xref: /linux/kernel/bpf/btf.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_KPROBE,
222 	BTF_KFUNC_HOOK_MAX,
223 };
224 
225 enum {
226 	BTF_KFUNC_SET_MAX_CNT = 256,
227 	BTF_DTOR_KFUNC_MAX_CNT = 256,
228 	BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230 
231 struct btf_kfunc_hook_filter {
232 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233 	u32 nr_filters;
234 };
235 
236 struct btf_kfunc_set_tab {
237 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240 
241 struct btf_id_dtor_kfunc_tab {
242 	u32 cnt;
243 	struct btf_id_dtor_kfunc dtors[];
244 };
245 
246 struct btf_struct_ops_tab {
247 	u32 cnt;
248 	u32 capacity;
249 	struct bpf_struct_ops_desc ops[];
250 };
251 
252 struct btf {
253 	void *data;
254 	struct btf_type **types;
255 	u32 *resolved_ids;
256 	u32 *resolved_sizes;
257 	const char *strings;
258 	void *nohdr_data;
259 	struct btf_header hdr;
260 	u32 nr_types; /* includes VOID for base BTF */
261 	u32 types_size;
262 	u32 data_size;
263 	refcount_t refcnt;
264 	u32 id;
265 	struct rcu_head rcu;
266 	struct btf_kfunc_set_tab *kfunc_set_tab;
267 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268 	struct btf_struct_metas *struct_meta_tab;
269 	struct btf_struct_ops_tab *struct_ops_tab;
270 
271 	/* split BTF support */
272 	struct btf *base_btf;
273 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274 	u32 start_str_off; /* first string offset (0 for base BTF) */
275 	char name[MODULE_NAME_LEN];
276 	bool kernel_btf;
277 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279 
280 enum verifier_phase {
281 	CHECK_META,
282 	CHECK_TYPE,
283 };
284 
285 struct resolve_vertex {
286 	const struct btf_type *t;
287 	u32 type_id;
288 	u16 next_member;
289 };
290 
291 enum visit_state {
292 	NOT_VISITED,
293 	VISITED,
294 	RESOLVED,
295 };
296 
297 enum resolve_mode {
298 	RESOLVE_TBD,	/* To Be Determined */
299 	RESOLVE_PTR,	/* Resolving for Pointer */
300 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
301 					 * or array
302 					 */
303 };
304 
305 #define MAX_RESOLVE_DEPTH 32
306 
307 struct btf_sec_info {
308 	u32 off;
309 	u32 len;
310 };
311 
312 struct btf_verifier_env {
313 	struct btf *btf;
314 	u8 *visit_states;
315 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316 	struct bpf_verifier_log log;
317 	u32 log_type_id;
318 	u32 top_stack;
319 	enum verifier_phase phase;
320 	enum resolve_mode resolve_mode;
321 };
322 
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324 	[BTF_KIND_UNKN]		= "UNKNOWN",
325 	[BTF_KIND_INT]		= "INT",
326 	[BTF_KIND_PTR]		= "PTR",
327 	[BTF_KIND_ARRAY]	= "ARRAY",
328 	[BTF_KIND_STRUCT]	= "STRUCT",
329 	[BTF_KIND_UNION]	= "UNION",
330 	[BTF_KIND_ENUM]		= "ENUM",
331 	[BTF_KIND_FWD]		= "FWD",
332 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
333 	[BTF_KIND_VOLATILE]	= "VOLATILE",
334 	[BTF_KIND_CONST]	= "CONST",
335 	[BTF_KIND_RESTRICT]	= "RESTRICT",
336 	[BTF_KIND_FUNC]		= "FUNC",
337 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
338 	[BTF_KIND_VAR]		= "VAR",
339 	[BTF_KIND_DATASEC]	= "DATASEC",
340 	[BTF_KIND_FLOAT]	= "FLOAT",
341 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
342 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
343 	[BTF_KIND_ENUM64]	= "ENUM64",
344 };
345 
346 const char *btf_type_str(const struct btf_type *t)
347 {
348 	return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350 
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE		32
353 
354 /*
355  * This is the maximum size of a base type value (equivalent to a
356  * 128-bit int); if we are at the end of our safe buffer and have
357  * less than 16 bytes space we can't be assured of being able
358  * to copy the next type safely, so in such cases we will initiate
359  * a new copy.
360  */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
362 
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE		80
365 
366 /*
367  * The suffix of a type that indicates it cannot alias another type when
368  * comparing BTF IDs for kfunc invocations.
369  */
370 #define NOCAST_ALIAS_SUFFIX		"___init"
371 
372 /*
373  * Common data to all BTF show operations. Private show functions can add
374  * their own data to a structure containing a struct btf_show and consult it
375  * in the show callback.  See btf_type_show() below.
376  *
377  * One challenge with showing nested data is we want to skip 0-valued
378  * data, but in order to figure out whether a nested object is all zeros
379  * we need to walk through it.  As a result, we need to make two passes
380  * when handling structs, unions and arrays; the first path simply looks
381  * for nonzero data, while the second actually does the display.  The first
382  * pass is signalled by show->state.depth_check being set, and if we
383  * encounter a non-zero value we set show->state.depth_to_show to
384  * the depth at which we encountered it.  When we have completed the
385  * first pass, we will know if anything needs to be displayed if
386  * depth_to_show > depth.  See btf_[struct,array]_show() for the
387  * implementation of this.
388  *
389  * Another problem is we want to ensure the data for display is safe to
390  * access.  To support this, the anonymous "struct {} obj" tracks the data
391  * object and our safe copy of it.  We copy portions of the data needed
392  * to the object "copy" buffer, but because its size is limited to
393  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394  * traverse larger objects for display.
395  *
396  * The various data type show functions all start with a call to
397  * btf_show_start_type() which returns a pointer to the safe copy
398  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399  * raw data itself).  btf_show_obj_safe() is responsible for
400  * using copy_from_kernel_nofault() to update the safe data if necessary
401  * as we traverse the object's data.  skbuff-like semantics are
402  * used:
403  *
404  * - obj.head points to the start of the toplevel object for display
405  * - obj.size is the size of the toplevel object
406  * - obj.data points to the current point in the original data at
407  *   which our safe data starts.  obj.data will advance as we copy
408  *   portions of the data.
409  *
410  * In most cases a single copy will suffice, but larger data structures
411  * such as "struct task_struct" will require many copies.  The logic in
412  * btf_show_obj_safe() handles the logic that determines if a new
413  * copy_from_kernel_nofault() is needed.
414  */
415 struct btf_show {
416 	u64 flags;
417 	void *target;	/* target of show operation (seq file, buffer) */
418 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419 	const struct btf *btf;
420 	/* below are used during iteration */
421 	struct {
422 		u8 depth;
423 		u8 depth_to_show;
424 		u8 depth_check;
425 		u8 array_member:1,
426 		   array_terminated:1;
427 		u16 array_encoding;
428 		u32 type_id;
429 		int status;			/* non-zero for error */
430 		const struct btf_type *type;
431 		const struct btf_member *member;
432 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
433 	} state;
434 	struct {
435 		u32 size;
436 		void *head;
437 		void *data;
438 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439 	} obj;
440 };
441 
442 struct btf_kind_operations {
443 	s32 (*check_meta)(struct btf_verifier_env *env,
444 			  const struct btf_type *t,
445 			  u32 meta_left);
446 	int (*resolve)(struct btf_verifier_env *env,
447 		       const struct resolve_vertex *v);
448 	int (*check_member)(struct btf_verifier_env *env,
449 			    const struct btf_type *struct_type,
450 			    const struct btf_member *member,
451 			    const struct btf_type *member_type);
452 	int (*check_kflag_member)(struct btf_verifier_env *env,
453 				  const struct btf_type *struct_type,
454 				  const struct btf_member *member,
455 				  const struct btf_type *member_type);
456 	void (*log_details)(struct btf_verifier_env *env,
457 			    const struct btf_type *t);
458 	void (*show)(const struct btf *btf, const struct btf_type *t,
459 			 u32 type_id, void *data, u8 bits_offsets,
460 			 struct btf_show *show);
461 };
462 
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465 
466 static int btf_resolve(struct btf_verifier_env *env,
467 		       const struct btf_type *t, u32 type_id);
468 
469 static int btf_func_check(struct btf_verifier_env *env,
470 			  const struct btf_type *t);
471 
472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474 	/* Some of them is not strictly a C modifier
475 	 * but they are grouped into the same bucket
476 	 * for BTF concern:
477 	 *   A type (t) that refers to another
478 	 *   type through t->type AND its size cannot
479 	 *   be determined without following the t->type.
480 	 *
481 	 * ptr does not fall into this bucket
482 	 * because its size is always sizeof(void *).
483 	 */
484 	switch (BTF_INFO_KIND(t->info)) {
485 	case BTF_KIND_TYPEDEF:
486 	case BTF_KIND_VOLATILE:
487 	case BTF_KIND_CONST:
488 	case BTF_KIND_RESTRICT:
489 	case BTF_KIND_TYPE_TAG:
490 		return true;
491 	}
492 
493 	return false;
494 }
495 
496 bool btf_type_is_void(const struct btf_type *t)
497 {
498 	return t == &btf_void;
499 }
500 
501 static bool btf_type_is_fwd(const struct btf_type *t)
502 {
503 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
504 }
505 
506 static bool btf_type_is_datasec(const struct btf_type *t)
507 {
508 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
509 }
510 
511 static bool btf_type_is_decl_tag(const struct btf_type *t)
512 {
513 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
514 }
515 
516 static bool btf_type_nosize(const struct btf_type *t)
517 {
518 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
519 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
520 	       btf_type_is_decl_tag(t);
521 }
522 
523 static bool btf_type_nosize_or_null(const struct btf_type *t)
524 {
525 	return !t || btf_type_nosize(t);
526 }
527 
528 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
529 {
530 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
531 	       btf_type_is_var(t) || btf_type_is_typedef(t);
532 }
533 
534 bool btf_is_vmlinux(const struct btf *btf)
535 {
536 	return btf->kernel_btf && !btf->base_btf;
537 }
538 
539 u32 btf_nr_types(const struct btf *btf)
540 {
541 	u32 total = 0;
542 
543 	while (btf) {
544 		total += btf->nr_types;
545 		btf = btf->base_btf;
546 	}
547 
548 	return total;
549 }
550 
551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
552 {
553 	const struct btf_type *t;
554 	const char *tname;
555 	u32 i, total;
556 
557 	total = btf_nr_types(btf);
558 	for (i = 1; i < total; i++) {
559 		t = btf_type_by_id(btf, i);
560 		if (BTF_INFO_KIND(t->info) != kind)
561 			continue;
562 
563 		tname = btf_name_by_offset(btf, t->name_off);
564 		if (!strcmp(tname, name))
565 			return i;
566 	}
567 
568 	return -ENOENT;
569 }
570 
571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
572 {
573 	struct btf *btf;
574 	s32 ret;
575 	int id;
576 
577 	btf = bpf_get_btf_vmlinux();
578 	if (IS_ERR(btf))
579 		return PTR_ERR(btf);
580 	if (!btf)
581 		return -EINVAL;
582 
583 	ret = btf_find_by_name_kind(btf, name, kind);
584 	/* ret is never zero, since btf_find_by_name_kind returns
585 	 * positive btf_id or negative error.
586 	 */
587 	if (ret > 0) {
588 		btf_get(btf);
589 		*btf_p = btf;
590 		return ret;
591 	}
592 
593 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
594 	spin_lock_bh(&btf_idr_lock);
595 	idr_for_each_entry(&btf_idr, btf, id) {
596 		if (!btf_is_module(btf))
597 			continue;
598 		/* linear search could be slow hence unlock/lock
599 		 * the IDR to avoiding holding it for too long
600 		 */
601 		btf_get(btf);
602 		spin_unlock_bh(&btf_idr_lock);
603 		ret = btf_find_by_name_kind(btf, name, kind);
604 		if (ret > 0) {
605 			*btf_p = btf;
606 			return ret;
607 		}
608 		btf_put(btf);
609 		spin_lock_bh(&btf_idr_lock);
610 	}
611 	spin_unlock_bh(&btf_idr_lock);
612 	return ret;
613 }
614 
615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
616 					       u32 id, u32 *res_id)
617 {
618 	const struct btf_type *t = btf_type_by_id(btf, id);
619 
620 	while (btf_type_is_modifier(t)) {
621 		id = t->type;
622 		t = btf_type_by_id(btf, t->type);
623 	}
624 
625 	if (res_id)
626 		*res_id = id;
627 
628 	return t;
629 }
630 
631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
632 					    u32 id, u32 *res_id)
633 {
634 	const struct btf_type *t;
635 
636 	t = btf_type_skip_modifiers(btf, id, NULL);
637 	if (!btf_type_is_ptr(t))
638 		return NULL;
639 
640 	return btf_type_skip_modifiers(btf, t->type, res_id);
641 }
642 
643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
644 						 u32 id, u32 *res_id)
645 {
646 	const struct btf_type *ptype;
647 
648 	ptype = btf_type_resolve_ptr(btf, id, res_id);
649 	if (ptype && btf_type_is_func_proto(ptype))
650 		return ptype;
651 
652 	return NULL;
653 }
654 
655 /* Types that act only as a source, not sink or intermediate
656  * type when resolving.
657  */
658 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
659 {
660 	return btf_type_is_var(t) ||
661 	       btf_type_is_decl_tag(t) ||
662 	       btf_type_is_datasec(t);
663 }
664 
665 /* What types need to be resolved?
666  *
667  * btf_type_is_modifier() is an obvious one.
668  *
669  * btf_type_is_struct() because its member refers to
670  * another type (through member->type).
671  *
672  * btf_type_is_var() because the variable refers to
673  * another type. btf_type_is_datasec() holds multiple
674  * btf_type_is_var() types that need resolving.
675  *
676  * btf_type_is_array() because its element (array->type)
677  * refers to another type.  Array can be thought of a
678  * special case of struct while array just has the same
679  * member-type repeated by array->nelems of times.
680  */
681 static bool btf_type_needs_resolve(const struct btf_type *t)
682 {
683 	return btf_type_is_modifier(t) ||
684 	       btf_type_is_ptr(t) ||
685 	       btf_type_is_struct(t) ||
686 	       btf_type_is_array(t) ||
687 	       btf_type_is_var(t) ||
688 	       btf_type_is_func(t) ||
689 	       btf_type_is_decl_tag(t) ||
690 	       btf_type_is_datasec(t);
691 }
692 
693 /* t->size can be used */
694 static bool btf_type_has_size(const struct btf_type *t)
695 {
696 	switch (BTF_INFO_KIND(t->info)) {
697 	case BTF_KIND_INT:
698 	case BTF_KIND_STRUCT:
699 	case BTF_KIND_UNION:
700 	case BTF_KIND_ENUM:
701 	case BTF_KIND_DATASEC:
702 	case BTF_KIND_FLOAT:
703 	case BTF_KIND_ENUM64:
704 		return true;
705 	}
706 
707 	return false;
708 }
709 
710 static const char *btf_int_encoding_str(u8 encoding)
711 {
712 	if (encoding == 0)
713 		return "(none)";
714 	else if (encoding == BTF_INT_SIGNED)
715 		return "SIGNED";
716 	else if (encoding == BTF_INT_CHAR)
717 		return "CHAR";
718 	else if (encoding == BTF_INT_BOOL)
719 		return "BOOL";
720 	else
721 		return "UNKN";
722 }
723 
724 static u32 btf_type_int(const struct btf_type *t)
725 {
726 	return *(u32 *)(t + 1);
727 }
728 
729 static const struct btf_array *btf_type_array(const struct btf_type *t)
730 {
731 	return (const struct btf_array *)(t + 1);
732 }
733 
734 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
735 {
736 	return (const struct btf_enum *)(t + 1);
737 }
738 
739 static const struct btf_var *btf_type_var(const struct btf_type *t)
740 {
741 	return (const struct btf_var *)(t + 1);
742 }
743 
744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
745 {
746 	return (const struct btf_decl_tag *)(t + 1);
747 }
748 
749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
750 {
751 	return (const struct btf_enum64 *)(t + 1);
752 }
753 
754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
755 {
756 	return kind_ops[BTF_INFO_KIND(t->info)];
757 }
758 
759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
760 {
761 	if (!BTF_STR_OFFSET_VALID(offset))
762 		return false;
763 
764 	while (offset < btf->start_str_off)
765 		btf = btf->base_btf;
766 
767 	offset -= btf->start_str_off;
768 	return offset < btf->hdr.str_len;
769 }
770 
771 static bool __btf_name_char_ok(char c, bool first)
772 {
773 	if ((first ? !isalpha(c) :
774 		     !isalnum(c)) &&
775 	    c != '_' &&
776 	    c != '.')
777 		return false;
778 	return true;
779 }
780 
781 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
782 {
783 	while (offset < btf->start_str_off)
784 		btf = btf->base_btf;
785 
786 	offset -= btf->start_str_off;
787 	if (offset < btf->hdr.str_len)
788 		return &btf->strings[offset];
789 
790 	return NULL;
791 }
792 
793 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
794 {
795 	/* offset must be valid */
796 	const char *src = btf_str_by_offset(btf, offset);
797 	const char *src_limit;
798 
799 	if (!__btf_name_char_ok(*src, true))
800 		return false;
801 
802 	/* set a limit on identifier length */
803 	src_limit = src + KSYM_NAME_LEN;
804 	src++;
805 	while (*src && src < src_limit) {
806 		if (!__btf_name_char_ok(*src, false))
807 			return false;
808 		src++;
809 	}
810 
811 	return !*src;
812 }
813 
814 /* Allow any printable character in DATASEC names */
815 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
816 {
817 	/* offset must be valid */
818 	const char *src = btf_str_by_offset(btf, offset);
819 	const char *src_limit;
820 
821 	if (!*src)
822 		return false;
823 
824 	/* set a limit on identifier length */
825 	src_limit = src + KSYM_NAME_LEN;
826 	while (*src && src < src_limit) {
827 		if (!isprint(*src))
828 			return false;
829 		src++;
830 	}
831 
832 	return !*src;
833 }
834 
835 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
836 {
837 	const char *name;
838 
839 	if (!offset)
840 		return "(anon)";
841 
842 	name = btf_str_by_offset(btf, offset);
843 	return name ?: "(invalid-name-offset)";
844 }
845 
846 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
847 {
848 	return btf_str_by_offset(btf, offset);
849 }
850 
851 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
852 {
853 	while (type_id < btf->start_id)
854 		btf = btf->base_btf;
855 
856 	type_id -= btf->start_id;
857 	if (type_id >= btf->nr_types)
858 		return NULL;
859 	return btf->types[type_id];
860 }
861 EXPORT_SYMBOL_GPL(btf_type_by_id);
862 
863 /*
864  * Regular int is not a bit field and it must be either
865  * u8/u16/u32/u64 or __int128.
866  */
867 static bool btf_type_int_is_regular(const struct btf_type *t)
868 {
869 	u8 nr_bits, nr_bytes;
870 	u32 int_data;
871 
872 	int_data = btf_type_int(t);
873 	nr_bits = BTF_INT_BITS(int_data);
874 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
875 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
876 	    BTF_INT_OFFSET(int_data) ||
877 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
878 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
879 	     nr_bytes != (2 * sizeof(u64)))) {
880 		return false;
881 	}
882 
883 	return true;
884 }
885 
886 /*
887  * Check that given struct member is a regular int with expected
888  * offset and size.
889  */
890 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
891 			   const struct btf_member *m,
892 			   u32 expected_offset, u32 expected_size)
893 {
894 	const struct btf_type *t;
895 	u32 id, int_data;
896 	u8 nr_bits;
897 
898 	id = m->type;
899 	t = btf_type_id_size(btf, &id, NULL);
900 	if (!t || !btf_type_is_int(t))
901 		return false;
902 
903 	int_data = btf_type_int(t);
904 	nr_bits = BTF_INT_BITS(int_data);
905 	if (btf_type_kflag(s)) {
906 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
907 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
908 
909 		/* if kflag set, int should be a regular int and
910 		 * bit offset should be at byte boundary.
911 		 */
912 		return !bitfield_size &&
913 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
914 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
915 	}
916 
917 	if (BTF_INT_OFFSET(int_data) ||
918 	    BITS_PER_BYTE_MASKED(m->offset) ||
919 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
920 	    BITS_PER_BYTE_MASKED(nr_bits) ||
921 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
922 		return false;
923 
924 	return true;
925 }
926 
927 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
928 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
929 						       u32 id)
930 {
931 	const struct btf_type *t = btf_type_by_id(btf, id);
932 
933 	while (btf_type_is_modifier(t) &&
934 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
935 		t = btf_type_by_id(btf, t->type);
936 	}
937 
938 	return t;
939 }
940 
941 #define BTF_SHOW_MAX_ITER	10
942 
943 #define BTF_KIND_BIT(kind)	(1ULL << kind)
944 
945 /*
946  * Populate show->state.name with type name information.
947  * Format of type name is
948  *
949  * [.member_name = ] (type_name)
950  */
951 static const char *btf_show_name(struct btf_show *show)
952 {
953 	/* BTF_MAX_ITER array suffixes "[]" */
954 	const char *array_suffixes = "[][][][][][][][][][]";
955 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
956 	/* BTF_MAX_ITER pointer suffixes "*" */
957 	const char *ptr_suffixes = "**********";
958 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
959 	const char *name = NULL, *prefix = "", *parens = "";
960 	const struct btf_member *m = show->state.member;
961 	const struct btf_type *t;
962 	const struct btf_array *array;
963 	u32 id = show->state.type_id;
964 	const char *member = NULL;
965 	bool show_member = false;
966 	u64 kinds = 0;
967 	int i;
968 
969 	show->state.name[0] = '\0';
970 
971 	/*
972 	 * Don't show type name if we're showing an array member;
973 	 * in that case we show the array type so don't need to repeat
974 	 * ourselves for each member.
975 	 */
976 	if (show->state.array_member)
977 		return "";
978 
979 	/* Retrieve member name, if any. */
980 	if (m) {
981 		member = btf_name_by_offset(show->btf, m->name_off);
982 		show_member = strlen(member) > 0;
983 		id = m->type;
984 	}
985 
986 	/*
987 	 * Start with type_id, as we have resolved the struct btf_type *
988 	 * via btf_modifier_show() past the parent typedef to the child
989 	 * struct, int etc it is defined as.  In such cases, the type_id
990 	 * still represents the starting type while the struct btf_type *
991 	 * in our show->state points at the resolved type of the typedef.
992 	 */
993 	t = btf_type_by_id(show->btf, id);
994 	if (!t)
995 		return "";
996 
997 	/*
998 	 * The goal here is to build up the right number of pointer and
999 	 * array suffixes while ensuring the type name for a typedef
1000 	 * is represented.  Along the way we accumulate a list of
1001 	 * BTF kinds we have encountered, since these will inform later
1002 	 * display; for example, pointer types will not require an
1003 	 * opening "{" for struct, we will just display the pointer value.
1004 	 *
1005 	 * We also want to accumulate the right number of pointer or array
1006 	 * indices in the format string while iterating until we get to
1007 	 * the typedef/pointee/array member target type.
1008 	 *
1009 	 * We start by pointing at the end of pointer and array suffix
1010 	 * strings; as we accumulate pointers and arrays we move the pointer
1011 	 * or array string backwards so it will show the expected number of
1012 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1013 	 * and/or arrays and typedefs are supported as a precaution.
1014 	 *
1015 	 * We also want to get typedef name while proceeding to resolve
1016 	 * type it points to so that we can add parentheses if it is a
1017 	 * "typedef struct" etc.
1018 	 */
1019 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1020 
1021 		switch (BTF_INFO_KIND(t->info)) {
1022 		case BTF_KIND_TYPEDEF:
1023 			if (!name)
1024 				name = btf_name_by_offset(show->btf,
1025 							       t->name_off);
1026 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1027 			id = t->type;
1028 			break;
1029 		case BTF_KIND_ARRAY:
1030 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1031 			parens = "[";
1032 			if (!t)
1033 				return "";
1034 			array = btf_type_array(t);
1035 			if (array_suffix > array_suffixes)
1036 				array_suffix -= 2;
1037 			id = array->type;
1038 			break;
1039 		case BTF_KIND_PTR:
1040 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1041 			if (ptr_suffix > ptr_suffixes)
1042 				ptr_suffix -= 1;
1043 			id = t->type;
1044 			break;
1045 		default:
1046 			id = 0;
1047 			break;
1048 		}
1049 		if (!id)
1050 			break;
1051 		t = btf_type_skip_qualifiers(show->btf, id);
1052 	}
1053 	/* We may not be able to represent this type; bail to be safe */
1054 	if (i == BTF_SHOW_MAX_ITER)
1055 		return "";
1056 
1057 	if (!name)
1058 		name = btf_name_by_offset(show->btf, t->name_off);
1059 
1060 	switch (BTF_INFO_KIND(t->info)) {
1061 	case BTF_KIND_STRUCT:
1062 	case BTF_KIND_UNION:
1063 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1064 			 "struct" : "union";
1065 		/* if it's an array of struct/union, parens is already set */
1066 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1067 			parens = "{";
1068 		break;
1069 	case BTF_KIND_ENUM:
1070 	case BTF_KIND_ENUM64:
1071 		prefix = "enum";
1072 		break;
1073 	default:
1074 		break;
1075 	}
1076 
1077 	/* pointer does not require parens */
1078 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1079 		parens = "";
1080 	/* typedef does not require struct/union/enum prefix */
1081 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1082 		prefix = "";
1083 
1084 	if (!name)
1085 		name = "";
1086 
1087 	/* Even if we don't want type name info, we want parentheses etc */
1088 	if (show->flags & BTF_SHOW_NONAME)
1089 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1090 			 parens);
1091 	else
1092 		snprintf(show->state.name, sizeof(show->state.name),
1093 			 "%s%s%s(%s%s%s%s%s%s)%s",
1094 			 /* first 3 strings comprise ".member = " */
1095 			 show_member ? "." : "",
1096 			 show_member ? member : "",
1097 			 show_member ? " = " : "",
1098 			 /* ...next is our prefix (struct, enum, etc) */
1099 			 prefix,
1100 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1101 			 /* ...this is the type name itself */
1102 			 name,
1103 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1104 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1105 			 array_suffix, parens);
1106 
1107 	return show->state.name;
1108 }
1109 
1110 static const char *__btf_show_indent(struct btf_show *show)
1111 {
1112 	const char *indents = "                                ";
1113 	const char *indent = &indents[strlen(indents)];
1114 
1115 	if ((indent - show->state.depth) >= indents)
1116 		return indent - show->state.depth;
1117 	return indents;
1118 }
1119 
1120 static const char *btf_show_indent(struct btf_show *show)
1121 {
1122 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1123 }
1124 
1125 static const char *btf_show_newline(struct btf_show *show)
1126 {
1127 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1128 }
1129 
1130 static const char *btf_show_delim(struct btf_show *show)
1131 {
1132 	if (show->state.depth == 0)
1133 		return "";
1134 
1135 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1136 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1137 		return "|";
1138 
1139 	return ",";
1140 }
1141 
1142 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1143 {
1144 	va_list args;
1145 
1146 	if (!show->state.depth_check) {
1147 		va_start(args, fmt);
1148 		show->showfn(show, fmt, args);
1149 		va_end(args);
1150 	}
1151 }
1152 
1153 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1154  * format specifiers to the format specifier passed in; these do the work of
1155  * adding indentation, delimiters etc while the caller simply has to specify
1156  * the type value(s) in the format specifier + value(s).
1157  */
1158 #define btf_show_type_value(show, fmt, value)				       \
1159 	do {								       \
1160 		if ((value) != (__typeof__(value))0 ||			       \
1161 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1162 		    show->state.depth == 0) {				       \
1163 			btf_show(show, "%s%s" fmt "%s%s",		       \
1164 				 btf_show_indent(show),			       \
1165 				 btf_show_name(show),			       \
1166 				 value, btf_show_delim(show),		       \
1167 				 btf_show_newline(show));		       \
1168 			if (show->state.depth > show->state.depth_to_show)     \
1169 				show->state.depth_to_show = show->state.depth; \
1170 		}							       \
1171 	} while (0)
1172 
1173 #define btf_show_type_values(show, fmt, ...)				       \
1174 	do {								       \
1175 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1176 			 btf_show_name(show),				       \
1177 			 __VA_ARGS__, btf_show_delim(show),		       \
1178 			 btf_show_newline(show));			       \
1179 		if (show->state.depth > show->state.depth_to_show)	       \
1180 			show->state.depth_to_show = show->state.depth;	       \
1181 	} while (0)
1182 
1183 /* How much is left to copy to safe buffer after @data? */
1184 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1185 {
1186 	return show->obj.head + show->obj.size - data;
1187 }
1188 
1189 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1190 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1191 {
1192 	return data >= show->obj.data &&
1193 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1194 }
1195 
1196 /*
1197  * If object pointed to by @data of @size falls within our safe buffer, return
1198  * the equivalent pointer to the same safe data.  Assumes
1199  * copy_from_kernel_nofault() has already happened and our safe buffer is
1200  * populated.
1201  */
1202 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1203 {
1204 	if (btf_show_obj_is_safe(show, data, size))
1205 		return show->obj.safe + (data - show->obj.data);
1206 	return NULL;
1207 }
1208 
1209 /*
1210  * Return a safe-to-access version of data pointed to by @data.
1211  * We do this by copying the relevant amount of information
1212  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1213  *
1214  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1215  * safe copy is needed.
1216  *
1217  * Otherwise we need to determine if we have the required amount
1218  * of data (determined by the @data pointer and the size of the
1219  * largest base type we can encounter (represented by
1220  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1221  * that we will be able to print some of the current object,
1222  * and if more is needed a copy will be triggered.
1223  * Some objects such as structs will not fit into the buffer;
1224  * in such cases additional copies when we iterate over their
1225  * members may be needed.
1226  *
1227  * btf_show_obj_safe() is used to return a safe buffer for
1228  * btf_show_start_type(); this ensures that as we recurse into
1229  * nested types we always have safe data for the given type.
1230  * This approach is somewhat wasteful; it's possible for example
1231  * that when iterating over a large union we'll end up copying the
1232  * same data repeatedly, but the goal is safety not performance.
1233  * We use stack data as opposed to per-CPU buffers because the
1234  * iteration over a type can take some time, and preemption handling
1235  * would greatly complicate use of the safe buffer.
1236  */
1237 static void *btf_show_obj_safe(struct btf_show *show,
1238 			       const struct btf_type *t,
1239 			       void *data)
1240 {
1241 	const struct btf_type *rt;
1242 	int size_left, size;
1243 	void *safe = NULL;
1244 
1245 	if (show->flags & BTF_SHOW_UNSAFE)
1246 		return data;
1247 
1248 	rt = btf_resolve_size(show->btf, t, &size);
1249 	if (IS_ERR(rt)) {
1250 		show->state.status = PTR_ERR(rt);
1251 		return NULL;
1252 	}
1253 
1254 	/*
1255 	 * Is this toplevel object? If so, set total object size and
1256 	 * initialize pointers.  Otherwise check if we still fall within
1257 	 * our safe object data.
1258 	 */
1259 	if (show->state.depth == 0) {
1260 		show->obj.size = size;
1261 		show->obj.head = data;
1262 	} else {
1263 		/*
1264 		 * If the size of the current object is > our remaining
1265 		 * safe buffer we _may_ need to do a new copy.  However
1266 		 * consider the case of a nested struct; it's size pushes
1267 		 * us over the safe buffer limit, but showing any individual
1268 		 * struct members does not.  In such cases, we don't need
1269 		 * to initiate a fresh copy yet; however we definitely need
1270 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1271 		 * in our buffer, regardless of the current object size.
1272 		 * The logic here is that as we resolve types we will
1273 		 * hit a base type at some point, and we need to be sure
1274 		 * the next chunk of data is safely available to display
1275 		 * that type info safely.  We cannot rely on the size of
1276 		 * the current object here because it may be much larger
1277 		 * than our current buffer (e.g. task_struct is 8k).
1278 		 * All we want to do here is ensure that we can print the
1279 		 * next basic type, which we can if either
1280 		 * - the current type size is within the safe buffer; or
1281 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1282 		 *   the safe buffer.
1283 		 */
1284 		safe = __btf_show_obj_safe(show, data,
1285 					   min(size,
1286 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1287 	}
1288 
1289 	/*
1290 	 * We need a new copy to our safe object, either because we haven't
1291 	 * yet copied and are initializing safe data, or because the data
1292 	 * we want falls outside the boundaries of the safe object.
1293 	 */
1294 	if (!safe) {
1295 		size_left = btf_show_obj_size_left(show, data);
1296 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1297 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1298 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1299 							      data, size_left);
1300 		if (!show->state.status) {
1301 			show->obj.data = data;
1302 			safe = show->obj.safe;
1303 		}
1304 	}
1305 
1306 	return safe;
1307 }
1308 
1309 /*
1310  * Set the type we are starting to show and return a safe data pointer
1311  * to be used for showing the associated data.
1312  */
1313 static void *btf_show_start_type(struct btf_show *show,
1314 				 const struct btf_type *t,
1315 				 u32 type_id, void *data)
1316 {
1317 	show->state.type = t;
1318 	show->state.type_id = type_id;
1319 	show->state.name[0] = '\0';
1320 
1321 	return btf_show_obj_safe(show, t, data);
1322 }
1323 
1324 static void btf_show_end_type(struct btf_show *show)
1325 {
1326 	show->state.type = NULL;
1327 	show->state.type_id = 0;
1328 	show->state.name[0] = '\0';
1329 }
1330 
1331 static void *btf_show_start_aggr_type(struct btf_show *show,
1332 				      const struct btf_type *t,
1333 				      u32 type_id, void *data)
1334 {
1335 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1336 
1337 	if (!safe_data)
1338 		return safe_data;
1339 
1340 	btf_show(show, "%s%s%s", btf_show_indent(show),
1341 		 btf_show_name(show),
1342 		 btf_show_newline(show));
1343 	show->state.depth++;
1344 	return safe_data;
1345 }
1346 
1347 static void btf_show_end_aggr_type(struct btf_show *show,
1348 				   const char *suffix)
1349 {
1350 	show->state.depth--;
1351 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1352 		 btf_show_delim(show), btf_show_newline(show));
1353 	btf_show_end_type(show);
1354 }
1355 
1356 static void btf_show_start_member(struct btf_show *show,
1357 				  const struct btf_member *m)
1358 {
1359 	show->state.member = m;
1360 }
1361 
1362 static void btf_show_start_array_member(struct btf_show *show)
1363 {
1364 	show->state.array_member = 1;
1365 	btf_show_start_member(show, NULL);
1366 }
1367 
1368 static void btf_show_end_member(struct btf_show *show)
1369 {
1370 	show->state.member = NULL;
1371 }
1372 
1373 static void btf_show_end_array_member(struct btf_show *show)
1374 {
1375 	show->state.array_member = 0;
1376 	btf_show_end_member(show);
1377 }
1378 
1379 static void *btf_show_start_array_type(struct btf_show *show,
1380 				       const struct btf_type *t,
1381 				       u32 type_id,
1382 				       u16 array_encoding,
1383 				       void *data)
1384 {
1385 	show->state.array_encoding = array_encoding;
1386 	show->state.array_terminated = 0;
1387 	return btf_show_start_aggr_type(show, t, type_id, data);
1388 }
1389 
1390 static void btf_show_end_array_type(struct btf_show *show)
1391 {
1392 	show->state.array_encoding = 0;
1393 	show->state.array_terminated = 0;
1394 	btf_show_end_aggr_type(show, "]");
1395 }
1396 
1397 static void *btf_show_start_struct_type(struct btf_show *show,
1398 					const struct btf_type *t,
1399 					u32 type_id,
1400 					void *data)
1401 {
1402 	return btf_show_start_aggr_type(show, t, type_id, data);
1403 }
1404 
1405 static void btf_show_end_struct_type(struct btf_show *show)
1406 {
1407 	btf_show_end_aggr_type(show, "}");
1408 }
1409 
1410 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1411 					      const char *fmt, ...)
