xref: /linux/kernel/bpf/btf.c (revision 71844fac1ed459024dd2a448d63d5b28b8c87daa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x0f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190 
191 struct btf {
192 	void *data;
193 	struct btf_type **types;
194 	u32 *resolved_ids;
195 	u32 *resolved_sizes;
196 	const char *strings;
197 	void *nohdr_data;
198 	struct btf_header hdr;
199 	u32 nr_types;
200 	u32 types_size;
201 	u32 data_size;
202 	refcount_t refcnt;
203 	u32 id;
204 	struct rcu_head rcu;
205 };
206 
207 enum verifier_phase {
208 	CHECK_META,
209 	CHECK_TYPE,
210 };
211 
212 struct resolve_vertex {
213 	const struct btf_type *t;
214 	u32 type_id;
215 	u16 next_member;
216 };
217 
218 enum visit_state {
219 	NOT_VISITED,
220 	VISITED,
221 	RESOLVED,
222 };
223 
224 enum resolve_mode {
225 	RESOLVE_TBD,	/* To Be Determined */
226 	RESOLVE_PTR,	/* Resolving for Pointer */
227 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
228 					 * or array
229 					 */
230 };
231 
232 #define MAX_RESOLVE_DEPTH 32
233 
234 struct btf_sec_info {
235 	u32 off;
236 	u32 len;
237 };
238 
239 struct btf_verifier_env {
240 	struct btf *btf;
241 	u8 *visit_states;
242 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 	struct bpf_verifier_log log;
244 	u32 log_type_id;
245 	u32 top_stack;
246 	enum verifier_phase phase;
247 	enum resolve_mode resolve_mode;
248 };
249 
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 	[BTF_KIND_UNKN]		= "UNKNOWN",
252 	[BTF_KIND_INT]		= "INT",
253 	[BTF_KIND_PTR]		= "PTR",
254 	[BTF_KIND_ARRAY]	= "ARRAY",
255 	[BTF_KIND_STRUCT]	= "STRUCT",
256 	[BTF_KIND_UNION]	= "UNION",
257 	[BTF_KIND_ENUM]		= "ENUM",
258 	[BTF_KIND_FWD]		= "FWD",
259 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
260 	[BTF_KIND_VOLATILE]	= "VOLATILE",
261 	[BTF_KIND_CONST]	= "CONST",
262 	[BTF_KIND_RESTRICT]	= "RESTRICT",
263 	[BTF_KIND_FUNC]		= "FUNC",
264 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
265 };
266 
267 struct btf_kind_operations {
268 	s32 (*check_meta)(struct btf_verifier_env *env,
269 			  const struct btf_type *t,
270 			  u32 meta_left);
271 	int (*resolve)(struct btf_verifier_env *env,
272 		       const struct resolve_vertex *v);
273 	int (*check_member)(struct btf_verifier_env *env,
274 			    const struct btf_type *struct_type,
275 			    const struct btf_member *member,
276 			    const struct btf_type *member_type);
277 	void (*log_details)(struct btf_verifier_env *env,
278 			    const struct btf_type *t);
279 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
280 			 u32 type_id, void *data, u8 bits_offsets,
281 			 struct seq_file *m);
282 };
283 
284 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
285 static struct btf_type btf_void;
286 
287 static int btf_resolve(struct btf_verifier_env *env,
288 		       const struct btf_type *t, u32 type_id);
289 
290 static bool btf_type_is_modifier(const struct btf_type *t)
291 {
292 	/* Some of them is not strictly a C modifier
293 	 * but they are grouped into the same bucket
294 	 * for BTF concern:
295 	 *   A type (t) that refers to another
296 	 *   type through t->type AND its size cannot
297 	 *   be determined without following the t->type.
298 	 *
299 	 * ptr does not fall into this bucket
300 	 * because its size is always sizeof(void *).
301 	 */
302 	switch (BTF_INFO_KIND(t->info)) {
303 	case BTF_KIND_TYPEDEF:
304 	case BTF_KIND_VOLATILE:
305 	case BTF_KIND_CONST:
306 	case BTF_KIND_RESTRICT:
307 		return true;
308 	}
309 
310 	return false;
311 }
312 
313 static bool btf_type_is_void(const struct btf_type *t)
314 {
315 	return t == &btf_void;
316 }
317 
318 static bool btf_type_is_fwd(const struct btf_type *t)
319 {
320 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
321 }
322 
323 static bool btf_type_is_func(const struct btf_type *t)
324 {
325 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
326 }
327 
328 static bool btf_type_is_func_proto(const struct btf_type *t)
329 {
330 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
331 }
332 
333 static bool btf_type_nosize(const struct btf_type *t)
334 {
335 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
336 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
337 }
338 
339 static bool btf_type_nosize_or_null(const struct btf_type *t)
340 {
341 	return !t || btf_type_nosize(t);
342 }
343 
344 /* union is only a special case of struct:
345  * all its offsetof(member) == 0
346  */
347 static bool btf_type_is_struct(const struct btf_type *t)
348 {
349 	u8 kind = BTF_INFO_KIND(t->info);
350 
351 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
352 }
353 
354 static bool btf_type_is_array(const struct btf_type *t)
355 {
356 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
357 }
358 
359 static bool btf_type_is_ptr(const struct btf_type *t)
360 {
361 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
362 }
363 
364 static bool btf_type_is_int(const struct btf_type *t)
365 {
366 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
367 }
368 
369 /* What types need to be resolved?
370  *
371  * btf_type_is_modifier() is an obvious one.
372  *
373  * btf_type_is_struct() because its member refers to
374  * another type (through member->type).
375 
376  * btf_type_is_array() because its element (array->type)
377  * refers to another type.  Array can be thought of a
378  * special case of struct while array just has the same
379  * member-type repeated by array->nelems of times.
380  */
381 static bool btf_type_needs_resolve(const struct btf_type *t)
382 {
383 	return btf_type_is_modifier(t) ||
384 		btf_type_is_ptr(t) ||
385 		btf_type_is_struct(t) ||
386 		btf_type_is_array(t);
387 }
388 
389 /* t->size can be used */
390 static bool btf_type_has_size(const struct btf_type *t)
391 {
392 	switch (BTF_INFO_KIND(t->info)) {
393 	case BTF_KIND_INT:
394 	case BTF_KIND_STRUCT:
395 	case BTF_KIND_UNION:
396 	case BTF_KIND_ENUM:
397 		return true;
398 	}
399 
400 	return false;
401 }
402 
403 static const char *btf_int_encoding_str(u8 encoding)
404 {
405 	if (encoding == 0)
406 		return "(none)";
407 	else if (encoding == BTF_INT_SIGNED)
408 		return "SIGNED";
409 	else if (encoding == BTF_INT_CHAR)
410 		return "CHAR";
411 	else if (encoding == BTF_INT_BOOL)
412 		return "BOOL";
413 	else
414 		return "UNKN";
415 }
416 
417 static u16 btf_type_vlen(const struct btf_type *t)
418 {
419 	return BTF_INFO_VLEN(t->info);
420 }
421 
422 static u32 btf_type_int(const struct btf_type *t)
423 {
424 	return *(u32 *)(t + 1);
425 }
426 
427 static const struct btf_array *btf_type_array(const struct btf_type *t)
428 {
429 	return (const struct btf_array *)(t + 1);
430 }
431 
432 static const struct btf_member *btf_type_member(const struct btf_type *t)
433 {
434 	return (const struct btf_member *)(t + 1);
435 }
436 
437 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
438 {
439 	return (const struct btf_enum *)(t + 1);
440 }
441 
442 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
443 {
444 	return kind_ops[BTF_INFO_KIND(t->info)];
445 }
446 
447 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
448 {
449 	return BTF_STR_OFFSET_VALID(offset) &&
450 		offset < btf->hdr.str_len;
451 }
452 
453 /* Only C-style identifier is permitted. This can be relaxed if
454  * necessary.
