1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 278 }; 279 280 enum verifier_phase { 281 CHECK_META, 282 CHECK_TYPE, 283 }; 284 285 struct resolve_vertex { 286 const struct btf_type *t; 287 u32 type_id; 288 u16 next_member; 289 }; 290 291 enum visit_state { 292 NOT_VISITED, 293 VISITED, 294 RESOLVED, 295 }; 296 297 enum resolve_mode { 298 RESOLVE_TBD, /* To Be Determined */ 299 RESOLVE_PTR, /* Resolving for Pointer */ 300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 301 * or array 302 */ 303 }; 304 305 #define MAX_RESOLVE_DEPTH 32 306 307 struct btf_sec_info { 308 u32 off; 309 u32 len; 310 }; 311 312 struct btf_verifier_env { 313 struct btf *btf; 314 u8 *visit_states; 315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 316 struct bpf_verifier_log log; 317 u32 log_type_id; 318 u32 top_stack; 319 enum verifier_phase phase; 320 enum resolve_mode resolve_mode; 321 }; 322 323 static const char * const btf_kind_str[NR_BTF_KINDS] = { 324 [BTF_KIND_UNKN] = "UNKNOWN", 325 [BTF_KIND_INT] = "INT", 326 [BTF_KIND_PTR] = "PTR", 327 [BTF_KIND_ARRAY] = "ARRAY", 328 [BTF_KIND_STRUCT] = "STRUCT", 329 [BTF_KIND_UNION] = "UNION", 330 [BTF_KIND_ENUM] = "ENUM", 331 [BTF_KIND_FWD] = "FWD", 332 [BTF_KIND_TYPEDEF] = "TYPEDEF", 333 [BTF_KIND_VOLATILE] = "VOLATILE", 334 [BTF_KIND_CONST] = "CONST", 335 [BTF_KIND_RESTRICT] = "RESTRICT", 336 [BTF_KIND_FUNC] = "FUNC", 337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 338 [BTF_KIND_VAR] = "VAR", 339 [BTF_KIND_DATASEC] = "DATASEC", 340 [BTF_KIND_FLOAT] = "FLOAT", 341 [BTF_KIND_DECL_TAG] = "DECL_TAG", 342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 343 [BTF_KIND_ENUM64] = "ENUM64", 344 }; 345 346 const char *btf_type_str(const struct btf_type *t) 347 { 348 return btf_kind_str[BTF_INFO_KIND(t->info)]; 349 } 350 351 /* Chunk size we use in safe copy of data to be shown. */ 352 #define BTF_SHOW_OBJ_SAFE_SIZE 32 353 354 /* 355 * This is the maximum size of a base type value (equivalent to a 356 * 128-bit int); if we are at the end of our safe buffer and have 357 * less than 16 bytes space we can't be assured of being able 358 * to copy the next type safely, so in such cases we will initiate 359 * a new copy. 360 */ 361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 362 363 /* Type name size */ 364 #define BTF_SHOW_NAME_SIZE 80 365 366 /* 367 * The suffix of a type that indicates it cannot alias another type when 368 * comparing BTF IDs for kfunc invocations. 369 */ 370 #define NOCAST_ALIAS_SUFFIX "___init" 371 372 /* 373 * Common data to all BTF show operations. Private show functions can add 374 * their own data to a structure containing a struct btf_show and consult it 375 * in the show callback. See btf_type_show() below. 376 * 377 * One challenge with showing nested data is we want to skip 0-valued 378 * data, but in order to figure out whether a nested object is all zeros 379 * we need to walk through it. As a result, we need to make two passes 380 * when handling structs, unions and arrays; the first path simply looks 381 * for nonzero data, while the second actually does the display. The first 382 * pass is signalled by show->state.depth_check being set, and if we 383 * encounter a non-zero value we set show->state.depth_to_show to 384 * the depth at which we encountered it. When we have completed the 385 * first pass, we will know if anything needs to be displayed if 386 * depth_to_show > depth. See btf_[struct,array]_show() for the 387 * implementation of this. 388 * 389 * Another problem is we want to ensure the data for display is safe to 390 * access. To support this, the anonymous "struct {} obj" tracks the data 391 * object and our safe copy of it. We copy portions of the data needed 392 * to the object "copy" buffer, but because its size is limited to 393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 394 * traverse larger objects for display. 395 * 396 * The various data type show functions all start with a call to 397 * btf_show_start_type() which returns a pointer to the safe copy 398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 399 * raw data itself). btf_show_obj_safe() is responsible for 400 * using copy_from_kernel_nofault() to update the safe data if necessary 401 * as we traverse the object's data. skbuff-like semantics are 402 * used: 403 * 404 * - obj.head points to the start of the toplevel object for display 405 * - obj.size is the size of the toplevel object 406 * - obj.data points to the current point in the original data at 407 * which our safe data starts. obj.data will advance as we copy 408 * portions of the data. 409 * 410 * In most cases a single copy will suffice, but larger data structures 411 * such as "struct task_struct" will require many copies. The logic in 412 * btf_show_obj_safe() handles the logic that determines if a new 413 * copy_from_kernel_nofault() is needed. 414 */ 415 struct btf_show { 416 u64 flags; 417 void *target; /* target of show operation (seq file, buffer) */ 418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 419 const struct btf *btf; 420 /* below are used during iteration */ 421 struct { 422 u8 depth; 423 u8 depth_to_show; 424 u8 depth_check; 425 u8 array_member:1, 426 array_terminated:1; 427 u16 array_encoding; 428 u32 type_id; 429 int status; /* non-zero for error */ 430 const struct btf_type *type; 431 const struct btf_member *member; 432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 433 } state; 434 struct { 435 u32 size; 436 void *head; 437 void *data; 438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 439 } obj; 440 }; 441 442 struct btf_kind_operations { 443 s32 (*check_meta)(struct btf_verifier_env *env, 444 const struct btf_type *t, 445 u32 meta_left); 446 int (*resolve)(struct btf_verifier_env *env, 447 const struct resolve_vertex *v); 448 int (*check_member)(struct btf_verifier_env *env, 449 const struct btf_type *struct_type, 450 const struct btf_member *member, 451 const struct btf_type *member_type); 452 int (*check_kflag_member)(struct btf_verifier_env *env, 453 const struct btf_type *struct_type, 454 const struct btf_member *member, 455 const struct btf_type *member_type); 456 void (*log_details)(struct btf_verifier_env *env, 457 const struct btf_type *t); 458 void (*show)(const struct btf *btf, const struct btf_type *t, 459 u32 type_id, void *data, u8 bits_offsets, 460 struct btf_show *show); 461 }; 462 463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 464 static struct btf_type btf_void; 465 466 static int btf_resolve(struct btf_verifier_env *env, 467 const struct btf_type *t, u32 type_id); 468 469 static int btf_func_check(struct btf_verifier_env *env, 470 const struct btf_type *t); 471 472 static bool btf_type_is_modifier(const struct btf_type *t) 473 { 474 /* Some of them is not strictly a C modifier 475 * but they are grouped into the same bucket 476 * for BTF concern: 477 * A type (t) that refers to another 478 * type through t->type AND its size cannot 479 * be determined without following the t->type. 480 * 481 * ptr does not fall into this bucket 482 * because its size is always sizeof(void *). 483 */ 484 switch (BTF_INFO_KIND(t->info)) { 485 case BTF_KIND_TYPEDEF: 486 case BTF_KIND_VOLATILE: 487 case BTF_KIND_CONST: 488 case BTF_KIND_RESTRICT: 489 case BTF_KIND_TYPE_TAG: 490 return true; 491 } 492 493 return false; 494 } 495 496 bool btf_type_is_void(const struct btf_type *t) 497 { 498 return t == &btf_void; 499 } 500 501 static bool btf_type_is_fwd(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 504 } 505 506 static bool btf_type_is_datasec(const struct btf_type *t) 507 { 508 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 509 } 510 511 static bool btf_type_is_decl_tag(const struct btf_type *t) 512 { 513 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 514 } 515 516 static bool btf_type_nosize(const struct btf_type *t) 517 { 518 return btf_type_is_void(t) || btf_type_is_fwd(t) || 519 btf_type_is_func(t) || btf_type_is_func_proto(t) || 520 btf_type_is_decl_tag(t); 521 } 522 523 static bool btf_type_nosize_or_null(const struct btf_type *t) 524 { 525 return !t || btf_type_nosize(t); 526 } 527 528 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 529 { 530 return btf_type_is_func(t) || btf_type_is_struct(t) || 531 btf_type_is_var(t) || btf_type_is_typedef(t); 532 } 533 534 bool btf_is_vmlinux(const struct btf *btf) 535 { 536 return btf->kernel_btf && !btf->base_btf; 537 } 538 539 u32 btf_nr_types(const struct btf *btf) 540 { 541 u32 total = 0; 542 543 while (btf) { 544 total += btf->nr_types; 545 btf = btf->base_btf; 546 } 547 548 return total; 549 } 550 551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 552 { 553 const struct btf_type *t; 554 const char *tname; 555 u32 i, total; 556 557 total = btf_nr_types(btf); 558 for (i = 1; i < total; i++) { 559 t = btf_type_by_id(btf, i); 560 if (BTF_INFO_KIND(t->info) != kind) 561 continue; 562 563 tname = btf_name_by_offset(btf, t->name_off); 564 if (!strcmp(tname, name)) 565 return i; 566 } 567 568 return -ENOENT; 569 } 570 571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 572 { 573 struct btf *btf; 574 s32 ret; 575 int id; 576 577 btf = bpf_get_btf_vmlinux(); 578 if (IS_ERR(btf)) 579 return PTR_ERR(btf); 580 if (!btf) 581 return -EINVAL; 582 583 ret = btf_find_by_name_kind(btf, name, kind); 584 /* ret is never zero, since btf_find_by_name_kind returns 585 * positive btf_id or negative error. 586 */ 587 if (ret > 0) { 588 btf_get(btf); 589 *btf_p = btf; 590 return ret; 591 } 592 593 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 594 spin_lock_bh(&btf_idr_lock); 595 idr_for_each_entry(&btf_idr, btf, id) { 596 if (!btf_is_module(btf)) 597 continue; 598 /* linear search could be slow hence unlock/lock 599 * the IDR to avoiding holding it for too long 600 */ 601 btf_get(btf); 602 spin_unlock_bh(&btf_idr_lock); 603 ret = btf_find_by_name_kind(btf, name, kind); 604 if (ret > 0) { 605 *btf_p = btf; 606 return ret; 607 } 608 btf_put(btf); 609 spin_lock_bh(&btf_idr_lock); 610 } 611 spin_unlock_bh(&btf_idr_lock); 612 return ret; 613 } 614 615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 616 u32 id, u32 *res_id) 617 { 618 const struct btf_type *t = btf_type_by_id(btf, id); 619 620 while (btf_type_is_modifier(t)) { 621 id = t->type; 622 t = btf_type_by_id(btf, t->type); 623 } 624 625 if (res_id) 626 *res_id = id; 627 628 return t; 629 } 630 631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 632 u32 id, u32 *res_id) 633 { 634 const struct btf_type *t; 635 636 t = btf_type_skip_modifiers(btf, id, NULL); 637 if (!btf_type_is_ptr(t)) 638 return NULL; 639 640 return btf_type_skip_modifiers(btf, t->type, res_id); 641 } 642 643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 644 u32 id, u32 *res_id) 645 { 646 const struct btf_type *ptype; 647 648 ptype = btf_type_resolve_ptr(btf, id, res_id); 649 if (ptype && btf_type_is_func_proto(ptype)) 650 return ptype; 651 652 return NULL; 653 } 654 655 /* Types that act only as a source, not sink or intermediate 656 * type when resolving. 657 */ 658 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 659 { 660 return btf_type_is_var(t) || 661 btf_type_is_decl_tag(t) || 662 btf_type_is_datasec(t); 663 } 664 665 /* What types need to be resolved? 666 * 667 * btf_type_is_modifier() is an obvious one. 668 * 669 * btf_type_is_struct() because its member refers to 670 * another type (through member->type). 671 * 672 * btf_type_is_var() because the variable refers to 673 * another type. btf_type_is_datasec() holds multiple 674 * btf_type_is_var() types that need resolving. 675 * 676 * btf_type_is_array() because its element (array->type) 677 * refers to another type. Array can be thought of a 678 * special case of struct while array just has the same 679 * member-type repeated by array->nelems of times. 680 */ 681 static bool btf_type_needs_resolve(const struct btf_type *t) 682 { 683 return btf_type_is_modifier(t) || 684 btf_type_is_ptr(t) || 685 btf_type_is_struct(t) || 686 btf_type_is_array(t) || 687 btf_type_is_var(t) || 688 btf_type_is_func(t) || 689 btf_type_is_decl_tag(t) || 690 btf_type_is_datasec(t); 691 } 692 693 /* t->size can be used */ 694 static bool btf_type_has_size(const struct btf_type *t) 695 { 696 switch (BTF_INFO_KIND(t->info)) { 697 case BTF_KIND_INT: 698 case BTF_KIND_STRUCT: 699 case BTF_KIND_UNION: 700 case BTF_KIND_ENUM: 701 case BTF_KIND_DATASEC: 702 case BTF_KIND_FLOAT: 703 case BTF_KIND_ENUM64: 704 return true; 705 } 706 707 return false; 708 } 709 710 static const char *btf_int_encoding_str(u8 encoding) 711 { 712 if (encoding == 0) 713 return "(none)"; 714 else if (encoding == BTF_INT_SIGNED) 715 return "SIGNED"; 716 else if (encoding == BTF_INT_CHAR) 717 return "CHAR"; 718 else if (encoding == BTF_INT_BOOL) 719 return "BOOL"; 720 else 721 return "UNKN"; 722 } 723 724 static u32 btf_type_int(const struct btf_type *t) 725 { 726 return *(u32 *)(t + 1); 727 } 728 729 static const struct btf_array *btf_type_array(const struct btf_type *t) 730 { 731 return (const struct btf_array *)(t + 1); 732 } 733 734 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 735 { 736 return (const struct btf_enum *)(t + 1); 737 } 738 739 static const struct btf_var *btf_type_var(const struct btf_type *t) 740 { 741 return (const struct btf_var *)(t + 1); 742 } 743 744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 745 { 746 return (const struct btf_decl_tag *)(t + 1); 747 } 748 749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 750 { 751 return (const struct btf_enum64 *)(t + 1); 752 } 753 754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 755 { 756 return kind_ops[BTF_INFO_KIND(t->info)]; 757 } 758 759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 760 { 761 if (!BTF_STR_OFFSET_VALID(offset)) 762 return false; 763 764 while (offset < btf->start_str_off) 765 btf = btf->base_btf; 766 767 offset -= btf->start_str_off; 768 return offset < btf->hdr.str_len; 769 } 770 771 static bool __btf_name_char_ok(char c, bool first) 772 { 773 if ((first ? !isalpha(c) : 774 !isalnum(c)) && 775 c != '_' && 776 c != '.') 777 return false; 778 return true; 779 } 780 781 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 782 { 783 while (offset < btf->start_str_off) 784 btf = btf->base_btf; 785 786 offset -= btf->start_str_off; 787 if (offset < btf->hdr.str_len) 788 return &btf->strings[offset]; 789 790 return NULL; 791 } 792 793 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 794 { 795 /* offset must be valid */ 796 const char *src = btf_str_by_offset(btf, offset); 797 const char *src_limit; 798 799 if (!__btf_name_char_ok(*src, true)) 800 return false; 801 802 /* set a limit on identifier length */ 803 src_limit = src + KSYM_NAME_LEN; 804 src++; 805 while (*src && src < src_limit) { 806 if (!__btf_name_char_ok(*src, false)) 807 return false; 808 src++; 809 } 810 811 return !*src; 812 } 813 814 /* Allow any printable character in DATASEC names */ 815 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 816 { 817 /* offset must be valid */ 818 const char *src = btf_str_by_offset(btf, offset); 819 const char *src_limit; 820 821 if (!*src) 822 return false; 823 824 /* set a limit on identifier length */ 825 src_limit = src + KSYM_NAME_LEN; 826 while (*src && src < src_limit) { 827 if (!isprint(*src)) 828 return false; 829 src++; 830 } 831 832 return !*src; 833 } 834 835 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 836 { 837 const char *name; 838 839 if (!offset) 840 return "(anon)"; 841 842 name = btf_str_by_offset(btf, offset); 843 return name ?: "(invalid-name-offset)"; 844 } 845 846 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 847 { 848 return btf_str_by_offset(btf, offset); 849 } 850 851 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 852 { 853 while (type_id < btf->start_id) 854 btf = btf->base_btf; 855 856 type_id -= btf->start_id; 857 if (type_id >= btf->nr_types) 858 return NULL; 859 return btf->types[type_id]; 860 } 861 EXPORT_SYMBOL_GPL(btf_type_by_id); 862 863 /* 864 * Regular int is not a bit field and it must be either 865 * u8/u16/u32/u64 or __int128. 866 */ 867 static bool btf_type_int_is_regular(const struct btf_type *t) 868 { 869 u8 nr_bits, nr_bytes; 870 u32 int_data; 871 872 int_data = btf_type_int(t); 873 nr_bits = BTF_INT_BITS(int_data); 874 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 875 if (BITS_PER_BYTE_MASKED(nr_bits) || 876 BTF_INT_OFFSET(int_data) || 877 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 878 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 879 nr_bytes != (2 * sizeof(u64)))) { 880 return false; 881 } 882 883 return true; 884 } 885 886 /* 887 * Check that given struct member is a regular int with expected 888 * offset and size. 889 */ 890 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 891 const struct btf_member *m, 892 u32 expected_offset, u32 expected_size) 893 { 894 const struct btf_type *t; 895 u32 id, int_data; 896 u8 nr_bits; 897 898 id = m->type; 899 t = btf_type_id_size(btf, &id, NULL); 900 if (!t || !btf_type_is_int(t)) 901 return false; 902 903 int_data = btf_type_int(t); 904 nr_bits = BTF_INT_BITS(int_data); 905 if (btf_type_kflag(s)) { 906 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 907 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 908 909 /* if kflag set, int should be a regular int and 910 * bit offset should be at byte boundary. 911 */ 912 return !bitfield_size && 913 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 914 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 915 } 916 917 if (BTF_INT_OFFSET(int_data) || 918 BITS_PER_BYTE_MASKED(m->offset) || 919 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 920 BITS_PER_BYTE_MASKED(nr_bits) || 921 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 922 return false; 923 924 return true; 925 } 926 927 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 928 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 929 u32 id) 930 { 931 const struct btf_type *t = btf_type_by_id(btf, id); 932 933 while (btf_type_is_modifier(t) && 934 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 935 t = btf_type_by_id(btf, t->type); 936 } 937 938 return t; 939 } 940 941 #define BTF_SHOW_MAX_ITER 10 942 943 #define BTF_KIND_BIT(kind) (1ULL << kind) 944 945 /* 946 * Populate show->state.name with type name information. 947 * Format of type name is 948 * 949 * [.member_name = ] (type_name) 950 */ 951 static const char *btf_show_name(struct btf_show *show) 952 { 953 /* BTF_MAX_ITER array suffixes "[]" */ 954 const char *array_suffixes = "[][][][][][][][][][]"; 955 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 956 /* BTF_MAX_ITER pointer suffixes "*" */ 957 const char *ptr_suffixes = "**********"; 958 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 959 const char *name = NULL, *prefix = "", *parens = ""; 960 const struct btf_member *m = show->state.member; 961 const struct btf_type *t; 962 const struct btf_array *array; 963 u32 id = show->state.type_id; 964 const char *member = NULL; 965 bool show_member = false; 966 u64 kinds = 0; 967 int i; 968 969 show->state.name[0] = '\0'; 970 971 /* 972 * Don't show type name if we're showing an array member; 973 * in that case we show the array type so don't need to repeat 974 * ourselves for each member. 975 */ 976 if (show->state.array_member) 977 return ""; 978 979 /* Retrieve member name, if any. */ 980 if (m) { 981 member = btf_name_by_offset(show->btf, m->name_off); 982 show_member = strlen(member) > 0; 983 id = m->type; 984 } 985 986 /* 987 * Start with type_id, as we have resolved the struct btf_type * 988 * via btf_modifier_show() past the parent typedef to the child 989 * struct, int etc it is defined as. In such cases, the type_id 990 * still represents the starting type while the struct btf_type * 991 * in our show->state points at the resolved type of the typedef. 992 */ 993 t = btf_type_by_id(show->btf, id); 994 if (!t) 995 return ""; 996 997 /* 998 * The goal here is to build up the right number of pointer and 999 * array suffixes while ensuring the type name for a typedef 1000 * is represented. Along the way we accumulate a list of 1001 * BTF kinds we have encountered, since these will inform later 1002 * display; for example, pointer types will not require an 1003 * opening "{" for struct, we will just display the pointer value. 1004 * 1005 * We also want to accumulate the right number of pointer or array 1006 * indices in the format string while iterating until we get to 1007 * the typedef/pointee/array member target type. 1008 * 1009 * We start by pointing at the end of pointer and array suffix 1010 * strings; as we accumulate pointers and arrays we move the pointer 1011 * or array string backwards so it will show the expected number of 1012 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1013 * and/or arrays and typedefs are supported as a precaution. 1014 * 1015 * We also want to get typedef name while proceeding to resolve 1016 * type it points to so that we can add parentheses if it is a 1017 * "typedef struct" etc. 1018 */ 1019 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1020 1021 switch (BTF_INFO_KIND(t->info)) { 1022 case BTF_KIND_TYPEDEF: 1023 if (!name) 1024 name = btf_name_by_offset(show->btf, 1025 t->name_off); 1026 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1027 id = t->type; 1028 break; 1029 case BTF_KIND_ARRAY: 1030 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1031 parens = "["; 1032 if (!t) 1033 return ""; 1034 array = btf_type_array(t); 1035 if (array_suffix > array_suffixes) 1036 array_suffix -= 2; 1037 id = array->type; 1038 break; 1039 case BTF_KIND_PTR: 1040 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1041 if (ptr_suffix > ptr_suffixes) 1042 ptr_suffix -= 1; 1043 id = t->type; 1044 break; 1045 default: 1046 id = 0; 1047 break; 1048 } 1049 if (!id) 1050 break; 1051 t = btf_type_skip_qualifiers(show->btf, id); 1052 } 1053 /* We may not be able to represent this type; bail to be safe */ 1054 if (i == BTF_SHOW_MAX_ITER) 1055 return ""; 1056 1057 if (!name) 1058 name = btf_name_by_offset(show->btf, t->name_off); 1059 1060 switch (BTF_INFO_KIND(t->info)) { 1061 case BTF_KIND_STRUCT: 1062 case BTF_KIND_UNION: 1063 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1064 "struct" : "union"; 1065 /* if it's an array of struct/union, parens is already set */ 1066 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1067 parens = "{"; 1068 break; 1069 case BTF_KIND_ENUM: 1070 case BTF_KIND_ENUM64: 1071 prefix = "enum"; 1072 break; 1073 default: 1074 break; 1075 } 1076 1077 /* pointer does not require parens */ 1078 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1079 parens = ""; 1080 /* typedef does not require struct/union/enum prefix */ 1081 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1082 prefix = ""; 1083 1084 if (!name) 1085 name = ""; 1086 1087 /* Even if we don't want type name info, we want parentheses etc */ 1088 if (show->flags & BTF_SHOW_NONAME) 1089 snprintf(show->state.name, sizeof(show->state.name), "%s", 1090 parens); 1091 else 1092 snprintf(show->state.name, sizeof(show->state.name), 1093 "%s%s%s(%s%s%s%s%s%s)%s", 1094 /* first 3 strings comprise ".member = " */ 1095 show_member ? "." : "", 1096 show_member ? member : "", 1097 show_member ? " = " : "", 1098 /* ...next is our prefix (struct, enum, etc) */ 1099 prefix, 1100 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1101 /* ...this is the type name itself */ 1102 name, 1103 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1104 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1105 array_suffix, parens); 1106 1107 return show->state.name; 1108 } 1109 1110 static const char *__btf_show_indent(struct btf_show *show) 1111 { 1112 const char *indents = " "; 1113 const char *indent = &indents[strlen(indents)]; 1114 1115 if ((indent - show->state.depth) >= indents) 1116 return indent - show->state.depth; 1117 return indents; 1118 } 1119 1120 static const char *btf_show_indent(struct btf_show *show) 1121 { 1122 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1123 } 1124 1125 static const char *btf_show_newline(struct btf_show *show) 1126 { 1127 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1128 } 1129 1130 static const char *btf_show_delim(struct btf_show *show) 1131 { 1132 if (show->state.depth == 0) 1133 return ""; 1134 1135 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1136 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1137 return "|"; 1138 1139 return ","; 1140 } 1141 1142 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1143 { 1144 va_list args; 1145 1146 if (!show->state.depth_check) { 1147 va_start(args, fmt); 1148 show->showfn(show, fmt, args); 1149 va_end(args); 1150 } 1151 } 1152 1153 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1154 * format specifiers to the format specifier passed in; these do the work of 1155 * adding indentation, delimiters etc while the caller simply has to specify 1156 * the type value(s) in the format specifier + value(s). 1157 */ 1158 #define btf_show_type_value(show, fmt, value) \ 1159 do { \ 1160 if ((value) != (__typeof__(value))0 || \ 1161 (show->flags & BTF_SHOW_ZERO) || \ 1162 show->state.depth == 0) { \ 1163 btf_show(show, "%s%s" fmt "%s%s", \ 1164 btf_show_indent(show), \ 1165 btf_show_name(show), \ 1166 value, btf_show_delim(show), \ 1167 btf_show_newline(show)); \ 1168 if (show->state.depth > show->state.depth_to_show) \ 1169 show->state.depth_to_show = show->state.depth; \ 1170 } \ 1171 } while (0) 1172 1173 #define btf_show_type_values(show, fmt, ...) \ 1174 do { \ 1175 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1176 btf_show_name(show), \ 1177 __VA_ARGS__, btf_show_delim(show), \ 1178 btf_show_newline(show)); \ 1179 if (show->state.depth > show->state.depth_to_show) \ 1180 show->state.depth_to_show = show->state.depth; \ 1181 } while (0) 1182 1183 /* How much is left to copy to safe buffer after @data? */ 1184 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1185 { 1186 return show->obj.head + show->obj.size - data; 1187 } 1188 1189 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1190 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1191 { 1192 return data >= show->obj.data && 1193 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1194 } 1195 1196 /* 1197 * If object pointed to by @data of @size falls within our safe buffer, return 1198 * the equivalent pointer to the same safe data. Assumes 1199 * copy_from_kernel_nofault() has already happened and our safe buffer is 1200 * populated. 1201 */ 1202 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1203 { 1204 if (btf_show_obj_is_safe(show, data, size)) 1205 return show->obj.safe + (data - show->obj.data); 1206 return NULL; 1207 } 1208 1209 /* 1210 * Return a safe-to-access version of data pointed to by @data. 1211 * We do this by copying the relevant amount of information 1212 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1213 * 1214 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1215 * safe copy is needed. 1216 * 1217 * Otherwise we need to determine if we have the required amount 1218 * of data (determined by the @data pointer and the size of the 1219 * largest base type we can encounter (represented by 1220 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1221 * that we will be able to print some of the current object, 1222 * and if more is needed a copy will be triggered. 1223 * Some objects such as structs will not fit into the buffer; 1224 * in such cases additional copies when we iterate over their 1225 * members may be needed. 1226 * 1227 * btf_show_obj_safe() is used to return a safe buffer for 1228 * btf_show_start_type(); this ensures that as we recurse into 1229 * nested types we always have safe data for the given type. 1230 * This approach is somewhat wasteful; it's possible for example 1231 * that when iterating over a large union we'll end up copying the 1232 * same data repeatedly, but the goal is safety not performance. 1233 * We use stack data as opposed to per-CPU buffers because the 1234 * iteration over a type can take some time, and preemption handling 1235 * would greatly complicate use of the safe buffer. 1236 */ 1237 static void *btf_show_obj_safe(struct btf_show *show, 1238 const struct btf_type *t, 1239 void *data) 1240 { 1241 const struct btf_type *rt; 1242 int size_left, size; 1243 void *safe = NULL; 1244 1245 if (show->flags & BTF_SHOW_UNSAFE) 1246 return data; 1247 1248 rt = btf_resolve_size(show->btf, t, &size); 1249 if (IS_ERR(rt)) { 1250 show->state.status = PTR_ERR(rt); 1251 return NULL; 1252 } 1253 1254 /* 1255 * Is this toplevel object? If so, set total object size and 1256 * initialize pointers. Otherwise check if we still fall within 1257 * our safe object data. 1258 */ 1259 if (show->state.depth == 0) { 1260 show->obj.size = size; 1261 show->obj.head = data; 1262 } else { 1263 /* 1264 * If the size of the current object is > our remaining 1265 * safe buffer we _may_ need to do a new copy. However 1266 * consider the case of a nested struct; it's size pushes 1267 * us over the safe buffer limit, but showing any individual 1268 * struct members does not. In such cases, we don't need 1269 * to initiate a fresh copy yet; however we definitely need 1270 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1271 * in our buffer, regardless of the current object size. 1272 * The logic here is that as we resolve types we will 1273 * hit a base type at some point, and we need to be sure 1274 * the next chunk of data is safely available to display 1275 * that type info safely. We cannot rely on the size of 1276 * the current object here because it may be much larger 1277 * than our current buffer (e.g. task_struct is 8k). 1278 * All we want to do here is ensure that we can print the 1279 * next basic type, which we can if either 1280 * - the current type size is within the safe buffer; or 1281 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1282 * the safe buffer. 1283 */ 1284 safe = __btf_show_obj_safe(show, data, 1285 min(size, 1286 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1287 } 1288 1289 /* 1290 * We need a new copy to our safe object, either because we haven't 1291 * yet copied and are initializing safe data, or because the data 1292 * we want falls outside the boundaries of the safe object. 1293 */ 1294 if (!safe) { 1295 size_left = btf_show_obj_size_left(show, data); 1296 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1297 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1298 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1299 data, size_left); 1300 if (!show->state.status) { 1301 show->obj.data = data; 1302 safe = show->obj.safe; 1303 } 1304 } 1305 1306 return safe; 1307 } 1308 1309 /* 1310 * Set the type we are starting to show and return a safe data pointer 1311 * to be used for showing the associated data. 1312 */ 1313 static void *btf_show_start_type(struct btf_show *show, 1314 const struct btf_type *t, 1315 u32 type_id, void *data) 1316 { 1317 show->state.type = t; 1318 show->state.type_id = type_id; 1319 show->state.name[0] = '\0'; 1320 1321 return btf_show_obj_safe(show, t, data); 1322 } 1323 1324 static void btf_show_end_type(struct btf_show *show) 1325 { 1326 show->state.type = NULL; 1327 show->state.type_id = 0; 1328 show->state.name[0] = '\0'; 1329 } 1330 1331 static void *btf_show_start_aggr_type(struct btf_show *show, 1332 const struct btf_type *t, 1333 u32 type_id, void *data) 1334 { 1335 void *safe_data = btf_show_start_type(show, t, type_id, data); 1336 1337 if (!safe_data) 1338 return safe_data; 1339 1340 btf_show(show, "%s%s%s", btf_show_indent(show), 1341 btf_show_name(show), 1342 btf_show_newline(show)); 1343 show->state.depth++; 1344 return safe_data; 1345 } 1346 1347 static void btf_show_end_aggr_type(struct btf_show *show, 1348 const char *suffix) 1349 { 1350 show->state.depth--; 1351 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1352 btf_show_delim(show), btf_show_newline(show)); 1353 btf_show_end_type(show); 1354 } 1355 1356 static void btf_show_start_member(struct btf_show *show, 1357 const struct btf_member *m) 1358 { 1359 show->state.member = m; 1360 } 1361 1362 static void btf_show_start_array_member(struct btf_show *show) 1363 { 1364 show->state.array_member = 1; 1365 btf_show_start_member(show, NULL); 1366 } 1367 1368 static void btf_show_end_member(struct btf_show *show) 1369 { 1370 show->state.member = NULL; 1371 } 1372 1373 static void btf_show_end_array_member(struct btf_show *show) 1374 { 1375 show->state.array_member = 0; 1376 btf_show_end_member(show); 1377 } 1378 1379 static void *btf_show_start_array_type(struct btf_show *show, 1380 const struct btf_type *t, 1381 u32 type_id, 1382 u16 array_encoding, 1383 void *data) 1384 { 1385 show->state.array_encoding = array_encoding; 1386 show->state.array_terminated = 0; 1387 return btf_show_start_aggr_type(show, t, type_id, data); 1388 } 1389 1390 static void btf_show_end_array_type(struct btf_show *show) 1391 { 1392 show->state.array_encoding = 0; 1393 show->state.array_terminated = 0; 1394 btf_show_end_aggr_type(show, "]"); 1395 } 1396 1397 static void *btf_show_start_struct_type(struct btf_show *show, 1398 const struct btf_type *t, 1399 u32 type_id, 1400 void *data) 1401 { 1402 return btf_show_start_aggr_type(show, t, type_id, data); 1403 } 1404 1405 static void btf_show_end_struct_type(struct btf_show *show) 1406 { 1407 btf_show_end_aggr_type(show, "}"); 1408 } 1409 1410 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1411 const char *fmt, ...) 