1412 {
1413 	va_list args;
1414 
1415 	va_start(args, fmt);
1416 	bpf_verifier_vlog(log, fmt, args);
1417 	va_end(args);
1418 }
1419 
1420 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1421 					    const char *fmt, ...)
1422 {
1423 	struct bpf_verifier_log *log = &env->log;
1424 	va_list args;
1425 
1426 	if (!bpf_verifier_log_needed(log))
1427 		return;
1428 
1429 	va_start(args, fmt);
1430 	bpf_verifier_vlog(log, fmt, args);
1431 	va_end(args);
1432 }
1433 
1434 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1435 						   const struct btf_type *t,
1436 						   bool log_details,
1437 						   const char *fmt, ...)
1438 {
1439 	struct bpf_verifier_log *log = &env->log;
1440 	struct btf *btf = env->btf;
1441 	va_list args;
1442 
1443 	if (!bpf_verifier_log_needed(log))
1444 		return;
1445 
1446 	if (log->level == BPF_LOG_KERNEL) {
1447 		/* btf verifier prints all types it is processing via
1448 		 * btf_verifier_log_type(..., fmt = NULL).
1449 		 * Skip those prints for in-kernel BTF verification.
1450 		 */
1451 		if (!fmt)
1452 			return;
1453 
1454 		/* Skip logging when loading module BTF with mismatches permitted */
1455 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1456 			return;
1457 	}
1458 
1459 	__btf_verifier_log(log, "[%u] %s %s%s",
1460 			   env->log_type_id,
1461 			   btf_type_str(t),
1462 			   __btf_name_by_offset(btf, t->name_off),
1463 			   log_details ? " " : "");
1464 
1465 	if (log_details)
1466 		btf_type_ops(t)->log_details(env, t);
1467 
1468 	if (fmt && *fmt) {
1469 		__btf_verifier_log(log, " ");
1470 		va_start(args, fmt);
1471 		bpf_verifier_vlog(log, fmt, args);
1472 		va_end(args);
1473 	}
1474 
1475 	__btf_verifier_log(log, "\n");
1476 }
1477 
1478 #define btf_verifier_log_type(env, t, ...) \
1479 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1480 #define btf_verifier_log_basic(env, t, ...) \
1481 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1482 
1483 __printf(4, 5)
1484 static void btf_verifier_log_member(struct btf_verifier_env *env,
1485 				    const struct btf_type *struct_type,
1486 				    const struct btf_member *member,
1487 				    const char *fmt, ...)
1488 {
1489 	struct bpf_verifier_log *log = &env->log;
1490 	struct btf *btf = env->btf;
1491 	va_list args;
1492 
1493 	if (!bpf_verifier_log_needed(log))
1494 		return;
1495 
1496 	if (log->level == BPF_LOG_KERNEL) {
1497 		if (!fmt)
1498 			return;
1499 
1500 		/* Skip logging when loading module BTF with mismatches permitted */
1501 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1502 			return;
1503 	}
1504 
1505 	/* The CHECK_META phase already did a btf dump.
1506 	 *
1507 	 * If member is logged again, it must hit an error in
1508 	 * parsing this member.  It is useful to print out which
1509 	 * struct this member belongs to.
1510 	 */
1511 	if (env->phase != CHECK_META)
1512 		btf_verifier_log_type(env, struct_type, NULL);
1513 
1514 	if (btf_type_kflag(struct_type))
1515 		__btf_verifier_log(log,
1516 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1517 				   __btf_name_by_offset(btf, member->name_off),
1518 				   member->type,
1519 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1520 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1521 	else
1522 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1523 				   __btf_name_by_offset(btf, member->name_off),
1524 				   member->type, member->offset);
1525 
1526 	if (fmt && *fmt) {
1527 		__btf_verifier_log(log, " ");
1528 		va_start(args, fmt);
1529 		bpf_verifier_vlog(log, fmt, args);
1530 		va_end(args);
1531 	}
1532 
1533 	__btf_verifier_log(log, "\n");
1534 }
1535 
1536 __printf(4, 5)
1537 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1538 				 const struct btf_type *datasec_type,
1539 				 const struct btf_var_secinfo *vsi,
1540 				 const char *fmt, ...)
1541 {
1542 	struct bpf_verifier_log *log = &env->log;
1543 	va_list args;
1544 
1545 	if (!bpf_verifier_log_needed(log))
1546 		return;
1547 	if (log->level == BPF_LOG_KERNEL && !fmt)
1548 		return;
1549 	if (env->phase != CHECK_META)
1550 		btf_verifier_log_type(env, datasec_type, NULL);
1551 
1552 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1553 			   vsi->type, vsi->offset, vsi->size);
1554 	if (fmt && *fmt) {
1555 		__btf_verifier_log(log, " ");
1556 		va_start(args, fmt);
1557 		bpf_verifier_vlog(log, fmt, args);
1558 		va_end(args);
1559 	}
1560 
1561 	__btf_verifier_log(log, "\n");
1562 }
1563 
1564 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1565 				 u32 btf_data_size)
1566 {
1567 	struct bpf_verifier_log *log = &env->log;
1568 	const struct btf *btf = env->btf;
1569 	const struct btf_header *hdr;
1570 
1571 	if (!bpf_verifier_log_needed(log))
1572 		return;
1573 
1574 	if (log->level == BPF_LOG_KERNEL)
1575 		return;
1576 	hdr = &btf->hdr;
1577 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1578 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1579 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1580 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1581 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1582 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1583 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1584 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1585 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1586 }
1587 
1588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1589 {
1590 	struct btf *btf = env->btf;
1591 
1592 	if (btf->types_size == btf->nr_types) {
1593 		/* Expand 'types' array */
1594 
1595 		struct btf_type **new_types;
1596 		u32 expand_by, new_size;
1597 
1598 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1599 			btf_verifier_log(env, "Exceeded max num of types");
1600 			return -E2BIG;
1601 		}
1602 
1603 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1604 		new_size = min_t(u32, BTF_MAX_TYPE,
1605 				 btf->types_size + expand_by);
1606 
1607 		new_types = kvcalloc(new_size, sizeof(*new_types),
1608 				     GFP_KERNEL | __GFP_NOWARN);
1609 		if (!new_types)
1610 			return -ENOMEM;
1611 
1612 		if (btf->nr_types == 0) {
1613 			if (!btf->base_btf) {
1614 				/* lazily init VOID type */
1615 				new_types[0] = &btf_void;
1616 				btf->nr_types++;
1617 			}
1618 		} else {
1619 			memcpy(new_types, btf->types,
1620 			       sizeof(*btf->types) * btf->nr_types);
1621 		}
1622 
1623 		kvfree(btf->types);
1624 		btf->types = new_types;
1625 		btf->types_size = new_size;
1626 	}
1627 
1628 	btf->types[btf->nr_types++] = t;
1629 
1630 	return 0;
1631 }
1632 
1633 static int btf_alloc_id(struct btf *btf)
1634 {
1635 	int id;
1636 
1637 	idr_preload(GFP_KERNEL);
1638 	spin_lock_bh(&btf_idr_lock);
1639 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1640 	if (id > 0)
1641 		btf->id = id;
1642 	spin_unlock_bh(&btf_idr_lock);
1643 	idr_preload_end();
1644 
1645 	if (WARN_ON_ONCE(!id))
1646 		return -ENOSPC;
1647 
1648 	return id > 0 ? 0 : id;
1649 }
1650 
1651 static void btf_free_id(struct btf *btf)
1652 {
1653 	unsigned long flags;
1654 
1655 	/*
1656 	 * In map-in-map, calling map_delete_elem() on outer
1657 	 * map will call bpf_map_put on the inner map.
1658 	 * It will then eventually call btf_free_id()
1659 	 * on the inner map.  Some of the map_delete_elem()
1660 	 * implementation may have irq disabled, so
1661 	 * we need to use the _irqsave() version instead
1662 	 * of the _bh() version.
1663 	 */
1664 	spin_lock_irqsave(&btf_idr_lock, flags);
1665 	idr_remove(&btf_idr, btf->id);
1666 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1667 }
1668 
1669 static void btf_free_kfunc_set_tab(struct btf *btf)
1670 {
1671 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1672 	int hook;
1673 
1674 	if (!tab)
1675 		return;
1676 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1677 		kfree(tab->sets[hook]);
1678 	kfree(tab);
1679 	btf->kfunc_set_tab = NULL;
1680 }
1681 
1682 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1683 {
1684 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1685 
1686 	if (!tab)
1687 		return;
1688 	kfree(tab);
1689 	btf->dtor_kfunc_tab = NULL;
1690 }
1691 
1692 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1693 {
1694 	int i;
1695 
1696 	if (!tab)
1697 		return;
1698 	for (i = 0; i < tab->cnt; i++)
1699 		btf_record_free(tab->types[i].record);
1700 	kfree(tab);
1701 }
1702 
1703 static void btf_free_struct_meta_tab(struct btf *btf)
1704 {
1705 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1706 
1707 	btf_struct_metas_free(tab);
1708 	btf->struct_meta_tab = NULL;
1709 }
1710 
1711 static void btf_free_struct_ops_tab(struct btf *btf)
1712 {
1713 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1714 	u32 i;
1715 
1716 	if (!tab)
1717 		return;
1718 
1719 	for (i = 0; i < tab->cnt; i++)
1720 		bpf_struct_ops_desc_release(&tab->ops[i]);
1721 
1722 	kfree(tab);
1723 	btf->struct_ops_tab = NULL;
1724 }
1725 
1726 static void btf_free(struct btf *btf)
1727 {
1728 	btf_free_struct_meta_tab(btf);
1729 	btf_free_dtor_kfunc_tab(btf);
1730 	btf_free_kfunc_set_tab(btf);
1731 	btf_free_struct_ops_tab(btf);
1732 	kvfree(btf->types);
1733 	kvfree(btf->resolved_sizes);
1734 	kvfree(btf->resolved_ids);
1735 	/* vmlinux does not allocate btf->data, it simply points it at
1736 	 * __start_BTF.
1737 	 */
1738 	if (!btf_is_vmlinux(btf))
1739 		kvfree(btf->data);
1740 	kvfree(btf->base_id_map);
1741 	kfree(btf);
1742 }
1743 
1744 static void btf_free_rcu(struct rcu_head *rcu)
1745 {
1746 	struct btf *btf = container_of(rcu, struct btf, rcu);
1747 
1748 	btf_free(btf);
1749 }
1750 
1751 const char *btf_get_name(const struct btf *btf)
1752 {
1753 	return btf->name;
1754 }
1755 
1756 void btf_get(struct btf *btf)
1757 {
1758 	refcount_inc(&btf->refcnt);
1759 }
1760 
1761 void btf_put(struct btf *btf)
1762 {
1763 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1764 		btf_free_id(btf);
1765 		call_rcu(&btf->rcu, btf_free_rcu);
1766 	}
1767 }
1768 
1769 struct btf *btf_base_btf(const struct btf *btf)
1770 {
1771 	return btf->base_btf;
1772 }
1773 
1774 const struct btf_header *btf_header(const struct btf *btf)
1775 {
1776 	return &btf->hdr;
1777 }
1778 
1779 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1780 {
1781 	btf->base_btf = (struct btf *)base_btf;
1782 	btf->start_id = btf_nr_types(base_btf);
1783 	btf->start_str_off = base_btf->hdr.str_len;
1784 }
1785 
1786 static int env_resolve_init(struct btf_verifier_env *env)
1787 {
1788 	struct btf *btf = env->btf;
1789 	u32 nr_types = btf->nr_types;
1790 	u32 *resolved_sizes = NULL;
1791 	u32 *resolved_ids = NULL;
1792 	u8 *visit_states = NULL;
1793 
1794 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1795 				  GFP_KERNEL | __GFP_NOWARN);
1796 	if (!resolved_sizes)
1797 		goto nomem;
1798 
1799 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1800 				GFP_KERNEL | __GFP_NOWARN);
1801 	if (!resolved_ids)
1802 		goto nomem;
1803 
1804 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1805 				GFP_KERNEL | __GFP_NOWARN);
1806 	if (!visit_states)
1807 		goto nomem;
1808 
1809 	btf->resolved_sizes = resolved_sizes;
1810 	btf->resolved_ids = resolved_ids;
1811 	env->visit_states = visit_states;
1812 
1813 	return 0;
1814 
1815 nomem:
1816 	kvfree(resolved_sizes);
1817 	kvfree(resolved_ids);
1818 	kvfree(visit_states);
1819 	return -ENOMEM;
1820 }
1821 
1822 static void btf_verifier_env_free(struct btf_verifier_env *env)
1823 {
1824 	kvfree(env->visit_states);
1825 	kfree(env);
1826 }
1827 
1828 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1829 				     const struct btf_type *next_type)
1830 {
1831 	switch (env->resolve_mode) {
1832 	case RESOLVE_TBD:
1833 		/* int, enum or void is a sink */
1834 		return !btf_type_needs_resolve(next_type);
1835 	case RESOLVE_PTR:
1836 		/* int, enum, void, struct, array, func or func_proto is a sink
1837 		 * for ptr
1838 		 */
1839 		return !btf_type_is_modifier(next_type) &&
1840 			!btf_type_is_ptr(next_type);
1841 	case RESOLVE_STRUCT_OR_ARRAY:
1842 		/* int, enum, void, ptr, func or func_proto is a sink
1843 		 * for struct and array
1844 		 */
1845 		return !btf_type_is_modifier(next_type) &&
1846 			!btf_type_is_array(next_type) &&
1847 			!btf_type_is_struct(next_type);
1848 	default:
1849 		BUG();
1850 	}
1851 }
1852 
1853 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1854 				 u32 type_id)
1855 {
1856 	/* base BTF types should be resolved by now */
1857 	if (type_id < env->btf->start_id)
1858 		return true;
1859 
1860 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1861 }
1862 
1863 static int env_stack_push(struct btf_verifier_env *env,
1864 			  const struct btf_type *t, u32 type_id)
1865 {
1866 	const struct btf *btf = env->btf;
1867 	struct resolve_vertex *v;
1868 
1869 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1870 		return -E2BIG;
1871 
1872 	if (type_id < btf->start_id
1873 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1874 		return -EEXIST;
1875 
1876 	env->visit_states[type_id - btf->start_id] = VISITED;
1877 
1878 	v = &env->stack[env->top_stack++];
1879 	v->t = t;
1880 	v->type_id = type_id;
1881 	v->next_member = 0;
1882 
1883 	if (env->resolve_mode == RESOLVE_TBD) {
1884 		if (btf_type_is_ptr(t))
1885 			env->resolve_mode = RESOLVE_PTR;
1886 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1887 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static void env_stack_set_next_member(struct btf_verifier_env *env,
1894 				      u16 next_member)
1895 {
1896 	env->stack[env->top_stack - 1].next_member = next_member;
1897 }
1898 
1899 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1900 				   u32 resolved_type_id,
1901 				   u32 resolved_size)
1902 {
1903 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1904 	struct btf *btf = env->btf;
1905 
1906 	type_id -= btf->start_id; /* adjust to local type id */
1907 	btf->resolved_sizes[type_id] = resolved_size;
1908 	btf->resolved_ids[type_id] = resolved_type_id;
1909 	env->visit_states[type_id] = RESOLVED;
1910 }
1911 
1912 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1913 {
1914 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1915 }
1916 
1917 /* Resolve the size of a passed-in "type"
1918  *
1919  * type: is an array (e.g. u32 array[x][y])
1920  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1921  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1922  *             corresponds to the return type.
1923  * *elem_type: u32
1924  * *elem_id: id of u32
1925  * *total_nelems: (x * y).  Hence, individual elem size is
1926  *                (*type_size / *total_nelems)
1927  * *type_id: id of type if it's changed within the function, 0 if not
1928  *
1929  * type: is not an array (e.g. const struct X)
1930  * return type: type "struct X"
1931  * *type_size: sizeof(struct X)
1932  * *elem_type: same as return type ("struct X")
1933  * *elem_id: 0
1934  * *total_nelems: 1
1935  * *type_id: id of type if it's changed within the function, 0 if not
1936  */
1937 static const struct btf_type *
1938 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1939 		   u32 *type_size, const struct btf_type **elem_type,
1940 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1941 {
1942 	const struct btf_type *array_type = NULL;
1943 	const struct btf_array *array = NULL;
1944 	u32 i, size, nelems = 1, id = 0;
1945 
1946 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1947 		switch (BTF_INFO_KIND(type->info)) {
1948 		/* type->size can be used */
1949 		case BTF_KIND_INT:
1950 		case BTF_KIND_STRUCT:
1951 		case BTF_KIND_UNION:
1952 		case BTF_KIND_ENUM:
1953 		case BTF_KIND_FLOAT:
1954 		case BTF_KIND_ENUM64:
1955 			size = type->size;
1956 			goto resolved;
1957 
1958 		case BTF_KIND_PTR:
1959 			size = sizeof(void *);
1960 			goto resolved;
1961 
1962 		/* Modifiers */
1963 		case BTF_KIND_TYPEDEF:
1964 		case BTF_KIND_VOLATILE:
1965 		case BTF_KIND_CONST:
1966 		case BTF_KIND_RESTRICT:
1967 		case BTF_KIND_TYPE_TAG:
1968 			id = type->type;
1969 			type = btf_type_by_id(btf, type->type);
1970 			break;
1971 
1972 		case BTF_KIND_ARRAY:
1973 			if (!array_type)
1974 				array_type = type;
1975 			array = btf_type_array(type);
1976 			if (nelems && array->nelems > U32_MAX / nelems)
1977 				return ERR_PTR(-EINVAL);
1978 			nelems *= array->nelems;
1979 			type = btf_type_by_id(btf, array->type);
1980 			break;
1981 
1982 		/* type without size */
1983 		default:
1984 			return ERR_PTR(-EINVAL);
1985 		}
1986 	}
1987 
1988 	return ERR_PTR(-EINVAL);
1989 
1990 resolved:
1991 	if (nelems && size > U32_MAX / nelems)
1992 		return ERR_PTR(-EINVAL);
1993 
1994 	*type_size = nelems * size;
1995 	if (total_nelems)
1996 		*total_nelems = nelems;
1997 	if (elem_type)
1998 		*elem_type = type;
1999 	if (elem_id)
2000 		*elem_id = array ? array->type : 0;
2001 	if (type_id && id)
2002 		*type_id = id;
2003 
2004 	return array_type ? : type;
2005 }
2006 
2007 const struct btf_type *
2008 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2009 		 u32 *type_size)
2010 {
2011 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2012 }
2013 
2014 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2015 {
2016 	while (type_id < btf->start_id)
2017 		btf = btf->base_btf;
2018 
2019 	return btf->resolved_ids[type_id - btf->start_id];
2020 }
2021 
2022 /* The input param "type_id" must point to a needs_resolve type */
2023 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2024 						  u32 *type_id)
2025 {
2026 	*type_id = btf_resolved_type_id(btf, *type_id);
2027 	return btf_type_by_id(btf, *type_id);
2028 }
2029 
2030 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2031 {
2032 	while (type_id < btf->start_id)
2033 		btf = btf->base_btf;
2034 
2035 	return btf->resolved_sizes[type_id - btf->start_id];
2036 }
2037 
2038 const struct btf_type *btf_type_id_size(const struct btf *btf,
2039 					u32 *type_id, u32 *ret_size)
2040 {
2041 	const struct btf_type *size_type;
2042 	u32 size_type_id = *type_id;
2043 	u32 size = 0;
2044 
2045 	size_type = btf_type_by_id(btf, size_type_id);
2046 	if (btf_type_nosize_or_null(size_type))
2047 		return NULL;
2048 
2049 	if (btf_type_has_size(size_type)) {
2050 		size = size_type->size;
2051 	} else if (btf_type_is_array(size_type)) {
2052 		size = btf_resolved_type_size(btf, size_type_id);
2053 	} else if (btf_type_is_ptr(size_type)) {
2054 		size = sizeof(void *);
2055 	} else {
2056 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2057 				 !btf_type_is_var(size_type)))
2058 			return NULL;
2059 
2060 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2061 		size_type = btf_type_by_id(btf, size_type_id);
2062 		if (btf_type_nosize_or_null(size_type))
2063 			return NULL;
2064 		else if (btf_type_has_size(size_type))
2065 			size = size_type->size;
2066 		else if (btf_type_is_array(size_type))
2067 			size = btf_resolved_type_size(btf, size_type_id);
2068 		else if (btf_type_is_ptr(size_type))
2069 			size = sizeof(void *);
2070 		else
2071 			return NULL;
2072 	}
2073 
2074 	*type_id = size_type_id;
2075 	if (ret_size)
2076 		*ret_size = size;
2077 
2078 	return size_type;
2079 }
2080 
2081 static int btf_df_check_member(struct btf_verifier_env *env,
2082 			       const struct btf_type *struct_type,
2083 			       const struct btf_member *member,
2084 			       const struct btf_type *member_type)
2085 {
2086 	btf_verifier_log_basic(env, struct_type,
2087 			       "Unsupported check_member");
2088 	return -EINVAL;
2089 }
2090 
2091 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2092 				     const struct btf_type *struct_type,
2093 				     const struct btf_member *member,
2094 				     const struct btf_type *member_type)
2095 {
2096 	btf_verifier_log_basic(env, struct_type,
2097 			       "Unsupported check_kflag_member");
2098 	return -EINVAL;
2099 }
2100 
2101 /* Used for ptr, array struct/union and float type members.
2102  * int, enum and modifier types have their specific callback functions.
2103  */
2104 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2105 					  const struct btf_type *struct_type,
2106 					  const struct btf_member *member,
2107 					  const struct btf_type *member_type)
2108 {
2109 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2110 		btf_verifier_log_member(env, struct_type, member,
2111 					"Invalid member bitfield_size");
2112 		return -EINVAL;
2113 	}
2114 
2115 	/* bitfield size is 0, so member->offset represents bit offset only.
2116 	 * It is safe to call non kflag check_member variants.
2117 	 */
2118 	return btf_type_ops(member_type)->check_member(env, struct_type,
2119 						       member,
2120 						       member_type);
2121 }
2122 
2123 static int btf_df_resolve(struct btf_verifier_env *env,
2124 			  const struct resolve_vertex *v)
2125 {
2126 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2127 	return -EINVAL;
2128 }
2129 
2130 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2131 			u32 type_id, void *data, u8 bits_offsets,
2132 			struct btf_show *show)
2133 {
2134 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2135 }
2136 
2137 static int btf_int_check_member(struct btf_verifier_env *env,
2138 				const struct btf_type *struct_type,
2139 				const struct btf_member *member,
2140 				const struct btf_type *member_type)
2141 {
2142 	u32 int_data = btf_type_int(member_type);
2143 	u32 struct_bits_off = member->offset;
2144 	u32 struct_size = struct_type->size;
2145 	u32 nr_copy_bits;
2146 	u32 bytes_offset;
2147 
2148 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2149 		btf_verifier_log_member(env, struct_type, member,
2150 					"bits_offset exceeds U32_MAX");
2151 		return -EINVAL;
2152 	}
2153 
2154 	struct_bits_off += BTF_INT_OFFSET(int_data);
2155 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2156 	nr_copy_bits = BTF_INT_BITS(int_data) +
2157 		BITS_PER_BYTE_MASKED(struct_bits_off);
2158 
2159 	if (nr_copy_bits > BITS_PER_U128) {
2160 		btf_verifier_log_member(env, struct_type, member,
2161 					"nr_copy_bits exceeds 128");
2162 		return -EINVAL;
2163 	}
2164 
2165 	if (struct_size < bytes_offset ||
2166 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2167 		btf_verifier_log_member(env, struct_type, member,
2168 					"Member exceeds struct_size");
2169 		return -EINVAL;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2176 				      const struct btf_type *struct_type,
2177 				      const struct btf_member *member,
2178 				      const struct btf_type *member_type)
2179 {
2180 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2181 	u32 int_data = btf_type_int(member_type);
2182 	u32 struct_size = struct_type->size;
2183 	u32 nr_copy_bits;
2184 
2185 	/* a regular int type is required for the kflag int member */
2186 	if (!btf_type_int_is_regular(member_type)) {
2187 		btf_verifier_log_member(env, struct_type, member,
2188 					"Invalid member base type");
2189 		return -EINVAL;
2190 	}
2191 
2192 	/* check sanity of bitfield size */
2193 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2194 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2195 	nr_int_data_bits = BTF_INT_BITS(int_data);
2196 	if (!nr_bits) {
2197 		/* Not a bitfield member, member offset must be at byte
2198 		 * boundary.
2199 		 */
2200 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2201 			btf_verifier_log_member(env, struct_type, member,
2202 						"Invalid member offset");
2203 			return -EINVAL;
2204 		}
2205 
2206 		nr_bits = nr_int_data_bits;
2207 	} else if (nr_bits > nr_int_data_bits) {
2208 		btf_verifier_log_member(env, struct_type, member,
2209 					"Invalid member bitfield_size");
2210 		return -EINVAL;
2211 	}
2212 
2213 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2214 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2215 	if (nr_copy_bits > BITS_PER_U128) {
2216 		btf_verifier_log_member(env, struct_type, member,
2217 					"nr_copy_bits exceeds 128");
2218 		return -EINVAL;
2219 	}
2220 
2221 	if (struct_size < bytes_offset ||
2222 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2223 		btf_verifier_log_member(env, struct_type, member,
2224 					"Member exceeds struct_size");
2225 		return -EINVAL;
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2232 			      const struct btf_type *t,
2233 			      u32 meta_left)
2234 {
2235 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2236 	u16 encoding;
2237 
2238 	if (meta_left < meta_needed) {
2239 		btf_verifier_log_basic(env, t,
2240 				       "meta_left:%u meta_needed:%u",
2241 				       meta_left, meta_needed);
2242 		return -EINVAL;
2243 	}
2244 
2245 	if (btf_type_vlen(t)) {
2246 		btf_verifier_log_type(env, t, "vlen != 0");
2247 		return -EINVAL;
2248 	}
2249 
2250 	if (btf_type_kflag(t)) {
2251 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2252 		return -EINVAL;
2253 	}
2254 
2255 	int_data = btf_type_int(t);
2256 	if (int_data & ~BTF_INT_MASK) {
2257 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2258 				       int_data);
2259 		return -EINVAL;
2260 	}
2261 
2262 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2263 
2264 	if (nr_bits > BITS_PER_U128) {
2265 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2266 				      BITS_PER_U128);
2267 		return -EINVAL;
2268 	}
2269 
2270 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2271 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2272 		return -EINVAL;
2273 	}
2274 
2275 	/*
2276 	 * Only one of the encoding bits is allowed and it
2277 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2278 	 * Multiple bits can be allowed later if it is found
2279 	 * to be insufficient.
2280 	 */
2281 	encoding = BTF_INT_ENCODING(int_data);
2282 	if (encoding &&
2283 	    encoding != BTF_INT_SIGNED &&
2284 	    encoding != BTF_INT_CHAR &&
2285 	    encoding != BTF_INT_BOOL) {
2286 		btf_verifier_log_type(env, t, "Unsupported encoding");
2287 		return -ENOTSUPP;
2288 	}
2289 
2290 	btf_verifier_log_type(env, t, NULL);
2291 
2292 	return meta_needed;
2293 }
2294 
2295 static void btf_int_log(struct btf_verifier_env *env,
2296 			const struct btf_type *t)
2297 {
2298 	int int_data = btf_type_int(t);
2299 
2300 	btf_verifier_log(env,
2301 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2302 			 t->size, BTF_INT_OFFSET(int_data),
2303 			 BTF_INT_BITS(int_data),
2304 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2305 }
2306 
2307 static void btf_int128_print(struct btf_show *show, void *data)
2308 {
2309 	/* data points to a __int128 number.
2310 	 * Suppose
2311 	 *     int128_num = *(__int128 *)data;
2312 	 * The below formulas shows what upper_num and lower_num represents:
2313 	 *     upper_num = int128_num >> 64;
2314 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2315 	 */
2316 	u64 upper_num, lower_num;
2317 
2318 #ifdef __BIG_ENDIAN_BITFIELD
2319 	upper_num = *(u64 *)data;
2320 	lower_num = *(u64 *)(data + 8);
2321 #else
2322 	upper_num = *(u64 *)(data + 8);
2323 	lower_num = *(u64 *)data;
2324 #endif
2325 	if (upper_num == 0)
2326 		btf_show_type_value(show, "0x%llx", lower_num);
2327 	else
2328 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2329 				     lower_num);
2330 }
2331 
2332 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2333 			     u16 right_shift_bits)
2334 {
2335 	u64 upper_num, lower_num;
2336 
2337 #ifdef __BIG_ENDIAN_BITFIELD
2338 	upper_num = print_num[0];
2339 	lower_num = print_num[1];
2340 #else
2341 	upper_num = print_num[1];
2342 	lower_num = print_num[0];
2343 #endif
2344 
2345 	/* shake out un-needed bits by shift/or operations */
2346 	if (left_shift_bits >= 64) {
2347 		upper_num = lower_num << (left_shift_bits - 64);
2348 		lower_num = 0;
2349 	} else {
2350 		upper_num = (upper_num << left_shift_bits) |
2351 			    (lower_num >> (64 - left_shift_bits));
2352 		lower_num = lower_num << left_shift_bits;
2353 	}
2354 
2355 	if (right_shift_bits >= 64) {
2356 		lower_num = upper_num >> (right_shift_bits - 64);
2357 		upper_num = 0;
2358 	} else {
2359 		lower_num = (lower_num >> right_shift_bits) |
2360 			    (upper_num << (64 - right_shift_bits));
2361 		upper_num = upper_num >> right_shift_bits;
2362 	}
2363 
2364 #ifdef __BIG_ENDIAN_BITFIELD
2365 	print_num[0] = upper_num;
2366 	print_num[1] = lower_num;
2367 #else
2368 	print_num[0] = lower_num;
2369 	print_num[1] = upper_num;
2370 #endif
2371 }
2372 
2373 static void btf_bitfield_show(void *data, u8 bits_offset,
2374 			      u8 nr_bits, struct btf_show *show)
2375 {
2376 	u16 left_shift_bits, right_shift_bits;
2377 	u8 nr_copy_bytes;
2378 	u8 nr_copy_bits;
2379 	u64 print_num[2] = {};
2380 
2381 	nr_copy_bits = nr_bits + bits_offset;
2382 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2383 
2384 	memcpy(print_num, data, nr_copy_bytes);
2385 
2386 #ifdef __BIG_ENDIAN_BITFIELD
2387 	left_shift_bits = bits_offset;
2388 #else
2389 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2390 #endif
2391 	right_shift_bits = BITS_PER_U128 - nr_bits;
2392 
2393 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2394 	btf_int128_print(show, print_num);
2395 }
2396 
2397 
2398 static void btf_int_bits_show(const struct btf *btf,
2399 			      const struct btf_type *t,
2400 			      void *data, u8 bits_offset,
2401 			      struct btf_show *show)
2402 {
2403 	u32 int_data = btf_type_int(t);
2404 	u8 nr_bits = BTF_INT_BITS(int_data);
2405 	u8 total_bits_offset;
2406 
2407 	/*
2408 	 * bits_offset is at most 7.
2409 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2410 	 */
2411 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2412 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2413 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2414 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2415 }
2416 
2417 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2418 			 u32 type_id, void *data, u8 bits_offset,
2419 			 struct btf_show *show)
2420 {
2421 	u32 int_data = btf_type_int(t);
2422 	u8 encoding = BTF_INT_ENCODING(int_data);
2423 	bool sign = encoding & BTF_INT_SIGNED;
2424 	u8 nr_bits = BTF_INT_BITS(int_data);
2425 	void *safe_data;
2426 
2427 	safe_data = btf_show_start_type(show, t, type_id, data);
2428 	if (!safe_data)
2429 		return;
2430 
2431 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2432 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2433 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2434 		goto out;
2435 	}
2436 
2437 	switch (nr_bits) {
2438 	case 128:
2439 		btf_int128_print(show, safe_data);
2440 		break;
2441 	case 64:
2442 		if (sign)
2443 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2444 		else
2445 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2446 		break;
2447 	case 32:
2448 		if (sign)
2449 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2450 		else
2451 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2452 		break;
2453 	case 16:
2454 		if (sign)
2455 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2456 		else
2457 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2458 		break;
2459 	case 8:
2460 		if (show->state.array_encoding == BTF_INT_CHAR) {
2461 			/* check for null terminator */
2462 			if (show->state.array_terminated)
2463 				break;
2464 			if (*(char *)data == '\0') {
2465 				show->state.array_terminated = 1;
2466 				break;
2467 			}
2468 			if (isprint(*(char *)data)) {
2469 				btf_show_type_value(show, "'%c'",
2470 						    *(char *)safe_data);
2471 				break;
2472 			}
2473 		}
2474 		if (sign)
2475 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2476 		else
2477 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2478 		break;
2479 	default:
2480 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2481 		break;
2482 	}
2483 out:
2484 	btf_show_end_type(show);
2485 }
2486 
2487 static const struct btf_kind_operations int_ops = {
2488 	.check_meta = btf_int_check_meta,
2489 	.resolve = btf_df_resolve,
2490 	.check_member = btf_int_check_member,
2491 	.check_kflag_member = btf_int_check_kflag_member,
2492 	.log_details = btf_int_log,
2493 	.show = btf_int_show,
2494 };
2495 
2496 static int btf_modifier_check_member(struct btf_verifier_env *env,
2497 				     const struct btf_type *struct_type,
2498 				     const struct btf_member *member,
2499 				     const struct btf_type *member_type)
2500 {
2501 	const struct btf_type *resolved_type;
2502 	u32 resolved_type_id = member->type;
2503 	struct btf_member resolved_member;
2504 	struct btf *btf = env->btf;
2505 
2506 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2507 	if (!resolved_type) {
2508 		btf_verifier_log_member(env, struct_type, member,
2509 					"Invalid member");
2510 		return -EINVAL;
2511 	}
2512 
2513 	resolved_member = *member;
2514 	resolved_member.type = resolved_type_id;
2515 
2516 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2517 							 &resolved_member,
2518 							 resolved_type);
2519 }
2520 
2521 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2522 					   const struct btf_type *struct_type,
2523 					   const struct btf_member *member,
2524 					   const struct btf_type *member_type)
2525 {
2526 	const struct btf_type *resolved_type;
2527 	u32 resolved_type_id = member->type;
2528 	struct btf_member resolved_member;
2529 	struct btf *btf = env->btf;
2530 
2531 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2532 	if (!resolved_type) {
2533 		btf_verifier_log_member(env, struct_type, member,
2534 					"Invalid member");
2535 		return -EINVAL;
2536 	}
2537 
2538 	resolved_member = *member;
2539 	resolved_member.type = resolved_type_id;
2540 
2541 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2542 							       &resolved_member,
2543 							       resolved_type);
2544 }
2545 
2546 static int btf_ptr_check_member(struct btf_verifier_env *env,
2547 				const struct btf_type *struct_type,
2548 				const struct btf_member *member,
2549 				const struct btf_type *member_type)
2550 {
2551 	u32 struct_size, struct_bits_off, bytes_offset;
2552 
2553 	struct_size = struct_type->size;
2554 	struct_bits_off = member->offset;
2555 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2556 
2557 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2558 		btf_verifier_log_member(env, struct_type, member,
2559 					"Member is not byte aligned");
2560 		return -EINVAL;
2561 	}
2562 
2563 	if (struct_size - bytes_offset < sizeof(void *)) {
2564 		btf_verifier_log_member(env, struct_type, member,
2565 					"Member exceeds struct_size");
2566 		return -EINVAL;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2573 				   const struct btf_type *t,
2574 				   u32 meta_left)
2575 {
2576 	const char *value;
2577 
2578 	if (btf_type_vlen(t)) {
2579 		btf_verifier_log_type(env, t, "vlen != 0");
2580 		return -EINVAL;
2581 	}
2582 
2583 	if (btf_type_kflag(t)) {
2584 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (!BTF_TYPE_ID_VALID(t->type)) {
2589 		btf_verifier_log_type(env, t, "Invalid type_id");
2590 		return -EINVAL;
2591 	}
2592 
2593 	/* typedef/type_tag type must have a valid name, and other ref types,
2594 	 * volatile, const, restrict, should have a null name.
