1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 29 #include <net/netfilter/nf_bpf_link.h> 30 31 #include <net/sock.h> 32 #include "../tools/lib/bpf/relo_core.h" 33 34 /* BTF (BPF Type Format) is the meta data format which describes 35 * the data types of BPF program/map. Hence, it basically focus 36 * on the C programming language which the modern BPF is primary 37 * using. 38 * 39 * ELF Section: 40 * ~~~~~~~~~~~ 41 * The BTF data is stored under the ".BTF" ELF section 42 * 43 * struct btf_type: 44 * ~~~~~~~~~~~~~~~ 45 * Each 'struct btf_type' object describes a C data type. 46 * Depending on the type it is describing, a 'struct btf_type' 47 * object may be followed by more data. F.e. 48 * To describe an array, 'struct btf_type' is followed by 49 * 'struct btf_array'. 50 * 51 * 'struct btf_type' and any extra data following it are 52 * 4 bytes aligned. 53 * 54 * Type section: 55 * ~~~~~~~~~~~~~ 56 * The BTF type section contains a list of 'struct btf_type' objects. 57 * Each one describes a C type. Recall from the above section 58 * that a 'struct btf_type' object could be immediately followed by extra 59 * data in order to describe some particular C types. 60 * 61 * type_id: 62 * ~~~~~~~ 63 * Each btf_type object is identified by a type_id. The type_id 64 * is implicitly implied by the location of the btf_type object in 65 * the BTF type section. The first one has type_id 1. The second 66 * one has type_id 2...etc. Hence, an earlier btf_type has 67 * a smaller type_id. 68 * 69 * A btf_type object may refer to another btf_type object by using 70 * type_id (i.e. the "type" in the "struct btf_type"). 71 * 72 * NOTE that we cannot assume any reference-order. 73 * A btf_type object can refer to an earlier btf_type object 74 * but it can also refer to a later btf_type object. 75 * 76 * For example, to describe "const void *". A btf_type 77 * object describing "const" may refer to another btf_type 78 * object describing "void *". This type-reference is done 79 * by specifying type_id: 80 * 81 * [1] CONST (anon) type_id=2 82 * [2] PTR (anon) type_id=0 83 * 84 * The above is the btf_verifier debug log: 85 * - Each line started with "[?]" is a btf_type object 86 * - [?] is the type_id of the btf_type object. 87 * - CONST/PTR is the BTF_KIND_XXX 88 * - "(anon)" is the name of the type. It just 89 * happens that CONST and PTR has no name. 90 * - type_id=XXX is the 'u32 type' in btf_type 91 * 92 * NOTE: "void" has type_id 0 93 * 94 * String section: 95 * ~~~~~~~~~~~~~~ 96 * The BTF string section contains the names used by the type section. 97 * Each string is referred by an "offset" from the beginning of the 98 * string section. 99 * 100 * Each string is '\0' terminated. 101 * 102 * The first character in the string section must be '\0' 103 * which is used to mean 'anonymous'. Some btf_type may not 104 * have a name. 105 */ 106 107 /* BTF verification: 108 * 109 * To verify BTF data, two passes are needed. 110 * 111 * Pass #1 112 * ~~~~~~~ 113 * The first pass is to collect all btf_type objects to 114 * an array: "btf->types". 115 * 116 * Depending on the C type that a btf_type is describing, 117 * a btf_type may be followed by extra data. We don't know 118 * how many btf_type is there, and more importantly we don't 119 * know where each btf_type is located in the type section. 120 * 121 * Without knowing the location of each type_id, most verifications 122 * cannot be done. e.g. an earlier btf_type may refer to a later 123 * btf_type (recall the "const void *" above), so we cannot 124 * check this type-reference in the first pass. 125 * 126 * In the first pass, it still does some verifications (e.g. 127 * checking the name is a valid offset to the string section). 128 * 129 * Pass #2 130 * ~~~~~~~ 131 * The main focus is to resolve a btf_type that is referring 132 * to another type. 133 * 134 * We have to ensure the referring type: 135 * 1) does exist in the BTF (i.e. in btf->types[]) 136 * 2) does not cause a loop: 137 * struct A { 138 * struct B b; 139 * }; 140 * 141 * struct B { 142 * struct A a; 143 * }; 144 * 145 * btf_type_needs_resolve() decides if a btf_type needs 146 * to be resolved. 147 * 148 * The needs_resolve type implements the "resolve()" ops which 149 * essentially does a DFS and detects backedge. 150 * 151 * During resolve (or DFS), different C types have different 152 * "RESOLVED" conditions. 153 * 154 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 155 * members because a member is always referring to another 156 * type. A struct's member can be treated as "RESOLVED" if 157 * it is referring to a BTF_KIND_PTR. Otherwise, the 158 * following valid C struct would be rejected: 159 * 160 * struct A { 161 * int m; 162 * struct A *a; 163 * }; 164 * 165 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 166 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 167 * detect a pointer loop, e.g.: 168 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 169 * ^ | 170 * +-----------------------------------------+ 171 * 172 */ 173 174 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 175 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 176 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 177 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 178 #define BITS_ROUNDUP_BYTES(bits) \ 179 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 180 181 #define BTF_INFO_MASK 0x9f00ffff 182 #define BTF_INT_MASK 0x0fffffff 183 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 184 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 185 186 /* 16MB for 64k structs and each has 16 members and 187 * a few MB spaces for the string section. 188 * The hard limit is S32_MAX. 189 */ 190 #define BTF_MAX_SIZE (16 * 1024 * 1024) 191 192 #define for_each_member_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_member(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 #define for_each_vsi_from(i, from, struct_type, member) \ 198 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 199 i < btf_type_vlen(struct_type); \ 200 i++, member++) 201 202 DEFINE_IDR(btf_idr); 203 DEFINE_SPINLOCK(btf_idr_lock); 204 205 enum btf_kfunc_hook { 206 BTF_KFUNC_HOOK_COMMON, 207 BTF_KFUNC_HOOK_XDP, 208 BTF_KFUNC_HOOK_TC, 209 BTF_KFUNC_HOOK_STRUCT_OPS, 210 BTF_KFUNC_HOOK_TRACING, 211 BTF_KFUNC_HOOK_SYSCALL, 212 BTF_KFUNC_HOOK_FMODRET, 213 BTF_KFUNC_HOOK_CGROUP_SKB, 214 BTF_KFUNC_HOOK_SCHED_ACT, 215 BTF_KFUNC_HOOK_SK_SKB, 216 BTF_KFUNC_HOOK_SOCKET_FILTER, 217 BTF_KFUNC_HOOK_LWT, 218 BTF_KFUNC_HOOK_NETFILTER, 219 BTF_KFUNC_HOOK_MAX, 220 }; 221 222 enum { 223 BTF_KFUNC_SET_MAX_CNT = 256, 224 BTF_DTOR_KFUNC_MAX_CNT = 256, 225 }; 226 227 struct btf_kfunc_set_tab { 228 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 229 }; 230 231 struct btf_id_dtor_kfunc_tab { 232 u32 cnt; 233 struct btf_id_dtor_kfunc dtors[]; 234 }; 235 236 struct btf { 237 void *data; 238 struct btf_type **types; 239 u32 *resolved_ids; 240 u32 *resolved_sizes; 241 const char *strings; 242 void *nohdr_data; 243 struct btf_header hdr; 244 u32 nr_types; /* includes VOID for base BTF */ 245 u32 types_size; 246 u32 data_size; 247 refcount_t refcnt; 248 u32 id; 249 struct rcu_head rcu; 250 struct btf_kfunc_set_tab *kfunc_set_tab; 251 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 252 struct btf_struct_metas *struct_meta_tab; 253 254 /* split BTF support */ 255 struct btf *base_btf; 256 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 257 u32 start_str_off; /* first string offset (0 for base BTF) */ 258 char name[MODULE_NAME_LEN]; 259 bool kernel_btf; 260 }; 261 262 enum verifier_phase { 263 CHECK_META, 264 CHECK_TYPE, 265 }; 266 267 struct resolve_vertex { 268 const struct btf_type *t; 269 u32 type_id; 270 u16 next_member; 271 }; 272 273 enum visit_state { 274 NOT_VISITED, 275 VISITED, 276 RESOLVED, 277 }; 278 279 enum resolve_mode { 280 RESOLVE_TBD, /* To Be Determined */ 281 RESOLVE_PTR, /* Resolving for Pointer */ 282 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 283 * or array 284 */ 285 }; 286 287 #define MAX_RESOLVE_DEPTH 32 288 289 struct btf_sec_info { 290 u32 off; 291 u32 len; 292 }; 293 294 struct btf_verifier_env { 295 struct btf *btf; 296 u8 *visit_states; 297 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 298 struct bpf_verifier_log log; 299 u32 log_type_id; 300 u32 top_stack; 301 enum verifier_phase phase; 302 enum resolve_mode resolve_mode; 303 }; 304 305 static const char * const btf_kind_str[NR_BTF_KINDS] = { 306 [BTF_KIND_UNKN] = "UNKNOWN", 307 [BTF_KIND_INT] = "INT", 308 [BTF_KIND_PTR] = "PTR", 309 [BTF_KIND_ARRAY] = "ARRAY", 310 [BTF_KIND_STRUCT] = "STRUCT", 311 [BTF_KIND_UNION] = "UNION", 312 [BTF_KIND_ENUM] = "ENUM", 313 [BTF_KIND_FWD] = "FWD", 314 [BTF_KIND_TYPEDEF] = "TYPEDEF", 315 [BTF_KIND_VOLATILE] = "VOLATILE", 316 [BTF_KIND_CONST] = "CONST", 317 [BTF_KIND_RESTRICT] = "RESTRICT", 318 [BTF_KIND_FUNC] = "FUNC", 319 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 320 [BTF_KIND_VAR] = "VAR", 321 [BTF_KIND_DATASEC] = "DATASEC", 322 [BTF_KIND_FLOAT] = "FLOAT", 323 [BTF_KIND_DECL_TAG] = "DECL_TAG", 324 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 325 [BTF_KIND_ENUM64] = "ENUM64", 326 }; 327 328 const char *btf_type_str(const struct btf_type *t) 329 { 330 return btf_kind_str[BTF_INFO_KIND(t->info)]; 331 } 332 333 /* Chunk size we use in safe copy of data to be shown. */ 334 #define BTF_SHOW_OBJ_SAFE_SIZE 32 335 336 /* 337 * This is the maximum size of a base type value (equivalent to a 338 * 128-bit int); if we are at the end of our safe buffer and have 339 * less than 16 bytes space we can't be assured of being able 340 * to copy the next type safely, so in such cases we will initiate 341 * a new copy. 342 */ 343 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 344 345 /* Type name size */ 346 #define BTF_SHOW_NAME_SIZE 80 347 348 /* 349 * The suffix of a type that indicates it cannot alias another type when 350 * comparing BTF IDs for kfunc invocations. 351 */ 352 #define NOCAST_ALIAS_SUFFIX "___init" 353 354 /* 355 * Common data to all BTF show operations. Private show functions can add 356 * their own data to a structure containing a struct btf_show and consult it 357 * in the show callback. See btf_type_show() below. 358 * 359 * One challenge with showing nested data is we want to skip 0-valued 360 * data, but in order to figure out whether a nested object is all zeros 361 * we need to walk through it. As a result, we need to make two passes 362 * when handling structs, unions and arrays; the first path simply looks 363 * for nonzero data, while the second actually does the display. The first 364 * pass is signalled by show->state.depth_check being set, and if we 365 * encounter a non-zero value we set show->state.depth_to_show to 366 * the depth at which we encountered it. When we have completed the 367 * first pass, we will know if anything needs to be displayed if 368 * depth_to_show > depth. See btf_[struct,array]_show() for the 369 * implementation of this. 370 * 371 * Another problem is we want to ensure the data for display is safe to 372 * access. To support this, the anonymous "struct {} obj" tracks the data 373 * object and our safe copy of it. We copy portions of the data needed 374 * to the object "copy" buffer, but because its size is limited to 375 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 376 * traverse larger objects for display. 377 * 378 * The various data type show functions all start with a call to 379 * btf_show_start_type() which returns a pointer to the safe copy 380 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 381 * raw data itself). btf_show_obj_safe() is responsible for 382 * using copy_from_kernel_nofault() to update the safe data if necessary 383 * as we traverse the object's data. skbuff-like semantics are 384 * used: 385 * 386 * - obj.head points to the start of the toplevel object for display 387 * - obj.size is the size of the toplevel object 388 * - obj.data points to the current point in the original data at 389 * which our safe data starts. obj.data will advance as we copy 390 * portions of the data. 391 * 392 * In most cases a single copy will suffice, but larger data structures 393 * such as "struct task_struct" will require many copies. The logic in 394 * btf_show_obj_safe() handles the logic that determines if a new 395 * copy_from_kernel_nofault() is needed. 396 */ 397 struct btf_show { 398 u64 flags; 399 void *target; /* target of show operation (seq file, buffer) */ 400 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 401 const struct btf *btf; 402 /* below are used during iteration */ 403 struct { 404 u8 depth; 405 u8 depth_to_show; 406 u8 depth_check; 407 u8 array_member:1, 408 array_terminated:1; 409 u16 array_encoding; 410 u32 type_id; 411 int status; /* non-zero for error */ 412 const struct btf_type *type; 413 const struct btf_member *member; 414 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 415 } state; 416 struct { 417 u32 size; 418 void *head; 419 void *data; 420 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 421 } obj; 422 }; 423 424 struct btf_kind_operations { 425 s32 (*check_meta)(struct btf_verifier_env *env, 426 const struct btf_type *t, 427 u32 meta_left); 428 int (*resolve)(struct btf_verifier_env *env, 429 const struct resolve_vertex *v); 430 int (*check_member)(struct btf_verifier_env *env, 431 const struct btf_type *struct_type, 432 const struct btf_member *member, 433 const struct btf_type *member_type); 434 int (*check_kflag_member)(struct btf_verifier_env *env, 435 const struct btf_type *struct_type, 436 const struct btf_member *member, 437 const struct btf_type *member_type); 438 void (*log_details)(struct btf_verifier_env *env, 439 const struct btf_type *t); 440 void (*show)(const struct btf *btf, const struct btf_type *t, 441 u32 type_id, void *data, u8 bits_offsets, 442 struct btf_show *show); 443 }; 444 445 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 446 static struct btf_type btf_void; 447 448 static int btf_resolve(struct btf_verifier_env *env, 449 const struct btf_type *t, u32 type_id); 450 451 static int btf_func_check(struct btf_verifier_env *env, 452 const struct btf_type *t); 453 454 static bool btf_type_is_modifier(const struct btf_type *t) 455 { 456 /* Some of them is not strictly a C modifier 457 * but they are grouped into the same bucket 458 * for BTF concern: 459 * A type (t) that refers to another 460 * type through t->type AND its size cannot 461 * be determined without following the t->type. 462 * 463 * ptr does not fall into this bucket 464 * because its size is always sizeof(void *). 465 */ 466 switch (BTF_INFO_KIND(t->info)) { 467 case BTF_KIND_TYPEDEF: 468 case BTF_KIND_VOLATILE: 469 case BTF_KIND_CONST: 470 case BTF_KIND_RESTRICT: 471 case BTF_KIND_TYPE_TAG: 472 return true; 473 } 474 475 return false; 476 } 477 478 bool btf_type_is_void(const struct btf_type *t) 479 { 480 return t == &btf_void; 481 } 482 483 static bool btf_type_is_fwd(const struct btf_type *t) 484 { 485 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 486 } 487 488 static bool btf_type_nosize(const struct btf_type *t) 489 { 490 return btf_type_is_void(t) || btf_type_is_fwd(t) || 491 btf_type_is_func(t) || btf_type_is_func_proto(t); 492 } 493 494 static bool btf_type_nosize_or_null(const struct btf_type *t) 495 { 496 return !t || btf_type_nosize(t); 497 } 498 499 static bool btf_type_is_datasec(const struct btf_type *t) 500 { 501 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 502 } 503 504 static bool btf_type_is_decl_tag(const struct btf_type *t) 505 { 506 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 507 } 508 509 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 510 { 511 return btf_type_is_func(t) || btf_type_is_struct(t) || 512 btf_type_is_var(t) || btf_type_is_typedef(t); 513 } 514 515 u32 btf_nr_types(const struct btf *btf) 516 { 517 u32 total = 0; 518 519 while (btf) { 520 total += btf->nr_types; 521 btf = btf->base_btf; 522 } 523 524 return total; 525 } 526 527 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 528 { 529 const struct btf_type *t; 530 const char *tname; 531 u32 i, total; 532 533 total = btf_nr_types(btf); 534 for (i = 1; i < total; i++) { 535 t = btf_type_by_id(btf, i); 536 if (BTF_INFO_KIND(t->info) != kind) 537 continue; 538 539 tname = btf_name_by_offset(btf, t->name_off); 540 if (!strcmp(tname, name)) 541 return i; 542 } 543 544 return -ENOENT; 545 } 546 547 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 548 { 549 struct btf *btf; 550 s32 ret; 551 int id; 552 553 btf = bpf_get_btf_vmlinux(); 554 if (IS_ERR(btf)) 555 return PTR_ERR(btf); 556 if (!btf) 557 return -EINVAL; 558 559 ret = btf_find_by_name_kind(btf, name, kind); 560 /* ret is never zero, since btf_find_by_name_kind returns 561 * positive btf_id or negative error. 562 */ 563 if (ret > 0) { 564 btf_get(btf); 565 *btf_p = btf; 566 return ret; 567 } 568 569 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 570 spin_lock_bh(&btf_idr_lock); 571 idr_for_each_entry(&btf_idr, btf, id) { 572 if (!btf_is_module(btf)) 573 continue; 574 /* linear search could be slow hence unlock/lock 575 * the IDR to avoiding holding it for too long 576 */ 577 btf_get(btf); 578 spin_unlock_bh(&btf_idr_lock); 579 ret = btf_find_by_name_kind(btf, name, kind); 580 if (ret > 0) { 581 *btf_p = btf; 582 return ret; 583 } 584 btf_put(btf); 585 spin_lock_bh(&btf_idr_lock); 586 } 587 spin_unlock_bh(&btf_idr_lock); 588 return ret; 589 } 590 591 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 592 u32 id, u32 *res_id) 593 { 594 const struct btf_type *t = btf_type_by_id(btf, id); 595 596 while (btf_type_is_modifier(t)) { 597 id = t->type; 598 t = btf_type_by_id(btf, t->type); 599 } 600 601 if (res_id) 602 *res_id = id; 603 604 return t; 605 } 606 607 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 608 u32 id, u32 *res_id) 609 { 610 const struct btf_type *t; 611 612 t = btf_type_skip_modifiers(btf, id, NULL); 613 if (!btf_type_is_ptr(t)) 614 return NULL; 615 616 return btf_type_skip_modifiers(btf, t->type, res_id); 617 } 618 619 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 620 u32 id, u32 *res_id) 621 { 622 const struct btf_type *ptype; 623 624 ptype = btf_type_resolve_ptr(btf, id, res_id); 625 if (ptype && btf_type_is_func_proto(ptype)) 626 return ptype; 627 628 return NULL; 629 } 630 631 /* Types that act only as a source, not sink or intermediate 632 * type when resolving. 633 */ 634 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 635 { 636 return btf_type_is_var(t) || 637 btf_type_is_decl_tag(t) || 638 btf_type_is_datasec(t); 639 } 640 641 /* What types need to be resolved? 642 * 643 * btf_type_is_modifier() is an obvious one. 644 * 645 * btf_type_is_struct() because its member refers to 646 * another type (through member->type). 647 * 648 * btf_type_is_var() because the variable refers to 649 * another type. btf_type_is_datasec() holds multiple 650 * btf_type_is_var() types that need resolving. 651 * 652 * btf_type_is_array() because its element (array->type) 653 * refers to another type. Array can be thought of a 654 * special case of struct while array just has the same 655 * member-type repeated by array->nelems of times. 656 */ 657 static bool btf_type_needs_resolve(const struct btf_type *t) 658 { 659 return btf_type_is_modifier(t) || 660 btf_type_is_ptr(t) || 661 btf_type_is_struct(t) || 662 btf_type_is_array(t) || 663 btf_type_is_var(t) || 664 btf_type_is_func(t) || 665 btf_type_is_decl_tag(t) || 666 btf_type_is_datasec(t); 667 } 668 669 /* t->size can be used */ 670 static bool btf_type_has_size(const struct btf_type *t) 671 { 672 switch (BTF_INFO_KIND(t->info)) { 673 case BTF_KIND_INT: 674 case BTF_KIND_STRUCT: 675 case BTF_KIND_UNION: 676 case BTF_KIND_ENUM: 677 case BTF_KIND_DATASEC: 678 case BTF_KIND_FLOAT: 679 case BTF_KIND_ENUM64: 680 return true; 681 } 682 683 return false; 684 } 685 686 static const char *btf_int_encoding_str(u8 encoding) 687 { 688 if (encoding == 0) 689 return "(none)"; 690 else if (encoding == BTF_INT_SIGNED) 691 return "SIGNED"; 692 else if (encoding == BTF_INT_CHAR) 693 return "CHAR"; 694 else if (encoding == BTF_INT_BOOL) 695 return "BOOL"; 696 else 697 return "UNKN"; 698 } 699 700 static u32 btf_type_int(const struct btf_type *t) 701 { 702 return *(u32 *)(t + 1); 703 } 704 705 static const struct btf_array *btf_type_array(const struct btf_type *t) 706 { 707 return (const struct btf_array *)(t + 1); 708 } 709 710 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 711 { 712 return (const struct btf_enum *)(t + 1); 713 } 714 715 static const struct btf_var *btf_type_var(const struct btf_type *t) 716 { 717 return (const struct btf_var *)(t + 1); 718 } 719 720 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 721 { 722 return (const struct btf_decl_tag *)(t + 1); 723 } 724 725 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 726 { 727 return (const struct btf_enum64 *)(t + 1); 728 } 729 730 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 731 { 732 return kind_ops[BTF_INFO_KIND(t->info)]; 733 } 734 735 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 736 { 737 if (!BTF_STR_OFFSET_VALID(offset)) 738 return false; 739 740 while (offset < btf->start_str_off) 741 btf = btf->base_btf; 742 743 offset -= btf->start_str_off; 744 return offset < btf->hdr.str_len; 745 } 746 747 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 748 { 749 if ((first ? !isalpha(c) : 750 !isalnum(c)) && 751 c != '_' && 752 ((c == '.' && !dot_ok) || 753 c != '.')) 754 return false; 755 return true; 756 } 757 758 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 759 { 760 while (offset < btf->start_str_off) 761 btf = btf->base_btf; 762 763 offset -= btf->start_str_off; 764 if (offset < btf->hdr.str_len) 765 return &btf->strings[offset]; 766 767 return NULL; 768 } 769 770 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 771 { 772 /* offset must be valid */ 773 const char *src = btf_str_by_offset(btf, offset); 774 const char *src_limit; 775 776 if (!__btf_name_char_ok(*src, true, dot_ok)) 777 return false; 778 779 /* set a limit on identifier length */ 780 src_limit = src + KSYM_NAME_LEN; 781 src++; 782 while (*src && src < src_limit) { 783 if (!__btf_name_char_ok(*src, false, dot_ok)) 784 return false; 785 src++; 786 } 787 788 return !*src; 789 } 790 791 /* Only C-style identifier is permitted. This can be relaxed if 792 * necessary. 793 */ 794 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 795 { 796 return __btf_name_valid(btf, offset, false); 797 } 798 799 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 800 { 801 return __btf_name_valid(btf, offset, true); 802 } 803 804 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 805 { 806 const char *name; 807 808 if (!offset) 809 return "(anon)"; 810 811 name = btf_str_by_offset(btf, offset); 812 return name ?: "(invalid-name-offset)"; 813 } 814 815 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 816 { 817 return btf_str_by_offset(btf, offset); 818 } 819 820 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 821 { 822 while (type_id < btf->start_id) 823 btf = btf->base_btf; 824 825 type_id -= btf->start_id; 826 if (type_id >= btf->nr_types) 827 return NULL; 828 return btf->types[type_id]; 829 } 830 EXPORT_SYMBOL_GPL(btf_type_by_id); 831 832 /* 833 * Regular int is not a bit field and it must be either 834 * u8/u16/u32/u64 or __int128. 835 */ 836 static bool btf_type_int_is_regular(const struct btf_type *t) 837 { 838 u8 nr_bits, nr_bytes; 839 u32 int_data; 840 841 int_data = btf_type_int(t); 842 nr_bits = BTF_INT_BITS(int_data); 843 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 844 if (BITS_PER_BYTE_MASKED(nr_bits) || 845 BTF_INT_OFFSET(int_data) || 846 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 847 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 848 nr_bytes != (2 * sizeof(u64)))) { 849 return false; 850 } 851 852 return true; 853 } 854 855 /* 856 * Check that given struct member is a regular int with expected 857 * offset and size. 858 */ 859 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 860 const struct btf_member *m, 861 u32 expected_offset, u32 expected_size) 862 { 863 const struct btf_type *t; 864 u32 id, int_data; 865 u8 nr_bits; 866 867 id = m->type; 868 t = btf_type_id_size(btf, &id, NULL); 869 if (!t || !btf_type_is_int(t)) 870 return false; 871 872 int_data = btf_type_int(t); 873 nr_bits = BTF_INT_BITS(int_data); 874 if (btf_type_kflag(s)) { 875 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 876 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 877 878 /* if kflag set, int should be a regular int and 879 * bit offset should be at byte boundary. 880 */ 881 return !bitfield_size && 882 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 883 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 884 } 885 886 if (BTF_INT_OFFSET(int_data) || 887 BITS_PER_BYTE_MASKED(m->offset) || 888 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 889 BITS_PER_BYTE_MASKED(nr_bits) || 890 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 891 return false; 892 893 return true; 894 } 895 896 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 897 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 898 u32 id) 899 { 900 const struct btf_type *t = btf_type_by_id(btf, id); 901 902 while (btf_type_is_modifier(t) && 903 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 904 t = btf_type_by_id(btf, t->type); 905 } 906 907 return t; 908 } 909 910 #define BTF_SHOW_MAX_ITER 10 911 912 #define BTF_KIND_BIT(kind) (1ULL << kind) 913 914 /* 915 * Populate show->state.name with type name information. 916 * Format of type name is 917 * 918 * [.member_name = ] (type_name) 919 */ 920 static const char *btf_show_name(struct btf_show *show) 921 { 922 /* BTF_MAX_ITER array suffixes "[]" */ 923 const char *array_suffixes = "[][][][][][][][][][]"; 924 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 925 /* BTF_MAX_ITER pointer suffixes "*" */ 926 const char *ptr_suffixes = "**********"; 927 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 928 const char *name = NULL, *prefix = "", *parens = ""; 929 const struct btf_member *m = show->state.member; 930 const struct btf_type *t; 931 const struct btf_array *array; 932 u32 id = show->state.type_id; 933 const char *member = NULL; 934 bool show_member = false; 935 u64 kinds = 0; 936 int i; 937 938 show->state.name[0] = '\0'; 939 940 /* 941 * Don't show type name if we're showing an array member; 942 * in that case we show the array type so don't need to repeat 943 * ourselves for each member. 944 */ 945 if (show->state.array_member) 946 return ""; 947 948 /* Retrieve member name, if any. */ 949 if (m) { 950 member = btf_name_by_offset(show->btf, m->name_off); 951 show_member = strlen(member) > 0; 952 id = m->type; 953 } 954 955 /* 956 * Start with type_id, as we have resolved the struct btf_type * 957 * via btf_modifier_show() past the parent typedef to the child 958 * struct, int etc it is defined as. In such cases, the type_id 959 * still represents the starting type while the struct btf_type * 960 * in our show->state points at the resolved type of the typedef. 961 */ 962 t = btf_type_by_id(show->btf, id); 963 if (!t) 964 return ""; 965 966 /* 967 * The goal here is to build up the right number of pointer and 968 * array suffixes while ensuring the type name for a typedef 969 * is represented. Along the way we accumulate a list of 970 * BTF kinds we have encountered, since these will inform later 971 * display; for example, pointer types will not require an 972 * opening "{" for struct, we will just display the pointer value. 973 * 974 * We also want to accumulate the right number of pointer or array 975 * indices in the format string while iterating until we get to 976 * the typedef/pointee/array member target type. 977 * 978 * We start by pointing at the end of pointer and array suffix 979 * strings; as we accumulate pointers and arrays we move the pointer 980 * or array string backwards so it will show the expected number of 981 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 982 * and/or arrays and typedefs are supported as a precaution. 983 * 984 * We also want to get typedef name while proceeding to resolve 985 * type it points to so that we can add parentheses if it is a 986 * "typedef struct" etc. 987 */ 988 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 989 990 switch (BTF_INFO_KIND(t->info)) { 991 case BTF_KIND_TYPEDEF: 992 if (!name) 993 name = btf_name_by_offset(show->btf, 994 t->name_off); 995 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 996 id = t->type; 997 break; 998 case BTF_KIND_ARRAY: 999 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1000 parens = "["; 1001 if (!t) 1002 return ""; 1003 array = btf_type_array(t); 1004 if (array_suffix > array_suffixes) 1005 array_suffix -= 2; 1006 id = array->type; 1007 break; 1008 case BTF_KIND_PTR: 1009 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1010 if (ptr_suffix > ptr_suffixes) 1011 ptr_suffix -= 1; 1012 id = t->type; 1013 break; 1014 default: 1015 id = 0; 1016 break; 1017 } 1018 if (!id) 1019 break; 1020 t = btf_type_skip_qualifiers(show->btf, id); 1021 } 1022 /* We may not be able to represent this type; bail to be safe */ 1023 if (i == BTF_SHOW_MAX_ITER) 1024 return ""; 1025 1026 if (!name) 1027 name = btf_name_by_offset(show->btf, t->name_off); 1028 1029 switch (BTF_INFO_KIND(t->info)) { 1030 case BTF_KIND_STRUCT: 1031 case BTF_KIND_UNION: 1032 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1033 "struct" : "union"; 1034 /* if it's an array of struct/union, parens is already set */ 1035 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1036 parens = "{"; 1037 break; 1038 case BTF_KIND_ENUM: 1039 case BTF_KIND_ENUM64: 1040 prefix = "enum"; 1041 break; 1042 default: 1043 break; 1044 } 1045 1046 /* pointer does not require parens */ 1047 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1048 parens = ""; 1049 /* typedef does not require struct/union/enum prefix */ 1050 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1051 prefix = ""; 1052 1053 if (!name) 1054 name = ""; 1055 1056 /* Even if we don't want type name info, we want parentheses etc */ 1057 if (show->flags & BTF_SHOW_NONAME) 1058 snprintf(show->state.name, sizeof(show->state.name), "%s", 1059 parens); 1060 else 1061 snprintf(show->state.name, sizeof(show->state.name), 1062 "%s%s%s(%s%s%s%s%s%s)%s", 1063 /* first 3 strings comprise ".member = " */ 1064 show_member ? "." : "", 1065 show_member ? member : "", 1066 show_member ? " = " : "", 1067 /* ...next is our prefix (struct, enum, etc) */ 1068 prefix, 1069 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1070 /* ...this is the type name itself */ 1071 name, 1072 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1073 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1074 array_suffix, parens); 1075 1076 return show->state.name; 1077 } 1078 1079 static const char *__btf_show_indent(struct btf_show *show) 1080 { 1081 const char *indents = " "; 1082 const char *indent = &indents[strlen(indents)]; 1083 1084 if ((indent - show->state.depth) >= indents) 1085 return indent - show->state.depth; 1086 return indents; 1087 } 1088 1089 static const char *btf_show_indent(struct btf_show *show) 1090 { 1091 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1092 } 1093 1094 static const char *btf_show_newline(struct btf_show *show) 1095 { 1096 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1097 } 1098 1099 static const char *btf_show_delim(struct btf_show *show) 1100 { 1101 if (show->state.depth == 0) 1102 return ""; 1103 1104 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1105 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1106 return "|"; 1107 1108 return ","; 1109 } 1110 1111 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1112 { 1113 va_list args; 1114 1115 if (!show->state.depth_check) { 1116 va_start(args, fmt); 1117 show->showfn(show, fmt, args); 1118 va_end(args); 1119 } 1120 } 1121 1122 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1123 * format specifiers to the format specifier passed in; these do the work of 1124 * adding indentation, delimiters etc while the caller simply has to specify 1125 * the type value(s) in the format specifier + value(s). 