1412 { 1413 va_list args; 1414 1415 va_start(args, fmt); 1416 bpf_verifier_vlog(log, fmt, args); 1417 va_end(args); 1418 } 1419 1420 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1421 const char *fmt, ...) 1422 { 1423 struct bpf_verifier_log *log = &env->log; 1424 va_list args; 1425 1426 if (!bpf_verifier_log_needed(log)) 1427 return; 1428 1429 va_start(args, fmt); 1430 bpf_verifier_vlog(log, fmt, args); 1431 va_end(args); 1432 } 1433 1434 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1435 const struct btf_type *t, 1436 bool log_details, 1437 const char *fmt, ...) 1438 { 1439 struct bpf_verifier_log *log = &env->log; 1440 struct btf *btf = env->btf; 1441 va_list args; 1442 1443 if (!bpf_verifier_log_needed(log)) 1444 return; 1445 1446 if (log->level == BPF_LOG_KERNEL) { 1447 /* btf verifier prints all types it is processing via 1448 * btf_verifier_log_type(..., fmt = NULL). 1449 * Skip those prints for in-kernel BTF verification. 1450 */ 1451 if (!fmt) 1452 return; 1453 1454 /* Skip logging when loading module BTF with mismatches permitted */ 1455 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1456 return; 1457 } 1458 1459 __btf_verifier_log(log, "[%u] %s %s%s", 1460 env->log_type_id, 1461 btf_type_str(t), 1462 __btf_name_by_offset(btf, t->name_off), 1463 log_details ? " " : ""); 1464 1465 if (log_details) 1466 btf_type_ops(t)->log_details(env, t); 1467 1468 if (fmt && *fmt) { 1469 __btf_verifier_log(log, " "); 1470 va_start(args, fmt); 1471 bpf_verifier_vlog(log, fmt, args); 1472 va_end(args); 1473 } 1474 1475 __btf_verifier_log(log, "\n"); 1476 } 1477 1478 #define btf_verifier_log_type(env, t, ...) \ 1479 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1480 #define btf_verifier_log_basic(env, t, ...) \ 1481 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1482 1483 __printf(4, 5) 1484 static void btf_verifier_log_member(struct btf_verifier_env *env, 1485 const struct btf_type *struct_type, 1486 const struct btf_member *member, 1487 const char *fmt, ...) 1488 { 1489 struct bpf_verifier_log *log = &env->log; 1490 struct btf *btf = env->btf; 1491 va_list args; 1492 1493 if (!bpf_verifier_log_needed(log)) 1494 return; 1495 1496 if (log->level == BPF_LOG_KERNEL) { 1497 if (!fmt) 1498 return; 1499 1500 /* Skip logging when loading module BTF with mismatches permitted */ 1501 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1502 return; 1503 } 1504 1505 /* The CHECK_META phase already did a btf dump. 1506 * 1507 * If member is logged again, it must hit an error in 1508 * parsing this member. It is useful to print out which 1509 * struct this member belongs to. 1510 */ 1511 if (env->phase != CHECK_META) 1512 btf_verifier_log_type(env, struct_type, NULL); 1513 1514 if (btf_type_kflag(struct_type)) 1515 __btf_verifier_log(log, 1516 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1517 __btf_name_by_offset(btf, member->name_off), 1518 member->type, 1519 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1520 BTF_MEMBER_BIT_OFFSET(member->offset)); 1521 else 1522 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1523 __btf_name_by_offset(btf, member->name_off), 1524 member->type, member->offset); 1525 1526 if (fmt && *fmt) { 1527 __btf_verifier_log(log, " "); 1528 va_start(args, fmt); 1529 bpf_verifier_vlog(log, fmt, args); 1530 va_end(args); 1531 } 1532 1533 __btf_verifier_log(log, "\n"); 1534 } 1535 1536 __printf(4, 5) 1537 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1538 const struct btf_type *datasec_type, 1539 const struct btf_var_secinfo *vsi, 1540 const char *fmt, ...) 1541 { 1542 struct bpf_verifier_log *log = &env->log; 1543 va_list args; 1544 1545 if (!bpf_verifier_log_needed(log)) 1546 return; 1547 if (log->level == BPF_LOG_KERNEL && !fmt) 1548 return; 1549 if (env->phase != CHECK_META) 1550 btf_verifier_log_type(env, datasec_type, NULL); 1551 1552 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1553 vsi->type, vsi->offset, vsi->size); 1554 if (fmt && *fmt) { 1555 __btf_verifier_log(log, " "); 1556 va_start(args, fmt); 1557 bpf_verifier_vlog(log, fmt, args); 1558 va_end(args); 1559 } 1560 1561 __btf_verifier_log(log, "\n"); 1562 } 1563 1564 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1565 u32 btf_data_size) 1566 { 1567 struct bpf_verifier_log *log = &env->log; 1568 const struct btf *btf = env->btf; 1569 const struct btf_header *hdr; 1570 1571 if (!bpf_verifier_log_needed(log)) 1572 return; 1573 1574 if (log->level == BPF_LOG_KERNEL) 1575 return; 1576 hdr = &btf->hdr; 1577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1578 __btf_verifier_log(log, "version: %u\n", hdr->version); 1579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1586 } 1587 1588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1589 { 1590 struct btf *btf = env->btf; 1591 1592 if (btf->types_size == btf->nr_types) { 1593 /* Expand 'types' array */ 1594 1595 struct btf_type **new_types; 1596 u32 expand_by, new_size; 1597 1598 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1599 btf_verifier_log(env, "Exceeded max num of types"); 1600 return -E2BIG; 1601 } 1602 1603 expand_by = max_t(u32, btf->types_size >> 2, 16); 1604 new_size = min_t(u32, BTF_MAX_TYPE, 1605 btf->types_size + expand_by); 1606 1607 new_types = kvcalloc(new_size, sizeof(*new_types), 1608 GFP_KERNEL | __GFP_NOWARN); 1609 if (!new_types) 1610 return -ENOMEM; 1611 1612 if (btf->nr_types == 0) { 1613 if (!btf->base_btf) { 1614 /* lazily init VOID type */ 1615 new_types[0] = &btf_void; 1616 btf->nr_types++; 1617 } 1618 } else { 1619 memcpy(new_types, btf->types, 1620 sizeof(*btf->types) * btf->nr_types); 1621 } 1622 1623 kvfree(btf->types); 1624 btf->types = new_types; 1625 btf->types_size = new_size; 1626 } 1627 1628 btf->types[btf->nr_types++] = t; 1629 1630 return 0; 1631 } 1632 1633 static int btf_alloc_id(struct btf *btf) 1634 { 1635 int id; 1636 1637 idr_preload(GFP_KERNEL); 1638 spin_lock_bh(&btf_idr_lock); 1639 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1640 if (id > 0) 1641 btf->id = id; 1642 spin_unlock_bh(&btf_idr_lock); 1643 idr_preload_end(); 1644 1645 if (WARN_ON_ONCE(!id)) 1646 return -ENOSPC; 1647 1648 return id > 0 ? 0 : id; 1649 } 1650 1651 static void btf_free_id(struct btf *btf) 1652 { 1653 unsigned long flags; 1654 1655 /* 1656 * In map-in-map, calling map_delete_elem() on outer 1657 * map will call bpf_map_put on the inner map. 1658 * It will then eventually call btf_free_id() 1659 * on the inner map. Some of the map_delete_elem() 1660 * implementation may have irq disabled, so 1661 * we need to use the _irqsave() version instead 1662 * of the _bh() version. 1663 */ 1664 spin_lock_irqsave(&btf_idr_lock, flags); 1665 idr_remove(&btf_idr, btf->id); 1666 spin_unlock_irqrestore(&btf_idr_lock, flags); 1667 } 1668 1669 static void btf_free_kfunc_set_tab(struct btf *btf) 1670 { 1671 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1672 int hook; 1673 1674 if (!tab) 1675 return; 1676 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1677 kfree(tab->sets[hook]); 1678 kfree(tab); 1679 btf->kfunc_set_tab = NULL; 1680 } 1681 1682 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1683 { 1684 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1685 1686 if (!tab) 1687 return; 1688 kfree(tab); 1689 btf->dtor_kfunc_tab = NULL; 1690 } 1691 1692 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1693 { 1694 int i; 1695 1696 if (!tab) 1697 return; 1698 for (i = 0; i < tab->cnt; i++) 1699 btf_record_free(tab->types[i].record); 1700 kfree(tab); 1701 } 1702 1703 static void btf_free_struct_meta_tab(struct btf *btf) 1704 { 1705 struct btf_struct_metas *tab = btf->struct_meta_tab; 1706 1707 btf_struct_metas_free(tab); 1708 btf->struct_meta_tab = NULL; 1709 } 1710 1711 static void btf_free_struct_ops_tab(struct btf *btf) 1712 { 1713 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1714 u32 i; 1715 1716 if (!tab) 1717 return; 1718 1719 for (i = 0; i < tab->cnt; i++) 1720 bpf_struct_ops_desc_release(&tab->ops[i]); 1721 1722 kfree(tab); 1723 btf->struct_ops_tab = NULL; 1724 } 1725 1726 static void btf_free(struct btf *btf) 1727 { 1728 btf_free_struct_meta_tab(btf); 1729 btf_free_dtor_kfunc_tab(btf); 1730 btf_free_kfunc_set_tab(btf); 1731 btf_free_struct_ops_tab(btf); 1732 kvfree(btf->types); 1733 kvfree(btf->resolved_sizes); 1734 kvfree(btf->resolved_ids); 1735 /* vmlinux does not allocate btf->data, it simply points it at 1736 * __start_BTF. 1737 */ 1738 if (!btf_is_vmlinux(btf)) 1739 kvfree(btf->data); 1740 kvfree(btf->base_id_map); 1741 kfree(btf); 1742 } 1743 1744 static void btf_free_rcu(struct rcu_head *rcu) 1745 { 1746 struct btf *btf = container_of(rcu, struct btf, rcu); 1747 1748 btf_free(btf); 1749 } 1750 1751 const char *btf_get_name(const struct btf *btf) 1752 { 1753 return btf->name; 1754 } 1755 1756 void btf_get(struct btf *btf) 1757 { 1758 refcount_inc(&btf->refcnt); 1759 } 1760 1761 void btf_put(struct btf *btf) 1762 { 1763 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1764 btf_free_id(btf); 1765 call_rcu(&btf->rcu, btf_free_rcu); 1766 } 1767 } 1768 1769 struct btf *btf_base_btf(const struct btf *btf) 1770 { 1771 return btf->base_btf; 1772 } 1773 1774 const struct btf_header *btf_header(const struct btf *btf) 1775 { 1776 return &btf->hdr; 1777 } 1778 1779 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1780 { 1781 btf->base_btf = (struct btf *)base_btf; 1782 btf->start_id = btf_nr_types(base_btf); 1783 btf->start_str_off = base_btf->hdr.str_len; 1784 } 1785 1786 static int env_resolve_init(struct btf_verifier_env *env) 1787 { 1788 struct btf *btf = env->btf; 1789 u32 nr_types = btf->nr_types; 1790 u32 *resolved_sizes = NULL; 1791 u32 *resolved_ids = NULL; 1792 u8 *visit_states = NULL; 1793 1794 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1795 GFP_KERNEL | __GFP_NOWARN); 1796 if (!resolved_sizes) 1797 goto nomem; 1798 1799 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1800 GFP_KERNEL | __GFP_NOWARN); 1801 if (!resolved_ids) 1802 goto nomem; 1803 1804 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1805 GFP_KERNEL | __GFP_NOWARN); 1806 if (!visit_states) 1807 goto nomem; 1808 1809 btf->resolved_sizes = resolved_sizes; 1810 btf->resolved_ids = resolved_ids; 1811 env->visit_states = visit_states; 1812 1813 return 0; 1814 1815 nomem: 1816 kvfree(resolved_sizes); 1817 kvfree(resolved_ids); 1818 kvfree(visit_states); 1819 return -ENOMEM; 1820 } 1821 1822 static void btf_verifier_env_free(struct btf_verifier_env *env) 1823 { 1824 kvfree(env->visit_states); 1825 kfree(env); 1826 } 1827 1828 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1829 const struct btf_type *next_type) 1830 { 1831 switch (env->resolve_mode) { 1832 case RESOLVE_TBD: 1833 /* int, enum or void is a sink */ 1834 return !btf_type_needs_resolve(next_type); 1835 case RESOLVE_PTR: 1836 /* int, enum, void, struct, array, func or func_proto is a sink 1837 * for ptr 1838 */ 1839 return !btf_type_is_modifier(next_type) && 1840 !btf_type_is_ptr(next_type); 1841 case RESOLVE_STRUCT_OR_ARRAY: 1842 /* int, enum, void, ptr, func or func_proto is a sink 1843 * for struct and array 1844 */ 1845 return !btf_type_is_modifier(next_type) && 1846 !btf_type_is_array(next_type) && 1847 !btf_type_is_struct(next_type); 1848 default: 1849 BUG(); 1850 } 1851 } 1852 1853 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1854 u32 type_id) 1855 { 1856 /* base BTF types should be resolved by now */ 1857 if (type_id < env->btf->start_id) 1858 return true; 1859 1860 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1861 } 1862 1863 static int env_stack_push(struct btf_verifier_env *env, 1864 const struct btf_type *t, u32 type_id) 1865 { 1866 const struct btf *btf = env->btf; 1867 struct resolve_vertex *v; 1868 1869 if (env->top_stack == MAX_RESOLVE_DEPTH) 1870 return -E2BIG; 1871 1872 if (type_id < btf->start_id 1873 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1874 return -EEXIST; 1875 1876 env->visit_states[type_id - btf->start_id] = VISITED; 1877 1878 v = &env->stack[env->top_stack++]; 1879 v->t = t; 1880 v->type_id = type_id; 1881 v->next_member = 0; 1882 1883 if (env->resolve_mode == RESOLVE_TBD) { 1884 if (btf_type_is_ptr(t)) 1885 env->resolve_mode = RESOLVE_PTR; 1886 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1887 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1888 } 1889 1890 return 0; 1891 } 1892 1893 static void env_stack_set_next_member(struct btf_verifier_env *env, 1894 u16 next_member) 1895 { 1896 env->stack[env->top_stack - 1].next_member = next_member; 1897 } 1898 1899 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1900 u32 resolved_type_id, 1901 u32 resolved_size) 1902 { 1903 u32 type_id = env->stack[--(env->top_stack)].type_id; 1904 struct btf *btf = env->btf; 1905 1906 type_id -= btf->start_id; /* adjust to local type id */ 1907 btf->resolved_sizes[type_id] = resolved_size; 1908 btf->resolved_ids[type_id] = resolved_type_id; 1909 env->visit_states[type_id] = RESOLVED; 1910 } 1911 1912 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1913 { 1914 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1915 } 1916 1917 /* Resolve the size of a passed-in "type" 1918 * 1919 * type: is an array (e.g. u32 array[x][y]) 1920 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1921 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1922 * corresponds to the return type. 1923 * *elem_type: u32 1924 * *elem_id: id of u32 1925 * *total_nelems: (x * y). Hence, individual elem size is 1926 * (*type_size / *total_nelems) 1927 * *type_id: id of type if it's changed within the function, 0 if not 1928 * 1929 * type: is not an array (e.g. const struct X) 1930 * return type: type "struct X" 1931 * *type_size: sizeof(struct X) 1932 * *elem_type: same as return type ("struct X") 1933 * *elem_id: 0 1934 * *total_nelems: 1 1935 * *type_id: id of type if it's changed within the function, 0 if not 1936 */ 1937 static const struct btf_type * 1938 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1939 u32 *type_size, const struct btf_type **elem_type, 1940 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1941 { 1942 const struct btf_type *array_type = NULL; 1943 const struct btf_array *array = NULL; 1944 u32 i, size, nelems = 1, id = 0; 1945 1946 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1947 switch (BTF_INFO_KIND(type->info)) { 1948 /* type->size can be used */ 1949 case BTF_KIND_INT: 1950 case BTF_KIND_STRUCT: 1951 case BTF_KIND_UNION: 1952 case BTF_KIND_ENUM: 1953 case BTF_KIND_FLOAT: 1954 case BTF_KIND_ENUM64: 1955 size = type->size; 1956 goto resolved; 1957 1958 case BTF_KIND_PTR: 1959 size = sizeof(void *); 1960 goto resolved; 1961 1962 /* Modifiers */ 1963 case BTF_KIND_TYPEDEF: 1964 case BTF_KIND_VOLATILE: 1965 case BTF_KIND_CONST: 1966 case BTF_KIND_RESTRICT: 1967 case BTF_KIND_TYPE_TAG: 1968 id = type->type; 1969 type = btf_type_by_id(btf, type->type); 1970 break; 1971 1972 case BTF_KIND_ARRAY: 1973 if (!array_type) 1974 array_type = type; 1975 array = btf_type_array(type); 1976 if (nelems && array->nelems > U32_MAX / nelems) 1977 return ERR_PTR(-EINVAL); 1978 nelems *= array->nelems; 1979 type = btf_type_by_id(btf, array->type); 1980 break; 1981 1982 /* type without size */ 1983 default: 1984 return ERR_PTR(-EINVAL); 1985 } 1986 } 1987 1988 return ERR_PTR(-EINVAL); 1989 1990 resolved: 1991 if (nelems && size > U32_MAX / nelems) 1992 return ERR_PTR(-EINVAL); 1993 1994 *type_size = nelems * size; 1995 if (total_nelems) 1996 *total_nelems = nelems; 1997 if (elem_type) 1998 *elem_type = type; 1999 if (elem_id) 2000 *elem_id = array ? array->type : 0; 2001 if (type_id && id) 2002 *type_id = id; 2003 2004 return array_type ? : type; 2005 } 2006 2007 const struct btf_type * 2008 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2009 u32 *type_size) 2010 { 2011 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2012 } 2013 2014 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2015 { 2016 while (type_id < btf->start_id) 2017 btf = btf->base_btf; 2018 2019 return btf->resolved_ids[type_id - btf->start_id]; 2020 } 2021 2022 /* The input param "type_id" must point to a needs_resolve type */ 2023 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2024 u32 *type_id) 2025 { 2026 *type_id = btf_resolved_type_id(btf, *type_id); 2027 return btf_type_by_id(btf, *type_id); 2028 } 2029 2030 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2031 { 2032 while (type_id < btf->start_id) 2033 btf = btf->base_btf; 2034 2035 return btf->resolved_sizes[type_id - btf->start_id]; 2036 } 2037 2038 const struct btf_type *btf_type_id_size(const struct btf *btf, 2039 u32 *type_id, u32 *ret_size) 2040 { 2041 const struct btf_type *size_type; 2042 u32 size_type_id = *type_id; 2043 u32 size = 0; 2044 2045 size_type = btf_type_by_id(btf, size_type_id); 2046 if (btf_type_nosize_or_null(size_type)) 2047 return NULL; 2048 2049 if (btf_type_has_size(size_type)) { 2050 size = size_type->size; 2051 } else if (btf_type_is_array(size_type)) { 2052 size = btf_resolved_type_size(btf, size_type_id); 2053 } else if (btf_type_is_ptr(size_type)) { 2054 size = sizeof(void *); 2055 } else { 2056 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2057 !btf_type_is_var(size_type))) 2058 return NULL; 2059 2060 size_type_id = btf_resolved_type_id(btf, size_type_id); 2061 size_type = btf_type_by_id(btf, size_type_id); 2062 if (btf_type_nosize_or_null(size_type)) 2063 return NULL; 2064 else if (btf_type_has_size(size_type)) 2065 size = size_type->size; 2066 else if (btf_type_is_array(size_type)) 2067 size = btf_resolved_type_size(btf, size_type_id); 2068 else if (btf_type_is_ptr(size_type)) 2069 size = sizeof(void *); 2070 else 2071 return NULL; 2072 } 2073 2074 *type_id = size_type_id; 2075 if (ret_size) 2076 *ret_size = size; 2077 2078 return size_type; 2079 } 2080 2081 static int btf_df_check_member(struct btf_verifier_env *env, 2082 const struct btf_type *struct_type, 2083 const struct btf_member *member, 2084 const struct btf_type *member_type) 2085 { 2086 btf_verifier_log_basic(env, struct_type, 2087 "Unsupported check_member"); 2088 return -EINVAL; 2089 } 2090 2091 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2092 const struct btf_type *struct_type, 2093 const struct btf_member *member, 2094 const struct btf_type *member_type) 2095 { 2096 btf_verifier_log_basic(env, struct_type, 2097 "Unsupported check_kflag_member"); 2098 return -EINVAL; 2099 } 2100 2101 /* Used for ptr, array struct/union and float type members. 2102 * int, enum and modifier types have their specific callback functions. 2103 */ 2104 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2105 const struct btf_type *struct_type, 2106 const struct btf_member *member, 2107 const struct btf_type *member_type) 2108 { 2109 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2110 btf_verifier_log_member(env, struct_type, member, 2111 "Invalid member bitfield_size"); 2112 return -EINVAL; 2113 } 2114 2115 /* bitfield size is 0, so member->offset represents bit offset only. 2116 * It is safe to call non kflag check_member variants. 2117 */ 2118 return btf_type_ops(member_type)->check_member(env, struct_type, 2119 member, 2120 member_type); 2121 } 2122 2123 static int btf_df_resolve(struct btf_verifier_env *env, 2124 const struct resolve_vertex *v) 2125 { 2126 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2127 return -EINVAL; 2128 } 2129 2130 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2131 u32 type_id, void *data, u8 bits_offsets, 2132 struct btf_show *show) 2133 { 2134 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2135 } 2136 2137 static int btf_int_check_member(struct btf_verifier_env *env, 2138 const struct btf_type *struct_type, 2139 const struct btf_member *member, 2140 const struct btf_type *member_type) 2141 { 2142 u32 int_data = btf_type_int(member_type); 2143 u32 struct_bits_off = member->offset; 2144 u32 struct_size = struct_type->size; 2145 u32 nr_copy_bits; 2146 u32 bytes_offset; 2147 2148 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2149 btf_verifier_log_member(env, struct_type, member, 2150 "bits_offset exceeds U32_MAX"); 2151 return -EINVAL; 2152 } 2153 2154 struct_bits_off += BTF_INT_OFFSET(int_data); 2155 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2156 nr_copy_bits = BTF_INT_BITS(int_data) + 2157 BITS_PER_BYTE_MASKED(struct_bits_off); 2158 2159 if (nr_copy_bits > BITS_PER_U128) { 2160 btf_verifier_log_member(env, struct_type, member, 2161 "nr_copy_bits exceeds 128"); 2162 return -EINVAL; 2163 } 2164 2165 if (struct_size < bytes_offset || 2166 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2167 btf_verifier_log_member(env, struct_type, member, 2168 "Member exceeds struct_size"); 2169 return -EINVAL; 2170 } 2171 2172 return 0; 2173 } 2174 2175 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2176 const struct btf_type *struct_type, 2177 const struct btf_member *member, 2178 const struct btf_type *member_type) 2179 { 2180 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2181 u32 int_data = btf_type_int(member_type); 2182 u32 struct_size = struct_type->size; 2183 u32 nr_copy_bits; 2184 2185 /* a regular int type is required for the kflag int member */ 2186 if (!btf_type_int_is_regular(member_type)) { 2187 btf_verifier_log_member(env, struct_type, member, 2188 "Invalid member base type"); 2189 return -EINVAL; 2190 } 2191 2192 /* check sanity of bitfield size */ 2193 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2194 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2195 nr_int_data_bits = BTF_INT_BITS(int_data); 2196 if (!nr_bits) { 2197 /* Not a bitfield member, member offset must be at byte 2198 * boundary. 2199 */ 2200 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2201 btf_verifier_log_member(env, struct_type, member, 2202 "Invalid member offset"); 2203 return -EINVAL; 2204 } 2205 2206 nr_bits = nr_int_data_bits; 2207 } else if (nr_bits > nr_int_data_bits) { 2208 btf_verifier_log_member(env, struct_type, member, 2209 "Invalid member bitfield_size"); 2210 return -EINVAL; 2211 } 2212 2213 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2214 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2215 if (nr_copy_bits > BITS_PER_U128) { 2216 btf_verifier_log_member(env, struct_type, member, 2217 "nr_copy_bits exceeds 128"); 2218 return -EINVAL; 2219 } 2220 2221 if (struct_size < bytes_offset || 2222 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2223 btf_verifier_log_member(env, struct_type, member, 2224 "Member exceeds struct_size"); 2225 return -EINVAL; 2226 } 2227 2228 return 0; 2229 } 2230 2231 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2232 const struct btf_type *t, 2233 u32 meta_left) 2234 { 2235 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2236 u16 encoding; 2237 2238 if (meta_left < meta_needed) { 2239 btf_verifier_log_basic(env, t, 2240 "meta_left:%u meta_needed:%u", 2241 meta_left, meta_needed); 2242 return -EINVAL; 2243 } 2244 2245 if (btf_type_vlen(t)) { 2246 btf_verifier_log_type(env, t, "vlen != 0"); 2247 return -EINVAL; 2248 } 2249 2250 if (btf_type_kflag(t)) { 2251 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2252 return -EINVAL; 2253 } 2254 2255 int_data = btf_type_int(t); 2256 if (int_data & ~BTF_INT_MASK) { 2257 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2258 int_data); 2259 return -EINVAL; 2260 } 2261 2262 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2263 2264 if (nr_bits > BITS_PER_U128) { 2265 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2266 BITS_PER_U128); 2267 return -EINVAL; 2268 } 2269 2270 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2271 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2272 return -EINVAL; 2273 } 2274 2275 /* 2276 * Only one of the encoding bits is allowed and it 2277 * should be sufficient for the pretty print purpose (i.e. decoding). 2278 * Multiple bits can be allowed later if it is found 2279 * to be insufficient. 2280 */ 2281 encoding = BTF_INT_ENCODING(int_data); 2282 if (encoding && 2283 encoding != BTF_INT_SIGNED && 2284 encoding != BTF_INT_CHAR && 2285 encoding != BTF_INT_BOOL) { 2286 btf_verifier_log_type(env, t, "Unsupported encoding"); 2287 return -ENOTSUPP; 2288 } 2289 2290 btf_verifier_log_type(env, t, NULL); 2291 2292 return meta_needed; 2293 } 2294 2295 static void btf_int_log(struct btf_verifier_env *env, 2296 const struct btf_type *t) 2297 { 2298 int int_data = btf_type_int(t); 2299 2300 btf_verifier_log(env, 2301 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2302 t->size, BTF_INT_OFFSET(int_data), 2303 BTF_INT_BITS(int_data), 2304 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2305 } 2306 2307 static void btf_int128_print(struct btf_show *show, void *data) 2308 { 2309 /* data points to a __int128 number. 2310 * Suppose 2311 * int128_num = *(__int128 *)data; 2312 * The below formulas shows what upper_num and lower_num represents: 2313 * upper_num = int128_num >> 64; 2314 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2315 */ 2316 u64 upper_num, lower_num; 2317 2318 #ifdef __BIG_ENDIAN_BITFIELD 2319 upper_num = *(u64 *)data; 2320 lower_num = *(u64 *)(data + 8); 2321 #else 2322 upper_num = *(u64 *)(data + 8); 2323 lower_num = *(u64 *)data; 2324 #endif 2325 if (upper_num == 0) 2326 btf_show_type_value(show, "0x%llx", lower_num); 2327 else 2328 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2329 lower_num); 2330 } 2331 2332 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2333 u16 right_shift_bits) 2334 { 2335 u64 upper_num, lower_num; 2336 2337 #ifdef __BIG_ENDIAN_BITFIELD 2338 upper_num = print_num[0]; 2339 lower_num = print_num[1]; 2340 #else 2341 upper_num = print_num[1]; 2342 lower_num = print_num[0]; 2343 #endif 2344 2345 /* shake out un-needed bits by shift/or operations */ 2346 if (left_shift_bits >= 64) { 2347 upper_num = lower_num << (left_shift_bits - 64); 2348 lower_num = 0; 2349 } else { 2350 upper_num = (upper_num << left_shift_bits) | 2351 (lower_num >> (64 - left_shift_bits)); 2352 lower_num = lower_num << left_shift_bits; 2353 } 2354 2355 if (right_shift_bits >= 64) { 2356 lower_num = upper_num >> (right_shift_bits - 64); 2357 upper_num = 0; 2358 } else { 2359 lower_num = (lower_num >> right_shift_bits) | 2360 (upper_num << (64 - right_shift_bits)); 2361 upper_num = upper_num >> right_shift_bits; 2362 } 2363 2364 #ifdef __BIG_ENDIAN_BITFIELD 2365 print_num[0] = upper_num; 2366 print_num[1] = lower_num; 2367 #else 2368 print_num[0] = lower_num; 2369 print_num[1] = upper_num; 2370 #endif 2371 } 2372 2373 static void btf_bitfield_show(void *data, u8 bits_offset, 2374 u8 nr_bits, struct btf_show *show) 2375 { 2376 u16 left_shift_bits, right_shift_bits; 2377 u8 nr_copy_bytes; 2378 u8 nr_copy_bits; 2379 u64 print_num[2] = {}; 2380 2381 nr_copy_bits = nr_bits + bits_offset; 2382 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2383 2384 memcpy(print_num, data, nr_copy_bytes); 2385 2386 #ifdef __BIG_ENDIAN_BITFIELD 2387 left_shift_bits = bits_offset; 2388 #else 2389 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2390 #endif 2391 right_shift_bits = BITS_PER_U128 - nr_bits; 2392 2393 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2394 btf_int128_print(show, print_num); 2395 } 2396 2397 2398 static void btf_int_bits_show(const struct btf *btf, 2399 const struct btf_type *t, 2400 void *data, u8 bits_offset, 2401 struct btf_show *show) 2402 { 2403 u32 int_data = btf_type_int(t); 2404 u8 nr_bits = BTF_INT_BITS(int_data); 2405 u8 total_bits_offset; 2406 2407 /* 2408 * bits_offset is at most 7. 2409 * BTF_INT_OFFSET() cannot exceed 128 bits. 2410 */ 2411 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2412 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2413 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2414 btf_bitfield_show(data, bits_offset, nr_bits, show); 2415 } 2416 2417 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2418 u32 type_id, void *data, u8 bits_offset, 2419 struct btf_show *show) 2420 { 2421 u32 int_data = btf_type_int(t); 2422 u8 encoding = BTF_INT_ENCODING(int_data); 2423 bool sign = encoding & BTF_INT_SIGNED; 2424 u8 nr_bits = BTF_INT_BITS(int_data); 2425 void *safe_data; 2426 2427 safe_data = btf_show_start_type(show, t, type_id, data); 2428 if (!safe_data) 2429 return; 2430 2431 if (bits_offset || BTF_INT_OFFSET(int_data) || 2432 BITS_PER_BYTE_MASKED(nr_bits)) { 2433 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2434 goto out; 2435 } 2436 2437 switch (nr_bits) { 2438 case 128: 2439 btf_int128_print(show, safe_data); 2440 break; 2441 case 64: 2442 if (sign) 2443 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2444 else 2445 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2446 break; 2447 case 32: 2448 if (sign) 2449 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2450 else 2451 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2452 break; 2453 case 16: 2454 if (sign) 2455 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2456 else 2457 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2458 break; 2459 case 8: 2460 if (show->state.array_encoding == BTF_INT_CHAR) { 2461 /* check for null terminator */ 2462 if (show->state.array_terminated) 2463 break; 2464 if (*(char *)data == '\0') { 2465 show->state.array_terminated = 1; 2466 break; 2467 } 2468 if (isprint(*(char *)data)) { 2469 btf_show_type_value(show, "'%c'", 2470 *(char *)safe_data); 2471 break; 2472 } 2473 } 2474 if (sign) 2475 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2476 else 2477 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2478 break; 2479 default: 2480 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2481 break; 2482 } 2483 out: 2484 btf_show_end_type(show); 2485 } 2486 2487 static const struct btf_kind_operations int_ops = { 2488 .check_meta = btf_int_check_meta, 2489 .resolve = btf_df_resolve, 2490 .check_member = btf_int_check_member, 2491 .check_kflag_member = btf_int_check_kflag_member, 2492 .log_details = btf_int_log, 2493 .show = btf_int_show, 2494 }; 2495 2496 static int btf_modifier_check_member(struct btf_verifier_env *env, 2497 const struct btf_type *struct_type, 2498 const struct btf_member *member, 2499 const struct btf_type *member_type) 2500 { 2501 const struct btf_type *resolved_type; 2502 u32 resolved_type_id = member->type; 2503 struct btf_member resolved_member; 2504 struct btf *btf = env->btf; 2505 2506 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2507 if (!resolved_type) { 2508 btf_verifier_log_member(env, struct_type, member, 2509 "Invalid member"); 2510 return -EINVAL; 2511 } 2512 2513 resolved_member = *member; 2514 resolved_member.type = resolved_type_id; 2515 2516 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2517 &resolved_member, 2518 resolved_type); 2519 } 2520 2521 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2522 const struct btf_type *struct_type, 2523 const struct btf_member *member, 2524 const struct btf_type *member_type) 2525 { 2526 const struct btf_type *resolved_type; 2527 u32 resolved_type_id = member->type; 2528 struct btf_member resolved_member; 2529 struct btf *btf = env->btf; 2530 2531 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2532 if (!resolved_type) { 2533 btf_verifier_log_member(env, struct_type, member, 2534 "Invalid member"); 2535 return -EINVAL; 2536 } 2537 2538 resolved_member = *member; 2539 resolved_member.type = resolved_type_id; 2540 2541 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2542 &resolved_member, 2543 resolved_type); 2544 } 2545 2546 static int btf_ptr_check_member(struct btf_verifier_env *env, 2547 const struct btf_type *struct_type, 2548 const struct btf_member *member, 2549 const struct btf_type *member_type) 2550 { 2551 u32 struct_size, struct_bits_off, bytes_offset; 2552 2553 struct_size = struct_type->size; 2554 struct_bits_off = member->offset; 2555 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2556 2557 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2558 btf_verifier_log_member(env, struct_type, member, 2559 "Member is not byte aligned"); 2560 return -EINVAL; 2561 } 2562 2563 if (struct_size - bytes_offset < sizeof(void *)) { 2564 btf_verifier_log_member(env, struct_type, member, 2565 "Member exceeds struct_size"); 2566 return -EINVAL; 2567 } 2568 2569 return 0; 2570 } 2571 2572 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2573 const struct btf_type *t, 2574 u32 meta_left) 2575 { 2576 const char *value; 2577 2578 if (btf_type_vlen(t)) { 2579 btf_verifier_log_type(env, t, "vlen != 0"); 2580 return -EINVAL; 2581 } 2582 2583 if (btf_type_kflag(t)) { 2584 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2585 return -EINVAL; 2586 } 2587 2588 if (!BTF_TYPE_ID_VALID(t->type)) { 2589 btf_verifier_log_type(env, t, "Invalid type_id"); 2590 return -EINVAL; 2591 } 2592 2593 /* typedef/type_tag type must have a valid name, and other ref types, 2594 * volatile, const, restrict, should have a null name. 2595 */ 2596 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2597 if (!t->name_off || 2598 !btf_name_valid_identifier(env->btf, t->name_off)) { 2599 btf_verifier_log_type(env, t, "Invalid name"); 2600 return -EINVAL; 2601 } 2602 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2603 value = btf_name_by_offset(env->btf, t->name_off); 2604 if (!value || !value[0]) { 2605 btf_verifier_log_type(env, t, "Invalid name"); 2606 return -EINVAL; 2607 } 2608 } else { 2609 if (t->name_off) { 2610 btf_verifier_log_type(env, t, "Invalid name"); 2611 return -EINVAL; 2612 } 2613 } 2614 2615 btf_verifier_log_type(env, t, NULL); 2616 2617 return 0; 2618 } 2619 2620 static int btf_modifier_resolve(struct btf_verifier_env *env, 2621 const struct resolve_vertex *v) 2622 { 2623 const struct btf_type *t = v->t; 2624 const struct btf_type *next_type; 2625 u32 next_type_id = t->type; 2626 struct btf *btf = env->btf; 2627 2628 next_type = btf_type_by_id(btf, next_type_id); 2629 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2630 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2631 return -EINVAL; 2632 } 2633 2634 if (!env_type_is_resolve_sink(env, next_type) && 2635 !env_type_is_resolved(env, next_type_id)) 2636 return env_stack_push(env, next_type, next_type_id); 2637 2638 /* Figure out the resolved next_type_id with size. 2639 * They will be stored in the current modifier's 2640 * resolved_ids and resolved_sizes such that it can 2641 * save us a few type-following when we use it later (e.g. in 2642 * pretty print). 