455  */
456 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
457 {
458 	/* offset must be valid */
459 	const char *src = &btf->strings[offset];
460 	const char *src_limit;
461 
462 	if (!isalpha(*src) && *src != '_')
463 		return false;
464 
465 	/* set a limit on identifier length */
466 	src_limit = src + KSYM_NAME_LEN;
467 	src++;
468 	while (*src && src < src_limit) {
469 		if (!isalnum(*src) && *src != '_')
470 			return false;
471 		src++;
472 	}
473 
474 	return !*src;
475 }
476 
477 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
478 {
479 	if (!offset)
480 		return "(anon)";
481 	else if (offset < btf->hdr.str_len)
482 		return &btf->strings[offset];
483 	else
484 		return "(invalid-name-offset)";
485 }
486 
487 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
488 {
489 	if (type_id > btf->nr_types)
490 		return NULL;
491 
492 	return btf->types[type_id];
493 }
494 
495 /*
496  * Regular int is not a bit field and it must be either
497  * u8/u16/u32/u64.
498  */
499 static bool btf_type_int_is_regular(const struct btf_type *t)
500 {
501 	u8 nr_bits, nr_bytes;
502 	u32 int_data;
503 
504 	int_data = btf_type_int(t);
505 	nr_bits = BTF_INT_BITS(int_data);
506 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
507 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
508 	    BTF_INT_OFFSET(int_data) ||
509 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
510 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
511 		return false;
512 	}
513 
514 	return true;
515 }
516 
517 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
518 					      const char *fmt, ...)
519 {
520 	va_list args;
521 
522 	va_start(args, fmt);
523 	bpf_verifier_vlog(log, fmt, args);
524 	va_end(args);
525 }
526 
527 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
528 					    const char *fmt, ...)
529 {
530 	struct bpf_verifier_log *log = &env->log;
531 	va_list args;
532 
533 	if (!bpf_verifier_log_needed(log))
534 		return;
535 
536 	va_start(args, fmt);
537 	bpf_verifier_vlog(log, fmt, args);
538 	va_end(args);
539 }
540 
541 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
542 						   const struct btf_type *t,
543 						   bool log_details,
544 						   const char *fmt, ...)
545 {
546 	struct bpf_verifier_log *log = &env->log;
547 	u8 kind = BTF_INFO_KIND(t->info);
548 	struct btf *btf = env->btf;
549 	va_list args;
550 
551 	if (!bpf_verifier_log_needed(log))
552 		return;
553 
554 	__btf_verifier_log(log, "[%u] %s %s%s",
555 			   env->log_type_id,
556 			   btf_kind_str[kind],
557 			   btf_name_by_offset(btf, t->name_off),
558 			   log_details ? " " : "");
559 
560 	if (log_details)
561 		btf_type_ops(t)->log_details(env, t);
562 
563 	if (fmt && *fmt) {
564 		__btf_verifier_log(log, " ");
565 		va_start(args, fmt);
566 		bpf_verifier_vlog(log, fmt, args);
567 		va_end(args);
568 	}
569 
570 	__btf_verifier_log(log, "\n");
571 }
572 
573 #define btf_verifier_log_type(env, t, ...) \
574 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
575 #define btf_verifier_log_basic(env, t, ...) \
576 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
577 
578 __printf(4, 5)
579 static void btf_verifier_log_member(struct btf_verifier_env *env,
580 				    const struct btf_type *struct_type,
581 				    const struct btf_member *member,
582 				    const char *fmt, ...)
583 {
584 	struct bpf_verifier_log *log = &env->log;
585 	struct btf *btf = env->btf;
586 	va_list args;
587 
588 	if (!bpf_verifier_log_needed(log))
589 		return;
590 
591 	/* The CHECK_META phase already did a btf dump.
592 	 *
593 	 * If member is logged again, it must hit an error in
594 	 * parsing this member.  It is useful to print out which
595 	 * struct this member belongs to.
596 	 */
597 	if (env->phase != CHECK_META)
598 		btf_verifier_log_type(env, struct_type, NULL);
599 
600 	__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
601 			   btf_name_by_offset(btf, member->name_off),
602 			   member->type, member->offset);
603 
604 	if (fmt && *fmt) {
605 		__btf_verifier_log(log, " ");
606 		va_start(args, fmt);
607 		bpf_verifier_vlog(log, fmt, args);
608 		va_end(args);
609 	}
610 
611 	__btf_verifier_log(log, "\n");
612 }
613 
614 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
615 				 u32 btf_data_size)
616 {
617 	struct bpf_verifier_log *log = &env->log;
618 	const struct btf *btf = env->btf;
619 	const struct btf_header *hdr;
620 
621 	if (!bpf_verifier_log_needed(log))
622 		return;
623 
624 	hdr = &btf->hdr;
625 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
626 	__btf_verifier_log(log, "version: %u\n", hdr->version);
627 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
628 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
629 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
630 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
631 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
632 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
633 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
634 }
635 
636 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
637 {
638 	struct btf *btf = env->btf;
639 
640 	/* < 2 because +1 for btf_void which is always in btf->types[0].
641 	 * btf_void is not accounted in btf->nr_types because btf_void
642 	 * does not come from the BTF file.