1126 */ 1127 #define btf_show_type_value(show, fmt, value) \ 1128 do { \ 1129 if ((value) != (__typeof__(value))0 || \ 1130 (show->flags & BTF_SHOW_ZERO) || \ 1131 show->state.depth == 0) { \ 1132 btf_show(show, "%s%s" fmt "%s%s", \ 1133 btf_show_indent(show), \ 1134 btf_show_name(show), \ 1135 value, btf_show_delim(show), \ 1136 btf_show_newline(show)); \ 1137 if (show->state.depth > show->state.depth_to_show) \ 1138 show->state.depth_to_show = show->state.depth; \ 1139 } \ 1140 } while (0) 1141 1142 #define btf_show_type_values(show, fmt, ...) \ 1143 do { \ 1144 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1145 btf_show_name(show), \ 1146 __VA_ARGS__, btf_show_delim(show), \ 1147 btf_show_newline(show)); \ 1148 if (show->state.depth > show->state.depth_to_show) \ 1149 show->state.depth_to_show = show->state.depth; \ 1150 } while (0) 1151 1152 /* How much is left to copy to safe buffer after @data? */ 1153 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1154 { 1155 return show->obj.head + show->obj.size - data; 1156 } 1157 1158 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1159 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1160 { 1161 return data >= show->obj.data && 1162 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1163 } 1164 1165 /* 1166 * If object pointed to by @data of @size falls within our safe buffer, return 1167 * the equivalent pointer to the same safe data. Assumes 1168 * copy_from_kernel_nofault() has already happened and our safe buffer is 1169 * populated. 1170 */ 1171 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1172 { 1173 if (btf_show_obj_is_safe(show, data, size)) 1174 return show->obj.safe + (data - show->obj.data); 1175 return NULL; 1176 } 1177 1178 /* 1179 * Return a safe-to-access version of data pointed to by @data. 1180 * We do this by copying the relevant amount of information 1181 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1182 * 1183 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1184 * safe copy is needed. 1185 * 1186 * Otherwise we need to determine if we have the required amount 1187 * of data (determined by the @data pointer and the size of the 1188 * largest base type we can encounter (represented by 1189 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1190 * that we will be able to print some of the current object, 1191 * and if more is needed a copy will be triggered. 1192 * Some objects such as structs will not fit into the buffer; 1193 * in such cases additional copies when we iterate over their 1194 * members may be needed. 1195 * 1196 * btf_show_obj_safe() is used to return a safe buffer for 1197 * btf_show_start_type(); this ensures that as we recurse into 1198 * nested types we always have safe data for the given type. 1199 * This approach is somewhat wasteful; it's possible for example 1200 * that when iterating over a large union we'll end up copying the 1201 * same data repeatedly, but the goal is safety not performance. 1202 * We use stack data as opposed to per-CPU buffers because the 1203 * iteration over a type can take some time, and preemption handling 1204 * would greatly complicate use of the safe buffer. 1205 */ 1206 static void *btf_show_obj_safe(struct btf_show *show, 1207 const struct btf_type *t, 1208 void *data) 1209 { 1210 const struct btf_type *rt; 1211 int size_left, size; 1212 void *safe = NULL; 1213 1214 if (show->flags & BTF_SHOW_UNSAFE) 1215 return data; 1216 1217 rt = btf_resolve_size(show->btf, t, &size); 1218 if (IS_ERR(rt)) { 1219 show->state.status = PTR_ERR(rt); 1220 return NULL; 1221 } 1222 1223 /* 1224 * Is this toplevel object? If so, set total object size and 1225 * initialize pointers. Otherwise check if we still fall within 1226 * our safe object data. 1227 */ 1228 if (show->state.depth == 0) { 1229 show->obj.size = size; 1230 show->obj.head = data; 1231 } else { 1232 /* 1233 * If the size of the current object is > our remaining 1234 * safe buffer we _may_ need to do a new copy. However 1235 * consider the case of a nested struct; it's size pushes 1236 * us over the safe buffer limit, but showing any individual 1237 * struct members does not. In such cases, we don't need 1238 * to initiate a fresh copy yet; however we definitely need 1239 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1240 * in our buffer, regardless of the current object size. 1241 * The logic here is that as we resolve types we will 1242 * hit a base type at some point, and we need to be sure 1243 * the next chunk of data is safely available to display 1244 * that type info safely. We cannot rely on the size of 1245 * the current object here because it may be much larger 1246 * than our current buffer (e.g. task_struct is 8k). 1247 * All we want to do here is ensure that we can print the 1248 * next basic type, which we can if either 1249 * - the current type size is within the safe buffer; or 1250 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1251 * the safe buffer. 1252 */ 1253 safe = __btf_show_obj_safe(show, data, 1254 min(size, 1255 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1256 } 1257 1258 /* 1259 * We need a new copy to our safe object, either because we haven't 1260 * yet copied and are initializing safe data, or because the data 1261 * we want falls outside the boundaries of the safe object. 1262 */ 1263 if (!safe) { 1264 size_left = btf_show_obj_size_left(show, data); 1265 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1266 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1267 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1268 data, size_left); 1269 if (!show->state.status) { 1270 show->obj.data = data; 1271 safe = show->obj.safe; 1272 } 1273 } 1274 1275 return safe; 1276 } 1277 1278 /* 1279 * Set the type we are starting to show and return a safe data pointer 1280 * to be used for showing the associated data. 1281 */ 1282 static void *btf_show_start_type(struct btf_show *show, 1283 const struct btf_type *t, 1284 u32 type_id, void *data) 1285 { 1286 show->state.type = t; 1287 show->state.type_id = type_id; 1288 show->state.name[0] = '\0'; 1289 1290 return btf_show_obj_safe(show, t, data); 1291 } 1292 1293 static void btf_show_end_type(struct btf_show *show) 1294 { 1295 show->state.type = NULL; 1296 show->state.type_id = 0; 1297 show->state.name[0] = '\0'; 1298 } 1299 1300 static void *btf_show_start_aggr_type(struct btf_show *show, 1301 const struct btf_type *t, 1302 u32 type_id, void *data) 1303 { 1304 void *safe_data = btf_show_start_type(show, t, type_id, data); 1305 1306 if (!safe_data) 1307 return safe_data; 1308 1309 btf_show(show, "%s%s%s", btf_show_indent(show), 1310 btf_show_name(show), 1311 btf_show_newline(show)); 1312 show->state.depth++; 1313 return safe_data; 1314 } 1315 1316 static void btf_show_end_aggr_type(struct btf_show *show, 1317 const char *suffix) 1318 { 1319 show->state.depth--; 1320 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1321 btf_show_delim(show), btf_show_newline(show)); 1322 btf_show_end_type(show); 1323 } 1324 1325 static void btf_show_start_member(struct btf_show *show, 1326 const struct btf_member *m) 1327 { 1328 show->state.member = m; 1329 } 1330 1331 static void btf_show_start_array_member(struct btf_show *show) 1332 { 1333 show->state.array_member = 1; 1334 btf_show_start_member(show, NULL); 1335 } 1336 1337 static void btf_show_end_member(struct btf_show *show) 1338 { 1339 show->state.member = NULL; 1340 } 1341 1342 static void btf_show_end_array_member(struct btf_show *show) 1343 { 1344 show->state.array_member = 0; 1345 btf_show_end_member(show); 1346 } 1347 1348 static void *btf_show_start_array_type(struct btf_show *show, 1349 const struct btf_type *t, 1350 u32 type_id, 1351 u16 array_encoding, 1352 void *data) 1353 { 1354 show->state.array_encoding = array_encoding; 1355 show->state.array_terminated = 0; 1356 return btf_show_start_aggr_type(show, t, type_id, data); 1357 } 1358 1359 static void btf_show_end_array_type(struct btf_show *show) 1360 { 1361 show->state.array_encoding = 0; 1362 show->state.array_terminated = 0; 1363 btf_show_end_aggr_type(show, "]"); 1364 } 1365 1366 static void *btf_show_start_struct_type(struct btf_show *show, 1367 const struct btf_type *t, 1368 u32 type_id, 1369 void *data) 1370 { 1371 return btf_show_start_aggr_type(show, t, type_id, data); 1372 } 1373 1374 static void btf_show_end_struct_type(struct btf_show *show) 1375 { 1376 btf_show_end_aggr_type(show, "}"); 1377 } 1378 1379 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1380 const char *fmt, ...) 1381 { 1382 va_list args; 1383 1384 va_start(args, fmt); 1385 bpf_verifier_vlog(log, fmt, args); 1386 va_end(args); 1387 } 1388 1389 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1390 const char *fmt, ...) 1391 { 1392 struct bpf_verifier_log *log = &env->log; 1393 va_list args; 1394 1395 if (!bpf_verifier_log_needed(log)) 1396 return; 1397 1398 va_start(args, fmt); 1399 bpf_verifier_vlog(log, fmt, args); 1400 va_end(args); 1401 } 1402 1403 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1404 const struct btf_type *t, 1405 bool log_details, 1406 const char *fmt, ...) 1407 { 1408 struct bpf_verifier_log *log = &env->log; 1409 struct btf *btf = env->btf; 1410 va_list args; 1411 1412 if (!bpf_verifier_log_needed(log)) 1413 return; 1414 1415 if (log->level == BPF_LOG_KERNEL) { 1416 /* btf verifier prints all types it is processing via 1417 * btf_verifier_log_type(..., fmt = NULL). 1418 * Skip those prints for in-kernel BTF verification. 1419 */ 1420 if (!fmt) 1421 return; 1422 1423 /* Skip logging when loading module BTF with mismatches permitted */ 1424 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1425 return; 1426 } 1427 1428 __btf_verifier_log(log, "[%u] %s %s%s", 1429 env->log_type_id, 1430 btf_type_str(t), 1431 __btf_name_by_offset(btf, t->name_off), 1432 log_details ? " " : ""); 1433 1434 if (log_details) 1435 btf_type_ops(t)->log_details(env, t); 1436 1437 if (fmt && *fmt) { 1438 __btf_verifier_log(log, " "); 1439 va_start(args, fmt); 1440 bpf_verifier_vlog(log, fmt, args); 1441 va_end(args); 1442 } 1443 1444 __btf_verifier_log(log, "\n"); 1445 } 1446 1447 #define btf_verifier_log_type(env, t, ...) \ 1448 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1449 #define btf_verifier_log_basic(env, t, ...) \ 1450 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1451 1452 __printf(4, 5) 1453 static void btf_verifier_log_member(struct btf_verifier_env *env, 1454 const struct btf_type *struct_type, 1455 const struct btf_member *member, 1456 const char *fmt, ...) 1457 { 1458 struct bpf_verifier_log *log = &env->log; 1459 struct btf *btf = env->btf; 1460 va_list args; 1461 1462 if (!bpf_verifier_log_needed(log)) 1463 return; 1464 1465 if (log->level == BPF_LOG_KERNEL) { 1466 if (!fmt) 1467 return; 1468 1469 /* Skip logging when loading module BTF with mismatches permitted */ 1470 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1471 return; 1472 } 1473 1474 /* The CHECK_META phase already did a btf dump. 1475 * 1476 * If member is logged again, it must hit an error in 1477 * parsing this member. It is useful to print out which 1478 * struct this member belongs to. 1479 */ 1480 if (env->phase != CHECK_META) 1481 btf_verifier_log_type(env, struct_type, NULL); 1482 1483 if (btf_type_kflag(struct_type)) 1484 __btf_verifier_log(log, 1485 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1486 __btf_name_by_offset(btf, member->name_off), 1487 member->type, 1488 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1489 BTF_MEMBER_BIT_OFFSET(member->offset)); 1490 else 1491 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1492 __btf_name_by_offset(btf, member->name_off), 1493 member->type, member->offset); 1494 1495 if (fmt && *fmt) { 1496 __btf_verifier_log(log, " "); 1497 va_start(args, fmt); 1498 bpf_verifier_vlog(log, fmt, args); 1499 va_end(args); 1500 } 1501 1502 __btf_verifier_log(log, "\n"); 1503 } 1504 1505 __printf(4, 5) 1506 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1507 const struct btf_type *datasec_type, 1508 const struct btf_var_secinfo *vsi, 1509 const char *fmt, ...) 1510 { 1511 struct bpf_verifier_log *log = &env->log; 1512 va_list args; 1513 1514 if (!bpf_verifier_log_needed(log)) 1515 return; 1516 if (log->level == BPF_LOG_KERNEL && !fmt) 1517 return; 1518 if (env->phase != CHECK_META) 1519 btf_verifier_log_type(env, datasec_type, NULL); 1520 1521 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1522 vsi->type, vsi->offset, vsi->size); 1523 if (fmt && *fmt) { 1524 __btf_verifier_log(log, " "); 1525 va_start(args, fmt); 1526 bpf_verifier_vlog(log, fmt, args); 1527 va_end(args); 1528 } 1529 1530 __btf_verifier_log(log, "\n"); 1531 } 1532 1533 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1534 u32 btf_data_size) 1535 { 1536 struct bpf_verifier_log *log = &env->log; 1537 const struct btf *btf = env->btf; 1538 const struct btf_header *hdr; 1539 1540 if (!bpf_verifier_log_needed(log)) 1541 return; 1542 1543 if (log->level == BPF_LOG_KERNEL) 1544 return; 1545 hdr = &btf->hdr; 1546 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1547 __btf_verifier_log(log, "version: %u\n", hdr->version); 1548 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1549 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1550 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1551 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1552 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1553 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1554 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1555 } 1556 1557 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1558 { 1559 struct btf *btf = env->btf; 1560 1561 if (btf->types_size == btf->nr_types) { 1562 /* Expand 'types' array */ 1563 1564 struct btf_type **new_types; 1565 u32 expand_by, new_size; 1566 1567 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1568 btf_verifier_log(env, "Exceeded max num of types"); 1569 return -E2BIG; 1570 } 1571 1572 expand_by = max_t(u32, btf->types_size >> 2, 16); 1573 new_size = min_t(u32, BTF_MAX_TYPE, 1574 btf->types_size + expand_by); 1575 1576 new_types = kvcalloc(new_size, sizeof(*new_types), 1577 GFP_KERNEL | __GFP_NOWARN); 1578 if (!new_types) 1579 return -ENOMEM; 1580 1581 if (btf->nr_types == 0) { 1582 if (!btf->base_btf) { 1583 /* lazily init VOID type */ 1584 new_types[0] = &btf_void; 1585 btf->nr_types++; 1586 } 1587 } else { 1588 memcpy(new_types, btf->types, 1589 sizeof(*btf->types) * btf->nr_types); 1590 } 1591 1592 kvfree(btf->types); 1593 btf->types = new_types; 1594 btf->types_size = new_size; 1595 } 1596 1597 btf->types[btf->nr_types++] = t; 1598 1599 return 0; 1600 } 1601 1602 static int btf_alloc_id(struct btf *btf) 1603 { 1604 int id; 1605 1606 idr_preload(GFP_KERNEL); 1607 spin_lock_bh(&btf_idr_lock); 1608 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1609 if (id > 0) 1610 btf->id = id; 1611 spin_unlock_bh(&btf_idr_lock); 1612 idr_preload_end(); 1613 1614 if (WARN_ON_ONCE(!id)) 1615 return -ENOSPC; 1616 1617 return id > 0 ? 0 : id; 1618 } 1619 1620 static void btf_free_id(struct btf *btf) 1621 { 1622 unsigned long flags; 1623 1624 /* 1625 * In map-in-map, calling map_delete_elem() on outer 1626 * map will call bpf_map_put on the inner map. 1627 * It will then eventually call btf_free_id() 1628 * on the inner map. Some of the map_delete_elem() 1629 * implementation may have irq disabled, so 1630 * we need to use the _irqsave() version instead 1631 * of the _bh() version. 1632 */ 1633 spin_lock_irqsave(&btf_idr_lock, flags); 1634 idr_remove(&btf_idr, btf->id); 1635 spin_unlock_irqrestore(&btf_idr_lock, flags); 1636 } 1637 1638 static void btf_free_kfunc_set_tab(struct btf *btf) 1639 { 1640 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1641 int hook; 1642 1643 if (!tab) 1644 return; 1645 /* For module BTF, we directly assign the sets being registered, so 1646 * there is nothing to free except kfunc_set_tab. 1647 */ 1648 if (btf_is_module(btf)) 1649 goto free_tab; 1650 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1651 kfree(tab->sets[hook]); 1652 free_tab: 1653 kfree(tab); 1654 btf->kfunc_set_tab = NULL; 1655 } 1656 1657 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1658 { 1659 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1660 1661 if (!tab) 1662 return; 1663 kfree(tab); 1664 btf->dtor_kfunc_tab = NULL; 1665 } 1666 1667 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1668 { 1669 int i; 1670 1671 if (!tab) 1672 return; 1673 for (i = 0; i < tab->cnt; i++) 1674 btf_record_free(tab->types[i].record); 1675 kfree(tab); 1676 } 1677 1678 static void btf_free_struct_meta_tab(struct btf *btf) 1679 { 1680 struct btf_struct_metas *tab = btf->struct_meta_tab; 1681 1682 btf_struct_metas_free(tab); 1683 btf->struct_meta_tab = NULL; 1684 } 1685 1686 static void btf_free(struct btf *btf) 1687 { 1688 btf_free_struct_meta_tab(btf); 1689 btf_free_dtor_kfunc_tab(btf); 1690 btf_free_kfunc_set_tab(btf); 1691 kvfree(btf->types); 1692 kvfree(btf->resolved_sizes); 1693 kvfree(btf->resolved_ids); 1694 kvfree(btf->data); 1695 kfree(btf); 1696 } 1697 1698 static void btf_free_rcu(struct rcu_head *rcu) 1699 { 1700 struct btf *btf = container_of(rcu, struct btf, rcu); 1701 1702 btf_free(btf); 1703 } 1704 1705 void btf_get(struct btf *btf) 1706 { 1707 refcount_inc(&btf->refcnt); 1708 } 1709 1710 void btf_put(struct btf *btf) 1711 { 1712 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1713 btf_free_id(btf); 1714 call_rcu(&btf->rcu, btf_free_rcu); 1715 } 1716 } 1717 1718 static int env_resolve_init(struct btf_verifier_env *env) 1719 { 1720 struct btf *btf = env->btf; 1721 u32 nr_types = btf->nr_types; 1722 u32 *resolved_sizes = NULL; 1723 u32 *resolved_ids = NULL; 1724 u8 *visit_states = NULL; 1725 1726 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1727 GFP_KERNEL | __GFP_NOWARN); 1728 if (!resolved_sizes) 1729 goto nomem; 1730 1731 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1732 GFP_KERNEL | __GFP_NOWARN); 1733 if (!resolved_ids) 1734 goto nomem; 1735 1736 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1737 GFP_KERNEL | __GFP_NOWARN); 1738 if (!visit_states) 1739 goto nomem; 1740 1741 btf->resolved_sizes = resolved_sizes; 1742 btf->resolved_ids = resolved_ids; 1743 env->visit_states = visit_states; 1744 1745 return 0; 1746 1747 nomem: 1748 kvfree(resolved_sizes); 1749 kvfree(resolved_ids); 1750 kvfree(visit_states); 1751 return -ENOMEM; 1752 } 1753 1754 static void btf_verifier_env_free(struct btf_verifier_env *env) 1755 { 1756 kvfree(env->visit_states); 1757 kfree(env); 1758 } 1759 1760 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1761 const struct btf_type *next_type) 1762 { 1763 switch (env->resolve_mode) { 1764 case RESOLVE_TBD: 1765 /* int, enum or void is a sink */ 1766 return !btf_type_needs_resolve(next_type); 1767 case RESOLVE_PTR: 1768 /* int, enum, void, struct, array, func or func_proto is a sink 1769 * for ptr 1770 */ 1771 return !btf_type_is_modifier(next_type) && 1772 !btf_type_is_ptr(next_type); 1773 case RESOLVE_STRUCT_OR_ARRAY: 1774 /* int, enum, void, ptr, func or func_proto is a sink 1775 * for struct and array 1776 */ 1777 return !btf_type_is_modifier(next_type) && 1778 !btf_type_is_array(next_type) && 1779 !btf_type_is_struct(next_type); 1780 default: 1781 BUG(); 1782 } 1783 } 1784 1785 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1786 u32 type_id) 1787 { 1788 /* base BTF types should be resolved by now */ 1789 if (type_id < env->btf->start_id) 1790 return true; 1791 1792 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1793 } 1794 1795 static int env_stack_push(struct btf_verifier_env *env, 1796 const struct btf_type *t, u32 type_id) 1797 { 1798 const struct btf *btf = env->btf; 1799 struct resolve_vertex *v; 1800 1801 if (env->top_stack == MAX_RESOLVE_DEPTH) 1802 return -E2BIG; 1803 1804 if (type_id < btf->start_id 1805 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1806 return -EEXIST; 1807 1808 env->visit_states[type_id - btf->start_id] = VISITED; 1809 1810 v = &env->stack[env->top_stack++]; 1811 v->t = t; 1812 v->type_id = type_id; 1813 v->next_member = 0; 1814 1815 if (env->resolve_mode == RESOLVE_TBD) { 1816 if (btf_type_is_ptr(t)) 1817 env->resolve_mode = RESOLVE_PTR; 1818 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1819 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static void env_stack_set_next_member(struct btf_verifier_env *env, 1826 u16 next_member) 1827 { 1828 env->stack[env->top_stack - 1].next_member = next_member; 1829 } 1830 1831 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1832 u32 resolved_type_id, 1833 u32 resolved_size) 1834 { 1835 u32 type_id = env->stack[--(env->top_stack)].type_id; 1836 struct btf *btf = env->btf; 1837 1838 type_id -= btf->start_id; /* adjust to local type id */ 1839 btf->resolved_sizes[type_id] = resolved_size; 1840 btf->resolved_ids[type_id] = resolved_type_id; 1841 env->visit_states[type_id] = RESOLVED; 1842 } 1843 1844 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1845 { 1846 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1847 } 1848 1849 /* Resolve the size of a passed-in "type" 1850 * 1851 * type: is an array (e.g. u32 array[x][y]) 1852 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1853 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1854 * corresponds to the return type. 1855 * *elem_type: u32 1856 * *elem_id: id of u32 1857 * *total_nelems: (x * y). Hence, individual elem size is 1858 * (*type_size / *total_nelems) 1859 * *type_id: id of type if it's changed within the function, 0 if not 1860 * 1861 * type: is not an array (e.g. const struct X) 1862 * return type: type "struct X" 1863 * *type_size: sizeof(struct X) 1864 * *elem_type: same as return type ("struct X") 1865 * *elem_id: 0 1866 * *total_nelems: 1 1867 * *type_id: id of type if it's changed within the function, 0 if not 1868 */ 1869 static const struct btf_type * 1870 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1871 u32 *type_size, const struct btf_type **elem_type, 1872 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1873 { 1874 const struct btf_type *array_type = NULL; 1875 const struct btf_array *array = NULL; 1876 u32 i, size, nelems = 1, id = 0; 1877 1878 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1879 switch (BTF_INFO_KIND(type->info)) { 1880 /* type->size can be used */ 1881 case BTF_KIND_INT: 1882 case BTF_KIND_STRUCT: 1883 case BTF_KIND_UNION: 1884 case BTF_KIND_ENUM: 1885 case BTF_KIND_FLOAT: 1886 case BTF_KIND_ENUM64: 1887 size = type->size; 1888 goto resolved; 1889 1890 case BTF_KIND_PTR: 1891 size = sizeof(void *); 1892 goto resolved; 1893 1894 /* Modifiers */ 1895 case BTF_KIND_TYPEDEF: 1896 case BTF_KIND_VOLATILE: 1897 case BTF_KIND_CONST: 1898 case BTF_KIND_RESTRICT: 1899 case BTF_KIND_TYPE_TAG: 1900 id = type->type; 1901 type = btf_type_by_id(btf, type->type); 1902 break; 1903 1904 case BTF_KIND_ARRAY: 1905 if (!array_type) 1906 array_type = type; 1907 array = btf_type_array(type); 1908 if (nelems && array->nelems > U32_MAX / nelems) 1909 return ERR_PTR(-EINVAL); 1910 nelems *= array->nelems; 1911 type = btf_type_by_id(btf, array->type); 1912 break; 1913 1914 /* type without size */ 1915 default: 1916 return ERR_PTR(-EINVAL); 1917 } 1918 } 1919 1920 return ERR_PTR(-EINVAL); 1921 1922 resolved: 1923 if (nelems && size > U32_MAX / nelems) 1924 return ERR_PTR(-EINVAL); 1925 1926 *type_size = nelems * size; 1927 if (total_nelems) 1928 *total_nelems = nelems; 1929 if (elem_type) 1930 *elem_type = type; 1931 if (elem_id) 1932 *elem_id = array ? array->type : 0; 1933 if (type_id && id) 1934 *type_id = id; 1935 1936 return array_type ? : type; 1937 } 1938 1939 const struct btf_type * 1940 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1941 u32 *type_size) 1942 { 1943 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1944 } 1945 1946 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1947 { 1948 while (type_id < btf->start_id) 1949 btf = btf->base_btf; 1950 1951 return btf->resolved_ids[type_id - btf->start_id]; 1952 } 1953 1954 /* The input param "type_id" must point to a needs_resolve type */ 1955 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1956 u32 *type_id) 1957 { 1958 *type_id = btf_resolved_type_id(btf, *type_id); 1959 return btf_type_by_id(btf, *type_id); 1960 } 1961 1962 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1963 { 1964 while (type_id < btf->start_id) 1965 btf = btf->base_btf; 1966 1967 return btf->resolved_sizes[type_id - btf->start_id]; 1968 } 1969 1970 const struct btf_type *btf_type_id_size(const struct btf *btf, 1971 u32 *type_id, u32 *ret_size) 1972 { 1973 const struct btf_type *size_type; 1974 u32 size_type_id = *type_id; 1975 u32 size = 0; 1976 1977 size_type = btf_type_by_id(btf, size_type_id); 1978 if (btf_type_nosize_or_null(size_type)) 1979 return NULL; 1980 1981 if (btf_type_has_size(size_type)) { 1982 size = size_type->size; 1983 } else if (btf_type_is_array(size_type)) { 1984 size = btf_resolved_type_size(btf, size_type_id); 1985 } else if (btf_type_is_ptr(size_type)) { 1986 size = sizeof(void *); 1987 } else { 1988 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1989 !btf_type_is_var(size_type))) 1990 return NULL; 1991 1992 size_type_id = btf_resolved_type_id(btf, size_type_id); 1993 size_type = btf_type_by_id(btf, size_type_id); 1994 if (btf_type_nosize_or_null(size_type)) 1995 return NULL; 1996 else if (btf_type_has_size(size_type)) 1997 size = size_type->size; 1998 else if (btf_type_is_array(size_type)) 1999 size = btf_resolved_type_size(btf, size_type_id); 2000 else if (btf_type_is_ptr(size_type)) 2001 size = sizeof(void *); 2002 else 2003 return NULL; 2004 } 2005 2006 *type_id = size_type_id; 2007 if (ret_size) 2008 *ret_size = size; 2009 2010 return size_type; 2011 } 2012 2013 static int btf_df_check_member(struct btf_verifier_env *env, 2014 const struct btf_type *struct_type, 2015 const struct btf_member *member, 2016 const struct btf_type *member_type) 2017 { 2018 btf_verifier_log_basic(env, struct_type, 2019 "Unsupported check_member"); 2020 return -EINVAL; 2021 } 2022 2023 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2024 const struct btf_type *struct_type, 2025 const struct btf_member *member, 2026 const struct btf_type *member_type) 2027 { 2028 btf_verifier_log_basic(env, struct_type, 2029 "Unsupported check_kflag_member"); 2030 return -EINVAL; 2031 } 2032 2033 /* Used for ptr, array struct/union and float type members. 2034 * int, enum and modifier types have their specific callback functions. 2035 */ 2036 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2037 const struct btf_type *struct_type, 2038 const struct btf_member *member, 2039 const struct btf_type *member_type) 2040 { 2041 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2042 btf_verifier_log_member(env, struct_type, member, 2043 "Invalid member bitfield_size"); 2044 return -EINVAL; 2045 } 2046 2047 /* bitfield size is 0, so member->offset represents bit offset only. 2048 * It is safe to call non kflag check_member variants. 2049 */ 2050 return btf_type_ops(member_type)->check_member(env, struct_type, 2051 member, 2052 member_type); 2053 } 2054 2055 static int btf_df_resolve(struct btf_verifier_env *env, 2056 const struct resolve_vertex *v) 2057 { 2058 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2059 return -EINVAL; 2060 } 2061 2062 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2063 u32 type_id, void *data, u8 bits_offsets, 2064 struct btf_show *show) 2065 { 2066 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2067 } 2068 2069 static int btf_int_check_member(struct btf_verifier_env *env, 2070 const struct btf_type *struct_type, 2071 const struct btf_member *member, 2072 const struct btf_type *member_type) 2073 { 2074 u32 int_data = btf_type_int(member_type); 2075 u32 struct_bits_off = member->offset; 2076 u32 struct_size = struct_type->size; 2077 u32 nr_copy_bits; 2078 u32 bytes_offset; 2079 2080 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2081 btf_verifier_log_member(env, struct_type, member, 2082 "bits_offset exceeds U32_MAX"); 2083 return -EINVAL; 2084 } 2085 2086 struct_bits_off += BTF_INT_OFFSET(int_data); 2087 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2088 nr_copy_bits = BTF_INT_BITS(int_data) + 2089 BITS_PER_BYTE_MASKED(struct_bits_off); 2090 2091 if (nr_copy_bits > BITS_PER_U128) { 2092 btf_verifier_log_member(env, struct_type, member, 2093 "nr_copy_bits exceeds 128"); 2094 return -EINVAL; 2095 } 2096 2097 if (struct_size < bytes_offset || 2098 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2099 btf_verifier_log_member(env, struct_type, member, 2100 "Member exceeds struct_size"); 2101 return -EINVAL; 2102 } 2103 2104 return 0; 2105 } 2106 2107 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2108 const struct btf_type *struct_type, 2109 const struct btf_member *member, 2110 const struct btf_type *member_type) 2111 { 2112 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2113 u32 int_data = btf_type_int(member_type); 2114 u32 struct_size = struct_type->size; 2115 u32 nr_copy_bits; 2116 2117 /* a regular int type is required for the kflag int member */ 2118 if (!btf_type_int_is_regular(member_type)) { 2119 btf_verifier_log_member(env, struct_type, member, 2120 "Invalid member base type"); 2121 return -EINVAL; 2122 } 2123 2124 /* check sanity of bitfield size */ 2125 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2126 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2127 nr_int_data_bits = BTF_INT_BITS(int_data); 2128 if (!nr_bits) { 2129 /* Not a bitfield member, member offset must be at byte 2130 * boundary. 