2643 */ 2644 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2645 if (env_type_is_resolved(env, next_type_id)) 2646 next_type = btf_type_id_resolve(btf, &next_type_id); 2647 2648 /* "typedef void new_void", "const void"...etc */ 2649 if (!btf_type_is_void(next_type) && 2650 !btf_type_is_fwd(next_type) && 2651 !btf_type_is_func_proto(next_type)) { 2652 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2653 return -EINVAL; 2654 } 2655 } 2656 2657 env_stack_pop_resolved(env, next_type_id, 0); 2658 2659 return 0; 2660 } 2661 2662 static int btf_var_resolve(struct btf_verifier_env *env, 2663 const struct resolve_vertex *v) 2664 { 2665 const struct btf_type *next_type; 2666 const struct btf_type *t = v->t; 2667 u32 next_type_id = t->type; 2668 struct btf *btf = env->btf; 2669 2670 next_type = btf_type_by_id(btf, next_type_id); 2671 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2672 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2673 return -EINVAL; 2674 } 2675 2676 if (!env_type_is_resolve_sink(env, next_type) && 2677 !env_type_is_resolved(env, next_type_id)) 2678 return env_stack_push(env, next_type, next_type_id); 2679 2680 if (btf_type_is_modifier(next_type)) { 2681 const struct btf_type *resolved_type; 2682 u32 resolved_type_id; 2683 2684 resolved_type_id = next_type_id; 2685 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2686 2687 if (btf_type_is_ptr(resolved_type) && 2688 !env_type_is_resolve_sink(env, resolved_type) && 2689 !env_type_is_resolved(env, resolved_type_id)) 2690 return env_stack_push(env, resolved_type, 2691 resolved_type_id); 2692 } 2693 2694 /* We must resolve to something concrete at this point, no 2695 * forward types or similar that would resolve to size of 2696 * zero is allowed. 2697 */ 2698 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2699 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2700 return -EINVAL; 2701 } 2702 2703 env_stack_pop_resolved(env, next_type_id, 0); 2704 2705 return 0; 2706 } 2707 2708 static int btf_ptr_resolve(struct btf_verifier_env *env, 2709 const struct resolve_vertex *v) 2710 { 2711 const struct btf_type *next_type; 2712 const struct btf_type *t = v->t; 2713 u32 next_type_id = t->type; 2714 struct btf *btf = env->btf; 2715 2716 next_type = btf_type_by_id(btf, next_type_id); 2717 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2718 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2719 return -EINVAL; 2720 } 2721 2722 if (!env_type_is_resolve_sink(env, next_type) && 2723 !env_type_is_resolved(env, next_type_id)) 2724 return env_stack_push(env, next_type, next_type_id); 2725 2726 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2727 * the modifier may have stopped resolving when it was resolved 2728 * to a ptr (last-resolved-ptr). 2729 * 2730 * We now need to continue from the last-resolved-ptr to 2731 * ensure the last-resolved-ptr will not referring back to 2732 * the current ptr (t). 2733 */ 2734 if (btf_type_is_modifier(next_type)) { 2735 const struct btf_type *resolved_type; 2736 u32 resolved_type_id; 2737 2738 resolved_type_id = next_type_id; 2739 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2740 2741 if (btf_type_is_ptr(resolved_type) && 2742 !env_type_is_resolve_sink(env, resolved_type) && 2743 !env_type_is_resolved(env, resolved_type_id)) 2744 return env_stack_push(env, resolved_type, 2745 resolved_type_id); 2746 } 2747 2748 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2749 if (env_type_is_resolved(env, next_type_id)) 2750 next_type = btf_type_id_resolve(btf, &next_type_id); 2751 2752 if (!btf_type_is_void(next_type) && 2753 !btf_type_is_fwd(next_type) && 2754 !btf_type_is_func_proto(next_type)) { 2755 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2756 return -EINVAL; 2757 } 2758 } 2759 2760 env_stack_pop_resolved(env, next_type_id, 0); 2761 2762 return 0; 2763 } 2764 2765 static void btf_modifier_show(const struct btf *btf, 2766 const struct btf_type *t, 2767 u32 type_id, void *data, 2768 u8 bits_offset, struct btf_show *show) 2769 { 2770 if (btf->resolved_ids) 2771 t = btf_type_id_resolve(btf, &type_id); 2772 else 2773 t = btf_type_skip_modifiers(btf, type_id, NULL); 2774 2775 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2776 } 2777 2778 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2779 u32 type_id, void *data, u8 bits_offset, 2780 struct btf_show *show) 2781 { 2782 t = btf_type_id_resolve(btf, &type_id); 2783 2784 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2785 } 2786 2787 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2788 u32 type_id, void *data, u8 bits_offset, 2789 struct btf_show *show) 2790 { 2791 void *safe_data; 2792 2793 safe_data = btf_show_start_type(show, t, type_id, data); 2794 if (!safe_data) 2795 return; 2796 2797 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2798 if (show->flags & BTF_SHOW_PTR_RAW) 2799 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2800 else 2801 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2802 btf_show_end_type(show); 2803 } 2804 2805 static void btf_ref_type_log(struct btf_verifier_env *env, 2806 const struct btf_type *t) 2807 { 2808 btf_verifier_log(env, "type_id=%u", t->type); 2809 } 2810 2811 static const struct btf_kind_operations modifier_ops = { 2812 .check_meta = btf_ref_type_check_meta, 2813 .resolve = btf_modifier_resolve, 2814 .check_member = btf_modifier_check_member, 2815 .check_kflag_member = btf_modifier_check_kflag_member, 2816 .log_details = btf_ref_type_log, 2817 .show = btf_modifier_show, 2818 }; 2819 2820 static const struct btf_kind_operations ptr_ops = { 2821 .check_meta = btf_ref_type_check_meta, 2822 .resolve = btf_ptr_resolve, 2823 .check_member = btf_ptr_check_member, 2824 .check_kflag_member = btf_generic_check_kflag_member, 2825 .log_details = btf_ref_type_log, 2826 .show = btf_ptr_show, 2827 }; 2828 2829 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2830 const struct btf_type *t, 2831 u32 meta_left) 2832 { 2833 if (btf_type_vlen(t)) { 2834 btf_verifier_log_type(env, t, "vlen != 0"); 2835 return -EINVAL; 2836 } 2837 2838 if (t->type) { 2839 btf_verifier_log_type(env, t, "type != 0"); 2840 return -EINVAL; 2841 } 2842 2843 /* fwd type must have a valid name */ 2844 if (!t->name_off || 2845 !btf_name_valid_identifier(env->btf, t->name_off)) { 2846 btf_verifier_log_type(env, t, "Invalid name"); 2847 return -EINVAL; 2848 } 2849 2850 btf_verifier_log_type(env, t, NULL); 2851 2852 return 0; 2853 } 2854 2855 static void btf_fwd_type_log(struct btf_verifier_env *env, 2856 const struct btf_type *t) 2857 { 2858 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2859 } 2860 2861 static const struct btf_kind_operations fwd_ops = { 2862 .check_meta = btf_fwd_check_meta, 2863 .resolve = btf_df_resolve, 2864 .check_member = btf_df_check_member, 2865 .check_kflag_member = btf_df_check_kflag_member, 2866 .log_details = btf_fwd_type_log, 2867 .show = btf_df_show, 2868 }; 2869 2870 static int btf_array_check_member(struct btf_verifier_env *env, 2871 const struct btf_type *struct_type, 2872 const struct btf_member *member, 2873 const struct btf_type *member_type) 2874 { 2875 u32 struct_bits_off = member->offset; 2876 u32 struct_size, bytes_offset; 2877 u32 array_type_id, array_size; 2878 struct btf *btf = env->btf; 2879 2880 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2881 btf_verifier_log_member(env, struct_type, member, 2882 "Member is not byte aligned"); 2883 return -EINVAL; 2884 } 2885 2886 array_type_id = member->type; 2887 btf_type_id_size(btf, &array_type_id, &array_size); 2888 struct_size = struct_type->size; 2889 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2890 if (struct_size - bytes_offset < array_size) { 2891 btf_verifier_log_member(env, struct_type, member, 2892 "Member exceeds struct_size"); 2893 return -EINVAL; 2894 } 2895 2896 return 0; 2897 } 2898 2899 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2900 const struct btf_type *t, 2901 u32 meta_left) 2902 { 2903 const struct btf_array *array = btf_type_array(t); 2904 u32 meta_needed = sizeof(*array); 2905 2906 if (meta_left < meta_needed) { 2907 btf_verifier_log_basic(env, t, 2908 "meta_left:%u meta_needed:%u", 2909 meta_left, meta_needed); 2910 return -EINVAL; 2911 } 2912 2913 /* array type should not have a name */ 2914 if (t->name_off) { 2915 btf_verifier_log_type(env, t, "Invalid name"); 2916 return -EINVAL; 2917 } 2918 2919 if (btf_type_vlen(t)) { 2920 btf_verifier_log_type(env, t, "vlen != 0"); 2921 return -EINVAL; 2922 } 2923 2924 if (btf_type_kflag(t)) { 2925 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2926 return -EINVAL; 2927 } 2928 2929 if (t->size) { 2930 btf_verifier_log_type(env, t, "size != 0"); 2931 return -EINVAL; 2932 } 2933 2934 /* Array elem type and index type cannot be in type void, 2935 * so !array->type and !array->index_type are not allowed. 2936 */ 2937 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2938 btf_verifier_log_type(env, t, "Invalid elem"); 2939 return -EINVAL; 2940 } 2941 2942 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2943 btf_verifier_log_type(env, t, "Invalid index"); 2944 return -EINVAL; 2945 } 2946 2947 btf_verifier_log_type(env, t, NULL); 2948 2949 return meta_needed; 2950 } 2951 2952 static int btf_array_resolve(struct btf_verifier_env *env, 2953 const struct resolve_vertex *v) 2954 { 2955 const struct btf_array *array = btf_type_array(v->t); 2956 const struct btf_type *elem_type, *index_type; 2957 u32 elem_type_id, index_type_id; 2958 struct btf *btf = env->btf; 2959 u32 elem_size; 2960 2961 /* Check array->index_type */ 2962 index_type_id = array->index_type; 2963 index_type = btf_type_by_id(btf, index_type_id); 2964 if (btf_type_nosize_or_null(index_type) || 2965 btf_type_is_resolve_source_only(index_type)) { 2966 btf_verifier_log_type(env, v->t, "Invalid index"); 2967 return -EINVAL; 2968 } 2969 2970 if (!env_type_is_resolve_sink(env, index_type) && 2971 !env_type_is_resolved(env, index_type_id)) 2972 return env_stack_push(env, index_type, index_type_id); 2973 2974 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2975 if (!index_type || !btf_type_is_int(index_type) || 2976 !btf_type_int_is_regular(index_type)) { 2977 btf_verifier_log_type(env, v->t, "Invalid index"); 2978 return -EINVAL; 2979 } 2980 2981 /* Check array->type */ 2982 elem_type_id = array->type; 2983 elem_type = btf_type_by_id(btf, elem_type_id); 2984 if (btf_type_nosize_or_null(elem_type) || 2985 btf_type_is_resolve_source_only(elem_type)) { 2986 btf_verifier_log_type(env, v->t, 2987 "Invalid elem"); 2988 return -EINVAL; 2989 } 2990 2991 if (!env_type_is_resolve_sink(env, elem_type) && 2992 !env_type_is_resolved(env, elem_type_id)) 2993 return env_stack_push(env, elem_type, elem_type_id); 2994 2995 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2996 if (!elem_type) { 2997 btf_verifier_log_type(env, v->t, "Invalid elem"); 2998 return -EINVAL; 2999 } 3000 3001 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 3002 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3003 return -EINVAL; 3004 } 3005 3006 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3007 btf_verifier_log_type(env, v->t, 3008 "Array size overflows U32_MAX"); 3009 return -EINVAL; 3010 } 3011 3012 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3013 3014 return 0; 3015 } 3016 3017 static void btf_array_log(struct btf_verifier_env *env, 3018 const struct btf_type *t) 3019 { 3020 const struct btf_array *array = btf_type_array(t); 3021 3022 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3023 array->type, array->index_type, array->nelems); 3024 } 3025 3026 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3027 u32 type_id, void *data, u8 bits_offset, 3028 struct btf_show *show) 3029 { 3030 const struct btf_array *array = btf_type_array(t); 3031 const struct btf_kind_operations *elem_ops; 3032 const struct btf_type *elem_type; 3033 u32 i, elem_size = 0, elem_type_id; 3034 u16 encoding = 0; 3035 3036 elem_type_id = array->type; 3037 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3038 if (elem_type && btf_type_has_size(elem_type)) 3039 elem_size = elem_type->size; 3040 3041 if (elem_type && btf_type_is_int(elem_type)) { 3042 u32 int_type = btf_type_int(elem_type); 3043 3044 encoding = BTF_INT_ENCODING(int_type); 3045 3046 /* 3047 * BTF_INT_CHAR encoding never seems to be set for 3048 * char arrays, so if size is 1 and element is 3049 * printable as a char, we'll do that. 3050 */ 3051 if (elem_size == 1) 3052 encoding = BTF_INT_CHAR; 3053 } 3054 3055 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3056 return; 3057 3058 if (!elem_type) 3059 goto out; 3060 elem_ops = btf_type_ops(elem_type); 3061 3062 for (i = 0; i < array->nelems; i++) { 3063 3064 btf_show_start_array_member(show); 3065 3066 elem_ops->show(btf, elem_type, elem_type_id, data, 3067 bits_offset, show); 3068 data += elem_size; 3069 3070 btf_show_end_array_member(show); 3071 3072 if (show->state.array_terminated) 3073 break; 3074 } 3075 out: 3076 btf_show_end_array_type(show); 3077 } 3078 3079 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3080 u32 type_id, void *data, u8 bits_offset, 3081 struct btf_show *show) 3082 { 3083 const struct btf_member *m = show->state.member; 3084 3085 /* 3086 * First check if any members would be shown (are non-zero). 3087 * See comments above "struct btf_show" definition for more 3088 * details on how this works at a high-level. 3089 */ 3090 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3091 if (!show->state.depth_check) { 3092 show->state.depth_check = show->state.depth + 1; 3093 show->state.depth_to_show = 0; 3094 } 3095 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3096 show->state.member = m; 3097 3098 if (show->state.depth_check != show->state.depth + 1) 3099 return; 3100 show->state.depth_check = 0; 3101 3102 if (show->state.depth_to_show <= show->state.depth) 3103 return; 3104 /* 3105 * Reaching here indicates we have recursed and found 3106 * non-zero array member(s). 3107 */ 3108 } 3109 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3110 } 3111 3112 static const struct btf_kind_operations array_ops = { 3113 .check_meta = btf_array_check_meta, 3114 .resolve = btf_array_resolve, 3115 .check_member = btf_array_check_member, 3116 .check_kflag_member = btf_generic_check_kflag_member, 3117 .log_details = btf_array_log, 3118 .show = btf_array_show, 3119 }; 3120 3121 static int btf_struct_check_member(struct btf_verifier_env *env, 3122 const struct btf_type *struct_type, 3123 const struct btf_member *member, 3124 const struct btf_type *member_type) 3125 { 3126 u32 struct_bits_off = member->offset; 3127 u32 struct_size, bytes_offset; 3128 3129 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3130 btf_verifier_log_member(env, struct_type, member, 3131 "Member is not byte aligned"); 3132 return -EINVAL; 3133 } 3134 3135 struct_size = struct_type->size; 3136 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3137 if (struct_size - bytes_offset < member_type->size) { 3138 btf_verifier_log_member(env, struct_type, member, 3139 "Member exceeds struct_size"); 3140 return -EINVAL; 3141 } 3142 3143 return 0; 3144 } 3145 3146 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3147 const struct btf_type *t, 3148 u32 meta_left) 3149 { 3150 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3151 const struct btf_member *member; 3152 u32 meta_needed, last_offset; 3153 struct btf *btf = env->btf; 3154 u32 struct_size = t->size; 3155 u32 offset; 3156 u16 i; 3157 3158 meta_needed = btf_type_vlen(t) * sizeof(*member); 3159 if (meta_left < meta_needed) { 3160 btf_verifier_log_basic(env, t, 3161 "meta_left:%u meta_needed:%u", 3162 meta_left, meta_needed); 3163 return -EINVAL; 3164 } 3165 3166 /* struct type either no name or a valid one */ 3167 if (t->name_off && 3168 !btf_name_valid_identifier(env->btf, t->name_off)) { 3169 btf_verifier_log_type(env, t, "Invalid name"); 3170 return -EINVAL; 3171 } 3172 3173 btf_verifier_log_type(env, t, NULL); 3174 3175 last_offset = 0; 3176 for_each_member(i, t, member) { 3177 if (!btf_name_offset_valid(btf, member->name_off)) { 3178 btf_verifier_log_member(env, t, member, 3179 "Invalid member name_offset:%u", 3180 member->name_off); 3181 return -EINVAL; 3182 } 3183 3184 /* struct member either no name or a valid one */ 3185 if (member->name_off && 3186 !btf_name_valid_identifier(btf, member->name_off)) { 3187 btf_verifier_log_member(env, t, member, "Invalid name"); 3188 return -EINVAL; 3189 } 3190 /* A member cannot be in type void */ 3191 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3192 btf_verifier_log_member(env, t, member, 3193 "Invalid type_id"); 3194 return -EINVAL; 3195 } 3196 3197 offset = __btf_member_bit_offset(t, member); 3198 if (is_union && offset) { 3199 btf_verifier_log_member(env, t, member, 3200 "Invalid member bits_offset"); 3201 return -EINVAL; 3202 } 3203 3204 /* 3205 * ">" instead of ">=" because the last member could be 3206 * "char a[0];" 3207 */ 3208 if (last_offset > offset) { 3209 btf_verifier_log_member(env, t, member, 3210 "Invalid member bits_offset"); 3211 return -EINVAL; 3212 } 3213 3214 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3215 btf_verifier_log_member(env, t, member, 3216 "Member bits_offset exceeds its struct size"); 3217 return -EINVAL; 3218 } 3219 3220 btf_verifier_log_member(env, t, member, NULL); 3221 last_offset = offset; 3222 } 3223 3224 return meta_needed; 3225 } 3226 3227 static int btf_struct_resolve(struct btf_verifier_env *env, 3228 const struct resolve_vertex *v) 3229 { 3230 const struct btf_member *member; 3231 int err; 3232 u16 i; 3233 3234 /* Before continue resolving the next_member, 3235 * ensure the last member is indeed resolved to a 3236 * type with size info. 3237 */ 3238 if (v->next_member) { 3239 const struct btf_type *last_member_type; 3240 const struct btf_member *last_member; 3241 u32 last_member_type_id; 3242 3243 last_member = btf_type_member(v->t) + v->next_member - 1; 3244 last_member_type_id = last_member->type; 3245 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3246 last_member_type_id))) 3247 return -EINVAL; 3248 3249 last_member_type = btf_type_by_id(env->btf, 3250 last_member_type_id); 3251 if (btf_type_kflag(v->t)) 3252 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3253 last_member, 3254 last_member_type); 3255 else 3256 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3257 last_member, 3258 last_member_type); 3259 if (err) 3260 return err; 3261 } 3262 3263 for_each_member_from(i, v->next_member, v->t, member) { 3264 u32 member_type_id = member->type; 3265 const struct btf_type *member_type = btf_type_by_id(env->btf, 3266 member_type_id); 3267 3268 if (btf_type_nosize_or_null(member_type) || 3269 btf_type_is_resolve_source_only(member_type)) { 3270 btf_verifier_log_member(env, v->t, member, 3271 "Invalid member"); 3272 return -EINVAL; 3273 } 3274 3275 if (!env_type_is_resolve_sink(env, member_type) && 3276 !env_type_is_resolved(env, member_type_id)) { 3277 env_stack_set_next_member(env, i + 1); 3278 return env_stack_push(env, member_type, member_type_id); 3279 } 3280 3281 if (btf_type_kflag(v->t)) 3282 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3283 member, 3284 member_type); 3285 else 3286 err = btf_type_ops(member_type)->check_member(env, v->t, 3287 member, 3288 member_type); 3289 if (err) 3290 return err; 3291 } 3292 3293 env_stack_pop_resolved(env, 0, 0); 3294 3295 return 0; 3296 } 3297 3298 static void btf_struct_log(struct btf_verifier_env *env, 3299 const struct btf_type *t) 3300 { 3301 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3302 } 3303 3304 enum { 3305 BTF_FIELD_IGNORE = 0, 3306 BTF_FIELD_FOUND = 1, 3307 }; 3308 3309 struct btf_field_info { 3310 enum btf_field_type type; 3311 u32 off; 3312 union { 3313 struct { 3314 u32 type_id; 3315 } kptr; 3316 struct { 3317 const char *node_name; 3318 u32 value_btf_id; 3319 } graph_root; 3320 }; 3321 }; 3322 3323 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3324 u32 off, int sz, enum btf_field_type field_type, 3325 struct btf_field_info *info) 3326 { 3327 if (!__btf_type_is_struct(t)) 3328 return BTF_FIELD_IGNORE; 3329 if (t->size != sz) 3330 return BTF_FIELD_IGNORE; 3331 info->type = field_type; 3332 info->off = off; 3333 return BTF_FIELD_FOUND; 3334 } 3335 3336 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3337 u32 off, int sz, struct btf_field_info *info, u32 field_mask) 3338 { 3339 enum btf_field_type type; 3340 u32 res_id; 3341 3342 /* Permit modifiers on the pointer itself */ 3343 if (btf_type_is_volatile(t)) 3344 t = btf_type_by_id(btf, t->type); 3345 /* For PTR, sz is always == 8 */ 3346 if (!btf_type_is_ptr(t)) 3347 return BTF_FIELD_IGNORE; 3348 t = btf_type_by_id(btf, t->type); 3349 3350 if (!btf_type_is_type_tag(t)) 3351 return BTF_FIELD_IGNORE; 3352 /* Reject extra tags */ 3353 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3354 return -EINVAL; 3355 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3356 type = BPF_KPTR_UNREF; 3357 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3358 type = BPF_KPTR_REF; 3359 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3360 type = BPF_KPTR_PERCPU; 3361 else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off))) 3362 type = BPF_UPTR; 3363 else 3364 return -EINVAL; 3365 3366 if (!(type & field_mask)) 3367 return BTF_FIELD_IGNORE; 3368 3369 /* Get the base type */ 3370 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3371 /* Only pointer to struct is allowed */ 3372 if (!__btf_type_is_struct(t)) 3373 return -EINVAL; 3374 3375 info->type = type; 3376 info->off = off; 3377 info->kptr.type_id = res_id; 3378 return BTF_FIELD_FOUND; 3379 } 3380 3381 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3382 int comp_idx, const char *tag_key, int last_id) 3383 { 3384 int len = strlen(tag_key); 3385 int i, n; 3386 3387 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3388 const struct btf_type *t = btf_type_by_id(btf, i); 3389 3390 if (!btf_type_is_decl_tag(t)) 3391 continue; 3392 if (pt != btf_type_by_id(btf, t->type)) 3393 continue; 3394 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3395 continue; 3396 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3397 continue; 3398 return i; 3399 } 3400 return -ENOENT; 3401 } 3402 3403 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3404 int comp_idx, const char *tag_key) 3405 { 3406 const char *value = NULL; 3407 const struct btf_type *t; 3408 int len, id; 3409 3410 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3411 if (id < 0) 3412 return ERR_PTR(id); 3413 3414 t = btf_type_by_id(btf, id); 3415 len = strlen(tag_key); 3416 value = __btf_name_by_offset(btf, t->name_off) + len; 3417 3418 /* Prevent duplicate entries for same type */ 3419 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3420 if (id >= 0) 3421 return ERR_PTR(-EEXIST); 3422 3423 return value; 3424 } 3425 3426 static int 3427 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3428 const struct btf_type *t, int comp_idx, u32 off, 3429 int sz, struct btf_field_info *info, 3430 enum btf_field_type head_type) 3431 { 3432 const char *node_field_name; 3433 const char *value_type; 3434 s32 id; 3435 3436 if (!__btf_type_is_struct(t)) 3437 return BTF_FIELD_IGNORE; 3438 if (t->size != sz) 3439 return BTF_FIELD_IGNORE; 3440 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3441 if (IS_ERR(value_type)) 3442 return -EINVAL; 3443 node_field_name = strstr(value_type, ":"); 3444 if (!node_field_name) 3445 return -EINVAL; 3446 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3447 if (!value_type) 3448 return -ENOMEM; 3449 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3450 kfree(value_type); 3451 if (id < 0) 3452 return id; 3453 node_field_name++; 3454 if (str_is_empty(node_field_name)) 3455 return -EINVAL; 3456 info->type = head_type; 3457 info->off = off; 3458 info->graph_root.value_btf_id = id; 3459 info->graph_root.node_name = node_field_name; 3460 return BTF_FIELD_FOUND; 3461 } 3462 3463 #define field_mask_test_name(field_type, field_type_str) \ 3464 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3465 type = field_type; \ 3466 goto end; \ 3467 } 3468 3469 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3470 u32 field_mask, u32 *seen_mask, 3471 int *align, int *sz) 3472 { 3473 int type = 0; 3474 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3475 3476 if (field_mask & BPF_SPIN_LOCK) { 3477 if (!strcmp(name, "bpf_spin_lock")) { 3478 if (*seen_mask & BPF_SPIN_LOCK) 3479 return -E2BIG; 3480 *seen_mask |= BPF_SPIN_LOCK; 3481 type = BPF_SPIN_LOCK; 3482 goto end; 3483 } 3484 } 3485 if (field_mask & BPF_TIMER) { 3486 if (!strcmp(name, "bpf_timer")) { 3487 if (*seen_mask & BPF_TIMER) 3488 return -E2BIG; 3489 *seen_mask |= BPF_TIMER; 3490 type = BPF_TIMER; 3491 goto end; 3492 } 3493 } 3494 if (field_mask & BPF_WORKQUEUE) { 3495 if (!strcmp(name, "bpf_wq")) { 3496 if (*seen_mask & BPF_WORKQUEUE) 3497 return -E2BIG; 3498 *seen_mask |= BPF_WORKQUEUE; 3499 type = BPF_WORKQUEUE; 3500 goto end; 3501 } 3502 } 3503 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3504 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3505 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3506 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3507 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3508 3509 /* Only return BPF_KPTR when all other types with matchable names fail */ 3510 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { 3511 type = BPF_KPTR_REF; 3512 goto end; 3513 } 3514 return 0; 3515 end: 3516 *sz = btf_field_type_size(type); 3517 *align = btf_field_type_align(type); 3518 return type; 3519 } 3520 3521 #undef field_mask_test_name 3522 3523 /* Repeat a number of fields for a specified number of times. 3524 * 3525 * Copy the fields starting from the first field and repeat them for 3526 * repeat_cnt times. The fields are repeated by adding the offset of each 3527 * field with 3528 * (i + 1) * elem_size 3529 * where i is the repeat index and elem_size is the size of an element. 3530 */ 3531 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3532 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3533 { 3534 u32 i, j; 3535 u32 cur; 3536 3537 /* Ensure not repeating fields that should not be repeated. */ 3538 for (i = 0; i < field_cnt; i++) { 3539 switch (info[i].type) { 3540 case BPF_KPTR_UNREF: 3541 case BPF_KPTR_REF: 3542 case BPF_KPTR_PERCPU: 3543 case BPF_UPTR: 3544 case BPF_LIST_HEAD: 3545 case BPF_RB_ROOT: 3546 break; 3547 default: 3548 return -EINVAL; 3549 } 3550 } 3551 3552 /* The type of struct size or variable size is u32, 3553 * so the multiplication will not overflow. 3554 */ 3555 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3556 return -E2BIG; 3557 3558 cur = field_cnt; 3559 for (i = 0; i < repeat_cnt; i++) { 3560 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3561 for (j = 0; j < field_cnt; j++) 3562 info[cur++].off += (i + 1) * elem_size; 3563 } 3564 3565 return 0; 3566 } 3567 3568 static int btf_find_struct_field(const struct btf *btf, 3569 const struct btf_type *t, u32 field_mask, 3570 struct btf_field_info *info, int info_cnt, 3571 u32 level); 3572 3573 /* Find special fields in the struct type of a field. 3574 * 3575 * This function is used to find fields of special types that is not a 3576 * global variable or a direct field of a struct type. It also handles the 3577 * repetition if it is the element type of an array. 3578 */ 3579 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3580 u32 off, u32 nelems, 3581 u32 field_mask, struct btf_field_info *info, 3582 int info_cnt, u32 level) 3583 { 3584 int ret, err, i; 3585 3586 level++; 3587 if (level >= MAX_RESOLVE_DEPTH) 3588 return -E2BIG; 3589 3590 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3591 3592 if (ret <= 0) 3593 return ret; 3594 3595 /* Shift the offsets of the nested struct fields to the offsets 3596 * related to the container. 3597 */ 3598 for (i = 0; i < ret; i++) 3599 info[i].off += off; 3600 3601 if (nelems > 1) { 3602 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3603 if (err == 0) 3604 ret *= nelems; 3605 else 3606 ret = err; 3607 } 3608 3609 return ret; 3610 } 3611 3612 static int btf_find_field_one(const struct btf *btf, 3613 const struct btf_type *var, 3614 const struct btf_type *var_type, 3615 int var_idx, 3616 u32 off, u32 expected_size, 3617 u32 field_mask, u32 *seen_mask, 3618 struct btf_field_info *info, int info_cnt, 3619 u32 level) 3620 { 3621 int ret, align, sz, field_type; 3622 struct btf_field_info tmp; 3623 const struct btf_array *array; 3624 u32 i, nelems = 1; 3625 3626 /* Walk into array types to find the element type and the number of 3627 * elements in the (flattened) array. 