1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/slab.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/uaccess.h> 14 #include <linux/kernel.h> 15 #include <linux/idr.h> 16 #include <linux/sort.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/btf.h> 19 20 /* BTF (BPF Type Format) is the meta data format which describes 21 * the data types of BPF program/map. Hence, it basically focus 22 * on the C programming language which the modern BPF is primary 23 * using. 24 * 25 * ELF Section: 26 * ~~~~~~~~~~~ 27 * The BTF data is stored under the ".BTF" ELF section 28 * 29 * struct btf_type: 30 * ~~~~~~~~~~~~~~~ 31 * Each 'struct btf_type' object describes a C data type. 32 * Depending on the type it is describing, a 'struct btf_type' 33 * object may be followed by more data. F.e. 34 * To describe an array, 'struct btf_type' is followed by 35 * 'struct btf_array'. 36 * 37 * 'struct btf_type' and any extra data following it are 38 * 4 bytes aligned. 39 * 40 * Type section: 41 * ~~~~~~~~~~~~~ 42 * The BTF type section contains a list of 'struct btf_type' objects. 43 * Each one describes a C type. Recall from the above section 44 * that a 'struct btf_type' object could be immediately followed by extra 45 * data in order to desribe some particular C types. 46 * 47 * type_id: 48 * ~~~~~~~ 49 * Each btf_type object is identified by a type_id. The type_id 50 * is implicitly implied by the location of the btf_type object in 51 * the BTF type section. The first one has type_id 1. The second 52 * one has type_id 2...etc. Hence, an earlier btf_type has 53 * a smaller type_id. 54 * 55 * A btf_type object may refer to another btf_type object by using 56 * type_id (i.e. the "type" in the "struct btf_type"). 57 * 58 * NOTE that we cannot assume any reference-order. 59 * A btf_type object can refer to an earlier btf_type object 60 * but it can also refer to a later btf_type object. 61 * 62 * For example, to describe "const void *". A btf_type 63 * object describing "const" may refer to another btf_type 64 * object describing "void *". This type-reference is done 65 * by specifying type_id: 66 * 67 * [1] CONST (anon) type_id=2 68 * [2] PTR (anon) type_id=0 69 * 70 * The above is the btf_verifier debug log: 71 * - Each line started with "[?]" is a btf_type object 72 * - [?] is the type_id of the btf_type object. 73 * - CONST/PTR is the BTF_KIND_XXX 74 * - "(anon)" is the name of the type. It just 75 * happens that CONST and PTR has no name. 76 * - type_id=XXX is the 'u32 type' in btf_type 77 * 78 * NOTE: "void" has type_id 0 79 * 80 * String section: 81 * ~~~~~~~~~~~~~~ 82 * The BTF string section contains the names used by the type section. 83 * Each string is referred by an "offset" from the beginning of the 84 * string section. 85 * 86 * Each string is '\0' terminated. 87 * 88 * The first character in the string section must be '\0' 89 * which is used to mean 'anonymous'. Some btf_type may not 90 * have a name. 91 */ 92 93 /* BTF verification: 94 * 95 * To verify BTF data, two passes are needed. 96 * 97 * Pass #1 98 * ~~~~~~~ 99 * The first pass is to collect all btf_type objects to 100 * an array: "btf->types". 101 * 102 * Depending on the C type that a btf_type is describing, 103 * a btf_type may be followed by extra data. We don't know 104 * how many btf_type is there, and more importantly we don't 105 * know where each btf_type is located in the type section. 106 * 107 * Without knowing the location of each type_id, most verifications 108 * cannot be done. e.g. an earlier btf_type may refer to a later 109 * btf_type (recall the "const void *" above), so we cannot 110 * check this type-reference in the first pass. 111 * 112 * In the first pass, it still does some verifications (e.g. 113 * checking the name is a valid offset to the string section). 114 * 115 * Pass #2 116 * ~~~~~~~ 117 * The main focus is to resolve a btf_type that is referring 118 * to another type. 119 * 120 * We have to ensure the referring type: 121 * 1) does exist in the BTF (i.e. in btf->types[]) 122 * 2) does not cause a loop: 123 * struct A { 124 * struct B b; 125 * }; 126 * 127 * struct B { 128 * struct A a; 129 * }; 130 * 131 * btf_type_needs_resolve() decides if a btf_type needs 132 * to be resolved. 133 * 134 * The needs_resolve type implements the "resolve()" ops which 135 * essentially does a DFS and detects backedge. 136 * 137 * During resolve (or DFS), different C types have different 138 * "RESOLVED" conditions. 139 * 140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 141 * members because a member is always referring to another 142 * type. A struct's member can be treated as "RESOLVED" if 143 * it is referring to a BTF_KIND_PTR. Otherwise, the 144 * following valid C struct would be rejected: 145 * 146 * struct A { 147 * int m; 148 * struct A *a; 149 * }; 150 * 151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 153 * detect a pointer loop, e.g.: 154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 155 * ^ | 156 * +-----------------------------------------+ 157 * 158 */ 159 160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE) 161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 164 #define BITS_ROUNDUP_BYTES(bits) \ 165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 166 167 #define BTF_INFO_MASK 0x0f00ffff 168 #define BTF_INT_MASK 0x0fffffff 169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 171 172 /* 16MB for 64k structs and each has 16 members and 173 * a few MB spaces for the string section. 174 * The hard limit is S32_MAX. 175 */ 176 #define BTF_MAX_SIZE (16 * 1024 * 1024) 177 178 #define for_each_member(i, struct_type, member) \ 179 for (i = 0, member = btf_type_member(struct_type); \ 180 i < btf_type_vlen(struct_type); \ 181 i++, member++) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 static DEFINE_IDR(btf_idr); 189 static DEFINE_SPINLOCK(btf_idr_lock); 190 191 struct btf { 192 void *data; 193 struct btf_type **types; 194 u32 *resolved_ids; 195 u32 *resolved_sizes; 196 const char *strings; 197 void *nohdr_data; 198 struct btf_header hdr; 199 u32 nr_types; 200 u32 types_size; 201 u32 data_size; 202 refcount_t refcnt; 203 u32 id; 204 struct rcu_head rcu; 205 }; 206 207 enum verifier_phase { 208 CHECK_META, 209 CHECK_TYPE, 210 }; 211 212 struct resolve_vertex { 213 const struct btf_type *t; 214 u32 type_id; 215 u16 next_member; 216 }; 217 218 enum visit_state { 219 NOT_VISITED, 220 VISITED, 221 RESOLVED, 222 }; 223 224 enum resolve_mode { 225 RESOLVE_TBD, /* To Be Determined */ 226 RESOLVE_PTR, /* Resolving for Pointer */ 227 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 228 * or array 229 */ 230 }; 231 232 #define MAX_RESOLVE_DEPTH 32 233 234 struct btf_sec_info { 235 u32 off; 236 u32 len; 237 }; 238 239 struct btf_verifier_env { 240 struct btf *btf; 241 u8 *visit_states; 242 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 243 struct bpf_verifier_log log; 244 u32 log_type_id; 245 u32 top_stack; 246 enum verifier_phase phase; 247 enum resolve_mode resolve_mode; 248 }; 249 250 static const char * const btf_kind_str[NR_BTF_KINDS] = { 251 [BTF_KIND_UNKN] = "UNKNOWN", 252 [BTF_KIND_INT] = "INT", 253 [BTF_KIND_PTR] = "PTR", 254 [BTF_KIND_ARRAY] = "ARRAY", 255 [BTF_KIND_STRUCT] = "STRUCT", 256 [BTF_KIND_UNION] = "UNION", 257 [BTF_KIND_ENUM] = "ENUM", 258 [BTF_KIND_FWD] = "FWD", 259 [BTF_KIND_TYPEDEF] = "TYPEDEF", 260 [BTF_KIND_VOLATILE] = "VOLATILE", 261 [BTF_KIND_CONST] = "CONST", 262 [BTF_KIND_RESTRICT] = "RESTRICT", 263 [BTF_KIND_FUNC] = "FUNC", 264 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 265 }; 266 267 struct btf_kind_operations { 268 s32 (*check_meta)(struct btf_verifier_env *env, 269 const struct btf_type *t, 270 u32 meta_left); 271 int (*resolve)(struct btf_verifier_env *env, 272 const struct resolve_vertex *v); 273 int (*check_member)(struct btf_verifier_env *env, 274 const struct btf_type *struct_type, 275 const struct btf_member *member, 276 const struct btf_type *member_type); 277 void (*log_details)(struct btf_verifier_env *env, 278 const struct btf_type *t); 279 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 280 u32 type_id, void *data, u8 bits_offsets, 281 struct seq_file *m); 282 }; 283 284 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 285 static struct btf_type btf_void; 286 287 static int btf_resolve(struct btf_verifier_env *env, 288 const struct btf_type *t, u32 type_id); 289 290 static bool btf_type_is_modifier(const struct btf_type *t) 291 { 292 /* Some of them is not strictly a C modifier 293 * but they are grouped into the same bucket 294 * for BTF concern: 295 * A type (t) that refers to another 296 * type through t->type AND its size cannot 297 * be determined without following the t->type. 298 * 299 * ptr does not fall into this bucket 300 * because its size is always sizeof(void *). 