2131 */ 2132 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2133 btf_verifier_log_member(env, struct_type, member, 2134 "Invalid member offset"); 2135 return -EINVAL; 2136 } 2137 2138 nr_bits = nr_int_data_bits; 2139 } else if (nr_bits > nr_int_data_bits) { 2140 btf_verifier_log_member(env, struct_type, member, 2141 "Invalid member bitfield_size"); 2142 return -EINVAL; 2143 } 2144 2145 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2146 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2147 if (nr_copy_bits > BITS_PER_U128) { 2148 btf_verifier_log_member(env, struct_type, member, 2149 "nr_copy_bits exceeds 128"); 2150 return -EINVAL; 2151 } 2152 2153 if (struct_size < bytes_offset || 2154 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2155 btf_verifier_log_member(env, struct_type, member, 2156 "Member exceeds struct_size"); 2157 return -EINVAL; 2158 } 2159 2160 return 0; 2161 } 2162 2163 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2164 const struct btf_type *t, 2165 u32 meta_left) 2166 { 2167 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2168 u16 encoding; 2169 2170 if (meta_left < meta_needed) { 2171 btf_verifier_log_basic(env, t, 2172 "meta_left:%u meta_needed:%u", 2173 meta_left, meta_needed); 2174 return -EINVAL; 2175 } 2176 2177 if (btf_type_vlen(t)) { 2178 btf_verifier_log_type(env, t, "vlen != 0"); 2179 return -EINVAL; 2180 } 2181 2182 if (btf_type_kflag(t)) { 2183 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2184 return -EINVAL; 2185 } 2186 2187 int_data = btf_type_int(t); 2188 if (int_data & ~BTF_INT_MASK) { 2189 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2190 int_data); 2191 return -EINVAL; 2192 } 2193 2194 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2195 2196 if (nr_bits > BITS_PER_U128) { 2197 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2198 BITS_PER_U128); 2199 return -EINVAL; 2200 } 2201 2202 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2203 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2204 return -EINVAL; 2205 } 2206 2207 /* 2208 * Only one of the encoding bits is allowed and it 2209 * should be sufficient for the pretty print purpose (i.e. decoding). 2210 * Multiple bits can be allowed later if it is found 2211 * to be insufficient. 2212 */ 2213 encoding = BTF_INT_ENCODING(int_data); 2214 if (encoding && 2215 encoding != BTF_INT_SIGNED && 2216 encoding != BTF_INT_CHAR && 2217 encoding != BTF_INT_BOOL) { 2218 btf_verifier_log_type(env, t, "Unsupported encoding"); 2219 return -ENOTSUPP; 2220 } 2221 2222 btf_verifier_log_type(env, t, NULL); 2223 2224 return meta_needed; 2225 } 2226 2227 static void btf_int_log(struct btf_verifier_env *env, 2228 const struct btf_type *t) 2229 { 2230 int int_data = btf_type_int(t); 2231 2232 btf_verifier_log(env, 2233 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2234 t->size, BTF_INT_OFFSET(int_data), 2235 BTF_INT_BITS(int_data), 2236 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2237 } 2238 2239 static void btf_int128_print(struct btf_show *show, void *data) 2240 { 2241 /* data points to a __int128 number. 2242 * Suppose 2243 * int128_num = *(__int128 *)data; 2244 * The below formulas shows what upper_num and lower_num represents: 2245 * upper_num = int128_num >> 64; 2246 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2247 */ 2248 u64 upper_num, lower_num; 2249 2250 #ifdef __BIG_ENDIAN_BITFIELD 2251 upper_num = *(u64 *)data; 2252 lower_num = *(u64 *)(data + 8); 2253 #else 2254 upper_num = *(u64 *)(data + 8); 2255 lower_num = *(u64 *)data; 2256 #endif 2257 if (upper_num == 0) 2258 btf_show_type_value(show, "0x%llx", lower_num); 2259 else 2260 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2261 lower_num); 2262 } 2263 2264 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2265 u16 right_shift_bits) 2266 { 2267 u64 upper_num, lower_num; 2268 2269 #ifdef __BIG_ENDIAN_BITFIELD 2270 upper_num = print_num[0]; 2271 lower_num = print_num[1]; 2272 #else 2273 upper_num = print_num[1]; 2274 lower_num = print_num[0]; 2275 #endif 2276 2277 /* shake out un-needed bits by shift/or operations */ 2278 if (left_shift_bits >= 64) { 2279 upper_num = lower_num << (left_shift_bits - 64); 2280 lower_num = 0; 2281 } else { 2282 upper_num = (upper_num << left_shift_bits) | 2283 (lower_num >> (64 - left_shift_bits)); 2284 lower_num = lower_num << left_shift_bits; 2285 } 2286 2287 if (right_shift_bits >= 64) { 2288 lower_num = upper_num >> (right_shift_bits - 64); 2289 upper_num = 0; 2290 } else { 2291 lower_num = (lower_num >> right_shift_bits) | 2292 (upper_num << (64 - right_shift_bits)); 2293 upper_num = upper_num >> right_shift_bits; 2294 } 2295 2296 #ifdef __BIG_ENDIAN_BITFIELD 2297 print_num[0] = upper_num; 2298 print_num[1] = lower_num; 2299 #else 2300 print_num[0] = lower_num; 2301 print_num[1] = upper_num; 2302 #endif 2303 } 2304 2305 static void btf_bitfield_show(void *data, u8 bits_offset, 2306 u8 nr_bits, struct btf_show *show) 2307 { 2308 u16 left_shift_bits, right_shift_bits; 2309 u8 nr_copy_bytes; 2310 u8 nr_copy_bits; 2311 u64 print_num[2] = {}; 2312 2313 nr_copy_bits = nr_bits + bits_offset; 2314 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2315 2316 memcpy(print_num, data, nr_copy_bytes); 2317 2318 #ifdef __BIG_ENDIAN_BITFIELD 2319 left_shift_bits = bits_offset; 2320 #else 2321 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2322 #endif 2323 right_shift_bits = BITS_PER_U128 - nr_bits; 2324 2325 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2326 btf_int128_print(show, print_num); 2327 } 2328 2329 2330 static void btf_int_bits_show(const struct btf *btf, 2331 const struct btf_type *t, 2332 void *data, u8 bits_offset, 2333 struct btf_show *show) 2334 { 2335 u32 int_data = btf_type_int(t); 2336 u8 nr_bits = BTF_INT_BITS(int_data); 2337 u8 total_bits_offset; 2338 2339 /* 2340 * bits_offset is at most 7. 2341 * BTF_INT_OFFSET() cannot exceed 128 bits. 2342 */ 2343 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2344 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2345 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2346 btf_bitfield_show(data, bits_offset, nr_bits, show); 2347 } 2348 2349 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2350 u32 type_id, void *data, u8 bits_offset, 2351 struct btf_show *show) 2352 { 2353 u32 int_data = btf_type_int(t); 2354 u8 encoding = BTF_INT_ENCODING(int_data); 2355 bool sign = encoding & BTF_INT_SIGNED; 2356 u8 nr_bits = BTF_INT_BITS(int_data); 2357 void *safe_data; 2358 2359 safe_data = btf_show_start_type(show, t, type_id, data); 2360 if (!safe_data) 2361 return; 2362 2363 if (bits_offset || BTF_INT_OFFSET(int_data) || 2364 BITS_PER_BYTE_MASKED(nr_bits)) { 2365 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2366 goto out; 2367 } 2368 2369 switch (nr_bits) { 2370 case 128: 2371 btf_int128_print(show, safe_data); 2372 break; 2373 case 64: 2374 if (sign) 2375 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2376 else 2377 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2378 break; 2379 case 32: 2380 if (sign) 2381 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2382 else 2383 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2384 break; 2385 case 16: 2386 if (sign) 2387 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2388 else 2389 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2390 break; 2391 case 8: 2392 if (show->state.array_encoding == BTF_INT_CHAR) { 2393 /* check for null terminator */ 2394 if (show->state.array_terminated) 2395 break; 2396 if (*(char *)data == '\0') { 2397 show->state.array_terminated = 1; 2398 break; 2399 } 2400 if (isprint(*(char *)data)) { 2401 btf_show_type_value(show, "'%c'", 2402 *(char *)safe_data); 2403 break; 2404 } 2405 } 2406 if (sign) 2407 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2408 else 2409 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2410 break; 2411 default: 2412 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2413 break; 2414 } 2415 out: 2416 btf_show_end_type(show); 2417 } 2418 2419 static const struct btf_kind_operations int_ops = { 2420 .check_meta = btf_int_check_meta, 2421 .resolve = btf_df_resolve, 2422 .check_member = btf_int_check_member, 2423 .check_kflag_member = btf_int_check_kflag_member, 2424 .log_details = btf_int_log, 2425 .show = btf_int_show, 2426 }; 2427 2428 static int btf_modifier_check_member(struct btf_verifier_env *env, 2429 const struct btf_type *struct_type, 2430 const struct btf_member *member, 2431 const struct btf_type *member_type) 2432 { 2433 const struct btf_type *resolved_type; 2434 u32 resolved_type_id = member->type; 2435 struct btf_member resolved_member; 2436 struct btf *btf = env->btf; 2437 2438 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2439 if (!resolved_type) { 2440 btf_verifier_log_member(env, struct_type, member, 2441 "Invalid member"); 2442 return -EINVAL; 2443 } 2444 2445 resolved_member = *member; 2446 resolved_member.type = resolved_type_id; 2447 2448 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2449 &resolved_member, 2450 resolved_type); 2451 } 2452 2453 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2454 const struct btf_type *struct_type, 2455 const struct btf_member *member, 2456 const struct btf_type *member_type) 2457 { 2458 const struct btf_type *resolved_type; 2459 u32 resolved_type_id = member->type; 2460 struct btf_member resolved_member; 2461 struct btf *btf = env->btf; 2462 2463 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2464 if (!resolved_type) { 2465 btf_verifier_log_member(env, struct_type, member, 2466 "Invalid member"); 2467 return -EINVAL; 2468 } 2469 2470 resolved_member = *member; 2471 resolved_member.type = resolved_type_id; 2472 2473 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2474 &resolved_member, 2475 resolved_type); 2476 } 2477 2478 static int btf_ptr_check_member(struct btf_verifier_env *env, 2479 const struct btf_type *struct_type, 2480 const struct btf_member *member, 2481 const struct btf_type *member_type) 2482 { 2483 u32 struct_size, struct_bits_off, bytes_offset; 2484 2485 struct_size = struct_type->size; 2486 struct_bits_off = member->offset; 2487 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2488 2489 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2490 btf_verifier_log_member(env, struct_type, member, 2491 "Member is not byte aligned"); 2492 return -EINVAL; 2493 } 2494 2495 if (struct_size - bytes_offset < sizeof(void *)) { 2496 btf_verifier_log_member(env, struct_type, member, 2497 "Member exceeds struct_size"); 2498 return -EINVAL; 2499 } 2500 2501 return 0; 2502 } 2503 2504 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2505 const struct btf_type *t, 2506 u32 meta_left) 2507 { 2508 const char *value; 2509 2510 if (btf_type_vlen(t)) { 2511 btf_verifier_log_type(env, t, "vlen != 0"); 2512 return -EINVAL; 2513 } 2514 2515 if (btf_type_kflag(t)) { 2516 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2517 return -EINVAL; 2518 } 2519 2520 if (!BTF_TYPE_ID_VALID(t->type)) { 2521 btf_verifier_log_type(env, t, "Invalid type_id"); 2522 return -EINVAL; 2523 } 2524 2525 /* typedef/type_tag type must have a valid name, and other ref types, 2526 * volatile, const, restrict, should have a null name. 2527 */ 2528 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2529 if (!t->name_off || 2530 !btf_name_valid_identifier(env->btf, t->name_off)) { 2531 btf_verifier_log_type(env, t, "Invalid name"); 2532 return -EINVAL; 2533 } 2534 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2535 value = btf_name_by_offset(env->btf, t->name_off); 2536 if (!value || !value[0]) { 2537 btf_verifier_log_type(env, t, "Invalid name"); 2538 return -EINVAL; 2539 } 2540 } else { 2541 if (t->name_off) { 2542 btf_verifier_log_type(env, t, "Invalid name"); 2543 return -EINVAL; 2544 } 2545 } 2546 2547 btf_verifier_log_type(env, t, NULL); 2548 2549 return 0; 2550 } 2551 2552 static int btf_modifier_resolve(struct btf_verifier_env *env, 2553 const struct resolve_vertex *v) 2554 { 2555 const struct btf_type *t = v->t; 2556 const struct btf_type *next_type; 2557 u32 next_type_id = t->type; 2558 struct btf *btf = env->btf; 2559 2560 next_type = btf_type_by_id(btf, next_type_id); 2561 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2562 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2563 return -EINVAL; 2564 } 2565 2566 if (!env_type_is_resolve_sink(env, next_type) && 2567 !env_type_is_resolved(env, next_type_id)) 2568 return env_stack_push(env, next_type, next_type_id); 2569 2570 /* Figure out the resolved next_type_id with size. 2571 * They will be stored in the current modifier's 2572 * resolved_ids and resolved_sizes such that it can 2573 * save us a few type-following when we use it later (e.g. in 2574 * pretty print). 2575 */ 2576 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2577 if (env_type_is_resolved(env, next_type_id)) 2578 next_type = btf_type_id_resolve(btf, &next_type_id); 2579 2580 /* "typedef void new_void", "const void"...etc */ 2581 if (!btf_type_is_void(next_type) && 2582 !btf_type_is_fwd(next_type) && 2583 !btf_type_is_func_proto(next_type)) { 2584 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2585 return -EINVAL; 2586 } 2587 } 2588 2589 env_stack_pop_resolved(env, next_type_id, 0); 2590 2591 return 0; 2592 } 2593 2594 static int btf_var_resolve(struct btf_verifier_env *env, 2595 const struct resolve_vertex *v) 2596 { 2597 const struct btf_type *next_type; 2598 const struct btf_type *t = v->t; 2599 u32 next_type_id = t->type; 2600 struct btf *btf = env->btf; 2601 2602 next_type = btf_type_by_id(btf, next_type_id); 2603 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2604 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2605 return -EINVAL; 2606 } 2607 2608 if (!env_type_is_resolve_sink(env, next_type) && 2609 !env_type_is_resolved(env, next_type_id)) 2610 return env_stack_push(env, next_type, next_type_id); 2611 2612 if (btf_type_is_modifier(next_type)) { 2613 const struct btf_type *resolved_type; 2614 u32 resolved_type_id; 2615 2616 resolved_type_id = next_type_id; 2617 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2618 2619 if (btf_type_is_ptr(resolved_type) && 2620 !env_type_is_resolve_sink(env, resolved_type) && 2621 !env_type_is_resolved(env, resolved_type_id)) 2622 return env_stack_push(env, resolved_type, 2623 resolved_type_id); 2624 } 2625 2626 /* We must resolve to something concrete at this point, no 2627 * forward types or similar that would resolve to size of 2628 * zero is allowed. 2629 */ 2630 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2631 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2632 return -EINVAL; 2633 } 2634 2635 env_stack_pop_resolved(env, next_type_id, 0); 2636 2637 return 0; 2638 } 2639 2640 static int btf_ptr_resolve(struct btf_verifier_env *env, 2641 const struct resolve_vertex *v) 2642 { 2643 const struct btf_type *next_type; 2644 const struct btf_type *t = v->t; 2645 u32 next_type_id = t->type; 2646 struct btf *btf = env->btf; 2647 2648 next_type = btf_type_by_id(btf, next_type_id); 2649 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2650 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2651 return -EINVAL; 2652 } 2653 2654 if (!env_type_is_resolve_sink(env, next_type) && 2655 !env_type_is_resolved(env, next_type_id)) 2656 return env_stack_push(env, next_type, next_type_id); 2657 2658 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2659 * the modifier may have stopped resolving when it was resolved 2660 * to a ptr (last-resolved-ptr). 2661 * 2662 * We now need to continue from the last-resolved-ptr to 2663 * ensure the last-resolved-ptr will not referring back to 2664 * the current ptr (t). 2665 */ 2666 if (btf_type_is_modifier(next_type)) { 2667 const struct btf_type *resolved_type; 2668 u32 resolved_type_id; 2669 2670 resolved_type_id = next_type_id; 2671 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2672 2673 if (btf_type_is_ptr(resolved_type) && 2674 !env_type_is_resolve_sink(env, resolved_type) && 2675 !env_type_is_resolved(env, resolved_type_id)) 2676 return env_stack_push(env, resolved_type, 2677 resolved_type_id); 2678 } 2679 2680 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2681 if (env_type_is_resolved(env, next_type_id)) 2682 next_type = btf_type_id_resolve(btf, &next_type_id); 2683 2684 if (!btf_type_is_void(next_type) && 2685 !btf_type_is_fwd(next_type) && 2686 !btf_type_is_func_proto(next_type)) { 2687 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2688 return -EINVAL; 2689 } 2690 } 2691 2692 env_stack_pop_resolved(env, next_type_id, 0); 2693 2694 return 0; 2695 } 2696 2697 static void btf_modifier_show(const struct btf *btf, 2698 const struct btf_type *t, 2699 u32 type_id, void *data, 2700 u8 bits_offset, struct btf_show *show) 2701 { 2702 if (btf->resolved_ids) 2703 t = btf_type_id_resolve(btf, &type_id); 2704 else 2705 t = btf_type_skip_modifiers(btf, type_id, NULL); 2706 2707 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2708 } 2709 2710 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2711 u32 type_id, void *data, u8 bits_offset, 2712 struct btf_show *show) 2713 { 2714 t = btf_type_id_resolve(btf, &type_id); 2715 2716 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2717 } 2718 2719 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2720 u32 type_id, void *data, u8 bits_offset, 2721 struct btf_show *show) 2722 { 2723 void *safe_data; 2724 2725 safe_data = btf_show_start_type(show, t, type_id, data); 2726 if (!safe_data) 2727 return; 2728 2729 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2730 if (show->flags & BTF_SHOW_PTR_RAW) 2731 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2732 else 2733 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2734 btf_show_end_type(show); 2735 } 2736 2737 static void btf_ref_type_log(struct btf_verifier_env *env, 2738 const struct btf_type *t) 2739 { 2740 btf_verifier_log(env, "type_id=%u", t->type); 2741 } 2742 2743 static struct btf_kind_operations modifier_ops = { 2744 .check_meta = btf_ref_type_check_meta, 2745 .resolve = btf_modifier_resolve, 2746 .check_member = btf_modifier_check_member, 2747 .check_kflag_member = btf_modifier_check_kflag_member, 2748 .log_details = btf_ref_type_log, 2749 .show = btf_modifier_show, 2750 }; 2751 2752 static struct btf_kind_operations ptr_ops = { 2753 .check_meta = btf_ref_type_check_meta, 2754 .resolve = btf_ptr_resolve, 2755 .check_member = btf_ptr_check_member, 2756 .check_kflag_member = btf_generic_check_kflag_member, 2757 .log_details = btf_ref_type_log, 2758 .show = btf_ptr_show, 2759 }; 2760 2761 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2762 const struct btf_type *t, 2763 u32 meta_left) 2764 { 2765 if (btf_type_vlen(t)) { 2766 btf_verifier_log_type(env, t, "vlen != 0"); 2767 return -EINVAL; 2768 } 2769 2770 if (t->type) { 2771 btf_verifier_log_type(env, t, "type != 0"); 2772 return -EINVAL; 2773 } 2774 2775 /* fwd type must have a valid name */ 2776 if (!t->name_off || 2777 !btf_name_valid_identifier(env->btf, t->name_off)) { 2778 btf_verifier_log_type(env, t, "Invalid name"); 2779 return -EINVAL; 2780 } 2781 2782 btf_verifier_log_type(env, t, NULL); 2783 2784 return 0; 2785 } 2786 2787 static void btf_fwd_type_log(struct btf_verifier_env *env, 2788 const struct btf_type *t) 2789 { 2790 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2791 } 2792 2793 static struct btf_kind_operations fwd_ops = { 2794 .check_meta = btf_fwd_check_meta, 2795 .resolve = btf_df_resolve, 2796 .check_member = btf_df_check_member, 2797 .check_kflag_member = btf_df_check_kflag_member, 2798 .log_details = btf_fwd_type_log, 2799 .show = btf_df_show, 2800 }; 2801 2802 static int btf_array_check_member(struct btf_verifier_env *env, 2803 const struct btf_type *struct_type, 2804 const struct btf_member *member, 2805 const struct btf_type *member_type) 2806 { 2807 u32 struct_bits_off = member->offset; 2808 u32 struct_size, bytes_offset; 2809 u32 array_type_id, array_size; 2810 struct btf *btf = env->btf; 2811 2812 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2813 btf_verifier_log_member(env, struct_type, member, 2814 "Member is not byte aligned"); 2815 return -EINVAL; 2816 } 2817 2818 array_type_id = member->type; 2819 btf_type_id_size(btf, &array_type_id, &array_size); 2820 struct_size = struct_type->size; 2821 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2822 if (struct_size - bytes_offset < array_size) { 2823 btf_verifier_log_member(env, struct_type, member, 2824 "Member exceeds struct_size"); 2825 return -EINVAL; 2826 } 2827 2828 return 0; 2829 } 2830 2831 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2832 const struct btf_type *t, 2833 u32 meta_left) 2834 { 2835 const struct btf_array *array = btf_type_array(t); 2836 u32 meta_needed = sizeof(*array); 2837 2838 if (meta_left < meta_needed) { 2839 btf_verifier_log_basic(env, t, 2840 "meta_left:%u meta_needed:%u", 2841 meta_left, meta_needed); 2842 return -EINVAL; 2843 } 2844 2845 /* array type should not have a name */ 2846 if (t->name_off) { 2847 btf_verifier_log_type(env, t, "Invalid name"); 2848 return -EINVAL; 2849 } 2850 2851 if (btf_type_vlen(t)) { 2852 btf_verifier_log_type(env, t, "vlen != 0"); 2853 return -EINVAL; 2854 } 2855 2856 if (btf_type_kflag(t)) { 2857 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2858 return -EINVAL; 2859 } 2860 2861 if (t->size) { 2862 btf_verifier_log_type(env, t, "size != 0"); 2863 return -EINVAL; 2864 } 2865 2866 /* Array elem type and index type cannot be in type void, 2867 * so !array->type and !array->index_type are not allowed. 2868 */ 2869 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2870 btf_verifier_log_type(env, t, "Invalid elem"); 2871 return -EINVAL; 2872 } 2873 2874 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2875 btf_verifier_log_type(env, t, "Invalid index"); 2876 return -EINVAL; 2877 } 2878 2879 btf_verifier_log_type(env, t, NULL); 2880 2881 return meta_needed; 2882 } 2883 2884 static int btf_array_resolve(struct btf_verifier_env *env, 2885 const struct resolve_vertex *v) 2886 { 2887 const struct btf_array *array = btf_type_array(v->t); 2888 const struct btf_type *elem_type, *index_type; 2889 u32 elem_type_id, index_type_id; 2890 struct btf *btf = env->btf; 2891 u32 elem_size; 2892 2893 /* Check array->index_type */ 2894 index_type_id = array->index_type; 2895 index_type = btf_type_by_id(btf, index_type_id); 2896 if (btf_type_nosize_or_null(index_type) || 2897 btf_type_is_resolve_source_only(index_type)) { 2898 btf_verifier_log_type(env, v->t, "Invalid index"); 2899 return -EINVAL; 2900 } 2901 2902 if (!env_type_is_resolve_sink(env, index_type) && 2903 !env_type_is_resolved(env, index_type_id)) 2904 return env_stack_push(env, index_type, index_type_id); 2905 2906 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2907 if (!index_type || !btf_type_is_int(index_type) || 2908 !btf_type_int_is_regular(index_type)) { 2909 btf_verifier_log_type(env, v->t, "Invalid index"); 2910 return -EINVAL; 2911 } 2912 2913 /* Check array->type */ 2914 elem_type_id = array->type; 2915 elem_type = btf_type_by_id(btf, elem_type_id); 2916 if (btf_type_nosize_or_null(elem_type) || 2917 btf_type_is_resolve_source_only(elem_type)) { 2918 btf_verifier_log_type(env, v->t, 2919 "Invalid elem"); 2920 return -EINVAL; 2921 } 2922 2923 if (!env_type_is_resolve_sink(env, elem_type) && 2924 !env_type_is_resolved(env, elem_type_id)) 2925 return env_stack_push(env, elem_type, elem_type_id); 2926 2927 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2928 if (!elem_type) { 2929 btf_verifier_log_type(env, v->t, "Invalid elem"); 2930 return -EINVAL; 2931 } 2932 2933 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2934 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2935 return -EINVAL; 2936 } 2937 2938 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2939 btf_verifier_log_type(env, v->t, 2940 "Array size overflows U32_MAX"); 2941 return -EINVAL; 2942 } 2943 2944 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2945 2946 return 0; 2947 } 2948 2949 static void btf_array_log(struct btf_verifier_env *env, 2950 const struct btf_type *t) 2951 { 2952 const struct btf_array *array = btf_type_array(t); 2953 2954 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2955 array->type, array->index_type, array->nelems); 2956 } 2957 2958 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2959 u32 type_id, void *data, u8 bits_offset, 2960 struct btf_show *show) 2961 { 2962 const struct btf_array *array = btf_type_array(t); 2963 const struct btf_kind_operations *elem_ops; 2964 const struct btf_type *elem_type; 2965 u32 i, elem_size = 0, elem_type_id; 2966 u16 encoding = 0; 2967 2968 elem_type_id = array->type; 2969 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2970 if (elem_type && btf_type_has_size(elem_type)) 2971 elem_size = elem_type->size; 2972 2973 if (elem_type && btf_type_is_int(elem_type)) { 2974 u32 int_type = btf_type_int(elem_type); 2975 2976 encoding = BTF_INT_ENCODING(int_type); 2977 2978 /* 2979 * BTF_INT_CHAR encoding never seems to be set for 2980 * char arrays, so if size is 1 and element is 2981 * printable as a char, we'll do that. 2982 */ 2983 if (elem_size == 1) 2984 encoding = BTF_INT_CHAR; 2985 } 2986 2987 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2988 return; 2989 2990 if (!elem_type) 2991 goto out; 2992 elem_ops = btf_type_ops(elem_type); 2993 2994 for (i = 0; i < array->nelems; i++) { 2995 2996 btf_show_start_array_member(show); 2997 2998 elem_ops->show(btf, elem_type, elem_type_id, data, 2999 bits_offset, show); 3000 data += elem_size; 3001 3002 btf_show_end_array_member(show); 3003 3004 if (show->state.array_terminated) 3005 break; 3006 } 3007 out: 3008 btf_show_end_array_type(show); 3009 } 3010 3011 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3012 u32 type_id, void *data, u8 bits_offset, 3013 struct btf_show *show) 3014 { 3015 const struct btf_member *m = show->state.member; 3016 3017 /* 3018 * First check if any members would be shown (are non-zero). 3019 * See comments above "struct btf_show" definition for more 3020 * details on how this works at a high-level. 3021 */ 3022 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3023 if (!show->state.depth_check) { 3024 show->state.depth_check = show->state.depth + 1; 3025 show->state.depth_to_show = 0; 3026 } 3027 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3028 show->state.member = m; 3029 3030 if (show->state.depth_check != show->state.depth + 1) 3031 return; 3032 show->state.depth_check = 0; 3033 3034 if (show->state.depth_to_show <= show->state.depth) 3035 return; 3036 /* 3037 * Reaching here indicates we have recursed and found 3038 * non-zero array member(s). 