITER array suffixes "[]" */ 951 const char *array_suffixes = "[][][][][][][][][][]"; 952 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 953 /* BTF_MAX_ITER pointer suffixes "*" */ 954 const char *ptr_suffixes = "**********"; 955 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 956 const char *name = NULL, *prefix = "", *parens = ""; 957 const struct btf_member *m = show->state.member; 958 const struct btf_type *t; 959 const struct btf_array *array; 960 u32 id = show->state.type_id; 961 const char *member = NULL; 962 bool show_member = false; 963 u64 kinds = 0; 964 int i; 965 966 show->state.name[0] = '\0'; 967 968 /* 969 * Don't show type name if we're showing an array member; 970 * in that case we show the array type so don't need to repeat 971 * ourselves for each member. 972 */ 973 if (show->state.array_member) 974 return ""; 975 976 /* Retrieve member name, if any. */ 977 if (m) { 978 member = btf_name_by_offset(show->btf, m->name_off); 979 show_member = strlen(member) > 0; 980 id = m->type; 981 } 982 983 /* 984 * Start with type_id, as we have resolved the struct btf_type * 985 * via btf_modifier_show() past the parent typedef to the child 986 * struct, int etc it is defined as. In such cases, the type_id 987 * still represents the starting type while the struct btf_type * 988 * in our show->state points at the resolved type of the typedef. 989 */ 990 t = btf_type_by_id(show->btf, id); 991 if (!t) 992 return ""; 993 994 /* 995 * The goal here is to build up the right number of pointer and 996 * array suffixes while ensuring the type name for a typedef 997 * is represented. Along the way we accumulate a list of 998 * BTF kinds we have encountered, since these will inform later 999 * display; for example, pointer types will not require an 1000 * opening "{" for struct, we will just display the pointer value. 1001 * 1002 * We also want to accumulate the right number of pointer or array 1003 * indices in the format string while iterating until we get to 1004 * the typedef/pointee/array member target type. 1005 * 1006 * We start by pointing at the end of pointer and array suffix 1007 * strings; as we accumulate pointers and arrays we move the pointer 1008 * or array string backwards so it will show the expected number of 1009 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1010 * and/or arrays and typedefs are supported as a precaution. 1011 * 1012 * We also want to get typedef name while proceeding to resolve 1013 * type it points to so that we can add parentheses if it is a 1014 * "typedef struct" etc. 1015 */ 1016 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1017 1018 switch (BTF_INFO_KIND(t->info)) { 1019 case BTF_KIND_TYPEDEF: 1020 if (!name) 1021 name = btf_name_by_offset(show->btf, 1022 t->name_off); 1023 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1024 id = t->type; 1025 break; 1026 case BTF_KIND_ARRAY: 1027 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1028 parens = "["; 1029 if (!t) 1030 return ""; 1031 array = btf_type_array(t); 1032 if (array_suffix > array_suffixes) 1033 array_suffix -= 2; 1034 id = array->type; 1035 break; 1036 case BTF_KIND_PTR: 1037 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1038 if (ptr_suffix > ptr_suffixes) 1039 ptr_suffix -= 1; 1040 id = t->type; 1041 break; 1042 default: 1043 id = 0; 1044 break; 1045 } 1046 if (!id) 1047 break; 1048 t = btf_type_skip_qualifiers(show->btf, id); 1049 } 1050 /* We may not be able to represent this type; bail to be safe */ 1051 if (i == BTF_SHOW_MAX_ITER) 1052 return ""; 1053 1054 if (!name) 1055 name = btf_name_by_offset(show->btf, t->name_off); 1056 1057 switch (BTF_INFO_KIND(t->info)) { 1058 case BTF_KIND_STRUCT: 1059 case BTF_KIND_UNION: 1060 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1061 "struct" : "union"; 1062 /* if it's an array of struct/union, parens is already set */ 1063 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1064 parens = "{"; 1065 break; 1066 case BTF_KIND_ENUM: 1067 case BTF_KIND_ENUM64: 1068 prefix = "enum"; 1069 break; 1070 default: 1071 break; 1072 } 1073 1074 /* pointer does not require parens */ 1075 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1076 parens = ""; 1077 /* typedef does not require struct/union/enum prefix */ 1078 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1079 prefix = ""; 1080 1081 if (!name) 1082 name = ""; 1083 1084 /* Even if we don't want type name info, we want parentheses etc */ 1085 if (show->flags & BTF_SHOW_NONAME) 1086 snprintf(show->state.name, sizeof(show->state.name), "%s", 1087 parens); 1088 else 1089 snprintf(show->state.name, sizeof(show->state.name), 1090 "%s%s%s(%s%s%s%s%s%s)%s", 1091 /* first 3 strings comprise ".member = " */ 1092 show_member ? "." : "", 1093 show_member ? member : "", 1094 show_member ? " = " : "", 1095 /* ...next is our prefix (struct, enum, etc) */ 1096 prefix, 1097 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1098 /* ...this is the type name itself */ 1099 name, 1100 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1101 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1102 array_suffix, parens); 1103 1104 return show->state.name; 1105 } 1106 1107 static const char *__btf_show_indent(struct btf_show *show) 1108 { 1109 const char *indents = " "; 1110 const char *indent = &indents[strlen(indents)]; 1111 1112 if ((indent - show->state.depth) >= indents) 1113 return indent - show->state.depth; 1114 return indents; 1115 } 1116 1117 static const char *btf_show_indent(struct btf_show *show) 1118 { 1119 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1120 } 1121 1122 static const char *btf_show_newline(struct btf_show *show) 1123 { 1124 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1125 } 1126 1127 static const char *btf_show_delim(struct btf_show *show) 1128 { 1129 if (show->state.depth == 0) 1130 return ""; 1131 1132 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1133 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1134 return "|"; 1135 1136 return ","; 1137 } 1138 1139 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1140 { 1141 va_list args; 1142 1143 if (!show->state.depth_check) { 1144 va_start(args, fmt); 1145 show->showfn(show, fmt, args); 1146 va_end(args); 1147 } 1148 } 1149 1150 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1151 * format specifiers to the format specifier passed in; these do the work of 1152 * adding indentation, delimiters etc while the caller simply has to specify 1153 * the type value(s) in the format specifier + value(s). 1154 */ 1155 #define btf_show_type_value(show, fmt, value) \ 1156 do { \ 1157 if ((value) != (__typeof__(value))0 || \ 1158 (show->flags & BTF_SHOW_ZERO) || \ 1159 show->state.depth == 0) { \ 1160 btf_show(show, "%s%s" fmt "%s%s", \ 1161 btf_show_indent(show), \ 1162 btf_show_name(show), \ 1163 value, btf_show_delim(show), \ 1164 btf_show_newline(show)); \ 1165 if (show->state.depth > show->state.depth_to_show) \ 1166 show->state.depth_to_show = show->state.depth; \ 1167 } \ 1168 } while (0) 1169 1170 #define btf_show_type_values(show, fmt, ...) \ 1171 do { \ 1172 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1173 btf_show_name(show), \ 1174 __VA_ARGS__, btf_show_delim(show), \ 1175 btf_show_newline(show)); \ 1176 if (show->state.depth > show->state.depth_to_show) \ 1177 show->state.depth_to_show = show->state.depth; \ 1178 } while (0) 1179 1180 /* How much is left to copy to safe buffer after @data? */ 1181 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1182 { 1183 return show->obj.head + show->obj.size - data; 1184 } 1185 1186 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1187 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1188 { 1189 return data >= show->obj.data && 1190 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1191 } 1192 1193 /* 1194 * If object pointed to by @data of @size falls within our safe buffer, return 1195 * the equivalent pointer to the same safe data. Assumes 1196 * copy_from_kernel_nofault() has already happened and our safe buffer is 1197 * populated. 1198 */ 1199 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1200 { 1201 if (btf_show_obj_is_safe(show, data, size)) 1202 return show->obj.safe + (data - show->obj.data); 1203 return NULL; 1204 } 1205 1206 /* 1207 * Return a safe-to-access version of data pointed to by @data. 1208 * We do this by copying the relevant amount of information 1209 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1210 * 1211 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1212 * safe copy is needed. 1213 * 1214 * Otherwise we need to determine if we have the required amount 1215 * of data (determined by the @data pointer and the size of the 1216 * largest base type we can encounter (represented by 1217 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1218 * that we will be able to print some of the current object, 1219 * and if more is needed a copy will be triggered. 1220 * Some objects such as structs will not fit into the buffer; 1221 * in such cases additional copies when we iterate over their 1222 * members may be needed. 1223 * 1224 * btf_show_obj_safe() is used to return a safe buffer for 1225 * btf_show_start_type(); this ensures that as we recurse into 1226 * nested types we always have safe data for the given type. 1227 * This approach is somewhat wasteful; it's possible for example 1228 * that when iterating over a large union we'll end up copying the 1229 * same data repeatedly, but the goal is safety not performance. 1230 * We use stack data as opposed to per-CPU buffers because the 1231 * iteration over a type can take some time, and preemption handling 1232 * would greatly complicate use of the safe buffer. 1233 */ 1234 static void *btf_show_obj_safe(struct btf_show *show, 1235 const struct btf_type *t, 1236 void *data) 1237 { 1238 const struct btf_type *rt; 1239 int size_left, size; 1240 void *safe = NULL; 1241 1242 if (show->flags & BTF_SHOW_UNSAFE) 1243 return data; 1244 1245 rt = btf_resolve_size(show->btf, t, &size); 1246 if (IS_ERR(rt)) { 1247 show->state.status = PTR_ERR(rt); 1248 return NULL; 1249 } 1250 1251 /* 1252 * Is this toplevel object? If so, set total object size and 1253 * initialize pointers. Otherwise check if we still fall within 1254 * our safe object data. 1255 */ 1256 if (show->state.depth == 0) { 1257 show->obj.size = size; 1258 show->obj.head = data; 1259 } else { 1260 /* 1261 * If the size of the current object is > our remaining 1262 * safe buffer we _may_ need to do a new copy. However 1263 * consider the case of a nested struct; it's size pushes 1264 * us over the safe buffer limit, but showing any individual 1265 * struct members does not. In such cases, we don't need 1266 * to initiate a fresh copy yet; however we definitely need 1267 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1268 * in our buffer, regardless of the current object size. 1269 * The logic here is that as we resolve types we will 1270 * hit a base type at some point, and we need to be sure 1271 * the next chunk of data is safely available to display 1272 * that type info safely. We cannot rely on the size of 1273 * the current object here because it may be much larger 1274 * than our current buffer (e.g. task_struct is 8k). 1275 * All we want to do here is ensure that we can print the 1276 * next basic type, which we can if either 1277 * - the current type size is within the safe buffer; or 1278 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1279 * the safe buffer. 1280 */ 1281 safe = __btf_show_obj_safe(show, data, 1282 min(size, 1283 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1284 } 1285 1286 /* 1287 * We need a new copy to our safe object, either because we haven't 1288 * yet copied and are initializing safe data, or because the data 1289 * we want falls outside the boundaries of the safe object. 1290 */ 1291 if (!safe) { 1292 size_left = btf_show_obj_size_left(show, data); 1293 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1294 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1295 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1296 data, size_left); 1297 if (!show->state.status) { 1298 show->obj.data = data; 1299 safe = show->obj.safe; 1300 } 1301 } 1302 1303 return safe; 1304 } 1305 1306 /* 1307 * Set the type we are starting to show and return a safe data pointer 1308 * to be used for showing the associated data. 1309 */ 1310 static void *btf_show_start_type(struct btf_show *show, 1311 const struct btf_type *t, 1312 u32 type_id, void *data) 1313 { 1314 show->state.type = t; 1315 show->state.type_id = type_id; 1316 show->state.name[0] = '\0'; 1317 1318 return btf_show_obj_safe(show, t, data); 1319 } 1320 1321 static void btf_show_end_type(struct btf_show *show) 1322 { 1323 show->state.type = NULL; 1324 show->state.type_id = 0; 1325 show->state.name[0] = '\0'; 1326 } 1327 1328 static void *btf_show_start_aggr_type(struct btf_show *show, 1329 const struct btf_type *t, 1330 u32 type_id, void *data) 1331 { 1332 void *safe_data = btf_show_start_type(show, t, type_id, data); 1333 1334 if (!safe_data) 1335 return safe_data; 1336 1337 btf_show(show, "%s%s%s", btf_show_indent(show), 1338 btf_show_name(show), 1339 btf_show_newline(show)); 1340 show->state.depth++; 1341 return safe_data; 1342 } 1343 1344 static void btf_show_end_aggr_type(struct btf_show *show, 1345 const char *suffix) 1346 { 1347 show->state.depth--; 1348 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1349 btf_show_delim(show), btf_show_newline(show)); 1350 btf_show_end_type(show); 1351 } 1352 1353 static void btf_show_start_member(struct btf_show *show, 1354 const struct btf_member *m) 1355 { 1356 show->state.member = m; 1357 } 1358 1359 static void btf_show_start_array_member(struct btf_show *show) 1360 { 1361 show->state.array_member = 1; 1362 btf_show_start_member(show, NULL); 1363 } 1364 1365 static void btf_show_end_member(struct btf_show *show) 1366 { 1367 show->state.member = NULL; 1368 } 1369 1370 static void btf_show_end_array_member(struct btf_show *show) 1371 { 1372 show->state.array_member = 0; 1373 btf_show_end_member(show); 1374 } 1375 1376 static void *btf_show_start_array_type(struct btf_show *show, 1377 const struct btf_type *t, 1378 u32 type_id, 1379 u16 array_encoding, 1380 void *data) 1381 { 1382 show->state.array_encoding = array_encoding; 1383 show->state.array_terminated = 0; 1384 return btf_show_start_aggr_type(show, t, type_id, data); 1385 } 1386 1387 static void btf_show_end_array_type(struct btf_show *show) 1388 { 1389 show->state.array_encoding = 0; 1390 show->state.array_terminated = 0; 1391 btf_show_end_aggr_type(show, "]"); 1392 } 1393 1394 static void *btf_show_start_struct_type(struct btf_show *show, 1395 const struct btf_type *t, 1396 u32 type_id, 1397 void *data) 1398 { 1399 return btf_show_start_aggr_type(show, t, type_id, data); 1400 } 1401 1402 static void btf_show_end_struct_type(struct btf_show *show) 1403 { 1404 btf_show_end_aggr_type(show, "}"); 1405 } 1406 1407 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1408 const char *fmt, ...) 1409 { 1410 va_list args; 1411 1412 va_start(args, fmt); 1413 bpf_verifier_vlog(log, fmt, args); 1414 va_end(args); 1415 } 1416 1417 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1418 const char *fmt, ...) 1419 { 1420 struct bpf_verifier_log *log = &env->log; 1421 va_list args; 1422 1423 if (!bpf_verifier_log_needed(log)) 1424 return; 1425 1426 va_start(args, fmt); 1427 bpf_verifier_vlog(log, fmt, args); 1428 va_end(args); 1429 } 1430 1431 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1432 const struct btf_type *t, 1433 bool log_details, 1434 const char *fmt, ...) 1435 { 1436 struct bpf_verifier_log *log = &env->log; 1437 struct btf *btf = env->btf; 1438 va_list args; 1439 1440 if (!bpf_verifier_log_needed(log)) 1441 return; 1442 1443 if (log->level == BPF_LOG_KERNEL) { 1444 /* btf verifier prints all types it is processing via 1445 * btf_verifier_log_type(..., fmt = NULL). 1446 * Skip those prints for in-kernel BTF verification. 1447 */ 1448 if (!fmt) 1449 return; 1450 1451 /* Skip logging when loading module BTF with mismatches permitted */ 1452 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1453 return; 1454 } 1455 1456 __btf_verifier_log(log, "[%u] %s %s%s", 1457 env->log_type_id, 1458 btf_type_str(t), 1459 __btf_name_by_offset(btf, t->name_off), 1460 log_details ? " " : ""); 1461 1462 if (log_details) 1463 btf_type_ops(t)->log_details(env, t); 1464 1465 if (fmt && *fmt) { 1466 __btf_verifier_log(log, " "); 1467 va_start(args, fmt); 1468 bpf_verifier_vlog(log, fmt, args); 1469 va_end(args); 1470 } 1471 1472 __btf_verifier_log(log, "\n"); 1473 } 1474 1475 #define btf_verifier_log_type(env, t, ...) \ 1476 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1477 #define btf_verifier_log_basic(env, t, ...) \ 1478 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1479 1480 __printf(4, 5) 1481 static void btf_verifier_log_member(struct btf_verifier_env *env, 1482 const struct btf_type *struct_type, 1483 const struct btf_member *member, 1484 const char *fmt, ...) 1485 { 1486 struct bpf_verifier_log *log = &env->log; 1487 struct btf *btf = env->btf; 1488 va_list args; 1489 1490 if (!bpf_verifier_log_needed(log)) 1491 return; 1492 1493 if (log->level == BPF_LOG_KERNEL) { 1494 if (!fmt) 1495 return; 1496 1497 /* Skip logging when loading module BTF with mismatches permitted */ 1498 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1499 return; 1500 } 1501 1502 /* The CHECK_META phase already did a btf dump. 1503 * 1504 * If member is logged again, it must hit an error in 1505 * parsing this member. It is useful to print out which 1506 * struct this member belongs to. 1507 */ 1508 if (env->phase != CHECK_META) 1509 btf_verifier_log_type(env, struct_type, NULL); 1510 1511 if (btf_type_kflag(struct_type)) 1512 __btf_verifier_log(log, 1513 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1514 __btf_name_by_offset(btf, member->name_off), 1515 member->type, 1516 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1517 BTF_MEMBER_BIT_OFFSET(member->offset)); 1518 else 1519 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1520 __btf_name_by_offset(btf, member->name_off), 1521 member->type, member->offset); 1522 1523 if (fmt && *fmt) { 1524 __btf_verifier_log(log, " "); 1525 va_start(args, fmt); 1526 bpf_verifier_vlog(log, fmt, args); 1527 va_end(args); 1528 } 1529 1530 __btf_verifier_log(log, "\n"); 1531 } 1532 1533 __printf(4, 5) 1534 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1535 const struct btf_type *datasec_type, 1536 const struct btf_var_secinfo *vsi, 1537 const char *fmt, ...) 1538 { 1539 struct bpf_verifier_log *log = &env->log; 1540 va_list args; 1541 1542 if (!bpf_verifier_log_needed(log)) 1543 return; 1544 if (log->level == BPF_LOG_KERNEL && !fmt) 1545 return; 1546 if (env->phase != CHECK_META) 1547 btf_verifier_log_type(env, datasec_type, NULL); 1548 1549 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1550 vsi->type, vsi->offset, vsi->size); 1551 if (fmt && *fmt) { 1552 __btf_verifier_log(log, " "); 1553 va_start(args, fmt); 1554 bpf_verifier_vlog(log, fmt, args); 1555 va_end(args); 1556 } 1557 1558 __btf_verifier_log(log, "\n"); 1559 } 1560 1561 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1562 u32 btf_data_size) 1563 { 1564 struct bpf_verifier_log *log = &env->log; 1565 const struct btf *btf = env->btf; 1566 const struct btf_header *hdr; 1567 1568 if (!bpf_verifier_log_needed(log)) 1569 return; 1570 1571 if (log->level == BPF_LOG_KERNEL) 1572 return; 1573 hdr = &btf->hdr; 1574 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1575 __btf_verifier_log(log, "version: %u\n", hdr->version); 1576 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1577 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1578 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1579 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1580 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1581 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1582 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1583 } 1584 1585 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1586 { 1587 struct btf *btf = env->btf; 1588 1589 if (btf->types_size == btf->nr_types) { 1590 /* Expand 'types' array */ 1591 1592 struct btf_type **new_types; 1593 u32 expand_by, new_size; 1594 1595 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1596 btf_verifier_log(env, "Exceeded max num of types"); 1597 return -E2BIG; 1598 } 1599 1600 expand_by = max_t(u32, btf->types_size >> 2, 16); 1601 new_size = min_t(u32, BTF_MAX_TYPE, 1602 btf->types_size + expand_by); 1603 1604 new_types = kvcalloc(new_size, sizeof(*new_types), 1605 GFP_KERNEL | __GFP_NOWARN); 1606 if (!new_types) 1607 return -ENOMEM; 1608 1609 if (btf->nr_types == 0) { 1610 if (!btf->base_btf) { 1611 /* lazily init VOID type */ 1612 new_types[0] = &btf_void; 1613 btf->nr_types++; 1614 } 1615 } else { 1616 memcpy(new_types, btf->types, 1617 sizeof(*btf->types) * btf->nr_types); 1618 } 1619 1620 kvfree(btf->types); 1621 btf->types = new_types; 1622 btf->types_size = new_size; 1623 } 1624 1625 btf->types[btf->nr_types++] = t; 1626 1627 return 0; 1628 } 1629 1630 static int btf_alloc_id(struct btf *btf) 1631 { 1632 int id; 1633 1634 idr_preload(GFP_KERNEL); 1635 spin_lock_bh(&btf_idr_lock); 1636 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1637 if (id > 0) 1638 btf->id = id; 1639 spin_unlock_bh(&btf_idr_lock); 1640 idr_preload_end(); 1641 1642 if (WARN_ON_ONCE(!id)) 1643 return -ENOSPC; 1644 1645 return id > 0 ? 0 : id; 1646 } 1647 1648 static void btf_free_id(struct btf *btf) 1649 { 1650 unsigned long flags; 1651 1652 /* 1653 * In map-in-map, calling map_delete_elem() on outer 1654 * map will call bpf_map_put on the inner map. 1655 * It will then eventually call btf_free_id() 1656 * on the inner map. Some of the map_delete_elem() 1657 * implementation may have irq disabled, so 1658 * we need to use the _irqsave() version instead 1659 * of the _bh() version. 1660 */ 1661 spin_lock_irqsave(&btf_idr_lock, flags); 1662 idr_remove(&btf_idr, btf->id); 1663 spin_unlock_irqrestore(&btf_idr_lock, flags); 1664 } 1665 1666 static void btf_free_kfunc_set_tab(struct btf *btf) 1667 { 1668 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1669 int hook; 1670 1671 if (!tab) 1672 return; 1673 /* For module BTF, we directly assign the sets being registered, so 1674 * there is nothing to free except kfunc_set_tab. 1675 */ 1676 if (btf_is_module(btf)) 1677 goto free_tab; 1678 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1679 kfree(tab->sets[hook]); 1680 free_tab: 1681 kfree(tab); 1682 btf->kfunc_set_tab = NULL; 1683 } 1684 1685 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1686 { 1687 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1688 1689 if (!tab) 1690 return; 1691 kfree(tab); 1692 btf->dtor_kfunc_tab = NULL; 1693 } 1694 1695 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1696 { 1697 int i; 1698 1699 if (!tab) 1700 return; 1701 for (i = 0; i < tab->cnt; i++) 1702 btf_record_free(tab->types[i].record); 1703 kfree(tab); 1704 } 1705 1706 static void btf_free_struct_meta_tab(struct btf *btf) 1707 { 1708 struct btf_struct_metas *tab = btf->struct_meta_tab; 1709 1710 btf_struct_metas_free(tab); 1711 btf->struct_meta_tab = NULL; 1712 } 1713 1714 static void btf_free_struct_ops_tab(struct btf *btf) 1715 { 1716 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1717 u32 i; 1718 1719 if (!tab) 1720 return; 1721 1722 for (i = 0; i < tab->cnt; i++) 1723 bpf_struct_ops_desc_release(&tab->ops[i]); 1724 1725 kfree(tab); 1726 btf->struct_ops_tab = NULL; 1727 } 1728 1729 static void btf_free(struct btf *btf) 1730 { 1731 btf_free_struct_meta_tab(btf); 1732 btf_free_dtor_kfunc_tab(btf); 1733 btf_free_kfunc_set_tab(btf); 1734 btf_free_struct_ops_tab(btf); 1735 kvfree(btf->types); 1736 kvfree(btf->resolved_sizes); 1737 kvfree(btf->resolved_ids); 1738 kvfree(btf->data); 1739 kfree(btf); 1740 } 1741 1742 static void btf_free_rcu(struct rcu_head *rcu) 1743 { 1744 struct btf *btf = container_of(rcu, struct btf, rcu); 1745 1746 btf_free(btf); 1747 } 1748 1749 const char *btf_get_name(const struct btf *btf) 1750 { 1751 return btf->name; 1752 } 1753 1754 void btf_get(struct btf *btf) 1755 { 1756 refcount_inc(&btf->refcnt); 1757 } 1758 1759 void btf_put(struct btf *btf) 1760 { 1761 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1762 btf_free_id(btf); 1763 call_rcu(&btf->rcu, btf_free_rcu); 1764 } 1765 } 1766 1767 static int env_resolve_init(struct btf_verifier_env *env) 1768 { 1769 struct btf *btf = env->btf; 1770 u32 nr_types = btf->nr_types; 1771 u32 *resolved_sizes = NULL; 1772 u32 *resolved_ids = NULL; 1773 u8 *visit_states = NULL; 1774 1775 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1776 GFP_KERNEL | __GFP_NOWARN); 1777 if (!resolved_sizes) 1778 goto nomem; 1779 1780 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1781 GFP_KERNEL | __GFP_NOWARN); 1782 if (!resolved_ids) 1783 goto nomem; 1784 1785 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1786 GFP_KERNEL | __GFP_NOWARN); 1787 if (!visit_states) 1788 goto nomem; 1789 1790 btf->resolved_sizes = resolved_sizes; 1791 btf->resolved_ids = resolved_ids; 1792 env->visit_states = visit_states; 1793 1794 return 0; 1795 1796 nomem: 1797 kvfree(resolved_sizes); 1798 kvfree(resolved_ids); 1799 kvfree(visit_states); 1800 return -ENOMEM; 1801 } 1802 1803 static void btf_verifier_env_free(struct btf_verifier_env *env) 1804 { 1805 kvfree(env->visit_states); 1806 kfree(env); 1807 } 1808 1809 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1810 const struct btf_type *next_type) 1811 { 1812 switch (env->resolve_mode) { 1813 case RESOLVE_TBD: 1814 /* int, enum or void is a sink */ 1815 return !btf_type_needs_resolve(next_type); 1816 case RESOLVE_PTR: 1817 /* int, enum, void, struct, array, func or func_proto is a sink 1818 * for ptr 1819 */ 1820 return !btf_type_is_modifier(next_type) && 1821 !btf_type_is_ptr(next_type); 1822 case RESOLVE_STRUCT_OR_ARRAY: 1823 /* int, enum, void, ptr, func or func_proto is a sink 1824 * for struct and array 1825 */ 1826 return !btf_type_is_modifier(next_type) && 1827 !btf_type_is_array(next_type) && 1828 !btf_type_is_struct(next_type); 1829 default: 1830 BUG(); 1831 } 1832 } 1833 1834 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1835 u32 type_id) 1836 { 1837 /* base BTF types should be resolved by now */ 1838 if (type_id < env->btf->start_id) 1839 return true; 1840 1841 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1842 } 1843 1844 static int env_stack_push(struct btf_verifier_env *env, 1845 const struct btf_type *t, u32 type_id) 1846 { 1847 const struct btf *btf = env->btf; 1848 struct resolve_vertex *v; 1849 1850 if (env->top_stack == MAX_RESOLVE_DEPTH) 1851 return -E2BIG; 1852 1853 if (type_id < btf->start_id 1854 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1855 return -EEXIST; 1856 1857 env->visit_states[type_id - btf->start_id] = VISITED; 1858 1859 v = &env->stack[env->top_stack++]; 1860 v->t = t; 1861 v->type_id = type_id; 1862 v->next_member = 0; 1863 1864 if (env->resolve_mode == RESOLVE_TBD) { 1865 if (btf_type_is_ptr(t)) 1866 env->resolve_mode = RESOLVE_PTR; 1867 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1868 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1869 } 1870 1871 return 0; 1872 } 1873 1874 static void env_stack_set_next_member(struct btf_verifier_env *env, 1875 u16 next_member) 1876 { 1877 env->stack[env->top_stack - 1].next_member = next_member; 1878 } 1879 1880 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1881 u32 resolved_type_id, 1882 u32 resolved_size) 1883 { 1884 u32 type_id = env->stack[--(env->top_stack)].type_id; 1885 struct btf *btf = env->btf; 1886 1887 type_id -= btf->start_id; /* adjust to local type id */ 1888 btf->resolved_sizes[type_id] = resolved_size; 1889 btf->resolved_ids[type_id] = resolved_type_id; 1890 env->visit_states[type_id] = RESOLVED; 1891 } 1892 1893 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1894 { 1895 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1896 } 1897 1898 /* Resolve the size of a passed-in "type" 1899 * 1900 * type: is an array (e.g. u32 array[x][y]) 1901 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1902 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1903 * corresponds to the return type. 1904 * *elem_type: u32 1905 * *elem_id: id of u32 1906 * *total_nelems: (x * y). Hence, individual elem size is 1907 * (*type_size / *total_nelems) 1908 * *type_id: id of type if it's changed within the function, 0 if