643 	 */
644 	if (btf->types_size - btf->nr_types < 2) {
645 		/* Expand 'types' array */
646 
647 		struct btf_type **new_types;
648 		u32 expand_by, new_size;
649 
650 		if (btf->types_size == BTF_MAX_TYPE) {
651 			btf_verifier_log(env, "Exceeded max num of types");
652 			return -E2BIG;
653 		}
654 
655 		expand_by = max_t(u32, btf->types_size >> 2, 16);
656 		new_size = min_t(u32, BTF_MAX_TYPE,
657 				 btf->types_size + expand_by);
658 
659 		new_types = kvcalloc(new_size, sizeof(*new_types),
660 				     GFP_KERNEL | __GFP_NOWARN);
661 		if (!new_types)
662 			return -ENOMEM;
663 
664 		if (btf->nr_types == 0)
665 			new_types[0] = &btf_void;
666 		else
667 			memcpy(new_types, btf->types,
668 			       sizeof(*btf->types) * (btf->nr_types + 1));
669 
670 		kvfree(btf->types);
671 		btf->types = new_types;
672 		btf->types_size = new_size;
673 	}
674 
675 	btf->types[++(btf->nr_types)] = t;
676 
677 	return 0;
678 }
679 
680 static int btf_alloc_id(struct btf *btf)
681 {
682 	int id;
683 
684 	idr_preload(GFP_KERNEL);
685 	spin_lock_bh(&btf_idr_lock);
686 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
687 	if (id > 0)
688 		btf->id = id;
689 	spin_unlock_bh(&btf_idr_lock);
690 	idr_preload_end();
691 
692 	if (WARN_ON_ONCE(!id))
693 		return -ENOSPC;
694 
695 	return id > 0 ? 0 : id;
696 }
697 
698 static void btf_free_id(struct btf *btf)
699 {
700 	unsigned long flags;
701 
702 	/*
703 	 * In map-in-map, calling map_delete_elem() on outer
704 	 * map will call bpf_map_put on the inner map.
705 	 * It will then eventually call btf_free_id()
706 	 * on the inner map.  Some of the map_delete_elem()
707 	 * implementation may have irq disabled, so
708 	 * we need to use the _irqsave() version instead
709 	 * of the _bh() version.
710 	 */
711 	spin_lock_irqsave(&btf_idr_lock, flags);
712 	idr_remove(&btf_idr, btf->id);
713 	spin_unlock_irqrestore(&btf_idr_lock, flags);
714 }
715 
716 static void btf_free(struct btf *btf)
717 {
718 	kvfree(btf->types);
719 	kvfree(btf->resolved_sizes);
720 	kvfree(btf->resolved_ids);
721 	kvfree(btf->data);
722 	kfree(btf);
723 }
724 
725 static void btf_free_rcu(struct rcu_head *rcu)
726 {
727 	struct btf *btf = container_of(rcu, struct btf, rcu);
728 
729 	btf_free(btf);
730 }
731 
732 void btf_put(struct btf *btf)
733 {
734 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
735 		btf_free_id(btf);
736 		call_rcu(&btf->rcu, btf_free_rcu);
737 	}
738 }
739 
740 static int env_resolve_init(struct btf_verifier_env *env)
741 {
742 	struct btf *btf = env->btf;
743 	u32 nr_types = btf->nr_types;
744 	u32 *resolved_sizes = NULL;
745 	u32 *resolved_ids = NULL;
746 	u8 *visit_states = NULL;
747 
748 	/* +1 for btf_void */
749 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
750 				  GFP_KERNEL | __GFP_NOWARN);
751 	if (!resolved_sizes)
752 		goto nomem;
753 
754 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
755 				GFP_KERNEL | __GFP_NOWARN);
756 	if (!resolved_ids)
757 		goto nomem;
758 
759 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
760 				GFP_KERNEL | __GFP_NOWARN);
761 	if (!visit_states)
762 		goto nomem;
763 
764 	btf->resolved_sizes = resolved_sizes;
765 	btf->resolved_ids = resolved_ids;
766 	env->visit_states = visit_states;
767 
768 	return 0;
769 
770 nomem:
771 	kvfree(resolved_sizes);
772 	kvfree(resolved_ids);
773 	kvfree(visit_states);
774 	return -ENOMEM;
775 }
776 
777 static void btf_verifier_env_free(struct btf_verifier_env *env)
778 {
779 	kvfree(env->visit_states);
780 	kfree(env);
781 }
782 
783 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
784 				     const struct btf_type *next_type)
785 {
786 	switch (env->resolve_mode) {
787 	case RESOLVE_TBD:
788 		/* int, enum or void is a sink */
789 		return !btf_type_needs_resolve(next_type);
790 	case RESOLVE_PTR:
791 		/* int, enum, void, struct, array, func or func_proto is a sink
792 		 * for ptr
793 		 */
794 		return !btf_type_is_modifier(next_type) &&
795 			!btf_type_is_ptr(next_type);
796 	case RESOLVE_STRUCT_OR_ARRAY:
797 		/* int, enum, void, ptr, func or func_proto is a sink
798 		 * for struct and array
799 		 */
800 		return !btf_type_is_modifier(next_type) &&
801 			!btf_type_is_array(next_type) &&
802 			!btf_type_is_struct(next_type);
803 	default:
804 		BUG();
805 	}
806 }
807 
808 static bool env_type_is_resolved(const struct btf_verifier_env *env,
809 				 u32 type_id)
810 {
811 	return env->visit_states[type_id] == RESOLVED;
812 }
813 
814 static int env_stack_push(struct btf_verifier_env *env,
815 			  const struct btf_type *t, u32 type_id)
816 {
817 	struct resolve_vertex *v;
818 
819 	if (env->top_stack == MAX_RESOLVE_DEPTH)
820 		return -E2BIG;
821 
822 	if (env->visit_states[type_id] != NOT_VISITED)
823 		return -EEXIST;
824 
825 	env->visit_states[type_id] = VISITED;
826 
827 	v = &env->stack[env->top_stack++];
828 	v->t = t;
829 	v->type_id = type_id;
830 	v->next_member = 0;
831 
832 	if (env->resolve_mode == RESOLVE_TBD) {
833 		if (btf_type_is_ptr(t))
834 			env->resolve_mode = RESOLVE_PTR;
835 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
836 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
837 	}
838 
839 	return 0;
840 }
841 
842 static void env_stack_set_next_member(struct btf_verifier_env *env,
843 				      u16 next_member)
844 {
845 	env->stack[env->top_stack - 1].next_member = next_member;
846 }
847 
848 static void env_stack_pop_resolved(struct btf_verifier_env *env,
849 				   u32 resolved_type_id,
850 				   u32 resolved_size)
851 {
852 	u32 type_id = env->stack[--(env->top_stack)].type_id;
853 	struct btf *btf = env->btf;
854 
855 	btf->resolved_sizes[type_id] = resolved_size;
856 	btf->resolved_ids[type_id] = resolved_type_id;
857 	env->visit_states[type_id] = RESOLVED;
858 }
859 
860 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
861 {