3039 */ 3040 } 3041 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3042 } 3043 3044 static struct btf_kind_operations array_ops = { 3045 .check_meta = btf_array_check_meta, 3046 .resolve = btf_array_resolve, 3047 .check_member = btf_array_check_member, 3048 .check_kflag_member = btf_generic_check_kflag_member, 3049 .log_details = btf_array_log, 3050 .show = btf_array_show, 3051 }; 3052 3053 static int btf_struct_check_member(struct btf_verifier_env *env, 3054 const struct btf_type *struct_type, 3055 const struct btf_member *member, 3056 const struct btf_type *member_type) 3057 { 3058 u32 struct_bits_off = member->offset; 3059 u32 struct_size, bytes_offset; 3060 3061 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3062 btf_verifier_log_member(env, struct_type, member, 3063 "Member is not byte aligned"); 3064 return -EINVAL; 3065 } 3066 3067 struct_size = struct_type->size; 3068 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3069 if (struct_size - bytes_offset < member_type->size) { 3070 btf_verifier_log_member(env, struct_type, member, 3071 "Member exceeds struct_size"); 3072 return -EINVAL; 3073 } 3074 3075 return 0; 3076 } 3077 3078 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3079 const struct btf_type *t, 3080 u32 meta_left) 3081 { 3082 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3083 const struct btf_member *member; 3084 u32 meta_needed, last_offset; 3085 struct btf *btf = env->btf; 3086 u32 struct_size = t->size; 3087 u32 offset; 3088 u16 i; 3089 3090 meta_needed = btf_type_vlen(t) * sizeof(*member); 3091 if (meta_left < meta_needed) { 3092 btf_verifier_log_basic(env, t, 3093 "meta_left:%u meta_needed:%u", 3094 meta_left, meta_needed); 3095 return -EINVAL; 3096 } 3097 3098 /* struct type either no name or a valid one */ 3099 if (t->name_off && 3100 !btf_name_valid_identifier(env->btf, t->name_off)) { 3101 btf_verifier_log_type(env, t, "Invalid name"); 3102 return -EINVAL; 3103 } 3104 3105 btf_verifier_log_type(env, t, NULL); 3106 3107 last_offset = 0; 3108 for_each_member(i, t, member) { 3109 if (!btf_name_offset_valid(btf, member->name_off)) { 3110 btf_verifier_log_member(env, t, member, 3111 "Invalid member name_offset:%u", 3112 member->name_off); 3113 return -EINVAL; 3114 } 3115 3116 /* struct member either no name or a valid one */ 3117 if (member->name_off && 3118 !btf_name_valid_identifier(btf, member->name_off)) { 3119 btf_verifier_log_member(env, t, member, "Invalid name"); 3120 return -EINVAL; 3121 } 3122 /* A member cannot be in type void */ 3123 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3124 btf_verifier_log_member(env, t, member, 3125 "Invalid type_id"); 3126 return -EINVAL; 3127 } 3128 3129 offset = __btf_member_bit_offset(t, member); 3130 if (is_union && offset) { 3131 btf_verifier_log_member(env, t, member, 3132 "Invalid member bits_offset"); 3133 return -EINVAL; 3134 } 3135 3136 /* 3137 * ">" instead of ">=" because the last member could be 3138 * "char a[0];" 3139 */ 3140 if (last_offset > offset) { 3141 btf_verifier_log_member(env, t, member, 3142 "Invalid member bits_offset"); 3143 return -EINVAL; 3144 } 3145 3146 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3147 btf_verifier_log_member(env, t, member, 3148 "Member bits_offset exceeds its struct size"); 3149 return -EINVAL; 3150 } 3151 3152 btf_verifier_log_member(env, t, member, NULL); 3153 last_offset = offset; 3154 } 3155 3156 return meta_needed; 3157 } 3158 3159 static int btf_struct_resolve(struct btf_verifier_env *env, 3160 const struct resolve_vertex *v) 3161 { 3162 const struct btf_member *member; 3163 int err; 3164 u16 i; 3165 3166 /* Before continue resolving the next_member, 3167 * ensure the last member is indeed resolved to a 3168 * type with size info. 3169 */ 3170 if (v->next_member) { 3171 const struct btf_type *last_member_type; 3172 const struct btf_member *last_member; 3173 u32 last_member_type_id; 3174 3175 last_member = btf_type_member(v->t) + v->next_member - 1; 3176 last_member_type_id = last_member->type; 3177 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3178 last_member_type_id))) 3179 return -EINVAL; 3180 3181 last_member_type = btf_type_by_id(env->btf, 3182 last_member_type_id); 3183 if (btf_type_kflag(v->t)) 3184 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3185 last_member, 3186 last_member_type); 3187 else 3188 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3189 last_member, 3190 last_member_type); 3191 if (err) 3192 return err; 3193 } 3194 3195 for_each_member_from(i, v->next_member, v->t, member) { 3196 u32 member_type_id = member->type; 3197 const struct btf_type *member_type = btf_type_by_id(env->btf, 3198 member_type_id); 3199 3200 if (btf_type_nosize_or_null(member_type) || 3201 btf_type_is_resolve_source_only(member_type)) { 3202 btf_verifier_log_member(env, v->t, member, 3203 "Invalid member"); 3204 return -EINVAL; 3205 } 3206 3207 if (!env_type_is_resolve_sink(env, member_type) && 3208 !env_type_is_resolved(env, member_type_id)) { 3209 env_stack_set_next_member(env, i + 1); 3210 return env_stack_push(env, member_type, member_type_id); 3211 } 3212 3213 if (btf_type_kflag(v->t)) 3214 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3215 member, 3216 member_type); 3217 else 3218 err = btf_type_ops(member_type)->check_member(env, v->t, 3219 member, 3220 member_type); 3221 if (err) 3222 return err; 3223 } 3224 3225 env_stack_pop_resolved(env, 0, 0); 3226 3227 return 0; 3228 } 3229 3230 static void btf_struct_log(struct btf_verifier_env *env, 3231 const struct btf_type *t) 3232 { 3233 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3234 } 3235 3236 enum { 3237 BTF_FIELD_IGNORE = 0, 3238 BTF_FIELD_FOUND = 1, 3239 }; 3240 3241 struct btf_field_info { 3242 enum btf_field_type type; 3243 u32 off; 3244 union { 3245 struct { 3246 u32 type_id; 3247 } kptr; 3248 struct { 3249 const char *node_name; 3250 u32 value_btf_id; 3251 } graph_root; 3252 }; 3253 }; 3254 3255 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3256 u32 off, int sz, enum btf_field_type field_type, 3257 struct btf_field_info *info) 3258 { 3259 if (!__btf_type_is_struct(t)) 3260 return BTF_FIELD_IGNORE; 3261 if (t->size != sz) 3262 return BTF_FIELD_IGNORE; 3263 info->type = field_type; 3264 info->off = off; 3265 return BTF_FIELD_FOUND; 3266 } 3267 3268 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3269 u32 off, int sz, struct btf_field_info *info) 3270 { 3271 enum btf_field_type type; 3272 u32 res_id; 3273 3274 /* Permit modifiers on the pointer itself */ 3275 if (btf_type_is_volatile(t)) 3276 t = btf_type_by_id(btf, t->type); 3277 /* For PTR, sz is always == 8 */ 3278 if (!btf_type_is_ptr(t)) 3279 return BTF_FIELD_IGNORE; 3280 t = btf_type_by_id(btf, t->type); 3281 3282 if (!btf_type_is_type_tag(t)) 3283 return BTF_FIELD_IGNORE; 3284 /* Reject extra tags */ 3285 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3286 return -EINVAL; 3287 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3288 type = BPF_KPTR_UNREF; 3289 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3290 type = BPF_KPTR_REF; 3291 else 3292 return -EINVAL; 3293 3294 /* Get the base type */ 3295 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3296 /* Only pointer to struct is allowed */ 3297 if (!__btf_type_is_struct(t)) 3298 return -EINVAL; 3299 3300 info->type = type; 3301 info->off = off; 3302 info->kptr.type_id = res_id; 3303 return BTF_FIELD_FOUND; 3304 } 3305 3306 static const char *btf_find_decl_tag_value(const struct btf *btf, 3307 const struct btf_type *pt, 3308 int comp_idx, const char *tag_key) 3309 { 3310 int i; 3311 3312 for (i = 1; i < btf_nr_types(btf); i++) { 3313 const struct btf_type *t = btf_type_by_id(btf, i); 3314 int len = strlen(tag_key); 3315 3316 if (!btf_type_is_decl_tag(t)) 3317 continue; 3318 if (pt != btf_type_by_id(btf, t->type) || 3319 btf_type_decl_tag(t)->component_idx != comp_idx) 3320 continue; 3321 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3322 continue; 3323 return __btf_name_by_offset(btf, t->name_off) + len; 3324 } 3325 return NULL; 3326 } 3327 3328 static int 3329 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3330 const struct btf_type *t, int comp_idx, u32 off, 3331 int sz, struct btf_field_info *info, 3332 enum btf_field_type head_type) 3333 { 3334 const char *node_field_name; 3335 const char *value_type; 3336 s32 id; 3337 3338 if (!__btf_type_is_struct(t)) 3339 return BTF_FIELD_IGNORE; 3340 if (t->size != sz) 3341 return BTF_FIELD_IGNORE; 3342 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3343 if (!value_type) 3344 return -EINVAL; 3345 node_field_name = strstr(value_type, ":"); 3346 if (!node_field_name) 3347 return -EINVAL; 3348 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3349 if (!value_type) 3350 return -ENOMEM; 3351 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3352 kfree(value_type); 3353 if (id < 0) 3354 return id; 3355 node_field_name++; 3356 if (str_is_empty(node_field_name)) 3357 return -EINVAL; 3358 info->type = head_type; 3359 info->off = off; 3360 info->graph_root.value_btf_id = id; 3361 info->graph_root.node_name = node_field_name; 3362 return BTF_FIELD_FOUND; 3363 } 3364 3365 #define field_mask_test_name(field_type, field_type_str) \ 3366 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3367 type = field_type; \ 3368 goto end; \ 3369 } 3370 3371 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3372 int *align, int *sz) 3373 { 3374 int type = 0; 3375 3376 if (field_mask & BPF_SPIN_LOCK) { 3377 if (!strcmp(name, "bpf_spin_lock")) { 3378 if (*seen_mask & BPF_SPIN_LOCK) 3379 return -E2BIG; 3380 *seen_mask |= BPF_SPIN_LOCK; 3381 type = BPF_SPIN_LOCK; 3382 goto end; 3383 } 3384 } 3385 if (field_mask & BPF_TIMER) { 3386 if (!strcmp(name, "bpf_timer")) { 3387 if (*seen_mask & BPF_TIMER) 3388 return -E2BIG; 3389 *seen_mask |= BPF_TIMER; 3390 type = BPF_TIMER; 3391 goto end; 3392 } 3393 } 3394 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3395 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3396 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3397 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3398 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3399 3400 /* Only return BPF_KPTR when all other types with matchable names fail */ 3401 if (field_mask & BPF_KPTR) { 3402 type = BPF_KPTR_REF; 3403 goto end; 3404 } 3405 return 0; 3406 end: 3407 *sz = btf_field_type_size(type); 3408 *align = btf_field_type_align(type); 3409 return type; 3410 } 3411 3412 #undef field_mask_test_name 3413 3414 static int btf_find_struct_field(const struct btf *btf, 3415 const struct btf_type *t, u32 field_mask, 3416 struct btf_field_info *info, int info_cnt) 3417 { 3418 int ret, idx = 0, align, sz, field_type; 3419 const struct btf_member *member; 3420 struct btf_field_info tmp; 3421 u32 i, off, seen_mask = 0; 3422 3423 for_each_member(i, t, member) { 3424 const struct btf_type *member_type = btf_type_by_id(btf, 3425 member->type); 3426 3427 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3428 field_mask, &seen_mask, &align, &sz); 3429 if (field_type == 0) 3430 continue; 3431 if (field_type < 0) 3432 return field_type; 3433 3434 off = __btf_member_bit_offset(t, member); 3435 if (off % 8) 3436 /* valid C code cannot generate such BTF */ 3437 return -EINVAL; 3438 off /= 8; 3439 if (off % align) 3440 continue; 3441 3442 switch (field_type) { 3443 case BPF_SPIN_LOCK: 3444 case BPF_TIMER: 3445 case BPF_LIST_NODE: 3446 case BPF_RB_NODE: 3447 case BPF_REFCOUNT: 3448 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3449 idx < info_cnt ? &info[idx] : &tmp); 3450 if (ret < 0) 3451 return ret; 3452 break; 3453 case BPF_KPTR_UNREF: 3454 case BPF_KPTR_REF: 3455 ret = btf_find_kptr(btf, member_type, off, sz, 3456 idx < info_cnt ? &info[idx] : &tmp); 3457 if (ret < 0) 3458 return ret; 3459 break; 3460 case BPF_LIST_HEAD: 3461 case BPF_RB_ROOT: 3462 ret = btf_find_graph_root(btf, t, member_type, 3463 i, off, sz, 3464 idx < info_cnt ? &info[idx] : &tmp, 3465 field_type); 3466 if (ret < 0) 3467 return ret; 3468 break; 3469 default: 3470 return -EFAULT; 3471 } 3472 3473 if (ret == BTF_FIELD_IGNORE) 3474 continue; 3475 if (idx >= info_cnt) 3476 return -E2BIG; 3477 ++idx; 3478 } 3479 return idx; 3480 } 3481 3482 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3483 u32 field_mask, struct btf_field_info *info, 3484 int info_cnt) 3485 { 3486 int ret, idx = 0, align, sz, field_type; 3487 const struct btf_var_secinfo *vsi; 3488 struct btf_field_info tmp; 3489 u32 i, off, seen_mask = 0; 3490 3491 for_each_vsi(i, t, vsi) { 3492 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3493 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3494 3495 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3496 field_mask, &seen_mask, &align, &sz); 3497 if (field_type == 0) 3498 continue; 3499 if (field_type < 0) 3500 return field_type; 3501 3502 off = vsi->offset; 3503 if (vsi->size != sz) 3504 continue; 3505 if (off % align) 3506 continue; 3507 3508 switch (field_type) { 3509 case BPF_SPIN_LOCK: 3510 case BPF_TIMER: 3511 case BPF_LIST_NODE: 3512 case BPF_RB_NODE: 3513 case BPF_REFCOUNT: 3514 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3515 idx < info_cnt ? &info[idx] : &tmp); 3516 if (ret < 0) 3517 return ret; 3518 break; 3519 case BPF_KPTR_UNREF: 3520 case BPF_KPTR_REF: 3521 ret = btf_find_kptr(btf, var_type, off, sz, 3522 idx < info_cnt ? &info[idx] : &tmp); 3523 if (ret < 0) 3524 return ret; 3525 break; 3526 case BPF_LIST_HEAD: 3527 case BPF_RB_ROOT: 3528 ret = btf_find_graph_root(btf, var, var_type, 3529 -1, off, sz, 3530 idx < info_cnt ? &info[idx] : &tmp, 3531 field_type); 3532 if (ret < 0) 3533 return ret; 3534 break; 3535 default: 3536 return -EFAULT; 3537 } 3538 3539 if (ret == BTF_FIELD_IGNORE) 3540 continue; 3541 if (idx >= info_cnt) 3542 return -E2BIG; 3543 ++idx; 3544 } 3545 return idx; 3546 } 3547 3548 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3549 u32 field_mask, struct btf_field_info *info, 3550 int info_cnt) 3551 { 3552 if (__btf_type_is_struct(t)) 3553 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3554 else if (btf_type_is_datasec(t)) 3555 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3556 return -EINVAL; 3557 } 3558 3559 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3560 struct btf_field_info *info) 3561 { 3562 struct module *mod = NULL; 3563 const struct btf_type *t; 3564 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3565 * is that BTF, otherwise it's program BTF 3566 */ 3567 struct btf *kptr_btf; 3568 int ret; 3569 s32 id; 3570 3571 /* Find type in map BTF, and use it to look up the matching type 3572 * in vmlinux or module BTFs, by name and kind. 3573 */ 3574 t = btf_type_by_id(btf, info->kptr.type_id); 3575 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3576 &kptr_btf); 3577 if (id == -ENOENT) { 3578 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3579 WARN_ON_ONCE(btf_is_kernel(btf)); 3580 3581 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3582 * kptr allocated via bpf_obj_new 3583 */ 3584 field->kptr.dtor = NULL; 3585 id = info->kptr.type_id; 3586 kptr_btf = (struct btf *)btf; 3587 btf_get(kptr_btf); 3588 goto found_dtor; 3589 } 3590 if (id < 0) 3591 return id; 3592 3593 /* Find and stash the function pointer for the destruction function that 3594 * needs to be eventually invoked from the map free path. 3595 */ 3596 if (info->type == BPF_KPTR_REF) { 3597 const struct btf_type *dtor_func; 3598 const char *dtor_func_name; 3599 unsigned long addr; 3600 s32 dtor_btf_id; 3601 3602 /* This call also serves as a whitelist of allowed objects that 3603 * can be used as a referenced pointer and be stored in a map at 3604 * the same time. 3605 */ 3606 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3607 if (dtor_btf_id < 0) { 3608 ret = dtor_btf_id; 3609 goto end_btf; 3610 } 3611 3612 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3613 if (!dtor_func) { 3614 ret = -ENOENT; 3615 goto end_btf; 3616 } 3617 3618 if (btf_is_module(kptr_btf)) { 3619 mod = btf_try_get_module(kptr_btf); 3620 if (!mod) { 3621 ret = -ENXIO; 3622 goto end_btf; 3623 } 3624 } 3625 3626 /* We already verified dtor_func to be btf_type_is_func 3627 * in register_btf_id_dtor_kfuncs. 3628 */ 3629 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3630 addr = kallsyms_lookup_name(dtor_func_name); 3631 if (!addr) { 3632 ret = -EINVAL; 3633 goto end_mod; 3634 } 3635 field->kptr.dtor = (void *)addr; 3636 } 3637 3638 found_dtor: 3639 field->kptr.btf_id = id; 3640 field->kptr.btf = kptr_btf; 3641 field->kptr.module = mod; 3642 return 0; 3643 end_mod: 3644 module_put(mod); 3645 end_btf: 3646 btf_put(kptr_btf); 3647 return ret; 3648 } 3649 3650 static int btf_parse_graph_root(const struct btf *btf, 3651 struct btf_field *field, 3652 struct btf_field_info *info, 3653 const char *node_type_name, 3654 size_t node_type_align) 3655 { 3656 const struct btf_type *t, *n = NULL; 3657 const struct btf_member *member; 3658 u32 offset; 3659 int i; 3660 3661 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3662 /* We've already checked that value_btf_id is a struct type. We 3663 * just need to figure out the offset of the list_node, and 3664 * verify its type. 3665 */ 3666 for_each_member(i, t, member) { 3667 if (strcmp(info->graph_root.node_name, 3668 __btf_name_by_offset(btf, member->name_off))) 3669 continue; 3670 /* Invalid BTF, two members with same name */ 3671 if (n) 3672 return -EINVAL; 3673 n = btf_type_by_id(btf, member->type); 3674 if (!__btf_type_is_struct(n)) 3675 return -EINVAL; 3676 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3677 return -EINVAL; 3678 offset = __btf_member_bit_offset(n, member); 3679 if (offset % 8) 3680 return -EINVAL; 3681 offset /= 8; 3682 if (offset % node_type_align) 3683 return -EINVAL; 3684 3685 field->graph_root.btf = (struct btf *)btf; 3686 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3687 field->graph_root.node_offset = offset; 3688 } 3689 if (!n) 3690 return -ENOENT; 3691 return 0; 3692 } 3693 3694 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3695 struct btf_field_info *info) 3696 { 3697 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3698 __alignof__(struct bpf_list_node)); 3699 } 3700 3701 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3702 struct btf_field_info *info) 3703 { 3704 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3705 __alignof__(struct bpf_rb_node)); 3706 } 3707 3708 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3709 { 3710 const struct btf_field *a = (const struct btf_field *)_a; 3711 const struct btf_field *b = (const struct btf_field *)_b; 3712 3713 if (a->offset < b->offset) 3714 return -1; 3715 else if (a->offset > b->offset) 3716 return 1; 3717 return 0; 3718 } 3719 3720 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3721 u32 field_mask, u32 value_size) 3722 { 3723 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3724 u32 next_off = 0, field_type_size; 3725 struct btf_record *rec; 3726 int ret, i, cnt; 3727 3728 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3729 if (ret < 0) 3730 return ERR_PTR(ret); 3731 if (!ret) 3732 return NULL; 3733 3734 cnt = ret; 3735 /* This needs to be kzalloc to zero out padding and unused fields, see 3736 * comment in btf_record_equal. 3737 */ 3738 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3739 if (!rec) 3740 return ERR_PTR(-ENOMEM); 3741 3742 rec->spin_lock_off = -EINVAL; 3743 rec->timer_off = -EINVAL; 3744 rec->refcount_off = -EINVAL; 3745 for (i = 0; i < cnt; i++) { 3746 field_type_size = btf_field_type_size(info_arr[i].type); 3747 if (info_arr[i].off + field_type_size > value_size) { 3748 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3749 ret = -EFAULT; 3750 goto end; 3751 } 3752 if (info_arr[i].off < next_off) { 3753 ret = -EEXIST; 3754 goto end; 3755 } 3756 next_off = info_arr[i].off + field_type_size; 3757 3758 rec->field_mask |= info_arr[i].type; 3759 rec->fields[i].offset = info_arr[i].off; 3760 rec->fields[i].type = info_arr[i].type; 3761 rec->fields[i].size = field_type_size; 3762 3763 switch (info_arr[i].type) { 3764 case BPF_SPIN_LOCK: 3765 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3766 /* Cache offset for faster lookup at runtime */ 3767 rec->spin_lock_off = rec->fields[i].offset; 3768 break; 3769 case BPF_TIMER: 3770 WARN_ON_ONCE(rec->timer_off >= 0); 3771 /* Cache offset for faster lookup at runtime */ 3772 rec->timer_off = rec->fields[i].offset; 3773 break; 3774 case BPF_REFCOUNT: 3775 WARN_ON_ONCE(rec->refcount_off >= 0); 3776 /* Cache offset for faster lookup at runtime */ 3777 rec->refcount_off = rec->fields[i].offset; 3778 break; 3779 case BPF_KPTR_UNREF: 3780 case BPF_KPTR_REF: 3781 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3782 if (ret < 0) 3783 goto end; 3784 break; 3785 case BPF_LIST_HEAD: 3786 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3787 if (ret < 0) 3788 goto end; 3789 break; 3790 case BPF_RB_ROOT: 3791 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3792 if (ret < 0) 3793 goto end; 3794 break; 3795 case BPF_LIST_NODE: 3796 case BPF_RB_NODE: 3797 break; 3798 default: 3799 ret = -EFAULT; 3800 goto end; 3801 } 3802 rec->cnt++; 3803 } 3804 3805 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3806 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3807 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3808 ret = -EINVAL; 3809 goto end; 3810 } 3811 3812 if (rec->refcount_off < 0 && 3813 btf_record_has_field(rec, BPF_LIST_NODE) && 3814 btf_record_has_field(rec, BPF_RB_NODE)) { 3815 ret = -EINVAL; 3816 goto end; 3817 } 3818 3819 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 3820 NULL, rec); 3821 3822 return rec; 3823 end: 3824 btf_record_free(rec); 3825 return ERR_PTR(ret); 3826 } 3827 3828 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) 3829 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) 3830 3831 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3832 { 3833 int i; 3834 3835 /* There are three types that signify ownership of some other type: 3836 * kptr_ref, bpf_list_head, bpf_rb_root. 3837 * kptr_ref only supports storing kernel types, which can't store 3838 * references to program allocated local types. 3839 * 3840 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3841 * does not form cycles. 3842 */ 3843 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) 3844 return 0; 3845 for (i = 0; i < rec->cnt; i++) { 3846 struct btf_struct_meta *meta; 3847 u32 btf_id; 3848 3849 if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) 3850 continue; 3851 btf_id = rec->fields[i].graph_root.value_btf_id; 3852 meta = btf_find_struct_meta(btf, btf_id); 3853 if (!meta) 3854 return -EFAULT; 3855 rec->fields[i].graph_root.value_rec = meta->record; 3856 3857 /* We need to set value_rec for all root types, but no need 3858 * to check ownership cycle for a type unless it's also a 3859 * node type. 3860 */ 3861 if (!(rec->field_mask & GRAPH_NODE_MASK)) 3862 continue; 3863 3864 /* We need to ensure ownership acyclicity among all types. The 3865 * proper way to do it would be to topologically sort all BTF 3866 * IDs based on the ownership edges, since there can be multiple 3867 * bpf_{list_head,rb_node} in a type. Instead, we use the 3868 * following resaoning: 3869 * 3870 * - A type can only be owned by another type in user BTF if it 3871 * has a bpf_{list,rb}_node. Let's call these node types. 3872 * - A type can only _own_ another type in user BTF if it has a 3873 * bpf_{list_head,rb_root}. Let's call these root types. 3874 * 3875 * We ensure that if a type is both a root and node, its 3876 * element types cannot be root types. 3877 * 3878 * To ensure acyclicity: 3879 * 3880 * When A is an root type but not a node, its ownership 3881 * chain can be: 3882 * A -> B -> C 3883 * Where: 3884 * - A is an root, e.g. has bpf_rb_root. 3885 * - B is both a root and node, e.g. has bpf_rb_node and 3886 * bpf_list_head. 3887 * - C is only an root, e.g. has bpf_list_node 3888 * 3889 * When A is both a root and node, some other type already 3890 * owns it in the BTF domain, hence it can not own 3891 * another root type through any of the ownership edges. 3892 * A -> B 3893 * Where: 3894 * - A is both an root and node. 3895 * - B is only an node. 3896 */ 3897 if (meta->record->field_mask & GRAPH_ROOT_MASK) 3898 return -ELOOP; 3899 } 3900 return 0; 3901 } 3902 3903 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3904 u32 type_id, void *data, u8 bits_offset, 3905 struct btf_show *show) 3906 { 3907 const struct btf_member *member; 3908 void *safe_data; 3909 u32 i; 3910 3911 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3912 if (!safe_data) 3913 return; 3914 3915 for_each_member(i, t, member) { 3916 const struct btf_type *member_type = btf_type_by_id(btf, 3917 member->type); 3918 const struct btf_kind_operations *ops; 3919 u32 member_offset, bitfield_size; 3920 u32 bytes_offset; 3921 u8 bits8_offset; 3922 3923 btf_show_start_member(show, member); 3924 3925 member_offset = __btf_member_bit_offset(t, member); 3926 bitfield_size = __btf_member_bitfield_size(t, member); 3927 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3928 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3929 if (bitfield_size) { 3930 safe_data = btf_show_start_type(show, member_type, 3931 member->type, 3932 data + bytes_offset); 3933 if (safe_data) 3934 btf_bitfield_show(safe_data, 3935 bits8_offset, 3936 bitfield_size, show); 3937 btf_show_end_type(show); 3938 } else { 3939 ops = btf_type_ops(member_type); 3940 ops->show(btf, member_type, member->type, 3941 data + bytes_offset, bits8_offset, show); 3942 } 3943 3944 btf_show_end_member(show); 3945 } 3946 3947 btf_show_end_struct_type(show); 3948 } 3949 3950 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3951 u32 type_id, void *data, u8 bits_offset, 3952 struct btf_show *show) 3953 { 3954 const struct btf_member *m = show->state.member; 3955 3956 /* 3957 * First check if any members would be shown (are non-zero). 3958 * See comments above "struct btf_show" definition for more 3959 * details on how this works at a high-level. 3960 */ 3961 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3962 if (!show->state.depth_check) { 3963 show->state.depth_check = show->state.depth + 1; 3964 show->state.depth_to_show = 0; 3965 } 3966 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3967 /* Restore saved member data here */ 3968 show->state.member = m; 3969 if (show->state.depth_check != show->state.depth + 1) 3970 return; 3971 show->state.depth_check = 0; 3972 3973 if (show->state.depth_to_show <= show->state.depth) 3974 return; 3975 /* 3976 * Reaching here indicates we have recursed and found 3977 * non-zero child values. 3978 */ 3979 } 3980 3981 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3982 } 3983 3984 static struct btf_kind_operations struct_ops = { 3985 .check_meta = btf_struct_check_meta, 3986 .resolve = btf_struct_resolve, 3987 .check_member = btf_struct_check_member, 3988 .check_kflag_member = btf_generic_check_kflag_member, 3989 .log_details = btf_struct_log, 3990 .show = btf_struct_show, 3991 }; 3992 3993 static int btf_enum_check_member(struct btf_verifier_env *env, 3994 const struct btf_type *struct_type, 3995 const struct btf_member *member, 3996 const struct btf_type *member_type) 3997 { 3998 u32 struct_bits_off = member->offset; 3999 u32 struct_size, bytes_offset; 4000 4001 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4002 btf_verifier_log_member(env, struct_type, member, 4003 "Member is not byte aligned"); 4004 return -EINVAL; 4005 } 4006 4007 struct_size = struct_type->size; 4008 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4009 if (struct_size - bytes_offset < member_type->size) { 4010 btf_verifier_log_member(env, struct_type, member, 4011 "Member exceeds struct_size"); 4012 return -EINVAL; 4013 } 4014 4015 return 0; 4016 } 4017 4018 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4019 const struct btf_type *struct_type, 4020 const struct btf_member *member, 4021 const struct btf_type *member_type) 4022 { 4023 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4024 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4025 4026 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4027 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4028 if (!nr_bits) { 4029 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4030 btf_verifier_log_member(env, struct_type, member, 4031 "Member is not byte aligned"); 4032 return -EINVAL; 4033 } 4034 4035 nr_bits = int_bitsize; 4036 } else if (nr_bits > int_bitsize) { 4037 btf_verifier_log_member(env, struct_type, member, 4038 "Invalid member bitfield_size"); 4039 return -EINVAL; 4040 } 4041 4042 struct_size = struct_type->size; 4043 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4044 if (struct_size < bytes_end) { 4045 btf_verifier_log_member(env, struct_type, member, 4046 "Member exceeds struct_size"); 4047 return -EINVAL; 4048 } 4049 4050 return 0; 4051 } 4052 4053 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4054 const struct btf_type *t, 4055 u32 meta_left) 4056 { 4057 const struct btf_enum *enums = btf_type_enum(t); 4058 struct btf *btf = env->btf; 4059 const char *fmt_str; 4060 u16 i, nr_enums; 4061 u32 meta_needed; 4062 4063 nr_enums = btf_type_vlen(t); 4064 meta_needed = nr_enums * sizeof(*enums); 4065 4066 if (meta_left < meta_needed) { 4067 btf_verifier_log_basic(env, t, 4068 "meta_left:%u meta_needed:%u", 4069 meta_left, meta_needed); 4070 return -EINVAL; 4071 } 4072 4073 if (t->size > 8 || !is_power_of_2(t->size)) { 4074 btf_verifier_log_type(env, t, "Unexpected size"); 4075 return -EINVAL; 4076 } 4077 4078 /* enum type either no name or a valid one */ 4079 if (t->name_off && 4080 !btf_name_valid_identifier(env->btf, t->name_off)) { 4081 btf_verifier_log_type(env, t, "Invalid name"); 4082 return -EINVAL; 4083 } 4084 4085 btf_verifier_log_type(env, t, NULL); 4086 4087 for (i = 0; i < nr_enums; i++) { 4088 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4089 btf_verifier_log(env, "\tInvalid name_offset:%u", 4090 enums[i].name_off); 4091 return -EINVAL; 4092 } 4093 4094 /* enum member must have a valid name */ 4095 if (!enums[i].name_off || 4096 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4097 btf_verifier_log_type(env, t, "Invalid name"); 4098 return -EINVAL; 4099 } 4100 4101 if (env->log.level == BPF_LOG_KERNEL) 4102 continue; 4103 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4104 btf_verifier_log(env, fmt_str, 4105 __btf_name_by_offset(btf, enums[i].name_off), 4106 enums[i].val); 4107 } 4108 4109 return meta_needed; 4110 } 4111 4112 static void btf_enum_log(struct btf_verifier_env *env, 4113 const struct btf_type *t) 4114 { 4115 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4116 } 4117 4118 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4119 u32 type_id, void *data, u8 bits_offset, 4120 struct btf_show *show) 4121 { 4122 const struct btf_enum *enums = btf_type_enum(t); 4123 u32 i, nr_enums = btf_type_vlen(t); 4124 void *safe_data; 4125 int v; 4126 4127 safe_data = btf_show_start_type(show, t, type_id, data); 4128 if (!safe_data) 4129 return; 4130 4131 v = *(int *)safe_data; 4132 4133 for (i = 0; i < nr_enums; i++) { 4134 if (v != enums[i].val) 4135 continue; 4136 4137 btf_show_type_value(show, "%s", 4138 __btf_name_by_offset(btf, 4139 enums[i].name_off)); 4140 4141 btf_show_end_type(show); 4142 return; 4143 } 4144 4145 if (btf_type_kflag(t)) 4146 btf_show_type_value(show, "%d", v); 4147 else 4148 btf_show_type_value(show, "%u", v); 4149 btf_show_end_type(show); 4150 } 4151 4152 static struct btf_kind_operations enum_ops = { 4153 .check_meta = btf_enum_check_meta, 4154 .resolve = btf_df_resolve, 4155 .check_member = btf_enum_check_member, 4156 .check_kflag_member = btf_enum_check_kflag_member, 4157 .log_details = btf_enum_log, 4158 .show = btf_enum_show, 4159 }; 4160 4161 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4162 const struct btf_type *t, 4163 u32 meta_left) 4164 { 4165 const struct btf_enum64 *enums = btf_type_enum64(t); 4166 struct btf *btf = env->btf; 4167 const char *fmt_str; 4168 u16 i, nr_enums; 4169 u32 meta_needed; 4170 4171 nr_enums = btf_type_vlen(t); 4172 meta_needed = nr_enums * sizeof(*enums); 4173 4174 if (meta_left < meta_needed) { 4175 btf_verifier_log_basic(env, t, 4176 "meta_left:%u meta_needed:%u", 4177 meta_left, meta_needed); 4178 return -EINVAL; 4179 } 4180 4181 if (t->size > 8 || !is_power_of_2(t->size)) { 4182 btf_verifier_log_type(env, t, "Unexpected size"); 4183 return -EINVAL; 4184 } 4185 4186 /* enum type either no name or a valid one */ 4187 if (t->name_off && 4188 !btf_name_valid_identifier(env->btf, t->name_off)) { 4189 btf_verifier_log_type(env, t, "Invalid name"); 4190 return -EINVAL; 4191 } 4192 4193 btf_verifier_log_type(env, t, NULL); 4194 4195 for (i = 0; i < nr_enums; i++) { 4196 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4197 btf_verifier_log(env, "\tInvalid name_offset:%u", 4198 enums[i].name_off); 4199 return -EINVAL; 4200 } 4201 4202 /* enum member must have a valid name */ 4203 if (!enums[i].name_off || 4204 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4205 btf_verifier_log_type(env, t, "Invalid name"); 4206 return -EINVAL; 4207 } 4208 4209 if (env->log.level == BPF_LOG_KERNEL) 4210 continue; 4211 4212 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4213 btf_verifier_log(env, fmt_str, 4214 __btf_name_by_offset(btf, enums[i].name_off), 4215 btf_enum64_value(enums + i)); 4216 } 4217 4218 return meta_needed; 4219 } 4220 4221 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4222 u32 type_id, void *data, u8 bits_offset, 4223 struct btf_show *show) 4224 { 4225 const struct btf_enum64 *enums = btf_type_enum64(t); 4226 u32 i, nr_enums = btf_type_vlen(t); 4227 void *safe_data; 4228 s64 v; 4229 4230 safe_data = btf_show_start_type(show, t, type_id, data); 4231 if (!safe_data) 4232 return; 4233 4234 v = *(u64 *)safe_data; 4235 4236 for (i = 0; i < nr_enums; i++) { 4237 if (v != btf_enum64_value(enums + i)) 4238 continue; 4239 4240 btf_show_type_value(show, "%s", 4241 __btf_name_by_offset(btf, 4242 enums[i].name_off)); 4243 4244 btf_show_end_type(show); 4245 return; 4246 } 4247 4248 if (btf_type_kflag(t)) 4249 btf_show_type_value(show, "%lld", v); 4250 else 4251 btf_show_type_value(show, "%llu", v); 4252 btf_show_end_type(show); 4253 } 4254 4255 static struct btf_kind_operations enum64_ops = { 4256 .check_meta = btf_enum64_check_meta, 4257 .resolve = btf_df_resolve, 4258 .check_member = btf_enum_check_member, 4259 .check_kflag_member = btf_enum_check_kflag_member, 4260 .log_details = btf_enum_log, 4261 .show = btf_enum64_show, 4262 }; 4263 4264 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4265 const struct btf_type *t, 4266 u32 meta_left) 4267 { 4268 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4269 4270 if (meta_left < meta_needed) { 4271 btf_verifier_log_basic(env, t, 4272 "meta_left:%u meta_needed:%u", 4273 meta_left, meta_needed); 4274 return -EINVAL; 4275 } 4276 4277 if (t->name_off) { 4278 btf_verifier_log_type(env, t, "Invalid name"); 4279 return -EINVAL; 4280 } 4281 4282 if (btf_type_kflag(t)) { 4283 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4284 return -EINVAL; 4285 } 4286 4287 btf_verifier_log_type(env, t, NULL); 4288 4289 return meta_needed; 4290 } 4291 4292 static void btf_func_proto_log(struct btf_verifier_env *env, 4293 const struct btf_type *t) 4294 { 4295 const struct btf_param *args = (const struct btf_param *)(t + 1); 4296 u16 nr_args = btf_type_vlen(t), i; 4297 4298 btf_verifier_log(env, "return=%u args=(", t->type); 4299 if (!nr_args) { 4300 btf_verifier_log(env, "void"); 4301 goto done; 4302 } 4303 4304 if (nr_args == 1 && !args[0].type) { 4305 /* Only one vararg */ 4306 btf_verifier_log(env, "vararg"); 4307 goto done; 4308 } 4309 4310 btf_verifier_log(env, "%u %s", args[0].type, 4311 __btf_name_by_offset(env->btf, 4312 args[0].name_off)); 4313 for (i = 1; i < nr_args - 1; i++) 4314 btf_verifier_log(env, ", %u %s", args[i].type, 4315 __btf_name_by_offset(env->btf, 4316 args[i].name_off)); 4317 4318 if (nr_args > 1) { 4319 const struct btf_param *last_arg = &args[nr_args - 1]; 4320 4321 if (last_arg->type) 4322 btf_verifier_log(env, ", %u %s", last_arg->type, 4323 __btf_name_by_offset(env->btf, 4324 last_arg->name_off)); 4325 else 4326 btf_verifier_log(env, ", vararg"); 4327 } 4328 4329 done: 4330 btf_verifier_log(env, ")"); 4331 } 4332 4333 static struct btf_kind_operations func_proto_ops = { 4334 .check_meta = btf_func_proto_check_meta, 4335 .resolve = btf_df_resolve, 4336 /* 4337 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4338 * a struct's member. 