3628 */ 3629 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3630 array = btf_array(var_type); 3631 nelems *= array->nelems; 3632 var_type = btf_type_by_id(btf, array->type); 3633 } 3634 if (i == MAX_RESOLVE_DEPTH) 3635 return -E2BIG; 3636 if (nelems == 0) 3637 return 0; 3638 3639 field_type = btf_get_field_type(btf, var_type, 3640 field_mask, seen_mask, &align, &sz); 3641 /* Look into variables of struct types */ 3642 if (!field_type && __btf_type_is_struct(var_type)) { 3643 sz = var_type->size; 3644 if (expected_size && expected_size != sz * nelems) 3645 return 0; 3646 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3647 &info[0], info_cnt, level); 3648 return ret; 3649 } 3650 3651 if (field_type == 0) 3652 return 0; 3653 if (field_type < 0) 3654 return field_type; 3655 3656 if (expected_size && expected_size != sz * nelems) 3657 return 0; 3658 if (off % align) 3659 return 0; 3660 3661 switch (field_type) { 3662 case BPF_SPIN_LOCK: 3663 case BPF_TIMER: 3664 case BPF_WORKQUEUE: 3665 case BPF_LIST_NODE: 3666 case BPF_RB_NODE: 3667 case BPF_REFCOUNT: 3668 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3669 info_cnt ? &info[0] : &tmp); 3670 if (ret < 0) 3671 return ret; 3672 break; 3673 case BPF_KPTR_UNREF: 3674 case BPF_KPTR_REF: 3675 case BPF_KPTR_PERCPU: 3676 case BPF_UPTR: 3677 ret = btf_find_kptr(btf, var_type, off, sz, 3678 info_cnt ? &info[0] : &tmp, field_mask); 3679 if (ret < 0) 3680 return ret; 3681 break; 3682 case BPF_LIST_HEAD: 3683 case BPF_RB_ROOT: 3684 ret = btf_find_graph_root(btf, var, var_type, 3685 var_idx, off, sz, 3686 info_cnt ? &info[0] : &tmp, 3687 field_type); 3688 if (ret < 0) 3689 return ret; 3690 break; 3691 default: 3692 return -EFAULT; 3693 } 3694 3695 if (ret == BTF_FIELD_IGNORE) 3696 return 0; 3697 if (!info_cnt) 3698 return -E2BIG; 3699 if (nelems > 1) { 3700 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3701 if (ret < 0) 3702 return ret; 3703 } 3704 return nelems; 3705 } 3706 3707 static int btf_find_struct_field(const struct btf *btf, 3708 const struct btf_type *t, u32 field_mask, 3709 struct btf_field_info *info, int info_cnt, 3710 u32 level) 3711 { 3712 int ret, idx = 0; 3713 const struct btf_member *member; 3714 u32 i, off, seen_mask = 0; 3715 3716 for_each_member(i, t, member) { 3717 const struct btf_type *member_type = btf_type_by_id(btf, 3718 member->type); 3719 3720 off = __btf_member_bit_offset(t, member); 3721 if (off % 8) 3722 /* valid C code cannot generate such BTF */ 3723 return -EINVAL; 3724 off /= 8; 3725 3726 ret = btf_find_field_one(btf, t, member_type, i, 3727 off, 0, 3728 field_mask, &seen_mask, 3729 &info[idx], info_cnt - idx, level); 3730 if (ret < 0) 3731 return ret; 3732 idx += ret; 3733 } 3734 return idx; 3735 } 3736 3737 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3738 u32 field_mask, struct btf_field_info *info, 3739 int info_cnt, u32 level) 3740 { 3741 int ret, idx = 0; 3742 const struct btf_var_secinfo *vsi; 3743 u32 i, off, seen_mask = 0; 3744 3745 for_each_vsi(i, t, vsi) { 3746 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3747 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3748 3749 off = vsi->offset; 3750 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3751 field_mask, &seen_mask, 3752 &info[idx], info_cnt - idx, 3753 level); 3754 if (ret < 0) 3755 return ret; 3756 idx += ret; 3757 } 3758 return idx; 3759 } 3760 3761 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3762 u32 field_mask, struct btf_field_info *info, 3763 int info_cnt) 3764 { 3765 if (__btf_type_is_struct(t)) 3766 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3767 else if (btf_type_is_datasec(t)) 3768 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3769 return -EINVAL; 3770 } 3771 3772 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3773 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3774 struct btf_field_info *info) 3775 { 3776 struct module *mod = NULL; 3777 const struct btf_type *t; 3778 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3779 * is that BTF, otherwise it's program BTF 3780 */ 3781 struct btf *kptr_btf; 3782 int ret; 3783 s32 id; 3784 3785 /* Find type in map BTF, and use it to look up the matching type 3786 * in vmlinux or module BTFs, by name and kind. 3787 */ 3788 t = btf_type_by_id(btf, info->kptr.type_id); 3789 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3790 &kptr_btf); 3791 if (id == -ENOENT) { 3792 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3793 WARN_ON_ONCE(btf_is_kernel(btf)); 3794 3795 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3796 * kptr allocated via bpf_obj_new 3797 */ 3798 field->kptr.dtor = NULL; 3799 id = info->kptr.type_id; 3800 kptr_btf = (struct btf *)btf; 3801 goto found_dtor; 3802 } 3803 if (id < 0) 3804 return id; 3805 3806 /* Find and stash the function pointer for the destruction function that 3807 * needs to be eventually invoked from the map free path. 3808 */ 3809 if (info->type == BPF_KPTR_REF) { 3810 const struct btf_type *dtor_func; 3811 const char *dtor_func_name; 3812 unsigned long addr; 3813 s32 dtor_btf_id; 3814 3815 /* This call also serves as a whitelist of allowed objects that 3816 * can be used as a referenced pointer and be stored in a map at 3817 * the same time. 3818 */ 3819 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3820 if (dtor_btf_id < 0) { 3821 ret = dtor_btf_id; 3822 goto end_btf; 3823 } 3824 3825 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3826 if (!dtor_func) { 3827 ret = -ENOENT; 3828 goto end_btf; 3829 } 3830 3831 if (btf_is_module(kptr_btf)) { 3832 mod = btf_try_get_module(kptr_btf); 3833 if (!mod) { 3834 ret = -ENXIO; 3835 goto end_btf; 3836 } 3837 } 3838 3839 /* We already verified dtor_func to be btf_type_is_func 3840 * in register_btf_id_dtor_kfuncs. 3841 */ 3842 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3843 addr = kallsyms_lookup_name(dtor_func_name); 3844 if (!addr) { 3845 ret = -EINVAL; 3846 goto end_mod; 3847 } 3848 field->kptr.dtor = (void *)addr; 3849 } 3850 3851 found_dtor: 3852 field->kptr.btf_id = id; 3853 field->kptr.btf = kptr_btf; 3854 field->kptr.module = mod; 3855 return 0; 3856 end_mod: 3857 module_put(mod); 3858 end_btf: 3859 btf_put(kptr_btf); 3860 return ret; 3861 } 3862 3863 static int btf_parse_graph_root(const struct btf *btf, 3864 struct btf_field *field, 3865 struct btf_field_info *info, 3866 const char *node_type_name, 3867 size_t node_type_align) 3868 { 3869 const struct btf_type *t, *n = NULL; 3870 const struct btf_member *member; 3871 u32 offset; 3872 int i; 3873 3874 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3875 /* We've already checked that value_btf_id is a struct type. We 3876 * just need to figure out the offset of the list_node, and 3877 * verify its type. 3878 */ 3879 for_each_member(i, t, member) { 3880 if (strcmp(info->graph_root.node_name, 3881 __btf_name_by_offset(btf, member->name_off))) 3882 continue; 3883 /* Invalid BTF, two members with same name */ 3884 if (n) 3885 return -EINVAL; 3886 n = btf_type_by_id(btf, member->type); 3887 if (!__btf_type_is_struct(n)) 3888 return -EINVAL; 3889 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3890 return -EINVAL; 3891 offset = __btf_member_bit_offset(n, member); 3892 if (offset % 8) 3893 return -EINVAL; 3894 offset /= 8; 3895 if (offset % node_type_align) 3896 return -EINVAL; 3897 3898 field->graph_root.btf = (struct btf *)btf; 3899 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3900 field->graph_root.node_offset = offset; 3901 } 3902 if (!n) 3903 return -ENOENT; 3904 return 0; 3905 } 3906 3907 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3908 struct btf_field_info *info) 3909 { 3910 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3911 __alignof__(struct bpf_list_node)); 3912 } 3913 3914 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3915 struct btf_field_info *info) 3916 { 3917 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3918 __alignof__(struct bpf_rb_node)); 3919 } 3920 3921 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3922 { 3923 const struct btf_field *a = (const struct btf_field *)_a; 3924 const struct btf_field *b = (const struct btf_field *)_b; 3925 3926 if (a->offset < b->offset) 3927 return -1; 3928 else if (a->offset > b->offset) 3929 return 1; 3930 return 0; 3931 } 3932 3933 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3934 u32 field_mask, u32 value_size) 3935 { 3936 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3937 u32 next_off = 0, field_type_size; 3938 struct btf_record *rec; 3939 int ret, i, cnt; 3940 3941 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3942 if (ret < 0) 3943 return ERR_PTR(ret); 3944 if (!ret) 3945 return NULL; 3946 3947 cnt = ret; 3948 /* This needs to be kzalloc to zero out padding and unused fields, see 3949 * comment in btf_record_equal. 3950 */ 3951 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3952 if (!rec) 3953 return ERR_PTR(-ENOMEM); 3954 3955 rec->spin_lock_off = -EINVAL; 3956 rec->timer_off = -EINVAL; 3957 rec->wq_off = -EINVAL; 3958 rec->refcount_off = -EINVAL; 3959 for (i = 0; i < cnt; i++) { 3960 field_type_size = btf_field_type_size(info_arr[i].type); 3961 if (info_arr[i].off + field_type_size > value_size) { 3962 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3963 ret = -EFAULT; 3964 goto end; 3965 } 3966 if (info_arr[i].off < next_off) { 3967 ret = -EEXIST; 3968 goto end; 3969 } 3970 next_off = info_arr[i].off + field_type_size; 3971 3972 rec->field_mask |= info_arr[i].type; 3973 rec->fields[i].offset = info_arr[i].off; 3974 rec->fields[i].type = info_arr[i].type; 3975 rec->fields[i].size = field_type_size; 3976 3977 switch (info_arr[i].type) { 3978 case BPF_SPIN_LOCK: 3979 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3980 /* Cache offset for faster lookup at runtime */ 3981 rec->spin_lock_off = rec->fields[i].offset; 3982 break; 3983 case BPF_TIMER: 3984 WARN_ON_ONCE(rec->timer_off >= 0); 3985 /* Cache offset for faster lookup at runtime */ 3986 rec->timer_off = rec->fields[i].offset; 3987 break; 3988 case BPF_WORKQUEUE: 3989 WARN_ON_ONCE(rec->wq_off >= 0); 3990 /* Cache offset for faster lookup at runtime */ 3991 rec->wq_off = rec->fields[i].offset; 3992 break; 3993 case BPF_REFCOUNT: 3994 WARN_ON_ONCE(rec->refcount_off >= 0); 3995 /* Cache offset for faster lookup at runtime */ 3996 rec->refcount_off = rec->fields[i].offset; 3997 break; 3998 case BPF_KPTR_UNREF: 3999 case BPF_KPTR_REF: 4000 case BPF_KPTR_PERCPU: 4001 case BPF_UPTR: 4002 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 4003 if (ret < 0) 4004 goto end; 4005 break; 4006 case BPF_LIST_HEAD: 4007 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4008 if (ret < 0) 4009 goto end; 4010 break; 4011 case BPF_RB_ROOT: 4012 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4013 if (ret < 0) 4014 goto end; 4015 break; 4016 case BPF_LIST_NODE: 4017 case BPF_RB_NODE: 4018 break; 4019 default: 4020 ret = -EFAULT; 4021 goto end; 4022 } 4023 rec->cnt++; 4024 } 4025 4026 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4027 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4028 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 4029 ret = -EINVAL; 4030 goto end; 4031 } 4032 4033 if (rec->refcount_off < 0 && 4034 btf_record_has_field(rec, BPF_LIST_NODE) && 4035 btf_record_has_field(rec, BPF_RB_NODE)) { 4036 ret = -EINVAL; 4037 goto end; 4038 } 4039 4040 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4041 NULL, rec); 4042 4043 return rec; 4044 end: 4045 btf_record_free(rec); 4046 return ERR_PTR(ret); 4047 } 4048 4049 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4050 { 4051 int i; 4052 4053 /* There are three types that signify ownership of some other type: 4054 * kptr_ref, bpf_list_head, bpf_rb_root. 4055 * kptr_ref only supports storing kernel types, which can't store 4056 * references to program allocated local types. 4057 * 4058 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4059 * does not form cycles. 4060 */ 4061 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) 4062 return 0; 4063 for (i = 0; i < rec->cnt; i++) { 4064 struct btf_struct_meta *meta; 4065 const struct btf_type *t; 4066 u32 btf_id; 4067 4068 if (rec->fields[i].type == BPF_UPTR) { 4069 /* The uptr only supports pinning one page and cannot 4070 * point to a kernel struct 4071 */ 4072 if (btf_is_kernel(rec->fields[i].kptr.btf)) 4073 return -EINVAL; 4074 t = btf_type_by_id(rec->fields[i].kptr.btf, 4075 rec->fields[i].kptr.btf_id); 4076 if (!t->size) 4077 return -EINVAL; 4078 if (t->size > PAGE_SIZE) 4079 return -E2BIG; 4080 continue; 4081 } 4082 4083 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4084 continue; 4085 btf_id = rec->fields[i].graph_root.value_btf_id; 4086 meta = btf_find_struct_meta(btf, btf_id); 4087 if (!meta) 4088 return -EFAULT; 4089 rec->fields[i].graph_root.value_rec = meta->record; 4090 4091 /* We need to set value_rec for all root types, but no need 4092 * to check ownership cycle for a type unless it's also a 4093 * node type. 4094 */ 4095 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4096 continue; 4097 4098 /* We need to ensure ownership acyclicity among all types. The 4099 * proper way to do it would be to topologically sort all BTF 4100 * IDs based on the ownership edges, since there can be multiple 4101 * bpf_{list_head,rb_node} in a type. Instead, we use the 4102 * following resaoning: 4103 * 4104 * - A type can only be owned by another type in user BTF if it 4105 * has a bpf_{list,rb}_node. Let's call these node types. 4106 * - A type can only _own_ another type in user BTF if it has a 4107 * bpf_{list_head,rb_root}. Let's call these root types. 4108 * 4109 * We ensure that if a type is both a root and node, its 4110 * element types cannot be root types. 4111 * 4112 * To ensure acyclicity: 4113 * 4114 * When A is an root type but not a node, its ownership 4115 * chain can be: 4116 * A -> B -> C 4117 * Where: 4118 * - A is an root, e.g. has bpf_rb_root. 4119 * - B is both a root and node, e.g. has bpf_rb_node and 4120 * bpf_list_head. 4121 * - C is only an root, e.g. has bpf_list_node 4122 * 4123 * When A is both a root and node, some other type already 4124 * owns it in the BTF domain, hence it can not own 4125 * another root type through any of the ownership edges. 4126 * A -> B 4127 * Where: 4128 * - A is both an root and node. 4129 * - B is only an node. 4130 */ 4131 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4132 return -ELOOP; 4133 } 4134 return 0; 4135 } 4136 4137 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4138 u32 type_id, void *data, u8 bits_offset, 4139 struct btf_show *show) 4140 { 4141 const struct btf_member *member; 4142 void *safe_data; 4143 u32 i; 4144 4145 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4146 if (!safe_data) 4147 return; 4148 4149 for_each_member(i, t, member) { 4150 const struct btf_type *member_type = btf_type_by_id(btf, 4151 member->type); 4152 const struct btf_kind_operations *ops; 4153 u32 member_offset, bitfield_size; 4154 u32 bytes_offset; 4155 u8 bits8_offset; 4156 4157 btf_show_start_member(show, member); 4158 4159 member_offset = __btf_member_bit_offset(t, member); 4160 bitfield_size = __btf_member_bitfield_size(t, member); 4161 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4162 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4163 if (bitfield_size) { 4164 safe_data = btf_show_start_type(show, member_type, 4165 member->type, 4166 data + bytes_offset); 4167 if (safe_data) 4168 btf_bitfield_show(safe_data, 4169 bits8_offset, 4170 bitfield_size, show); 4171 btf_show_end_type(show); 4172 } else { 4173 ops = btf_type_ops(member_type); 4174 ops->show(btf, member_type, member->type, 4175 data + bytes_offset, bits8_offset, show); 4176 } 4177 4178 btf_show_end_member(show); 4179 } 4180 4181 btf_show_end_struct_type(show); 4182 } 4183 4184 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4185 u32 type_id, void *data, u8 bits_offset, 4186 struct btf_show *show) 4187 { 4188 const struct btf_member *m = show->state.member; 4189 4190 /* 4191 * First check if any members would be shown (are non-zero). 4192 * See comments above "struct btf_show" definition for more 4193 * details on how this works at a high-level. 4194 */ 4195 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4196 if (!show->state.depth_check) { 4197 show->state.depth_check = show->state.depth + 1; 4198 show->state.depth_to_show = 0; 4199 } 4200 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4201 /* Restore saved member data here */ 4202 show->state.member = m; 4203 if (show->state.depth_check != show->state.depth + 1) 4204 return; 4205 show->state.depth_check = 0; 4206 4207 if (show->state.depth_to_show <= show->state.depth) 4208 return; 4209 /* 4210 * Reaching here indicates we have recursed and found 4211 * non-zero child values. 4212 */ 4213 } 4214 4215 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4216 } 4217 4218 static const struct btf_kind_operations struct_ops = { 4219 .check_meta = btf_struct_check_meta, 4220 .resolve = btf_struct_resolve, 4221 .check_member = btf_struct_check_member, 4222 .check_kflag_member = btf_generic_check_kflag_member, 4223 .log_details = btf_struct_log, 4224 .show = btf_struct_show, 4225 }; 4226 4227 static int btf_enum_check_member(struct btf_verifier_env *env, 4228 const struct btf_type *struct_type, 4229 const struct btf_member *member, 4230 const struct btf_type *member_type) 4231 { 4232 u32 struct_bits_off = member->offset; 4233 u32 struct_size, bytes_offset; 4234 4235 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4236 btf_verifier_log_member(env, struct_type, member, 4237 "Member is not byte aligned"); 4238 return -EINVAL; 4239 } 4240 4241 struct_size = struct_type->size; 4242 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4243 if (struct_size - bytes_offset < member_type->size) { 4244 btf_verifier_log_member(env, struct_type, member, 4245 "Member exceeds struct_size"); 4246 return -EINVAL; 4247 } 4248 4249 return 0; 4250 } 4251 4252 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4253 const struct btf_type *struct_type, 4254 const struct btf_member *member, 4255 const struct btf_type *member_type) 4256 { 4257 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4258 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4259 4260 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4261 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4262 if (!nr_bits) { 4263 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4264 btf_verifier_log_member(env, struct_type, member, 4265 "Member is not byte aligned"); 4266 return -EINVAL; 4267 } 4268 4269 nr_bits = int_bitsize; 4270 } else if (nr_bits > int_bitsize) { 4271 btf_verifier_log_member(env, struct_type, member, 4272 "Invalid member bitfield_size"); 4273 return -EINVAL; 4274 } 4275 4276 struct_size = struct_type->size; 4277 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4278 if (struct_size < bytes_end) { 4279 btf_verifier_log_member(env, struct_type, member, 4280 "Member exceeds struct_size"); 4281 return -EINVAL; 4282 } 4283 4284 return 0; 4285 } 4286 4287 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4288 const struct btf_type *t, 4289 u32 meta_left) 4290 { 4291 const struct btf_enum *enums = btf_type_enum(t); 4292 struct btf *btf = env->btf; 4293 const char *fmt_str; 4294 u16 i, nr_enums; 4295 u32 meta_needed; 4296 4297 nr_enums = btf_type_vlen(t); 4298 meta_needed = nr_enums * sizeof(*enums); 4299 4300 if (meta_left < meta_needed) { 4301 btf_verifier_log_basic(env, t, 4302 "meta_left:%u meta_needed:%u", 4303 meta_left, meta_needed); 4304 return -EINVAL; 4305 } 4306 4307 if (t->size > 8 || !is_power_of_2(t->size)) { 4308 btf_verifier_log_type(env, t, "Unexpected size"); 4309 return -EINVAL; 4310 } 4311 4312 /* enum type either no name or a valid one */ 4313 if (t->name_off && 4314 !btf_name_valid_identifier(env->btf, t->name_off)) { 4315 btf_verifier_log_type(env, t, "Invalid name"); 4316 return -EINVAL; 4317 } 4318 4319 btf_verifier_log_type(env, t, NULL); 4320 4321 for (i = 0; i < nr_enums; i++) { 4322 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4323 btf_verifier_log(env, "\tInvalid name_offset:%u", 4324 enums[i].name_off); 4325 return -EINVAL; 4326 } 4327 4328 /* enum member must have a valid name */ 4329 if (!enums[i].name_off || 4330 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4331 btf_verifier_log_type(env, t, "Invalid name"); 4332 return -EINVAL; 4333 } 4334 4335 if (env->log.level == BPF_LOG_KERNEL) 4336 continue; 4337 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4338 btf_verifier_log(env, fmt_str, 4339 __btf_name_by_offset(btf, enums[i].name_off), 4340 enums[i].val); 4341 } 4342 4343 return meta_needed; 4344 } 4345 4346 static void btf_enum_log(struct btf_verifier_env *env, 4347 const struct btf_type *t) 4348 { 4349 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4350 } 4351 4352 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4353 u32 type_id, void *data, u8 bits_offset, 4354 struct btf_show *show) 4355 { 4356 const struct btf_enum *enums = btf_type_enum(t); 4357 u32 i, nr_enums = btf_type_vlen(t); 4358 void *safe_data; 4359 int v; 4360 4361 safe_data = btf_show_start_type(show, t, type_id, data); 4362 if (!safe_data) 4363 return; 4364 4365 v = *(int *)safe_data; 4366 4367 for (i = 0; i < nr_enums; i++) { 4368 if (v != enums[i].val) 4369 continue; 4370 4371 btf_show_type_value(show, "%s", 4372 __btf_name_by_offset(btf, 4373 enums[i].name_off)); 4374 4375 btf_show_end_type(show); 4376 return; 4377 } 4378 4379 if (btf_type_kflag(t)) 4380 btf_show_type_value(show, "%d", v); 4381 else 4382 btf_show_type_value(show, "%u", v); 4383 btf_show_end_type(show); 4384 } 4385 4386 static const struct btf_kind_operations enum_ops = { 4387 .check_meta = btf_enum_check_meta, 4388 .resolve = btf_df_resolve, 4389 .check_member = btf_enum_check_member, 4390 .check_kflag_member = btf_enum_check_kflag_member, 4391 .log_details = btf_enum_log, 4392 .show = btf_enum_show, 4393 }; 4394 4395 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4396 const struct btf_type *t, 4397 u32 meta_left) 4398 { 4399 const struct btf_enum64 *enums = btf_type_enum64(t); 4400 struct btf *btf = env->btf; 4401 const char *fmt_str; 4402 u16 i, nr_enums; 4403 u32 meta_needed; 4404 4405 nr_enums = btf_type_vlen(t); 4406 meta_needed = nr_enums * sizeof(*enums); 4407 4408 if (meta_left < meta_needed) { 4409 btf_verifier_log_basic(env, t, 4410 "meta_left:%u meta_needed:%u", 4411 meta_left, meta_needed); 4412 return -EINVAL; 4413 } 4414 4415 if (t->size > 8 || !is_power_of_2(t->size)) { 4416 btf_verifier_log_type(env, t, "Unexpected size"); 4417 return -EINVAL; 4418 } 4419 4420 /* enum type either no name or a valid one */ 4421 if (t->name_off && 4422 !btf_name_valid_identifier(env->btf, t->name_off)) { 4423 btf_verifier_log_type(env, t, "Invalid name"); 4424 return -EINVAL; 4425 } 4426 4427 btf_verifier_log_type(env, t, NULL); 4428 4429 for (i = 0; i < nr_enums; i++) { 4430 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4431 btf_verifier_log(env, "\tInvalid name_offset:%u", 4432 enums[i].name_off); 4433 return -EINVAL; 4434 } 4435 4436 /* enum member must have a valid name */ 4437 if (!enums[i].name_off || 4438 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4439 btf_verifier_log_type(env, t, "Invalid name"); 4440 return -EINVAL; 4441 } 4442 4443 if (env->log.level == BPF_LOG_KERNEL) 4444 continue; 4445 4446 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4447 btf_verifier_log(env, fmt_str, 4448 __btf_name_by_offset(btf, enums[i].name_off), 4449 btf_enum64_value(enums + i)); 4450 } 4451 4452 return meta_needed; 4453 } 4454 4455 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4456 u32 type_id, void *data, u8 bits_offset, 4457 struct btf_show *show) 4458 { 4459 const struct btf_enum64 *enums = btf_type_enum64(t); 4460 u32 i, nr_enums = btf_type_vlen(t); 4461 void *safe_data; 4462 s64 v; 4463 4464 safe_data = btf_show_start_type(show, t, type_id, data); 4465 if (!safe_data) 4466 return; 4467 4468 v = *(u64 *)safe_data; 4469 4470 for (i = 0; i < nr_enums; i++) { 4471 if (v != btf_enum64_value(enums + i)) 4472 continue; 4473 4474 btf_show_type_value(show, "%s", 4475 __btf_name_by_offset(btf, 4476 enums[i].name_off)); 4477 4478 btf_show_end_type(show); 4479 return; 4480 } 4481 4482 if (btf_type_kflag(t)) 4483 btf_show_type_value(show, "%lld", v); 4484 else 4485 btf_show_type_value(show, "%llu", v); 4486 btf_show_end_type(show); 4487 } 4488 4489 static const struct btf_kind_operations enum64_ops = { 4490 .check_meta = btf_enum64_check_meta, 4491 .resolve = btf_df_resolve, 4492 .check_member = btf_enum_check_member, 4493 .check_kflag_member = btf_enum_check_kflag_member, 4494 .log_details = btf_enum_log, 4495 .show = btf_enum64_show, 4496 }; 4497 4498 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4499 const struct btf_type *t, 4500 u32 meta_left) 4501 { 4502 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4503 4504 if (meta_left < meta_needed) { 4505 btf_verifier_log_basic(env, t, 4506 "meta_left:%u meta_needed:%u", 4507 meta_left, meta_needed); 4508 return -EINVAL; 4509 } 4510 4511 if (t->name_off) { 4512 btf_verifier_log_type(env, t, "Invalid name"); 4513 return -EINVAL; 4514 } 4515 4516 if (btf_type_kflag(t)) { 4517 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4518 return -EINVAL; 4519 } 4520 4521 btf_verifier_log_type(env, t, NULL); 4522 4523 return meta_needed; 4524 } 4525 4526 static void btf_func_proto_log(struct btf_verifier_env *env, 4527 const struct btf_type *t) 4528 { 4529 const struct btf_param *args = (const struct btf_param *)(t + 1); 4530 u16 nr_args = btf_type_vlen(t), i; 4531 4532 btf_verifier_log(env, "return=%u args=(", t->type); 4533 if (!nr_args) { 4534 btf_verifier_log(env, "void"); 4535 goto done; 4536 } 4537 4538 if (nr_args == 1 && !args[0].type) { 4539 /* Only one vararg */ 4540 btf_verifier_log(env, "vararg"); 4541 goto done; 4542 } 4543 4544 btf_verifier_log(env, "%u %s", args[0].type, 4545 __btf_name_by_offset(env->btf, 4546 args[0].name_off)); 4547 for (i = 1; i < nr_args - 1; i++) 4548 btf_verifier_log(env, ", %u %s", args[i].type, 4549 __btf_name_by_offset(env->btf, 4550 args[i].name_off)); 4551 4552 if (nr_args > 1) { 4553 const struct btf_param *last_arg = &args[nr_args - 1]; 4554 4555 if (last_arg->type) 4556 btf_verifier_log(env, ", %u %s", last_arg->type, 4557 __btf_name_by_offset(env->btf, 4558 last_arg->name_off)); 4559 else 4560 btf_verifier_log(env, ", vararg"); 4561 } 4562 4563 done: 4564 btf_verifier_log(env, ")"); 4565 } 4566 4567 static const struct btf_kind_operations func_proto_ops = { 4568 .check_meta = btf_func_proto_check_meta, 4569 .resolve = btf_df_resolve, 4570 /* 4571 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4572 * a struct's member. 4573 * 4574 * It should be a function pointer instead. 4575 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4576 * 4577 * Hence, there is no btf_func_check_member(). 4578 */ 4579 .check_member = btf_df_check_member, 4580 .check_kflag_member = btf_df_check_kflag_member, 4581 .log_details = btf_func_proto_log, 4582 .show = btf_df_show, 4583 }; 4584 4585 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4586 const struct btf_type *t, 4587 u32 meta_left) 4588 { 4589 if (!t->name_off || 4590 !btf_name_valid_identifier(env->btf, t->name_off)) { 4591 btf_verifier_log_type(env, t, "Invalid name"); 4592 return -EINVAL; 4593 } 4594 4595 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4596 btf_verifier_log_type(env, t, "Invalid func linkage"); 4597 return -EINVAL; 4598 } 4599 4600 if (btf_type_kflag(t)) { 4601 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4602 return -EINVAL; 4603 } 4604 4605 btf_verifier_log_type(env, t, NULL); 4606 4607 return 0; 4608 } 4609 4610 static int btf_func_resolve(struct btf_verifier_env *env, 4611 const struct resolve_vertex *v) 4612 { 4613 const struct btf_type *t = v->t; 4614 u32 next_type_id = t->type; 4615 int err; 4616 4617 err = btf_func_check(env, t); 4618 if (err) 4619 return err; 4620 4621 env_stack_pop_resolved(env, next_type_id, 0); 4622 return 0; 4623 } 4624 4625 static const struct btf_kind_operations func_ops = { 4626 .check_meta = btf_func_check_meta, 4627 .resolve = btf_func_resolve, 4628 .check_member = btf_df_check_member, 4629 .check_kflag_member = btf_df_check_kflag_member, 4630 .log_details = btf_ref_type_log, 4631 .show = btf_df_show, 4632 }; 4633 4634 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4635 const struct btf_type *t, 4636 u32 meta_left) 4637 { 4638 const struct btf_var *var; 4639 u32 meta_needed = sizeof(*var); 4640 4641 if (meta_left < meta_needed) { 4642 btf_verifier_log_basic(env, t, 4643 "meta_left:%u meta_needed:%u", 4644 meta_left, meta_needed); 4645 return -EINVAL; 4646 } 4647 4648 if (btf_type_vlen(t)) { 4649 btf_verifier_log_type(env, t, "vlen != 0"); 4650 return -EINVAL; 4651 } 4652 4653 if (btf_type_kflag(t)) { 4654 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4655 return -EINVAL; 4656 } 4657 4658 if (!t->name_off || 4659 !btf_name_valid_identifier(env->btf, t->name_off)) { 4660 btf_verifier_log_type(env, t, "Invalid name"); 4661 return -EINVAL; 4662 } 4663 4664 /* A var cannot be in type void */ 4665 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4666 btf_verifier_log_type(env, t, "Invalid type_id"); 4667 return -EINVAL; 4668 } 4669 4670 var = btf_type_var(t); 4671 if (var->linkage != BTF_VAR_STATIC && 4672 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4673 btf_verifier_log_type(env, t, "Linkage not supported"); 4674 return -EINVAL; 4675 } 4676 4677 btf_verifier_log_type(env, t, NULL); 4678 4679 return meta_needed; 4680 } 4681 4682 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4683 { 4684 const struct btf_var *var = btf_type_var(t); 4685 4686 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4687 } 4688 4689 static const struct btf_kind_operations var_ops = { 4690 .check_meta = btf_var_check_meta, 4691 .resolve = btf_var_resolve, 4692 .check_member = btf_df_check_member, 4693 .check_kflag_member = btf_df_check_kflag_member, 4694 .log_details = btf_var_log, 4695 .show = btf_var_show, 4696 }; 4697 4698 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4699 const struct btf_type *t, 4700 u32 meta_left) 4701 { 4702 const struct btf_var_secinfo *vsi; 4703 u64 last_vsi_end_off = 0, sum = 0; 4704 u32 i, meta_needed; 4705 4706 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4707 if (meta_left < meta_needed) { 4708 btf_verifier_log_basic(env, t, 4709 "meta_left:%u meta_needed:%u", 4710 meta_left, meta_needed); 4711 return -EINVAL; 4712 } 4713 4714 if (!t->size) { 4715 btf_verifier_log_type(env, t, "size == 0"); 4716 return -EINVAL; 4717 } 4718 4719 if (btf_type_kflag(t)) { 4720 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4721 return -EINVAL; 4722 } 4723 4724 if (!t->name_off || 4725 !btf_name_valid_section(env->btf, t->name_off)) { 4726 btf_verifier_log_type(env, t, "Invalid name"); 4727 return -EINVAL; 4728 } 4729 4730 btf_verifier_log_type(env, t, NULL); 4731 4732 for_each_vsi(i, t, vsi) { 4733 /* A var cannot be in type void */ 4734 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4735 btf_verifier_log_vsi(env, t, vsi, 4736 "Invalid type_id"); 4737 return -EINVAL; 4738 } 4739 4740 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4741 btf_verifier_log_vsi(env, t, vsi, 4742 "Invalid offset"); 4743 return -EINVAL; 4744 } 4745 4746 if (!vsi->size || vsi->size > t->size) { 4747 btf_verifier_log_vsi(env, t, vsi, 4748 "Invalid size"); 4749 return -EINVAL; 4750 } 4751 4752 last_vsi_end_off = vsi->offset + vsi->size; 4753 if (last_vsi_end_off > t->size) { 4754 btf_verifier_log_vsi(env, t, vsi, 4755 "Invalid offset+size"); 4756 return -EINVAL; 4757 } 4758 4759 btf_verifier_log_vsi(env, t, vsi, NULL); 4760 sum += vsi->size; 4761 } 4762 4763 if (t->size < sum) { 4764 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4765 return -EINVAL; 4766 } 4767 4768 return meta_needed; 4769 } 4770 4771 static int btf_datasec_resolve(struct btf_verifier_env *env, 4772 const struct resolve_vertex *v) 4773 { 4774 const struct btf_var_secinfo *vsi; 4775 struct btf *btf = env->btf; 4776 u16 i; 4777 4778 env->resolve_mode = RESOLVE_TBD; 4779 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4780 u32 var_type_id = vsi->type, type_id, type_size = 0; 4781 const struct btf_type *var_type = btf_type_by_id(env->btf, 4782 var_type_id); 4783 if (!var_type || !btf_type_is_var(var_type)) { 4784 btf_verifier_log_vsi(env, v->t, vsi, 4785 "Not a VAR kind member"); 4786 return -EINVAL; 4787 } 4788 4789 if (!env_type_is_resolve_sink(env, var_type) && 4790 !env_type_is_resolved(env, var_type_id)) { 4791 env_stack_set_next_member(env, i + 1); 4792 return env_stack_push(env, var_type, var_type_id); 4793 } 4794 4795 type_id = var_type->type; 4796 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4797 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4798 return -EINVAL; 4799 } 4800 4801 if (vsi->size < type_size) { 4802 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4803 return -EINVAL; 4804 } 4805 } 4806 4807 env_stack_pop_resolved(env, 0, 0); 4808 return 0; 4809 } 4810 4811 static void btf_datasec_log(struct btf_verifier_env *env, 4812 const struct btf_type *t) 4813 { 4814 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4815 } 4816 4817 static void btf_datasec_show(const struct btf *btf, 4818 const struct btf_type *t, u32 type_id, 4819 void *data, u8 bits_offset, 4820 struct btf_show *show) 4821 { 4822 const struct btf_var_secinfo *vsi; 4823 const struct btf_type *var; 4824 u32 i; 4825 4826 if (!btf_show_start_type(show, t, type_id, data)) 4827 return; 4828 4829 btf_show_type_value(show, "section (\"%s\") = {", 4830 __btf_name_by_offset(btf, t->name_off)); 4831 for_each_vsi(i, t, vsi) { 4832 var = btf_type_by_id(btf, vsi->type); 4833 if (i) 4834 btf_show(show, ","); 4835 btf_type_ops(var)->show(btf, var, vsi->type, 4836 data + vsi->offset, bits_offset, show); 4837 } 4838 btf_show_end_type(show); 4839 } 4840 4841 static const struct btf_kind_operations datasec_ops = { 4842 .check_meta = btf_datasec_check_meta, 4843 .resolve = btf_datasec_resolve, 4844 .check_member = btf_df_check_member, 4845 .check_kflag_member = btf_df_check_kflag_member, 4846 .log_details = btf_datasec_log, 4847 .show = btf_datasec_show, 4848 }; 4849 4850 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4851 const struct btf_type *t, 4852 u32 meta_left) 4853 { 4854 if (btf_type_vlen(t)) { 4855 btf_verifier_log_type(env, t, "vlen != 0"); 4856 return -EINVAL; 4857 } 4858 4859 if (btf_type_kflag(t)) { 4860 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4861 return -EINVAL; 4862 } 4863 4864 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4865 t->size != 16) { 4866 btf_verifier_log_type(env, t, "Invalid type_size"); 4867 return -EINVAL; 4868 } 4869 4870 btf_verifier_log_type(env, t, NULL); 4871 4872 return 0; 4873 } 4874 4875 static int btf_float_check_member(struct btf_verifier_env *env, 4876 const struct btf_type *struct_type, 4877 const struct btf_member *member, 4878 const struct btf_type *member_type) 4879 { 4880 u64 start_offset_bytes; 4881 u64 end_offset_bytes; 4882 u64 misalign_bits; 4883 u64 align_bytes; 4884 u64 align_bits; 4885 4886 /* Different architectures have different alignment requirements, so 4887 * here we check only for the reasonable minimum. This way we ensure 4888 * that types after CO-RE can pass the kernel BTF verifier. 