301 */ 302 switch (BTF_INFO_KIND(t->info)) { 303 case BTF_KIND_TYPEDEF: 304 case BTF_KIND_VOLATILE: 305 case BTF_KIND_CONST: 306 case BTF_KIND_RESTRICT: 307 return true; 308 } 309 310 return false; 311 } 312 313 static bool btf_type_is_void(const struct btf_type *t) 314 { 315 return t == &btf_void; 316 } 317 318 static bool btf_type_is_fwd(const struct btf_type *t) 319 { 320 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 321 } 322 323 static bool btf_type_is_func(const struct btf_type *t) 324 { 325 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC; 326 } 327 328 static bool btf_type_is_func_proto(const struct btf_type *t) 329 { 330 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO; 331 } 332 333 static bool btf_type_nosize(const struct btf_type *t) 334 { 335 return btf_type_is_void(t) || btf_type_is_fwd(t) || 336 btf_type_is_func(t) || btf_type_is_func_proto(t); 337 } 338 339 static bool btf_type_nosize_or_null(const struct btf_type *t) 340 { 341 return !t || btf_type_nosize(t); 342 } 343 344 /* union is only a special case of struct: 345 * all its offsetof(member) == 0 346 */ 347 static bool btf_type_is_struct(const struct btf_type *t) 348 { 349 u8 kind = BTF_INFO_KIND(t->info); 350 351 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 352 } 353 354 static bool btf_type_is_array(const struct btf_type *t) 355 { 356 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 357 } 358 359 static bool btf_type_is_ptr(const struct btf_type *t) 360 { 361 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 362 } 363 364 static bool btf_type_is_int(const struct btf_type *t) 365 { 366 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 367 } 368 369 /* What types need to be resolved? 370 * 371 * btf_type_is_modifier() is an obvious one. 372 * 373 * btf_type_is_struct() because its member refers to 374 * another type (through member->type). 375 376 * btf_type_is_array() because its element (array->type) 377 * refers to another type. Array can be thought of a 378 * special case of struct while array just has the same 379 * member-type repeated by array->nelems of times. 380 */ 381 static bool btf_type_needs_resolve(const struct btf_type *t) 382 { 383 return btf_type_is_modifier(t) || 384 btf_type_is_ptr(t) || 385 btf_type_is_struct(t) || 386 btf_type_is_array(t); 387 } 388 389 /* t->size can be used */ 390 static bool btf_type_has_size(const struct btf_type *t) 391 { 392 switch (BTF_INFO_KIND(t->info)) { 393 case BTF_KIND_INT: 394 case BTF_KIND_STRUCT: 395 case BTF_KIND_UNION: 396 case BTF_KIND_ENUM: 397 return true; 398 } 399 400 return false; 401 } 402 403 static const char *btf_int_encoding_str(u8 encoding) 404 { 405 if (encoding == 0) 406 return "(none)"; 407 else if (encoding == BTF_INT_SIGNED) 408 return "SIGNED"; 409 else if (encoding == BTF_INT_CHAR) 410 return "CHAR"; 411 else if (encoding == BTF_INT_BOOL) 412 return "BOOL"; 413 else 414 return "UNKN"; 415 } 416 417 static u16 btf_type_vlen(const struct btf_type *t) 418 { 419 return BTF_INFO_VLEN(t->info); 420 } 421 422 static u32 btf_type_int(const struct btf_type *t) 423 { 424 return *(u32 *)(t + 1); 425 } 426 427 static const struct btf_array *btf_type_array(const struct btf_type *t) 428 { 429 return (const struct btf_array *)(t + 1); 430 } 431 432 static const struct btf_member *btf_type_member(const struct btf_type *t) 433 { 434 return (const struct btf_member *)(t + 1); 435 } 436 437 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 438 { 439 return (const struct btf_enum *)(t + 1); 440 } 441 442 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 443 { 444 return kind_ops[BTF_INFO_KIND(t->info)]; 445 } 446 447 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 448 { 449 return BTF_STR_OFFSET_VALID(offset) && 450 offset < btf->hdr.str_len; 451 } 452 453 /* Only C-style identifier is permitted. This can be relaxed if 454 * necessary. 455 */ 456 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 457 { 458 /* offset must be valid */ 459 const char *src = &btf->strings[offset]; 460 const char *src_limit; 461 462 if (!isalpha(*src) && *src != '_') 463 return false; 464 465 /* set a limit on identifier length */ 466 src_limit = src + KSYM_NAME_LEN; 467 src++; 468 while (*src && src < src_limit) { 469 if (!isalnum(*src) && *src != '_') 470 return false; 471 src++; 472 } 473 474 return !*src; 475 } 476 477 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 478 { 479 if (!offset) 480 return "(anon)"; 481 else if (offset < btf->hdr.str_len) 482 return &btf->strings[offset]; 483 else 484 return "(invalid-name-offset)"; 485 } 486 487 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 488 { 489 if (type_id > btf->nr_types) 490 return NULL; 491 492 return btf->types[type_id]; 493 } 494 495 /* 496 * Regular int is not a bit field and it must be either 497 * u8/u16/u32/u64. 498 */ 499 static bool btf_type_int_is_regular(const struct btf_type *t) 500 { 501 u8 nr_bits, nr_bytes; 502 u32 int_data; 503 504 int_data = btf_type_int(t); 505 nr_bits = BTF_INT_BITS(int_data); 506 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 507 if (BITS_PER_BYTE_MASKED(nr_bits) || 508 BTF_INT_OFFSET(int_data) || 509 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 510 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) { 511 return false; 512 } 513 514 return true; 515 } 516 517 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 518 const char *fmt, ...) 519 { 520 va_list args; 521 522 va_start(args, fmt); 523 bpf_verifier_vlog(log, fmt, args); 524 va_end(args); 525 } 526 527 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 528 const char *fmt, ...) 529 { 530 struct bpf_verifier_log *log = &env->log; 531 va_list args; 532 533 if (!bpf_verifier_log_needed(log)) 534 return; 535 536 va_start(args, fmt); 537 bpf_verifier_vlog(log, fmt, args); 538 va_end(args); 539 } 540 541 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 542 const struct btf_type *t, 543 bool log_details, 544 const char *fmt, ...) 545 { 546 struct bpf_verifier_log *log = &env->log; 547 u8 kind = BTF_INFO_KIND(t->info); 548 struct btf *btf = env->btf; 549 va_list args; 550 551 if (!bpf_verifier_log_needed(log)) 552 return; 553 554 __btf_verifier_log(log, "[%u] %s %s%s", 555 env->log_type_id, 556 btf_kind_str[kind], 557 btf_name_by_offset(btf, t->name_off), 558 log_details ? " " : ""); 559 560 if (log_details) 561 btf_type_ops(t)->log_details(env, t); 562 563 if (fmt && *fmt) { 564 __btf_verifier_log(log, " "); 565 va_start(args, fmt); 566 bpf_verifier_vlog(log, fmt, args); 567 va_end(args); 568 } 569 570 __btf_verifier_log(log, "\n"); 571 } 572 573 #define btf_verifier_log_type(env, t, ...) \ 574 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 575 #define btf_verifier_log_basic(env, t, ...) \ 576 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 577 578 __printf(4, 5) 579 static void btf_verifier_log_member(struct btf_verifier_env *env, 580 const struct btf_type *struct_type, 581 const struct btf_member *member, 582 const char *fmt, ...) 583 { 584 struct bpf_verifier_log *log = &env->log; 585 struct btf *btf = env->btf; 586 va_list args; 587 588 if (!bpf_verifier_log_needed(log)) 589 return; 590 591 /* The CHECK_META phase already did a btf dump. 592 * 593 * If member is logged again, it must hit an error in 594 * parsing this member. It is useful to print out which 595 * struct this member belongs to. 596 */ 597 if (env->phase != CHECK_META) 598 btf_verifier_log_type(env, struct_type, NULL); 599 600 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 601 btf_name_by_offset(btf, member->name_off), 602 member->type, member->offset); 603 604 if (fmt && *fmt) { 605 __btf_verifier_log(log, " "); 606 va_start(args, fmt); 607 bpf_verifier_vlog(log, fmt, args); 608 va_end(args); 609 } 610 611 __btf_verifier_log(log, "\n"); 612 } 613 614 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 615 u32 btf_data_size) 616 { 617 struct bpf_verifier_log *log = &env->log; 618 const struct btf *btf = env->btf; 619 const struct btf_header *hdr; 620 621 if (!bpf_verifier_log_needed(log)) 622 return; 623 624 hdr = &btf->hdr; 625 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 626 __btf_verifier_log(log, "version: %u\n", hdr->version); 627 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 628 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 629 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 630 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 631 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 632 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 633 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 634 } 635 636 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 637 { 638 struct btf *btf = env->btf; 639 640 /* < 2 because +1 for btf_void which is always in btf->types[0]. 