862 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
863 }
864 
865 /* The input param "type_id" must point to a needs_resolve type */
866 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
867 						  u32 *type_id)
868 {
869 	*type_id = btf->resolved_ids[*type_id];
870 	return btf_type_by_id(btf, *type_id);
871 }
872 
873 const struct btf_type *btf_type_id_size(const struct btf *btf,
874 					u32 *type_id, u32 *ret_size)
875 {
876 	const struct btf_type *size_type;
877 	u32 size_type_id = *type_id;
878 	u32 size = 0;
879 
880 	size_type = btf_type_by_id(btf, size_type_id);
881 	if (btf_type_nosize_or_null(size_type))
882 		return NULL;
883 
884 	if (btf_type_has_size(size_type)) {
885 		size = size_type->size;
886 	} else if (btf_type_is_array(size_type)) {
887 		size = btf->resolved_sizes[size_type_id];
888 	} else if (btf_type_is_ptr(size_type)) {
889 		size = sizeof(void *);
890 	} else {
891 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
892 			return NULL;
893 
894 		size = btf->resolved_sizes[size_type_id];
895 		size_type_id = btf->resolved_ids[size_type_id];
896 		size_type = btf_type_by_id(btf, size_type_id);
897 		if (btf_type_nosize_or_null(size_type))
898 			return NULL;
899 	}
900 
901 	*type_id = size_type_id;
902 	if (ret_size)
903 		*ret_size = size;
904 
905 	return size_type;
906 }
907 
908 static int btf_df_check_member(struct btf_verifier_env *env,
909 			       const struct btf_type *struct_type,
910 			       const struct btf_member *member,
911 			       const struct btf_type *member_type)
912 {
913 	btf_verifier_log_basic(env, struct_type,
914 			       "Unsupported check_member");
915 	return -EINVAL;
916 }
917 
918 static int btf_df_resolve(struct btf_verifier_env *env,
919 			  const struct resolve_vertex *v)
920 {
921 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
922 	return -EINVAL;
923 }
924 
925 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
926 			    u32 type_id, void *data, u8 bits_offsets,
927 			    struct seq_file *m)
928 {
929 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
930 }
931 
932 static int btf_int_check_member(struct btf_verifier_env *env,
933 				const struct btf_type *struct_type,
934 				const struct btf_member *member,
935 				const struct btf_type *member_type)
936 {
937 	u32 int_data = btf_type_int(member_type);
938 	u32 struct_bits_off = member->offset;
939 	u32 struct_size = struct_type->size;
940 	u32 nr_copy_bits;
941 	u32 bytes_offset;
942 
943 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
944 		btf_verifier_log_member(env, struct_type, member,
945 					"bits_offset exceeds U32_MAX");
946 		return -EINVAL;
947 	}
948 
949 	struct_bits_off += BTF_INT_OFFSET(int_data);
950 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
951 	nr_copy_bits = BTF_INT_BITS(int_data) +
952 		BITS_PER_BYTE_MASKED(struct_bits_off);
953 
954 	if (nr_copy_bits > BITS_PER_U64) {
955 		btf_verifier_log_member(env, struct_type, member,
956 					"nr_copy_bits exceeds 64");
957 		return -EINVAL;
958 	}
959 
960 	if (struct_size < bytes_offset ||
961 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
962 		btf_verifier_log_member(env, struct_type, member,
963 					"Member exceeds struct_size");
964 		return -EINVAL;
965 	}
966 
967 	return 0;
968 }
969 
970 static s32 btf_int_check_meta(struct btf_verifier_env *env,
971 			      const struct btf_type *t,
972 			      u32 meta_left)
973 {
974 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
975 	u16 encoding;
976 
977 	if (meta_left < meta_needed) {
978 		btf_verifier_log_basic(env, t,
979 				       "meta_left:%u meta_needed:%u",
980 				       meta_left, meta_needed);
981 		return -EINVAL;
982 	}
983 
984 	if (btf_type_vlen(t)) {
985 		btf_verifier_log_type(env, t, "vlen != 0");
986 		return -EINVAL;
987 	}
988 
989 	int_data = btf_type_int(t);
990 	if (int_data & ~BTF_INT_MASK) {
991 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
992 				       int_data);
993 		return -EINVAL;
994 	}
995 
996 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
997 
998 	if (nr_bits > BITS_PER_U64) {
999 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1000 				      BITS_PER_U64);
1001 		return -EINVAL;
1002 	}
1003 
1004 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1005 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1006 		return -EINVAL;
1007 	}
1008 
1009 	/*
1010 	 * Only one of the encoding bits is allowed and it
1011 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1012 	 * Multiple bits can be allowed later if it is found
1013 	 * to be insufficient.
1014 	 */
1015 	encoding = BTF_INT_ENCODING(int_data);
1016 	if (encoding &&
1017 	    encoding != BTF_INT_SIGNED &&
1018 	    encoding != BTF_INT_CHAR &&
1019 	    encoding != BTF_INT_BOOL) {
1020 		btf_verifier_log_type(env, t, "Unsupported encoding");
1021 		return -ENOTSUPP;
1022 	}
1023 
1024 	btf_verifier_log_type(env, t, NULL);
1025 
1026 	return meta_needed;
1027 }
1028 
1029 static void btf_int_log(struct btf_verifier_env *env,
1030 			const struct btf_type *t)
1031 {
1032 	int int_data = btf_type_int(t);
1033 
1034 	btf_verifier_log(env,
1035 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1036 			 t->size, BTF_INT_OFFSET(int_data),
1037 			 BTF_INT_BITS(int_data),
1038 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1039 }
1040 
1041 static void btf_int_bits_seq_show(const struct btf *btf,
1042 				  const struct btf_type *t,
1043 				  void *data, u8 bits_offset,
1044 				  struct seq_file *m)
1045 {
1046 	u16 left_shift_bits, right_shift_bits;
1047 	u32 int_data = btf_type_int(t);
1048 	u8 nr_bits = BTF_INT_BITS(int_data);
1049 	u8 total_bits_offset;
1050 	u8 nr_copy_bytes;
1051 	u8 nr_copy_bits;
1052 	u64 print_num;
1053 
1054 	/*
1055 	 * bits_offset is at most 7.
1056 	 * BTF_INT_OFFSET() cannot exceed 64 bits.
