1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 278 }; 279 280 enum verifier_phase { 281 CHECK_META, 282 CHECK_TYPE, 283 }; 284 285 struct resolve_vertex { 286 const struct btf_type *t; 287 u32 type_id; 288 u16 next_member; 289 }; 290 291 enum visit_state { 292 NOT_VISITED, 293 VISITED, 294 RESOLVED, 295 }; 296 297 enum resolve_mode { 298 RESOLVE_TBD, /* To Be Determined */ 299 RESOLVE_PTR, /* Resolving for Pointer */ 300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 301 * or array 302 */ 303 }; 304 305 #define MAX_RESOLVE_DEPTH 32 306 307 struct btf_sec_info { 308 u32 off; 309 u32 len; 310 }; 311 312 struct btf_verifier_env { 313 struct btf *btf; 314 u8 *visit_states; 315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 316 struct bpf_verifier_log log; 317 u32 log_type_id; 318 u32 top_stack; 319 enum verifier_phase phase; 320 enum resolve_mode resolve_mode; 321 }; 322 323 static const char * const btf_kind_str[NR_BTF_KINDS] = { 324 [BTF_KIND_UNKN] = "UNKNOWN", 325 [BTF_KIND_INT] = "INT", 326 [BTF_KIND_PTR] = "PTR", 327 [BTF_KIND_ARRAY] = "ARRAY", 328 [BTF_KIND_STRUCT] = "STRUCT", 329 [BTF_KIND_UNION] = "UNION", 330 [BTF_KIND_ENUM] = "ENUM", 331 [BTF_KIND_FWD] = "FWD", 332 [BTF_KIND_TYPEDEF] = "TYPEDEF", 333 [BTF_KIND_VOLATILE] = "VOLATILE", 334 [BTF_KIND_CONST] = "CONST", 335 [BTF_KIND_RESTRICT] = "RESTRICT", 336 [BTF_KIND_FUNC] = "FUNC", 337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 338 [BTF_KIND_VAR] = "VAR", 339 [BTF_KIND_DATASEC] = "DATASEC", 340 [BTF_KIND_FLOAT] = "FLOAT", 341 [BTF_KIND_DECL_TAG] = "DECL_TAG", 342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 343 [BTF_KIND_ENUM64] = "ENUM64", 344 }; 345 346 const char *btf_type_str(const struct btf_type *t) 347 { 348 return btf_kind_str[BTF_INFO_KIND(t->info)]; 349 } 350 351 /* Chunk size we use in safe copy of data to be shown. */ 352 #define BTF_SHOW_OBJ_SAFE_SIZE 32 353 354 /* 355 * This is the maximum size of a base type value (equivalent to a 356 * 128-bit int); if we are at the end of our safe buffer and have 357 * less than 16 bytes space we can't be assured of being able 358 * to copy the next type safely, so in such cases we will initiate 359 * a new copy. 360 */ 361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 362 363 /* Type name size */ 364 #define BTF_SHOW_NAME_SIZE 80 365 366 /* 367 * The suffix of a type that indicates it cannot alias another type when 368 * comparing BTF IDs for kfunc invocations. 369 */ 370 #define NOCAST_ALIAS_SUFFIX "___init" 371 372 /* 373 * Common data to all BTF show operations. Private show functions can add 374 * their own data to a structure containing a struct btf_show and consult it 375 * in the show callback. See btf_type_show() below. 376 * 377 * One challenge with showing nested data is we want to skip 0-valued 378 * data, but in order to figure out whether a nested object is all zeros 379 * we need to walk through it. As a result, we need to make two passes 380 * when handling structs, unions and arrays; the first path simply looks 381 * for nonzero data, while the second actually does the display. The first 382 * pass is signalled by show->state.depth_check being set, and if we 383 * encounter a non-zero value we set show->state.depth_to_show to 384 * the depth at which we encountered it. When we have completed the 385 * first pass, we will know if anything needs to be displayed if 386 * depth_to_show > depth. See btf_[struct,array]_show() for the 387 * implementation of this. 388 * 389 * Another problem is we want to ensure the data for display is safe to 390 * access. To support this, the anonymous "struct {} obj" tracks the data 391 * object and our safe copy of it. We copy portions of the data needed 392 * to the object "copy" buffer, but because its size is limited to 393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 394 * traverse larger objects for display. 395 * 396 * The various data type show functions all start with a call to 397 * btf_show_start_type() which returns a pointer to the safe copy 398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 399 * raw data itself). btf_show_obj_safe() is responsible for 400 * using copy_from_kernel_nofault() to update the safe data if necessary 401 * as we traverse the object's data. skbuff-like semantics are 402 * used: 403 * 404 * - obj.head points to the start of the toplevel object for display 405 * - obj.size is the size of the toplevel object 406 * - obj.data points to the current point in the original data at 407 * which our safe data starts. obj.data will advance as we copy 408 * portions of the data. 409 * 410 * In most cases a single copy will suffice, but larger data structures 411 * such as "struct task_struct" will require many copies. The logic in 412 * btf_show_obj_safe() handles the logic that determines if a new 413 * copy_from_kernel_nofault() is needed. 414 */ 415 struct btf_show { 416 u64 flags; 417 void *target; /* target of show operation (seq file, buffer) */ 418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 419 const struct btf *btf; 420 /* below are used during iteration */ 421 struct { 422 u8 depth; 423 u8 depth_to_show; 424 u8 depth_check; 425 u8 array_member:1, 426 array_terminated:1; 427 u16 array_encoding; 428 u32 type_id; 429 int status; /* non-zero for error */ 430 const struct btf_type *type; 431 const struct btf_member *member; 432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 433 } state; 434 struct { 435 u32 size; 436 void *head; 437 void *data; 438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 439 } obj; 440 }; 441 442 struct btf_kind_operations { 443 s32 (*check_meta)(struct btf_verifier_env *env, 444 const struct btf_type *t, 445 u32 meta_left); 446 int (*resolve)(struct btf_verifier_env *env, 447 const struct resolve_vertex *v); 448 int (*check_member)(struct btf_verifier_env *env, 449 const struct btf_type *struct_type, 450 const struct btf_member *member, 451 const struct btf_type *member_type); 452 int (*check_kflag_member)(struct btf_verifier_env *env, 453 const struct btf_type *struct_type, 454 const struct btf_member *member, 455 const struct btf_type *member_type); 456 void (*log_details)(struct btf_verifier_env *env, 457 const struct btf_type *t); 458 void (*show)(const struct btf *btf, const struct btf_type *t, 459 u32 type_id, void *data, u8 bits_offsets, 460 struct btf_show *show); 461 }; 462 463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 464 static struct btf_type btf_void; 465 466 static int btf_resolve(struct btf_verifier_env *env, 467 const struct btf_type *t, u32 type_id); 468 469 static int btf_func_check(struct btf_verifier_env *env, 470 const struct btf_type *t); 471 472 static bool btf_type_is_modifier(const struct btf_type *t) 473 { 474 /* Some of them is not strictly a C modifier 475 * but they are grouped into the same bucket 476 * for BTF concern: 477 * A type (t) that refers to another 478 * type through t->type AND its size cannot 479 * be determined without following the t->type. 480 * 481 * ptr does not fall into this bucket 482 * because its size is always sizeof(void *). 483 */ 484 switch (BTF_INFO_KIND(t->info)) { 485 case BTF_KIND_TYPEDEF: 486 case BTF_KIND_VOLATILE: 487 case BTF_KIND_CONST: 488 case BTF_KIND_RESTRICT: 489 case BTF_KIND_TYPE_TAG: 490 return true; 491 } 492 493 return false; 494 } 495 496 bool btf_type_is_void(const struct btf_type *t) 497 { 498 return t == &btf_void; 499 } 500 501 static bool btf_type_is_datasec(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 504 } 505 506 static bool btf_type_is_decl_tag(const struct btf_type *t) 507 { 508 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 509 } 510 511 static bool btf_type_nosize(const struct btf_type *t) 512 { 513 return btf_type_is_void(t) || btf_type_is_fwd(t) || 514 btf_type_is_func(t) || btf_type_is_func_proto(t) || 515 btf_type_is_decl_tag(t); 516 } 517 518 static bool btf_type_nosize_or_null(const struct btf_type *t) 519 { 520 return !t || btf_type_nosize(t); 521 } 522 523 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 524 { 525 return btf_type_is_func(t) || btf_type_is_struct(t) || 526 btf_type_is_var(t) || btf_type_is_typedef(t); 527 } 528 529 bool btf_is_vmlinux(const struct btf *btf) 530 { 531 return btf->kernel_btf && !btf->base_btf; 532 } 533 534 u32 btf_nr_types(const struct btf *btf) 535 { 536 u32 total = 0; 537 538 while (btf) { 539 total += btf->nr_types; 540 btf = btf->base_btf; 541 } 542 543 return total; 544 } 545 546 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 547 { 548 const struct btf_type *t; 549 const char *tname; 550 u32 i, total; 551 552 total = btf_nr_types(btf); 553 for (i = 1; i < total; i++) { 554 t = btf_type_by_id(btf, i); 555 if (BTF_INFO_KIND(t->info) != kind) 556 continue; 557 558 tname = btf_name_by_offset(btf, t->name_off); 559 if (!strcmp(tname, name)) 560 return i; 561 } 562 563 return -ENOENT; 564 } 565 566 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 567 { 568 struct btf *btf; 569 s32 ret; 570 int id; 571 572 btf = bpf_get_btf_vmlinux(); 573 if (IS_ERR(btf)) 574 return PTR_ERR(btf); 575 if (!btf) 576 return -EINVAL; 577 578 ret = btf_find_by_name_kind(btf, name, kind); 579 /* ret is never zero, since btf_find_by_name_kind returns 580 * positive btf_id or negative error. 581 */ 582 if (ret > 0) { 583 btf_get(btf); 584 *btf_p = btf; 585 return ret; 586 } 587 588 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 589 spin_lock_bh(&btf_idr_lock); 590 idr_for_each_entry(&btf_idr, btf, id) { 591 if (!btf_is_module(btf)) 592 continue; 593 /* linear search could be slow hence unlock/lock 594 * the IDR to avoiding holding it for too long 595 */ 596 btf_get(btf); 597 spin_unlock_bh(&btf_idr_lock); 598 ret = btf_find_by_name_kind(btf, name, kind); 599 if (ret > 0) { 600 *btf_p = btf; 601 return ret; 602 } 603 btf_put(btf); 604 spin_lock_bh(&btf_idr_lock); 605 } 606 spin_unlock_bh(&btf_idr_lock); 607 return ret; 608 } 609 610 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 611 u32 id, u32 *res_id) 612 { 613 const struct btf_type *t = btf_type_by_id(btf, id); 614 615 while (btf_type_is_modifier(t)) { 616 id = t->type; 617 t = btf_type_by_id(btf, t->type); 618 } 619 620 if (res_id) 621 *res_id = id; 622 623 return t; 624 } 625 626 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 627 u32 id, u32 *res_id) 628 { 629 const struct btf_type *t; 630 631 t = btf_type_skip_modifiers(btf, id, NULL); 632 if (!btf_type_is_ptr(t)) 633 return NULL; 634 635 return btf_type_skip_modifiers(btf, t->type, res_id); 636 } 637 638 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 639 u32 id, u32 *res_id) 640 { 641 const struct btf_type *ptype; 642 643 ptype = btf_type_resolve_ptr(btf, id, res_id); 644 if (ptype && btf_type_is_func_proto(ptype)) 645 return ptype; 646 647 return NULL; 648 } 649 650 /* Types that act only as a source, not sink or intermediate 651 * type when resolving. 652 */ 653 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 654 { 655 return btf_type_is_var(t) || 656 btf_type_is_decl_tag(t) || 657 btf_type_is_datasec(t); 658 } 659 660 /* What types need to be resolved? 661 * 662 * btf_type_is_modifier() is an obvious one. 663 * 664 * btf_type_is_struct() because its member refers to 665 * another type (through member->type). 666 * 667 * btf_type_is_var() because the variable refers to 668 * another type. btf_type_is_datasec() holds multiple 669 * btf_type_is_var() types that need resolving. 670 * 671 * btf_type_is_array() because its element (array->type) 672 * refers to another type. Array can be thought of a 673 * special case of struct while array just has the same 674 * member-type repeated by array->nelems of times. 675 */ 676 static bool btf_type_needs_resolve(const struct btf_type *t) 677 { 678 return btf_type_is_modifier(t) || 679 btf_type_is_ptr(t) || 680 btf_type_is_struct(t) || 681 btf_type_is_array(t) || 682 btf_type_is_var(t) || 683 btf_type_is_func(t) || 684 btf_type_is_decl_tag(t) || 685 btf_type_is_datasec(t); 686 } 687 688 /* t->size can be used */ 689 static bool btf_type_has_size(const struct btf_type *t) 690 { 691 switch (BTF_INFO_KIND(t->info)) { 692 case BTF_KIND_INT: 693 case BTF_KIND_STRUCT: 694 case BTF_KIND_UNION: 695 case BTF_KIND_ENUM: 696 case BTF_KIND_DATASEC: 697 case BTF_KIND_FLOAT: 698 case BTF_KIND_ENUM64: 699 return true; 700 } 701 702 return false; 703 } 704 705 static const char *btf_int_encoding_str(u8 encoding) 706 { 707 if (encoding == 0) 708 return "(none)"; 709 else if (encoding == BTF_INT_SIGNED) 710 return "SIGNED"; 711 else if (encoding == BTF_INT_CHAR) 712 return "CHAR"; 713 else if (encoding == BTF_INT_BOOL) 714 return "BOOL"; 715 else 716 return "UNKN"; 717 } 718 719 static u32 btf_type_int(const struct btf_type *t) 720 { 721 return *(u32 *)(t + 1); 722 } 723 724 static const struct btf_array *btf_type_array(const struct btf_type *t) 725 { 726 return (const struct btf_array *)(t + 1); 727 } 728 729 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 730 { 731 return (const struct btf_enum *)(t + 1); 732 } 733 734 static const struct btf_var *btf_type_var(const struct btf_type *t) 735 { 736 return (const struct btf_var *)(t + 1); 737 } 738 739 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 740 { 741 return (const struct btf_decl_tag *)(t + 1); 742 } 743 744 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 745 { 746 return (const struct btf_enum64 *)(t + 1); 747 } 748 749 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 750 { 751 return kind_ops[BTF_INFO_KIND(t->info)]; 752 } 753 754 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 755 { 756 if (!BTF_STR_OFFSET_VALID(offset)) 757 return false; 758 759 while (offset < btf->start_str_off) 760 btf = btf->base_btf; 761 762 offset -= btf->start_str_off; 763 return offset < btf->hdr.str_len; 764 } 765 766 static bool __btf_name_char_ok(char c, bool first) 767 { 768 if ((first ? !isalpha(c) : 769 !isalnum(c)) && 770 c != '_' && 771 c != '.') 772 return false; 773 return true; 774 } 775 776 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 777 { 778 while (offset < btf->start_str_off) 779 btf = btf->base_btf; 780 781 offset -= btf->start_str_off; 782 if (offset < btf->hdr.str_len) 783 return &btf->strings[offset]; 784 785 return NULL; 786 } 787 788 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 789 { 790 /* offset must be valid */ 791 const char *src = btf_str_by_offset(btf, offset); 792 const char *src_limit; 793 794 if (!__btf_name_char_ok(*src, true)) 795 return false; 796 797 /* set a limit on identifier length */ 798 src_limit = src + KSYM_NAME_LEN; 799 src++; 800 while (*src && src < src_limit) { 801 if (!__btf_name_char_ok(*src, false)) 802 return false; 803 src++; 804 } 805 806 return !*src; 807 } 808 809 /* Allow any printable character in DATASEC names */ 810 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 811 { 812 /* offset must be valid */ 813 const char *src = btf_str_by_offset(btf, offset); 814 const char *src_limit; 815 816 if (!*src) 817 return false; 818 819 /* set a limit on identifier length */ 820 src_limit = src + KSYM_NAME_LEN; 821 while (*src && src < src_limit) { 822 if (!isprint(*src)) 823 return false; 824 src++; 825 } 826 827 return !*src; 828 } 829 830 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 831 { 832 const char *name; 833 834 if (!offset) 835 return "(anon)"; 836 837 name = btf_str_by_offset(btf, offset); 838 return name ?: "(invalid-name-offset)"; 839 } 840 841 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 842 { 843 return btf_str_by_offset(btf, offset); 844 } 845 846 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 847 { 848 while (type_id < btf->start_id) 849 btf = btf->base_btf; 850 851 type_id -= btf->start_id; 852 if (type_id >= btf->nr_types) 853 return NULL; 854 return btf->types[type_id]; 855 } 856 EXPORT_SYMBOL_GPL(btf_type_by_id); 857 858 /* 859 * Regular int is not a bit field and it must be either 860 * u8/u16/u32/u64 or __int128. 861 */ 862 static bool btf_type_int_is_regular(const struct btf_type *t) 863 { 864 u8 nr_bits, nr_bytes; 865 u32 int_data; 866 867 int_data = btf_type_int(t); 868 nr_bits = BTF_INT_BITS(int_data); 869 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 870 if (BITS_PER_BYTE_MASKED(nr_bits) || 871 BTF_INT_OFFSET(int_data) || 872 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 873 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 874 nr_bytes != (2 * sizeof(u64)))) { 875 return false; 876 } 877 878 return true; 879 } 880 881 /* 882 * Check that given struct member is a regular int with expected 883 * offset and size. 884 */ 885 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 886 const struct btf_member *m, 887 u32 expected_offset, u32 expected_size) 888 { 889 const struct btf_type *t; 890 u32 id, int_data; 891 u8 nr_bits; 892 893 id = m->type; 894 t = btf_type_id_size(btf, &id, NULL); 895 if (!t || !btf_type_is_int(t)) 896 return false; 897 898 int_data = btf_type_int(t); 899 nr_bits = BTF_INT_BITS(int_data); 900 if (btf_type_kflag(s)) { 901 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 902 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 903 904 /* if kflag set, int should be a regular int and 905 * bit offset should be at byte boundary. 906 */ 907 return !bitfield_size && 908 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 909 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 910 } 911 912 if (BTF_INT_OFFSET(int_data) || 913 BITS_PER_BYTE_MASKED(m->offset) || 914 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 915 BITS_PER_BYTE_MASKED(nr_bits) || 916 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 917 return false; 918 919 return true; 920 } 921 922 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 923 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 924 u32 id) 925 { 926 const struct btf_type *t = btf_type_by_id(btf, id); 927 928 while (btf_type_is_modifier(t) && 929 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 930 t = btf_type_by_id(btf, t->type); 931 } 932 933 return t; 934 } 935 936 #define BTF_SHOW_MAX_ITER 10 937 938 #define BTF_KIND_BIT(kind) (1ULL << kind) 939 940 /* 941 * Populate show->state.name with type name information. 942 * Format of type name is 943 * 944 * [.member_name = ] (type_name) 945 */ 946 static const char *btf_show_name(struct btf_show *show) 947 { 948 /* BTF_MAX_ITER array suffixes "[]" */ 949 const char *array_suffixes = "[][][][][][][][][][]"; 950 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 951 /* BTF_MAX_ITER pointer suffixes "*" */ 952 const char *ptr_suffixes = "**********"; 953 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 954 const char *name = NULL, *prefix = "", *parens = ""; 955 const struct btf_member *m = show->state.member; 956 const struct btf_type *t; 957 const struct btf_array *array; 958 u32 id = show->state.type_id; 959 const char *member = NULL; 960 bool show_member = false; 961 u64 kinds = 0; 962 int i; 963 964 show->state.name[0] = '\0'; 965 966 /* 967 * Don't show type name if we're showing an array member; 968 * in that case we show the array type so don't need to repeat 969 * ourselves for each member. 970 */ 971 if (show->state.array_member) 972 return ""; 973 974 /* Retrieve member name, if any. */ 975 if (m) { 976 member = btf_name_by_offset(show->btf, m->name_off); 977 show_member = strlen(member) > 0; 978 id = m->type; 979 } 980 981 /* 982 * Start with type_id, as we have resolved the struct btf_type * 983 * via btf_modifier_show() past the parent typedef to the child 984 * struct, int etc it is defined as. In such cases, the type_id 985 * still represents the starting type while the struct btf_type * 986 * in our show->state points at the resolved type of the typedef. 987 */ 988 t = btf_type_by_id(show->btf, id); 989 if (!t) 990 return ""; 991 992 /* 993 * The goal here is to build up the right number of pointer and 994 * array suffixes while ensuring the type name for a typedef 995 * is represented. Along the way we accumulate a list of 996 * BTF kinds we have encountered, since these will inform later 997 * display; for example, pointer types will not require an 998 * opening "{" for struct, we will just display the pointer value. 999 * 1000 * We also want to accumulate the right number of pointer or array 1001 * indices in the format string while iterating until we get to 1002 * the typedef/pointee/array member target type. 1003 * 1004 * We start by pointing at the end of pointer and array suffix 1005 * strings; as we accumulate pointers and arrays we move the pointer 1006 * or array string backwards so it will show the expected number of 1007 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1008 * and/or arrays and typedefs are supported as a precaution. 1009 * 1010 * We also want to get typedef name while proceeding to resolve 1011 * type it points to so that we can add parentheses if it is a 1012 * "typedef struct" etc. 1013 */ 1014 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1015 1016 switch (BTF_INFO_KIND(t->info)) { 1017 case BTF_KIND_TYPEDEF: 1018 if (!name) 1019 name = btf_name_by_offset(show->btf, 1020 t->name_off); 1021 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1022 id = t->type; 1023 break; 1024 case BTF_KIND_ARRAY: 1025 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1026 parens = "["; 1027 if (!t) 1028 return ""; 1029 array = btf_type_array(t); 1030 if (array_suffix > array_suffixes) 1031 array_suffix -= 2; 1032 id = array->type; 1033 break; 1034 case BTF_KIND_PTR: 1035 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1036 if (ptr_suffix > ptr_suffixes) 1037 ptr_suffix -= 1; 1038 id = t->type; 1039 break; 1040 default: 1041 id = 0; 1042 break; 1043 } 1044 if (!id) 1045 break; 1046 t = btf_type_skip_qualifiers(show->btf, id); 1047 } 1048 /* We may not be able to represent this type; bail to be safe */ 1049 if (i == BTF_SHOW_MAX_ITER) 1050 return ""; 1051 1052 if (!name) 1053 name = btf_name_by_offset(show->btf, t->name_off); 1054 1055 switch (BTF_INFO_KIND(t->info)) { 1056 case BTF_KIND_STRUCT: 1057 case BTF_KIND_UNION: 1058 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1059 "struct" : "union"; 1060 /* if it's an array of struct/union, parens is already set */ 1061 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1062 parens = "{"; 1063 break; 1064 case BTF_KIND_ENUM: 1065 case BTF_KIND_ENUM64: 1066 prefix = "enum"; 1067 break; 1068 default: 1069 break; 1070 } 1071 1072 /* pointer does not require parens */ 1073 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1074 parens = ""; 1075 /* typedef does not require struct/union/enum prefix */ 1076 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1077 prefix = ""; 1078 1079 if (!name) 1080 name = ""; 1081 1082 /* Even if we don't want type name info, we want parentheses etc */ 1083 if (show->flags & BTF_SHOW_NONAME) 1084 snprintf(show->state.name, sizeof(show->state.name), "%s", 1085 parens); 1086 else 1087 snprintf(show->state.name, sizeof(show->state.name), 1088 "%s%s%s(%s%s%s%s%s%s)%s", 1089 /* first 3 strings comprise ".member = " */ 1090 show_member ? "." : "", 1091 show_member ? member : "", 1092 show_member ? " = " : "", 1093 /* ...next is our prefix (struct, enum, etc) */ 1094 prefix, 1095 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1096 /* ...this is the type name itself */ 1097 name, 1098 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1099 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1100 array_suffix, parens); 1101 1102 return show->state.name; 1103 } 1104 1105 static const char *__btf_show_indent(struct btf_show *show) 1106 { 1107 const char *indents = " "; 1108 const char *indent = &indents[strlen(indents)]; 1109 1110 if ((indent - show->state.depth) >= indents) 1111 return indent - show->state.depth; 1112 return indents; 1113 } 1114 1115 static const char *btf_show_indent(struct btf_show *show) 1116 { 1117 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1118 } 1119 1120 static const char *btf_show_newline(struct btf_show *show) 1121 { 1122 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1123 } 1124 1125 static const char *btf_show_delim(struct btf_show *show) 1126 { 1127 if (show->state.depth == 0) 1128 return ""; 1129 1130 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1131 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1132 return "|"; 1133 1134 return ","; 1135 } 1136 1137 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1138 { 1139 va_list args; 1140 1141 if (!show->state.depth_check) { 1142 va_start(args, fmt); 1143 show->showfn(show, fmt, args); 1144 va_end(args); 1145 } 1146 } 1147 1148 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1149 * format specifiers to the format specifier passed in; these do the work of 1150 * adding indentation, delimiters etc while the caller simply has to specify 1151 * the type value(s) in the format specifier + value(s). 1152 */ 1153 #define btf_show_type_value(show, fmt, value) \ 1154 do { \ 1155 if ((value) != (__typeof__(value))0 || \ 1156 (show->flags & BTF_SHOW_ZERO) || \ 1157 show->state.depth == 0) { \ 1158 btf_show(show, "%s%s" fmt "%s%s", \ 1159 btf_show_indent(show), \ 1160 btf_show_name(show), \ 1161 value, btf_show_delim(show), \ 1162 btf_show_newline(show)); \ 1163 if (show->state.depth > show->state.depth_to_show) \ 1164 show->state.depth_to_show = show->state.depth; \ 1165 } \ 1166 } while (0) 1167 1168 #define btf_show_type_values(show, fmt, ...) \ 1169 do { \ 1170 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1171 btf_show_name(show), \ 1172 __VA_ARGS__, btf_show_delim(show), \ 1173 btf_show_newline(show)); \ 1174 if (show->state.depth > show->state.depth_to_show) \ 1175 show->state.depth_to_show = show->state.depth; \ 1176 } while (0) 1177 1178 /* How much is left to copy to safe buffer after @data? */ 1179 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1180 { 1181 return show->obj.head + show->obj.size - data; 1182 } 1183 1184 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1185 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1186 { 1187 return data >= show->obj.data && 1188 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1189 } 1190 1191 /* 1192 * If object pointed to by @data of @size falls within our safe buffer, return 1193 * the equivalent pointer to the same safe data. Assumes 1194 * copy_from_kernel_nofault() has already happened and our safe buffer is 1195 * populated. 1196 */ 1197 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1198 { 1199 if (btf_show_obj_is_safe(show, data, size)) 1200 return show->obj.safe + (data - show->obj.data); 1201 return NULL; 1202 } 1203 1204 /* 1205 * Return a safe-to-access version of data pointed to by @data. 1206 * We do this by copying the relevant amount of information 1207 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1208 * 1209 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1210 * safe copy is needed. 1211 * 1212 * Otherwise we need to determine if we have the required amount 1213 * of data (determined by the @data pointer and the size of the 1214 * largest base type we can encounter (represented by 1215 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1216 * that we will be able to print some of the current object, 1217 * and if more is needed a copy will be triggered. 1218 * Some objects such as structs will not fit into the buffer; 1219 * in such cases additional copies when we iterate over their 1220 * members may be needed. 1221 * 1222 * btf_show_obj_safe() is used to return a safe buffer for 1223 * btf_show_start_type(); this ensures that as we recurse into 1224 * nested types we always have safe data for the given type. 1225 * This approach is somewhat wasteful; it's possible for example 1226 * that when iterating over a large union we'll end up copying the 1227 * same data repeatedly, but the goal is safety not performance. 1228 * We use stack data as opposed to per-CPU buffers because the 1229 * iteration over a type can take some time, and preemption handling 1230 * would greatly complicate use of the safe buffer. 1231 */ 1232 static void *btf_show_obj_safe(struct btf_show *show, 1233 const struct btf_type *t, 1234 void *data) 1235 { 1236 const struct btf_type *rt; 1237 int size_left, size; 1238 void *safe = NULL; 1239 1240 if (show->flags & BTF_SHOW_UNSAFE) 1241 return data; 1242 1243 rt = btf_resolve_size(show->btf, t, &size); 1244 if (IS_ERR(rt)) { 1245 show->state.status = PTR_ERR(rt); 1246 return NULL; 1247 } 1248 1249 /* 1250 * Is this toplevel object? If so, set total object size and 1251 * initialize pointers. Otherwise check if we still fall within 1252 * our safe object data. 1253 */ 1254 if (show->state.depth == 0) { 1255 show->obj.size = size; 1256 show->obj.head = data; 1257 } else { 1258 /* 1259 * If the size of the current object is > our remaining 1260 * safe buffer we _may_ need to do a new copy. However 1261 * consider the case of a nested struct; it's size pushes 1262 * us over the safe buffer limit, but showing any individual 1263 * struct members does not. In such cases, we don't need 1264 * to initiate a fresh copy yet; however we definitely need 1265 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1266 * in our buffer, regardless of the current object size. 1267 * The logic here is that as we resolve types we will 1268 * hit a base type at some point, and we need to be sure 1269 * the next chunk of data is safely available to display 1270 * that type info safely. We cannot rely on the size of 1271 * the current object here because it may be much larger 1272 * than our current buffer (e.g. task_struct is 8k). 1273 * All we want to do here is ensure that we can print the 1274 * next basic type, which we can if either 1275 * - the current type size is within the safe buffer; or 1276 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1277 * the safe buffer. 1278 */ 1279 safe = __btf_show_obj_safe(show, data, 1280 min(size, 1281 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1282 } 1283 1284 /* 1285 * We need a new copy to our safe object, either because we haven't 1286 * yet copied and are initializing safe data, or because the data 1287 * we want falls outside the boundaries of the safe object. 1288 */ 1289 if (!safe) { 1290 size_left = btf_show_obj_size_left(show, data); 1291 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1292 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1293 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1294 data, size_left); 1295 if (!show->state.status) { 1296 show->obj.data = data; 1297 safe = show->obj.safe; 1298 } 1299 } 1300 1301 return safe; 1302 } 1303 1304 /* 1305 * Set the type we are starting to show and return a safe data pointer 1306 * to be used for showing the associated data. 1307 */ 1308 static void *btf_show_start_type(struct btf_show *show, 1309 const struct btf_type *t, 1310 u32 type_id, void *data) 1311 { 1312 show->state.type = t; 1313 show->state.type_id = type_id; 1314 show->state.name[0] = '\0'; 1315 1316 return btf_show_obj_safe(show, t, data); 1317 } 1318 1319 static void btf_show_end_type(struct btf_show *show) 1320 { 1321 show->state.type = NULL; 1322 show->state.type_id = 0; 1323 show->state.name[0] = '\0'; 1324 } 1325 1326 static void *btf_show_start_aggr_type(struct btf_show *show, 1327 const struct btf_type *t, 1328 u32 type_id, void *data) 1329 { 1330 void *safe_data = btf_show_start_type(show, t, type_id, data); 1331 1332 if (!safe_data) 1333 return safe_data; 1334 1335 btf_show(show, "%s%s%s", btf_show_indent(show), 1336 btf_show_name(show), 1337 btf_show_newline(show)); 1338 show->state.depth++; 1339 return safe_data; 1340 } 1341 1342 static void btf_show_end_aggr_type(struct btf_show *show, 1343 const char *suffix) 1344 { 1345 show->state.depth--; 1346 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1347 btf_show_delim(show), btf_show_newline(show)); 1348 btf_show_end_type(show); 1349 } 1350 1351 static void btf_show_start_member(struct btf_show *show, 1352 const struct btf_member *m) 1353 { 1354 show->state.member = m; 1355 } 1356 1357 static void btf_show_start_array_member(struct btf_show *show) 1358 { 1359 show->state.array_member = 1; 1360 btf_show_start_member(show, NULL); 1361 } 1362 1363 static void btf_show_end_member(struct btf_show *show) 1364 { 1365 show->state.member = NULL; 1366 } 1367 1368 static void btf_show_end_array_member(struct btf_show *show) 1369 { 1370 show->state.array_member = 0; 1371 btf_show_end_member(show); 1372 } 1373 1374 static void *btf_show_start_array_type(struct btf_show *show, 1375 const struct btf_type *t, 1376 u32 type_id, 1377 u16 array_encoding, 1378 void *data) 1379 { 1380 show->state.array_encoding = array_encoding; 1381 show->state.array_terminated = 0; 1382 return btf_show_start_aggr_type(show, t, type_id, data); 1383 } 1384 1385 static void btf_show_end_array_type(struct btf_show *show) 1386 { 1387 show->state.array_encoding = 0; 1388 show->state.array_terminated = 0; 1389 btf_show_end_aggr_type(show, "]"); 1390 } 1391 1392 static void *btf_show_start_struct_type(struct btf_show *show, 1393 const struct btf_type *t, 1394 u32 type_id, 1395 void *data) 1396 { 1397 return btf_show_start_aggr_type(show, t, type_id, data); 1398 } 1399 1400 static void btf_show_end_struct_type(struct btf_show *show) 1401 { 1402 btf_show_end_aggr_type(show, "}"); 1403 } 1404 1405 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1406 const char *fmt, ...) 