4339 * 4340 * It should be a function pointer instead. 4341 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4342 * 4343 * Hence, there is no btf_func_check_member(). 4344 */ 4345 .check_member = btf_df_check_member, 4346 .check_kflag_member = btf_df_check_kflag_member, 4347 .log_details = btf_func_proto_log, 4348 .show = btf_df_show, 4349 }; 4350 4351 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4352 const struct btf_type *t, 4353 u32 meta_left) 4354 { 4355 if (!t->name_off || 4356 !btf_name_valid_identifier(env->btf, t->name_off)) { 4357 btf_verifier_log_type(env, t, "Invalid name"); 4358 return -EINVAL; 4359 } 4360 4361 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4362 btf_verifier_log_type(env, t, "Invalid func linkage"); 4363 return -EINVAL; 4364 } 4365 4366 if (btf_type_kflag(t)) { 4367 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4368 return -EINVAL; 4369 } 4370 4371 btf_verifier_log_type(env, t, NULL); 4372 4373 return 0; 4374 } 4375 4376 static int btf_func_resolve(struct btf_verifier_env *env, 4377 const struct resolve_vertex *v) 4378 { 4379 const struct btf_type *t = v->t; 4380 u32 next_type_id = t->type; 4381 int err; 4382 4383 err = btf_func_check(env, t); 4384 if (err) 4385 return err; 4386 4387 env_stack_pop_resolved(env, next_type_id, 0); 4388 return 0; 4389 } 4390 4391 static struct btf_kind_operations func_ops = { 4392 .check_meta = btf_func_check_meta, 4393 .resolve = btf_func_resolve, 4394 .check_member = btf_df_check_member, 4395 .check_kflag_member = btf_df_check_kflag_member, 4396 .log_details = btf_ref_type_log, 4397 .show = btf_df_show, 4398 }; 4399 4400 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4401 const struct btf_type *t, 4402 u32 meta_left) 4403 { 4404 const struct btf_var *var; 4405 u32 meta_needed = sizeof(*var); 4406 4407 if (meta_left < meta_needed) { 4408 btf_verifier_log_basic(env, t, 4409 "meta_left:%u meta_needed:%u", 4410 meta_left, meta_needed); 4411 return -EINVAL; 4412 } 4413 4414 if (btf_type_vlen(t)) { 4415 btf_verifier_log_type(env, t, "vlen != 0"); 4416 return -EINVAL; 4417 } 4418 4419 if (btf_type_kflag(t)) { 4420 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4421 return -EINVAL; 4422 } 4423 4424 if (!t->name_off || 4425 !__btf_name_valid(env->btf, t->name_off, true)) { 4426 btf_verifier_log_type(env, t, "Invalid name"); 4427 return -EINVAL; 4428 } 4429 4430 /* A var cannot be in type void */ 4431 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4432 btf_verifier_log_type(env, t, "Invalid type_id"); 4433 return -EINVAL; 4434 } 4435 4436 var = btf_type_var(t); 4437 if (var->linkage != BTF_VAR_STATIC && 4438 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4439 btf_verifier_log_type(env, t, "Linkage not supported"); 4440 return -EINVAL; 4441 } 4442 4443 btf_verifier_log_type(env, t, NULL); 4444 4445 return meta_needed; 4446 } 4447 4448 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4449 { 4450 const struct btf_var *var = btf_type_var(t); 4451 4452 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4453 } 4454 4455 static const struct btf_kind_operations var_ops = { 4456 .check_meta = btf_var_check_meta, 4457 .resolve = btf_var_resolve, 4458 .check_member = btf_df_check_member, 4459 .check_kflag_member = btf_df_check_kflag_member, 4460 .log_details = btf_var_log, 4461 .show = btf_var_show, 4462 }; 4463 4464 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4465 const struct btf_type *t, 4466 u32 meta_left) 4467 { 4468 const struct btf_var_secinfo *vsi; 4469 u64 last_vsi_end_off = 0, sum = 0; 4470 u32 i, meta_needed; 4471 4472 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4473 if (meta_left < meta_needed) { 4474 btf_verifier_log_basic(env, t, 4475 "meta_left:%u meta_needed:%u", 4476 meta_left, meta_needed); 4477 return -EINVAL; 4478 } 4479 4480 if (!t->size) { 4481 btf_verifier_log_type(env, t, "size == 0"); 4482 return -EINVAL; 4483 } 4484 4485 if (btf_type_kflag(t)) { 4486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4487 return -EINVAL; 4488 } 4489 4490 if (!t->name_off || 4491 !btf_name_valid_section(env->btf, t->name_off)) { 4492 btf_verifier_log_type(env, t, "Invalid name"); 4493 return -EINVAL; 4494 } 4495 4496 btf_verifier_log_type(env, t, NULL); 4497 4498 for_each_vsi(i, t, vsi) { 4499 /* A var cannot be in type void */ 4500 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4501 btf_verifier_log_vsi(env, t, vsi, 4502 "Invalid type_id"); 4503 return -EINVAL; 4504 } 4505 4506 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4507 btf_verifier_log_vsi(env, t, vsi, 4508 "Invalid offset"); 4509 return -EINVAL; 4510 } 4511 4512 if (!vsi->size || vsi->size > t->size) { 4513 btf_verifier_log_vsi(env, t, vsi, 4514 "Invalid size"); 4515 return -EINVAL; 4516 } 4517 4518 last_vsi_end_off = vsi->offset + vsi->size; 4519 if (last_vsi_end_off > t->size) { 4520 btf_verifier_log_vsi(env, t, vsi, 4521 "Invalid offset+size"); 4522 return -EINVAL; 4523 } 4524 4525 btf_verifier_log_vsi(env, t, vsi, NULL); 4526 sum += vsi->size; 4527 } 4528 4529 if (t->size < sum) { 4530 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4531 return -EINVAL; 4532 } 4533 4534 return meta_needed; 4535 } 4536 4537 static int btf_datasec_resolve(struct btf_verifier_env *env, 4538 const struct resolve_vertex *v) 4539 { 4540 const struct btf_var_secinfo *vsi; 4541 struct btf *btf = env->btf; 4542 u16 i; 4543 4544 env->resolve_mode = RESOLVE_TBD; 4545 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4546 u32 var_type_id = vsi->type, type_id, type_size = 0; 4547 const struct btf_type *var_type = btf_type_by_id(env->btf, 4548 var_type_id); 4549 if (!var_type || !btf_type_is_var(var_type)) { 4550 btf_verifier_log_vsi(env, v->t, vsi, 4551 "Not a VAR kind member"); 4552 return -EINVAL; 4553 } 4554 4555 if (!env_type_is_resolve_sink(env, var_type) && 4556 !env_type_is_resolved(env, var_type_id)) { 4557 env_stack_set_next_member(env, i + 1); 4558 return env_stack_push(env, var_type, var_type_id); 4559 } 4560 4561 type_id = var_type->type; 4562 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4563 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4564 return -EINVAL; 4565 } 4566 4567 if (vsi->size < type_size) { 4568 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4569 return -EINVAL; 4570 } 4571 } 4572 4573 env_stack_pop_resolved(env, 0, 0); 4574 return 0; 4575 } 4576 4577 static void btf_datasec_log(struct btf_verifier_env *env, 4578 const struct btf_type *t) 4579 { 4580 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4581 } 4582 4583 static void btf_datasec_show(const struct btf *btf, 4584 const struct btf_type *t, u32 type_id, 4585 void *data, u8 bits_offset, 4586 struct btf_show *show) 4587 { 4588 const struct btf_var_secinfo *vsi; 4589 const struct btf_type *var; 4590 u32 i; 4591 4592 if (!btf_show_start_type(show, t, type_id, data)) 4593 return; 4594 4595 btf_show_type_value(show, "section (\"%s\") = {", 4596 __btf_name_by_offset(btf, t->name_off)); 4597 for_each_vsi(i, t, vsi) { 4598 var = btf_type_by_id(btf, vsi->type); 4599 if (i) 4600 btf_show(show, ","); 4601 btf_type_ops(var)->show(btf, var, vsi->type, 4602 data + vsi->offset, bits_offset, show); 4603 } 4604 btf_show_end_type(show); 4605 } 4606 4607 static const struct btf_kind_operations datasec_ops = { 4608 .check_meta = btf_datasec_check_meta, 4609 .resolve = btf_datasec_resolve, 4610 .check_member = btf_df_check_member, 4611 .check_kflag_member = btf_df_check_kflag_member, 4612 .log_details = btf_datasec_log, 4613 .show = btf_datasec_show, 4614 }; 4615 4616 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4617 const struct btf_type *t, 4618 u32 meta_left) 4619 { 4620 if (btf_type_vlen(t)) { 4621 btf_verifier_log_type(env, t, "vlen != 0"); 4622 return -EINVAL; 4623 } 4624 4625 if (btf_type_kflag(t)) { 4626 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4627 return -EINVAL; 4628 } 4629 4630 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4631 t->size != 16) { 4632 btf_verifier_log_type(env, t, "Invalid type_size"); 4633 return -EINVAL; 4634 } 4635 4636 btf_verifier_log_type(env, t, NULL); 4637 4638 return 0; 4639 } 4640 4641 static int btf_float_check_member(struct btf_verifier_env *env, 4642 const struct btf_type *struct_type, 4643 const struct btf_member *member, 4644 const struct btf_type *member_type) 4645 { 4646 u64 start_offset_bytes; 4647 u64 end_offset_bytes; 4648 u64 misalign_bits; 4649 u64 align_bytes; 4650 u64 align_bits; 4651 4652 /* Different architectures have different alignment requirements, so 4653 * here we check only for the reasonable minimum. This way we ensure 4654 * that types after CO-RE can pass the kernel BTF verifier. 4655 */ 4656 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4657 align_bits = align_bytes * BITS_PER_BYTE; 4658 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4659 if (misalign_bits) { 4660 btf_verifier_log_member(env, struct_type, member, 4661 "Member is not properly aligned"); 4662 return -EINVAL; 4663 } 4664 4665 start_offset_bytes = member->offset / BITS_PER_BYTE; 4666 end_offset_bytes = start_offset_bytes + member_type->size; 4667 if (end_offset_bytes > struct_type->size) { 4668 btf_verifier_log_member(env, struct_type, member, 4669 "Member exceeds struct_size"); 4670 return -EINVAL; 4671 } 4672 4673 return 0; 4674 } 4675 4676 static void btf_float_log(struct btf_verifier_env *env, 4677 const struct btf_type *t) 4678 { 4679 btf_verifier_log(env, "size=%u", t->size); 4680 } 4681 4682 static const struct btf_kind_operations float_ops = { 4683 .check_meta = btf_float_check_meta, 4684 .resolve = btf_df_resolve, 4685 .check_member = btf_float_check_member, 4686 .check_kflag_member = btf_generic_check_kflag_member, 4687 .log_details = btf_float_log, 4688 .show = btf_df_show, 4689 }; 4690 4691 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4692 const struct btf_type *t, 4693 u32 meta_left) 4694 { 4695 const struct btf_decl_tag *tag; 4696 u32 meta_needed = sizeof(*tag); 4697 s32 component_idx; 4698 const char *value; 4699 4700 if (meta_left < meta_needed) { 4701 btf_verifier_log_basic(env, t, 4702 "meta_left:%u meta_needed:%u", 4703 meta_left, meta_needed); 4704 return -EINVAL; 4705 } 4706 4707 value = btf_name_by_offset(env->btf, t->name_off); 4708 if (!value || !value[0]) { 4709 btf_verifier_log_type(env, t, "Invalid value"); 4710 return -EINVAL; 4711 } 4712 4713 if (btf_type_vlen(t)) { 4714 btf_verifier_log_type(env, t, "vlen != 0"); 4715 return -EINVAL; 4716 } 4717 4718 if (btf_type_kflag(t)) { 4719 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4720 return -EINVAL; 4721 } 4722 4723 component_idx = btf_type_decl_tag(t)->component_idx; 4724 if (component_idx < -1) { 4725 btf_verifier_log_type(env, t, "Invalid component_idx"); 4726 return -EINVAL; 4727 } 4728 4729 btf_verifier_log_type(env, t, NULL); 4730 4731 return meta_needed; 4732 } 4733 4734 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4735 const struct resolve_vertex *v) 4736 { 4737 const struct btf_type *next_type; 4738 const struct btf_type *t = v->t; 4739 u32 next_type_id = t->type; 4740 struct btf *btf = env->btf; 4741 s32 component_idx; 4742 u32 vlen; 4743 4744 next_type = btf_type_by_id(btf, next_type_id); 4745 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4746 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4747 return -EINVAL; 4748 } 4749 4750 if (!env_type_is_resolve_sink(env, next_type) && 4751 !env_type_is_resolved(env, next_type_id)) 4752 return env_stack_push(env, next_type, next_type_id); 4753 4754 component_idx = btf_type_decl_tag(t)->component_idx; 4755 if (component_idx != -1) { 4756 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4757 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4758 return -EINVAL; 4759 } 4760 4761 if (btf_type_is_struct(next_type)) { 4762 vlen = btf_type_vlen(next_type); 4763 } else { 4764 /* next_type should be a function */ 4765 next_type = btf_type_by_id(btf, next_type->type); 4766 vlen = btf_type_vlen(next_type); 4767 } 4768 4769 if ((u32)component_idx >= vlen) { 4770 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4771 return -EINVAL; 4772 } 4773 } 4774 4775 env_stack_pop_resolved(env, next_type_id, 0); 4776 4777 return 0; 4778 } 4779 4780 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4781 { 4782 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4783 btf_type_decl_tag(t)->component_idx); 4784 } 4785 4786 static const struct btf_kind_operations decl_tag_ops = { 4787 .check_meta = btf_decl_tag_check_meta, 4788 .resolve = btf_decl_tag_resolve, 4789 .check_member = btf_df_check_member, 4790 .check_kflag_member = btf_df_check_kflag_member, 4791 .log_details = btf_decl_tag_log, 4792 .show = btf_df_show, 4793 }; 4794 4795 static int btf_func_proto_check(struct btf_verifier_env *env, 4796 const struct btf_type *t) 4797 { 4798 const struct btf_type *ret_type; 4799 const struct btf_param *args; 4800 const struct btf *btf; 4801 u16 nr_args, i; 4802 int err; 4803 4804 btf = env->btf; 4805 args = (const struct btf_param *)(t + 1); 4806 nr_args = btf_type_vlen(t); 4807 4808 /* Check func return type which could be "void" (t->type == 0) */ 4809 if (t->type) { 4810 u32 ret_type_id = t->type; 4811 4812 ret_type = btf_type_by_id(btf, ret_type_id); 4813 if (!ret_type) { 4814 btf_verifier_log_type(env, t, "Invalid return type"); 4815 return -EINVAL; 4816 } 4817 4818 if (btf_type_is_resolve_source_only(ret_type)) { 4819 btf_verifier_log_type(env, t, "Invalid return type"); 4820 return -EINVAL; 4821 } 4822 4823 if (btf_type_needs_resolve(ret_type) && 4824 !env_type_is_resolved(env, ret_type_id)) { 4825 err = btf_resolve(env, ret_type, ret_type_id); 4826 if (err) 4827 return err; 4828 } 4829 4830 /* Ensure the return type is a type that has a size */ 4831 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4832 btf_verifier_log_type(env, t, "Invalid return type"); 4833 return -EINVAL; 4834 } 4835 } 4836 4837 if (!nr_args) 4838 return 0; 4839 4840 /* Last func arg type_id could be 0 if it is a vararg */ 4841 if (!args[nr_args - 1].type) { 4842 if (args[nr_args - 1].name_off) { 4843 btf_verifier_log_type(env, t, "Invalid arg#%u", 4844 nr_args); 4845 return -EINVAL; 4846 } 4847 nr_args--; 4848 } 4849 4850 for (i = 0; i < nr_args; i++) { 4851 const struct btf_type *arg_type; 4852 u32 arg_type_id; 4853 4854 arg_type_id = args[i].type; 4855 arg_type = btf_type_by_id(btf, arg_type_id); 4856 if (!arg_type) { 4857 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4858 return -EINVAL; 4859 } 4860 4861 if (btf_type_is_resolve_source_only(arg_type)) { 4862 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4863 return -EINVAL; 4864 } 4865 4866 if (args[i].name_off && 4867 (!btf_name_offset_valid(btf, args[i].name_off) || 4868 !btf_name_valid_identifier(btf, args[i].name_off))) { 4869 btf_verifier_log_type(env, t, 4870 "Invalid arg#%u", i + 1); 4871 return -EINVAL; 4872 } 4873 4874 if (btf_type_needs_resolve(arg_type) && 4875 !env_type_is_resolved(env, arg_type_id)) { 4876 err = btf_resolve(env, arg_type, arg_type_id); 4877 if (err) 4878 return err; 4879 } 4880 4881 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4882 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4883 return -EINVAL; 4884 } 4885 } 4886 4887 return 0; 4888 } 4889 4890 static int btf_func_check(struct btf_verifier_env *env, 4891 const struct btf_type *t) 4892 { 4893 const struct btf_type *proto_type; 4894 const struct btf_param *args; 4895 const struct btf *btf; 4896 u16 nr_args, i; 4897 4898 btf = env->btf; 4899 proto_type = btf_type_by_id(btf, t->type); 4900 4901 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4902 btf_verifier_log_type(env, t, "Invalid type_id"); 4903 return -EINVAL; 4904 } 4905 4906 args = (const struct btf_param *)(proto_type + 1); 4907 nr_args = btf_type_vlen(proto_type); 4908 for (i = 0; i < nr_args; i++) { 4909 if (!args[i].name_off && args[i].type) { 4910 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4911 return -EINVAL; 4912 } 4913 } 4914 4915 return 0; 4916 } 4917 4918 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4919 [BTF_KIND_INT] = &int_ops, 4920 [BTF_KIND_PTR] = &ptr_ops, 4921 [BTF_KIND_ARRAY] = &array_ops, 4922 [BTF_KIND_STRUCT] = &struct_ops, 4923 [BTF_KIND_UNION] = &struct_ops, 4924 [BTF_KIND_ENUM] = &enum_ops, 4925 [BTF_KIND_FWD] = &fwd_ops, 4926 [BTF_KIND_TYPEDEF] = &modifier_ops, 4927 [BTF_KIND_VOLATILE] = &modifier_ops, 4928 [BTF_KIND_CONST] = &modifier_ops, 4929 [BTF_KIND_RESTRICT] = &modifier_ops, 4930 [BTF_KIND_FUNC] = &func_ops, 4931 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4932 [BTF_KIND_VAR] = &var_ops, 4933 [BTF_KIND_DATASEC] = &datasec_ops, 4934 [BTF_KIND_FLOAT] = &float_ops, 4935 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4936 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4937 [BTF_KIND_ENUM64] = &enum64_ops, 4938 }; 4939 4940 static s32 btf_check_meta(struct btf_verifier_env *env, 4941 const struct btf_type *t, 4942 u32 meta_left) 4943 { 4944 u32 saved_meta_left = meta_left; 4945 s32 var_meta_size; 4946 4947 if (meta_left < sizeof(*t)) { 4948 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4949 env->log_type_id, meta_left, sizeof(*t)); 4950 return -EINVAL; 4951 } 4952 meta_left -= sizeof(*t); 4953 4954 if (t->info & ~BTF_INFO_MASK) { 4955 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4956 env->log_type_id, t->info); 4957 return -EINVAL; 4958 } 4959 4960 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4961 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4962 btf_verifier_log(env, "[%u] Invalid kind:%u", 4963 env->log_type_id, BTF_INFO_KIND(t->info)); 4964 return -EINVAL; 4965 } 4966 4967 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4968 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4969 env->log_type_id, t->name_off); 4970 return -EINVAL; 4971 } 4972 4973 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4974 if (var_meta_size < 0) 4975 return var_meta_size; 4976 4977 meta_left -= var_meta_size; 4978 4979 return saved_meta_left - meta_left; 4980 } 4981 4982 static int btf_check_all_metas(struct btf_verifier_env *env) 4983 { 4984 struct btf *btf = env->btf; 4985 struct btf_header *hdr; 4986 void *cur, *end; 4987 4988 hdr = &btf->hdr; 4989 cur = btf->nohdr_data + hdr->type_off; 4990 end = cur + hdr->type_len; 4991 4992 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4993 while (cur < end) { 4994 struct btf_type *t = cur; 4995 s32 meta_size; 4996 4997 meta_size = btf_check_meta(env, t, end - cur); 4998 if (meta_size < 0) 4999 return meta_size; 5000 5001 btf_add_type(env, t); 5002 cur += meta_size; 5003 env->log_type_id++; 5004 } 5005 5006 return 0; 5007 } 5008 5009 static bool btf_resolve_valid(struct btf_verifier_env *env, 5010 const struct btf_type *t, 5011 u32 type_id) 5012 { 5013 struct btf *btf = env->btf; 5014 5015 if (!env_type_is_resolved(env, type_id)) 5016 return false; 5017 5018 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5019 return !btf_resolved_type_id(btf, type_id) && 5020 !btf_resolved_type_size(btf, type_id); 5021 5022 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5023 return btf_resolved_type_id(btf, type_id) && 5024 !btf_resolved_type_size(btf, type_id); 5025 5026 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5027 btf_type_is_var(t)) { 5028 t = btf_type_id_resolve(btf, &type_id); 5029 return t && 5030 !btf_type_is_modifier(t) && 5031 !btf_type_is_var(t) && 5032 !btf_type_is_datasec(t); 5033 } 5034 5035 if (btf_type_is_array(t)) { 5036 const struct btf_array *array = btf_type_array(t); 5037 const struct btf_type *elem_type; 5038 u32 elem_type_id = array->type; 5039 u32 elem_size; 5040 5041 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5042 return elem_type && !btf_type_is_modifier(elem_type) && 5043 (array->nelems * elem_size == 5044 btf_resolved_type_size(btf, type_id)); 5045 } 5046 5047 return false; 5048 } 5049 5050 static int btf_resolve(struct btf_verifier_env *env, 5051 const struct btf_type *t, u32 type_id) 5052 { 5053 u32 save_log_type_id = env->log_type_id; 5054 const struct resolve_vertex *v; 5055 int err = 0; 5056 5057 env->resolve_mode = RESOLVE_TBD; 5058 env_stack_push(env, t, type_id); 5059 while (!err && (v = env_stack_peak(env))) { 5060 env->log_type_id = v->type_id; 5061 err = btf_type_ops(v->t)->resolve(env, v); 5062 } 5063 5064 env->log_type_id = type_id; 5065 if (err == -E2BIG) { 5066 btf_verifier_log_type(env, t, 5067 "Exceeded max resolving depth:%u", 5068 MAX_RESOLVE_DEPTH); 5069 } else if (err == -EEXIST) { 5070 btf_verifier_log_type(env, t, "Loop detected"); 5071 } 5072 5073 /* Final sanity check */ 5074 if (!err && !btf_resolve_valid(env, t, type_id)) { 5075 btf_verifier_log_type(env, t, "Invalid resolve state"); 5076 err = -EINVAL; 5077 } 5078 5079 env->log_type_id = save_log_type_id; 5080 return err; 5081 } 5082 5083 static int btf_check_all_types(struct btf_verifier_env *env) 5084 { 5085 struct btf *btf = env->btf; 5086 const struct btf_type *t; 5087 u32 type_id, i; 5088 int err; 5089 5090 err = env_resolve_init(env); 5091 if (err) 5092 return err; 5093 5094 env->phase++; 5095 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5096 type_id = btf->start_id + i; 5097 t = btf_type_by_id(btf, type_id); 5098 5099 env->log_type_id = type_id; 5100 if (btf_type_needs_resolve(t) && 5101 !env_type_is_resolved(env, type_id)) { 5102 err = btf_resolve(env, t, type_id); 5103 if (err) 5104 return err; 5105 } 5106 5107 if (btf_type_is_func_proto(t)) { 5108 err = btf_func_proto_check(env, t); 5109 if (err) 5110 return err; 5111 } 5112 } 5113 5114 return 0; 5115 } 5116 5117 static int btf_parse_type_sec(struct btf_verifier_env *env) 5118 { 5119 const struct btf_header *hdr = &env->btf->hdr; 5120 int err; 5121 5122 /* Type section must align to 4 bytes */ 5123 if (hdr->type_off & (sizeof(u32) - 1)) { 5124 btf_verifier_log(env, "Unaligned type_off"); 5125 return -EINVAL; 5126 } 5127 5128 if (!env->btf->base_btf && !hdr->type_len) { 5129 btf_verifier_log(env, "No type found"); 5130 return -EINVAL; 5131 } 5132 5133 err = btf_check_all_metas(env); 5134 if (err) 5135 return err; 5136 5137 return btf_check_all_types(env); 5138 } 5139 5140 static int btf_parse_str_sec(struct btf_verifier_env *env) 5141 { 5142 const struct btf_header *hdr; 5143 struct btf *btf = env->btf; 5144 const char *start, *end; 5145 5146 hdr = &btf->hdr; 5147 start = btf->nohdr_data + hdr->str_off; 5148 end = start + hdr->str_len; 5149 5150 if (end != btf->data + btf->data_size) { 5151 btf_verifier_log(env, "String section is not at the end"); 5152 return -EINVAL; 5153 } 5154 5155 btf->strings = start; 5156 5157 if (btf->base_btf && !hdr->str_len) 5158 return 0; 5159 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5160 btf_verifier_log(env, "Invalid string section"); 5161 return -EINVAL; 5162 } 5163 if (!btf->base_btf && start[0]) { 5164 btf_verifier_log(env, "Invalid string section"); 5165 return -EINVAL; 5166 } 5167 5168 return 0; 5169 } 5170 5171 static const size_t btf_sec_info_offset[] = { 5172 offsetof(struct btf_header, type_off), 5173 offsetof(struct btf_header, str_off), 5174 }; 5175 5176 static int btf_sec_info_cmp(const void *a, const void *b) 5177 { 5178 const struct btf_sec_info *x = a; 5179 const struct btf_sec_info *y = b; 5180 5181 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5182 } 5183 5184 static int btf_check_sec_info(struct btf_verifier_env *env, 5185 u32 btf_data_size) 5186 { 5187 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5188 u32 total, expected_total, i; 5189 const struct btf_header *hdr; 5190 const struct btf *btf; 5191 5192 btf = env->btf; 5193 hdr = &btf->hdr; 5194 5195 /* Populate the secs from hdr */ 5196 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5197 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5198 btf_sec_info_offset[i]); 5199 5200 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5201 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5202 5203 /* Check for gaps and overlap among sections */ 5204 total = 0; 5205 expected_total = btf_data_size - hdr->hdr_len; 5206 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5207 if (expected_total < secs[i].off) { 5208 btf_verifier_log(env, "Invalid section offset"); 5209 return -EINVAL; 5210 } 5211 if (total < secs[i].off) { 5212 /* gap */ 5213 btf_verifier_log(env, "Unsupported section found"); 5214 return -EINVAL; 5215 } 5216 if (total > secs[i].off) { 5217 btf_verifier_log(env, "Section overlap found"); 5218 return -EINVAL; 5219 } 5220 if (expected_total - total < secs[i].len) { 5221 btf_verifier_log(env, 5222 "Total section length too long"); 5223 return -EINVAL; 5224 } 5225 total += secs[i].len; 5226 } 5227 5228 /* There is data other than hdr and known sections */ 5229 if (expected_total != total) { 5230 btf_verifier_log(env, "Unsupported section found"); 5231 return -EINVAL; 5232 } 5233 5234 return 0; 5235 } 5236 5237 static int btf_parse_hdr(struct btf_verifier_env *env) 5238 { 5239 u32 hdr_len, hdr_copy, btf_data_size; 5240 const struct btf_header *hdr; 5241 struct btf *btf; 5242 5243 btf = env->btf; 5244 btf_data_size = btf->data_size; 5245 5246 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5247 btf_verifier_log(env, "hdr_len not found"); 5248 return -EINVAL; 5249 } 5250 5251 hdr = btf->data; 5252 hdr_len = hdr->hdr_len; 5253 if (btf_data_size < hdr_len) { 5254 btf_verifier_log(env, "btf_header not found"); 5255 return -EINVAL; 5256 } 5257 5258 /* Ensure the unsupported header fields are zero */ 5259 if (hdr_len > sizeof(btf->hdr)) { 5260 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5261 u8 *end = btf->data + hdr_len; 5262 5263 for (; expected_zero < end; expected_zero++) { 5264 if (*expected_zero) { 5265 btf_verifier_log(env, "Unsupported btf_header"); 5266 return -E2BIG; 5267 } 5268 } 5269 } 5270 5271 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5272 memcpy(&btf->hdr, btf->data, hdr_copy); 5273 5274 hdr = &btf->hdr; 5275 5276 btf_verifier_log_hdr(env, btf_data_size); 5277 5278 if (hdr->magic != BTF_MAGIC) { 5279 btf_verifier_log(env, "Invalid magic"); 5280 return -EINVAL; 5281 } 5282 5283 if (hdr->version != BTF_VERSION) { 5284 btf_verifier_log(env, "Unsupported version"); 5285 return -ENOTSUPP; 5286 } 5287 5288 if (hdr->flags) { 5289 btf_verifier_log(env, "Unsupported flags"); 5290 return -ENOTSUPP; 5291 } 5292 5293 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5294 btf_verifier_log(env, "No data"); 5295 return -EINVAL; 5296 } 5297 5298 return btf_check_sec_info(env, btf_data_size); 5299 } 5300 5301 static const char *alloc_obj_fields[] = { 5302 "bpf_spin_lock", 5303 "bpf_list_head", 5304 "bpf_list_node", 5305 "bpf_rb_root", 5306 "bpf_rb_node", 5307 "bpf_refcount", 5308 }; 5309 5310 static struct btf_struct_metas * 5311 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5312 { 5313 union { 5314 struct btf_id_set set; 5315 struct { 5316 u32 _cnt; 5317 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5318 } _arr; 5319 } aof; 5320 struct btf_struct_metas *tab = NULL; 5321 int i, n, id, ret; 5322 5323 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5324 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5325 5326 memset(&aof, 0, sizeof(aof)); 5327 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5328 /* Try to find whether this special type exists in user BTF, and 5329 * if so remember its ID so we can easily find it among members 5330 * of structs that we iterate in the next loop. 5331 */ 5332 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5333 if (id < 0) 5334 continue; 5335 aof.set.ids[aof.set.cnt++] = id; 5336 } 5337 5338 if (!aof.set.cnt) 5339 return NULL; 5340 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5341 5342 n = btf_nr_types(btf); 5343 for (i = 1; i < n; i++) { 5344 struct btf_struct_metas *new_tab; 5345 const struct btf_member *member; 5346 struct btf_struct_meta *type; 5347 struct btf_record *record; 5348 const struct btf_type *t; 5349 int j, tab_cnt; 5350 5351 t = btf_type_by_id(btf, i); 5352 if (!t) { 5353 ret = -EINVAL; 5354 goto free; 5355 } 5356 if (!