not 1909 * 1910 * type: is not an array (e.g. const struct X) 1911 * return type: type "struct X" 1912 * *type_size: sizeof(struct X) 1913 * *elem_type: same as return type ("struct X") 1914 * *elem_id: 0 1915 * *total_nelems: 1 1916 * *type_id: id of type if it's changed within the function, 0 if not 1917 */ 1918 static const struct btf_type * 1919 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1920 u32 *type_size, const struct btf_type **elem_type, 1921 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1922 { 1923 const struct btf_type *array_type = NULL; 1924 const struct btf_array *array = NULL; 1925 u32 i, size, nelems = 1, id = 0; 1926 1927 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1928 switch (BTF_INFO_KIND(type->info)) { 1929 /* type->size can be used */ 1930 case BTF_KIND_INT: 1931 case BTF_KIND_STRUCT: 1932 case BTF_KIND_UNION: 1933 case BTF_KIND_ENUM: 1934 case BTF_KIND_FLOAT: 1935 case BTF_KIND_ENUM64: 1936 size = type->size; 1937 goto resolved; 1938 1939 case BTF_KIND_PTR: 1940 size = sizeof(void *); 1941 goto resolved; 1942 1943 /* Modifiers */ 1944 case BTF_KIND_TYPEDEF: 1945 case BTF_KIND_VOLATILE: 1946 case BTF_KIND_CONST: 1947 case BTF_KIND_RESTRICT: 1948 case BTF_KIND_TYPE_TAG: 1949 id = type->type; 1950 type = btf_type_by_id(btf, type->type); 1951 break; 1952 1953 case BTF_KIND_ARRAY: 1954 if (!array_type) 1955 array_type = type; 1956 array = btf_type_array(type); 1957 if (nelems && array->nelems > U32_MAX / nelems) 1958 return ERR_PTR(-EINVAL); 1959 nelems *= array->nelems; 1960 type = btf_type_by_id(btf, array->type); 1961 break; 1962 1963 /* type without size */ 1964 default: 1965 return ERR_PTR(-EINVAL); 1966 } 1967 } 1968 1969 return ERR_PTR(-EINVAL); 1970 1971 resolved: 1972 if (nelems && size > U32_MAX / nelems) 1973 return ERR_PTR(-EINVAL); 1974 1975 *type_size = nelems * size; 1976 if (total_nelems) 1977 *total_nelems = nelems; 1978 if (elem_type) 1979 *elem_type = type; 1980 if (elem_id) 1981 *elem_id = array ? array->type : 0; 1982 if (type_id && id) 1983 *type_id = id; 1984 1985 return array_type ? : type; 1986 } 1987 1988 const struct btf_type * 1989 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1990 u32 *type_size) 1991 { 1992 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1993 } 1994 1995 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1996 { 1997 while (type_id < btf->start_id) 1998 btf = btf->base_btf; 1999 2000 return btf->resolved_ids[type_id - btf->start_id]; 2001 } 2002 2003 /* The input param "type_id" must point to a needs_resolve type */ 2004 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2005 u32 *type_id) 2006 { 2007 *type_id = btf_resolved_type_id(btf, *type_id); 2008 return btf_type_by_id(btf, *type_id); 2009 } 2010 2011 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2012 { 2013 while (type_id < btf->start_id) 2014 btf = btf->base_btf; 2015 2016 return btf->resolved_sizes[type_id - btf->start_id]; 2017 } 2018 2019 const struct btf_type *btf_type_id_size(const struct btf *btf, 2020 u32 *type_id, u32 *ret_size) 2021 { 2022 const struct btf_type *size_type; 2023 u32 size_type_id = *type_id; 2024 u32 size = 0; 2025 2026 size_type = btf_type_by_id(btf, size_type_id); 2027 if (btf_type_nosize_or_null(size_type)) 2028 return NULL; 2029 2030 if (btf_type_has_size(size_type)) { 2031 size = size_type->size; 2032 } else if (btf_type_is_array(size_type)) { 2033 size = btf_resolved_type_size(btf, size_type_id); 2034 } else if (btf_type_is_ptr(size_type)) { 2035 size = sizeof(void *); 2036 } else { 2037 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2038 !btf_type_is_var(size_type))) 2039 return NULL; 2040 2041 size_type_id = btf_resolved_type_id(btf, size_type_id); 2042 size_type = btf_type_by_id(btf, size_type_id); 2043 if (btf_type_nosize_or_null(size_type)) 2044 return NULL; 2045 else if (btf_type_has_size(size_type)) 2046 size = size_type->size; 2047 else if (btf_type_is_array(size_type)) 2048 size = btf_resolved_type_size(btf, size_type_id); 2049 else if (btf_type_is_ptr(size_type)) 2050 size = sizeof(void *); 2051 else 2052 return NULL; 2053 } 2054 2055 *type_id = size_type_id; 2056 if (ret_size) 2057 *ret_size = size; 2058 2059 return size_type; 2060 } 2061 2062 static int btf_df_check_member(struct btf_verifier_env *env, 2063 const struct btf_type *struct_type, 2064 const struct btf_member *member, 2065 const struct btf_type *member_type) 2066 { 2067 btf_verifier_log_basic(env, struct_type, 2068 "Unsupported check_member"); 2069 return -EINVAL; 2070 } 2071 2072 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2073 const struct btf_type *struct_type, 2074 const struct btf_member *member, 2075 const struct btf_type *member_type) 2076 { 2077 btf_verifier_log_basic(env, struct_type, 2078 "Unsupported check_kflag_member"); 2079 return -EINVAL; 2080 } 2081 2082 /* Used for ptr, array struct/union and float type members. 2083 * int, enum and modifier types have their specific callback functions. 2084 */ 2085 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2086 const struct btf_type *struct_type, 2087 const struct btf_member *member, 2088 const struct btf_type *member_type) 2089 { 2090 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2091 btf_verifier_log_member(env, struct_type, member, 2092 "Invalid member bitfield_size"); 2093 return -EINVAL; 2094 } 2095 2096 /* bitfield size is 0, so member->offset represents bit offset only. 2097 * It is safe to call non kflag check_member variants. 2098 */ 2099 return btf_type_ops(member_type)->check_member(env, struct_type, 2100 member, 2101 member_type); 2102 } 2103 2104 static int btf_df_resolve(struct btf_verifier_env *env, 2105 const struct resolve_vertex *v) 2106 { 2107 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2108 return -EINVAL; 2109 } 2110 2111 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2112 u32 type_id, void *data, u8 bits_offsets, 2113 struct btf_show *show) 2114 { 2115 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2116 } 2117 2118 static int btf_int_check_member(struct btf_verifier_env *env, 2119 const struct btf_type *struct_type, 2120 const struct btf_member *member, 2121 const struct btf_type *member_type) 2122 { 2123 u32 int_data = btf_type_int(member_type); 2124 u32 struct_bits_off = member->offset; 2125 u32 struct_size = struct_type->size; 2126 u32 nr_copy_bits; 2127 u32 bytes_offset; 2128 2129 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2130 btf_verifier_log_member(env, struct_type, member, 2131 "bits_offset exceeds U32_MAX"); 2132 return -EINVAL; 2133 } 2134 2135 struct_bits_off += BTF_INT_OFFSET(int_data); 2136 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2137 nr_copy_bits = BTF_INT_BITS(int_data) + 2138 BITS_PER_BYTE_MASKED(struct_bits_off); 2139 2140 if (nr_copy_bits > BITS_PER_U128) { 2141 btf_verifier_log_member(env, struct_type, member, 2142 "nr_copy_bits exceeds 128"); 2143 return -EINVAL; 2144 } 2145 2146 if (struct_size < bytes_offset || 2147 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2148 btf_verifier_log_member(env, struct_type, member, 2149 "Member exceeds struct_size"); 2150 return -EINVAL; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2157 const struct btf_type *struct_type, 2158 const struct btf_member *member, 2159 const struct btf_type *member_type) 2160 { 2161 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2162 u32 int_data = btf_type_int(member_type); 2163 u32 struct_size = struct_type->size; 2164 u32 nr_copy_bits; 2165 2166 /* a regular int type is required for the kflag int member */ 2167 if (!btf_type_int_is_regular(member_type)) { 2168 btf_verifier_log_member(env, struct_type, member, 2169 "Invalid member base type"); 2170 return -EINVAL; 2171 } 2172 2173 /* check sanity of bitfield size */ 2174 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2175 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2176 nr_int_data_bits = BTF_INT_BITS(int_data); 2177 if (!nr_bits) { 2178 /* Not a bitfield member, member offset must be at byte 2179 * boundary. 2180 */ 2181 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2182 btf_verifier_log_member(env, struct_type, member, 2183 "Invalid member offset"); 2184 return -EINVAL; 2185 } 2186 2187 nr_bits = nr_int_data_bits; 2188 } else if (nr_bits > nr_int_data_bits) { 2189 btf_verifier_log_member(env, struct_type, member, 2190 "Invalid member bitfield_size"); 2191 return -EINVAL; 2192 } 2193 2194 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2195 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2196 if (nr_copy_bits > BITS_PER_U128) { 2197 btf_verifier_log_member(env, struct_type, member, 2198 "nr_copy_bits exceeds 128"); 2199 return -EINVAL; 2200 } 2201 2202 if (struct_size < bytes_offset || 2203 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2204 btf_verifier_log_member(env, struct_type, member, 2205 "Member exceeds struct_size"); 2206 return -EINVAL; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2213 const struct btf_type *t, 2214 u32 meta_left) 2215 { 2216 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2217 u16 encoding; 2218 2219 if (meta_left < meta_needed) { 2220 btf_verifier_log_basic(env, t, 2221 "meta_left:%u meta_needed:%u", 2222 meta_left, meta_needed); 2223 return -EINVAL; 2224 } 2225 2226 if (btf_type_vlen(t)) { 2227 btf_verifier_log_type(env, t, "vlen != 0"); 2228 return -EINVAL; 2229 } 2230 2231 if (btf_type_kflag(t)) { 2232 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2233 return -EINVAL; 2234 } 2235 2236 int_data = btf_type_int(t); 2237 if (int_data & ~BTF_INT_MASK) { 2238 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2239 int_data); 2240 return -EINVAL; 2241 } 2242 2243 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2244 2245 if (nr_bits > BITS_PER_U128) { 2246 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2247 BITS_PER_U128); 2248 return -EINVAL; 2249 } 2250 2251 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2252 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2253 return -EINVAL; 2254 } 2255 2256 /* 2257 * Only one of the encoding bits is allowed and it 2258 * should be sufficient for the pretty print purpose (i.e. decoding). 2259 * Multiple bits can be allowed later if it is found 2260 * to be insufficient. 2261 */ 2262 encoding = BTF_INT_ENCODING(int_data); 2263 if (encoding && 2264 encoding != BTF_INT_SIGNED && 2265 encoding != BTF_INT_CHAR && 2266 encoding != BTF_INT_BOOL) { 2267 btf_verifier_log_type(env, t, "Unsupported encoding"); 2268 return -ENOTSUPP; 2269 } 2270 2271 btf_verifier_log_type(env, t, NULL); 2272 2273 return meta_needed; 2274 } 2275 2276 static void btf_int_log(struct btf_verifier_env *env, 2277 const struct btf_type *t) 2278 { 2279 int int_data = btf_type_int(t); 2280 2281 btf_verifier_log(env, 2282 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2283 t->size, BTF_INT_OFFSET(int_data), 2284 BTF_INT_BITS(int_data), 2285 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2286 } 2287 2288 static void btf_int128_print(struct btf_show *show, void *data) 2289 { 2290 /* data points to a __int128 number. 2291 * Suppose 2292 * int128_num = *(__int128 *)data; 2293 * The below formulas shows what upper_num and lower_num represents: 2294 * upper_num = int128_num >> 64; 2295 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2296 */ 2297 u64 upper_num, lower_num; 2298 2299 #ifdef __BIG_ENDIAN_BITFIELD 2300 upper_num = *(u64 *)data; 2301 lower_num = *(u64 *)(data + 8); 2302 #else 2303 upper_num = *(u64 *)(data + 8); 2304 lower_num = *(u64 *)data; 2305 #endif 2306 if (upper_num == 0) 2307 btf_show_type_value(show, "0x%llx", lower_num); 2308 else 2309 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2310 lower_num); 2311 } 2312 2313 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2314 u16 right_shift_bits) 2315 { 2316 u64 upper_num, lower_num; 2317 2318 #ifdef __BIG_ENDIAN_BITFIELD 2319 upper_num = print_num[0]; 2320 lower_num = print_num[1]; 2321 #else 2322 upper_num = print_num[1]; 2323 lower_num = print_num[0]; 2324 #endif 2325 2326 /* shake out un-needed bits by shift/or operations */ 2327 if (left_shift_bits >= 64) { 2328 upper_num = lower_num << (left_shift_bits - 64); 2329 lower_num = 0; 2330 } else { 2331 upper_num = (upper_num << left_shift_bits) | 2332 (lower_num >> (64 - left_shift_bits)); 2333 lower_num = lower_num << left_shift_bits; 2334 } 2335 2336 if (right_shift_bits >= 64) { 2337 lower_num = upper_num >> (right_shift_bits - 64); 2338 upper_num = 0; 2339 } else { 2340 lower_num = (lower_num >> right_shift_bits) | 2341 (upper_num << (64 - right_shift_bits)); 2342 upper_num = upper_num >> right_shift_bits; 2343 } 2344 2345 #ifdef __BIG_ENDIAN_BITFIELD 2346 print_num[0] = upper_num; 2347 print_num[1] = lower_num; 2348 #else 2349 print_num[0] = lower_num; 2350 print_num[1] = upper_num; 2351 #endif 2352 } 2353 2354 static void btf_bitfield_show(void *data, u8 bits_offset, 2355 u8 nr_bits, struct btf_show *show) 2356 { 2357 u16 left_shift_bits, right_shift_bits; 2358 u8 nr_copy_bytes; 2359 u8 nr_copy_bits; 2360 u64 print_num[2] = {}; 2361 2362 nr_copy_bits = nr_bits + bits_offset; 2363 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2364 2365 memcpy(print_num, data, nr_copy_bytes); 2366 2367 #ifdef __BIG_ENDIAN_BITFIELD 2368 left_shift_bits = bits_offset; 2369 #else 2370 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2371 #endif 2372 right_shift_bits = BITS_PER_U128 - nr_bits; 2373 2374 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2375 btf_int128_print(show, print_num); 2376 } 2377 2378 2379 static void btf_int_bits_show(const struct btf *btf, 2380 const struct btf_type *t, 2381 void *data, u8 bits_offset, 2382 struct btf_show *show) 2383 { 2384 u32 int_data = btf_type_int(t); 2385 u8 nr_bits = BTF_INT_BITS(int_data); 2386 u8 total_bits_offset; 2387 2388 /* 2389 * bits_offset is at most 7. 2390 * BTF_INT_OFFSET() cannot exceed 128 bits. 2391 */ 2392 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2393 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2394 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2395 btf_bitfield_show(data, bits_offset, nr_bits, show); 2396 } 2397 2398 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2399 u32 type_id, void *data, u8 bits_offset, 2400 struct btf_show *show) 2401 { 2402 u32 int_data = btf_type_int(t); 2403 u8 encoding = BTF_INT_ENCODING(int_data); 2404 bool sign = encoding & BTF_INT_SIGNED; 2405 u8 nr_bits = BTF_INT_BITS(int_data); 2406 void *safe_data; 2407 2408 safe_data = btf_show_start_type(show, t, type_id, data); 2409 if (!safe_data) 2410 return; 2411 2412 if (bits_offset || BTF_INT_OFFSET(int_data) || 2413 BITS_PER_BYTE_MASKED(nr_bits)) { 2414 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2415 goto out; 2416 } 2417 2418 switch (nr_bits) { 2419 case 128: 2420 btf_int128_print(show, safe_data); 2421 break; 2422 case 64: 2423 if (sign) 2424 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2425 else 2426 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2427 break; 2428 case 32: 2429 if (sign) 2430 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2431 else 2432 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2433 break; 2434 case 16: 2435 if (sign) 2436 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2437 else 2438 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2439 break; 2440 case 8: 2441 if (show->state.array_encoding == BTF_INT_CHAR) { 2442 /* check for null terminator */ 2443 if (show->state.array_terminated) 2444 break; 2445 if (*(char *)data == '\0') { 2446 show->state.array_terminated = 1; 2447 break; 2448 } 2449 if (isprint(*(char *)data)) { 2450 btf_show_type_value(show, "'%c'", 2451 *(char *)safe_data); 2452 break; 2453 } 2454 } 2455 if (sign) 2456 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2457 else 2458 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2459 break; 2460 default: 2461 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2462 break; 2463 } 2464 out: 2465 btf_show_end_type(show); 2466 } 2467 2468 static const struct btf_kind_operations int_ops = { 2469 .check_meta = btf_int_check_meta, 2470 .resolve = btf_df_resolve, 2471 .check_member = btf_int_check_member, 2472 .check_kflag_member = btf_int_check_kflag_member, 2473 .log_details = btf_int_log, 2474 .show = btf_int_show, 2475 }; 2476 2477 static int btf_modifier_check_member(struct btf_verifier_env *env, 2478 const struct btf_type *struct_type, 2479 const struct btf_member *member, 2480 const struct btf_type *member_type) 2481 { 2482 const struct btf_type *resolved_type; 2483 u32 resolved_type_id = member->type; 2484 struct btf_member resolved_member; 2485 struct btf *btf = env->btf; 2486 2487 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2488 if (!resolved_type) { 2489 btf_verifier_log_member(env, struct_type, member, 2490 "Invalid member"); 2491 return -EINVAL; 2492 } 2493 2494 resolved_member = *member; 2495 resolved_member.type = resolved_type_id; 2496 2497 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2498 &resolved_member, 2499 resolved_type); 2500 } 2501 2502 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2503 const struct btf_type *struct_type, 2504 const struct btf_member *member, 2505 const struct btf_type *member_type) 2506 { 2507 const struct btf_type *resolved_type; 2508 u32 resolved_type_id = member->type; 2509 struct btf_member resolved_member; 2510 struct btf *btf = env->btf; 2511 2512 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2513 if (!resolved_type) { 2514 btf_verifier_log_member(env, struct_type, member, 2515 "Invalid member"); 2516 return -EINVAL; 2517 } 2518 2519 resolved_member = *member; 2520 resolved_member.type = resolved_type_id; 2521 2522 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2523 &resolved_member, 2524 resolved_type); 2525 } 2526 2527 static int btf_ptr_check_member(struct btf_verifier_env *env, 2528 const struct btf_type *struct_type, 2529 const struct btf_member *member, 2530 const struct btf_type *member_type) 2531 { 2532 u32 struct_size, struct_bits_off, bytes_offset; 2533 2534 struct_size = struct_type->size; 2535 struct_bits_off = member->offset; 2536 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2537 2538 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2539 btf_verifier_log_member(env, struct_type, member, 2540 "Member is not byte aligned"); 2541 return -EINVAL; 2542 } 2543 2544 if (struct_size - bytes_offset < sizeof(void *)) { 2545 btf_verifier_log_member(env, struct_type, member, 2546 "Member exceeds struct_size"); 2547 return -EINVAL; 2548 } 2549 2550 return 0; 2551 } 2552 2553 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2554 const struct btf_type *t, 2555 u32 meta_left) 2556 { 2557 const char *value; 2558 2559 if (btf_type_vlen(t)) { 2560 btf_verifier_log_type(env, t, "vlen != 0"); 2561 return -EINVAL; 2562 } 2563 2564 if (btf_type_kflag(t)) { 2565 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2566 return -EINVAL; 2567 } 2568 2569 if (!BTF_TYPE_ID_VALID(t->type)) { 2570 btf_verifier_log_type(env, t, "Invalid type_id"); 2571 return -EINVAL; 2572 } 2573 2574 /* typedef/type_tag type must have a valid name, and other ref types, 2575 * volatile, const, restrict, should have a null name. 2576 */ 2577 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2578 if (!t->name_off || 2579 !btf_name_valid_identifier(env->btf, t->name_off)) { 2580 btf_verifier_log_type(env, t, "Invalid name"); 2581 return -EINVAL; 2582 } 2583 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2584 value = btf_name_by_offset(env->btf, t->name_off); 2585 if (!value || !value[0]) { 2586 btf_verifier_log_type(env, t, "Invalid name"); 2587 return -EINVAL; 2588 } 2589 } else { 2590 if (t->name_off) { 2591 btf_verifier_log_type(env, t, "Invalid name"); 2592 return -EINVAL; 2593 } 2594 } 2595 2596 btf_verifier_log_type(env, t, NULL); 2597 2598 return 0; 2599 } 2600 2601 static int btf_modifier_resolve(struct btf_verifier_env *env, 2602 const struct resolve_vertex *v) 2603 { 2604 const struct btf_type *t = v->t; 2605 const struct btf_type *next_type; 2606 u32 next_type_id = t->type; 2607 struct btf *btf = env->btf; 2608 2609 next_type = btf_type_by_id(btf, next_type_id); 2610 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2611 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2612 return -EINVAL; 2613 } 2614 2615 if (!env_type_is_resolve_sink(env, next_type) && 2616 !env_type_is_resolved(env, next_type_id)) 2617 return env_stack_push(env, next_type, next_type_id); 2618 2619 /* Figure out the resolved next_type_id with size. 2620 * They will be stored in the current modifier's 2621 * resolved_ids and resolved_sizes such that it can 2622 * save us a few type-following when we use it later (e.g. in 2623 * pretty print). 2624 */ 2625 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2626 if (env_type_is_resolved(env, next_type_id)) 2627 next_type = btf_type_id_resolve(btf, &next_type_id); 2628 2629 /* "typedef void new_void", "const void"...etc */ 2630 if (!btf_type_is_void(next_type) && 2631 !btf_type_is_fwd(next_type) && 2632 !btf_type_is_func_proto(next_type)) { 2633 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2634 return -EINVAL; 2635 } 2636 } 2637 2638 env_stack_pop_resolved(env, next_type_id, 0); 2639 2640 return 0; 2641 } 2642 2643 static int btf_var_resolve(struct btf_verifier_env *env, 2644 const struct resolve_vertex *v) 2645 { 2646 const struct btf_type *next_type; 2647 const struct btf_type *t = v->t; 2648 u32 next_type_id = t->type; 2649 struct btf *btf = env->btf; 2650 2651 next_type = btf_type_by_id(btf, next_type_id); 2652 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2653 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2654 return -EINVAL; 2655 } 2656 2657 if (!env_type_is_resolve_sink(env, next_type) && 2658 !env_type_is_resolved(env, next_type_id)) 2659 return env_stack_push(env, next_type, next_type_id); 2660 2661 if (btf_type_is_modifier(next_type)) { 2662 const struct btf_type *resolved_type; 2663 u32 resolved_type_id; 2664 2665 resolved_type_id = next_type_id; 2666 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2667 2668 if (btf_type_is_ptr(resolved_type) && 2669 !env_type_is_resolve_sink(env, resolved_type) && 2670 !env_type_is_resolved(env, resolved_type_id)) 2671 return env_stack_push(env, resolved_type, 2672 resolved_type_id); 2673 } 2674 2675 /* We must resolve to something concrete at this point, no 2676 * forward types or similar that would resolve to size of 2677 * zero is allowed. 2678 */ 2679 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2680 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2681 return -EINVAL; 2682 } 2683 2684 env_stack_pop_resolved(env, next_type_id, 0); 2685 2686 return 0; 2687 } 2688 2689 static int btf_ptr_resolve(struct btf_verifier_env *env, 2690 const struct resolve_vertex *v) 2691 { 2692 const struct btf_type *next_type; 2693 const struct btf_type *t = v->t; 2694 u32 next_type_id = t->type; 2695 struct btf *btf = env->btf; 2696 2697 next_type = btf_type_by_id(btf, next_type_id); 2698 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2699 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2700 return -EINVAL; 2701 } 2702 2703 if (!env_type_is_resolve_sink(env, next_type) && 2704 !env_type_is_resolved(env, next_type_id)) 2705 return env_stack_push(env, next_type, next_type_id); 2706 2707 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2708 * the modifier may have stopped resolving when it was resolved 2709 * to a ptr (last-resolved-ptr). 2710 * 2711 * We now need to continue from the last-resolved-ptr to 2712 * ensure the last-resolved-ptr will not referring back to 2713 * the current ptr (t). 2714 */ 2715 if (btf_type_is_modifier(next_type)) { 2716 const struct btf_type *resolved_type; 2717 u32 resolved_type_id; 2718 2719 resolved_type_id = next_type_id; 2720 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2721 2722 if (btf_type_is_ptr(resolved_type) && 2723 !env_type_is_resolve_sink(env, resolved_type) && 2724 !env_type_is_resolved(env, resolved_type_id)) 2725 return env_stack_push(env, resolved_type, 2726 resolved_type_id); 2727 } 2728 2729 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2730 if (env_type_is_resolved(env, next_type_id)) 2731 next_type = btf_type_id_resolve(btf, &next_type_id); 2732 2733 if (!btf_type_is_void(next_type) && 2734 !btf_type_is_fwd(next_type) && 2735 !btf_type_is_func_proto(next_type)) { 2736 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2737 return -EINVAL; 2738 } 2739 } 2740 2741 env_stack_pop_resolved(env, next_type_id, 0); 2742 2743 return 0; 2744 } 2745 2746 static void btf_modifier_show(const struct btf *btf, 2747 const struct btf_type *t, 2748 u32 type_id, void *data, 2749 u8 bits_offset, struct btf_show *show) 2750 { 2751 if (btf->resolved_ids) 2752 t = btf_type_id_resolve(btf, &type_id); 2753 else 2754 t = btf_type_skip_modifiers(btf, type_id, NULL); 2755 2756 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2757 } 2758 2759 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2760 u32 type_id, void *data, u8 bits_offset, 2761 struct btf_show *show) 2762 { 2763 t = btf_type_id_resolve(btf, &type_id); 2764 2765 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2766 } 2767 2768 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2769 u32 type_id, void *data, u8 bits_offset, 2770 struct btf_show *show) 2771 { 2772 void *safe_data; 2773 2774 safe_data = btf_show_start_type(show, t, type_id, data); 2775 if (!safe_data) 2776 return; 2777 2778 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2779 if (show->flags & BTF_SHOW_PTR_RAW) 2780 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2781 else 2782 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2783 btf_show_end_type(show); 2784 } 2785 2786 static void btf_ref_type_log(struct btf_verifier_env *env, 2787 const struct btf_type *t) 2788 { 2789 btf_verifier_log(env, "type_id=%u", t->type); 2790 } 2791 2792 static struct btf_kind_operations modifier_ops = { 2793 .check_meta = btf_ref_type_check_meta, 2794 .resolve = btf_modifier_resolve, 2795 .check_member = btf_modifier_check_member, 2796 .check_kflag_member = btf_modifier_check_kflag_member, 2797 .log_details = btf_ref_type_log, 2798 .show = btf_modifier_show, 2799 }; 2800 2801 static struct btf_kind_operations ptr_ops = { 2802 .check_meta = btf_ref_type_check_meta, 2803 .resolve = btf_ptr_resolve, 2804 .check_member = btf_ptr_check_member, 2805 .check_kflag_member = btf_generic_check_kflag_member, 2806 .log_details = btf_ref_type_log, 2807 .show = btf_ptr_show, 2808 }; 2809 2810 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2811 const struct btf_type *t, 2812 u32 meta_left) 2813 { 2814 if (btf_type_vlen(t)) { 2815 btf_verifier_log_type(env, t, "vlen != 0"); 2816 return -EINVAL; 2817 } 2818 2819 if (t->type) { 2820 btf_verifier_log_type(env, t, "type != 0"); 2821 return -EINVAL; 2822 } 2823 2824 /* fwd type must have a valid name */ 2825 if (!t->name_off || 2826 !btf_name_valid_identifier(env->btf, t->name_off)) { 2827 btf_verifier_log_type(env, t, "Invalid name"); 2828 return -EINVAL; 2829 } 2830 2831 btf_verifier_log_type(env, t, NULL); 2832 2833 return 0; 2834 } 2835 2836 static void btf_fwd_type_log(struct btf_verifier_env *env, 2837 const struct btf_type *t) 2838 { 2839 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2840 } 2841 2842 static struct btf_kind_operations fwd_ops = { 2843 .check_meta = btf_fwd_check_meta, 2844 .resolve = btf_df_resolve, 2845 .check_member = btf_df_check_member, 2846 .check_kflag_member = btf_df_check_kflag_member, 2847 .log_details = btf_fwd_type_log, 2848 .show = btf_df_show, 2849 }; 2850 2851 static int btf_array_check_member(struct btf_verifier_env *env, 2852 const struct btf_type *struct_type, 2853 const struct btf_member *member, 2854 const struct btf_type *member_type) 2855 { 2856 u32 struct_bits_off = member->offset; 2857 u32 struct_size, bytes_offset; 2858 u32 array_type_id, array_size; 2859 struct btf *btf = env->btf; 2860 2861 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2862 btf_verifier_log_member(env, struct_type, member, 2863 "Member is not byte aligned"); 2864 return -EINVAL; 2865 } 2866 2867 array_type_id = member->type; 2868 btf_type_id_size(btf, &array_type_id, &array_size); 2869 struct_size = struct_type->size; 2870 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2871 if (struct_size - bytes_offset < array_size) { 2872 btf_verifier_log_member(env, struct_type, member, 2873 "Member exceeds struct_size"); 2874 return -EINVAL; 2875 } 2876 2877 return 0; 2878 } 2879 2880 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2881 const struct btf_type *t, 2882 u32 meta_left) 2883 { 2884 const struct btf_array *array = btf_type_array(t); 2885 u32 meta_needed = sizeof(*array); 2886 2887 if (meta_left < meta_needed) { 2888 btf_verifier_log_basic(env, t, 2889 "meta_left:%u meta_needed:%u", 2890 meta_left, meta_needed); 2891 return -EINVAL; 2892 } 2893 2894 /* array type should not have a name */ 2895 if (t->name_off) { 2896 btf_verifier_log_type(env, t, "Invalid name"); 2897 return -EINVAL; 2898 } 2899 2900 if (btf_type_vlen(t)) { 2901 btf_verifier_log_type(env, t, "vlen != 0"); 2902 return -EINVAL; 2903 } 2904 2905 if (btf_type_kflag(t)) { 2906 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2907 return -EINVAL; 2908 } 2909 2910 if (t->size) { 2911 btf_verifier_log_type(env, t, "size != 0"); 2912 return -EINVAL; 2913 } 2914 2915 /* Array elem type and index type cannot be in type void, 2916 * so !array->type and !array->index_type are not allowed. 