2595 	 */
2596 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2597 		if (!t->name_off ||
2598 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2599 			btf_verifier_log_type(env, t, "Invalid name");
2600 			return -EINVAL;
2601 		}
2602 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2603 		value = btf_name_by_offset(env->btf, t->name_off);
2604 		if (!value || !value[0]) {
2605 			btf_verifier_log_type(env, t, "Invalid name");
2606 			return -EINVAL;
2607 		}
2608 	} else {
2609 		if (t->name_off) {
2610 			btf_verifier_log_type(env, t, "Invalid name");
2611 			return -EINVAL;
2612 		}
2613 	}
2614 
2615 	btf_verifier_log_type(env, t, NULL);
2616 
2617 	return 0;
2618 }
2619 
2620 static int btf_modifier_resolve(struct btf_verifier_env *env,
2621 				const struct resolve_vertex *v)
2622 {
2623 	const struct btf_type *t = v->t;
2624 	const struct btf_type *next_type;
2625 	u32 next_type_id = t->type;
2626 	struct btf *btf = env->btf;
2627 
2628 	next_type = btf_type_by_id(btf, next_type_id);
2629 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2630 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2631 		return -EINVAL;
2632 	}
2633 
2634 	if (!env_type_is_resolve_sink(env, next_type) &&
2635 	    !env_type_is_resolved(env, next_type_id))
2636 		return env_stack_push(env, next_type, next_type_id);
2637 
2638 	/* Figure out the resolved next_type_id with size.
2639 	 * They will be stored in the current modifier's
2640 	 * resolved_ids and resolved_sizes such that it can
2641 	 * save us a few type-following when we use it later (e.g. in
2642 	 * pretty print).
2643 	 */
2644 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2645 		if (env_type_is_resolved(env, next_type_id))
2646 			next_type = btf_type_id_resolve(btf, &next_type_id);
2647 
2648 		/* "typedef void new_void", "const void"...etc */
2649 		if (!btf_type_is_void(next_type) &&
2650 		    !btf_type_is_fwd(next_type) &&
2651 		    !btf_type_is_func_proto(next_type)) {
2652 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2653 			return -EINVAL;
2654 		}
2655 	}
2656 
2657 	env_stack_pop_resolved(env, next_type_id, 0);
2658 
2659 	return 0;
2660 }
2661 
2662 static int btf_var_resolve(struct btf_verifier_env *env,
2663 			   const struct resolve_vertex *v)
2664 {
2665 	const struct btf_type *next_type;
2666 	const struct btf_type *t = v->t;
2667 	u32 next_type_id = t->type;
2668 	struct btf *btf = env->btf;
2669 
2670 	next_type = btf_type_by_id(btf, next_type_id);
2671 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2672 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2673 		return -EINVAL;
2674 	}
2675 
2676 	if (!env_type_is_resolve_sink(env, next_type) &&
2677 	    !env_type_is_resolved(env, next_type_id))
2678 		return env_stack_push(env, next_type, next_type_id);
2679 
2680 	if (btf_type_is_modifier(next_type)) {
2681 		const struct btf_type *resolved_type;
2682 		u32 resolved_type_id;
2683 
2684 		resolved_type_id = next_type_id;
2685 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2686 
2687 		if (btf_type_is_ptr(resolved_type) &&
2688 		    !env_type_is_resolve_sink(env, resolved_type) &&
2689 		    !env_type_is_resolved(env, resolved_type_id))
2690 			return env_stack_push(env, resolved_type,
2691 					      resolved_type_id);
2692 	}
2693 
2694 	/* We must resolve to something concrete at this point, no
2695 	 * forward types or similar that would resolve to size of
2696 	 * zero is allowed.
2697 	 */
2698 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2699 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2700 		return -EINVAL;
2701 	}
2702 
2703 	env_stack_pop_resolved(env, next_type_id, 0);
2704 
2705 	return 0;
2706 }
2707 
2708 static int btf_ptr_resolve(struct btf_verifier_env *env,
2709 			   const struct resolve_vertex *v)
2710 {
2711 	const struct btf_type *next_type;
2712 	const struct btf_type *t = v->t;
2713 	u32 next_type_id = t->type;
2714 	struct btf *btf = env->btf;
2715 
2716 	next_type = btf_type_by_id(btf, next_type_id);
2717 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2718 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2719 		return -EINVAL;
2720 	}
2721 
2722 	if (!env_type_is_resolve_sink(env, next_type) &&
2723 	    !env_type_is_resolved(env, next_type_id))
2724 		return env_stack_push(env, next_type, next_type_id);
2725 
2726 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2727 	 * the modifier may have stopped resolving when it was resolved
2728 	 * to a ptr (last-resolved-ptr).
2729 	 *
2730 	 * We now need to continue from the last-resolved-ptr to
2731 	 * ensure the last-resolved-ptr will not referring back to
2732 	 * the current ptr (t).
2733 	 */
2734 	if (btf_type_is_modifier(next_type)) {
2735 		const struct btf_type *resolved_type;
2736 		u32 resolved_type_id;
2737 
2738 		resolved_type_id = next_type_id;
2739 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2740 
2741 		if (btf_type_is_ptr(resolved_type) &&
2742 		    !env_type_is_resolve_sink(env, resolved_type) &&
2743 		    !env_type_is_resolved(env, resolved_type_id))
2744 			return env_stack_push(env, resolved_type,
2745 					      resolved_type_id);
2746 	}
2747 
2748 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2749 		if (env_type_is_resolved(env, next_type_id))
2750 			next_type = btf_type_id_resolve(btf, &next_type_id);
2751 
2752 		if (!btf_type_is_void(next_type) &&
2753 		    !btf_type_is_fwd(next_type) &&
2754 		    !btf_type_is_func_proto(next_type)) {
2755 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2756 			return -EINVAL;
2757 		}
2758 	}
2759 
2760 	env_stack_pop_resolved(env, next_type_id, 0);
2761 
2762 	return 0;
2763 }
2764 
2765 static void btf_modifier_show(const struct btf *btf,
2766 			      const struct btf_type *t,
2767 			      u32 type_id, void *data,
2768 			      u8 bits_offset, struct btf_show *show)
2769 {
2770 	if (btf->resolved_ids)
2771 		t = btf_type_id_resolve(btf, &type_id);
2772 	else
2773 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2774 
2775 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2776 }
2777 
2778 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2779 			 u32 type_id, void *data, u8 bits_offset,
2780 			 struct btf_show *show)
2781 {
2782 	t = btf_type_id_resolve(btf, &type_id);
2783 
2784 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2785 }
2786 
2787 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2788 			 u32 type_id, void *data, u8 bits_offset,
2789 			 struct btf_show *show)
2790 {
2791 	void *safe_data;
2792 
2793 	safe_data = btf_show_start_type(show, t, type_id, data);
2794 	if (!safe_data)
2795 		return;
2796 
2797 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2798 	if (show->flags & BTF_SHOW_PTR_RAW)
2799 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2800 	else
2801 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2802 	btf_show_end_type(show);
2803 }
2804 
2805 static void btf_ref_type_log(struct btf_verifier_env *env,
2806 			     const struct btf_type *t)
2807 {
2808 	btf_verifier_log(env, "type_id=%u", t->type);
2809 }
2810 
2811 static const struct btf_kind_operations modifier_ops = {
2812 	.check_meta = btf_ref_type_check_meta,
2813 	.resolve = btf_modifier_resolve,
2814 	.check_member = btf_modifier_check_member,
2815 	.check_kflag_member = btf_modifier_check_kflag_member,
2816 	.log_details = btf_ref_type_log,
2817 	.show = btf_modifier_show,
2818 };
2819 
2820 static const struct btf_kind_operations ptr_ops = {
2821 	.check_meta = btf_ref_type_check_meta,
2822 	.resolve = btf_ptr_resolve,
2823 	.check_member = btf_ptr_check_member,
2824 	.check_kflag_member = btf_generic_check_kflag_member,
2825 	.log_details = btf_ref_type_log,
2826 	.show = btf_ptr_show,
2827 };
2828 
2829 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2830 			      const struct btf_type *t,
2831 			      u32 meta_left)
2832 {
2833 	if (btf_type_vlen(t)) {
2834 		btf_verifier_log_type(env, t, "vlen != 0");
2835 		return -EINVAL;
2836 	}
2837 
2838 	if (t->type) {
2839 		btf_verifier_log_type(env, t, "type != 0");
2840 		return -EINVAL;
2841 	}
2842 
2843 	/* fwd type must have a valid name */
2844 	if (!t->name_off ||
2845 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2846 		btf_verifier_log_type(env, t, "Invalid name");
2847 		return -EINVAL;
2848 	}
2849 
2850 	btf_verifier_log_type(env, t, NULL);
2851 
2852 	return 0;
2853 }
2854 
2855 static void btf_fwd_type_log(struct btf_verifier_env *env,
2856 			     const struct btf_type *t)
2857 {
2858 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2859 }
2860 
2861 static const struct btf_kind_operations fwd_ops = {
2862 	.check_meta = btf_fwd_check_meta,
2863 	.resolve = btf_df_resolve,
2864 	.check_member = btf_df_check_member,
2865 	.check_kflag_member = btf_df_check_kflag_member,
2866 	.log_details = btf_fwd_type_log,
2867 	.show = btf_df_show,
2868 };
2869 
2870 static int btf_array_check_member(struct btf_verifier_env *env,
2871 				  const struct btf_type *struct_type,
2872 				  const struct btf_member *member,
2873 				  const struct btf_type *member_type)
2874 {
2875 	u32 struct_bits_off = member->offset;
2876 	u32 struct_size, bytes_offset;
2877 	u32 array_type_id, array_size;
2878 	struct btf *btf = env->btf;
2879 
2880 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2881 		btf_verifier_log_member(env, struct_type, member,
2882 					"Member is not byte aligned");
2883 		return -EINVAL;
2884 	}
2885 
2886 	array_type_id = member->type;
2887 	btf_type_id_size(btf, &array_type_id, &array_size);
2888 	struct_size = struct_type->size;
2889 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2890 	if (struct_size - bytes_offset < array_size) {
2891 		btf_verifier_log_member(env, struct_type, member,
2892 					"Member exceeds struct_size");
2893 		return -EINVAL;
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2900 				const struct btf_type *t,
2901 				u32 meta_left)
2902 {
2903 	const struct btf_array *array = btf_type_array(t);
2904 	u32 meta_needed = sizeof(*array);
2905 
2906 	if (meta_left < meta_needed) {
2907 		btf_verifier_log_basic(env, t,
2908 				       "meta_left:%u meta_needed:%u",
2909 				       meta_left, meta_needed);
2910 		return -EINVAL;
2911 	}
2912 
2913 	/* array type should not have a name */
2914 	if (t->name_off) {
2915 		btf_verifier_log_type(env, t, "Invalid name");
2916 		return -EINVAL;
2917 	}
2918 
2919 	if (btf_type_vlen(t)) {
2920 		btf_verifier_log_type(env, t, "vlen != 0");
2921 		return -EINVAL;
2922 	}
2923 
2924 	if (btf_type_kflag(t)) {
2925 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (t->size) {
2930 		btf_verifier_log_type(env, t, "size != 0");
2931 		return -EINVAL;
2932 	}
2933 
2934 	/* Array elem type and index type cannot be in type void,
2935 	 * so !array->type and !array->index_type are not allowed.
2936 	 */
2937 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2938 		btf_verifier_log_type(env, t, "Invalid elem");
2939 		return -EINVAL;
2940 	}
2941 
2942 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2943 		btf_verifier_log_type(env, t, "Invalid index");
2944 		return -EINVAL;
2945 	}
2946 
2947 	btf_verifier_log_type(env, t, NULL);
2948 
2949 	return meta_needed;
2950 }
2951 
2952 static int btf_array_resolve(struct btf_verifier_env *env,
2953 			     const struct resolve_vertex *v)
2954 {
2955 	const struct btf_array *array = btf_type_array(v->t);
2956 	const struct btf_type *elem_type, *index_type;
2957 	u32 elem_type_id, index_type_id;
2958 	struct btf *btf = env->btf;
2959 	u32 elem_size;
2960 
2961 	/* Check array->index_type */
2962 	index_type_id = array->index_type;
2963 	index_type = btf_type_by_id(btf, index_type_id);
2964 	if (btf_type_nosize_or_null(index_type) ||
2965 	    btf_type_is_resolve_source_only(index_type)) {
2966 		btf_verifier_log_type(env, v->t, "Invalid index");
2967 		return -EINVAL;
2968 	}
2969 
2970 	if (!env_type_is_resolve_sink(env, index_type) &&
2971 	    !env_type_is_resolved(env, index_type_id))
2972 		return env_stack_push(env, index_type, index_type_id);
2973 
2974 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2975 	if (!index_type || !btf_type_is_int(index_type) ||
2976 	    !btf_type_int_is_regular(index_type)) {
2977 		btf_verifier_log_type(env, v->t, "Invalid index");
2978 		return -EINVAL;
2979 	}
2980 
2981 	/* Check array->type */
2982 	elem_type_id = array->type;
2983 	elem_type = btf_type_by_id(btf, elem_type_id);
2984 	if (btf_type_nosize_or_null(elem_type) ||
2985 	    btf_type_is_resolve_source_only(elem_type)) {
2986 		btf_verifier_log_type(env, v->t,
2987 				      "Invalid elem");
2988 		return -EINVAL;
2989 	}
2990 
2991 	if (!env_type_is_resolve_sink(env, elem_type) &&
2992 	    !env_type_is_resolved(env, elem_type_id))
2993 		return env_stack_push(env, elem_type, elem_type_id);
2994 
2995 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2996 	if (!elem_type) {
2997 		btf_verifier_log_type(env, v->t, "Invalid elem");
2998 		return -EINVAL;
2999 	}
3000 
3001 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3002 		btf_verifier_log_type(env, v->t, "Invalid array of int");
3003 		return -EINVAL;
3004 	}
3005 
3006 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3007 		btf_verifier_log_type(env, v->t,
3008 				      "Array size overflows U32_MAX");
3009 		return -EINVAL;
3010 	}
3011 
3012 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3013 
3014 	return 0;
3015 }
3016 
3017 static void btf_array_log(struct btf_verifier_env *env,
3018 			  const struct btf_type *t)
3019 {
3020 	const struct btf_array *array = btf_type_array(t);
3021 
3022 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3023 			 array->type, array->index_type, array->nelems);
3024 }
3025 
3026 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3027 			     u32 type_id, void *data, u8 bits_offset,
3028 			     struct btf_show *show)
3029 {
3030 	const struct btf_array *array = btf_type_array(t);
3031 	const struct btf_kind_operations *elem_ops;
3032 	const struct btf_type *elem_type;
3033 	u32 i, elem_size = 0, elem_type_id;
3034 	u16 encoding = 0;
3035 
3036 	elem_type_id = array->type;
3037 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3038 	if (elem_type && btf_type_has_size(elem_type))
3039 		elem_size = elem_type->size;
3040 
3041 	if (elem_type && btf_type_is_int(elem_type)) {
3042 		u32 int_type = btf_type_int(elem_type);
3043 
3044 		encoding = BTF_INT_ENCODING(int_type);
3045 
3046 		/*
3047 		 * BTF_INT_CHAR encoding never seems to be set for
3048 		 * char arrays, so if size is 1 and element is
3049 		 * printable as a char, we'll do that.
3050 		 */
3051 		if (elem_size == 1)
3052 			encoding = BTF_INT_CHAR;
3053 	}
3054 
3055 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3056 		return;
3057 
3058 	if (!elem_type)
3059 		goto out;
3060 	elem_ops = btf_type_ops(elem_type);
3061 
3062 	for (i = 0; i < array->nelems; i++) {
3063 
3064 		btf_show_start_array_member(show);
3065 
3066 		elem_ops->show(btf, elem_type, elem_type_id, data,
3067 			       bits_offset, show);
3068 		data += elem_size;
3069 
3070 		btf_show_end_array_member(show);
3071 
3072 		if (show->state.array_terminated)
3073 			break;
3074 	}
3075 out:
3076 	btf_show_end_array_type(show);
3077 }
3078 
3079 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3080 			   u32 type_id, void *data, u8 bits_offset,
3081 			   struct btf_show *show)
3082 {
3083 	const struct btf_member *m = show->state.member;
3084 
3085 	/*
3086 	 * First check if any members would be shown (are non-zero).
3087 	 * See comments above "struct btf_show" definition for more
3088 	 * details on how this works at a high-level.
3089 	 */
3090 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3091 		if (!show->state.depth_check) {
3092 			show->state.depth_check = show->state.depth + 1;
3093 			show->state.depth_to_show = 0;
3094 		}
3095 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3096 		show->state.member = m;
3097 
3098 		if (show->state.depth_check != show->state.depth + 1)
3099 			return;
3100 		show->state.depth_check = 0;
3101 
3102 		if (show->state.depth_to_show <= show->state.depth)
3103 			return;
3104 		/*
3105 		 * Reaching here indicates we have recursed and found
3106 		 * non-zero array member(s).
3107 		 */
3108 	}
3109 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3110 }
3111 
3112 static const struct btf_kind_operations array_ops = {
3113 	.check_meta = btf_array_check_meta,
3114 	.resolve = btf_array_resolve,
3115 	.check_member = btf_array_check_member,
3116 	.check_kflag_member = btf_generic_check_kflag_member,
3117 	.log_details = btf_array_log,
3118 	.show = btf_array_show,
3119 };
3120 
3121 static int btf_struct_check_member(struct btf_verifier_env *env,
3122 				   const struct btf_type *struct_type,
3123 				   const struct btf_member *member,
3124 				   const struct btf_type *member_type)
3125 {
3126 	u32 struct_bits_off = member->offset;
3127 	u32 struct_size, bytes_offset;
3128 
3129 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3130 		btf_verifier_log_member(env, struct_type, member,
3131 					"Member is not byte aligned");
3132 		return -EINVAL;
3133 	}
3134 
3135 	struct_size = struct_type->size;
3136 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3137 	if (struct_size - bytes_offset < member_type->size) {
3138 		btf_verifier_log_member(env, struct_type, member,
3139 					"Member exceeds struct_size");
3140 		return -EINVAL;
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3147 				 const struct btf_type *t,
3148 				 u32 meta_left)
3149 {
3150 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3151 	const struct btf_member *member;
3152 	u32 meta_needed, last_offset;
3153 	struct btf *btf = env->btf;
3154 	u32 struct_size = t->size;
3155 	u32 offset;
3156 	u16 i;
3157 
3158 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3159 	if (meta_left < meta_needed) {
3160 		btf_verifier_log_basic(env, t,
3161 				       "meta_left:%u meta_needed:%u",
3162 				       meta_left, meta_needed);
3163 		return -EINVAL;
3164 	}
3165 
3166 	/* struct type either no name or a valid one */
3167 	if (t->name_off &&
3168 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3169 		btf_verifier_log_type(env, t, "Invalid name");
3170 		return -EINVAL;
3171 	}
3172 
3173 	btf_verifier_log_type(env, t, NULL);
3174 
3175 	last_offset = 0;
3176 	for_each_member(i, t, member) {
3177 		if (!btf_name_offset_valid(btf, member->name_off)) {
3178 			btf_verifier_log_member(env, t, member,
3179 						"Invalid member name_offset:%u",
3180 						member->name_off);
3181 			return -EINVAL;
3182 		}
3183 
3184 		/* struct member either no name or a valid one */
3185 		if (member->name_off &&
3186 		    !btf_name_valid_identifier(btf, member->name_off)) {
3187 			btf_verifier_log_member(env, t, member, "Invalid name");
3188 			return -EINVAL;
3189 		}
3190 		/* A member cannot be in type void */
3191 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3192 			btf_verifier_log_member(env, t, member,
3193 						"Invalid type_id");
3194 			return -EINVAL;
3195 		}
3196 
3197 		offset = __btf_member_bit_offset(t, member);
3198 		if (is_union && offset) {
3199 			btf_verifier_log_member(env, t, member,
3200 						"Invalid member bits_offset");
3201 			return -EINVAL;
3202 		}
3203 
3204 		/*
3205 		 * ">" instead of ">=" because the last member could be
3206 		 * "char a[0];"
3207 		 */
3208 		if (last_offset > offset) {
3209 			btf_verifier_log_member(env, t, member,
3210 						"Invalid member bits_offset");
3211 			return -EINVAL;
3212 		}
3213 
3214 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3215 			btf_verifier_log_member(env, t, member,
3216 						"Member bits_offset exceeds its struct size");
3217 			return -EINVAL;
3218 		}
3219 
3220 		btf_verifier_log_member(env, t, member, NULL);
3221 		last_offset = offset;
3222 	}
3223 
3224 	return meta_needed;
3225 }
3226 
3227 static int btf_struct_resolve(struct btf_verifier_env *env,
3228 			      const struct resolve_vertex *v)
3229 {
3230 	const struct btf_member *member;
3231 	int err;
3232 	u16 i;
3233 
3234 	/* Before continue resolving the next_member,
3235 	 * ensure the last member is indeed resolved to a
3236 	 * type with size info.
3237 	 */
3238 	if (v->next_member) {
3239 		const struct btf_type *last_member_type;
3240 		const struct btf_member *last_member;
3241 		u32 last_member_type_id;
3242 
3243 		last_member = btf_type_member(v->t) + v->next_member - 1;
3244 		last_member_type_id = last_member->type;
3245 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3246 						       last_member_type_id)))
3247 			return -EINVAL;
3248 
3249 		last_member_type = btf_type_by_id(env->btf,
3250 						  last_member_type_id);
3251 		if (btf_type_kflag(v->t))
3252 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3253 								last_member,
3254 								last_member_type);
3255 		else
3256 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3257 								last_member,
3258 								last_member_type);
3259 		if (err)
3260 			return err;
3261 	}
3262 
3263 	for_each_member_from(i, v->next_member, v->t, member) {
3264 		u32 member_type_id = member->type;
3265 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3266 								member_type_id);
3267 
3268 		if (btf_type_nosize_or_null(member_type) ||
3269 		    btf_type_is_resolve_source_only(member_type)) {
3270 			btf_verifier_log_member(env, v->t, member,
3271 						"Invalid member");
3272 			return -EINVAL;
3273 		}
3274 
3275 		if (!env_type_is_resolve_sink(env, member_type) &&
3276 		    !env_type_is_resolved(env, member_type_id)) {
3277 			env_stack_set_next_member(env, i + 1);
3278 			return env_stack_push(env, member_type, member_type_id);
3279 		}
3280 
3281 		if (btf_type_kflag(v->t))
3282 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3283 									    member,
3284 									    member_type);
3285 		else
3286 			err = btf_type_ops(member_type)->check_member(env, v->t,
3287 								      member,
3288 								      member_type);
3289 		if (err)
3290 			return err;
3291 	}
3292 
3293 	env_stack_pop_resolved(env, 0, 0);
3294 
3295 	return 0;
3296 }
3297 
3298 static void btf_struct_log(struct btf_verifier_env *env,
3299 			   const struct btf_type *t)
3300 {
3301 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3302 }
3303 
3304 enum {
3305 	BTF_FIELD_IGNORE = 0,
3306 	BTF_FIELD_FOUND  = 1,
3307 };
3308 
3309 struct btf_field_info {
3310 	enum btf_field_type type;
3311 	u32 off;
3312 	union {
3313 		struct {
3314 			u32 type_id;
3315 		} kptr;
3316 		struct {
3317 			const char *node_name;
3318 			u32 value_btf_id;
3319 		} graph_root;
3320 	};
3321 };
3322 
3323 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3324 			   u32 off, int sz, enum btf_field_type field_type,
3325 			   struct btf_field_info *info)
3326 {
3327 	if (!__btf_type_is_struct(t))
3328 		return BTF_FIELD_IGNORE;
3329 	if (t->size != sz)
3330 		return BTF_FIELD_IGNORE;
3331 	info->type = field_type;
3332 	info->off = off;
3333 	return BTF_FIELD_FOUND;
3334 }
3335 
3336 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3337 			 u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3338 {
3339 	enum btf_field_type type;
3340 	u32 res_id;
3341 
3342 	/* Permit modifiers on the pointer itself */
3343 	if (btf_type_is_volatile(t))
3344 		t = btf_type_by_id(btf, t->type);
3345 	/* For PTR, sz is always == 8 */
3346 	if (!btf_type_is_ptr(t))
3347 		return BTF_FIELD_IGNORE;
3348 	t = btf_type_by_id(btf, t->type);
3349 
3350 	if (!btf_type_is_type_tag(t))
3351 		return BTF_FIELD_IGNORE;
3352 	/* Reject extra tags */
3353 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3354 		return -EINVAL;
3355 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3356 		type = BPF_KPTR_UNREF;
3357 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3358 		type = BPF_KPTR_REF;
3359 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3360 		type = BPF_KPTR_PERCPU;
3361 	else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off)))
3362 		type = BPF_UPTR;
3363 	else
3364 		return -EINVAL;
3365 
3366 	if (!(type & field_mask))
3367 		return BTF_FIELD_IGNORE;
3368 
3369 	/* Get the base type */
3370 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3371 	/* Only pointer to struct is allowed */
3372 	if (!__btf_type_is_struct(t))
3373 		return -EINVAL;
3374 
3375 	info->type = type;
3376 	info->off = off;
3377 	info->kptr.type_id = res_id;
3378 	return BTF_FIELD_FOUND;
3379 }
3380 
3381 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3382 			   int comp_idx, const char *tag_key, int last_id)
3383 {
3384 	int len = strlen(tag_key);
3385 	int i, n;
3386 
3387 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3388 		const struct btf_type *t = btf_type_by_id(btf, i);
3389 
3390 		if (!btf_type_is_decl_tag(t))
3391 			continue;
3392 		if (pt != btf_type_by_id(btf, t->type))
3393 			continue;
3394 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3395 			continue;
3396 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3397 			continue;
3398 		return i;
3399 	}
3400 	return -ENOENT;
3401 }
3402 
3403 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3404 				    int comp_idx, const char *tag_key)
3405 {
3406 	const char *value = NULL;
3407 	const struct btf_type *t;
3408 	int len, id;
3409 
3410 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3411 	if (id < 0)
3412 		return ERR_PTR(id);
3413 
3414 	t = btf_type_by_id(btf, id);
3415 	len = strlen(tag_key);
3416 	value = __btf_name_by_offset(btf, t->name_off) + len;
3417 
3418 	/* Prevent duplicate entries for same type */
3419 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3420 	if (id >= 0)
3421 		return ERR_PTR(-EEXIST);
3422 
3423 	return value;
3424 }
3425 
3426 static int
3427 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3428 		    const struct btf_type *t, int comp_idx, u32 off,
3429 		    int sz, struct btf_field_info *info,
3430 		    enum btf_field_type head_type)
3431 {
3432 	const char *node_field_name;
3433 	const char *value_type;
3434 	s32 id;
3435 
3436 	if (!__btf_type_is_struct(t))
3437 		return BTF_FIELD_IGNORE;
3438 	if (t->size != sz)
3439 		return BTF_FIELD_IGNORE;
3440 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3441 	if (IS_ERR(value_type))
3442 		return -EINVAL;
3443 	node_field_name = strstr(value_type, ":");
3444 	if (!node_field_name)
3445 		return -EINVAL;
3446 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3447 	if (!value_type)
3448 		return -ENOMEM;
3449 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3450 	kfree(value_type);
3451 	if (id < 0)
3452 		return id;
3453 	node_field_name++;
3454 	if (str_is_empty(node_field_name))
3455 		return -EINVAL;
3456 	info->type = head_type;
3457 	info->off = off;
3458 	info->graph_root.value_btf_id = id;
3459 	info->graph_root.node_name = node_field_name;
3460 	return BTF_FIELD_FOUND;
3461 }
3462 
3463 #define field_mask_test_name(field_type, field_type_str) \
3464 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3465 		type = field_type;					\
3466 		goto end;						\
3467 	}
3468 
3469 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3470 			      u32 field_mask, u32 *seen_mask,
3471 			      int *align, int *sz)
3472 {
3473 	int type = 0;
3474 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3475 
3476 	if (field_mask & BPF_SPIN_LOCK) {
3477 		if (!strcmp(name, "bpf_spin_lock")) {
3478 			if (*seen_mask & BPF_SPIN_LOCK)
3479 				return -E2BIG;
3480 			*seen_mask |= BPF_SPIN_LOCK;
3481 			type = BPF_SPIN_LOCK;
3482 			goto end;
3483 		}
3484 	}
3485 	if (field_mask & BPF_TIMER) {
3486 		if (!strcmp(name, "bpf_timer")) {
3487 			if (*seen_mask & BPF_TIMER)
3488 				return -E2BIG;
3489 			*seen_mask |= BPF_TIMER;
3490 			type = BPF_TIMER;
3491 			goto end;
3492 		}
3493 	}
3494 	if (field_mask & BPF_WORKQUEUE) {
3495 		if (!strcmp(name, "bpf_wq")) {
3496 			if (*seen_mask & BPF_WORKQUEUE)
3497 				return -E2BIG;
3498 			*seen_mask |= BPF_WORKQUEUE;
3499 			type = BPF_WORKQUEUE;
3500 			goto end;
3501 		}
3502 	}
3503 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3504 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3505 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3506 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3507 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3508 
3509 	/* Only return BPF_KPTR when all other types with matchable names fail */
3510 	if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3511 		type = BPF_KPTR_REF;
3512 		goto end;
3513 	}
3514 	return 0;
3515 end:
3516 	*sz = btf_field_type_size(type);
3517 	*align = btf_field_type_align(type);
3518 	return type;
3519 }
3520 
3521 #undef field_mask_test_name
3522 
3523 /* Repeat a number of fields for a specified number of times.
3524  *
3525  * Copy the fields starting from the first field and repeat them for
3526  * repeat_cnt times. The fields are repeated by adding the offset of each
3527  * field with
3528  *   (i + 1) * elem_size
3529  * where i is the repeat index and elem_size is the size of an element.
3530  */
3531 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3532 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3533 {
3534 	u32 i, j;
3535 	u32 cur;
3536 
3537 	/* Ensure not repeating fields that should not be repeated. */
3538 	for (i = 0; i < field_cnt; i++) {
3539 		switch (info[i].type) {
3540 		case BPF_KPTR_UNREF:
3541 		case BPF_KPTR_REF:
3542 		case BPF_KPTR_PERCPU:
3543 		case BPF_UPTR:
3544 		case BPF_LIST_HEAD:
3545 		case BPF_RB_ROOT:
3546 			break;
3547 		default:
3548 			return -EINVAL;
3549 		}
3550 	}
3551 
3552 	/* The type of struct size or variable size is u32,
3553 	 * so the multiplication will not overflow.
3554 	 */
3555 	if (field_cnt * (repeat_cnt + 1) > info_cnt)
3556 		return -E2BIG;
3557 
3558 	cur = field_cnt;
3559 	for (i = 0; i < repeat_cnt; i++) {
3560 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3561 		for (j = 0; j < field_cnt; j++)
3562 			info[cur++].off += (i + 1) * elem_size;
3563 	}
3564 
3565 	return 0;
3566 }
3567 
3568 static int btf_find_struct_field(const struct btf *btf,
3569 				 const struct btf_type *t, u32 field_mask,
3570 				 struct btf_field_info *info, int info_cnt,
3571 				 u32 level);
3572 
3573 /* Find special fields in the struct type of a field.
3574  *
3575  * This function is used to find fields of special types that is not a
3576  * global variable or a direct field of a struct type. It also handles the
3577  * repetition if it is the element type of an array.
3578  */
3579 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3580 				  u32 off, u32 nelems,
3581 				  u32 field_mask, struct btf_field_info *info,
3582 				  int info_cnt, u32 level)
3583 {
3584 	int ret, err, i;
3585 
3586 	level++;
3587 	if (level >= MAX_RESOLVE_DEPTH)
3588 		return -E2BIG;
3589 
3590 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3591 
3592 	if (ret <= 0)
3593 		return ret;
3594 
3595 	/* Shift the offsets of the nested struct fields to the offsets
3596 	 * related to the container.
3597 	 */
3598 	for (i = 0; i < ret; i++)
3599 		info[i].off += off;
3600 
3601 	if (nelems > 1) {
3602 		err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3603 		if (err == 0)
3604 			ret *= nelems;
3605 		else
3606 			ret = err;
3607 	}
3608 
3609 	return ret;
3610 }
3611 
3612 static int btf_find_field_one(const struct btf *btf,
3613 			      const struct btf_type *var,
3614 			      const struct btf_type *var_type,
3615 			      int var_idx,
3616 			      u32 off, u32 expected_size,
3617 			      u32 field_mask, u32 *seen_mask,
3618 			      struct btf_field_info *info, int info_cnt,
3619 			      u32 level)
3620 {
3621 	int ret, align, sz, field_type;
3622 	struct btf_field_info tmp;
3623 	const struct btf_array *array;
3624 	u32 i, nelems = 1;
3625 
3626 	/* Walk into array types to find the element type and the number of
3627 	 * elements in the (flattened) array.