__btf_type_is_struct(t)) 5357 continue; 5358 5359 cond_resched(); 5360 5361 for_each_member(j, t, member) { 5362 if (btf_id_set_contains(&aof.set, member->type)) 5363 goto parse; 5364 } 5365 continue; 5366 parse: 5367 tab_cnt = tab ? tab->cnt : 0; 5368 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5369 GFP_KERNEL | __GFP_NOWARN); 5370 if (!new_tab) { 5371 ret = -ENOMEM; 5372 goto free; 5373 } 5374 if (!tab) 5375 new_tab->cnt = 0; 5376 tab = new_tab; 5377 5378 type = &tab->types[tab->cnt]; 5379 type->btf_id = i; 5380 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5381 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5382 /* The record cannot be unset, treat it as an error if so */ 5383 if (IS_ERR_OR_NULL(record)) { 5384 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5385 goto free; 5386 } 5387 type->record = record; 5388 tab->cnt++; 5389 } 5390 return tab; 5391 free: 5392 btf_struct_metas_free(tab); 5393 return ERR_PTR(ret); 5394 } 5395 5396 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5397 { 5398 struct btf_struct_metas *tab; 5399 5400 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5401 tab = btf->struct_meta_tab; 5402 if (!tab) 5403 return NULL; 5404 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5405 } 5406 5407 static int btf_check_type_tags(struct btf_verifier_env *env, 5408 struct btf *btf, int start_id) 5409 { 5410 int i, n, good_id = start_id - 1; 5411 bool in_tags; 5412 5413 n = btf_nr_types(btf); 5414 for (i = start_id; i < n; i++) { 5415 const struct btf_type *t; 5416 int chain_limit = 32; 5417 u32 cur_id = i; 5418 5419 t = btf_type_by_id(btf, i); 5420 if (!t) 5421 return -EINVAL; 5422 if (!btf_type_is_modifier(t)) 5423 continue; 5424 5425 cond_resched(); 5426 5427 in_tags = btf_type_is_type_tag(t); 5428 while (btf_type_is_modifier(t)) { 5429 if (!chain_limit--) { 5430 btf_verifier_log(env, "Max chain length or cycle detected"); 5431 return -ELOOP; 5432 } 5433 if (btf_type_is_type_tag(t)) { 5434 if (!in_tags) { 5435 btf_verifier_log(env, "Type tags don't precede modifiers"); 5436 return -EINVAL; 5437 } 5438 } else if (in_tags) { 5439 in_tags = false; 5440 } 5441 if (cur_id <= good_id) 5442 break; 5443 /* Move to next type */ 5444 cur_id = t->type; 5445 t = btf_type_by_id(btf, cur_id); 5446 if (!t) 5447 return -EINVAL; 5448 } 5449 good_id = i; 5450 } 5451 return 0; 5452 } 5453 5454 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5455 { 5456 u32 log_true_size; 5457 int err; 5458 5459 err = bpf_vlog_finalize(log, &log_true_size); 5460 5461 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5462 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5463 &log_true_size, sizeof(log_true_size))) 5464 err = -EFAULT; 5465 5466 return err; 5467 } 5468 5469 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5470 { 5471 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5472 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5473 struct btf_struct_metas *struct_meta_tab; 5474 struct btf_verifier_env *env = NULL; 5475 struct btf *btf = NULL; 5476 u8 *data; 5477 int err, ret; 5478 5479 if (attr->btf_size > BTF_MAX_SIZE) 5480 return ERR_PTR(-E2BIG); 5481 5482 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5483 if (!env) 5484 return ERR_PTR(-ENOMEM); 5485 5486 /* user could have requested verbose verifier output 5487 * and supplied buffer to store the verification trace 5488 */ 5489 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5490 log_ubuf, attr->btf_log_size); 5491 if (err) 5492 goto errout_free; 5493 5494 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5495 if (!btf) { 5496 err = -ENOMEM; 5497 goto errout; 5498 } 5499 env->btf = btf; 5500 5501 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5502 if (!data) { 5503 err = -ENOMEM; 5504 goto errout; 5505 } 5506 5507 btf->data = data; 5508 btf->data_size = attr->btf_size; 5509 5510 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5511 err = -EFAULT; 5512 goto errout; 5513 } 5514 5515 err = btf_parse_hdr(env); 5516 if (err) 5517 goto errout; 5518 5519 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5520 5521 err = btf_parse_str_sec(env); 5522 if (err) 5523 goto errout; 5524 5525 err = btf_parse_type_sec(env); 5526 if (err) 5527 goto errout; 5528 5529 err = btf_check_type_tags(env, btf, 1); 5530 if (err) 5531 goto errout; 5532 5533 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5534 if (IS_ERR(struct_meta_tab)) { 5535 err = PTR_ERR(struct_meta_tab); 5536 goto errout; 5537 } 5538 btf->struct_meta_tab = struct_meta_tab; 5539 5540 if (struct_meta_tab) { 5541 int i; 5542 5543 for (i = 0; i < struct_meta_tab->cnt; i++) { 5544 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5545 if (err < 0) 5546 goto errout_meta; 5547 } 5548 } 5549 5550 err = finalize_log(&env->log, uattr, uattr_size); 5551 if (err) 5552 goto errout_free; 5553 5554 btf_verifier_env_free(env); 5555 refcount_set(&btf->refcnt, 1); 5556 return btf; 5557 5558 errout_meta: 5559 btf_free_struct_meta_tab(btf); 5560 errout: 5561 /* overwrite err with -ENOSPC or -EFAULT */ 5562 ret = finalize_log(&env->log, uattr, uattr_size); 5563 if (ret) 5564 err = ret; 5565 errout_free: 5566 btf_verifier_env_free(env); 5567 if (btf) 5568 btf_free(btf); 5569 return ERR_PTR(err); 5570 } 5571 5572 extern char __weak __start_BTF[]; 5573 extern char __weak __stop_BTF[]; 5574 extern struct btf *btf_vmlinux; 5575 5576 #define BPF_MAP_TYPE(_id, _ops) 5577 #define BPF_LINK_TYPE(_id, _name) 5578 static union { 5579 struct bpf_ctx_convert { 5580 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5581 prog_ctx_type _id##_prog; \ 5582 kern_ctx_type _id##_kern; 5583 #include <linux/bpf_types.h> 5584 #undef BPF_PROG_TYPE 5585 } *__t; 5586 /* 't' is written once under lock. Read many times. */ 5587 const struct btf_type *t; 5588 } bpf_ctx_convert; 5589 enum { 5590 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5591 __ctx_convert##_id, 5592 #include <linux/bpf_types.h> 5593 #undef BPF_PROG_TYPE 5594 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5595 }; 5596 static u8 bpf_ctx_convert_map[] = { 5597 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5598 [_id] = __ctx_convert##_id, 5599 #include <linux/bpf_types.h> 5600 #undef BPF_PROG_TYPE 5601 0, /* avoid empty array */ 5602 }; 5603 #undef BPF_MAP_TYPE 5604 #undef BPF_LINK_TYPE 5605 5606 const struct btf_member * 5607 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5608 const struct btf_type *t, enum bpf_prog_type prog_type, 5609 int arg) 5610 { 5611 const struct btf_type *conv_struct; 5612 const struct btf_type *ctx_struct; 5613 const struct btf_member *ctx_type; 5614 const char *tname, *ctx_tname; 5615 5616 conv_struct = bpf_ctx_convert.t; 5617 if (!conv_struct) { 5618 bpf_log(log, "btf_vmlinux is malformed\n"); 5619 return NULL; 5620 } 5621 t = btf_type_by_id(btf, t->type); 5622 while (btf_type_is_modifier(t)) 5623 t = btf_type_by_id(btf, t->type); 5624 if (!btf_type_is_struct(t)) { 5625 /* Only pointer to struct is supported for now. 5626 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5627 * is not supported yet. 5628 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5629 */ 5630 return NULL; 5631 } 5632 tname = btf_name_by_offset(btf, t->name_off); 5633 if (!tname) { 5634 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5635 return NULL; 5636 } 5637 /* prog_type is valid bpf program type. No need for bounds check. */ 5638 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5639 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5640 * Like 'struct __sk_buff' 5641 */ 5642 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5643 if (!ctx_struct) 5644 /* should not happen */ 5645 return NULL; 5646 again: 5647 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5648 if (!ctx_tname) { 5649 /* should not happen */ 5650 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5651 return NULL; 5652 } 5653 /* only compare that prog's ctx type name is the same as 5654 * kernel expects. No need to compare field by field. 5655 * It's ok for bpf prog to do: 5656 * struct __sk_buff {}; 5657 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5658 * { // no fields of skb are ever used } 5659 */ 5660 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5661 return ctx_type; 5662 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5663 return ctx_type; 5664 if (strcmp(ctx_tname, tname)) { 5665 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5666 * underlying struct and check name again 5667 */ 5668 if (!btf_type_is_modifier(ctx_struct)) 5669 return NULL; 5670 while (btf_type_is_modifier(ctx_struct)) 5671 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); 5672 goto again; 5673 } 5674 return ctx_type; 5675 } 5676 5677 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5678 struct btf *btf, 5679 const struct btf_type *t, 5680 enum bpf_prog_type prog_type, 5681 int arg) 5682 { 5683 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5684 5685 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5686 if (!prog_ctx_type) 5687 return -ENOENT; 5688 kern_ctx_type = prog_ctx_type + 1; 5689 return kern_ctx_type->type; 5690 } 5691 5692 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5693 { 5694 const struct btf_member *kctx_member; 5695 const struct btf_type *conv_struct; 5696 const struct btf_type *kctx_type; 5697 u32 kctx_type_id; 5698 5699 conv_struct = bpf_ctx_convert.t; 5700 /* get member for kernel ctx type */ 5701 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5702 kctx_type_id = kctx_member->type; 5703 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5704 if (!btf_type_is_struct(kctx_type)) { 5705 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5706 return -EINVAL; 5707 } 5708 5709 return kctx_type_id; 5710 } 5711 5712 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5713 BTF_ID(struct, bpf_ctx_convert) 5714 5715 struct btf *btf_parse_vmlinux(void) 5716 { 5717 struct btf_verifier_env *env = NULL; 5718 struct bpf_verifier_log *log; 5719 struct btf *btf = NULL; 5720 int err; 5721 5722 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5723 if (!env) 5724 return ERR_PTR(-ENOMEM); 5725 5726 log = &env->log; 5727 log->level = BPF_LOG_KERNEL; 5728 5729 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5730 if (!btf) { 5731 err = -ENOMEM; 5732 goto errout; 5733 } 5734 env->btf = btf; 5735 5736 btf->data = __start_BTF; 5737 btf->data_size = __stop_BTF - __start_BTF; 5738 btf->kernel_btf = true; 5739 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5740 5741 err = btf_parse_hdr(env); 5742 if (err) 5743 goto errout; 5744 5745 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5746 5747 err = btf_parse_str_sec(env); 5748 if (err) 5749 goto errout; 5750 5751 err = btf_check_all_metas(env); 5752 if (err) 5753 goto errout; 5754 5755 err = btf_check_type_tags(env, btf, 1); 5756 if (err) 5757 goto errout; 5758 5759 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5760 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5761 5762 bpf_struct_ops_init(btf, log); 5763 5764 refcount_set(&btf->refcnt, 1); 5765 5766 err = btf_alloc_id(btf); 5767 if (err) 5768 goto errout; 5769 5770 btf_verifier_env_free(env); 5771 return btf; 5772 5773 errout: 5774 btf_verifier_env_free(env); 5775 if (btf) { 5776 kvfree(btf->types); 5777 kfree(btf); 5778 } 5779 return ERR_PTR(err); 5780 } 5781 5782 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5783 5784 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5785 { 5786 struct btf_verifier_env *env = NULL; 5787 struct bpf_verifier_log *log; 5788 struct btf *btf = NULL, *base_btf; 5789 int err; 5790 5791 base_btf = bpf_get_btf_vmlinux(); 5792 if (IS_ERR(base_btf)) 5793 return base_btf; 5794 if (!base_btf) 5795 return ERR_PTR(-EINVAL); 5796 5797 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5798 if (!env) 5799 return ERR_PTR(-ENOMEM); 5800 5801 log = &env->log; 5802 log->level = BPF_LOG_KERNEL; 5803 5804 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5805 if (!btf) { 5806 err = -ENOMEM; 5807 goto errout; 5808 } 5809 env->btf = btf; 5810 5811 btf->base_btf = base_btf; 5812 btf->start_id = base_btf->nr_types; 5813 btf->start_str_off = base_btf->hdr.str_len; 5814 btf->kernel_btf = true; 5815 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5816 5817 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5818 if (!btf->data) { 5819 err = -ENOMEM; 5820 goto errout; 5821 } 5822 memcpy(btf->data, data, data_size); 5823 btf->data_size = data_size; 5824 5825 err = btf_parse_hdr(env); 5826 if (err) 5827 goto errout; 5828 5829 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5830 5831 err = btf_parse_str_sec(env); 5832 if (err) 5833 goto errout; 5834 5835 err = btf_check_all_metas(env); 5836 if (err) 5837 goto errout; 5838 5839 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5840 if (err) 5841 goto errout; 5842 5843 btf_verifier_env_free(env); 5844 refcount_set(&btf->refcnt, 1); 5845 return btf; 5846 5847 errout: 5848 btf_verifier_env_free(env); 5849 if (btf) { 5850 kvfree(btf->data); 5851 kvfree(btf->types); 5852 kfree(btf); 5853 } 5854 return ERR_PTR(err); 5855 } 5856 5857 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5858 5859 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5860 { 5861 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5862 5863 if (tgt_prog) 5864 return tgt_prog->aux->btf; 5865 else 5866 return prog->aux->attach_btf; 5867 } 5868 5869 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5870 { 5871 /* skip modifiers */ 5872 t = btf_type_skip_modifiers(btf, t->type, NULL); 5873 5874 return btf_type_is_int(t); 5875 } 5876 5877 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5878 int off) 5879 { 5880 const struct btf_param *args; 5881 const struct btf_type *t; 5882 u32 offset = 0, nr_args; 5883 int i; 5884 5885 if (!func_proto) 5886 return off / 8; 5887 5888 nr_args = btf_type_vlen(func_proto); 5889 args = (const struct btf_param *)(func_proto + 1); 5890 for (i = 0; i < nr_args; i++) { 5891 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5892 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5893 if (off < offset) 5894 return i; 5895 } 5896 5897 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5898 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5899 if (off < offset) 5900 return nr_args; 5901 5902 return nr_args + 1; 5903 } 5904 5905 static bool prog_args_trusted(const struct bpf_prog *prog) 5906 { 5907 enum bpf_attach_type atype = prog->expected_attach_type; 5908 5909 switch (prog->type) { 5910 case BPF_PROG_TYPE_TRACING: 5911 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5912 case BPF_PROG_TYPE_LSM: 5913 return bpf_lsm_is_trusted(prog); 5914 case BPF_PROG_TYPE_STRUCT_OPS: 5915 return true; 5916 default: 5917 return false; 5918 } 5919 } 5920 5921 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5922 const struct bpf_prog *prog, 5923 struct bpf_insn_access_aux *info) 5924 { 5925 const struct btf_type *t = prog->aux->attach_func_proto; 5926 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5927 struct btf *btf = bpf_prog_get_target_btf(prog); 5928 const char *tname = prog->aux->attach_func_name; 5929 struct bpf_verifier_log *log = info->log; 5930 const struct btf_param *args; 5931 const char *tag_value; 5932 u32 nr_args, arg; 5933 int i, ret; 5934 5935 if (off % 8) { 5936 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5937 tname, off); 5938 return false; 5939 } 5940 arg = get_ctx_arg_idx(btf, t, off); 5941 args = (const struct btf_param *)(t + 1); 5942 /* if (t == NULL) Fall back to default BPF prog with 5943 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5944 */ 5945 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5946 if (prog->aux->attach_btf_trace) { 5947 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5948 args++; 5949 nr_args--; 5950 } 5951 5952 if (arg > nr_args) { 5953 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5954 tname, arg + 1); 5955 return false; 5956 } 5957 5958 if (arg == nr_args) { 5959 switch (prog->expected_attach_type) { 5960 case BPF_LSM_CGROUP: 5961 case BPF_LSM_MAC: 5962 case BPF_TRACE_FEXIT: 5963 /* When LSM programs are attached to void LSM hooks 5964 * they use FEXIT trampolines and when attached to 5965 * int LSM hooks, they use MODIFY_RETURN trampolines. 5966 * 5967 * While the LSM programs are BPF_MODIFY_RETURN-like 5968 * the check: 5969 * 5970 * if (ret_type != 'int') 5971 * return -EINVAL; 5972 * 5973 * is _not_ done here. This is still safe as LSM hooks 5974 * have only void and int return types. 5975 */ 5976 if (!t) 5977 return true; 5978 t = btf_type_by_id(btf, t->type); 5979 break; 5980 case BPF_MODIFY_RETURN: 5981 /* For now the BPF_MODIFY_RETURN can only be attached to 5982 * functions that return an int. 5983 */ 5984 if (!t) 5985 return false; 5986 5987 t = btf_type_skip_modifiers(btf, t->type, NULL); 5988 if (!btf_type_is_small_int(t)) { 5989 bpf_log(log, 5990 "ret type %s not allowed for fmod_ret\n", 5991 btf_type_str(t)); 5992 return false; 5993 } 5994 break; 5995 default: 5996 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5997 tname, arg + 1); 5998 return false; 5999 } 6000 } else { 6001 if (!t) 6002 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6003 return true; 6004 t = btf_type_by_id(btf, args[arg].type); 6005 } 6006 6007 /* skip modifiers */ 6008 while (btf_type_is_modifier(t)) 6009 t = btf_type_by_id(btf, t->type); 6010 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6011 /* accessing a scalar */ 6012 return true; 6013 if (!btf_type_is_ptr(t)) { 6014 bpf_log(log, 6015 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6016 tname, arg, 6017 __btf_name_by_offset(btf, t->name_off), 6018 btf_type_str(t)); 6019 return false; 6020 } 6021 6022 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6023 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6024 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6025 u32 type, flag; 6026 6027 type = base_type(ctx_arg_info->reg_type); 6028 flag = type_flag(ctx_arg_info->reg_type); 6029 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6030 (flag & PTR_MAYBE_NULL)) { 6031 info->reg_type = ctx_arg_info->reg_type; 6032 return true; 6033 } 6034 } 6035 6036 if (t->type == 0) 6037 /* This is a pointer to void. 6038 * It is the same as scalar from the verifier safety pov. 6039 * No further pointer walking is allowed. 6040 */ 6041 return true; 6042 6043 if (is_int_ptr(btf, t)) 6044 return true; 6045 6046 /* this is a pointer to another type */ 6047 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6048 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6049 6050 if (ctx_arg_info->offset == off) { 6051 if (!ctx_arg_info->btf_id) { 6052 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6053 return false; 6054 } 6055 6056 info->reg_type = ctx_arg_info->reg_type; 6057 info->btf = btf_vmlinux; 6058 info->btf_id = ctx_arg_info->btf_id; 6059 return true; 6060 } 6061 } 6062 6063 info->reg_type = PTR_TO_BTF_ID; 6064 if (prog_args_trusted(prog)) 6065 info->reg_type |= PTR_TRUSTED; 6066 6067 if (tgt_prog) { 6068 enum bpf_prog_type tgt_type; 6069 6070 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6071 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6072 else 6073 tgt_type = tgt_prog->type; 6074 6075 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6076 if (ret > 0) { 6077 info->btf = btf_vmlinux; 6078 info->btf_id = ret; 6079 return true; 6080 } else { 6081 return false; 6082 } 6083 } 6084 6085 info->btf = btf; 6086 info->btf_id = t->type; 6087 t = btf_type_by_id(btf, t->type); 6088 6089 if (btf_type_is_type_tag(t)) { 6090 tag_value = __btf_name_by_offset(btf, t->name_off); 6091 if (strcmp(tag_value, "user") == 0) 6092 info->reg_type |= MEM_USER; 6093 if (strcmp(tag_value, "percpu") == 0) 6094 info->reg_type |= MEM_PERCPU; 6095 } 6096 6097 /* skip modifiers */ 6098 while (btf_type_is_modifier(t)) { 6099 info->btf_id = t->type; 6100 t = btf_type_by_id(btf, t->type); 6101 } 6102 if (!btf_type_is_struct(t)) { 6103 bpf_log(log, 6104 "func '%s' arg%d type %s is not a struct\n", 6105 tname, arg, btf_type_str(t)); 6106 return false; 6107 } 6108 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6109 tname, arg, info->btf_id, btf_type_str(t), 6110 __btf_name_by_offset(btf, t->name_off)); 6111 return true; 6112 } 6113 6114 enum bpf_struct_walk_result { 6115 /* < 0 error */ 6116 WALK_SCALAR = 0, 6117 WALK_PTR, 6118 WALK_STRUCT, 6119 }; 6120 6121 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6122 const struct btf_type *t, int off, int size, 6123 u32 *next_btf_id, enum bpf_type_flag *flag, 6124 const char **field_name) 6125 { 6126 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6127 const struct btf_type *mtype, *elem_type = NULL; 6128 const struct btf_member *member; 6129 const char *tname, *mname, *tag_value; 6130 u32 vlen, elem_id, mid; 6131 6132 *flag = 0; 6133 again: 6134 tname = __btf_name_by_offset(btf, t->name_off); 6135 if (!btf_type_is_struct(t)) { 6136 bpf_log(log, "Type '%s' is not a struct\n", tname); 6137 return -EINVAL; 6138 } 6139 6140 vlen = btf_type_vlen(t); 6141 if (off + size > t->size) { 6142 /* If the last element is a variable size array, we may 6143 * need to relax the rule. 6144 */ 6145 struct btf_array *array_elem; 6146 6147 if (vlen == 0) 6148 goto error; 6149 6150 member = btf_type_member(t) + vlen - 1; 6151 mtype = btf_type_skip_modifiers(btf, member->type, 6152 NULL); 6153 if (!btf_type_is_array(mtype)) 6154 goto error; 6155 6156 array_elem = (struct btf_array *)(mtype + 1); 6157 if (array_elem->nelems != 0) 6158 goto error; 6159 6160 moff = __btf_member_bit_offset(t, member) / 8; 6161 if (off < moff) 6162 goto error; 6163 6164 /* allow structure and integer */ 6165 t = btf_type_skip_modifiers(btf, array_elem->type, 6166 NULL); 6167 6168 if (btf_type_is_int(t)) 6169 return WALK_SCALAR; 6170 6171 if (!btf_type_is_struct(t)) 6172 goto error; 6173 6174 off = (off - moff) % t->size; 6175 goto again; 6176 6177 error: 6178 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6179 tname, off, size); 6180 return -EACCES; 6181 } 6182 6183 for_each_member(i, t, member) { 6184 /* offset of the field in bytes */ 6185 moff = __btf_member_bit_offset(t, member) / 8; 6186 if (off + size <= moff) 6187 /* won't find anything, field is already too far */ 6188 break; 6189 6190 if (__btf_member_bitfield_size(t, member)) { 6191 u32 end_bit = __btf_member_bit_offset(t, member) + 6192 __btf_member_bitfield_size(t, member); 6193 6194 /* off <= moff instead of off == moff because clang 6195 * does not generate a BTF member for anonymous 6196 * bitfield like the ":16" here: 6197 * struct { 6198 * int :16; 6199 * int x:8; 6200 * }; 6201 */ 6202 if (off <= moff && 6203 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6204 return WALK_SCALAR; 6205 6206 /* off may be accessing a following member 6207 * 6208 * or 6209 * 6210 * Doing partial access at either end of this 6211 * bitfield. Continue on this case also to 6212 * treat it as not accessing this bitfield 6213 * and eventually error out as field not 6214 * found to keep it simple. 6215 * It could be relaxed if there was a legit 6216 * partial access case later. 6217 */ 6218 continue; 6219 } 6220 6221 /* In case of "off" is pointing to holes of a struct */ 6222 if (off < moff) 6223 break; 6224 6225 /* type of the field */ 6226 mid = member->type; 6227 mtype = btf_type_by_id(btf, member->type); 6228 mname = __btf_name_by_offset(btf, member->name_off); 6229 6230 mtype = __btf_resolve_size(btf, mtype, &msize, 6231 &elem_type, &elem_id, &total_nelems, 6232 &mid); 6233 if (IS_ERR(mtype)) { 6234 bpf_log(log, "field %s doesn't have size\n", mname); 6235 return -EFAULT; 6236 } 6237 6238 mtrue_end = moff + msize; 6239 if (off >= mtrue_end) 6240 /* no overlap with member, keep iterating */ 6241 continue; 6242 6243 if (btf_type_is_array(mtype)) { 6244 u32 elem_idx; 6245 6246 /* __btf_resolve_size() above helps to 6247 * linearize a multi-dimensional array. 6248 * 6249 * The logic here is treating an array 6250 * in a struct as the following way: 6251 * 6252 * struct outer { 6253 * struct inner array[2][2]; 6254 * }; 6255 * 6256 * looks like: 6257 * 6258 * struct outer { 6259 * struct inner array_elem0; 6260 * struct inner array_elem1; 6261 * struct inner array_elem2; 6262 * struct inner array_elem3; 6263 * }; 6264 * 6265 * When accessing outer->array[1][0], it moves 6266 * moff to "array_elem2", set mtype to 6267 * "struct inner", and msize also becomes 6268 * sizeof(struct inner). Then most of the 6269 * remaining logic will fall through without 6270 * caring the current member is an array or 6271 * not. 6272 * 6273 * Unlike mtype/msize/moff, mtrue_end does not 6274 * change. The naming difference ("_true") tells 6275 * that it is not always corresponding to 6276 * the current mtype/msize/moff. 6277 * It is the true end of the current 6278 * member (i.e. array in this case). That 6279 * will allow an int array to be accessed like 6280 * a scratch space, 6281 * i.e. allow access beyond the size of 6282 * the array's element as long as it is 6283 * within the mtrue_end boundary. 6284 */ 6285 6286 /* skip empty array */ 6287 if (moff == mtrue_end) 6288 continue; 6289 6290 msize /= total_nelems; 6291 elem_idx = (off - moff) / msize; 6292 moff += elem_idx * msize; 6293 mtype = elem_type; 6294 mid = elem_id; 6295 } 6296 6297 /* the 'off' we're looking for is either equal to start 6298 * of this field or inside of this struct 6299 */ 6300 if (btf_type_is_struct(mtype)) { 6301 if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION && 6302 btf_type_vlen(mtype) != 1) 6303 /* 6304 * walking unions yields untrusted pointers 6305 * with exception of __bpf_md_ptr and other 6306 * unions with a single member 6307 */ 6308 *flag |= PTR_UNTRUSTED; 6309 6310 /* our field must be inside that union or struct */ 6311 t = mtype; 6312 6313 /* return if the offset matches the member offset */ 6314 if (off == moff) { 6315 *next_btf_id = mid; 6316 return WALK_STRUCT; 6317 } 6318 6319 /* adjust offset we're looking for */ 6320 off -= moff; 6321 goto again; 6322 } 6323 6324 if (btf_type_is_ptr(mtype)) { 6325 const struct btf_type *stype, *t; 6326 enum bpf_type_flag tmp_flag = 0; 6327 u32 id; 6328 6329 if (msize != size || off != moff) { 6330 bpf_log(log, 6331 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6332 mname, moff, tname, off, size); 6333 return -EACCES; 6334 } 6335 6336 /* check type tag */ 6337 t = btf_type_by_id(btf, mtype->type); 6338 if (btf_type_is_type_tag(t)) { 6339 tag_value = __btf_name_by_offset(btf, t->name_off); 6340 /* check __user tag */ 6341 if (strcmp(tag_value, "user") == 0) 6342 tmp_flag = MEM_USER; 6343 /* check __percpu tag */ 6344 if (strcmp(tag_value, "percpu") == 0) 6345 tmp_flag = MEM_PERCPU; 6346 /* check __rcu tag */ 6347 if (strcmp(tag_value, "rcu") == 0) 6348 tmp_flag = MEM_RCU; 6349 } 6350 6351 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6352 if (btf_type_is_struct(stype)) { 6353 *next_btf_id = id; 6354 *flag |= tmp_flag; 6355 if (field_name) 6356 *field_name = mname; 6357 return WALK_PTR; 6358 } 6359 } 6360 6361 /* Allow more flexible access within an int as long as 6362 * it is within mtrue_end. 6363 * Since mtrue_end could be the end of an array, 6364 * that also allows using an array of int as a scratch 6365 * space. e.g. skb->cb[]. 6366 */ 6367 if (off + size > mtrue_end) { 6368 bpf_log(log, 6369 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6370 mname, mtrue_end, tname, off, size); 6371 return -EACCES; 6372 } 6373 6374 return WALK_SCALAR; 6375 } 6376 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6377 return -EINVAL; 6378 } 6379 6380 int btf_struct_access(struct bpf_verifier_log *log, 6381 const struct bpf_reg_state *reg, 6382 int off, int size, enum bpf_access_type atype __maybe_unused, 6383 u32 *next_btf_id, enum bpf_type_flag *flag, 6384 const char **field_name) 6385 { 6386 const struct btf *btf = reg->btf; 6387 enum bpf_type_flag tmp_flag = 0; 6388 const struct btf_type *t; 6389 u32 id = reg->btf_id; 6390 int err; 6391 6392 while (type_is_alloc(reg->type)) { 6393 struct btf_struct_meta *meta; 6394 struct btf_record *rec; 6395 int i; 6396 6397 meta = btf_find_struct_meta(btf, id); 6398 if (!meta) 6399 break; 6400 rec = meta->record; 6401 for (i = 0; i < rec->cnt; i++) { 6402 struct btf_field *field = &rec->fields[i]; 6403 u32 offset = field->offset; 6404 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6405 bpf_log(log, 6406 "direct access to %s is disallowed\n", 6407 btf_field_type_name(field->type)); 6408 return -EACCES; 6409 } 6410 } 6411 break; 6412 } 6413 6414 t = btf_type_by_id(btf, id); 6415 do { 6416 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6417 6418 switch (err) { 6419 case WALK_PTR: 6420 /* For local types, the destination register cannot 6421 * become a pointer again. 