4889 */ 4890 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4891 align_bits = align_bytes * BITS_PER_BYTE; 4892 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4893 if (misalign_bits) { 4894 btf_verifier_log_member(env, struct_type, member, 4895 "Member is not properly aligned"); 4896 return -EINVAL; 4897 } 4898 4899 start_offset_bytes = member->offset / BITS_PER_BYTE; 4900 end_offset_bytes = start_offset_bytes + member_type->size; 4901 if (end_offset_bytes > struct_type->size) { 4902 btf_verifier_log_member(env, struct_type, member, 4903 "Member exceeds struct_size"); 4904 return -EINVAL; 4905 } 4906 4907 return 0; 4908 } 4909 4910 static void btf_float_log(struct btf_verifier_env *env, 4911 const struct btf_type *t) 4912 { 4913 btf_verifier_log(env, "size=%u", t->size); 4914 } 4915 4916 static const struct btf_kind_operations float_ops = { 4917 .check_meta = btf_float_check_meta, 4918 .resolve = btf_df_resolve, 4919 .check_member = btf_float_check_member, 4920 .check_kflag_member = btf_generic_check_kflag_member, 4921 .log_details = btf_float_log, 4922 .show = btf_df_show, 4923 }; 4924 4925 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4926 const struct btf_type *t, 4927 u32 meta_left) 4928 { 4929 const struct btf_decl_tag *tag; 4930 u32 meta_needed = sizeof(*tag); 4931 s32 component_idx; 4932 const char *value; 4933 4934 if (meta_left < meta_needed) { 4935 btf_verifier_log_basic(env, t, 4936 "meta_left:%u meta_needed:%u", 4937 meta_left, meta_needed); 4938 return -EINVAL; 4939 } 4940 4941 value = btf_name_by_offset(env->btf, t->name_off); 4942 if (!value || !value[0]) { 4943 btf_verifier_log_type(env, t, "Invalid value"); 4944 return -EINVAL; 4945 } 4946 4947 if (btf_type_vlen(t)) { 4948 btf_verifier_log_type(env, t, "vlen != 0"); 4949 return -EINVAL; 4950 } 4951 4952 if (btf_type_kflag(t)) { 4953 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4954 return -EINVAL; 4955 } 4956 4957 component_idx = btf_type_decl_tag(t)->component_idx; 4958 if (component_idx < -1) { 4959 btf_verifier_log_type(env, t, "Invalid component_idx"); 4960 return -EINVAL; 4961 } 4962 4963 btf_verifier_log_type(env, t, NULL); 4964 4965 return meta_needed; 4966 } 4967 4968 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4969 const struct resolve_vertex *v) 4970 { 4971 const struct btf_type *next_type; 4972 const struct btf_type *t = v->t; 4973 u32 next_type_id = t->type; 4974 struct btf *btf = env->btf; 4975 s32 component_idx; 4976 u32 vlen; 4977 4978 next_type = btf_type_by_id(btf, next_type_id); 4979 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4980 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4981 return -EINVAL; 4982 } 4983 4984 if (!env_type_is_resolve_sink(env, next_type) && 4985 !env_type_is_resolved(env, next_type_id)) 4986 return env_stack_push(env, next_type, next_type_id); 4987 4988 component_idx = btf_type_decl_tag(t)->component_idx; 4989 if (component_idx != -1) { 4990 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4991 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4992 return -EINVAL; 4993 } 4994 4995 if (btf_type_is_struct(next_type)) { 4996 vlen = btf_type_vlen(next_type); 4997 } else { 4998 /* next_type should be a function */ 4999 next_type = btf_type_by_id(btf, next_type->type); 5000 vlen = btf_type_vlen(next_type); 5001 } 5002 5003 if ((u32)component_idx >= vlen) { 5004 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5005 return -EINVAL; 5006 } 5007 } 5008 5009 env_stack_pop_resolved(env, next_type_id, 0); 5010 5011 return 0; 5012 } 5013 5014 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 5015 { 5016 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 5017 btf_type_decl_tag(t)->component_idx); 5018 } 5019 5020 static const struct btf_kind_operations decl_tag_ops = { 5021 .check_meta = btf_decl_tag_check_meta, 5022 .resolve = btf_decl_tag_resolve, 5023 .check_member = btf_df_check_member, 5024 .check_kflag_member = btf_df_check_kflag_member, 5025 .log_details = btf_decl_tag_log, 5026 .show = btf_df_show, 5027 }; 5028 5029 static int btf_func_proto_check(struct btf_verifier_env *env, 5030 const struct btf_type *t) 5031 { 5032 const struct btf_type *ret_type; 5033 const struct btf_param *args; 5034 const struct btf *btf; 5035 u16 nr_args, i; 5036 int err; 5037 5038 btf = env->btf; 5039 args = (const struct btf_param *)(t + 1); 5040 nr_args = btf_type_vlen(t); 5041 5042 /* Check func return type which could be "void" (t->type == 0) */ 5043 if (t->type) { 5044 u32 ret_type_id = t->type; 5045 5046 ret_type = btf_type_by_id(btf, ret_type_id); 5047 if (!ret_type) { 5048 btf_verifier_log_type(env, t, "Invalid return type"); 5049 return -EINVAL; 5050 } 5051 5052 if (btf_type_is_resolve_source_only(ret_type)) { 5053 btf_verifier_log_type(env, t, "Invalid return type"); 5054 return -EINVAL; 5055 } 5056 5057 if (btf_type_needs_resolve(ret_type) && 5058 !env_type_is_resolved(env, ret_type_id)) { 5059 err = btf_resolve(env, ret_type, ret_type_id); 5060 if (err) 5061 return err; 5062 } 5063 5064 /* Ensure the return type is a type that has a size */ 5065 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5066 btf_verifier_log_type(env, t, "Invalid return type"); 5067 return -EINVAL; 5068 } 5069 } 5070 5071 if (!nr_args) 5072 return 0; 5073 5074 /* Last func arg type_id could be 0 if it is a vararg */ 5075 if (!args[nr_args - 1].type) { 5076 if (args[nr_args - 1].name_off) { 5077 btf_verifier_log_type(env, t, "Invalid arg#%u", 5078 nr_args); 5079 return -EINVAL; 5080 } 5081 nr_args--; 5082 } 5083 5084 for (i = 0; i < nr_args; i++) { 5085 const struct btf_type *arg_type; 5086 u32 arg_type_id; 5087 5088 arg_type_id = args[i].type; 5089 arg_type = btf_type_by_id(btf, arg_type_id); 5090 if (!arg_type) { 5091 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5092 return -EINVAL; 5093 } 5094 5095 if (btf_type_is_resolve_source_only(arg_type)) { 5096 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5097 return -EINVAL; 5098 } 5099 5100 if (args[i].name_off && 5101 (!btf_name_offset_valid(btf, args[i].name_off) || 5102 !btf_name_valid_identifier(btf, args[i].name_off))) { 5103 btf_verifier_log_type(env, t, 5104 "Invalid arg#%u", i + 1); 5105 return -EINVAL; 5106 } 5107 5108 if (btf_type_needs_resolve(arg_type) && 5109 !env_type_is_resolved(env, arg_type_id)) { 5110 err = btf_resolve(env, arg_type, arg_type_id); 5111 if (err) 5112 return err; 5113 } 5114 5115 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5116 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5117 return -EINVAL; 5118 } 5119 } 5120 5121 return 0; 5122 } 5123 5124 static int btf_func_check(struct btf_verifier_env *env, 5125 const struct btf_type *t) 5126 { 5127 const struct btf_type *proto_type; 5128 const struct btf_param *args; 5129 const struct btf *btf; 5130 u16 nr_args, i; 5131 5132 btf = env->btf; 5133 proto_type = btf_type_by_id(btf, t->type); 5134 5135 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5136 btf_verifier_log_type(env, t, "Invalid type_id"); 5137 return -EINVAL; 5138 } 5139 5140 args = (const struct btf_param *)(proto_type + 1); 5141 nr_args = btf_type_vlen(proto_type); 5142 for (i = 0; i < nr_args; i++) { 5143 if (!args[i].name_off && args[i].type) { 5144 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5145 return -EINVAL; 5146 } 5147 } 5148 5149 return 0; 5150 } 5151 5152 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5153 [BTF_KIND_INT] = &int_ops, 5154 [BTF_KIND_PTR] = &ptr_ops, 5155 [BTF_KIND_ARRAY] = &array_ops, 5156 [BTF_KIND_STRUCT] = &struct_ops, 5157 [BTF_KIND_UNION] = &struct_ops, 5158 [BTF_KIND_ENUM] = &enum_ops, 5159 [BTF_KIND_FWD] = &fwd_ops, 5160 [BTF_KIND_TYPEDEF] = &modifier_ops, 5161 [BTF_KIND_VOLATILE] = &modifier_ops, 5162 [BTF_KIND_CONST] = &modifier_ops, 5163 [BTF_KIND_RESTRICT] = &modifier_ops, 5164 [BTF_KIND_FUNC] = &func_ops, 5165 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5166 [BTF_KIND_VAR] = &var_ops, 5167 [BTF_KIND_DATASEC] = &datasec_ops, 5168 [BTF_KIND_FLOAT] = &float_ops, 5169 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5170 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5171 [BTF_KIND_ENUM64] = &enum64_ops, 5172 }; 5173 5174 static s32 btf_check_meta(struct btf_verifier_env *env, 5175 const struct btf_type *t, 5176 u32 meta_left) 5177 { 5178 u32 saved_meta_left = meta_left; 5179 s32 var_meta_size; 5180 5181 if (meta_left < sizeof(*t)) { 5182 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5183 env->log_type_id, meta_left, sizeof(*t)); 5184 return -EINVAL; 5185 } 5186 meta_left -= sizeof(*t); 5187 5188 if (t->info & ~BTF_INFO_MASK) { 5189 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5190 env->log_type_id, t->info); 5191 return -EINVAL; 5192 } 5193 5194 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5195 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5196 btf_verifier_log(env, "[%u] Invalid kind:%u", 5197 env->log_type_id, BTF_INFO_KIND(t->info)); 5198 return -EINVAL; 5199 } 5200 5201 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5202 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5203 env->log_type_id, t->name_off); 5204 return -EINVAL; 5205 } 5206 5207 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5208 if (var_meta_size < 0) 5209 return var_meta_size; 5210 5211 meta_left -= var_meta_size; 5212 5213 return saved_meta_left - meta_left; 5214 } 5215 5216 static int btf_check_all_metas(struct btf_verifier_env *env) 5217 { 5218 struct btf *btf = env->btf; 5219 struct btf_header *hdr; 5220 void *cur, *end; 5221 5222 hdr = &btf->hdr; 5223 cur = btf->nohdr_data + hdr->type_off; 5224 end = cur + hdr->type_len; 5225 5226 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5227 while (cur < end) { 5228 struct btf_type *t = cur; 5229 s32 meta_size; 5230 5231 meta_size = btf_check_meta(env, t, end - cur); 5232 if (meta_size < 0) 5233 return meta_size; 5234 5235 btf_add_type(env, t); 5236 cur += meta_size; 5237 env->log_type_id++; 5238 } 5239 5240 return 0; 5241 } 5242 5243 static bool btf_resolve_valid(struct btf_verifier_env *env, 5244 const struct btf_type *t, 5245 u32 type_id) 5246 { 5247 struct btf *btf = env->btf; 5248 5249 if (!env_type_is_resolved(env, type_id)) 5250 return false; 5251 5252 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5253 return !btf_resolved_type_id(btf, type_id) && 5254 !btf_resolved_type_size(btf, type_id); 5255 5256 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5257 return btf_resolved_type_id(btf, type_id) && 5258 !btf_resolved_type_size(btf, type_id); 5259 5260 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5261 btf_type_is_var(t)) { 5262 t = btf_type_id_resolve(btf, &type_id); 5263 return t && 5264 !btf_type_is_modifier(t) && 5265 !btf_type_is_var(t) && 5266 !btf_type_is_datasec(t); 5267 } 5268 5269 if (btf_type_is_array(t)) { 5270 const struct btf_array *array = btf_type_array(t); 5271 const struct btf_type *elem_type; 5272 u32 elem_type_id = array->type; 5273 u32 elem_size; 5274 5275 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5276 return elem_type && !btf_type_is_modifier(elem_type) && 5277 (array->nelems * elem_size == 5278 btf_resolved_type_size(btf, type_id)); 5279 } 5280 5281 return false; 5282 } 5283 5284 static int btf_resolve(struct btf_verifier_env *env, 5285 const struct btf_type *t, u32 type_id) 5286 { 5287 u32 save_log_type_id = env->log_type_id; 5288 const struct resolve_vertex *v; 5289 int err = 0; 5290 5291 env->resolve_mode = RESOLVE_TBD; 5292 env_stack_push(env, t, type_id); 5293 while (!err && (v = env_stack_peak(env))) { 5294 env->log_type_id = v->type_id; 5295 err = btf_type_ops(v->t)->resolve(env, v); 5296 } 5297 5298 env->log_type_id = type_id; 5299 if (err == -E2BIG) { 5300 btf_verifier_log_type(env, t, 5301 "Exceeded max resolving depth:%u", 5302 MAX_RESOLVE_DEPTH); 5303 } else if (err == -EEXIST) { 5304 btf_verifier_log_type(env, t, "Loop detected"); 5305 } 5306 5307 /* Final sanity check */ 5308 if (!err && !btf_resolve_valid(env, t, type_id)) { 5309 btf_verifier_log_type(env, t, "Invalid resolve state"); 5310 err = -EINVAL; 5311 } 5312 5313 env->log_type_id = save_log_type_id; 5314 return err; 5315 } 5316 5317 static int btf_check_all_types(struct btf_verifier_env *env) 5318 { 5319 struct btf *btf = env->btf; 5320 const struct btf_type *t; 5321 u32 type_id, i; 5322 int err; 5323 5324 err = env_resolve_init(env); 5325 if (err) 5326 return err; 5327 5328 env->phase++; 5329 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5330 type_id = btf->start_id + i; 5331 t = btf_type_by_id(btf, type_id); 5332 5333 env->log_type_id = type_id; 5334 if (btf_type_needs_resolve(t) && 5335 !env_type_is_resolved(env, type_id)) { 5336 err = btf_resolve(env, t, type_id); 5337 if (err) 5338 return err; 5339 } 5340 5341 if (btf_type_is_func_proto(t)) { 5342 err = btf_func_proto_check(env, t); 5343 if (err) 5344 return err; 5345 } 5346 } 5347 5348 return 0; 5349 } 5350 5351 static int btf_parse_type_sec(struct btf_verifier_env *env) 5352 { 5353 const struct btf_header *hdr = &env->btf->hdr; 5354 int err; 5355 5356 /* Type section must align to 4 bytes */ 5357 if (hdr->type_off & (sizeof(u32) - 1)) { 5358 btf_verifier_log(env, "Unaligned type_off"); 5359 return -EINVAL; 5360 } 5361 5362 if (!env->btf->base_btf && !hdr->type_len) { 5363 btf_verifier_log(env, "No type found"); 5364 return -EINVAL; 5365 } 5366 5367 err = btf_check_all_metas(env); 5368 if (err) 5369 return err; 5370 5371 return btf_check_all_types(env); 5372 } 5373 5374 static int btf_parse_str_sec(struct btf_verifier_env *env) 5375 { 5376 const struct btf_header *hdr; 5377 struct btf *btf = env->btf; 5378 const char *start, *end; 5379 5380 hdr = &btf->hdr; 5381 start = btf->nohdr_data + hdr->str_off; 5382 end = start + hdr->str_len; 5383 5384 if (end != btf->data + btf->data_size) { 5385 btf_verifier_log(env, "String section is not at the end"); 5386 return -EINVAL; 5387 } 5388 5389 btf->strings = start; 5390 5391 if (btf->base_btf && !hdr->str_len) 5392 return 0; 5393 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5394 btf_verifier_log(env, "Invalid string section"); 5395 return -EINVAL; 5396 } 5397 if (!btf->base_btf && start[0]) { 5398 btf_verifier_log(env, "Invalid string section"); 5399 return -EINVAL; 5400 } 5401 5402 return 0; 5403 } 5404 5405 static const size_t btf_sec_info_offset[] = { 5406 offsetof(struct btf_header, type_off), 5407 offsetof(struct btf_header, str_off), 5408 }; 5409 5410 static int btf_sec_info_cmp(const void *a, const void *b) 5411 { 5412 const struct btf_sec_info *x = a; 5413 const struct btf_sec_info *y = b; 5414 5415 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5416 } 5417 5418 static int btf_check_sec_info(struct btf_verifier_env *env, 5419 u32 btf_data_size) 5420 { 5421 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5422 u32 total, expected_total, i; 5423 const struct btf_header *hdr; 5424 const struct btf *btf; 5425 5426 btf = env->btf; 5427 hdr = &btf->hdr; 5428 5429 /* Populate the secs from hdr */ 5430 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5431 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5432 btf_sec_info_offset[i]); 5433 5434 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5435 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5436 5437 /* Check for gaps and overlap among sections */ 5438 total = 0; 5439 expected_total = btf_data_size - hdr->hdr_len; 5440 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5441 if (expected_total < secs[i].off) { 5442 btf_verifier_log(env, "Invalid section offset"); 5443 return -EINVAL; 5444 } 5445 if (total < secs[i].off) { 5446 /* gap */ 5447 btf_verifier_log(env, "Unsupported section found"); 5448 return -EINVAL; 5449 } 5450 if (total > secs[i].off) { 5451 btf_verifier_log(env, "Section overlap found"); 5452 return -EINVAL; 5453 } 5454 if (expected_total - total < secs[i].len) { 5455 btf_verifier_log(env, 5456 "Total section length too long"); 5457 return -EINVAL; 5458 } 5459 total += secs[i].len; 5460 } 5461 5462 /* There is data other than hdr and known sections */ 5463 if (expected_total != total) { 5464 btf_verifier_log(env, "Unsupported section found"); 5465 return -EINVAL; 5466 } 5467 5468 return 0; 5469 } 5470 5471 static int btf_parse_hdr(struct btf_verifier_env *env) 5472 { 5473 u32 hdr_len, hdr_copy, btf_data_size; 5474 const struct btf_header *hdr; 5475 struct btf *btf; 5476 5477 btf = env->btf; 5478 btf_data_size = btf->data_size; 5479 5480 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5481 btf_verifier_log(env, "hdr_len not found"); 5482 return -EINVAL; 5483 } 5484 5485 hdr = btf->data; 5486 hdr_len = hdr->hdr_len; 5487 if (btf_data_size < hdr_len) { 5488 btf_verifier_log(env, "btf_header not found"); 5489 return -EINVAL; 5490 } 5491 5492 /* Ensure the unsupported header fields are zero */ 5493 if (hdr_len > sizeof(btf->hdr)) { 5494 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5495 u8 *end = btf->data + hdr_len; 5496 5497 for (; expected_zero < end; expected_zero++) { 5498 if (*expected_zero) { 5499 btf_verifier_log(env, "Unsupported btf_header"); 5500 return -E2BIG; 5501 } 5502 } 5503 } 5504 5505 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5506 memcpy(&btf->hdr, btf->data, hdr_copy); 5507 5508 hdr = &btf->hdr; 5509 5510 btf_verifier_log_hdr(env, btf_data_size); 5511 5512 if (hdr->magic != BTF_MAGIC) { 5513 btf_verifier_log(env, "Invalid magic"); 5514 return -EINVAL; 5515 } 5516 5517 if (hdr->version != BTF_VERSION) { 5518 btf_verifier_log(env, "Unsupported version"); 5519 return -ENOTSUPP; 5520 } 5521 5522 if (hdr->flags) { 5523 btf_verifier_log(env, "Unsupported flags"); 5524 return -ENOTSUPP; 5525 } 5526 5527 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5528 btf_verifier_log(env, "No data"); 5529 return -EINVAL; 5530 } 5531 5532 return btf_check_sec_info(env, btf_data_size); 5533 } 5534 5535 static const char *alloc_obj_fields[] = { 5536 "bpf_spin_lock", 5537 "bpf_list_head", 5538 "bpf_list_node", 5539 "bpf_rb_root", 5540 "bpf_rb_node", 5541 "bpf_refcount", 5542 }; 5543 5544 static struct btf_struct_metas * 5545 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5546 { 5547 struct btf_struct_metas *tab = NULL; 5548 struct btf_id_set *aof; 5549 int i, n, id, ret; 5550 5551 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5552 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5553 5554 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5555 if (!aof) 5556 return ERR_PTR(-ENOMEM); 5557 aof->cnt = 0; 5558 5559 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5560 /* Try to find whether this special type exists in user BTF, and 5561 * if so remember its ID so we can easily find it among members 5562 * of structs that we iterate in the next loop. 5563 */ 5564 struct btf_id_set *new_aof; 5565 5566 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5567 if (id < 0) 5568 continue; 5569 5570 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5571 GFP_KERNEL | __GFP_NOWARN); 5572 if (!new_aof) { 5573 ret = -ENOMEM; 5574 goto free_aof; 5575 } 5576 aof = new_aof; 5577 aof->ids[aof->cnt++] = id; 5578 } 5579 5580 n = btf_nr_types(btf); 5581 for (i = 1; i < n; i++) { 5582 /* Try to find if there are kptrs in user BTF and remember their ID */ 5583 struct btf_id_set *new_aof; 5584 struct btf_field_info tmp; 5585 const struct btf_type *t; 5586 5587 t = btf_type_by_id(btf, i); 5588 if (!t) { 5589 ret = -EINVAL; 5590 goto free_aof; 5591 } 5592 5593 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); 5594 if (ret != BTF_FIELD_FOUND) 5595 continue; 5596 5597 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5598 GFP_KERNEL | __GFP_NOWARN); 5599 if (!new_aof) { 5600 ret = -ENOMEM; 5601 goto free_aof; 5602 } 5603 aof = new_aof; 5604 aof->ids[aof->cnt++] = i; 5605 } 5606 5607 if (!aof->cnt) { 5608 kfree(aof); 5609 return NULL; 5610 } 5611 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5612 5613 for (i = 1; i < n; i++) { 5614 struct btf_struct_metas *new_tab; 5615 const struct btf_member *member; 5616 struct btf_struct_meta *type; 5617 struct btf_record *record; 5618 const struct btf_type *t; 5619 int j, tab_cnt; 5620 5621 t = btf_type_by_id(btf, i); 5622 if (!__btf_type_is_struct(t)) 5623 continue; 5624 5625 cond_resched(); 5626 5627 for_each_member(j, t, member) { 5628 if (btf_id_set_contains(aof, member->type)) 5629 goto parse; 5630 } 5631 continue; 5632 parse: 5633 tab_cnt = tab ? tab->cnt : 0; 5634 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5635 GFP_KERNEL | __GFP_NOWARN); 5636 if (!new_tab) { 5637 ret = -ENOMEM; 5638 goto free; 5639 } 5640 if (!tab) 5641 new_tab->cnt = 0; 5642 tab = new_tab; 5643 5644 type = &tab->types[tab->cnt]; 5645 type->btf_id = i; 5646 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5647 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5648 BPF_KPTR, t->size); 5649 /* The record cannot be unset, treat it as an error if so */ 5650 if (IS_ERR_OR_NULL(record)) { 5651 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5652 goto free; 5653 } 5654 type->record = record; 5655 tab->cnt++; 5656 } 5657 kfree(aof); 5658 return tab; 5659 free: 5660 btf_struct_metas_free(tab); 5661 free_aof: 5662 kfree(aof); 5663 return ERR_PTR(ret); 5664 } 5665 5666 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5667 { 5668 struct btf_struct_metas *tab; 5669 5670 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5671 tab = btf->struct_meta_tab; 5672 if (!tab) 5673 return NULL; 5674 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5675 } 5676 5677 static int btf_check_type_tags(struct btf_verifier_env *env, 5678 struct btf *btf, int start_id) 5679 { 5680 int i, n, good_id = start_id - 1; 5681 bool in_tags; 5682 5683 n = btf_nr_types(btf); 5684 for (i = start_id; i < n; i++) { 5685 const struct btf_type *t; 5686 int chain_limit = 32; 5687 u32 cur_id = i; 5688 5689 t = btf_type_by_id(btf, i); 5690 if (!t) 5691 return -EINVAL; 5692 if (!btf_type_is_modifier(t)) 5693 continue; 5694 5695 cond_resched(); 5696 5697 in_tags = btf_type_is_type_tag(t); 5698 while (btf_type_is_modifier(t)) { 5699 if (!chain_limit--) { 5700 btf_verifier_log(env, "Max chain length or cycle detected"); 5701 return -ELOOP; 5702 } 5703 if (btf_type_is_type_tag(t)) { 5704 if (!in_tags) { 5705 btf_verifier_log(env, "Type tags don't precede modifiers"); 5706 return -EINVAL; 5707 } 5708 } else if (in_tags) { 5709 in_tags = false; 5710 } 5711 if (cur_id <= good_id) 5712 break; 5713 /* Move to next type */ 5714 cur_id = t->type; 5715 t = btf_type_by_id(btf, cur_id); 5716 if (!t) 5717 return -EINVAL; 5718 } 5719 good_id = i; 5720 } 5721 return 0; 5722 } 5723 5724 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5725 { 5726 u32 log_true_size; 5727 int err; 5728 5729 err = bpf_vlog_finalize(log, &log_true_size); 5730 5731 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5732 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5733 &log_true_size, sizeof(log_true_size))) 5734 err = -EFAULT; 5735 5736 return err; 5737 } 5738 5739 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5740 { 5741 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5742 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5743 struct btf_struct_metas *struct_meta_tab; 5744 struct btf_verifier_env *env = NULL; 5745 struct btf *btf = NULL; 5746 u8 *data; 5747 int err, ret; 5748 5749 if (attr->btf_size > BTF_MAX_SIZE) 5750 return ERR_PTR(-E2BIG); 5751 5752 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5753 if (!env) 5754 return ERR_PTR(-ENOMEM); 5755 5756 /* user could have requested verbose verifier output 5757 * and supplied buffer to store the verification trace 5758 */ 5759 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5760 log_ubuf, attr->btf_log_size); 5761 if (err) 5762 goto errout_free; 5763 5764 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5765 if (!btf) { 5766 err = -ENOMEM; 5767 goto errout; 5768 } 5769 env->btf = btf; 5770 5771 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5772 if (!data) { 5773 err = -ENOMEM; 5774 goto errout; 5775 } 5776 5777 btf->data = data; 5778 btf->data_size = attr->btf_size; 5779 5780 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5781 err = -EFAULT; 5782 goto errout; 5783 } 5784 5785 err = btf_parse_hdr(env); 5786 if (err) 5787 goto errout; 5788 5789 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5790 5791 err = btf_parse_str_sec(env); 5792 if (err) 5793 goto errout; 5794 5795 err = btf_parse_type_sec(env); 5796 if (err) 5797 goto errout; 5798 5799 err = btf_check_type_tags(env, btf, 1); 5800 if (err) 5801 goto errout; 5802 5803 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5804 if (IS_ERR(struct_meta_tab)) { 5805 err = PTR_ERR(struct_meta_tab); 5806 goto errout; 5807 } 5808 btf->struct_meta_tab = struct_meta_tab; 5809 5810 if (struct_meta_tab) { 5811 int i; 5812 5813 for (i = 0; i < struct_meta_tab->cnt; i++) { 5814 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5815 if (err < 0) 5816 goto errout_meta; 5817 } 5818 } 5819 5820 err = finalize_log(&env->log, uattr, uattr_size); 5821 if (err) 5822 goto errout_free; 5823 5824 btf_verifier_env_free(env); 5825 refcount_set(&btf->refcnt, 1); 5826 return btf; 5827 5828 errout_meta: 5829 btf_free_struct_meta_tab(btf); 5830 errout: 5831 /* overwrite err with -ENOSPC or -EFAULT */ 5832 ret = finalize_log(&env->log, uattr, uattr_size); 5833 if (ret) 5834 err = ret; 5835 errout_free: 5836 btf_verifier_env_free(env); 5837 if (btf) 5838 btf_free(btf); 5839 return ERR_PTR(err); 5840 } 5841 5842 extern char __start_BTF[]; 5843 extern char __stop_BTF[]; 5844 extern struct btf *btf_vmlinux; 5845 5846 #define BPF_MAP_TYPE(_id, _ops) 5847 #define BPF_LINK_TYPE(_id, _name) 5848 static union { 5849 struct bpf_ctx_convert { 5850 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5851 prog_ctx_type _id##_prog; \ 5852 kern_ctx_type _id##_kern; 5853 #include <linux/bpf_types.h> 5854 #undef BPF_PROG_TYPE 5855 } *__t; 5856 /* 't' is written once under lock. Read many times. */ 5857 const struct btf_type *t; 5858 } bpf_ctx_convert; 5859 enum { 5860 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5861 __ctx_convert##_id, 5862 #include <linux/bpf_types.h> 5863 #undef BPF_PROG_TYPE 5864 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5865 }; 5866 static u8 bpf_ctx_convert_map[] = { 5867 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5868 [_id] = __ctx_convert##_id, 5869 #include <linux/bpf_types.h> 5870 #undef BPF_PROG_TYPE 5871 0, /* avoid empty array */ 5872 }; 5873 #undef BPF_MAP_TYPE 5874 #undef BPF_LINK_TYPE 5875 5876 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5877 { 5878 const struct btf_type *conv_struct; 5879 const struct btf_member *ctx_type; 5880 5881 conv_struct = bpf_ctx_convert.t; 5882 if (!conv_struct) 5883 return NULL; 5884 /* prog_type is valid bpf program type. No need for bounds check. */ 5885 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5886 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5887 * Like 'struct __sk_buff' 5888 */ 5889 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5890 } 5891 5892 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5893 { 5894 const struct btf_type *conv_struct; 5895 const struct btf_member *ctx_type; 5896 5897 conv_struct = bpf_ctx_convert.t; 5898 if (!conv_struct) 5899 return -EFAULT; 5900 /* prog_type is valid bpf program type. No need for bounds check. */ 5901 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5902 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5903 * Like 'struct sk_buff' 5904 */ 5905 return ctx_type->type; 5906 } 5907 5908 bool btf_is_projection_of(const char *pname, const char *tname) 5909 { 5910 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5911 return true; 5912 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5913 return true; 5914 return false; 5915 } 5916 5917 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5918 const struct btf_type *t, enum bpf_prog_type prog_type, 5919 int arg) 5920 { 5921 const struct btf_type *ctx_type; 5922 const char *tname, *ctx_tname; 5923 5924 t = btf_type_by_id(btf, t->type); 5925 5926 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5927 * check before we skip all the typedef below. 5928 */ 5929 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5930 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5931 t = btf_type_by_id(btf, t->type); 5932 5933 if (btf_type_is_typedef(t)) { 5934 tname = btf_name_by_offset(btf, t->name_off); 5935 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5936 return true; 5937 } 5938 } 5939 5940 while (btf_type_is_modifier(t)) 5941 t = btf_type_by_id(btf, t->type); 5942 if (!btf_type_is_struct(t)) { 5943 /* Only pointer to struct is supported for now. 5944 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5945 * is not supported yet. 5946 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5947 */ 5948 return false; 5949 } 5950 tname = btf_name_by_offset(btf, t->name_off); 5951 if (!tname) { 5952 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5953 return false; 5954 } 5955 5956 ctx_type = find_canonical_prog_ctx_type(prog_type); 5957 if (!ctx_type) { 5958 bpf_log(log, "btf_vmlinux is malformed\n"); 5959 /* should not happen */ 5960 return false; 5961 } 5962 again: 5963 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5964 if (!ctx_tname) { 5965 /* should not happen */ 5966 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5967 return false; 5968 } 5969 /* program types without named context types work only with arg:ctx tag */ 5970 if (ctx_tname[0] == '\0') 5971 return false; 5972 /* only compare that prog's ctx type name is the same as 5973 * kernel expects. No need to compare field by field. 