3628 	 */
3629 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3630 		array = btf_array(var_type);
3631 		nelems *= array->nelems;
3632 		var_type = btf_type_by_id(btf, array->type);
3633 	}
3634 	if (i == MAX_RESOLVE_DEPTH)
3635 		return -E2BIG;
3636 	if (nelems == 0)
3637 		return 0;
3638 
3639 	field_type = btf_get_field_type(btf, var_type,
3640 					field_mask, seen_mask, &align, &sz);
3641 	/* Look into variables of struct types */
3642 	if (!field_type && __btf_type_is_struct(var_type)) {
3643 		sz = var_type->size;
3644 		if (expected_size && expected_size != sz * nelems)
3645 			return 0;
3646 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3647 					     &info[0], info_cnt, level);
3648 		return ret;
3649 	}
3650 
3651 	if (field_type == 0)
3652 		return 0;
3653 	if (field_type < 0)
3654 		return field_type;
3655 
3656 	if (expected_size && expected_size != sz * nelems)
3657 		return 0;
3658 	if (off % align)
3659 		return 0;
3660 
3661 	switch (field_type) {
3662 	case BPF_SPIN_LOCK:
3663 	case BPF_TIMER:
3664 	case BPF_WORKQUEUE:
3665 	case BPF_LIST_NODE:
3666 	case BPF_RB_NODE:
3667 	case BPF_REFCOUNT:
3668 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3669 				      info_cnt ? &info[0] : &tmp);
3670 		if (ret < 0)
3671 			return ret;
3672 		break;
3673 	case BPF_KPTR_UNREF:
3674 	case BPF_KPTR_REF:
3675 	case BPF_KPTR_PERCPU:
3676 	case BPF_UPTR:
3677 		ret = btf_find_kptr(btf, var_type, off, sz,
3678 				    info_cnt ? &info[0] : &tmp, field_mask);
3679 		if (ret < 0)
3680 			return ret;
3681 		break;
3682 	case BPF_LIST_HEAD:
3683 	case BPF_RB_ROOT:
3684 		ret = btf_find_graph_root(btf, var, var_type,
3685 					  var_idx, off, sz,
3686 					  info_cnt ? &info[0] : &tmp,
3687 					  field_type);
3688 		if (ret < 0)
3689 			return ret;
3690 		break;
3691 	default:
3692 		return -EFAULT;
3693 	}
3694 
3695 	if (ret == BTF_FIELD_IGNORE)
3696 		return 0;
3697 	if (!info_cnt)
3698 		return -E2BIG;
3699 	if (nelems > 1) {
3700 		ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3701 		if (ret < 0)
3702 			return ret;
3703 	}
3704 	return nelems;
3705 }
3706 
3707 static int btf_find_struct_field(const struct btf *btf,
3708 				 const struct btf_type *t, u32 field_mask,
3709 				 struct btf_field_info *info, int info_cnt,
3710 				 u32 level)
3711 {
3712 	int ret, idx = 0;
3713 	const struct btf_member *member;
3714 	u32 i, off, seen_mask = 0;
3715 
3716 	for_each_member(i, t, member) {
3717 		const struct btf_type *member_type = btf_type_by_id(btf,
3718 								    member->type);
3719 
3720 		off = __btf_member_bit_offset(t, member);
3721 		if (off % 8)
3722 			/* valid C code cannot generate such BTF */
3723 			return -EINVAL;
3724 		off /= 8;
3725 
3726 		ret = btf_find_field_one(btf, t, member_type, i,
3727 					 off, 0,
3728 					 field_mask, &seen_mask,
3729 					 &info[idx], info_cnt - idx, level);
3730 		if (ret < 0)
3731 			return ret;
3732 		idx += ret;
3733 	}
3734 	return idx;
3735 }
3736 
3737 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3738 				u32 field_mask, struct btf_field_info *info,
3739 				int info_cnt, u32 level)
3740 {
3741 	int ret, idx = 0;
3742 	const struct btf_var_secinfo *vsi;
3743 	u32 i, off, seen_mask = 0;
3744 
3745 	for_each_vsi(i, t, vsi) {
3746 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3747 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3748 
3749 		off = vsi->offset;
3750 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3751 					 field_mask, &seen_mask,
3752 					 &info[idx], info_cnt - idx,
3753 					 level);
3754 		if (ret < 0)
3755 			return ret;
3756 		idx += ret;
3757 	}
3758 	return idx;
3759 }
3760 
3761 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3762 			  u32 field_mask, struct btf_field_info *info,
3763 			  int info_cnt)
3764 {
3765 	if (__btf_type_is_struct(t))
3766 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3767 	else if (btf_type_is_datasec(t))
3768 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3769 	return -EINVAL;
3770 }
3771 
3772 /* Callers have to ensure the life cycle of btf if it is program BTF */
3773 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3774 			  struct btf_field_info *info)
3775 {
3776 	struct module *mod = NULL;
3777 	const struct btf_type *t;
3778 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3779 	 * is that BTF, otherwise it's program BTF
3780 	 */
3781 	struct btf *kptr_btf;
3782 	int ret;
3783 	s32 id;
3784 
3785 	/* Find type in map BTF, and use it to look up the matching type
3786 	 * in vmlinux or module BTFs, by name and kind.
3787 	 */
3788 	t = btf_type_by_id(btf, info->kptr.type_id);
3789 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3790 			     &kptr_btf);
3791 	if (id == -ENOENT) {
3792 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3793 		WARN_ON_ONCE(btf_is_kernel(btf));
3794 
3795 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3796 		 * kptr allocated via bpf_obj_new
3797 		 */
3798 		field->kptr.dtor = NULL;
3799 		id = info->kptr.type_id;
3800 		kptr_btf = (struct btf *)btf;
3801 		goto found_dtor;
3802 	}
3803 	if (id < 0)
3804 		return id;
3805 
3806 	/* Find and stash the function pointer for the destruction function that
3807 	 * needs to be eventually invoked from the map free path.
3808 	 */
3809 	if (info->type == BPF_KPTR_REF) {
3810 		const struct btf_type *dtor_func;
3811 		const char *dtor_func_name;
3812 		unsigned long addr;
3813 		s32 dtor_btf_id;
3814 
3815 		/* This call also serves as a whitelist of allowed objects that
3816 		 * can be used as a referenced pointer and be stored in a map at
3817 		 * the same time.
3818 		 */
3819 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3820 		if (dtor_btf_id < 0) {
3821 			ret = dtor_btf_id;
3822 			goto end_btf;
3823 		}
3824 
3825 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3826 		if (!dtor_func) {
3827 			ret = -ENOENT;
3828 			goto end_btf;
3829 		}
3830 
3831 		if (btf_is_module(kptr_btf)) {
3832 			mod = btf_try_get_module(kptr_btf);
3833 			if (!mod) {
3834 				ret = -ENXIO;
3835 				goto end_btf;
3836 			}
3837 		}
3838 
3839 		/* We already verified dtor_func to be btf_type_is_func
3840 		 * in register_btf_id_dtor_kfuncs.
3841 		 */
3842 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3843 		addr = kallsyms_lookup_name(dtor_func_name);
3844 		if (!addr) {
3845 			ret = -EINVAL;
3846 			goto end_mod;
3847 		}
3848 		field->kptr.dtor = (void *)addr;
3849 	}
3850 
3851 found_dtor:
3852 	field->kptr.btf_id = id;
3853 	field->kptr.btf = kptr_btf;
3854 	field->kptr.module = mod;
3855 	return 0;
3856 end_mod:
3857 	module_put(mod);
3858 end_btf:
3859 	btf_put(kptr_btf);
3860 	return ret;
3861 }
3862 
3863 static int btf_parse_graph_root(const struct btf *btf,
3864 				struct btf_field *field,
3865 				struct btf_field_info *info,
3866 				const char *node_type_name,
3867 				size_t node_type_align)
3868 {
3869 	const struct btf_type *t, *n = NULL;
3870 	const struct btf_member *member;
3871 	u32 offset;
3872 	int i;
3873 
3874 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3875 	/* We've already checked that value_btf_id is a struct type. We
3876 	 * just need to figure out the offset of the list_node, and
3877 	 * verify its type.
3878 	 */
3879 	for_each_member(i, t, member) {
3880 		if (strcmp(info->graph_root.node_name,
3881 			   __btf_name_by_offset(btf, member->name_off)))
3882 			continue;
3883 		/* Invalid BTF, two members with same name */
3884 		if (n)
3885 			return -EINVAL;
3886 		n = btf_type_by_id(btf, member->type);
3887 		if (!__btf_type_is_struct(n))
3888 			return -EINVAL;
3889 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3890 			return -EINVAL;
3891 		offset = __btf_member_bit_offset(n, member);
3892 		if (offset % 8)
3893 			return -EINVAL;
3894 		offset /= 8;
3895 		if (offset % node_type_align)
3896 			return -EINVAL;
3897 
3898 		field->graph_root.btf = (struct btf *)btf;
3899 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3900 		field->graph_root.node_offset = offset;
3901 	}
3902 	if (!n)
3903 		return -ENOENT;
3904 	return 0;
3905 }
3906 
3907 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3908 			       struct btf_field_info *info)
3909 {
3910 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3911 					    __alignof__(struct bpf_list_node));
3912 }
3913 
3914 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3915 			     struct btf_field_info *info)
3916 {
3917 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3918 					    __alignof__(struct bpf_rb_node));
3919 }
3920 
3921 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3922 {
3923 	const struct btf_field *a = (const struct btf_field *)_a;
3924 	const struct btf_field *b = (const struct btf_field *)_b;
3925 
3926 	if (a->offset < b->offset)
3927 		return -1;
3928 	else if (a->offset > b->offset)
3929 		return 1;
3930 	return 0;
3931 }
3932 
3933 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3934 				    u32 field_mask, u32 value_size)
3935 {
3936 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3937 	u32 next_off = 0, field_type_size;
3938 	struct btf_record *rec;
3939 	int ret, i, cnt;
3940 
3941 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3942 	if (ret < 0)
3943 		return ERR_PTR(ret);
3944 	if (!ret)
3945 		return NULL;
3946 
3947 	cnt = ret;
3948 	/* This needs to be kzalloc to zero out padding and unused fields, see
3949 	 * comment in btf_record_equal.
3950 	 */
3951 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3952 	if (!rec)
3953 		return ERR_PTR(-ENOMEM);
3954 
3955 	rec->spin_lock_off = -EINVAL;
3956 	rec->timer_off = -EINVAL;
3957 	rec->wq_off = -EINVAL;
3958 	rec->refcount_off = -EINVAL;
3959 	for (i = 0; i < cnt; i++) {
3960 		field_type_size = btf_field_type_size(info_arr[i].type);
3961 		if (info_arr[i].off + field_type_size > value_size) {
3962 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3963 			ret = -EFAULT;
3964 			goto end;
3965 		}
3966 		if (info_arr[i].off < next_off) {
3967 			ret = -EEXIST;
3968 			goto end;
3969 		}
3970 		next_off = info_arr[i].off + field_type_size;
3971 
3972 		rec->field_mask |= info_arr[i].type;
3973 		rec->fields[i].offset = info_arr[i].off;
3974 		rec->fields[i].type = info_arr[i].type;
3975 		rec->fields[i].size = field_type_size;
3976 
3977 		switch (info_arr[i].type) {
3978 		case BPF_SPIN_LOCK:
3979 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3980 			/* Cache offset for faster lookup at runtime */
3981 			rec->spin_lock_off = rec->fields[i].offset;
3982 			break;
3983 		case BPF_TIMER:
3984 			WARN_ON_ONCE(rec->timer_off >= 0);
3985 			/* Cache offset for faster lookup at runtime */
3986 			rec->timer_off = rec->fields[i].offset;
3987 			break;
3988 		case BPF_WORKQUEUE:
3989 			WARN_ON_ONCE(rec->wq_off >= 0);
3990 			/* Cache offset for faster lookup at runtime */
3991 			rec->wq_off = rec->fields[i].offset;
3992 			break;
3993 		case BPF_REFCOUNT:
3994 			WARN_ON_ONCE(rec->refcount_off >= 0);
3995 			/* Cache offset for faster lookup at runtime */
3996 			rec->refcount_off = rec->fields[i].offset;
3997 			break;
3998 		case BPF_KPTR_UNREF:
3999 		case BPF_KPTR_REF:
4000 		case BPF_KPTR_PERCPU:
4001 		case BPF_UPTR:
4002 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
4003 			if (ret < 0)
4004 				goto end;
4005 			break;
4006 		case BPF_LIST_HEAD:
4007 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4008 			if (ret < 0)
4009 				goto end;
4010 			break;
4011 		case BPF_RB_ROOT:
4012 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4013 			if (ret < 0)
4014 				goto end;
4015 			break;
4016 		case BPF_LIST_NODE:
4017 		case BPF_RB_NODE:
4018 			break;
4019 		default:
4020 			ret = -EFAULT;
4021 			goto end;
4022 		}
4023 		rec->cnt++;
4024 	}
4025 
4026 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4027 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4028 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4029 		ret = -EINVAL;
4030 		goto end;
4031 	}
4032 
4033 	if (rec->refcount_off < 0 &&
4034 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4035 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4036 		ret = -EINVAL;
4037 		goto end;
4038 	}
4039 
4040 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4041 	       NULL, rec);
4042 
4043 	return rec;
4044 end:
4045 	btf_record_free(rec);
4046 	return ERR_PTR(ret);
4047 }
4048 
4049 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4050 {
4051 	int i;
4052 
4053 	/* There are three types that signify ownership of some other type:
4054 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4055 	 * kptr_ref only supports storing kernel types, which can't store
4056 	 * references to program allocated local types.
4057 	 *
4058 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4059 	 * does not form cycles.
4060 	 */
4061 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4062 		return 0;
4063 	for (i = 0; i < rec->cnt; i++) {
4064 		struct btf_struct_meta *meta;
4065 		const struct btf_type *t;
4066 		u32 btf_id;
4067 
4068 		if (rec->fields[i].type == BPF_UPTR) {
4069 			/* The uptr only supports pinning one page and cannot
4070 			 * point to a kernel struct
4071 			 */
4072 			if (btf_is_kernel(rec->fields[i].kptr.btf))
4073 				return -EINVAL;
4074 			t = btf_type_by_id(rec->fields[i].kptr.btf,
4075 					   rec->fields[i].kptr.btf_id);
4076 			if (!t->size)
4077 				return -EINVAL;
4078 			if (t->size > PAGE_SIZE)
4079 				return -E2BIG;
4080 			continue;
4081 		}
4082 
4083 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4084 			continue;
4085 		btf_id = rec->fields[i].graph_root.value_btf_id;
4086 		meta = btf_find_struct_meta(btf, btf_id);
4087 		if (!meta)
4088 			return -EFAULT;
4089 		rec->fields[i].graph_root.value_rec = meta->record;
4090 
4091 		/* We need to set value_rec for all root types, but no need
4092 		 * to check ownership cycle for a type unless it's also a
4093 		 * node type.
4094 		 */
4095 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4096 			continue;
4097 
4098 		/* We need to ensure ownership acyclicity among all types. The
4099 		 * proper way to do it would be to topologically sort all BTF
4100 		 * IDs based on the ownership edges, since there can be multiple
4101 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4102 		 * following resaoning:
4103 		 *
4104 		 * - A type can only be owned by another type in user BTF if it
4105 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4106 		 * - A type can only _own_ another type in user BTF if it has a
4107 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4108 		 *
4109 		 * We ensure that if a type is both a root and node, its
4110 		 * element types cannot be root types.
4111 		 *
4112 		 * To ensure acyclicity:
4113 		 *
4114 		 * When A is an root type but not a node, its ownership
4115 		 * chain can be:
4116 		 *	A -> B -> C
4117 		 * Where:
4118 		 * - A is an root, e.g. has bpf_rb_root.
4119 		 * - B is both a root and node, e.g. has bpf_rb_node and
4120 		 *   bpf_list_head.
4121 		 * - C is only an root, e.g. has bpf_list_node
4122 		 *
4123 		 * When A is both a root and node, some other type already
4124 		 * owns it in the BTF domain, hence it can not own
4125 		 * another root type through any of the ownership edges.
4126 		 *	A -> B
4127 		 * Where:
4128 		 * - A is both an root and node.
4129 		 * - B is only an node.
4130 		 */
4131 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4132 			return -ELOOP;
4133 	}
4134 	return 0;
4135 }
4136 
4137 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4138 			      u32 type_id, void *data, u8 bits_offset,
4139 			      struct btf_show *show)
4140 {
4141 	const struct btf_member *member;
4142 	void *safe_data;
4143 	u32 i;
4144 
4145 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4146 	if (!safe_data)
4147 		return;
4148 
4149 	for_each_member(i, t, member) {
4150 		const struct btf_type *member_type = btf_type_by_id(btf,
4151 								member->type);
4152 		const struct btf_kind_operations *ops;
4153 		u32 member_offset, bitfield_size;
4154 		u32 bytes_offset;
4155 		u8 bits8_offset;
4156 
4157 		btf_show_start_member(show, member);
4158 
4159 		member_offset = __btf_member_bit_offset(t, member);
4160 		bitfield_size = __btf_member_bitfield_size(t, member);
4161 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4162 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4163 		if (bitfield_size) {
4164 			safe_data = btf_show_start_type(show, member_type,
4165 							member->type,
4166 							data + bytes_offset);
4167 			if (safe_data)
4168 				btf_bitfield_show(safe_data,
4169 						  bits8_offset,
4170 						  bitfield_size, show);
4171 			btf_show_end_type(show);
4172 		} else {
4173 			ops = btf_type_ops(member_type);
4174 			ops->show(btf, member_type, member->type,
4175 				  data + bytes_offset, bits8_offset, show);
4176 		}
4177 
4178 		btf_show_end_member(show);
4179 	}
4180 
4181 	btf_show_end_struct_type(show);
4182 }
4183 
4184 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4185 			    u32 type_id, void *data, u8 bits_offset,
4186 			    struct btf_show *show)
4187 {
4188 	const struct btf_member *m = show->state.member;
4189 
4190 	/*
4191 	 * First check if any members would be shown (are non-zero).
4192 	 * See comments above "struct btf_show" definition for more
4193 	 * details on how this works at a high-level.
4194 	 */
4195 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4196 		if (!show->state.depth_check) {
4197 			show->state.depth_check = show->state.depth + 1;
4198 			show->state.depth_to_show = 0;
4199 		}
4200 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4201 		/* Restore saved member data here */
4202 		show->state.member = m;
4203 		if (show->state.depth_check != show->state.depth + 1)
4204 			return;
4205 		show->state.depth_check = 0;
4206 
4207 		if (show->state.depth_to_show <= show->state.depth)
4208 			return;
4209 		/*
4210 		 * Reaching here indicates we have recursed and found
4211 		 * non-zero child values.
4212 		 */
4213 	}
4214 
4215 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4216 }
4217 
4218 static const struct btf_kind_operations struct_ops = {
4219 	.check_meta = btf_struct_check_meta,
4220 	.resolve = btf_struct_resolve,
4221 	.check_member = btf_struct_check_member,
4222 	.check_kflag_member = btf_generic_check_kflag_member,
4223 	.log_details = btf_struct_log,
4224 	.show = btf_struct_show,
4225 };
4226 
4227 static int btf_enum_check_member(struct btf_verifier_env *env,
4228 				 const struct btf_type *struct_type,
4229 				 const struct btf_member *member,
4230 				 const struct btf_type *member_type)
4231 {
4232 	u32 struct_bits_off = member->offset;
4233 	u32 struct_size, bytes_offset;
4234 
4235 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4236 		btf_verifier_log_member(env, struct_type, member,
4237 					"Member is not byte aligned");
4238 		return -EINVAL;
4239 	}
4240 
4241 	struct_size = struct_type->size;
4242 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4243 	if (struct_size - bytes_offset < member_type->size) {
4244 		btf_verifier_log_member(env, struct_type, member,
4245 					"Member exceeds struct_size");
4246 		return -EINVAL;
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4253 				       const struct btf_type *struct_type,
4254 				       const struct btf_member *member,
4255 				       const struct btf_type *member_type)
4256 {
4257 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4258 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4259 
4260 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4261 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4262 	if (!nr_bits) {
4263 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4264 			btf_verifier_log_member(env, struct_type, member,
4265 						"Member is not byte aligned");
4266 			return -EINVAL;
4267 		}
4268 
4269 		nr_bits = int_bitsize;
4270 	} else if (nr_bits > int_bitsize) {
4271 		btf_verifier_log_member(env, struct_type, member,
4272 					"Invalid member bitfield_size");
4273 		return -EINVAL;
4274 	}
4275 
4276 	struct_size = struct_type->size;
4277 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4278 	if (struct_size < bytes_end) {
4279 		btf_verifier_log_member(env, struct_type, member,
4280 					"Member exceeds struct_size");
4281 		return -EINVAL;
4282 	}
4283 
4284 	return 0;
4285 }
4286 
4287 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4288 			       const struct btf_type *t,
4289 			       u32 meta_left)
4290 {
4291 	const struct btf_enum *enums = btf_type_enum(t);
4292 	struct btf *btf = env->btf;
4293 	const char *fmt_str;
4294 	u16 i, nr_enums;
4295 	u32 meta_needed;
4296 
4297 	nr_enums = btf_type_vlen(t);
4298 	meta_needed = nr_enums * sizeof(*enums);
4299 
4300 	if (meta_left < meta_needed) {
4301 		btf_verifier_log_basic(env, t,
4302 				       "meta_left:%u meta_needed:%u",
4303 				       meta_left, meta_needed);
4304 		return -EINVAL;
4305 	}
4306 
4307 	if (t->size > 8 || !is_power_of_2(t->size)) {
4308 		btf_verifier_log_type(env, t, "Unexpected size");
4309 		return -EINVAL;
4310 	}
4311 
4312 	/* enum type either no name or a valid one */
4313 	if (t->name_off &&
4314 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4315 		btf_verifier_log_type(env, t, "Invalid name");
4316 		return -EINVAL;
4317 	}
4318 
4319 	btf_verifier_log_type(env, t, NULL);
4320 
4321 	for (i = 0; i < nr_enums; i++) {
4322 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4323 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4324 					 enums[i].name_off);
4325 			return -EINVAL;
4326 		}
4327 
4328 		/* enum member must have a valid name */
4329 		if (!enums[i].name_off ||
4330 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4331 			btf_verifier_log_type(env, t, "Invalid name");
4332 			return -EINVAL;
4333 		}
4334 
4335 		if (env->log.level == BPF_LOG_KERNEL)
4336 			continue;
4337 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4338 		btf_verifier_log(env, fmt_str,
4339 				 __btf_name_by_offset(btf, enums[i].name_off),
4340 				 enums[i].val);
4341 	}
4342 
4343 	return meta_needed;
4344 }
4345 
4346 static void btf_enum_log(struct btf_verifier_env *env,
4347 			 const struct btf_type *t)
4348 {
4349 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4350 }
4351 
4352 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4353 			  u32 type_id, void *data, u8 bits_offset,
4354 			  struct btf_show *show)
4355 {
4356 	const struct btf_enum *enums = btf_type_enum(t);
4357 	u32 i, nr_enums = btf_type_vlen(t);
4358 	void *safe_data;
4359 	int v;
4360 
4361 	safe_data = btf_show_start_type(show, t, type_id, data);
4362 	if (!safe_data)
4363 		return;
4364 
4365 	v = *(int *)safe_data;
4366 
4367 	for (i = 0; i < nr_enums; i++) {
4368 		if (v != enums[i].val)
4369 			continue;
4370 
4371 		btf_show_type_value(show, "%s",
4372 				    __btf_name_by_offset(btf,
4373 							 enums[i].name_off));
4374 
4375 		btf_show_end_type(show);
4376 		return;
4377 	}
4378 
4379 	if (btf_type_kflag(t))
4380 		btf_show_type_value(show, "%d", v);
4381 	else
4382 		btf_show_type_value(show, "%u", v);
4383 	btf_show_end_type(show);
4384 }
4385 
4386 static const struct btf_kind_operations enum_ops = {
4387 	.check_meta = btf_enum_check_meta,
4388 	.resolve = btf_df_resolve,
4389 	.check_member = btf_enum_check_member,
4390 	.check_kflag_member = btf_enum_check_kflag_member,
4391 	.log_details = btf_enum_log,
4392 	.show = btf_enum_show,
4393 };
4394 
4395 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4396 				 const struct btf_type *t,
4397 				 u32 meta_left)
4398 {
4399 	const struct btf_enum64 *enums = btf_type_enum64(t);
4400 	struct btf *btf = env->btf;
4401 	const char *fmt_str;
4402 	u16 i, nr_enums;
4403 	u32 meta_needed;
4404 
4405 	nr_enums = btf_type_vlen(t);
4406 	meta_needed = nr_enums * sizeof(*enums);
4407 
4408 	if (meta_left < meta_needed) {
4409 		btf_verifier_log_basic(env, t,
4410 				       "meta_left:%u meta_needed:%u",
4411 				       meta_left, meta_needed);
4412 		return -EINVAL;
4413 	}
4414 
4415 	if (t->size > 8 || !is_power_of_2(t->size)) {
4416 		btf_verifier_log_type(env, t, "Unexpected size");
4417 		return -EINVAL;
4418 	}
4419 
4420 	/* enum type either no name or a valid one */
4421 	if (t->name_off &&
4422 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4423 		btf_verifier_log_type(env, t, "Invalid name");
4424 		return -EINVAL;
4425 	}
4426 
4427 	btf_verifier_log_type(env, t, NULL);
4428 
4429 	for (i = 0; i < nr_enums; i++) {
4430 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4431 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4432 					 enums[i].name_off);
4433 			return -EINVAL;
4434 		}
4435 
4436 		/* enum member must have a valid name */
4437 		if (!enums[i].name_off ||
4438 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4439 			btf_verifier_log_type(env, t, "Invalid name");
4440 			return -EINVAL;
4441 		}
4442 
4443 		if (env->log.level == BPF_LOG_KERNEL)
4444 			continue;
4445 
4446 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4447 		btf_verifier_log(env, fmt_str,
4448 				 __btf_name_by_offset(btf, enums[i].name_off),
4449 				 btf_enum64_value(enums + i));
4450 	}
4451 
4452 	return meta_needed;
4453 }
4454 
4455 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4456 			    u32 type_id, void *data, u8 bits_offset,
4457 			    struct btf_show *show)
4458 {
4459 	const struct btf_enum64 *enums = btf_type_enum64(t);
4460 	u32 i, nr_enums = btf_type_vlen(t);
4461 	void *safe_data;
4462 	s64 v;
4463 
4464 	safe_data = btf_show_start_type(show, t, type_id, data);
4465 	if (!safe_data)
4466 		return;
4467 
4468 	v = *(u64 *)safe_data;
4469 
4470 	for (i = 0; i < nr_enums; i++) {
4471 		if (v != btf_enum64_value(enums + i))
4472 			continue;
4473 
4474 		btf_show_type_value(show, "%s",
4475 				    __btf_name_by_offset(btf,
4476 							 enums[i].name_off));
4477 
4478 		btf_show_end_type(show);
4479 		return;
4480 	}
4481 
4482 	if (btf_type_kflag(t))
4483 		btf_show_type_value(show, "%lld", v);
4484 	else
4485 		btf_show_type_value(show, "%llu", v);
4486 	btf_show_end_type(show);
4487 }
4488 
4489 static const struct btf_kind_operations enum64_ops = {
4490 	.check_meta = btf_enum64_check_meta,
4491 	.resolve = btf_df_resolve,
4492 	.check_member = btf_enum_check_member,
4493 	.check_kflag_member = btf_enum_check_kflag_member,
4494 	.log_details = btf_enum_log,
4495 	.show = btf_enum64_show,
4496 };
4497 
4498 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4499 				     const struct btf_type *t,
4500 				     u32 meta_left)
4501 {
4502 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4503 
4504 	if (meta_left < meta_needed) {
4505 		btf_verifier_log_basic(env, t,
4506 				       "meta_left:%u meta_needed:%u",
4507 				       meta_left, meta_needed);
4508 		return -EINVAL;
4509 	}
4510 
4511 	if (t->name_off) {
4512 		btf_verifier_log_type(env, t, "Invalid name");
4513 		return -EINVAL;
4514 	}
4515 
4516 	if (btf_type_kflag(t)) {
4517 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4518 		return -EINVAL;
4519 	}
4520 
4521 	btf_verifier_log_type(env, t, NULL);
4522 
4523 	return meta_needed;
4524 }
4525 
4526 static void btf_func_proto_log(struct btf_verifier_env *env,
4527 			       const struct btf_type *t)
4528 {
4529 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4530 	u16 nr_args = btf_type_vlen(t), i;
4531 
4532 	btf_verifier_log(env, "return=%u args=(", t->type);
4533 	if (!nr_args) {
4534 		btf_verifier_log(env, "void");
4535 		goto done;
4536 	}
4537 
4538 	if (nr_args == 1 && !args[0].type) {
4539 		/* Only one vararg */
4540 		btf_verifier_log(env, "vararg");
4541 		goto done;
4542 	}
4543 
4544 	btf_verifier_log(env, "%u %s", args[0].type,
4545 			 __btf_name_by_offset(env->btf,
4546 					      args[0].name_off));
4547 	for (i = 1; i < nr_args - 1; i++)
4548 		btf_verifier_log(env, ", %u %s", args[i].type,
4549 				 __btf_name_by_offset(env->btf,
4550 						      args[i].name_off));
4551 
4552 	if (nr_args > 1) {
4553 		const struct btf_param *last_arg = &args[nr_args - 1];
4554 
4555 		if (last_arg->type)
4556 			btf_verifier_log(env, ", %u %s", last_arg->type,
4557 					 __btf_name_by_offset(env->btf,
4558 							      last_arg->name_off));
4559 		else
4560 			btf_verifier_log(env, ", vararg");
4561 	}
4562 
4563 done:
4564 	btf_verifier_log(env, ")");
4565 }
4566 
4567 static const struct btf_kind_operations func_proto_ops = {
4568 	.check_meta = btf_func_proto_check_meta,
4569 	.resolve = btf_df_resolve,
4570 	/*
4571 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4572 	 * a struct's member.
4573 	 *
4574 	 * It should be a function pointer instead.
4575 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4576 	 *
4577 	 * Hence, there is no btf_func_check_member().
4578 	 */
4579 	.check_member = btf_df_check_member,
4580 	.check_kflag_member = btf_df_check_kflag_member,
4581 	.log_details = btf_func_proto_log,
4582 	.show = btf_df_show,
4583 };
4584 
4585 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4586 			       const struct btf_type *t,
4587 			       u32 meta_left)
4588 {
4589 	if (!t->name_off ||
4590 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4591 		btf_verifier_log_type(env, t, "Invalid name");
4592 		return -EINVAL;
4593 	}
4594 
4595 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4596 		btf_verifier_log_type(env, t, "Invalid func linkage");
4597 		return -EINVAL;
4598 	}
4599 
4600 	if (btf_type_kflag(t)) {
4601 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4602 		return -EINVAL;
4603 	}
4604 
4605 	btf_verifier_log_type(env, t, NULL);
4606 
4607 	return 0;
4608 }
4609 
4610 static int btf_func_resolve(struct btf_verifier_env *env,
4611 			    const struct resolve_vertex *v)
4612 {
4613 	const struct btf_type *t = v->t;
4614 	u32 next_type_id = t->type;
4615 	int err;
4616 
4617 	err = btf_func_check(env, t);
4618 	if (err)
4619 		return err;
4620 
4621 	env_stack_pop_resolved(env, next_type_id, 0);
4622 	return 0;
4623 }
4624 
4625 static const struct btf_kind_operations func_ops = {
4626 	.check_meta = btf_func_check_meta,
4627 	.resolve = btf_func_resolve,
4628 	.check_member = btf_df_check_member,
4629 	.check_kflag_member = btf_df_check_kflag_member,
4630 	.log_details = btf_ref_type_log,
4631 	.show = btf_df_show,
4632 };
4633 
4634 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4635 			      const struct btf_type *t,
4636 			      u32 meta_left)
4637 {
4638 	const struct btf_var *var;
4639 	u32 meta_needed = sizeof(*var);
4640 
4641 	if (meta_left < meta_needed) {
4642 		btf_verifier_log_basic(env, t,
4643 				       "meta_left:%u meta_needed:%u",
4644 				       meta_left, meta_needed);
4645 		return -EINVAL;
4646 	}
4647 
4648 	if (btf_type_vlen(t)) {
4649 		btf_verifier_log_type(env, t, "vlen != 0");
4650 		return -EINVAL;
4651 	}
4652 
4653 	if (btf_type_kflag(t)) {
4654 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4655 		return -EINVAL;
4656 	}
4657 
4658 	if (!t->name_off ||
4659 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4660 		btf_verifier_log_type(env, t, "Invalid name");
4661 		return -EINVAL;
4662 	}
4663 
4664 	/* A var cannot be in type void */
4665 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4666 		btf_verifier_log_type(env, t, "Invalid type_id");
4667 		return -EINVAL;
4668 	}
4669 
4670 	var = btf_type_var(t);
4671 	if (var->linkage != BTF_VAR_STATIC &&
4672 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4673 		btf_verifier_log_type(env, t, "Linkage not supported");
4674 		return -EINVAL;
4675 	}
4676 
4677 	btf_verifier_log_type(env, t, NULL);
4678 
4679 	return meta_needed;
4680 }
4681 
4682 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4683 {
4684 	const struct btf_var *var = btf_type_var(t);
4685 
4686 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4687 }
4688 
4689 static const struct btf_kind_operations var_ops = {
4690 	.check_meta		= btf_var_check_meta,
4691 	.resolve		= btf_var_resolve,
4692 	.check_member		= btf_df_check_member,
4693 	.check_kflag_member	= btf_df_check_kflag_member,
4694 	.log_details		= btf_var_log,
4695 	.show			= btf_var_show,
4696 };
4697 
4698 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4699 				  const struct btf_type *t,
4700 				  u32 meta_left)
4701 {
4702 	const struct btf_var_secinfo *vsi;
4703 	u64 last_vsi_end_off = 0, sum = 0;
4704 	u32 i, meta_needed;
4705 
4706 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4707 	if (meta_left < meta_needed) {
4708 		btf_verifier_log_basic(env, t,
4709 				       "meta_left:%u meta_needed:%u",
4710 				       meta_left, meta_needed);
4711 		return -EINVAL;
4712 	}
4713 
4714 	if (!t->size) {
4715 		btf_verifier_log_type(env, t, "size == 0");
4716 		return -EINVAL;
4717 	}
4718 
4719 	if (btf_type_kflag(t)) {
4720 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4721 		return -EINVAL;
4722 	}
4723 
4724 	if (!t->name_off ||
4725 	    !btf_name_valid_section(env->btf, t->name_off)) {
4726 		btf_verifier_log_type(env, t, "Invalid name");
4727 		return -EINVAL;
4728 	}
4729 
4730 	btf_verifier_log_type(env, t, NULL);
4731 
4732 	for_each_vsi(i, t, vsi) {
4733 		/* A var cannot be in type void */
4734 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4735 			btf_verifier_log_vsi(env, t, vsi,
4736 					     "Invalid type_id");
4737 			return -EINVAL;
4738 		}
4739 
4740 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4741 			btf_verifier_log_vsi(env, t, vsi,
4742 					     "Invalid offset");
4743 			return -EINVAL;
4744 		}
4745 
4746 		if (!vsi->size || vsi->size > t->size) {
4747 			btf_verifier_log_vsi(env, t, vsi,
4748 					     "Invalid size");
4749 			return -EINVAL;
4750 		}
4751 
4752 		last_vsi_end_off = vsi->offset + vsi->size;
4753 		if (last_vsi_end_off > t->size) {
4754 			btf_verifier_log_vsi(env, t, vsi,
4755 					     "Invalid offset+size");
4756 			return -EINVAL;
4757 		}
4758 
4759 		btf_verifier_log_vsi(env, t, vsi, NULL);
4760 		sum += vsi->size;
4761 	}
4762 
4763 	if (t->size < sum) {
4764 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4765 		return -EINVAL;
4766 	}
4767 
4768 	return meta_needed;
4769 }
4770 
4771 static int btf_datasec_resolve(struct btf_verifier_env *env,
4772 			       const struct resolve_vertex *v)
4773 {
4774 	const struct btf_var_secinfo *vsi;
4775 	struct btf *btf = env->btf;
4776 	u16 i;
4777 
4778 	env->resolve_mode = RESOLVE_TBD;
4779 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4780 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4781 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4782 								 var_type_id);
4783 		if (!var_type || !btf_type_is_var(var_type)) {
4784 			btf_verifier_log_vsi(env, v->t, vsi,
4785 					     "Not a VAR kind member");
4786 			return -EINVAL;
4787 		}
4788 
4789 		if (!env_type_is_resolve_sink(env, var_type) &&
4790 		    !env_type_is_resolved(env, var_type_id)) {
4791 			env_stack_set_next_member(env, i + 1);
4792 			return env_stack_push(env, var_type, var_type_id);
4793 		}
4794 
4795 		type_id = var_type->type;
4796 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4797 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4798 			return -EINVAL;
4799 		}
4800 
4801 		if (vsi->size < type_size) {
4802 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4803 			return -EINVAL;
4804 		}
4805 	}
4806 
4807 	env_stack_pop_resolved(env, 0, 0);
4808 	return 0;
4809 }
4810 
4811 static void btf_datasec_log(struct btf_verifier_env *env,
4812 			    const struct btf_type *t)
4813 {
4814 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4815 }
4816 
4817 static void btf_datasec_show(const struct btf *btf,
4818 			     const struct btf_type *t, u32 type_id,
4819 			     void *data, u8 bits_offset,
4820 			     struct btf_show *show)
4821 {
4822 	const struct btf_var_secinfo *vsi;
4823 	const struct btf_type *var;
4824 	u32 i;
4825 
4826 	if (!btf_show_start_type(show, t, type_id, data))
4827 		return;
4828 
4829 	btf_show_type_value(show, "section (\"%s\") = {",
4830 			    __btf_name_by_offset(btf, t->name_off));
4831 	for_each_vsi(i, t, vsi) {
4832 		var = btf_type_by_id(btf, vsi->type);
4833 		if (i)
4834 			btf_show(show, ",");
4835 		btf_type_ops(var)->show(btf, var, vsi->type,
4836 					data + vsi->offset, bits_offset, show);
4837 	}
4838 	btf_show_end_type(show);
4839 }
4840 
4841 static const struct btf_kind_operations datasec_ops = {
4842 	.check_meta		= btf_datasec_check_meta,
4843 	.resolve		= btf_datasec_resolve,
4844 	.check_member		= btf_df_check_member,
4845 	.check_kflag_member	= btf_df_check_kflag_member,
4846 	.log_details		= btf_datasec_log,
4847 	.show			= btf_datasec_show,
4848 };
4849 
4850 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4851 				const struct btf_type *t,
4852 				u32 meta_left)
4853 {
4854 	if (btf_type_vlen(t)) {
4855 		btf_verifier_log_type(env, t, "vlen != 0");
4856 		return -EINVAL;
4857 	}
4858 
4859 	if (btf_type_kflag(t)) {
4860 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4861 		return -EINVAL;
4862 	}
4863 
4864 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4865 	    t->size != 16) {
4866 		btf_verifier_log_type(env, t, "Invalid type_size");
4867 		return -EINVAL;
4868 	}
4869 
4870 	btf_verifier_log_type(env, t, NULL);
4871 
4872 	return 0;
4873 }
4874 
4875 static int btf_float_check_member(struct btf_verifier_env *env,
4876 				  const struct btf_type *struct_type,
4877 				  const struct btf_member *member,
4878 				  const struct btf_type *member_type)
4879 {
4880 	u64 start_offset_bytes;
4881 	u64 end_offset_bytes;
4882 	u64 misalign_bits;
4883 	u64 align_bytes;
4884 	u64 align_bits;
4885 
4886 	/* Different architectures have different alignment requirements, so
4887 	 * here we check only for the reasonable minimum. This way we ensure
4888 	 * that types after CO-RE can pass the kernel BTF verifier.