1407 { 1408 va_list args; 1409 1410 va_start(args, fmt); 1411 bpf_verifier_vlog(log, fmt, args); 1412 va_end(args); 1413 } 1414 1415 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1416 const char *fmt, ...) 1417 { 1418 struct bpf_verifier_log *log = &env->log; 1419 va_list args; 1420 1421 if (!bpf_verifier_log_needed(log)) 1422 return; 1423 1424 va_start(args, fmt); 1425 bpf_verifier_vlog(log, fmt, args); 1426 va_end(args); 1427 } 1428 1429 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1430 const struct btf_type *t, 1431 bool log_details, 1432 const char *fmt, ...) 1433 { 1434 struct bpf_verifier_log *log = &env->log; 1435 struct btf *btf = env->btf; 1436 va_list args; 1437 1438 if (!bpf_verifier_log_needed(log)) 1439 return; 1440 1441 if (log->level == BPF_LOG_KERNEL) { 1442 /* btf verifier prints all types it is processing via 1443 * btf_verifier_log_type(..., fmt = NULL). 1444 * Skip those prints for in-kernel BTF verification. 1445 */ 1446 if (!fmt) 1447 return; 1448 1449 /* Skip logging when loading module BTF with mismatches permitted */ 1450 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1451 return; 1452 } 1453 1454 __btf_verifier_log(log, "[%u] %s %s%s", 1455 env->log_type_id, 1456 btf_type_str(t), 1457 __btf_name_by_offset(btf, t->name_off), 1458 log_details ? " " : ""); 1459 1460 if (log_details) 1461 btf_type_ops(t)->log_details(env, t); 1462 1463 if (fmt && *fmt) { 1464 __btf_verifier_log(log, " "); 1465 va_start(args, fmt); 1466 bpf_verifier_vlog(log, fmt, args); 1467 va_end(args); 1468 } 1469 1470 __btf_verifier_log(log, "\n"); 1471 } 1472 1473 #define btf_verifier_log_type(env, t, ...) \ 1474 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1475 #define btf_verifier_log_basic(env, t, ...) \ 1476 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1477 1478 __printf(4, 5) 1479 static void btf_verifier_log_member(struct btf_verifier_env *env, 1480 const struct btf_type *struct_type, 1481 const struct btf_member *member, 1482 const char *fmt, ...) 1483 { 1484 struct bpf_verifier_log *log = &env->log; 1485 struct btf *btf = env->btf; 1486 va_list args; 1487 1488 if (!bpf_verifier_log_needed(log)) 1489 return; 1490 1491 if (log->level == BPF_LOG_KERNEL) { 1492 if (!fmt) 1493 return; 1494 1495 /* Skip logging when loading module BTF with mismatches permitted */ 1496 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1497 return; 1498 } 1499 1500 /* The CHECK_META phase already did a btf dump. 1501 * 1502 * If member is logged again, it must hit an error in 1503 * parsing this member. It is useful to print out which 1504 * struct this member belongs to. 1505 */ 1506 if (env->phase != CHECK_META) 1507 btf_verifier_log_type(env, struct_type, NULL); 1508 1509 if (btf_type_kflag(struct_type)) 1510 __btf_verifier_log(log, 1511 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1512 __btf_name_by_offset(btf, member->name_off), 1513 member->type, 1514 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1515 BTF_MEMBER_BIT_OFFSET(member->offset)); 1516 else 1517 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1518 __btf_name_by_offset(btf, member->name_off), 1519 member->type, member->offset); 1520 1521 if (fmt && *fmt) { 1522 __btf_verifier_log(log, " "); 1523 va_start(args, fmt); 1524 bpf_verifier_vlog(log, fmt, args); 1525 va_end(args); 1526 } 1527 1528 __btf_verifier_log(log, "\n"); 1529 } 1530 1531 __printf(4, 5) 1532 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1533 const struct btf_type *datasec_type, 1534 const struct btf_var_secinfo *vsi, 1535 const char *fmt, ...) 1536 { 1537 struct bpf_verifier_log *log = &env->log; 1538 va_list args; 1539 1540 if (!bpf_verifier_log_needed(log)) 1541 return; 1542 if (log->level == BPF_LOG_KERNEL && !fmt) 1543 return; 1544 if (env->phase != CHECK_META) 1545 btf_verifier_log_type(env, datasec_type, NULL); 1546 1547 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1548 vsi->type, vsi->offset, vsi->size); 1549 if (fmt && *fmt) { 1550 __btf_verifier_log(log, " "); 1551 va_start(args, fmt); 1552 bpf_verifier_vlog(log, fmt, args); 1553 va_end(args); 1554 } 1555 1556 __btf_verifier_log(log, "\n"); 1557 } 1558 1559 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1560 u32 btf_data_size) 1561 { 1562 struct bpf_verifier_log *log = &env->log; 1563 const struct btf *btf = env->btf; 1564 const struct btf_header *hdr; 1565 1566 if (!bpf_verifier_log_needed(log)) 1567 return; 1568 1569 if (log->level == BPF_LOG_KERNEL) 1570 return; 1571 hdr = &btf->hdr; 1572 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1573 __btf_verifier_log(log, "version: %u\n", hdr->version); 1574 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1575 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1576 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1577 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1578 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1579 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1580 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1581 } 1582 1583 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1584 { 1585 struct btf *btf = env->btf; 1586 1587 if (btf->types_size == btf->nr_types) { 1588 /* Expand 'types' array */ 1589 1590 struct btf_type **new_types; 1591 u32 expand_by, new_size; 1592 1593 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1594 btf_verifier_log(env, "Exceeded max num of types"); 1595 return -E2BIG; 1596 } 1597 1598 expand_by = max_t(u32, btf->types_size >> 2, 16); 1599 new_size = min_t(u32, BTF_MAX_TYPE, 1600 btf->types_size + expand_by); 1601 1602 new_types = kvcalloc(new_size, sizeof(*new_types), 1603 GFP_KERNEL | __GFP_NOWARN); 1604 if (!new_types) 1605 return -ENOMEM; 1606 1607 if (btf->nr_types == 0) { 1608 if (!btf->base_btf) { 1609 /* lazily init VOID type */ 1610 new_types[0] = &btf_void; 1611 btf->nr_types++; 1612 } 1613 } else { 1614 memcpy(new_types, btf->types, 1615 sizeof(*btf->types) * btf->nr_types); 1616 } 1617 1618 kvfree(btf->types); 1619 btf->types = new_types; 1620 btf->types_size = new_size; 1621 } 1622 1623 btf->types[btf->nr_types++] = t; 1624 1625 return 0; 1626 } 1627 1628 static int btf_alloc_id(struct btf *btf) 1629 { 1630 int id; 1631 1632 idr_preload(GFP_KERNEL); 1633 spin_lock_bh(&btf_idr_lock); 1634 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1635 if (id > 0) 1636 btf->id = id; 1637 spin_unlock_bh(&btf_idr_lock); 1638 idr_preload_end(); 1639 1640 if (WARN_ON_ONCE(!id)) 1641 return -ENOSPC; 1642 1643 return id > 0 ? 0 : id; 1644 } 1645 1646 static void btf_free_id(struct btf *btf) 1647 { 1648 unsigned long flags; 1649 1650 /* 1651 * In map-in-map, calling map_delete_elem() on outer 1652 * map will call bpf_map_put on the inner map. 1653 * It will then eventually call btf_free_id() 1654 * on the inner map. Some of the map_delete_elem() 1655 * implementation may have irq disabled, so 1656 * we need to use the _irqsave() version instead 1657 * of the _bh() version. 1658 */ 1659 spin_lock_irqsave(&btf_idr_lock, flags); 1660 idr_remove(&btf_idr, btf->id); 1661 spin_unlock_irqrestore(&btf_idr_lock, flags); 1662 } 1663 1664 static void btf_free_kfunc_set_tab(struct btf *btf) 1665 { 1666 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1667 int hook; 1668 1669 if (!tab) 1670 return; 1671 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1672 kfree(tab->sets[hook]); 1673 kfree(tab); 1674 btf->kfunc_set_tab = NULL; 1675 } 1676 1677 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1678 { 1679 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1680 1681 if (!tab) 1682 return; 1683 kfree(tab); 1684 btf->dtor_kfunc_tab = NULL; 1685 } 1686 1687 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1688 { 1689 int i; 1690 1691 if (!tab) 1692 return; 1693 for (i = 0; i < tab->cnt; i++) 1694 btf_record_free(tab->types[i].record); 1695 kfree(tab); 1696 } 1697 1698 static void btf_free_struct_meta_tab(struct btf *btf) 1699 { 1700 struct btf_struct_metas *tab = btf->struct_meta_tab; 1701 1702 btf_struct_metas_free(tab); 1703 btf->struct_meta_tab = NULL; 1704 } 1705 1706 static void btf_free_struct_ops_tab(struct btf *btf) 1707 { 1708 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1709 u32 i; 1710 1711 if (!tab) 1712 return; 1713 1714 for (i = 0; i < tab->cnt; i++) 1715 bpf_struct_ops_desc_release(&tab->ops[i]); 1716 1717 kfree(tab); 1718 btf->struct_ops_tab = NULL; 1719 } 1720 1721 static void btf_free(struct btf *btf) 1722 { 1723 btf_free_struct_meta_tab(btf); 1724 btf_free_dtor_kfunc_tab(btf); 1725 btf_free_kfunc_set_tab(btf); 1726 btf_free_struct_ops_tab(btf); 1727 kvfree(btf->types); 1728 kvfree(btf->resolved_sizes); 1729 kvfree(btf->resolved_ids); 1730 /* vmlinux does not allocate btf->data, it simply points it at 1731 * __start_BTF. 1732 */ 1733 if (!btf_is_vmlinux(btf)) 1734 kvfree(btf->data); 1735 kvfree(btf->base_id_map); 1736 kfree(btf); 1737 } 1738 1739 static void btf_free_rcu(struct rcu_head *rcu) 1740 { 1741 struct btf *btf = container_of(rcu, struct btf, rcu); 1742 1743 btf_free(btf); 1744 } 1745 1746 const char *btf_get_name(const struct btf *btf) 1747 { 1748 return btf->name; 1749 } 1750 1751 void btf_get(struct btf *btf) 1752 { 1753 refcount_inc(&btf->refcnt); 1754 } 1755 1756 void btf_put(struct btf *btf) 1757 { 1758 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1759 btf_free_id(btf); 1760 call_rcu(&btf->rcu, btf_free_rcu); 1761 } 1762 } 1763 1764 struct btf *btf_base_btf(const struct btf *btf) 1765 { 1766 return btf->base_btf; 1767 } 1768 1769 const struct btf_header *btf_header(const struct btf *btf) 1770 { 1771 return &btf->hdr; 1772 } 1773 1774 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1775 { 1776 btf->base_btf = (struct btf *)base_btf; 1777 btf->start_id = btf_nr_types(base_btf); 1778 btf->start_str_off = base_btf->hdr.str_len; 1779 } 1780 1781 static int env_resolve_init(struct btf_verifier_env *env) 1782 { 1783 struct btf *btf = env->btf; 1784 u32 nr_types = btf->nr_types; 1785 u32 *resolved_sizes = NULL; 1786 u32 *resolved_ids = NULL; 1787 u8 *visit_states = NULL; 1788 1789 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1790 GFP_KERNEL | __GFP_NOWARN); 1791 if (!resolved_sizes) 1792 goto nomem; 1793 1794 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1795 GFP_KERNEL | __GFP_NOWARN); 1796 if (!resolved_ids) 1797 goto nomem; 1798 1799 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1800 GFP_KERNEL | __GFP_NOWARN); 1801 if (!visit_states) 1802 goto nomem; 1803 1804 btf->resolved_sizes = resolved_sizes; 1805 btf->resolved_ids = resolved_ids; 1806 env->visit_states = visit_states; 1807 1808 return 0; 1809 1810 nomem: 1811 kvfree(resolved_sizes); 1812 kvfree(resolved_ids); 1813 kvfree(visit_states); 1814 return -ENOMEM; 1815 } 1816 1817 static void btf_verifier_env_free(struct btf_verifier_env *env) 1818 { 1819 kvfree(env->visit_states); 1820 kfree(env); 1821 } 1822 1823 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1824 const struct btf_type *next_type) 1825 { 1826 switch (env->resolve_mode) { 1827 case RESOLVE_TBD: 1828 /* int, enum or void is a sink */ 1829 return !btf_type_needs_resolve(next_type); 1830 case RESOLVE_PTR: 1831 /* int, enum, void, struct, array, func or func_proto is a sink 1832 * for ptr 1833 */ 1834 return !btf_type_is_modifier(next_type) && 1835 !btf_type_is_ptr(next_type); 1836 case RESOLVE_STRUCT_OR_ARRAY: 1837 /* int, enum, void, ptr, func or func_proto is a sink 1838 * for struct and array 1839 */ 1840 return !btf_type_is_modifier(next_type) && 1841 !btf_type_is_array(next_type) && 1842 !btf_type_is_struct(next_type); 1843 default: 1844 BUG(); 1845 } 1846 } 1847 1848 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1849 u32 type_id) 1850 { 1851 /* base BTF types should be resolved by now */ 1852 if (type_id < env->btf->start_id) 1853 return true; 1854 1855 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1856 } 1857 1858 static int env_stack_push(struct btf_verifier_env *env, 1859 const struct btf_type *t, u32 type_id) 1860 { 1861 const struct btf *btf = env->btf; 1862 struct resolve_vertex *v; 1863 1864 if (env->top_stack == MAX_RESOLVE_DEPTH) 1865 return -E2BIG; 1866 1867 if (type_id < btf->start_id 1868 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1869 return -EEXIST; 1870 1871 env->visit_states[type_id - btf->start_id] = VISITED; 1872 1873 v = &env->stack[env->top_stack++]; 1874 v->t = t; 1875 v->type_id = type_id; 1876 v->next_member = 0; 1877 1878 if (env->resolve_mode == RESOLVE_TBD) { 1879 if (btf_type_is_ptr(t)) 1880 env->resolve_mode = RESOLVE_PTR; 1881 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1882 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1883 } 1884 1885 return 0; 1886 } 1887 1888 static void env_stack_set_next_member(struct btf_verifier_env *env, 1889 u16 next_member) 1890 { 1891 env->stack[env->top_stack - 1].next_member = next_member; 1892 } 1893 1894 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1895 u32 resolved_type_id, 1896 u32 resolved_size) 1897 { 1898 u32 type_id = env->stack[--(env->top_stack)].type_id; 1899 struct btf *btf = env->btf; 1900 1901 type_id -= btf->start_id; /* adjust to local type id */ 1902 btf->resolved_sizes[type_id] = resolved_size; 1903 btf->resolved_ids[type_id] = resolved_type_id; 1904 env->visit_states[type_id] = RESOLVED; 1905 } 1906 1907 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1908 { 1909 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1910 } 1911 1912 /* Resolve the size of a passed-in "type" 1913 * 1914 * type: is an array (e.g. u32 array[x][y]) 1915 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1916 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1917 * corresponds to the return type. 1918 * *elem_type: u32 1919 * *elem_id: id of u32 1920 * *total_nelems: (x * y). Hence, individual elem size is 1921 * (*type_size / *total_nelems) 1922 * *type_id: id of type if it's changed within the function, 0 if not 1923 * 1924 * type: is not an array (e.g. const struct X) 1925 * return type: type "struct X" 1926 * *type_size: sizeof(struct X) 1927 * *elem_type: same as return type ("struct X") 1928 * *elem_id: 0 1929 * *total_nelems: 1 1930 * *type_id: id of type if it's changed within the function, 0 if not 1931 */ 1932 static const struct btf_type * 1933 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1934 u32 *type_size, const struct btf_type **elem_type, 1935 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1936 { 1937 const struct btf_type *array_type = NULL; 1938 const struct btf_array *array = NULL; 1939 u32 i, size, nelems = 1, id = 0; 1940 1941 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1942 switch (BTF_INFO_KIND(type->info)) { 1943 /* type->size can be used */ 1944 case BTF_KIND_INT: 1945 case BTF_KIND_STRUCT: 1946 case BTF_KIND_UNION: 1947 case BTF_KIND_ENUM: 1948 case BTF_KIND_FLOAT: 1949 case BTF_KIND_ENUM64: 1950 size = type->size; 1951 goto resolved; 1952 1953 case BTF_KIND_PTR: 1954 size = sizeof(void *); 1955 goto resolved; 1956 1957 /* Modifiers */ 1958 case BTF_KIND_TYPEDEF: 1959 case BTF_KIND_VOLATILE: 1960 case BTF_KIND_CONST: 1961 case BTF_KIND_RESTRICT: 1962 case BTF_KIND_TYPE_TAG: 1963 id = type->type; 1964 type = btf_type_by_id(btf, type->type); 1965 break; 1966 1967 case BTF_KIND_ARRAY: 1968 if (!array_type) 1969 array_type = type; 1970 array = btf_type_array(type); 1971 if (nelems && array->nelems > U32_MAX / nelems) 1972 return ERR_PTR(-EINVAL); 1973 nelems *= array->nelems; 1974 type = btf_type_by_id(btf, array->type); 1975 break; 1976 1977 /* type without size */ 1978 default: 1979 return ERR_PTR(-EINVAL); 1980 } 1981 } 1982 1983 return ERR_PTR(-EINVAL); 1984 1985 resolved: 1986 if (nelems && size > U32_MAX / nelems) 1987 return ERR_PTR(-EINVAL); 1988 1989 *type_size = nelems * size; 1990 if (total_nelems) 1991 *total_nelems = nelems; 1992 if (elem_type) 1993 *elem_type = type; 1994 if (elem_id) 1995 *elem_id = array ? array->type : 0; 1996 if (type_id && id) 1997 *type_id = id; 1998 1999 return array_type ? : type; 2000 } 2001 2002 const struct btf_type * 2003 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2004 u32 *type_size) 2005 { 2006 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2007 } 2008 2009 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2010 { 2011 while (type_id < btf->start_id) 2012 btf = btf->base_btf; 2013 2014 return btf->resolved_ids[type_id - btf->start_id]; 2015 } 2016 2017 /* The input param "type_id" must point to a needs_resolve type */ 2018 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2019 u32 *type_id) 2020 { 2021 *type_id = btf_resolved_type_id(btf, *type_id); 2022 return btf_type_by_id(btf, *type_id); 2023 } 2024 2025 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2026 { 2027 while (type_id < btf->start_id) 2028 btf = btf->base_btf; 2029 2030 return btf->resolved_sizes[type_id - btf->start_id]; 2031 } 2032 2033 const struct btf_type *btf_type_id_size(const struct btf *btf, 2034 u32 *type_id, u32 *ret_size) 2035 { 2036 const struct btf_type *size_type; 2037 u32 size_type_id = *type_id; 2038 u32 size = 0; 2039 2040 size_type = btf_type_by_id(btf, size_type_id); 2041 if (btf_type_nosize_or_null(size_type)) 2042 return NULL; 2043 2044 if (btf_type_has_size(size_type)) { 2045 size = size_type->size; 2046 } else if (btf_type_is_array(size_type)) { 2047 size = btf_resolved_type_size(btf, size_type_id); 2048 } else if (btf_type_is_ptr(size_type)) { 2049 size = sizeof(void *); 2050 } else { 2051 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2052 !btf_type_is_var(size_type))) 2053 return NULL; 2054 2055 size_type_id = btf_resolved_type_id(btf, size_type_id); 2056 size_type = btf_type_by_id(btf, size_type_id); 2057 if (btf_type_nosize_or_null(size_type)) 2058 return NULL; 2059 else if (btf_type_has_size(size_type)) 2060 size = size_type->size; 2061 else if (btf_type_is_array(size_type)) 2062 size = btf_resolved_type_size(btf, size_type_id); 2063 else if (btf_type_is_ptr(size_type)) 2064 size = sizeof(void *); 2065 else 2066 return NULL; 2067 } 2068 2069 *type_id = size_type_id; 2070 if (ret_size) 2071 *ret_size = size; 2072 2073 return size_type; 2074 } 2075 2076 static int btf_df_check_member(struct btf_verifier_env *env, 2077 const struct btf_type *struct_type, 2078 const struct btf_member *member, 2079 const struct btf_type *member_type) 2080 { 2081 btf_verifier_log_basic(env, struct_type, 2082 "Unsupported check_member"); 2083 return -EINVAL; 2084 } 2085 2086 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2087 const struct btf_type *struct_type, 2088 const struct btf_member *member, 2089 const struct btf_type *member_type) 2090 { 2091 btf_verifier_log_basic(env, struct_type, 2092 "Unsupported check_kflag_member"); 2093 return -EINVAL; 2094 } 2095 2096 /* Used for ptr, array struct/union and float type members. 2097 * int, enum and modifier types have their specific callback functions. 2098 */ 2099 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2100 const struct btf_type *struct_type, 2101 const struct btf_member *member, 2102 const struct btf_type *member_type) 2103 { 2104 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2105 btf_verifier_log_member(env, struct_type, member, 2106 "Invalid member bitfield_size"); 2107 return -EINVAL; 2108 } 2109 2110 /* bitfield size is 0, so member->offset represents bit offset only. 2111 * It is safe to call non kflag check_member variants. 2112 */ 2113 return btf_type_ops(member_type)->check_member(env, struct_type, 2114 member, 2115 member_type); 2116 } 2117 2118 static int btf_df_resolve(struct btf_verifier_env *env, 2119 const struct resolve_vertex *v) 2120 { 2121 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2122 return -EINVAL; 2123 } 2124 2125 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2126 u32 type_id, void *data, u8 bits_offsets, 2127 struct btf_show *show) 2128 { 2129 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2130 } 2131 2132 static int btf_int_check_member(struct btf_verifier_env *env, 2133 const struct btf_type *struct_type, 2134 const struct btf_member *member, 2135 const struct btf_type *member_type) 2136 { 2137 u32 int_data = btf_type_int(member_type); 2138 u32 struct_bits_off = member->offset; 2139 u32 struct_size = struct_type->size; 2140 u32 nr_copy_bits; 2141 u32 bytes_offset; 2142 2143 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2144 btf_verifier_log_member(env, struct_type, member, 2145 "bits_offset exceeds U32_MAX"); 2146 return -EINVAL; 2147 } 2148 2149 struct_bits_off += BTF_INT_OFFSET(int_data); 2150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2151 nr_copy_bits = BTF_INT_BITS(int_data) + 2152 BITS_PER_BYTE_MASKED(struct_bits_off); 2153 2154 if (nr_copy_bits > BITS_PER_U128) { 2155 btf_verifier_log_member(env, struct_type, member, 2156 "nr_copy_bits exceeds 128"); 2157 return -EINVAL; 2158 } 2159 2160 if (struct_size < bytes_offset || 2161 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2162 btf_verifier_log_member(env, struct_type, member, 2163 "Member exceeds struct_size"); 2164 return -EINVAL; 2165 } 2166 2167 return 0; 2168 } 2169 2170 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2171 const struct btf_type *struct_type, 2172 const struct btf_member *member, 2173 const struct btf_type *member_type) 2174 { 2175 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2176 u32 int_data = btf_type_int(member_type); 2177 u32 struct_size = struct_type->size; 2178 u32 nr_copy_bits; 2179 2180 /* a regular int type is required for the kflag int member */ 2181 if (!btf_type_int_is_regular(member_type)) { 2182 btf_verifier_log_member(env, struct_type, member, 2183 "Invalid member base type"); 2184 return -EINVAL; 2185 } 2186 2187 /* check sanity of bitfield size */ 2188 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2189 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2190 nr_int_data_bits = BTF_INT_BITS(int_data); 2191 if (!nr_bits) { 2192 /* Not a bitfield member, member offset must be at byte 2193 * boundary. 2194 */ 2195 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2196 btf_verifier_log_member(env, struct_type, member, 2197 "Invalid member offset"); 2198 return -EINVAL; 2199 } 2200 2201 nr_bits = nr_int_data_bits; 2202 } else if (nr_bits > nr_int_data_bits) { 2203 btf_verifier_log_member(env, struct_type, member, 2204 "Invalid member bitfield_size"); 2205 return -EINVAL; 2206 } 2207 2208 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2209 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2210 if (nr_copy_bits > BITS_PER_U128) { 2211 btf_verifier_log_member(env, struct_type, member, 2212 "nr_copy_bits exceeds 128"); 2213 return -EINVAL; 2214 } 2215 2216 if (struct_size < bytes_offset || 2217 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2218 btf_verifier_log_member(env, struct_type, member, 2219 "Member exceeds struct_size"); 2220 return -EINVAL; 2221 } 2222 2223 return 0; 2224 } 2225 2226 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2227 const struct btf_type *t, 2228 u32 meta_left) 2229 { 2230 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2231 u16 encoding; 2232 2233 if (meta_left < meta_needed) { 2234 btf_verifier_log_basic(env, t, 2235 "meta_left:%u meta_needed:%u", 2236 meta_left, meta_needed); 2237 return -EINVAL; 2238 } 2239 2240 if (btf_type_vlen(t)) { 2241 btf_verifier_log_type(env, t, "vlen != 0"); 2242 return -EINVAL; 2243 } 2244 2245 if (btf_type_kflag(t)) { 2246 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2247 return -EINVAL; 2248 } 2249 2250 int_data = btf_type_int(t); 2251 if (int_data & ~BTF_INT_MASK) { 2252 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2253 int_data); 2254 return -EINVAL; 2255 } 2256 2257 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2258 2259 if (nr_bits > BITS_PER_U128) { 2260 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2261 BITS_PER_U128); 2262 return -EINVAL; 2263 } 2264 2265 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2266 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2267 return -EINVAL; 2268 } 2269 2270 /* 2271 * Only one of the encoding bits is allowed and it 2272 * should be sufficient for the pretty print purpose (i.e. decoding). 2273 * Multiple bits can be allowed later if it is found 2274 * to be insufficient. 2275 */ 2276 encoding = BTF_INT_ENCODING(int_data); 2277 if (encoding && 2278 encoding != BTF_INT_SIGNED && 2279 encoding != BTF_INT_CHAR && 2280 encoding != BTF_INT_BOOL) { 2281 btf_verifier_log_type(env, t, "Unsupported encoding"); 2282 return -ENOTSUPP; 2283 } 2284 2285 btf_verifier_log_type(env, t, NULL); 2286 2287 return meta_needed; 2288 } 2289 2290 static void btf_int_log(struct btf_verifier_env *env, 2291 const struct btf_type *t) 2292 { 2293 int int_data = btf_type_int(t); 2294 2295 btf_verifier_log(env, 2296 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2297 t->size, BTF_INT_OFFSET(int_data), 2298 BTF_INT_BITS(int_data), 2299 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2300 } 2301 2302 static void btf_int128_print(struct btf_show *show, void *data) 2303 { 2304 /* data points to a __int128 number. 2305 * Suppose 2306 * int128_num = *(__int128 *)data; 2307 * The below formulas shows what upper_num and lower_num represents: 2308 * upper_num = int128_num >> 64; 2309 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2310 */ 2311 u64 upper_num, lower_num; 2312 2313 #ifdef __BIG_ENDIAN_BITFIELD 2314 upper_num = *(u64 *)data; 2315 lower_num = *(u64 *)(data + 8); 2316 #else 2317 upper_num = *(u64 *)(data + 8); 2318 lower_num = *(u64 *)data; 2319 #endif 2320 if (upper_num == 0) 2321 btf_show_type_value(show, "0x%llx", lower_num); 2322 else 2323 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2324 lower_num); 2325 } 2326 2327 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2328 u16 right_shift_bits) 2329 { 2330 u64 upper_num, lower_num; 2331 2332 #ifdef __BIG_ENDIAN_BITFIELD 2333 upper_num = print_num[0]; 2334 lower_num = print_num[1]; 2335 #else 2336 upper_num = print_num[1]; 2337 lower_num = print_num[0]; 2338 #endif 2339 2340 /* shake out un-needed bits by shift/or operations */ 2341 if (left_shift_bits >= 64) { 2342 upper_num = lower_num << (left_shift_bits - 64); 2343 lower_num = 0; 2344 } else { 2345 upper_num = (upper_num << left_shift_bits) | 2346 (lower_num >> (64 - left_shift_bits)); 2347 lower_num = lower_num << left_shift_bits; 2348 } 2349 2350 if (right_shift_bits >= 64) { 2351 lower_num = upper_num >> (right_shift_bits - 64); 2352 upper_num = 0; 2353 } else { 2354 lower_num = (lower_num >> right_shift_bits) | 2355 (upper_num << (64 - right_shift_bits)); 2356 upper_num = upper_num >> right_shift_bits; 2357 } 2358 2359 #ifdef __BIG_ENDIAN_BITFIELD 2360 print_num[0] = upper_num; 2361 print_num[1] = lower_num; 2362 #else 2363 print_num[0] = lower_num; 2364 print_num[1] = upper_num; 2365 #endif 2366 } 2367 2368 static void btf_bitfield_show(void *data, u8 bits_offset, 2369 u8 nr_bits, struct btf_show *show) 2370 { 2371 u16 left_shift_bits, right_shift_bits; 2372 u8 nr_copy_bytes; 2373 u8 nr_copy_bits; 2374 u64 print_num[2] = {}; 2375 2376 nr_copy_bits = nr_bits + bits_offset; 2377 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2378 2379 memcpy(print_num, data, nr_copy_bytes); 2380 2381 #ifdef __BIG_ENDIAN_BITFIELD 2382 left_shift_bits = bits_offset; 2383 #else 2384 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2385 #endif 2386 right_shift_bits = BITS_PER_U128 - nr_bits; 2387 2388 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2389 btf_int128_print(show, print_num); 2390 } 2391 2392 2393 static void btf_int_bits_show(const struct btf *btf, 2394 const struct btf_type *t, 2395 void *data, u8 bits_offset, 2396 struct btf_show *show) 2397 { 2398 u32 int_data = btf_type_int(t); 2399 u8 nr_bits = BTF_INT_BITS(int_data); 2400 u8 total_bits_offset; 2401 2402 /* 2403 * bits_offset is at most 7. 2404 * BTF_INT_OFFSET() cannot exceed 128 bits. 2405 */ 2406 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2407 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2408 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2409 btf_bitfield_show(data, bits_offset, nr_bits, show); 2410 } 2411 2412 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2413 u32 type_id, void *data, u8 bits_offset, 2414 struct btf_show *show) 2415 { 2416 u32 int_data = btf_type_int(t); 2417 u8 encoding = BTF_INT_ENCODING(int_data); 2418 bool sign = encoding & BTF_INT_SIGNED; 2419 u8 nr_bits = BTF_INT_BITS(int_data); 2420 void *safe_data; 2421 2422 safe_data = btf_show_start_type(show, t, type_id, data); 2423 if (!safe_data) 2424 return; 2425 2426 if (bits_offset || BTF_INT_OFFSET(int_data) || 2427 BITS_PER_BYTE_MASKED(nr_bits)) { 2428 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2429 goto out; 2430 } 2431 2432 switch (nr_bits) { 2433 case 128: 2434 btf_int128_print(show, safe_data); 2435 break; 2436 case 64: 2437 if (sign) 2438 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2439 else 2440 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2441 break; 2442 case 32: 2443 if (sign) 2444 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2445 else 2446 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2447 break; 2448 case 16: 2449 if (sign) 2450 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2451 else 2452 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2453 break; 2454 case 8: 2455 if (show->state.array_encoding == BTF_INT_CHAR) { 2456 /* check for null terminator */ 2457 if (show->state.array_terminated) 2458 break; 2459 if (*(char *)data == '\0') { 2460 show->state.array_terminated = 1; 2461 break; 2462 } 2463 if (isprint(*(char *)data)) { 2464 btf_show_type_value(show, "'%c'", 2465 *(char *)safe_data); 2466 break; 2467 } 2468 } 2469 if (sign) 2470 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2471 else 2472 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2473 break; 2474 default: 2475 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2476 break; 2477 } 2478 out: 2479 btf_show_end_type(show); 2480 } 2481 2482 static const struct btf_kind_operations int_ops = { 2483 .check_meta = btf_int_check_meta, 2484 .resolve = btf_df_resolve, 2485 .check_member = btf_int_check_member, 2486 .check_kflag_member = btf_int_check_kflag_member, 2487 .log_details = btf_int_log, 2488 .show = btf_int_show, 2489 }; 2490 2491 static int btf_modifier_check_member(struct btf_verifier_env *env, 2492 const struct btf_type *struct_type, 2493 const struct btf_member *member, 2494 const struct btf_type *member_type) 2495 { 2496 const struct btf_type *resolved_type; 2497 u32 resolved_type_id = member->type; 2498 struct btf_member resolved_member; 2499 struct btf *btf = env->btf; 2500 2501 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2502 if (!resolved_type) { 2503 btf_verifier_log_member(env, struct_type, member, 2504 "Invalid member"); 2505 return -EINVAL; 2506 } 2507 2508 resolved_member = *member; 2509 resolved_member.type = resolved_type_id; 2510 2511 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2512 &resolved_member, 2513 resolved_type); 2514 } 2515 2516 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2517 const struct btf_type *struct_type, 2518 const struct btf_member *member, 2519 const struct btf_type *member_type) 2520 { 2521 const struct btf_type *resolved_type; 2522 u32 resolved_type_id = member->type; 2523 struct btf_member resolved_member; 2524 struct btf *btf = env->btf; 2525 2526 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2527 if (!resolved_type) { 2528 btf_verifier_log_member(env, struct_type, member, 2529 "Invalid member"); 2530 return -EINVAL; 2531 } 2532 2533 resolved_member = *member; 2534 resolved_member.type = resolved_type_id; 2535 2536 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2537 &resolved_member, 2538 resolved_type); 2539 } 2540 2541 static int btf_ptr_check_member(struct btf_verifier_env *env, 2542 const struct btf_type *struct_type, 2543 const struct btf_member *member, 2544 const struct btf_type *member_type) 2545 { 2546 u32 struct_size, struct_bits_off, bytes_offset; 2547 2548 struct_size = struct_type->size; 2549 struct_bits_off = member->offset; 2550 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2551 2552 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2553 btf_verifier_log_member(env, struct_type, member, 2554 "Member is not byte aligned"); 2555 return -EINVAL; 2556 } 2557 2558 if (struct_size - bytes_offset < sizeof(void *)) { 2559 btf_verifier_log_member(env, struct_type, member, 2560 "Member exceeds struct_size"); 2561 return -EINVAL; 2562 } 2563 2564 return 0; 2565 } 2566 2567 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2568 const struct btf_type *t, 2569 u32 meta_left) 2570 { 2571 const char *value; 2572 2573 if (btf_type_vlen(t)) { 2574 btf_verifier_log_type(env, t, "vlen != 0"); 2575 return -EINVAL; 2576 } 2577 2578 if (btf_type_kflag(t)) { 2579 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2580 return -EINVAL; 2581 } 2582 2583 if (!BTF_TYPE_ID_VALID(t->type)) { 2584 btf_verifier_log_type(env, t, "Invalid type_id"); 2585 return -EINVAL; 2586 } 2587 2588 /* typedef/type_tag type must have a valid name, and other ref types, 2589 * volatile, const, restrict, should have a null name. 2590 */ 2591 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2592 if (!t->name_off || 2593 !btf_name_valid_identifier(env->btf, t->name_off)) { 2594 btf_verifier_log_type(env, t, "Invalid name"); 2595 return -EINVAL; 2596 } 2597 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2598 value = btf_name_by_offset(env->btf, t->name_off); 2599 if (!value || !value[0]) { 2600 btf_verifier_log_type(env, t, "Invalid name"); 2601 return -EINVAL; 2602 } 2603 } else { 2604 if (t->name_off) { 2605 btf_verifier_log_type(env, t, "Invalid name"); 2606 return -EINVAL; 2607 } 2608 } 2609 2610 btf_verifier_log_type(env, t, NULL); 2611 2612 return 0; 2613 } 2614 2615 static int btf_modifier_resolve(struct btf_verifier_env *env, 2616 const struct resolve_vertex *v) 2617 { 2618 const struct btf_type *t = v->t; 2619 const struct btf_type *next_type; 2620 u32 next_type_id = t->type; 2621 struct btf *btf = env->btf; 2622 2623 next_type = btf_type_by_id(btf, next_type_id); 2624 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2625 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2626 return -EINVAL; 2627 } 2628 2629 if (!env_type_is_resolve_sink(env, next_type) && 2630 !env_type_is_resolved(env, next_type_id)) 2631 return env_stack_push(env, next_type, next_type_id); 2632 2633 /* Figure out the resolved next_type_id with size. 2634 * They will be stored in the current modifier's 2635 * resolved_ids and resolved_sizes such that it can 2636 * save us a few type-following when we use it later (e.g. in 2637 * pretty print). 