5974 * It's ok for bpf prog to do: 5975 * struct __sk_buff {}; 5976 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5977 * { // no fields of skb are ever used } 5978 */ 5979 if (btf_is_projection_of(ctx_tname, tname)) 5980 return true; 5981 if (strcmp(ctx_tname, tname)) { 5982 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5983 * underlying struct and check name again 5984 */ 5985 if (!btf_type_is_modifier(ctx_type)) 5986 return false; 5987 while (btf_type_is_modifier(ctx_type)) 5988 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5989 goto again; 5990 } 5991 return true; 5992 } 5993 5994 /* forward declarations for arch-specific underlying types of 5995 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5996 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5997 * works correctly with __builtin_types_compatible_p() on respective 5998 * architectures 5999 */ 6000 struct user_regs_struct; 6001 struct user_pt_regs; 6002 6003 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 6004 const struct btf_type *t, int arg, 6005 enum bpf_prog_type prog_type, 6006 enum bpf_attach_type attach_type) 6007 { 6008 const struct btf_type *ctx_type; 6009 const char *tname, *ctx_tname; 6010 6011 if (!btf_is_ptr(t)) { 6012 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 6013 return -EINVAL; 6014 } 6015 t = btf_type_by_id(btf, t->type); 6016 6017 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 6018 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 6019 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 6020 t = btf_type_by_id(btf, t->type); 6021 6022 if (btf_type_is_typedef(t)) { 6023 tname = btf_name_by_offset(btf, t->name_off); 6024 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6025 return 0; 6026 } 6027 } 6028 6029 /* all other program types don't use typedefs for context type */ 6030 while (btf_type_is_modifier(t)) 6031 t = btf_type_by_id(btf, t->type); 6032 6033 /* `void *ctx __arg_ctx` is always valid */ 6034 if (btf_type_is_void(t)) 6035 return 0; 6036 6037 tname = btf_name_by_offset(btf, t->name_off); 6038 if (str_is_empty(tname)) { 6039 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6040 return -EINVAL; 6041 } 6042 6043 /* special cases */ 6044 switch (prog_type) { 6045 case BPF_PROG_TYPE_KPROBE: 6046 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6047 return 0; 6048 break; 6049 case BPF_PROG_TYPE_PERF_EVENT: 6050 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6051 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6052 return 0; 6053 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6054 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6055 return 0; 6056 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6057 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6058 return 0; 6059 break; 6060 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6061 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6062 /* allow u64* as ctx */ 6063 if (btf_is_int(t) && t->size == 8) 6064 return 0; 6065 break; 6066 case BPF_PROG_TYPE_TRACING: 6067 switch (attach_type) { 6068 case BPF_TRACE_RAW_TP: 6069 /* tp_btf program is TRACING, so need special case here */ 6070 if (__btf_type_is_struct(t) && 6071 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6072 return 0; 6073 /* allow u64* as ctx */ 6074 if (btf_is_int(t) && t->size == 8) 6075 return 0; 6076 break; 6077 case BPF_TRACE_ITER: 6078 /* allow struct bpf_iter__xxx types only */ 6079 if (__btf_type_is_struct(t) && 6080 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6081 return 0; 6082 break; 6083 case BPF_TRACE_FENTRY: 6084 case BPF_TRACE_FEXIT: 6085 case BPF_MODIFY_RETURN: 6086 /* allow u64* as ctx */ 6087 if (btf_is_int(t) && t->size == 8) 6088 return 0; 6089 break; 6090 default: 6091 break; 6092 } 6093 break; 6094 case BPF_PROG_TYPE_LSM: 6095 case BPF_PROG_TYPE_STRUCT_OPS: 6096 /* allow u64* as ctx */ 6097 if (btf_is_int(t) && t->size == 8) 6098 return 0; 6099 break; 6100 case BPF_PROG_TYPE_TRACEPOINT: 6101 case BPF_PROG_TYPE_SYSCALL: 6102 case BPF_PROG_TYPE_EXT: 6103 return 0; /* anything goes */ 6104 default: 6105 break; 6106 } 6107 6108 ctx_type = find_canonical_prog_ctx_type(prog_type); 6109 if (!ctx_type) { 6110 /* should not happen */ 6111 bpf_log(log, "btf_vmlinux is malformed\n"); 6112 return -EINVAL; 6113 } 6114 6115 /* resolve typedefs and check that underlying structs are matching as well */ 6116 while (btf_type_is_modifier(ctx_type)) 6117 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6118 6119 /* if program type doesn't have distinctly named struct type for 6120 * context, then __arg_ctx argument can only be `void *`, which we 6121 * already checked above 6122 */ 6123 if (!__btf_type_is_struct(ctx_type)) { 6124 bpf_log(log, "arg#%d should be void pointer\n", arg); 6125 return -EINVAL; 6126 } 6127 6128 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6129 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6130 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6131 return -EINVAL; 6132 } 6133 6134 return 0; 6135 } 6136 6137 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6138 struct btf *btf, 6139 const struct btf_type *t, 6140 enum bpf_prog_type prog_type, 6141 int arg) 6142 { 6143 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6144 return -ENOENT; 6145 return find_kern_ctx_type_id(prog_type); 6146 } 6147 6148 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6149 { 6150 const struct btf_member *kctx_member; 6151 const struct btf_type *conv_struct; 6152 const struct btf_type *kctx_type; 6153 u32 kctx_type_id; 6154 6155 conv_struct = bpf_ctx_convert.t; 6156 /* get member for kernel ctx type */ 6157 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6158 kctx_type_id = kctx_member->type; 6159 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6160 if (!btf_type_is_struct(kctx_type)) { 6161 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6162 return -EINVAL; 6163 } 6164 6165 return kctx_type_id; 6166 } 6167 6168 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6169 BTF_ID(struct, bpf_ctx_convert) 6170 6171 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6172 void *data, unsigned int data_size) 6173 { 6174 struct btf *btf = NULL; 6175 int err; 6176 6177 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6178 return ERR_PTR(-ENOENT); 6179 6180 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6181 if (!btf) { 6182 err = -ENOMEM; 6183 goto errout; 6184 } 6185 env->btf = btf; 6186 6187 btf->data = data; 6188 btf->data_size = data_size; 6189 btf->kernel_btf = true; 6190 snprintf(btf->name, sizeof(btf->name), "%s", name); 6191 6192 err = btf_parse_hdr(env); 6193 if (err) 6194 goto errout; 6195 6196 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6197 6198 err = btf_parse_str_sec(env); 6199 if (err) 6200 goto errout; 6201 6202 err = btf_check_all_metas(env); 6203 if (err) 6204 goto errout; 6205 6206 err = btf_check_type_tags(env, btf, 1); 6207 if (err) 6208 goto errout; 6209 6210 refcount_set(&btf->refcnt, 1); 6211 6212 return btf; 6213 6214 errout: 6215 if (btf) { 6216 kvfree(btf->types); 6217 kfree(btf); 6218 } 6219 return ERR_PTR(err); 6220 } 6221 6222 struct btf *btf_parse_vmlinux(void) 6223 { 6224 struct btf_verifier_env *env = NULL; 6225 struct bpf_verifier_log *log; 6226 struct btf *btf; 6227 int err; 6228 6229 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6230 if (!env) 6231 return ERR_PTR(-ENOMEM); 6232 6233 log = &env->log; 6234 log->level = BPF_LOG_KERNEL; 6235 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6236 if (IS_ERR(btf)) 6237 goto err_out; 6238 6239 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6240 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6241 err = btf_alloc_id(btf); 6242 if (err) { 6243 btf_free(btf); 6244 btf = ERR_PTR(err); 6245 } 6246 err_out: 6247 btf_verifier_env_free(env); 6248 return btf; 6249 } 6250 6251 /* If .BTF_ids section was created with distilled base BTF, both base and 6252 * split BTF ids will need to be mapped to actual base/split ids for 6253 * BTF now that it has been relocated. 6254 */ 6255 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6256 { 6257 if (!btf->base_btf || !btf->base_id_map) 6258 return id; 6259 return btf->base_id_map[id]; 6260 } 6261 6262 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6263 6264 static struct btf *btf_parse_module(const char *module_name, const void *data, 6265 unsigned int data_size, void *base_data, 6266 unsigned int base_data_size) 6267 { 6268 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6269 struct btf_verifier_env *env = NULL; 6270 struct bpf_verifier_log *log; 6271 int err = 0; 6272 6273 vmlinux_btf = bpf_get_btf_vmlinux(); 6274 if (IS_ERR(vmlinux_btf)) 6275 return vmlinux_btf; 6276 if (!vmlinux_btf) 6277 return ERR_PTR(-EINVAL); 6278 6279 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6280 if (!env) 6281 return ERR_PTR(-ENOMEM); 6282 6283 log = &env->log; 6284 log->level = BPF_LOG_KERNEL; 6285 6286 if (base_data) { 6287 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6288 if (IS_ERR(base_btf)) { 6289 err = PTR_ERR(base_btf); 6290 goto errout; 6291 } 6292 } else { 6293 base_btf = vmlinux_btf; 6294 } 6295 6296 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6297 if (!btf) { 6298 err = -ENOMEM; 6299 goto errout; 6300 } 6301 env->btf = btf; 6302 6303 btf->base_btf = base_btf; 6304 btf->start_id = base_btf->nr_types; 6305 btf->start_str_off = base_btf->hdr.str_len; 6306 btf->kernel_btf = true; 6307 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6308 6309 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6310 if (!btf->data) { 6311 err = -ENOMEM; 6312 goto errout; 6313 } 6314 btf->data_size = data_size; 6315 6316 err = btf_parse_hdr(env); 6317 if (err) 6318 goto errout; 6319 6320 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6321 6322 err = btf_parse_str_sec(env); 6323 if (err) 6324 goto errout; 6325 6326 err = btf_check_all_metas(env); 6327 if (err) 6328 goto errout; 6329 6330 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6331 if (err) 6332 goto errout; 6333 6334 if (base_btf != vmlinux_btf) { 6335 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6336 if (err) 6337 goto errout; 6338 btf_free(base_btf); 6339 base_btf = vmlinux_btf; 6340 } 6341 6342 btf_verifier_env_free(env); 6343 refcount_set(&btf->refcnt, 1); 6344 return btf; 6345 6346 errout: 6347 btf_verifier_env_free(env); 6348 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6349 btf_free(base_btf); 6350 if (btf) { 6351 kvfree(btf->data); 6352 kvfree(btf->types); 6353 kfree(btf); 6354 } 6355 return ERR_PTR(err); 6356 } 6357 6358 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6359 6360 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6361 { 6362 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6363 6364 if (tgt_prog) 6365 return tgt_prog->aux->btf; 6366 else 6367 return prog->aux->attach_btf; 6368 } 6369 6370 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6371 { 6372 /* skip modifiers */ 6373 t = btf_type_skip_modifiers(btf, t->type, NULL); 6374 6375 return btf_type_is_int(t); 6376 } 6377 6378 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6379 int off) 6380 { 6381 const struct btf_param *args; 6382 const struct btf_type *t; 6383 u32 offset = 0, nr_args; 6384 int i; 6385 6386 if (!func_proto) 6387 return off / 8; 6388 6389 nr_args = btf_type_vlen(func_proto); 6390 args = (const struct btf_param *)(func_proto + 1); 6391 for (i = 0; i < nr_args; i++) { 6392 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6393 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6394 if (off < offset) 6395 return i; 6396 } 6397 6398 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6399 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6400 if (off < offset) 6401 return nr_args; 6402 6403 return nr_args + 1; 6404 } 6405 6406 static bool prog_args_trusted(const struct bpf_prog *prog) 6407 { 6408 enum bpf_attach_type atype = prog->expected_attach_type; 6409 6410 switch (prog->type) { 6411 case BPF_PROG_TYPE_TRACING: 6412 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6413 case BPF_PROG_TYPE_LSM: 6414 return bpf_lsm_is_trusted(prog); 6415 case BPF_PROG_TYPE_STRUCT_OPS: 6416 return true; 6417 default: 6418 return false; 6419 } 6420 } 6421 6422 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6423 u32 arg_no) 6424 { 6425 const struct btf_param *args; 6426 const struct btf_type *t; 6427 int off = 0, i; 6428 u32 sz; 6429 6430 args = btf_params(func_proto); 6431 for (i = 0; i < arg_no; i++) { 6432 t = btf_type_by_id(btf, args[i].type); 6433 t = btf_resolve_size(btf, t, &sz); 6434 if (IS_ERR(t)) 6435 return PTR_ERR(t); 6436 off += roundup(sz, 8); 6437 } 6438 6439 return off; 6440 } 6441 6442 struct bpf_raw_tp_null_args { 6443 const char *func; 6444 u64 mask; 6445 }; 6446 6447 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { 6448 /* sched */ 6449 { "sched_pi_setprio", 0x10 }, 6450 /* ... from sched_numa_pair_template event class */ 6451 { "sched_stick_numa", 0x100 }, 6452 { "sched_swap_numa", 0x100 }, 6453 /* afs */ 6454 { "afs_make_fs_call", 0x10 }, 6455 { "afs_make_fs_calli", 0x10 }, 6456 { "afs_make_fs_call1", 0x10 }, 6457 { "afs_make_fs_call2", 0x10 }, 6458 { "afs_protocol_error", 0x1 }, 6459 { "afs_flock_ev", 0x10 }, 6460 /* cachefiles */ 6461 { "cachefiles_lookup", 0x1 | 0x200 }, 6462 { "cachefiles_unlink", 0x1 }, 6463 { "cachefiles_rename", 0x1 }, 6464 { "cachefiles_prep_read", 0x1 }, 6465 { "cachefiles_mark_active", 0x1 }, 6466 { "cachefiles_mark_failed", 0x1 }, 6467 { "cachefiles_mark_inactive", 0x1 }, 6468 { "cachefiles_vfs_error", 0x1 }, 6469 { "cachefiles_io_error", 0x1 }, 6470 { "cachefiles_ondemand_open", 0x1 }, 6471 { "cachefiles_ondemand_copen", 0x1 }, 6472 { "cachefiles_ondemand_close", 0x1 }, 6473 { "cachefiles_ondemand_read", 0x1 }, 6474 { "cachefiles_ondemand_cread", 0x1 }, 6475 { "cachefiles_ondemand_fd_write", 0x1 }, 6476 { "cachefiles_ondemand_fd_release", 0x1 }, 6477 /* ext4, from ext4__mballoc event class */ 6478 { "ext4_mballoc_discard", 0x10 }, 6479 { "ext4_mballoc_free", 0x10 }, 6480 /* fib */ 6481 { "fib_table_lookup", 0x100 }, 6482 /* filelock */ 6483 /* ... from filelock_lock event class */ 6484 { "posix_lock_inode", 0x10 }, 6485 { "fcntl_setlk", 0x10 }, 6486 { "locks_remove_posix", 0x10 }, 6487 { "flock_lock_inode", 0x10 }, 6488 /* ... from filelock_lease event class */ 6489 { "break_lease_noblock", 0x10 }, 6490 { "break_lease_block", 0x10 }, 6491 { "break_lease_unblock", 0x10 }, 6492 { "generic_delete_lease", 0x10 }, 6493 { "time_out_leases", 0x10 }, 6494 /* host1x */ 6495 { "host1x_cdma_push_gather", 0x10000 }, 6496 /* huge_memory */ 6497 { "mm_khugepaged_scan_pmd", 0x10 }, 6498 { "mm_collapse_huge_page_isolate", 0x1 }, 6499 { "mm_khugepaged_scan_file", 0x10 }, 6500 { "mm_khugepaged_collapse_file", 0x10 }, 6501 /* kmem */ 6502 { "mm_page_alloc", 0x1 }, 6503 { "mm_page_pcpu_drain", 0x1 }, 6504 /* .. from mm_page event class */ 6505 { "mm_page_alloc_zone_locked", 0x1 }, 6506 /* netfs */ 6507 { "netfs_failure", 0x10 }, 6508 /* power */ 6509 { "device_pm_callback_start", 0x10 }, 6510 /* qdisc */ 6511 { "qdisc_dequeue", 0x1000 }, 6512 /* rxrpc */ 6513 { "rxrpc_recvdata", 0x1 }, 6514 { "rxrpc_resend", 0x10 }, 6515 /* sunrpc */ 6516 { "xs_stream_read_data", 0x1 }, 6517 /* ... from xprt_cong_event event class */ 6518 { "xprt_reserve_cong", 0x10 }, 6519 { "xprt_release_cong", 0x10 }, 6520 { "xprt_get_cong", 0x10 }, 6521 { "xprt_put_cong", 0x10 }, 6522 /* tcp */ 6523 { "tcp_send_reset", 0x11 }, 6524 /* tegra_apb_dma */ 6525 { "tegra_dma_tx_status", 0x100 }, 6526 /* timer_migration */ 6527 { "tmigr_update_events", 0x1 }, 6528 /* writeback, from writeback_folio_template event class */ 6529 { "writeback_dirty_folio", 0x10 }, 6530 { "folio_wait_writeback", 0x10 }, 6531 /* rdma */ 6532 { "mr_integ_alloc", 0x2000 }, 6533 /* bpf_testmod */ 6534 { "bpf_testmod_test_read", 0x0 }, 6535 }; 6536 6537 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6538 const struct bpf_prog *prog, 6539 struct bpf_insn_access_aux *info) 6540 { 6541 const struct btf_type *t = prog->aux->attach_func_proto; 6542 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6543 struct btf *btf = bpf_prog_get_target_btf(prog); 6544 const char *tname = prog->aux->attach_func_name; 6545 struct bpf_verifier_log *log = info->log; 6546 const struct btf_param *args; 6547 bool ptr_err_raw_tp = false; 6548 const char *tag_value; 6549 u32 nr_args, arg; 6550 int i, ret; 6551 6552 if (off % 8) { 6553 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6554 tname, off); 6555 return false; 6556 } 6557 arg = get_ctx_arg_idx(btf, t, off); 6558 args = (const struct btf_param *)(t + 1); 6559 /* if (t == NULL) Fall back to default BPF prog with 6560 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6561 */ 6562 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6563 if (prog->aux->attach_btf_trace) { 6564 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6565 args++; 6566 nr_args--; 6567 } 6568 6569 if (arg > nr_args) { 6570 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6571 tname, arg + 1); 6572 return false; 6573 } 6574 6575 if (arg == nr_args) { 6576 switch (prog->expected_attach_type) { 6577 case BPF_LSM_MAC: 6578 /* mark we are accessing the return value */ 6579 info->is_retval = true; 6580 fallthrough; 6581 case BPF_LSM_CGROUP: 6582 case BPF_TRACE_FEXIT: 6583 /* When LSM programs are attached to void LSM hooks 6584 * they use FEXIT trampolines and when attached to 6585 * int LSM hooks, they use MODIFY_RETURN trampolines. 6586 * 6587 * While the LSM programs are BPF_MODIFY_RETURN-like 6588 * the check: 6589 * 6590 * if (ret_type != 'int') 6591 * return -EINVAL; 6592 * 6593 * is _not_ done here. This is still safe as LSM hooks 6594 * have only void and int return types. 6595 */ 6596 if (!t) 6597 return true; 6598 t = btf_type_by_id(btf, t->type); 6599 break; 6600 case BPF_MODIFY_RETURN: 6601 /* For now the BPF_MODIFY_RETURN can only be attached to 6602 * functions that return an int. 6603 */ 6604 if (!t) 6605 return false; 6606 6607 t = btf_type_skip_modifiers(btf, t->type, NULL); 6608 if (!btf_type_is_small_int(t)) { 6609 bpf_log(log, 6610 "ret type %s not allowed for fmod_ret\n", 6611 btf_type_str(t)); 6612 return false; 6613 } 6614 break; 6615 default: 6616 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6617 tname, arg + 1); 6618 return false; 6619 } 6620 } else { 6621 if (!t) 6622 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6623 return true; 6624 t = btf_type_by_id(btf, args[arg].type); 6625 } 6626 6627 /* skip modifiers */ 6628 while (btf_type_is_modifier(t)) 6629 t = btf_type_by_id(btf, t->type); 6630 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6631 /* accessing a scalar */ 6632 return true; 6633 if (!btf_type_is_ptr(t)) { 6634 bpf_log(log, 6635 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6636 tname, arg, 6637 __btf_name_by_offset(btf, t->name_off), 6638 btf_type_str(t)); 6639 return false; 6640 } 6641 6642 if (size != sizeof(u64)) { 6643 bpf_log(log, "func '%s' size %d must be 8\n", 6644 tname, size); 6645 return false; 6646 } 6647 6648 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6649 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6650 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6651 u32 type, flag; 6652 6653 type = base_type(ctx_arg_info->reg_type); 6654 flag = type_flag(ctx_arg_info->reg_type); 6655 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6656 (flag & PTR_MAYBE_NULL)) { 6657 info->reg_type = ctx_arg_info->reg_type; 6658 return true; 6659 } 6660 } 6661 6662 if (t->type == 0) 6663 /* This is a pointer to void. 6664 * It is the same as scalar from the verifier safety pov. 6665 * No further pointer walking is allowed. 6666 */ 6667 return true; 6668 6669 if (is_int_ptr(btf, t)) 6670 return true; 6671 6672 /* this is a pointer to another type */ 6673 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6674 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6675 6676 if (ctx_arg_info->offset == off) { 6677 if (!ctx_arg_info->btf_id) { 6678 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6679 return false; 6680 } 6681 6682 info->reg_type = ctx_arg_info->reg_type; 6683 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6684 info->btf_id = ctx_arg_info->btf_id; 6685 return true; 6686 } 6687 } 6688 6689 info->reg_type = PTR_TO_BTF_ID; 6690 if (prog_args_trusted(prog)) 6691 info->reg_type |= PTR_TRUSTED; 6692 6693 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6694 info->reg_type |= PTR_MAYBE_NULL; 6695 6696 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 6697 struct btf *btf = prog->aux->attach_btf; 6698 const struct btf_type *t; 6699 const char *tname; 6700 6701 /* BTF lookups cannot fail, return false on error */ 6702 t = btf_type_by_id(btf, prog->aux->attach_btf_id); 6703 if (!t) 6704 return false; 6705 tname = btf_name_by_offset(btf, t->name_off); 6706 if (!tname) 6707 return false; 6708 /* Checked by bpf_check_attach_target */ 6709 tname += sizeof("btf_trace_") - 1; 6710 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { 6711 /* Is this a func with potential NULL args? */ 6712 if (strcmp(tname, raw_tp_null_args[i].func)) 6713 continue; 6714 if (raw_tp_null_args[i].mask & (0x1 << (arg * 4))) 6715 info->reg_type |= PTR_MAYBE_NULL; 6716 /* Is the current arg IS_ERR? */ 6717 if (raw_tp_null_args[i].mask & (0x2 << (arg * 4))) 6718 ptr_err_raw_tp = true; 6719 break; 6720 } 6721 /* If we don't know NULL-ness specification and the tracepoint 6722 * is coming from a loadable module, be conservative and mark 6723 * argument as PTR_MAYBE_NULL. 6724 */ 6725 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) 6726 info->reg_type |= PTR_MAYBE_NULL; 6727 } 6728 6729 if (tgt_prog) { 6730 enum bpf_prog_type tgt_type; 6731 6732 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6733 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6734 else 6735 tgt_type = tgt_prog->type; 6736 6737 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6738 if (ret > 0) { 6739 info->btf = btf_vmlinux; 6740 info->btf_id = ret; 6741 return true; 6742 } else { 6743 return false; 6744 } 6745 } 6746 6747 info->btf = btf; 6748 info->btf_id = t->type; 6749 t = btf_type_by_id(btf, t->type); 6750 6751 if (btf_type_is_type_tag(t)) { 6752 tag_value = __btf_name_by_offset(btf, t->name_off); 6753 if (strcmp(tag_value, "user") == 0) 6754 info->reg_type |= MEM_USER; 6755 if (strcmp(tag_value, "percpu") == 0) 6756 info->reg_type |= MEM_PERCPU; 6757 } 6758 6759 /* skip modifiers */ 6760 while (btf_type_is_modifier(t)) { 6761 info->btf_id = t->type; 6762 t = btf_type_by_id(btf, t->type); 6763 } 6764 if (!btf_type_is_struct(t)) { 6765 bpf_log(log, 6766 "func '%s' arg%d type %s is not a struct\n", 6767 tname, arg, btf_type_str(t)); 6768 return false; 6769 } 6770 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6771 tname, arg, info->btf_id, btf_type_str(t), 6772 __btf_name_by_offset(btf, t->name_off)); 6773 6774 /* Perform all checks on the validity of type for this argument, but if 6775 * we know it can be IS_ERR at runtime, scrub pointer type and mark as 6776 * scalar. 6777 */ 6778 if (ptr_err_raw_tp) { 6779 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); 6780 info->reg_type = SCALAR_VALUE; 6781 } 6782 return true; 6783 } 6784 EXPORT_SYMBOL_GPL(btf_ctx_access); 6785 6786 enum bpf_struct_walk_result { 6787 /* < 0 error */ 6788 WALK_SCALAR = 0, 6789 WALK_PTR, 6790 WALK_STRUCT, 6791 }; 6792 6793 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6794 const struct btf_type *t, int off, int size, 6795 u32 *next_btf_id, enum bpf_type_flag *flag, 6796 const char **field_name) 6797 { 6798 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6799 const struct btf_type *mtype, *elem_type = NULL; 6800 const struct btf_member *member; 6801 const char *tname, *mname, *tag_value; 6802 u32 vlen, elem_id, mid; 6803 6804 again: 6805 if (btf_type_is_modifier(t)) 6806 t = btf_type_skip_modifiers(btf, t->type, NULL); 6807 tname = __btf_name_by_offset(btf, t->name_off); 6808 if (!btf_type_is_struct(t)) { 6809 bpf_log(log, "Type '%s' is not a struct\n", tname); 6810 return -EINVAL; 6811 } 6812 6813 vlen = btf_type_vlen(t); 6814 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6815 /* 6816 * walking unions yields untrusted pointers 6817 * with exception of __bpf_md_ptr and other 6818 * unions with a single member 6819 */ 6820 *flag |= PTR_UNTRUSTED; 6821 6822 if (off + size > t->size) { 6823 /* If the last element is a variable size array, we may 6824 * need to relax the rule. 6825 */ 6826 struct btf_array *array_elem; 6827 6828 if (vlen == 0) 6829 goto error; 6830 6831 member = btf_type_member(t) + vlen - 1; 6832 mtype = btf_type_skip_modifiers(btf, member->type, 6833 NULL); 6834 if (!btf_type_is_array(mtype)) 6835 goto error; 6836 6837 array_elem = (struct btf_array *)(mtype + 1); 6838 if (array_elem->nelems != 0) 6839 goto error; 6840 6841 moff = __btf_member_bit_offset(t, member) / 8; 6842 if (off < moff) 6843 goto error; 6844 6845 /* allow structure and integer */ 6846 t = btf_type_skip_modifiers(btf, array_elem->type, 6847 NULL); 6848 6849 if (btf_type_is_int(t)) 6850 return WALK_SCALAR; 6851 6852 if (!btf_type_is_struct(t)) 6853 goto error; 6854 6855 off = (off - moff) % t->size; 6856 goto again; 6857 6858 error: 6859 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6860 tname, off, size); 6861 return -EACCES; 6862 } 6863 6864 for_each_member(i, t, member) { 6865 /* offset of the field in bytes */ 6866 moff = __btf_member_bit_offset(t, member) / 8; 6867 if (off + size <= moff) 6868 /* won't find anything, field is already too far */ 6869 break; 6870 6871 if (__btf_member_bitfield_size(t, member)) { 6872 u32 end_bit = __btf_member_bit_offset(t, member) + 6873 __btf_member_bitfield_size(t, member); 6874 6875 /* off <= moff instead of off == moff because clang 6876 * does not generate a BTF member for anonymous 6877 * bitfield like the ":16" here: 6878 * struct { 6879 * int :16; 6880 * int x:8; 6881 * }; 6882 */ 6883 if (off <= moff && 6884 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6885 return WALK_SCALAR; 6886 6887 /* off may be accessing a following member 6888 * 6889 * or 6890 * 6891 * Doing partial access at either end of this 6892 * bitfield. Continue on this case also to 6893 * treat it as not accessing this bitfield 6894 * and eventually error out as field not 6895 * found to keep it simple. 6896 * It could be relaxed if there was a legit 6897 * partial access case later. 6898 */ 6899 continue; 6900 } 6901 6902 /* In case of "off" is pointing to holes of a struct */ 6903 if (off < moff) 6904 break; 6905 6906 /* type of the field */ 6907 mid = member->type; 6908 mtype = btf_type_by_id(btf, member->type); 6909 mname = __btf_name_by_offset(btf, member->name_off); 6910 6911 mtype = __btf_resolve_size(btf, mtype, &msize, 6912 &elem_type, &elem_id, &total_nelems, 6913 &mid); 6914 if (IS_ERR(mtype)) { 6915 bpf_log(log, "field %s doesn't have size\n", mname); 6916 return -EFAULT; 6917 } 6918 6919 mtrue_end = moff + msize; 6920 if (off >= mtrue_end) 6921 /* no overlap with member, keep iterating */ 6922 continue; 6923 6924 if (btf_type_is_array(mtype)) { 6925 u32 elem_idx; 6926 6927 /* __btf_resolve_size() above helps to 6928 * linearize a multi-dimensional array. 6929 * 6930 * The logic here is treating an array 6931 * in a struct as the following way: 6932 * 6933 * struct outer { 6934 * struct inner array[2][2]; 6935 * }; 6936 * 6937 * looks like: 6938 * 6939 * struct outer { 6940 * struct inner array_elem0; 6941 * struct inner array_elem1; 6942 * struct inner array_elem2; 6943 * struct inner array_elem3; 6944 * }; 6945 * 6946 * When accessing outer->array[1][0], it moves 6947 * moff to "array_elem2", set mtype to 6948 * "struct inner", and msize also becomes 6949 * sizeof(struct inner). Then most of the 6950 * remaining logic will fall through without 6951 * caring the current member is an array or 6952 * not. 6953 * 6954 * Unlike mtype/msize/moff, mtrue_end does not 6955 * change. The naming difference ("_true") tells 6956 * that it is not always corresponding to 6957 * the current mtype/msize/moff. 6958 * It is the true end of the current 6959 * member (i.e. array in this case). That 6960 * will allow an int array to be accessed like 6961 * a scratch space, 6962 * i.e. allow access beyond the size of 6963 * the array's element as long as it is 6964 * within the mtrue_end boundary. 6965 */ 6966 6967 /* skip empty array */ 6968 if (moff == mtrue_end) 6969 continue; 6970 6971 msize /= total_nelems; 6972 elem_idx = (off - moff) / msize; 6973 moff += elem_idx * msize; 6974 mtype = elem_type; 6975 mid = elem_id; 6976 } 6977 6978 /* the 'off' we're looking for is either equal to start 6979 * of this field or inside of this struct 6980 */ 6981 if (btf_type_is_struct(mtype)) { 6982 /* our field must be inside that union or struct */ 6983 t = mtype; 6984 6985 /* return if the offset matches the member offset */ 6986 if (off == moff) { 6987 *next_btf_id = mid; 6988 return WALK_STRUCT; 6989 } 6990 6991 /* adjust offset we're looking for */ 6992 off -= moff; 6993 goto again; 6994 } 6995 6996 if (btf_type_is_ptr(mtype)) { 6997 const struct btf_type *stype, *t; 6998 enum bpf_type_flag tmp_flag = 0; 6999 u32 id; 7000 7001 if (msize != size || off != moff) { 7002 bpf_log(log, 7003 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 7004 mname, moff, tname, off, size); 7005 return -EACCES; 7006 } 7007 7008 /* check type tag */ 7009 t = btf_type_by_id(btf, mtype->type); 7010 if (btf_type_is_type_tag(t)) { 7011 tag_value = __btf_name_by_offset(btf, t->name_off); 7012 /* check __user tag */ 7013 if (strcmp(tag_value, "user") == 0) 7014 tmp_flag = MEM_USER; 7015 /* check __percpu tag */ 7016 if (strcmp(tag_value, "percpu") == 0) 7017 tmp_flag = MEM_PERCPU; 7018 /* check __rcu tag */ 7019 if (strcmp(tag_value, "rcu") == 0) 7020 tmp_flag = MEM_RCU; 7021 } 7022 7023 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 7024 if (btf_type_is_struct(stype)) { 7025 *next_btf_id = id; 7026 *flag |= tmp_flag; 7027 if (field_name) 7028 *field_name = mname; 7029 return WALK_PTR; 7030 } 7031 } 7032 7033 /* Allow more flexible access within an int as long as 7034 * it is within mtrue_end. 7035 * Since mtrue_end could be the end of an array, 7036 * that also allows using an array of int as a scratch 7037 * space. e.g. skb->cb[]. 7038 */ 7039 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 7040 bpf_log(log, 7041 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 7042 mname, mtrue_end, tname, off, size); 7043 return -EACCES; 7044 } 7045 7046 return WALK_SCALAR; 7047 } 7048 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 7049 return -EINVAL; 7050 } 7051 7052 int btf_struct_access(struct bpf_verifier_log *log, 7053 const struct bpf_reg_state *reg, 7054 int off, int size, enum bpf_access_type atype __maybe_unused, 7055 u32 *next_btf_id, enum bpf_type_flag *flag, 7056 const char **field_name) 7057 { 7058 const struct btf *btf = reg->btf; 7059 enum bpf_type_flag tmp_flag = 0; 7060 const struct btf_type *t; 7061 u32 id = reg->btf_id; 7062 int err; 7063 7064 while (type_is_alloc(reg->type)) { 7065 struct btf_struct_meta *meta; 7066 struct btf_record *rec; 7067 int i; 7068 7069 meta = btf_find_struct_meta(btf, id); 7070 if (!meta) 7071 break; 7072 rec = meta->record; 7073 for (i = 0; i < rec->cnt; i++) { 7074 struct btf_field *field = &rec->fields[i]; 7075 u32 offset = field->offset; 7076 if (off < offset + field->size && offset < off + size) { 7077 bpf_log(log, 7078 "direct access to %s is disallowed\n", 7079 btf_field_type_name(field->type)); 7080 return -EACCES; 7081 } 7082 } 7083 break; 7084 } 7085 7086 t = btf_type_by_id(btf, id); 7087 do { 7088 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 7089 7090 switch (err) { 7091 case WALK_PTR: 7092 /* For local types, the destination register cannot 7093 * become a pointer again. 7094 */ 7095 if (type_is_alloc(reg->type)) 7096 return SCALAR_VALUE; 7097 /* If we found the pointer or scalar on t+off, 7098 * we're done. 7099 */ 7100 *next_btf_id = id; 7101 *flag = tmp_flag; 7102 return PTR_TO_BTF_ID; 7103 case WALK_SCALAR: 7104 return SCALAR_VALUE; 7105 case WALK_STRUCT: 7106 /* We found nested struct, so continue the search 7107 * by diving in it. At this point the offset is 7108 * aligned with the new type, so set it to 0. 7109 */ 7110 t = btf_type_by_id(btf, id); 7111 off = 0; 7112 break; 7113 default: 7114 /* It's either error or unknown return value.. 7115 * scream and leave. 7116 */ 7117 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 7118 return -EINVAL; 7119 return err; 7120 } 7121 } while (t); 7122 7123 return -EINVAL; 7124 } 7125 7126 /* Check that two BTF types, each specified as an BTF object + id, are exactly 7127 * the same. Trivial ID check is not enough due to module BTFs, because we can 7128 * end up with two different module BTFs, but IDs point to the common type in 7129 * vmlinux BTF. 7130 */ 7131 bool btf_types_are_same(const struct btf *btf1, u32 id1, 7132 const struct btf *btf2, u32 id2) 7133 { 7134 if (id1 != id2) 7135 return false; 7136 if (btf1 == btf2) 7137 return true; 7138 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 7139 } 7140 7141 bool btf_struct_ids_match(struct bpf_verifier_log *log, 7142 const struct btf *btf, u32 id, int off, 7143 const struct btf *need_btf, u32 need_type_id, 7144 bool strict) 7145 { 7146 const struct btf_type *type; 7147 enum bpf_type_flag flag = 0; 7148 int err; 7149 7150 /* Are we already done? */ 7151 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 7152 return true; 7153 /* In case of strict type match, we do not walk struct, the top level 7154 * type match must succeed. When strict is true, off should have already 7155 * been 0. 