4889 	 */
4890 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4891 	align_bits = align_bytes * BITS_PER_BYTE;
4892 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4893 	if (misalign_bits) {
4894 		btf_verifier_log_member(env, struct_type, member,
4895 					"Member is not properly aligned");
4896 		return -EINVAL;
4897 	}
4898 
4899 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4900 	end_offset_bytes = start_offset_bytes + member_type->size;
4901 	if (end_offset_bytes > struct_type->size) {
4902 		btf_verifier_log_member(env, struct_type, member,
4903 					"Member exceeds struct_size");
4904 		return -EINVAL;
4905 	}
4906 
4907 	return 0;
4908 }
4909 
4910 static void btf_float_log(struct btf_verifier_env *env,
4911 			  const struct btf_type *t)
4912 {
4913 	btf_verifier_log(env, "size=%u", t->size);
4914 }
4915 
4916 static const struct btf_kind_operations float_ops = {
4917 	.check_meta = btf_float_check_meta,
4918 	.resolve = btf_df_resolve,
4919 	.check_member = btf_float_check_member,
4920 	.check_kflag_member = btf_generic_check_kflag_member,
4921 	.log_details = btf_float_log,
4922 	.show = btf_df_show,
4923 };
4924 
4925 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4926 			      const struct btf_type *t,
4927 			      u32 meta_left)
4928 {
4929 	const struct btf_decl_tag *tag;
4930 	u32 meta_needed = sizeof(*tag);
4931 	s32 component_idx;
4932 	const char *value;
4933 
4934 	if (meta_left < meta_needed) {
4935 		btf_verifier_log_basic(env, t,
4936 				       "meta_left:%u meta_needed:%u",
4937 				       meta_left, meta_needed);
4938 		return -EINVAL;
4939 	}
4940 
4941 	value = btf_name_by_offset(env->btf, t->name_off);
4942 	if (!value || !value[0]) {
4943 		btf_verifier_log_type(env, t, "Invalid value");
4944 		return -EINVAL;
4945 	}
4946 
4947 	if (btf_type_vlen(t)) {
4948 		btf_verifier_log_type(env, t, "vlen != 0");
4949 		return -EINVAL;
4950 	}
4951 
4952 	if (btf_type_kflag(t)) {
4953 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4954 		return -EINVAL;
4955 	}
4956 
4957 	component_idx = btf_type_decl_tag(t)->component_idx;
4958 	if (component_idx < -1) {
4959 		btf_verifier_log_type(env, t, "Invalid component_idx");
4960 		return -EINVAL;
4961 	}
4962 
4963 	btf_verifier_log_type(env, t, NULL);
4964 
4965 	return meta_needed;
4966 }
4967 
4968 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4969 			   const struct resolve_vertex *v)
4970 {
4971 	const struct btf_type *next_type;
4972 	const struct btf_type *t = v->t;
4973 	u32 next_type_id = t->type;
4974 	struct btf *btf = env->btf;
4975 	s32 component_idx;
4976 	u32 vlen;
4977 
4978 	next_type = btf_type_by_id(btf, next_type_id);
4979 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4980 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4981 		return -EINVAL;
4982 	}
4983 
4984 	if (!env_type_is_resolve_sink(env, next_type) &&
4985 	    !env_type_is_resolved(env, next_type_id))
4986 		return env_stack_push(env, next_type, next_type_id);
4987 
4988 	component_idx = btf_type_decl_tag(t)->component_idx;
4989 	if (component_idx != -1) {
4990 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4991 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4992 			return -EINVAL;
4993 		}
4994 
4995 		if (btf_type_is_struct(next_type)) {
4996 			vlen = btf_type_vlen(next_type);
4997 		} else {
4998 			/* next_type should be a function */
4999 			next_type = btf_type_by_id(btf, next_type->type);
5000 			vlen = btf_type_vlen(next_type);
5001 		}
5002 
5003 		if ((u32)component_idx >= vlen) {
5004 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
5005 			return -EINVAL;
5006 		}
5007 	}
5008 
5009 	env_stack_pop_resolved(env, next_type_id, 0);
5010 
5011 	return 0;
5012 }
5013 
5014 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5015 {
5016 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5017 			 btf_type_decl_tag(t)->component_idx);
5018 }
5019 
5020 static const struct btf_kind_operations decl_tag_ops = {
5021 	.check_meta = btf_decl_tag_check_meta,
5022 	.resolve = btf_decl_tag_resolve,
5023 	.check_member = btf_df_check_member,
5024 	.check_kflag_member = btf_df_check_kflag_member,
5025 	.log_details = btf_decl_tag_log,
5026 	.show = btf_df_show,
5027 };
5028 
5029 static int btf_func_proto_check(struct btf_verifier_env *env,
5030 				const struct btf_type *t)
5031 {
5032 	const struct btf_type *ret_type;
5033 	const struct btf_param *args;
5034 	const struct btf *btf;
5035 	u16 nr_args, i;
5036 	int err;
5037 
5038 	btf = env->btf;
5039 	args = (const struct btf_param *)(t + 1);
5040 	nr_args = btf_type_vlen(t);
5041 
5042 	/* Check func return type which could be "void" (t->type == 0) */
5043 	if (t->type) {
5044 		u32 ret_type_id = t->type;
5045 
5046 		ret_type = btf_type_by_id(btf, ret_type_id);
5047 		if (!ret_type) {
5048 			btf_verifier_log_type(env, t, "Invalid return type");
5049 			return -EINVAL;
5050 		}
5051 
5052 		if (btf_type_is_resolve_source_only(ret_type)) {
5053 			btf_verifier_log_type(env, t, "Invalid return type");
5054 			return -EINVAL;
5055 		}
5056 
5057 		if (btf_type_needs_resolve(ret_type) &&
5058 		    !env_type_is_resolved(env, ret_type_id)) {
5059 			err = btf_resolve(env, ret_type, ret_type_id);
5060 			if (err)
5061 				return err;
5062 		}
5063 
5064 		/* Ensure the return type is a type that has a size */
5065 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5066 			btf_verifier_log_type(env, t, "Invalid return type");
5067 			return -EINVAL;
5068 		}
5069 	}
5070 
5071 	if (!nr_args)
5072 		return 0;
5073 
5074 	/* Last func arg type_id could be 0 if it is a vararg */
5075 	if (!args[nr_args - 1].type) {
5076 		if (args[nr_args - 1].name_off) {
5077 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5078 					      nr_args);
5079 			return -EINVAL;
5080 		}
5081 		nr_args--;
5082 	}
5083 
5084 	for (i = 0; i < nr_args; i++) {
5085 		const struct btf_type *arg_type;
5086 		u32 arg_type_id;
5087 
5088 		arg_type_id = args[i].type;
5089 		arg_type = btf_type_by_id(btf, arg_type_id);
5090 		if (!arg_type) {
5091 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5092 			return -EINVAL;
5093 		}
5094 
5095 		if (btf_type_is_resolve_source_only(arg_type)) {
5096 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5097 			return -EINVAL;
5098 		}
5099 
5100 		if (args[i].name_off &&
5101 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5102 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5103 			btf_verifier_log_type(env, t,
5104 					      "Invalid arg#%u", i + 1);
5105 			return -EINVAL;
5106 		}
5107 
5108 		if (btf_type_needs_resolve(arg_type) &&
5109 		    !env_type_is_resolved(env, arg_type_id)) {
5110 			err = btf_resolve(env, arg_type, arg_type_id);
5111 			if (err)
5112 				return err;
5113 		}
5114 
5115 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5116 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5117 			return -EINVAL;
5118 		}
5119 	}
5120 
5121 	return 0;
5122 }
5123 
5124 static int btf_func_check(struct btf_verifier_env *env,
5125 			  const struct btf_type *t)
5126 {
5127 	const struct btf_type *proto_type;
5128 	const struct btf_param *args;
5129 	const struct btf *btf;
5130 	u16 nr_args, i;
5131 
5132 	btf = env->btf;
5133 	proto_type = btf_type_by_id(btf, t->type);
5134 
5135 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5136 		btf_verifier_log_type(env, t, "Invalid type_id");
5137 		return -EINVAL;
5138 	}
5139 
5140 	args = (const struct btf_param *)(proto_type + 1);
5141 	nr_args = btf_type_vlen(proto_type);
5142 	for (i = 0; i < nr_args; i++) {
5143 		if (!args[i].name_off && args[i].type) {
5144 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5145 			return -EINVAL;
5146 		}
5147 	}
5148 
5149 	return 0;
5150 }
5151 
5152 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5153 	[BTF_KIND_INT] = &int_ops,
5154 	[BTF_KIND_PTR] = &ptr_ops,
5155 	[BTF_KIND_ARRAY] = &array_ops,
5156 	[BTF_KIND_STRUCT] = &struct_ops,
5157 	[BTF_KIND_UNION] = &struct_ops,
5158 	[BTF_KIND_ENUM] = &enum_ops,
5159 	[BTF_KIND_FWD] = &fwd_ops,
5160 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5161 	[BTF_KIND_VOLATILE] = &modifier_ops,
5162 	[BTF_KIND_CONST] = &modifier_ops,
5163 	[BTF_KIND_RESTRICT] = &modifier_ops,
5164 	[BTF_KIND_FUNC] = &func_ops,
5165 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5166 	[BTF_KIND_VAR] = &var_ops,
5167 	[BTF_KIND_DATASEC] = &datasec_ops,
5168 	[BTF_KIND_FLOAT] = &float_ops,
5169 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5170 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5171 	[BTF_KIND_ENUM64] = &enum64_ops,
5172 };
5173 
5174 static s32 btf_check_meta(struct btf_verifier_env *env,
5175 			  const struct btf_type *t,
5176 			  u32 meta_left)
5177 {
5178 	u32 saved_meta_left = meta_left;
5179 	s32 var_meta_size;
5180 
5181 	if (meta_left < sizeof(*t)) {
5182 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5183 				 env->log_type_id, meta_left, sizeof(*t));
5184 		return -EINVAL;
5185 	}
5186 	meta_left -= sizeof(*t);
5187 
5188 	if (t->info & ~BTF_INFO_MASK) {
5189 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5190 				 env->log_type_id, t->info);
5191 		return -EINVAL;
5192 	}
5193 
5194 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5195 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5196 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5197 				 env->log_type_id, BTF_INFO_KIND(t->info));
5198 		return -EINVAL;
5199 	}
5200 
5201 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5202 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5203 				 env->log_type_id, t->name_off);
5204 		return -EINVAL;
5205 	}
5206 
5207 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5208 	if (var_meta_size < 0)
5209 		return var_meta_size;
5210 
5211 	meta_left -= var_meta_size;
5212 
5213 	return saved_meta_left - meta_left;
5214 }
5215 
5216 static int btf_check_all_metas(struct btf_verifier_env *env)
5217 {
5218 	struct btf *btf = env->btf;
5219 	struct btf_header *hdr;
5220 	void *cur, *end;
5221 
5222 	hdr = &btf->hdr;
5223 	cur = btf->nohdr_data + hdr->type_off;
5224 	end = cur + hdr->type_len;
5225 
5226 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5227 	while (cur < end) {
5228 		struct btf_type *t = cur;
5229 		s32 meta_size;
5230 
5231 		meta_size = btf_check_meta(env, t, end - cur);
5232 		if (meta_size < 0)
5233 			return meta_size;
5234 
5235 		btf_add_type(env, t);
5236 		cur += meta_size;
5237 		env->log_type_id++;
5238 	}
5239 
5240 	return 0;
5241 }
5242 
5243 static bool btf_resolve_valid(struct btf_verifier_env *env,
5244 			      const struct btf_type *t,
5245 			      u32 type_id)
5246 {
5247 	struct btf *btf = env->btf;
5248 
5249 	if (!env_type_is_resolved(env, type_id))
5250 		return false;
5251 
5252 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5253 		return !btf_resolved_type_id(btf, type_id) &&
5254 		       !btf_resolved_type_size(btf, type_id);
5255 
5256 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5257 		return btf_resolved_type_id(btf, type_id) &&
5258 		       !btf_resolved_type_size(btf, type_id);
5259 
5260 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5261 	    btf_type_is_var(t)) {
5262 		t = btf_type_id_resolve(btf, &type_id);
5263 		return t &&
5264 		       !btf_type_is_modifier(t) &&
5265 		       !btf_type_is_var(t) &&
5266 		       !btf_type_is_datasec(t);
5267 	}
5268 
5269 	if (btf_type_is_array(t)) {
5270 		const struct btf_array *array = btf_type_array(t);
5271 		const struct btf_type *elem_type;
5272 		u32 elem_type_id = array->type;
5273 		u32 elem_size;
5274 
5275 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5276 		return elem_type && !btf_type_is_modifier(elem_type) &&
5277 			(array->nelems * elem_size ==
5278 			 btf_resolved_type_size(btf, type_id));
5279 	}
5280 
5281 	return false;
5282 }
5283 
5284 static int btf_resolve(struct btf_verifier_env *env,
5285 		       const struct btf_type *t, u32 type_id)
5286 {
5287 	u32 save_log_type_id = env->log_type_id;
5288 	const struct resolve_vertex *v;
5289 	int err = 0;
5290 
5291 	env->resolve_mode = RESOLVE_TBD;
5292 	env_stack_push(env, t, type_id);
5293 	while (!err && (v = env_stack_peak(env))) {
5294 		env->log_type_id = v->type_id;
5295 		err = btf_type_ops(v->t)->resolve(env, v);
5296 	}
5297 
5298 	env->log_type_id = type_id;
5299 	if (err == -E2BIG) {
5300 		btf_verifier_log_type(env, t,
5301 				      "Exceeded max resolving depth:%u",
5302 				      MAX_RESOLVE_DEPTH);
5303 	} else if (err == -EEXIST) {
5304 		btf_verifier_log_type(env, t, "Loop detected");
5305 	}
5306 
5307 	/* Final sanity check */
5308 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5309 		btf_verifier_log_type(env, t, "Invalid resolve state");
5310 		err = -EINVAL;
5311 	}
5312 
5313 	env->log_type_id = save_log_type_id;
5314 	return err;
5315 }
5316 
5317 static int btf_check_all_types(struct btf_verifier_env *env)
5318 {
5319 	struct btf *btf = env->btf;
5320 	const struct btf_type *t;
5321 	u32 type_id, i;
5322 	int err;
5323 
5324 	err = env_resolve_init(env);
5325 	if (err)
5326 		return err;
5327 
5328 	env->phase++;
5329 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5330 		type_id = btf->start_id + i;
5331 		t = btf_type_by_id(btf, type_id);
5332 
5333 		env->log_type_id = type_id;
5334 		if (btf_type_needs_resolve(t) &&
5335 		    !env_type_is_resolved(env, type_id)) {
5336 			err = btf_resolve(env, t, type_id);
5337 			if (err)
5338 				return err;
5339 		}
5340 
5341 		if (btf_type_is_func_proto(t)) {
5342 			err = btf_func_proto_check(env, t);
5343 			if (err)
5344 				return err;
5345 		}
5346 	}
5347 
5348 	return 0;
5349 }
5350 
5351 static int btf_parse_type_sec(struct btf_verifier_env *env)
5352 {
5353 	const struct btf_header *hdr = &env->btf->hdr;
5354 	int err;
5355 
5356 	/* Type section must align to 4 bytes */
5357 	if (hdr->type_off & (sizeof(u32) - 1)) {
5358 		btf_verifier_log(env, "Unaligned type_off");
5359 		return -EINVAL;
5360 	}
5361 
5362 	if (!env->btf->base_btf && !hdr->type_len) {
5363 		btf_verifier_log(env, "No type found");
5364 		return -EINVAL;
5365 	}
5366 
5367 	err = btf_check_all_metas(env);
5368 	if (err)
5369 		return err;
5370 
5371 	return btf_check_all_types(env);
5372 }
5373 
5374 static int btf_parse_str_sec(struct btf_verifier_env *env)
5375 {
5376 	const struct btf_header *hdr;
5377 	struct btf *btf = env->btf;
5378 	const char *start, *end;
5379 
5380 	hdr = &btf->hdr;
5381 	start = btf->nohdr_data + hdr->str_off;
5382 	end = start + hdr->str_len;
5383 
5384 	if (end != btf->data + btf->data_size) {
5385 		btf_verifier_log(env, "String section is not at the end");
5386 		return -EINVAL;
5387 	}
5388 
5389 	btf->strings = start;
5390 
5391 	if (btf->base_btf && !hdr->str_len)
5392 		return 0;
5393 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5394 		btf_verifier_log(env, "Invalid string section");
5395 		return -EINVAL;
5396 	}
5397 	if (!btf->base_btf && start[0]) {
5398 		btf_verifier_log(env, "Invalid string section");
5399 		return -EINVAL;
5400 	}
5401 
5402 	return 0;
5403 }
5404 
5405 static const size_t btf_sec_info_offset[] = {
5406 	offsetof(struct btf_header, type_off),
5407 	offsetof(struct btf_header, str_off),
5408 };
5409 
5410 static int btf_sec_info_cmp(const void *a, const void *b)
5411 {
5412 	const struct btf_sec_info *x = a;
5413 	const struct btf_sec_info *y = b;
5414 
5415 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5416 }
5417 
5418 static int btf_check_sec_info(struct btf_verifier_env *env,
5419 			      u32 btf_data_size)
5420 {
5421 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5422 	u32 total, expected_total, i;
5423 	const struct btf_header *hdr;
5424 	const struct btf *btf;
5425 
5426 	btf = env->btf;
5427 	hdr = &btf->hdr;
5428 
5429 	/* Populate the secs from hdr */
5430 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5431 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5432 						   btf_sec_info_offset[i]);
5433 
5434 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5435 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5436 
5437 	/* Check for gaps and overlap among sections */
5438 	total = 0;
5439 	expected_total = btf_data_size - hdr->hdr_len;
5440 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5441 		if (expected_total < secs[i].off) {
5442 			btf_verifier_log(env, "Invalid section offset");
5443 			return -EINVAL;
5444 		}
5445 		if (total < secs[i].off) {
5446 			/* gap */
5447 			btf_verifier_log(env, "Unsupported section found");
5448 			return -EINVAL;
5449 		}
5450 		if (total > secs[i].off) {
5451 			btf_verifier_log(env, "Section overlap found");
5452 			return -EINVAL;
5453 		}
5454 		if (expected_total - total < secs[i].len) {
5455 			btf_verifier_log(env,
5456 					 "Total section length too long");
5457 			return -EINVAL;
5458 		}
5459 		total += secs[i].len;
5460 	}
5461 
5462 	/* There is data other than hdr and known sections */
5463 	if (expected_total != total) {
5464 		btf_verifier_log(env, "Unsupported section found");
5465 		return -EINVAL;
5466 	}
5467 
5468 	return 0;
5469 }
5470 
5471 static int btf_parse_hdr(struct btf_verifier_env *env)
5472 {
5473 	u32 hdr_len, hdr_copy, btf_data_size;
5474 	const struct btf_header *hdr;
5475 	struct btf *btf;
5476 
5477 	btf = env->btf;
5478 	btf_data_size = btf->data_size;
5479 
5480 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5481 		btf_verifier_log(env, "hdr_len not found");
5482 		return -EINVAL;
5483 	}
5484 
5485 	hdr = btf->data;
5486 	hdr_len = hdr->hdr_len;
5487 	if (btf_data_size < hdr_len) {
5488 		btf_verifier_log(env, "btf_header not found");
5489 		return -EINVAL;
5490 	}
5491 
5492 	/* Ensure the unsupported header fields are zero */
5493 	if (hdr_len > sizeof(btf->hdr)) {
5494 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5495 		u8 *end = btf->data + hdr_len;
5496 
5497 		for (; expected_zero < end; expected_zero++) {
5498 			if (*expected_zero) {
5499 				btf_verifier_log(env, "Unsupported btf_header");
5500 				return -E2BIG;
5501 			}
5502 		}
5503 	}
5504 
5505 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5506 	memcpy(&btf->hdr, btf->data, hdr_copy);
5507 
5508 	hdr = &btf->hdr;
5509 
5510 	btf_verifier_log_hdr(env, btf_data_size);
5511 
5512 	if (hdr->magic != BTF_MAGIC) {
5513 		btf_verifier_log(env, "Invalid magic");
5514 		return -EINVAL;
5515 	}
5516 
5517 	if (hdr->version != BTF_VERSION) {
5518 		btf_verifier_log(env, "Unsupported version");
5519 		return -ENOTSUPP;
5520 	}
5521 
5522 	if (hdr->flags) {
5523 		btf_verifier_log(env, "Unsupported flags");
5524 		return -ENOTSUPP;
5525 	}
5526 
5527 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5528 		btf_verifier_log(env, "No data");
5529 		return -EINVAL;
5530 	}
5531 
5532 	return btf_check_sec_info(env, btf_data_size);
5533 }
5534 
5535 static const char *alloc_obj_fields[] = {
5536 	"bpf_spin_lock",
5537 	"bpf_list_head",
5538 	"bpf_list_node",
5539 	"bpf_rb_root",
5540 	"bpf_rb_node",
5541 	"bpf_refcount",
5542 };
5543 
5544 static struct btf_struct_metas *
5545 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5546 {
5547 	struct btf_struct_metas *tab = NULL;
5548 	struct btf_id_set *aof;
5549 	int i, n, id, ret;
5550 
5551 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5552 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5553 
5554 	aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5555 	if (!aof)
5556 		return ERR_PTR(-ENOMEM);
5557 	aof->cnt = 0;
5558 
5559 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5560 		/* Try to find whether this special type exists in user BTF, and
5561 		 * if so remember its ID so we can easily find it among members
5562 		 * of structs that we iterate in the next loop.
5563 		 */
5564 		struct btf_id_set *new_aof;
5565 
5566 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5567 		if (id < 0)
5568 			continue;
5569 
5570 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5571 				   GFP_KERNEL | __GFP_NOWARN);
5572 		if (!new_aof) {
5573 			ret = -ENOMEM;
5574 			goto free_aof;
5575 		}
5576 		aof = new_aof;
5577 		aof->ids[aof->cnt++] = id;
5578 	}
5579 
5580 	n = btf_nr_types(btf);
5581 	for (i = 1; i < n; i++) {
5582 		/* Try to find if there are kptrs in user BTF and remember their ID */
5583 		struct btf_id_set *new_aof;
5584 		struct btf_field_info tmp;
5585 		const struct btf_type *t;
5586 
5587 		t = btf_type_by_id(btf, i);
5588 		if (!t) {
5589 			ret = -EINVAL;
5590 			goto free_aof;
5591 		}
5592 
5593 		ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5594 		if (ret != BTF_FIELD_FOUND)
5595 			continue;
5596 
5597 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5598 				   GFP_KERNEL | __GFP_NOWARN);
5599 		if (!new_aof) {
5600 			ret = -ENOMEM;
5601 			goto free_aof;
5602 		}
5603 		aof = new_aof;
5604 		aof->ids[aof->cnt++] = i;
5605 	}
5606 
5607 	if (!aof->cnt) {
5608 		kfree(aof);
5609 		return NULL;
5610 	}
5611 	sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5612 
5613 	for (i = 1; i < n; i++) {
5614 		struct btf_struct_metas *new_tab;
5615 		const struct btf_member *member;
5616 		struct btf_struct_meta *type;
5617 		struct btf_record *record;
5618 		const struct btf_type *t;
5619 		int j, tab_cnt;
5620 
5621 		t = btf_type_by_id(btf, i);
5622 		if (!__btf_type_is_struct(t))
5623 			continue;
5624 
5625 		cond_resched();
5626 
5627 		for_each_member(j, t, member) {
5628 			if (btf_id_set_contains(aof, member->type))
5629 				goto parse;
5630 		}
5631 		continue;
5632 	parse:
5633 		tab_cnt = tab ? tab->cnt : 0;
5634 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5635 				   GFP_KERNEL | __GFP_NOWARN);
5636 		if (!new_tab) {
5637 			ret = -ENOMEM;
5638 			goto free;
5639 		}
5640 		if (!tab)
5641 			new_tab->cnt = 0;
5642 		tab = new_tab;
5643 
5644 		type = &tab->types[tab->cnt];
5645 		type->btf_id = i;
5646 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5647 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5648 						  BPF_KPTR, t->size);
5649 		/* The record cannot be unset, treat it as an error if so */
5650 		if (IS_ERR_OR_NULL(record)) {
5651 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5652 			goto free;
5653 		}
5654 		type->record = record;
5655 		tab->cnt++;
5656 	}
5657 	kfree(aof);
5658 	return tab;
5659 free:
5660 	btf_struct_metas_free(tab);
5661 free_aof:
5662 	kfree(aof);
5663 	return ERR_PTR(ret);
5664 }
5665 
5666 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5667 {
5668 	struct btf_struct_metas *tab;
5669 
5670 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5671 	tab = btf->struct_meta_tab;
5672 	if (!tab)
5673 		return NULL;
5674 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5675 }
5676 
5677 static int btf_check_type_tags(struct btf_verifier_env *env,
5678 			       struct btf *btf, int start_id)
5679 {
5680 	int i, n, good_id = start_id - 1;
5681 	bool in_tags;
5682 
5683 	n = btf_nr_types(btf);
5684 	for (i = start_id; i < n; i++) {
5685 		const struct btf_type *t;
5686 		int chain_limit = 32;
5687 		u32 cur_id = i;
5688 
5689 		t = btf_type_by_id(btf, i);
5690 		if (!t)
5691 			return -EINVAL;
5692 		if (!btf_type_is_modifier(t))
5693 			continue;
5694 
5695 		cond_resched();
5696 
5697 		in_tags = btf_type_is_type_tag(t);
5698 		while (btf_type_is_modifier(t)) {
5699 			if (!chain_limit--) {
5700 				btf_verifier_log(env, "Max chain length or cycle detected");
5701 				return -ELOOP;
5702 			}
5703 			if (btf_type_is_type_tag(t)) {
5704 				if (!in_tags) {
5705 					btf_verifier_log(env, "Type tags don't precede modifiers");
5706 					return -EINVAL;
5707 				}
5708 			} else if (in_tags) {
5709 				in_tags = false;
5710 			}
5711 			if (cur_id <= good_id)
5712 				break;
5713 			/* Move to next type */
5714 			cur_id = t->type;
5715 			t = btf_type_by_id(btf, cur_id);
5716 			if (!t)
5717 				return -EINVAL;
5718 		}
5719 		good_id = i;
5720 	}
5721 	return 0;
5722 }
5723 
5724 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5725 {
5726 	u32 log_true_size;
5727 	int err;
5728 
5729 	err = bpf_vlog_finalize(log, &log_true_size);
5730 
5731 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5732 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5733 				  &log_true_size, sizeof(log_true_size)))
5734 		err = -EFAULT;
5735 
5736 	return err;
5737 }
5738 
5739 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5740 {
5741 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5742 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5743 	struct btf_struct_metas *struct_meta_tab;
5744 	struct btf_verifier_env *env = NULL;
5745 	struct btf *btf = NULL;
5746 	u8 *data;
5747 	int err, ret;
5748 
5749 	if (attr->btf_size > BTF_MAX_SIZE)
5750 		return ERR_PTR(-E2BIG);
5751 
5752 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5753 	if (!env)
5754 		return ERR_PTR(-ENOMEM);
5755 
5756 	/* user could have requested verbose verifier output
5757 	 * and supplied buffer to store the verification trace
5758 	 */
5759 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5760 			    log_ubuf, attr->btf_log_size);
5761 	if (err)
5762 		goto errout_free;
5763 
5764 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5765 	if (!btf) {
5766 		err = -ENOMEM;
5767 		goto errout;
5768 	}
5769 	env->btf = btf;
5770 
5771 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5772 	if (!data) {
5773 		err = -ENOMEM;
5774 		goto errout;
5775 	}
5776 
5777 	btf->data = data;
5778 	btf->data_size = attr->btf_size;
5779 
5780 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5781 		err = -EFAULT;
5782 		goto errout;
5783 	}
5784 
5785 	err = btf_parse_hdr(env);
5786 	if (err)
5787 		goto errout;
5788 
5789 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5790 
5791 	err = btf_parse_str_sec(env);
5792 	if (err)
5793 		goto errout;
5794 
5795 	err = btf_parse_type_sec(env);
5796 	if (err)
5797 		goto errout;
5798 
5799 	err = btf_check_type_tags(env, btf, 1);
5800 	if (err)
5801 		goto errout;
5802 
5803 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5804 	if (IS_ERR(struct_meta_tab)) {
5805 		err = PTR_ERR(struct_meta_tab);
5806 		goto errout;
5807 	}
5808 	btf->struct_meta_tab = struct_meta_tab;
5809 
5810 	if (struct_meta_tab) {
5811 		int i;
5812 
5813 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5814 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5815 			if (err < 0)
5816 				goto errout_meta;
5817 		}
5818 	}
5819 
5820 	err = finalize_log(&env->log, uattr, uattr_size);
5821 	if (err)
5822 		goto errout_free;
5823 
5824 	btf_verifier_env_free(env);
5825 	refcount_set(&btf->refcnt, 1);
5826 	return btf;
5827 
5828 errout_meta:
5829 	btf_free_struct_meta_tab(btf);
5830 errout:
5831 	/* overwrite err with -ENOSPC or -EFAULT */
5832 	ret = finalize_log(&env->log, uattr, uattr_size);
5833 	if (ret)
5834 		err = ret;
5835 errout_free:
5836 	btf_verifier_env_free(env);
5837 	if (btf)
5838 		btf_free(btf);
5839 	return ERR_PTR(err);
5840 }
5841 
5842 extern char __start_BTF[];
5843 extern char __stop_BTF[];
5844 extern struct btf *btf_vmlinux;
5845 
5846 #define BPF_MAP_TYPE(_id, _ops)
5847 #define BPF_LINK_TYPE(_id, _name)
5848 static union {
5849 	struct bpf_ctx_convert {
5850 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5851 	prog_ctx_type _id##_prog; \
5852 	kern_ctx_type _id##_kern;
5853 #include <linux/bpf_types.h>
5854 #undef BPF_PROG_TYPE
5855 	} *__t;
5856 	/* 't' is written once under lock. Read many times. */
5857 	const struct btf_type *t;
5858 } bpf_ctx_convert;
5859 enum {
5860 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5861 	__ctx_convert##_id,
5862 #include <linux/bpf_types.h>
5863 #undef BPF_PROG_TYPE
5864 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5865 };
5866 static u8 bpf_ctx_convert_map[] = {
5867 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5868 	[_id] = __ctx_convert##_id,
5869 #include <linux/bpf_types.h>
5870 #undef BPF_PROG_TYPE
5871 	0, /* avoid empty array */
5872 };
5873 #undef BPF_MAP_TYPE
5874 #undef BPF_LINK_TYPE
5875 
5876 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5877 {
5878 	const struct btf_type *conv_struct;
5879 	const struct btf_member *ctx_type;
5880 
5881 	conv_struct = bpf_ctx_convert.t;
5882 	if (!conv_struct)
5883 		return NULL;
5884 	/* prog_type is valid bpf program type. No need for bounds check. */
5885 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5886 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5887 	 * Like 'struct __sk_buff'
5888 	 */
5889 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5890 }
5891 
5892 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5893 {
5894 	const struct btf_type *conv_struct;
5895 	const struct btf_member *ctx_type;
5896 
5897 	conv_struct = bpf_ctx_convert.t;
5898 	if (!conv_struct)
5899 		return -EFAULT;
5900 	/* prog_type is valid bpf program type. No need for bounds check. */
5901 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5902 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5903 	 * Like 'struct sk_buff'
5904 	 */
5905 	return ctx_type->type;
5906 }
5907 
5908 bool btf_is_projection_of(const char *pname, const char *tname)
5909 {
5910 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5911 		return true;
5912 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5913 		return true;
5914 	return false;
5915 }
5916 
5917 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5918 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5919 			  int arg)
5920 {
5921 	const struct btf_type *ctx_type;
5922 	const char *tname, *ctx_tname;
5923 
5924 	t = btf_type_by_id(btf, t->type);
5925 
5926 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5927 	 * check before we skip all the typedef below.
5928 	 */
5929 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5930 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5931 			t = btf_type_by_id(btf, t->type);
5932 
5933 		if (btf_type_is_typedef(t)) {
5934 			tname = btf_name_by_offset(btf, t->name_off);
5935 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5936 				return true;
5937 		}
5938 	}
5939 
5940 	while (btf_type_is_modifier(t))
5941 		t = btf_type_by_id(btf, t->type);
5942 	if (!btf_type_is_struct(t)) {
5943 		/* Only pointer to struct is supported for now.
5944 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5945 		 * is not supported yet.
5946 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5947 		 */
5948 		return false;
5949 	}
5950 	tname = btf_name_by_offset(btf, t->name_off);
5951 	if (!tname) {
5952 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5953 		return false;
5954 	}
5955 
5956 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5957 	if (!ctx_type) {
5958 		bpf_log(log, "btf_vmlinux is malformed\n");
5959 		/* should not happen */
5960 		return false;
5961 	}
5962 again:
5963 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5964 	if (!ctx_tname) {
5965 		/* should not happen */
5966 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5967 		return false;
5968 	}
5969 	/* program types without named context types work only with arg:ctx tag */
5970 	if (ctx_tname[0] == '\0')
5971 		return false;
5972 	/* only compare that prog's ctx type name is the same as
5973 	 * kernel expects. No need to compare field by field.