6422 */ 6423 if (type_is_alloc(reg->type)) 6424 return SCALAR_VALUE; 6425 /* If we found the pointer or scalar on t+off, 6426 * we're done. 6427 */ 6428 *next_btf_id = id; 6429 *flag = tmp_flag; 6430 return PTR_TO_BTF_ID; 6431 case WALK_SCALAR: 6432 return SCALAR_VALUE; 6433 case WALK_STRUCT: 6434 /* We found nested struct, so continue the search 6435 * by diving in it. At this point the offset is 6436 * aligned with the new type, so set it to 0. 6437 */ 6438 t = btf_type_by_id(btf, id); 6439 off = 0; 6440 break; 6441 default: 6442 /* It's either error or unknown return value.. 6443 * scream and leave. 6444 */ 6445 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6446 return -EINVAL; 6447 return err; 6448 } 6449 } while (t); 6450 6451 return -EINVAL; 6452 } 6453 6454 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6455 * the same. Trivial ID check is not enough due to module BTFs, because we can 6456 * end up with two different module BTFs, but IDs point to the common type in 6457 * vmlinux BTF. 6458 */ 6459 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6460 const struct btf *btf2, u32 id2) 6461 { 6462 if (id1 != id2) 6463 return false; 6464 if (btf1 == btf2) 6465 return true; 6466 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6467 } 6468 6469 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6470 const struct btf *btf, u32 id, int off, 6471 const struct btf *need_btf, u32 need_type_id, 6472 bool strict) 6473 { 6474 const struct btf_type *type; 6475 enum bpf_type_flag flag; 6476 int err; 6477 6478 /* Are we already done? */ 6479 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6480 return true; 6481 /* In case of strict type match, we do not walk struct, the top level 6482 * type match must succeed. When strict is true, off should have already 6483 * been 0. 6484 */ 6485 if (strict) 6486 return false; 6487 again: 6488 type = btf_type_by_id(btf, id); 6489 if (!type) 6490 return false; 6491 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6492 if (err != WALK_STRUCT) 6493 return false; 6494 6495 /* We found nested struct object. If it matches 6496 * the requested ID, we're done. Otherwise let's 6497 * continue the search with offset 0 in the new 6498 * type. 6499 */ 6500 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6501 off = 0; 6502 goto again; 6503 } 6504 6505 return true; 6506 } 6507 6508 static int __get_type_size(struct btf *btf, u32 btf_id, 6509 const struct btf_type **ret_type) 6510 { 6511 const struct btf_type *t; 6512 6513 *ret_type = btf_type_by_id(btf, 0); 6514 if (!btf_id) 6515 /* void */ 6516 return 0; 6517 t = btf_type_by_id(btf, btf_id); 6518 while (t && btf_type_is_modifier(t)) 6519 t = btf_type_by_id(btf, t->type); 6520 if (!t) 6521 return -EINVAL; 6522 *ret_type = t; 6523 if (btf_type_is_ptr(t)) 6524 /* kernel size of pointer. Not BPF's size of pointer*/ 6525 return sizeof(void *); 6526 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6527 return t->size; 6528 return -EINVAL; 6529 } 6530 6531 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6532 { 6533 u8 flags = 0; 6534 6535 if (__btf_type_is_struct(t)) 6536 flags |= BTF_FMODEL_STRUCT_ARG; 6537 if (btf_type_is_signed_int(t)) 6538 flags |= BTF_FMODEL_SIGNED_ARG; 6539 6540 return flags; 6541 } 6542 6543 int btf_distill_func_proto(struct bpf_verifier_log *log, 6544 struct btf *btf, 6545 const struct btf_type *func, 6546 const char *tname, 6547 struct btf_func_model *m) 6548 { 6549 const struct btf_param *args; 6550 const struct btf_type *t; 6551 u32 i, nargs; 6552 int ret; 6553 6554 if (!func) { 6555 /* BTF function prototype doesn't match the verifier types. 6556 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6557 */ 6558 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6559 m->arg_size[i] = 8; 6560 m->arg_flags[i] = 0; 6561 } 6562 m->ret_size = 8; 6563 m->ret_flags = 0; 6564 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6565 return 0; 6566 } 6567 args = (const struct btf_param *)(func + 1); 6568 nargs = btf_type_vlen(func); 6569 if (nargs > MAX_BPF_FUNC_ARGS) { 6570 bpf_log(log, 6571 "The function %s has %d arguments. Too many.\n", 6572 tname, nargs); 6573 return -EINVAL; 6574 } 6575 ret = __get_type_size(btf, func->type, &t); 6576 if (ret < 0 || __btf_type_is_struct(t)) { 6577 bpf_log(log, 6578 "The function %s return type %s is unsupported.\n", 6579 tname, btf_type_str(t)); 6580 return -EINVAL; 6581 } 6582 m->ret_size = ret; 6583 m->ret_flags = __get_type_fmodel_flags(t); 6584 6585 for (i = 0; i < nargs; i++) { 6586 if (i == nargs - 1 && args[i].type == 0) { 6587 bpf_log(log, 6588 "The function %s with variable args is unsupported.\n", 6589 tname); 6590 return -EINVAL; 6591 } 6592 ret = __get_type_size(btf, args[i].type, &t); 6593 6594 /* No support of struct argument size greater than 16 bytes */ 6595 if (ret < 0 || ret > 16) { 6596 bpf_log(log, 6597 "The function %s arg%d type %s is unsupported.\n", 6598 tname, i, btf_type_str(t)); 6599 return -EINVAL; 6600 } 6601 if (ret == 0) { 6602 bpf_log(log, 6603 "The function %s has malformed void argument.\n", 6604 tname); 6605 return -EINVAL; 6606 } 6607 m->arg_size[i] = ret; 6608 m->arg_flags[i] = __get_type_fmodel_flags(t); 6609 } 6610 m->nr_args = nargs; 6611 return 0; 6612 } 6613 6614 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6615 * t1 points to BTF_KIND_FUNC in btf1 6616 * t2 points to BTF_KIND_FUNC in btf2 6617 * Returns: 6618 * EINVAL - function prototype mismatch 6619 * EFAULT - verifier bug 6620 * 0 - 99% match. The last 1% is validated by the verifier. 6621 */ 6622 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6623 struct btf *btf1, const struct btf_type *t1, 6624 struct btf *btf2, const struct btf_type *t2) 6625 { 6626 const struct btf_param *args1, *args2; 6627 const char *fn1, *fn2, *s1, *s2; 6628 u32 nargs1, nargs2, i; 6629 6630 fn1 = btf_name_by_offset(btf1, t1->name_off); 6631 fn2 = btf_name_by_offset(btf2, t2->name_off); 6632 6633 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6634 bpf_log(log, "%s() is not a global function\n", fn1); 6635 return -EINVAL; 6636 } 6637 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6638 bpf_log(log, "%s() is not a global function\n", fn2); 6639 return -EINVAL; 6640 } 6641 6642 t1 = btf_type_by_id(btf1, t1->type); 6643 if (!t1 || !btf_type_is_func_proto(t1)) 6644 return -EFAULT; 6645 t2 = btf_type_by_id(btf2, t2->type); 6646 if (!t2 || !btf_type_is_func_proto(t2)) 6647 return -EFAULT; 6648 6649 args1 = (const struct btf_param *)(t1 + 1); 6650 nargs1 = btf_type_vlen(t1); 6651 args2 = (const struct btf_param *)(t2 + 1); 6652 nargs2 = btf_type_vlen(t2); 6653 6654 if (nargs1 != nargs2) { 6655 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6656 fn1, nargs1, fn2, nargs2); 6657 return -EINVAL; 6658 } 6659 6660 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6661 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6662 if (t1->info != t2->info) { 6663 bpf_log(log, 6664 "Return type %s of %s() doesn't match type %s of %s()\n", 6665 btf_type_str(t1), fn1, 6666 btf_type_str(t2), fn2); 6667 return -EINVAL; 6668 } 6669 6670 for (i = 0; i < nargs1; i++) { 6671 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6672 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6673 6674 if (t1->info != t2->info) { 6675 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6676 i, fn1, btf_type_str(t1), 6677 fn2, btf_type_str(t2)); 6678 return -EINVAL; 6679 } 6680 if (btf_type_has_size(t1) && t1->size != t2->size) { 6681 bpf_log(log, 6682 "arg%d in %s() has size %d while %s() has %d\n", 6683 i, fn1, t1->size, 6684 fn2, t2->size); 6685 return -EINVAL; 6686 } 6687 6688 /* global functions are validated with scalars and pointers 6689 * to context only. And only global functions can be replaced. 6690 * Hence type check only those types. 6691 */ 6692 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6693 continue; 6694 if (!btf_type_is_ptr(t1)) { 6695 bpf_log(log, 6696 "arg%d in %s() has unrecognized type\n", 6697 i, fn1); 6698 return -EINVAL; 6699 } 6700 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6701 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6702 if (!btf_type_is_struct(t1)) { 6703 bpf_log(log, 6704 "arg%d in %s() is not a pointer to context\n", 6705 i, fn1); 6706 return -EINVAL; 6707 } 6708 if (!btf_type_is_struct(t2)) { 6709 bpf_log(log, 6710 "arg%d in %s() is not a pointer to context\n", 6711 i, fn2); 6712 return -EINVAL; 6713 } 6714 /* This is an optional check to make program writing easier. 6715 * Compare names of structs and report an error to the user. 6716 * btf_prepare_func_args() already checked that t2 struct 6717 * is a context type. btf_prepare_func_args() will check 6718 * later that t1 struct is a context type as well. 6719 */ 6720 s1 = btf_name_by_offset(btf1, t1->name_off); 6721 s2 = btf_name_by_offset(btf2, t2->name_off); 6722 if (strcmp(s1, s2)) { 6723 bpf_log(log, 6724 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6725 i, fn1, s1, fn2, s2); 6726 return -EINVAL; 6727 } 6728 } 6729 return 0; 6730 } 6731 6732 /* Compare BTFs of given program with BTF of target program */ 6733 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6734 struct btf *btf2, const struct btf_type *t2) 6735 { 6736 struct btf *btf1 = prog->aux->btf; 6737 const struct btf_type *t1; 6738 u32 btf_id = 0; 6739 6740 if (!prog->aux->func_info) { 6741 bpf_log(log, "Program extension requires BTF\n"); 6742 return -EINVAL; 6743 } 6744 6745 btf_id = prog->aux->func_info[0].type_id; 6746 if (!btf_id) 6747 return -EFAULT; 6748 6749 t1 = btf_type_by_id(btf1, btf_id); 6750 if (!t1 || !btf_type_is_func(t1)) 6751 return -EFAULT; 6752 6753 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6754 } 6755 6756 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6757 const struct btf *btf, u32 func_id, 6758 struct bpf_reg_state *regs, 6759 bool ptr_to_mem_ok, 6760 bool processing_call) 6761 { 6762 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6763 struct bpf_verifier_log *log = &env->log; 6764 const char *func_name, *ref_tname; 6765 const struct btf_type *t, *ref_t; 6766 const struct btf_param *args; 6767 u32 i, nargs, ref_id; 6768 int ret; 6769 6770 t = btf_type_by_id(btf, func_id); 6771 if (!t || !btf_type_is_func(t)) { 6772 /* These checks were already done by the verifier while loading 6773 * struct bpf_func_info or in add_kfunc_call(). 6774 */ 6775 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6776 func_id); 6777 return -EFAULT; 6778 } 6779 func_name = btf_name_by_offset(btf, t->name_off); 6780 6781 t = btf_type_by_id(btf, t->type); 6782 if (!t || !btf_type_is_func_proto(t)) { 6783 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6784 return -EFAULT; 6785 } 6786 args = (const struct btf_param *)(t + 1); 6787 nargs = btf_type_vlen(t); 6788 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6789 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6790 MAX_BPF_FUNC_REG_ARGS); 6791 return -EINVAL; 6792 } 6793 6794 /* check that BTF function arguments match actual types that the 6795 * verifier sees. 6796 */ 6797 for (i = 0; i < nargs; i++) { 6798 enum bpf_arg_type arg_type = ARG_DONTCARE; 6799 u32 regno = i + 1; 6800 struct bpf_reg_state *reg = ®s[regno]; 6801 6802 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6803 if (btf_type_is_scalar(t)) { 6804 if (reg->type == SCALAR_VALUE) 6805 continue; 6806 bpf_log(log, "R%d is not a scalar\n", regno); 6807 return -EINVAL; 6808 } 6809 6810 if (!btf_type_is_ptr(t)) { 6811 bpf_log(log, "Unrecognized arg#%d type %s\n", 6812 i, btf_type_str(t)); 6813 return -EINVAL; 6814 } 6815 6816 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6817 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6818 6819 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6820 if (ret < 0) 6821 return ret; 6822 6823 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6824 /* If function expects ctx type in BTF check that caller 6825 * is passing PTR_TO_CTX. 6826 */ 6827 if (reg->type != PTR_TO_CTX) { 6828 bpf_log(log, 6829 "arg#%d expected pointer to ctx, but got %s\n", 6830 i, btf_type_str(t)); 6831 return -EINVAL; 6832 } 6833 } else if (ptr_to_mem_ok && processing_call) { 6834 const struct btf_type *resolve_ret; 6835 u32 type_size; 6836 6837 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6838 if (IS_ERR(resolve_ret)) { 6839 bpf_log(log, 6840 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6841 i, btf_type_str(ref_t), ref_tname, 6842 PTR_ERR(resolve_ret)); 6843 return -EINVAL; 6844 } 6845 6846 if (check_mem_reg(env, reg, regno, type_size)) 6847 return -EINVAL; 6848 } else { 6849 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6850 func_name, func_id); 6851 return -EINVAL; 6852 } 6853 } 6854 6855 return 0; 6856 } 6857 6858 /* Compare BTF of a function declaration with given bpf_reg_state. 6859 * Returns: 6860 * EFAULT - there is a verifier bug. Abort verification. 6861 * EINVAL - there is a type mismatch or BTF is not available. 6862 * 0 - BTF matches with what bpf_reg_state expects. 6863 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6864 */ 6865 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6866 struct bpf_reg_state *regs) 6867 { 6868 struct bpf_prog *prog = env->prog; 6869 struct btf *btf = prog->aux->btf; 6870 bool is_global; 6871 u32 btf_id; 6872 int err; 6873 6874 if (!prog->aux->func_info) 6875 return -EINVAL; 6876 6877 btf_id = prog->aux->func_info[subprog].type_id; 6878 if (!btf_id) 6879 return -EFAULT; 6880 6881 if (prog->aux->func_info_aux[subprog].unreliable) 6882 return -EINVAL; 6883 6884 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6885 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6886 6887 /* Compiler optimizations can remove arguments from static functions 6888 * or mismatched type can be passed into a global function. 6889 * In such cases mark the function as unreliable from BTF point of view. 6890 */ 6891 if (err) 6892 prog->aux->func_info_aux[subprog].unreliable = true; 6893 return err; 6894 } 6895 6896 /* Compare BTF of a function call with given bpf_reg_state. 6897 * Returns: 6898 * EFAULT - there is a verifier bug. Abort verification. 6899 * EINVAL - there is a type mismatch or BTF is not available. 6900 * 0 - BTF matches with what bpf_reg_state expects. 6901 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6902 * 6903 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6904 * because btf_check_func_arg_match() is still doing both. Once that 6905 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6906 * first, and then treat the calling part in a new code path. 6907 */ 6908 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6909 struct bpf_reg_state *regs) 6910 { 6911 struct bpf_prog *prog = env->prog; 6912 struct btf *btf = prog->aux->btf; 6913 bool is_global; 6914 u32 btf_id; 6915 int err; 6916 6917 if (!prog->aux->func_info) 6918 return -EINVAL; 6919 6920 btf_id = prog->aux->func_info[subprog].type_id; 6921 if (!btf_id) 6922 return -EFAULT; 6923 6924 if (prog->aux->func_info_aux[subprog].unreliable) 6925 return -EINVAL; 6926 6927 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6928 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6929 6930 /* Compiler optimizations can remove arguments from static functions 6931 * or mismatched type can be passed into a global function. 6932 * In such cases mark the function as unreliable from BTF point of view. 6933 */ 6934 if (err) 6935 prog->aux->func_info_aux[subprog].unreliable = true; 6936 return err; 6937 } 6938 6939 /* Convert BTF of a function into bpf_reg_state if possible 6940 * Returns: 6941 * EFAULT - there is a verifier bug. Abort verification. 6942 * EINVAL - cannot convert BTF. 6943 * 0 - Successfully converted BTF into bpf_reg_state 6944 * (either PTR_TO_CTX or SCALAR_VALUE). 6945 */ 6946 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6947 struct bpf_reg_state *regs) 6948 { 6949 struct bpf_verifier_log *log = &env->log; 6950 struct bpf_prog *prog = env->prog; 6951 enum bpf_prog_type prog_type = prog->type; 6952 struct btf *btf = prog->aux->btf; 6953 const struct btf_param *args; 6954 const struct btf_type *t, *ref_t; 6955 u32 i, nargs, btf_id; 6956 const char *tname; 6957 6958 if (!prog->aux->func_info || 6959 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6960 bpf_log(log, "Verifier bug\n"); 6961 return -EFAULT; 6962 } 6963 6964 btf_id = prog->aux->func_info[subprog].type_id; 6965 if (!btf_id) { 6966 bpf_log(log, "Global functions need valid BTF\n"); 6967 return -EFAULT; 6968 } 6969 6970 t = btf_type_by_id(btf, btf_id); 6971 if (!t || !btf_type_is_func(t)) { 6972 /* These checks were already done by the verifier while loading 6973 * struct bpf_func_info 6974 */ 6975 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6976 subprog); 6977 return -EFAULT; 6978 } 6979 tname = btf_name_by_offset(btf, t->name_off); 6980 6981 if (log->level & BPF_LOG_LEVEL) 6982 bpf_log(log, "Validating %s() func#%d...\n", 6983 tname, subprog); 6984 6985 if (prog->aux->func_info_aux[subprog].unreliable) { 6986 bpf_log(log, "Verifier bug in function %s()\n", tname); 6987 return -EFAULT; 6988 } 6989 if (prog_type == BPF_PROG_TYPE_EXT) 6990 prog_type = prog->aux->dst_prog->type; 6991 6992 t = btf_type_by_id(btf, t->type); 6993 if (!t || !btf_type_is_func_proto(t)) { 6994 bpf_log(log, "Invalid type of function %s()\n", tname); 6995 return -EFAULT; 6996 } 6997 args = (const struct btf_param *)(t + 1); 6998 nargs = btf_type_vlen(t); 6999 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7000 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7001 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7002 return -EINVAL; 7003 } 7004 /* check that function returns int */ 7005 t = btf_type_by_id(btf, t->type); 7006 while (btf_type_is_modifier(t)) 7007 t = btf_type_by_id(btf, t->type); 7008 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7009 bpf_log(log, 7010 "Global function %s() doesn't return scalar. Only those are supported.\n", 7011 tname); 7012 return -EINVAL; 7013 } 7014 /* Convert BTF function arguments into verifier types. 7015 * Only PTR_TO_CTX and SCALAR are supported atm. 7016 */ 7017 for (i = 0; i < nargs; i++) { 7018 struct bpf_reg_state *reg = ®s[i + 1]; 7019 7020 t = btf_type_by_id(btf, args[i].type); 7021 while (btf_type_is_modifier(t)) 7022 t = btf_type_by_id(btf, t->type); 7023 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7024 reg->type = SCALAR_VALUE; 7025 continue; 7026 } 7027 if (btf_type_is_ptr(t)) { 7028 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 7029 reg->type = PTR_TO_CTX; 7030 continue; 7031 } 7032 7033 t = btf_type_skip_modifiers(btf, t->type, NULL); 7034 7035 ref_t = btf_resolve_size(btf, t, ®->mem_size); 7036 if (IS_ERR(ref_t)) { 7037 bpf_log(log, 7038 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7039 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7040 PTR_ERR(ref_t)); 7041 return -EINVAL; 7042 } 7043 7044 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 7045 reg->id = ++env->id_gen; 7046 7047 continue; 7048 } 7049 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7050 i, btf_type_str(t), tname); 7051 return -EINVAL; 7052 } 7053 return 0; 7054 } 7055 7056 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7057 struct btf_show *show) 7058 { 7059 const struct btf_type *t = btf_type_by_id(btf, type_id); 7060 7061 show->btf = btf; 7062 memset(&show->state, 0, sizeof(show->state)); 7063 memset(&show->obj, 0, sizeof(show->obj)); 7064 7065 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7066 } 7067 7068 static void btf_seq_show(struct btf_show *show, const char *fmt, 7069 va_list args) 7070 { 7071 seq_vprintf((struct seq_file *)show->target, fmt, args); 7072 } 7073 7074 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7075 void *obj, struct seq_file *m, u64 flags) 7076 { 7077 struct btf_show sseq; 7078 7079 sseq.target = m; 7080 sseq.showfn = btf_seq_show; 7081 sseq.flags = flags; 7082 7083 btf_type_show(btf, type_id, obj, &sseq); 7084 7085 return sseq.state.status; 7086 } 7087 7088 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7089 struct seq_file *m) 7090 { 7091 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7092 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7093 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7094 } 7095 7096 struct btf_show_snprintf { 7097 struct btf_show show; 7098 int len_left; /* space left in string */ 7099 int len; /* length we would have written */ 7100 }; 7101 7102 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7103 va_list args) 7104 { 7105 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7106 int len; 7107 7108 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7109 7110 if (len < 0) { 7111 ssnprintf->len_left = 0; 7112 ssnprintf->len = len; 7113 } else if (len >= ssnprintf->len_left) { 7114 /* no space, drive on to get length we would have written */ 7115 ssnprintf->len_left = 0; 7116 ssnprintf->len += len; 7117 } else { 7118 ssnprintf->len_left -= len; 7119 ssnprintf->len += len; 7120 show->target += len; 7121 } 7122 } 7123 7124 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7125 char *buf, int len, u64 flags) 7126 { 7127 struct btf_show_snprintf ssnprintf; 7128 7129 ssnprintf.show.target = buf; 7130 ssnprintf.show.flags = flags; 7131 ssnprintf.show.showfn = btf_snprintf_show; 7132 ssnprintf.len_left = len; 7133 ssnprintf.len = 0; 7134 7135 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7136 7137 /* If we encountered an error, return it. */ 7138 if (ssnprintf.show.state.status) 7139 return ssnprintf.show.state.status; 7140 7141 /* Otherwise return length we would have written */ 7142 return ssnprintf.len; 7143 } 7144 7145 #ifdef CONFIG_PROC_FS 7146 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7147 { 7148 const struct btf *btf = filp->private_data; 7149 7150 seq_printf(m, "btf_id:\t%u\n", btf->id); 7151 } 7152 #endif 7153 7154 static int btf_release(struct inode *inode, struct file *filp) 7155 { 7156 btf_put(filp->private_data); 7157 return 0; 7158 } 7159 7160 const struct file_operations btf_fops = { 7161 #ifdef CONFIG_PROC_FS 7162 .show_fdinfo = bpf_btf_show_fdinfo, 7163 #endif 7164 .release = btf_release, 7165 }; 7166 7167 static int __btf_new_fd(struct btf *btf) 7168 { 7169 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7170 } 7171 7172 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7173 { 7174 struct btf *btf; 7175 int ret; 7176 7177 btf = btf_parse(attr, uattr, uattr_size); 7178 if (IS_ERR(btf)) 7179 return PTR_ERR(btf); 7180 7181 ret = btf_alloc_id(btf); 7182 if (ret) { 7183 btf_free(btf); 7184 return ret; 7185 } 7186 7187 /* 7188 * The BTF ID is published to the userspace. 7189 * All BTF free must go through call_rcu() from 7190 * now on (i.e. free by calling btf_put()). 7191 */ 7192 7193 ret = __btf_new_fd(btf); 7194 if (ret < 0) 7195 btf_put(btf); 7196 7197 return ret; 7198 } 7199 7200 struct btf *btf_get_by_fd(int fd) 7201 { 7202 struct btf *btf; 7203 struct fd f; 7204 7205 f = fdget(fd); 7206 7207 if (!f.file) 7208 return ERR_PTR(-EBADF); 7209 7210 if (f.file->f_op != &btf_fops) { 7211 fdput(f); 7212 return ERR_PTR(-EINVAL); 7213 } 7214 7215 btf = f.file->private_data; 7216 refcount_inc(&btf->refcnt); 7217 fdput(f); 7218 7219 return btf; 7220 } 7221 7222 int btf_get_info_by_fd(const struct btf *btf, 7223 const union bpf_attr *attr, 7224 union bpf_attr __user *uattr) 7225 { 7226 struct bpf_btf_info __user *uinfo; 7227 struct bpf_btf_info info; 7228 u32 info_copy, btf_copy; 7229 void __user *ubtf; 7230 char __user *uname; 7231 u32 uinfo_len, uname_len, name_len; 7232 int ret = 0; 7233 7234 uinfo = u64_to_user_ptr(attr->info.info); 7235 uinfo_len = attr->info.info_len; 7236 7237 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7238 memset(&info, 0, sizeof(info)); 7239 if (copy_from_user(&info, uinfo, info_copy)) 7240 return -EFAULT; 7241 7242 info.id = btf->id; 7243 ubtf = u64_to_user_ptr(info.btf); 7244 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7245 if (copy_to_user(ubtf, btf->data, btf_copy)) 7246 return -EFAULT; 7247 info.btf_size = btf->data_size; 7248 7249 info.kernel_btf = btf->kernel_btf; 7250 7251 uname = u64_to_user_ptr(info.name); 7252 uname_len = info.name_len; 7253 if (!uname ^ !uname_len) 7254 return -EINVAL; 7255 7256 name_len = strlen(btf->name); 7257 info.name_len = name_len; 7258 7259 if (uname) { 7260 if (uname_len >= name_len + 1) { 7261 if (copy_to_user(uname, btf->name, name_len + 1)) 7262 return -EFAULT; 7263 } else { 7264 char zero = '\0'; 7265 7266 if (copy_to_user(uname, btf->name, uname_len - 1)) 7267 return -EFAULT; 7268 if (put_user(zero, uname + uname_len - 1)) 7269 return -EFAULT; 7270 /* let user-space know about too short buffer */ 7271 ret = -ENOSPC; 7272 } 7273 } 7274 7275 if (copy_to_user(uinfo, &info, info_copy) || 7276 put_user(info_copy, &uattr->info.info_len)) 7277 return -EFAULT; 7278 7279 return ret; 7280 } 7281 7282 int btf_get_fd_by_id(u32 id) 7283 { 7284 struct btf *btf; 7285 int fd; 7286 7287 rcu_read_lock(); 7288 btf = idr_find(&btf_idr, id); 7289 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7290 btf = ERR_PTR(-ENOENT); 7291 rcu_read_unlock(); 7292 7293 if (IS_ERR(btf)) 7294 return PTR_ERR(btf); 7295 7296 fd = __btf_new_fd(btf); 7297 if (fd < 0) 7298 btf_put(btf); 7299 7300 return fd; 7301 } 7302 7303 u32 btf_obj_id(const struct btf *btf) 7304 { 7305 return btf->id; 7306 } 7307 7308 bool btf_is_kernel(const struct btf *btf) 7309 { 7310 return btf->kernel_btf; 7311 } 7312 7313 bool btf_is_module(const struct btf *btf) 7314 { 7315 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7316 } 7317 7318 enum { 7319 BTF_MODULE_F_LIVE = (1 << 0), 7320 }; 7321 7322 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7323 struct btf_module { 7324 struct list_head list; 7325 struct module *module; 7326 struct btf *btf; 7327 struct bin_attribute *sysfs_attr; 7328 int flags; 7329 }; 7330 7331 static LIST_HEAD(btf_modules); 7332 static DEFINE_MUTEX(btf_module_mutex); 7333 7334 static ssize_t 7335 btf_module_read(struct file *file, struct kobject *kobj, 7336 struct bin_attribute *bin_attr, 7337 char *buf, loff_t off, size_t len) 7338 { 7339 const struct btf *btf = bin_attr->private; 7340 7341 memcpy(buf, btf->data + off, len); 7342 return len; 7343 } 7344 7345 static void purge_cand_cache(struct btf *btf); 7346 7347 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7348 void *module) 7349 { 7350 struct btf_module *btf_mod, *tmp; 7351 struct module *mod = module; 7352 struct btf *btf; 7353 int err = 0; 7354 7355 if (mod->btf_data_size == 0 || 7356 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7357 op != MODULE_STATE_GOING)) 7358 goto out; 7359 7360 switch (op) { 7361 case MODULE_STATE_COMING: 7362 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7363 if (!btf_mod) { 7364 err = -ENOMEM; 7365 goto out; 7366 } 7367 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7368 if (IS_ERR(btf)) { 7369 kfree(btf_mod); 7370 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7371 pr_warn("failed to validate module [%s] BTF: %ld\n", 7372 mod->name, PTR_ERR(btf)); 7373 err = PTR_ERR(btf); 7374 } else { 7375 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7376 } 7377 goto out; 7378 } 7379 err = btf_alloc_id(btf); 7380 if (err) { 7381 btf_free(btf); 7382 kfree(btf_mod); 7383 goto out; 7384 } 7385 7386 purge_cand_cache(NULL); 7387 mutex_lock(&btf_module_mutex); 7388 btf_mod->module = module; 7389 btf_mod->btf = btf; 7390 list_add(&btf_mod->list, &btf_modules); 7391 mutex_unlock(&btf_module_mutex); 7392 7393 if (IS_ENABLED(CONFIG_SYSFS)) { 7394 struct bin_attribute *attr; 7395 7396 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7397 if (!attr) 7398 goto out; 7399 7400 sysfs_bin_attr_init(attr); 7401 attr->attr.name = btf->name; 7402 attr->attr.mode = 0444; 7403 attr->size = btf->data_size; 7404 attr->private = btf; 7405 attr->read = btf_module_read; 7406 7407 err = sysfs_create_bin_file(btf_kobj, attr); 7408 if (err) { 7409 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7410 mod->name, err); 7411 kfree(attr); 7412 err = 0; 7413 goto out; 7414 } 7415 7416 btf_mod->sysfs_attr = attr; 7417 } 7418 7419 break; 7420 case MODULE_STATE_LIVE: 7421 mutex_lock(&btf_module_mutex); 7422 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7423 if (btf_mod->module != module) 7424 continue; 7425 7426 btf_mod->flags |= BTF_MODULE_F_LIVE; 7427 break; 7428 } 7429 mutex_unlock(&btf_module_mutex); 7430 break; 7431 case MODULE_STATE_GOING: 7432 mutex_lock(&btf_module_mutex); 7433 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7434 if (btf_mod->module != module) 7435 continue; 7436 7437 list_del(&btf_mod->list); 7438 if (btf_mod->sysfs_attr) 7439 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7440 purge_cand_cache(btf_mod->btf); 7441 btf_put(btf_mod->btf); 7442 kfree(btf_mod->sysfs_attr); 7443 kfree(btf_mod); 7444 break; 7445 } 7446 mutex_unlock(&btf_module_mutex); 7447 break; 7448 } 7449 out: 7450 return notifier_from_errno(err); 7451 } 7452 7453 static struct notifier_block btf_module_nb = { 7454 .notifier_call = btf_module_notify, 7455 }; 7456 7457 static int __init btf_module_init(void) 7458 { 7459 register_module_notifier(&btf_module_nb); 7460 return 0; 7461 } 7462 7463 fs_initcall(btf_module_init); 7464 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7465 7466 struct module *btf_try_get_module(const struct btf *btf) 7467 { 7468 struct module *res = NULL; 7469 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7470 struct btf_module *btf_mod, *tmp; 7471 7472 mutex_lock(&btf_module_mutex); 7473 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7474 if (btf_mod->btf != btf) 7475 continue; 7476 7477 /* We must only consider module whose __init routine has 7478 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7479 * which is set from the notifier callback for 7480 * MODULE_STATE_LIVE. 7481 */ 7482 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7483 res = btf_mod->module; 7484 7485 break; 7486 } 7487 mutex_unlock(&btf_module_mutex); 7488 #endif 7489 7490 return res; 7491 } 7492 7493 /* Returns struct btf corresponding to the struct module. 