641 * btf_void is not accounted in btf->nr_types because btf_void 642 * does not come from the BTF file. 643 */ 644 if (btf->types_size - btf->nr_types < 2) { 645 /* Expand 'types' array */ 646 647 struct btf_type **new_types; 648 u32 expand_by, new_size; 649 650 if (btf->types_size == BTF_MAX_TYPE) { 651 btf_verifier_log(env, "Exceeded max num of types"); 652 return -E2BIG; 653 } 654 655 expand_by = max_t(u32, btf->types_size >> 2, 16); 656 new_size = min_t(u32, BTF_MAX_TYPE, 657 btf->types_size + expand_by); 658 659 new_types = kvcalloc(new_size, sizeof(*new_types), 660 GFP_KERNEL | __GFP_NOWARN); 661 if (!new_types) 662 return -ENOMEM; 663 664 if (btf->nr_types == 0) 665 new_types[0] = &btf_void; 666 else 667 memcpy(new_types, btf->types, 668 sizeof(*btf->types) * (btf->nr_types + 1)); 669 670 kvfree(btf->types); 671 btf->types = new_types; 672 btf->types_size = new_size; 673 } 674 675 btf->types[++(btf->nr_types)] = t; 676 677 return 0; 678 } 679 680 static int btf_alloc_id(struct btf *btf) 681 { 682 int id; 683 684 idr_preload(GFP_KERNEL); 685 spin_lock_bh(&btf_idr_lock); 686 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 687 if (id > 0) 688 btf->id = id; 689 spin_unlock_bh(&btf_idr_lock); 690 idr_preload_end(); 691 692 if (WARN_ON_ONCE(!id)) 693 return -ENOSPC; 694 695 return id > 0 ? 0 : id; 696 } 697 698 static void btf_free_id(struct btf *btf) 699 { 700 unsigned long flags; 701 702 /* 703 * In map-in-map, calling map_delete_elem() on outer 704 * map will call bpf_map_put on the inner map. 705 * It will then eventually call btf_free_id() 706 * on the inner map. Some of the map_delete_elem() 707 * implementation may have irq disabled, so 708 * we need to use the _irqsave() version instead 709 * of the _bh() version. 710 */ 711 spin_lock_irqsave(&btf_idr_lock, flags); 712 idr_remove(&btf_idr, btf->id); 713 spin_unlock_irqrestore(&btf_idr_lock, flags); 714 } 715 716 static void btf_free(struct btf *btf) 717 { 718 kvfree(btf->types); 719 kvfree(btf->resolved_sizes); 720 kvfree(btf->resolved_ids); 721 kvfree(btf->data); 722 kfree(btf); 723 } 724 725 static void btf_free_rcu(struct rcu_head *rcu) 726 { 727 struct btf *btf = container_of(rcu, struct btf, rcu); 728 729 btf_free(btf); 730 } 731 732 void btf_put(struct btf *btf) 733 { 734 if (btf && refcount_dec_and_test(&btf->refcnt)) { 735 btf_free_id(btf); 736 call_rcu(&btf->rcu, btf_free_rcu); 737 } 738 } 739 740 static int env_resolve_init(struct btf_verifier_env *env) 741 { 742 struct btf *btf = env->btf; 743 u32 nr_types = btf->nr_types; 744 u32 *resolved_sizes = NULL; 745 u32 *resolved_ids = NULL; 746 u8 *visit_states = NULL; 747 748 /* +1 for btf_void */ 749 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 750 GFP_KERNEL | __GFP_NOWARN); 751 if (!resolved_sizes) 752 goto nomem; 753 754 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 755 GFP_KERNEL | __GFP_NOWARN); 756 if (!resolved_ids) 757 goto nomem; 758 759 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 760 GFP_KERNEL | __GFP_NOWARN); 761 if (!visit_states) 762 goto nomem; 763 764 btf->resolved_sizes = resolved_sizes; 765 btf->resolved_ids = resolved_ids; 766 env->visit_states = visit_states; 767 768 return 0; 769 770 nomem: 771 kvfree(resolved_sizes); 772 kvfree(resolved_ids); 773 kvfree(visit_states); 774 return -ENOMEM; 775 } 776 777 static void btf_verifier_env_free(struct btf_verifier_env *env) 778 { 779 kvfree(env->visit_states); 780 kfree(env); 781 } 782 783 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 784 const struct btf_type *next_type) 785 { 786 switch (env->resolve_mode) { 787 case RESOLVE_TBD: 788 /* int, enum or void is a sink */ 789 return !btf_type_needs_resolve(next_type); 790 case RESOLVE_PTR: 791 /* int, enum, void, struct, array, func or func_proto is a sink 792 * for ptr 793 */ 794 return !btf_type_is_modifier(next_type) && 795 !btf_type_is_ptr(next_type); 796 case RESOLVE_STRUCT_OR_ARRAY: 797 /* int, enum, void, ptr, func or func_proto is a sink 798 * for struct and array 799 */ 800 return !btf_type_is_modifier(next_type) && 801 !btf_type_is_array(next_type) && 802 !btf_type_is_struct(next_type); 803 default: 804 BUG(); 805 } 806 } 807 808 static bool env_type_is_resolved(const struct btf_verifier_env *env, 809 u32 type_id) 810 { 811 return env->visit_states[type_id] == RESOLVED; 812 } 813 814 static int env_stack_push(struct btf_verifier_env *env, 815 const struct btf_type *t, u32 type_id) 816 { 817 struct resolve_vertex *v; 818 819 if (env->top_stack == MAX_RESOLVE_DEPTH) 820 return -E2BIG; 821 822 if (env->visit_states[type_id] != NOT_VISITED) 823 return -EEXIST; 824 825 env->visit_states[type_id] = VISITED; 826 827 v = &env->stack[env->top_stack++]; 828 v->t = t; 829 v->type_id = type_id; 830 v->next_member = 0; 831 832 if (env->resolve_mode == RESOLVE_TBD) { 833 if (btf_type_is_ptr(t)) 834 env->resolve_mode = RESOLVE_PTR; 835 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 836 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 837 } 838 839 return 0; 840 } 841 842 static void env_stack_set_next_member(struct btf_verifier_env *env, 843 u16 next_member) 844 { 845 env->stack[env->top_stack - 1].next_member = next_member; 846 } 847 848 static void env_stack_pop_resolved(struct btf_verifier_env *env, 849 u32 resolved_type_id, 850 u32 resolved_size) 851 { 852 u32 type_id = env->stack[--(env->top_stack)].type_id; 853 struct btf *btf = env->btf; 854 855 btf->resolved_sizes[type_id] = resolved_size; 856 btf->resolved_ids[type_id] = resolved_type_id; 857 env->visit_states[type_id] = RESOLVED; 858 } 859 860 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 861 { 862 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 863 } 864 865 /* The input param "type_id" must point to a needs_resolve type */ 866 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 867 u32 *type_id) 868 { 869 *type_id = btf->resolved_ids[*type_id]; 870 return btf_type_by_id(btf, *type_id); 871 } 872 873 const struct btf_type *btf_type_id_size(const struct btf *btf, 874 u32 *type_id, u32 *ret_size) 875 { 876 const struct btf_type *size_type; 877 u32 size_type_id = *type_id; 878 u32 size = 0; 879 880 size_type = btf_type_by_id(btf, size_type_id); 881 if (btf_type_nosize_or_null(size_type)) 882 return NULL; 883 884 if (btf_type_has_size(size_type)) { 885 size = size_type->size; 886 } else if (btf_type_is_array(size_type)) { 887 size = btf->resolved_sizes[size_type_id]; 888 } else if (btf_type_is_ptr(size_type)) { 889 size = sizeof(void *); 890 } else { 891 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) 892 return NULL; 893 894 size = btf->resolved_sizes[size_type_id]; 895 size_type_id = btf->resolved_ids[size_type_id]; 896 size_type = btf_type_by_id(btf, size_type_id); 897 if (btf_type_nosize_or_null(size_type)) 898 return NULL; 899 } 900 901 *type_id = size_type_id; 902 if (ret_size) 903 *ret_size = size; 904 905 return size_type; 906 } 907 908 static int btf_df_check_member(struct btf_verifier_env *env, 909 const struct btf_type *struct_type, 910 const struct btf_member *member, 911 const struct btf_type *member_type) 912 { 913 btf_verifier_log_basic(env, struct_type, 914 "Unsupported check_member"); 915 return -EINVAL; 916 } 917 918 static int btf_df_resolve(struct btf_verifier_env *env, 919 const struct resolve_vertex *v) 920 { 921 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 922 return -EINVAL; 923 } 924 925 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 926 u32 type_id, void *data, u8 bits_offsets, 927 struct seq_file *m) 928 { 929 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 930 } 931 932 static int btf_int_check_member(struct btf_verifier_env *env, 933 const struct btf_type *struct_type, 934 const struct btf_member *member, 935 const struct btf_type *member_type) 936 { 937 u32 int_data = btf_type_int(member_type); 938 u32 struct_bits_off = member->offset; 939 u32 struct_size = struct_type->size; 940 u32 nr_copy_bits; 941 u32 bytes_offset; 942 943 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 944 btf_verifier_log_member(env, struct_type, member, 945 "bits_offset exceeds U32_MAX"); 946 return -EINVAL; 947 } 948 949 struct_bits_off += BTF_INT_OFFSET(int_data); 950 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 951 nr_copy_bits = BTF_INT_BITS(int_data) + 952 BITS_PER_BYTE_MASKED(struct_bits_off); 953 954 if (nr_copy_bits > BITS_PER_U64) { 955 btf_verifier_log_member(env, struct_type, member, 956 "nr_copy_bits exceeds 64"); 957 return -EINVAL; 958 } 959 960 if (struct_size < bytes_offset || 961 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 962 btf_verifier_log_member(env, struct_type, member, 963 "Member exceeds struct_size"); 964 return -EINVAL; 965 } 966 967 return 0; 968 } 969 970 static s32 btf_int_check_meta(struct btf_verifier_env *env, 971 const struct btf_type *t, 972 u32 meta_left) 973 { 974 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 975 u16 encoding; 976 977 if (meta_left < meta_needed) { 978 btf_verifier_log_basic(env, t, 979 "meta_left:%u meta_needed:%u", 980 meta_left, meta_needed); 981 return -EINVAL; 982 } 983 984 if (btf_type_vlen(t)) { 985 btf_verifier_log_type(env, t, "vlen != 0"); 986 return -EINVAL; 987 } 988 989 int_data = btf_type_int(t); 990 if (int_data & ~BTF_INT_MASK) { 991 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 992 int_data); 993 return -EINVAL; 994 } 995 996 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 997 998 if (nr_bits > BITS_PER_U64) { 999 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1000 BITS_PER_U64); 1001 return -EINVAL; 1002 } 1003 1004 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1005 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1006 return -EINVAL; 1007 } 1008 1009 /* 1010 * Only one of the encoding bits is allowed and it 1011 * should be sufficient for the pretty print purpose (i.e. decoding). 