2917 */ 2918 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2919 btf_verifier_log_type(env, t, "Invalid elem"); 2920 return -EINVAL; 2921 } 2922 2923 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2924 btf_verifier_log_type(env, t, "Invalid index"); 2925 return -EINVAL; 2926 } 2927 2928 btf_verifier_log_type(env, t, NULL); 2929 2930 return meta_needed; 2931 } 2932 2933 static int btf_array_resolve(struct btf_verifier_env *env, 2934 const struct resolve_vertex *v) 2935 { 2936 const struct btf_array *array = btf_type_array(v->t); 2937 const struct btf_type *elem_type, *index_type; 2938 u32 elem_type_id, index_type_id; 2939 struct btf *btf = env->btf; 2940 u32 elem_size; 2941 2942 /* Check array->index_type */ 2943 index_type_id = array->index_type; 2944 index_type = btf_type_by_id(btf, index_type_id); 2945 if (btf_type_nosize_or_null(index_type) || 2946 btf_type_is_resolve_source_only(index_type)) { 2947 btf_verifier_log_type(env, v->t, "Invalid index"); 2948 return -EINVAL; 2949 } 2950 2951 if (!env_type_is_resolve_sink(env, index_type) && 2952 !env_type_is_resolved(env, index_type_id)) 2953 return env_stack_push(env, index_type, index_type_id); 2954 2955 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2956 if (!index_type || !btf_type_is_int(index_type) || 2957 !btf_type_int_is_regular(index_type)) { 2958 btf_verifier_log_type(env, v->t, "Invalid index"); 2959 return -EINVAL; 2960 } 2961 2962 /* Check array->type */ 2963 elem_type_id = array->type; 2964 elem_type = btf_type_by_id(btf, elem_type_id); 2965 if (btf_type_nosize_or_null(elem_type) || 2966 btf_type_is_resolve_source_only(elem_type)) { 2967 btf_verifier_log_type(env, v->t, 2968 "Invalid elem"); 2969 return -EINVAL; 2970 } 2971 2972 if (!env_type_is_resolve_sink(env, elem_type) && 2973 !env_type_is_resolved(env, elem_type_id)) 2974 return env_stack_push(env, elem_type, elem_type_id); 2975 2976 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2977 if (!elem_type) { 2978 btf_verifier_log_type(env, v->t, "Invalid elem"); 2979 return -EINVAL; 2980 } 2981 2982 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2983 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2984 return -EINVAL; 2985 } 2986 2987 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2988 btf_verifier_log_type(env, v->t, 2989 "Array size overflows U32_MAX"); 2990 return -EINVAL; 2991 } 2992 2993 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2994 2995 return 0; 2996 } 2997 2998 static void btf_array_log(struct btf_verifier_env *env, 2999 const struct btf_type *t) 3000 { 3001 const struct btf_array *array = btf_type_array(t); 3002 3003 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3004 array->type, array->index_type, array->nelems); 3005 } 3006 3007 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3008 u32 type_id, void *data, u8 bits_offset, 3009 struct btf_show *show) 3010 { 3011 const struct btf_array *array = btf_type_array(t); 3012 const struct btf_kind_operations *elem_ops; 3013 const struct btf_type *elem_type; 3014 u32 i, elem_size = 0, elem_type_id; 3015 u16 encoding = 0; 3016 3017 elem_type_id = array->type; 3018 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3019 if (elem_type && btf_type_has_size(elem_type)) 3020 elem_size = elem_type->size; 3021 3022 if (elem_type && btf_type_is_int(elem_type)) { 3023 u32 int_type = btf_type_int(elem_type); 3024 3025 encoding = BTF_INT_ENCODING(int_type); 3026 3027 /* 3028 * BTF_INT_CHAR encoding never seems to be set for 3029 * char arrays, so if size is 1 and element is 3030 * printable as a char, we'll do that. 3031 */ 3032 if (elem_size == 1) 3033 encoding = BTF_INT_CHAR; 3034 } 3035 3036 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3037 return; 3038 3039 if (!elem_type) 3040 goto out; 3041 elem_ops = btf_type_ops(elem_type); 3042 3043 for (i = 0; i < array->nelems; i++) { 3044 3045 btf_show_start_array_member(show); 3046 3047 elem_ops->show(btf, elem_type, elem_type_id, data, 3048 bits_offset, show); 3049 data += elem_size; 3050 3051 btf_show_end_array_member(show); 3052 3053 if (show->state.array_terminated) 3054 break; 3055 } 3056 out: 3057 btf_show_end_array_type(show); 3058 } 3059 3060 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3061 u32 type_id, void *data, u8 bits_offset, 3062 struct btf_show *show) 3063 { 3064 const struct btf_member *m = show->state.member; 3065 3066 /* 3067 * First check if any members would be shown (are non-zero). 3068 * See comments above "struct btf_show" definition for more 3069 * details on how this works at a high-level. 3070 */ 3071 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3072 if (!show->state.depth_check) { 3073 show->state.depth_check = show->state.depth + 1; 3074 show->state.depth_to_show = 0; 3075 } 3076 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3077 show->state.member = m; 3078 3079 if (show->state.depth_check != show->state.depth + 1) 3080 return; 3081 show->state.depth_check = 0; 3082 3083 if (show->state.depth_to_show <= show->state.depth) 3084 return; 3085 /* 3086 * Reaching here indicates we have recursed and found 3087 * non-zero array member(s). 3088 */ 3089 } 3090 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3091 } 3092 3093 static struct btf_kind_operations array_ops = { 3094 .check_meta = btf_array_check_meta, 3095 .resolve = btf_array_resolve, 3096 .check_member = btf_array_check_member, 3097 .check_kflag_member = btf_generic_check_kflag_member, 3098 .log_details = btf_array_log, 3099 .show = btf_array_show, 3100 }; 3101 3102 static int btf_struct_check_member(struct btf_verifier_env *env, 3103 const struct btf_type *struct_type, 3104 const struct btf_member *member, 3105 const struct btf_type *member_type) 3106 { 3107 u32 struct_bits_off = member->offset; 3108 u32 struct_size, bytes_offset; 3109 3110 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3111 btf_verifier_log_member(env, struct_type, member, 3112 "Member is not byte aligned"); 3113 return -EINVAL; 3114 } 3115 3116 struct_size = struct_type->size; 3117 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3118 if (struct_size - bytes_offset < member_type->size) { 3119 btf_verifier_log_member(env, struct_type, member, 3120 "Member exceeds struct_size"); 3121 return -EINVAL; 3122 } 3123 3124 return 0; 3125 } 3126 3127 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3128 const struct btf_type *t, 3129 u32 meta_left) 3130 { 3131 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3132 const struct btf_member *member; 3133 u32 meta_needed, last_offset; 3134 struct btf *btf = env->btf; 3135 u32 struct_size = t->size; 3136 u32 offset; 3137 u16 i; 3138 3139 meta_needed = btf_type_vlen(t) * sizeof(*member); 3140 if (meta_left < meta_needed) { 3141 btf_verifier_log_basic(env, t, 3142 "meta_left:%u meta_needed:%u", 3143 meta_left, meta_needed); 3144 return -EINVAL; 3145 } 3146 3147 /* struct type either no name or a valid one */ 3148 if (t->name_off && 3149 !btf_name_valid_identifier(env->btf, t->name_off)) { 3150 btf_verifier_log_type(env, t, "Invalid name"); 3151 return -EINVAL; 3152 } 3153 3154 btf_verifier_log_type(env, t, NULL); 3155 3156 last_offset = 0; 3157 for_each_member(i, t, member) { 3158 if (!btf_name_offset_valid(btf, member->name_off)) { 3159 btf_verifier_log_member(env, t, member, 3160 "Invalid member name_offset:%u", 3161 member->name_off); 3162 return -EINVAL; 3163 } 3164 3165 /* struct member either no name or a valid one */ 3166 if (member->name_off && 3167 !btf_name_valid_identifier(btf, member->name_off)) { 3168 btf_verifier_log_member(env, t, member, "Invalid name"); 3169 return -EINVAL; 3170 } 3171 /* A member cannot be in type void */ 3172 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3173 btf_verifier_log_member(env, t, member, 3174 "Invalid type_id"); 3175 return -EINVAL; 3176 } 3177 3178 offset = __btf_member_bit_offset(t, member); 3179 if (is_union && offset) { 3180 btf_verifier_log_member(env, t, member, 3181 "Invalid member bits_offset"); 3182 return -EINVAL; 3183 } 3184 3185 /* 3186 * ">" instead of ">=" because the last member could be 3187 * "char a[0];" 3188 */ 3189 if (last_offset > offset) { 3190 btf_verifier_log_member(env, t, member, 3191 "Invalid member bits_offset"); 3192 return -EINVAL; 3193 } 3194 3195 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3196 btf_verifier_log_member(env, t, member, 3197 "Member bits_offset exceeds its struct size"); 3198 return -EINVAL; 3199 } 3200 3201 btf_verifier_log_member(env, t, member, NULL); 3202 last_offset = offset; 3203 } 3204 3205 return meta_needed; 3206 } 3207 3208 static int btf_struct_resolve(struct btf_verifier_env *env, 3209 const struct resolve_vertex *v) 3210 { 3211 const struct btf_member *member; 3212 int err; 3213 u16 i; 3214 3215 /* Before continue resolving the next_member, 3216 * ensure the last member is indeed resolved to a 3217 * type with size info. 3218 */ 3219 if (v->next_member) { 3220 const struct btf_type *last_member_type; 3221 const struct btf_member *last_member; 3222 u32 last_member_type_id; 3223 3224 last_member = btf_type_member(v->t) + v->next_member - 1; 3225 last_member_type_id = last_member->type; 3226 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3227 last_member_type_id))) 3228 return -EINVAL; 3229 3230 last_member_type = btf_type_by_id(env->btf, 3231 last_member_type_id); 3232 if (btf_type_kflag(v->t)) 3233 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3234 last_member, 3235 last_member_type); 3236 else 3237 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3238 last_member, 3239 last_member_type); 3240 if (err) 3241 return err; 3242 } 3243 3244 for_each_member_from(i, v->next_member, v->t, member) { 3245 u32 member_type_id = member->type; 3246 const struct btf_type *member_type = btf_type_by_id(env->btf, 3247 member_type_id); 3248 3249 if (btf_type_nosize_or_null(member_type) || 3250 btf_type_is_resolve_source_only(member_type)) { 3251 btf_verifier_log_member(env, v->t, member, 3252 "Invalid member"); 3253 return -EINVAL; 3254 } 3255 3256 if (!env_type_is_resolve_sink(env, member_type) && 3257 !env_type_is_resolved(env, member_type_id)) { 3258 env_stack_set_next_member(env, i + 1); 3259 return env_stack_push(env, member_type, member_type_id); 3260 } 3261 3262 if (btf_type_kflag(v->t)) 3263 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3264 member, 3265 member_type); 3266 else 3267 err = btf_type_ops(member_type)->check_member(env, v->t, 3268 member, 3269 member_type); 3270 if (err) 3271 return err; 3272 } 3273 3274 env_stack_pop_resolved(env, 0, 0); 3275 3276 return 0; 3277 } 3278 3279 static void btf_struct_log(struct btf_verifier_env *env, 3280 const struct btf_type *t) 3281 { 3282 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3283 } 3284 3285 enum { 3286 BTF_FIELD_IGNORE = 0, 3287 BTF_FIELD_FOUND = 1, 3288 }; 3289 3290 struct btf_field_info { 3291 enum btf_field_type type; 3292 u32 off; 3293 union { 3294 struct { 3295 u32 type_id; 3296 } kptr; 3297 struct { 3298 const char *node_name; 3299 u32 value_btf_id; 3300 } graph_root; 3301 }; 3302 }; 3303 3304 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3305 u32 off, int sz, enum btf_field_type field_type, 3306 struct btf_field_info *info) 3307 { 3308 if (!__btf_type_is_struct(t)) 3309 return BTF_FIELD_IGNORE; 3310 if (t->size != sz) 3311 return BTF_FIELD_IGNORE; 3312 info->type = field_type; 3313 info->off = off; 3314 return BTF_FIELD_FOUND; 3315 } 3316 3317 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3318 u32 off, int sz, struct btf_field_info *info) 3319 { 3320 enum btf_field_type type; 3321 u32 res_id; 3322 3323 /* Permit modifiers on the pointer itself */ 3324 if (btf_type_is_volatile(t)) 3325 t = btf_type_by_id(btf, t->type); 3326 /* For PTR, sz is always == 8 */ 3327 if (!btf_type_is_ptr(t)) 3328 return BTF_FIELD_IGNORE; 3329 t = btf_type_by_id(btf, t->type); 3330 3331 if (!btf_type_is_type_tag(t)) 3332 return BTF_FIELD_IGNORE; 3333 /* Reject extra tags */ 3334 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3335 return -EINVAL; 3336 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3337 type = BPF_KPTR_UNREF; 3338 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3339 type = BPF_KPTR_REF; 3340 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3341 type = BPF_KPTR_PERCPU; 3342 else 3343 return -EINVAL; 3344 3345 /* Get the base type */ 3346 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3347 /* Only pointer to struct is allowed */ 3348 if (!__btf_type_is_struct(t)) 3349 return -EINVAL; 3350 3351 info->type = type; 3352 info->off = off; 3353 info->kptr.type_id = res_id; 3354 return BTF_FIELD_FOUND; 3355 } 3356 3357 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3358 int comp_idx, const char *tag_key, int last_id) 3359 { 3360 int len = strlen(tag_key); 3361 int i, n; 3362 3363 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3364 const struct btf_type *t = btf_type_by_id(btf, i); 3365 3366 if (!btf_type_is_decl_tag(t)) 3367 continue; 3368 if (pt != btf_type_by_id(btf, t->type)) 3369 continue; 3370 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3371 continue; 3372 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3373 continue; 3374 return i; 3375 } 3376 return -ENOENT; 3377 } 3378 3379 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3380 int comp_idx, const char *tag_key) 3381 { 3382 const char *value = NULL; 3383 const struct btf_type *t; 3384 int len, id; 3385 3386 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3387 if (id < 0) 3388 return ERR_PTR(id); 3389 3390 t = btf_type_by_id(btf, id); 3391 len = strlen(tag_key); 3392 value = __btf_name_by_offset(btf, t->name_off) + len; 3393 3394 /* Prevent duplicate entries for same type */ 3395 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3396 if (id >= 0) 3397 return ERR_PTR(-EEXIST); 3398 3399 return value; 3400 } 3401 3402 static int 3403 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3404 const struct btf_type *t, int comp_idx, u32 off, 3405 int sz, struct btf_field_info *info, 3406 enum btf_field_type head_type) 3407 { 3408 const char *node_field_name; 3409 const char *value_type; 3410 s32 id; 3411 3412 if (!__btf_type_is_struct(t)) 3413 return BTF_FIELD_IGNORE; 3414 if (t->size != sz) 3415 return BTF_FIELD_IGNORE; 3416 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3417 if (IS_ERR(value_type)) 3418 return -EINVAL; 3419 node_field_name = strstr(value_type, ":"); 3420 if (!node_field_name) 3421 return -EINVAL; 3422 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3423 if (!value_type) 3424 return -ENOMEM; 3425 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3426 kfree(value_type); 3427 if (id < 0) 3428 return id; 3429 node_field_name++; 3430 if (str_is_empty(node_field_name)) 3431 return -EINVAL; 3432 info->type = head_type; 3433 info->off = off; 3434 info->graph_root.value_btf_id = id; 3435 info->graph_root.node_name = node_field_name; 3436 return BTF_FIELD_FOUND; 3437 } 3438 3439 #define field_mask_test_name(field_type, field_type_str) \ 3440 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3441 type = field_type; \ 3442 goto end; \ 3443 } 3444 3445 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3446 int *align, int *sz) 3447 { 3448 int type = 0; 3449 3450 if (field_mask & BPF_SPIN_LOCK) { 3451 if (!strcmp(name, "bpf_spin_lock")) { 3452 if (*seen_mask & BPF_SPIN_LOCK) 3453 return -E2BIG; 3454 *seen_mask |= BPF_SPIN_LOCK; 3455 type = BPF_SPIN_LOCK; 3456 goto end; 3457 } 3458 } 3459 if (field_mask & BPF_TIMER) { 3460 if (!strcmp(name, "bpf_timer")) { 3461 if (*seen_mask & BPF_TIMER) 3462 return -E2BIG; 3463 *seen_mask |= BPF_TIMER; 3464 type = BPF_TIMER; 3465 goto end; 3466 } 3467 } 3468 if (field_mask & BPF_WORKQUEUE) { 3469 if (!strcmp(name, "bpf_wq")) { 3470 if (*seen_mask & BPF_WORKQUEUE) 3471 return -E2BIG; 3472 *seen_mask |= BPF_WORKQUEUE; 3473 type = BPF_WORKQUEUE; 3474 goto end; 3475 } 3476 } 3477 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3478 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3479 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3480 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3481 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3482 3483 /* Only return BPF_KPTR when all other types with matchable names fail */ 3484 if (field_mask & BPF_KPTR) { 3485 type = BPF_KPTR_REF; 3486 goto end; 3487 } 3488 return 0; 3489 end: 3490 *sz = btf_field_type_size(type); 3491 *align = btf_field_type_align(type); 3492 return type; 3493 } 3494 3495 #undef field_mask_test_name 3496 3497 static int btf_find_struct_field(const struct btf *btf, 3498 const struct btf_type *t, u32 field_mask, 3499 struct btf_field_info *info, int info_cnt) 3500 { 3501 int ret, idx = 0, align, sz, field_type; 3502 const struct btf_member *member; 3503 struct btf_field_info tmp; 3504 u32 i, off, seen_mask = 0; 3505 3506 for_each_member(i, t, member) { 3507 const struct btf_type *member_type = btf_type_by_id(btf, 3508 member->type); 3509 3510 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3511 field_mask, &seen_mask, &align, &sz); 3512 if (field_type == 0) 3513 continue; 3514 if (field_type < 0) 3515 return field_type; 3516 3517 off = __btf_member_bit_offset(t, member); 3518 if (off % 8) 3519 /* valid C code cannot generate such BTF */ 3520 return -EINVAL; 3521 off /= 8; 3522 if (off % align) 3523 continue; 3524 3525 switch (field_type) { 3526 case BPF_SPIN_LOCK: 3527 case BPF_TIMER: 3528 case BPF_WORKQUEUE: 3529 case BPF_LIST_NODE: 3530 case BPF_RB_NODE: 3531 case BPF_REFCOUNT: 3532 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3533 idx < info_cnt ? &info[idx] : &tmp); 3534 if (ret < 0) 3535 return ret; 3536 break; 3537 case BPF_KPTR_UNREF: 3538 case BPF_KPTR_REF: 3539 case BPF_KPTR_PERCPU: 3540 ret = btf_find_kptr(btf, member_type, off, sz, 3541 idx < info_cnt ? &info[idx] : &tmp); 3542 if (ret < 0) 3543 return ret; 3544 break; 3545 case BPF_LIST_HEAD: 3546 case BPF_RB_ROOT: 3547 ret = btf_find_graph_root(btf, t, member_type, 3548 i, off, sz, 3549 idx < info_cnt ? &info[idx] : &tmp, 3550 field_type); 3551 if (ret < 0) 3552 return ret; 3553 break; 3554 default: 3555 return -EFAULT; 3556 } 3557 3558 if (ret == BTF_FIELD_IGNORE) 3559 continue; 3560 if (idx >= info_cnt) 3561 return -E2BIG; 3562 ++idx; 3563 } 3564 return idx; 3565 } 3566 3567 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3568 u32 field_mask, struct btf_field_info *info, 3569 int info_cnt) 3570 { 3571 int ret, idx = 0, align, sz, field_type; 3572 const struct btf_var_secinfo *vsi; 3573 struct btf_field_info tmp; 3574 u32 i, off, seen_mask = 0; 3575 3576 for_each_vsi(i, t, vsi) { 3577 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3578 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3579 3580 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3581 field_mask, &seen_mask, &align, &sz); 3582 if (field_type == 0) 3583 continue; 3584 if (field_type < 0) 3585 return field_type; 3586 3587 off = vsi->offset; 3588 if (vsi->size != sz) 3589 continue; 3590 if (off % align) 3591 continue; 3592 3593 switch (field_type) { 3594 case BPF_SPIN_LOCK: 3595 case BPF_TIMER: 3596 case BPF_WORKQUEUE: 3597 case BPF_LIST_NODE: 3598 case BPF_RB_NODE: 3599 case BPF_REFCOUNT: 3600 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3601 idx < info_cnt ? &info[idx] : &tmp); 3602 if (ret < 0) 3603 return ret; 3604 break; 3605 case BPF_KPTR_UNREF: 3606 case BPF_KPTR_REF: 3607 case BPF_KPTR_PERCPU: 3608 ret = btf_find_kptr(btf, var_type, off, sz, 3609 idx < info_cnt ? &info[idx] : &tmp); 3610 if (ret < 0) 3611 return ret; 3612 break; 3613 case BPF_LIST_HEAD: 3614 case BPF_RB_ROOT: 3615 ret = btf_find_graph_root(btf, var, var_type, 3616 -1, off, sz, 3617 idx < info_cnt ? &info[idx] : &tmp, 3618 field_type); 3619 if (ret < 0) 3620 return ret; 3621 break; 3622 default: 3623 return -EFAULT; 3624 } 3625 3626 if (ret == BTF_FIELD_IGNORE) 3627 continue; 3628 if (idx >= info_cnt) 3629 return -E2BIG; 3630 ++idx; 3631 } 3632 return idx; 3633 } 3634 3635 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3636 u32 field_mask, struct btf_field_info *info, 3637 int info_cnt) 3638 { 3639 if (__btf_type_is_struct(t)) 3640 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3641 else if (btf_type_is_datasec(t)) 3642 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3643 return -EINVAL; 3644 } 3645 3646 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3647 struct btf_field_info *info) 3648 { 3649 struct module *mod = NULL; 3650 const struct btf_type *t; 3651 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3652 * is that BTF, otherwise it's program BTF 3653 */ 3654 struct btf *kptr_btf; 3655 int ret; 3656 s32 id; 3657 3658 /* Find type in map BTF, and use it to look up the matching type 3659 * in vmlinux or module BTFs, by name and kind. 3660 */ 3661 t = btf_type_by_id(btf, info->kptr.type_id); 3662 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3663 &kptr_btf); 3664 if (id == -ENOENT) { 3665 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3666 WARN_ON_ONCE(btf_is_kernel(btf)); 3667 3668 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3669 * kptr allocated via bpf_obj_new 3670 */ 3671 field->kptr.dtor = NULL; 3672 id = info->kptr.type_id; 3673 kptr_btf = (struct btf *)btf; 3674 btf_get(kptr_btf); 3675 goto found_dtor; 3676 } 3677 if (id < 0) 3678 return id; 3679 3680 /* Find and stash the function pointer for the destruction function that 3681 * needs to be eventually invoked from the map free path. 3682 */ 3683 if (info->type == BPF_KPTR_REF) { 3684 const struct btf_type *dtor_func; 3685 const char *dtor_func_name; 3686 unsigned long addr; 3687 s32 dtor_btf_id; 3688 3689 /* This call also serves as a whitelist of allowed objects that 3690 * can be used as a referenced pointer and be stored in a map at 3691 * the same time. 3692 */ 3693 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3694 if (dtor_btf_id < 0) { 3695 ret = dtor_btf_id; 3696 goto end_btf; 3697 } 3698 3699 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3700 if (!dtor_func) { 3701 ret = -ENOENT; 3702 goto end_btf; 3703 } 3704 3705 if (btf_is_module(kptr_btf)) { 3706 mod = btf_try_get_module(kptr_btf); 3707 if (!mod) { 3708 ret = -ENXIO; 3709 goto end_btf; 3710 } 3711 } 3712 3713 /* We already verified dtor_func to be btf_type_is_func 3714 * in register_btf_id_dtor_kfuncs. 3715 */ 3716 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3717 addr = kallsyms_lookup_name(dtor_func_name); 3718 if (!addr) { 3719 ret = -EINVAL; 3720 goto end_mod; 3721 } 3722 field->kptr.dtor = (void *)addr; 3723 } 3724 3725 found_dtor: 3726 field->kptr.btf_id = id; 3727 field->kptr.btf = kptr_btf; 3728 field->kptr.module = mod; 3729 return 0; 3730 end_mod: 3731 module_put(mod); 3732 end_btf: 3733 btf_put(kptr_btf); 3734 return ret; 3735 } 3736 3737 static int btf_parse_graph_root(const struct btf *btf, 3738 struct btf_field *field, 3739 struct btf_field_info *info, 3740 const char *node_type_name, 3741 size_t node_type_align) 3742 { 3743 const struct btf_type *t, *n = NULL; 3744 const struct btf_member *member; 3745 u32 offset; 3746 int i; 3747 3748 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3749 /* We've already checked that value_btf_id is a struct type. We 3750 * just need to figure out the offset of the list_node, and 3751 * verify its type. 3752 */ 3753 for_each_member(i, t, member) { 3754 if (strcmp(info->graph_root.node_name, 3755 __btf_name_by_offset(btf, member->name_off))) 3756 continue; 3757 /* Invalid BTF, two members with same name */ 3758 if (n) 3759 return -EINVAL; 3760 n = btf_type_by_id(btf, member->type); 3761 if (!__btf_type_is_struct(n)) 3762 return -EINVAL; 3763 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3764 return -EINVAL; 3765 offset = __btf_member_bit_offset(n, member); 3766 if (offset % 8) 3767 return -EINVAL; 3768 offset /= 8; 3769 if (offset % node_type_align) 3770 return -EINVAL; 3771 3772 field->graph_root.btf = (struct btf *)btf; 3773 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3774 field->graph_root.node_offset = offset; 3775 } 3776 if (!n) 3777 return -ENOENT; 3778 return 0; 3779 } 3780 3781 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3782 struct btf_field_info *info) 3783 { 3784 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3785 __alignof__(struct bpf_list_node)); 3786 } 3787 3788 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3789 struct btf_field_info *info) 3790 { 3791 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3792 __alignof__(struct bpf_rb_node)); 3793 } 3794 3795 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3796 { 3797 const struct btf_field *a = (const struct btf_field *)_a; 3798 const struct btf_field *b = (const struct btf_field *)_b; 3799 3800 if (a->offset < b->offset) 3801 return -1; 3802 else if (a->offset > b->offset) 3803 return 1; 3804 return 0; 3805 } 3806 3807 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3808 u32 field_mask, u32 value_size) 3809 { 3810 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3811 u32 next_off = 0, field_type_size; 3812 struct btf_record *rec; 3813 int ret, i, cnt; 3814 3815 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3816 if (ret < 0) 3817 return ERR_PTR(ret); 3818 if (!ret) 3819 return NULL; 3820 3821 cnt = ret; 3822 /* This needs to be kzalloc to zero out padding and unused fields, see 3823 * comment in btf_record_equal. 3824 */ 3825 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3826 if (!rec) 3827 return ERR_PTR(-ENOMEM); 3828 3829 rec->spin_lock_off = -EINVAL; 3830 rec->timer_off = -EINVAL; 3831 rec->wq_off = -EINVAL; 3832 rec->refcount_off = -EINVAL; 3833 for (i = 0; i < cnt; i++) { 3834 field_type_size = btf_field_type_size(info_arr[i].type); 3835 if (info_arr[i].off + field_type_size > value_size) { 3836 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3837 ret = -EFAULT; 3838 goto end; 3839 } 3840 if (info_arr[i].off < next_off) { 3841 ret = -EEXIST; 3842 goto end; 3843 } 3844 next_off = info_arr[i].off + field_type_size; 3845 3846 rec->field_mask |= info_arr[i].type; 3847 rec->fields[i].offset = info_arr[i].off; 3848 rec->fields[i].type = info_arr[i].type; 3849 rec->fields[i].size = field_type_size; 3850 3851 switch (info_arr[i].type) { 3852 case BPF_SPIN_LOCK: 3853 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3854 /* Cache offset for faster lookup at runtime */ 3855 rec->spin_lock_off = rec->fields[i].offset; 3856 break; 3857 case BPF_TIMER: 3858 WARN_ON_ONCE(rec->timer_off >= 0); 3859 /* Cache offset for faster lookup at runtime */ 3860 rec->timer_off = rec->fields[i].offset; 3861 break; 3862 case BPF_WORKQUEUE: 3863 WARN_ON_ONCE(rec->wq_off >= 0); 3864 /* Cache offset for faster lookup at runtime */ 3865 rec->wq_off = rec->fields[i].offset; 3866 break; 3867 case BPF_REFCOUNT: 3868 WARN_ON_ONCE(rec->refcount_off >= 0); 3869 /* Cache offset for faster lookup at runtime */ 3870 rec->refcount_off = rec->fields[i].offset; 3871 break; 3872 case BPF_KPTR_UNREF: 3873 case BPF_KPTR_REF: 3874 case BPF_KPTR_PERCPU: 3875 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3876 if (ret < 0) 3877 goto end; 3878 break; 3879 case BPF_LIST_HEAD: 3880 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3881 if (ret < 0) 3882 goto end; 3883 break; 3884 case BPF_RB_ROOT: 3885 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3886 if (ret < 0) 3887 goto end; 3888 break; 3889 case BPF_LIST_NODE: 3890 case BPF_RB_NODE: 3891 break; 3892 default: 3893 ret = -EFAULT; 3894 goto end; 3895 } 3896 rec->cnt++; 3897 } 3898 3899 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3900 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3901 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3902 ret = -EINVAL; 3903 goto end; 3904 } 3905 3906 if (rec->refcount_off < 0 && 3907 btf_record_has_field(rec, BPF_LIST_NODE) && 3908 btf_record_has_field(rec, BPF_RB_NODE)) { 3909 ret = -EINVAL; 3910 goto end; 3911 } 3912 3913 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 3914 NULL, rec); 3915 3916 return rec; 3917 end: 3918 btf_record_free(rec); 3919 return ERR_PTR(ret); 3920 } 3921 3922 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3923 { 3924 int i; 3925 3926 /* There are three types that signify ownership of some other type: 3927 * kptr_ref, bpf_list_head, bpf_rb_root. 3928 * kptr_ref only supports storing kernel types, which can't store 3929 * references to program allocated local types. 