2638 */ 2639 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2640 if (env_type_is_resolved(env, next_type_id)) 2641 next_type = btf_type_id_resolve(btf, &next_type_id); 2642 2643 /* "typedef void new_void", "const void"...etc */ 2644 if (!btf_type_is_void(next_type) && 2645 !btf_type_is_fwd(next_type) && 2646 !btf_type_is_func_proto(next_type)) { 2647 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2648 return -EINVAL; 2649 } 2650 } 2651 2652 env_stack_pop_resolved(env, next_type_id, 0); 2653 2654 return 0; 2655 } 2656 2657 static int btf_var_resolve(struct btf_verifier_env *env, 2658 const struct resolve_vertex *v) 2659 { 2660 const struct btf_type *next_type; 2661 const struct btf_type *t = v->t; 2662 u32 next_type_id = t->type; 2663 struct btf *btf = env->btf; 2664 2665 next_type = btf_type_by_id(btf, next_type_id); 2666 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2667 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2668 return -EINVAL; 2669 } 2670 2671 if (!env_type_is_resolve_sink(env, next_type) && 2672 !env_type_is_resolved(env, next_type_id)) 2673 return env_stack_push(env, next_type, next_type_id); 2674 2675 if (btf_type_is_modifier(next_type)) { 2676 const struct btf_type *resolved_type; 2677 u32 resolved_type_id; 2678 2679 resolved_type_id = next_type_id; 2680 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2681 2682 if (btf_type_is_ptr(resolved_type) && 2683 !env_type_is_resolve_sink(env, resolved_type) && 2684 !env_type_is_resolved(env, resolved_type_id)) 2685 return env_stack_push(env, resolved_type, 2686 resolved_type_id); 2687 } 2688 2689 /* We must resolve to something concrete at this point, no 2690 * forward types or similar that would resolve to size of 2691 * zero is allowed. 2692 */ 2693 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2694 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2695 return -EINVAL; 2696 } 2697 2698 env_stack_pop_resolved(env, next_type_id, 0); 2699 2700 return 0; 2701 } 2702 2703 static int btf_ptr_resolve(struct btf_verifier_env *env, 2704 const struct resolve_vertex *v) 2705 { 2706 const struct btf_type *next_type; 2707 const struct btf_type *t = v->t; 2708 u32 next_type_id = t->type; 2709 struct btf *btf = env->btf; 2710 2711 next_type = btf_type_by_id(btf, next_type_id); 2712 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2713 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2714 return -EINVAL; 2715 } 2716 2717 if (!env_type_is_resolve_sink(env, next_type) && 2718 !env_type_is_resolved(env, next_type_id)) 2719 return env_stack_push(env, next_type, next_type_id); 2720 2721 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2722 * the modifier may have stopped resolving when it was resolved 2723 * to a ptr (last-resolved-ptr). 2724 * 2725 * We now need to continue from the last-resolved-ptr to 2726 * ensure the last-resolved-ptr will not referring back to 2727 * the current ptr (t). 2728 */ 2729 if (btf_type_is_modifier(next_type)) { 2730 const struct btf_type *resolved_type; 2731 u32 resolved_type_id; 2732 2733 resolved_type_id = next_type_id; 2734 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2735 2736 if (btf_type_is_ptr(resolved_type) && 2737 !env_type_is_resolve_sink(env, resolved_type) && 2738 !env_type_is_resolved(env, resolved_type_id)) 2739 return env_stack_push(env, resolved_type, 2740 resolved_type_id); 2741 } 2742 2743 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2744 if (env_type_is_resolved(env, next_type_id)) 2745 next_type = btf_type_id_resolve(btf, &next_type_id); 2746 2747 if (!btf_type_is_void(next_type) && 2748 !btf_type_is_fwd(next_type) && 2749 !btf_type_is_func_proto(next_type)) { 2750 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2751 return -EINVAL; 2752 } 2753 } 2754 2755 env_stack_pop_resolved(env, next_type_id, 0); 2756 2757 return 0; 2758 } 2759 2760 static void btf_modifier_show(const struct btf *btf, 2761 const struct btf_type *t, 2762 u32 type_id, void *data, 2763 u8 bits_offset, struct btf_show *show) 2764 { 2765 if (btf->resolved_ids) 2766 t = btf_type_id_resolve(btf, &type_id); 2767 else 2768 t = btf_type_skip_modifiers(btf, type_id, NULL); 2769 2770 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2771 } 2772 2773 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2774 u32 type_id, void *data, u8 bits_offset, 2775 struct btf_show *show) 2776 { 2777 t = btf_type_id_resolve(btf, &type_id); 2778 2779 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2780 } 2781 2782 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2783 u32 type_id, void *data, u8 bits_offset, 2784 struct btf_show *show) 2785 { 2786 void *safe_data; 2787 2788 safe_data = btf_show_start_type(show, t, type_id, data); 2789 if (!safe_data) 2790 return; 2791 2792 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2793 if (show->flags & BTF_SHOW_PTR_RAW) 2794 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2795 else 2796 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2797 btf_show_end_type(show); 2798 } 2799 2800 static void btf_ref_type_log(struct btf_verifier_env *env, 2801 const struct btf_type *t) 2802 { 2803 btf_verifier_log(env, "type_id=%u", t->type); 2804 } 2805 2806 static const struct btf_kind_operations modifier_ops = { 2807 .check_meta = btf_ref_type_check_meta, 2808 .resolve = btf_modifier_resolve, 2809 .check_member = btf_modifier_check_member, 2810 .check_kflag_member = btf_modifier_check_kflag_member, 2811 .log_details = btf_ref_type_log, 2812 .show = btf_modifier_show, 2813 }; 2814 2815 static const struct btf_kind_operations ptr_ops = { 2816 .check_meta = btf_ref_type_check_meta, 2817 .resolve = btf_ptr_resolve, 2818 .check_member = btf_ptr_check_member, 2819 .check_kflag_member = btf_generic_check_kflag_member, 2820 .log_details = btf_ref_type_log, 2821 .show = btf_ptr_show, 2822 }; 2823 2824 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2825 const struct btf_type *t, 2826 u32 meta_left) 2827 { 2828 if (btf_type_vlen(t)) { 2829 btf_verifier_log_type(env, t, "vlen != 0"); 2830 return -EINVAL; 2831 } 2832 2833 if (t->type) { 2834 btf_verifier_log_type(env, t, "type != 0"); 2835 return -EINVAL; 2836 } 2837 2838 /* fwd type must have a valid name */ 2839 if (!t->name_off || 2840 !btf_name_valid_identifier(env->btf, t->name_off)) { 2841 btf_verifier_log_type(env, t, "Invalid name"); 2842 return -EINVAL; 2843 } 2844 2845 btf_verifier_log_type(env, t, NULL); 2846 2847 return 0; 2848 } 2849 2850 static void btf_fwd_type_log(struct btf_verifier_env *env, 2851 const struct btf_type *t) 2852 { 2853 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2854 } 2855 2856 static const struct btf_kind_operations fwd_ops = { 2857 .check_meta = btf_fwd_check_meta, 2858 .resolve = btf_df_resolve, 2859 .check_member = btf_df_check_member, 2860 .check_kflag_member = btf_df_check_kflag_member, 2861 .log_details = btf_fwd_type_log, 2862 .show = btf_df_show, 2863 }; 2864 2865 static int btf_array_check_member(struct btf_verifier_env *env, 2866 const struct btf_type *struct_type, 2867 const struct btf_member *member, 2868 const struct btf_type *member_type) 2869 { 2870 u32 struct_bits_off = member->offset; 2871 u32 struct_size, bytes_offset; 2872 u32 array_type_id, array_size; 2873 struct btf *btf = env->btf; 2874 2875 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2876 btf_verifier_log_member(env, struct_type, member, 2877 "Member is not byte aligned"); 2878 return -EINVAL; 2879 } 2880 2881 array_type_id = member->type; 2882 btf_type_id_size(btf, &array_type_id, &array_size); 2883 struct_size = struct_type->size; 2884 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2885 if (struct_size - bytes_offset < array_size) { 2886 btf_verifier_log_member(env, struct_type, member, 2887 "Member exceeds struct_size"); 2888 return -EINVAL; 2889 } 2890 2891 return 0; 2892 } 2893 2894 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2895 const struct btf_type *t, 2896 u32 meta_left) 2897 { 2898 const struct btf_array *array = btf_type_array(t); 2899 u32 meta_needed = sizeof(*array); 2900 2901 if (meta_left < meta_needed) { 2902 btf_verifier_log_basic(env, t, 2903 "meta_left:%u meta_needed:%u", 2904 meta_left, meta_needed); 2905 return -EINVAL; 2906 } 2907 2908 /* array type should not have a name */ 2909 if (t->name_off) { 2910 btf_verifier_log_type(env, t, "Invalid name"); 2911 return -EINVAL; 2912 } 2913 2914 if (btf_type_vlen(t)) { 2915 btf_verifier_log_type(env, t, "vlen != 0"); 2916 return -EINVAL; 2917 } 2918 2919 if (btf_type_kflag(t)) { 2920 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2921 return -EINVAL; 2922 } 2923 2924 if (t->size) { 2925 btf_verifier_log_type(env, t, "size != 0"); 2926 return -EINVAL; 2927 } 2928 2929 /* Array elem type and index type cannot be in type void, 2930 * so !array->type and !array->index_type are not allowed. 2931 */ 2932 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2933 btf_verifier_log_type(env, t, "Invalid elem"); 2934 return -EINVAL; 2935 } 2936 2937 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2938 btf_verifier_log_type(env, t, "Invalid index"); 2939 return -EINVAL; 2940 } 2941 2942 btf_verifier_log_type(env, t, NULL); 2943 2944 return meta_needed; 2945 } 2946 2947 static int btf_array_resolve(struct btf_verifier_env *env, 2948 const struct resolve_vertex *v) 2949 { 2950 const struct btf_array *array = btf_type_array(v->t); 2951 const struct btf_type *elem_type, *index_type; 2952 u32 elem_type_id, index_type_id; 2953 struct btf *btf = env->btf; 2954 u32 elem_size; 2955 2956 /* Check array->index_type */ 2957 index_type_id = array->index_type; 2958 index_type = btf_type_by_id(btf, index_type_id); 2959 if (btf_type_nosize_or_null(index_type) || 2960 btf_type_is_resolve_source_only(index_type)) { 2961 btf_verifier_log_type(env, v->t, "Invalid index"); 2962 return -EINVAL; 2963 } 2964 2965 if (!env_type_is_resolve_sink(env, index_type) && 2966 !env_type_is_resolved(env, index_type_id)) 2967 return env_stack_push(env, index_type, index_type_id); 2968 2969 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2970 if (!index_type || !btf_type_is_int(index_type) || 2971 !btf_type_int_is_regular(index_type)) { 2972 btf_verifier_log_type(env, v->t, "Invalid index"); 2973 return -EINVAL; 2974 } 2975 2976 /* Check array->type */ 2977 elem_type_id = array->type; 2978 elem_type = btf_type_by_id(btf, elem_type_id); 2979 if (btf_type_nosize_or_null(elem_type) || 2980 btf_type_is_resolve_source_only(elem_type)) { 2981 btf_verifier_log_type(env, v->t, 2982 "Invalid elem"); 2983 return -EINVAL; 2984 } 2985 2986 if (!env_type_is_resolve_sink(env, elem_type) && 2987 !env_type_is_resolved(env, elem_type_id)) 2988 return env_stack_push(env, elem_type, elem_type_id); 2989 2990 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2991 if (!elem_type) { 2992 btf_verifier_log_type(env, v->t, "Invalid elem"); 2993 return -EINVAL; 2994 } 2995 2996 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2997 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2998 return -EINVAL; 2999 } 3000 3001 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3002 btf_verifier_log_type(env, v->t, 3003 "Array size overflows U32_MAX"); 3004 return -EINVAL; 3005 } 3006 3007 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3008 3009 return 0; 3010 } 3011 3012 static void btf_array_log(struct btf_verifier_env *env, 3013 const struct btf_type *t) 3014 { 3015 const struct btf_array *array = btf_type_array(t); 3016 3017 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3018 array->type, array->index_type, array->nelems); 3019 } 3020 3021 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3022 u32 type_id, void *data, u8 bits_offset, 3023 struct btf_show *show) 3024 { 3025 const struct btf_array *array = btf_type_array(t); 3026 const struct btf_kind_operations *elem_ops; 3027 const struct btf_type *elem_type; 3028 u32 i, elem_size = 0, elem_type_id; 3029 u16 encoding = 0; 3030 3031 elem_type_id = array->type; 3032 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3033 if (elem_type && btf_type_has_size(elem_type)) 3034 elem_size = elem_type->size; 3035 3036 if (elem_type && btf_type_is_int(elem_type)) { 3037 u32 int_type = btf_type_int(elem_type); 3038 3039 encoding = BTF_INT_ENCODING(int_type); 3040 3041 /* 3042 * BTF_INT_CHAR encoding never seems to be set for 3043 * char arrays, so if size is 1 and element is 3044 * printable as a char, we'll do that. 3045 */ 3046 if (elem_size == 1) 3047 encoding = BTF_INT_CHAR; 3048 } 3049 3050 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3051 return; 3052 3053 if (!elem_type) 3054 goto out; 3055 elem_ops = btf_type_ops(elem_type); 3056 3057 for (i = 0; i < array->nelems; i++) { 3058 3059 btf_show_start_array_member(show); 3060 3061 elem_ops->show(btf, elem_type, elem_type_id, data, 3062 bits_offset, show); 3063 data += elem_size; 3064 3065 btf_show_end_array_member(show); 3066 3067 if (show->state.array_terminated) 3068 break; 3069 } 3070 out: 3071 btf_show_end_array_type(show); 3072 } 3073 3074 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3075 u32 type_id, void *data, u8 bits_offset, 3076 struct btf_show *show) 3077 { 3078 const struct btf_member *m = show->state.member; 3079 3080 /* 3081 * First check if any members would be shown (are non-zero). 3082 * See comments above "struct btf_show" definition for more 3083 * details on how this works at a high-level. 3084 */ 3085 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3086 if (!show->state.depth_check) { 3087 show->state.depth_check = show->state.depth + 1; 3088 show->state.depth_to_show = 0; 3089 } 3090 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3091 show->state.member = m; 3092 3093 if (show->state.depth_check != show->state.depth + 1) 3094 return; 3095 show->state.depth_check = 0; 3096 3097 if (show->state.depth_to_show <= show->state.depth) 3098 return; 3099 /* 3100 * Reaching here indicates we have recursed and found 3101 * non-zero array member(s). 3102 */ 3103 } 3104 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3105 } 3106 3107 static const struct btf_kind_operations array_ops = { 3108 .check_meta = btf_array_check_meta, 3109 .resolve = btf_array_resolve, 3110 .check_member = btf_array_check_member, 3111 .check_kflag_member = btf_generic_check_kflag_member, 3112 .log_details = btf_array_log, 3113 .show = btf_array_show, 3114 }; 3115 3116 static int btf_struct_check_member(struct btf_verifier_env *env, 3117 const struct btf_type *struct_type, 3118 const struct btf_member *member, 3119 const struct btf_type *member_type) 3120 { 3121 u32 struct_bits_off = member->offset; 3122 u32 struct_size, bytes_offset; 3123 3124 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3125 btf_verifier_log_member(env, struct_type, member, 3126 "Member is not byte aligned"); 3127 return -EINVAL; 3128 } 3129 3130 struct_size = struct_type->size; 3131 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3132 if (struct_size - bytes_offset < member_type->size) { 3133 btf_verifier_log_member(env, struct_type, member, 3134 "Member exceeds struct_size"); 3135 return -EINVAL; 3136 } 3137 3138 return 0; 3139 } 3140 3141 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3142 const struct btf_type *t, 3143 u32 meta_left) 3144 { 3145 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3146 const struct btf_member *member; 3147 u32 meta_needed, last_offset; 3148 struct btf *btf = env->btf; 3149 u32 struct_size = t->size; 3150 u32 offset; 3151 u16 i; 3152 3153 meta_needed = btf_type_vlen(t) * sizeof(*member); 3154 if (meta_left < meta_needed) { 3155 btf_verifier_log_basic(env, t, 3156 "meta_left:%u meta_needed:%u", 3157 meta_left, meta_needed); 3158 return -EINVAL; 3159 } 3160 3161 /* struct type either no name or a valid one */ 3162 if (t->name_off && 3163 !btf_name_valid_identifier(env->btf, t->name_off)) { 3164 btf_verifier_log_type(env, t, "Invalid name"); 3165 return -EINVAL; 3166 } 3167 3168 btf_verifier_log_type(env, t, NULL); 3169 3170 last_offset = 0; 3171 for_each_member(i, t, member) { 3172 if (!btf_name_offset_valid(btf, member->name_off)) { 3173 btf_verifier_log_member(env, t, member, 3174 "Invalid member name_offset:%u", 3175 member->name_off); 3176 return -EINVAL; 3177 } 3178 3179 /* struct member either no name or a valid one */ 3180 if (member->name_off && 3181 !btf_name_valid_identifier(btf, member->name_off)) { 3182 btf_verifier_log_member(env, t, member, "Invalid name"); 3183 return -EINVAL; 3184 } 3185 /* A member cannot be in type void */ 3186 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3187 btf_verifier_log_member(env, t, member, 3188 "Invalid type_id"); 3189 return -EINVAL; 3190 } 3191 3192 offset = __btf_member_bit_offset(t, member); 3193 if (is_union && offset) { 3194 btf_verifier_log_member(env, t, member, 3195 "Invalid member bits_offset"); 3196 return -EINVAL; 3197 } 3198 3199 /* 3200 * ">" instead of ">=" because the last member could be 3201 * "char a[0];" 3202 */ 3203 if (last_offset > offset) { 3204 btf_verifier_log_member(env, t, member, 3205 "Invalid member bits_offset"); 3206 return -EINVAL; 3207 } 3208 3209 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3210 btf_verifier_log_member(env, t, member, 3211 "Member bits_offset exceeds its struct size"); 3212 return -EINVAL; 3213 } 3214 3215 btf_verifier_log_member(env, t, member, NULL); 3216 last_offset = offset; 3217 } 3218 3219 return meta_needed; 3220 } 3221 3222 static int btf_struct_resolve(struct btf_verifier_env *env, 3223 const struct resolve_vertex *v) 3224 { 3225 const struct btf_member *member; 3226 int err; 3227 u16 i; 3228 3229 /* Before continue resolving the next_member, 3230 * ensure the last member is indeed resolved to a 3231 * type with size info. 3232 */ 3233 if (v->next_member) { 3234 const struct btf_type *last_member_type; 3235 const struct btf_member *last_member; 3236 u32 last_member_type_id; 3237 3238 last_member = btf_type_member(v->t) + v->next_member - 1; 3239 last_member_type_id = last_member->type; 3240 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3241 last_member_type_id))) 3242 return -EINVAL; 3243 3244 last_member_type = btf_type_by_id(env->btf, 3245 last_member_type_id); 3246 if (btf_type_kflag(v->t)) 3247 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3248 last_member, 3249 last_member_type); 3250 else 3251 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3252 last_member, 3253 last_member_type); 3254 if (err) 3255 return err; 3256 } 3257 3258 for_each_member_from(i, v->next_member, v->t, member) { 3259 u32 member_type_id = member->type; 3260 const struct btf_type *member_type = btf_type_by_id(env->btf, 3261 member_type_id); 3262 3263 if (btf_type_nosize_or_null(member_type) || 3264 btf_type_is_resolve_source_only(member_type)) { 3265 btf_verifier_log_member(env, v->t, member, 3266 "Invalid member"); 3267 return -EINVAL; 3268 } 3269 3270 if (!env_type_is_resolve_sink(env, member_type) && 3271 !env_type_is_resolved(env, member_type_id)) { 3272 env_stack_set_next_member(env, i + 1); 3273 return env_stack_push(env, member_type, member_type_id); 3274 } 3275 3276 if (btf_type_kflag(v->t)) 3277 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3278 member, 3279 member_type); 3280 else 3281 err = btf_type_ops(member_type)->check_member(env, v->t, 3282 member, 3283 member_type); 3284 if (err) 3285 return err; 3286 } 3287 3288 env_stack_pop_resolved(env, 0, 0); 3289 3290 return 0; 3291 } 3292 3293 static void btf_struct_log(struct btf_verifier_env *env, 3294 const struct btf_type *t) 3295 { 3296 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3297 } 3298 3299 enum { 3300 BTF_FIELD_IGNORE = 0, 3301 BTF_FIELD_FOUND = 1, 3302 }; 3303 3304 struct btf_field_info { 3305 enum btf_field_type type; 3306 u32 off; 3307 union { 3308 struct { 3309 u32 type_id; 3310 } kptr; 3311 struct { 3312 const char *node_name; 3313 u32 value_btf_id; 3314 } graph_root; 3315 }; 3316 }; 3317 3318 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3319 u32 off, int sz, enum btf_field_type field_type, 3320 struct btf_field_info *info) 3321 { 3322 if (!__btf_type_is_struct(t)) 3323 return BTF_FIELD_IGNORE; 3324 if (t->size != sz) 3325 return BTF_FIELD_IGNORE; 3326 info->type = field_type; 3327 info->off = off; 3328 return BTF_FIELD_FOUND; 3329 } 3330 3331 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3332 u32 off, int sz, struct btf_field_info *info, u32 field_mask) 3333 { 3334 enum btf_field_type type; 3335 u32 res_id; 3336 3337 /* Permit modifiers on the pointer itself */ 3338 if (btf_type_is_volatile(t)) 3339 t = btf_type_by_id(btf, t->type); 3340 /* For PTR, sz is always == 8 */ 3341 if (!btf_type_is_ptr(t)) 3342 return BTF_FIELD_IGNORE; 3343 t = btf_type_by_id(btf, t->type); 3344 3345 if (!btf_type_is_type_tag(t)) 3346 return BTF_FIELD_IGNORE; 3347 /* Reject extra tags */ 3348 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3349 return -EINVAL; 3350 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3351 type = BPF_KPTR_UNREF; 3352 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3353 type = BPF_KPTR_REF; 3354 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3355 type = BPF_KPTR_PERCPU; 3356 else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off))) 3357 type = BPF_UPTR; 3358 else 3359 return -EINVAL; 3360 3361 if (!(type & field_mask)) 3362 return BTF_FIELD_IGNORE; 3363 3364 /* Get the base type */ 3365 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3366 /* Only pointer to struct is allowed */ 3367 if (!__btf_type_is_struct(t)) 3368 return -EINVAL; 3369 3370 info->type = type; 3371 info->off = off; 3372 info->kptr.type_id = res_id; 3373 return BTF_FIELD_FOUND; 3374 } 3375 3376 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3377 int comp_idx, const char *tag_key, int last_id) 3378 { 3379 int len = strlen(tag_key); 3380 int i, n; 3381 3382 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3383 const struct btf_type *t = btf_type_by_id(btf, i); 3384 3385 if (!btf_type_is_decl_tag(t)) 3386 continue; 3387 if (pt != btf_type_by_id(btf, t->type)) 3388 continue; 3389 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3390 continue; 3391 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3392 continue; 3393 return i; 3394 } 3395 return -ENOENT; 3396 } 3397 3398 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3399 int comp_idx, const char *tag_key) 3400 { 3401 const char *value = NULL; 3402 const struct btf_type *t; 3403 int len, id; 3404 3405 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3406 if (id < 0) 3407 return ERR_PTR(id); 3408 3409 t = btf_type_by_id(btf, id); 3410 len = strlen(tag_key); 3411 value = __btf_name_by_offset(btf, t->name_off) + len; 3412 3413 /* Prevent duplicate entries for same type */ 3414 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3415 if (id >= 0) 3416 return ERR_PTR(-EEXIST); 3417 3418 return value; 3419 } 3420 3421 static int 3422 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3423 const struct btf_type *t, int comp_idx, u32 off, 3424 int sz, struct btf_field_info *info, 3425 enum btf_field_type head_type) 3426 { 3427 const char *node_field_name; 3428 const char *value_type; 3429 s32 id; 3430 3431 if (!__btf_type_is_struct(t)) 3432 return BTF_FIELD_IGNORE; 3433 if (t->size != sz) 3434 return BTF_FIELD_IGNORE; 3435 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3436 if (IS_ERR(value_type)) 3437 return -EINVAL; 3438 node_field_name = strstr(value_type, ":"); 3439 if (!node_field_name) 3440 return -EINVAL; 3441 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3442 if (!value_type) 3443 return -ENOMEM; 3444 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3445 kfree(value_type); 3446 if (id < 0) 3447 return id; 3448 node_field_name++; 3449 if (str_is_empty(node_field_name)) 3450 return -EINVAL; 3451 info->type = head_type; 3452 info->off = off; 3453 info->graph_root.value_btf_id = id; 3454 info->graph_root.node_name = node_field_name; 3455 return BTF_FIELD_FOUND; 3456 } 3457 3458 #define field_mask_test_name(field_type, field_type_str) \ 3459 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3460 type = field_type; \ 3461 goto end; \ 3462 } 3463 3464 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3465 u32 field_mask, u32 *seen_mask, 3466 int *align, int *sz) 3467 { 3468 int type = 0; 3469 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3470 3471 if (field_mask & BPF_SPIN_LOCK) { 3472 if (!strcmp(name, "bpf_spin_lock")) { 3473 if (*seen_mask & BPF_SPIN_LOCK) 3474 return -E2BIG; 3475 *seen_mask |= BPF_SPIN_LOCK; 3476 type = BPF_SPIN_LOCK; 3477 goto end; 3478 } 3479 } 3480 if (field_mask & BPF_TIMER) { 3481 if (!strcmp(name, "bpf_timer")) { 3482 if (*seen_mask & BPF_TIMER) 3483 return -E2BIG; 3484 *seen_mask |= BPF_TIMER; 3485 type = BPF_TIMER; 3486 goto end; 3487 } 3488 } 3489 if (field_mask & BPF_WORKQUEUE) { 3490 if (!strcmp(name, "bpf_wq")) { 3491 if (*seen_mask & BPF_WORKQUEUE) 3492 return -E2BIG; 3493 *seen_mask |= BPF_WORKQUEUE; 3494 type = BPF_WORKQUEUE; 3495 goto end; 3496 } 3497 } 3498 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3499 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3500 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3501 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3502 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3503 3504 /* Only return BPF_KPTR when all other types with matchable names fail */ 3505 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { 3506 type = BPF_KPTR_REF; 3507 goto end; 3508 } 3509 return 0; 3510 end: 3511 *sz = btf_field_type_size(type); 3512 *align = btf_field_type_align(type); 3513 return type; 3514 } 3515 3516 #undef field_mask_test_name 3517 3518 /* Repeat a number of fields for a specified number of times. 3519 * 3520 * Copy the fields starting from the first field and repeat them for 3521 * repeat_cnt times. The fields are repeated by adding the offset of each 3522 * field with 3523 * (i + 1) * elem_size 3524 * where i is the repeat index and elem_size is the size of an element. 3525 */ 3526 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3527 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3528 { 3529 u32 i, j; 3530 u32 cur; 3531 3532 /* Ensure not repeating fields that should not be repeated. */ 3533 for (i = 0; i < field_cnt; i++) { 3534 switch (info[i].type) { 3535 case BPF_KPTR_UNREF: 3536 case BPF_KPTR_REF: 3537 case BPF_KPTR_PERCPU: 3538 case BPF_UPTR: 3539 case BPF_LIST_HEAD: 3540 case BPF_RB_ROOT: 3541 break; 3542 default: 3543 return -EINVAL; 3544 } 3545 } 3546 3547 /* The type of struct size or variable size is u32, 3548 * so the multiplication will not overflow. 3549 */ 3550 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3551 return -E2BIG; 3552 3553 cur = field_cnt; 3554 for (i = 0; i < repeat_cnt; i++) { 3555 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3556 for (j = 0; j < field_cnt; j++) 3557 info[cur++].off += (i + 1) * elem_size; 3558 } 3559 3560 return 0; 3561 } 3562 3563 static int btf_find_struct_field(const struct btf *btf, 3564 const struct btf_type *t, u32 field_mask, 3565 struct btf_field_info *info, int info_cnt, 3566 u32 level); 3567 3568 /* Find special fields in the struct type of a field. 3569 * 3570 * This function is used to find fields of special types that is not a 3571 * global variable or a direct field of a struct type. It also handles the 3572 * repetition if it is the element type of an array. 3573 */ 3574 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3575 u32 off, u32 nelems, 3576 u32 field_mask, struct btf_field_info *info, 3577 int info_cnt, u32 level) 3578 { 3579 int ret, err, i; 3580 3581 level++; 3582 if (level >= MAX_RESOLVE_DEPTH) 3583 return -E2BIG; 3584 3585 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3586 3587 if (ret <= 0) 3588 return ret; 3589 3590 /* Shift the offsets of the nested struct fields to the offsets 3591 * related to the container. 3592 */ 3593 for (i = 0; i < ret; i++) 3594 info[i].off += off; 3595 3596 if (nelems > 1) { 3597 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3598 if (err == 0) 3599 ret *= nelems; 3600 else 3601 ret = err; 3602 } 3603 3604 return ret; 3605 } 3606 3607 static int btf_find_field_one(const struct btf *btf, 3608 const struct btf_type *var, 3609 const struct btf_type *var_type, 3610 int var_idx, 3611 u32 off, u32 expected_size, 3612 u32 field_mask, u32 *seen_mask, 3613 struct btf_field_info *info, int info_cnt, 3614 u32 level) 3615 { 3616 int ret, align, sz, field_type; 3617 struct btf_field_info tmp; 3618 const struct btf_array *array; 3619 u32 i, nelems = 1; 3620 3621 /* Walk into array types to find the element type and the number of 3622 * elements in the (flattened) array. 