5974 	 * It's ok for bpf prog to do:
5975 	 * struct __sk_buff {};
5976 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5977 	 * { // no fields of skb are ever used }
5978 	 */
5979 	if (btf_is_projection_of(ctx_tname, tname))
5980 		return true;
5981 	if (strcmp(ctx_tname, tname)) {
5982 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5983 		 * underlying struct and check name again
5984 		 */
5985 		if (!btf_type_is_modifier(ctx_type))
5986 			return false;
5987 		while (btf_type_is_modifier(ctx_type))
5988 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5989 		goto again;
5990 	}
5991 	return true;
5992 }
5993 
5994 /* forward declarations for arch-specific underlying types of
5995  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5996  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5997  * works correctly with __builtin_types_compatible_p() on respective
5998  * architectures
5999  */
6000 struct user_regs_struct;
6001 struct user_pt_regs;
6002 
6003 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6004 				      const struct btf_type *t, int arg,
6005 				      enum bpf_prog_type prog_type,
6006 				      enum bpf_attach_type attach_type)
6007 {
6008 	const struct btf_type *ctx_type;
6009 	const char *tname, *ctx_tname;
6010 
6011 	if (!btf_is_ptr(t)) {
6012 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6013 		return -EINVAL;
6014 	}
6015 	t = btf_type_by_id(btf, t->type);
6016 
6017 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6018 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6019 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6020 			t = btf_type_by_id(btf, t->type);
6021 
6022 		if (btf_type_is_typedef(t)) {
6023 			tname = btf_name_by_offset(btf, t->name_off);
6024 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6025 				return 0;
6026 		}
6027 	}
6028 
6029 	/* all other program types don't use typedefs for context type */
6030 	while (btf_type_is_modifier(t))
6031 		t = btf_type_by_id(btf, t->type);
6032 
6033 	/* `void *ctx __arg_ctx` is always valid */
6034 	if (btf_type_is_void(t))
6035 		return 0;
6036 
6037 	tname = btf_name_by_offset(btf, t->name_off);
6038 	if (str_is_empty(tname)) {
6039 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6040 		return -EINVAL;
6041 	}
6042 
6043 	/* special cases */
6044 	switch (prog_type) {
6045 	case BPF_PROG_TYPE_KPROBE:
6046 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6047 			return 0;
6048 		break;
6049 	case BPF_PROG_TYPE_PERF_EVENT:
6050 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6051 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6052 			return 0;
6053 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6054 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6055 			return 0;
6056 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6057 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6058 			return 0;
6059 		break;
6060 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6061 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6062 		/* allow u64* as ctx */
6063 		if (btf_is_int(t) && t->size == 8)
6064 			return 0;
6065 		break;
6066 	case BPF_PROG_TYPE_TRACING:
6067 		switch (attach_type) {
6068 		case BPF_TRACE_RAW_TP:
6069 			/* tp_btf program is TRACING, so need special case here */
6070 			if (__btf_type_is_struct(t) &&
6071 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6072 				return 0;
6073 			/* allow u64* as ctx */
6074 			if (btf_is_int(t) && t->size == 8)
6075 				return 0;
6076 			break;
6077 		case BPF_TRACE_ITER:
6078 			/* allow struct bpf_iter__xxx types only */
6079 			if (__btf_type_is_struct(t) &&
6080 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6081 				return 0;
6082 			break;
6083 		case BPF_TRACE_FENTRY:
6084 		case BPF_TRACE_FEXIT:
6085 		case BPF_MODIFY_RETURN:
6086 			/* allow u64* as ctx */
6087 			if (btf_is_int(t) && t->size == 8)
6088 				return 0;
6089 			break;
6090 		default:
6091 			break;
6092 		}
6093 		break;
6094 	case BPF_PROG_TYPE_LSM:
6095 	case BPF_PROG_TYPE_STRUCT_OPS:
6096 		/* allow u64* as ctx */
6097 		if (btf_is_int(t) && t->size == 8)
6098 			return 0;
6099 		break;
6100 	case BPF_PROG_TYPE_TRACEPOINT:
6101 	case BPF_PROG_TYPE_SYSCALL:
6102 	case BPF_PROG_TYPE_EXT:
6103 		return 0; /* anything goes */
6104 	default:
6105 		break;
6106 	}
6107 
6108 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6109 	if (!ctx_type) {
6110 		/* should not happen */
6111 		bpf_log(log, "btf_vmlinux is malformed\n");
6112 		return -EINVAL;
6113 	}
6114 
6115 	/* resolve typedefs and check that underlying structs are matching as well */
6116 	while (btf_type_is_modifier(ctx_type))
6117 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6118 
6119 	/* if program type doesn't have distinctly named struct type for
6120 	 * context, then __arg_ctx argument can only be `void *`, which we
6121 	 * already checked above
6122 	 */
6123 	if (!__btf_type_is_struct(ctx_type)) {
6124 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6125 		return -EINVAL;
6126 	}
6127 
6128 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6129 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6130 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6131 		return -EINVAL;
6132 	}
6133 
6134 	return 0;
6135 }
6136 
6137 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6138 				     struct btf *btf,
6139 				     const struct btf_type *t,
6140 				     enum bpf_prog_type prog_type,
6141 				     int arg)
6142 {
6143 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6144 		return -ENOENT;
6145 	return find_kern_ctx_type_id(prog_type);
6146 }
6147 
6148 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6149 {
6150 	const struct btf_member *kctx_member;
6151 	const struct btf_type *conv_struct;
6152 	const struct btf_type *kctx_type;
6153 	u32 kctx_type_id;
6154 
6155 	conv_struct = bpf_ctx_convert.t;
6156 	/* get member for kernel ctx type */
6157 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6158 	kctx_type_id = kctx_member->type;
6159 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6160 	if (!btf_type_is_struct(kctx_type)) {
6161 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6162 		return -EINVAL;
6163 	}
6164 
6165 	return kctx_type_id;
6166 }
6167 
6168 BTF_ID_LIST(bpf_ctx_convert_btf_id)
6169 BTF_ID(struct, bpf_ctx_convert)
6170 
6171 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6172 				  void *data, unsigned int data_size)
6173 {
6174 	struct btf *btf = NULL;
6175 	int err;
6176 
6177 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6178 		return ERR_PTR(-ENOENT);
6179 
6180 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6181 	if (!btf) {
6182 		err = -ENOMEM;
6183 		goto errout;
6184 	}
6185 	env->btf = btf;
6186 
6187 	btf->data = data;
6188 	btf->data_size = data_size;
6189 	btf->kernel_btf = true;
6190 	snprintf(btf->name, sizeof(btf->name), "%s", name);
6191 
6192 	err = btf_parse_hdr(env);
6193 	if (err)
6194 		goto errout;
6195 
6196 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6197 
6198 	err = btf_parse_str_sec(env);
6199 	if (err)
6200 		goto errout;
6201 
6202 	err = btf_check_all_metas(env);
6203 	if (err)
6204 		goto errout;
6205 
6206 	err = btf_check_type_tags(env, btf, 1);
6207 	if (err)
6208 		goto errout;
6209 
6210 	refcount_set(&btf->refcnt, 1);
6211 
6212 	return btf;
6213 
6214 errout:
6215 	if (btf) {
6216 		kvfree(btf->types);
6217 		kfree(btf);
6218 	}
6219 	return ERR_PTR(err);
6220 }
6221 
6222 struct btf *btf_parse_vmlinux(void)
6223 {
6224 	struct btf_verifier_env *env = NULL;
6225 	struct bpf_verifier_log *log;
6226 	struct btf *btf;
6227 	int err;
6228 
6229 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6230 	if (!env)
6231 		return ERR_PTR(-ENOMEM);
6232 
6233 	log = &env->log;
6234 	log->level = BPF_LOG_KERNEL;
6235 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6236 	if (IS_ERR(btf))
6237 		goto err_out;
6238 
6239 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6240 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6241 	err = btf_alloc_id(btf);
6242 	if (err) {
6243 		btf_free(btf);
6244 		btf = ERR_PTR(err);
6245 	}
6246 err_out:
6247 	btf_verifier_env_free(env);
6248 	return btf;
6249 }
6250 
6251 /* If .BTF_ids section was created with distilled base BTF, both base and
6252  * split BTF ids will need to be mapped to actual base/split ids for
6253  * BTF now that it has been relocated.
6254  */
6255 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6256 {
6257 	if (!btf->base_btf || !btf->base_id_map)
6258 		return id;
6259 	return btf->base_id_map[id];
6260 }
6261 
6262 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6263 
6264 static struct btf *btf_parse_module(const char *module_name, const void *data,
6265 				    unsigned int data_size, void *base_data,
6266 				    unsigned int base_data_size)
6267 {
6268 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6269 	struct btf_verifier_env *env = NULL;
6270 	struct bpf_verifier_log *log;
6271 	int err = 0;
6272 
6273 	vmlinux_btf = bpf_get_btf_vmlinux();
6274 	if (IS_ERR(vmlinux_btf))
6275 		return vmlinux_btf;
6276 	if (!vmlinux_btf)
6277 		return ERR_PTR(-EINVAL);
6278 
6279 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6280 	if (!env)
6281 		return ERR_PTR(-ENOMEM);
6282 
6283 	log = &env->log;
6284 	log->level = BPF_LOG_KERNEL;
6285 
6286 	if (base_data) {
6287 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6288 		if (IS_ERR(base_btf)) {
6289 			err = PTR_ERR(base_btf);
6290 			goto errout;
6291 		}
6292 	} else {
6293 		base_btf = vmlinux_btf;
6294 	}
6295 
6296 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6297 	if (!btf) {
6298 		err = -ENOMEM;
6299 		goto errout;
6300 	}
6301 	env->btf = btf;
6302 
6303 	btf->base_btf = base_btf;
6304 	btf->start_id = base_btf->nr_types;
6305 	btf->start_str_off = base_btf->hdr.str_len;
6306 	btf->kernel_btf = true;
6307 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6308 
6309 	btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6310 	if (!btf->data) {
6311 		err = -ENOMEM;
6312 		goto errout;
6313 	}
6314 	btf->data_size = data_size;
6315 
6316 	err = btf_parse_hdr(env);
6317 	if (err)
6318 		goto errout;
6319 
6320 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6321 
6322 	err = btf_parse_str_sec(env);
6323 	if (err)
6324 		goto errout;
6325 
6326 	err = btf_check_all_metas(env);
6327 	if (err)
6328 		goto errout;
6329 
6330 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6331 	if (err)
6332 		goto errout;
6333 
6334 	if (base_btf != vmlinux_btf) {
6335 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6336 		if (err)
6337 			goto errout;
6338 		btf_free(base_btf);
6339 		base_btf = vmlinux_btf;
6340 	}
6341 
6342 	btf_verifier_env_free(env);
6343 	refcount_set(&btf->refcnt, 1);
6344 	return btf;
6345 
6346 errout:
6347 	btf_verifier_env_free(env);
6348 	if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6349 		btf_free(base_btf);
6350 	if (btf) {
6351 		kvfree(btf->data);
6352 		kvfree(btf->types);
6353 		kfree(btf);
6354 	}
6355 	return ERR_PTR(err);
6356 }
6357 
6358 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6359 
6360 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6361 {
6362 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6363 
6364 	if (tgt_prog)
6365 		return tgt_prog->aux->btf;
6366 	else
6367 		return prog->aux->attach_btf;
6368 }
6369 
6370 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6371 {
6372 	/* skip modifiers */
6373 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6374 
6375 	return btf_type_is_int(t);
6376 }
6377 
6378 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6379 			   int off)
6380 {
6381 	const struct btf_param *args;
6382 	const struct btf_type *t;
6383 	u32 offset = 0, nr_args;
6384 	int i;
6385 
6386 	if (!func_proto)
6387 		return off / 8;
6388 
6389 	nr_args = btf_type_vlen(func_proto);
6390 	args = (const struct btf_param *)(func_proto + 1);
6391 	for (i = 0; i < nr_args; i++) {
6392 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6393 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6394 		if (off < offset)
6395 			return i;
6396 	}
6397 
6398 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6399 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6400 	if (off < offset)
6401 		return nr_args;
6402 
6403 	return nr_args + 1;
6404 }
6405 
6406 static bool prog_args_trusted(const struct bpf_prog *prog)
6407 {
6408 	enum bpf_attach_type atype = prog->expected_attach_type;
6409 
6410 	switch (prog->type) {
6411 	case BPF_PROG_TYPE_TRACING:
6412 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6413 	case BPF_PROG_TYPE_LSM:
6414 		return bpf_lsm_is_trusted(prog);
6415 	case BPF_PROG_TYPE_STRUCT_OPS:
6416 		return true;
6417 	default:
6418 		return false;
6419 	}
6420 }
6421 
6422 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6423 		       u32 arg_no)
6424 {
6425 	const struct btf_param *args;
6426 	const struct btf_type *t;
6427 	int off = 0, i;
6428 	u32 sz;
6429 
6430 	args = btf_params(func_proto);
6431 	for (i = 0; i < arg_no; i++) {
6432 		t = btf_type_by_id(btf, args[i].type);
6433 		t = btf_resolve_size(btf, t, &sz);
6434 		if (IS_ERR(t))
6435 			return PTR_ERR(t);
6436 		off += roundup(sz, 8);
6437 	}
6438 
6439 	return off;
6440 }
6441 
6442 struct bpf_raw_tp_null_args {
6443 	const char *func;
6444 	u64 mask;
6445 };
6446 
6447 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6448 	/* sched */
6449 	{ "sched_pi_setprio", 0x10 },
6450 	/* ... from sched_numa_pair_template event class */
6451 	{ "sched_stick_numa", 0x100 },
6452 	{ "sched_swap_numa", 0x100 },
6453 	/* afs */
6454 	{ "afs_make_fs_call", 0x10 },
6455 	{ "afs_make_fs_calli", 0x10 },
6456 	{ "afs_make_fs_call1", 0x10 },
6457 	{ "afs_make_fs_call2", 0x10 },
6458 	{ "afs_protocol_error", 0x1 },
6459 	{ "afs_flock_ev", 0x10 },
6460 	/* cachefiles */
6461 	{ "cachefiles_lookup", 0x1 | 0x200 },
6462 	{ "cachefiles_unlink", 0x1 },
6463 	{ "cachefiles_rename", 0x1 },
6464 	{ "cachefiles_prep_read", 0x1 },
6465 	{ "cachefiles_mark_active", 0x1 },
6466 	{ "cachefiles_mark_failed", 0x1 },
6467 	{ "cachefiles_mark_inactive", 0x1 },
6468 	{ "cachefiles_vfs_error", 0x1 },
6469 	{ "cachefiles_io_error", 0x1 },
6470 	{ "cachefiles_ondemand_open", 0x1 },
6471 	{ "cachefiles_ondemand_copen", 0x1 },
6472 	{ "cachefiles_ondemand_close", 0x1 },
6473 	{ "cachefiles_ondemand_read", 0x1 },
6474 	{ "cachefiles_ondemand_cread", 0x1 },
6475 	{ "cachefiles_ondemand_fd_write", 0x1 },
6476 	{ "cachefiles_ondemand_fd_release", 0x1 },
6477 	/* ext4, from ext4__mballoc event class */
6478 	{ "ext4_mballoc_discard", 0x10 },
6479 	{ "ext4_mballoc_free", 0x10 },
6480 	/* fib */
6481 	{ "fib_table_lookup", 0x100 },
6482 	/* filelock */
6483 	/* ... from filelock_lock event class */
6484 	{ "posix_lock_inode", 0x10 },
6485 	{ "fcntl_setlk", 0x10 },
6486 	{ "locks_remove_posix", 0x10 },
6487 	{ "flock_lock_inode", 0x10 },
6488 	/* ... from filelock_lease event class */
6489 	{ "break_lease_noblock", 0x10 },
6490 	{ "break_lease_block", 0x10 },
6491 	{ "break_lease_unblock", 0x10 },
6492 	{ "generic_delete_lease", 0x10 },
6493 	{ "time_out_leases", 0x10 },
6494 	/* host1x */
6495 	{ "host1x_cdma_push_gather", 0x10000 },
6496 	/* huge_memory */
6497 	{ "mm_khugepaged_scan_pmd", 0x10 },
6498 	{ "mm_collapse_huge_page_isolate", 0x1 },
6499 	{ "mm_khugepaged_scan_file", 0x10 },
6500 	{ "mm_khugepaged_collapse_file", 0x10 },
6501 	/* kmem */
6502 	{ "mm_page_alloc", 0x1 },
6503 	{ "mm_page_pcpu_drain", 0x1 },
6504 	/* .. from mm_page event class */
6505 	{ "mm_page_alloc_zone_locked", 0x1 },
6506 	/* netfs */
6507 	{ "netfs_failure", 0x10 },
6508 	/* power */
6509 	{ "device_pm_callback_start", 0x10 },
6510 	/* qdisc */
6511 	{ "qdisc_dequeue", 0x1000 },
6512 	/* rxrpc */
6513 	{ "rxrpc_recvdata", 0x1 },
6514 	{ "rxrpc_resend", 0x10 },
6515 	/* sunrpc */
6516 	{ "xs_stream_read_data", 0x1 },
6517 	/* ... from xprt_cong_event event class */
6518 	{ "xprt_reserve_cong", 0x10 },
6519 	{ "xprt_release_cong", 0x10 },
6520 	{ "xprt_get_cong", 0x10 },
6521 	{ "xprt_put_cong", 0x10 },
6522 	/* tcp */
6523 	{ "tcp_send_reset", 0x11 },
6524 	/* tegra_apb_dma */
6525 	{ "tegra_dma_tx_status", 0x100 },
6526 	/* timer_migration */
6527 	{ "tmigr_update_events", 0x1 },
6528 	/* writeback, from writeback_folio_template event class */
6529 	{ "writeback_dirty_folio", 0x10 },
6530 	{ "folio_wait_writeback", 0x10 },
6531 	/* rdma */
6532 	{ "mr_integ_alloc", 0x2000 },
6533 	/* bpf_testmod */
6534 	{ "bpf_testmod_test_read", 0x0 },
6535 };
6536 
6537 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6538 		    const struct bpf_prog *prog,
6539 		    struct bpf_insn_access_aux *info)
6540 {
6541 	const struct btf_type *t = prog->aux->attach_func_proto;
6542 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6543 	struct btf *btf = bpf_prog_get_target_btf(prog);
6544 	const char *tname = prog->aux->attach_func_name;
6545 	struct bpf_verifier_log *log = info->log;
6546 	const struct btf_param *args;
6547 	bool ptr_err_raw_tp = false;
6548 	const char *tag_value;
6549 	u32 nr_args, arg;
6550 	int i, ret;
6551 
6552 	if (off % 8) {
6553 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6554 			tname, off);
6555 		return false;
6556 	}
6557 	arg = get_ctx_arg_idx(btf, t, off);
6558 	args = (const struct btf_param *)(t + 1);
6559 	/* if (t == NULL) Fall back to default BPF prog with
6560 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6561 	 */
6562 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6563 	if (prog->aux->attach_btf_trace) {
6564 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6565 		args++;
6566 		nr_args--;
6567 	}
6568 
6569 	if (arg > nr_args) {
6570 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6571 			tname, arg + 1);
6572 		return false;
6573 	}
6574 
6575 	if (arg == nr_args) {
6576 		switch (prog->expected_attach_type) {
6577 		case BPF_LSM_MAC:
6578 			/* mark we are accessing the return value */
6579 			info->is_retval = true;
6580 			fallthrough;
6581 		case BPF_LSM_CGROUP:
6582 		case BPF_TRACE_FEXIT:
6583 			/* When LSM programs are attached to void LSM hooks
6584 			 * they use FEXIT trampolines and when attached to
6585 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6586 			 *
6587 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6588 			 * the check:
6589 			 *
6590 			 *	if (ret_type != 'int')
6591 			 *		return -EINVAL;
6592 			 *
6593 			 * is _not_ done here. This is still safe as LSM hooks
6594 			 * have only void and int return types.
6595 			 */
6596 			if (!t)
6597 				return true;
6598 			t = btf_type_by_id(btf, t->type);
6599 			break;
6600 		case BPF_MODIFY_RETURN:
6601 			/* For now the BPF_MODIFY_RETURN can only be attached to
6602 			 * functions that return an int.
6603 			 */
6604 			if (!t)
6605 				return false;
6606 
6607 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6608 			if (!btf_type_is_small_int(t)) {
6609 				bpf_log(log,
6610 					"ret type %s not allowed for fmod_ret\n",
6611 					btf_type_str(t));
6612 				return false;
6613 			}
6614 			break;
6615 		default:
6616 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6617 				tname, arg + 1);
6618 			return false;
6619 		}
6620 	} else {
6621 		if (!t)
6622 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6623 			return true;
6624 		t = btf_type_by_id(btf, args[arg].type);
6625 	}
6626 
6627 	/* skip modifiers */
6628 	while (btf_type_is_modifier(t))
6629 		t = btf_type_by_id(btf, t->type);
6630 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6631 		/* accessing a scalar */
6632 		return true;
6633 	if (!btf_type_is_ptr(t)) {
6634 		bpf_log(log,
6635 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6636 			tname, arg,
6637 			__btf_name_by_offset(btf, t->name_off),
6638 			btf_type_str(t));
6639 		return false;
6640 	}
6641 
6642 	if (size != sizeof(u64)) {
6643 		bpf_log(log, "func '%s' size %d must be 8\n",
6644 			tname, size);
6645 		return false;
6646 	}
6647 
6648 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6649 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6650 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6651 		u32 type, flag;
6652 
6653 		type = base_type(ctx_arg_info->reg_type);
6654 		flag = type_flag(ctx_arg_info->reg_type);
6655 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6656 		    (flag & PTR_MAYBE_NULL)) {
6657 			info->reg_type = ctx_arg_info->reg_type;
6658 			return true;
6659 		}
6660 	}
6661 
6662 	if (t->type == 0)
6663 		/* This is a pointer to void.
6664 		 * It is the same as scalar from the verifier safety pov.
6665 		 * No further pointer walking is allowed.
6666 		 */
6667 		return true;
6668 
6669 	if (is_int_ptr(btf, t))
6670 		return true;
6671 
6672 	/* this is a pointer to another type */
6673 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6674 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6675 
6676 		if (ctx_arg_info->offset == off) {
6677 			if (!ctx_arg_info->btf_id) {
6678 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6679 				return false;
6680 			}
6681 
6682 			info->reg_type = ctx_arg_info->reg_type;
6683 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6684 			info->btf_id = ctx_arg_info->btf_id;
6685 			return true;
6686 		}
6687 	}
6688 
6689 	info->reg_type = PTR_TO_BTF_ID;
6690 	if (prog_args_trusted(prog))
6691 		info->reg_type |= PTR_TRUSTED;
6692 
6693 	if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6694 		info->reg_type |= PTR_MAYBE_NULL;
6695 
6696 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6697 		struct btf *btf = prog->aux->attach_btf;
6698 		const struct btf_type *t;
6699 		const char *tname;
6700 
6701 		/* BTF lookups cannot fail, return false on error */
6702 		t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6703 		if (!t)
6704 			return false;
6705 		tname = btf_name_by_offset(btf, t->name_off);
6706 		if (!tname)
6707 			return false;
6708 		/* Checked by bpf_check_attach_target */
6709 		tname += sizeof("btf_trace_") - 1;
6710 		for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6711 			/* Is this a func with potential NULL args? */
6712 			if (strcmp(tname, raw_tp_null_args[i].func))
6713 				continue;
6714 			if (raw_tp_null_args[i].mask & (0x1 << (arg * 4)))
6715 				info->reg_type |= PTR_MAYBE_NULL;
6716 			/* Is the current arg IS_ERR? */
6717 			if (raw_tp_null_args[i].mask & (0x2 << (arg * 4)))
6718 				ptr_err_raw_tp = true;
6719 			break;
6720 		}
6721 		/* If we don't know NULL-ness specification and the tracepoint
6722 		 * is coming from a loadable module, be conservative and mark
6723 		 * argument as PTR_MAYBE_NULL.
6724 		 */
6725 		if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6726 			info->reg_type |= PTR_MAYBE_NULL;
6727 	}
6728 
6729 	if (tgt_prog) {
6730 		enum bpf_prog_type tgt_type;
6731 
6732 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6733 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6734 		else
6735 			tgt_type = tgt_prog->type;
6736 
6737 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6738 		if (ret > 0) {
6739 			info->btf = btf_vmlinux;
6740 			info->btf_id = ret;
6741 			return true;
6742 		} else {
6743 			return false;
6744 		}
6745 	}
6746 
6747 	info->btf = btf;
6748 	info->btf_id = t->type;
6749 	t = btf_type_by_id(btf, t->type);
6750 
6751 	if (btf_type_is_type_tag(t)) {
6752 		tag_value = __btf_name_by_offset(btf, t->name_off);
6753 		if (strcmp(tag_value, "user") == 0)
6754 			info->reg_type |= MEM_USER;
6755 		if (strcmp(tag_value, "percpu") == 0)
6756 			info->reg_type |= MEM_PERCPU;
6757 	}
6758 
6759 	/* skip modifiers */
6760 	while (btf_type_is_modifier(t)) {
6761 		info->btf_id = t->type;
6762 		t = btf_type_by_id(btf, t->type);
6763 	}
6764 	if (!btf_type_is_struct(t)) {
6765 		bpf_log(log,
6766 			"func '%s' arg%d type %s is not a struct\n",
6767 			tname, arg, btf_type_str(t));
6768 		return false;
6769 	}
6770 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6771 		tname, arg, info->btf_id, btf_type_str(t),
6772 		__btf_name_by_offset(btf, t->name_off));
6773 
6774 	/* Perform all checks on the validity of type for this argument, but if
6775 	 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
6776 	 * scalar.
6777 	 */
6778 	if (ptr_err_raw_tp) {
6779 		bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
6780 		info->reg_type = SCALAR_VALUE;
6781 	}
6782 	return true;
6783 }
6784 EXPORT_SYMBOL_GPL(btf_ctx_access);
6785 
6786 enum bpf_struct_walk_result {
6787 	/* < 0 error */
6788 	WALK_SCALAR = 0,
6789 	WALK_PTR,
6790 	WALK_STRUCT,
6791 };
6792 
6793 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6794 			   const struct btf_type *t, int off, int size,
6795 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6796 			   const char **field_name)
6797 {
6798 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6799 	const struct btf_type *mtype, *elem_type = NULL;
6800 	const struct btf_member *member;
6801 	const char *tname, *mname, *tag_value;
6802 	u32 vlen, elem_id, mid;
6803 
6804 again:
6805 	if (btf_type_is_modifier(t))
6806 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6807 	tname = __btf_name_by_offset(btf, t->name_off);
6808 	if (!btf_type_is_struct(t)) {
6809 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6810 		return -EINVAL;
6811 	}
6812 
6813 	vlen = btf_type_vlen(t);
6814 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6815 		/*
6816 		 * walking unions yields untrusted pointers
6817 		 * with exception of __bpf_md_ptr and other
6818 		 * unions with a single member
6819 		 */
6820 		*flag |= PTR_UNTRUSTED;
6821 
6822 	if (off + size > t->size) {
6823 		/* If the last element is a variable size array, we may
6824 		 * need to relax the rule.
6825 		 */
6826 		struct btf_array *array_elem;
6827 
6828 		if (vlen == 0)
6829 			goto error;
6830 
6831 		member = btf_type_member(t) + vlen - 1;
6832 		mtype = btf_type_skip_modifiers(btf, member->type,
6833 						NULL);
6834 		if (!btf_type_is_array(mtype))
6835 			goto error;
6836 
6837 		array_elem = (struct btf_array *)(mtype + 1);
6838 		if (array_elem->nelems != 0)
6839 			goto error;
6840 
6841 		moff = __btf_member_bit_offset(t, member) / 8;
6842 		if (off < moff)
6843 			goto error;
6844 
6845 		/* allow structure and integer */
6846 		t = btf_type_skip_modifiers(btf, array_elem->type,
6847 					    NULL);
6848 
6849 		if (btf_type_is_int(t))
6850 			return WALK_SCALAR;
6851 
6852 		if (!btf_type_is_struct(t))
6853 			goto error;
6854 
6855 		off = (off - moff) % t->size;
6856 		goto again;
6857 
6858 error:
6859 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6860 			tname, off, size);
6861 		return -EACCES;
6862 	}
6863 
6864 	for_each_member(i, t, member) {
6865 		/* offset of the field in bytes */
6866 		moff = __btf_member_bit_offset(t, member) / 8;
6867 		if (off + size <= moff)
6868 			/* won't find anything, field is already too far */
6869 			break;
6870 
6871 		if (__btf_member_bitfield_size(t, member)) {
6872 			u32 end_bit = __btf_member_bit_offset(t, member) +
6873 				__btf_member_bitfield_size(t, member);
6874 
6875 			/* off <= moff instead of off == moff because clang
6876 			 * does not generate a BTF member for anonymous
6877 			 * bitfield like the ":16" here:
6878 			 * struct {
6879 			 *	int :16;
6880 			 *	int x:8;
6881 			 * };
6882 			 */
6883 			if (off <= moff &&
6884 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6885 				return WALK_SCALAR;
6886 
6887 			/* off may be accessing a following member
6888 			 *
6889 			 * or
6890 			 *
6891 			 * Doing partial access at either end of this
6892 			 * bitfield.  Continue on this case also to
6893 			 * treat it as not accessing this bitfield
6894 			 * and eventually error out as field not
6895 			 * found to keep it simple.
6896 			 * It could be relaxed if there was a legit
6897 			 * partial access case later.
6898 			 */
6899 			continue;
6900 		}
6901 
6902 		/* In case of "off" is pointing to holes of a struct */
6903 		if (off < moff)
6904 			break;
6905 
6906 		/* type of the field */
6907 		mid = member->type;
6908 		mtype = btf_type_by_id(btf, member->type);
6909 		mname = __btf_name_by_offset(btf, member->name_off);
6910 
6911 		mtype = __btf_resolve_size(btf, mtype, &msize,
6912 					   &elem_type, &elem_id, &total_nelems,
6913 					   &mid);
6914 		if (IS_ERR(mtype)) {
6915 			bpf_log(log, "field %s doesn't have size\n", mname);
6916 			return -EFAULT;
6917 		}
6918 
6919 		mtrue_end = moff + msize;
6920 		if (off >= mtrue_end)
6921 			/* no overlap with member, keep iterating */
6922 			continue;
6923 
6924 		if (btf_type_is_array(mtype)) {
6925 			u32 elem_idx;
6926 
6927 			/* __btf_resolve_size() above helps to
6928 			 * linearize a multi-dimensional array.
6929 			 *
6930 			 * The logic here is treating an array
6931 			 * in a struct as the following way:
6932 			 *
6933 			 * struct outer {
6934 			 *	struct inner array[2][2];
6935 			 * };
6936 			 *
6937 			 * looks like:
6938 			 *
6939 			 * struct outer {
6940 			 *	struct inner array_elem0;
6941 			 *	struct inner array_elem1;
6942 			 *	struct inner array_elem2;
6943 			 *	struct inner array_elem3;
6944 			 * };
6945 			 *
6946 			 * When accessing outer->array[1][0], it moves
6947 			 * moff to "array_elem2", set mtype to
6948 			 * "struct inner", and msize also becomes
6949 			 * sizeof(struct inner).  Then most of the
6950 			 * remaining logic will fall through without
6951 			 * caring the current member is an array or
6952 			 * not.
6953 			 *
6954 			 * Unlike mtype/msize/moff, mtrue_end does not
6955 			 * change.  The naming difference ("_true") tells
6956 			 * that it is not always corresponding to
6957 			 * the current mtype/msize/moff.
6958 			 * It is the true end of the current
6959 			 * member (i.e. array in this case).  That
6960 			 * will allow an int array to be accessed like
6961 			 * a scratch space,
6962 			 * i.e. allow access beyond the size of
6963 			 *      the array's element as long as it is
6964 			 *      within the mtrue_end boundary.
6965 			 */
6966 
6967 			/* skip empty array */
6968 			if (moff == mtrue_end)
6969 				continue;
6970 
6971 			msize /= total_nelems;
6972 			elem_idx = (off - moff) / msize;
6973 			moff += elem_idx * msize;
6974 			mtype = elem_type;
6975 			mid = elem_id;
6976 		}
6977 
6978 		/* the 'off' we're looking for is either equal to start
6979 		 * of this field or inside of this struct
6980 		 */
6981 		if (btf_type_is_struct(mtype)) {
6982 			/* our field must be inside that union or struct */
6983 			t = mtype;
6984 
6985 			/* return if the offset matches the member offset */
6986 			if (off == moff) {
6987 				*next_btf_id = mid;
6988 				return WALK_STRUCT;
6989 			}
6990 
6991 			/* adjust offset we're looking for */
6992 			off -= moff;
6993 			goto again;
6994 		}
6995 
6996 		if (btf_type_is_ptr(mtype)) {
6997 			const struct btf_type *stype, *t;
6998 			enum bpf_type_flag tmp_flag = 0;
6999 			u32 id;
7000 
7001 			if (msize != size || off != moff) {
7002 				bpf_log(log,
7003 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7004 					mname, moff, tname, off, size);
7005 				return -EACCES;
7006 			}
7007 
7008 			/* check type tag */
7009 			t = btf_type_by_id(btf, mtype->type);
7010 			if (btf_type_is_type_tag(t)) {
7011 				tag_value = __btf_name_by_offset(btf, t->name_off);
7012 				/* check __user tag */
7013 				if (strcmp(tag_value, "user") == 0)
7014 					tmp_flag = MEM_USER;
7015 				/* check __percpu tag */
7016 				if (strcmp(tag_value, "percpu") == 0)
7017 					tmp_flag = MEM_PERCPU;
7018 				/* check __rcu tag */
7019 				if (strcmp(tag_value, "rcu") == 0)
7020 					tmp_flag = MEM_RCU;
7021 			}
7022 
7023 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7024 			if (btf_type_is_struct(stype)) {
7025 				*next_btf_id = id;
7026 				*flag |= tmp_flag;
7027 				if (field_name)
7028 					*field_name = mname;
7029 				return WALK_PTR;
7030 			}
7031 		}
7032 
7033 		/* Allow more flexible access within an int as long as
7034 		 * it is within mtrue_end.
7035 		 * Since mtrue_end could be the end of an array,
7036 		 * that also allows using an array of int as a scratch
7037 		 * space. e.g. skb->cb[].
7038 		 */
7039 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7040 			bpf_log(log,
7041 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7042 				mname, mtrue_end, tname, off, size);
7043 			return -EACCES;
7044 		}
7045 
7046 		return WALK_SCALAR;
7047 	}
7048 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7049 	return -EINVAL;
7050 }
7051 
7052 int btf_struct_access(struct bpf_verifier_log *log,
7053 		      const struct bpf_reg_state *reg,
7054 		      int off, int size, enum bpf_access_type atype __maybe_unused,
7055 		      u32 *next_btf_id, enum bpf_type_flag *flag,
7056 		      const char **field_name)
7057 {
7058 	const struct btf *btf = reg->btf;
7059 	enum bpf_type_flag tmp_flag = 0;
7060 	const struct btf_type *t;
7061 	u32 id = reg->btf_id;
7062 	int err;
7063 
7064 	while (type_is_alloc(reg->type)) {
7065 		struct btf_struct_meta *meta;
7066 		struct btf_record *rec;
7067 		int i;
7068 
7069 		meta = btf_find_struct_meta(btf, id);
7070 		if (!meta)
7071 			break;
7072 		rec = meta->record;
7073 		for (i = 0; i < rec->cnt; i++) {
7074 			struct btf_field *field = &rec->fields[i];
7075 			u32 offset = field->offset;
7076 			if (off < offset + field->size && offset < off + size) {
7077 				bpf_log(log,
7078 					"direct access to %s is disallowed\n",
7079 					btf_field_type_name(field->type));
7080 				return -EACCES;
7081 			}
7082 		}
7083 		break;
7084 	}
7085 
7086 	t = btf_type_by_id(btf, id);
7087 	do {
7088 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7089 
7090 		switch (err) {
7091 		case WALK_PTR:
7092 			/* For local types, the destination register cannot
7093 			 * become a pointer again.
7094 			 */
7095 			if (type_is_alloc(reg->type))
7096 				return SCALAR_VALUE;
7097 			/* If we found the pointer or scalar on t+off,
7098 			 * we're done.