3930 * 3931 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3932 * does not form cycles. 3933 */ 3934 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT)) 3935 return 0; 3936 for (i = 0; i < rec->cnt; i++) { 3937 struct btf_struct_meta *meta; 3938 u32 btf_id; 3939 3940 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 3941 continue; 3942 btf_id = rec->fields[i].graph_root.value_btf_id; 3943 meta = btf_find_struct_meta(btf, btf_id); 3944 if (!meta) 3945 return -EFAULT; 3946 rec->fields[i].graph_root.value_rec = meta->record; 3947 3948 /* We need to set value_rec for all root types, but no need 3949 * to check ownership cycle for a type unless it's also a 3950 * node type. 3951 */ 3952 if (!(rec->field_mask & BPF_GRAPH_NODE)) 3953 continue; 3954 3955 /* We need to ensure ownership acyclicity among all types. The 3956 * proper way to do it would be to topologically sort all BTF 3957 * IDs based on the ownership edges, since there can be multiple 3958 * bpf_{list_head,rb_node} in a type. Instead, we use the 3959 * following resaoning: 3960 * 3961 * - A type can only be owned by another type in user BTF if it 3962 * has a bpf_{list,rb}_node. Let's call these node types. 3963 * - A type can only _own_ another type in user BTF if it has a 3964 * bpf_{list_head,rb_root}. Let's call these root types. 3965 * 3966 * We ensure that if a type is both a root and node, its 3967 * element types cannot be root types. 3968 * 3969 * To ensure acyclicity: 3970 * 3971 * When A is an root type but not a node, its ownership 3972 * chain can be: 3973 * A -> B -> C 3974 * Where: 3975 * - A is an root, e.g. has bpf_rb_root. 3976 * - B is both a root and node, e.g. has bpf_rb_node and 3977 * bpf_list_head. 3978 * - C is only an root, e.g. has bpf_list_node 3979 * 3980 * When A is both a root and node, some other type already 3981 * owns it in the BTF domain, hence it can not own 3982 * another root type through any of the ownership edges. 3983 * A -> B 3984 * Where: 3985 * - A is both an root and node. 3986 * - B is only an node. 3987 */ 3988 if (meta->record->field_mask & BPF_GRAPH_ROOT) 3989 return -ELOOP; 3990 } 3991 return 0; 3992 } 3993 3994 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3995 u32 type_id, void *data, u8 bits_offset, 3996 struct btf_show *show) 3997 { 3998 const struct btf_member *member; 3999 void *safe_data; 4000 u32 i; 4001 4002 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4003 if (!safe_data) 4004 return; 4005 4006 for_each_member(i, t, member) { 4007 const struct btf_type *member_type = btf_type_by_id(btf, 4008 member->type); 4009 const struct btf_kind_operations *ops; 4010 u32 member_offset, bitfield_size; 4011 u32 bytes_offset; 4012 u8 bits8_offset; 4013 4014 btf_show_start_member(show, member); 4015 4016 member_offset = __btf_member_bit_offset(t, member); 4017 bitfield_size = __btf_member_bitfield_size(t, member); 4018 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4019 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4020 if (bitfield_size) { 4021 safe_data = btf_show_start_type(show, member_type, 4022 member->type, 4023 data + bytes_offset); 4024 if (safe_data) 4025 btf_bitfield_show(safe_data, 4026 bits8_offset, 4027 bitfield_size, show); 4028 btf_show_end_type(show); 4029 } else { 4030 ops = btf_type_ops(member_type); 4031 ops->show(btf, member_type, member->type, 4032 data + bytes_offset, bits8_offset, show); 4033 } 4034 4035 btf_show_end_member(show); 4036 } 4037 4038 btf_show_end_struct_type(show); 4039 } 4040 4041 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4042 u32 type_id, void *data, u8 bits_offset, 4043 struct btf_show *show) 4044 { 4045 const struct btf_member *m = show->state.member; 4046 4047 /* 4048 * First check if any members would be shown (are non-zero). 4049 * See comments above "struct btf_show" definition for more 4050 * details on how this works at a high-level. 4051 */ 4052 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4053 if (!show->state.depth_check) { 4054 show->state.depth_check = show->state.depth + 1; 4055 show->state.depth_to_show = 0; 4056 } 4057 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4058 /* Restore saved member data here */ 4059 show->state.member = m; 4060 if (show->state.depth_check != show->state.depth + 1) 4061 return; 4062 show->state.depth_check = 0; 4063 4064 if (show->state.depth_to_show <= show->state.depth) 4065 return; 4066 /* 4067 * Reaching here indicates we have recursed and found 4068 * non-zero child values. 4069 */ 4070 } 4071 4072 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4073 } 4074 4075 static struct btf_kind_operations struct_ops = { 4076 .check_meta = btf_struct_check_meta, 4077 .resolve = btf_struct_resolve, 4078 .check_member = btf_struct_check_member, 4079 .check_kflag_member = btf_generic_check_kflag_member, 4080 .log_details = btf_struct_log, 4081 .show = btf_struct_show, 4082 }; 4083 4084 static int btf_enum_check_member(struct btf_verifier_env *env, 4085 const struct btf_type *struct_type, 4086 const struct btf_member *member, 4087 const struct btf_type *member_type) 4088 { 4089 u32 struct_bits_off = member->offset; 4090 u32 struct_size, bytes_offset; 4091 4092 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4093 btf_verifier_log_member(env, struct_type, member, 4094 "Member is not byte aligned"); 4095 return -EINVAL; 4096 } 4097 4098 struct_size = struct_type->size; 4099 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4100 if (struct_size - bytes_offset < member_type->size) { 4101 btf_verifier_log_member(env, struct_type, member, 4102 "Member exceeds struct_size"); 4103 return -EINVAL; 4104 } 4105 4106 return 0; 4107 } 4108 4109 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4110 const struct btf_type *struct_type, 4111 const struct btf_member *member, 4112 const struct btf_type *member_type) 4113 { 4114 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4115 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4116 4117 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4118 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4119 if (!nr_bits) { 4120 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4121 btf_verifier_log_member(env, struct_type, member, 4122 "Member is not byte aligned"); 4123 return -EINVAL; 4124 } 4125 4126 nr_bits = int_bitsize; 4127 } else if (nr_bits > int_bitsize) { 4128 btf_verifier_log_member(env, struct_type, member, 4129 "Invalid member bitfield_size"); 4130 return -EINVAL; 4131 } 4132 4133 struct_size = struct_type->size; 4134 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4135 if (struct_size < bytes_end) { 4136 btf_verifier_log_member(env, struct_type, member, 4137 "Member exceeds struct_size"); 4138 return -EINVAL; 4139 } 4140 4141 return 0; 4142 } 4143 4144 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4145 const struct btf_type *t, 4146 u32 meta_left) 4147 { 4148 const struct btf_enum *enums = btf_type_enum(t); 4149 struct btf *btf = env->btf; 4150 const char *fmt_str; 4151 u16 i, nr_enums; 4152 u32 meta_needed; 4153 4154 nr_enums = btf_type_vlen(t); 4155 meta_needed = nr_enums * sizeof(*enums); 4156 4157 if (meta_left < meta_needed) { 4158 btf_verifier_log_basic(env, t, 4159 "meta_left:%u meta_needed:%u", 4160 meta_left, meta_needed); 4161 return -EINVAL; 4162 } 4163 4164 if (t->size > 8 || !is_power_of_2(t->size)) { 4165 btf_verifier_log_type(env, t, "Unexpected size"); 4166 return -EINVAL; 4167 } 4168 4169 /* enum type either no name or a valid one */ 4170 if (t->name_off && 4171 !btf_name_valid_identifier(env->btf, t->name_off)) { 4172 btf_verifier_log_type(env, t, "Invalid name"); 4173 return -EINVAL; 4174 } 4175 4176 btf_verifier_log_type(env, t, NULL); 4177 4178 for (i = 0; i < nr_enums; i++) { 4179 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4180 btf_verifier_log(env, "\tInvalid name_offset:%u", 4181 enums[i].name_off); 4182 return -EINVAL; 4183 } 4184 4185 /* enum member must have a valid name */ 4186 if (!enums[i].name_off || 4187 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4188 btf_verifier_log_type(env, t, "Invalid name"); 4189 return -EINVAL; 4190 } 4191 4192 if (env->log.level == BPF_LOG_KERNEL) 4193 continue; 4194 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4195 btf_verifier_log(env, fmt_str, 4196 __btf_name_by_offset(btf, enums[i].name_off), 4197 enums[i].val); 4198 } 4199 4200 return meta_needed; 4201 } 4202 4203 static void btf_enum_log(struct btf_verifier_env *env, 4204 const struct btf_type *t) 4205 { 4206 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4207 } 4208 4209 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4210 u32 type_id, void *data, u8 bits_offset, 4211 struct btf_show *show) 4212 { 4213 const struct btf_enum *enums = btf_type_enum(t); 4214 u32 i, nr_enums = btf_type_vlen(t); 4215 void *safe_data; 4216 int v; 4217 4218 safe_data = btf_show_start_type(show, t, type_id, data); 4219 if (!safe_data) 4220 return; 4221 4222 v = *(int *)safe_data; 4223 4224 for (i = 0; i < nr_enums; i++) { 4225 if (v != enums[i].val) 4226 continue; 4227 4228 btf_show_type_value(show, "%s", 4229 __btf_name_by_offset(btf, 4230 enums[i].name_off)); 4231 4232 btf_show_end_type(show); 4233 return; 4234 } 4235 4236 if (btf_type_kflag(t)) 4237 btf_show_type_value(show, "%d", v); 4238 else 4239 btf_show_type_value(show, "%u", v); 4240 btf_show_end_type(show); 4241 } 4242 4243 static struct btf_kind_operations enum_ops = { 4244 .check_meta = btf_enum_check_meta, 4245 .resolve = btf_df_resolve, 4246 .check_member = btf_enum_check_member, 4247 .check_kflag_member = btf_enum_check_kflag_member, 4248 .log_details = btf_enum_log, 4249 .show = btf_enum_show, 4250 }; 4251 4252 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4253 const struct btf_type *t, 4254 u32 meta_left) 4255 { 4256 const struct btf_enum64 *enums = btf_type_enum64(t); 4257 struct btf *btf = env->btf; 4258 const char *fmt_str; 4259 u16 i, nr_enums; 4260 u32 meta_needed; 4261 4262 nr_enums = btf_type_vlen(t); 4263 meta_needed = nr_enums * sizeof(*enums); 4264 4265 if (meta_left < meta_needed) { 4266 btf_verifier_log_basic(env, t, 4267 "meta_left:%u meta_needed:%u", 4268 meta_left, meta_needed); 4269 return -EINVAL; 4270 } 4271 4272 if (t->size > 8 || !is_power_of_2(t->size)) { 4273 btf_verifier_log_type(env, t, "Unexpected size"); 4274 return -EINVAL; 4275 } 4276 4277 /* enum type either no name or a valid one */ 4278 if (t->name_off && 4279 !btf_name_valid_identifier(env->btf, t->name_off)) { 4280 btf_verifier_log_type(env, t, "Invalid name"); 4281 return -EINVAL; 4282 } 4283 4284 btf_verifier_log_type(env, t, NULL); 4285 4286 for (i = 0; i < nr_enums; i++) { 4287 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4288 btf_verifier_log(env, "\tInvalid name_offset:%u", 4289 enums[i].name_off); 4290 return -EINVAL; 4291 } 4292 4293 /* enum member must have a valid name */ 4294 if (!enums[i].name_off || 4295 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4296 btf_verifier_log_type(env, t, "Invalid name"); 4297 return -EINVAL; 4298 } 4299 4300 if (env->log.level == BPF_LOG_KERNEL) 4301 continue; 4302 4303 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4304 btf_verifier_log(env, fmt_str, 4305 __btf_name_by_offset(btf, enums[i].name_off), 4306 btf_enum64_value(enums + i)); 4307 } 4308 4309 return meta_needed; 4310 } 4311 4312 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4313 u32 type_id, void *data, u8 bits_offset, 4314 struct btf_show *show) 4315 { 4316 const struct btf_enum64 *enums = btf_type_enum64(t); 4317 u32 i, nr_enums = btf_type_vlen(t); 4318 void *safe_data; 4319 s64 v; 4320 4321 safe_data = btf_show_start_type(show, t, type_id, data); 4322 if (!safe_data) 4323 return; 4324 4325 v = *(u64 *)safe_data; 4326 4327 for (i = 0; i < nr_enums; i++) { 4328 if (v != btf_enum64_value(enums + i)) 4329 continue; 4330 4331 btf_show_type_value(show, "%s", 4332 __btf_name_by_offset(btf, 4333 enums[i].name_off)); 4334 4335 btf_show_end_type(show); 4336 return; 4337 } 4338 4339 if (btf_type_kflag(t)) 4340 btf_show_type_value(show, "%lld", v); 4341 else 4342 btf_show_type_value(show, "%llu", v); 4343 btf_show_end_type(show); 4344 } 4345 4346 static struct btf_kind_operations enum64_ops = { 4347 .check_meta = btf_enum64_check_meta, 4348 .resolve = btf_df_resolve, 4349 .check_member = btf_enum_check_member, 4350 .check_kflag_member = btf_enum_check_kflag_member, 4351 .log_details = btf_enum_log, 4352 .show = btf_enum64_show, 4353 }; 4354 4355 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4356 const struct btf_type *t, 4357 u32 meta_left) 4358 { 4359 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4360 4361 if (meta_left < meta_needed) { 4362 btf_verifier_log_basic(env, t, 4363 "meta_left:%u meta_needed:%u", 4364 meta_left, meta_needed); 4365 return -EINVAL; 4366 } 4367 4368 if (t->name_off) { 4369 btf_verifier_log_type(env, t, "Invalid name"); 4370 return -EINVAL; 4371 } 4372 4373 if (btf_type_kflag(t)) { 4374 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4375 return -EINVAL; 4376 } 4377 4378 btf_verifier_log_type(env, t, NULL); 4379 4380 return meta_needed; 4381 } 4382 4383 static void btf_func_proto_log(struct btf_verifier_env *env, 4384 const struct btf_type *t) 4385 { 4386 const struct btf_param *args = (const struct btf_param *)(t + 1); 4387 u16 nr_args = btf_type_vlen(t), i; 4388 4389 btf_verifier_log(env, "return=%u args=(", t->type); 4390 if (!nr_args) { 4391 btf_verifier_log(env, "void"); 4392 goto done; 4393 } 4394 4395 if (nr_args == 1 && !args[0].type) { 4396 /* Only one vararg */ 4397 btf_verifier_log(env, "vararg"); 4398 goto done; 4399 } 4400 4401 btf_verifier_log(env, "%u %s", args[0].type, 4402 __btf_name_by_offset(env->btf, 4403 args[0].name_off)); 4404 for (i = 1; i < nr_args - 1; i++) 4405 btf_verifier_log(env, ", %u %s", args[i].type, 4406 __btf_name_by_offset(env->btf, 4407 args[i].name_off)); 4408 4409 if (nr_args > 1) { 4410 const struct btf_param *last_arg = &args[nr_args - 1]; 4411 4412 if (last_arg->type) 4413 btf_verifier_log(env, ", %u %s", last_arg->type, 4414 __btf_name_by_offset(env->btf, 4415 last_arg->name_off)); 4416 else 4417 btf_verifier_log(env, ", vararg"); 4418 } 4419 4420 done: 4421 btf_verifier_log(env, ")"); 4422 } 4423 4424 static struct btf_kind_operations func_proto_ops = { 4425 .check_meta = btf_func_proto_check_meta, 4426 .resolve = btf_df_resolve, 4427 /* 4428 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4429 * a struct's member. 4430 * 4431 * It should be a function pointer instead. 4432 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4433 * 4434 * Hence, there is no btf_func_check_member(). 4435 */ 4436 .check_member = btf_df_check_member, 4437 .check_kflag_member = btf_df_check_kflag_member, 4438 .log_details = btf_func_proto_log, 4439 .show = btf_df_show, 4440 }; 4441 4442 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4443 const struct btf_type *t, 4444 u32 meta_left) 4445 { 4446 if (!t->name_off || 4447 !btf_name_valid_identifier(env->btf, t->name_off)) { 4448 btf_verifier_log_type(env, t, "Invalid name"); 4449 return -EINVAL; 4450 } 4451 4452 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4453 btf_verifier_log_type(env, t, "Invalid func linkage"); 4454 return -EINVAL; 4455 } 4456 4457 if (btf_type_kflag(t)) { 4458 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4459 return -EINVAL; 4460 } 4461 4462 btf_verifier_log_type(env, t, NULL); 4463 4464 return 0; 4465 } 4466 4467 static int btf_func_resolve(struct btf_verifier_env *env, 4468 const struct resolve_vertex *v) 4469 { 4470 const struct btf_type *t = v->t; 4471 u32 next_type_id = t->type; 4472 int err; 4473 4474 err = btf_func_check(env, t); 4475 if (err) 4476 return err; 4477 4478 env_stack_pop_resolved(env, next_type_id, 0); 4479 return 0; 4480 } 4481 4482 static struct btf_kind_operations func_ops = { 4483 .check_meta = btf_func_check_meta, 4484 .resolve = btf_func_resolve, 4485 .check_member = btf_df_check_member, 4486 .check_kflag_member = btf_df_check_kflag_member, 4487 .log_details = btf_ref_type_log, 4488 .show = btf_df_show, 4489 }; 4490 4491 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4492 const struct btf_type *t, 4493 u32 meta_left) 4494 { 4495 const struct btf_var *var; 4496 u32 meta_needed = sizeof(*var); 4497 4498 if (meta_left < meta_needed) { 4499 btf_verifier_log_basic(env, t, 4500 "meta_left:%u meta_needed:%u", 4501 meta_left, meta_needed); 4502 return -EINVAL; 4503 } 4504 4505 if (btf_type_vlen(t)) { 4506 btf_verifier_log_type(env, t, "vlen != 0"); 4507 return -EINVAL; 4508 } 4509 4510 if (btf_type_kflag(t)) { 4511 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4512 return -EINVAL; 4513 } 4514 4515 if (!t->name_off || 4516 !__btf_name_valid(env->btf, t->name_off)) { 4517 btf_verifier_log_type(env, t, "Invalid name"); 4518 return -EINVAL; 4519 } 4520 4521 /* A var cannot be in type void */ 4522 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4523 btf_verifier_log_type(env, t, "Invalid type_id"); 4524 return -EINVAL; 4525 } 4526 4527 var = btf_type_var(t); 4528 if (var->linkage != BTF_VAR_STATIC && 4529 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4530 btf_verifier_log_type(env, t, "Linkage not supported"); 4531 return -EINVAL; 4532 } 4533 4534 btf_verifier_log_type(env, t, NULL); 4535 4536 return meta_needed; 4537 } 4538 4539 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4540 { 4541 const struct btf_var *var = btf_type_var(t); 4542 4543 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4544 } 4545 4546 static const struct btf_kind_operations var_ops = { 4547 .check_meta = btf_var_check_meta, 4548 .resolve = btf_var_resolve, 4549 .check_member = btf_df_check_member, 4550 .check_kflag_member = btf_df_check_kflag_member, 4551 .log_details = btf_var_log, 4552 .show = btf_var_show, 4553 }; 4554 4555 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4556 const struct btf_type *t, 4557 u32 meta_left) 4558 { 4559 const struct btf_var_secinfo *vsi; 4560 u64 last_vsi_end_off = 0, sum = 0; 4561 u32 i, meta_needed; 4562 4563 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4564 if (meta_left < meta_needed) { 4565 btf_verifier_log_basic(env, t, 4566 "meta_left:%u meta_needed:%u", 4567 meta_left, meta_needed); 4568 return -EINVAL; 4569 } 4570 4571 if (!t->size) { 4572 btf_verifier_log_type(env, t, "size == 0"); 4573 return -EINVAL; 4574 } 4575 4576 if (btf_type_kflag(t)) { 4577 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4578 return -EINVAL; 4579 } 4580 4581 if (!t->name_off || 4582 !btf_name_valid_section(env->btf, t->name_off)) { 4583 btf_verifier_log_type(env, t, "Invalid name"); 4584 return -EINVAL; 4585 } 4586 4587 btf_verifier_log_type(env, t, NULL); 4588 4589 for_each_vsi(i, t, vsi) { 4590 /* A var cannot be in type void */ 4591 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4592 btf_verifier_log_vsi(env, t, vsi, 4593 "Invalid type_id"); 4594 return -EINVAL; 4595 } 4596 4597 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4598 btf_verifier_log_vsi(env, t, vsi, 4599 "Invalid offset"); 4600 return -EINVAL; 4601 } 4602 4603 if (!vsi->size || vsi->size > t->size) { 4604 btf_verifier_log_vsi(env, t, vsi, 4605 "Invalid size"); 4606 return -EINVAL; 4607 } 4608 4609 last_vsi_end_off = vsi->offset + vsi->size; 4610 if (last_vsi_end_off > t->size) { 4611 btf_verifier_log_vsi(env, t, vsi, 4612 "Invalid offset+size"); 4613 return -EINVAL; 4614 } 4615 4616 btf_verifier_log_vsi(env, t, vsi, NULL); 4617 sum += vsi->size; 4618 } 4619 4620 if (t->size < sum) { 4621 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4622 return -EINVAL; 4623 } 4624 4625 return meta_needed; 4626 } 4627 4628 static int btf_datasec_resolve(struct btf_verifier_env *env, 4629 const struct resolve_vertex *v) 4630 { 4631 const struct btf_var_secinfo *vsi; 4632 struct btf *btf = env->btf; 4633 u16 i; 4634 4635 env->resolve_mode = RESOLVE_TBD; 4636 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4637 u32 var_type_id = vsi->type, type_id, type_size = 0; 4638 const struct btf_type *var_type = btf_type_by_id(env->btf, 4639 var_type_id); 4640 if (!var_type || !btf_type_is_var(var_type)) { 4641 btf_verifier_log_vsi(env, v->t, vsi, 4642 "Not a VAR kind member"); 4643 return -EINVAL; 4644 } 4645 4646 if (!env_type_is_resolve_sink(env, var_type) && 4647 !env_type_is_resolved(env, var_type_id)) { 4648 env_stack_set_next_member(env, i + 1); 4649 return env_stack_push(env, var_type, var_type_id); 4650 } 4651 4652 type_id = var_type->type; 4653 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4654 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4655 return -EINVAL; 4656 } 4657 4658 if (vsi->size < type_size) { 4659 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4660 return -EINVAL; 4661 } 4662 } 4663 4664 env_stack_pop_resolved(env, 0, 0); 4665 return 0; 4666 } 4667 4668 static void btf_datasec_log(struct btf_verifier_env *env, 4669 const struct btf_type *t) 4670 { 4671 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4672 } 4673 4674 static void btf_datasec_show(const struct btf *btf, 4675 const struct btf_type *t, u32 type_id, 4676 void *data, u8 bits_offset, 4677 struct btf_show *show) 4678 { 4679 const struct btf_var_secinfo *vsi; 4680 const struct btf_type *var; 4681 u32 i; 4682 4683 if (!btf_show_start_type(show, t, type_id, data)) 4684 return; 4685 4686 btf_show_type_value(show, "section (\"%s\") = {", 4687 __btf_name_by_offset(btf, t->name_off)); 4688 for_each_vsi(i, t, vsi) { 4689 var = btf_type_by_id(btf, vsi->type); 4690 if (i) 4691 btf_show(show, ","); 4692 btf_type_ops(var)->show(btf, var, vsi->type, 4693 data + vsi->offset, bits_offset, show); 4694 } 4695 btf_show_end_type(show); 4696 } 4697 4698 static const struct btf_kind_operations datasec_ops = { 4699 .check_meta = btf_datasec_check_meta, 4700 .resolve = btf_datasec_resolve, 4701 .check_member = btf_df_check_member, 4702 .check_kflag_member = btf_df_check_kflag_member, 4703 .log_details = btf_datasec_log, 4704 .show = btf_datasec_show, 4705 }; 4706 4707 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4708 const struct btf_type *t, 4709 u32 meta_left) 4710 { 4711 if (btf_type_vlen(t)) { 4712 btf_verifier_log_type(env, t, "vlen != 0"); 4713 return -EINVAL; 4714 } 4715 4716 if (btf_type_kflag(t)) { 4717 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4718 return -EINVAL; 4719 } 4720 4721 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4722 t->size != 16) { 4723 btf_verifier_log_type(env, t, "Invalid type_size"); 4724 return -EINVAL; 4725 } 4726 4727 btf_verifier_log_type(env, t, NULL); 4728 4729 return 0; 4730 } 4731 4732 static int btf_float_check_member(struct btf_verifier_env *env, 4733 const struct btf_type *struct_type, 4734 const struct btf_member *member, 4735 const struct btf_type *member_type) 4736 { 4737 u64 start_offset_bytes; 4738 u64 end_offset_bytes; 4739 u64 misalign_bits; 4740 u64 align_bytes; 4741 u64 align_bits; 4742 4743 /* Different architectures have different alignment requirements, so 4744 * here we check only for the reasonable minimum. This way we ensure 4745 * that types after CO-RE can pass the kernel BTF verifier. 4746 */ 4747 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4748 align_bits = align_bytes * BITS_PER_BYTE; 4749 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4750 if (misalign_bits) { 4751 btf_verifier_log_member(env, struct_type, member, 4752 "Member is not properly aligned"); 4753 return -EINVAL; 4754 } 4755 4756 start_offset_bytes = member->offset / BITS_PER_BYTE; 4757 end_offset_bytes = start_offset_bytes + member_type->size; 4758 if (end_offset_bytes > struct_type->size) { 4759 btf_verifier_log_member(env, struct_type, member, 4760 "Member exceeds struct_size"); 4761 return -EINVAL; 4762 } 4763 4764 return 0; 4765 } 4766 4767 static void btf_float_log(struct btf_verifier_env *env, 4768 const struct btf_type *t) 4769 { 4770 btf_verifier_log(env, "size=%u", t->size); 4771 } 4772 4773 static const struct btf_kind_operations float_ops = { 4774 .check_meta = btf_float_check_meta, 4775 .resolve = btf_df_resolve, 4776 .check_member = btf_float_check_member, 4777 .check_kflag_member = btf_generic_check_kflag_member, 4778 .log_details = btf_float_log, 4779 .show = btf_df_show, 4780 }; 4781 4782 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4783 const struct btf_type *t, 4784 u32 meta_left) 4785 { 4786 const struct btf_decl_tag *tag; 4787 u32 meta_needed = sizeof(*tag); 4788 s32 component_idx; 4789 const char *value; 4790 4791 if (meta_left < meta_needed) { 4792 btf_verifier_log_basic(env, t, 4793 "meta_left:%u meta_needed:%u", 4794 meta_left, meta_needed); 4795 return -EINVAL; 4796 } 4797 4798 value = btf_name_by_offset(env->btf, t->name_off); 4799 if (!value || !value[0]) { 4800 btf_verifier_log_type(env, t, "Invalid value"); 4801 return -EINVAL; 4802 } 4803 4804 if (btf_type_vlen(t)) { 4805 btf_verifier_log_type(env, t, "vlen != 0"); 4806 return -EINVAL; 4807 } 4808 4809 if (btf_type_kflag(t)) { 4810 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4811 return -EINVAL; 4812 } 4813 4814 component_idx = btf_type_decl_tag(t)->component_idx; 4815 if (component_idx < -1) { 4816 btf_verifier_log_type(env, t, "Invalid component_idx"); 4817 return -EINVAL; 4818 } 4819 4820 btf_verifier_log_type(env, t, NULL); 4821 4822 return meta_needed; 4823 } 4824 4825 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4826 const struct resolve_vertex *v) 4827 { 4828 const struct btf_type *next_type; 4829 const struct btf_type *t = v->t; 4830 u32 next_type_id = t->type; 4831 struct btf *btf = env->btf; 4832 s32 component_idx; 4833 u32 vlen; 4834 4835 next_type = btf_type_by_id(btf, next_type_id); 4836 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4837 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4838 return -EINVAL; 4839 } 4840 4841 if (!env_type_is_resolve_sink(env, next_type) && 4842 !env_type_is_resolved(env, next_type_id)) 4843 return env_stack_push(env, next_type, next_type_id); 4844 4845 component_idx = btf_type_decl_tag(t)->component_idx; 4846 if (component_idx != -1) { 4847 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4848 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4849 return -EINVAL; 4850 } 4851 4852 if (btf_type_is_struct(next_type)) { 4853 vlen = btf_type_vlen(next_type); 4854 } else { 4855 /* next_type should be a function */ 4856 next_type = btf_type_by_id(btf, next_type->type); 4857 vlen = btf_type_vlen(next_type); 4858 } 4859 4860 if ((u32)component_idx >= vlen) { 4861 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4862 return -EINVAL; 4863 } 4864 } 4865 4866 env_stack_pop_resolved(env, next_type_id, 0); 4867 4868 return 0; 4869 } 4870 4871 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4872 { 4873 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4874 btf_type_decl_tag(t)->component_idx); 4875 } 4876 4877 static const struct btf_kind_operations decl_tag_ops = { 4878 .check_meta = btf_decl_tag_check_meta, 4879 .resolve = btf_decl_tag_resolve, 4880 .check_member = btf_df_check_member, 4881 .check_kflag_member = btf_df_check_kflag_member, 4882 .log_details = btf_decl_tag_log, 4883 .show = btf_df_show, 4884 }; 4885 4886 static int btf_func_proto_check(struct btf_verifier_env *env, 4887 const struct btf_type *t) 4888 { 4889 const struct btf_type *ret_type; 4890 const struct btf_param *args; 4891 const struct btf *btf; 4892 u16 nr_args, i; 4893 int err; 4894 4895 btf = env->btf; 4896 args = (const struct btf_param *)(t + 1); 4897 nr_args = btf_type_vlen(t); 4898 4899 /* Check func return type which could be "void" (t->type == 0) */ 4900 if (t->type) { 4901 u32 ret_type_id = t->type; 4902 4903 ret_type = btf_type_by_id(btf, ret_type_id); 4904 if (!ret_type) { 4905 btf_verifier_log_type(env, t, "Invalid return type"); 4906 return -EINVAL; 4907 } 4908 4909 if (btf_type_is_resolve_source_only(ret_type)) { 4910 btf_verifier_log_type(env, t, "Invalid return type"); 4911 return -EINVAL; 4912 } 4913 4914 if (btf_type_needs_resolve(ret_type) && 4915 !env_type_is_resolved(env, ret_type_id)) { 4916 err = btf_resolve(env, ret_type, ret_type_id); 4917 if (err) 4918 return err; 4919 } 4920 4921 /* Ensure the return type is a type that has a size */ 4922 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4923 btf_verifier_log_type(env, t, "Invalid return type"); 4924 return -EINVAL; 4925 } 4926 } 4927 4928 if (!nr_args) 4929 return 0; 4930 4931 /* Last func arg type_id could be 0 if it is a vararg */ 4932 if (!args[nr_args - 1].type) { 4933 if (args[nr_args - 1].name_off) { 4934 btf_verifier_log_type(env, t, "Invalid arg#%u", 4935 nr_args); 4936 return -EINVAL; 4937 } 4938 nr_args--; 4939 } 4940 4941 for (i = 0; i < nr_args; i++) { 4942 const struct btf_type *arg_type; 4943 u32 arg_type_id; 4944 4945 arg_type_id = args[i].type; 4946 arg_type = btf_type_by_id(btf, arg_type_id); 4947 if (!arg_type) { 4948 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4949 return -EINVAL; 4950 } 4951 4952 if (btf_type_is_resolve_source_only(arg_type)) { 4953 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4954 return -EINVAL; 4955 } 4956 4957 if (args[i].name_off && 4958 (!btf_name_offset_valid(btf, args[i].name_off) || 4959 !btf_name_valid_identifier(btf, args[i].name_off))) { 4960 btf_verifier_log_type(env, t, 4961 "Invalid arg#%u", i + 1); 4962 return -EINVAL; 4963 } 4964 4965 if (btf_type_needs_resolve(arg_type) && 4966 !env_type_is_resolved(env, arg_type_id)) { 4967 err = btf_resolve(env, arg_type, arg_type_id); 4968 if (err) 4969 return err; 4970 } 4971 4972 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4973 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4974 return -EINVAL; 4975 } 4976 } 4977 4978 return 0; 4979 } 4980 4981 static int btf_func_check(struct btf_verifier_env *env, 4982 const struct btf_type *t) 4983 { 4984 const struct btf_type *proto_type; 4985 const struct btf_param *args; 4986 const struct btf *btf; 4987 u16 nr_args, i; 4988 4989 btf = env->btf; 4990 proto_type = btf_type_by_id(btf, t->type); 4991 4992 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4993 btf_verifier_log_type(env, t, "Invalid type_id"); 4994 return -EINVAL; 4995 } 4996 4997 args = (const struct btf_param *)(proto_type + 1); 4998 nr_args = btf_type_vlen(proto_type); 4999 for (i = 0; i < nr_args; i++) { 5000 if (!args[i].name_off && args[i].type) { 5001 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5002 return -EINVAL; 5003 } 5004 } 5005 5006 return 0; 5007 } 5008 5009 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5010 [BTF_KIND_INT] = &int_ops, 5011 [BTF_KIND_PTR] = &ptr_ops, 5012 [BTF_KIND_ARRAY] = &array_ops, 5013 [BTF_KIND_STRUCT] = &struct_ops, 5014 [BTF_KIND_UNION] = &struct_ops, 5015 [BTF_KIND_ENUM] = &enum_ops, 5016 [BTF_KIND_FWD] = &fwd_ops, 5017 [BTF_KIND_TYPEDEF] = &modifier_ops, 5018 [BTF_KIND_VOLATILE] = &modifier_ops, 5019 [BTF_KIND_CONST] = &modifier_ops, 5020 [BTF_KIND_RESTRICT] = &modifier_ops, 5021 [BTF_KIND_FUNC] = &func_ops, 5022 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5023 [BTF_KIND_VAR] = &var_ops, 5024 [BTF_KIND_DATASEC] = &datasec_ops, 5025 [BTF_KIND_FLOAT] = &float_ops, 5026 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5027 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5028 [BTF_KIND_ENUM64] = &enum64_ops, 5029 }; 5030 5031 static s32 btf_check_meta(struct btf_verifier_env *env, 5032 const struct btf_type *t, 5033 u32 meta_left) 5034 { 5035 u32 saved_meta_left = meta_left; 5036 s32 var_meta_size; 5037 5038 if (meta_left < sizeof(*t)) { 5039 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5040 env->log_type_id, meta_left, sizeof(*t)); 5041 return -EINVAL; 5042 } 5043 meta_left -= sizeof(*t); 5044 5045 if (t->info & ~BTF_INFO_MASK) { 5046 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5047 env->log_type_id, t->info); 5048 return -EINVAL; 5049 } 5050 5051 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5052 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5053 btf_verifier_log(env, "[%u] Invalid kind:%u", 5054 env->log_type_id, BTF_INFO_KIND(t->info)); 5055 return -EINVAL; 5056 } 5057 5058 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5059 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5060 env->log_type_id, t->name_off); 5061 return -EINVAL; 5062 } 5063 5064 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5065 if (var_meta_size < 0) 5066 return var_meta_size; 5067 5068 meta_left -= var_meta_size; 5069 5070 return saved_meta_left - meta_left; 5071 } 5072 5073 static int btf_check_all_metas(struct btf_verifier_env *env) 5074 { 5075 struct btf *btf = env->btf; 5076 struct btf_header *hdr; 5077 void *cur, *end; 5078 5079 hdr = &btf->hdr; 5080 cur = btf->nohdr_data + hdr->type_off; 5081 end = cur + hdr->type_len; 5082 5083 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5084 while (cur < end) { 5085 struct btf_type *t = cur; 5086 s32 meta_size; 5087 5088 meta_size = btf_check_meta(env, t, end - cur); 5089 if (meta_size < 0) 5090 return meta_size; 5091 5092 btf_add_type(env, t); 5093 cur += meta_size; 5094 env->log_type_id++; 5095 } 5096 5097 return 0; 5098 } 5099 5100 static bool btf_resolve_valid(struct btf_verifier_env *env, 5101 const struct btf_type *t, 5102 u32 type_id) 5103 { 5104 struct btf *btf = env->btf; 5105 5106 if (!env_type_is_resolved(env, type_id)) 5107 return false; 5108 5109 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5110 return !btf_resolved_type_id(btf, type_id) && 5111 !btf_resolved_type_size(btf, type_id); 5112 5113 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5114 return btf_resolved_type_id(btf, type_id) && 5115 !btf_resolved_type_size(btf, type_id); 5116 5117 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5118 btf_type_is_var(t)) { 5119 t = btf_type_id_resolve(btf, &type_id); 5120 return t && 5121 !btf_type_is_modifier(t) && 5122 !btf_type_is_var(t) && 5123 !btf_type_is_datasec(t); 5124 } 5125 5126 if (btf_type_is_array(t)) { 5127 const struct btf_array *array = btf_type_array(t); 5128 const struct btf_type *elem_type; 5129 u32 elem_type_id = array->type; 5130 u32 elem_size; 5131 5132 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5133 return elem_type && !btf_type_is_modifier(elem_type) && 5134 (array->nelems * elem_size == 5135 btf_resolved_type_size(btf, type_id)); 5136 } 5137 5138 return false; 5139 } 5140 5141 static int btf_resolve(struct btf_verifier_env *env, 5142 const struct btf_type *t, u32 type_id) 5143 { 5144 u32 save_log_type_id = env->log_type_id; 5145 const struct resolve_vertex *v; 5146 int err = 0; 5147 5148 env->resolve_mode = RESOLVE_TBD; 5149 env_stack_push(env, t, type_id); 5150 while (!err && (v = env_stack_peak(env))) { 5151 env->log_type_id = v->type_id; 5152 err = btf_type_ops(v->t)->resolve(env, v); 5153 } 5154 5155 env->log_type_id = type_id; 5156 if (err == -E2BIG) { 5157 btf_verifier_log_type(env, t, 5158 "Exceeded max resolving depth:%u", 5159 MAX_RESOLVE_DEPTH); 5160 } else if (err == -EEXIST) { 5161 btf_verifier_log_type(env, t, "Loop detected"); 5162 } 5163 5164 /* Final sanity check */ 5165 if (!err && !btf_resolve_valid(env, t, type_id)) { 5166 btf_verifier_log_type(env, t, "Invalid resolve state"); 5167 err = -EINVAL; 5168 } 5169 5170 env->log_type_id = save_log_type_id; 5171 return err; 5172 } 5173 5174 static int btf_check_all_types(struct btf_verifier_env *env) 5175 { 5176 struct btf *btf = env->btf; 5177 const struct btf_type *t; 5178 u32 type_id, i; 5179 int err; 5180 5181 err = env_resolve_init(env); 5182 if (err) 5183 return err; 5184 5185 env->phase++; 5186 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5187 type_id = btf->start_id + i; 5188 t = btf_type_by_id(btf, type_id); 5189 5190 env->log_type_id = type_id; 5191 if (btf_type_needs_resolve(t) && 5192 !env_type_is_resolved(env, type_id)) { 5193 err = btf_resolve(env, t, type_id); 5194 if (err) 5195 return err; 5196 } 5197 5198 if (btf_type_is_func_proto(t)) { 5199 err = btf_func_proto_check(env, t); 5200 if (err) 5201 return err; 5202 } 5203 } 5204 5205 return 0; 5206 } 5207 5208 static int btf_parse_type_sec(struct btf_verifier_env *env) 5209 { 5210 const struct btf_header *hdr = &env->btf->hdr; 5211 int err; 5212 5213 /* Type section must align to 4 bytes */ 5214 if (hdr->type_off & (sizeof(u32) - 1)) { 5215 btf_verifier_log(env, "Unaligned type_off"); 5216 return -EINVAL; 5217 } 5218 5219 if (!env->btf->base_btf && !hdr->type_len) { 5220 btf_verifier_log(env, "No type found"); 5221 return -EINVAL; 5222 } 5223 5224 err = btf_check_all_metas(env); 5225 if (err) 5226 return err; 5227 5228 return btf_check_all_types(env); 5229 } 5230 5231 static int btf_parse_str_sec(struct btf_verifier_env *env) 5232 { 5233 const struct btf_header *hdr; 5234 struct btf *btf = env->btf; 5235 const char *start, *end; 5236 5237 hdr = &btf->hdr; 5238 start = btf->nohdr_data + hdr->str_off; 5239 end = start + hdr->str_len; 5240 5241 if (end != btf->data + btf->data_size) { 5242 btf_verifier_log(env, "String section is not at the end"); 5243 return -EINVAL; 5244 } 5245 5246 btf->strings = start; 5247 5248 if (btf->base_btf && !hdr->str_len) 5249 return 0; 5250 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5251 btf_verifier_log(env, "Invalid string section"); 5252 return -EINVAL; 5253 } 5254 if (!btf->base_btf && start[0]) { 5255 btf_verifier_log(env, "Invalid string section"); 5256 return -EINVAL; 5257 } 5258 5259 return 0; 5260 } 5261 5262 static const size_t btf_sec_info_offset[] = { 5263 offsetof(struct btf_header, type_off), 5264 offsetof(struct btf_header, str_off), 5265 }; 5266 5267 static int btf_sec_info_cmp(const void *a, const void *b) 5268 { 5269 const struct btf_sec_info *x = a; 5270 const struct btf_sec_info *y = b; 5271 5272 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5273 } 5274 5275 static int btf_check_sec_info(struct btf_verifier_env *env, 5276 u32 btf_data_size) 5277 { 5278 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5279 u32 total, expected_total, i; 5280 const struct btf_header *hdr; 5281 const struct btf *btf; 5282 5283 btf = env->btf; 5284 hdr = &btf->hdr; 5285 5286 /* Populate the secs from hdr */ 5287 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5288 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5289 btf_sec_info_offset[i]); 5290 5291 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5292 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5293 5294 /* Check for gaps and overlap among sections */ 5295 total = 0; 5296 expected_total = btf_data_size - hdr->hdr_len; 5297 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5298 if (expected_total < secs[i].off) { 5299 btf_verifier_log(env, "Invalid section offset"); 5300 return -EINVAL; 5301 } 5302 if (total < secs[i].off) { 5303 /* gap */ 5304 btf_verifier_log(env, "Unsupported section found"); 5305 return -EINVAL; 5306 } 5307 if (total > secs[i].off) { 5308 btf_verifier_log(env, "Section overlap found"); 5309 return -EINVAL; 5310 } 5311 if (expected_total - total < secs[i].len) { 5312 btf_verifier_log(env, 5313 "Total section length too long"); 5314 return -EINVAL; 5315 } 5316 total += secs[i].len; 5317 } 5318 5319 /* There is data other than hdr and known sections */ 5320 if (expected_total != total) { 5321 btf_verifier_log(env, "Unsupported section found"); 5322 return -EINVAL; 5323 } 5324 5325 return 0; 5326 } 5327 5328 static int btf_parse_hdr(struct btf_verifier_env *env) 5329 { 5330 u32 hdr_len, hdr_copy, btf_data_size; 5331 const struct btf_header *hdr; 5332 struct btf *btf; 5333 5334 btf = env->btf; 5335 btf_data_size = btf->data_size; 5336 5337 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5338 btf_verifier_log(env, "hdr_len not found"); 5339 return -EINVAL; 5340 } 5341 5342 hdr = btf->data; 5343 hdr_len = hdr->hdr_len; 5344 if (btf_data_size < hdr_len) { 5345 btf_verifier_log(env, "btf_header not found"); 5346 return -EINVAL; 5347 } 5348 5349 /* Ensure the unsupported header fields are zero */ 5350 if (hdr_len > sizeof(btf->hdr)) { 5351 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5352 u8 *end = btf->data + hdr_len; 5353 5354 for (; expected_zero < end; expected_zero++) { 5355 if (*expected_zero) { 5356 btf_verifier_log(env, "Unsupported btf_header"); 5357 return -E2BIG; 5358 } 5359 } 5360 } 5361 5362 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5363 memcpy(&btf->hdr, btf->data, hdr_copy); 5364 5365 hdr = &btf->hdr; 5366 5367 btf_verifier_log_hdr(env, btf_data_size); 5368 5369 if (hdr->magic != BTF_MAGIC) { 5370 btf_verifier_log(env, "Invalid magic"); 5371 return -EINVAL; 5372 } 5373 5374 if (hdr->version != BTF_VERSION) { 5375 btf_verifier_log(env, "Unsupported version"); 5376 return -ENOTSUPP; 5377 } 5378 5379 if (hdr->flags) { 5380 btf_verifier_log(env, "Unsupported flags"); 5381 return -ENOTSUPP; 5382 } 5383 5384 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5385 btf_verifier_log(env, "No data"); 5386 return -EINVAL; 5387 } 5388 5389 return btf_check_sec_info(env, btf_data_size); 5390 } 5391 5392 static const char *alloc_obj_fields[] = { 5393 "bpf_spin_lock", 5394 "bpf_list_head", 5395 "bpf_list_node", 5396 "bpf_rb_root", 5397 "bpf_rb_node", 5398 "bpf_refcount", 5399 }; 5400 5401 static struct btf_struct_metas * 5402 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5403 { 5404 union { 5405 struct btf_id_set set; 5406 struct { 5407 u32 _cnt; 5408 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5409 } _arr; 5410 } aof; 5411 struct btf_struct_metas *tab = NULL; 5412 int i, n, id, ret; 5413 5414 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5415 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5416 5417 memset(&aof, 0, sizeof(aof)); 5418 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5419 /* Try to find whether this special type exists in user BTF, and 5420 * if so remember its ID so we can easily find it among members 5421 * of structs that we iterate in the next loop. 5422 */ 5423 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5424 if (id < 0) 5425 continue; 5426 aof.set.ids[aof.set.cnt++] = id; 5427 } 5428 5429 if (!aof.set.cnt) 5430 return NULL; 5431 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5432 5433 n = btf_nr_types(btf); 5434 for (i = 1; i < n; i++) { 5435 struct btf_struct_metas *new_tab; 5436 const struct btf_member *member; 5437 struct btf_struct_meta *type; 5438 struct btf_record *record; 5439 const struct btf_type *t; 5440 int j, tab_cnt; 5441 5442 t = btf_type_by_id(btf, i); 5443 if (!t) { 5444 ret = -EINVAL; 5445 goto free; 5446 } 5447 if (!__btf_type_is_struct(t)) 5448 continue; 5449 5450 cond_resched(); 5451 5452 for_each_member(j, t, member) { 5453 if (btf_id_set_contains(&aof.set, member->type)) 5454 goto parse; 5455 } 5456 continue; 5457 parse: 5458 tab_cnt = tab ? tab->cnt : 0; 5459 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5460 GFP_KERNEL | __GFP_NOWARN); 5461 if (!new_tab) { 5462 ret = -ENOMEM; 5463 goto free; 5464 } 5465 if (!tab) 5466 new_tab->cnt = 0; 5467 tab = new_tab; 5468 5469 type = &tab->types[tab->cnt]; 5470 type->btf_id = i; 5471 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5472 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5473 /* The record cannot be unset, treat it as an error if so */ 5474 if (IS_ERR_OR_NULL(record)) { 5475 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5476 goto free; 5477 } 5478 type->record = record; 5479 tab->cnt++; 5480 } 5481 return tab; 5482 free: 5483 btf_struct_metas_free(tab); 5484 return ERR_PTR(ret); 5485 } 5486 5487 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5488 { 5489 struct btf_struct_metas *tab; 5490 5491 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5492 tab = btf->struct_meta_tab; 5493 if (!tab) 5494 return NULL; 5495 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5496 } 5497 5498 static int btf_check_type_tags(struct btf_verifier_env *env, 5499 struct btf *btf, int start_id) 5500 { 5501 int i, n, good_id = start_id - 1; 5502 bool in_tags; 5503 5504 n = btf_nr_types(btf); 5505 for (i = start_id; i < n; i++) { 5506 const struct btf_type *t; 5507 int chain_limit = 32; 5508 u32 cur_id = i; 5509 5510 t = btf_type_by_id(btf, i); 5511 if (!t) 5512 return -EINVAL; 5513 if (!btf_type_is_modifier(t)) 5514 continue; 5515 5516 cond_resched(); 5517 5518 in_tags = btf_type_is_type_tag(t); 5519 while (btf_type_is_modifier(t)) { 5520 if (!chain_limit--) { 5521 btf_verifier_log(env, "Max chain length or cycle detected"); 5522 return -ELOOP; 5523 } 5524 if (btf_type_is_type_tag(t)) { 5525 if (!in_tags) { 5526 btf_verifier_log(env, "Type tags don't precede modifiers"); 5527 return -EINVAL; 5528 } 5529 } else if (in_tags) { 5530 in_tags = false; 5531 } 5532 if (cur_id <= good_id) 5533 break; 5534 /* Move to next type */ 5535 cur_id = t->type; 5536 t = btf_type_by_id(btf, cur_id); 5537 if (!t) 5538 return -EINVAL; 5539 } 5540 good_id = i; 5541 } 5542 return 0; 5543 } 5544 5545 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5546 { 5547 u32 log_true_size; 5548 int err; 5549 5550 err = bpf_vlog_finalize(log, &log_true_size); 5551 5552 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5553 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5554 &log_true_size, sizeof(log_true_size))) 5555 err = -EFAULT; 5556 5557 return err; 5558 } 5559 5560 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5561 { 5562 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5563 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5564 struct btf_struct_metas *struct_meta_tab; 5565 struct btf_verifier_env *env = NULL; 5566 struct btf *btf = NULL; 5567 u8 *data; 5568 int err, ret; 5569 5570 if (attr->btf_size > BTF_MAX_SIZE) 5571 return ERR_PTR(-E2BIG); 5572 5573 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5574 if (!env) 5575 return ERR_PTR(-ENOMEM); 5576 5577 /* user could have requested verbose verifier output 5578 * and supplied buffer to store the verification trace 5579 */ 5580 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5581 log_ubuf, attr->btf_log_size); 5582 if (err) 5583 goto errout_free; 5584 5585 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5586 if (!btf) { 5587 err = -ENOMEM; 5588 goto errout; 5589 } 5590 env->btf = btf; 5591 5592 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5593 if (!data) { 5594 err = -ENOMEM; 5595 goto errout; 5596 } 5597 5598 btf->data = data; 5599 btf->data_size = attr->btf_size; 5600 5601 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5602 err = -EFAULT; 5603 goto errout; 5604 } 5605 5606 err = btf_parse_hdr(env); 5607 if (err) 5608 goto errout; 5609 5610 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5611 5612 err = btf_parse_str_sec(env); 5613 if (err) 5614 goto errout; 5615 5616 err = btf_parse_type_sec(env); 5617 if (err) 5618 goto errout; 5619 5620 err = btf_check_type_tags(env, btf, 1); 5621 if (err) 5622 goto errout; 5623 5624 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5625 if (IS_ERR(struct_meta_tab)) { 5626 err = PTR_ERR(struct_meta_tab); 5627 goto errout; 5628 } 5629 btf->struct_meta_tab = struct_meta_tab; 5630 5631 if (struct_meta_tab) { 5632 int i; 5633 5634 for (i = 0; i < struct_meta_tab->cnt; i++) { 5635 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5636 if (err < 0) 5637 goto errout_meta; 5638 } 5639 } 5640 5641 err = finalize_log(&env->log, uattr, uattr_size); 5642 if (err) 5643 goto errout_free; 5644 5645 btf_verifier_env_free(env); 5646 refcount_set(&btf->refcnt, 1); 5647 return btf; 5648 5649 errout_meta: 5650 btf_free_struct_meta_tab(btf); 5651 errout: 5652 /* overwrite err with -ENOSPC or -EFAULT */ 5653 ret = finalize_log(&env->log, uattr, uattr_size); 5654 if (ret) 5655 err = ret; 5656 errout_free: 5657 btf_verifier_env_free(env); 5658 if (btf) 5659 btf_free(btf); 5660 return ERR_PTR(err); 5661 } 5662 5663 extern char __start_BTF[]; 5664 extern char __stop_BTF[]; 5665 extern struct btf *btf_vmlinux; 5666 5667 #define BPF_MAP_TYPE(_id, _ops) 5668 #define BPF_LINK_TYPE(_id, _name) 5669 static union { 5670 struct bpf_ctx_convert { 5671 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5672 prog_ctx_type _id##_prog; \ 5673 kern_ctx_type _id##_kern; 5674 #include <linux/bpf_types.h> 5675 #undef BPF_PROG_TYPE 5676 } *__t; 5677 /* 't' is written once under lock. Read many times. */ 5678 const struct btf_type *t; 5679 } bpf_ctx_convert; 5680 enum { 5681 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5682 __ctx_convert##_id, 5683 #include <linux/bpf_types.h> 5684 #undef BPF_PROG_TYPE 5685 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5686 }; 5687 static u8 bpf_ctx_convert_map[] = { 5688 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5689 [_id] = __ctx_convert##_id, 5690 #include <linux/bpf_types.h> 5691 #undef BPF_PROG_TYPE 5692 0, /* avoid empty array */ 5693 }; 5694 #undef BPF_MAP_TYPE 5695 #undef BPF_LINK_TYPE 5696 5697 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5698 { 5699 const struct btf_type *conv_struct; 5700 const struct btf_member *ctx_type; 5701 5702 conv_struct = bpf_ctx_convert.t; 5703 if (!conv_struct) 5704 return NULL; 5705 /* prog_type is valid bpf program type. No need for bounds check. */ 5706 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5707 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5708 * Like 'struct __sk_buff' 5709 */ 5710 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5711 } 5712 5713 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5714 { 5715 const struct btf_type *conv_struct; 5716 const struct btf_member *ctx_type; 5717 5718 conv_struct = bpf_ctx_convert.t; 5719 if (!conv_struct) 5720 return -EFAULT; 5721 /* prog_type is valid bpf program type. No need for bounds check. */ 5722 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5723 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5724 * Like 'struct sk_buff' 5725 */ 5726 return ctx_type->type; 5727 } 5728 5729 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5730 const struct btf_type *t, enum bpf_prog_type prog_type, 5731 int arg) 5732 { 5733 const struct btf_type *ctx_type; 5734 const char *tname, *ctx_tname; 5735 5736 t = btf_type_by_id(btf, t->type); 5737 5738 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5739 * check before we skip all the typedef below. 5740 */ 5741 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5742 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5743 t = btf_type_by_id(btf, t->type); 5744 5745 if (btf_type_is_typedef(t)) { 5746 tname = btf_name_by_offset(btf, t->name_off); 5747 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5748 return true; 5749 } 5750 } 5751 5752 while (btf_type_is_modifier(t)) 5753 t = btf_type_by_id(btf, t->type); 5754 if (!btf_type_is_struct(t)) { 5755 /* Only pointer to struct is supported for now. 5756 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5757 * is not supported yet. 5758 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5759 */ 5760 return false; 5761 } 5762 tname = btf_name_by_offset(btf, t->name_off); 5763 if (!tname) { 5764 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5765 return false; 5766 } 5767 5768 ctx_type = find_canonical_prog_ctx_type(prog_type); 5769 if (!ctx_type) { 5770 bpf_log(log, "btf_vmlinux is malformed\n"); 5771 /* should not happen */ 5772 return false; 5773 } 5774 again: 5775 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5776 if (!ctx_tname) { 5777 /* should not happen */ 5778 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5779 return false; 5780 } 5781 /* program types without named context types work only with arg:ctx tag */ 5782 if (ctx_tname[0] == '\0') 5783 return false; 5784 /* only compare that prog's ctx type name is the same as 5785 * kernel expects. No need to compare field by field. 5786 * It's ok for bpf prog to do: 5787 * struct __sk_buff {}; 5788 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5789 * { // no fields of skb are ever used } 5790 */ 5791 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5792 return true; 5793 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5794 return true; 5795 if (strcmp(ctx_tname, tname)) { 5796 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5797 * underlying struct and check name again 5798 */ 5799 if (!btf_type_is_modifier(ctx_type)) 5800 return false; 5801 while (btf_type_is_modifier(ctx_type)) 5802 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5803 goto again; 5804 } 5805 return true; 5806 } 5807 5808 /* forward declarations for arch-specific underlying types of 5809 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5810 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5811 * works correctly with __builtin_types_compatible_p() on respective 5812 * architectures 5813 */ 5814 struct user_regs_struct; 5815 struct user_pt_regs; 5816 5817 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5818 const struct btf_type *t, int arg, 5819 enum bpf_prog_type prog_type, 5820 enum bpf_attach_type attach_type) 5821 { 5822 const struct btf_type *ctx_type; 5823 const char *tname, *ctx_tname; 5824 5825 if (!btf_is_ptr(t)) { 5826 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 5827 return -EINVAL; 5828 } 5829 t = btf_type_by_id(btf, t->type); 5830 5831 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 5832 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 5833 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5834 t = btf_type_by_id(btf, t->type); 5835 5836 if (btf_type_is_typedef(t)) { 5837 tname = btf_name_by_offset(btf, t->name_off); 5838 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5839 return 0; 5840 } 5841 } 5842 5843 /* all other program types don't use typedefs for context type */ 5844 while (btf_type_is_modifier(t)) 5845 t = btf_type_by_id(btf, t->type); 5846 5847 /* `void *ctx __arg_ctx` is always valid */ 5848 if (btf_type_is_void(t)) 5849 return 0; 5850 5851 tname = btf_name_by_offset(btf, t->name_off); 5852 if (str_is_empty(tname)) { 5853 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 5854 return -EINVAL; 5855 } 5856 5857 /* special cases */ 5858 switch (prog_type) { 5859 case BPF_PROG_TYPE_KPROBE: 5860 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 5861 return 0; 5862 break; 5863 case BPF_PROG_TYPE_PERF_EVENT: 5864 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 5865 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 5866 return 0; 5867 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 5868 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 5869 return 0; 5870 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 5871 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 5872 return 0; 5873 break; 5874 case BPF_PROG_TYPE_RAW_TRACEPOINT: 5875 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 5876 /* allow u64* as ctx */ 5877 if (btf_is_int(t) && t->size == 8) 5878 return 0; 5879 break; 5880 case BPF_PROG_TYPE_TRACING: 5881 switch (attach_type) { 5882 case BPF_TRACE_RAW_TP: 5883 /* tp_btf program is TRACING, so need special case here */ 5884 if (__btf_type_is_struct(t) && 5885 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 5886 return 0; 5887 /* allow u64* as ctx */ 5888 if (btf_is_int(t) && t->size == 8) 5889 return 0; 5890 break; 5891 case BPF_TRACE_ITER: 5892 /* allow struct bpf_iter__xxx types only */ 5893 if (__btf_type_is_struct(t) && 5894 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 5895 return 0; 5896 break; 5897 case BPF_TRACE_FENTRY: 5898 case BPF_TRACE_FEXIT: 5899 case BPF_MODIFY_RETURN: 5900 /* allow u64* as ctx */ 5901 if (btf_is_int(t) && t->size == 8) 5902 return 0; 5903 break; 5904 default: 5905 break; 5906 } 5907 break; 5908 case BPF_PROG_TYPE_LSM: 5909 case BPF_PROG_TYPE_STRUCT_OPS: 5910 /* allow u64* as ctx */ 5911 if (btf_is_int(t) && t->size == 8) 5912 return 0; 5913 break; 5914 case BPF_PROG_TYPE_TRACEPOINT: 5915 case BPF_PROG_TYPE_SYSCALL: 5916 case BPF_PROG_TYPE_EXT: 5917 return 0; /* anything goes */ 5918 default: 5919 break; 5920 } 5921 5922 ctx_type = find_canonical_prog_ctx_type(prog_type); 5923 if (!ctx_type) { 5924 /* should not happen */ 5925 bpf_log(log, "btf_vmlinux is malformed\n"); 5926 return -EINVAL; 5927 } 5928 5929 /* resolve typedefs and check that underlying structs are matching as well */ 5930 while (btf_type_is_modifier(ctx_type)) 5931 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5932 5933 /* if program type doesn't have distinctly named struct type for 5934 * context, then __arg_ctx argument can only be `void *`, which we 5935 * already checked above 5936 */ 5937 if (!