3623 */ 3624 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3625 array = btf_array(var_type); 3626 nelems *= array->nelems; 3627 var_type = btf_type_by_id(btf, array->type); 3628 } 3629 if (i == MAX_RESOLVE_DEPTH) 3630 return -E2BIG; 3631 if (nelems == 0) 3632 return 0; 3633 3634 field_type = btf_get_field_type(btf, var_type, 3635 field_mask, seen_mask, &align, &sz); 3636 /* Look into variables of struct types */ 3637 if (!field_type && __btf_type_is_struct(var_type)) { 3638 sz = var_type->size; 3639 if (expected_size && expected_size != sz * nelems) 3640 return 0; 3641 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3642 &info[0], info_cnt, level); 3643 return ret; 3644 } 3645 3646 if (field_type == 0) 3647 return 0; 3648 if (field_type < 0) 3649 return field_type; 3650 3651 if (expected_size && expected_size != sz * nelems) 3652 return 0; 3653 if (off % align) 3654 return 0; 3655 3656 switch (field_type) { 3657 case BPF_SPIN_LOCK: 3658 case BPF_TIMER: 3659 case BPF_WORKQUEUE: 3660 case BPF_LIST_NODE: 3661 case BPF_RB_NODE: 3662 case BPF_REFCOUNT: 3663 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3664 info_cnt ? &info[0] : &tmp); 3665 if (ret < 0) 3666 return ret; 3667 break; 3668 case BPF_KPTR_UNREF: 3669 case BPF_KPTR_REF: 3670 case BPF_KPTR_PERCPU: 3671 case BPF_UPTR: 3672 ret = btf_find_kptr(btf, var_type, off, sz, 3673 info_cnt ? &info[0] : &tmp, field_mask); 3674 if (ret < 0) 3675 return ret; 3676 break; 3677 case BPF_LIST_HEAD: 3678 case BPF_RB_ROOT: 3679 ret = btf_find_graph_root(btf, var, var_type, 3680 var_idx, off, sz, 3681 info_cnt ? &info[0] : &tmp, 3682 field_type); 3683 if (ret < 0) 3684 return ret; 3685 break; 3686 default: 3687 return -EFAULT; 3688 } 3689 3690 if (ret == BTF_FIELD_IGNORE) 3691 return 0; 3692 if (!info_cnt) 3693 return -E2BIG; 3694 if (nelems > 1) { 3695 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3696 if (ret < 0) 3697 return ret; 3698 } 3699 return nelems; 3700 } 3701 3702 static int btf_find_struct_field(const struct btf *btf, 3703 const struct btf_type *t, u32 field_mask, 3704 struct btf_field_info *info, int info_cnt, 3705 u32 level) 3706 { 3707 int ret, idx = 0; 3708 const struct btf_member *member; 3709 u32 i, off, seen_mask = 0; 3710 3711 for_each_member(i, t, member) { 3712 const struct btf_type *member_type = btf_type_by_id(btf, 3713 member->type); 3714 3715 off = __btf_member_bit_offset(t, member); 3716 if (off % 8) 3717 /* valid C code cannot generate such BTF */ 3718 return -EINVAL; 3719 off /= 8; 3720 3721 ret = btf_find_field_one(btf, t, member_type, i, 3722 off, 0, 3723 field_mask, &seen_mask, 3724 &info[idx], info_cnt - idx, level); 3725 if (ret < 0) 3726 return ret; 3727 idx += ret; 3728 } 3729 return idx; 3730 } 3731 3732 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3733 u32 field_mask, struct btf_field_info *info, 3734 int info_cnt, u32 level) 3735 { 3736 int ret, idx = 0; 3737 const struct btf_var_secinfo *vsi; 3738 u32 i, off, seen_mask = 0; 3739 3740 for_each_vsi(i, t, vsi) { 3741 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3742 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3743 3744 off = vsi->offset; 3745 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3746 field_mask, &seen_mask, 3747 &info[idx], info_cnt - idx, 3748 level); 3749 if (ret < 0) 3750 return ret; 3751 idx += ret; 3752 } 3753 return idx; 3754 } 3755 3756 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3757 u32 field_mask, struct btf_field_info *info, 3758 int info_cnt) 3759 { 3760 if (__btf_type_is_struct(t)) 3761 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3762 else if (btf_type_is_datasec(t)) 3763 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3764 return -EINVAL; 3765 } 3766 3767 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3768 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3769 struct btf_field_info *info) 3770 { 3771 struct module *mod = NULL; 3772 const struct btf_type *t; 3773 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3774 * is that BTF, otherwise it's program BTF 3775 */ 3776 struct btf *kptr_btf; 3777 int ret; 3778 s32 id; 3779 3780 /* Find type in map BTF, and use it to look up the matching type 3781 * in vmlinux or module BTFs, by name and kind. 3782 */ 3783 t = btf_type_by_id(btf, info->kptr.type_id); 3784 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3785 &kptr_btf); 3786 if (id == -ENOENT) { 3787 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3788 WARN_ON_ONCE(btf_is_kernel(btf)); 3789 3790 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3791 * kptr allocated via bpf_obj_new 3792 */ 3793 field->kptr.dtor = NULL; 3794 id = info->kptr.type_id; 3795 kptr_btf = (struct btf *)btf; 3796 goto found_dtor; 3797 } 3798 if (id < 0) 3799 return id; 3800 3801 /* Find and stash the function pointer for the destruction function that 3802 * needs to be eventually invoked from the map free path. 3803 */ 3804 if (info->type == BPF_KPTR_REF) { 3805 const struct btf_type *dtor_func; 3806 const char *dtor_func_name; 3807 unsigned long addr; 3808 s32 dtor_btf_id; 3809 3810 /* This call also serves as a whitelist of allowed objects that 3811 * can be used as a referenced pointer and be stored in a map at 3812 * the same time. 3813 */ 3814 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3815 if (dtor_btf_id < 0) { 3816 ret = dtor_btf_id; 3817 goto end_btf; 3818 } 3819 3820 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3821 if (!dtor_func) { 3822 ret = -ENOENT; 3823 goto end_btf; 3824 } 3825 3826 if (btf_is_module(kptr_btf)) { 3827 mod = btf_try_get_module(kptr_btf); 3828 if (!mod) { 3829 ret = -ENXIO; 3830 goto end_btf; 3831 } 3832 } 3833 3834 /* We already verified dtor_func to be btf_type_is_func 3835 * in register_btf_id_dtor_kfuncs. 3836 */ 3837 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3838 addr = kallsyms_lookup_name(dtor_func_name); 3839 if (!addr) { 3840 ret = -EINVAL; 3841 goto end_mod; 3842 } 3843 field->kptr.dtor = (void *)addr; 3844 } 3845 3846 found_dtor: 3847 field->kptr.btf_id = id; 3848 field->kptr.btf = kptr_btf; 3849 field->kptr.module = mod; 3850 return 0; 3851 end_mod: 3852 module_put(mod); 3853 end_btf: 3854 btf_put(kptr_btf); 3855 return ret; 3856 } 3857 3858 static int btf_parse_graph_root(const struct btf *btf, 3859 struct btf_field *field, 3860 struct btf_field_info *info, 3861 const char *node_type_name, 3862 size_t node_type_align) 3863 { 3864 const struct btf_type *t, *n = NULL; 3865 const struct btf_member *member; 3866 u32 offset; 3867 int i; 3868 3869 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3870 /* We've already checked that value_btf_id is a struct type. We 3871 * just need to figure out the offset of the list_node, and 3872 * verify its type. 3873 */ 3874 for_each_member(i, t, member) { 3875 if (strcmp(info->graph_root.node_name, 3876 __btf_name_by_offset(btf, member->name_off))) 3877 continue; 3878 /* Invalid BTF, two members with same name */ 3879 if (n) 3880 return -EINVAL; 3881 n = btf_type_by_id(btf, member->type); 3882 if (!__btf_type_is_struct(n)) 3883 return -EINVAL; 3884 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3885 return -EINVAL; 3886 offset = __btf_member_bit_offset(n, member); 3887 if (offset % 8) 3888 return -EINVAL; 3889 offset /= 8; 3890 if (offset % node_type_align) 3891 return -EINVAL; 3892 3893 field->graph_root.btf = (struct btf *)btf; 3894 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3895 field->graph_root.node_offset = offset; 3896 } 3897 if (!n) 3898 return -ENOENT; 3899 return 0; 3900 } 3901 3902 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3903 struct btf_field_info *info) 3904 { 3905 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3906 __alignof__(struct bpf_list_node)); 3907 } 3908 3909 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3910 struct btf_field_info *info) 3911 { 3912 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3913 __alignof__(struct bpf_rb_node)); 3914 } 3915 3916 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3917 { 3918 const struct btf_field *a = (const struct btf_field *)_a; 3919 const struct btf_field *b = (const struct btf_field *)_b; 3920 3921 if (a->offset < b->offset) 3922 return -1; 3923 else if (a->offset > b->offset) 3924 return 1; 3925 return 0; 3926 } 3927 3928 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3929 u32 field_mask, u32 value_size) 3930 { 3931 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3932 u32 next_off = 0, field_type_size; 3933 struct btf_record *rec; 3934 int ret, i, cnt; 3935 3936 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3937 if (ret < 0) 3938 return ERR_PTR(ret); 3939 if (!ret) 3940 return NULL; 3941 3942 cnt = ret; 3943 /* This needs to be kzalloc to zero out padding and unused fields, see 3944 * comment in btf_record_equal. 3945 */ 3946 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3947 if (!rec) 3948 return ERR_PTR(-ENOMEM); 3949 3950 rec->spin_lock_off = -EINVAL; 3951 rec->timer_off = -EINVAL; 3952 rec->wq_off = -EINVAL; 3953 rec->refcount_off = -EINVAL; 3954 for (i = 0; i < cnt; i++) { 3955 field_type_size = btf_field_type_size(info_arr[i].type); 3956 if (info_arr[i].off + field_type_size > value_size) { 3957 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3958 ret = -EFAULT; 3959 goto end; 3960 } 3961 if (info_arr[i].off < next_off) { 3962 ret = -EEXIST; 3963 goto end; 3964 } 3965 next_off = info_arr[i].off + field_type_size; 3966 3967 rec->field_mask |= info_arr[i].type; 3968 rec->fields[i].offset = info_arr[i].off; 3969 rec->fields[i].type = info_arr[i].type; 3970 rec->fields[i].size = field_type_size; 3971 3972 switch (info_arr[i].type) { 3973 case BPF_SPIN_LOCK: 3974 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3975 /* Cache offset for faster lookup at runtime */ 3976 rec->spin_lock_off = rec->fields[i].offset; 3977 break; 3978 case BPF_TIMER: 3979 WARN_ON_ONCE(rec->timer_off >= 0); 3980 /* Cache offset for faster lookup at runtime */ 3981 rec->timer_off = rec->fields[i].offset; 3982 break; 3983 case BPF_WORKQUEUE: 3984 WARN_ON_ONCE(rec->wq_off >= 0); 3985 /* Cache offset for faster lookup at runtime */ 3986 rec->wq_off = rec->fields[i].offset; 3987 break; 3988 case BPF_REFCOUNT: 3989 WARN_ON_ONCE(rec->refcount_off >= 0); 3990 /* Cache offset for faster lookup at runtime */ 3991 rec->refcount_off = rec->fields[i].offset; 3992 break; 3993 case BPF_KPTR_UNREF: 3994 case BPF_KPTR_REF: 3995 case BPF_KPTR_PERCPU: 3996 case BPF_UPTR: 3997 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3998 if (ret < 0) 3999 goto end; 4000 break; 4001 case BPF_LIST_HEAD: 4002 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4003 if (ret < 0) 4004 goto end; 4005 break; 4006 case BPF_RB_ROOT: 4007 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4008 if (ret < 0) 4009 goto end; 4010 break; 4011 case BPF_LIST_NODE: 4012 case BPF_RB_NODE: 4013 break; 4014 default: 4015 ret = -EFAULT; 4016 goto end; 4017 } 4018 rec->cnt++; 4019 } 4020 4021 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4022 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4023 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 4024 ret = -EINVAL; 4025 goto end; 4026 } 4027 4028 if (rec->refcount_off < 0 && 4029 btf_record_has_field(rec, BPF_LIST_NODE) && 4030 btf_record_has_field(rec, BPF_RB_NODE)) { 4031 ret = -EINVAL; 4032 goto end; 4033 } 4034 4035 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4036 NULL, rec); 4037 4038 return rec; 4039 end: 4040 btf_record_free(rec); 4041 return ERR_PTR(ret); 4042 } 4043 4044 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4045 { 4046 int i; 4047 4048 /* There are three types that signify ownership of some other type: 4049 * kptr_ref, bpf_list_head, bpf_rb_root. 4050 * kptr_ref only supports storing kernel types, which can't store 4051 * references to program allocated local types. 4052 * 4053 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4054 * does not form cycles. 4055 */ 4056 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) 4057 return 0; 4058 for (i = 0; i < rec->cnt; i++) { 4059 struct btf_struct_meta *meta; 4060 const struct btf_type *t; 4061 u32 btf_id; 4062 4063 if (rec->fields[i].type == BPF_UPTR) { 4064 /* The uptr only supports pinning one page and cannot 4065 * point to a kernel struct 4066 */ 4067 if (btf_is_kernel(rec->fields[i].kptr.btf)) 4068 return -EINVAL; 4069 t = btf_type_by_id(rec->fields[i].kptr.btf, 4070 rec->fields[i].kptr.btf_id); 4071 if (!t->size) 4072 return -EINVAL; 4073 if (t->size > PAGE_SIZE) 4074 return -E2BIG; 4075 continue; 4076 } 4077 4078 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4079 continue; 4080 btf_id = rec->fields[i].graph_root.value_btf_id; 4081 meta = btf_find_struct_meta(btf, btf_id); 4082 if (!meta) 4083 return -EFAULT; 4084 rec->fields[i].graph_root.value_rec = meta->record; 4085 4086 /* We need to set value_rec for all root types, but no need 4087 * to check ownership cycle for a type unless it's also a 4088 * node type. 4089 */ 4090 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4091 continue; 4092 4093 /* We need to ensure ownership acyclicity among all types. The 4094 * proper way to do it would be to topologically sort all BTF 4095 * IDs based on the ownership edges, since there can be multiple 4096 * bpf_{list_head,rb_node} in a type. Instead, we use the 4097 * following resaoning: 4098 * 4099 * - A type can only be owned by another type in user BTF if it 4100 * has a bpf_{list,rb}_node. Let's call these node types. 4101 * - A type can only _own_ another type in user BTF if it has a 4102 * bpf_{list_head,rb_root}. Let's call these root types. 4103 * 4104 * We ensure that if a type is both a root and node, its 4105 * element types cannot be root types. 4106 * 4107 * To ensure acyclicity: 4108 * 4109 * When A is an root type but not a node, its ownership 4110 * chain can be: 4111 * A -> B -> C 4112 * Where: 4113 * - A is an root, e.g. has bpf_rb_root. 4114 * - B is both a root and node, e.g. has bpf_rb_node and 4115 * bpf_list_head. 4116 * - C is only an root, e.g. has bpf_list_node 4117 * 4118 * When A is both a root and node, some other type already 4119 * owns it in the BTF domain, hence it can not own 4120 * another root type through any of the ownership edges. 4121 * A -> B 4122 * Where: 4123 * - A is both an root and node. 4124 * - B is only an node. 4125 */ 4126 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4127 return -ELOOP; 4128 } 4129 return 0; 4130 } 4131 4132 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4133 u32 type_id, void *data, u8 bits_offset, 4134 struct btf_show *show) 4135 { 4136 const struct btf_member *member; 4137 void *safe_data; 4138 u32 i; 4139 4140 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4141 if (!safe_data) 4142 return; 4143 4144 for_each_member(i, t, member) { 4145 const struct btf_type *member_type = btf_type_by_id(btf, 4146 member->type); 4147 const struct btf_kind_operations *ops; 4148 u32 member_offset, bitfield_size; 4149 u32 bytes_offset; 4150 u8 bits8_offset; 4151 4152 btf_show_start_member(show, member); 4153 4154 member_offset = __btf_member_bit_offset(t, member); 4155 bitfield_size = __btf_member_bitfield_size(t, member); 4156 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4157 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4158 if (bitfield_size) { 4159 safe_data = btf_show_start_type(show, member_type, 4160 member->type, 4161 data + bytes_offset); 4162 if (safe_data) 4163 btf_bitfield_show(safe_data, 4164 bits8_offset, 4165 bitfield_size, show); 4166 btf_show_end_type(show); 4167 } else { 4168 ops = btf_type_ops(member_type); 4169 ops->show(btf, member_type, member->type, 4170 data + bytes_offset, bits8_offset, show); 4171 } 4172 4173 btf_show_end_member(show); 4174 } 4175 4176 btf_show_end_struct_type(show); 4177 } 4178 4179 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4180 u32 type_id, void *data, u8 bits_offset, 4181 struct btf_show *show) 4182 { 4183 const struct btf_member *m = show->state.member; 4184 4185 /* 4186 * First check if any members would be shown (are non-zero). 4187 * See comments above "struct btf_show" definition for more 4188 * details on how this works at a high-level. 4189 */ 4190 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4191 if (!show->state.depth_check) { 4192 show->state.depth_check = show->state.depth + 1; 4193 show->state.depth_to_show = 0; 4194 } 4195 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4196 /* Restore saved member data here */ 4197 show->state.member = m; 4198 if (show->state.depth_check != show->state.depth + 1) 4199 return; 4200 show->state.depth_check = 0; 4201 4202 if (show->state.depth_to_show <= show->state.depth) 4203 return; 4204 /* 4205 * Reaching here indicates we have recursed and found 4206 * non-zero child values. 4207 */ 4208 } 4209 4210 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4211 } 4212 4213 static const struct btf_kind_operations struct_ops = { 4214 .check_meta = btf_struct_check_meta, 4215 .resolve = btf_struct_resolve, 4216 .check_member = btf_struct_check_member, 4217 .check_kflag_member = btf_generic_check_kflag_member, 4218 .log_details = btf_struct_log, 4219 .show = btf_struct_show, 4220 }; 4221 4222 static int btf_enum_check_member(struct btf_verifier_env *env, 4223 const struct btf_type *struct_type, 4224 const struct btf_member *member, 4225 const struct btf_type *member_type) 4226 { 4227 u32 struct_bits_off = member->offset; 4228 u32 struct_size, bytes_offset; 4229 4230 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4231 btf_verifier_log_member(env, struct_type, member, 4232 "Member is not byte aligned"); 4233 return -EINVAL; 4234 } 4235 4236 struct_size = struct_type->size; 4237 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4238 if (struct_size - bytes_offset < member_type->size) { 4239 btf_verifier_log_member(env, struct_type, member, 4240 "Member exceeds struct_size"); 4241 return -EINVAL; 4242 } 4243 4244 return 0; 4245 } 4246 4247 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4248 const struct btf_type *struct_type, 4249 const struct btf_member *member, 4250 const struct btf_type *member_type) 4251 { 4252 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4253 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4254 4255 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4256 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4257 if (!nr_bits) { 4258 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4259 btf_verifier_log_member(env, struct_type, member, 4260 "Member is not byte aligned"); 4261 return -EINVAL; 4262 } 4263 4264 nr_bits = int_bitsize; 4265 } else if (nr_bits > int_bitsize) { 4266 btf_verifier_log_member(env, struct_type, member, 4267 "Invalid member bitfield_size"); 4268 return -EINVAL; 4269 } 4270 4271 struct_size = struct_type->size; 4272 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4273 if (struct_size < bytes_end) { 4274 btf_verifier_log_member(env, struct_type, member, 4275 "Member exceeds struct_size"); 4276 return -EINVAL; 4277 } 4278 4279 return 0; 4280 } 4281 4282 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4283 const struct btf_type *t, 4284 u32 meta_left) 4285 { 4286 const struct btf_enum *enums = btf_type_enum(t); 4287 struct btf *btf = env->btf; 4288 const char *fmt_str; 4289 u16 i, nr_enums; 4290 u32 meta_needed; 4291 4292 nr_enums = btf_type_vlen(t); 4293 meta_needed = nr_enums * sizeof(*enums); 4294 4295 if (meta_left < meta_needed) { 4296 btf_verifier_log_basic(env, t, 4297 "meta_left:%u meta_needed:%u", 4298 meta_left, meta_needed); 4299 return -EINVAL; 4300 } 4301 4302 if (t->size > 8 || !is_power_of_2(t->size)) { 4303 btf_verifier_log_type(env, t, "Unexpected size"); 4304 return -EINVAL; 4305 } 4306 4307 /* enum type either no name or a valid one */ 4308 if (t->name_off && 4309 !btf_name_valid_identifier(env->btf, t->name_off)) { 4310 btf_verifier_log_type(env, t, "Invalid name"); 4311 return -EINVAL; 4312 } 4313 4314 btf_verifier_log_type(env, t, NULL); 4315 4316 for (i = 0; i < nr_enums; i++) { 4317 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4318 btf_verifier_log(env, "\tInvalid name_offset:%u", 4319 enums[i].name_off); 4320 return -EINVAL; 4321 } 4322 4323 /* enum member must have a valid name */ 4324 if (!enums[i].name_off || 4325 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4326 btf_verifier_log_type(env, t, "Invalid name"); 4327 return -EINVAL; 4328 } 4329 4330 if (env->log.level == BPF_LOG_KERNEL) 4331 continue; 4332 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4333 btf_verifier_log(env, fmt_str, 4334 __btf_name_by_offset(btf, enums[i].name_off), 4335 enums[i].val); 4336 } 4337 4338 return meta_needed; 4339 } 4340 4341 static void btf_enum_log(struct btf_verifier_env *env, 4342 const struct btf_type *t) 4343 { 4344 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4345 } 4346 4347 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4348 u32 type_id, void *data, u8 bits_offset, 4349 struct btf_show *show) 4350 { 4351 const struct btf_enum *enums = btf_type_enum(t); 4352 u32 i, nr_enums = btf_type_vlen(t); 4353 void *safe_data; 4354 int v; 4355 4356 safe_data = btf_show_start_type(show, t, type_id, data); 4357 if (!safe_data) 4358 return; 4359 4360 v = *(int *)safe_data; 4361 4362 for (i = 0; i < nr_enums; i++) { 4363 if (v != enums[i].val) 4364 continue; 4365 4366 btf_show_type_value(show, "%s", 4367 __btf_name_by_offset(btf, 4368 enums[i].name_off)); 4369 4370 btf_show_end_type(show); 4371 return; 4372 } 4373 4374 if (btf_type_kflag(t)) 4375 btf_show_type_value(show, "%d", v); 4376 else 4377 btf_show_type_value(show, "%u", v); 4378 btf_show_end_type(show); 4379 } 4380 4381 static const struct btf_kind_operations enum_ops = { 4382 .check_meta = btf_enum_check_meta, 4383 .resolve = btf_df_resolve, 4384 .check_member = btf_enum_check_member, 4385 .check_kflag_member = btf_enum_check_kflag_member, 4386 .log_details = btf_enum_log, 4387 .show = btf_enum_show, 4388 }; 4389 4390 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4391 const struct btf_type *t, 4392 u32 meta_left) 4393 { 4394 const struct btf_enum64 *enums = btf_type_enum64(t); 4395 struct btf *btf = env->btf; 4396 const char *fmt_str; 4397 u16 i, nr_enums; 4398 u32 meta_needed; 4399 4400 nr_enums = btf_type_vlen(t); 4401 meta_needed = nr_enums * sizeof(*enums); 4402 4403 if (meta_left < meta_needed) { 4404 btf_verifier_log_basic(env, t, 4405 "meta_left:%u meta_needed:%u", 4406 meta_left, meta_needed); 4407 return -EINVAL; 4408 } 4409 4410 if (t->size > 8 || !is_power_of_2(t->size)) { 4411 btf_verifier_log_type(env, t, "Unexpected size"); 4412 return -EINVAL; 4413 } 4414 4415 /* enum type either no name or a valid one */ 4416 if (t->name_off && 4417 !btf_name_valid_identifier(env->btf, t->name_off)) { 4418 btf_verifier_log_type(env, t, "Invalid name"); 4419 return -EINVAL; 4420 } 4421 4422 btf_verifier_log_type(env, t, NULL); 4423 4424 for (i = 0; i < nr_enums; i++) { 4425 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4426 btf_verifier_log(env, "\tInvalid name_offset:%u", 4427 enums[i].name_off); 4428 return -EINVAL; 4429 } 4430 4431 /* enum member must have a valid name */ 4432 if (!enums[i].name_off || 4433 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4434 btf_verifier_log_type(env, t, "Invalid name"); 4435 return -EINVAL; 4436 } 4437 4438 if (env->log.level == BPF_LOG_KERNEL) 4439 continue; 4440 4441 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4442 btf_verifier_log(env, fmt_str, 4443 __btf_name_by_offset(btf, enums[i].name_off), 4444 btf_enum64_value(enums + i)); 4445 } 4446 4447 return meta_needed; 4448 } 4449 4450 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4451 u32 type_id, void *data, u8 bits_offset, 4452 struct btf_show *show) 4453 { 4454 const struct btf_enum64 *enums = btf_type_enum64(t); 4455 u32 i, nr_enums = btf_type_vlen(t); 4456 void *safe_data; 4457 s64 v; 4458 4459 safe_data = btf_show_start_type(show, t, type_id, data); 4460 if (!safe_data) 4461 return; 4462 4463 v = *(u64 *)safe_data; 4464 4465 for (i = 0; i < nr_enums; i++) { 4466 if (v != btf_enum64_value(enums + i)) 4467 continue; 4468 4469 btf_show_type_value(show, "%s", 4470 __btf_name_by_offset(btf, 4471 enums[i].name_off)); 4472 4473 btf_show_end_type(show); 4474 return; 4475 } 4476 4477 if (btf_type_kflag(t)) 4478 btf_show_type_value(show, "%lld", v); 4479 else 4480 btf_show_type_value(show, "%llu", v); 4481 btf_show_end_type(show); 4482 } 4483 4484 static const struct btf_kind_operations enum64_ops = { 4485 .check_meta = btf_enum64_check_meta, 4486 .resolve = btf_df_resolve, 4487 .check_member = btf_enum_check_member, 4488 .check_kflag_member = btf_enum_check_kflag_member, 4489 .log_details = btf_enum_log, 4490 .show = btf_enum64_show, 4491 }; 4492 4493 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4494 const struct btf_type *t, 4495 u32 meta_left) 4496 { 4497 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4498 4499 if (meta_left < meta_needed) { 4500 btf_verifier_log_basic(env, t, 4501 "meta_left:%u meta_needed:%u", 4502 meta_left, meta_needed); 4503 return -EINVAL; 4504 } 4505 4506 if (t->name_off) { 4507 btf_verifier_log_type(env, t, "Invalid name"); 4508 return -EINVAL; 4509 } 4510 4511 if (btf_type_kflag(t)) { 4512 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4513 return -EINVAL; 4514 } 4515 4516 btf_verifier_log_type(env, t, NULL); 4517 4518 return meta_needed; 4519 } 4520 4521 static void btf_func_proto_log(struct btf_verifier_env *env, 4522 const struct btf_type *t) 4523 { 4524 const struct btf_param *args = (const struct btf_param *)(t + 1); 4525 u16 nr_args = btf_type_vlen(t), i; 4526 4527 btf_verifier_log(env, "return=%u args=(", t->type); 4528 if (!nr_args) { 4529 btf_verifier_log(env, "void"); 4530 goto done; 4531 } 4532 4533 if (nr_args == 1 && !args[0].type) { 4534 /* Only one vararg */ 4535 btf_verifier_log(env, "vararg"); 4536 goto done; 4537 } 4538 4539 btf_verifier_log(env, "%u %s", args[0].type, 4540 __btf_name_by_offset(env->btf, 4541 args[0].name_off)); 4542 for (i = 1; i < nr_args - 1; i++) 4543 btf_verifier_log(env, ", %u %s", args[i].type, 4544 __btf_name_by_offset(env->btf, 4545 args[i].name_off)); 4546 4547 if (nr_args > 1) { 4548 const struct btf_param *last_arg = &args[nr_args - 1]; 4549 4550 if (last_arg->type) 4551 btf_verifier_log(env, ", %u %s", last_arg->type, 4552 __btf_name_by_offset(env->btf, 4553 last_arg->name_off)); 4554 else 4555 btf_verifier_log(env, ", vararg"); 4556 } 4557 4558 done: 4559 btf_verifier_log(env, ")"); 4560 } 4561 4562 static const struct btf_kind_operations func_proto_ops = { 4563 .check_meta = btf_func_proto_check_meta, 4564 .resolve = btf_df_resolve, 4565 /* 4566 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4567 * a struct's member. 4568 * 4569 * It should be a function pointer instead. 4570 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4571 * 4572 * Hence, there is no btf_func_check_member(). 4573 */ 4574 .check_member = btf_df_check_member, 4575 .check_kflag_member = btf_df_check_kflag_member, 4576 .log_details = btf_func_proto_log, 4577 .show = btf_df_show, 4578 }; 4579 4580 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4581 const struct btf_type *t, 4582 u32 meta_left) 4583 { 4584 if (!t->name_off || 4585 !btf_name_valid_identifier(env->btf, t->name_off)) { 4586 btf_verifier_log_type(env, t, "Invalid name"); 4587 return -EINVAL; 4588 } 4589 4590 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4591 btf_verifier_log_type(env, t, "Invalid func linkage"); 4592 return -EINVAL; 4593 } 4594 4595 if (btf_type_kflag(t)) { 4596 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4597 return -EINVAL; 4598 } 4599 4600 btf_verifier_log_type(env, t, NULL); 4601 4602 return 0; 4603 } 4604 4605 static int btf_func_resolve(struct btf_verifier_env *env, 4606 const struct resolve_vertex *v) 4607 { 4608 const struct btf_type *t = v->t; 4609 u32 next_type_id = t->type; 4610 int err; 4611 4612 err = btf_func_check(env, t); 4613 if (err) 4614 return err; 4615 4616 env_stack_pop_resolved(env, next_type_id, 0); 4617 return 0; 4618 } 4619 4620 static const struct btf_kind_operations func_ops = { 4621 .check_meta = btf_func_check_meta, 4622 .resolve = btf_func_resolve, 4623 .check_member = btf_df_check_member, 4624 .check_kflag_member = btf_df_check_kflag_member, 4625 .log_details = btf_ref_type_log, 4626 .show = btf_df_show, 4627 }; 4628 4629 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4630 const struct btf_type *t, 4631 u32 meta_left) 4632 { 4633 const struct btf_var *var; 4634 u32 meta_needed = sizeof(*var); 4635 4636 if (meta_left < meta_needed) { 4637 btf_verifier_log_basic(env, t, 4638 "meta_left:%u meta_needed:%u", 4639 meta_left, meta_needed); 4640 return -EINVAL; 4641 } 4642 4643 if (btf_type_vlen(t)) { 4644 btf_verifier_log_type(env, t, "vlen != 0"); 4645 return -EINVAL; 4646 } 4647 4648 if (btf_type_kflag(t)) { 4649 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4650 return -EINVAL; 4651 } 4652 4653 if (!t->name_off || 4654 !btf_name_valid_identifier(env->btf, t->name_off)) { 4655 btf_verifier_log_type(env, t, "Invalid name"); 4656 return -EINVAL; 4657 } 4658 4659 /* A var cannot be in type void */ 4660 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4661 btf_verifier_log_type(env, t, "Invalid type_id"); 4662 return -EINVAL; 4663 } 4664 4665 var = btf_type_var(t); 4666 if (var->linkage != BTF_VAR_STATIC && 4667 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4668 btf_verifier_log_type(env, t, "Linkage not supported"); 4669 return -EINVAL; 4670 } 4671 4672 btf_verifier_log_type(env, t, NULL); 4673 4674 return meta_needed; 4675 } 4676 4677 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4678 { 4679 const struct btf_var *var = btf_type_var(t); 4680 4681 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4682 } 4683 4684 static const struct btf_kind_operations var_ops = { 4685 .check_meta = btf_var_check_meta, 4686 .resolve = btf_var_resolve, 4687 .check_member = btf_df_check_member, 4688 .check_kflag_member = btf_df_check_kflag_member, 4689 .log_details = btf_var_log, 4690 .show = btf_var_show, 4691 }; 4692 4693 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4694 const struct btf_type *t, 4695 u32 meta_left) 4696 { 4697 const struct btf_var_secinfo *vsi; 4698 u64 last_vsi_end_off = 0, sum = 0; 4699 u32 i, meta_needed; 4700 4701 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4702 if (meta_left < meta_needed) { 4703 btf_verifier_log_basic(env, t, 4704 "meta_left:%u meta_needed:%u", 4705 meta_left, meta_needed); 4706 return -EINVAL; 4707 } 4708 4709 if (!t->size) { 4710 btf_verifier_log_type(env, t, "size == 0"); 4711 return -EINVAL; 4712 } 4713 4714 if (btf_type_kflag(t)) { 4715 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4716 return -EINVAL; 4717 } 4718 4719 if (!t->name_off || 4720 !btf_name_valid_section(env->btf, t->name_off)) { 4721 btf_verifier_log_type(env, t, "Invalid name"); 4722 return -EINVAL; 4723 } 4724 4725 btf_verifier_log_type(env, t, NULL); 4726 4727 for_each_vsi(i, t, vsi) { 4728 /* A var cannot be in type void */ 4729 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4730 btf_verifier_log_vsi(env, t, vsi, 4731 "Invalid type_id"); 4732 return -EINVAL; 4733 } 4734 4735 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4736 btf_verifier_log_vsi(env, t, vsi, 4737 "Invalid offset"); 4738 return -EINVAL; 4739 } 4740 4741 if (!vsi->size || vsi->size > t->size) { 4742 btf_verifier_log_vsi(env, t, vsi, 4743 "Invalid size"); 4744 return -EINVAL; 4745 } 4746 4747 last_vsi_end_off = vsi->offset + vsi->size; 4748 if (last_vsi_end_off > t->size) { 4749 btf_verifier_log_vsi(env, t, vsi, 4750 "Invalid offset+size"); 4751 return -EINVAL; 4752 } 4753 4754 btf_verifier_log_vsi(env, t, vsi, NULL); 4755 sum += vsi->size; 4756 } 4757 4758 if (t->size < sum) { 4759 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4760 return -EINVAL; 4761 } 4762 4763 return meta_needed; 4764 } 4765 4766 static int btf_datasec_resolve(struct btf_verifier_env *env, 4767 const struct resolve_vertex *v) 4768 { 4769 const struct btf_var_secinfo *vsi; 4770 struct btf *btf = env->btf; 4771 u16 i; 4772 4773 env->resolve_mode = RESOLVE_TBD; 4774 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4775 u32 var_type_id = vsi->type, type_id, type_size = 0; 4776 const struct btf_type *var_type = btf_type_by_id(env->btf, 4777 var_type_id); 4778 if (!var_type || !btf_type_is_var(var_type)) { 4779 btf_verifier_log_vsi(env, v->t, vsi, 4780 "Not a VAR kind member"); 4781 return -EINVAL; 4782 } 4783 4784 if (!env_type_is_resolve_sink(env, var_type) && 4785 !env_type_is_resolved(env, var_type_id)) { 4786 env_stack_set_next_member(env, i + 1); 4787 return env_stack_push(env, var_type, var_type_id); 4788 } 4789 4790 type_id = var_type->type; 4791 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4792 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4793 return -EINVAL; 4794 } 4795 4796 if (vsi->size < type_size) { 4797 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4798 return -EINVAL; 4799 } 4800 } 4801 4802 env_stack_pop_resolved(env, 0, 0); 4803 return 0; 4804 } 4805 4806 static void btf_datasec_log(struct btf_verifier_env *env, 4807 const struct btf_type *t) 4808 { 4809 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4810 } 4811 4812 static void btf_datasec_show(const struct btf *btf, 4813 const struct btf_type *t, u32 type_id, 4814 void *data, u8 bits_offset, 4815 struct btf_show *show) 4816 { 4817 const struct btf_var_secinfo *vsi; 4818 const struct btf_type *var; 4819 u32 i; 4820 4821 if (!btf_show_start_type(show, t, type_id, data)) 4822 return; 4823 4824 btf_show_type_value(show, "section (\"%s\") = {", 4825 __btf_name_by_offset(btf, t->name_off)); 4826 for_each_vsi(i, t, vsi) { 4827 var = btf_type_by_id(btf, vsi->type); 4828 if (i) 4829 btf_show(show, ","); 4830 btf_type_ops(var)->show(btf, var, vsi->type, 4831 data + vsi->offset, bits_offset, show); 4832 } 4833 btf_show_end_type(show); 4834 } 4835 4836 static const struct btf_kind_operations datasec_ops = { 4837 .check_meta = btf_datasec_check_meta, 4838 .resolve = btf_datasec_resolve, 4839 .check_member = btf_df_check_member, 4840 .check_kflag_member = btf_df_check_kflag_member, 4841 .log_details = btf_datasec_log, 4842 .show = btf_datasec_show, 4843 }; 4844 4845 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4846 const struct btf_type *t, 4847 u32 meta_left) 4848 { 4849 if (btf_type_vlen(t)) { 4850 btf_verifier_log_type(env, t, "vlen != 0"); 4851 return -EINVAL; 4852 } 4853 4854 if (btf_type_kflag(t)) { 4855 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4856 return -EINVAL; 4857 } 4858 4859 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4860 t->size != 16) { 4861 btf_verifier_log_type(env, t, "Invalid type_size"); 4862 return -EINVAL; 4863 } 4864 4865 btf_verifier_log_type(env, t, NULL); 4866 4867 return 0; 4868 } 4869 4870 static int btf_float_check_member(struct btf_verifier_env *env, 4871 const struct btf_type *struct_type, 4872 const struct btf_member *member, 4873 const struct btf_type *member_type) 4874 { 4875 u64 start_offset_bytes; 4876 u64 end_offset_bytes; 4877 u64 misalign_bits; 4878 u64 align_bytes; 4879 u64 align_bits; 4880 4881 /* Different architectures have different alignment requirements, so 4882 * here we check only for the reasonable minimum. This way we ensure 4883 * that types after CO-RE can pass the kernel BTF verifier. 