1012 * Multiple bits can be allowed later if it is found 1013 * to be insufficient. 1014 */ 1015 encoding = BTF_INT_ENCODING(int_data); 1016 if (encoding && 1017 encoding != BTF_INT_SIGNED && 1018 encoding != BTF_INT_CHAR && 1019 encoding != BTF_INT_BOOL) { 1020 btf_verifier_log_type(env, t, "Unsupported encoding"); 1021 return -ENOTSUPP; 1022 } 1023 1024 btf_verifier_log_type(env, t, NULL); 1025 1026 return meta_needed; 1027 } 1028 1029 static void btf_int_log(struct btf_verifier_env *env, 1030 const struct btf_type *t) 1031 { 1032 int int_data = btf_type_int(t); 1033 1034 btf_verifier_log(env, 1035 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1036 t->size, BTF_INT_OFFSET(int_data), 1037 BTF_INT_BITS(int_data), 1038 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1039 } 1040 1041 static void btf_int_bits_seq_show(const struct btf *btf, 1042 const struct btf_type *t, 1043 void *data, u8 bits_offset, 1044 struct seq_file *m) 1045 { 1046 u16 left_shift_bits, right_shift_bits; 1047 u32 int_data = btf_type_int(t); 1048 u8 nr_bits = BTF_INT_BITS(int_data); 1049 u8 total_bits_offset; 1050 u8 nr_copy_bytes; 1051 u8 nr_copy_bits; 1052 u64 print_num; 1053 1054 /* 1055 * bits_offset is at most 7. 1056 * BTF_INT_OFFSET() cannot exceed 64 bits. 1057 */ 1058 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1059 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1060 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1061 nr_copy_bits = nr_bits + bits_offset; 1062 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1063 1064 print_num = 0; 1065 memcpy(&print_num, data, nr_copy_bytes); 1066 1067 #ifdef __BIG_ENDIAN_BITFIELD 1068 left_shift_bits = bits_offset; 1069 #else 1070 left_shift_bits = BITS_PER_U64 - nr_copy_bits; 1071 #endif 1072 right_shift_bits = BITS_PER_U64 - nr_bits; 1073 1074 print_num <<= left_shift_bits; 1075 print_num >>= right_shift_bits; 1076 1077 seq_printf(m, "0x%llx", print_num); 1078 } 1079 1080 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1081 u32 type_id, void *data, u8 bits_offset, 1082 struct seq_file *m) 1083 { 1084 u32 int_data = btf_type_int(t); 1085 u8 encoding = BTF_INT_ENCODING(int_data); 1086 bool sign = encoding & BTF_INT_SIGNED; 1087 u8 nr_bits = BTF_INT_BITS(int_data); 1088 1089 if (bits_offset || BTF_INT_OFFSET(int_data) || 1090 BITS_PER_BYTE_MASKED(nr_bits)) { 1091 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1092 return; 1093 } 1094 1095 switch (nr_bits) { 1096 case 64: 1097 if (sign) 1098 seq_printf(m, "%lld", *(s64 *)data); 1099 else 1100 seq_printf(m, "%llu", *(u64 *)data); 1101 break; 1102 case 32: 1103 if (sign) 1104 seq_printf(m, "%d", *(s32 *)data); 1105 else 1106 seq_printf(m, "%u", *(u32 *)data); 1107 break; 1108 case 16: 1109 if (sign) 1110 seq_printf(m, "%d", *(s16 *)data); 1111 else 1112 seq_printf(m, "%u", *(u16 *)data); 1113 break; 1114 case 8: 1115 if (sign) 1116 seq_printf(m, "%d", *(s8 *)data); 1117 else 1118 seq_printf(m, "%u", *(u8 *)data); 1119 break; 1120 default: 1121 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1122 } 1123 } 1124 1125 static const struct btf_kind_operations int_ops = { 1126 .check_meta = btf_int_check_meta, 1127 .resolve = btf_df_resolve, 1128 .check_member = btf_int_check_member, 1129 .log_details = btf_int_log, 1130 .seq_show = btf_int_seq_show, 1131 }; 1132 1133 static int btf_modifier_check_member(struct btf_verifier_env *env, 1134 const struct btf_type *struct_type, 1135 const struct btf_member *member, 1136 const struct btf_type *member_type) 1137 { 1138 const struct btf_type *resolved_type; 1139 u32 resolved_type_id = member->type; 1140 struct btf_member resolved_member; 1141 struct btf *btf = env->btf; 1142 1143 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1144 if (!resolved_type) { 1145 btf_verifier_log_member(env, struct_type, member, 1146 "Invalid member"); 1147 return -EINVAL; 1148 } 1149 1150 resolved_member = *member; 1151 resolved_member.type = resolved_type_id; 1152 1153 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1154 &resolved_member, 1155 resolved_type); 1156 } 1157 1158 static int btf_ptr_check_member(struct btf_verifier_env *env, 1159 const struct btf_type *struct_type, 1160 const struct btf_member *member, 1161 const struct btf_type *member_type) 1162 { 1163 u32 struct_size, struct_bits_off, bytes_offset; 1164 1165 struct_size = struct_type->size; 1166 struct_bits_off = member->offset; 1167 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1168 1169 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1170 btf_verifier_log_member(env, struct_type, member, 1171 "Member is not byte aligned"); 1172 return -EINVAL; 1173 } 1174 1175 if (struct_size - bytes_offset < sizeof(void *)) { 1176 btf_verifier_log_member(env, struct_type, member, 1177 "Member exceeds struct_size"); 1178 return -EINVAL; 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1185 const struct btf_type *t, 1186 u32 meta_left) 1187 { 1188 if (btf_type_vlen(t)) { 1189 btf_verifier_log_type(env, t, "vlen != 0"); 1190 return -EINVAL; 1191 } 1192 1193 if (!BTF_TYPE_ID_VALID(t->type)) { 1194 btf_verifier_log_type(env, t, "Invalid type_id"); 1195 return -EINVAL; 1196 } 1197 1198 btf_verifier_log_type(env, t, NULL); 1199 1200 return 0; 1201 } 1202 1203 static int btf_modifier_resolve(struct btf_verifier_env *env, 1204 const struct resolve_vertex *v) 1205 { 1206 const struct btf_type *t = v->t; 1207 const struct btf_type *next_type; 1208 u32 next_type_id = t->type; 1209 struct btf *btf = env->btf; 1210 u32 next_type_size = 0; 1211 1212 next_type = btf_type_by_id(btf, next_type_id); 1213 if (!next_type) { 1214 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1215 return -EINVAL; 1216 } 1217 1218 if (!env_type_is_resolve_sink(env, next_type) && 1219 !env_type_is_resolved(env, next_type_id)) 1220 return env_stack_push(env, next_type, next_type_id); 1221 1222 /* Figure out the resolved next_type_id with size. 1223 * They will be stored in the current modifier's 1224 * resolved_ids and resolved_sizes such that it can 1225 * save us a few type-following when we use it later (e.g. in 1226 * pretty print). 1227 */ 1228 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) { 1229 if (env_type_is_resolved(env, next_type_id)) 1230 next_type = btf_type_id_resolve(btf, &next_type_id); 1231 1232 /* "typedef void new_void", "const void"...etc */ 1233 if (!btf_type_is_void(next_type) && 1234 !btf_type_is_fwd(next_type)) { 1235 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1236 return -EINVAL; 1237 } 1238 } 1239 1240 env_stack_pop_resolved(env, next_type_id, next_type_size); 1241 1242 return 0; 1243 } 1244 1245 static int btf_ptr_resolve(struct btf_verifier_env *env, 1246 const struct resolve_vertex *v) 1247 { 1248 const struct btf_type *next_type; 1249 const struct btf_type *t = v->t; 1250 u32 next_type_id = t->type; 1251 struct btf *btf = env->btf; 1252 1253 next_type = btf_type_by_id(btf, next_type_id); 1254 if (!next_type) { 1255 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1256 return -EINVAL; 1257 } 1258 1259 if (!env_type_is_resolve_sink(env, next_type) && 1260 !env_type_is_resolved(env, next_type_id)) 1261 return env_stack_push(env, next_type, next_type_id); 1262 1263 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1264 * the modifier may have stopped resolving when it was resolved 1265 * to a ptr (last-resolved-ptr). 1266 * 1267 * We now need to continue from the last-resolved-ptr to 1268 * ensure the last-resolved-ptr will not referring back to 1269 * the currenct ptr (t). 