7099 			 */
7100 			*next_btf_id = id;
7101 			*flag = tmp_flag;
7102 			return PTR_TO_BTF_ID;
7103 		case WALK_SCALAR:
7104 			return SCALAR_VALUE;
7105 		case WALK_STRUCT:
7106 			/* We found nested struct, so continue the search
7107 			 * by diving in it. At this point the offset is
7108 			 * aligned with the new type, so set it to 0.
7109 			 */
7110 			t = btf_type_by_id(btf, id);
7111 			off = 0;
7112 			break;
7113 		default:
7114 			/* It's either error or unknown return value..
7115 			 * scream and leave.
7116 			 */
7117 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7118 				return -EINVAL;
7119 			return err;
7120 		}
7121 	} while (t);
7122 
7123 	return -EINVAL;
7124 }
7125 
7126 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7127  * the same. Trivial ID check is not enough due to module BTFs, because we can
7128  * end up with two different module BTFs, but IDs point to the common type in
7129  * vmlinux BTF.
7130  */
7131 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7132 			const struct btf *btf2, u32 id2)
7133 {
7134 	if (id1 != id2)
7135 		return false;
7136 	if (btf1 == btf2)
7137 		return true;
7138 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7139 }
7140 
7141 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7142 			  const struct btf *btf, u32 id, int off,
7143 			  const struct btf *need_btf, u32 need_type_id,
7144 			  bool strict)
7145 {
7146 	const struct btf_type *type;
7147 	enum bpf_type_flag flag = 0;
7148 	int err;
7149 
7150 	/* Are we already done? */
7151 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7152 		return true;
7153 	/* In case of strict type match, we do not walk struct, the top level
7154 	 * type match must succeed. When strict is true, off should have already
7155 	 * been 0.
7156 	 */
7157 	if (strict)
7158 		return false;
7159 again:
7160 	type = btf_type_by_id(btf, id);
7161 	if (!type)
7162 		return false;
7163 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7164 	if (err != WALK_STRUCT)
7165 		return false;
7166 
7167 	/* We found nested struct object. If it matches
7168 	 * the requested ID, we're done. Otherwise let's
7169 	 * continue the search with offset 0 in the new
7170 	 * type.
7171 	 */
7172 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7173 		off = 0;
7174 		goto again;
7175 	}
7176 
7177 	return true;
7178 }
7179 
7180 static int __get_type_size(struct btf *btf, u32 btf_id,
7181 			   const struct btf_type **ret_type)
7182 {
7183 	const struct btf_type *t;
7184 
7185 	*ret_type = btf_type_by_id(btf, 0);
7186 	if (!btf_id)
7187 		/* void */
7188 		return 0;
7189 	t = btf_type_by_id(btf, btf_id);
7190 	while (t && btf_type_is_modifier(t))
7191 		t = btf_type_by_id(btf, t->type);
7192 	if (!t)
7193 		return -EINVAL;
7194 	*ret_type = t;
7195 	if (btf_type_is_ptr(t))
7196 		/* kernel size of pointer. Not BPF's size of pointer*/
7197 		return sizeof(void *);
7198 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
7199 		return t->size;
7200 	return -EINVAL;
7201 }
7202 
7203 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7204 {
7205 	u8 flags = 0;
7206 
7207 	if (__btf_type_is_struct(t))
7208 		flags |= BTF_FMODEL_STRUCT_ARG;
7209 	if (btf_type_is_signed_int(t))
7210 		flags |= BTF_FMODEL_SIGNED_ARG;
7211 
7212 	return flags;
7213 }
7214 
7215 int btf_distill_func_proto(struct bpf_verifier_log *log,
7216 			   struct btf *btf,
7217 			   const struct btf_type *func,
7218 			   const char *tname,
7219 			   struct btf_func_model *m)
7220 {
7221 	const struct btf_param *args;
7222 	const struct btf_type *t;
7223 	u32 i, nargs;
7224 	int ret;
7225 
7226 	if (!func) {
7227 		/* BTF function prototype doesn't match the verifier types.
7228 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7229 		 */
7230 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7231 			m->arg_size[i] = 8;
7232 			m->arg_flags[i] = 0;
7233 		}
7234 		m->ret_size = 8;
7235 		m->ret_flags = 0;
7236 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7237 		return 0;
7238 	}
7239 	args = (const struct btf_param *)(func + 1);
7240 	nargs = btf_type_vlen(func);
7241 	if (nargs > MAX_BPF_FUNC_ARGS) {
7242 		bpf_log(log,
7243 			"The function %s has %d arguments. Too many.\n",
7244 			tname, nargs);
7245 		return -EINVAL;
7246 	}
7247 	ret = __get_type_size(btf, func->type, &t);
7248 	if (ret < 0 || __btf_type_is_struct(t)) {
7249 		bpf_log(log,
7250 			"The function %s return type %s is unsupported.\n",
7251 			tname, btf_type_str(t));
7252 		return -EINVAL;
7253 	}
7254 	m->ret_size = ret;
7255 	m->ret_flags = __get_type_fmodel_flags(t);
7256 
7257 	for (i = 0; i < nargs; i++) {
7258 		if (i == nargs - 1 && args[i].type == 0) {
7259 			bpf_log(log,
7260 				"The function %s with variable args is unsupported.\n",
7261 				tname);
7262 			return -EINVAL;
7263 		}
7264 		ret = __get_type_size(btf, args[i].type, &t);
7265 
7266 		/* No support of struct argument size greater than 16 bytes */
7267 		if (ret < 0 || ret > 16) {
7268 			bpf_log(log,
7269 				"The function %s arg%d type %s is unsupported.\n",
7270 				tname, i, btf_type_str(t));
7271 			return -EINVAL;
7272 		}
7273 		if (ret == 0) {
7274 			bpf_log(log,
7275 				"The function %s has malformed void argument.\n",
7276 				tname);
7277 			return -EINVAL;
7278 		}
7279 		m->arg_size[i] = ret;
7280 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7281 	}
7282 	m->nr_args = nargs;
7283 	return 0;
7284 }
7285 
7286 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7287  * t1 points to BTF_KIND_FUNC in btf1
7288  * t2 points to BTF_KIND_FUNC in btf2
7289  * Returns:
7290  * EINVAL - function prototype mismatch
7291  * EFAULT - verifier bug
7292  * 0 - 99% match. The last 1% is validated by the verifier.
7293  */
7294 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7295 				     struct btf *btf1, const struct btf_type *t1,
7296 				     struct btf *btf2, const struct btf_type *t2)
7297 {
7298 	const struct btf_param *args1, *args2;
7299 	const char *fn1, *fn2, *s1, *s2;
7300 	u32 nargs1, nargs2, i;
7301 
7302 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7303 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7304 
7305 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7306 		bpf_log(log, "%s() is not a global function\n", fn1);
7307 		return -EINVAL;
7308 	}
7309 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7310 		bpf_log(log, "%s() is not a global function\n", fn2);
7311 		return -EINVAL;
7312 	}
7313 
7314 	t1 = btf_type_by_id(btf1, t1->type);
7315 	if (!t1 || !btf_type_is_func_proto(t1))
7316 		return -EFAULT;
7317 	t2 = btf_type_by_id(btf2, t2->type);
7318 	if (!t2 || !btf_type_is_func_proto(t2))
7319 		return -EFAULT;
7320 
7321 	args1 = (const struct btf_param *)(t1 + 1);
7322 	nargs1 = btf_type_vlen(t1);
7323 	args2 = (const struct btf_param *)(t2 + 1);
7324 	nargs2 = btf_type_vlen(t2);
7325 
7326 	if (nargs1 != nargs2) {
7327 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7328 			fn1, nargs1, fn2, nargs2);
7329 		return -EINVAL;
7330 	}
7331 
7332 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7333 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7334 	if (t1->info != t2->info) {
7335 		bpf_log(log,
7336 			"Return type %s of %s() doesn't match type %s of %s()\n",
7337 			btf_type_str(t1), fn1,
7338 			btf_type_str(t2), fn2);
7339 		return -EINVAL;
7340 	}
7341 
7342 	for (i = 0; i < nargs1; i++) {
7343 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7344 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7345 
7346 		if (t1->info != t2->info) {
7347 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7348 				i, fn1, btf_type_str(t1),
7349 				fn2, btf_type_str(t2));
7350 			return -EINVAL;
7351 		}
7352 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7353 			bpf_log(log,
7354 				"arg%d in %s() has size %d while %s() has %d\n",
7355 				i, fn1, t1->size,
7356 				fn2, t2->size);
7357 			return -EINVAL;
7358 		}
7359 
7360 		/* global functions are validated with scalars and pointers
7361 		 * to context only. And only global functions can be replaced.
7362 		 * Hence type check only those types.
7363 		 */
7364 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7365 			continue;
7366 		if (!btf_type_is_ptr(t1)) {
7367 			bpf_log(log,
7368 				"arg%d in %s() has unrecognized type\n",
7369 				i, fn1);
7370 			return -EINVAL;
7371 		}
7372 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7373 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7374 		if (!btf_type_is_struct(t1)) {
7375 			bpf_log(log,
7376 				"arg%d in %s() is not a pointer to context\n",
7377 				i, fn1);
7378 			return -EINVAL;
7379 		}
7380 		if (!btf_type_is_struct(t2)) {
7381 			bpf_log(log,
7382 				"arg%d in %s() is not a pointer to context\n",
7383 				i, fn2);
7384 			return -EINVAL;
7385 		}
7386 		/* This is an optional check to make program writing easier.
7387 		 * Compare names of structs and report an error to the user.
7388 		 * btf_prepare_func_args() already checked that t2 struct
7389 		 * is a context type. btf_prepare_func_args() will check
7390 		 * later that t1 struct is a context type as well.
7391 		 */
7392 		s1 = btf_name_by_offset(btf1, t1->name_off);
7393 		s2 = btf_name_by_offset(btf2, t2->name_off);
7394 		if (strcmp(s1, s2)) {
7395 			bpf_log(log,
7396 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7397 				i, fn1, s1, fn2, s2);
7398 			return -EINVAL;
7399 		}
7400 	}
7401 	return 0;
7402 }
7403 
7404 /* Compare BTFs of given program with BTF of target program */
7405 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7406 			 struct btf *btf2, const struct btf_type *t2)
7407 {
7408 	struct btf *btf1 = prog->aux->btf;
7409 	const struct btf_type *t1;
7410 	u32 btf_id = 0;
7411 
7412 	if (!prog->aux->func_info) {
7413 		bpf_log(log, "Program extension requires BTF\n");
7414 		return -EINVAL;
7415 	}
7416 
7417 	btf_id = prog->aux->func_info[0].type_id;
7418 	if (!btf_id)
7419 		return -EFAULT;
7420 
7421 	t1 = btf_type_by_id(btf1, btf_id);
7422 	if (!t1 || !btf_type_is_func(t1))
7423 		return -EFAULT;
7424 
7425 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7426 }
7427 
7428 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7429 {
7430 	const char *name;
7431 
7432 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7433 
7434 	while (btf_type_is_modifier(t))
7435 		t = btf_type_by_id(btf, t->type);
7436 
7437 	/* allow either struct or struct forward declaration */
7438 	if (btf_type_is_struct(t) ||
7439 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7440 		name = btf_str_by_offset(btf, t->name_off);
7441 		return name && strcmp(name, "bpf_dynptr") == 0;
7442 	}
7443 
7444 	return false;
7445 }
7446 
7447 struct bpf_cand_cache {
7448 	const char *name;
7449 	u32 name_len;
7450 	u16 kind;
7451 	u16 cnt;
7452 	struct {
7453 		const struct btf *btf;
7454 		u32 id;
7455 	} cands[];
7456 };
7457 
7458 static DEFINE_MUTEX(cand_cache_mutex);
7459 
7460 static struct bpf_cand_cache *
7461 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7462 
7463 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7464 				 const struct btf *btf, const struct btf_type *t)
7465 {
7466 	struct bpf_cand_cache *cc;
7467 	struct bpf_core_ctx ctx = {
7468 		.btf = btf,
7469 		.log = log,
7470 	};
7471 	u32 kern_type_id, type_id;
7472 	int err = 0;
7473 
7474 	/* skip PTR and modifiers */
7475 	type_id = t->type;
7476 	t = btf_type_by_id(btf, t->type);
7477 	while (btf_type_is_modifier(t)) {
7478 		type_id = t->type;
7479 		t = btf_type_by_id(btf, t->type);
7480 	}
7481 
7482 	mutex_lock(&cand_cache_mutex);
7483 	cc = bpf_core_find_cands(&ctx, type_id);
7484 	if (IS_ERR(cc)) {
7485 		err = PTR_ERR(cc);
7486 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7487 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7488 			err);
7489 		goto cand_cache_unlock;
7490 	}
7491 	if (cc->cnt != 1) {
7492 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7493 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7494 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7495 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7496 		goto cand_cache_unlock;
7497 	}
7498 	if (btf_is_module(cc->cands[0].btf)) {
7499 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7500 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7501 		err = -EOPNOTSUPP;
7502 		goto cand_cache_unlock;
7503 	}
7504 	kern_type_id = cc->cands[0].id;
7505 
7506 cand_cache_unlock:
7507 	mutex_unlock(&cand_cache_mutex);
7508 	if (err)
7509 		return err;
7510 
7511 	return kern_type_id;
7512 }
7513 
7514 enum btf_arg_tag {
7515 	ARG_TAG_CTX	 = BIT_ULL(0),
7516 	ARG_TAG_NONNULL  = BIT_ULL(1),
7517 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7518 	ARG_TAG_NULLABLE = BIT_ULL(3),
7519 	ARG_TAG_ARENA	 = BIT_ULL(4),
7520 };
7521 
7522 /* Process BTF of a function to produce high-level expectation of function
7523  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7524  * is cached in subprog info for reuse.
7525  * Returns:
7526  * EFAULT - there is a verifier bug. Abort verification.
7527  * EINVAL - cannot convert BTF.
7528  * 0 - Successfully processed BTF and constructed argument expectations.
7529  */
7530 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7531 {
7532 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7533 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7534 	struct bpf_verifier_log *log = &env->log;
7535 	struct bpf_prog *prog = env->prog;
7536 	enum bpf_prog_type prog_type = prog->type;
7537 	struct btf *btf = prog->aux->btf;
7538 	const struct btf_param *args;
7539 	const struct btf_type *t, *ref_t, *fn_t;
7540 	u32 i, nargs, btf_id;
7541 	const char *tname;
7542 
7543 	if (sub->args_cached)
7544 		return 0;
7545 
7546 	if (!prog->aux->func_info) {
7547 		bpf_log(log, "Verifier bug\n");
7548 		return -EFAULT;
7549 	}
7550 
7551 	btf_id = prog->aux->func_info[subprog].type_id;
7552 	if (!btf_id) {
7553 		if (!is_global) /* not fatal for static funcs */
7554 			return -EINVAL;
7555 		bpf_log(log, "Global functions need valid BTF\n");
7556 		return -EFAULT;
7557 	}
7558 
7559 	fn_t = btf_type_by_id(btf, btf_id);
7560 	if (!fn_t || !btf_type_is_func(fn_t)) {
7561 		/* These checks were already done by the verifier while loading
7562 		 * struct bpf_func_info
7563 		 */
7564 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7565 			subprog);
7566 		return -EFAULT;
7567 	}
7568 	tname = btf_name_by_offset(btf, fn_t->name_off);
7569 
7570 	if (prog->aux->func_info_aux[subprog].unreliable) {
7571 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7572 		return -EFAULT;
7573 	}
7574 	if (prog_type == BPF_PROG_TYPE_EXT)
7575 		prog_type = prog->aux->dst_prog->type;
7576 
7577 	t = btf_type_by_id(btf, fn_t->type);
7578 	if (!t || !btf_type_is_func_proto(t)) {
7579 		bpf_log(log, "Invalid type of function %s()\n", tname);
7580 		return -EFAULT;
7581 	}
7582 	args = (const struct btf_param *)(t + 1);
7583 	nargs = btf_type_vlen(t);
7584 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7585 		if (!is_global)
7586 			return -EINVAL;
7587 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7588 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7589 		return -EINVAL;
7590 	}
7591 	/* check that function returns int, exception cb also requires this */
7592 	t = btf_type_by_id(btf, t->type);
7593 	while (btf_type_is_modifier(t))
7594 		t = btf_type_by_id(btf, t->type);
7595 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7596 		if (!is_global)
7597 			return -EINVAL;
7598 		bpf_log(log,
7599 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7600 			tname);
7601 		return -EINVAL;
7602 	}
7603 	/* Convert BTF function arguments into verifier types.
7604 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7605 	 */
7606 	for (i = 0; i < nargs; i++) {
7607 		u32 tags = 0;
7608 		int id = 0;
7609 
7610 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7611 		 * register type from BTF type itself
7612 		 */
7613 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7614 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7615 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7616 
7617 			/* disallow arg tags in static subprogs */
7618 			if (!is_global) {
7619 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7620 				return -EOPNOTSUPP;
7621 			}
7622 
7623 			if (strcmp(tag, "ctx") == 0) {
7624 				tags |= ARG_TAG_CTX;
7625 			} else if (strcmp(tag, "trusted") == 0) {
7626 				tags |= ARG_TAG_TRUSTED;
7627 			} else if (strcmp(tag, "nonnull") == 0) {
7628 				tags |= ARG_TAG_NONNULL;
7629 			} else if (strcmp(tag, "nullable") == 0) {
7630 				tags |= ARG_TAG_NULLABLE;
7631 			} else if (strcmp(tag, "arena") == 0) {
7632 				tags |= ARG_TAG_ARENA;
7633 			} else {
7634 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7635 				return -EOPNOTSUPP;
7636 			}
7637 		}
7638 		if (id != -ENOENT) {
7639 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7640 			return id;
7641 		}
7642 
7643 		t = btf_type_by_id(btf, args[i].type);
7644 		while (btf_type_is_modifier(t))
7645 			t = btf_type_by_id(btf, t->type);
7646 		if (!btf_type_is_ptr(t))
7647 			goto skip_pointer;
7648 
7649 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7650 			if (tags & ~ARG_TAG_CTX) {
7651 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7652 				return -EINVAL;
7653 			}
7654 			if ((tags & ARG_TAG_CTX) &&
7655 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7656 						       prog->expected_attach_type))
7657 				return -EINVAL;
7658 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7659 			continue;
7660 		}
7661 		if (btf_is_dynptr_ptr(btf, t)) {
7662 			if (tags) {
7663 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7664 				return -EINVAL;
7665 			}
7666 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7667 			continue;
7668 		}
7669 		if (tags & ARG_TAG_TRUSTED) {
7670 			int kern_type_id;
7671 
7672 			if (tags & ARG_TAG_NONNULL) {
7673 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7674 				return -EINVAL;
7675 			}
7676 
7677 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7678 			if (kern_type_id < 0)
7679 				return kern_type_id;
7680 
7681 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7682 			if (tags & ARG_TAG_NULLABLE)
7683 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7684 			sub->args[i].btf_id = kern_type_id;
7685 			continue;
7686 		}
7687 		if (tags & ARG_TAG_ARENA) {
7688 			if (tags & ~ARG_TAG_ARENA) {
7689 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7690 				return -EINVAL;
7691 			}
7692 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7693 			continue;
7694 		}
7695 		if (is_global) { /* generic user data pointer */
7696 			u32 mem_size;
7697 
7698 			if (tags & ARG_TAG_NULLABLE) {
7699 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7700 				return -EINVAL;
7701 			}
7702 
7703 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7704 			ref_t = btf_resolve_size(btf, t, &mem_size);
7705 			if (IS_ERR(ref_t)) {
7706 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7707 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7708 					PTR_ERR(ref_t));
7709 				return -EINVAL;
7710 			}
7711 
7712 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7713 			if (tags & ARG_TAG_NONNULL)
7714 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7715 			sub->args[i].mem_size = mem_size;
7716 			continue;
7717 		}
7718 
7719 skip_pointer:
7720 		if (tags) {
7721 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7722 			return -EINVAL;
7723 		}
7724 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7725 			sub->args[i].arg_type = ARG_ANYTHING;
7726 			continue;
7727 		}
7728 		if (!is_global)
7729 			return -EINVAL;
7730 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7731 			i, btf_type_str(t), tname);
7732 		return -EINVAL;
7733 	}
7734 
7735 	sub->arg_cnt = nargs;
7736 	sub->args_cached = true;
7737 
7738 	return 0;
7739 }
7740 
7741 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7742 			  struct btf_show *show)
7743 {
7744 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7745 
7746 	show->btf = btf;
7747 	memset(&show->state, 0, sizeof(show->state));
7748 	memset(&show->obj, 0, sizeof(show->obj));
7749 
7750 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7751 }
7752 
7753 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7754 					va_list args)
7755 {
7756 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7757 }
7758 
7759 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7760 			    void *obj, struct seq_file *m, u64 flags)
7761 {
7762 	struct btf_show sseq;
7763 
7764 	sseq.target = m;
7765 	sseq.showfn = btf_seq_show;
7766 	sseq.flags = flags;
7767 
7768 	btf_type_show(btf, type_id, obj, &sseq);
7769 
7770 	return sseq.state.status;
7771 }
7772 
7773 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7774 		       struct seq_file *m)
7775 {
7776 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7777 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7778 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7779 }
7780 
7781 struct btf_show_snprintf {
7782 	struct btf_show show;
7783 	int len_left;		/* space left in string */
7784 	int len;		/* length we would have written */
7785 };
7786 
7787 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7788 					     va_list args)
7789 {
7790 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7791 	int len;
7792 
7793 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7794 
7795 	if (len < 0) {
7796 		ssnprintf->len_left = 0;
7797 		ssnprintf->len = len;
7798 	} else if (len >= ssnprintf->len_left) {
7799 		/* no space, drive on to get length we would have written */
7800 		ssnprintf->len_left = 0;
7801 		ssnprintf->len += len;
7802 	} else {
7803 		ssnprintf->len_left -= len;
7804 		ssnprintf->len += len;
7805 		show->target += len;
7806 	}
7807 }
7808 
7809 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7810 			   char *buf, int len, u64 flags)
7811 {
7812 	struct btf_show_snprintf ssnprintf;
7813 
7814 	ssnprintf.show.target = buf;
7815 	ssnprintf.show.flags = flags;
7816 	ssnprintf.show.showfn = btf_snprintf_show;
7817 	ssnprintf.len_left = len;
7818 	ssnprintf.len = 0;
7819 
7820 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7821 
7822 	/* If we encountered an error, return it. */
7823 	if (ssnprintf.show.state.status)
7824 		return ssnprintf.show.state.status;
7825 
7826 	/* Otherwise return length we would have written */
7827 	return ssnprintf.len;
7828 }
7829 
7830 #ifdef CONFIG_PROC_FS
7831 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7832 {
7833 	const struct btf *btf = filp->private_data;
7834 
7835 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7836 }
7837 #endif
7838 
7839 static int btf_release(struct inode *inode, struct file *filp)
7840 {
7841 	btf_put(filp->private_data);
7842 	return 0;
7843 }
7844 
7845 const struct file_operations btf_fops = {
7846 #ifdef CONFIG_PROC_FS
7847 	.show_fdinfo	= bpf_btf_show_fdinfo,
7848 #endif
7849 	.release	= btf_release,
7850 };
7851 
7852 static int __btf_new_fd(struct btf *btf)
7853 {
7854 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7855 }
7856 
7857 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7858 {
7859 	struct btf *btf;
7860 	int ret;
7861 
7862 	btf = btf_parse(attr, uattr, uattr_size);
7863 	if (IS_ERR(btf))
7864 		return PTR_ERR(btf);
7865 
7866 	ret = btf_alloc_id(btf);
7867 	if (ret) {
7868 		btf_free(btf);
7869 		return ret;
7870 	}
7871 
7872 	/*
7873 	 * The BTF ID is published to the userspace.
7874 	 * All BTF free must go through call_rcu() from
7875 	 * now on (i.e. free by calling btf_put()).
7876 	 */
7877 
7878 	ret = __btf_new_fd(btf);
7879 	if (ret < 0)
7880 		btf_put(btf);
7881 
7882 	return ret;
7883 }
7884 
7885 struct btf *btf_get_by_fd(int fd)
7886 {
7887 	struct btf *btf;
7888 	CLASS(fd, f)(fd);
7889 
7890 	if (fd_empty(f))
7891 		return ERR_PTR(-EBADF);
7892 
7893 	if (fd_file(f)->f_op != &btf_fops)
7894 		return ERR_PTR(-EINVAL);
7895 
7896 	btf = fd_file(f)->private_data;
7897 	refcount_inc(&btf->refcnt);
7898 
7899 	return btf;
7900 }
7901 
7902 int btf_get_info_by_fd(const struct btf *btf,
7903 		       const union bpf_attr *attr,
7904 		       union bpf_attr __user *uattr)
7905 {
7906 	struct bpf_btf_info __user *uinfo;
7907 	struct bpf_btf_info info;
7908 	u32 info_copy, btf_copy;
7909 	void __user *ubtf;
7910 	char __user *uname;
7911 	u32 uinfo_len, uname_len, name_len;
7912 	int ret = 0;
7913 
7914 	uinfo = u64_to_user_ptr(attr->info.info);
7915 	uinfo_len = attr->info.info_len;
7916 
7917 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7918 	memset(&info, 0, sizeof(info));
7919 	if (copy_from_user(&info, uinfo, info_copy))
7920 		return -EFAULT;
7921 
7922 	info.id = btf->id;
7923 	ubtf = u64_to_user_ptr(info.btf);
7924 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7925 	if (copy_to_user(ubtf, btf->data, btf_copy))
7926 		return -EFAULT;
7927 	info.btf_size = btf->data_size;
7928 
7929 	info.kernel_btf = btf->kernel_btf;
7930 
7931 	uname = u64_to_user_ptr(info.name);
7932 	uname_len = info.name_len;
7933 	if (!uname ^ !uname_len)
7934 		return -EINVAL;
7935 
7936 	name_len = strlen(btf->name);
7937 	info.name_len = name_len;
7938 
7939 	if (uname) {
7940 		if (uname_len >= name_len + 1) {
7941 			if (copy_to_user(uname, btf->name, name_len + 1))
7942 				return -EFAULT;
7943 		} else {
7944 			char zero = '\0';
7945 
7946 			if (copy_to_user(uname, btf->name, uname_len - 1))
7947 				return -EFAULT;
7948 			if (put_user(zero, uname + uname_len - 1))
7949 				return -EFAULT;
7950 			/* let user-space know about too short buffer */
7951 			ret = -ENOSPC;
7952 		}
7953 	}
7954 
7955 	if (copy_to_user(uinfo, &info, info_copy) ||
7956 	    put_user(info_copy, &uattr->info.info_len))
7957 		return -EFAULT;
7958 
7959 	return ret;
7960 }
7961 
7962 int btf_get_fd_by_id(u32 id)
7963 {
7964 	struct btf *btf;
7965 	int fd;
7966 
7967 	rcu_read_lock();
7968 	btf = idr_find(&btf_idr, id);
7969 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7970 		btf = ERR_PTR(-ENOENT);
7971 	rcu_read_unlock();
7972 
7973 	if (IS_ERR(btf))
7974 		return PTR_ERR(btf);
7975 
7976 	fd = __btf_new_fd(btf);
7977 	if (fd < 0)
7978 		btf_put(btf);
7979 
7980 	return fd;
7981 }
7982 
7983 u32 btf_obj_id(const struct btf *btf)
7984 {
7985 	return btf->id;
7986 }
7987 
7988 bool btf_is_kernel(const struct btf *btf)
7989 {
7990 	return btf->kernel_btf;
7991 }
7992 
7993 bool btf_is_module(const struct btf *btf)
7994 {
7995 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7996 }
7997 
7998 enum {
7999 	BTF_MODULE_F_LIVE = (1 << 0),
8000 };
8001 
8002 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8003 struct btf_module {
8004 	struct list_head list;
8005 	struct module *module;
8006 	struct btf *btf;
8007 	struct bin_attribute *sysfs_attr;
8008 	int flags;
8009 };
8010 
8011 static LIST_HEAD(btf_modules);
8012 static DEFINE_MUTEX(btf_module_mutex);
8013 
8014 static ssize_t
8015 btf_module_read(struct file *file, struct kobject *kobj,
8016 		struct bin_attribute *bin_attr,
8017 		char *buf, loff_t off, size_t len)
8018 {
8019 	const struct btf *btf = bin_attr->private;
8020 
8021 	memcpy(buf, btf->data + off, len);
8022 	return len;
8023 }
8024 
8025 static void purge_cand_cache(struct btf *btf);
8026 
8027 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8028 			     void *module)
8029 {
8030 	struct btf_module *btf_mod, *tmp;
8031 	struct module *mod = module;
8032 	struct btf *btf;
8033 	int err = 0;
8034 
8035 	if (mod->btf_data_size == 0 ||
8036 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8037 	     op != MODULE_STATE_GOING))
8038 		goto out;
8039 
8040 	switch (op) {
8041 	case MODULE_STATE_COMING:
8042 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8043 		if (!btf_mod) {
8044 			err = -ENOMEM;
8045 			goto out;
8046 		}
8047 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8048 				       mod->btf_base_data, mod->btf_base_data_size);
8049 		if (IS_ERR(btf)) {
8050 			kfree(btf_mod);
8051 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8052 				pr_warn("failed to validate module [%s] BTF: %ld\n",
8053 					mod->name, PTR_ERR(btf));
8054 				err = PTR_ERR(btf);
8055 			} else {
8056 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8057 			}
8058 			goto out;
8059 		}
8060 		err = btf_alloc_id(btf);
8061 		if (err) {
8062 			btf_free(btf);
8063 			kfree(btf_mod);
8064 			goto out;
8065 		}
8066 
8067 		purge_cand_cache(NULL);
8068 		mutex_lock(&btf_module_mutex);
8069 		btf_mod->module = module;
8070 		btf_mod->btf = btf;
8071 		list_add(&btf_mod->list, &btf_modules);
8072 		mutex_unlock(&btf_module_mutex);
8073 
8074 		if (IS_ENABLED(CONFIG_SYSFS)) {
8075 			struct bin_attribute *attr;
8076 
8077 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8078 			if (!attr)
8079 				goto out;
8080 
8081 			sysfs_bin_attr_init(attr);
8082 			attr->attr.name = btf->name;
8083 			attr->attr.mode = 0444;
8084 			attr->size = btf->data_size;
8085 			attr->private = btf;
8086 			attr->read = btf_module_read;
8087 
8088 			err = sysfs_create_bin_file(btf_kobj, attr);
8089 			if (err) {
8090 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8091 					mod->name, err);
8092 				kfree(attr);
8093 				err = 0;
8094 				goto out;
8095 			}
8096 
8097 			btf_mod->sysfs_attr = attr;
8098 		}
8099 
8100 		break;
8101 	case MODULE_STATE_LIVE:
8102 		mutex_lock(&btf_module_mutex);
8103 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8104 			if (btf_mod->module != module)
8105 				continue;
8106 
8107 			btf_mod->flags |= BTF_MODULE_F_LIVE;
8108 			break;
8109 		}
8110 		mutex_unlock(&btf_module_mutex);
8111 		break;
8112 	case MODULE_STATE_GOING:
8113 		mutex_lock(&btf_module_mutex);
8114 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8115 			if (btf_mod->module != module)
8116 				continue;
8117 
8118 			list_del(&btf_mod->list);
8119 			if (btf_mod->sysfs_attr)
8120 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8121 			purge_cand_cache(btf_mod->btf);
8122 			btf_put(btf_mod->btf);
8123 			kfree(btf_mod->sysfs_attr);
8124 			kfree(btf_mod);
8125 			break;
8126 		}
8127 		mutex_unlock(&btf_module_mutex);
8128 		break;
8129 	}
8130 out:
8131 	return notifier_from_errno(err);
8132 }
8133 
8134 static struct notifier_block btf_module_nb = {
8135 	.notifier_call = btf_module_notify,
8136 };
8137 
8138 static int __init btf_module_init(void)
8139 {
8140 	register_module_notifier(&btf_module_nb);
8141 	return 0;
8142 }
8143 
8144 fs_initcall(btf_module_init);
8145 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8146 
8147 struct module *btf_try_get_module(const struct btf *btf)
8148 {
8149 	struct module *res = NULL;
8150 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8151 	struct btf_module *btf_mod, *tmp;
8152 
8153 	mutex_lock(&btf_module_mutex);
8154 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8155 		if (btf_mod->btf != btf)
8156 			continue;
8157 
8158 		/* We must only consider module whose __init routine has
8159 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8160 		 * which is set from the notifier callback for
8161 		 * MODULE_STATE_LIVE.
8162 		 */
8163 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8164 			res = btf_mod->module;
8165 
8166 		break;
8167 	}
8168 	mutex_unlock(&btf_module_mutex);
8169 #endif
8170 
8171 	return res;
8172 }
8173 
8174 /* Returns struct btf corresponding to the struct module.
8175  * This function can return NULL or ERR_PTR.
8176  */
8177 static struct btf *btf_get_module_btf(const struct module *module)
8178 {
8179 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8180 	struct btf_module *btf_mod, *tmp;
8181 #endif
8182 	struct btf *btf = NULL;
8183 
8184 	if (!module) {
8185 		btf = bpf_get_btf_vmlinux();
8186 		if (!IS_ERR_OR_NULL(btf))
8187 			btf_get(btf);
8188 		return btf;
8189 	}
8190 
8191 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8192 	mutex_lock(&btf_module_mutex);
8193 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8194 		if (btf_mod->module != module)
8195 			continue;
8196 
8197 		btf_get(btf_mod->btf);
8198 		btf = btf_mod->btf;
8199 		break;
8200 	}
8201 	mutex_unlock(&btf_module_mutex);
8202 #endif
8203 
8204 	return btf;
8205 }
8206 
8207 static int check_btf_kconfigs(const struct module *module, const char *feature)
8208 {
8209 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8210 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8211 		return -ENOENT;
8212 	}
8213 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8214 		pr_warn("missing module BTF, cannot register %s\n", feature);
8215 	return 0;
8216 }
8217 
8218 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8219 {
8220 	struct btf *btf = NULL;
8221 	int btf_obj_fd = 0;
8222 	long ret;
8223 
8224 	if (flags)
8225 		return -EINVAL;
8226 
8227 	if (name_sz <= 1 || name[name_sz - 1])
8228 		return -EINVAL;
8229 
8230 	ret = bpf_find_btf_id(name, kind, &btf);
8231 	if (ret > 0 && btf_is_module(btf)) {
8232 		btf_obj_fd = __btf_new_fd(btf);
8233 		if (btf_obj_fd < 0) {
8234 			btf_put(btf);
8235 			return btf_obj_fd;
8236 		}
8237 		return ret | (((u64)btf_obj_fd) << 32);
8238 	}
8239 	if (ret > 0)
8240 		btf_put(btf);
8241 	return ret;
8242 }
8243 
8244 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8245 	.func		= bpf_btf_find_by_name_kind,
8246 	.gpl_only	= false,
8247 	.ret_type	= RET_INTEGER,
8248 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8249 	.arg2_type	= ARG_CONST_SIZE,
8250 	.arg3_type	= ARG_ANYTHING,
8251 	.arg4_type	= ARG_ANYTHING,
8252 };
8253 
8254 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8255 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8256 BTF_TRACING_TYPE_xxx
8257 #undef BTF_TRACING_TYPE
8258 
8259 /* Validate well-formedness of iter argument type.
8260  * On success, return positive BTF ID of iter state's STRUCT type.
8261  * On error, negative error is returned.