4884 */ 4885 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4886 align_bits = align_bytes * BITS_PER_BYTE; 4887 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4888 if (misalign_bits) { 4889 btf_verifier_log_member(env, struct_type, member, 4890 "Member is not properly aligned"); 4891 return -EINVAL; 4892 } 4893 4894 start_offset_bytes = member->offset / BITS_PER_BYTE; 4895 end_offset_bytes = start_offset_bytes + member_type->size; 4896 if (end_offset_bytes > struct_type->size) { 4897 btf_verifier_log_member(env, struct_type, member, 4898 "Member exceeds struct_size"); 4899 return -EINVAL; 4900 } 4901 4902 return 0; 4903 } 4904 4905 static void btf_float_log(struct btf_verifier_env *env, 4906 const struct btf_type *t) 4907 { 4908 btf_verifier_log(env, "size=%u", t->size); 4909 } 4910 4911 static const struct btf_kind_operations float_ops = { 4912 .check_meta = btf_float_check_meta, 4913 .resolve = btf_df_resolve, 4914 .check_member = btf_float_check_member, 4915 .check_kflag_member = btf_generic_check_kflag_member, 4916 .log_details = btf_float_log, 4917 .show = btf_df_show, 4918 }; 4919 4920 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4921 const struct btf_type *t, 4922 u32 meta_left) 4923 { 4924 const struct btf_decl_tag *tag; 4925 u32 meta_needed = sizeof(*tag); 4926 s32 component_idx; 4927 const char *value; 4928 4929 if (meta_left < meta_needed) { 4930 btf_verifier_log_basic(env, t, 4931 "meta_left:%u meta_needed:%u", 4932 meta_left, meta_needed); 4933 return -EINVAL; 4934 } 4935 4936 value = btf_name_by_offset(env->btf, t->name_off); 4937 if (!value || !value[0]) { 4938 btf_verifier_log_type(env, t, "Invalid value"); 4939 return -EINVAL; 4940 } 4941 4942 if (btf_type_vlen(t)) { 4943 btf_verifier_log_type(env, t, "vlen != 0"); 4944 return -EINVAL; 4945 } 4946 4947 if (btf_type_kflag(t)) { 4948 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4949 return -EINVAL; 4950 } 4951 4952 component_idx = btf_type_decl_tag(t)->component_idx; 4953 if (component_idx < -1) { 4954 btf_verifier_log_type(env, t, "Invalid component_idx"); 4955 return -EINVAL; 4956 } 4957 4958 btf_verifier_log_type(env, t, NULL); 4959 4960 return meta_needed; 4961 } 4962 4963 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4964 const struct resolve_vertex *v) 4965 { 4966 const struct btf_type *next_type; 4967 const struct btf_type *t = v->t; 4968 u32 next_type_id = t->type; 4969 struct btf *btf = env->btf; 4970 s32 component_idx; 4971 u32 vlen; 4972 4973 next_type = btf_type_by_id(btf, next_type_id); 4974 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4975 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4976 return -EINVAL; 4977 } 4978 4979 if (!env_type_is_resolve_sink(env, next_type) && 4980 !env_type_is_resolved(env, next_type_id)) 4981 return env_stack_push(env, next_type, next_type_id); 4982 4983 component_idx = btf_type_decl_tag(t)->component_idx; 4984 if (component_idx != -1) { 4985 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4986 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4987 return -EINVAL; 4988 } 4989 4990 if (btf_type_is_struct(next_type)) { 4991 vlen = btf_type_vlen(next_type); 4992 } else { 4993 /* next_type should be a function */ 4994 next_type = btf_type_by_id(btf, next_type->type); 4995 vlen = btf_type_vlen(next_type); 4996 } 4997 4998 if ((u32)component_idx >= vlen) { 4999 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5000 return -EINVAL; 5001 } 5002 } 5003 5004 env_stack_pop_resolved(env, next_type_id, 0); 5005 5006 return 0; 5007 } 5008 5009 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 5010 { 5011 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 5012 btf_type_decl_tag(t)->component_idx); 5013 } 5014 5015 static const struct btf_kind_operations decl_tag_ops = { 5016 .check_meta = btf_decl_tag_check_meta, 5017 .resolve = btf_decl_tag_resolve, 5018 .check_member = btf_df_check_member, 5019 .check_kflag_member = btf_df_check_kflag_member, 5020 .log_details = btf_decl_tag_log, 5021 .show = btf_df_show, 5022 }; 5023 5024 static int btf_func_proto_check(struct btf_verifier_env *env, 5025 const struct btf_type *t) 5026 { 5027 const struct btf_type *ret_type; 5028 const struct btf_param *args; 5029 const struct btf *btf; 5030 u16 nr_args, i; 5031 int err; 5032 5033 btf = env->btf; 5034 args = (const struct btf_param *)(t + 1); 5035 nr_args = btf_type_vlen(t); 5036 5037 /* Check func return type which could be "void" (t->type == 0) */ 5038 if (t->type) { 5039 u32 ret_type_id = t->type; 5040 5041 ret_type = btf_type_by_id(btf, ret_type_id); 5042 if (!ret_type) { 5043 btf_verifier_log_type(env, t, "Invalid return type"); 5044 return -EINVAL; 5045 } 5046 5047 if (btf_type_is_resolve_source_only(ret_type)) { 5048 btf_verifier_log_type(env, t, "Invalid return type"); 5049 return -EINVAL; 5050 } 5051 5052 if (btf_type_needs_resolve(ret_type) && 5053 !env_type_is_resolved(env, ret_type_id)) { 5054 err = btf_resolve(env, ret_type, ret_type_id); 5055 if (err) 5056 return err; 5057 } 5058 5059 /* Ensure the return type is a type that has a size */ 5060 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5061 btf_verifier_log_type(env, t, "Invalid return type"); 5062 return -EINVAL; 5063 } 5064 } 5065 5066 if (!nr_args) 5067 return 0; 5068 5069 /* Last func arg type_id could be 0 if it is a vararg */ 5070 if (!args[nr_args - 1].type) { 5071 if (args[nr_args - 1].name_off) { 5072 btf_verifier_log_type(env, t, "Invalid arg#%u", 5073 nr_args); 5074 return -EINVAL; 5075 } 5076 nr_args--; 5077 } 5078 5079 for (i = 0; i < nr_args; i++) { 5080 const struct btf_type *arg_type; 5081 u32 arg_type_id; 5082 5083 arg_type_id = args[i].type; 5084 arg_type = btf_type_by_id(btf, arg_type_id); 5085 if (!arg_type) { 5086 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5087 return -EINVAL; 5088 } 5089 5090 if (btf_type_is_resolve_source_only(arg_type)) { 5091 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5092 return -EINVAL; 5093 } 5094 5095 if (args[i].name_off && 5096 (!btf_name_offset_valid(btf, args[i].name_off) || 5097 !btf_name_valid_identifier(btf, args[i].name_off))) { 5098 btf_verifier_log_type(env, t, 5099 "Invalid arg#%u", i + 1); 5100 return -EINVAL; 5101 } 5102 5103 if (btf_type_needs_resolve(arg_type) && 5104 !env_type_is_resolved(env, arg_type_id)) { 5105 err = btf_resolve(env, arg_type, arg_type_id); 5106 if (err) 5107 return err; 5108 } 5109 5110 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5111 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5112 return -EINVAL; 5113 } 5114 } 5115 5116 return 0; 5117 } 5118 5119 static int btf_func_check(struct btf_verifier_env *env, 5120 const struct btf_type *t) 5121 { 5122 const struct btf_type *proto_type; 5123 const struct btf_param *args; 5124 const struct btf *btf; 5125 u16 nr_args, i; 5126 5127 btf = env->btf; 5128 proto_type = btf_type_by_id(btf, t->type); 5129 5130 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5131 btf_verifier_log_type(env, t, "Invalid type_id"); 5132 return -EINVAL; 5133 } 5134 5135 args = (const struct btf_param *)(proto_type + 1); 5136 nr_args = btf_type_vlen(proto_type); 5137 for (i = 0; i < nr_args; i++) { 5138 if (!args[i].name_off && args[i].type) { 5139 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5140 return -EINVAL; 5141 } 5142 } 5143 5144 return 0; 5145 } 5146 5147 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5148 [BTF_KIND_INT] = &int_ops, 5149 [BTF_KIND_PTR] = &ptr_ops, 5150 [BTF_KIND_ARRAY] = &array_ops, 5151 [BTF_KIND_STRUCT] = &struct_ops, 5152 [BTF_KIND_UNION] = &struct_ops, 5153 [BTF_KIND_ENUM] = &enum_ops, 5154 [BTF_KIND_FWD] = &fwd_ops, 5155 [BTF_KIND_TYPEDEF] = &modifier_ops, 5156 [BTF_KIND_VOLATILE] = &modifier_ops, 5157 [BTF_KIND_CONST] = &modifier_ops, 5158 [BTF_KIND_RESTRICT] = &modifier_ops, 5159 [BTF_KIND_FUNC] = &func_ops, 5160 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5161 [BTF_KIND_VAR] = &var_ops, 5162 [BTF_KIND_DATASEC] = &datasec_ops, 5163 [BTF_KIND_FLOAT] = &float_ops, 5164 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5165 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5166 [BTF_KIND_ENUM64] = &enum64_ops, 5167 }; 5168 5169 static s32 btf_check_meta(struct btf_verifier_env *env, 5170 const struct btf_type *t, 5171 u32 meta_left) 5172 { 5173 u32 saved_meta_left = meta_left; 5174 s32 var_meta_size; 5175 5176 if (meta_left < sizeof(*t)) { 5177 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5178 env->log_type_id, meta_left, sizeof(*t)); 5179 return -EINVAL; 5180 } 5181 meta_left -= sizeof(*t); 5182 5183 if (t->info & ~BTF_INFO_MASK) { 5184 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5185 env->log_type_id, t->info); 5186 return -EINVAL; 5187 } 5188 5189 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5190 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5191 btf_verifier_log(env, "[%u] Invalid kind:%u", 5192 env->log_type_id, BTF_INFO_KIND(t->info)); 5193 return -EINVAL; 5194 } 5195 5196 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5197 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5198 env->log_type_id, t->name_off); 5199 return -EINVAL; 5200 } 5201 5202 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5203 if (var_meta_size < 0) 5204 return var_meta_size; 5205 5206 meta_left -= var_meta_size; 5207 5208 return saved_meta_left - meta_left; 5209 } 5210 5211 static int btf_check_all_metas(struct btf_verifier_env *env) 5212 { 5213 struct btf *btf = env->btf; 5214 struct btf_header *hdr; 5215 void *cur, *end; 5216 5217 hdr = &btf->hdr; 5218 cur = btf->nohdr_data + hdr->type_off; 5219 end = cur + hdr->type_len; 5220 5221 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5222 while (cur < end) { 5223 struct btf_type *t = cur; 5224 s32 meta_size; 5225 5226 meta_size = btf_check_meta(env, t, end - cur); 5227 if (meta_size < 0) 5228 return meta_size; 5229 5230 btf_add_type(env, t); 5231 cur += meta_size; 5232 env->log_type_id++; 5233 } 5234 5235 return 0; 5236 } 5237 5238 static bool btf_resolve_valid(struct btf_verifier_env *env, 5239 const struct btf_type *t, 5240 u32 type_id) 5241 { 5242 struct btf *btf = env->btf; 5243 5244 if (!env_type_is_resolved(env, type_id)) 5245 return false; 5246 5247 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5248 return !btf_resolved_type_id(btf, type_id) && 5249 !btf_resolved_type_size(btf, type_id); 5250 5251 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5252 return btf_resolved_type_id(btf, type_id) && 5253 !btf_resolved_type_size(btf, type_id); 5254 5255 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5256 btf_type_is_var(t)) { 5257 t = btf_type_id_resolve(btf, &type_id); 5258 return t && 5259 !btf_type_is_modifier(t) && 5260 !btf_type_is_var(t) && 5261 !btf_type_is_datasec(t); 5262 } 5263 5264 if (btf_type_is_array(t)) { 5265 const struct btf_array *array = btf_type_array(t); 5266 const struct btf_type *elem_type; 5267 u32 elem_type_id = array->type; 5268 u32 elem_size; 5269 5270 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5271 return elem_type && !btf_type_is_modifier(elem_type) && 5272 (array->nelems * elem_size == 5273 btf_resolved_type_size(btf, type_id)); 5274 } 5275 5276 return false; 5277 } 5278 5279 static int btf_resolve(struct btf_verifier_env *env, 5280 const struct btf_type *t, u32 type_id) 5281 { 5282 u32 save_log_type_id = env->log_type_id; 5283 const struct resolve_vertex *v; 5284 int err = 0; 5285 5286 env->resolve_mode = RESOLVE_TBD; 5287 env_stack_push(env, t, type_id); 5288 while (!err && (v = env_stack_peak(env))) { 5289 env->log_type_id = v->type_id; 5290 err = btf_type_ops(v->t)->resolve(env, v); 5291 } 5292 5293 env->log_type_id = type_id; 5294 if (err == -E2BIG) { 5295 btf_verifier_log_type(env, t, 5296 "Exceeded max resolving depth:%u", 5297 MAX_RESOLVE_DEPTH); 5298 } else if (err == -EEXIST) { 5299 btf_verifier_log_type(env, t, "Loop detected"); 5300 } 5301 5302 /* Final sanity check */ 5303 if (!err && !btf_resolve_valid(env, t, type_id)) { 5304 btf_verifier_log_type(env, t, "Invalid resolve state"); 5305 err = -EINVAL; 5306 } 5307 5308 env->log_type_id = save_log_type_id; 5309 return err; 5310 } 5311 5312 static int btf_check_all_types(struct btf_verifier_env *env) 5313 { 5314 struct btf *btf = env->btf; 5315 const struct btf_type *t; 5316 u32 type_id, i; 5317 int err; 5318 5319 err = env_resolve_init(env); 5320 if (err) 5321 return err; 5322 5323 env->phase++; 5324 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5325 type_id = btf->start_id + i; 5326 t = btf_type_by_id(btf, type_id); 5327 5328 env->log_type_id = type_id; 5329 if (btf_type_needs_resolve(t) && 5330 !env_type_is_resolved(env, type_id)) { 5331 err = btf_resolve(env, t, type_id); 5332 if (err) 5333 return err; 5334 } 5335 5336 if (btf_type_is_func_proto(t)) { 5337 err = btf_func_proto_check(env, t); 5338 if (err) 5339 return err; 5340 } 5341 } 5342 5343 return 0; 5344 } 5345 5346 static int btf_parse_type_sec(struct btf_verifier_env *env) 5347 { 5348 const struct btf_header *hdr = &env->btf->hdr; 5349 int err; 5350 5351 /* Type section must align to 4 bytes */ 5352 if (hdr->type_off & (sizeof(u32) - 1)) { 5353 btf_verifier_log(env, "Unaligned type_off"); 5354 return -EINVAL; 5355 } 5356 5357 if (!env->btf->base_btf && !hdr->type_len) { 5358 btf_verifier_log(env, "No type found"); 5359 return -EINVAL; 5360 } 5361 5362 err = btf_check_all_metas(env); 5363 if (err) 5364 return err; 5365 5366 return btf_check_all_types(env); 5367 } 5368 5369 static int btf_parse_str_sec(struct btf_verifier_env *env) 5370 { 5371 const struct btf_header *hdr; 5372 struct btf *btf = env->btf; 5373 const char *start, *end; 5374 5375 hdr = &btf->hdr; 5376 start = btf->nohdr_data + hdr->str_off; 5377 end = start + hdr->str_len; 5378 5379 if (end != btf->data + btf->data_size) { 5380 btf_verifier_log(env, "String section is not at the end"); 5381 return -EINVAL; 5382 } 5383 5384 btf->strings = start; 5385 5386 if (btf->base_btf && !hdr->str_len) 5387 return 0; 5388 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5389 btf_verifier_log(env, "Invalid string section"); 5390 return -EINVAL; 5391 } 5392 if (!btf->base_btf && start[0]) { 5393 btf_verifier_log(env, "Invalid string section"); 5394 return -EINVAL; 5395 } 5396 5397 return 0; 5398 } 5399 5400 static const size_t btf_sec_info_offset[] = { 5401 offsetof(struct btf_header, type_off), 5402 offsetof(struct btf_header, str_off), 5403 }; 5404 5405 static int btf_sec_info_cmp(const void *a, const void *b) 5406 { 5407 const struct btf_sec_info *x = a; 5408 const struct btf_sec_info *y = b; 5409 5410 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5411 } 5412 5413 static int btf_check_sec_info(struct btf_verifier_env *env, 5414 u32 btf_data_size) 5415 { 5416 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5417 u32 total, expected_total, i; 5418 const struct btf_header *hdr; 5419 const struct btf *btf; 5420 5421 btf = env->btf; 5422 hdr = &btf->hdr; 5423 5424 /* Populate the secs from hdr */ 5425 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5426 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5427 btf_sec_info_offset[i]); 5428 5429 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5430 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5431 5432 /* Check for gaps and overlap among sections */ 5433 total = 0; 5434 expected_total = btf_data_size - hdr->hdr_len; 5435 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5436 if (expected_total < secs[i].off) { 5437 btf_verifier_log(env, "Invalid section offset"); 5438 return -EINVAL; 5439 } 5440 if (total < secs[i].off) { 5441 /* gap */ 5442 btf_verifier_log(env, "Unsupported section found"); 5443 return -EINVAL; 5444 } 5445 if (total > secs[i].off) { 5446 btf_verifier_log(env, "Section overlap found"); 5447 return -EINVAL; 5448 } 5449 if (expected_total - total < secs[i].len) { 5450 btf_verifier_log(env, 5451 "Total section length too long"); 5452 return -EINVAL; 5453 } 5454 total += secs[i].len; 5455 } 5456 5457 /* There is data other than hdr and known sections */ 5458 if (expected_total != total) { 5459 btf_verifier_log(env, "Unsupported section found"); 5460 return -EINVAL; 5461 } 5462 5463 return 0; 5464 } 5465 5466 static int btf_parse_hdr(struct btf_verifier_env *env) 5467 { 5468 u32 hdr_len, hdr_copy, btf_data_size; 5469 const struct btf_header *hdr; 5470 struct btf *btf; 5471 5472 btf = env->btf; 5473 btf_data_size = btf->data_size; 5474 5475 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5476 btf_verifier_log(env, "hdr_len not found"); 5477 return -EINVAL; 5478 } 5479 5480 hdr = btf->data; 5481 hdr_len = hdr->hdr_len; 5482 if (btf_data_size < hdr_len) { 5483 btf_verifier_log(env, "btf_header not found"); 5484 return -EINVAL; 5485 } 5486 5487 /* Ensure the unsupported header fields are zero */ 5488 if (hdr_len > sizeof(btf->hdr)) { 5489 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5490 u8 *end = btf->data + hdr_len; 5491 5492 for (; expected_zero < end; expected_zero++) { 5493 if (*expected_zero) { 5494 btf_verifier_log(env, "Unsupported btf_header"); 5495 return -E2BIG; 5496 } 5497 } 5498 } 5499 5500 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5501 memcpy(&btf->hdr, btf->data, hdr_copy); 5502 5503 hdr = &btf->hdr; 5504 5505 btf_verifier_log_hdr(env, btf_data_size); 5506 5507 if (hdr->magic != BTF_MAGIC) { 5508 btf_verifier_log(env, "Invalid magic"); 5509 return -EINVAL; 5510 } 5511 5512 if (hdr->version != BTF_VERSION) { 5513 btf_verifier_log(env, "Unsupported version"); 5514 return -ENOTSUPP; 5515 } 5516 5517 if (hdr->flags) { 5518 btf_verifier_log(env, "Unsupported flags"); 5519 return -ENOTSUPP; 5520 } 5521 5522 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5523 btf_verifier_log(env, "No data"); 5524 return -EINVAL; 5525 } 5526 5527 return btf_check_sec_info(env, btf_data_size); 5528 } 5529 5530 static const char *alloc_obj_fields[] = { 5531 "bpf_spin_lock", 5532 "bpf_list_head", 5533 "bpf_list_node", 5534 "bpf_rb_root", 5535 "bpf_rb_node", 5536 "bpf_refcount", 5537 }; 5538 5539 static struct btf_struct_metas * 5540 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5541 { 5542 struct btf_struct_metas *tab = NULL; 5543 struct btf_id_set *aof; 5544 int i, n, id, ret; 5545 5546 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5547 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5548 5549 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5550 if (!aof) 5551 return ERR_PTR(-ENOMEM); 5552 aof->cnt = 0; 5553 5554 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5555 /* Try to find whether this special type exists in user BTF, and 5556 * if so remember its ID so we can easily find it among members 5557 * of structs that we iterate in the next loop. 5558 */ 5559 struct btf_id_set *new_aof; 5560 5561 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5562 if (id < 0) 5563 continue; 5564 5565 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5566 GFP_KERNEL | __GFP_NOWARN); 5567 if (!new_aof) { 5568 ret = -ENOMEM; 5569 goto free_aof; 5570 } 5571 aof = new_aof; 5572 aof->ids[aof->cnt++] = id; 5573 } 5574 5575 n = btf_nr_types(btf); 5576 for (i = 1; i < n; i++) { 5577 /* Try to find if there are kptrs in user BTF and remember their ID */ 5578 struct btf_id_set *new_aof; 5579 struct btf_field_info tmp; 5580 const struct btf_type *t; 5581 5582 t = btf_type_by_id(btf, i); 5583 if (!t) { 5584 ret = -EINVAL; 5585 goto free_aof; 5586 } 5587 5588 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); 5589 if (ret != BTF_FIELD_FOUND) 5590 continue; 5591 5592 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5593 GFP_KERNEL | __GFP_NOWARN); 5594 if (!new_aof) { 5595 ret = -ENOMEM; 5596 goto free_aof; 5597 } 5598 aof = new_aof; 5599 aof->ids[aof->cnt++] = i; 5600 } 5601 5602 if (!aof->cnt) { 5603 kfree(aof); 5604 return NULL; 5605 } 5606 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5607 5608 for (i = 1; i < n; i++) { 5609 struct btf_struct_metas *new_tab; 5610 const struct btf_member *member; 5611 struct btf_struct_meta *type; 5612 struct btf_record *record; 5613 const struct btf_type *t; 5614 int j, tab_cnt; 5615 5616 t = btf_type_by_id(btf, i); 5617 if (!__btf_type_is_struct(t)) 5618 continue; 5619 5620 cond_resched(); 5621 5622 for_each_member(j, t, member) { 5623 if (btf_id_set_contains(aof, member->type)) 5624 goto parse; 5625 } 5626 continue; 5627 parse: 5628 tab_cnt = tab ? tab->cnt : 0; 5629 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5630 GFP_KERNEL | __GFP_NOWARN); 5631 if (!new_tab) { 5632 ret = -ENOMEM; 5633 goto free; 5634 } 5635 if (!tab) 5636 new_tab->cnt = 0; 5637 tab = new_tab; 5638 5639 type = &tab->types[tab->cnt]; 5640 type->btf_id = i; 5641 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5642 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5643 BPF_KPTR, t->size); 5644 /* The record cannot be unset, treat it as an error if so */ 5645 if (IS_ERR_OR_NULL(record)) { 5646 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5647 goto free; 5648 } 5649 type->record = record; 5650 tab->cnt++; 5651 } 5652 kfree(aof); 5653 return tab; 5654 free: 5655 btf_struct_metas_free(tab); 5656 free_aof: 5657 kfree(aof); 5658 return ERR_PTR(ret); 5659 } 5660 5661 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5662 { 5663 struct btf_struct_metas *tab; 5664 5665 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5666 tab = btf->struct_meta_tab; 5667 if (!tab) 5668 return NULL; 5669 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5670 } 5671 5672 static int btf_check_type_tags(struct btf_verifier_env *env, 5673 struct btf *btf, int start_id) 5674 { 5675 int i, n, good_id = start_id - 1; 5676 bool in_tags; 5677 5678 n = btf_nr_types(btf); 5679 for (i = start_id; i < n; i++) { 5680 const struct btf_type *t; 5681 int chain_limit = 32; 5682 u32 cur_id = i; 5683 5684 t = btf_type_by_id(btf, i); 5685 if (!t) 5686 return -EINVAL; 5687 if (!btf_type_is_modifier(t)) 5688 continue; 5689 5690 cond_resched(); 5691 5692 in_tags = btf_type_is_type_tag(t); 5693 while (btf_type_is_modifier(t)) { 5694 if (!chain_limit--) { 5695 btf_verifier_log(env, "Max chain length or cycle detected"); 5696 return -ELOOP; 5697 } 5698 if (btf_type_is_type_tag(t)) { 5699 if (!in_tags) { 5700 btf_verifier_log(env, "Type tags don't precede modifiers"); 5701 return -EINVAL; 5702 } 5703 } else if (in_tags) { 5704 in_tags = false; 5705 } 5706 if (cur_id <= good_id) 5707 break; 5708 /* Move to next type */ 5709 cur_id = t->type; 5710 t = btf_type_by_id(btf, cur_id); 5711 if (!t) 5712 return -EINVAL; 5713 } 5714 good_id = i; 5715 } 5716 return 0; 5717 } 5718 5719 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5720 { 5721 u32 log_true_size; 5722 int err; 5723 5724 err = bpf_vlog_finalize(log, &log_true_size); 5725 5726 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5727 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5728 &log_true_size, sizeof(log_true_size))) 5729 err = -EFAULT; 5730 5731 return err; 5732 } 5733 5734 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5735 { 5736 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5737 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5738 struct btf_struct_metas *struct_meta_tab; 5739 struct btf_verifier_env *env = NULL; 5740 struct btf *btf = NULL; 5741 u8 *data; 5742 int err, ret; 5743 5744 if (attr->btf_size > BTF_MAX_SIZE) 5745 return ERR_PTR(-E2BIG); 5746 5747 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5748 if (!env) 5749 return ERR_PTR(-ENOMEM); 5750 5751 /* user could have requested verbose verifier output 5752 * and supplied buffer to store the verification trace 5753 */ 5754 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5755 log_ubuf, attr->btf_log_size); 5756 if (err) 5757 goto errout_free; 5758 5759 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5760 if (!btf) { 5761 err = -ENOMEM; 5762 goto errout; 5763 } 5764 env->btf = btf; 5765 5766 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5767 if (!data) { 5768 err = -ENOMEM; 5769 goto errout; 5770 } 5771 5772 btf->data = data; 5773 btf->data_size = attr->btf_size; 5774 5775 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5776 err = -EFAULT; 5777 goto errout; 5778 } 5779 5780 err = btf_parse_hdr(env); 5781 if (err) 5782 goto errout; 5783 5784 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5785 5786 err = btf_parse_str_sec(env); 5787 if (err) 5788 goto errout; 5789 5790 err = btf_parse_type_sec(env); 5791 if (err) 5792 goto errout; 5793 5794 err = btf_check_type_tags(env, btf, 1); 5795 if (err) 5796 goto errout; 5797 5798 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5799 if (IS_ERR(struct_meta_tab)) { 5800 err = PTR_ERR(struct_meta_tab); 5801 goto errout; 5802 } 5803 btf->struct_meta_tab = struct_meta_tab; 5804 5805 if (struct_meta_tab) { 5806 int i; 5807 5808 for (i = 0; i < struct_meta_tab->cnt; i++) { 5809 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5810 if (err < 0) 5811 goto errout_meta; 5812 } 5813 } 5814 5815 err = finalize_log(&env->log, uattr, uattr_size); 5816 if (err) 5817 goto errout_free; 5818 5819 btf_verifier_env_free(env); 5820 refcount_set(&btf->refcnt, 1); 5821 return btf; 5822 5823 errout_meta: 5824 btf_free_struct_meta_tab(btf); 5825 errout: 5826 /* overwrite err with -ENOSPC or -EFAULT */ 5827 ret = finalize_log(&env->log, uattr, uattr_size); 5828 if (ret) 5829 err = ret; 5830 errout_free: 5831 btf_verifier_env_free(env); 5832 if (btf) 5833 btf_free(btf); 5834 return ERR_PTR(err); 5835 } 5836 5837 extern char __start_BTF[]; 5838 extern char __stop_BTF[]; 5839 extern struct btf *btf_vmlinux; 5840 5841 #define BPF_MAP_TYPE(_id, _ops) 5842 #define BPF_LINK_TYPE(_id, _name) 5843 static union { 5844 struct bpf_ctx_convert { 5845 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5846 prog_ctx_type _id##_prog; \ 5847 kern_ctx_type _id##_kern; 5848 #include <linux/bpf_types.h> 5849 #undef BPF_PROG_TYPE 5850 } *__t; 5851 /* 't' is written once under lock. Read many times. */ 5852 const struct btf_type *t; 5853 } bpf_ctx_convert; 5854 enum { 5855 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5856 __ctx_convert##_id, 5857 #include <linux/bpf_types.h> 5858 #undef BPF_PROG_TYPE 5859 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5860 }; 5861 static u8 bpf_ctx_convert_map[] = { 5862 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5863 [_id] = __ctx_convert##_id, 5864 #include <linux/bpf_types.h> 5865 #undef BPF_PROG_TYPE 5866 0, /* avoid empty array */ 5867 }; 5868 #undef BPF_MAP_TYPE 5869 #undef BPF_LINK_TYPE 5870 5871 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5872 { 5873 const struct btf_type *conv_struct; 5874 const struct btf_member *ctx_type; 5875 5876 conv_struct = bpf_ctx_convert.t; 5877 if (!conv_struct) 5878 return NULL; 5879 /* prog_type is valid bpf program type. No need for bounds check. */ 5880 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5881 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5882 * Like 'struct __sk_buff' 5883 */ 5884 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5885 } 5886 5887 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5888 { 5889 const struct btf_type *conv_struct; 5890 const struct btf_member *ctx_type; 5891 5892 conv_struct = bpf_ctx_convert.t; 5893 if (!conv_struct) 5894 return -EFAULT; 5895 /* prog_type is valid bpf program type. No need for bounds check. */ 5896 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5897 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5898 * Like 'struct sk_buff' 5899 */ 5900 return ctx_type->type; 5901 } 5902 5903 bool btf_is_projection_of(const char *pname, const char *tname) 5904 { 5905 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5906 return true; 5907 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5908 return true; 5909 return false; 5910 } 5911 5912 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5913 const struct btf_type *t, enum bpf_prog_type prog_type, 5914 int arg) 5915 { 5916 const struct btf_type *ctx_type; 5917 const char *tname, *ctx_tname; 5918 5919 t = btf_type_by_id(btf, t->type); 5920 5921 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5922 * check before we skip all the typedef below. 5923 */ 5924 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5925 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5926 t = btf_type_by_id(btf, t->type); 5927 5928 if (btf_type_is_typedef(t)) { 5929 tname = btf_name_by_offset(btf, t->name_off); 5930 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5931 return true; 5932 } 5933 } 5934 5935 while (btf_type_is_modifier(t)) 5936 t = btf_type_by_id(btf, t->type); 5937 if (!btf_type_is_struct(t)) { 5938 /* Only pointer to struct is supported for now. 5939 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5940 * is not supported yet. 5941 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5942 */ 5943 return false; 5944 } 5945 tname = btf_name_by_offset(btf, t->name_off); 5946 if (!tname) { 5947 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5948 return false; 5949 } 5950 5951 ctx_type = find_canonical_prog_ctx_type(prog_type); 5952 if (!ctx_type) { 5953 bpf_log(log, "btf_vmlinux is malformed\n"); 5954 /* should not happen */ 5955 return false; 5956 } 5957 again: 5958 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5959 if (!ctx_tname) { 5960 /* should not happen */ 5961 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5962 return false; 5963 } 5964 /* program types without named context types work only with arg:ctx tag */ 5965 if (ctx_tname[0] == '\0') 5966 return false; 5967 /* only compare that prog's ctx type name is the same as 5968 * kernel expects. No need to compare field by field. 