7156 */ 7157 if (strict) 7158 return false; 7159 again: 7160 type = btf_type_by_id(btf, id); 7161 if (!type) 7162 return false; 7163 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 7164 if (err != WALK_STRUCT) 7165 return false; 7166 7167 /* We found nested struct object. If it matches 7168 * the requested ID, we're done. Otherwise let's 7169 * continue the search with offset 0 in the new 7170 * type. 7171 */ 7172 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7173 off = 0; 7174 goto again; 7175 } 7176 7177 return true; 7178 } 7179 7180 static int __get_type_size(struct btf *btf, u32 btf_id, 7181 const struct btf_type **ret_type) 7182 { 7183 const struct btf_type *t; 7184 7185 *ret_type = btf_type_by_id(btf, 0); 7186 if (!btf_id) 7187 /* void */ 7188 return 0; 7189 t = btf_type_by_id(btf, btf_id); 7190 while (t && btf_type_is_modifier(t)) 7191 t = btf_type_by_id(btf, t->type); 7192 if (!t) 7193 return -EINVAL; 7194 *ret_type = t; 7195 if (btf_type_is_ptr(t)) 7196 /* kernel size of pointer. Not BPF's size of pointer*/ 7197 return sizeof(void *); 7198 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7199 return t->size; 7200 return -EINVAL; 7201 } 7202 7203 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7204 { 7205 u8 flags = 0; 7206 7207 if (__btf_type_is_struct(t)) 7208 flags |= BTF_FMODEL_STRUCT_ARG; 7209 if (btf_type_is_signed_int(t)) 7210 flags |= BTF_FMODEL_SIGNED_ARG; 7211 7212 return flags; 7213 } 7214 7215 int btf_distill_func_proto(struct bpf_verifier_log *log, 7216 struct btf *btf, 7217 const struct btf_type *func, 7218 const char *tname, 7219 struct btf_func_model *m) 7220 { 7221 const struct btf_param *args; 7222 const struct btf_type *t; 7223 u32 i, nargs; 7224 int ret; 7225 7226 if (!func) { 7227 /* BTF function prototype doesn't match the verifier types. 7228 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7229 */ 7230 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7231 m->arg_size[i] = 8; 7232 m->arg_flags[i] = 0; 7233 } 7234 m->ret_size = 8; 7235 m->ret_flags = 0; 7236 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7237 return 0; 7238 } 7239 args = (const struct btf_param *)(func + 1); 7240 nargs = btf_type_vlen(func); 7241 if (nargs > MAX_BPF_FUNC_ARGS) { 7242 bpf_log(log, 7243 "The function %s has %d arguments. Too many.\n", 7244 tname, nargs); 7245 return -EINVAL; 7246 } 7247 ret = __get_type_size(btf, func->type, &t); 7248 if (ret < 0 || __btf_type_is_struct(t)) { 7249 bpf_log(log, 7250 "The function %s return type %s is unsupported.\n", 7251 tname, btf_type_str(t)); 7252 return -EINVAL; 7253 } 7254 m->ret_size = ret; 7255 m->ret_flags = __get_type_fmodel_flags(t); 7256 7257 for (i = 0; i < nargs; i++) { 7258 if (i == nargs - 1 && args[i].type == 0) { 7259 bpf_log(log, 7260 "The function %s with variable args is unsupported.\n", 7261 tname); 7262 return -EINVAL; 7263 } 7264 ret = __get_type_size(btf, args[i].type, &t); 7265 7266 /* No support of struct argument size greater than 16 bytes */ 7267 if (ret < 0 || ret > 16) { 7268 bpf_log(log, 7269 "The function %s arg%d type %s is unsupported.\n", 7270 tname, i, btf_type_str(t)); 7271 return -EINVAL; 7272 } 7273 if (ret == 0) { 7274 bpf_log(log, 7275 "The function %s has malformed void argument.\n", 7276 tname); 7277 return -EINVAL; 7278 } 7279 m->arg_size[i] = ret; 7280 m->arg_flags[i] = __get_type_fmodel_flags(t); 7281 } 7282 m->nr_args = nargs; 7283 return 0; 7284 } 7285 7286 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7287 * t1 points to BTF_KIND_FUNC in btf1 7288 * t2 points to BTF_KIND_FUNC in btf2 7289 * Returns: 7290 * EINVAL - function prototype mismatch 7291 * EFAULT - verifier bug 7292 * 0 - 99% match. The last 1% is validated by the verifier. 7293 */ 7294 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7295 struct btf *btf1, const struct btf_type *t1, 7296 struct btf *btf2, const struct btf_type *t2) 7297 { 7298 const struct btf_param *args1, *args2; 7299 const char *fn1, *fn2, *s1, *s2; 7300 u32 nargs1, nargs2, i; 7301 7302 fn1 = btf_name_by_offset(btf1, t1->name_off); 7303 fn2 = btf_name_by_offset(btf2, t2->name_off); 7304 7305 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7306 bpf_log(log, "%s() is not a global function\n", fn1); 7307 return -EINVAL; 7308 } 7309 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7310 bpf_log(log, "%s() is not a global function\n", fn2); 7311 return -EINVAL; 7312 } 7313 7314 t1 = btf_type_by_id(btf1, t1->type); 7315 if (!t1 || !btf_type_is_func_proto(t1)) 7316 return -EFAULT; 7317 t2 = btf_type_by_id(btf2, t2->type); 7318 if (!t2 || !btf_type_is_func_proto(t2)) 7319 return -EFAULT; 7320 7321 args1 = (const struct btf_param *)(t1 + 1); 7322 nargs1 = btf_type_vlen(t1); 7323 args2 = (const struct btf_param *)(t2 + 1); 7324 nargs2 = btf_type_vlen(t2); 7325 7326 if (nargs1 != nargs2) { 7327 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7328 fn1, nargs1, fn2, nargs2); 7329 return -EINVAL; 7330 } 7331 7332 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7333 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7334 if (t1->info != t2->info) { 7335 bpf_log(log, 7336 "Return type %s of %s() doesn't match type %s of %s()\n", 7337 btf_type_str(t1), fn1, 7338 btf_type_str(t2), fn2); 7339 return -EINVAL; 7340 } 7341 7342 for (i = 0; i < nargs1; i++) { 7343 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7344 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7345 7346 if (t1->info != t2->info) { 7347 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7348 i, fn1, btf_type_str(t1), 7349 fn2, btf_type_str(t2)); 7350 return -EINVAL; 7351 } 7352 if (btf_type_has_size(t1) && t1->size != t2->size) { 7353 bpf_log(log, 7354 "arg%d in %s() has size %d while %s() has %d\n", 7355 i, fn1, t1->size, 7356 fn2, t2->size); 7357 return -EINVAL; 7358 } 7359 7360 /* global functions are validated with scalars and pointers 7361 * to context only. And only global functions can be replaced. 7362 * Hence type check only those types. 7363 */ 7364 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7365 continue; 7366 if (!btf_type_is_ptr(t1)) { 7367 bpf_log(log, 7368 "arg%d in %s() has unrecognized type\n", 7369 i, fn1); 7370 return -EINVAL; 7371 } 7372 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7373 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7374 if (!btf_type_is_struct(t1)) { 7375 bpf_log(log, 7376 "arg%d in %s() is not a pointer to context\n", 7377 i, fn1); 7378 return -EINVAL; 7379 } 7380 if (!btf_type_is_struct(t2)) { 7381 bpf_log(log, 7382 "arg%d in %s() is not a pointer to context\n", 7383 i, fn2); 7384 return -EINVAL; 7385 } 7386 /* This is an optional check to make program writing easier. 7387 * Compare names of structs and report an error to the user. 7388 * btf_prepare_func_args() already checked that t2 struct 7389 * is a context type. btf_prepare_func_args() will check 7390 * later that t1 struct is a context type as well. 7391 */ 7392 s1 = btf_name_by_offset(btf1, t1->name_off); 7393 s2 = btf_name_by_offset(btf2, t2->name_off); 7394 if (strcmp(s1, s2)) { 7395 bpf_log(log, 7396 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7397 i, fn1, s1, fn2, s2); 7398 return -EINVAL; 7399 } 7400 } 7401 return 0; 7402 } 7403 7404 /* Compare BTFs of given program with BTF of target program */ 7405 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7406 struct btf *btf2, const struct btf_type *t2) 7407 { 7408 struct btf *btf1 = prog->aux->btf; 7409 const struct btf_type *t1; 7410 u32 btf_id = 0; 7411 7412 if (!prog->aux->func_info) { 7413 bpf_log(log, "Program extension requires BTF\n"); 7414 return -EINVAL; 7415 } 7416 7417 btf_id = prog->aux->func_info[0].type_id; 7418 if (!btf_id) 7419 return -EFAULT; 7420 7421 t1 = btf_type_by_id(btf1, btf_id); 7422 if (!t1 || !btf_type_is_func(t1)) 7423 return -EFAULT; 7424 7425 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7426 } 7427 7428 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7429 { 7430 const char *name; 7431 7432 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7433 7434 while (btf_type_is_modifier(t)) 7435 t = btf_type_by_id(btf, t->type); 7436 7437 /* allow either struct or struct forward declaration */ 7438 if (btf_type_is_struct(t) || 7439 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7440 name = btf_str_by_offset(btf, t->name_off); 7441 return name && strcmp(name, "bpf_dynptr") == 0; 7442 } 7443 7444 return false; 7445 } 7446 7447 struct bpf_cand_cache { 7448 const char *name; 7449 u32 name_len; 7450 u16 kind; 7451 u16 cnt; 7452 struct { 7453 const struct btf *btf; 7454 u32 id; 7455 } cands[]; 7456 }; 7457 7458 static DEFINE_MUTEX(cand_cache_mutex); 7459 7460 static struct bpf_cand_cache * 7461 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7462 7463 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7464 const struct btf *btf, const struct btf_type *t) 7465 { 7466 struct bpf_cand_cache *cc; 7467 struct bpf_core_ctx ctx = { 7468 .btf = btf, 7469 .log = log, 7470 }; 7471 u32 kern_type_id, type_id; 7472 int err = 0; 7473 7474 /* skip PTR and modifiers */ 7475 type_id = t->type; 7476 t = btf_type_by_id(btf, t->type); 7477 while (btf_type_is_modifier(t)) { 7478 type_id = t->type; 7479 t = btf_type_by_id(btf, t->type); 7480 } 7481 7482 mutex_lock(&cand_cache_mutex); 7483 cc = bpf_core_find_cands(&ctx, type_id); 7484 if (IS_ERR(cc)) { 7485 err = PTR_ERR(cc); 7486 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7487 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7488 err); 7489 goto cand_cache_unlock; 7490 } 7491 if (cc->cnt != 1) { 7492 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7493 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7494 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7495 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7496 goto cand_cache_unlock; 7497 } 7498 if (btf_is_module(cc->cands[0].btf)) { 7499 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7500 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7501 err = -EOPNOTSUPP; 7502 goto cand_cache_unlock; 7503 } 7504 kern_type_id = cc->cands[0].id; 7505 7506 cand_cache_unlock: 7507 mutex_unlock(&cand_cache_mutex); 7508 if (err) 7509 return err; 7510 7511 return kern_type_id; 7512 } 7513 7514 enum btf_arg_tag { 7515 ARG_TAG_CTX = BIT_ULL(0), 7516 ARG_TAG_NONNULL = BIT_ULL(1), 7517 ARG_TAG_TRUSTED = BIT_ULL(2), 7518 ARG_TAG_NULLABLE = BIT_ULL(3), 7519 ARG_TAG_ARENA = BIT_ULL(4), 7520 }; 7521 7522 /* Process BTF of a function to produce high-level expectation of function 7523 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7524 * is cached in subprog info for reuse. 7525 * Returns: 7526 * EFAULT - there is a verifier bug. Abort verification. 7527 * EINVAL - cannot convert BTF. 7528 * 0 - Successfully processed BTF and constructed argument expectations. 7529 */ 7530 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7531 { 7532 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7533 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7534 struct bpf_verifier_log *log = &env->log; 7535 struct bpf_prog *prog = env->prog; 7536 enum bpf_prog_type prog_type = prog->type; 7537 struct btf *btf = prog->aux->btf; 7538 const struct btf_param *args; 7539 const struct btf_type *t, *ref_t, *fn_t; 7540 u32 i, nargs, btf_id; 7541 const char *tname; 7542 7543 if (sub->args_cached) 7544 return 0; 7545 7546 if (!prog->aux->func_info) { 7547 bpf_log(log, "Verifier bug\n"); 7548 return -EFAULT; 7549 } 7550 7551 btf_id = prog->aux->func_info[subprog].type_id; 7552 if (!btf_id) { 7553 if (!is_global) /* not fatal for static funcs */ 7554 return -EINVAL; 7555 bpf_log(log, "Global functions need valid BTF\n"); 7556 return -EFAULT; 7557 } 7558 7559 fn_t = btf_type_by_id(btf, btf_id); 7560 if (!fn_t || !btf_type_is_func(fn_t)) { 7561 /* These checks were already done by the verifier while loading 7562 * struct bpf_func_info 7563 */ 7564 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7565 subprog); 7566 return -EFAULT; 7567 } 7568 tname = btf_name_by_offset(btf, fn_t->name_off); 7569 7570 if (prog->aux->func_info_aux[subprog].unreliable) { 7571 bpf_log(log, "Verifier bug in function %s()\n", tname); 7572 return -EFAULT; 7573 } 7574 if (prog_type == BPF_PROG_TYPE_EXT) 7575 prog_type = prog->aux->dst_prog->type; 7576 7577 t = btf_type_by_id(btf, fn_t->type); 7578 if (!t || !btf_type_is_func_proto(t)) { 7579 bpf_log(log, "Invalid type of function %s()\n", tname); 7580 return -EFAULT; 7581 } 7582 args = (const struct btf_param *)(t + 1); 7583 nargs = btf_type_vlen(t); 7584 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7585 if (!is_global) 7586 return -EINVAL; 7587 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7588 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7589 return -EINVAL; 7590 } 7591 /* check that function returns int, exception cb also requires this */ 7592 t = btf_type_by_id(btf, t->type); 7593 while (btf_type_is_modifier(t)) 7594 t = btf_type_by_id(btf, t->type); 7595 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7596 if (!is_global) 7597 return -EINVAL; 7598 bpf_log(log, 7599 "Global function %s() doesn't return scalar. Only those are supported.\n", 7600 tname); 7601 return -EINVAL; 7602 } 7603 /* Convert BTF function arguments into verifier types. 7604 * Only PTR_TO_CTX and SCALAR are supported atm. 7605 */ 7606 for (i = 0; i < nargs; i++) { 7607 u32 tags = 0; 7608 int id = 0; 7609 7610 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7611 * register type from BTF type itself 7612 */ 7613 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7614 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7615 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7616 7617 /* disallow arg tags in static subprogs */ 7618 if (!is_global) { 7619 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7620 return -EOPNOTSUPP; 7621 } 7622 7623 if (strcmp(tag, "ctx") == 0) { 7624 tags |= ARG_TAG_CTX; 7625 } else if (strcmp(tag, "trusted") == 0) { 7626 tags |= ARG_TAG_TRUSTED; 7627 } else if (strcmp(tag, "nonnull") == 0) { 7628 tags |= ARG_TAG_NONNULL; 7629 } else if (strcmp(tag, "nullable") == 0) { 7630 tags |= ARG_TAG_NULLABLE; 7631 } else if (strcmp(tag, "arena") == 0) { 7632 tags |= ARG_TAG_ARENA; 7633 } else { 7634 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7635 return -EOPNOTSUPP; 7636 } 7637 } 7638 if (id != -ENOENT) { 7639 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7640 return id; 7641 } 7642 7643 t = btf_type_by_id(btf, args[i].type); 7644 while (btf_type_is_modifier(t)) 7645 t = btf_type_by_id(btf, t->type); 7646 if (!btf_type_is_ptr(t)) 7647 goto skip_pointer; 7648 7649 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7650 if (tags & ~ARG_TAG_CTX) { 7651 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7652 return -EINVAL; 7653 } 7654 if ((tags & ARG_TAG_CTX) && 7655 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7656 prog->expected_attach_type)) 7657 return -EINVAL; 7658 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7659 continue; 7660 } 7661 if (btf_is_dynptr_ptr(btf, t)) { 7662 if (tags) { 7663 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7664 return -EINVAL; 7665 } 7666 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7667 continue; 7668 } 7669 if (tags & ARG_TAG_TRUSTED) { 7670 int kern_type_id; 7671 7672 if (tags & ARG_TAG_NONNULL) { 7673 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7674 return -EINVAL; 7675 } 7676 7677 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7678 if (kern_type_id < 0) 7679 return kern_type_id; 7680 7681 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7682 if (tags & ARG_TAG_NULLABLE) 7683 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7684 sub->args[i].btf_id = kern_type_id; 7685 continue; 7686 } 7687 if (tags & ARG_TAG_ARENA) { 7688 if (tags & ~ARG_TAG_ARENA) { 7689 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7690 return -EINVAL; 7691 } 7692 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7693 continue; 7694 } 7695 if (is_global) { /* generic user data pointer */ 7696 u32 mem_size; 7697 7698 if (tags & ARG_TAG_NULLABLE) { 7699 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7700 return -EINVAL; 7701 } 7702 7703 t = btf_type_skip_modifiers(btf, t->type, NULL); 7704 ref_t = btf_resolve_size(btf, t, &mem_size); 7705 if (IS_ERR(ref_t)) { 7706 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7707 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7708 PTR_ERR(ref_t)); 7709 return -EINVAL; 7710 } 7711 7712 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7713 if (tags & ARG_TAG_NONNULL) 7714 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7715 sub->args[i].mem_size = mem_size; 7716 continue; 7717 } 7718 7719 skip_pointer: 7720 if (tags) { 7721 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7722 return -EINVAL; 7723 } 7724 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7725 sub->args[i].arg_type = ARG_ANYTHING; 7726 continue; 7727 } 7728 if (!is_global) 7729 return -EINVAL; 7730 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7731 i, btf_type_str(t), tname); 7732 return -EINVAL; 7733 } 7734 7735 sub->arg_cnt = nargs; 7736 sub->args_cached = true; 7737 7738 return 0; 7739 } 7740 7741 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7742 struct btf_show *show) 7743 { 7744 const struct btf_type *t = btf_type_by_id(btf, type_id); 7745 7746 show->btf = btf; 7747 memset(&show->state, 0, sizeof(show->state)); 7748 memset(&show->obj, 0, sizeof(show->obj)); 7749 7750 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7751 } 7752 7753 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7754 va_list args) 7755 { 7756 seq_vprintf((struct seq_file *)show->target, fmt, args); 7757 } 7758 7759 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7760 void *obj, struct seq_file *m, u64 flags) 7761 { 7762 struct btf_show sseq; 7763 7764 sseq.target = m; 7765 sseq.showfn = btf_seq_show; 7766 sseq.flags = flags; 7767 7768 btf_type_show(btf, type_id, obj, &sseq); 7769 7770 return sseq.state.status; 7771 } 7772 7773 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7774 struct seq_file *m) 7775 { 7776 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7777 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7778 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7779 } 7780 7781 struct btf_show_snprintf { 7782 struct btf_show show; 7783 int len_left; /* space left in string */ 7784 int len; /* length we would have written */ 7785 }; 7786 7787 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7788 va_list args) 7789 { 7790 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7791 int len; 7792 7793 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7794 7795 if (len < 0) { 7796 ssnprintf->len_left = 0; 7797 ssnprintf->len = len; 7798 } else if (len >= ssnprintf->len_left) { 7799 /* no space, drive on to get length we would have written */ 7800 ssnprintf->len_left = 0; 7801 ssnprintf->len += len; 7802 } else { 7803 ssnprintf->len_left -= len; 7804 ssnprintf->len += len; 7805 show->target += len; 7806 } 7807 } 7808 7809 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7810 char *buf, int len, u64 flags) 7811 { 7812 struct btf_show_snprintf ssnprintf; 7813 7814 ssnprintf.show.target = buf; 7815 ssnprintf.show.flags = flags; 7816 ssnprintf.show.showfn = btf_snprintf_show; 7817 ssnprintf.len_left = len; 7818 ssnprintf.len = 0; 7819 7820 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7821 7822 /* If we encountered an error, return it. */ 7823 if (ssnprintf.show.state.status) 7824 return ssnprintf.show.state.status; 7825 7826 /* Otherwise return length we would have written */ 7827 return ssnprintf.len; 7828 } 7829 7830 #ifdef CONFIG_PROC_FS 7831 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7832 { 7833 const struct btf *btf = filp->private_data; 7834 7835 seq_printf(m, "btf_id:\t%u\n", btf->id); 7836 } 7837 #endif 7838 7839 static int btf_release(struct inode *inode, struct file *filp) 7840 { 7841 btf_put(filp->private_data); 7842 return 0; 7843 } 7844 7845 const struct file_operations btf_fops = { 7846 #ifdef CONFIG_PROC_FS 7847 .show_fdinfo = bpf_btf_show_fdinfo, 7848 #endif 7849 .release = btf_release, 7850 }; 7851 7852 static int __btf_new_fd(struct btf *btf) 7853 { 7854 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7855 } 7856 7857 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7858 { 7859 struct btf *btf; 7860 int ret; 7861 7862 btf = btf_parse(attr, uattr, uattr_size); 7863 if (IS_ERR(btf)) 7864 return PTR_ERR(btf); 7865 7866 ret = btf_alloc_id(btf); 7867 if (ret) { 7868 btf_free(btf); 7869 return ret; 7870 } 7871 7872 /* 7873 * The BTF ID is published to the userspace. 7874 * All BTF free must go through call_rcu() from 7875 * now on (i.e. free by calling btf_put()). 7876 */ 7877 7878 ret = __btf_new_fd(btf); 7879 if (ret < 0) 7880 btf_put(btf); 7881 7882 return ret; 7883 } 7884 7885 struct btf *btf_get_by_fd(int fd) 7886 { 7887 struct btf *btf; 7888 CLASS(fd, f)(fd); 7889 7890 if (fd_empty(f)) 7891 return ERR_PTR(-EBADF); 7892 7893 if (fd_file(f)->f_op != &btf_fops) 7894 return ERR_PTR(-EINVAL); 7895 7896 btf = fd_file(f)->private_data; 7897 refcount_inc(&btf->refcnt); 7898 7899 return btf; 7900 } 7901 7902 int btf_get_info_by_fd(const struct btf *btf, 7903 const union bpf_attr *attr, 7904 union bpf_attr __user *uattr) 7905 { 7906 struct bpf_btf_info __user *uinfo; 7907 struct bpf_btf_info info; 7908 u32 info_copy, btf_copy; 7909 void __user *ubtf; 7910 char __user *uname; 7911 u32 uinfo_len, uname_len, name_len; 7912 int ret = 0; 7913 7914 uinfo = u64_to_user_ptr(attr->info.info); 7915 uinfo_len = attr->info.info_len; 7916 7917 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7918 memset(&info, 0, sizeof(info)); 7919 if (copy_from_user(&info, uinfo, info_copy)) 7920 return -EFAULT; 7921 7922 info.id = btf->id; 7923 ubtf = u64_to_user_ptr(info.btf); 7924 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7925 if (copy_to_user(ubtf, btf->data, btf_copy)) 7926 return -EFAULT; 7927 info.btf_size = btf->data_size; 7928 7929 info.kernel_btf = btf->kernel_btf; 7930 7931 uname = u64_to_user_ptr(info.name); 7932 uname_len = info.name_len; 7933 if (!uname ^ !uname_len) 7934 return -EINVAL; 7935 7936 name_len = strlen(btf->name); 7937 info.name_len = name_len; 7938 7939 if (uname) { 7940 if (uname_len >= name_len + 1) { 7941 if (copy_to_user(uname, btf->name, name_len + 1)) 7942 return -EFAULT; 7943 } else { 7944 char zero = '\0'; 7945 7946 if (copy_to_user(uname, btf->name, uname_len - 1)) 7947 return -EFAULT; 7948 if (put_user(zero, uname + uname_len - 1)) 7949 return -EFAULT; 7950 /* let user-space know about too short buffer */ 7951 ret = -ENOSPC; 7952 } 7953 } 7954 7955 if (copy_to_user(uinfo, &info, info_copy) || 7956 put_user(info_copy, &uattr->info.info_len)) 7957 return -EFAULT; 7958 7959 return ret; 7960 } 7961 7962 int btf_get_fd_by_id(u32 id) 7963 { 7964 struct btf *btf; 7965 int fd; 7966 7967 rcu_read_lock(); 7968 btf = idr_find(&btf_idr, id); 7969 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7970 btf = ERR_PTR(-ENOENT); 7971 rcu_read_unlock(); 7972 7973 if (IS_ERR(btf)) 7974 return PTR_ERR(btf); 7975 7976 fd = __btf_new_fd(btf); 7977 if (fd < 0) 7978 btf_put(btf); 7979 7980 return fd; 7981 } 7982 7983 u32 btf_obj_id(const struct btf *btf) 7984 { 7985 return btf->id; 7986 } 7987 7988 bool btf_is_kernel(const struct btf *btf) 7989 { 7990 return btf->kernel_btf; 7991 } 7992 7993 bool btf_is_module(const struct btf *btf) 7994 { 7995 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7996 } 7997 7998 enum { 7999 BTF_MODULE_F_LIVE = (1 << 0), 8000 }; 8001 8002 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8003 struct btf_module { 8004 struct list_head list; 8005 struct module *module; 8006 struct btf *btf; 8007 struct bin_attribute *sysfs_attr; 8008 int flags; 8009 }; 8010 8011 static LIST_HEAD(btf_modules); 8012 static DEFINE_MUTEX(btf_module_mutex); 8013 8014 static ssize_t 8015 btf_module_read(struct file *file, struct kobject *kobj, 8016 struct bin_attribute *bin_attr, 8017 char *buf, loff_t off, size_t len) 8018 { 8019 const struct btf *btf = bin_attr->private; 8020 8021 memcpy(buf, btf->data + off, len); 8022 return len; 8023 } 8024 8025 static void purge_cand_cache(struct btf *btf); 8026 8027 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 8028 void *module) 8029 { 8030 struct btf_module *btf_mod, *tmp; 8031 struct module *mod = module; 8032 struct btf *btf; 8033 int err = 0; 8034 8035 if (mod->btf_data_size == 0 || 8036 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 8037 op != MODULE_STATE_GOING)) 8038 goto out; 8039 8040 switch (op) { 8041 case MODULE_STATE_COMING: 8042 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 8043 if (!btf_mod) { 8044 err = -ENOMEM; 8045 goto out; 8046 } 8047 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 8048 mod->btf_base_data, mod->btf_base_data_size); 8049 if (IS_ERR(btf)) { 8050 kfree(btf_mod); 8051 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 8052 pr_warn("failed to validate module [%s] BTF: %ld\n", 8053 mod->name, PTR_ERR(btf)); 8054 err = PTR_ERR(btf); 8055 } else { 8056 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 8057 } 8058 goto out; 8059 } 8060 err = btf_alloc_id(btf); 8061 if (err) { 8062 btf_free(btf); 8063 kfree(btf_mod); 8064 goto out; 8065 } 8066 8067 purge_cand_cache(NULL); 8068 mutex_lock(&btf_module_mutex); 8069 btf_mod->module = module; 8070 btf_mod->btf = btf; 8071 list_add(&btf_mod->list, &btf_modules); 8072 mutex_unlock(&btf_module_mutex); 8073 8074 if (IS_ENABLED(CONFIG_SYSFS)) { 8075 struct bin_attribute *attr; 8076 8077 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 8078 if (!attr) 8079 goto out; 8080 8081 sysfs_bin_attr_init(attr); 8082 attr->attr.name = btf->name; 8083 attr->attr.mode = 0444; 8084 attr->size = btf->data_size; 8085 attr->private = btf; 8086 attr->read = btf_module_read; 8087 8088 err = sysfs_create_bin_file(btf_kobj, attr); 8089 if (err) { 8090 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 8091 mod->name, err); 8092 kfree(attr); 8093 err = 0; 8094 goto out; 8095 } 8096 8097 btf_mod->sysfs_attr = attr; 8098 } 8099 8100 break; 8101 case MODULE_STATE_LIVE: 8102 mutex_lock(&btf_module_mutex); 8103 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8104 if (btf_mod->module != module) 8105 continue; 8106 8107 btf_mod->flags |= BTF_MODULE_F_LIVE; 8108 break; 8109 } 8110 mutex_unlock(&btf_module_mutex); 8111 break; 8112 case MODULE_STATE_GOING: 8113 mutex_lock(&btf_module_mutex); 8114 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8115 if (btf_mod->module != module) 8116 continue; 8117 8118 list_del(&btf_mod->list); 8119 if (btf_mod->sysfs_attr) 8120 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 8121 purge_cand_cache(btf_mod->btf); 8122 btf_put(btf_mod->btf); 8123 kfree(btf_mod->sysfs_attr); 8124 kfree(btf_mod); 8125 break; 8126 } 8127 mutex_unlock(&btf_module_mutex); 8128 break; 8129 } 8130 out: 8131 return notifier_from_errno(err); 8132 } 8133 8134 static struct notifier_block btf_module_nb = { 8135 .notifier_call = btf_module_notify, 8136 }; 8137 8138 static int __init btf_module_init(void) 8139 { 8140 register_module_notifier(&btf_module_nb); 8141 return 0; 8142 } 8143 8144 fs_initcall(btf_module_init); 8145 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 8146 8147 struct module *btf_try_get_module(const struct btf *btf) 8148 { 8149 struct module *res = NULL; 8150 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8151 struct btf_module *btf_mod, *tmp; 8152 8153 mutex_lock(&btf_module_mutex); 8154 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8155 if (btf_mod->btf != btf) 8156 continue; 8157 8158 /* We must only consider module whose __init routine has 8159 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 8160 * which is set from the notifier callback for 8161 * MODULE_STATE_LIVE. 8162 */ 8163 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 8164 res = btf_mod->module; 8165 8166 break; 8167 } 8168 mutex_unlock(&btf_module_mutex); 8169 #endif 8170 8171 return res; 8172 } 8173 8174 /* Returns struct btf corresponding to the struct module. 8175 * This function can return NULL or ERR_PTR. 8176 */ 8177 static struct btf *btf_get_module_btf(const struct module *module) 8178 { 8179 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8180 struct btf_module *btf_mod, *tmp; 8181 #endif 8182 struct btf *btf = NULL; 8183 8184 if (!module) { 8185 btf = bpf_get_btf_vmlinux(); 8186 if (!IS_ERR_OR_NULL(btf)) 8187 btf_get(btf); 8188 return btf; 8189 } 8190 8191 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8192 mutex_lock(&btf_module_mutex); 8193 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8194 if (btf_mod->module != module) 8195 continue; 8196 8197 btf_get(btf_mod->btf); 8198 btf = btf_mod->btf; 8199 break; 8200 } 8201 mutex_unlock(&btf_module_mutex); 8202 #endif 8203 8204 return btf; 8205 } 8206 8207 static int check_btf_kconfigs(const struct module *module, const char *feature) 8208 { 8209 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8210 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8211 return -ENOENT; 8212 } 8213 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8214 pr_warn("missing module BTF, cannot register %s\n", feature); 8215 return 0; 8216 } 8217 8218 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8219 { 8220 struct btf *btf = NULL; 8221 int btf_obj_fd = 0; 8222 long ret; 8223 8224 if (flags) 8225 return -EINVAL; 8226 8227 if (name_sz <= 1 || name[name_sz - 1]) 8228 return -EINVAL; 8229 8230 ret = bpf_find_btf_id(name, kind, &btf); 8231 if (ret > 0 && btf_is_module(btf)) { 8232 btf_obj_fd = __btf_new_fd(btf); 8233 if (btf_obj_fd < 0) { 8234 btf_put(btf); 8235 return btf_obj_fd; 8236 } 8237 return ret | (((u64)btf_obj_fd) << 32); 8238 } 8239 if (ret > 0) 8240 btf_put(btf); 8241 return ret; 8242 } 8243 8244 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8245 .func = bpf_btf_find_by_name_kind, 8246 .gpl_only = false, 8247 .ret_type = RET_INTEGER, 8248 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8249 .arg2_type = ARG_CONST_SIZE, 8250 .arg3_type = ARG_ANYTHING, 8251 .arg4_type = ARG_ANYTHING, 8252 }; 8253 8254 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8255 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8256 BTF_TRACING_TYPE_xxx 8257 #undef BTF_TRACING_TYPE 8258 8259 /* Validate well-formedness of iter argument type. 8260 * On success, return positive BTF ID of iter state's STRUCT type. 8261 * On error, negative error is returned. 8262 */ 8263 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8264 { 8265 const struct btf_param *arg; 8266 const struct btf_type *t; 8267 const char *name; 8268 int btf_id; 8269 8270 if (btf_type_vlen(func) <= arg_idx) 8271 return -EINVAL; 8272 8273 arg = &btf_params(func)[arg_idx]; 8274 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8275 if (!t || !btf_type_is_ptr(t)) 8276 return -EINVAL; 8277 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8278 if (!t || !