8262  */
8263 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8264 {
8265 	const struct btf_param *arg;
8266 	const struct btf_type *t;
8267 	const char *name;
8268 	int btf_id;
8269 
8270 	if (btf_type_vlen(func) <= arg_idx)
8271 		return -EINVAL;
8272 
8273 	arg = &btf_params(func)[arg_idx];
8274 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8275 	if (!t || !btf_type_is_ptr(t))
8276 		return -EINVAL;
8277 	t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8278 	if (!t || !__btf_type_is_struct(t))
8279 		return -EINVAL;
8280 
8281 	name = btf_name_by_offset(btf, t->name_off);
8282 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8283 		return -EINVAL;
8284 
8285 	return btf_id;
8286 }
8287 
8288 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8289 				 const struct btf_type *func, u32 func_flags)
8290 {
8291 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8292 	const char *sfx, *iter_name;
8293 	const struct btf_type *t;
8294 	char exp_name[128];
8295 	u32 nr_args;
8296 	int btf_id;
8297 
8298 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8299 	if (!flags || (flags & (flags - 1)))
8300 		return -EINVAL;
8301 
8302 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8303 	nr_args = btf_type_vlen(func);
8304 	if (nr_args < 1)
8305 		return -EINVAL;
8306 
8307 	btf_id = btf_check_iter_arg(btf, func, 0);
8308 	if (btf_id < 0)
8309 		return btf_id;
8310 
8311 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8312 	 * fit nicely in stack slots
8313 	 */
8314 	t = btf_type_by_id(btf, btf_id);
8315 	if (t->size == 0 || (t->size % 8))
8316 		return -EINVAL;
8317 
8318 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8319 	 * naming pattern
8320 	 */
8321 	iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8322 	if (flags & KF_ITER_NEW)
8323 		sfx = "new";
8324 	else if (flags & KF_ITER_NEXT)
8325 		sfx = "next";
8326 	else /* (flags & KF_ITER_DESTROY) */
8327 		sfx = "destroy";
8328 
8329 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8330 	if (strcmp(func_name, exp_name))
8331 		return -EINVAL;
8332 
8333 	/* only iter constructor should have extra arguments */
8334 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8335 		return -EINVAL;
8336 
8337 	if (flags & KF_ITER_NEXT) {
8338 		/* bpf_iter_<type>_next() should return pointer */
8339 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8340 		if (!t || !btf_type_is_ptr(t))
8341 			return -EINVAL;
8342 	}
8343 
8344 	if (flags & KF_ITER_DESTROY) {
8345 		/* bpf_iter_<type>_destroy() should return void */
8346 		t = btf_type_by_id(btf, func->type);
8347 		if (!t || !btf_type_is_void(t))
8348 			return -EINVAL;
8349 	}
8350 
8351 	return 0;
8352 }
8353 
8354 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8355 {
8356 	const struct btf_type *func;
8357 	const char *func_name;
8358 	int err;
8359 
8360 	/* any kfunc should be FUNC -> FUNC_PROTO */
8361 	func = btf_type_by_id(btf, func_id);
8362 	if (!func || !btf_type_is_func(func))
8363 		return -EINVAL;
8364 
8365 	/* sanity check kfunc name */
8366 	func_name = btf_name_by_offset(btf, func->name_off);
8367 	if (!func_name || !func_name[0])
8368 		return -EINVAL;
8369 
8370 	func = btf_type_by_id(btf, func->type);
8371 	if (!func || !btf_type_is_func_proto(func))
8372 		return -EINVAL;
8373 
8374 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8375 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8376 		if (err)
8377 			return err;
8378 	}
8379 
8380 	return 0;
8381 }
8382 
8383 /* Kernel Function (kfunc) BTF ID set registration API */
8384 
8385 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8386 				  const struct btf_kfunc_id_set *kset)
8387 {
8388 	struct btf_kfunc_hook_filter *hook_filter;
8389 	struct btf_id_set8 *add_set = kset->set;
8390 	bool vmlinux_set = !btf_is_module(btf);
8391 	bool add_filter = !!kset->filter;
8392 	struct btf_kfunc_set_tab *tab;
8393 	struct btf_id_set8 *set;
8394 	u32 set_cnt, i;
8395 	int ret;
8396 
8397 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8398 		ret = -EINVAL;
8399 		goto end;
8400 	}
8401 
8402 	if (!add_set->cnt)
8403 		return 0;
8404 
8405 	tab = btf->kfunc_set_tab;
8406 
8407 	if (tab && add_filter) {
8408 		u32 i;
8409 
8410 		hook_filter = &tab->hook_filters[hook];
8411 		for (i = 0; i < hook_filter->nr_filters; i++) {
8412 			if (hook_filter->filters[i] == kset->filter) {
8413 				add_filter = false;
8414 				break;
8415 			}
8416 		}
8417 
8418 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8419 			ret = -E2BIG;
8420 			goto end;
8421 		}
8422 	}
8423 
8424 	if (!tab) {
8425 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8426 		if (!tab)
8427 			return -ENOMEM;
8428 		btf->kfunc_set_tab = tab;
8429 	}
8430 
8431 	set = tab->sets[hook];
8432 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8433 	 * for module sets.
8434 	 */
8435 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8436 		ret = -EINVAL;
8437 		goto end;
8438 	}
8439 
8440 	/* In case of vmlinux sets, there may be more than one set being
8441 	 * registered per hook. To create a unified set, we allocate a new set
8442 	 * and concatenate all individual sets being registered. While each set
8443 	 * is individually sorted, they may become unsorted when concatenated,
8444 	 * hence re-sorting the final set again is required to make binary
8445 	 * searching the set using btf_id_set8_contains function work.
8446 	 *
8447 	 * For module sets, we need to allocate as we may need to relocate
8448 	 * BTF ids.
8449 	 */
8450 	set_cnt = set ? set->cnt : 0;
8451 
8452 	if (set_cnt > U32_MAX - add_set->cnt) {
8453 		ret = -EOVERFLOW;
8454 		goto end;
8455 	}
8456 
8457 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8458 		ret = -E2BIG;
8459 		goto end;
8460 	}
8461 
8462 	/* Grow set */
8463 	set = krealloc(tab->sets[hook],
8464 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8465 		       GFP_KERNEL | __GFP_NOWARN);
8466 	if (!set) {
8467 		ret = -ENOMEM;
8468 		goto end;
8469 	}
8470 
8471 	/* For newly allocated set, initialize set->cnt to 0 */
8472 	if (!tab->sets[hook])
8473 		set->cnt = 0;
8474 	tab->sets[hook] = set;
8475 
8476 	/* Concatenate the two sets */
8477 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8478 	/* Now that the set is copied, update with relocated BTF ids */
8479 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8480 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8481 
8482 	set->cnt += add_set->cnt;
8483 
8484 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8485 
8486 	if (add_filter) {
8487 		hook_filter = &tab->hook_filters[hook];
8488 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8489 	}
8490 	return 0;
8491 end:
8492 	btf_free_kfunc_set_tab(btf);
8493 	return ret;
8494 }
8495 
8496 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8497 					enum btf_kfunc_hook hook,
8498 					u32 kfunc_btf_id,
8499 					const struct bpf_prog *prog)
8500 {
8501 	struct btf_kfunc_hook_filter *hook_filter;
8502 	struct btf_id_set8 *set;
8503 	u32 *id, i;
8504 
8505 	if (hook >= BTF_KFUNC_HOOK_MAX)
8506 		return NULL;
8507 	if (!btf->kfunc_set_tab)
8508 		return NULL;
8509 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8510 	for (i = 0; i < hook_filter->nr_filters; i++) {
8511 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8512 			return NULL;
8513 	}
8514 	set = btf->kfunc_set_tab->sets[hook];
8515 	if (!set)
8516 		return NULL;
8517 	id = btf_id_set8_contains(set, kfunc_btf_id);
8518 	if (!id)
8519 		return NULL;
8520 	/* The flags for BTF ID are located next to it */
8521 	return id + 1;
8522 }
8523 
8524 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8525 {
8526 	switch (prog_type) {
8527 	case BPF_PROG_TYPE_UNSPEC:
8528 		return BTF_KFUNC_HOOK_COMMON;
8529 	case BPF_PROG_TYPE_XDP:
8530 		return BTF_KFUNC_HOOK_XDP;
8531 	case BPF_PROG_TYPE_SCHED_CLS:
8532 		return BTF_KFUNC_HOOK_TC;
8533 	case BPF_PROG_TYPE_STRUCT_OPS:
8534 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8535 	case BPF_PROG_TYPE_TRACING:
8536 	case BPF_PROG_TYPE_TRACEPOINT:
8537 	case BPF_PROG_TYPE_PERF_EVENT:
8538 	case BPF_PROG_TYPE_LSM:
8539 		return BTF_KFUNC_HOOK_TRACING;
8540 	case BPF_PROG_TYPE_SYSCALL:
8541 		return BTF_KFUNC_HOOK_SYSCALL;
8542 	case BPF_PROG_TYPE_CGROUP_SKB:
8543 	case BPF_PROG_TYPE_CGROUP_SOCK:
8544 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8545 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8546 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8547 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8548 		return BTF_KFUNC_HOOK_CGROUP;
8549 	case BPF_PROG_TYPE_SCHED_ACT:
8550 		return BTF_KFUNC_HOOK_SCHED_ACT;
8551 	case BPF_PROG_TYPE_SK_SKB:
8552 		return BTF_KFUNC_HOOK_SK_SKB;
8553 	case BPF_PROG_TYPE_SOCKET_FILTER:
8554 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8555 	case BPF_PROG_TYPE_LWT_OUT:
8556 	case BPF_PROG_TYPE_LWT_IN:
8557 	case BPF_PROG_TYPE_LWT_XMIT:
8558 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8559 		return BTF_KFUNC_HOOK_LWT;
8560 	case BPF_PROG_TYPE_NETFILTER:
8561 		return BTF_KFUNC_HOOK_NETFILTER;
8562 	case BPF_PROG_TYPE_KPROBE:
8563 		return BTF_KFUNC_HOOK_KPROBE;
8564 	default:
8565 		return BTF_KFUNC_HOOK_MAX;
8566 	}
8567 }
8568 
8569 /* Caution:
8570  * Reference to the module (obtained using btf_try_get_module) corresponding to
8571  * the struct btf *MUST* be held when calling this function from verifier
8572  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8573  * keeping the reference for the duration of the call provides the necessary
8574  * protection for looking up a well-formed btf->kfunc_set_tab.
8575  */
8576 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8577 			       u32 kfunc_btf_id,
8578 			       const struct bpf_prog *prog)
8579 {
8580 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8581 	enum btf_kfunc_hook hook;
8582 	u32 *kfunc_flags;
8583 
8584 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8585 	if (kfunc_flags)
8586 		return kfunc_flags;
8587 
8588 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8589 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8590 }
8591 
8592 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8593 				const struct bpf_prog *prog)
8594 {
8595 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8596 }
8597 
8598 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8599 				       const struct btf_kfunc_id_set *kset)
8600 {
8601 	struct btf *btf;
8602 	int ret, i;
8603 
8604 	btf = btf_get_module_btf(kset->owner);
8605 	if (!btf)
8606 		return check_btf_kconfigs(kset->owner, "kfunc");
8607 	if (IS_ERR(btf))
8608 		return PTR_ERR(btf);
8609 
8610 	for (i = 0; i < kset->set->cnt; i++) {
8611 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8612 					     kset->set->pairs[i].flags);
8613 		if (ret)
8614 			goto err_out;
8615 	}
8616 
8617 	ret = btf_populate_kfunc_set(btf, hook, kset);
8618 
8619 err_out:
8620 	btf_put(btf);
8621 	return ret;
8622 }
8623 
8624 /* This function must be invoked only from initcalls/module init functions */
8625 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8626 			      const struct btf_kfunc_id_set *kset)
8627 {
8628 	enum btf_kfunc_hook hook;
8629 
8630 	/* All kfuncs need to be tagged as such in BTF.
8631 	 * WARN() for initcall registrations that do not check errors.
8632 	 */
8633 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8634 		WARN_ON(!kset->owner);
8635 		return -EINVAL;
8636 	}
8637 
8638 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8639 	return __register_btf_kfunc_id_set(hook, kset);
8640 }
8641 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8642 
8643 /* This function must be invoked only from initcalls/module init functions */
8644 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8645 {
8646 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8647 }
8648 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8649 
8650 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8651 {
8652 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8653 	struct btf_id_dtor_kfunc *dtor;
8654 
8655 	if (!tab)
8656 		return -ENOENT;
8657 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8658 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8659 	 */
8660 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8661 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8662 	if (!dtor)
8663 		return -ENOENT;
8664 	return dtor->kfunc_btf_id;
8665 }
8666 
8667 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8668 {
8669 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8670 	const struct btf_param *args;
8671 	s32 dtor_btf_id;
8672 	u32 nr_args, i;
8673 
8674 	for (i = 0; i < cnt; i++) {
8675 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8676 
8677 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8678 		if (!dtor_func || !btf_type_is_func(dtor_func))
8679 			return -EINVAL;
8680 
8681 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8682 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8683 			return -EINVAL;
8684 
8685 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8686 		t = btf_type_by_id(btf, dtor_func_proto->type);
8687 		if (!t || !btf_type_is_void(t))
8688 			return -EINVAL;
8689 
8690 		nr_args = btf_type_vlen(dtor_func_proto);
8691 		if (nr_args != 1)
8692 			return -EINVAL;
8693 		args = btf_params(dtor_func_proto);
8694 		t = btf_type_by_id(btf, args[0].type);
8695 		/* Allow any pointer type, as width on targets Linux supports
8696 		 * will be same for all pointer types (i.e. sizeof(void *))
8697 		 */
8698 		if (!t || !btf_type_is_ptr(t))
8699 			return -EINVAL;
8700 	}
8701 	return 0;
8702 }
8703 
8704 /* This function must be invoked only from initcalls/module init functions */
8705 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8706 				struct module *owner)
8707 {
8708 	struct btf_id_dtor_kfunc_tab *tab;
8709 	struct btf *btf;
8710 	u32 tab_cnt, i;
8711 	int ret;
8712 
8713 	btf = btf_get_module_btf(owner);
8714 	if (!btf)
8715 		return check_btf_kconfigs(owner, "dtor kfuncs");
8716 	if (IS_ERR(btf))
8717 		return PTR_ERR(btf);
8718 
8719 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8720 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8721 		ret = -E2BIG;
8722 		goto end;
8723 	}
8724 
8725 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8726 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8727 	if (ret < 0)
8728 		goto end;
8729 
8730 	tab = btf->dtor_kfunc_tab;
8731 	/* Only one call allowed for modules */
8732 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8733 		ret = -EINVAL;
8734 		goto end;
8735 	}
8736 
8737 	tab_cnt = tab ? tab->cnt : 0;
8738 	if (tab_cnt > U32_MAX - add_cnt) {
8739 		ret = -EOVERFLOW;
8740 		goto end;
8741 	}
8742 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8743 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8744 		ret = -E2BIG;
8745 		goto end;
8746 	}
8747 
8748 	tab = krealloc(btf->dtor_kfunc_tab,
8749 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8750 		       GFP_KERNEL | __GFP_NOWARN);
8751 	if (!tab) {
8752 		ret = -ENOMEM;
8753 		goto end;
8754 	}
8755 
8756 	if (!btf->dtor_kfunc_tab)
8757 		tab->cnt = 0;
8758 	btf->dtor_kfunc_tab = tab;
8759 
8760 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8761 
8762 	/* remap BTF ids based on BTF relocation (if any) */
8763 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8764 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8765 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8766 	}
8767 
8768 	tab->cnt += add_cnt;
8769 
8770 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8771 
8772 end:
8773 	if (ret)
8774 		btf_free_dtor_kfunc_tab(btf);
8775 	btf_put(btf);
8776 	return ret;
8777 }
8778 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8779 
8780 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8781 
8782 /* Check local and target types for compatibility. This check is used for
8783  * type-based CO-RE relocations and follow slightly different rules than
8784  * field-based relocations. This function assumes that root types were already
8785  * checked for name match. Beyond that initial root-level name check, names
8786  * are completely ignored. Compatibility rules are as follows:
8787  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8788  *     kind should match for local and target types (i.e., STRUCT is not
8789  *     compatible with UNION);
8790  *   - for ENUMs/ENUM64s, the size is ignored;
8791  *   - for INT, size and signedness are ignored;
8792  *   - for ARRAY, dimensionality is ignored, element types are checked for
8793  *     compatibility recursively;
8794  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8795  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8796  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8797  *     number of input args and compatible return and argument types.
8798  * These rules are not set in stone and probably will be adjusted as we get
8799  * more experience with using BPF CO-RE relocations.
8800  */
8801 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8802 			      const struct btf *targ_btf, __u32 targ_id)
8803 {
8804 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8805 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8806 }
8807 
8808 #define MAX_TYPES_MATCH_DEPTH 2
8809 
8810 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8811 			 const struct btf *targ_btf, u32 targ_id)
8812 {
8813 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8814 				      MAX_TYPES_MATCH_DEPTH);
8815 }
8816 
8817 static bool bpf_core_is_flavor_sep(const char *s)
8818 {
8819 	/* check X___Y name pattern, where X and Y are not underscores */
8820 	return s[0] != '_' &&				      /* X */
8821 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8822 	       s[4] != '_';				      /* Y */
8823 }
8824 
8825 size_t bpf_core_essential_name_len(const char *name)
8826 {
8827 	size_t n = strlen(name);
8828 	int i;
8829 
8830 	for (i = n - 5; i >= 0; i--) {
8831 		if (bpf_core_is_flavor_sep(name + i))
8832 			return i + 1;
8833 	}
8834 	return n;
8835 }
8836 
8837 static void bpf_free_cands(struct bpf_cand_cache *cands)
8838 {
8839 	if (!cands->cnt)
8840 		/* empty candidate array was allocated on stack */
8841 		return;
8842 	kfree(cands);
8843 }
8844 
8845 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8846 {
8847 	kfree(cands->name);
8848 	kfree(cands);
8849 }
8850 
8851 #define VMLINUX_CAND_CACHE_SIZE 31
8852 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8853 
8854 #define MODULE_CAND_CACHE_SIZE 31
8855 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8856 
8857 static void __print_cand_cache(struct bpf_verifier_log *log,
8858 			       struct bpf_cand_cache **cache,
8859 			       int cache_size)
8860 {
8861 	struct bpf_cand_cache *cc;
8862 	int i, j;
8863 
8864 	for (i = 0; i < cache_size; i++) {
8865 		cc = cache[i];
8866 		if (!cc)
8867 			continue;
8868 		bpf_log(log, "[%d]%s(", i, cc->name);
8869 		for (j = 0; j < cc->cnt; j++) {
8870 			bpf_log(log, "%d", cc->cands[j].id);
8871 			if (j < cc->cnt - 1)
8872 				bpf_log(log, " ");
8873 		}
8874 		bpf_log(log, "), ");
8875 	}
8876 }
8877 
8878 static void print_cand_cache(struct bpf_verifier_log *log)
8879 {
8880 	mutex_lock(&cand_cache_mutex);
8881 	bpf_log(log, "vmlinux_cand_cache:");
8882 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8883 	bpf_log(log, "\nmodule_cand_cache:");
8884 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8885 	bpf_log(log, "\n");
8886 	mutex_unlock(&cand_cache_mutex);
8887 }
8888 
8889 static u32 hash_cands(struct bpf_cand_cache *cands)
8890 {
8891 	return jhash(cands->name, cands->name_len, 0);
8892 }
8893 
8894 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8895 					       struct bpf_cand_cache **cache,
8896 					       int cache_size)
8897 {
8898 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8899 
8900 	if (cc && cc->name_len == cands->name_len &&
8901 	    !strncmp(cc->name, cands->name, cands->name_len))
8902 		return cc;
8903 	return NULL;
8904 }
8905 
8906 static size_t sizeof_cands(int cnt)
8907 {
8908 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8909 }
8910 
8911 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8912 						  struct bpf_cand_cache **cache,
8913 						  int cache_size)
8914 {
8915 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8916 
8917 	if (*cc) {
8918 		bpf_free_cands_from_cache(*cc);
8919 		*cc = NULL;
8920 	}
8921 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8922 	if (!new_cands) {
8923 		bpf_free_cands(cands);
8924 		return ERR_PTR(-ENOMEM);
8925 	}
8926 	/* strdup the name, since it will stay in cache.
8927 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8928 	 */
8929 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8930 	bpf_free_cands(cands);
8931 	if (!new_cands->name) {
8932 		kfree(new_cands);
8933 		return ERR_PTR(-ENOMEM);
8934 	}
8935 	*cc = new_cands;
8936 	return new_cands;
8937 }
8938 
8939 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8940 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8941 			       int cache_size)
8942 {
8943 	struct bpf_cand_cache *cc;
8944 	int i, j;
8945 
8946 	for (i = 0; i < cache_size; i++) {
8947 		cc = cache[i];
8948 		if (!cc)
8949 			continue;
8950 		if (!btf) {
8951 			/* when new module is loaded purge all of module_cand_cache,
8952 			 * since new module might have candidates with the name
8953 			 * that matches cached cands.
8954 			 */
8955 			bpf_free_cands_from_cache(cc);
8956 			cache[i] = NULL;
8957 			continue;
8958 		}
8959 		/* when module is unloaded purge cache entries
8960 		 * that match module's btf
8961 		 */
8962 		for (j = 0; j < cc->cnt; j++)
8963 			if (cc->cands[j].btf == btf) {
8964 				bpf_free_cands_from_cache(cc);
8965 				cache[i] = NULL;
8966 				break;
8967 			}
8968 	}
8969 
8970 }
8971 
8972 static void purge_cand_cache(struct btf *btf)
8973 {
8974 	mutex_lock(&cand_cache_mutex);
8975 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8976 	mutex_unlock(&cand_cache_mutex);
8977 }
8978 #endif
8979 
8980 static struct bpf_cand_cache *
8981 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8982 		   int targ_start_id)
8983 {
8984 	struct bpf_cand_cache *new_cands;
8985 	const struct btf_type *t;
8986 	const char *targ_name;
8987 	size_t targ_essent_len;
8988 	int n, i;
8989 
8990 	n = btf_nr_types(targ_btf);
8991 	for (i = targ_start_id; i < n; i++) {
8992 		t = btf_type_by_id(targ_btf, i);
8993 		if (btf_kind(t) != cands->kind)
8994 			continue;
8995 
8996 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8997 		if (!targ_name)
8998 			continue;
8999 
9000 		/* the resched point is before strncmp to make sure that search
9001 		 * for non-existing name will have a chance to schedule().
9002 		 */
9003 		cond_resched();
9004 
9005 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
9006 			continue;
9007 
9008 		targ_essent_len = bpf_core_essential_name_len(targ_name);
9009 		if (targ_essent_len != cands->name_len)
9010 			continue;
9011 
9012 		/* most of the time there is only one candidate for a given kind+name pair */
9013 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
9014 		if (!new_cands) {
9015 			bpf_free_cands(cands);
9016 			return ERR_PTR(-ENOMEM);
9017 		}
9018 
9019 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9020 		bpf_free_cands(cands);
9021 		cands = new_cands;
9022 		cands->cands[cands->cnt].btf = targ_btf;
9023 		cands->cands[cands->cnt].id = i;
9024 		cands->cnt++;
9025 	}
9026 	return cands;
9027 }
9028 
9029 static struct bpf_cand_cache *
9030 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9031 {
9032 	struct bpf_cand_cache *cands, *cc, local_cand = {};
9033 	const struct btf *local_btf = ctx->btf;
9034 	const struct btf_type *local_type;
9035 	const struct btf *main_btf;
9036 	size_t local_essent_len;
9037 	struct btf *mod_btf;
9038 	const char *name;
9039 	int id;
9040 
9041 	main_btf = bpf_get_btf_vmlinux();
9042 	if (IS_ERR(main_btf))
9043 		return ERR_CAST(main_btf);
9044 	if (!main_btf)
9045 		return ERR_PTR(-EINVAL);
9046 
9047 	local_type = btf_type_by_id(local_btf, local_type_id);
9048 	if (!local_type)
9049 		return ERR_PTR(-EINVAL);
9050 
9051 	name = btf_name_by_offset(local_btf, local_type->name_off);
9052 	if (str_is_empty(name))
9053 		return ERR_PTR(-EINVAL);
9054 	local_essent_len = bpf_core_essential_name_len(name);
9055 
9056 	cands = &local_cand;
9057 	cands->name = name;
9058 	cands->kind = btf_kind(local_type);
9059 	cands->name_len = local_essent_len;
9060 
9061 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9062 	/* cands is a pointer to stack here */
9063 	if (cc) {
9064 		if (cc->cnt)
9065 			return cc;
9066 		goto check_modules;
9067 	}
9068 
9069 	/* Attempt to find target candidates in vmlinux BTF first */
9070 	cands = bpf_core_add_cands(cands, main_btf, 1);
9071 	if (IS_ERR(cands))
9072 		return ERR_CAST(cands);
9073 
9074 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9075 
9076 	/* populate cache even when cands->cnt == 0 */
9077 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9078 	if (IS_ERR(cc))
9079 		return ERR_CAST(cc);
9080 
9081 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
9082 	if (cc->cnt)
9083 		return cc;
9084 
9085 check_modules:
9086 	/* cands is a pointer to stack here and cands->cnt == 0 */
9087 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9088 	if (cc)
9089 		/* if cache has it return it even if cc->cnt == 0 */
9090 		return cc;
9091 
9092 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9093 	spin_lock_bh(&btf_idr_lock);
9094 	idr_for_each_entry(&btf_idr, mod_btf, id) {
9095 		if (!btf_is_module(mod_btf))
9096 			continue;
9097 		/* linear search could be slow hence unlock/lock
9098 		 * the IDR to avoiding holding it for too long
9099 		 */
9100 		btf_get(mod_btf);
9101 		spin_unlock_bh(&btf_idr_lock);
9102 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
9103 		btf_put(mod_btf);
9104 		if (IS_ERR(cands))
9105 			return ERR_CAST(cands);
9106 		spin_lock_bh(&btf_idr_lock);
9107 	}
9108 	spin_unlock_bh(&btf_idr_lock);
9109 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
9110 	 * or pointer to stack if cands->cnd == 0.
9111 	 * Copy it into the cache even when cands->cnt == 0 and
9112 	 * return the result.
9113 	 */
9114 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9115 }
9116 
9117 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9118 		   int relo_idx, void *insn)
9119 {
9120 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9121 	struct bpf_core_cand_list cands = {};
9122 	struct bpf_core_relo_res targ_res;
9123 	struct bpf_core_spec *specs;
9124 	const struct btf_type *type;
9125 	int err;
9126 
9127 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9128 	 * into arrays of btf_ids of struct fields and array indices.
9129 	 */
9130 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
9131 	if (!specs)
9132 		return -ENOMEM;
9133 
9134 	type = btf_type_by_id(ctx->btf, relo->type_id);
9135 	if (!type) {
9136 		bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9137 			relo_idx, relo->type_id);
9138 		kfree(specs);
9139 		return -EINVAL;
9140 	}
9141 
9142 	if (need_cands) {
9143 		struct bpf_cand_cache *cc;
9144 		int i;
9145 
9146 		mutex_lock(&cand_cache_mutex);
9147 		cc = bpf_core_find_cands(ctx, relo->type_id);
9148 		if (IS_ERR(cc)) {
9149 			bpf_log(ctx->log, "target candidate search failed for %d\n",
9150 				relo->type_id);
9151 			err = PTR_ERR(cc);
9152 			goto out;
9153 		}
9154 		if (cc->cnt) {
9155 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
9156 			if (!cands.cands) {
9157 				err = -ENOMEM;
9158 				goto out;
9159 			}
9160 		}
9161 		for (i = 0; i < cc->cnt; i++) {
9162 			bpf_log(ctx->log,
9163 				"CO-RE relocating %s %s: found target candidate [%d]\n",
9164 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9165 			cands.cands[i].btf = cc->cands[i].btf;
9166 			cands.cands[i].id = cc->cands[i].id;
9167 		}
9168 		cands.len = cc->cnt;
9169 		/* cand_cache_mutex needs to span the cache lookup and
9170 		 * copy of btf pointer into bpf_core_cand_list,
9171 		 * since module can be unloaded while bpf_core_calc_relo_insn
9172 		 * is working with module's btf.
9173 		 */
9174 	}
9175 
9176 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9177 				      &targ_res);
9178 	if (err)
9179 		goto out;
9180 
9181 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9182 				  &targ_res);
9183 
9184 out:
9185 	kfree(specs);
9186 	if (need_cands) {
9187 		kfree(cands.cands);
9188 		mutex_unlock(&cand_cache_mutex);
9189 		if (ctx->log->level & BPF_LOG_LEVEL2)
9190 			print_cand_cache(ctx->log);
9191 	}
9192 	return err;
9193 }
9194 
9195 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9196 				const struct bpf_reg_state *reg,
9197 				const char *field_name, u32 btf_id, const char *suffix)
9198 {
9199 	struct btf *btf = reg->btf;
9200 	const struct btf_type *walk_type, *safe_type;
9201 	const char *tname;
9202 	char safe_tname[64];
9203 	long ret, safe_id;
9204 	const struct btf_member *member;
9205 	u32 i;
9206 
9207 	walk_type = btf_type_by_id(btf, reg->btf_id);
9208 	if (!walk_type)
9209 		return false;
9210 
9211 	tname = btf_name_by_offset(btf, walk_type->name_off);
9212 
9213 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9214 	if (ret >= sizeof(safe_tname))
9215 		return false;
9216 
9217 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9218 	if (safe_id < 0)
9219 		return false;
9220 
9221 	safe_type = btf_type_by_id(btf, safe_id);
9222 	if (!safe_type)
9223 		return false;
9224 
9225 	for_each_member(i, safe_type, member) {
9226 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
9227 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9228 		u32 id;
9229 
9230 		if (!btf_type_is_ptr(mtype))
9231 			continue;
9232 
9233 		btf_type_skip_modifiers(btf, mtype->type, &id);
9234 		/* If we match on both type and name, the field is considered trusted. */
9235 		if (btf_id == id && !strcmp(field_name, m_name))
9236 			return true;
9237 	}
9238 
9239 	return false;
9240 }
9241 
9242 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9243 			       const struct btf *reg_btf, u32 reg_id,
9244 			       const struct btf *arg_btf, u32 arg_id)
9245 {
9246 	const char *reg_name, *arg_name, *search_needle;
9247 	const struct btf_type *reg_type, *arg_type;
9248 	int reg_len, arg_len, cmp_len;
9249 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9250 
9251 	reg_type = btf_type_by_id(reg_btf, reg_id);
9252 	if (!reg_type)
9253 		return false;
9254 
9255 	arg_type = btf_type_by_id(arg_btf, arg_id);
9256 	if (!arg_type)
9257 		return false;
9258 
9259 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9260 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9261 
9262 	reg_len = strlen(reg_name);
9263 	arg_len = strlen(arg_name);
9264 
9265 	/* Exactly one of the two type names may be suffixed with ___init, so
9266 	 * if the strings are the same size, they can't possibly be no-cast
9267 	 * aliases of one another. If you have two of the same type names, e.g.
9268 	 * they're both nf_conn___init, it would be improper to return true
9269 	 * because they are _not_ no-cast aliases, they are the same type.
9270 	 */
9271 	if (reg_len == arg_len)
9272 		return false;
9273 
9274 	/* Either of the two names must be the other name, suffixed with ___init. */
9275 	if ((reg_len != arg_len + pattern_len) &&
9276 	    (arg_len != reg_len + pattern_len))
9277 		return false;
9278 
9279 	if (reg_len < arg_len) {
9280 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9281 		cmp_len = reg_len;
9282 	} else {
9283 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9284 		cmp_len = arg_len;
9285 	}
9286 
9287 	if (!search_needle)
9288 		return false;
9289 
9290 	/* ___init suffix must come at the end of the name */
9291 	if (*(search_needle + pattern_len) != '\0')
9292 		return false;
9293 
9294 	return !strncmp(reg_name, arg_name, cmp_len);
9295 }
9296 
9297 #ifdef CONFIG_BPF_JIT
9298 static int
9299 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9300 		   struct bpf_verifier_log *log)
9301 {
9302 	struct btf_struct_ops_tab *tab, *new_tab;
9303 	int i, err;
9304 
9305 	tab = btf->struct_ops_tab;
9306 	if (!tab) {
9307 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9308 			      GFP_KERNEL);
9309 		if (!tab)
9310 			return -ENOMEM;
9311 		tab->capacity = 4;
9312 		btf->struct_ops_tab = tab;
9313 	}
9314 
9315 	for (i = 0; i < tab->cnt; i++)
9316 		if (tab->ops[i].st_ops == st_ops)
9317 			return -EEXIST;
9318 
9319 	if (tab->cnt == tab->capacity) {
9320 		new_tab = krealloc(tab,
9321 				   offsetof(struct btf_struct_ops_tab,
9322 					    ops[tab->capacity * 2]),
9323 				   GFP_KERNEL);
9324 		if (!new_tab)
9325 			return -ENOMEM;
9326 		tab = new_tab;
9327 		tab->capacity *= 2;
9328 		btf->struct_ops_tab = tab;
9329 	}
9330 
9331 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9332 
9333 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9334 	if (err)
9335 		return err;
9336 
9337 	btf->struct_ops_tab->cnt++;
9338 
9339 	return 0;
9340 }
9341 
9342 const struct bpf_struct_ops_desc *
9343 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9344 {
9345 	const struct bpf_struct_ops_desc *st_ops_list;
9346 	unsigned int i;
9347 	u32 cnt;
9348 
9349 	if (!value_id)
9350 		return NULL;
9351 	if (!btf->struct_ops_tab)
9352 		return NULL;
9353 
9354 	cnt = btf->struct_ops_tab->cnt;
9355 	st_ops_list = btf->struct_ops_tab->ops;
9356 	for (i = 0; i < cnt; i++) {
9357 		if (st_ops_list[i].value_id == value_id)
9358 			return &st_ops_list[i];
9359 	}
9360 
9361 	return NULL;
9362 }
9363 
9364 const struct bpf_struct_ops_desc *
9365 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9366 {
9367 	const struct bpf_struct_ops_desc *st_ops_list;
9368 	unsigned int i;
9369 	u32 cnt;
9370 
9371 	if (!type_id)
9372 		return NULL;
9373 	if (!btf->struct_ops_tab)
9374 		return NULL;
9375 
9376 	cnt = btf->struct_ops_tab->cnt;
9377 	st_ops_list = btf->struct_ops_tab->ops;
9378 	for (i = 0; i < cnt; i++) {
9379 		if (st_ops_list[i].type_id == type_id)
9380 			return &st_ops_list[i];
9381 	}
9382 
9383 	return NULL;
9384 }
9385 
9386 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9387 {
9388 	struct bpf_verifier_log *log;
9389 	struct btf *btf;
9390 	int err = 0;
9391 
9392 	btf = btf_get_module_btf(st_ops->owner);
9393 	if (!btf)
9394 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9395 	if (IS_ERR(btf))
9396 		return PTR_ERR(btf);
9397 
9398 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9399 	if (!log) {
9400 		err = -ENOMEM;
9401 		goto errout;
9402 	}
9403 
9404 	log->level = BPF_LOG_KERNEL;
9405 
9406 	err = btf_add_struct_ops(btf, st_ops, log);
9407 
9408 errout:
9409 	kfree(log);
9410 	btf_put(btf);
9411 
9412 	return err;
9413 }
9414 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9415 #endif
9416 
9417 bool btf_param_match_suffix(const struct btf *btf,
9418 			    const struct btf_param *arg,
9419 			    const char *suffix)
9420 {
9421 	int suffix_len = strlen(suffix), len;
9422 	const char *param_name;
9423 
9424 	/* In the future, this can be ported to use BTF tagging */
9425 	param_name = btf_name_by_offset(btf, arg->name_off);
9426 	if (str_is_empty(param_name))
9427 		return false;
9428 	len = strlen(param_name);
9429 	if (len <= suffix_len)
9430 		return false;
9431 	param_name += len - suffix_len;
9432 	return !strncmp(param_name, suffix, suffix_len);
9433 }
9434