7494 * This function can return NULL or ERR_PTR. 7495 */ 7496 static struct btf *btf_get_module_btf(const struct module *module) 7497 { 7498 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7499 struct btf_module *btf_mod, *tmp; 7500 #endif 7501 struct btf *btf = NULL; 7502 7503 if (!module) { 7504 btf = bpf_get_btf_vmlinux(); 7505 if (!IS_ERR_OR_NULL(btf)) 7506 btf_get(btf); 7507 return btf; 7508 } 7509 7510 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7511 mutex_lock(&btf_module_mutex); 7512 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7513 if (btf_mod->module != module) 7514 continue; 7515 7516 btf_get(btf_mod->btf); 7517 btf = btf_mod->btf; 7518 break; 7519 } 7520 mutex_unlock(&btf_module_mutex); 7521 #endif 7522 7523 return btf; 7524 } 7525 7526 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7527 { 7528 struct btf *btf = NULL; 7529 int btf_obj_fd = 0; 7530 long ret; 7531 7532 if (flags) 7533 return -EINVAL; 7534 7535 if (name_sz <= 1 || name[name_sz - 1]) 7536 return -EINVAL; 7537 7538 ret = bpf_find_btf_id(name, kind, &btf); 7539 if (ret > 0 && btf_is_module(btf)) { 7540 btf_obj_fd = __btf_new_fd(btf); 7541 if (btf_obj_fd < 0) { 7542 btf_put(btf); 7543 return btf_obj_fd; 7544 } 7545 return ret | (((u64)btf_obj_fd) << 32); 7546 } 7547 if (ret > 0) 7548 btf_put(btf); 7549 return ret; 7550 } 7551 7552 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7553 .func = bpf_btf_find_by_name_kind, 7554 .gpl_only = false, 7555 .ret_type = RET_INTEGER, 7556 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7557 .arg2_type = ARG_CONST_SIZE, 7558 .arg3_type = ARG_ANYTHING, 7559 .arg4_type = ARG_ANYTHING, 7560 }; 7561 7562 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7563 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7564 BTF_TRACING_TYPE_xxx 7565 #undef BTF_TRACING_TYPE 7566 7567 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7568 const struct btf_type *func, u32 func_flags) 7569 { 7570 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7571 const char *name, *sfx, *iter_name; 7572 const struct btf_param *arg; 7573 const struct btf_type *t; 7574 char exp_name[128]; 7575 u32 nr_args; 7576 7577 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7578 if (!flags || (flags & (flags - 1))) 7579 return -EINVAL; 7580 7581 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7582 nr_args = btf_type_vlen(func); 7583 if (nr_args < 1) 7584 return -EINVAL; 7585 7586 arg = &btf_params(func)[0]; 7587 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7588 if (!t || !btf_type_is_ptr(t)) 7589 return -EINVAL; 7590 t = btf_type_skip_modifiers(btf, t->type, NULL); 7591 if (!t || !__btf_type_is_struct(t)) 7592 return -EINVAL; 7593 7594 name = btf_name_by_offset(btf, t->name_off); 7595 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 7596 return -EINVAL; 7597 7598 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 7599 * fit nicely in stack slots 7600 */ 7601 if (t->size == 0 || (t->size % 8)) 7602 return -EINVAL; 7603 7604 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 7605 * naming pattern 7606 */ 7607 iter_name = name + sizeof(ITER_PREFIX) - 1; 7608 if (flags & KF_ITER_NEW) 7609 sfx = "new"; 7610 else if (flags & KF_ITER_NEXT) 7611 sfx = "next"; 7612 else /* (flags & KF_ITER_DESTROY) */ 7613 sfx = "destroy"; 7614 7615 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 7616 if (strcmp(func_name, exp_name)) 7617 return -EINVAL; 7618 7619 /* only iter constructor should have extra arguments */ 7620 if (!(flags & KF_ITER_NEW) && nr_args != 1) 7621 return -EINVAL; 7622 7623 if (flags & KF_ITER_NEXT) { 7624 /* bpf_iter_<type>_next() should return pointer */ 7625 t = btf_type_skip_modifiers(btf, func->type, NULL); 7626 if (!t || !btf_type_is_ptr(t)) 7627 return -EINVAL; 7628 } 7629 7630 if (flags & KF_ITER_DESTROY) { 7631 /* bpf_iter_<type>_destroy() should return void */ 7632 t = btf_type_by_id(btf, func->type); 7633 if (!t || !btf_type_is_void(t)) 7634 return -EINVAL; 7635 } 7636 7637 return 0; 7638 } 7639 7640 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 7641 { 7642 const struct btf_type *func; 7643 const char *func_name; 7644 int err; 7645 7646 /* any kfunc should be FUNC -> FUNC_PROTO */ 7647 func = btf_type_by_id(btf, func_id); 7648 if (!func || !btf_type_is_func(func)) 7649 return -EINVAL; 7650 7651 /* sanity check kfunc name */ 7652 func_name = btf_name_by_offset(btf, func->name_off); 7653 if (!func_name || !func_name[0]) 7654 return -EINVAL; 7655 7656 func = btf_type_by_id(btf, func->type); 7657 if (!func || !btf_type_is_func_proto(func)) 7658 return -EINVAL; 7659 7660 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 7661 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 7662 if (err) 7663 return err; 7664 } 7665 7666 return 0; 7667 } 7668 7669 /* Kernel Function (kfunc) BTF ID set registration API */ 7670 7671 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7672 struct btf_id_set8 *add_set) 7673 { 7674 bool vmlinux_set = !btf_is_module(btf); 7675 struct btf_kfunc_set_tab *tab; 7676 struct btf_id_set8 *set; 7677 u32 set_cnt; 7678 int ret; 7679 7680 if (hook >= BTF_KFUNC_HOOK_MAX) { 7681 ret = -EINVAL; 7682 goto end; 7683 } 7684 7685 if (!add_set->cnt) 7686 return 0; 7687 7688 tab = btf->kfunc_set_tab; 7689 if (!tab) { 7690 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7691 if (!tab) 7692 return -ENOMEM; 7693 btf->kfunc_set_tab = tab; 7694 } 7695 7696 set = tab->sets[hook]; 7697 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7698 * for module sets. 7699 */ 7700 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7701 ret = -EINVAL; 7702 goto end; 7703 } 7704 7705 /* We don't need to allocate, concatenate, and sort module sets, because 7706 * only one is allowed per hook. Hence, we can directly assign the 7707 * pointer and return. 7708 */ 7709 if (!vmlinux_set) { 7710 tab->sets[hook] = add_set; 7711 return 0; 7712 } 7713 7714 /* In case of vmlinux sets, there may be more than one set being 7715 * registered per hook. To create a unified set, we allocate a new set 7716 * and concatenate all individual sets being registered. While each set 7717 * is individually sorted, they may become unsorted when concatenated, 7718 * hence re-sorting the final set again is required to make binary 7719 * searching the set using btf_id_set8_contains function work. 7720 */ 7721 set_cnt = set ? set->cnt : 0; 7722 7723 if (set_cnt > U32_MAX - add_set->cnt) { 7724 ret = -EOVERFLOW; 7725 goto end; 7726 } 7727 7728 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7729 ret = -E2BIG; 7730 goto end; 7731 } 7732 7733 /* Grow set */ 7734 set = krealloc(tab->sets[hook], 7735 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7736 GFP_KERNEL | __GFP_NOWARN); 7737 if (!set) { 7738 ret = -ENOMEM; 7739 goto end; 7740 } 7741 7742 /* For newly allocated set, initialize set->cnt to 0 */ 7743 if (!tab->sets[hook]) 7744 set->cnt = 0; 7745 tab->sets[hook] = set; 7746 7747 /* Concatenate the two sets */ 7748 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7749 set->cnt += add_set->cnt; 7750 7751 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7752 7753 return 0; 7754 end: 7755 btf_free_kfunc_set_tab(btf); 7756 return ret; 7757 } 7758 7759 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7760 enum btf_kfunc_hook hook, 7761 u32 kfunc_btf_id) 7762 { 7763 struct btf_id_set8 *set; 7764 u32 *id; 7765 7766 if (hook >= BTF_KFUNC_HOOK_MAX) 7767 return NULL; 7768 if (!btf->kfunc_set_tab) 7769 return NULL; 7770 set = btf->kfunc_set_tab->sets[hook]; 7771 if (!set) 7772 return NULL; 7773 id = btf_id_set8_contains(set, kfunc_btf_id); 7774 if (!id) 7775 return NULL; 7776 /* The flags for BTF ID are located next to it */ 7777 return id + 1; 7778 } 7779 7780 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7781 { 7782 switch (prog_type) { 7783 case BPF_PROG_TYPE_UNSPEC: 7784 return BTF_KFUNC_HOOK_COMMON; 7785 case BPF_PROG_TYPE_XDP: 7786 return BTF_KFUNC_HOOK_XDP; 7787 case BPF_PROG_TYPE_SCHED_CLS: 7788 return BTF_KFUNC_HOOK_TC; 7789 case BPF_PROG_TYPE_STRUCT_OPS: 7790 return BTF_KFUNC_HOOK_STRUCT_OPS; 7791 case BPF_PROG_TYPE_TRACING: 7792 case BPF_PROG_TYPE_LSM: 7793 return BTF_KFUNC_HOOK_TRACING; 7794 case BPF_PROG_TYPE_SYSCALL: 7795 return BTF_KFUNC_HOOK_SYSCALL; 7796 case BPF_PROG_TYPE_CGROUP_SKB: 7797 return BTF_KFUNC_HOOK_CGROUP_SKB; 7798 case BPF_PROG_TYPE_SCHED_ACT: 7799 return BTF_KFUNC_HOOK_SCHED_ACT; 7800 case BPF_PROG_TYPE_SK_SKB: 7801 return BTF_KFUNC_HOOK_SK_SKB; 7802 case BPF_PROG_TYPE_SOCKET_FILTER: 7803 return BTF_KFUNC_HOOK_SOCKET_FILTER; 7804 case BPF_PROG_TYPE_LWT_OUT: 7805 case BPF_PROG_TYPE_LWT_IN: 7806 case BPF_PROG_TYPE_LWT_XMIT: 7807 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 7808 return BTF_KFUNC_HOOK_LWT; 7809 case BPF_PROG_TYPE_NETFILTER: 7810 return BTF_KFUNC_HOOK_NETFILTER; 7811 default: 7812 return BTF_KFUNC_HOOK_MAX; 7813 } 7814 } 7815 7816 /* Caution: 7817 * Reference to the module (obtained using btf_try_get_module) corresponding to 7818 * the struct btf *MUST* be held when calling this function from verifier 7819 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7820 * keeping the reference for the duration of the call provides the necessary 7821 * protection for looking up a well-formed btf->kfunc_set_tab. 7822 */ 7823 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7824 enum bpf_prog_type prog_type, 7825 u32 kfunc_btf_id) 7826 { 7827 enum btf_kfunc_hook hook; 7828 u32 *kfunc_flags; 7829 7830 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id); 7831 if (kfunc_flags) 7832 return kfunc_flags; 7833 7834 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7835 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7836 } 7837 7838 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id) 7839 { 7840 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id); 7841 } 7842 7843 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7844 const struct btf_kfunc_id_set *kset) 7845 { 7846 struct btf *btf; 7847 int ret, i; 7848 7849 btf = btf_get_module_btf(kset->owner); 7850 if (!btf) { 7851 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7852 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7853 return -ENOENT; 7854 } 7855 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7856 pr_err("missing module BTF, cannot register kfuncs\n"); 7857 return -ENOENT; 7858 } 7859 return 0; 7860 } 7861 if (IS_ERR(btf)) 7862 return PTR_ERR(btf); 7863 7864 for (i = 0; i < kset->set->cnt; i++) { 7865 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 7866 kset->set->pairs[i].flags); 7867 if (ret) 7868 goto err_out; 7869 } 7870 7871 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7872 err_out: 7873 btf_put(btf); 7874 return ret; 7875 } 7876 7877 /* This function must be invoked only from initcalls/module init functions */ 7878 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7879 const struct btf_kfunc_id_set *kset) 7880 { 7881 enum btf_kfunc_hook hook; 7882 7883 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7884 return __register_btf_kfunc_id_set(hook, kset); 7885 } 7886 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7887 7888 /* This function must be invoked only from initcalls/module init functions */ 7889 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7890 { 7891 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7892 } 7893 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7894 7895 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7896 { 7897 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7898 struct btf_id_dtor_kfunc *dtor; 7899 7900 if (!tab) 7901 return -ENOENT; 7902 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7903 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7904 */ 7905 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7906 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7907 if (!dtor) 7908 return -ENOENT; 7909 return dtor->kfunc_btf_id; 7910 } 7911 7912 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7913 { 7914 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7915 const struct btf_param *args; 7916 s32 dtor_btf_id; 7917 u32 nr_args, i; 7918 7919 for (i = 0; i < cnt; i++) { 7920 dtor_btf_id = dtors[i].kfunc_btf_id; 7921 7922 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7923 if (!dtor_func || !btf_type_is_func(dtor_func)) 7924 return -EINVAL; 7925 7926 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7927 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7928 return -EINVAL; 7929 7930 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7931 t = btf_type_by_id(btf, dtor_func_proto->type); 7932 if (!t || !btf_type_is_void(t)) 7933 return -EINVAL; 7934 7935 nr_args = btf_type_vlen(dtor_func_proto); 7936 if (nr_args != 1) 7937 return -EINVAL; 7938 args = btf_params(dtor_func_proto); 7939 t = btf_type_by_id(btf, args[0].type); 7940 /* Allow any pointer type, as width on targets Linux supports 7941 * will be same for all pointer types (i.e. sizeof(void *)) 7942 */ 7943 if (!t || !btf_type_is_ptr(t)) 7944 return -EINVAL; 7945 } 7946 return 0; 7947 } 7948 7949 /* This function must be invoked only from initcalls/module init functions */ 7950 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7951 struct module *owner) 7952 { 7953 struct btf_id_dtor_kfunc_tab *tab; 7954 struct btf *btf; 7955 u32 tab_cnt; 7956 int ret; 7957 7958 btf = btf_get_module_btf(owner); 7959 if (!btf) { 7960 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7961 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7962 return -ENOENT; 7963 } 7964 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7965 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7966 return -ENOENT; 7967 } 7968 return 0; 7969 } 7970 if (IS_ERR(btf)) 7971 return PTR_ERR(btf); 7972 7973 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7974 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7975 ret = -E2BIG; 7976 goto end; 7977 } 7978 7979 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7980 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7981 if (ret < 0) 7982 goto end; 7983 7984 tab = btf->dtor_kfunc_tab; 7985 /* Only one call allowed for modules */ 7986 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7987 ret = -EINVAL; 7988 goto end; 7989 } 7990 7991 tab_cnt = tab ? tab->cnt : 0; 7992 if (tab_cnt > U32_MAX - add_cnt) { 7993 ret = -EOVERFLOW; 7994 goto end; 7995 } 7996 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7997 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7998 ret = -E2BIG; 7999 goto end; 8000 } 8001 8002 tab = krealloc(btf->dtor_kfunc_tab, 8003 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8004 GFP_KERNEL | __GFP_NOWARN); 8005 if (!tab) { 8006 ret = -ENOMEM; 8007 goto end; 8008 } 8009 8010 if (!btf->dtor_kfunc_tab) 8011 tab->cnt = 0; 8012 btf->dtor_kfunc_tab = tab; 8013 8014 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8015 tab->cnt += add_cnt; 8016 8017 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8018 8019 end: 8020 if (ret) 8021 btf_free_dtor_kfunc_tab(btf); 8022 btf_put(btf); 8023 return ret; 8024 } 8025 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8026 8027 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8028 8029 /* Check local and target types for compatibility. This check is used for 8030 * type-based CO-RE relocations and follow slightly different rules than 8031 * field-based relocations. This function assumes that root types were already 8032 * checked for name match. Beyond that initial root-level name check, names 8033 * are completely ignored. Compatibility rules are as follows: 8034 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8035 * kind should match for local and target types (i.e., STRUCT is not 8036 * compatible with UNION); 8037 * - for ENUMs/ENUM64s, the size is ignored; 8038 * - for INT, size and signedness are ignored; 8039 * - for ARRAY, dimensionality is ignored, element types are checked for 8040 * compatibility recursively; 8041 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8042 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8043 * - FUNC_PROTOs are compatible if they have compatible signature: same 8044 * number of input args and compatible return and argument types. 8045 * These rules are not set in stone and probably will be adjusted as we get 8046 * more experience with using BPF CO-RE relocations. 8047 */ 8048 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8049 const struct btf *targ_btf, __u32 targ_id) 8050 { 8051 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8052 MAX_TYPES_ARE_COMPAT_DEPTH); 8053 } 8054 8055 #define MAX_TYPES_MATCH_DEPTH 2 8056 8057 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8058 const struct btf *targ_btf, u32 targ_id) 8059 { 8060 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8061 MAX_TYPES_MATCH_DEPTH); 8062 } 8063 8064 static bool bpf_core_is_flavor_sep(const char *s) 8065 { 8066 /* check X___Y name pattern, where X and Y are not underscores */ 8067 return s[0] != '_' && /* X */ 8068 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8069 s[4] != '_'; /* Y */ 8070 } 8071 8072 size_t bpf_core_essential_name_len(const char *name) 8073 { 8074 size_t n = strlen(name); 8075 int i; 8076 8077 for (i = n - 5; i >= 0; i--) { 8078 if (bpf_core_is_flavor_sep(name + i)) 8079 return i + 1; 8080 } 8081 return n; 8082 } 8083 8084 struct bpf_cand_cache { 8085 const char *name; 8086 u32 name_len; 8087 u16 kind; 8088 u16 cnt; 8089 struct { 8090 const struct btf *btf; 8091 u32 id; 8092 } cands[]; 8093 }; 8094 8095 static void bpf_free_cands(struct bpf_cand_cache *cands) 8096 { 8097 if (!cands->cnt) 8098 /* empty candidate array was allocated on stack */ 8099 return; 8100 kfree(cands); 8101 } 8102 8103 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8104 { 8105 kfree(cands->name); 8106 kfree(cands); 8107 } 8108 8109 #define VMLINUX_CAND_CACHE_SIZE 31 8110 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8111 8112 #define MODULE_CAND_CACHE_SIZE 31 8113 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8114 8115 static DEFINE_MUTEX(cand_cache_mutex); 8116 8117 static void __print_cand_cache(struct bpf_verifier_log *log, 8118 struct bpf_cand_cache **cache, 8119 int cache_size) 8120 { 8121 struct bpf_cand_cache *cc; 8122 int i, j; 8123 8124 for (i = 0; i < cache_size; i++) { 8125 cc = cache[i]; 8126 if (!cc) 8127 continue; 8128 bpf_log(log, "[%d]%s(", i, cc->name); 8129 for (j = 0; j < cc->cnt; j++) { 8130 bpf_log(log, "%d", cc->cands[j].id); 8131 if (j < cc->cnt - 1) 8132 bpf_log(log, " "); 8133 } 8134 bpf_log(log, "), "); 8135 } 8136 } 8137 8138 static void print_cand_cache(struct bpf_verifier_log *log) 8139 { 8140 mutex_lock(&cand_cache_mutex); 8141 bpf_log(log, "vmlinux_cand_cache:"); 8142 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8143 bpf_log(log, "\nmodule_cand_cache:"); 8144 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8145 bpf_log(log, "\n"); 8146 mutex_unlock(&cand_cache_mutex); 8147 } 8148 8149 static u32 hash_cands(struct bpf_cand_cache *cands) 8150 { 8151 return jhash(cands->name, cands->name_len, 0); 8152 } 8153 8154 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8155 struct bpf_cand_cache **cache, 8156 int cache_size) 8157 { 8158 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8159 8160 if (cc && cc->name_len == cands->name_len && 8161 !strncmp(cc->name, cands->name, cands->name_len)) 8162 return cc; 8163 return NULL; 8164 } 8165 8166 static size_t sizeof_cands(int cnt) 8167 { 8168 return offsetof(struct bpf_cand_cache, cands[cnt]); 8169 } 8170 8171 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8172 struct bpf_cand_cache **cache, 8173 int cache_size) 8174 { 8175 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8176 8177 if (*cc) { 8178 bpf_free_cands_from_cache(*cc); 8179 *cc = NULL; 8180 } 8181 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8182 if (!new_cands) { 8183 bpf_free_cands(cands); 8184 return ERR_PTR(-ENOMEM); 8185 } 8186 /* strdup the name, since it will stay in cache. 8187 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8188 */ 8189 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8190 bpf_free_cands(cands); 8191 if (!new_cands->name) { 8192 kfree(new_cands); 8193 return ERR_PTR(-ENOMEM); 8194 } 8195 *cc = new_cands; 8196 return new_cands; 8197 } 8198 8199 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8200 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8201 int cache_size) 8202 { 8203 struct bpf_cand_cache *cc; 8204 int i, j; 8205 8206 for (i = 0; i < cache_size; i++) { 8207 cc = cache[i]; 8208 if (!cc) 8209 continue; 8210 if (!btf) { 8211 /* when new module is loaded purge all of module_cand_cache, 8212 * since new module might have candidates with the name 8213 * that matches cached cands. 8214 */ 8215 bpf_free_cands_from_cache(cc); 8216 cache[i] = NULL; 8217 continue; 8218 } 8219 /* when module is unloaded purge cache entries 8220 * that match module's btf 8221 */ 8222 for (j = 0; j < cc->cnt; j++) 8223 if (cc->cands[j].btf == btf) { 8224 bpf_free_cands_from_cache(cc); 8225 cache[i] = NULL; 8226 break; 8227 } 8228 } 8229 8230 } 8231 8232 static void purge_cand_cache(struct btf *btf) 8233 { 8234 mutex_lock(&cand_cache_mutex); 8235 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8236 mutex_unlock(&cand_cache_mutex); 8237 } 8238 #endif 8239 8240 static struct bpf_cand_cache * 8241 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8242 int targ_start_id) 8243 { 8244 struct bpf_cand_cache *new_cands; 8245 const struct btf_type *t; 8246 const char *targ_name; 8247 size_t targ_essent_len; 8248 int n, i; 8249 8250 n = btf_nr_types(targ_btf); 8251 for (i = targ_start_id; i < n; i++) { 8252 t = btf_type_by_id(targ_btf, i); 8253 if (btf_kind(t) != cands->kind) 8254 continue; 8255 8256 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8257 if (!targ_name) 8258 continue; 8259 8260 /* the resched point is before strncmp to make sure that search 8261 * for non-existing name will have a chance to schedule(). 8262 */ 8263 cond_resched(); 8264 8265 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8266 continue; 8267 8268 targ_essent_len = bpf_core_essential_name_len(targ_name); 8269 if (targ_essent_len != cands->name_len) 8270 continue; 8271 8272 /* most of the time there is only one candidate for a given kind+name pair */ 8273 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8274 if (!new_cands) { 8275 bpf_free_cands(cands); 8276 return ERR_PTR(-ENOMEM); 8277 } 8278 8279 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8280 bpf_free_cands(cands); 8281 cands = new_cands; 8282 cands->cands[cands->cnt].btf = targ_btf; 8283 cands->cands[cands->cnt].id = i; 8284 cands->cnt++; 8285 } 8286 return cands; 8287 } 8288 8289 static struct bpf_cand_cache * 8290 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8291 { 8292 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8293 const struct btf *local_btf = ctx->btf; 8294 const struct btf_type *local_type; 8295 const struct btf *main_btf; 8296 size_t local_essent_len; 8297 struct btf *mod_btf; 8298 const char *name; 8299 int id; 8300 8301 main_btf = bpf_get_btf_vmlinux(); 8302 if (IS_ERR(main_btf)) 8303 return ERR_CAST(main_btf); 8304 if (!main_btf) 8305 return ERR_PTR(-EINVAL); 8306 8307 local_type = btf_type_by_id(local_btf, local_type_id); 8308 if (!local_type) 8309 return ERR_PTR(-EINVAL); 8310 8311 name = btf_name_by_offset(local_btf, local_type->name_off); 8312 if (str_is_empty(name)) 8313 return ERR_PTR(-EINVAL); 8314 local_essent_len = bpf_core_essential_name_len(name); 8315 8316 cands = &local_cand; 8317 cands->name = name; 8318 cands->kind = btf_kind(local_type); 8319 cands->name_len = local_essent_len; 8320 8321 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8322 /* cands is a pointer to stack here */ 8323 if (cc) { 8324 if (cc->cnt) 8325 return cc; 8326 goto check_modules; 8327 } 8328 8329 /* Attempt to find target candidates in vmlinux BTF first */ 8330 cands = bpf_core_add_cands(cands, main_btf, 1); 8331 if (IS_ERR(cands)) 8332 return ERR_CAST(cands); 8333 8334 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8335 8336 /* populate cache even when cands->cnt == 0 */ 8337 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8338 if (IS_ERR(cc)) 8339 return ERR_CAST(cc); 8340 8341 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8342 if (cc->cnt) 8343 return cc; 8344 8345 check_modules: 8346 /* cands is a pointer to stack here and cands->cnt == 0 */ 8347 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8348 if (cc) 8349 /* if cache has it return it even if cc->cnt == 0 */ 8350 return cc; 8351 8352 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8353 spin_lock_bh(&btf_idr_lock); 8354 idr_for_each_entry(&btf_idr, mod_btf, id) { 8355 if (!btf_is_module(mod_btf)) 8356 continue; 8357 /* linear search could be slow hence unlock/lock 8358 * the IDR to avoiding holding it for too long 8359 */ 8360 btf_get(mod_btf); 8361 spin_unlock_bh(&btf_idr_lock); 8362 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8363 btf_put(mod_btf); 8364 if (IS_ERR(cands)) 8365 return ERR_CAST(cands); 8366 spin_lock_bh(&btf_idr_lock); 8367 } 8368 spin_unlock_bh(&btf_idr_lock); 8369 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8370 * or pointer to stack if cands->cnd == 0. 8371 * Copy it into the cache even when cands->cnt == 0 and 8372 * return the result. 8373 */ 8374 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8375 } 8376 8377 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8378 int relo_idx, void *insn) 8379 { 8380 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8381 struct bpf_core_cand_list cands = {}; 8382 struct bpf_core_relo_res targ_res; 8383 struct bpf_core_spec *specs; 8384 int err; 8385 8386 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8387 * into arrays of btf_ids of struct fields and array indices. 8388 */ 8389 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8390 if (!specs) 8391 return -ENOMEM; 8392 8393 if (need_cands) { 8394 struct bpf_cand_cache *cc; 8395 int i; 8396 8397 mutex_lock(&cand_cache_mutex); 8398 cc = bpf_core_find_cands(ctx, relo->type_id); 8399 if (IS_ERR(cc)) { 8400 bpf_log(ctx->log, "target candidate search failed for %d\n", 8401 relo->type_id); 8402 err = PTR_ERR(cc); 8403 goto out; 8404 } 8405 if (cc->cnt) { 8406 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8407 if (!cands.cands) { 8408 err = -ENOMEM; 8409 goto out; 8410 } 8411 } 8412 for (i = 0; i < cc->cnt; i++) { 8413 bpf_log(ctx->log, 8414 "CO-RE relocating %s %s: found target candidate [%d]\n", 8415 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8416 cands.cands[i].btf = cc->cands[i].btf; 8417 cands.cands[i].id = cc->cands[i].id; 8418 } 8419 cands.len = cc->cnt; 8420 /* cand_cache_mutex needs to span the cache lookup and 8421 * copy of btf pointer into bpf_core_cand_list, 8422 * since module can be unloaded while bpf_core_calc_relo_insn 8423 * is working with module's btf. 8424 */ 8425 } 8426 8427 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8428 &targ_res); 8429 if (err) 8430 goto out; 8431 8432 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8433 &targ_res); 8434 8435 out: 8436 kfree(specs); 8437 if (need_cands) { 8438 kfree(cands.cands); 8439 mutex_unlock(&cand_cache_mutex); 8440 if (ctx->log->level & BPF_LOG_LEVEL2) 8441 print_cand_cache(ctx->log); 8442 } 8443 return err; 8444 } 8445 8446 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8447 const struct bpf_reg_state *reg, 8448 const char *field_name, u32 btf_id, const char *suffix) 8449 { 8450 struct btf *btf = reg->btf; 8451 const struct btf_type *walk_type, *safe_type; 8452 const char *tname; 8453 char safe_tname[64]; 8454 long ret, safe_id; 8455 const struct btf_member *member; 8456 u32 i; 8457 8458 walk_type = btf_type_by_id(btf, reg->btf_id); 8459 if (!walk_type) 8460 return false; 8461 8462 tname = btf_name_by_offset(btf, walk_type->name_off); 8463 8464 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8465 if (ret < 0) 8466 return false; 8467 8468 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8469 if (safe_id < 0) 8470 return false; 8471 8472 safe_type = btf_type_by_id(btf, safe_id); 8473 if (!safe_type) 8474 return false; 8475 8476 for_each_member(i, safe_type, member) { 8477 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8478 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8479 u32 id; 8480 8481 if (!btf_type_is_ptr(mtype)) 8482 continue; 8483 8484 btf_type_skip_modifiers(btf, mtype->type, &id); 8485 /* If we match on both type and name, the field is considered trusted. */ 8486 if (btf_id == id && !strcmp(field_name, m_name)) 8487 return true; 8488 } 8489 8490 return false; 8491 } 8492 8493 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8494 const struct btf *reg_btf, u32 reg_id, 8495 const struct btf *arg_btf, u32 arg_id) 8496 { 8497 const char *reg_name, *arg_name, *search_needle; 8498 const struct btf_type *reg_type, *arg_type; 8499 int reg_len, arg_len, cmp_len; 8500 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8501 8502 reg_type = btf_type_by_id(reg_btf, reg_id); 8503 if (!reg_type) 8504 return false; 8505 8506 arg_type = btf_type_by_id(arg_btf, arg_id); 8507 if (!arg_type) 8508 return false; 8509 8510 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8511 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8512 8513 reg_len = strlen(reg_name); 8514 arg_len = strlen(arg_name); 8515 8516 /* Exactly one of the two type names may be suffixed with ___init, so 8517 * if the strings are the same size, they can't possibly be no-cast 8518 * aliases of one another. If you have two of the same type names, e.g. 8519 * they're both nf_conn___init, it would be improper to return true 8520 * because they are _not_ no-cast aliases, they are the same type. 8521 */ 8522 if (reg_len == arg_len) 8523 return false; 8524 8525 /* Either of the two names must be the other name, suffixed with ___init. */ 8526 if ((reg_len != arg_len + pattern_len) && 8527 (arg_len != reg_len + pattern_len)) 8528 return false; 8529 8530 if (reg_len < arg_len) { 8531 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8532 cmp_len = reg_len; 8533 } else { 8534 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8535 cmp_len = arg_len; 8536 } 8537 8538 if (!search_needle) 8539 return false; 8540 8541 /* ___init suffix must come at the end of the name */ 8542 if (*(search_needle + pattern_len) != '\0') 8543 return false; 8544 8545 return !strncmp(reg_name, arg_name, cmp_len); 8546 } 8547