1270 */ 1271 if (btf_type_is_modifier(next_type)) { 1272 const struct btf_type *resolved_type; 1273 u32 resolved_type_id; 1274 1275 resolved_type_id = next_type_id; 1276 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1277 1278 if (btf_type_is_ptr(resolved_type) && 1279 !env_type_is_resolve_sink(env, resolved_type) && 1280 !env_type_is_resolved(env, resolved_type_id)) 1281 return env_stack_push(env, resolved_type, 1282 resolved_type_id); 1283 } 1284 1285 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1286 if (env_type_is_resolved(env, next_type_id)) 1287 next_type = btf_type_id_resolve(btf, &next_type_id); 1288 1289 if (!btf_type_is_void(next_type) && 1290 !btf_type_is_fwd(next_type) && 1291 !btf_type_is_func_proto(next_type)) { 1292 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1293 return -EINVAL; 1294 } 1295 } 1296 1297 env_stack_pop_resolved(env, next_type_id, 0); 1298 1299 return 0; 1300 } 1301 1302 static void btf_modifier_seq_show(const struct btf *btf, 1303 const struct btf_type *t, 1304 u32 type_id, void *data, 1305 u8 bits_offset, struct seq_file *m) 1306 { 1307 t = btf_type_id_resolve(btf, &type_id); 1308 1309 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1310 } 1311 1312 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1313 u32 type_id, void *data, u8 bits_offset, 1314 struct seq_file *m) 1315 { 1316 /* It is a hashed value */ 1317 seq_printf(m, "%p", *(void **)data); 1318 } 1319 1320 static void btf_ref_type_log(struct btf_verifier_env *env, 1321 const struct btf_type *t) 1322 { 1323 btf_verifier_log(env, "type_id=%u", t->type); 1324 } 1325 1326 static struct btf_kind_operations modifier_ops = { 1327 .check_meta = btf_ref_type_check_meta, 1328 .resolve = btf_modifier_resolve, 1329 .check_member = btf_modifier_check_member, 1330 .log_details = btf_ref_type_log, 1331 .seq_show = btf_modifier_seq_show, 1332 }; 1333 1334 static struct btf_kind_operations ptr_ops = { 1335 .check_meta = btf_ref_type_check_meta, 1336 .resolve = btf_ptr_resolve, 1337 .check_member = btf_ptr_check_member, 1338 .log_details = btf_ref_type_log, 1339 .seq_show = btf_ptr_seq_show, 1340 }; 1341 1342 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1343 const struct btf_type *t, 1344 u32 meta_left) 1345 { 1346 if (btf_type_vlen(t)) { 1347 btf_verifier_log_type(env, t, "vlen != 0"); 1348 return -EINVAL; 1349 } 1350 1351 if (t->type) { 1352 btf_verifier_log_type(env, t, "type != 0"); 1353 return -EINVAL; 1354 } 1355 1356 btf_verifier_log_type(env, t, NULL); 1357 1358 return 0; 1359 } 1360 1361 static struct btf_kind_operations fwd_ops = { 1362 .check_meta = btf_fwd_check_meta, 1363 .resolve = btf_df_resolve, 1364 .check_member = btf_df_check_member, 1365 .log_details = btf_ref_type_log, 1366 .seq_show = btf_df_seq_show, 1367 }; 1368 1369 static int btf_array_check_member(struct btf_verifier_env *env, 1370 const struct btf_type *struct_type, 1371 const struct btf_member *member, 1372 const struct btf_type *member_type) 1373 { 1374 u32 struct_bits_off = member->offset; 1375 u32 struct_size, bytes_offset; 1376 u32 array_type_id, array_size; 1377 struct btf *btf = env->btf; 1378 1379 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1380 btf_verifier_log_member(env, struct_type, member, 1381 "Member is not byte aligned"); 1382 return -EINVAL; 1383 } 1384 1385 array_type_id = member->type; 1386 btf_type_id_size(btf, &array_type_id, &array_size); 1387 struct_size = struct_type->size; 1388 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1389 if (struct_size - bytes_offset < array_size) { 1390 btf_verifier_log_member(env, struct_type, member, 1391 "Member exceeds struct_size"); 1392 return -EINVAL; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1399 const struct btf_type *t, 1400 u32 meta_left) 1401 { 1402 const struct btf_array *array = btf_type_array(t); 1403 u32 meta_needed = sizeof(*array); 1404 1405 if (meta_left < meta_needed) { 1406 btf_verifier_log_basic(env, t, 1407 "meta_left:%u meta_needed:%u", 1408 meta_left, meta_needed); 1409 return -EINVAL; 1410 } 1411 1412 if (btf_type_vlen(t)) { 1413 btf_verifier_log_type(env, t, "vlen != 0"); 1414 return -EINVAL; 1415 } 1416 1417 if (t->size) { 1418 btf_verifier_log_type(env, t, "size != 0"); 1419 return -EINVAL; 1420 } 1421 1422 /* Array elem type and index type cannot be in type void, 1423 * so !array->type and !array->index_type are not allowed. 1424 */ 1425 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1426 btf_verifier_log_type(env, t, "Invalid elem"); 1427 return -EINVAL; 1428 } 1429 1430 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1431 btf_verifier_log_type(env, t, "Invalid index"); 1432 return -EINVAL; 1433 } 1434 1435 btf_verifier_log_type(env, t, NULL); 1436 1437 return meta_needed; 1438 } 1439 1440 static int btf_array_resolve(struct btf_verifier_env *env, 1441 const struct resolve_vertex *v) 1442 { 1443 const struct btf_array *array = btf_type_array(v->t); 1444 const struct btf_type *elem_type, *index_type; 1445 u32 elem_type_id, index_type_id; 1446 struct btf *btf = env->btf; 1447 u32 elem_size; 1448 1449 /* Check array->index_type */ 1450 index_type_id = array->index_type; 1451 index_type = btf_type_by_id(btf, index_type_id); 1452 if (btf_type_nosize_or_null(index_type)) { 1453 btf_verifier_log_type(env, v->t, "Invalid index"); 1454 return -EINVAL; 1455 } 1456 1457 if (!env_type_is_resolve_sink(env, index_type) && 1458 !env_type_is_resolved(env, index_type_id)) 1459 return env_stack_push(env, index_type, index_type_id); 1460 1461 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1462 if (!index_type || !btf_type_is_int(index_type) || 1463 !btf_type_int_is_regular(index_type)) { 1464 btf_verifier_log_type(env, v->t, "Invalid index"); 1465 return -EINVAL; 1466 } 1467 1468 /* Check array->type */ 1469 elem_type_id = array->type; 1470 elem_type = btf_type_by_id(btf, elem_type_id); 1471 if (btf_type_nosize_or_null(elem_type)) { 1472 btf_verifier_log_type(env, v->t, 1473 "Invalid elem"); 1474 return -EINVAL; 1475 } 1476 1477 if (!env_type_is_resolve_sink(env, elem_type) && 1478 !env_type_is_resolved(env, elem_type_id)) 1479 return env_stack_push(env, elem_type, elem_type_id); 1480 1481 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1482 if (!elem_type) { 1483 btf_verifier_log_type(env, v->t, "Invalid elem"); 1484 return -EINVAL; 1485 } 1486 1487 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1488 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1489 return -EINVAL; 1490 } 1491 1492 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1493 btf_verifier_log_type(env, v->t, 1494 "Array size overflows U32_MAX"); 1495 return -EINVAL; 1496 } 1497 1498 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1499 1500 return 0; 1501 } 1502 1503 static void btf_array_log(struct btf_verifier_env *env, 1504 const struct btf_type *t) 1505 { 1506 const struct btf_array *array = btf_type_array(t); 1507 1508 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1509 array->type, array->index_type, array->nelems); 1510 } 1511 1512 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1513 u32 type_id, void *data, u8 bits_offset, 1514 struct seq_file *m) 1515 { 1516 const struct btf_array *array = btf_type_array(t); 1517 const struct btf_kind_operations *elem_ops; 1518 const struct btf_type *elem_type; 1519 u32 i, elem_size, elem_type_id; 1520 1521 elem_type_id = array->type; 1522 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1523 elem_ops = btf_type_ops(elem_type); 1524 seq_puts(m, "["); 1525 for (i = 0; i < array->nelems; i++) { 1526 if (i) 1527 seq_puts(m, ","); 1528 1529 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 1530 bits_offset, m); 1531 data += elem_size; 1532 } 1533 seq_puts(m, "]"); 1534 } 1535 1536 static struct btf_kind_operations array_ops = { 1537 .check_meta = btf_array_check_meta, 1538 .resolve = btf_array_resolve, 1539 .check_member = btf_array_check_member, 1540 .log_details = btf_array_log, 1541 .seq_show = btf_array_seq_show, 1542 }; 1543 1544 static int btf_struct_check_member(struct btf_verifier_env *env, 1545 const struct btf_type *struct_type, 1546 const struct btf_member *member, 1547 const struct btf_type *member_type) 1548 { 1549 u32 struct_bits_off = member->offset; 1550 u32 struct_size, bytes_offset; 1551 1552 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1553 btf_verifier_log_member(env, struct_type, member, 1554 "Member is not byte aligned"); 1555 return -EINVAL; 1556 } 1557 1558 struct_size = struct_type->size; 1559 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1560 if (struct_size - bytes_offset < member_type->size) { 1561 btf_verifier_log_member(env, struct_type, member, 1562 "Member exceeds struct_size"); 1563 return -EINVAL; 1564 } 1565 1566 return 0; 1567 } 1568 1569 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 1570 const struct btf_type *t, 1571 u32 meta_left) 1572 { 1573 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 1574 const struct btf_member *member; 1575 u32 meta_needed, last_offset; 1576 struct btf *btf = env->btf; 1577 u32 struct_size = t->size; 1578 u16 i; 1579 1580 meta_needed = btf_type_vlen(t) * sizeof(*member); 1581 if (meta_left < meta_needed) { 1582 btf_verifier_log_basic(env, t, 1583 "meta_left:%u meta_needed:%u", 1584 meta_left, meta_needed); 1585 return -EINVAL; 1586 } 1587 1588 btf_verifier_log_type(env, t, NULL); 1589 1590 last_offset = 0; 1591 for_each_member(i, t, member) { 1592 if (!btf_name_offset_valid(btf, member->name_off)) { 1593 btf_verifier_log_member(env, t, member, 1594 "Invalid member name_offset:%u", 1595 member->name_off); 1596 return -EINVAL; 1597 } 1598 1599 /* A member cannot be in type void */ 1600 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 1601 btf_verifier_log_member(env, t, member, 1602 "Invalid type_id"); 1603 return -EINVAL; 1604 } 1605 1606 if (is_union && member->offset) { 1607 btf_verifier_log_member(env, t, member, 1608 "Invalid member bits_offset"); 1609 return -EINVAL; 1610 } 1611 1612 /* 1613 * ">" instead