__btf_type_is_struct(ctx_type)) { 5938 bpf_log(log, "arg#%d should be void pointer\n", arg); 5939 return -EINVAL; 5940 } 5941 5942 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5943 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 5944 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 5945 return -EINVAL; 5946 } 5947 5948 return 0; 5949 } 5950 5951 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5952 struct btf *btf, 5953 const struct btf_type *t, 5954 enum bpf_prog_type prog_type, 5955 int arg) 5956 { 5957 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 5958 return -ENOENT; 5959 return find_kern_ctx_type_id(prog_type); 5960 } 5961 5962 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5963 { 5964 const struct btf_member *kctx_member; 5965 const struct btf_type *conv_struct; 5966 const struct btf_type *kctx_type; 5967 u32 kctx_type_id; 5968 5969 conv_struct = bpf_ctx_convert.t; 5970 /* get member for kernel ctx type */ 5971 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5972 kctx_type_id = kctx_member->type; 5973 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5974 if (!btf_type_is_struct(kctx_type)) { 5975 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5976 return -EINVAL; 5977 } 5978 5979 return kctx_type_id; 5980 } 5981 5982 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5983 BTF_ID(struct, bpf_ctx_convert) 5984 5985 struct btf *btf_parse_vmlinux(void) 5986 { 5987 struct btf_verifier_env *env = NULL; 5988 struct bpf_verifier_log *log; 5989 struct btf *btf = NULL; 5990 int err; 5991 5992 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 5993 return ERR_PTR(-ENOENT); 5994 5995 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5996 if (!env) 5997 return ERR_PTR(-ENOMEM); 5998 5999 log = &env->log; 6000 log->level = BPF_LOG_KERNEL; 6001 6002 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6003 if (!btf) { 6004 err = -ENOMEM; 6005 goto errout; 6006 } 6007 env->btf = btf; 6008 6009 btf->data = __start_BTF; 6010 btf->data_size = __stop_BTF - __start_BTF; 6011 btf->kernel_btf = true; 6012 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 6013 6014 err = btf_parse_hdr(env); 6015 if (err) 6016 goto errout; 6017 6018 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6019 6020 err = btf_parse_str_sec(env); 6021 if (err) 6022 goto errout; 6023 6024 err = btf_check_all_metas(env); 6025 if (err) 6026 goto errout; 6027 6028 err = btf_check_type_tags(env, btf, 1); 6029 if (err) 6030 goto errout; 6031 6032 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6033 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6034 6035 refcount_set(&btf->refcnt, 1); 6036 6037 err = btf_alloc_id(btf); 6038 if (err) 6039 goto errout; 6040 6041 btf_verifier_env_free(env); 6042 return btf; 6043 6044 errout: 6045 btf_verifier_env_free(env); 6046 if (btf) { 6047 kvfree(btf->types); 6048 kfree(btf); 6049 } 6050 return ERR_PTR(err); 6051 } 6052 6053 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6054 6055 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 6056 { 6057 struct btf_verifier_env *env = NULL; 6058 struct bpf_verifier_log *log; 6059 struct btf *btf = NULL, *base_btf; 6060 int err; 6061 6062 base_btf = bpf_get_btf_vmlinux(); 6063 if (IS_ERR(base_btf)) 6064 return base_btf; 6065 if (!base_btf) 6066 return ERR_PTR(-EINVAL); 6067 6068 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6069 if (!env) 6070 return ERR_PTR(-ENOMEM); 6071 6072 log = &env->log; 6073 log->level = BPF_LOG_KERNEL; 6074 6075 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6076 if (!btf) { 6077 err = -ENOMEM; 6078 goto errout; 6079 } 6080 env->btf = btf; 6081 6082 btf->base_btf = base_btf; 6083 btf->start_id = base_btf->nr_types; 6084 btf->start_str_off = base_btf->hdr.str_len; 6085 btf->kernel_btf = true; 6086 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6087 6088 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 6089 if (!btf->data) { 6090 err = -ENOMEM; 6091 goto errout; 6092 } 6093 memcpy(btf->data, data, data_size); 6094 btf->data_size = data_size; 6095 6096 err = btf_parse_hdr(env); 6097 if (err) 6098 goto errout; 6099 6100 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6101 6102 err = btf_parse_str_sec(env); 6103 if (err) 6104 goto errout; 6105 6106 err = btf_check_all_metas(env); 6107 if (err) 6108 goto errout; 6109 6110 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6111 if (err) 6112 goto errout; 6113 6114 btf_verifier_env_free(env); 6115 refcount_set(&btf->refcnt, 1); 6116 return btf; 6117 6118 errout: 6119 btf_verifier_env_free(env); 6120 if (btf) { 6121 kvfree(btf->data); 6122 kvfree(btf->types); 6123 kfree(btf); 6124 } 6125 return ERR_PTR(err); 6126 } 6127 6128 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6129 6130 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6131 { 6132 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6133 6134 if (tgt_prog) 6135 return tgt_prog->aux->btf; 6136 else 6137 return prog->aux->attach_btf; 6138 } 6139 6140 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6141 { 6142 /* skip modifiers */ 6143 t = btf_type_skip_modifiers(btf, t->type, NULL); 6144 6145 return btf_type_is_int(t); 6146 } 6147 6148 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6149 int off) 6150 { 6151 const struct btf_param *args; 6152 const struct btf_type *t; 6153 u32 offset = 0, nr_args; 6154 int i; 6155 6156 if (!func_proto) 6157 return off / 8; 6158 6159 nr_args = btf_type_vlen(func_proto); 6160 args = (const struct btf_param *)(func_proto + 1); 6161 for (i = 0; i < nr_args; i++) { 6162 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6163 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6164 if (off < offset) 6165 return i; 6166 } 6167 6168 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6169 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6170 if (off < offset) 6171 return nr_args; 6172 6173 return nr_args + 1; 6174 } 6175 6176 static bool prog_args_trusted(const struct bpf_prog *prog) 6177 { 6178 enum bpf_attach_type atype = prog->expected_attach_type; 6179 6180 switch (prog->type) { 6181 case BPF_PROG_TYPE_TRACING: 6182 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6183 case BPF_PROG_TYPE_LSM: 6184 return bpf_lsm_is_trusted(prog); 6185 case BPF_PROG_TYPE_STRUCT_OPS: 6186 return true; 6187 default: 6188 return false; 6189 } 6190 } 6191 6192 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6193 u32 arg_no) 6194 { 6195 const struct btf_param *args; 6196 const struct btf_type *t; 6197 int off = 0, i; 6198 u32 sz; 6199 6200 args = btf_params(func_proto); 6201 for (i = 0; i < arg_no; i++) { 6202 t = btf_type_by_id(btf, args[i].type); 6203 t = btf_resolve_size(btf, t, &sz); 6204 if (IS_ERR(t)) 6205 return PTR_ERR(t); 6206 off += roundup(sz, 8); 6207 } 6208 6209 return off; 6210 } 6211 6212 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6213 const struct bpf_prog *prog, 6214 struct bpf_insn_access_aux *info) 6215 { 6216 const struct btf_type *t = prog->aux->attach_func_proto; 6217 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6218 struct btf *btf = bpf_prog_get_target_btf(prog); 6219 const char *tname = prog->aux->attach_func_name; 6220 struct bpf_verifier_log *log = info->log; 6221 const struct btf_param *args; 6222 const char *tag_value; 6223 u32 nr_args, arg; 6224 int i, ret; 6225 6226 if (off % 8) { 6227 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6228 tname, off); 6229 return false; 6230 } 6231 arg = get_ctx_arg_idx(btf, t, off); 6232 args = (const struct btf_param *)(t + 1); 6233 /* if (t == NULL) Fall back to default BPF prog with 6234 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6235 */ 6236 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6237 if (prog->aux->attach_btf_trace) { 6238 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6239 args++; 6240 nr_args--; 6241 } 6242 6243 if (arg > nr_args) { 6244 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6245 tname, arg + 1); 6246 return false; 6247 } 6248 6249 if (arg == nr_args) { 6250 switch (prog->expected_attach_type) { 6251 case BPF_LSM_CGROUP: 6252 case BPF_LSM_MAC: 6253 case BPF_TRACE_FEXIT: 6254 /* When LSM programs are attached to void LSM hooks 6255 * they use FEXIT trampolines and when attached to 6256 * int LSM hooks, they use MODIFY_RETURN trampolines. 6257 * 6258 * While the LSM programs are BPF_MODIFY_RETURN-like 6259 * the check: 6260 * 6261 * if (ret_type != 'int') 6262 * return -EINVAL; 6263 * 6264 * is _not_ done here. This is still safe as LSM hooks 6265 * have only void and int return types. 6266 */ 6267 if (!t) 6268 return true; 6269 t = btf_type_by_id(btf, t->type); 6270 break; 6271 case BPF_MODIFY_RETURN: 6272 /* For now the BPF_MODIFY_RETURN can only be attached to 6273 * functions that return an int. 6274 */ 6275 if (!t) 6276 return false; 6277 6278 t = btf_type_skip_modifiers(btf, t->type, NULL); 6279 if (!btf_type_is_small_int(t)) { 6280 bpf_log(log, 6281 "ret type %s not allowed for fmod_ret\n", 6282 btf_type_str(t)); 6283 return false; 6284 } 6285 break; 6286 default: 6287 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6288 tname, arg + 1); 6289 return false; 6290 } 6291 } else { 6292 if (!t) 6293 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6294 return true; 6295 t = btf_type_by_id(btf, args[arg].type); 6296 } 6297 6298 /* skip modifiers */ 6299 while (btf_type_is_modifier(t)) 6300 t = btf_type_by_id(btf, t->type); 6301 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6302 /* accessing a scalar */ 6303 return true; 6304 if (!btf_type_is_ptr(t)) { 6305 bpf_log(log, 6306 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6307 tname, arg, 6308 __btf_name_by_offset(btf, t->name_off), 6309 btf_type_str(t)); 6310 return false; 6311 } 6312 6313 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6314 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6315 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6316 u32 type, flag; 6317 6318 type = base_type(ctx_arg_info->reg_type); 6319 flag = type_flag(ctx_arg_info->reg_type); 6320 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6321 (flag & PTR_MAYBE_NULL)) { 6322 info->reg_type = ctx_arg_info->reg_type; 6323 return true; 6324 } 6325 } 6326 6327 if (t->type == 0) 6328 /* This is a pointer to void. 6329 * It is the same as scalar from the verifier safety pov. 6330 * No further pointer walking is allowed. 6331 */ 6332 return true; 6333 6334 if (is_int_ptr(btf, t)) 6335 return true; 6336 6337 /* this is a pointer to another type */ 6338 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6339 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6340 6341 if (ctx_arg_info->offset == off) { 6342 if (!ctx_arg_info->btf_id) { 6343 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6344 return false; 6345 } 6346 6347 info->reg_type = ctx_arg_info->reg_type; 6348 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6349 info->btf_id = ctx_arg_info->btf_id; 6350 return true; 6351 } 6352 } 6353 6354 info->reg_type = PTR_TO_BTF_ID; 6355 if (prog_args_trusted(prog)) 6356 info->reg_type |= PTR_TRUSTED; 6357 6358 if (tgt_prog) { 6359 enum bpf_prog_type tgt_type; 6360 6361 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6362 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6363 else 6364 tgt_type = tgt_prog->type; 6365 6366 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6367 if (ret > 0) { 6368 info->btf = btf_vmlinux; 6369 info->btf_id = ret; 6370 return true; 6371 } else { 6372 return false; 6373 } 6374 } 6375 6376 info->btf = btf; 6377 info->btf_id = t->type; 6378 t = btf_type_by_id(btf, t->type); 6379 6380 if (btf_type_is_type_tag(t)) { 6381 tag_value = __btf_name_by_offset(btf, t->name_off); 6382 if (strcmp(tag_value, "user") == 0) 6383 info->reg_type |= MEM_USER; 6384 if (strcmp(tag_value, "percpu") == 0) 6385 info->reg_type |= MEM_PERCPU; 6386 } 6387 6388 /* skip modifiers */ 6389 while (btf_type_is_modifier(t)) { 6390 info->btf_id = t->type; 6391 t = btf_type_by_id(btf, t->type); 6392 } 6393 if (!btf_type_is_struct(t)) { 6394 bpf_log(log, 6395 "func '%s' arg%d type %s is not a struct\n", 6396 tname, arg, btf_type_str(t)); 6397 return false; 6398 } 6399 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6400 tname, arg, info->btf_id, btf_type_str(t), 6401 __btf_name_by_offset(btf, t->name_off)); 6402 return true; 6403 } 6404 EXPORT_SYMBOL_GPL(btf_ctx_access); 6405 6406 enum bpf_struct_walk_result { 6407 /* < 0 error */ 6408 WALK_SCALAR = 0, 6409 WALK_PTR, 6410 WALK_STRUCT, 6411 }; 6412 6413 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6414 const struct btf_type *t, int off, int size, 6415 u32 *next_btf_id, enum bpf_type_flag *flag, 6416 const char **field_name) 6417 { 6418 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6419 const struct btf_type *mtype, *elem_type = NULL; 6420 const struct btf_member *member; 6421 const char *tname, *mname, *tag_value; 6422 u32 vlen, elem_id, mid; 6423 6424 again: 6425 if (btf_type_is_modifier(t)) 6426 t = btf_type_skip_modifiers(btf, t->type, NULL); 6427 tname = __btf_name_by_offset(btf, t->name_off); 6428 if (!btf_type_is_struct(t)) { 6429 bpf_log(log, "Type '%s' is not a struct\n", tname); 6430 return -EINVAL; 6431 } 6432 6433 vlen = btf_type_vlen(t); 6434 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6435 /* 6436 * walking unions yields untrusted pointers 6437 * with exception of __bpf_md_ptr and other 6438 * unions with a single member 6439 */ 6440 *flag |= PTR_UNTRUSTED; 6441 6442 if (off + size > t->size) { 6443 /* If the last element is a variable size array, we may 6444 * need to relax the rule. 6445 */ 6446 struct btf_array *array_elem; 6447 6448 if (vlen == 0) 6449 goto error; 6450 6451 member = btf_type_member(t) + vlen - 1; 6452 mtype = btf_type_skip_modifiers(btf, member->type, 6453 NULL); 6454 if (!btf_type_is_array(mtype)) 6455 goto error; 6456 6457 array_elem = (struct btf_array *)(mtype + 1); 6458 if (array_elem->nelems != 0) 6459 goto error; 6460 6461 moff = __btf_member_bit_offset(t, member) / 8; 6462 if (off < moff) 6463 goto error; 6464 6465 /* allow structure and integer */ 6466 t = btf_type_skip_modifiers(btf, array_elem->type, 6467 NULL); 6468 6469 if (btf_type_is_int(t)) 6470 return WALK_SCALAR; 6471 6472 if (!btf_type_is_struct(t)) 6473 goto error; 6474 6475 off = (off - moff) % t->size; 6476 goto again; 6477 6478 error: 6479 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6480 tname, off, size); 6481 return -EACCES; 6482 } 6483 6484 for_each_member(i, t, member) { 6485 /* offset of the field in bytes */ 6486 moff = __btf_member_bit_offset(t, member) / 8; 6487 if (off + size <= moff) 6488 /* won't find anything, field is already too far */ 6489 break; 6490 6491 if (__btf_member_bitfield_size(t, member)) { 6492 u32 end_bit = __btf_member_bit_offset(t, member) + 6493 __btf_member_bitfield_size(t, member); 6494 6495 /* off <= moff instead of off == moff because clang 6496 * does not generate a BTF member for anonymous 6497 * bitfield like the ":16" here: 6498 * struct { 6499 * int :16; 6500 * int x:8; 6501 * }; 6502 */ 6503 if (off <= moff && 6504 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6505 return WALK_SCALAR; 6506 6507 /* off may be accessing a following member 6508 * 6509 * or 6510 * 6511 * Doing partial access at either end of this 6512 * bitfield. Continue on this case also to 6513 * treat it as not accessing this bitfield 6514 * and eventually error out as field not 6515 * found to keep it simple. 6516 * It could be relaxed if there was a legit 6517 * partial access case later. 6518 */ 6519 continue; 6520 } 6521 6522 /* In case of "off" is pointing to holes of a struct */ 6523 if (off < moff) 6524 break; 6525 6526 /* type of the field */ 6527 mid = member->type; 6528 mtype = btf_type_by_id(btf, member->type); 6529 mname = __btf_name_by_offset(btf, member->name_off); 6530 6531 mtype = __btf_resolve_size(btf, mtype, &msize, 6532 &elem_type, &elem_id, &total_nelems, 6533 &mid); 6534 if (IS_ERR(mtype)) { 6535 bpf_log(log, "field %s doesn't have size\n", mname); 6536 return -EFAULT; 6537 } 6538 6539 mtrue_end = moff + msize; 6540 if (off >= mtrue_end) 6541 /* no overlap with member, keep iterating */ 6542 continue; 6543 6544 if (btf_type_is_array(mtype)) { 6545 u32 elem_idx; 6546 6547 /* __btf_resolve_size() above helps to 6548 * linearize a multi-dimensional array. 6549 * 6550 * The logic here is treating an array 6551 * in a struct as the following way: 6552 * 6553 * struct outer { 6554 * struct inner array[2][2]; 6555 * }; 6556 * 6557 * looks like: 6558 * 6559 * struct outer { 6560 * struct inner array_elem0; 6561 * struct inner array_elem1; 6562 * struct inner array_elem2; 6563 * struct inner array_elem3; 6564 * }; 6565 * 6566 * When accessing outer->array[1][0], it moves 6567 * moff to "array_elem2", set mtype to 6568 * "struct inner", and msize also becomes 6569 * sizeof(struct inner). Then most of the 6570 * remaining logic will fall through without 6571 * caring the current member is an array or 6572 * not. 6573 * 6574 * Unlike mtype/msize/moff, mtrue_end does not 6575 * change. The naming difference ("_true") tells 6576 * that it is not always corresponding to 6577 * the current mtype/msize/moff. 6578 * It is the true end of the current 6579 * member (i.e. array in this case). That 6580 * will allow an int array to be accessed like 6581 * a scratch space, 6582 * i.e. allow access beyond the size of 6583 * the array's element as long as it is 6584 * within the mtrue_end boundary. 6585 */ 6586 6587 /* skip empty array */ 6588 if (moff == mtrue_end) 6589 continue; 6590 6591 msize /= total_nelems; 6592 elem_idx = (off - moff) / msize; 6593 moff += elem_idx * msize; 6594 mtype = elem_type; 6595 mid = elem_id; 6596 } 6597 6598 /* the 'off' we're looking for is either equal to start 6599 * of this field or inside of this struct 6600 */ 6601 if (btf_type_is_struct(mtype)) { 6602 /* our field must be inside that union or struct */ 6603 t = mtype; 6604 6605 /* return if the offset matches the member offset */ 6606 if (off == moff) { 6607 *next_btf_id = mid; 6608 return WALK_STRUCT; 6609 } 6610 6611 /* adjust offset we're looking for */ 6612 off -= moff; 6613 goto again; 6614 } 6615 6616 if (btf_type_is_ptr(mtype)) { 6617 const struct btf_type *stype, *t; 6618 enum bpf_type_flag tmp_flag = 0; 6619 u32 id; 6620 6621 if (msize != size || off != moff) { 6622 bpf_log(log, 6623 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6624 mname, moff, tname, off, size); 6625 return -EACCES; 6626 } 6627 6628 /* check type tag */ 6629 t = btf_type_by_id(btf, mtype->type); 6630 if (btf_type_is_type_tag(t)) { 6631 tag_value = __btf_name_by_offset(btf, t->name_off); 6632 /* check __user tag */ 6633 if (strcmp(tag_value, "user") == 0) 6634 tmp_flag = MEM_USER; 6635 /* check __percpu tag */ 6636 if (strcmp(tag_value, "percpu") == 0) 6637 tmp_flag = MEM_PERCPU; 6638 /* check __rcu tag */ 6639 if (strcmp(tag_value, "rcu") == 0) 6640 tmp_flag = MEM_RCU; 6641 } 6642 6643 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6644 if (btf_type_is_struct(stype)) { 6645 *next_btf_id = id; 6646 *flag |= tmp_flag; 6647 if (field_name) 6648 *field_name = mname; 6649 return WALK_PTR; 6650 } 6651 } 6652 6653 /* Allow more flexible access within an int as long as 6654 * it is within mtrue_end. 6655 * Since mtrue_end could be the end of an array, 6656 * that also allows using an array of int as a scratch 6657 * space. e.g. skb->cb[]. 6658 */ 6659 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 6660 bpf_log(log, 6661 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6662 mname, mtrue_end, tname, off, size); 6663 return -EACCES; 6664 } 6665 6666 return WALK_SCALAR; 6667 } 6668 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6669 return -EINVAL; 6670 } 6671 6672 int btf_struct_access(struct bpf_verifier_log *log, 6673 const struct bpf_reg_state *reg, 6674 int off, int size, enum bpf_access_type atype __maybe_unused, 6675 u32 *next_btf_id, enum bpf_type_flag *flag, 6676 const char **field_name) 6677 { 6678 const struct btf *btf = reg->btf; 6679 enum bpf_type_flag tmp_flag = 0; 6680 const struct btf_type *t; 6681 u32 id = reg->btf_id; 6682 int err; 6683 6684 while (type_is_alloc(reg->type)) { 6685 struct btf_struct_meta *meta; 6686 struct btf_record *rec; 6687 int i; 6688 6689 meta = btf_find_struct_meta(btf, id); 6690 if (!meta) 6691 break; 6692 rec = meta->record; 6693 for (i = 0; i < rec->cnt; i++) { 6694 struct btf_field *field = &rec->fields[i]; 6695 u32 offset = field->offset; 6696 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6697 bpf_log(log, 6698 "direct access to %s is disallowed\n", 6699 btf_field_type_name(field->type)); 6700 return -EACCES; 6701 } 6702 } 6703 break; 6704 } 6705 6706 t = btf_type_by_id(btf, id); 6707 do { 6708 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6709 6710 switch (err) { 6711 case WALK_PTR: 6712 /* For local types, the destination register cannot 6713 * become a pointer again. 6714 */ 6715 if (type_is_alloc(reg->type)) 6716 return SCALAR_VALUE; 6717 /* If we found the pointer or scalar on t+off, 6718 * we're done. 6719 */ 6720 *next_btf_id = id; 6721 *flag = tmp_flag; 6722 return PTR_TO_BTF_ID; 6723 case WALK_SCALAR: 6724 return SCALAR_VALUE; 6725 case WALK_STRUCT: 6726 /* We found nested struct, so continue the search 6727 * by diving in it. At this point the offset is 6728 * aligned with the new type, so set it to 0. 6729 */ 6730 t = btf_type_by_id(btf, id); 6731 off = 0; 6732 break; 6733 default: 6734 /* It's either error or unknown return value.. 6735 * scream and leave. 6736 */ 6737 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6738 return -EINVAL; 6739 return err; 6740 } 6741 } while (t); 6742 6743 return -EINVAL; 6744 } 6745 6746 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6747 * the same. Trivial ID check is not enough due to module BTFs, because we can 6748 * end up with two different module BTFs, but IDs point to the common type in 6749 * vmlinux BTF. 6750 */ 6751 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6752 const struct btf *btf2, u32 id2) 6753 { 6754 if (id1 != id2) 6755 return false; 6756 if (btf1 == btf2) 6757 return true; 6758 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6759 } 6760 6761 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6762 const struct btf *btf, u32 id, int off, 6763 const struct btf *need_btf, u32 need_type_id, 6764 bool strict) 6765 { 6766 const struct btf_type *type; 6767 enum bpf_type_flag flag = 0; 6768 int err; 6769 6770 /* Are we already done? */ 6771 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6772 return true; 6773 /* In case of strict type match, we do not walk struct, the top level 6774 * type match must succeed. When strict is true, off should have already 6775 * been 0. 6776 */ 6777 if (strict) 6778 return false; 6779 again: 6780 type = btf_type_by_id(btf, id); 6781 if (!type) 6782 return false; 6783 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6784 if (err != WALK_STRUCT) 6785 return false; 6786 6787 /* We found nested struct object. If it matches 6788 * the requested ID, we're done. Otherwise let's 6789 * continue the search with offset 0 in the new 6790 * type. 6791 */ 6792 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6793 off = 0; 6794 goto again; 6795 } 6796 6797 return true; 6798 } 6799 6800 static int __get_type_size(struct btf *btf, u32 btf_id, 6801 const struct btf_type **ret_type) 6802 { 6803 const struct btf_type *t; 6804 6805 *ret_type = btf_type_by_id(btf, 0); 6806 if (!btf_id) 6807 /* void */ 6808 return 0; 6809 t = btf_type_by_id(btf, btf_id); 6810 while (t && btf_type_is_modifier(t)) 6811 t = btf_type_by_id(btf, t->type); 6812 if (!t) 6813 return -EINVAL; 6814 *ret_type = t; 6815 if (btf_type_is_ptr(t)) 6816 /* kernel size of pointer. Not BPF's size of pointer*/ 6817 return sizeof(void *); 6818 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6819 return t->size; 6820 return -EINVAL; 6821 } 6822 6823 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6824 { 6825 u8 flags = 0; 6826 6827 if (__btf_type_is_struct(t)) 6828 flags |= BTF_FMODEL_STRUCT_ARG; 6829 if (btf_type_is_signed_int(t)) 6830 flags |= BTF_FMODEL_SIGNED_ARG; 6831 6832 return flags; 6833 } 6834 6835 int btf_distill_func_proto(struct bpf_verifier_log *log, 6836 struct btf *btf, 6837 const struct btf_type *func, 6838 const char *tname, 6839 struct btf_func_model *m) 6840 { 6841 const struct btf_param *args; 6842 const struct btf_type *t; 6843 u32 i, nargs; 6844 int ret; 6845 6846 if (!func) { 6847 /* BTF function prototype doesn't match the verifier types. 6848 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6849 */ 6850 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6851 m->arg_size[i] = 8; 6852 m->arg_flags[i] = 0; 6853 } 6854 m->ret_size = 8; 6855 m->ret_flags = 0; 6856 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6857 return 0; 6858 } 6859 args = (const struct btf_param *)(func + 1); 6860 nargs = btf_type_vlen(func); 6861 if (nargs > MAX_BPF_FUNC_ARGS) { 6862 bpf_log(log, 6863 "The function %s has %d arguments. Too many.\n", 6864 tname, nargs); 6865 return -EINVAL; 6866 } 6867 ret = __get_type_size(btf, func->type, &t); 6868 if (ret < 0 || __btf_type_is_struct(t)) { 6869 bpf_log(log, 6870 "The function %s return type %s is unsupported.\n", 6871 tname, btf_type_str(t)); 6872 return -EINVAL; 6873 } 6874 m->ret_size = ret; 6875 m->ret_flags = __get_type_fmodel_flags(t); 6876 6877 for (i = 0; i < nargs; i++) { 6878 if (i == nargs - 1 && args[i].type == 0) { 6879 bpf_log(log, 6880 "The function %s with variable args is unsupported.\n", 6881 tname); 6882 return -EINVAL; 6883 } 6884 ret = __get_type_size(btf, args[i].type, &t); 6885 6886 /* No support of struct argument size greater than 16 bytes */ 6887 if (ret < 0 || ret > 16) { 6888 bpf_log(log, 6889 "The function %s arg%d type %s is unsupported.\n", 6890 tname, i, btf_type_str(t)); 6891 return -EINVAL; 6892 } 6893 if (ret == 0) { 6894 bpf_log(log, 6895 "The function %s has malformed void argument.\n", 6896 tname); 6897 return -EINVAL; 6898 } 6899 m->arg_size[i] = ret; 6900 m->arg_flags[i] = __get_type_fmodel_flags(t); 6901 } 6902 m->nr_args = nargs; 6903 return 0; 6904 } 6905 6906 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6907 * t1 points to BTF_KIND_FUNC in btf1 6908 * t2 points to BTF_KIND_FUNC in btf2 6909 * Returns: 6910 * EINVAL - function prototype mismatch 6911 * EFAULT - verifier bug 6912 * 0 - 99% match. The last 1% is validated by the verifier. 6913 */ 6914 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6915 struct btf *btf1, const struct btf_type *t1, 6916 struct btf *btf2, const struct btf_type *t2) 6917 { 6918 const struct btf_param *args1, *args2; 6919 const char *fn1, *fn2, *s1, *s2; 6920 u32 nargs1, nargs2, i; 6921 6922 fn1 = btf_name_by_offset(btf1, t1->name_off); 6923 fn2 = btf_name_by_offset(btf2, t2->name_off); 6924 6925 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6926 bpf_log(log, "%s() is not a global function\n", fn1); 6927 return -EINVAL; 6928 } 6929 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6930 bpf_log(log, "%s() is not a global function\n", fn2); 6931 return -EINVAL; 6932 } 6933 6934 t1 = btf_type_by_id(btf1, t1->type); 6935 if (!t1 || !btf_type_is_func_proto(t1)) 6936 return -EFAULT; 6937 t2 = btf_type_by_id(btf2, t2->type); 6938 if (!t2 || !btf_type_is_func_proto(t2)) 6939 return -EFAULT; 6940 6941 args1 = (const struct btf_param *)(t1 + 1); 6942 nargs1 = btf_type_vlen(t1); 6943 args2 = (const struct btf_param *)(t2 + 1); 6944 nargs2 = btf_type_vlen(t2); 6945 6946 if (nargs1 != nargs2) { 6947 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6948 fn1, nargs1, fn2, nargs2); 6949 return -EINVAL; 6950 } 6951 6952 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6953 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6954 if (t1->info != t2->info) { 6955 bpf_log(log, 6956 "Return type %s of %s() doesn't match type %s of %s()\n", 6957 btf_type_str(t1), fn1, 6958 btf_type_str(t2), fn2); 6959 return -EINVAL; 6960 } 6961 6962 for (i = 0; i < nargs1; i++) { 6963 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6964 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6965 6966 if (t1->info != t2->info) { 6967 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6968 i, fn1, btf_type_str(t1), 6969 fn2, btf_type_str(t2)); 6970 return -EINVAL; 6971 } 6972 if (btf_type_has_size(t1) && t1->size != t2->size) { 6973 bpf_log(log, 6974 "arg%d in %s() has size %d while %s() has %d\n", 6975 i, fn1, t1->size, 6976 fn2, t2->size); 6977 return -EINVAL; 6978 } 6979 6980 /* global functions are validated with scalars and pointers 6981 * to context only. And only global functions can be replaced. 