__btf_type_is_struct(t)) 8279 return -EINVAL; 8280 8281 name = btf_name_by_offset(btf, t->name_off); 8282 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8283 return -EINVAL; 8284 8285 return btf_id; 8286 } 8287 8288 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8289 const struct btf_type *func, u32 func_flags) 8290 { 8291 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8292 const char *sfx, *iter_name; 8293 const struct btf_type *t; 8294 char exp_name[128]; 8295 u32 nr_args; 8296 int btf_id; 8297 8298 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8299 if (!flags || (flags & (flags - 1))) 8300 return -EINVAL; 8301 8302 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8303 nr_args = btf_type_vlen(func); 8304 if (nr_args < 1) 8305 return -EINVAL; 8306 8307 btf_id = btf_check_iter_arg(btf, func, 0); 8308 if (btf_id < 0) 8309 return btf_id; 8310 8311 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8312 * fit nicely in stack slots 8313 */ 8314 t = btf_type_by_id(btf, btf_id); 8315 if (t->size == 0 || (t->size % 8)) 8316 return -EINVAL; 8317 8318 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8319 * naming pattern 8320 */ 8321 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8322 if (flags & KF_ITER_NEW) 8323 sfx = "new"; 8324 else if (flags & KF_ITER_NEXT) 8325 sfx = "next"; 8326 else /* (flags & KF_ITER_DESTROY) */ 8327 sfx = "destroy"; 8328 8329 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8330 if (strcmp(func_name, exp_name)) 8331 return -EINVAL; 8332 8333 /* only iter constructor should have extra arguments */ 8334 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8335 return -EINVAL; 8336 8337 if (flags & KF_ITER_NEXT) { 8338 /* bpf_iter_<type>_next() should return pointer */ 8339 t = btf_type_skip_modifiers(btf, func->type, NULL); 8340 if (!t || !btf_type_is_ptr(t)) 8341 return -EINVAL; 8342 } 8343 8344 if (flags & KF_ITER_DESTROY) { 8345 /* bpf_iter_<type>_destroy() should return void */ 8346 t = btf_type_by_id(btf, func->type); 8347 if (!t || !btf_type_is_void(t)) 8348 return -EINVAL; 8349 } 8350 8351 return 0; 8352 } 8353 8354 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8355 { 8356 const struct btf_type *func; 8357 const char *func_name; 8358 int err; 8359 8360 /* any kfunc should be FUNC -> FUNC_PROTO */ 8361 func = btf_type_by_id(btf, func_id); 8362 if (!func || !btf_type_is_func(func)) 8363 return -EINVAL; 8364 8365 /* sanity check kfunc name */ 8366 func_name = btf_name_by_offset(btf, func->name_off); 8367 if (!func_name || !func_name[0]) 8368 return -EINVAL; 8369 8370 func = btf_type_by_id(btf, func->type); 8371 if (!func || !btf_type_is_func_proto(func)) 8372 return -EINVAL; 8373 8374 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8375 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8376 if (err) 8377 return err; 8378 } 8379 8380 return 0; 8381 } 8382 8383 /* Kernel Function (kfunc) BTF ID set registration API */ 8384 8385 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8386 const struct btf_kfunc_id_set *kset) 8387 { 8388 struct btf_kfunc_hook_filter *hook_filter; 8389 struct btf_id_set8 *add_set = kset->set; 8390 bool vmlinux_set = !btf_is_module(btf); 8391 bool add_filter = !!kset->filter; 8392 struct btf_kfunc_set_tab *tab; 8393 struct btf_id_set8 *set; 8394 u32 set_cnt, i; 8395 int ret; 8396 8397 if (hook >= BTF_KFUNC_HOOK_MAX) { 8398 ret = -EINVAL; 8399 goto end; 8400 } 8401 8402 if (!add_set->cnt) 8403 return 0; 8404 8405 tab = btf->kfunc_set_tab; 8406 8407 if (tab && add_filter) { 8408 u32 i; 8409 8410 hook_filter = &tab->hook_filters[hook]; 8411 for (i = 0; i < hook_filter->nr_filters; i++) { 8412 if (hook_filter->filters[i] == kset->filter) { 8413 add_filter = false; 8414 break; 8415 } 8416 } 8417 8418 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8419 ret = -E2BIG; 8420 goto end; 8421 } 8422 } 8423 8424 if (!tab) { 8425 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8426 if (!tab) 8427 return -ENOMEM; 8428 btf->kfunc_set_tab = tab; 8429 } 8430 8431 set = tab->sets[hook]; 8432 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8433 * for module sets. 8434 */ 8435 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8436 ret = -EINVAL; 8437 goto end; 8438 } 8439 8440 /* In case of vmlinux sets, there may be more than one set being 8441 * registered per hook. To create a unified set, we allocate a new set 8442 * and concatenate all individual sets being registered. While each set 8443 * is individually sorted, they may become unsorted when concatenated, 8444 * hence re-sorting the final set again is required to make binary 8445 * searching the set using btf_id_set8_contains function work. 8446 * 8447 * For module sets, we need to allocate as we may need to relocate 8448 * BTF ids. 8449 */ 8450 set_cnt = set ? set->cnt : 0; 8451 8452 if (set_cnt > U32_MAX - add_set->cnt) { 8453 ret = -EOVERFLOW; 8454 goto end; 8455 } 8456 8457 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8458 ret = -E2BIG; 8459 goto end; 8460 } 8461 8462 /* Grow set */ 8463 set = krealloc(tab->sets[hook], 8464 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8465 GFP_KERNEL | __GFP_NOWARN); 8466 if (!set) { 8467 ret = -ENOMEM; 8468 goto end; 8469 } 8470 8471 /* For newly allocated set, initialize set->cnt to 0 */ 8472 if (!tab->sets[hook]) 8473 set->cnt = 0; 8474 tab->sets[hook] = set; 8475 8476 /* Concatenate the two sets */ 8477 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8478 /* Now that the set is copied, update with relocated BTF ids */ 8479 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8480 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8481 8482 set->cnt += add_set->cnt; 8483 8484 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8485 8486 if (add_filter) { 8487 hook_filter = &tab->hook_filters[hook]; 8488 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8489 } 8490 return 0; 8491 end: 8492 btf_free_kfunc_set_tab(btf); 8493 return ret; 8494 } 8495 8496 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8497 enum btf_kfunc_hook hook, 8498 u32 kfunc_btf_id, 8499 const struct bpf_prog *prog) 8500 { 8501 struct btf_kfunc_hook_filter *hook_filter; 8502 struct btf_id_set8 *set; 8503 u32 *id, i; 8504 8505 if (hook >= BTF_KFUNC_HOOK_MAX) 8506 return NULL; 8507 if (!btf->kfunc_set_tab) 8508 return NULL; 8509 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8510 for (i = 0; i < hook_filter->nr_filters; i++) { 8511 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8512 return NULL; 8513 } 8514 set = btf->kfunc_set_tab->sets[hook]; 8515 if (!set) 8516 return NULL; 8517 id = btf_id_set8_contains(set, kfunc_btf_id); 8518 if (!id) 8519 return NULL; 8520 /* The flags for BTF ID are located next to it */ 8521 return id + 1; 8522 } 8523 8524 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8525 { 8526 switch (prog_type) { 8527 case BPF_PROG_TYPE_UNSPEC: 8528 return BTF_KFUNC_HOOK_COMMON; 8529 case BPF_PROG_TYPE_XDP: 8530 return BTF_KFUNC_HOOK_XDP; 8531 case BPF_PROG_TYPE_SCHED_CLS: 8532 return BTF_KFUNC_HOOK_TC; 8533 case BPF_PROG_TYPE_STRUCT_OPS: 8534 return BTF_KFUNC_HOOK_STRUCT_OPS; 8535 case BPF_PROG_TYPE_TRACING: 8536 case BPF_PROG_TYPE_TRACEPOINT: 8537 case BPF_PROG_TYPE_PERF_EVENT: 8538 case BPF_PROG_TYPE_LSM: 8539 return BTF_KFUNC_HOOK_TRACING; 8540 case BPF_PROG_TYPE_SYSCALL: 8541 return BTF_KFUNC_HOOK_SYSCALL; 8542 case BPF_PROG_TYPE_CGROUP_SKB: 8543 case BPF_PROG_TYPE_CGROUP_SOCK: 8544 case BPF_PROG_TYPE_CGROUP_DEVICE: 8545 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8546 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8547 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8548 return BTF_KFUNC_HOOK_CGROUP; 8549 case BPF_PROG_TYPE_SCHED_ACT: 8550 return BTF_KFUNC_HOOK_SCHED_ACT; 8551 case BPF_PROG_TYPE_SK_SKB: 8552 return BTF_KFUNC_HOOK_SK_SKB; 8553 case BPF_PROG_TYPE_SOCKET_FILTER: 8554 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8555 case BPF_PROG_TYPE_LWT_OUT: 8556 case BPF_PROG_TYPE_LWT_IN: 8557 case BPF_PROG_TYPE_LWT_XMIT: 8558 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8559 return BTF_KFUNC_HOOK_LWT; 8560 case BPF_PROG_TYPE_NETFILTER: 8561 return BTF_KFUNC_HOOK_NETFILTER; 8562 case BPF_PROG_TYPE_KPROBE: 8563 return BTF_KFUNC_HOOK_KPROBE; 8564 default: 8565 return BTF_KFUNC_HOOK_MAX; 8566 } 8567 } 8568 8569 /* Caution: 8570 * Reference to the module (obtained using btf_try_get_module) corresponding to 8571 * the struct btf *MUST* be held when calling this function from verifier 8572 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8573 * keeping the reference for the duration of the call provides the necessary 8574 * protection for looking up a well-formed btf->kfunc_set_tab. 8575 */ 8576 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8577 u32 kfunc_btf_id, 8578 const struct bpf_prog *prog) 8579 { 8580 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8581 enum btf_kfunc_hook hook; 8582 u32 *kfunc_flags; 8583 8584 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8585 if (kfunc_flags) 8586 return kfunc_flags; 8587 8588 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8589 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8590 } 8591 8592 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8593 const struct bpf_prog *prog) 8594 { 8595 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8596 } 8597 8598 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8599 const struct btf_kfunc_id_set *kset) 8600 { 8601 struct btf *btf; 8602 int ret, i; 8603 8604 btf = btf_get_module_btf(kset->owner); 8605 if (!btf) 8606 return check_btf_kconfigs(kset->owner, "kfunc"); 8607 if (IS_ERR(btf)) 8608 return PTR_ERR(btf); 8609 8610 for (i = 0; i < kset->set->cnt; i++) { 8611 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8612 kset->set->pairs[i].flags); 8613 if (ret) 8614 goto err_out; 8615 } 8616 8617 ret = btf_populate_kfunc_set(btf, hook, kset); 8618 8619 err_out: 8620 btf_put(btf); 8621 return ret; 8622 } 8623 8624 /* This function must be invoked only from initcalls/module init functions */ 8625 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8626 const struct btf_kfunc_id_set *kset) 8627 { 8628 enum btf_kfunc_hook hook; 8629 8630 /* All kfuncs need to be tagged as such in BTF. 8631 * WARN() for initcall registrations that do not check errors. 8632 */ 8633 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8634 WARN_ON(!kset->owner); 8635 return -EINVAL; 8636 } 8637 8638 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8639 return __register_btf_kfunc_id_set(hook, kset); 8640 } 8641 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8642 8643 /* This function must be invoked only from initcalls/module init functions */ 8644 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8645 { 8646 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8647 } 8648 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8649 8650 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8651 { 8652 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8653 struct btf_id_dtor_kfunc *dtor; 8654 8655 if (!tab) 8656 return -ENOENT; 8657 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8658 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8659 */ 8660 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8661 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8662 if (!dtor) 8663 return -ENOENT; 8664 return dtor->kfunc_btf_id; 8665 } 8666 8667 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8668 { 8669 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8670 const struct btf_param *args; 8671 s32 dtor_btf_id; 8672 u32 nr_args, i; 8673 8674 for (i = 0; i < cnt; i++) { 8675 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8676 8677 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8678 if (!dtor_func || !btf_type_is_func(dtor_func)) 8679 return -EINVAL; 8680 8681 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8682 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8683 return -EINVAL; 8684 8685 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8686 t = btf_type_by_id(btf, dtor_func_proto->type); 8687 if (!t || !btf_type_is_void(t)) 8688 return -EINVAL; 8689 8690 nr_args = btf_type_vlen(dtor_func_proto); 8691 if (nr_args != 1) 8692 return -EINVAL; 8693 args = btf_params(dtor_func_proto); 8694 t = btf_type_by_id(btf, args[0].type); 8695 /* Allow any pointer type, as width on targets Linux supports 8696 * will be same for all pointer types (i.e. sizeof(void *)) 8697 */ 8698 if (!t || !btf_type_is_ptr(t)) 8699 return -EINVAL; 8700 } 8701 return 0; 8702 } 8703 8704 /* This function must be invoked only from initcalls/module init functions */ 8705 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8706 struct module *owner) 8707 { 8708 struct btf_id_dtor_kfunc_tab *tab; 8709 struct btf *btf; 8710 u32 tab_cnt, i; 8711 int ret; 8712 8713 btf = btf_get_module_btf(owner); 8714 if (!btf) 8715 return check_btf_kconfigs(owner, "dtor kfuncs"); 8716 if (IS_ERR(btf)) 8717 return PTR_ERR(btf); 8718 8719 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8720 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8721 ret = -E2BIG; 8722 goto end; 8723 } 8724 8725 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8726 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8727 if (ret < 0) 8728 goto end; 8729 8730 tab = btf->dtor_kfunc_tab; 8731 /* Only one call allowed for modules */ 8732 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8733 ret = -EINVAL; 8734 goto end; 8735 } 8736 8737 tab_cnt = tab ? tab->cnt : 0; 8738 if (tab_cnt > U32_MAX - add_cnt) { 8739 ret = -EOVERFLOW; 8740 goto end; 8741 } 8742 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8743 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8744 ret = -E2BIG; 8745 goto end; 8746 } 8747 8748 tab = krealloc(btf->dtor_kfunc_tab, 8749 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8750 GFP_KERNEL | __GFP_NOWARN); 8751 if (!tab) { 8752 ret = -ENOMEM; 8753 goto end; 8754 } 8755 8756 if (!btf->dtor_kfunc_tab) 8757 tab->cnt = 0; 8758 btf->dtor_kfunc_tab = tab; 8759 8760 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8761 8762 /* remap BTF ids based on BTF relocation (if any) */ 8763 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8764 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8765 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8766 } 8767 8768 tab->cnt += add_cnt; 8769 8770 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8771 8772 end: 8773 if (ret) 8774 btf_free_dtor_kfunc_tab(btf); 8775 btf_put(btf); 8776 return ret; 8777 } 8778 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8779 8780 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8781 8782 /* Check local and target types for compatibility. This check is used for 8783 * type-based CO-RE relocations and follow slightly different rules than 8784 * field-based relocations. This function assumes that root types were already 8785 * checked for name match. Beyond that initial root-level name check, names 8786 * are completely ignored. Compatibility rules are as follows: 8787 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8788 * kind should match for local and target types (i.e., STRUCT is not 8789 * compatible with UNION); 8790 * - for ENUMs/ENUM64s, the size is ignored; 8791 * - for INT, size and signedness are ignored; 8792 * - for ARRAY, dimensionality is ignored, element types are checked for 8793 * compatibility recursively; 8794 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8795 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8796 * - FUNC_PROTOs are compatible if they have compatible signature: same 8797 * number of input args and compatible return and argument types. 8798 * These rules are not set in stone and probably will be adjusted as we get 8799 * more experience with using BPF CO-RE relocations. 8800 */ 8801 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8802 const struct btf *targ_btf, __u32 targ_id) 8803 { 8804 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8805 MAX_TYPES_ARE_COMPAT_DEPTH); 8806 } 8807 8808 #define MAX_TYPES_MATCH_DEPTH 2 8809 8810 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8811 const struct btf *targ_btf, u32 targ_id) 8812 { 8813 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8814 MAX_TYPES_MATCH_DEPTH); 8815 } 8816 8817 static bool bpf_core_is_flavor_sep(const char *s) 8818 { 8819 /* check X___Y name pattern, where X and Y are not underscores */ 8820 return s[0] != '_' && /* X */ 8821 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8822 s[4] != '_'; /* Y */ 8823 } 8824 8825 size_t bpf_core_essential_name_len(const char *name) 8826 { 8827 size_t n = strlen(name); 8828 int i; 8829 8830 for (i = n - 5; i >= 0; i--) { 8831 if (bpf_core_is_flavor_sep(name + i)) 8832 return i + 1; 8833 } 8834 return n; 8835 } 8836 8837 static void bpf_free_cands(struct bpf_cand_cache *cands) 8838 { 8839 if (!cands->cnt) 8840 /* empty candidate array was allocated on stack */ 8841 return; 8842 kfree(cands); 8843 } 8844 8845 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8846 { 8847 kfree(cands->name); 8848 kfree(cands); 8849 } 8850 8851 #define VMLINUX_CAND_CACHE_SIZE 31 8852 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8853 8854 #define MODULE_CAND_CACHE_SIZE 31 8855 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8856 8857 static void __print_cand_cache(struct bpf_verifier_log *log, 8858 struct bpf_cand_cache **cache, 8859 int cache_size) 8860 { 8861 struct bpf_cand_cache *cc; 8862 int i, j; 8863 8864 for (i = 0; i < cache_size; i++) { 8865 cc = cache[i]; 8866 if (!cc) 8867 continue; 8868 bpf_log(log, "[%d]%s(", i, cc->name); 8869 for (j = 0; j < cc->cnt; j++) { 8870 bpf_log(log, "%d", cc->cands[j].id); 8871 if (j < cc->cnt - 1) 8872 bpf_log(log, " "); 8873 } 8874 bpf_log(log, "), "); 8875 } 8876 } 8877 8878 static void print_cand_cache(struct bpf_verifier_log *log) 8879 { 8880 mutex_lock(&cand_cache_mutex); 8881 bpf_log(log, "vmlinux_cand_cache:"); 8882 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8883 bpf_log(log, "\nmodule_cand_cache:"); 8884 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8885 bpf_log(log, "\n"); 8886 mutex_unlock(&cand_cache_mutex); 8887 } 8888 8889 static u32 hash_cands(struct bpf_cand_cache *cands) 8890 { 8891 return jhash(cands->name, cands->name_len, 0); 8892 } 8893 8894 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8895 struct bpf_cand_cache **cache, 8896 int cache_size) 8897 { 8898 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8899 8900 if (cc && cc->name_len == cands->name_len && 8901 !strncmp(cc->name, cands->name, cands->name_len)) 8902 return cc; 8903 return NULL; 8904 } 8905 8906 static size_t sizeof_cands(int cnt) 8907 { 8908 return offsetof(struct bpf_cand_cache, cands[cnt]); 8909 } 8910 8911 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8912 struct bpf_cand_cache **cache, 8913 int cache_size) 8914 { 8915 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8916 8917 if (*cc) { 8918 bpf_free_cands_from_cache(*cc); 8919 *cc = NULL; 8920 } 8921 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8922 if (!new_cands) { 8923 bpf_free_cands(cands); 8924 return ERR_PTR(-ENOMEM); 8925 } 8926 /* strdup the name, since it will stay in cache. 8927 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8928 */ 8929 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8930 bpf_free_cands(cands); 8931 if (!new_cands->name) { 8932 kfree(new_cands); 8933 return ERR_PTR(-ENOMEM); 8934 } 8935 *cc = new_cands; 8936 return new_cands; 8937 } 8938 8939 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8940 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8941 int cache_size) 8942 { 8943 struct bpf_cand_cache *cc; 8944 int i, j; 8945 8946 for (i = 0; i < cache_size; i++) { 8947 cc = cache[i]; 8948 if (!cc) 8949 continue; 8950 if (!btf) { 8951 /* when new module is loaded purge all of module_cand_cache, 8952 * since new module might have candidates with the name 8953 * that matches cached cands. 8954 */ 8955 bpf_free_cands_from_cache(cc); 8956 cache[i] = NULL; 8957 continue; 8958 } 8959 /* when module is unloaded purge cache entries 8960 * that match module's btf 8961 */ 8962 for (j = 0; j < cc->cnt; j++) 8963 if (cc->cands[j].btf == btf) { 8964 bpf_free_cands_from_cache(cc); 8965 cache[i] = NULL; 8966 break; 8967 } 8968 } 8969 8970 } 8971 8972 static void purge_cand_cache(struct btf *btf) 8973 { 8974 mutex_lock(&cand_cache_mutex); 8975 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8976 mutex_unlock(&cand_cache_mutex); 8977 } 8978 #endif 8979 8980 static struct bpf_cand_cache * 8981 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8982 int targ_start_id) 8983 { 8984 struct bpf_cand_cache *new_cands; 8985 const struct btf_type *t; 8986 const char *targ_name; 8987 size_t targ_essent_len; 8988 int n, i; 8989 8990 n = btf_nr_types(targ_btf); 8991 for (i = targ_start_id; i < n; i++) { 8992 t = btf_type_by_id(targ_btf, i); 8993 if (btf_kind(t) != cands->kind) 8994 continue; 8995 8996 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8997 if (!targ_name) 8998 continue; 8999 9000 /* the resched point is before strncmp to make sure that search 9001 * for non-existing name will have a chance to schedule(). 9002 */ 9003 cond_resched(); 9004 9005 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 9006 continue; 9007 9008 targ_essent_len = bpf_core_essential_name_len(targ_name); 9009 if (targ_essent_len != cands->name_len) 9010 continue; 9011 9012 /* most of the time there is only one candidate for a given kind+name pair */ 9013 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 9014 if (!new_cands) { 9015 bpf_free_cands(cands); 9016 return ERR_PTR(-ENOMEM); 9017 } 9018 9019 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 9020 bpf_free_cands(cands); 9021 cands = new_cands; 9022 cands->cands[cands->cnt].btf = targ_btf; 9023 cands->cands[cands->cnt].id = i; 9024 cands->cnt++; 9025 } 9026 return cands; 9027 } 9028 9029 static struct bpf_cand_cache * 9030 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 9031 { 9032 struct bpf_cand_cache *cands, *cc, local_cand = {}; 9033 const struct btf *local_btf = ctx->btf; 9034 const struct btf_type *local_type; 9035 const struct btf *main_btf; 9036 size_t local_essent_len; 9037 struct btf *mod_btf; 9038 const char *name; 9039 int id; 9040 9041 main_btf = bpf_get_btf_vmlinux(); 9042 if (IS_ERR(main_btf)) 9043 return ERR_CAST(main_btf); 9044 if (!main_btf) 9045 return ERR_PTR(-EINVAL); 9046 9047 local_type = btf_type_by_id(local_btf, local_type_id); 9048 if (!local_type) 9049 return ERR_PTR(-EINVAL); 9050 9051 name = btf_name_by_offset(local_btf, local_type->name_off); 9052 if (str_is_empty(name)) 9053 return ERR_PTR(-EINVAL); 9054 local_essent_len = bpf_core_essential_name_len(name); 9055 9056 cands = &local_cand; 9057 cands->name = name; 9058 cands->kind = btf_kind(local_type); 9059 cands->name_len = local_essent_len; 9060 9061 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9062 /* cands is a pointer to stack here */ 9063 if (cc) { 9064 if (cc->cnt) 9065 return cc; 9066 goto check_modules; 9067 } 9068 9069 /* Attempt to find target candidates in vmlinux BTF first */ 9070 cands = bpf_core_add_cands(cands, main_btf, 1); 9071 if (IS_ERR(cands)) 9072 return ERR_CAST(cands); 9073 9074 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 9075 9076 /* populate cache even when cands->cnt == 0 */ 9077 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9078 if (IS_ERR(cc)) 9079 return ERR_CAST(cc); 9080 9081 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 9082 if (cc->cnt) 9083 return cc; 9084 9085 check_modules: 9086 /* cands is a pointer to stack here and cands->cnt == 0 */ 9087 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9088 if (cc) 9089 /* if cache has it return it even if cc->cnt == 0 */ 9090 return cc; 9091 9092 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 9093 spin_lock_bh(&btf_idr_lock); 9094 idr_for_each_entry(&btf_idr, mod_btf, id) { 9095 if (!btf_is_module(mod_btf)) 9096 continue; 9097 /* linear search could be slow hence unlock/lock 9098 * the IDR to avoiding holding it for too long 9099 */ 9100 btf_get(mod_btf); 9101 spin_unlock_bh(&btf_idr_lock); 9102 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 9103 btf_put(mod_btf); 9104 if (IS_ERR(cands)) 9105 return ERR_CAST(cands); 9106 spin_lock_bh(&btf_idr_lock); 9107 } 9108 spin_unlock_bh(&btf_idr_lock); 9109 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 9110 * or pointer to stack if cands->cnd == 0. 9111 * Copy it into the cache even when cands->cnt == 0 and 9112 * return the result. 9113 */ 9114 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9115 } 9116 9117 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 9118 int relo_idx, void *insn) 9119 { 9120 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 9121 struct bpf_core_cand_list cands = {}; 9122 struct bpf_core_relo_res targ_res; 9123 struct bpf_core_spec *specs; 9124 const struct btf_type *type; 9125 int err; 9126 9127 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 9128 * into arrays of btf_ids of struct fields and array indices. 9129 */ 9130 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 9131 if (!specs) 9132 return -ENOMEM; 9133 9134 type = btf_type_by_id(ctx->btf, relo->type_id); 9135 if (!type) { 9136 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 9137 relo_idx, relo->type_id); 9138 kfree(specs); 9139 return -EINVAL; 9140 } 9141 9142 if (need_cands) { 9143 struct bpf_cand_cache *cc; 9144 int i; 9145 9146 mutex_lock(&cand_cache_mutex); 9147 cc = bpf_core_find_cands(ctx, relo->type_id); 9148 if (IS_ERR(cc)) { 9149 bpf_log(ctx->log, "target candidate search failed for %d\n", 9150 relo->type_id); 9151 err = PTR_ERR(cc); 9152 goto out; 9153 } 9154 if (cc->cnt) { 9155 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 9156 if (!cands.cands) { 9157 err = -ENOMEM; 9158 goto out; 9159 } 9160 } 9161 for (i = 0; i < cc->cnt; i++) { 9162 bpf_log(ctx->log, 9163 "CO-RE relocating %s %s: found target candidate [%d]\n", 9164 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 9165 cands.cands[i].btf = cc->cands[i].btf; 9166 cands.cands[i].id = cc->cands[i].id; 9167 } 9168 cands.len = cc->cnt; 9169 /* cand_cache_mutex needs to span the cache lookup and 9170 * copy of btf pointer into bpf_core_cand_list, 9171 * since module can be unloaded while bpf_core_calc_relo_insn 9172 * is working with module's btf. 9173 */ 9174 } 9175 9176 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9177 &targ_res); 9178 if (err) 9179 goto out; 9180 9181 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9182 &targ_res); 9183 9184 out: 9185 kfree(specs); 9186 if (need_cands) { 9187 kfree(cands.cands); 9188 mutex_unlock(&cand_cache_mutex); 9189 if (ctx->log->level & BPF_LOG_LEVEL2) 9190 print_cand_cache(ctx->log); 9191 } 9192 return err; 9193 } 9194 9195 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9196 const struct bpf_reg_state *reg, 9197 const char *field_name, u32 btf_id, const char *suffix) 9198 { 9199 struct btf *btf = reg->btf; 9200 const struct btf_type *walk_type, *safe_type; 9201 const char *tname; 9202 char safe_tname[64]; 9203 long ret, safe_id; 9204 const struct btf_member *member; 9205 u32 i; 9206 9207 walk_type = btf_type_by_id(btf, reg->btf_id); 9208 if (!walk_type) 9209 return false; 9210 9211 tname = btf_name_by_offset(btf, walk_type->name_off); 9212 9213 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9214 if (ret >= sizeof(safe_tname)) 9215 return false; 9216 9217 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9218 if (safe_id < 0) 9219 return false; 9220 9221 safe_type = btf_type_by_id(btf, safe_id); 9222 if (!safe_type) 9223 return false; 9224 9225 for_each_member(i, safe_type, member) { 9226 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9227 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9228 u32 id; 9229 9230 if (!btf_type_is_ptr(mtype)) 9231 continue; 9232 9233 btf_type_skip_modifiers(btf, mtype->type, &id); 9234 /* If we match on both type and name, the field is considered trusted. */ 9235 if (btf_id == id && !strcmp(field_name, m_name)) 9236 return true; 9237 } 9238 9239 return false; 9240 } 9241 9242 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9243 const struct btf *reg_btf, u32 reg_id, 9244 const struct btf *arg_btf, u32 arg_id) 9245 { 9246 const char *reg_name, *arg_name, *search_needle; 9247 const struct btf_type *reg_type, *arg_type; 9248 int reg_len, arg_len, cmp_len; 9249 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9250 9251 reg_type = btf_type_by_id(reg_btf, reg_id); 9252 if (!reg_type) 9253 return false; 9254 9255 arg_type = btf_type_by_id(arg_btf, arg_id); 9256 if (!arg_type) 9257 return false; 9258 9259 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9260 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9261 9262 reg_len = strlen(reg_name); 9263 arg_len = strlen(arg_name); 9264 9265 /* Exactly one of the two type names may be suffixed with ___init, so 9266 * if the strings are the same size, they can't possibly be no-cast 9267 * aliases of one another. If you have two of the same type names, e.g. 9268 * they're both nf_conn___init, it would be improper to return true 9269 * because they are _not_ no-cast aliases, they are the same type. 9270 */ 9271 if (reg_len == arg_len) 9272 return false; 9273 9274 /* Either of the two names must be the other name, suffixed with ___init. */ 9275 if ((reg_len != arg_len + pattern_len) && 9276 (arg_len != reg_len + pattern_len)) 9277 return false; 9278 9279 if (reg_len < arg_len) { 9280 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9281 cmp_len = reg_len; 9282 } else { 9283 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9284 cmp_len = arg_len; 9285 } 9286 9287 if (!search_needle) 9288 return false; 9289 9290 /* ___init suffix must come at the end of the name */ 9291 if (*(search_needle + pattern_len) != '\0') 9292 return false; 9293 9294 return !strncmp(reg_name, arg_name, cmp_len); 9295 } 9296 9297 #ifdef CONFIG_BPF_JIT 9298 static int 9299 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9300 struct bpf_verifier_log *log) 9301 { 9302 struct btf_struct_ops_tab *tab, *new_tab; 9303 int i, err; 9304 9305 tab = btf->struct_ops_tab; 9306 if (!tab) { 9307 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 9308 GFP_KERNEL); 9309 if (!tab) 9310 return -ENOMEM; 9311 tab->capacity = 4; 9312 btf->struct_ops_tab = tab; 9313 } 9314 9315 for (i = 0; i < tab->cnt; i++) 9316 if (tab->ops[i].st_ops == st_ops) 9317 return -EEXIST; 9318 9319 if (tab->cnt == tab->capacity) { 9320 new_tab = krealloc(tab, 9321 offsetof(struct btf_struct_ops_tab, 9322 ops[tab->capacity * 2]), 9323 GFP_KERNEL); 9324 if (!new_tab) 9325 return -ENOMEM; 9326 tab = new_tab; 9327 tab->capacity *= 2; 9328 btf->struct_ops_tab = tab; 9329 } 9330 9331 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9332 9333 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9334 if (err) 9335 return err; 9336 9337 btf->struct_ops_tab->cnt++; 9338 9339 return 0; 9340 } 9341 9342 const struct bpf_struct_ops_desc * 9343 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9344 { 9345 const struct bpf_struct_ops_desc *st_ops_list; 9346 unsigned int i; 9347 u32 cnt; 9348 9349 if (!value_id) 9350 return NULL; 9351 if (!btf->struct_ops_tab) 9352 return NULL; 9353 9354 cnt = btf->struct_ops_tab->cnt; 9355 st_ops_list = btf->struct_ops_tab->ops; 9356 for (i = 0; i < cnt; i++) { 9357 if (st_ops_list[i].value_id == value_id) 9358 return &st_ops_list[i]; 9359 } 9360 9361 return NULL; 9362 } 9363 9364 const struct bpf_struct_ops_desc * 9365 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9366 { 9367 const struct bpf_struct_ops_desc *st_ops_list; 9368 unsigned int i; 9369 u32 cnt; 9370 9371 if (!type_id) 9372 return NULL; 9373 if (!btf->struct_ops_tab) 9374 return NULL; 9375 9376 cnt = btf->struct_ops_tab->cnt; 9377 st_ops_list = btf->struct_ops_tab->ops; 9378 for (i = 0; i < cnt; i++) { 9379 if (st_ops_list[i].type_id == type_id) 9380 return &st_ops_list[i]; 9381 } 9382 9383 return NULL; 9384 } 9385 9386 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9387 { 9388 struct bpf_verifier_log *log; 9389 struct btf *btf; 9390 int err = 0; 9391 9392 btf = btf_get_module_btf(st_ops->owner); 9393 if (!btf) 9394 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9395 if (IS_ERR(btf)) 9396 return PTR_ERR(btf); 9397 9398 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9399 if (!log) { 9400 err = -ENOMEM; 9401 goto errout; 9402 } 9403 9404 log->level = BPF_LOG_KERNEL; 9405 9406 err = btf_add_struct_ops(btf, st_ops, log); 9407 9408 errout: 9409 kfree(log); 9410 btf_put(btf); 9411 9412 return err; 9413 } 9414 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9415 #endif 9416 9417 bool btf_param_match_suffix(const struct btf *btf, 9418 const struct btf_param *arg, 9419 const char *suffix) 9420 { 9421 int suffix_len = strlen(suffix), len; 9422 const char *param_name; 9423 9424 /* In the future, this can be ported to use BTF tagging */ 9425 param_name = btf_name_by_offset(btf, arg->name_off); 9426 if (str_is_empty(param_name)) 9427 return false; 9428 len = strlen(param_name); 9429 if (len <= suffix_len) 9430 return false; 9431 param_name += len - suffix_len; 9432 return !strncmp(param_name, suffix, suffix_len); 9433 } 9434