of ">=" because the last member could be 1614 * "char a[0];" 1615 */ 1616 if (last_offset > member->offset) { 1617 btf_verifier_log_member(env, t, member, 1618 "Invalid member bits_offset"); 1619 return -EINVAL; 1620 } 1621 1622 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { 1623 btf_verifier_log_member(env, t, member, 1624 "Member bits_offset exceeds its struct size"); 1625 return -EINVAL; 1626 } 1627 1628 btf_verifier_log_member(env, t, member, NULL); 1629 last_offset = member->offset; 1630 } 1631 1632 return meta_needed; 1633 } 1634 1635 static int btf_struct_resolve(struct btf_verifier_env *env, 1636 const struct resolve_vertex *v) 1637 { 1638 const struct btf_member *member; 1639 int err; 1640 u16 i; 1641 1642 /* Before continue resolving the next_member, 1643 * ensure the last member is indeed resolved to a 1644 * type with size info. 1645 */ 1646 if (v->next_member) { 1647 const struct btf_type *last_member_type; 1648 const struct btf_member *last_member; 1649 u16 last_member_type_id; 1650 1651 last_member = btf_type_member(v->t) + v->next_member - 1; 1652 last_member_type_id = last_member->type; 1653 if (WARN_ON_ONCE(!env_type_is_resolved(env, 1654 last_member_type_id))) 1655 return -EINVAL; 1656 1657 last_member_type = btf_type_by_id(env->btf, 1658 last_member_type_id); 1659 err = btf_type_ops(last_member_type)->check_member(env, v->t, 1660 last_member, 1661 last_member_type); 1662 if (err) 1663 return err; 1664 } 1665 1666 for_each_member_from(i, v->next_member, v->t, member) { 1667 u32 member_type_id = member->type; 1668 const struct btf_type *member_type = btf_type_by_id(env->btf, 1669 member_type_id); 1670 1671 if (btf_type_nosize_or_null(member_type)) { 1672 btf_verifier_log_member(env, v->t, member, 1673 "Invalid member"); 1674 return -EINVAL; 1675 } 1676 1677 if (!env_type_is_resolve_sink(env, member_type) && 1678 !env_type_is_resolved(env, member_type_id)) { 1679 env_stack_set_next_member(env, i + 1); 1680 return env_stack_push(env, member_type, member_type_id); 1681 } 1682 1683 err = btf_type_ops(member_type)->check_member(env, v->t, 1684 member, 1685 member_type); 1686 if (err) 1687 return err; 1688 } 1689 1690 env_stack_pop_resolved(env, 0, 0); 1691 1692 return 0; 1693 } 1694 1695 static void btf_struct_log(struct btf_verifier_env *env, 1696 const struct btf_type *t) 1697 { 1698 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1699 } 1700 1701 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 1702 u32 type_id, void *data, u8 bits_offset, 1703 struct seq_file *m) 1704 { 1705 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 1706 const struct btf_member *member; 1707 u32 i; 1708 1709 seq_puts(m, "{"); 1710 for_each_member(i, t, member) { 1711 const struct btf_type *member_type = btf_type_by_id(btf, 1712 member->type); 1713 u32 member_offset = member->offset; 1714 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 1715 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 1716 const struct btf_kind_operations *ops; 1717 1718 if (i) 1719 seq_puts(m, seq); 1720 1721 ops = btf_type_ops(member_type); 1722 ops->seq_show(btf, member_type, member->type, 1723 data + bytes_offset, bits8_offset, m); 1724 } 1725 seq_puts(m, "}"); 1726 } 1727 1728 static struct btf_kind_operations struct_ops = { 1729 .check_meta = btf_struct_check_meta, 1730 .resolve = btf_struct_resolve, 1731 .check_member = btf_struct_check_member, 1732 .log_details = btf_struct_log, 1733 .seq_show = btf_struct_seq_show, 1734 }; 1735 1736 static int btf_enum_check_member(struct btf_verifier_env *env, 1737 const struct btf_type *struct_type, 1738 const struct btf_member *member, 1739 const struct btf_type *member_type) 1740 { 1741 u32 struct_bits_off = member->offset; 1742 u32 struct_size, bytes_offset; 1743 1744 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1745 btf_verifier_log_member(env, struct_type, member, 1746 "Member is not byte aligned"); 1747 return -EINVAL; 1748 } 1749 1750 struct_size = struct_type->size; 1751 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1752 if (struct_size - bytes_offset < sizeof(int)) { 1753 btf_verifier_log_member(env, struct_type, member, 1754 "Member exceeds struct_size"); 1755 return -EINVAL; 1756 } 1757 1758 return 0; 1759 } 1760 1761 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 1762 const struct btf_type *t, 1763 u32 meta_left) 1764 { 1765 const struct btf_enum *enums = btf_type_enum(t); 1766 struct btf *btf = env->btf; 1767 u16 i, nr_enums; 1768 u32 meta_needed; 1769 1770 nr_enums = btf_type_vlen(t); 1771 meta_needed = nr_enums * sizeof(*enums); 1772 1773 if (meta_left < meta_needed) { 1774 btf_verifier_log_basic(env, t, 1775 "meta_left:%u meta_needed:%u", 1776 meta_left, meta_needed); 1777 return -EINVAL; 1778 } 1779 1780 if (t->size != sizeof(int)) { 1781 btf_verifier_log_type(env, t, "Expected size:%zu", 1782 sizeof(int)); 1783 return -EINVAL; 1784 } 1785 1786 btf_verifier_log_type(env, t, NULL); 1787 1788 for (i = 0; i < nr_enums; i++) { 1789 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 1790 btf_verifier_log(env, "\tInvalid name_offset:%u", 1791 enums[i].name_off); 1792 return -EINVAL; 1793 } 1794 1795 btf_verifier_log(env, "\t%s val=%d\n", 1796 btf_name_by_offset(btf, enums[i].name_off), 1797 enums[i].val); 1798 } 1799 1800 return meta_needed; 1801 } 1802 1803 static void btf_enum_log(struct btf_verifier_env *env, 1804 const struct btf_type *t) 1805 { 1806 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1807 } 1808 1809 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 1810 u32 type_id, void *data, u8 bits_offset, 1811 struct seq_file *m) 1812 { 1813 const struct btf_enum *enums = btf_type_enum(t); 1814 u32 i, nr_enums = btf_type_vlen(t); 1815 int v = *(int *)data; 1816 1817 for (i = 0; i < nr_enums; i++) { 1818 if (v == enums[i].val) { 1819 seq_printf(m, "%s", 1820 btf_name_by_offset(btf, enums[i].name_off)); 1821 return; 1822 } 1823 } 1824 1825 seq_printf(m, "%d", v); 1826 } 1827 1828 static struct btf_kind_operations enum_ops = { 1829 .check_meta = btf_enum_check_meta, 1830 .resolve = btf_df_resolve, 1831 .check_member = btf_enum_check_member, 1832 .log_details = btf_enum_log, 1833 .seq_show = btf_enum_seq_show, 1834 }; 1835 1836 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 1837 const struct btf_type *t, 1838 u32 meta_left) 1839 { 1840 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 1841 1842 if (meta_left < meta_needed) { 1843 btf_verifier_log_basic(env, t, 1844 "meta_left:%u meta_needed:%u", 1845 meta_left, meta_needed); 1846 return -EINVAL; 1847 } 1848 1849 if (t->name_off) { 1850 btf_verifier_log_type(env, t, "Invalid name"); 1851 return -EINVAL; 1852 } 1853 1854 btf_verifier_log_type(env, t, NULL); 1855 1856 return meta_needed; 1857 } 1858 1859 static void btf_func_proto_log(struct btf_verifier_env *env, 1860 const struct btf_type *t) 1861 { 1862 const struct btf_param *args = (const struct btf_param *)(t + 1); 1863 u16 nr_args = btf_type_vlen(t), i; 1864 1865 btf_verifier_log(env, "return=%u args=(", t->type); 1866 if (!nr_args) { 1867 btf_verifier_log(env, "void"); 1868 goto done; 1869 } 1870 1871 if (nr_args == 1 && !args[0].type) { 1872 /* Only one vararg */ 1873 btf_verifier_log(env, "vararg"); 1874 goto done; 1875 } 1876 1877 btf_verifier_log(env, "%u %s", args[0].type, 1878 btf_name_by_offset(env->btf, 1879 args[0].name_off)); 1880 for (i = 1; i < nr_args - 1; i++) 1881 btf_verifier_log(env, ", %u %s", args[i].type, 1882 btf_name_by_offset(env->btf, 1883 args[i].name_off)); 1884 1885 if (nr_args > 1) { 1886 const struct btf_param *last_arg = &args[nr_args - 1]; 1887 1888 if (last_arg->type) 1889 btf_verifier_log(env, ", %u %s", last_arg->type, 1890 btf_name_by_offset(env->btf, 1891 last_arg->name_off)); 1892 else 1893 btf_verifier_log(env, ", vararg"); 1894 } 1895 1896 done: 1897 btf_verifier_log(env, ")"); 1898 } 1899 1900 static struct btf_kind_operations func_proto_ops = { 1901 .check_meta = btf_func_proto_check_meta, 1902 .resolve = btf_df_resolve, 1903 /* 1904 * BTF_KIND_FUNC_PROTO cannot be directly referred by 1905 * a struct's member. 1906 * 1907 * It should be a funciton pointer instead. 1908 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 1909 * 1910 * Hence, there is no btf_func_check_member(). 