1057 	 */
1058 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1059 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1060 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1061 	nr_copy_bits = nr_bits + bits_offset;
1062 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1063 
1064 	print_num = 0;
1065 	memcpy(&print_num, data, nr_copy_bytes);
1066 
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 	left_shift_bits = bits_offset;
1069 #else
1070 	left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1071 #endif
1072 	right_shift_bits = BITS_PER_U64 - nr_bits;
1073 
1074 	print_num <<= left_shift_bits;
1075 	print_num >>= right_shift_bits;
1076 
1077 	seq_printf(m, "0x%llx", print_num);
1078 }
1079 
1080 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1081 			     u32 type_id, void *data, u8 bits_offset,
1082 			     struct seq_file *m)
1083 {
1084 	u32 int_data = btf_type_int(t);
1085 	u8 encoding = BTF_INT_ENCODING(int_data);
1086 	bool sign = encoding & BTF_INT_SIGNED;
1087 	u8 nr_bits = BTF_INT_BITS(int_data);
1088 
1089 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1090 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1091 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1092 		return;
1093 	}
1094 
1095 	switch (nr_bits) {
1096 	case 64:
1097 		if (sign)
1098 			seq_printf(m, "%lld", *(s64 *)data);
1099 		else
1100 			seq_printf(m, "%llu", *(u64 *)data);
1101 		break;
1102 	case 32:
1103 		if (sign)
1104 			seq_printf(m, "%d", *(s32 *)data);
1105 		else
1106 			seq_printf(m, "%u", *(u32 *)data);
1107 		break;
1108 	case 16:
1109 		if (sign)
1110 			seq_printf(m, "%d", *(s16 *)data);
1111 		else
1112 			seq_printf(m, "%u", *(u16 *)data);
1113 		break;
1114 	case 8:
1115 		if (sign)
1116 			seq_printf(m, "%d", *(s8 *)data);
1117 		else
1118 			seq_printf(m, "%u", *(u8 *)data);
1119 		break;
1120 	default:
1121 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1122 	}
1123 }
1124 
1125 static const struct btf_kind_operations int_ops = {
1126 	.check_meta = btf_int_check_meta,
1127 	.resolve = btf_df_resolve,
1128 	.check_member = btf_int_check_member,
1129 	.log_details = btf_int_log,
1130 	.seq_show = btf_int_seq_show,
1131 };
1132 
1133 static int btf_modifier_check_member(struct btf_verifier_env *env,
1134 				     const struct btf_type *struct_type,
1135 				     const struct btf_member *member,
1136 				     const struct btf_type *member_type)
1137 {
1138 	const struct btf_type *resolved_type;
1139 	u32 resolved_type_id = member->type;
1140 	struct btf_member resolved_member;
1141 	struct btf *btf = env->btf;
1142 
1143 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1144 	if (!resolved_type) {
1145 		btf_verifier_log_member(env, struct_type, member,
1146 					"Invalid member");
1147 		return -EINVAL;
1148 	}
1149 
1150 	resolved_member = *member;
1151 	resolved_member.type = resolved_type_id;
1152 
1153 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1154 							 &resolved_member,
1155 							 resolved_type);
1156 }
1157 
1158 static int btf_ptr_check_member(struct btf_verifier_env *env,
1159 				const struct btf_type *struct_type,
1160 				const struct btf_member *member,
1161 				const struct btf_type *member_type)
1162 {
1163 	u32 struct_size, struct_bits_off, bytes_offset;
1164 
1165 	struct_size = struct_type->size;
1166 	struct_bits_off = member->offset;
1167 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1168 
1169 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1170 		btf_verifier_log_member(env, struct_type, member,
1171 					"Member is not byte aligned");
1172 		return -EINVAL;
1173 	}
1174 
1175 	if (struct_size - bytes_offset < sizeof(void *)) {
1176 		btf_verifier_log_member(env, struct_type, member,
1177 					"Member exceeds struct_size");
1178 		return -EINVAL;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1185 				   const struct btf_type *t,
1186 				   u32 meta_left)
1187 {
1188 	if (btf_type_vlen(t)) {
1189 		btf_verifier_log_type(env, t, "vlen != 0");
1190 		return -EINVAL;
1191 	}
1192 
1193 	if (!BTF_TYPE_ID_VALID(t->type)) {
1194 		btf_verifier_log_type(env, t, "Invalid type_id");
1195 		return -EINVAL;
1196 	}
1197 
1198 	btf_verifier_log_type(env, t, NULL);
1199 
1200 	return 0;
1201 }
1202 
1203 static int btf_modifier_resolve(struct btf_verifier_env *env,
1204 				const struct resolve_vertex *v)
1205 {
1206 	const struct btf_type *t = v->t;
1207 	const struct btf_type *next_type;
1208 	u32 next_type_id = t->type;
1209 	struct btf *btf = env->btf;
1210 	u32 next_type_size = 0;
1211 
1212 	next_type = btf_type_by_id(btf, next_type_id);
1213 	if (!next_type) {
1214 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1215 		return -EINVAL;
1216 	}
1217 
1218 	if (!env_type_is_resolve_sink(env, next_type) &&
1219 	    !env_type_is_resolved(env, next_type_id))
1220 		return env_stack_push(env, next_type, next_type_id);
1221 
1222 	/* Figure out the resolved next_type_id with size.
1223 	 * They will be stored in the current modifier's
1224 	 * resolved_ids and resolved_sizes such that it can
1225 	 * save us a few type-following when we use it later (e.g. in
1226 	 * pretty print).
1227 	 */
1228 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1229 		if (env_type_is_resolved(env, next_type_id))
1230 			next_type = btf_type_id_resolve(btf, &next_type_id);
1231 
1232 		/* "typedef void new_void", "const void"...etc */
1233 		if (!btf_type_is_void(next_type) &&
1234 		    !btf_type_is_fwd(next_type)) {
1235 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1236 			return -EINVAL;
1237 		}
1238 	}
1239 
1240 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1241 
1242 	return 0;
1243 }
1244 
1245 static int btf_ptr_resolve(struct btf_verifier_env *env,
1246 			   const struct resolve_vertex *v)
1247 {
1248 	const struct btf_type *next_type;
1249 	const struct btf_type *t = v->t;
1250 	u32 next_type_id = t->type;
1251 	struct btf *btf = env->btf;
1252 
1253 	next_type = btf_type_by_id(btf, next_type_id);
1254 	if (!next_type) {
1255 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (!env_type_is_resolve_sink(env, next_type) &&
1260 	    !env_type_is_resolved(env, next_type_id))
1261 		return env_stack_push(env, next_type, next_type_id);
1262 
1263 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1264 	 * the modifier may have stopped resolving when it was resolved
1265 	 * to a ptr (last-resolved-ptr).
1266 	 *
1267 	 * We now need to continue from the last-resolved-ptr to
1268 	 * ensure the last-resolved-ptr will not referring back to
1269 	 * the currenct ptr (t).