5969 * It's ok for bpf prog to do: 5970 * struct __sk_buff {}; 5971 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5972 * { // no fields of skb are ever used } 5973 */ 5974 if (btf_is_projection_of(ctx_tname, tname)) 5975 return true; 5976 if (strcmp(ctx_tname, tname)) { 5977 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5978 * underlying struct and check name again 5979 */ 5980 if (!btf_type_is_modifier(ctx_type)) 5981 return false; 5982 while (btf_type_is_modifier(ctx_type)) 5983 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5984 goto again; 5985 } 5986 return true; 5987 } 5988 5989 /* forward declarations for arch-specific underlying types of 5990 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5991 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5992 * works correctly with __builtin_types_compatible_p() on respective 5993 * architectures 5994 */ 5995 struct user_regs_struct; 5996 struct user_pt_regs; 5997 5998 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5999 const struct btf_type *t, int arg, 6000 enum bpf_prog_type prog_type, 6001 enum bpf_attach_type attach_type) 6002 { 6003 const struct btf_type *ctx_type; 6004 const char *tname, *ctx_tname; 6005 6006 if (!btf_is_ptr(t)) { 6007 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 6008 return -EINVAL; 6009 } 6010 t = btf_type_by_id(btf, t->type); 6011 6012 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 6013 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 6014 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 6015 t = btf_type_by_id(btf, t->type); 6016 6017 if (btf_type_is_typedef(t)) { 6018 tname = btf_name_by_offset(btf, t->name_off); 6019 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6020 return 0; 6021 } 6022 } 6023 6024 /* all other program types don't use typedefs for context type */ 6025 while (btf_type_is_modifier(t)) 6026 t = btf_type_by_id(btf, t->type); 6027 6028 /* `void *ctx __arg_ctx` is always valid */ 6029 if (btf_type_is_void(t)) 6030 return 0; 6031 6032 tname = btf_name_by_offset(btf, t->name_off); 6033 if (str_is_empty(tname)) { 6034 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6035 return -EINVAL; 6036 } 6037 6038 /* special cases */ 6039 switch (prog_type) { 6040 case BPF_PROG_TYPE_KPROBE: 6041 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6042 return 0; 6043 break; 6044 case BPF_PROG_TYPE_PERF_EVENT: 6045 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6046 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6047 return 0; 6048 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6049 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6050 return 0; 6051 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6052 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6053 return 0; 6054 break; 6055 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6056 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6057 /* allow u64* as ctx */ 6058 if (btf_is_int(t) && t->size == 8) 6059 return 0; 6060 break; 6061 case BPF_PROG_TYPE_TRACING: 6062 switch (attach_type) { 6063 case BPF_TRACE_RAW_TP: 6064 /* tp_btf program is TRACING, so need special case here */ 6065 if (__btf_type_is_struct(t) && 6066 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6067 return 0; 6068 /* allow u64* as ctx */ 6069 if (btf_is_int(t) && t->size == 8) 6070 return 0; 6071 break; 6072 case BPF_TRACE_ITER: 6073 /* allow struct bpf_iter__xxx types only */ 6074 if (__btf_type_is_struct(t) && 6075 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6076 return 0; 6077 break; 6078 case BPF_TRACE_FENTRY: 6079 case BPF_TRACE_FEXIT: 6080 case BPF_MODIFY_RETURN: 6081 /* allow u64* as ctx */ 6082 if (btf_is_int(t) && t->size == 8) 6083 return 0; 6084 break; 6085 default: 6086 break; 6087 } 6088 break; 6089 case BPF_PROG_TYPE_LSM: 6090 case BPF_PROG_TYPE_STRUCT_OPS: 6091 /* allow u64* as ctx */ 6092 if (btf_is_int(t) && t->size == 8) 6093 return 0; 6094 break; 6095 case BPF_PROG_TYPE_TRACEPOINT: 6096 case BPF_PROG_TYPE_SYSCALL: 6097 case BPF_PROG_TYPE_EXT: 6098 return 0; /* anything goes */ 6099 default: 6100 break; 6101 } 6102 6103 ctx_type = find_canonical_prog_ctx_type(prog_type); 6104 if (!ctx_type) { 6105 /* should not happen */ 6106 bpf_log(log, "btf_vmlinux is malformed\n"); 6107 return -EINVAL; 6108 } 6109 6110 /* resolve typedefs and check that underlying structs are matching as well */ 6111 while (btf_type_is_modifier(ctx_type)) 6112 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6113 6114 /* if program type doesn't have distinctly named struct type for 6115 * context, then __arg_ctx argument can only be `void *`, which we 6116 * already checked above 6117 */ 6118 if (!__btf_type_is_struct(ctx_type)) { 6119 bpf_log(log, "arg#%d should be void pointer\n", arg); 6120 return -EINVAL; 6121 } 6122 6123 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6124 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6125 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6126 return -EINVAL; 6127 } 6128 6129 return 0; 6130 } 6131 6132 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6133 struct btf *btf, 6134 const struct btf_type *t, 6135 enum bpf_prog_type prog_type, 6136 int arg) 6137 { 6138 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6139 return -ENOENT; 6140 return find_kern_ctx_type_id(prog_type); 6141 } 6142 6143 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6144 { 6145 const struct btf_member *kctx_member; 6146 const struct btf_type *conv_struct; 6147 const struct btf_type *kctx_type; 6148 u32 kctx_type_id; 6149 6150 conv_struct = bpf_ctx_convert.t; 6151 /* get member for kernel ctx type */ 6152 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6153 kctx_type_id = kctx_member->type; 6154 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6155 if (!btf_type_is_struct(kctx_type)) { 6156 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6157 return -EINVAL; 6158 } 6159 6160 return kctx_type_id; 6161 } 6162 6163 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6164 BTF_ID(struct, bpf_ctx_convert) 6165 6166 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6167 void *data, unsigned int data_size) 6168 { 6169 struct btf *btf = NULL; 6170 int err; 6171 6172 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6173 return ERR_PTR(-ENOENT); 6174 6175 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6176 if (!btf) { 6177 err = -ENOMEM; 6178 goto errout; 6179 } 6180 env->btf = btf; 6181 6182 btf->data = data; 6183 btf->data_size = data_size; 6184 btf->kernel_btf = true; 6185 snprintf(btf->name, sizeof(btf->name), "%s", name); 6186 6187 err = btf_parse_hdr(env); 6188 if (err) 6189 goto errout; 6190 6191 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6192 6193 err = btf_parse_str_sec(env); 6194 if (err) 6195 goto errout; 6196 6197 err = btf_check_all_metas(env); 6198 if (err) 6199 goto errout; 6200 6201 err = btf_check_type_tags(env, btf, 1); 6202 if (err) 6203 goto errout; 6204 6205 refcount_set(&btf->refcnt, 1); 6206 6207 return btf; 6208 6209 errout: 6210 if (btf) { 6211 kvfree(btf->types); 6212 kfree(btf); 6213 } 6214 return ERR_PTR(err); 6215 } 6216 6217 struct btf *btf_parse_vmlinux(void) 6218 { 6219 struct btf_verifier_env *env = NULL; 6220 struct bpf_verifier_log *log; 6221 struct btf *btf; 6222 int err; 6223 6224 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6225 if (!env) 6226 return ERR_PTR(-ENOMEM); 6227 6228 log = &env->log; 6229 log->level = BPF_LOG_KERNEL; 6230 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6231 if (IS_ERR(btf)) 6232 goto err_out; 6233 6234 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6235 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6236 err = btf_alloc_id(btf); 6237 if (err) { 6238 btf_free(btf); 6239 btf = ERR_PTR(err); 6240 } 6241 err_out: 6242 btf_verifier_env_free(env); 6243 return btf; 6244 } 6245 6246 /* If .BTF_ids section was created with distilled base BTF, both base and 6247 * split BTF ids will need to be mapped to actual base/split ids for 6248 * BTF now that it has been relocated. 6249 */ 6250 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6251 { 6252 if (!btf->base_btf || !btf->base_id_map) 6253 return id; 6254 return btf->base_id_map[id]; 6255 } 6256 6257 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6258 6259 static struct btf *btf_parse_module(const char *module_name, const void *data, 6260 unsigned int data_size, void *base_data, 6261 unsigned int base_data_size) 6262 { 6263 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6264 struct btf_verifier_env *env = NULL; 6265 struct bpf_verifier_log *log; 6266 int err = 0; 6267 6268 vmlinux_btf = bpf_get_btf_vmlinux(); 6269 if (IS_ERR(vmlinux_btf)) 6270 return vmlinux_btf; 6271 if (!vmlinux_btf) 6272 return ERR_PTR(-EINVAL); 6273 6274 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6275 if (!env) 6276 return ERR_PTR(-ENOMEM); 6277 6278 log = &env->log; 6279 log->level = BPF_LOG_KERNEL; 6280 6281 if (base_data) { 6282 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6283 if (IS_ERR(base_btf)) { 6284 err = PTR_ERR(base_btf); 6285 goto errout; 6286 } 6287 } else { 6288 base_btf = vmlinux_btf; 6289 } 6290 6291 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6292 if (!btf) { 6293 err = -ENOMEM; 6294 goto errout; 6295 } 6296 env->btf = btf; 6297 6298 btf->base_btf = base_btf; 6299 btf->start_id = base_btf->nr_types; 6300 btf->start_str_off = base_btf->hdr.str_len; 6301 btf->kernel_btf = true; 6302 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6303 6304 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6305 if (!btf->data) { 6306 err = -ENOMEM; 6307 goto errout; 6308 } 6309 btf->data_size = data_size; 6310 6311 err = btf_parse_hdr(env); 6312 if (err) 6313 goto errout; 6314 6315 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6316 6317 err = btf_parse_str_sec(env); 6318 if (err) 6319 goto errout; 6320 6321 err = btf_check_all_metas(env); 6322 if (err) 6323 goto errout; 6324 6325 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6326 if (err) 6327 goto errout; 6328 6329 if (base_btf != vmlinux_btf) { 6330 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6331 if (err) 6332 goto errout; 6333 btf_free(base_btf); 6334 base_btf = vmlinux_btf; 6335 } 6336 6337 btf_verifier_env_free(env); 6338 refcount_set(&btf->refcnt, 1); 6339 return btf; 6340 6341 errout: 6342 btf_verifier_env_free(env); 6343 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6344 btf_free(base_btf); 6345 if (btf) { 6346 kvfree(btf->data); 6347 kvfree(btf->types); 6348 kfree(btf); 6349 } 6350 return ERR_PTR(err); 6351 } 6352 6353 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6354 6355 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6356 { 6357 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6358 6359 if (tgt_prog) 6360 return tgt_prog->aux->btf; 6361 else 6362 return prog->aux->attach_btf; 6363 } 6364 6365 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6366 { 6367 /* skip modifiers */ 6368 t = btf_type_skip_modifiers(btf, t->type, NULL); 6369 6370 return btf_type_is_int(t); 6371 } 6372 6373 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6374 int off) 6375 { 6376 const struct btf_param *args; 6377 const struct btf_type *t; 6378 u32 offset = 0, nr_args; 6379 int i; 6380 6381 if (!func_proto) 6382 return off / 8; 6383 6384 nr_args = btf_type_vlen(func_proto); 6385 args = (const struct btf_param *)(func_proto + 1); 6386 for (i = 0; i < nr_args; i++) { 6387 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6388 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6389 if (off < offset) 6390 return i; 6391 } 6392 6393 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6394 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6395 if (off < offset) 6396 return nr_args; 6397 6398 return nr_args + 1; 6399 } 6400 6401 static bool prog_args_trusted(const struct bpf_prog *prog) 6402 { 6403 enum bpf_attach_type atype = prog->expected_attach_type; 6404 6405 switch (prog->type) { 6406 case BPF_PROG_TYPE_TRACING: 6407 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6408 case BPF_PROG_TYPE_LSM: 6409 return bpf_lsm_is_trusted(prog); 6410 case BPF_PROG_TYPE_STRUCT_OPS: 6411 return true; 6412 default: 6413 return false; 6414 } 6415 } 6416 6417 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6418 u32 arg_no) 6419 { 6420 const struct btf_param *args; 6421 const struct btf_type *t; 6422 int off = 0, i; 6423 u32 sz; 6424 6425 args = btf_params(func_proto); 6426 for (i = 0; i < arg_no; i++) { 6427 t = btf_type_by_id(btf, args[i].type); 6428 t = btf_resolve_size(btf, t, &sz); 6429 if (IS_ERR(t)) 6430 return PTR_ERR(t); 6431 off += roundup(sz, 8); 6432 } 6433 6434 return off; 6435 } 6436 6437 struct bpf_raw_tp_null_args { 6438 const char *func; 6439 u64 mask; 6440 }; 6441 6442 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { 6443 /* sched */ 6444 { "sched_pi_setprio", 0x10 }, 6445 /* ... from sched_numa_pair_template event class */ 6446 { "sched_stick_numa", 0x100 }, 6447 { "sched_swap_numa", 0x100 }, 6448 /* afs */ 6449 { "afs_make_fs_call", 0x10 }, 6450 { "afs_make_fs_calli", 0x10 }, 6451 { "afs_make_fs_call1", 0x10 }, 6452 { "afs_make_fs_call2", 0x10 }, 6453 { "afs_protocol_error", 0x1 }, 6454 { "afs_flock_ev", 0x10 }, 6455 /* cachefiles */ 6456 { "cachefiles_lookup", 0x1 | 0x200 }, 6457 { "cachefiles_unlink", 0x1 }, 6458 { "cachefiles_rename", 0x1 }, 6459 { "cachefiles_prep_read", 0x1 }, 6460 { "cachefiles_mark_active", 0x1 }, 6461 { "cachefiles_mark_failed", 0x1 }, 6462 { "cachefiles_mark_inactive", 0x1 }, 6463 { "cachefiles_vfs_error", 0x1 }, 6464 { "cachefiles_io_error", 0x1 }, 6465 { "cachefiles_ondemand_open", 0x1 }, 6466 { "cachefiles_ondemand_copen", 0x1 }, 6467 { "cachefiles_ondemand_close", 0x1 }, 6468 { "cachefiles_ondemand_read", 0x1 }, 6469 { "cachefiles_ondemand_cread", 0x1 }, 6470 { "cachefiles_ondemand_fd_write", 0x1 }, 6471 { "cachefiles_ondemand_fd_release", 0x1 }, 6472 /* ext4, from ext4__mballoc event class */ 6473 { "ext4_mballoc_discard", 0x10 }, 6474 { "ext4_mballoc_free", 0x10 }, 6475 /* fib */ 6476 { "fib_table_lookup", 0x100 }, 6477 /* filelock */ 6478 /* ... from filelock_lock event class */ 6479 { "posix_lock_inode", 0x10 }, 6480 { "fcntl_setlk", 0x10 }, 6481 { "locks_remove_posix", 0x10 }, 6482 { "flock_lock_inode", 0x10 }, 6483 /* ... from filelock_lease event class */ 6484 { "break_lease_noblock", 0x10 }, 6485 { "break_lease_block", 0x10 }, 6486 { "break_lease_unblock", 0x10 }, 6487 { "generic_delete_lease", 0x10 }, 6488 { "time_out_leases", 0x10 }, 6489 /* host1x */ 6490 { "host1x_cdma_push_gather", 0x10000 }, 6491 /* huge_memory */ 6492 { "mm_khugepaged_scan_pmd", 0x10 }, 6493 { "mm_collapse_huge_page_isolate", 0x1 }, 6494 { "mm_khugepaged_scan_file", 0x10 }, 6495 { "mm_khugepaged_collapse_file", 0x10 }, 6496 /* kmem */ 6497 { "mm_page_alloc", 0x1 }, 6498 { "mm_page_pcpu_drain", 0x1 }, 6499 /* .. from mm_page event class */ 6500 { "mm_page_alloc_zone_locked", 0x1 }, 6501 /* netfs */ 6502 { "netfs_failure", 0x10 }, 6503 /* power */ 6504 { "device_pm_callback_start", 0x10 }, 6505 /* qdisc */ 6506 { "qdisc_dequeue", 0x1000 }, 6507 /* rxrpc */ 6508 { "rxrpc_recvdata", 0x1 }, 6509 { "rxrpc_resend", 0x10 }, 6510 /* sunrpc */ 6511 { "xs_stream_read_data", 0x1 }, 6512 /* ... from xprt_cong_event event class */ 6513 { "xprt_reserve_cong", 0x10 }, 6514 { "xprt_release_cong", 0x10 }, 6515 { "xprt_get_cong", 0x10 }, 6516 { "xprt_put_cong", 0x10 }, 6517 /* tcp */ 6518 { "tcp_send_reset", 0x11 }, 6519 /* tegra_apb_dma */ 6520 { "tegra_dma_tx_status", 0x100 }, 6521 /* timer_migration */ 6522 { "tmigr_update_events", 0x1 }, 6523 /* writeback, from writeback_folio_template event class */ 6524 { "writeback_dirty_folio", 0x10 }, 6525 { "folio_wait_writeback", 0x10 }, 6526 /* rdma */ 6527 { "mr_integ_alloc", 0x2000 }, 6528 /* bpf_testmod */ 6529 { "bpf_testmod_test_read", 0x0 }, 6530 }; 6531 6532 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6533 const struct bpf_prog *prog, 6534 struct bpf_insn_access_aux *info) 6535 { 6536 const struct btf_type *t = prog->aux->attach_func_proto; 6537 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6538 struct btf *btf = bpf_prog_get_target_btf(prog); 6539 const char *tname = prog->aux->attach_func_name; 6540 struct bpf_verifier_log *log = info->log; 6541 const struct btf_param *args; 6542 bool ptr_err_raw_tp = false; 6543 const char *tag_value; 6544 u32 nr_args, arg; 6545 int i, ret; 6546 6547 if (off % 8) { 6548 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6549 tname, off); 6550 return false; 6551 } 6552 arg = get_ctx_arg_idx(btf, t, off); 6553 args = (const struct btf_param *)(t + 1); 6554 /* if (t == NULL) Fall back to default BPF prog with 6555 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6556 */ 6557 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6558 if (prog->aux->attach_btf_trace) { 6559 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6560 args++; 6561 nr_args--; 6562 } 6563 6564 if (arg > nr_args) { 6565 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6566 tname, arg + 1); 6567 return false; 6568 } 6569 6570 if (arg == nr_args) { 6571 switch (prog->expected_attach_type) { 6572 case BPF_LSM_MAC: 6573 /* mark we are accessing the return value */ 6574 info->is_retval = true; 6575 fallthrough; 6576 case BPF_LSM_CGROUP: 6577 case BPF_TRACE_FEXIT: 6578 /* When LSM programs are attached to void LSM hooks 6579 * they use FEXIT trampolines and when attached to 6580 * int LSM hooks, they use MODIFY_RETURN trampolines. 6581 * 6582 * While the LSM programs are BPF_MODIFY_RETURN-like 6583 * the check: 6584 * 6585 * if (ret_type != 'int') 6586 * return -EINVAL; 6587 * 6588 * is _not_ done here. This is still safe as LSM hooks 6589 * have only void and int return types. 6590 */ 6591 if (!t) 6592 return true; 6593 t = btf_type_by_id(btf, t->type); 6594 break; 6595 case BPF_MODIFY_RETURN: 6596 /* For now the BPF_MODIFY_RETURN can only be attached to 6597 * functions that return an int. 6598 */ 6599 if (!t) 6600 return false; 6601 6602 t = btf_type_skip_modifiers(btf, t->type, NULL); 6603 if (!btf_type_is_small_int(t)) { 6604 bpf_log(log, 6605 "ret type %s not allowed for fmod_ret\n", 6606 btf_type_str(t)); 6607 return false; 6608 } 6609 break; 6610 default: 6611 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6612 tname, arg + 1); 6613 return false; 6614 } 6615 } else { 6616 if (!t) 6617 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6618 return true; 6619 t = btf_type_by_id(btf, args[arg].type); 6620 } 6621 6622 /* skip modifiers */ 6623 while (btf_type_is_modifier(t)) 6624 t = btf_type_by_id(btf, t->type); 6625 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6626 /* accessing a scalar */ 6627 return true; 6628 if (!btf_type_is_ptr(t)) { 6629 bpf_log(log, 6630 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6631 tname, arg, 6632 __btf_name_by_offset(btf, t->name_off), 6633 btf_type_str(t)); 6634 return false; 6635 } 6636 6637 if (size != sizeof(u64)) { 6638 bpf_log(log, "func '%s' size %d must be 8\n", 6639 tname, size); 6640 return false; 6641 } 6642 6643 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6644 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6645 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6646 u32 type, flag; 6647 6648 type = base_type(ctx_arg_info->reg_type); 6649 flag = type_flag(ctx_arg_info->reg_type); 6650 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6651 (flag & PTR_MAYBE_NULL)) { 6652 info->reg_type = ctx_arg_info->reg_type; 6653 return true; 6654 } 6655 } 6656 6657 if (t->type == 0) 6658 /* This is a pointer to void. 6659 * It is the same as scalar from the verifier safety pov. 6660 * No further pointer walking is allowed. 6661 */ 6662 return true; 6663 6664 if (is_int_ptr(btf, t)) 6665 return true; 6666 6667 /* this is a pointer to another type */ 6668 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6669 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6670 6671 if (ctx_arg_info->offset == off) { 6672 if (!ctx_arg_info->btf_id) { 6673 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6674 return false; 6675 } 6676 6677 info->reg_type = ctx_arg_info->reg_type; 6678 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6679 info->btf_id = ctx_arg_info->btf_id; 6680 return true; 6681 } 6682 } 6683 6684 info->reg_type = PTR_TO_BTF_ID; 6685 if (prog_args_trusted(prog)) 6686 info->reg_type |= PTR_TRUSTED; 6687 6688 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6689 info->reg_type |= PTR_MAYBE_NULL; 6690 6691 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 6692 struct btf *btf = prog->aux->attach_btf; 6693 const struct btf_type *t; 6694 const char *tname; 6695 6696 /* BTF lookups cannot fail, return false on error */ 6697 t = btf_type_by_id(btf, prog->aux->attach_btf_id); 6698 if (!t) 6699 return false; 6700 tname = btf_name_by_offset(btf, t->name_off); 6701 if (!tname) 6702 return false; 6703 /* Checked by bpf_check_attach_target */ 6704 tname += sizeof("btf_trace_") - 1; 6705 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { 6706 /* Is this a func with potential NULL args? */ 6707 if (strcmp(tname, raw_tp_null_args[i].func)) 6708 continue; 6709 if (raw_tp_null_args[i].mask & (0x1 << (arg * 4))) 6710 info->reg_type |= PTR_MAYBE_NULL; 6711 /* Is the current arg IS_ERR? */ 6712 if (raw_tp_null_args[i].mask & (0x2 << (arg * 4))) 6713 ptr_err_raw_tp = true; 6714 break; 6715 } 6716 /* If we don't know NULL-ness specification and the tracepoint 6717 * is coming from a loadable module, be conservative and mark 6718 * argument as PTR_MAYBE_NULL. 6719 */ 6720 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) 6721 info->reg_type |= PTR_MAYBE_NULL; 6722 } 6723 6724 if (tgt_prog) { 6725 enum bpf_prog_type tgt_type; 6726 6727 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6728 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6729 else 6730 tgt_type = tgt_prog->type; 6731 6732 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6733 if (ret > 0) { 6734 info->btf = btf_vmlinux; 6735 info->btf_id = ret; 6736 return true; 6737 } else { 6738 return false; 6739 } 6740 } 6741 6742 info->btf = btf; 6743 info->btf_id = t->type; 6744 t = btf_type_by_id(btf, t->type); 6745 6746 if (btf_type_is_type_tag(t)) { 6747 tag_value = __btf_name_by_offset(btf, t->name_off); 6748 if (strcmp(tag_value, "user") == 0) 6749 info->reg_type |= MEM_USER; 6750 if (strcmp(tag_value, "percpu") == 0) 6751 info->reg_type |= MEM_PERCPU; 6752 } 6753 6754 /* skip modifiers */ 6755 while (btf_type_is_modifier(t)) { 6756 info->btf_id = t->type; 6757 t = btf_type_by_id(btf, t->type); 6758 } 6759 if (!btf_type_is_struct(t)) { 6760 bpf_log(log, 6761 "func '%s' arg%d type %s is not a struct\n", 6762 tname, arg, btf_type_str(t)); 6763 return false; 6764 } 6765 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6766 tname, arg, info->btf_id, btf_type_str(t), 6767 __btf_name_by_offset(btf, t->name_off)); 6768 6769 /* Perform all checks on the validity of type for this argument, but if 6770 * we know it can be IS_ERR at runtime, scrub pointer type and mark as 6771 * scalar. 6772 */ 6773 if (ptr_err_raw_tp) { 6774 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); 6775 info->reg_type = SCALAR_VALUE; 6776 } 6777 return true; 6778 } 6779 EXPORT_SYMBOL_GPL(btf_ctx_access); 6780 6781 enum bpf_struct_walk_result { 6782 /* < 0 error */ 6783 WALK_SCALAR = 0, 6784 WALK_PTR, 6785 WALK_STRUCT, 6786 }; 6787 6788 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6789 const struct btf_type *t, int off, int size, 6790 u32 *next_btf_id, enum bpf_type_flag *flag, 6791 const char **field_name) 6792 { 6793 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6794 const struct btf_type *mtype, *elem_type = NULL; 6795 const struct btf_member *member; 6796 const char *tname, *mname, *tag_value; 6797 u32 vlen, elem_id, mid; 6798 6799 again: 6800 if (btf_type_is_modifier(t)) 6801 t = btf_type_skip_modifiers(btf, t->type, NULL); 6802 tname = __btf_name_by_offset(btf, t->name_off); 6803 if (!btf_type_is_struct(t)) { 6804 bpf_log(log, "Type '%s' is not a struct\n", tname); 6805 return -EINVAL; 6806 } 6807 6808 vlen = btf_type_vlen(t); 6809 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6810 /* 6811 * walking unions yields untrusted pointers 6812 * with exception of __bpf_md_ptr and other 6813 * unions with a single member 6814 */ 6815 *flag |= PTR_UNTRUSTED; 6816 6817 if (off + size > t->size) { 6818 /* If the last element is a variable size array, we may 6819 * need to relax the rule. 6820 */ 6821 struct btf_array *array_elem; 6822 6823 if (vlen == 0) 6824 goto error; 6825 6826 member = btf_type_member(t) + vlen - 1; 6827 mtype = btf_type_skip_modifiers(btf, member->type, 6828 NULL); 6829 if (!btf_type_is_array(mtype)) 6830 goto error; 6831 6832 array_elem = (struct btf_array *)(mtype + 1); 6833 if (array_elem->nelems != 0) 6834 goto error; 6835 6836 moff = __btf_member_bit_offset(t, member) / 8; 6837 if (off < moff) 6838 goto error; 6839 6840 /* allow structure and integer */ 6841 t = btf_type_skip_modifiers(btf, array_elem->type, 6842 NULL); 6843 6844 if (btf_type_is_int(t)) 6845 return WALK_SCALAR; 6846 6847 if (!btf_type_is_struct(t)) 6848 goto error; 6849 6850 off = (off - moff) % t->size; 6851 goto again; 6852 6853 error: 6854 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6855 tname, off, size); 6856 return -EACCES; 6857 } 6858 6859 for_each_member(i, t, member) { 6860 /* offset of the field in bytes */ 6861 moff = __btf_member_bit_offset(t, member) / 8; 6862 if (off + size <= moff) 6863 /* won't find anything, field is already too far */ 6864 break; 6865 6866 if (__btf_member_bitfield_size(t, member)) { 6867 u32 end_bit = __btf_member_bit_offset(t, member) + 6868 __btf_member_bitfield_size(t, member); 6869 6870 /* off <= moff instead of off == moff because clang 6871 * does not generate a BTF member for anonymous 6872 * bitfield like the ":16" here: 6873 * struct { 6874 * int :16; 6875 * int x:8; 6876 * }; 6877 */ 6878 if (off <= moff && 6879 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6880 return WALK_SCALAR; 6881 6882 /* off may be accessing a following member 6883 * 6884 * or 6885 * 6886 * Doing partial access at either end of this 6887 * bitfield. Continue on this case also to 6888 * treat it as not accessing this bitfield 6889 * and eventually error out as field not 6890 * found to keep it simple. 6891 * It could be relaxed if there was a legit 6892 * partial access case later. 6893 */ 6894 continue; 6895 } 6896 6897 /* In case of "off" is pointing to holes of a struct */ 6898 if (off < moff) 6899 break; 6900 6901 /* type of the field */ 6902 mid = member->type; 6903 mtype = btf_type_by_id(btf, member->type); 6904 mname = __btf_name_by_offset(btf, member->name_off); 6905 6906 mtype = __btf_resolve_size(btf, mtype, &msize, 6907 &elem_type, &elem_id, &total_nelems, 6908 &mid); 6909 if (IS_ERR(mtype)) { 6910 bpf_log(log, "field %s doesn't have size\n", mname); 6911 return -EFAULT; 6912 } 6913 6914 mtrue_end = moff + msize; 6915 if (off >= mtrue_end) 6916 /* no overlap with member, keep iterating */ 6917 continue; 6918 6919 if (btf_type_is_array(mtype)) { 6920 u32 elem_idx; 6921 6922 /* __btf_resolve_size() above helps to 6923 * linearize a multi-dimensional array. 6924 * 6925 * The logic here is treating an array 6926 * in a struct as the following way: 6927 * 6928 * struct outer { 6929 * struct inner array[2][2]; 6930 * }; 6931 * 6932 * looks like: 6933 * 6934 * struct outer { 6935 * struct inner array_elem0; 6936 * struct inner array_elem1; 6937 * struct inner array_elem2; 6938 * struct inner array_elem3; 6939 * }; 6940 * 6941 * When accessing outer->array[1][0], it moves 6942 * moff to "array_elem2", set mtype to 6943 * "struct inner", and msize also becomes 6944 * sizeof(struct inner). Then most of the 6945 * remaining logic will fall through without 6946 * caring the current member is an array or 6947 * not. 6948 * 6949 * Unlike mtype/msize/moff, mtrue_end does not 6950 * change. The naming difference ("_true") tells 6951 * that it is not always corresponding to 6952 * the current mtype/msize/moff. 6953 * It is the true end of the current 6954 * member (i.e. array in this case). That 6955 * will allow an int array to be accessed like 6956 * a scratch space, 6957 * i.e. allow access beyond the size of 6958 * the array's element as long as it is 6959 * within the mtrue_end boundary. 6960 */ 6961 6962 /* skip empty array */ 6963 if (moff == mtrue_end) 6964 continue; 6965 6966 msize /= total_nelems; 6967 elem_idx = (off - moff) / msize; 6968 moff += elem_idx * msize; 6969 mtype = elem_type; 6970 mid = elem_id; 6971 } 6972 6973 /* the 'off' we're looking for is either equal to start 6974 * of this field or inside of this struct 6975 */ 6976 if (btf_type_is_struct(mtype)) { 6977 /* our field must be inside that union or struct */ 6978 t = mtype; 6979 6980 /* return if the offset matches the member offset */ 6981 if (off == moff) { 6982 *next_btf_id = mid; 6983 return WALK_STRUCT; 6984 } 6985 6986 /* adjust offset we're looking for */ 6987 off -= moff; 6988 goto again; 6989 } 6990 6991 if (btf_type_is_ptr(mtype)) { 6992 const struct btf_type *stype, *t; 6993 enum bpf_type_flag tmp_flag = 0; 6994 u32 id; 6995 6996 if (msize != size || off != moff) { 6997 bpf_log(log, 6998 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6999 mname, moff, tname, off, size); 7000 return -EACCES; 7001 } 7002 7003 /* check type tag */ 7004 t = btf_type_by_id(btf, mtype->type); 7005 if (btf_type_is_type_tag(t)) { 7006 tag_value = __btf_name_by_offset(btf, t->name_off); 7007 /* check __user tag */ 7008 if (strcmp(tag_value, "user") == 0) 7009 tmp_flag = MEM_USER; 7010 /* check __percpu tag */ 7011 if (strcmp(tag_value, "percpu") == 0) 7012 tmp_flag = MEM_PERCPU; 7013 /* check __rcu tag */ 7014 if (strcmp(tag_value, "rcu") == 0) 7015 tmp_flag = MEM_RCU; 7016 } 7017 7018 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 7019 if (btf_type_is_struct(stype)) { 7020 *next_btf_id = id; 7021 *flag |= tmp_flag; 7022 if (field_name) 7023 *field_name = mname; 7024 return WALK_PTR; 7025 } 7026 } 7027 7028 /* Allow more flexible access within an int as long as 7029 * it is within mtrue_end. 7030 * Since mtrue_end could be the end of an array, 7031 * that also allows using an array of int as a scratch 7032 * space. e.g. skb->cb[]. 7033 */ 7034 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 7035 bpf_log(log, 7036 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 7037 mname, mtrue_end, tname, off, size); 7038 return -EACCES; 7039 } 7040 7041 return WALK_SCALAR; 7042 } 7043 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 7044 return -EINVAL; 7045 } 7046 7047 int btf_struct_access(struct bpf_verifier_log *log, 7048 const struct bpf_reg_state *reg, 7049 int off, int size, enum bpf_access_type atype __maybe_unused, 7050 u32 *next_btf_id, enum bpf_type_flag *flag, 7051 const char **field_name) 7052 { 7053 const struct btf *btf = reg->btf; 7054 enum bpf_type_flag tmp_flag = 0; 7055 const struct btf_type *t; 7056 u32 id = reg->btf_id; 7057 int err; 7058 7059 while (type_is_alloc(reg->type)) { 7060 struct btf_struct_meta *meta; 7061 struct btf_record *rec; 7062 int i; 7063 7064 meta = btf_find_struct_meta(btf, id); 7065 if (!meta) 7066 break; 7067 rec = meta->record; 7068 for (i = 0; i < rec->cnt; i++) { 7069 struct btf_field *field = &rec->fields[i]; 7070 u32 offset = field->offset; 7071 if (off < offset + field->size && offset < off + size) { 7072 bpf_log(log, 7073 "direct access to %s is disallowed\n", 7074 btf_field_type_name(field->type)); 7075 return -EACCES; 7076 } 7077 } 7078 break; 7079 } 7080 7081 t = btf_type_by_id(btf, id); 7082 do { 7083 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 7084 7085 switch (err) { 7086 case WALK_PTR: 7087 /* For local types, the destination register cannot 7088 * become a pointer again. 7089 */ 7090 if (type_is_alloc(reg->type)) 7091 return SCALAR_VALUE; 7092 /* If we found the pointer or scalar on t+off, 7093 * we're done. 7094 */ 7095 *next_btf_id = id; 7096 *flag = tmp_flag; 7097 return PTR_TO_BTF_ID; 7098 case WALK_SCALAR: 7099 return SCALAR_VALUE; 7100 case WALK_STRUCT: 7101 /* We found nested struct, so continue the search 7102 * by diving in it. At this point the offset is 7103 * aligned with the new type, so set it to 0. 7104 */ 7105 t = btf_type_by_id(btf, id); 7106 off = 0; 7107 break; 7108 default: 7109 /* It's either error or unknown return value.. 7110 * scream and leave. 