6982 * Hence type check only those types. 6983 */ 6984 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6985 continue; 6986 if (!btf_type_is_ptr(t1)) { 6987 bpf_log(log, 6988 "arg%d in %s() has unrecognized type\n", 6989 i, fn1); 6990 return -EINVAL; 6991 } 6992 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6993 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6994 if (!btf_type_is_struct(t1)) { 6995 bpf_log(log, 6996 "arg%d in %s() is not a pointer to context\n", 6997 i, fn1); 6998 return -EINVAL; 6999 } 7000 if (!btf_type_is_struct(t2)) { 7001 bpf_log(log, 7002 "arg%d in %s() is not a pointer to context\n", 7003 i, fn2); 7004 return -EINVAL; 7005 } 7006 /* This is an optional check to make program writing easier. 7007 * Compare names of structs and report an error to the user. 7008 * btf_prepare_func_args() already checked that t2 struct 7009 * is a context type. btf_prepare_func_args() will check 7010 * later that t1 struct is a context type as well. 7011 */ 7012 s1 = btf_name_by_offset(btf1, t1->name_off); 7013 s2 = btf_name_by_offset(btf2, t2->name_off); 7014 if (strcmp(s1, s2)) { 7015 bpf_log(log, 7016 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7017 i, fn1, s1, fn2, s2); 7018 return -EINVAL; 7019 } 7020 } 7021 return 0; 7022 } 7023 7024 /* Compare BTFs of given program with BTF of target program */ 7025 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7026 struct btf *btf2, const struct btf_type *t2) 7027 { 7028 struct btf *btf1 = prog->aux->btf; 7029 const struct btf_type *t1; 7030 u32 btf_id = 0; 7031 7032 if (!prog->aux->func_info) { 7033 bpf_log(log, "Program extension requires BTF\n"); 7034 return -EINVAL; 7035 } 7036 7037 btf_id = prog->aux->func_info[0].type_id; 7038 if (!btf_id) 7039 return -EFAULT; 7040 7041 t1 = btf_type_by_id(btf1, btf_id); 7042 if (!t1 || !btf_type_is_func(t1)) 7043 return -EFAULT; 7044 7045 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7046 } 7047 7048 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7049 { 7050 const char *name; 7051 7052 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7053 7054 while (btf_type_is_modifier(t)) 7055 t = btf_type_by_id(btf, t->type); 7056 7057 /* allow either struct or struct forward declaration */ 7058 if (btf_type_is_struct(t) || 7059 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7060 name = btf_str_by_offset(btf, t->name_off); 7061 return name && strcmp(name, "bpf_dynptr") == 0; 7062 } 7063 7064 return false; 7065 } 7066 7067 struct bpf_cand_cache { 7068 const char *name; 7069 u32 name_len; 7070 u16 kind; 7071 u16 cnt; 7072 struct { 7073 const struct btf *btf; 7074 u32 id; 7075 } cands[]; 7076 }; 7077 7078 static DEFINE_MUTEX(cand_cache_mutex); 7079 7080 static struct bpf_cand_cache * 7081 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7082 7083 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7084 const struct btf *btf, const struct btf_type *t) 7085 { 7086 struct bpf_cand_cache *cc; 7087 struct bpf_core_ctx ctx = { 7088 .btf = btf, 7089 .log = log, 7090 }; 7091 u32 kern_type_id, type_id; 7092 int err = 0; 7093 7094 /* skip PTR and modifiers */ 7095 type_id = t->type; 7096 t = btf_type_by_id(btf, t->type); 7097 while (btf_type_is_modifier(t)) { 7098 type_id = t->type; 7099 t = btf_type_by_id(btf, t->type); 7100 } 7101 7102 mutex_lock(&cand_cache_mutex); 7103 cc = bpf_core_find_cands(&ctx, type_id); 7104 if (IS_ERR(cc)) { 7105 err = PTR_ERR(cc); 7106 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7107 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7108 err); 7109 goto cand_cache_unlock; 7110 } 7111 if (cc->cnt != 1) { 7112 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7113 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7114 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7115 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7116 goto cand_cache_unlock; 7117 } 7118 if (btf_is_module(cc->cands[0].btf)) { 7119 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7120 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7121 err = -EOPNOTSUPP; 7122 goto cand_cache_unlock; 7123 } 7124 kern_type_id = cc->cands[0].id; 7125 7126 cand_cache_unlock: 7127 mutex_unlock(&cand_cache_mutex); 7128 if (err) 7129 return err; 7130 7131 return kern_type_id; 7132 } 7133 7134 enum btf_arg_tag { 7135 ARG_TAG_CTX = BIT_ULL(0), 7136 ARG_TAG_NONNULL = BIT_ULL(1), 7137 ARG_TAG_TRUSTED = BIT_ULL(2), 7138 ARG_TAG_NULLABLE = BIT_ULL(3), 7139 ARG_TAG_ARENA = BIT_ULL(4), 7140 }; 7141 7142 /* Process BTF of a function to produce high-level expectation of function 7143 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7144 * is cached in subprog info for reuse. 7145 * Returns: 7146 * EFAULT - there is a verifier bug. Abort verification. 7147 * EINVAL - cannot convert BTF. 7148 * 0 - Successfully processed BTF and constructed argument expectations. 7149 */ 7150 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7151 { 7152 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7153 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7154 struct bpf_verifier_log *log = &env->log; 7155 struct bpf_prog *prog = env->prog; 7156 enum bpf_prog_type prog_type = prog->type; 7157 struct btf *btf = prog->aux->btf; 7158 const struct btf_param *args; 7159 const struct btf_type *t, *ref_t, *fn_t; 7160 u32 i, nargs, btf_id; 7161 const char *tname; 7162 7163 if (sub->args_cached) 7164 return 0; 7165 7166 if (!prog->aux->func_info) { 7167 bpf_log(log, "Verifier bug\n"); 7168 return -EFAULT; 7169 } 7170 7171 btf_id = prog->aux->func_info[subprog].type_id; 7172 if (!btf_id) { 7173 if (!is_global) /* not fatal for static funcs */ 7174 return -EINVAL; 7175 bpf_log(log, "Global functions need valid BTF\n"); 7176 return -EFAULT; 7177 } 7178 7179 fn_t = btf_type_by_id(btf, btf_id); 7180 if (!fn_t || !btf_type_is_func(fn_t)) { 7181 /* These checks were already done by the verifier while loading 7182 * struct bpf_func_info 7183 */ 7184 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7185 subprog); 7186 return -EFAULT; 7187 } 7188 tname = btf_name_by_offset(btf, fn_t->name_off); 7189 7190 if (prog->aux->func_info_aux[subprog].unreliable) { 7191 bpf_log(log, "Verifier bug in function %s()\n", tname); 7192 return -EFAULT; 7193 } 7194 if (prog_type == BPF_PROG_TYPE_EXT) 7195 prog_type = prog->aux->dst_prog->type; 7196 7197 t = btf_type_by_id(btf, fn_t->type); 7198 if (!t || !btf_type_is_func_proto(t)) { 7199 bpf_log(log, "Invalid type of function %s()\n", tname); 7200 return -EFAULT; 7201 } 7202 args = (const struct btf_param *)(t + 1); 7203 nargs = btf_type_vlen(t); 7204 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7205 if (!is_global) 7206 return -EINVAL; 7207 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7208 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7209 return -EINVAL; 7210 } 7211 /* check that function returns int, exception cb also requires this */ 7212 t = btf_type_by_id(btf, t->type); 7213 while (btf_type_is_modifier(t)) 7214 t = btf_type_by_id(btf, t->type); 7215 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7216 if (!is_global) 7217 return -EINVAL; 7218 bpf_log(log, 7219 "Global function %s() doesn't return scalar. Only those are supported.\n", 7220 tname); 7221 return -EINVAL; 7222 } 7223 /* Convert BTF function arguments into verifier types. 7224 * Only PTR_TO_CTX and SCALAR are supported atm. 7225 */ 7226 for (i = 0; i < nargs; i++) { 7227 u32 tags = 0; 7228 int id = 0; 7229 7230 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7231 * register type from BTF type itself 7232 */ 7233 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7234 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7235 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7236 7237 /* disallow arg tags in static subprogs */ 7238 if (!is_global) { 7239 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7240 return -EOPNOTSUPP; 7241 } 7242 7243 if (strcmp(tag, "ctx") == 0) { 7244 tags |= ARG_TAG_CTX; 7245 } else if (strcmp(tag, "trusted") == 0) { 7246 tags |= ARG_TAG_TRUSTED; 7247 } else if (strcmp(tag, "nonnull") == 0) { 7248 tags |= ARG_TAG_NONNULL; 7249 } else if (strcmp(tag, "nullable") == 0) { 7250 tags |= ARG_TAG_NULLABLE; 7251 } else if (strcmp(tag, "arena") == 0) { 7252 tags |= ARG_TAG_ARENA; 7253 } else { 7254 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7255 return -EOPNOTSUPP; 7256 } 7257 } 7258 if (id != -ENOENT) { 7259 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7260 return id; 7261 } 7262 7263 t = btf_type_by_id(btf, args[i].type); 7264 while (btf_type_is_modifier(t)) 7265 t = btf_type_by_id(btf, t->type); 7266 if (!btf_type_is_ptr(t)) 7267 goto skip_pointer; 7268 7269 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7270 if (tags & ~ARG_TAG_CTX) { 7271 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7272 return -EINVAL; 7273 } 7274 if ((tags & ARG_TAG_CTX) && 7275 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7276 prog->expected_attach_type)) 7277 return -EINVAL; 7278 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7279 continue; 7280 } 7281 if (btf_is_dynptr_ptr(btf, t)) { 7282 if (tags) { 7283 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7284 return -EINVAL; 7285 } 7286 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7287 continue; 7288 } 7289 if (tags & ARG_TAG_TRUSTED) { 7290 int kern_type_id; 7291 7292 if (tags & ARG_TAG_NONNULL) { 7293 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7294 return -EINVAL; 7295 } 7296 7297 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7298 if (kern_type_id < 0) 7299 return kern_type_id; 7300 7301 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7302 if (tags & ARG_TAG_NULLABLE) 7303 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7304 sub->args[i].btf_id = kern_type_id; 7305 continue; 7306 } 7307 if (tags & ARG_TAG_ARENA) { 7308 if (tags & ~ARG_TAG_ARENA) { 7309 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7310 return -EINVAL; 7311 } 7312 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7313 continue; 7314 } 7315 if (is_global) { /* generic user data pointer */ 7316 u32 mem_size; 7317 7318 if (tags & ARG_TAG_NULLABLE) { 7319 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7320 return -EINVAL; 7321 } 7322 7323 t = btf_type_skip_modifiers(btf, t->type, NULL); 7324 ref_t = btf_resolve_size(btf, t, &mem_size); 7325 if (IS_ERR(ref_t)) { 7326 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7327 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7328 PTR_ERR(ref_t)); 7329 return -EINVAL; 7330 } 7331 7332 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7333 if (tags & ARG_TAG_NONNULL) 7334 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7335 sub->args[i].mem_size = mem_size; 7336 continue; 7337 } 7338 7339 skip_pointer: 7340 if (tags) { 7341 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7342 return -EINVAL; 7343 } 7344 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7345 sub->args[i].arg_type = ARG_ANYTHING; 7346 continue; 7347 } 7348 if (!is_global) 7349 return -EINVAL; 7350 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7351 i, btf_type_str(t), tname); 7352 return -EINVAL; 7353 } 7354 7355 sub->arg_cnt = nargs; 7356 sub->args_cached = true; 7357 7358 return 0; 7359 } 7360 7361 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7362 struct btf_show *show) 7363 { 7364 const struct btf_type *t = btf_type_by_id(btf, type_id); 7365 7366 show->btf = btf; 7367 memset(&show->state, 0, sizeof(show->state)); 7368 memset(&show->obj, 0, sizeof(show->obj)); 7369 7370 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7371 } 7372 7373 static void btf_seq_show(struct btf_show *show, const char *fmt, 7374 va_list args) 7375 { 7376 seq_vprintf((struct seq_file *)show->target, fmt, args); 7377 } 7378 7379 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7380 void *obj, struct seq_file *m, u64 flags) 7381 { 7382 struct btf_show sseq; 7383 7384 sseq.target = m; 7385 sseq.showfn = btf_seq_show; 7386 sseq.flags = flags; 7387 7388 btf_type_show(btf, type_id, obj, &sseq); 7389 7390 return sseq.state.status; 7391 } 7392 7393 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7394 struct seq_file *m) 7395 { 7396 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7397 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7398 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7399 } 7400 7401 struct btf_show_snprintf { 7402 struct btf_show show; 7403 int len_left; /* space left in string */ 7404 int len; /* length we would have written */ 7405 }; 7406 7407 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7408 va_list args) 7409 { 7410 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7411 int len; 7412 7413 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7414 7415 if (len < 0) { 7416 ssnprintf->len_left = 0; 7417 ssnprintf->len = len; 7418 } else if (len >= ssnprintf->len_left) { 7419 /* no space, drive on to get length we would have written */ 7420 ssnprintf->len_left = 0; 7421 ssnprintf->len += len; 7422 } else { 7423 ssnprintf->len_left -= len; 7424 ssnprintf->len += len; 7425 show->target += len; 7426 } 7427 } 7428 7429 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7430 char *buf, int len, u64 flags) 7431 { 7432 struct btf_show_snprintf ssnprintf; 7433 7434 ssnprintf.show.target = buf; 7435 ssnprintf.show.flags = flags; 7436 ssnprintf.show.showfn = btf_snprintf_show; 7437 ssnprintf.len_left = len; 7438 ssnprintf.len = 0; 7439 7440 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7441 7442 /* If we encountered an error, return it. */ 7443 if (ssnprintf.show.state.status) 7444 return ssnprintf.show.state.status; 7445 7446 /* Otherwise return length we would have written */ 7447 return ssnprintf.len; 7448 } 7449 7450 #ifdef CONFIG_PROC_FS 7451 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7452 { 7453 const struct btf *btf = filp->private_data; 7454 7455 seq_printf(m, "btf_id:\t%u\n", btf->id); 7456 } 7457 #endif 7458 7459 static int btf_release(struct inode *inode, struct file *filp) 7460 { 7461 btf_put(filp->private_data); 7462 return 0; 7463 } 7464 7465 const struct file_operations btf_fops = { 7466 #ifdef CONFIG_PROC_FS 7467 .show_fdinfo = bpf_btf_show_fdinfo, 7468 #endif 7469 .release = btf_release, 7470 }; 7471 7472 static int __btf_new_fd(struct btf *btf) 7473 { 7474 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7475 } 7476 7477 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7478 { 7479 struct btf *btf; 7480 int ret; 7481 7482 btf = btf_parse(attr, uattr, uattr_size); 7483 if (IS_ERR(btf)) 7484 return PTR_ERR(btf); 7485 7486 ret = btf_alloc_id(btf); 7487 if (ret) { 7488 btf_free(btf); 7489 return ret; 7490 } 7491 7492 /* 7493 * The BTF ID is published to the userspace. 7494 * All BTF free must go through call_rcu() from 7495 * now on (i.e. free by calling btf_put()). 7496 */ 7497 7498 ret = __btf_new_fd(btf); 7499 if (ret < 0) 7500 btf_put(btf); 7501 7502 return ret; 7503 } 7504 7505 struct btf *btf_get_by_fd(int fd) 7506 { 7507 struct btf *btf; 7508 struct fd f; 7509 7510 f = fdget(fd); 7511 7512 if (!f.file) 7513 return ERR_PTR(-EBADF); 7514 7515 if (f.file->f_op != &btf_fops) { 7516 fdput(f); 7517 return ERR_PTR(-EINVAL); 7518 } 7519 7520 btf = f.file->private_data; 7521 refcount_inc(&btf->refcnt); 7522 fdput(f); 7523 7524 return btf; 7525 } 7526 7527 int btf_get_info_by_fd(const struct btf *btf, 7528 const union bpf_attr *attr, 7529 union bpf_attr __user *uattr) 7530 { 7531 struct bpf_btf_info __user *uinfo; 7532 struct bpf_btf_info info; 7533 u32 info_copy, btf_copy; 7534 void __user *ubtf; 7535 char __user *uname; 7536 u32 uinfo_len, uname_len, name_len; 7537 int ret = 0; 7538 7539 uinfo = u64_to_user_ptr(attr->info.info); 7540 uinfo_len = attr->info.info_len; 7541 7542 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7543 memset(&info, 0, sizeof(info)); 7544 if (copy_from_user(&info, uinfo, info_copy)) 7545 return -EFAULT; 7546 7547 info.id = btf->id; 7548 ubtf = u64_to_user_ptr(info.btf); 7549 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7550 if (copy_to_user(ubtf, btf->data, btf_copy)) 7551 return -EFAULT; 7552 info.btf_size = btf->data_size; 7553 7554 info.kernel_btf = btf->kernel_btf; 7555 7556 uname = u64_to_user_ptr(info.name); 7557 uname_len = info.name_len; 7558 if (!uname ^ !uname_len) 7559 return -EINVAL; 7560 7561 name_len = strlen(btf->name); 7562 info.name_len = name_len; 7563 7564 if (uname) { 7565 if (uname_len >= name_len + 1) { 7566 if (copy_to_user(uname, btf->name, name_len + 1)) 7567 return -EFAULT; 7568 } else { 7569 char zero = '\0'; 7570 7571 if (copy_to_user(uname, btf->name, uname_len - 1)) 7572 return -EFAULT; 7573 if (put_user(zero, uname + uname_len - 1)) 7574 return -EFAULT; 7575 /* let user-space know about too short buffer */ 7576 ret = -ENOSPC; 7577 } 7578 } 7579 7580 if (copy_to_user(uinfo, &info, info_copy) || 7581 put_user(info_copy, &uattr->info.info_len)) 7582 return -EFAULT; 7583 7584 return ret; 7585 } 7586 7587 int btf_get_fd_by_id(u32 id) 7588 { 7589 struct btf *btf; 7590 int fd; 7591 7592 rcu_read_lock(); 7593 btf = idr_find(&btf_idr, id); 7594 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7595 btf = ERR_PTR(-ENOENT); 7596 rcu_read_unlock(); 7597 7598 if (IS_ERR(btf)) 7599 return PTR_ERR(btf); 7600 7601 fd = __btf_new_fd(btf); 7602 if (fd < 0) 7603 btf_put(btf); 7604 7605 return fd; 7606 } 7607 7608 u32 btf_obj_id(const struct btf *btf) 7609 { 7610 return btf->id; 7611 } 7612 7613 bool btf_is_kernel(const struct btf *btf) 7614 { 7615 return btf->kernel_btf; 7616 } 7617 7618 bool btf_is_module(const struct btf *btf) 7619 { 7620 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7621 } 7622 7623 enum { 7624 BTF_MODULE_F_LIVE = (1 << 0), 7625 }; 7626 7627 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7628 struct btf_module { 7629 struct list_head list; 7630 struct module *module; 7631 struct btf *btf; 7632 struct bin_attribute *sysfs_attr; 7633 int flags; 7634 }; 7635 7636 static LIST_HEAD(btf_modules); 7637 static DEFINE_MUTEX(btf_module_mutex); 7638 7639 static ssize_t 7640 btf_module_read(struct file *file, struct kobject *kobj, 7641 struct bin_attribute *bin_attr, 7642 char *buf, loff_t off, size_t len) 7643 { 7644 const struct btf *btf = bin_attr->private; 7645 7646 memcpy(buf, btf->data + off, len); 7647 return len; 7648 } 7649 7650 static void purge_cand_cache(struct btf *btf); 7651 7652 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7653 void *module) 7654 { 7655 struct btf_module *btf_mod, *tmp; 7656 struct module *mod = module; 7657 struct btf *btf; 7658 int err = 0; 7659 7660 if (mod->btf_data_size == 0 || 7661 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7662 op != MODULE_STATE_GOING)) 7663 goto out; 7664 7665 switch (op) { 7666 case MODULE_STATE_COMING: 7667 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7668 if (!btf_mod) { 7669 err = -ENOMEM; 7670 goto out; 7671 } 7672 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7673 if (IS_ERR(btf)) { 7674 kfree(btf_mod); 7675 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7676 pr_warn("failed to validate module [%s] BTF: %ld\n", 7677 mod->name, PTR_ERR(btf)); 7678 err = PTR_ERR(btf); 7679 } else { 7680 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7681 } 7682 goto out; 7683 } 7684 err = btf_alloc_id(btf); 7685 if (err) { 7686 btf_free(btf); 7687 kfree(btf_mod); 7688 goto out; 7689 } 7690 7691 purge_cand_cache(NULL); 7692 mutex_lock(&btf_module_mutex); 7693 btf_mod->module = module; 7694 btf_mod->btf = btf; 7695 list_add(&btf_mod->list, &btf_modules); 7696 mutex_unlock(&btf_module_mutex); 7697 7698 if (IS_ENABLED(CONFIG_SYSFS)) { 7699 struct bin_attribute *attr; 7700 7701 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7702 if (!attr) 7703 goto out; 7704 7705 sysfs_bin_attr_init(attr); 7706 attr->attr.name = btf->name; 7707 attr->attr.mode = 0444; 7708 attr->size = btf->data_size; 7709 attr->private = btf; 7710 attr->read = btf_module_read; 7711 7712 err = sysfs_create_bin_file(btf_kobj, attr); 7713 if (err) { 7714 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7715 mod->name, err); 7716 kfree(attr); 7717 err = 0; 7718 goto out; 7719 } 7720 7721 btf_mod->sysfs_attr = attr; 7722 } 7723 7724 break; 7725 case MODULE_STATE_LIVE: 7726 mutex_lock(&btf_module_mutex); 7727 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7728 if (btf_mod->module != module) 7729 continue; 7730 7731 btf_mod->flags |= BTF_MODULE_F_LIVE; 7732 break; 7733 } 7734 mutex_unlock(&btf_module_mutex); 7735 break; 7736 case MODULE_STATE_GOING: 7737 mutex_lock(&btf_module_mutex); 7738 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7739 if (btf_mod->module != module) 7740 continue; 7741 7742 list_del(&btf_mod->list); 7743 if (btf_mod->sysfs_attr) 7744 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7745 purge_cand_cache(btf_mod->btf); 7746 btf_put(btf_mod->btf); 7747 kfree(btf_mod->sysfs_attr); 7748 kfree(btf_mod); 7749 break; 7750 } 7751 mutex_unlock(&btf_module_mutex); 7752 break; 7753 } 7754 out: 7755 return notifier_from_errno(err); 7756 } 7757 7758 static struct notifier_block btf_module_nb = { 7759 .notifier_call = btf_module_notify, 7760 }; 7761 7762 static int __init btf_module_init(void) 7763 { 7764 register_module_notifier(&btf_module_nb); 7765 return 0; 7766 } 7767 7768 fs_initcall(btf_module_init); 7769 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7770 7771 struct module *btf_try_get_module(const struct btf *btf) 7772 { 7773 struct module *res = NULL; 7774 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7775 struct btf_module *btf_mod, *tmp; 7776 7777 mutex_lock(&btf_module_mutex); 7778 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7779 if (btf_mod->btf != btf) 7780 continue; 7781 7782 /* We must only consider module whose __init routine has 7783 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7784 * which is set from the notifier callback for 7785 * MODULE_STATE_LIVE. 7786 */ 7787 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7788 res = btf_mod->module; 7789 7790 break; 7791 } 7792 mutex_unlock(&btf_module_mutex); 7793 #endif 7794 7795 return res; 7796 } 7797 7798 /* Returns struct btf corresponding to the struct module. 7799 * This function can return NULL or ERR_PTR. 7800 */ 7801 static struct btf *btf_get_module_btf(const struct module *module) 7802 { 7803 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7804 struct btf_module *btf_mod, *tmp; 7805 #endif 7806 struct btf *btf = NULL; 7807 7808 if (!module) { 7809 btf = bpf_get_btf_vmlinux(); 7810 if (!IS_ERR_OR_NULL(btf)) 7811 btf_get(btf); 7812 return btf; 7813 } 7814 7815 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7816 mutex_lock(&btf_module_mutex); 7817 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7818 if (btf_mod->module != module) 7819 continue; 7820 7821 btf_get(btf_mod->btf); 7822 btf = btf_mod->btf; 7823 break; 7824 } 7825 mutex_unlock(&btf_module_mutex); 7826 #endif 7827 7828 return btf; 7829 } 7830 7831 static int check_btf_kconfigs(const struct module *module, const char *feature) 7832 { 7833 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7834 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 7835 return -ENOENT; 7836 } 7837 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 7838 pr_warn("missing module BTF, cannot register %s\n", feature); 7839 return 0; 7840 } 7841 7842 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7843 { 7844 struct btf *btf = NULL; 7845 int btf_obj_fd = 0; 7846 long ret; 7847 7848 if (flags) 7849 return -EINVAL; 7850 7851 if (name_sz <= 1 || name[name_sz - 1]) 7852 return -EINVAL; 7853 7854 ret = bpf_find_btf_id(name, kind, &btf); 7855 if (ret > 0 && btf_is_module(btf)) { 7856 btf_obj_fd = __btf_new_fd(btf); 7857 if (btf_obj_fd < 0) { 7858 btf_put(btf); 7859 return btf_obj_fd; 7860 } 7861 return ret | (((u64)btf_obj_fd) << 32); 7862 } 7863 if (ret > 0) 7864 btf_put(btf); 7865 return ret; 7866 } 7867 7868 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7869 .func = bpf_btf_find_by_name_kind, 7870 .gpl_only = false, 7871 .ret_type = RET_INTEGER, 7872 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7873 .arg2_type = ARG_CONST_SIZE, 7874 .arg3_type = ARG_ANYTHING, 7875 .arg4_type = ARG_ANYTHING, 7876 }; 7877 7878 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7879 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7880 BTF_TRACING_TYPE_xxx 7881 #undef BTF_TRACING_TYPE 7882 7883 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7884 const struct btf_type *func, u32 func_flags) 7885 { 7886 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7887 const char *name, *sfx, *iter_name; 7888 const struct btf_param *arg; 7889 const struct btf_type *t; 7890 char exp_name[128]; 7891 u32 nr_args; 7892 7893 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7894 if (!flags || (flags & (flags - 1))) 7895 return -EINVAL; 7896 7897 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7898 nr_args = btf_type_vlen(func); 7899 if (nr_args < 1) 7900 return -EINVAL; 7901 7902 arg = &btf_params(func)[0]; 7903 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7904 if (!t || !btf_type_is_ptr(t)) 7905 return -EINVAL; 7906 t = btf_type_skip_modifiers(btf, t->type, NULL); 7907 if (!t || !__btf_type_is_struct(t)) 7908 return -EINVAL; 7909 7910 name = btf_name_by_offset(btf, t->name_off); 7911 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 7912 return -EINVAL; 7913 7914 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 7915 * fit nicely in stack slots 7916 */ 7917 if (t->size == 0 || (t->size % 8)) 7918 return -EINVAL; 7919 7920 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 7921 * naming pattern 7922 */ 7923 iter_name = name + sizeof(ITER_PREFIX) - 1; 7924 if (flags & KF_ITER_NEW) 7925 sfx = "new"; 7926 else if (flags & KF_ITER_NEXT) 7927 sfx = "next"; 7928 else /* (flags & KF_ITER_DESTROY) */ 7929 sfx = "destroy"; 7930 7931 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 7932 if (strcmp(func_name, exp_name)) 7933 return -EINVAL; 7934 7935 /* only iter constructor should have extra arguments */ 7936 if (!(flags & KF_ITER_NEW) && nr_args != 1) 7937 return -EINVAL; 7938 7939 if (flags & KF_ITER_NEXT) { 7940 /* bpf_iter_<type>_next() should return pointer */ 7941 t = btf_type_skip_modifiers(btf, func->type, NULL); 7942 if (!t || !btf_type_is_ptr(t)) 7943 return -EINVAL; 7944 } 7945 7946 if (flags & KF_ITER_DESTROY) { 7947 /* bpf_iter_<type>_destroy() should return void */ 7948 t = btf_type_by_id(btf, func->type); 7949 if (!t || !btf_type_is_void(t)) 7950 return -EINVAL; 7951 } 7952 7953 return 0; 7954 } 7955 7956 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 7957 { 7958 const struct btf_type *func; 7959 const char *func_name; 7960 int err; 7961 7962 /* any kfunc should be FUNC -> FUNC_PROTO */ 7963 func = btf_type_by_id(btf, func_id); 7964 if (!func || !btf_type_is_func(func)) 7965 return -EINVAL; 7966 7967 /* sanity check kfunc name */ 7968 func_name = btf_name_by_offset(btf, func->name_off); 7969 if (!func_name || !func_name[0]) 7970 return -EINVAL; 7971 7972 func = btf_type_by_id(btf, func->type); 7973 if (!func || !btf_type_is_func_proto(func)) 7974 return -EINVAL; 7975 7976 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 7977 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 7978 if (err) 7979 return err; 7980 } 7981 7982 return 0; 7983 } 7984 7985 /* Kernel Function (kfunc) BTF ID set registration API */ 7986 7987 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7988 const struct btf_kfunc_id_set *kset) 7989 { 7990 struct btf_kfunc_hook_filter *hook_filter; 7991 struct btf_id_set8 *add_set = kset->set; 7992 bool vmlinux_set = !btf_is_module(btf); 7993 bool add_filter = !!kset->filter; 7994 struct btf_kfunc_set_tab *tab; 7995 struct btf_id_set8 *set; 7996 u32 set_cnt; 7997 int ret; 7998 7999 if (hook >= BTF_KFUNC_HOOK_MAX) { 8000 ret = -EINVAL; 8001 goto end; 8002 } 8003 8004 if (!add_set->cnt) 8005 return 0; 8006 8007 tab = btf->kfunc_set_tab; 8008 8009 if (tab && add_filter) { 8010 u32 i; 8011 8012 hook_filter = &tab->hook_filters[hook]; 8013 for (i = 0; i < hook_filter->nr_filters; i++) { 8014 if (hook_filter->filters[i] == kset->filter) { 8015 add_filter = false; 8016 break; 8017 } 8018 } 8019 8020 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8021 ret = -E2BIG; 8022 goto end; 8023 } 8024 } 8025 8026 if (!tab) { 8027 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8028 if (!tab) 8029 return -ENOMEM; 8030 btf->kfunc_set_tab = tab; 8031 } 8032 8033 set = tab->sets[hook]; 8034 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8035 * for module sets. 8036 */ 8037 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8038 ret = -EINVAL; 8039 goto end; 8040 } 8041 8042 /* We don't need to allocate, concatenate, and sort module sets, because 8043 * only one is allowed per hook. Hence, we can directly assign the 8044 * pointer and return. 