1270 	 */
1271 	if (btf_type_is_modifier(next_type)) {
1272 		const struct btf_type *resolved_type;
1273 		u32 resolved_type_id;
1274 
1275 		resolved_type_id = next_type_id;
1276 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1277 
1278 		if (btf_type_is_ptr(resolved_type) &&
1279 		    !env_type_is_resolve_sink(env, resolved_type) &&
1280 		    !env_type_is_resolved(env, resolved_type_id))
1281 			return env_stack_push(env, resolved_type,
1282 					      resolved_type_id);
1283 	}
1284 
1285 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1286 		if (env_type_is_resolved(env, next_type_id))
1287 			next_type = btf_type_id_resolve(btf, &next_type_id);
1288 
1289 		if (!btf_type_is_void(next_type) &&
1290 		    !btf_type_is_fwd(next_type) &&
1291 		    !btf_type_is_func_proto(next_type)) {
1292 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1293 			return -EINVAL;
1294 		}
1295 	}
1296 
1297 	env_stack_pop_resolved(env, next_type_id, 0);
1298 
1299 	return 0;
1300 }
1301 
1302 static void btf_modifier_seq_show(const struct btf *btf,
1303 				  const struct btf_type *t,
1304 				  u32 type_id, void *data,
1305 				  u8 bits_offset, struct seq_file *m)
1306 {
1307 	t = btf_type_id_resolve(btf, &type_id);
1308 
1309 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1310 }
1311 
1312 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1313 			     u32 type_id, void *data, u8 bits_offset,
1314 			     struct seq_file *m)
1315 {
1316 	/* It is a hashed value */
1317 	seq_printf(m, "%p", *(void **)data);
1318 }
1319 
1320 static void btf_ref_type_log(struct btf_verifier_env *env,
1321 			     const struct btf_type *t)
1322 {
1323 	btf_verifier_log(env, "type_id=%u", t->type);
1324 }
1325 
1326 static struct btf_kind_operations modifier_ops = {
1327 	.check_meta = btf_ref_type_check_meta,
1328 	.resolve = btf_modifier_resolve,
1329 	.check_member = btf_modifier_check_member,
1330 	.log_details = btf_ref_type_log,
1331 	.seq_show = btf_modifier_seq_show,
1332 };
1333 
1334 static struct btf_kind_operations ptr_ops = {
1335 	.check_meta = btf_ref_type_check_meta,
1336 	.resolve = btf_ptr_resolve,
1337 	.check_member = btf_ptr_check_member,
1338 	.log_details = btf_ref_type_log,
1339 	.seq_show = btf_ptr_seq_show,
1340 };
1341 
1342 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1343 			      const struct btf_type *t,
1344 			      u32 meta_left)
1345 {
1346 	if (btf_type_vlen(t)) {
1347 		btf_verifier_log_type(env, t, "vlen != 0");
1348 		return -EINVAL;
1349 	}
1350 
1351 	if (t->type) {
1352 		btf_verifier_log_type(env, t, "type != 0");
1353 		return -EINVAL;
1354 	}
1355 
1356 	btf_verifier_log_type(env, t, NULL);
1357 
1358 	return 0;
1359 }
1360 
1361 static struct btf_kind_operations fwd_ops = {
1362 	.check_meta = btf_fwd_check_meta,
1363 	.resolve = btf_df_resolve,
1364 	.check_member = btf_df_check_member,
1365 	.log_details = btf_ref_type_log,
1366 	.seq_show = btf_df_seq_show,
1367 };
1368 
1369 static int btf_array_check_member(struct btf_verifier_env *env,
1370 				  const struct btf_type *struct_type,
1371 				  const struct btf_member *member,
1372 				  const struct btf_type *member_type)
1373 {
1374 	u32 struct_bits_off = member->offset;
1375 	u32 struct_size, bytes_offset;
1376 	u32 array_type_id, array_size;
1377 	struct btf *btf = env->btf;
1378 
1379 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1380 		btf_verifier_log_member(env, struct_type, member,
1381 					"Member is not byte aligned");
1382 		return -EINVAL;
1383 	}
1384 
1385 	array_type_id = member->type;
1386 	btf_type_id_size(btf, &array_type_id, &array_size);
1387 	struct_size = struct_type->size;
1388 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1389 	if (struct_size - bytes_offset < array_size) {
1390 		btf_verifier_log_member(env, struct_type, member,
1391 					"Member exceeds struct_size");
1392 		return -EINVAL;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1399 				const struct btf_type *t,
1400 				u32 meta_left)
1401 {
1402 	const struct btf_array *array = btf_type_array(t);
1403 	u32 meta_needed = sizeof(*array);
1404 
1405 	if (meta_left < meta_needed) {
1406 		btf_verifier_log_basic(env, t,
1407 				       "meta_left:%u meta_needed:%u",
1408 				       meta_left, meta_needed);
1409 		return -EINVAL;
1410 	}
1411 
1412 	if (btf_type_vlen(t)) {
1413 		btf_verifier_log_type(env, t, "vlen != 0");
1414 		return -EINVAL;
1415 	}
1416 
1417 	if (t->size) {
1418 		btf_verifier_log_type(env, t, "size != 0");
1419 		return -EINVAL;
1420 	}
1421 
1422 	/* Array elem type and index type cannot be in type void,
1423 	 * so !array->type and !array->index_type are not allowed.
1424 	 */
1425 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1426 		btf_verifier_log_type(env, t, "Invalid elem");
1427 		return -EINVAL;
1428 	}
1429 
1430 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1431 		btf_verifier_log_type(env, t, "Invalid index");
1432 		return -EINVAL;
1433 	}
1434 
1435 	btf_verifier_log_type(env, t, NULL);
1436 
1437 	return meta_needed;
1438 }
1439 
1440 static int btf_array_resolve(struct btf_verifier_env *env,
1441 			     const struct resolve_vertex *v)
1442 {
1443 	const struct btf_array *array = btf_type_array(v->t);
1444 	const struct btf_type *elem_type, *index_type;
1445 	u32 elem_type_id, index_type_id;
1446 	struct btf *btf = env->btf;
1447 	u32 elem_size;
1448 
1449 	/* Check array->index_type */
1450 	index_type_id = array->index_type;
1451 	index_type = btf_type_by_id(btf, index_type_id);
1452 	if (btf_type_nosize_or_null(index_type)) {
1453 		btf_verifier_log_type(env, v->t, "Invalid index");
1454 		return -EINVAL;
1455 	}
1456 
1457 	if (!env_type_is_resolve_sink(env, index_type) &&
1458 	    !env_type_is_resolved(env, index_type_id))
1459 		return env_stack_push(env, index_type, index_type_id);
1460 
1461 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1462 	if (!index_type || !btf_type_is_int(index_type) ||
1463 	    !btf_type_int_is_regular(index_type)) {
1464 		btf_verifier_log_type(env, v->t, "Invalid index");
1465 		return -EINVAL;
1466 	}
1467 
1468 	/* Check array->type */
1469 	elem_type_id = array->type;
1470 	elem_type = btf_type_by_id(btf, elem_type_id);
1471 	if (btf_type_nosize_or_null(elem_type)) {
1472 		btf_verifier_log_type(env, v->t,
1473 				      "Invalid elem");
1474 		return -EINVAL;
1475 	}
1476 
1477 	if (!env_type_is_resolve_sink(env, elem_type) &&
1478 	    !env_type_is_resolved(env, elem_type_id))