7111 */ 7112 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 7113 return -EINVAL; 7114 return err; 7115 } 7116 } while (t); 7117 7118 return -EINVAL; 7119 } 7120 7121 /* Check that two BTF types, each specified as an BTF object + id, are exactly 7122 * the same. Trivial ID check is not enough due to module BTFs, because we can 7123 * end up with two different module BTFs, but IDs point to the common type in 7124 * vmlinux BTF. 7125 */ 7126 bool btf_types_are_same(const struct btf *btf1, u32 id1, 7127 const struct btf *btf2, u32 id2) 7128 { 7129 if (id1 != id2) 7130 return false; 7131 if (btf1 == btf2) 7132 return true; 7133 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 7134 } 7135 7136 bool btf_struct_ids_match(struct bpf_verifier_log *log, 7137 const struct btf *btf, u32 id, int off, 7138 const struct btf *need_btf, u32 need_type_id, 7139 bool strict) 7140 { 7141 const struct btf_type *type; 7142 enum bpf_type_flag flag = 0; 7143 int err; 7144 7145 /* Are we already done? */ 7146 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 7147 return true; 7148 /* In case of strict type match, we do not walk struct, the top level 7149 * type match must succeed. When strict is true, off should have already 7150 * been 0. 7151 */ 7152 if (strict) 7153 return false; 7154 again: 7155 type = btf_type_by_id(btf, id); 7156 if (!type) 7157 return false; 7158 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 7159 if (err != WALK_STRUCT) 7160 return false; 7161 7162 /* We found nested struct object. If it matches 7163 * the requested ID, we're done. Otherwise let's 7164 * continue the search with offset 0 in the new 7165 * type. 7166 */ 7167 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7168 off = 0; 7169 goto again; 7170 } 7171 7172 return true; 7173 } 7174 7175 static int __get_type_size(struct btf *btf, u32 btf_id, 7176 const struct btf_type **ret_type) 7177 { 7178 const struct btf_type *t; 7179 7180 *ret_type = btf_type_by_id(btf, 0); 7181 if (!btf_id) 7182 /* void */ 7183 return 0; 7184 t = btf_type_by_id(btf, btf_id); 7185 while (t && btf_type_is_modifier(t)) 7186 t = btf_type_by_id(btf, t->type); 7187 if (!t) 7188 return -EINVAL; 7189 *ret_type = t; 7190 if (btf_type_is_ptr(t)) 7191 /* kernel size of pointer. Not BPF's size of pointer*/ 7192 return sizeof(void *); 7193 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7194 return t->size; 7195 return -EINVAL; 7196 } 7197 7198 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7199 { 7200 u8 flags = 0; 7201 7202 if (__btf_type_is_struct(t)) 7203 flags |= BTF_FMODEL_STRUCT_ARG; 7204 if (btf_type_is_signed_int(t)) 7205 flags |= BTF_FMODEL_SIGNED_ARG; 7206 7207 return flags; 7208 } 7209 7210 int btf_distill_func_proto(struct bpf_verifier_log *log, 7211 struct btf *btf, 7212 const struct btf_type *func, 7213 const char *tname, 7214 struct btf_func_model *m) 7215 { 7216 const struct btf_param *args; 7217 const struct btf_type *t; 7218 u32 i, nargs; 7219 int ret; 7220 7221 if (!func) { 7222 /* BTF function prototype doesn't match the verifier types. 7223 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7224 */ 7225 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7226 m->arg_size[i] = 8; 7227 m->arg_flags[i] = 0; 7228 } 7229 m->ret_size = 8; 7230 m->ret_flags = 0; 7231 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7232 return 0; 7233 } 7234 args = (const struct btf_param *)(func + 1); 7235 nargs = btf_type_vlen(func); 7236 if (nargs > MAX_BPF_FUNC_ARGS) { 7237 bpf_log(log, 7238 "The function %s has %d arguments. Too many.\n", 7239 tname, nargs); 7240 return -EINVAL; 7241 } 7242 ret = __get_type_size(btf, func->type, &t); 7243 if (ret < 0 || __btf_type_is_struct(t)) { 7244 bpf_log(log, 7245 "The function %s return type %s is unsupported.\n", 7246 tname, btf_type_str(t)); 7247 return -EINVAL; 7248 } 7249 m->ret_size = ret; 7250 m->ret_flags = __get_type_fmodel_flags(t); 7251 7252 for (i = 0; i < nargs; i++) { 7253 if (i == nargs - 1 && args[i].type == 0) { 7254 bpf_log(log, 7255 "The function %s with variable args is unsupported.\n", 7256 tname); 7257 return -EINVAL; 7258 } 7259 ret = __get_type_size(btf, args[i].type, &t); 7260 7261 /* No support of struct argument size greater than 16 bytes */ 7262 if (ret < 0 || ret > 16) { 7263 bpf_log(log, 7264 "The function %s arg%d type %s is unsupported.\n", 7265 tname, i, btf_type_str(t)); 7266 return -EINVAL; 7267 } 7268 if (ret == 0) { 7269 bpf_log(log, 7270 "The function %s has malformed void argument.\n", 7271 tname); 7272 return -EINVAL; 7273 } 7274 m->arg_size[i] = ret; 7275 m->arg_flags[i] = __get_type_fmodel_flags(t); 7276 } 7277 m->nr_args = nargs; 7278 return 0; 7279 } 7280 7281 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7282 * t1 points to BTF_KIND_FUNC in btf1 7283 * t2 points to BTF_KIND_FUNC in btf2 7284 * Returns: 7285 * EINVAL - function prototype mismatch 7286 * EFAULT - verifier bug 7287 * 0 - 99% match. The last 1% is validated by the verifier. 7288 */ 7289 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7290 struct btf *btf1, const struct btf_type *t1, 7291 struct btf *btf2, const struct btf_type *t2) 7292 { 7293 const struct btf_param *args1, *args2; 7294 const char *fn1, *fn2, *s1, *s2; 7295 u32 nargs1, nargs2, i; 7296 7297 fn1 = btf_name_by_offset(btf1, t1->name_off); 7298 fn2 = btf_name_by_offset(btf2, t2->name_off); 7299 7300 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7301 bpf_log(log, "%s() is not a global function\n", fn1); 7302 return -EINVAL; 7303 } 7304 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7305 bpf_log(log, "%s() is not a global function\n", fn2); 7306 return -EINVAL; 7307 } 7308 7309 t1 = btf_type_by_id(btf1, t1->type); 7310 if (!t1 || !btf_type_is_func_proto(t1)) 7311 return -EFAULT; 7312 t2 = btf_type_by_id(btf2, t2->type); 7313 if (!t2 || !btf_type_is_func_proto(t2)) 7314 return -EFAULT; 7315 7316 args1 = (const struct btf_param *)(t1 + 1); 7317 nargs1 = btf_type_vlen(t1); 7318 args2 = (const struct btf_param *)(t2 + 1); 7319 nargs2 = btf_type_vlen(t2); 7320 7321 if (nargs1 != nargs2) { 7322 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7323 fn1, nargs1, fn2, nargs2); 7324 return -EINVAL; 7325 } 7326 7327 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7328 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7329 if (t1->info != t2->info) { 7330 bpf_log(log, 7331 "Return type %s of %s() doesn't match type %s of %s()\n", 7332 btf_type_str(t1), fn1, 7333 btf_type_str(t2), fn2); 7334 return -EINVAL; 7335 } 7336 7337 for (i = 0; i < nargs1; i++) { 7338 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7339 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7340 7341 if (t1->info != t2->info) { 7342 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7343 i, fn1, btf_type_str(t1), 7344 fn2, btf_type_str(t2)); 7345 return -EINVAL; 7346 } 7347 if (btf_type_has_size(t1) && t1->size != t2->size) { 7348 bpf_log(log, 7349 "arg%d in %s() has size %d while %s() has %d\n", 7350 i, fn1, t1->size, 7351 fn2, t2->size); 7352 return -EINVAL; 7353 } 7354 7355 /* global functions are validated with scalars and pointers 7356 * to context only. And only global functions can be replaced. 7357 * Hence type check only those types. 7358 */ 7359 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7360 continue; 7361 if (!btf_type_is_ptr(t1)) { 7362 bpf_log(log, 7363 "arg%d in %s() has unrecognized type\n", 7364 i, fn1); 7365 return -EINVAL; 7366 } 7367 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7368 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7369 if (!btf_type_is_struct(t1)) { 7370 bpf_log(log, 7371 "arg%d in %s() is not a pointer to context\n", 7372 i, fn1); 7373 return -EINVAL; 7374 } 7375 if (!btf_type_is_struct(t2)) { 7376 bpf_log(log, 7377 "arg%d in %s() is not a pointer to context\n", 7378 i, fn2); 7379 return -EINVAL; 7380 } 7381 /* This is an optional check to make program writing easier. 7382 * Compare names of structs and report an error to the user. 7383 * btf_prepare_func_args() already checked that t2 struct 7384 * is a context type. btf_prepare_func_args() will check 7385 * later that t1 struct is a context type as well. 7386 */ 7387 s1 = btf_name_by_offset(btf1, t1->name_off); 7388 s2 = btf_name_by_offset(btf2, t2->name_off); 7389 if (strcmp(s1, s2)) { 7390 bpf_log(log, 7391 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7392 i, fn1, s1, fn2, s2); 7393 return -EINVAL; 7394 } 7395 } 7396 return 0; 7397 } 7398 7399 /* Compare BTFs of given program with BTF of target program */ 7400 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7401 struct btf *btf2, const struct btf_type *t2) 7402 { 7403 struct btf *btf1 = prog->aux->btf; 7404 const struct btf_type *t1; 7405 u32 btf_id = 0; 7406 7407 if (!prog->aux->func_info) { 7408 bpf_log(log, "Program extension requires BTF\n"); 7409 return -EINVAL; 7410 } 7411 7412 btf_id = prog->aux->func_info[0].type_id; 7413 if (!btf_id) 7414 return -EFAULT; 7415 7416 t1 = btf_type_by_id(btf1, btf_id); 7417 if (!t1 || !btf_type_is_func(t1)) 7418 return -EFAULT; 7419 7420 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7421 } 7422 7423 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7424 { 7425 const char *name; 7426 7427 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7428 7429 while (btf_type_is_modifier(t)) 7430 t = btf_type_by_id(btf, t->type); 7431 7432 /* allow either struct or struct forward declaration */ 7433 if (btf_type_is_struct(t) || 7434 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7435 name = btf_str_by_offset(btf, t->name_off); 7436 return name && strcmp(name, "bpf_dynptr") == 0; 7437 } 7438 7439 return false; 7440 } 7441 7442 struct bpf_cand_cache { 7443 const char *name; 7444 u32 name_len; 7445 u16 kind; 7446 u16 cnt; 7447 struct { 7448 const struct btf *btf; 7449 u32 id; 7450 } cands[]; 7451 }; 7452 7453 static DEFINE_MUTEX(cand_cache_mutex); 7454 7455 static struct bpf_cand_cache * 7456 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7457 7458 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7459 const struct btf *btf, const struct btf_type *t) 7460 { 7461 struct bpf_cand_cache *cc; 7462 struct bpf_core_ctx ctx = { 7463 .btf = btf, 7464 .log = log, 7465 }; 7466 u32 kern_type_id, type_id; 7467 int err = 0; 7468 7469 /* skip PTR and modifiers */ 7470 type_id = t->type; 7471 t = btf_type_by_id(btf, t->type); 7472 while (btf_type_is_modifier(t)) { 7473 type_id = t->type; 7474 t = btf_type_by_id(btf, t->type); 7475 } 7476 7477 mutex_lock(&cand_cache_mutex); 7478 cc = bpf_core_find_cands(&ctx, type_id); 7479 if (IS_ERR(cc)) { 7480 err = PTR_ERR(cc); 7481 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7482 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7483 err); 7484 goto cand_cache_unlock; 7485 } 7486 if (cc->cnt != 1) { 7487 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7488 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7489 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7490 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7491 goto cand_cache_unlock; 7492 } 7493 if (btf_is_module(cc->cands[0].btf)) { 7494 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7495 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7496 err = -EOPNOTSUPP; 7497 goto cand_cache_unlock; 7498 } 7499 kern_type_id = cc->cands[0].id; 7500 7501 cand_cache_unlock: 7502 mutex_unlock(&cand_cache_mutex); 7503 if (err) 7504 return err; 7505 7506 return kern_type_id; 7507 } 7508 7509 enum btf_arg_tag { 7510 ARG_TAG_CTX = BIT_ULL(0), 7511 ARG_TAG_NONNULL = BIT_ULL(1), 7512 ARG_TAG_TRUSTED = BIT_ULL(2), 7513 ARG_TAG_NULLABLE = BIT_ULL(3), 7514 ARG_TAG_ARENA = BIT_ULL(4), 7515 }; 7516 7517 /* Process BTF of a function to produce high-level expectation of function 7518 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7519 * is cached in subprog info for reuse. 7520 * Returns: 7521 * EFAULT - there is a verifier bug. Abort verification. 7522 * EINVAL - cannot convert BTF. 7523 * 0 - Successfully processed BTF and constructed argument expectations. 7524 */ 7525 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7526 { 7527 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7528 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7529 struct bpf_verifier_log *log = &env->log; 7530 struct bpf_prog *prog = env->prog; 7531 enum bpf_prog_type prog_type = prog->type; 7532 struct btf *btf = prog->aux->btf; 7533 const struct btf_param *args; 7534 const struct btf_type *t, *ref_t, *fn_t; 7535 u32 i, nargs, btf_id; 7536 const char *tname; 7537 7538 if (sub->args_cached) 7539 return 0; 7540 7541 if (!prog->aux->func_info) { 7542 bpf_log(log, "Verifier bug\n"); 7543 return -EFAULT; 7544 } 7545 7546 btf_id = prog->aux->func_info[subprog].type_id; 7547 if (!btf_id) { 7548 if (!is_global) /* not fatal for static funcs */ 7549 return -EINVAL; 7550 bpf_log(log, "Global functions need valid BTF\n"); 7551 return -EFAULT; 7552 } 7553 7554 fn_t = btf_type_by_id(btf, btf_id); 7555 if (!fn_t || !btf_type_is_func(fn_t)) { 7556 /* These checks were already done by the verifier while loading 7557 * struct bpf_func_info 7558 */ 7559 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7560 subprog); 7561 return -EFAULT; 7562 } 7563 tname = btf_name_by_offset(btf, fn_t->name_off); 7564 7565 if (prog->aux->func_info_aux[subprog].unreliable) { 7566 bpf_log(log, "Verifier bug in function %s()\n", tname); 7567 return -EFAULT; 7568 } 7569 if (prog_type == BPF_PROG_TYPE_EXT) 7570 prog_type = prog->aux->dst_prog->type; 7571 7572 t = btf_type_by_id(btf, fn_t->type); 7573 if (!t || !btf_type_is_func_proto(t)) { 7574 bpf_log(log, "Invalid type of function %s()\n", tname); 7575 return -EFAULT; 7576 } 7577 args = (const struct btf_param *)(t + 1); 7578 nargs = btf_type_vlen(t); 7579 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7580 if (!is_global) 7581 return -EINVAL; 7582 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7583 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7584 return -EINVAL; 7585 } 7586 /* check that function returns int, exception cb also requires this */ 7587 t = btf_type_by_id(btf, t->type); 7588 while (btf_type_is_modifier(t)) 7589 t = btf_type_by_id(btf, t->type); 7590 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7591 if (!is_global) 7592 return -EINVAL; 7593 bpf_log(log, 7594 "Global function %s() doesn't return scalar. Only those are supported.\n", 7595 tname); 7596 return -EINVAL; 7597 } 7598 /* Convert BTF function arguments into verifier types. 7599 * Only PTR_TO_CTX and SCALAR are supported atm. 7600 */ 7601 for (i = 0; i < nargs; i++) { 7602 u32 tags = 0; 7603 int id = 0; 7604 7605 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7606 * register type from BTF type itself 7607 */ 7608 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7609 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7610 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7611 7612 /* disallow arg tags in static subprogs */ 7613 if (!is_global) { 7614 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7615 return -EOPNOTSUPP; 7616 } 7617 7618 if (strcmp(tag, "ctx") == 0) { 7619 tags |= ARG_TAG_CTX; 7620 } else if (strcmp(tag, "trusted") == 0) { 7621 tags |= ARG_TAG_TRUSTED; 7622 } else if (strcmp(tag, "nonnull") == 0) { 7623 tags |= ARG_TAG_NONNULL; 7624 } else if (strcmp(tag, "nullable") == 0) { 7625 tags |= ARG_TAG_NULLABLE; 7626 } else if (strcmp(tag, "arena") == 0) { 7627 tags |= ARG_TAG_ARENA; 7628 } else { 7629 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7630 return -EOPNOTSUPP; 7631 } 7632 } 7633 if (id != -ENOENT) { 7634 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7635 return id; 7636 } 7637 7638 t = btf_type_by_id(btf, args[i].type); 7639 while (btf_type_is_modifier(t)) 7640 t = btf_type_by_id(btf, t->type); 7641 if (!btf_type_is_ptr(t)) 7642 goto skip_pointer; 7643 7644 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7645 if (tags & ~ARG_TAG_CTX) { 7646 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7647 return -EINVAL; 7648 } 7649 if ((tags & ARG_TAG_CTX) && 7650 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7651 prog->expected_attach_type)) 7652 return -EINVAL; 7653 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7654 continue; 7655 } 7656 if (btf_is_dynptr_ptr(btf, t)) { 7657 if (tags) { 7658 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7659 return -EINVAL; 7660 } 7661 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7662 continue; 7663 } 7664 if (tags & ARG_TAG_TRUSTED) { 7665 int kern_type_id; 7666 7667 if (tags & ARG_TAG_NONNULL) { 7668 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7669 return -EINVAL; 7670 } 7671 7672 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7673 if (kern_type_id < 0) 7674 return kern_type_id; 7675 7676 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7677 if (tags & ARG_TAG_NULLABLE) 7678 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7679 sub->args[i].btf_id = kern_type_id; 7680 continue; 7681 } 7682 if (tags & ARG_TAG_ARENA) { 7683 if (tags & ~ARG_TAG_ARENA) { 7684 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7685 return -EINVAL; 7686 } 7687 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7688 continue; 7689 } 7690 if (is_global) { /* generic user data pointer */ 7691 u32 mem_size; 7692 7693 if (tags & ARG_TAG_NULLABLE) { 7694 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7695 return -EINVAL; 7696 } 7697 7698 t = btf_type_skip_modifiers(btf, t->type, NULL); 7699 ref_t = btf_resolve_size(btf, t, &mem_size); 7700 if (IS_ERR(ref_t)) { 7701 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7702 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7703 PTR_ERR(ref_t)); 7704 return -EINVAL; 7705 } 7706 7707 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7708 if (tags & ARG_TAG_NONNULL) 7709 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7710 sub->args[i].mem_size = mem_size; 7711 continue; 7712 } 7713 7714 skip_pointer: 7715 if (tags) { 7716 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7717 return -EINVAL; 7718 } 7719 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7720 sub->args[i].arg_type = ARG_ANYTHING; 7721 continue; 7722 } 7723 if (!is_global) 7724 return -EINVAL; 7725 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7726 i, btf_type_str(t), tname); 7727 return -EINVAL; 7728 } 7729 7730 sub->arg_cnt = nargs; 7731 sub->args_cached = true; 7732 7733 return 0; 7734 } 7735 7736 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7737 struct btf_show *show) 7738 { 7739 const struct btf_type *t = btf_type_by_id(btf, type_id); 7740 7741 show->btf = btf; 7742 memset(&show->state, 0, sizeof(show->state)); 7743 memset(&show->obj, 0, sizeof(show->obj)); 7744 7745 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7746 } 7747 7748 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7749 va_list args) 7750 { 7751 seq_vprintf((struct seq_file *)show->target, fmt, args); 7752 } 7753 7754 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7755 void *obj, struct seq_file *m, u64 flags) 7756 { 7757 struct btf_show sseq; 7758 7759 sseq.target = m; 7760 sseq.showfn = btf_seq_show; 7761 sseq.flags = flags; 7762 7763 btf_type_show(btf, type_id, obj, &sseq); 7764 7765 return sseq.state.status; 7766 } 7767 7768 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7769 struct seq_file *m) 7770 { 7771 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7772 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7773 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7774 } 7775 7776 struct btf_show_snprintf { 7777 struct btf_show show; 7778 int len_left; /* space left in string */ 7779 int len; /* length we would have written */ 7780 }; 7781 7782 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7783 va_list args) 7784 { 7785 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7786 int len; 7787 7788 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7789 7790 if (len < 0) { 7791 ssnprintf->len_left = 0; 7792 ssnprintf->len = len; 7793 } else if (len >= ssnprintf->len_left) { 7794 /* no space, drive on to get length we would have written */ 7795 ssnprintf->len_left = 0; 7796 ssnprintf->len += len; 7797 } else { 7798 ssnprintf->len_left -= len; 7799 ssnprintf->len += len; 7800 show->target += len; 7801 } 7802 } 7803 7804 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7805 char *buf, int len, u64 flags) 7806 { 7807 struct btf_show_snprintf ssnprintf; 7808 7809 ssnprintf.show.target = buf; 7810 ssnprintf.show.flags = flags; 7811 ssnprintf.show.showfn = btf_snprintf_show; 7812 ssnprintf.len_left = len; 7813 ssnprintf.len = 0; 7814 7815 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7816 7817 /* If we encountered an error, return it. */ 7818 if (ssnprintf.show.state.status) 7819 return ssnprintf.show.state.status; 7820 7821 /* Otherwise return length we would have written */ 7822 return ssnprintf.len; 7823 } 7824 7825 #ifdef CONFIG_PROC_FS 7826 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7827 { 7828 const struct btf *btf = filp->private_data; 7829 7830 seq_printf(m, "btf_id:\t%u\n", btf->id); 7831 } 7832 #endif 7833 7834 static int btf_release(struct inode *inode, struct file *filp) 7835 { 7836 btf_put(filp->private_data); 7837 return 0; 7838 } 7839 7840 const struct file_operations btf_fops = { 7841 #ifdef CONFIG_PROC_FS 7842 .show_fdinfo = bpf_btf_show_fdinfo, 7843 #endif 7844 .release = btf_release, 7845 }; 7846 7847 static int __btf_new_fd(struct btf *btf) 7848 { 7849 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7850 } 7851 7852 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7853 { 7854 struct btf *btf; 7855 int ret; 7856 7857 btf = btf_parse(attr, uattr, uattr_size); 7858 if (IS_ERR(btf)) 7859 return PTR_ERR(btf); 7860 7861 ret = btf_alloc_id(btf); 7862 if (ret) { 7863 btf_free(btf); 7864 return ret; 7865 } 7866 7867 /* 7868 * The BTF ID is published to the userspace. 7869 * All BTF free must go through call_rcu() from 7870 * now on (i.e. free by calling btf_put()). 7871 */ 7872 7873 ret = __btf_new_fd(btf); 7874 if (ret < 0) 7875 btf_put(btf); 7876 7877 return ret; 7878 } 7879 7880 struct btf *btf_get_by_fd(int fd) 7881 { 7882 struct btf *btf; 7883 CLASS(fd, f)(fd); 7884 7885 btf = __btf_get_by_fd(f); 7886 if (!IS_ERR(btf)) 7887 refcount_inc(&btf->refcnt); 7888 7889 return btf; 7890 } 7891 7892 int btf_get_info_by_fd(const struct btf *btf, 7893 const union bpf_attr *attr, 7894 union bpf_attr __user *uattr) 7895 { 7896 struct bpf_btf_info __user *uinfo; 7897 struct bpf_btf_info info; 7898 u32 info_copy, btf_copy; 7899 void __user *ubtf; 7900 char __user *uname; 7901 u32 uinfo_len, uname_len, name_len; 7902 int ret = 0; 7903 7904 uinfo = u64_to_user_ptr(attr->info.info); 7905 uinfo_len = attr->info.info_len; 7906 7907 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7908 memset(&info, 0, sizeof(info)); 7909 if (copy_from_user(&info, uinfo, info_copy)) 7910 return -EFAULT; 7911 7912 info.id = btf->id; 7913 ubtf = u64_to_user_ptr(info.btf); 7914 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7915 if (copy_to_user(ubtf, btf->data, btf_copy)) 7916 return -EFAULT; 7917 info.btf_size = btf->data_size; 7918 7919 info.kernel_btf = btf->kernel_btf; 7920 7921 uname = u64_to_user_ptr(info.name); 7922 uname_len = info.name_len; 7923 if (!uname ^ !uname_len) 7924 return -EINVAL; 7925 7926 name_len = strlen(btf->name); 7927 info.name_len = name_len; 7928 7929 if (uname) { 7930 if (uname_len >= name_len + 1) { 7931 if (copy_to_user(uname, btf->name, name_len + 1)) 7932 return -EFAULT; 7933 } else { 7934 char zero = '\0'; 7935 7936 if (copy_to_user(uname, btf->name, uname_len - 1)) 7937 return -EFAULT; 7938 if (put_user(zero, uname + uname_len - 1)) 7939 return -EFAULT; 7940 /* let user-space know about too short buffer */ 7941 ret = -ENOSPC; 7942 } 7943 } 7944 7945 if (copy_to_user(uinfo, &info, info_copy) || 7946 put_user(info_copy, &uattr->info.info_len)) 7947 return -EFAULT; 7948 7949 return ret; 7950 } 7951 7952 int btf_get_fd_by_id(u32 id) 7953 { 7954 struct btf *btf; 7955 int fd; 7956 7957 rcu_read_lock(); 7958 btf = idr_find(&btf_idr, id); 7959 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7960 btf = ERR_PTR(-ENOENT); 7961 rcu_read_unlock(); 7962 7963 if (IS_ERR(btf)) 7964 return PTR_ERR(btf); 7965 7966 fd = __btf_new_fd(btf); 7967 if (fd < 0) 7968 btf_put(btf); 7969 7970 return fd; 7971 } 7972 7973 u32 btf_obj_id(const struct btf *btf) 7974 { 7975 return btf->id; 7976 } 7977 7978 bool btf_is_kernel(const struct btf *btf) 7979 { 7980 return btf->kernel_btf; 7981 } 7982 7983 bool btf_is_module(const struct btf *btf) 7984 { 7985 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7986 } 7987 7988 enum { 7989 BTF_MODULE_F_LIVE = (1 << 0), 7990 }; 7991 7992 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7993 struct btf_module { 7994 struct list_head list; 7995 struct module *module; 7996 struct btf *btf; 7997 struct bin_attribute *sysfs_attr; 7998 int flags; 7999 }; 8000 8001 static LIST_HEAD(btf_modules); 8002 static DEFINE_MUTEX(btf_module_mutex); 8003 8004 static void purge_cand_cache(struct btf *btf); 8005 8006 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 8007 void *module) 8008 { 8009 struct btf_module *btf_mod, *tmp; 8010 struct module *mod = module; 8011 struct btf *btf; 8012 int err = 0; 8013 8014 if (mod->btf_data_size == 0 || 8015 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 8016 op != MODULE_STATE_GOING)) 8017 goto out; 8018 8019 switch (op) { 8020 case MODULE_STATE_COMING: 8021 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 8022 if (!btf_mod) { 8023 err = -ENOMEM; 8024 goto out; 8025 } 8026 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 8027 mod->btf_base_data, mod->btf_base_data_size); 8028 if (IS_ERR(btf)) { 8029 kfree(btf_mod); 8030 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 8031 pr_warn("failed to validate module [%s] BTF: %ld\n", 8032 mod->name, PTR_ERR(btf)); 8033 err = PTR_ERR(btf); 8034 } else { 8035 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 8036 } 8037 goto out; 8038 } 8039 err = btf_alloc_id(btf); 8040 if (err) { 8041 btf_free(btf); 8042 kfree(btf_mod); 8043 goto out; 8044 } 8045 8046 purge_cand_cache(NULL); 8047 mutex_lock(&btf_module_mutex); 8048 btf_mod->module = module; 8049 btf_mod->btf = btf; 8050 list_add(&btf_mod->list, &btf_modules); 8051 mutex_unlock(&btf_module_mutex); 8052 8053 if (IS_ENABLED(CONFIG_SYSFS)) { 8054 struct bin_attribute *attr; 8055 8056 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 8057 if (!attr) 8058 goto out; 8059 8060 sysfs_bin_attr_init(attr); 8061 attr->attr.name = btf->name; 8062 attr->attr.mode = 0444; 8063 attr->size = btf->data_size; 8064 attr->private = btf->data; 8065 attr->read_new = sysfs_bin_attr_simple_read; 8066 8067 err = sysfs_create_bin_file(btf_kobj, attr); 8068 if (err) { 8069 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 8070 mod->name, err); 8071 kfree(attr); 8072 err = 0; 8073 goto out; 8074 } 8075 8076 btf_mod->sysfs_attr = attr; 8077 } 8078 8079 break; 8080 case MODULE_STATE_LIVE: 8081 mutex_lock(&btf_module_mutex); 8082 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8083 if (btf_mod->module != module) 8084 continue; 8085 8086 btf_mod->flags |= BTF_MODULE_F_LIVE; 8087 break; 8088 } 8089 mutex_unlock(&btf_module_mutex); 8090 break; 8091 case MODULE_STATE_GOING: 8092 mutex_lock(&btf_module_mutex); 8093 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8094 if (btf_mod->module != module) 8095 continue; 8096 8097 list_del(&btf_mod->list); 8098 if (btf_mod->sysfs_attr) 8099 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 8100 purge_cand_cache(btf_mod->btf); 8101 btf_put(btf_mod->btf); 8102 kfree(btf_mod->sysfs_attr); 8103 kfree(btf_mod); 8104 break; 8105 } 8106 mutex_unlock(&btf_module_mutex); 8107 break; 8108 } 8109 out: 8110 return notifier_from_errno(err); 8111 } 8112 8113 static struct notifier_block btf_module_nb = { 8114 .notifier_call = btf_module_notify, 8115 }; 8116 8117 static int __init btf_module_init(void) 8118 { 8119 register_module_notifier(&btf_module_nb); 8120 return 0; 8121 } 8122 8123 fs_initcall(btf_module_init); 8124 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 8125 8126 struct module *btf_try_get_module(const struct btf *btf) 8127 { 8128 struct module *res = NULL; 8129 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8130 struct btf_module *btf_mod, *tmp; 8131 8132 mutex_lock(&btf_module_mutex); 8133 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8134 if (btf_mod->btf != btf) 8135 continue; 8136 8137 /* We must only consider module whose __init routine has 8138 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 8139 * which is set from the notifier callback for 8140 * MODULE_STATE_LIVE. 8141 */ 8142 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 8143 res = btf_mod->module; 8144 8145 break; 8146 } 8147 mutex_unlock(&btf_module_mutex); 8148 #endif 8149 8150 return res; 8151 } 8152 8153 /* Returns struct btf corresponding to the struct module. 8154 * This function can return NULL or ERR_PTR. 8155 */ 8156 static struct btf *btf_get_module_btf(const struct module *module) 8157 { 8158 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8159 struct btf_module *btf_mod, *tmp; 8160 #endif 8161 struct btf *btf = NULL; 8162 8163 if (!module) { 8164 btf = bpf_get_btf_vmlinux(); 8165 if (!IS_ERR_OR_NULL(btf)) 8166 btf_get(btf); 8167 return btf; 8168 } 8169 8170 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8171 mutex_lock(&btf_module_mutex); 8172 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8173 if (btf_mod->module != module) 8174 continue; 8175 8176 btf_get(btf_mod->btf); 8177 btf = btf_mod->btf; 8178 break; 8179 } 8180 mutex_unlock(&btf_module_mutex); 8181 #endif 8182 8183 return btf; 8184 } 8185 8186 static int check_btf_kconfigs(const struct module *module, const char *feature) 8187 { 8188 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8189 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8190 return -ENOENT; 8191 } 8192 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8193 pr_warn("missing module BTF, cannot register %s\n", feature); 8194 return 0; 8195 } 8196 8197 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8198 { 8199 struct btf *btf = NULL; 8200 int btf_obj_fd = 0; 8201 long ret; 8202 8203 if (flags) 8204 return -EINVAL; 8205 8206 if (name_sz <= 1 || name[name_sz - 1]) 8207 return -EINVAL; 8208 8209 ret = bpf_find_btf_id(name, kind, &btf); 8210 if (ret > 0 && btf_is_module(btf)) { 8211 btf_obj_fd = __btf_new_fd(btf); 8212 if (btf_obj_fd < 0) { 8213 btf_put(btf); 8214 return btf_obj_fd; 8215 } 8216 return ret | (((u64)btf_obj_fd) << 32); 8217 } 8218 if (ret > 0) 8219 btf_put(btf); 8220 return ret; 8221 } 8222 8223 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8224 .func = bpf_btf_find_by_name_kind, 8225 .gpl_only = false, 8226 .ret_type = RET_INTEGER, 8227 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8228 .arg2_type = ARG_CONST_SIZE, 8229 .arg3_type = ARG_ANYTHING, 8230 .arg4_type = ARG_ANYTHING, 8231 }; 8232 8233 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8234 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8235 BTF_TRACING_TYPE_xxx 8236 #undef BTF_TRACING_TYPE 8237 8238 /* Validate well-formedness of iter argument type. 8239 * On success, return positive BTF ID of iter state's STRUCT type. 8240 * On error, negative error is returned. 8241 */ 8242 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8243 { 8244 const struct btf_param *arg; 8245 const struct btf_type *t; 8246 const char *name; 8247 int btf_id; 8248 8249 if (btf_type_vlen(func) <= arg_idx) 8250 return -EINVAL; 8251 8252 arg = &btf_params(func)[arg_idx]; 8253 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8254 if (!t || !btf_type_is_ptr(t)) 8255 return -EINVAL; 8256 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8257 if (!t || !