8045 */ 8046 if (!vmlinux_set) { 8047 tab->sets[hook] = add_set; 8048 goto do_add_filter; 8049 } 8050 8051 /* In case of vmlinux sets, there may be more than one set being 8052 * registered per hook. To create a unified set, we allocate a new set 8053 * and concatenate all individual sets being registered. While each set 8054 * is individually sorted, they may become unsorted when concatenated, 8055 * hence re-sorting the final set again is required to make binary 8056 * searching the set using btf_id_set8_contains function work. 8057 */ 8058 set_cnt = set ? set->cnt : 0; 8059 8060 if (set_cnt > U32_MAX - add_set->cnt) { 8061 ret = -EOVERFLOW; 8062 goto end; 8063 } 8064 8065 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8066 ret = -E2BIG; 8067 goto end; 8068 } 8069 8070 /* Grow set */ 8071 set = krealloc(tab->sets[hook], 8072 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8073 GFP_KERNEL | __GFP_NOWARN); 8074 if (!set) { 8075 ret = -ENOMEM; 8076 goto end; 8077 } 8078 8079 /* For newly allocated set, initialize set->cnt to 0 */ 8080 if (!tab->sets[hook]) 8081 set->cnt = 0; 8082 tab->sets[hook] = set; 8083 8084 /* Concatenate the two sets */ 8085 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8086 set->cnt += add_set->cnt; 8087 8088 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8089 8090 do_add_filter: 8091 if (add_filter) { 8092 hook_filter = &tab->hook_filters[hook]; 8093 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8094 } 8095 return 0; 8096 end: 8097 btf_free_kfunc_set_tab(btf); 8098 return ret; 8099 } 8100 8101 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8102 enum btf_kfunc_hook hook, 8103 u32 kfunc_btf_id, 8104 const struct bpf_prog *prog) 8105 { 8106 struct btf_kfunc_hook_filter *hook_filter; 8107 struct btf_id_set8 *set; 8108 u32 *id, i; 8109 8110 if (hook >= BTF_KFUNC_HOOK_MAX) 8111 return NULL; 8112 if (!btf->kfunc_set_tab) 8113 return NULL; 8114 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8115 for (i = 0; i < hook_filter->nr_filters; i++) { 8116 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8117 return NULL; 8118 } 8119 set = btf->kfunc_set_tab->sets[hook]; 8120 if (!set) 8121 return NULL; 8122 id = btf_id_set8_contains(set, kfunc_btf_id); 8123 if (!id) 8124 return NULL; 8125 /* The flags for BTF ID are located next to it */ 8126 return id + 1; 8127 } 8128 8129 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8130 { 8131 switch (prog_type) { 8132 case BPF_PROG_TYPE_UNSPEC: 8133 return BTF_KFUNC_HOOK_COMMON; 8134 case BPF_PROG_TYPE_XDP: 8135 return BTF_KFUNC_HOOK_XDP; 8136 case BPF_PROG_TYPE_SCHED_CLS: 8137 return BTF_KFUNC_HOOK_TC; 8138 case BPF_PROG_TYPE_STRUCT_OPS: 8139 return BTF_KFUNC_HOOK_STRUCT_OPS; 8140 case BPF_PROG_TYPE_TRACING: 8141 case BPF_PROG_TYPE_LSM: 8142 return BTF_KFUNC_HOOK_TRACING; 8143 case BPF_PROG_TYPE_SYSCALL: 8144 return BTF_KFUNC_HOOK_SYSCALL; 8145 case BPF_PROG_TYPE_CGROUP_SKB: 8146 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8147 return BTF_KFUNC_HOOK_CGROUP_SKB; 8148 case BPF_PROG_TYPE_SCHED_ACT: 8149 return BTF_KFUNC_HOOK_SCHED_ACT; 8150 case BPF_PROG_TYPE_SK_SKB: 8151 return BTF_KFUNC_HOOK_SK_SKB; 8152 case BPF_PROG_TYPE_SOCKET_FILTER: 8153 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8154 case BPF_PROG_TYPE_LWT_OUT: 8155 case BPF_PROG_TYPE_LWT_IN: 8156 case BPF_PROG_TYPE_LWT_XMIT: 8157 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8158 return BTF_KFUNC_HOOK_LWT; 8159 case BPF_PROG_TYPE_NETFILTER: 8160 return BTF_KFUNC_HOOK_NETFILTER; 8161 case BPF_PROG_TYPE_KPROBE: 8162 return BTF_KFUNC_HOOK_KPROBE; 8163 default: 8164 return BTF_KFUNC_HOOK_MAX; 8165 } 8166 } 8167 8168 /* Caution: 8169 * Reference to the module (obtained using btf_try_get_module) corresponding to 8170 * the struct btf *MUST* be held when calling this function from verifier 8171 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8172 * keeping the reference for the duration of the call provides the necessary 8173 * protection for looking up a well-formed btf->kfunc_set_tab. 8174 */ 8175 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8176 u32 kfunc_btf_id, 8177 const struct bpf_prog *prog) 8178 { 8179 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8180 enum btf_kfunc_hook hook; 8181 u32 *kfunc_flags; 8182 8183 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8184 if (kfunc_flags) 8185 return kfunc_flags; 8186 8187 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8188 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8189 } 8190 8191 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8192 const struct bpf_prog *prog) 8193 { 8194 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8195 } 8196 8197 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8198 const struct btf_kfunc_id_set *kset) 8199 { 8200 struct btf *btf; 8201 int ret, i; 8202 8203 btf = btf_get_module_btf(kset->owner); 8204 if (!btf) 8205 return check_btf_kconfigs(kset->owner, "kfunc"); 8206 if (IS_ERR(btf)) 8207 return PTR_ERR(btf); 8208 8209 for (i = 0; i < kset->set->cnt; i++) { 8210 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 8211 kset->set->pairs[i].flags); 8212 if (ret) 8213 goto err_out; 8214 } 8215 8216 ret = btf_populate_kfunc_set(btf, hook, kset); 8217 8218 err_out: 8219 btf_put(btf); 8220 return ret; 8221 } 8222 8223 /* This function must be invoked only from initcalls/module init functions */ 8224 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8225 const struct btf_kfunc_id_set *kset) 8226 { 8227 enum btf_kfunc_hook hook; 8228 8229 /* All kfuncs need to be tagged as such in BTF. 8230 * WARN() for initcall registrations that do not check errors. 8231 */ 8232 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8233 WARN_ON(!kset->owner); 8234 return -EINVAL; 8235 } 8236 8237 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8238 return __register_btf_kfunc_id_set(hook, kset); 8239 } 8240 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8241 8242 /* This function must be invoked only from initcalls/module init functions */ 8243 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8244 { 8245 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8246 } 8247 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8248 8249 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8250 { 8251 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8252 struct btf_id_dtor_kfunc *dtor; 8253 8254 if (!tab) 8255 return -ENOENT; 8256 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8257 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8258 */ 8259 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8260 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8261 if (!dtor) 8262 return -ENOENT; 8263 return dtor->kfunc_btf_id; 8264 } 8265 8266 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8267 { 8268 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8269 const struct btf_param *args; 8270 s32 dtor_btf_id; 8271 u32 nr_args, i; 8272 8273 for (i = 0; i < cnt; i++) { 8274 dtor_btf_id = dtors[i].kfunc_btf_id; 8275 8276 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8277 if (!dtor_func || !btf_type_is_func(dtor_func)) 8278 return -EINVAL; 8279 8280 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8281 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8282 return -EINVAL; 8283 8284 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8285 t = btf_type_by_id(btf, dtor_func_proto->type); 8286 if (!t || !btf_type_is_void(t)) 8287 return -EINVAL; 8288 8289 nr_args = btf_type_vlen(dtor_func_proto); 8290 if (nr_args != 1) 8291 return -EINVAL; 8292 args = btf_params(dtor_func_proto); 8293 t = btf_type_by_id(btf, args[0].type); 8294 /* Allow any pointer type, as width on targets Linux supports 8295 * will be same for all pointer types (i.e. sizeof(void *)) 8296 */ 8297 if (!t || !btf_type_is_ptr(t)) 8298 return -EINVAL; 8299 } 8300 return 0; 8301 } 8302 8303 /* This function must be invoked only from initcalls/module init functions */ 8304 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8305 struct module *owner) 8306 { 8307 struct btf_id_dtor_kfunc_tab *tab; 8308 struct btf *btf; 8309 u32 tab_cnt; 8310 int ret; 8311 8312 btf = btf_get_module_btf(owner); 8313 if (!btf) 8314 return check_btf_kconfigs(owner, "dtor kfuncs"); 8315 if (IS_ERR(btf)) 8316 return PTR_ERR(btf); 8317 8318 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8319 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8320 ret = -E2BIG; 8321 goto end; 8322 } 8323 8324 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8325 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8326 if (ret < 0) 8327 goto end; 8328 8329 tab = btf->dtor_kfunc_tab; 8330 /* Only one call allowed for modules */ 8331 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8332 ret = -EINVAL; 8333 goto end; 8334 } 8335 8336 tab_cnt = tab ? tab->cnt : 0; 8337 if (tab_cnt > U32_MAX - add_cnt) { 8338 ret = -EOVERFLOW; 8339 goto end; 8340 } 8341 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8342 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8343 ret = -E2BIG; 8344 goto end; 8345 } 8346 8347 tab = krealloc(btf->dtor_kfunc_tab, 8348 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8349 GFP_KERNEL | __GFP_NOWARN); 8350 if (!tab) { 8351 ret = -ENOMEM; 8352 goto end; 8353 } 8354 8355 if (!btf->dtor_kfunc_tab) 8356 tab->cnt = 0; 8357 btf->dtor_kfunc_tab = tab; 8358 8359 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8360 tab->cnt += add_cnt; 8361 8362 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8363 8364 end: 8365 if (ret) 8366 btf_free_dtor_kfunc_tab(btf); 8367 btf_put(btf); 8368 return ret; 8369 } 8370 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8371 8372 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8373 8374 /* Check local and target types for compatibility. This check is used for 8375 * type-based CO-RE relocations and follow slightly different rules than 8376 * field-based relocations. This function assumes that root types were already 8377 * checked for name match. Beyond that initial root-level name check, names 8378 * are completely ignored. Compatibility rules are as follows: 8379 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8380 * kind should match for local and target types (i.e., STRUCT is not 8381 * compatible with UNION); 8382 * - for ENUMs/ENUM64s, the size is ignored; 8383 * - for INT, size and signedness are ignored; 8384 * - for ARRAY, dimensionality is ignored, element types are checked for 8385 * compatibility recursively; 8386 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8387 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8388 * - FUNC_PROTOs are compatible if they have compatible signature: same 8389 * number of input args and compatible return and argument types. 8390 * These rules are not set in stone and probably will be adjusted as we get 8391 * more experience with using BPF CO-RE relocations. 8392 */ 8393 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8394 const struct btf *targ_btf, __u32 targ_id) 8395 { 8396 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8397 MAX_TYPES_ARE_COMPAT_DEPTH); 8398 } 8399 8400 #define MAX_TYPES_MATCH_DEPTH 2 8401 8402 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8403 const struct btf *targ_btf, u32 targ_id) 8404 { 8405 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8406 MAX_TYPES_MATCH_DEPTH); 8407 } 8408 8409 static bool bpf_core_is_flavor_sep(const char *s) 8410 { 8411 /* check X___Y name pattern, where X and Y are not underscores */ 8412 return s[0] != '_' && /* X */ 8413 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8414 s[4] != '_'; /* Y */ 8415 } 8416 8417 size_t bpf_core_essential_name_len(const char *name) 8418 { 8419 size_t n = strlen(name); 8420 int i; 8421 8422 for (i = n - 5; i >= 0; i--) { 8423 if (bpf_core_is_flavor_sep(name + i)) 8424 return i + 1; 8425 } 8426 return n; 8427 } 8428 8429 static void bpf_free_cands(struct bpf_cand_cache *cands) 8430 { 8431 if (!cands->cnt) 8432 /* empty candidate array was allocated on stack */ 8433 return; 8434 kfree(cands); 8435 } 8436 8437 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8438 { 8439 kfree(cands->name); 8440 kfree(cands); 8441 } 8442 8443 #define VMLINUX_CAND_CACHE_SIZE 31 8444 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8445 8446 #define MODULE_CAND_CACHE_SIZE 31 8447 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8448 8449 static void __print_cand_cache(struct bpf_verifier_log *log, 8450 struct bpf_cand_cache **cache, 8451 int cache_size) 8452 { 8453 struct bpf_cand_cache *cc; 8454 int i, j; 8455 8456 for (i = 0; i < cache_size; i++) { 8457 cc = cache[i]; 8458 if (!cc) 8459 continue; 8460 bpf_log(log, "[%d]%s(", i, cc->name); 8461 for (j = 0; j < cc->cnt; j++) { 8462 bpf_log(log, "%d", cc->cands[j].id); 8463 if (j < cc->cnt - 1) 8464 bpf_log(log, " "); 8465 } 8466 bpf_log(log, "), "); 8467 } 8468 } 8469 8470 static void print_cand_cache(struct bpf_verifier_log *log) 8471 { 8472 mutex_lock(&cand_cache_mutex); 8473 bpf_log(log, "vmlinux_cand_cache:"); 8474 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8475 bpf_log(log, "\nmodule_cand_cache:"); 8476 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8477 bpf_log(log, "\n"); 8478 mutex_unlock(&cand_cache_mutex); 8479 } 8480 8481 static u32 hash_cands(struct bpf_cand_cache *cands) 8482 { 8483 return jhash(cands->name, cands->name_len, 0); 8484 } 8485 8486 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8487 struct bpf_cand_cache **cache, 8488 int cache_size) 8489 { 8490 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8491 8492 if (cc && cc->name_len == cands->name_len && 8493 !strncmp(cc->name, cands->name, cands->name_len)) 8494 return cc; 8495 return NULL; 8496 } 8497 8498 static size_t sizeof_cands(int cnt) 8499 { 8500 return offsetof(struct bpf_cand_cache, cands[cnt]); 8501 } 8502 8503 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8504 struct bpf_cand_cache **cache, 8505 int cache_size) 8506 { 8507 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8508 8509 if (*cc) { 8510 bpf_free_cands_from_cache(*cc); 8511 *cc = NULL; 8512 } 8513 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8514 if (!new_cands) { 8515 bpf_free_cands(cands); 8516 return ERR_PTR(-ENOMEM); 8517 } 8518 /* strdup the name, since it will stay in cache. 8519 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8520 */ 8521 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8522 bpf_free_cands(cands); 8523 if (!new_cands->name) { 8524 kfree(new_cands); 8525 return ERR_PTR(-ENOMEM); 8526 } 8527 *cc = new_cands; 8528 return new_cands; 8529 } 8530 8531 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8532 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8533 int cache_size) 8534 { 8535 struct bpf_cand_cache *cc; 8536 int i, j; 8537 8538 for (i = 0; i < cache_size; i++) { 8539 cc = cache[i]; 8540 if (!cc) 8541 continue; 8542 if (!btf) { 8543 /* when new module is loaded purge all of module_cand_cache, 8544 * since new module might have candidates with the name 8545 * that matches cached cands. 8546 */ 8547 bpf_free_cands_from_cache(cc); 8548 cache[i] = NULL; 8549 continue; 8550 } 8551 /* when module is unloaded purge cache entries 8552 * that match module's btf 8553 */ 8554 for (j = 0; j < cc->cnt; j++) 8555 if (cc->cands[j].btf == btf) { 8556 bpf_free_cands_from_cache(cc); 8557 cache[i] = NULL; 8558 break; 8559 } 8560 } 8561 8562 } 8563 8564 static void purge_cand_cache(struct btf *btf) 8565 { 8566 mutex_lock(&cand_cache_mutex); 8567 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8568 mutex_unlock(&cand_cache_mutex); 8569 } 8570 #endif 8571 8572 static struct bpf_cand_cache * 8573 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8574 int targ_start_id) 8575 { 8576 struct bpf_cand_cache *new_cands; 8577 const struct btf_type *t; 8578 const char *targ_name; 8579 size_t targ_essent_len; 8580 int n, i; 8581 8582 n = btf_nr_types(targ_btf); 8583 for (i = targ_start_id; i < n; i++) { 8584 t = btf_type_by_id(targ_btf, i); 8585 if (btf_kind(t) != cands->kind) 8586 continue; 8587 8588 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8589 if (!targ_name) 8590 continue; 8591 8592 /* the resched point is before strncmp to make sure that search 8593 * for non-existing name will have a chance to schedule(). 8594 */ 8595 cond_resched(); 8596 8597 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8598 continue; 8599 8600 targ_essent_len = bpf_core_essential_name_len(targ_name); 8601 if (targ_essent_len != cands->name_len) 8602 continue; 8603 8604 /* most of the time there is only one candidate for a given kind+name pair */ 8605 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8606 if (!new_cands) { 8607 bpf_free_cands(cands); 8608 return ERR_PTR(-ENOMEM); 8609 } 8610 8611 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8612 bpf_free_cands(cands); 8613 cands = new_cands; 8614 cands->cands[cands->cnt].btf = targ_btf; 8615 cands->cands[cands->cnt].id = i; 8616 cands->cnt++; 8617 } 8618 return cands; 8619 } 8620 8621 static struct bpf_cand_cache * 8622 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8623 { 8624 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8625 const struct btf *local_btf = ctx->btf; 8626 const struct btf_type *local_type; 8627 const struct btf *main_btf; 8628 size_t local_essent_len; 8629 struct btf *mod_btf; 8630 const char *name; 8631 int id; 8632 8633 main_btf = bpf_get_btf_vmlinux(); 8634 if (IS_ERR(main_btf)) 8635 return ERR_CAST(main_btf); 8636 if (!main_btf) 8637 return ERR_PTR(-EINVAL); 8638 8639 local_type = btf_type_by_id(local_btf, local_type_id); 8640 if (!local_type) 8641 return ERR_PTR(-EINVAL); 8642 8643 name = btf_name_by_offset(local_btf, local_type->name_off); 8644 if (str_is_empty(name)) 8645 return ERR_PTR(-EINVAL); 8646 local_essent_len = bpf_core_essential_name_len(name); 8647 8648 cands = &local_cand; 8649 cands->name = name; 8650 cands->kind = btf_kind(local_type); 8651 cands->name_len = local_essent_len; 8652 8653 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8654 /* cands is a pointer to stack here */ 8655 if (cc) { 8656 if (cc->cnt) 8657 return cc; 8658 goto check_modules; 8659 } 8660 8661 /* Attempt to find target candidates in vmlinux BTF first */ 8662 cands = bpf_core_add_cands(cands, main_btf, 1); 8663 if (IS_ERR(cands)) 8664 return ERR_CAST(cands); 8665 8666 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8667 8668 /* populate cache even when cands->cnt == 0 */ 8669 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8670 if (IS_ERR(cc)) 8671 return ERR_CAST(cc); 8672 8673 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8674 if (cc->cnt) 8675 return cc; 8676 8677 check_modules: 8678 /* cands is a pointer to stack here and cands->cnt == 0 */ 8679 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8680 if (cc) 8681 /* if cache has it return it even if cc->cnt == 0 */ 8682 return cc; 8683 8684 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8685 spin_lock_bh(&btf_idr_lock); 8686 idr_for_each_entry(&btf_idr, mod_btf, id) { 8687 if (!btf_is_module(mod_btf)) 8688 continue; 8689 /* linear search could be slow hence unlock/lock 8690 * the IDR to avoiding holding it for too long 8691 */ 8692 btf_get(mod_btf); 8693 spin_unlock_bh(&btf_idr_lock); 8694 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8695 btf_put(mod_btf); 8696 if (IS_ERR(cands)) 8697 return ERR_CAST(cands); 8698 spin_lock_bh(&btf_idr_lock); 8699 } 8700 spin_unlock_bh(&btf_idr_lock); 8701 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8702 * or pointer to stack if cands->cnd == 0. 8703 * Copy it into the cache even when cands->cnt == 0 and 8704 * return the result. 8705 */ 8706 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8707 } 8708 8709 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8710 int relo_idx, void *insn) 8711 { 8712 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8713 struct bpf_core_cand_list cands = {}; 8714 struct bpf_core_relo_res targ_res; 8715 struct bpf_core_spec *specs; 8716 int err; 8717 8718 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8719 * into arrays of btf_ids of struct fields and array indices. 8720 */ 8721 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8722 if (!specs) 8723 return -ENOMEM; 8724 8725 if (need_cands) { 8726 struct bpf_cand_cache *cc; 8727 int i; 8728 8729 mutex_lock(&cand_cache_mutex); 8730 cc = bpf_core_find_cands(ctx, relo->type_id); 8731 if (IS_ERR(cc)) { 8732 bpf_log(ctx->log, "target candidate search failed for %d\n", 8733 relo->type_id); 8734 err = PTR_ERR(cc); 8735 goto out; 8736 } 8737 if (cc->cnt) { 8738 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8739 if (!cands.cands) { 8740 err = -ENOMEM; 8741 goto out; 8742 } 8743 } 8744 for (i = 0; i < cc->cnt; i++) { 8745 bpf_log(ctx->log, 8746 "CO-RE relocating %s %s: found target candidate [%d]\n", 8747 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8748 cands.cands[i].btf = cc->cands[i].btf; 8749 cands.cands[i].id = cc->cands[i].id; 8750 } 8751 cands.len = cc->cnt; 8752 /* cand_cache_mutex needs to span the cache lookup and 8753 * copy of btf pointer into bpf_core_cand_list, 8754 * since module can be unloaded while bpf_core_calc_relo_insn 8755 * is working with module's btf. 8756 */ 8757 } 8758 8759 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8760 &targ_res); 8761 if (err) 8762 goto out; 8763 8764 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8765 &targ_res); 8766 8767 out: 8768 kfree(specs); 8769 if (need_cands) { 8770 kfree(cands.cands); 8771 mutex_unlock(&cand_cache_mutex); 8772 if (ctx->log->level & BPF_LOG_LEVEL2) 8773 print_cand_cache(ctx->log); 8774 } 8775 return err; 8776 } 8777 8778 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8779 const struct bpf_reg_state *reg, 8780 const char *field_name, u32 btf_id, const char *suffix) 8781 { 8782 struct btf *btf = reg->btf; 8783 const struct btf_type *walk_type, *safe_type; 8784 const char *tname; 8785 char safe_tname[64]; 8786 long ret, safe_id; 8787 const struct btf_member *member; 8788 u32 i; 8789 8790 walk_type = btf_type_by_id(btf, reg->btf_id); 8791 if (!walk_type) 8792 return false; 8793 8794 tname = btf_name_by_offset(btf, walk_type->name_off); 8795 8796 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8797 if (ret >= sizeof(safe_tname)) 8798 return false; 8799 8800 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8801 if (safe_id < 0) 8802 return false; 8803 8804 safe_type = btf_type_by_id(btf, safe_id); 8805 if (!safe_type) 8806 return false; 8807 8808 for_each_member(i, safe_type, member) { 8809 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8810 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8811 u32 id; 8812 8813 if (!btf_type_is_ptr(mtype)) 8814 continue; 8815 8816 btf_type_skip_modifiers(btf, mtype->type, &id); 8817 /* If we match on both type and name, the field is considered trusted. */ 8818 if (btf_id == id && !strcmp(field_name, m_name)) 8819 return true; 8820 } 8821 8822 return false; 8823 } 8824 8825 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8826 const struct btf *reg_btf, u32 reg_id, 8827 const struct btf *arg_btf, u32 arg_id) 8828 { 8829 const char *reg_name, *arg_name, *search_needle; 8830 const struct btf_type *reg_type, *arg_type; 8831 int reg_len, arg_len, cmp_len; 8832 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8833 8834 reg_type = btf_type_by_id(reg_btf, reg_id); 8835 if (!reg_type) 8836 return false; 8837 8838 arg_type = btf_type_by_id(arg_btf, arg_id); 8839 if (!arg_type) 8840 return false; 8841 8842 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8843 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8844 8845 reg_len = strlen(reg_name); 8846 arg_len = strlen(arg_name); 8847 8848 /* Exactly one of the two type names may be suffixed with ___init, so 8849 * if the strings are the same size, they can't possibly be no-cast 8850 * aliases of one another. If you have two of the same type names, e.g. 8851 * they're both nf_conn___init, it would be improper to return true 8852 * because they are _not_ no-cast aliases, they are the same type. 8853 */ 8854 if (reg_len == arg_len) 8855 return false; 8856 8857 /* Either of the two names must be the other name, suffixed with ___init. */ 8858 if ((reg_len != arg_len + pattern_len) && 8859 (arg_len != reg_len + pattern_len)) 8860 return false; 8861 8862 if (reg_len < arg_len) { 8863 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8864 cmp_len = reg_len; 8865 } else { 8866 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8867 cmp_len = arg_len; 8868 } 8869 8870 if (!search_needle) 8871 return false; 8872 8873 /* ___init suffix must come at the end of the name */ 8874 if (*(search_needle + pattern_len) != '\0') 8875 return false; 8876 8877 return !strncmp(reg_name, arg_name, cmp_len); 8878 } 8879 8880 #ifdef CONFIG_BPF_JIT 8881 static int 8882 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 8883 struct bpf_verifier_log *log) 8884 { 8885 struct btf_struct_ops_tab *tab, *new_tab; 8886 int i, err; 8887 8888 tab = btf->struct_ops_tab; 8889 if (!tab) { 8890 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 8891 GFP_KERNEL); 8892 if (!tab) 8893 return -ENOMEM; 8894 tab->capacity = 4; 8895 btf->struct_ops_tab = tab; 8896 } 8897 8898 for (i = 0; i < tab->cnt; i++) 8899 if (tab->ops[i].st_ops == st_ops) 8900 return -EEXIST; 8901 8902 if (tab->cnt == tab->capacity) { 8903 new_tab = krealloc(tab, 8904 offsetof(struct btf_struct_ops_tab, 8905 ops[tab->capacity * 2]), 8906 GFP_KERNEL); 8907 if (!new_tab) 8908 return -ENOMEM; 8909 tab = new_tab; 8910 tab->capacity *= 2; 8911 btf->struct_ops_tab = tab; 8912 } 8913 8914 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 8915 8916 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 8917 if (err) 8918 return err; 8919 8920 btf->struct_ops_tab->cnt++; 8921 8922 return 0; 8923 } 8924 8925 const struct bpf_struct_ops_desc * 8926 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 8927 { 8928 const struct bpf_struct_ops_desc *st_ops_list; 8929 unsigned int i; 8930 u32 cnt; 8931 8932 if (!value_id) 8933 return NULL; 8934 if (!btf->struct_ops_tab) 8935 return NULL; 8936 8937 cnt = btf->struct_ops_tab->cnt; 8938 st_ops_list = btf->struct_ops_tab->ops; 8939 for (i = 0; i < cnt; i++) { 8940 if (st_ops_list[i].value_id == value_id) 8941 return &st_ops_list[i]; 8942 } 8943 8944 return NULL; 8945 } 8946 8947 const struct bpf_struct_ops_desc * 8948 bpf_struct_ops_find(struct btf *btf, u32 type_id) 8949 { 8950 const struct bpf_struct_ops_desc *st_ops_list; 8951 unsigned int i; 8952 u32 cnt; 8953 8954 if (!type_id) 8955 return NULL; 8956 if (!btf->struct_ops_tab) 8957 return NULL; 8958 8959 cnt = btf->struct_ops_tab->cnt; 8960 st_ops_list = btf->struct_ops_tab->ops; 8961 for (i = 0; i < cnt; i++) { 8962 if (st_ops_list[i].type_id == type_id) 8963 return &st_ops_list[i]; 8964 } 8965 8966 return NULL; 8967 } 8968 8969 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 8970 { 8971 struct bpf_verifier_log *log; 8972 struct btf *btf; 8973 int err = 0; 8974 8975 btf = btf_get_module_btf(st_ops->owner); 8976 if (!btf) 8977 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 8978 if (IS_ERR(btf)) 8979 return PTR_ERR(btf); 8980 8981 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 8982 if (!log) { 8983 err = -ENOMEM; 8984 goto errout; 8985 } 8986 8987 log->level = BPF_LOG_KERNEL; 8988 8989 err = btf_add_struct_ops(btf, st_ops, log); 8990 8991 errout: 8992 kfree(log); 8993 btf_put(btf); 8994 8995 return err; 8996 } 8997 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 8998 #endif 8999 9000 bool btf_param_match_suffix(const struct btf *btf, 9001 const struct btf_param *arg, 9002 const char *suffix) 9003 { 9004 int suffix_len = strlen(suffix), len; 9005 const char *param_name; 9006 9007 /* In the future, this can be ported to use BTF tagging */ 9008 param_name = btf_name_by_offset(btf, arg->name_off); 9009 if (str_is_empty(param_name)) 9010 return false; 9011 len = strlen(param_name); 9012 if (len <= suffix_len) 9013 return false; 9014 param_name += len - suffix_len; 9015 return !strncmp(param_name, suffix, suffix_len); 9016 } 9017