1479 		return env_stack_push(env, elem_type, elem_type_id);
1480 
1481 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1482 	if (!elem_type) {
1483 		btf_verifier_log_type(env, v->t, "Invalid elem");
1484 		return -EINVAL;
1485 	}
1486 
1487 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1488 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1489 		return -EINVAL;
1490 	}
1491 
1492 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1493 		btf_verifier_log_type(env, v->t,
1494 				      "Array size overflows U32_MAX");
1495 		return -EINVAL;
1496 	}
1497 
1498 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1499 
1500 	return 0;
1501 }
1502 
1503 static void btf_array_log(struct btf_verifier_env *env,
1504 			  const struct btf_type *t)
1505 {
1506 	const struct btf_array *array = btf_type_array(t);
1507 
1508 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1509 			 array->type, array->index_type, array->nelems);
1510 }
1511 
1512 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1513 			       u32 type_id, void *data, u8 bits_offset,
1514 			       struct seq_file *m)
1515 {
1516 	const struct btf_array *array = btf_type_array(t);
1517 	const struct btf_kind_operations *elem_ops;
1518 	const struct btf_type *elem_type;
1519 	u32 i, elem_size, elem_type_id;
1520 
1521 	elem_type_id = array->type;
1522 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1523 	elem_ops = btf_type_ops(elem_type);
1524 	seq_puts(m, "[");
1525 	for (i = 0; i < array->nelems; i++) {
1526 		if (i)
1527 			seq_puts(m, ",");
1528 
1529 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1530 				   bits_offset, m);
1531 		data += elem_size;
1532 	}
1533 	seq_puts(m, "]");
1534 }
1535 
1536 static struct btf_kind_operations array_ops = {
1537 	.check_meta = btf_array_check_meta,
1538 	.resolve = btf_array_resolve,
1539 	.check_member = btf_array_check_member,
1540 	.log_details = btf_array_log,
1541 	.seq_show = btf_array_seq_show,
1542 };
1543 
1544 static int btf_struct_check_member(struct btf_verifier_env *env,
1545 				   const struct btf_type *struct_type,
1546 				   const struct btf_member *member,
1547 				   const struct btf_type *member_type)
1548 {
1549 	u32 struct_bits_off = member->offset;
1550 	u32 struct_size, bytes_offset;
1551 
1552 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1553 		btf_verifier_log_member(env, struct_type, member,
1554 					"Member is not byte aligned");
1555 		return -EINVAL;
1556 	}
1557 
1558 	struct_size = struct_type->size;
1559 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1560 	if (struct_size - bytes_offset < member_type->size) {
1561 		btf_verifier_log_member(env, struct_type, member,
1562 					"Member exceeds struct_size");
1563 		return -EINVAL;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1570 				 const struct btf_type *t,
1571 				 u32 meta_left)
1572 {
1573 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1574 	const struct btf_member *member;
1575 	u32 meta_needed, last_offset;
1576 	struct btf *btf = env->btf;
1577 	u32 struct_size = t->size;
1578 	u16 i;
1579 
1580 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1581 	if (meta_left < meta_needed) {
1582 		btf_verifier_log_basic(env, t,
1583 				       "meta_left:%u meta_needed:%u",
1584 				       meta_left, meta_needed);
1585 		return -EINVAL;
1586 	}
1587 
1588 	btf_verifier_log_type(env, t, NULL);
1589 
1590 	last_offset = 0;
1591 	for_each_member(i, t, member) {
1592 		if (!btf_name_offset_valid(btf, member->name_off)) {
1593 			btf_verifier_log_member(env, t, member,
1594 						"Invalid member name_offset:%u",
1595 						member->name_off);
1596 			return -EINVAL;
1597 		}
1598 
1599 		/* A member cannot be in type void */
1600 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1601 			btf_verifier_log_member(env, t, member,
1602 						"Invalid type_id");
1603 			return -EINVAL;
1604 		}
1605 
1606 		if (is_union && member->offset) {
1607 			btf_verifier_log_member(env, t, member,
1608 						"Invalid member bits_offset");
1609 			return -EINVAL;
1610 		}
1611 
1612 		/*
1613 		 * ">" instead of ">=" because the last member could be
1614 		 * "char a[0];"
1615 		 */
1616 		if (last_offset > member->offset) {
1617 			btf_verifier_log_member(env, t, member,
1618 						"Invalid member bits_offset");
1619 			return -EINVAL;
1620 		}
1621 
1622 		if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1623 			btf_verifier_log_member(env, t, member,
1624 						"Member bits_offset exceeds its struct size");
1625 			return -EINVAL;
1626 		}
1627 
1628 		btf_verifier_log_member(env, t, member, NULL);
1629 		last_offset = member->offset;
1630 	}
1631 
1632 	return meta_needed;
1633 }
1634 
1635 static int btf_struct_resolve(struct btf_verifier_env *env,
1636 			      const struct resolve_vertex *v)
1637 {
1638 	const struct btf_member *member;
1639 	int err;
1640 	u16 i;
1641 
1642 	/* Before continue resolving the next_member,
1643 	 * ensure the last member is indeed resolved to a
1644 	 * type with size info.
1645 	 */
1646 	if (v->next_member) {
1647 		const struct btf_type *last_member_type;
1648 		const struct btf_member *last_member;
1649 		u16 last_member_type_id;
1650 
1651 		last_member = btf_type_member(v->t) + v->next_member - 1;
1652 		last_member_type_id = last_member->type;
1653 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1654 						       last_member_type_id)))
1655 			return -EINVAL;
1656 
1657 		last_member_type = btf_type_by_id(env->btf,
1658 						  last_member_type_id);
1659 		err = btf_type_ops(last_member_type)->check_member(env, v->t,
1660 							last_member,
1661 							last_member_type);
1662 		if (err)
1663 			return err;
1664 	}
1665 
1666 	for_each_member_from(i, v->next_member, v->t, member) {
1667 		u32 member_type_id = member->type;
1668 		const struct btf_type *member_type = btf_type_by_id(env->btf,
1669 								member_type_id);
1670 
1671 		if (btf_type_nosize_or_null(member_type)) {
1672 			btf_verifier_log_member(env, v->t, member,
1673 						"Invalid member");
1674 			return -EINVAL;
1675 		}
1676 
1677 		if (!env_type_is_resolve_sink(env, member_type) &&
1678 		    !env_type_is_resolved(env, member_type_id)) {
1679 			env_stack_set_next_member(env, i + 1);
1680 			return env_stack_push(env, member_type, member_type_id);
1681 		}
1682 
1683 		err = btf_type_ops(member_type)->check_member(env, v->t,
1684 							      member,
1685 							      member_type);
1686 		if (err)
1687 			return err;
1688 	}
1689 