1911 */ 1912 .check_member = btf_df_check_member, 1913 .log_details = btf_func_proto_log, 1914 .seq_show = btf_df_seq_show, 1915 }; 1916 1917 static s32 btf_func_check_meta(struct btf_verifier_env *env, 1918 const struct btf_type *t, 1919 u32 meta_left) 1920 { 1921 if (!t->name_off || 1922 !btf_name_valid_identifier(env->btf, t->name_off)) { 1923 btf_verifier_log_type(env, t, "Invalid name"); 1924 return -EINVAL; 1925 } 1926 1927 if (btf_type_vlen(t)) { 1928 btf_verifier_log_type(env, t, "vlen != 0"); 1929 return -EINVAL; 1930 } 1931 1932 btf_verifier_log_type(env, t, NULL); 1933 1934 return 0; 1935 } 1936 1937 static struct btf_kind_operations func_ops = { 1938 .check_meta = btf_func_check_meta, 1939 .resolve = btf_df_resolve, 1940 .check_member = btf_df_check_member, 1941 .log_details = btf_ref_type_log, 1942 .seq_show = btf_df_seq_show, 1943 }; 1944 1945 static int btf_func_proto_check(struct btf_verifier_env *env, 1946 const struct btf_type *t) 1947 { 1948 const struct btf_type *ret_type; 1949 const struct btf_param *args; 1950 const struct btf *btf; 1951 u16 nr_args, i; 1952 int err; 1953 1954 btf = env->btf; 1955 args = (const struct btf_param *)(t + 1); 1956 nr_args = btf_type_vlen(t); 1957 1958 /* Check func return type which could be "void" (t->type == 0) */ 1959 if (t->type) { 1960 u32 ret_type_id = t->type; 1961 1962 ret_type = btf_type_by_id(btf, ret_type_id); 1963 if (!ret_type) { 1964 btf_verifier_log_type(env, t, "Invalid return type"); 1965 return -EINVAL; 1966 } 1967 1968 if (btf_type_needs_resolve(ret_type) && 1969 !env_type_is_resolved(env, ret_type_id)) { 1970 err = btf_resolve(env, ret_type, ret_type_id); 1971 if (err) 1972 return err; 1973 } 1974 1975 /* Ensure the return type is a type that has a size */ 1976 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 1977 btf_verifier_log_type(env, t, "Invalid return type"); 1978 return -EINVAL; 1979 } 1980 } 1981 1982 if (!nr_args) 1983 return 0; 1984 1985 /* Last func arg type_id could be 0 if it is a vararg */ 1986 if (!args[nr_args - 1].type) { 1987 if (args[nr_args - 1].name_off) { 1988 btf_verifier_log_type(env, t, "Invalid arg#%u", 1989 nr_args); 1990 return -EINVAL; 1991 } 1992 nr_args--; 1993 } 1994 1995 err = 0; 1996 for (i = 0; i < nr_args; i++) { 1997 const struct btf_type *arg_type; 1998 u32 arg_type_id; 1999 2000 arg_type_id = args[i].type; 2001 arg_type = btf_type_by_id(btf, arg_type_id); 2002 if (!arg_type) { 2003 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2004 err = -EINVAL; 2005 break; 2006 } 2007 2008 if (args[i].name_off && 2009 (!btf_name_offset_valid(btf, args[i].name_off) || 2010 !btf_name_valid_identifier(btf, args[i].name_off))) { 2011 btf_verifier_log_type(env, t, 2012 "Invalid arg#%u", i + 1); 2013 err = -EINVAL; 2014 break; 2015 } 2016 2017 if (btf_type_needs_resolve(arg_type) && 2018 !env_type_is_resolved(env, arg_type_id)) { 2019 err = btf_resolve(env, arg_type, arg_type_id); 2020 if (err) 2021 break; 2022 } 2023 2024 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2025 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2026 err = -EINVAL; 2027 break; 2028 } 2029 } 2030 2031 return err; 2032 } 2033 2034 static int btf_func_check(struct btf_verifier_env *env, 2035 const struct btf_type *t) 2036 { 2037 const struct btf_type *proto_type; 2038 const struct btf_param *args; 2039 const struct btf *btf; 2040 u16 nr_args, i; 2041 2042 btf = env->btf; 2043 proto_type = btf_type_by_id(btf, t->type); 2044 2045 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 2046 btf_verifier_log_type(env, t, "Invalid type_id"); 2047 return -EINVAL; 2048 } 2049 2050 args = (const struct btf_param *)(proto_type + 1); 2051 nr_args = btf_type_vlen(proto_type); 2052 for (i = 0; i < nr_args; i++) { 2053 if (!args[i].name_off && args[i].type) { 2054 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2055 return -EINVAL; 2056 } 2057 } 2058 2059 return 0; 2060 } 2061 2062 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 2063 [BTF_KIND_INT] = &int_ops, 2064 [BTF_KIND_PTR] = &ptr_ops, 2065 [BTF_KIND_ARRAY] = &array_ops, 2066 [BTF_KIND_STRUCT] = &struct_ops, 2067 [BTF_KIND_UNION] = &struct_ops, 2068 [BTF_KIND_ENUM] = &enum_ops, 2069 [BTF_KIND_FWD] = &fwd_ops, 2070 [BTF_KIND_TYPEDEF] = &modifier_ops, 2071 [BTF_KIND_VOLATILE] = &modifier_ops, 2072 [BTF_KIND_CONST] = &modifier_ops, 2073 [BTF_KIND_RESTRICT] = &modifier_ops, 2074 [BTF_KIND_FUNC] = &func_ops, 2075 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 2076 }; 2077 2078 static s32 btf_check_meta(struct btf_verifier_env *env, 2079 const struct btf_type *t, 2080 u32 meta_left) 2081 { 2082 u32 saved_meta_left = meta_left; 2083 s32 var_meta_size; 2084 2085 if (meta_left < sizeof(*t)) { 2086 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 2087 env->log_type_id, meta_left, sizeof(*t)); 2088 return -EINVAL; 2089 } 2090 meta_left -= sizeof(*t); 2091 2092 if (t->info & ~BTF_INFO_MASK) { 2093 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 2094 env->log_type_id, t->info); 2095 return -EINVAL; 2096 } 2097 2098 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 2099 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 2100 btf_verifier_log(env, "[%u] Invalid kind:%u", 2101 env->log_type_id, BTF_INFO_KIND(t->info)); 2102 return -EINVAL; 2103 } 2104 2105 if (!btf_name_offset_valid(env->btf, t->name_off)) { 2106 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 2107 env->log_type_id, t->name_off); 2108 return -EINVAL; 2109 } 2110 2111 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 2112 if (var_meta_size < 0) 2113 return var_meta_size; 2114 2115 meta_left -= var_meta_size; 2116 2117 return saved_meta_left - meta_left; 2118 } 2119 2120 static int btf_check_all_metas(struct btf_verifier_env *env) 2121 { 2122 struct btf *btf = env->btf; 2123 struct btf_header *hdr; 2124 void *cur, *end; 2125 2126 hdr = &btf->hdr; 2127 cur = btf->nohdr_data + hdr->type_off; 2128 end = cur + hdr->type_len; 2129 2130 env->log_type_id = 1; 2131 while (cur < end) { 2132 struct btf_type *t = cur; 2133 s32 meta_size; 2134 2135 meta_size = btf_check_meta(env, t, end - cur); 2136 if (meta_size < 0) 2137 return meta_size; 2138 2139 btf_add_type(env, t); 2140 cur += meta_size; 2141 env->log_type_id++; 2142 } 2143 2144 return 0; 2145 } 2146 2147 static bool btf_resolve_valid(struct btf_verifier_env *env, 2148 const struct btf_type *t, 2149 u32 type_id) 2150 { 2151 struct btf *btf = env->btf; 2152 2153 if (!env_type_is_resolved(env, type_id)) 2154 return false; 2155 2156 if (btf_type_is_struct(t)) 2157 return !btf->resolved_ids[type_id] && 2158 !btf->resolved_sizes[type_id]; 2159 2160 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { 2161 t = btf_type_id_resolve(btf, &type_id); 2162 return t && !btf_type_is_modifier(t); 2163 } 2164 2165 if (btf_type_is_array(t)) { 2166 const struct btf_array *array = btf_type_array(t); 2167 const struct btf_type *elem_type; 2168 u32 elem_type_id = array->type; 2169 u32 elem_size; 2170 2171 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2172 return elem_type && !btf_type_is_modifier(elem_type) && 2173 (array->nelems * elem_size == 2174 btf->resolved_sizes[type_id]); 2175 } 2176 2177 return false; 2178 } 2179 2180 static int btf_resolve(struct btf_verifier_env *env, 2181 const struct btf_type *t, u32 type_id) 2182 { 2183 u32 save_log_type_id = env->log_type_id; 2184 const struct resolve_vertex *v; 2185 int err = 0; 2186 2187 env->resolve_mode = RESOLVE_TBD; 2188 env_stack_push(env, t, type_id); 2189 while (!err && (v = env_stack_peak(env))) { 2190 env->log_type_id = v->type_id; 2191 err = btf_type_ops(v->t)->resolve(env, v); 2192 } 2193 2194 env->log_type_id = type_id; 2195 if (err == -E2BIG) { 2196 btf_verifier_log_type(env, t, 2197 "Exceeded max resolving depth:%u", 2198 MAX_RESOLVE_DEPTH); 2199 } else if (err == -EEXIST) { 2200 btf_verifier_log_type(env, t, "Loop detected"); 2201 } 2202 2203 /* Final sanity check */ 2204 if (!err && !btf_resolve_valid(env, t, type_id)) { 2205 btf_verifier_log_type(env, t, "Invalid resolve state"); 2206 err = -EINVAL; 2207 } 2208 2209 env->log_type_id = save_log_type_id; 2210 return err; 2211 } 2212 2213 static int btf_check_all_types(struct btf_verifier_env *env) 2214 { 2215 struct btf *btf = env->btf; 2216 u32 type_id; 2217 int err; 2218 2219 err = env_resolve_init(env); 2220 if (err) 2221 return err; 2222 2223 env->phase++; 2224 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 2225 const struct btf_type *t = btf_type_by_id(btf, type_id); 2226 2227 env->log_type_id = type_id; 2228 if (btf_type_needs_resolve(t) && 2229 !env_type_is_resolved(env, type_id)) { 2230 err = btf_resolve(env, t, type_id); 2231 if (err) 2232 return err; 2233 } 2234 2235 if (btf_type_is_func_proto(t)) { 2236 err = btf_func_proto_check(env, t); 2237 if (err) 2238 return err; 2239 } 2240 2241 if (btf_type_is_func(t)) { 2242 err = btf_func_check(env, t); 2243 if (err) 2244 return err; 2245 } 2246 } 2247 2248 return 0; 2249 } 2250 2251 static int btf_parse_type_sec(struct btf_verifier_env *env) 2252 { 2253 const struct btf_header *hdr = &env->btf->hdr; 2254 int err; 2255 2256 /* Type section must align to 4 bytes */ 2257 if (hdr->type_off & (sizeof(u32) - 1)) { 2258 btf_verifier_log(env, "Unaligned type_off"); 2259 return -EINVAL; 2260 } 2261 2262 if (!hdr->type_len) { 2263 btf_verifier_log(env, "No type found"); 2264 return -EINVAL; 2265 } 2266 2267 err = btf_check_all_metas(env); 2268 if (err) 2269 return err; 2270 2271 return btf_check_all_types(env); 2272 } 2273 2274 static int btf_parse_str_sec(struct btf_verifier_env *env) 2275 { 2276 const struct btf_header *hdr; 2277 struct btf *btf = env->btf; 2278 const char *start, *end; 2279 2280 hdr = &btf->hdr; 2281 start = btf->nohdr_data + hdr->str_off; 