__btf_type_is_struct(t)) 8258 return -EINVAL; 8259 8260 name = btf_name_by_offset(btf, t->name_off); 8261 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8262 return -EINVAL; 8263 8264 return btf_id; 8265 } 8266 8267 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8268 const struct btf_type *func, u32 func_flags) 8269 { 8270 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8271 const char *sfx, *iter_name; 8272 const struct btf_type *t; 8273 char exp_name[128]; 8274 u32 nr_args; 8275 int btf_id; 8276 8277 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8278 if (!flags || (flags & (flags - 1))) 8279 return -EINVAL; 8280 8281 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8282 nr_args = btf_type_vlen(func); 8283 if (nr_args < 1) 8284 return -EINVAL; 8285 8286 btf_id = btf_check_iter_arg(btf, func, 0); 8287 if (btf_id < 0) 8288 return btf_id; 8289 8290 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8291 * fit nicely in stack slots 8292 */ 8293 t = btf_type_by_id(btf, btf_id); 8294 if (t->size == 0 || (t->size % 8)) 8295 return -EINVAL; 8296 8297 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8298 * naming pattern 8299 */ 8300 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8301 if (flags & KF_ITER_NEW) 8302 sfx = "new"; 8303 else if (flags & KF_ITER_NEXT) 8304 sfx = "next"; 8305 else /* (flags & KF_ITER_DESTROY) */ 8306 sfx = "destroy"; 8307 8308 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8309 if (strcmp(func_name, exp_name)) 8310 return -EINVAL; 8311 8312 /* only iter constructor should have extra arguments */ 8313 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8314 return -EINVAL; 8315 8316 if (flags & KF_ITER_NEXT) { 8317 /* bpf_iter_<type>_next() should return pointer */ 8318 t = btf_type_skip_modifiers(btf, func->type, NULL); 8319 if (!t || !btf_type_is_ptr(t)) 8320 return -EINVAL; 8321 } 8322 8323 if (flags & KF_ITER_DESTROY) { 8324 /* bpf_iter_<type>_destroy() should return void */ 8325 t = btf_type_by_id(btf, func->type); 8326 if (!t || !btf_type_is_void(t)) 8327 return -EINVAL; 8328 } 8329 8330 return 0; 8331 } 8332 8333 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8334 { 8335 const struct btf_type *func; 8336 const char *func_name; 8337 int err; 8338 8339 /* any kfunc should be FUNC -> FUNC_PROTO */ 8340 func = btf_type_by_id(btf, func_id); 8341 if (!func || !btf_type_is_func(func)) 8342 return -EINVAL; 8343 8344 /* sanity check kfunc name */ 8345 func_name = btf_name_by_offset(btf, func->name_off); 8346 if (!func_name || !func_name[0]) 8347 return -EINVAL; 8348 8349 func = btf_type_by_id(btf, func->type); 8350 if (!func || !btf_type_is_func_proto(func)) 8351 return -EINVAL; 8352 8353 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8354 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8355 if (err) 8356 return err; 8357 } 8358 8359 return 0; 8360 } 8361 8362 /* Kernel Function (kfunc) BTF ID set registration API */ 8363 8364 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8365 const struct btf_kfunc_id_set *kset) 8366 { 8367 struct btf_kfunc_hook_filter *hook_filter; 8368 struct btf_id_set8 *add_set = kset->set; 8369 bool vmlinux_set = !btf_is_module(btf); 8370 bool add_filter = !!kset->filter; 8371 struct btf_kfunc_set_tab *tab; 8372 struct btf_id_set8 *set; 8373 u32 set_cnt, i; 8374 int ret; 8375 8376 if (hook >= BTF_KFUNC_HOOK_MAX) { 8377 ret = -EINVAL; 8378 goto end; 8379 } 8380 8381 if (!add_set->cnt) 8382 return 0; 8383 8384 tab = btf->kfunc_set_tab; 8385 8386 if (tab && add_filter) { 8387 u32 i; 8388 8389 hook_filter = &tab->hook_filters[hook]; 8390 for (i = 0; i < hook_filter->nr_filters; i++) { 8391 if (hook_filter->filters[i] == kset->filter) { 8392 add_filter = false; 8393 break; 8394 } 8395 } 8396 8397 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8398 ret = -E2BIG; 8399 goto end; 8400 } 8401 } 8402 8403 if (!tab) { 8404 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8405 if (!tab) 8406 return -ENOMEM; 8407 btf->kfunc_set_tab = tab; 8408 } 8409 8410 set = tab->sets[hook]; 8411 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8412 * for module sets. 8413 */ 8414 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8415 ret = -EINVAL; 8416 goto end; 8417 } 8418 8419 /* In case of vmlinux sets, there may be more than one set being 8420 * registered per hook. To create a unified set, we allocate a new set 8421 * and concatenate all individual sets being registered. While each set 8422 * is individually sorted, they may become unsorted when concatenated, 8423 * hence re-sorting the final set again is required to make binary 8424 * searching the set using btf_id_set8_contains function work. 8425 * 8426 * For module sets, we need to allocate as we may need to relocate 8427 * BTF ids. 8428 */ 8429 set_cnt = set ? set->cnt : 0; 8430 8431 if (set_cnt > U32_MAX - add_set->cnt) { 8432 ret = -EOVERFLOW; 8433 goto end; 8434 } 8435 8436 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8437 ret = -E2BIG; 8438 goto end; 8439 } 8440 8441 /* Grow set */ 8442 set = krealloc(tab->sets[hook], 8443 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8444 GFP_KERNEL | __GFP_NOWARN); 8445 if (!set) { 8446 ret = -ENOMEM; 8447 goto end; 8448 } 8449 8450 /* For newly allocated set, initialize set->cnt to 0 */ 8451 if (!tab->sets[hook]) 8452 set->cnt = 0; 8453 tab->sets[hook] = set; 8454 8455 /* Concatenate the two sets */ 8456 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8457 /* Now that the set is copied, update with relocated BTF ids */ 8458 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8459 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8460 8461 set->cnt += add_set->cnt; 8462 8463 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8464 8465 if (add_filter) { 8466 hook_filter = &tab->hook_filters[hook]; 8467 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8468 } 8469 return 0; 8470 end: 8471 btf_free_kfunc_set_tab(btf); 8472 return ret; 8473 } 8474 8475 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8476 enum btf_kfunc_hook hook, 8477 u32 kfunc_btf_id, 8478 const struct bpf_prog *prog) 8479 { 8480 struct btf_kfunc_hook_filter *hook_filter; 8481 struct btf_id_set8 *set; 8482 u32 *id, i; 8483 8484 if (hook >= BTF_KFUNC_HOOK_MAX) 8485 return NULL; 8486 if (!btf->kfunc_set_tab) 8487 return NULL; 8488 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8489 for (i = 0; i < hook_filter->nr_filters; i++) { 8490 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8491 return NULL; 8492 } 8493 set = btf->kfunc_set_tab->sets[hook]; 8494 if (!set) 8495 return NULL; 8496 id = btf_id_set8_contains(set, kfunc_btf_id); 8497 if (!id) 8498 return NULL; 8499 /* The flags for BTF ID are located next to it */ 8500 return id + 1; 8501 } 8502 8503 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8504 { 8505 switch (prog_type) { 8506 case BPF_PROG_TYPE_UNSPEC: 8507 return BTF_KFUNC_HOOK_COMMON; 8508 case BPF_PROG_TYPE_XDP: 8509 return BTF_KFUNC_HOOK_XDP; 8510 case BPF_PROG_TYPE_SCHED_CLS: 8511 return BTF_KFUNC_HOOK_TC; 8512 case BPF_PROG_TYPE_STRUCT_OPS: 8513 return BTF_KFUNC_HOOK_STRUCT_OPS; 8514 case BPF_PROG_TYPE_TRACING: 8515 case BPF_PROG_TYPE_TRACEPOINT: 8516 case BPF_PROG_TYPE_PERF_EVENT: 8517 case BPF_PROG_TYPE_LSM: 8518 return BTF_KFUNC_HOOK_TRACING; 8519 case BPF_PROG_TYPE_SYSCALL: 8520 return BTF_KFUNC_HOOK_SYSCALL; 8521 case BPF_PROG_TYPE_CGROUP_SKB: 8522 case BPF_PROG_TYPE_CGROUP_SOCK: 8523 case BPF_PROG_TYPE_CGROUP_DEVICE: 8524 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8525 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8526 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8527 return BTF_KFUNC_HOOK_CGROUP; 8528 case BPF_PROG_TYPE_SCHED_ACT: 8529 return BTF_KFUNC_HOOK_SCHED_ACT; 8530 case BPF_PROG_TYPE_SK_SKB: 8531 return BTF_KFUNC_HOOK_SK_SKB; 8532 case BPF_PROG_TYPE_SOCKET_FILTER: 8533 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8534 case BPF_PROG_TYPE_LWT_OUT: 8535 case BPF_PROG_TYPE_LWT_IN: 8536 case BPF_PROG_TYPE_LWT_XMIT: 8537 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8538 return BTF_KFUNC_HOOK_LWT; 8539 case BPF_PROG_TYPE_NETFILTER: 8540 return BTF_KFUNC_HOOK_NETFILTER; 8541 case BPF_PROG_TYPE_KPROBE: 8542 return BTF_KFUNC_HOOK_KPROBE; 8543 default: 8544 return BTF_KFUNC_HOOK_MAX; 8545 } 8546 } 8547 8548 /* Caution: 8549 * Reference to the module (obtained using btf_try_get_module) corresponding to 8550 * the struct btf *MUST* be held when calling this function from verifier 8551 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8552 * keeping the reference for the duration of the call provides the necessary 8553 * protection for looking up a well-formed btf->kfunc_set_tab. 8554 */ 8555 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8556 u32 kfunc_btf_id, 8557 const struct bpf_prog *prog) 8558 { 8559 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8560 enum btf_kfunc_hook hook; 8561 u32 *kfunc_flags; 8562 8563 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8564 if (kfunc_flags) 8565 return kfunc_flags; 8566 8567 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8568 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8569 } 8570 8571 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8572 const struct bpf_prog *prog) 8573 { 8574 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8575 } 8576 8577 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8578 const struct btf_kfunc_id_set *kset) 8579 { 8580 struct btf *btf; 8581 int ret, i; 8582 8583 btf = btf_get_module_btf(kset->owner); 8584 if (!btf) 8585 return check_btf_kconfigs(kset->owner, "kfunc"); 8586 if (IS_ERR(btf)) 8587 return PTR_ERR(btf); 8588 8589 for (i = 0; i < kset->set->cnt; i++) { 8590 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8591 kset->set->pairs[i].flags); 8592 if (ret) 8593 goto err_out; 8594 } 8595 8596 ret = btf_populate_kfunc_set(btf, hook, kset); 8597 8598 err_out: 8599 btf_put(btf); 8600 return ret; 8601 } 8602 8603 /* This function must be invoked only from initcalls/module init functions */ 8604 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8605 const struct btf_kfunc_id_set *kset) 8606 { 8607 enum btf_kfunc_hook hook; 8608 8609 /* All kfuncs need to be tagged as such in BTF. 8610 * WARN() for initcall registrations that do not check errors. 8611 */ 8612 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8613 WARN_ON(!kset->owner); 8614 return -EINVAL; 8615 } 8616 8617 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8618 return __register_btf_kfunc_id_set(hook, kset); 8619 } 8620 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8621 8622 /* This function must be invoked only from initcalls/module init functions */ 8623 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8624 { 8625 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8626 } 8627 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8628 8629 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8630 { 8631 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8632 struct btf_id_dtor_kfunc *dtor; 8633 8634 if (!tab) 8635 return -ENOENT; 8636 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8637 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8638 */ 8639 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8640 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8641 if (!dtor) 8642 return -ENOENT; 8643 return dtor->kfunc_btf_id; 8644 } 8645 8646 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8647 { 8648 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8649 const struct btf_param *args; 8650 s32 dtor_btf_id; 8651 u32 nr_args, i; 8652 8653 for (i = 0; i < cnt; i++) { 8654 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8655 8656 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8657 if (!dtor_func || !btf_type_is_func(dtor_func)) 8658 return -EINVAL; 8659 8660 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8661 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8662 return -EINVAL; 8663 8664 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8665 t = btf_type_by_id(btf, dtor_func_proto->type); 8666 if (!t || !btf_type_is_void(t)) 8667 return -EINVAL; 8668 8669 nr_args = btf_type_vlen(dtor_func_proto); 8670 if (nr_args != 1) 8671 return -EINVAL; 8672 args = btf_params(dtor_func_proto); 8673 t = btf_type_by_id(btf, args[0].type); 8674 /* Allow any pointer type, as width on targets Linux supports 8675 * will be same for all pointer types (i.e. sizeof(void *)) 8676 */ 8677 if (!t || !btf_type_is_ptr(t)) 8678 return -EINVAL; 8679 } 8680 return 0; 8681 } 8682 8683 /* This function must be invoked only from initcalls/module init functions */ 8684 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8685 struct module *owner) 8686 { 8687 struct btf_id_dtor_kfunc_tab *tab; 8688 struct btf *btf; 8689 u32 tab_cnt, i; 8690 int ret; 8691 8692 btf = btf_get_module_btf(owner); 8693 if (!btf) 8694 return check_btf_kconfigs(owner, "dtor kfuncs"); 8695 if (IS_ERR(btf)) 8696 return PTR_ERR(btf); 8697 8698 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8699 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8700 ret = -E2BIG; 8701 goto end; 8702 } 8703 8704 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8705 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8706 if (ret < 0) 8707 goto end; 8708 8709 tab = btf->dtor_kfunc_tab; 8710 /* Only one call allowed for modules */ 8711 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8712 ret = -EINVAL; 8713 goto end; 8714 } 8715 8716 tab_cnt = tab ? tab->cnt : 0; 8717 if (tab_cnt > U32_MAX - add_cnt) { 8718 ret = -EOVERFLOW; 8719 goto end; 8720 } 8721 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8722 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8723 ret = -E2BIG; 8724 goto end; 8725 } 8726 8727 tab = krealloc(btf->dtor_kfunc_tab, 8728 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8729 GFP_KERNEL | __GFP_NOWARN); 8730 if (!tab) { 8731 ret = -ENOMEM; 8732 goto end; 8733 } 8734 8735 if (!btf->dtor_kfunc_tab) 8736 tab->cnt = 0; 8737 btf->dtor_kfunc_tab = tab; 8738 8739 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8740 8741 /* remap BTF ids based on BTF relocation (if any) */ 8742 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8743 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8744 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8745 } 8746 8747 tab->cnt += add_cnt; 8748 8749 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8750 8751 end: 8752 if (ret) 8753 btf_free_dtor_kfunc_tab(btf); 8754 btf_put(btf); 8755 return ret; 8756 } 8757 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8758 8759 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8760 8761 /* Check local and target types for compatibility. This check is used for 8762 * type-based CO-RE relocations and follow slightly different rules than 8763 * field-based relocations. This function assumes that root types were already 8764 * checked for name match. Beyond that initial root-level name check, names 8765 * are completely ignored. Compatibility rules are as follows: 8766 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8767 * kind should match for local and target types (i.e., STRUCT is not 8768 * compatible with UNION); 8769 * - for ENUMs/ENUM64s, the size is ignored; 8770 * - for INT, size and signedness are ignored; 8771 * - for ARRAY, dimensionality is ignored, element types are checked for 8772 * compatibility recursively; 8773 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8774 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8775 * - FUNC_PROTOs are compatible if they have compatible signature: same 8776 * number of input args and compatible return and argument types. 8777 * These rules are not set in stone and probably will be adjusted as we get 8778 * more experience with using BPF CO-RE relocations. 8779 */ 8780 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8781 const struct btf *targ_btf, __u32 targ_id) 8782 { 8783 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8784 MAX_TYPES_ARE_COMPAT_DEPTH); 8785 } 8786 8787 #define MAX_TYPES_MATCH_DEPTH 2 8788 8789 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8790 const struct btf *targ_btf, u32 targ_id) 8791 { 8792 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8793 MAX_TYPES_MATCH_DEPTH); 8794 } 8795 8796 static bool bpf_core_is_flavor_sep(const char *s) 8797 { 8798 /* check X___Y name pattern, where X and Y are not underscores */ 8799 return s[0] != '_' && /* X */ 8800 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8801 s[4] != '_'; /* Y */ 8802 } 8803 8804 size_t bpf_core_essential_name_len(const char *name) 8805 { 8806 size_t n = strlen(name); 8807 int i; 8808 8809 for (i = n - 5; i >= 0; i--) { 8810 if (bpf_core_is_flavor_sep(name + i)) 8811 return i + 1; 8812 } 8813 return n; 8814 } 8815 8816 static void bpf_free_cands(struct bpf_cand_cache *cands) 8817 { 8818 if (!cands->cnt) 8819 /* empty candidate array was allocated on stack */ 8820 return; 8821 kfree(cands); 8822 } 8823 8824 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8825 { 8826 kfree(cands->name); 8827 kfree(cands); 8828 } 8829 8830 #define VMLINUX_CAND_CACHE_SIZE 31 8831 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8832 8833 #define MODULE_CAND_CACHE_SIZE 31 8834 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8835 8836 static void __print_cand_cache(struct bpf_verifier_log *log, 8837 struct bpf_cand_cache **cache, 8838 int cache_size) 8839 { 8840 struct bpf_cand_cache *cc; 8841 int i, j; 8842 8843 for (i = 0; i < cache_size; i++) { 8844 cc = cache[i]; 8845 if (!cc) 8846 continue; 8847 bpf_log(log, "[%d]%s(", i, cc->name); 8848 for (j = 0; j < cc->cnt; j++) { 8849 bpf_log(log, "%d", cc->cands[j].id); 8850 if (j < cc->cnt - 1) 8851 bpf_log(log, " "); 8852 } 8853 bpf_log(log, "), "); 8854 } 8855 } 8856 8857 static void print_cand_cache(struct bpf_verifier_log *log) 8858 { 8859 mutex_lock(&cand_cache_mutex); 8860 bpf_log(log, "vmlinux_cand_cache:"); 8861 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8862 bpf_log(log, "\nmodule_cand_cache:"); 8863 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8864 bpf_log(log, "\n"); 8865 mutex_unlock(&cand_cache_mutex); 8866 } 8867 8868 static u32 hash_cands(struct bpf_cand_cache *cands) 8869 { 8870 return jhash(cands->name, cands->name_len, 0); 8871 } 8872 8873 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8874 struct bpf_cand_cache **cache, 8875 int cache_size) 8876 { 8877 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8878 8879 if (cc && cc->name_len == cands->name_len && 8880 !strncmp(cc->name, cands->name, cands->name_len)) 8881 return cc; 8882 return NULL; 8883 } 8884 8885 static size_t sizeof_cands(int cnt) 8886 { 8887 return offsetof(struct bpf_cand_cache, cands[cnt]); 8888 } 8889 8890 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8891 struct bpf_cand_cache **cache, 8892 int cache_size) 8893 { 8894 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8895 8896 if (*cc) { 8897 bpf_free_cands_from_cache(*cc); 8898 *cc = NULL; 8899 } 8900 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8901 if (!new_cands) { 8902 bpf_free_cands(cands); 8903 return ERR_PTR(-ENOMEM); 8904 } 8905 /* strdup the name, since it will stay in cache. 8906 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8907 */ 8908 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8909 bpf_free_cands(cands); 8910 if (!new_cands->name) { 8911 kfree(new_cands); 8912 return ERR_PTR(-ENOMEM); 8913 } 8914 *cc = new_cands; 8915 return new_cands; 8916 } 8917 8918 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8919 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8920 int cache_size) 8921 { 8922 struct bpf_cand_cache *cc; 8923 int i, j; 8924 8925 for (i = 0; i < cache_size; i++) { 8926 cc = cache[i]; 8927 if (!cc) 8928 continue; 8929 if (!btf) { 8930 /* when new module is loaded purge all of module_cand_cache, 8931 * since new module might have candidates with the name 8932 * that matches cached cands. 8933 */ 8934 bpf_free_cands_from_cache(cc); 8935 cache[i] = NULL; 8936 continue; 8937 } 8938 /* when module is unloaded purge cache entries 8939 * that match module's btf 8940 */ 8941 for (j = 0; j < cc->cnt; j++) 8942 if (cc->cands[j].btf == btf) { 8943 bpf_free_cands_from_cache(cc); 8944 cache[i] = NULL; 8945 break; 8946 } 8947 } 8948 8949 } 8950 8951 static void purge_cand_cache(struct btf *btf) 8952 { 8953 mutex_lock(&cand_cache_mutex); 8954 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8955 mutex_unlock(&cand_cache_mutex); 8956 } 8957 #endif 8958 8959 static struct bpf_cand_cache * 8960 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8961 int targ_start_id) 8962 { 8963 struct bpf_cand_cache *new_cands; 8964 const struct btf_type *t; 8965 const char *targ_name; 8966 size_t targ_essent_len; 8967 int n, i; 8968 8969 n = btf_nr_types(targ_btf); 8970 for (i = targ_start_id; i < n; i++) { 8971 t = btf_type_by_id(targ_btf, i); 8972 if (btf_kind(t) != cands->kind) 8973 continue; 8974 8975 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8976 if (!targ_name) 8977 continue; 8978 8979 /* the resched point is before strncmp to make sure that search 8980 * for non-existing name will have a chance to schedule(). 8981 */ 8982 cond_resched(); 8983 8984 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8985 continue; 8986 8987 targ_essent_len = bpf_core_essential_name_len(targ_name); 8988 if (targ_essent_len != cands->name_len) 8989 continue; 8990 8991 /* most of the time there is only one candidate for a given kind+name pair */ 8992 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8993 if (!new_cands) { 8994 bpf_free_cands(cands); 8995 return ERR_PTR(-ENOMEM); 8996 } 8997 8998 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8999 bpf_free_cands(cands); 9000 cands = new_cands; 9001 cands->cands[cands->cnt].btf = targ_btf; 9002 cands->cands[cands->cnt].id = i; 9003 cands->cnt++; 9004 } 9005 return cands; 9006 } 9007 9008 static struct bpf_cand_cache * 9009 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 9010 { 9011 struct bpf_cand_cache *cands, *cc, local_cand = {}; 9012 const struct btf *local_btf = ctx->btf; 9013 const struct btf_type *local_type; 9014 const struct btf *main_btf; 9015 size_t local_essent_len; 9016 struct btf *mod_btf; 9017 const char *name; 9018 int id; 9019 9020 main_btf = bpf_get_btf_vmlinux(); 9021 if (IS_ERR(main_btf)) 9022 return ERR_CAST(main_btf); 9023 if (!main_btf) 9024 return ERR_PTR(-EINVAL); 9025 9026 local_type = btf_type_by_id(local_btf, local_type_id); 9027 if (!local_type) 9028 return ERR_PTR(-EINVAL); 9029 9030 name = btf_name_by_offset(local_btf, local_type->name_off); 9031 if (str_is_empty(name)) 9032 return ERR_PTR(-EINVAL); 9033 local_essent_len = bpf_core_essential_name_len(name); 9034 9035 cands = &local_cand; 9036 cands->name = name; 9037 cands->kind = btf_kind(local_type); 9038 cands->name_len = local_essent_len; 9039 9040 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9041 /* cands is a pointer to stack here */ 9042 if (cc) { 9043 if (cc->cnt) 9044 return cc; 9045 goto check_modules; 9046 } 9047 9048 /* Attempt to find target candidates in vmlinux BTF first */ 9049 cands = bpf_core_add_cands(cands, main_btf, 1); 9050 if (IS_ERR(cands)) 9051 return ERR_CAST(cands); 9052 9053 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 9054 9055 /* populate cache even when cands->cnt == 0 */ 9056 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9057 if (IS_ERR(cc)) 9058 return ERR_CAST(cc); 9059 9060 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 9061 if (cc->cnt) 9062 return cc; 9063 9064 check_modules: 9065 /* cands is a pointer to stack here and cands->cnt == 0 */ 9066 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9067 if (cc) 9068 /* if cache has it return it even if cc->cnt == 0 */ 9069 return cc; 9070 9071 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 9072 spin_lock_bh(&btf_idr_lock); 9073 idr_for_each_entry(&btf_idr, mod_btf, id) { 9074 if (!btf_is_module(mod_btf)) 9075 continue; 9076 /* linear search could be slow hence unlock/lock 9077 * the IDR to avoiding holding it for too long 9078 */ 9079 btf_get(mod_btf); 9080 spin_unlock_bh(&btf_idr_lock); 9081 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 9082 btf_put(mod_btf); 9083 if (IS_ERR(cands)) 9084 return ERR_CAST(cands); 9085 spin_lock_bh(&btf_idr_lock); 9086 } 9087 spin_unlock_bh(&btf_idr_lock); 9088 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 9089 * or pointer to stack if cands->cnd == 0. 9090 * Copy it into the cache even when cands->cnt == 0 and 9091 * return the result. 9092 */ 9093 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9094 } 9095 9096 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 9097 int relo_idx, void *insn) 9098 { 9099 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 9100 struct bpf_core_cand_list cands = {}; 9101 struct bpf_core_relo_res targ_res; 9102 struct bpf_core_spec *specs; 9103 const struct btf_type *type; 9104 int err; 9105 9106 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 9107 * into arrays of btf_ids of struct fields and array indices. 9108 */ 9109 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 9110 if (!specs) 9111 return -ENOMEM; 9112 9113 type = btf_type_by_id(ctx->btf, relo->type_id); 9114 if (!type) { 9115 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 9116 relo_idx, relo->type_id); 9117 kfree(specs); 9118 return -EINVAL; 9119 } 9120 9121 if (need_cands) { 9122 struct bpf_cand_cache *cc; 9123 int i; 9124 9125 mutex_lock(&cand_cache_mutex); 9126 cc = bpf_core_find_cands(ctx, relo->type_id); 9127 if (IS_ERR(cc)) { 9128 bpf_log(ctx->log, "target candidate search failed for %d\n", 9129 relo->type_id); 9130 err = PTR_ERR(cc); 9131 goto out; 9132 } 9133 if (cc->cnt) { 9134 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 9135 if (!cands.cands) { 9136 err = -ENOMEM; 9137 goto out; 9138 } 9139 } 9140 for (i = 0; i < cc->cnt; i++) { 9141 bpf_log(ctx->log, 9142 "CO-RE relocating %s %s: found target candidate [%d]\n", 9143 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 9144 cands.cands[i].btf = cc->cands[i].btf; 9145 cands.cands[i].id = cc->cands[i].id; 9146 } 9147 cands.len = cc->cnt; 9148 /* cand_cache_mutex needs to span the cache lookup and 9149 * copy of btf pointer into bpf_core_cand_list, 9150 * since module can be unloaded while bpf_core_calc_relo_insn 9151 * is working with module's btf. 9152 */ 9153 } 9154 9155 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9156 &targ_res); 9157 if (err) 9158 goto out; 9159 9160 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9161 &targ_res); 9162 9163 out: 9164 kfree(specs); 9165 if (need_cands) { 9166 kfree(cands.cands); 9167 mutex_unlock(&cand_cache_mutex); 9168 if (ctx->log->level & BPF_LOG_LEVEL2) 9169 print_cand_cache(ctx->log); 9170 } 9171 return err; 9172 } 9173 9174 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9175 const struct bpf_reg_state *reg, 9176 const char *field_name, u32 btf_id, const char *suffix) 9177 { 9178 struct btf *btf = reg->btf; 9179 const struct btf_type *walk_type, *safe_type; 9180 const char *tname; 9181 char safe_tname[64]; 9182 long ret, safe_id; 9183 const struct btf_member *member; 9184 u32 i; 9185 9186 walk_type = btf_type_by_id(btf, reg->btf_id); 9187 if (!walk_type) 9188 return false; 9189 9190 tname = btf_name_by_offset(btf, walk_type->name_off); 9191 9192 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9193 if (ret >= sizeof(safe_tname)) 9194 return false; 9195 9196 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9197 if (safe_id < 0) 9198 return false; 9199 9200 safe_type = btf_type_by_id(btf, safe_id); 9201 if (!safe_type) 9202 return false; 9203 9204 for_each_member(i, safe_type, member) { 9205 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9206 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9207 u32 id; 9208 9209 if (!btf_type_is_ptr(mtype)) 9210 continue; 9211 9212 btf_type_skip_modifiers(btf, mtype->type, &id); 9213 /* If we match on both type and name, the field is considered trusted. */ 9214 if (btf_id == id && !strcmp(field_name, m_name)) 9215 return true; 9216 } 9217 9218 return false; 9219 } 9220 9221 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9222 const struct btf *reg_btf, u32 reg_id, 9223 const struct btf *arg_btf, u32 arg_id) 9224 { 9225 const char *reg_name, *arg_name, *search_needle; 9226 const struct btf_type *reg_type, *arg_type; 9227 int reg_len, arg_len, cmp_len; 9228 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9229 9230 reg_type = btf_type_by_id(reg_btf, reg_id); 9231 if (!reg_type) 9232 return false; 9233 9234 arg_type = btf_type_by_id(arg_btf, arg_id); 9235 if (!arg_type) 9236 return false; 9237 9238 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9239 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9240 9241 reg_len = strlen(reg_name); 9242 arg_len = strlen(arg_name); 9243 9244 /* Exactly one of the two type names may be suffixed with ___init, so 9245 * if the strings are the same size, they can't possibly be no-cast 9246 * aliases of one another. If you have two of the same type names, e.g. 9247 * they're both nf_conn___init, it would be improper to return true 9248 * because they are _not_ no-cast aliases, they are the same type. 9249 */ 9250 if (reg_len == arg_len) 9251 return false; 9252 9253 /* Either of the two names must be the other name, suffixed with ___init. */ 9254 if ((reg_len != arg_len + pattern_len) && 9255 (arg_len != reg_len + pattern_len)) 9256 return false; 9257 9258 if (reg_len < arg_len) { 9259 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9260 cmp_len = reg_len; 9261 } else { 9262 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9263 cmp_len = arg_len; 9264 } 9265 9266 if (!search_needle) 9267 return false; 9268 9269 /* ___init suffix must come at the end of the name */ 9270 if (*(search_needle + pattern_len) != '\0') 9271 return false; 9272 9273 return !strncmp(reg_name, arg_name, cmp_len); 9274 } 9275 9276 #ifdef CONFIG_BPF_JIT 9277 static int 9278 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9279 struct bpf_verifier_log *log) 9280 { 9281 struct btf_struct_ops_tab *tab, *new_tab; 9282 int i, err; 9283 9284 tab = btf->struct_ops_tab; 9285 if (!tab) { 9286 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 9287 GFP_KERNEL); 9288 if (!tab) 9289 return -ENOMEM; 9290 tab->capacity = 4; 9291 btf->struct_ops_tab = tab; 9292 } 9293 9294 for (i = 0; i < tab->cnt; i++) 9295 if (tab->ops[i].st_ops == st_ops) 9296 return -EEXIST; 9297 9298 if (tab->cnt == tab->capacity) { 9299 new_tab = krealloc(tab, 9300 offsetof(struct btf_struct_ops_tab, 9301 ops[tab->capacity * 2]), 9302 GFP_KERNEL); 9303 if (!new_tab) 9304 return -ENOMEM; 9305 tab = new_tab; 9306 tab->capacity *= 2; 9307 btf->struct_ops_tab = tab; 9308 } 9309 9310 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9311 9312 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9313 if (err) 9314 return err; 9315 9316 btf->struct_ops_tab->cnt++; 9317 9318 return 0; 9319 } 9320 9321 const struct bpf_struct_ops_desc * 9322 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9323 { 9324 const struct bpf_struct_ops_desc *st_ops_list; 9325 unsigned int i; 9326 u32 cnt; 9327 9328 if (!value_id) 9329 return NULL; 9330 if (!btf->struct_ops_tab) 9331 return NULL; 9332 9333 cnt = btf->struct_ops_tab->cnt; 9334 st_ops_list = btf->struct_ops_tab->ops; 9335 for (i = 0; i < cnt; i++) { 9336 if (st_ops_list[i].value_id == value_id) 9337 return &st_ops_list[i]; 9338 } 9339 9340 return NULL; 9341 } 9342 9343 const struct bpf_struct_ops_desc * 9344 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9345 { 9346 const struct bpf_struct_ops_desc *st_ops_list; 9347 unsigned int i; 9348 u32 cnt; 9349 9350 if (!type_id) 9351 return NULL; 9352 if (!btf->struct_ops_tab) 9353 return NULL; 9354 9355 cnt = btf->struct_ops_tab->cnt; 9356 st_ops_list = btf->struct_ops_tab->ops; 9357 for (i = 0; i < cnt; i++) { 9358 if (st_ops_list[i].type_id == type_id) 9359 return &st_ops_list[i]; 9360 } 9361 9362 return NULL; 9363 } 9364 9365 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9366 { 9367 struct bpf_verifier_log *log; 9368 struct btf *btf; 9369 int err = 0; 9370 9371 btf = btf_get_module_btf(st_ops->owner); 9372 if (!btf) 9373 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9374 if (IS_ERR(btf)) 9375 return PTR_ERR(btf); 9376 9377 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9378 if (!log) { 9379 err = -ENOMEM; 9380 goto errout; 9381 } 9382 9383 log->level = BPF_LOG_KERNEL; 9384 9385 err = btf_add_struct_ops(btf, st_ops, log); 9386 9387 errout: 9388 kfree(log); 9389 btf_put(btf); 9390 9391 return err; 9392 } 9393 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9394 #endif 9395 9396 bool btf_param_match_suffix(const struct btf *btf, 9397 const struct btf_param *arg, 9398 const char *suffix) 9399 { 9400 int suffix_len = strlen(suffix), len; 9401 const char *param_name; 9402 9403 /* In the future, this can be ported to use BTF tagging */ 9404 param_name = btf_name_by_offset(btf, arg->name_off); 9405 if (str_is_empty(param_name)) 9406 return false; 9407 len = strlen(param_name); 9408 if (len <= suffix_len) 9409 return false; 9410 param_name += len - suffix_len; 9411 return !strncmp(param_name, suffix, suffix_len); 9412 } 9413