2282 end = start + hdr->str_len; 2283 2284 if (end != btf->data + btf->data_size) { 2285 btf_verifier_log(env, "String section is not at the end"); 2286 return -EINVAL; 2287 } 2288 2289 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 2290 start[0] || end[-1]) { 2291 btf_verifier_log(env, "Invalid string section"); 2292 return -EINVAL; 2293 } 2294 2295 btf->strings = start; 2296 2297 return 0; 2298 } 2299 2300 static const size_t btf_sec_info_offset[] = { 2301 offsetof(struct btf_header, type_off), 2302 offsetof(struct btf_header, str_off), 2303 }; 2304 2305 static int btf_sec_info_cmp(const void *a, const void *b) 2306 { 2307 const struct btf_sec_info *x = a; 2308 const struct btf_sec_info *y = b; 2309 2310 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 2311 } 2312 2313 static int btf_check_sec_info(struct btf_verifier_env *env, 2314 u32 btf_data_size) 2315 { 2316 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 2317 u32 total, expected_total, i; 2318 const struct btf_header *hdr; 2319 const struct btf *btf; 2320 2321 btf = env->btf; 2322 hdr = &btf->hdr; 2323 2324 /* Populate the secs from hdr */ 2325 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 2326 secs[i] = *(struct btf_sec_info *)((void *)hdr + 2327 btf_sec_info_offset[i]); 2328 2329 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 2330 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 2331 2332 /* Check for gaps and overlap among sections */ 2333 total = 0; 2334 expected_total = btf_data_size - hdr->hdr_len; 2335 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 2336 if (expected_total < secs[i].off) { 2337 btf_verifier_log(env, "Invalid section offset"); 2338 return -EINVAL; 2339 } 2340 if (total < secs[i].off) { 2341 /* gap */ 2342 btf_verifier_log(env, "Unsupported section found"); 2343 return -EINVAL; 2344 } 2345 if (total > secs[i].off) { 2346 btf_verifier_log(env, "Section overlap found"); 2347 return -EINVAL; 2348 } 2349 if (expected_total - total < secs[i].len) { 2350 btf_verifier_log(env, 2351 "Total section length too long"); 2352 return -EINVAL; 2353 } 2354 total += secs[i].len; 2355 } 2356 2357 /* There is data other than hdr and known sections */ 2358 if (expected_total != total) { 2359 btf_verifier_log(env, "Unsupported section found"); 2360 return -EINVAL; 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int btf_parse_hdr(struct btf_verifier_env *env) 2367 { 2368 u32 hdr_len, hdr_copy, btf_data_size; 2369 const struct btf_header *hdr; 2370 struct btf *btf; 2371 int err; 2372 2373 btf = env->btf; 2374 btf_data_size = btf->data_size; 2375 2376 if (btf_data_size < 2377 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 2378 btf_verifier_log(env, "hdr_len not found"); 2379 return -EINVAL; 2380 } 2381 2382 hdr = btf->data; 2383 hdr_len = hdr->hdr_len; 2384 if (btf_data_size < hdr_len) { 2385 btf_verifier_log(env, "btf_header not found"); 2386 return -EINVAL; 2387 } 2388 2389 /* Ensure the unsupported header fields are zero */ 2390 if (hdr_len > sizeof(btf->hdr)) { 2391 u8 *expected_zero = btf->data + sizeof(btf->hdr); 2392 u8 *end = btf->data + hdr_len; 2393 2394 for (; expected_zero < end; expected_zero++) { 2395 if (*expected_zero) { 2396 btf_verifier_log(env, "Unsupported btf_header"); 2397 return -E2BIG; 2398 } 2399 } 2400 } 2401 2402 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 2403 memcpy(&btf->hdr, btf->data, hdr_copy); 2404 2405 hdr = &btf->hdr; 2406 2407 btf_verifier_log_hdr(env, btf_data_size); 2408 2409 if (hdr->magic != BTF_MAGIC) { 2410 btf_verifier_log(env, "Invalid magic"); 2411 return -EINVAL; 2412 } 2413 2414 if (hdr->version != BTF_VERSION) { 2415 btf_verifier_log(env, "Unsupported version"); 2416 return -ENOTSUPP; 2417 } 2418 2419 if (hdr->flags) { 2420 btf_verifier_log(env, "Unsupported flags"); 2421 return -ENOTSUPP; 2422 } 2423 2424 if (btf_data_size == hdr->hdr_len) { 2425 btf_verifier_log(env, "No data"); 2426 return -EINVAL; 2427 } 2428 2429 err = btf_check_sec_info(env, btf_data_size); 2430 if (err) 2431 return err; 2432 2433 return 0; 2434 } 2435 2436 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 2437 u32 log_level, char __user *log_ubuf, u32 log_size) 2438 { 2439 struct btf_verifier_env *env = NULL; 2440 struct bpf_verifier_log *log; 2441 struct btf *btf = NULL; 2442 u8 *data; 2443 int err; 2444 2445 if (btf_data_size > BTF_MAX_SIZE) 2446 return ERR_PTR(-E2BIG); 2447 2448 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 2449 if (!env) 2450 return ERR_PTR(-ENOMEM); 2451 2452 log = &env->log; 2453 if (log_level || log_ubuf || log_size) { 2454 /* user requested verbose verifier output 2455 * and supplied buffer to store the verification trace 2456 */ 2457 log->level = log_level; 2458 log->ubuf = log_ubuf; 2459 log->len_total = log_size; 2460 2461 /* log attributes have to be sane */ 2462 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 2463 !log->level || !log->ubuf) { 2464 err = -EINVAL; 2465 goto errout; 2466 } 2467 } 2468 2469 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 2470 if (!btf) { 2471 err = -ENOMEM; 2472 goto errout; 2473 } 2474 env->btf = btf; 2475 2476 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 2477 if (!data) { 2478 err = -ENOMEM; 2479 goto errout; 2480 } 2481 2482 btf->data = data; 2483 btf->data_size = btf_data_size; 2484 2485 if (copy_from_user(data, btf_data, btf_data_size)) { 2486 err = -EFAULT; 2487 goto errout; 2488 } 2489 2490 err = btf_parse_hdr(env); 2491 if (err) 2492 goto errout; 2493 2494 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 2495 2496 err = btf_parse_str_sec(env); 2497 if (err) 2498 goto errout; 2499 2500 err = btf_parse_type_sec(env); 2501 if (err) 2502 goto errout; 2503 2504 if (log->level && bpf_verifier_log_full(log)) { 2505 err = -ENOSPC; 2506 goto errout; 2507 } 2508 2509 btf_verifier_env_free(env); 2510 refcount_set(&btf->refcnt, 1); 2511 return btf; 2512 2513 errout: 2514 btf_verifier_env_free(env); 2515 if (btf) 2516 btf_free(btf); 2517 return ERR_PTR(err); 2518 } 2519 2520 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 2521 struct seq_file *m) 2522 { 2523 const struct btf_type *t = btf_type_by_id(btf, type_id); 2524 2525 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 2526 } 2527 2528 static int btf_release(struct inode *inode, struct file *filp) 2529 { 2530 btf_put(filp->private_data); 2531 return 0; 2532 } 2533 2534 const struct file_operations btf_fops = { 2535 .release = btf_release, 2536 }; 2537 2538 static int __btf_new_fd(struct btf *btf) 2539 { 2540 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 2541 } 2542 2543 int btf_new_fd(const union bpf_attr *attr) 2544 { 2545 struct btf *btf; 2546 int ret; 2547 2548 btf = btf_parse(u64_to_user_ptr(attr->btf), 2549 attr->btf_size, attr->btf_log_level, 2550 u64_to_user_ptr(attr->btf_log_buf), 2551 attr->btf_log_size); 2552 if (IS_ERR(btf)) 2553 return PTR_ERR(btf); 2554 2555 ret = btf_alloc_id(btf); 2556 if (ret) { 2557 btf_free(btf); 2558 return ret; 2559 } 2560 2561 /* 2562 * The BTF ID is published to the userspace. 2563 * All BTF free must go through call_rcu() from 2564 * now on (i.e. free by calling btf_put()). 2565 */ 2566 2567 ret = __btf_new_fd(btf); 2568 if (ret < 0) 2569 btf_put(btf); 2570 2571 return ret; 2572 } 2573 2574 struct btf *btf_get_by_fd(int fd) 2575 { 2576 struct btf *btf; 2577 struct fd f; 2578 2579 f = fdget(fd); 2580 2581 if (!f.file) 2582 return ERR_PTR(-EBADF); 2583 2584 if (f.file->f_op != &btf_fops) { 2585 fdput(f); 2586 return ERR_PTR(-EINVAL); 2587 } 2588 2589 btf = f.file->private_data; 2590 refcount_inc(&btf->refcnt); 2591 fdput(f); 2592 2593 return btf; 2594 } 2595 2596 int btf_get_info_by_fd(const struct btf *btf, 2597 const union bpf_attr *attr, 2598 union bpf_attr __user *uattr) 2599 { 2600 struct bpf_btf_info __user *uinfo; 2601 struct bpf_btf_info info = {}; 2602 u32 info_copy, btf_copy; 2603 void __user *ubtf; 2604 u32 uinfo_len; 2605 2606 uinfo = u64_to_user_ptr(attr->info.info); 2607 uinfo_len = attr->info.info_len; 2608 2609 info_copy = min_t(u32, uinfo_len, sizeof(info)); 2610 if (copy_from_user(&info, uinfo, info_copy)) 2611 return -EFAULT; 2612 2613 info.id = btf->id; 2614 ubtf = u64_to_user_ptr(info.btf); 2615 btf_copy = min_t(u32, btf->data_size, info.btf_size); 2616 if (copy_to_user(ubtf, btf->data, btf_copy)) 2617 return -EFAULT; 2618 info.btf_size = btf->data_size; 2619 2620 if (copy_to_user(uinfo, &info, info_copy) || 2621 put_user(info_copy, &uattr->info.info_len)) 2622 return -EFAULT; 2623 2624 return 0; 2625 } 2626 2627 int btf_get_fd_by_id(u32 id) 2628 { 2629 struct btf *btf; 2630 int fd; 2631 2632 rcu_read_lock(); 2633 btf = idr_find(&btf_idr, id); 2634 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 2635 btf = ERR_PTR(-ENOENT); 2636 rcu_read_unlock(); 2637 2638 if (IS_ERR(btf)) 2639 return PTR_ERR(btf); 2640 2641 fd = __btf_new_fd(btf); 2642 if (fd < 0) 2643 btf_put(btf); 2644 2645 return fd; 2646 } 2647 2648 u32 btf_id(const struct btf *btf) 2649 { 2650 return btf->id; 2651 } 2652