1690 	env_stack_pop_resolved(env, 0, 0);
1691 
1692 	return 0;
1693 }
1694 
1695 static void btf_struct_log(struct btf_verifier_env *env,
1696 			   const struct btf_type *t)
1697 {
1698 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1699 }
1700 
1701 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1702 				u32 type_id, void *data, u8 bits_offset,
1703 				struct seq_file *m)
1704 {
1705 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1706 	const struct btf_member *member;
1707 	u32 i;
1708 
1709 	seq_puts(m, "{");
1710 	for_each_member(i, t, member) {
1711 		const struct btf_type *member_type = btf_type_by_id(btf,
1712 								member->type);
1713 		u32 member_offset = member->offset;
1714 		u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1715 		u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1716 		const struct btf_kind_operations *ops;
1717 
1718 		if (i)
1719 			seq_puts(m, seq);
1720 
1721 		ops = btf_type_ops(member_type);
1722 		ops->seq_show(btf, member_type, member->type,
1723 			      data + bytes_offset, bits8_offset, m);
1724 	}
1725 	seq_puts(m, "}");
1726 }
1727 
1728 static struct btf_kind_operations struct_ops = {
1729 	.check_meta = btf_struct_check_meta,
1730 	.resolve = btf_struct_resolve,
1731 	.check_member = btf_struct_check_member,
1732 	.log_details = btf_struct_log,
1733 	.seq_show = btf_struct_seq_show,
1734 };
1735 
1736 static int btf_enum_check_member(struct btf_verifier_env *env,
1737 				 const struct btf_type *struct_type,
1738 				 const struct btf_member *member,
1739 				 const struct btf_type *member_type)
1740 {
1741 	u32 struct_bits_off = member->offset;
1742 	u32 struct_size, bytes_offset;
1743 
1744 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1745 		btf_verifier_log_member(env, struct_type, member,
1746 					"Member is not byte aligned");
1747 		return -EINVAL;
1748 	}
1749 
1750 	struct_size = struct_type->size;
1751 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1752 	if (struct_size - bytes_offset < sizeof(int)) {
1753 		btf_verifier_log_member(env, struct_type, member,
1754 					"Member exceeds struct_size");
1755 		return -EINVAL;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1762 			       const struct btf_type *t,
1763 			       u32 meta_left)
1764 {
1765 	const struct btf_enum *enums = btf_type_enum(t);
1766 	struct btf *btf = env->btf;
1767 	u16 i, nr_enums;
1768 	u32 meta_needed;
1769 
1770 	nr_enums = btf_type_vlen(t);
1771 	meta_needed = nr_enums * sizeof(*enums);
1772 
1773 	if (meta_left < meta_needed) {
1774 		btf_verifier_log_basic(env, t,
1775 				       "meta_left:%u meta_needed:%u",
1776 				       meta_left, meta_needed);
1777 		return -EINVAL;
1778 	}
1779 
1780 	if (t->size != sizeof(int)) {
1781 		btf_verifier_log_type(env, t, "Expected size:%zu",
1782 				      sizeof(int));
1783 		return -EINVAL;
1784 	}
1785 
1786 	btf_verifier_log_type(env, t, NULL);
1787 
1788 	for (i = 0; i < nr_enums; i++) {
1789 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1790 			btf_verifier_log(env, "\tInvalid name_offset:%u",
1791 					 enums[i].name_off);
1792 			return -EINVAL;
1793 		}
1794 
1795 		btf_verifier_log(env, "\t%s val=%d\n",
1796 				 btf_name_by_offset(btf, enums[i].name_off),
1797 				 enums[i].val);
1798 	}
1799 
1800 	return meta_needed;
1801 }
1802 
1803 static void btf_enum_log(struct btf_verifier_env *env,
1804 			 const struct btf_type *t)
1805 {
1806 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1807 }
1808 
1809 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1810 			      u32 type_id, void *data, u8 bits_offset,
1811 			      struct seq_file *m)
1812 {
1813 	const struct btf_enum *enums = btf_type_enum(t);
1814 	u32 i, nr_enums = btf_type_vlen(t);
1815 	int v = *(int *)data;
1816 
1817 	for (i = 0; i < nr_enums; i++) {
1818 		if (v == enums[i].val) {
1819 			seq_printf(m, "%s",
1820 				   btf_name_by_offset(btf, enums[i].name_off));
1821 			return;
1822 		}
1823 	}
1824 
1825 	seq_printf(m, "%d", v);
1826 }
1827 
1828 static struct btf_kind_operations enum_ops = {
1829 	.check_meta = btf_enum_check_meta,
1830 	.resolve = btf_df_resolve,
1831 	.check_member = btf_enum_check_member,
1832 	.log_details = btf_enum_log,
1833 	.seq_show = btf_enum_seq_show,
1834 };
1835 
1836 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
1837 				     const struct btf_type *t,
1838 				     u32 meta_left)
1839 {
1840 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
1841 
1842 	if (meta_left < meta_needed) {
1843 		btf_verifier_log_basic(env, t,
1844 				       "meta_left:%u meta_needed:%u",
1845 				       meta_left, meta_needed);
1846 		return -EINVAL;
1847 	}
1848 
1849 	if (t->name_off) {
1850 		btf_verifier_log_type(env, t, "Invalid name");
1851 		return -EINVAL;
1852 	}
1853 
1854 	btf_verifier_log_type(env, t, NULL);
1855 
1856 	return meta_needed;
1857 }
1858 
1859 static void btf_func_proto_log(struct btf_verifier_env *env,
1860 			       const struct btf_type *t)
1861 {
1862 	const struct btf_param *args = (const struct btf_param *)(t + 1);
1863 	u16 nr_args = btf_type_vlen(t), i;
1864 
1865 	btf_verifier_log(env, "return=%u args=(", t->type);
1866 	if (!nr_args) {
1867 		btf_verifier_log(env, "void");
1868 		goto done;
1869 	}
1870 
1871 	if (nr_args == 1 && !args[0].type) {
1872 		/* Only one vararg */
1873 		btf_verifier_log(env, "vararg");
1874 		goto done;
1875 	}
1876 
1877 	btf_verifier_log(env, "%u %s", args[0].type,
1878 			 btf_name_by_offset(env->btf,
1879 					    args[0].name_off));
1880 	for (i = 1; i < nr_args - 1; i++)
1881 		btf_verifier_log(env, ", %u %s", args[i].type,
1882 				 btf_name_by_offset(env->btf,
1883 						    args[i].name_off));
1884 
1885 	if (nr_args > 1) {
1886 		const struct btf_param *last_arg = &args[nr_args - 1];
1887 
1888 		if (last_arg->type)
1889 			btf_verifier_log(env, ", %u %s", last_arg->type,
1890 					 btf_name_by_offset(env->btf,
1891 							    last_arg->name_off));
1892 		else
1893 			btf_verifier_log(env, ", vararg");
1894 	}
1895 
1896 done:
1897 	btf_verifier_log(env, ")");
1898 }
1899 
1900 static struct btf_kind_operations func_proto_ops = {
1901 	.check_meta = btf_func_proto_check_meta,
1902 	.resolve = btf_df_resolve,
1903 	/*
1904 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
1905 	 * a struct's member.
1906 	 *
1907 	 * It should be a funciton pointer instead.
1908 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
1909 	 *
1910 	 * Hence, there is no btf_func_check_member().
1911 	 */
1912 	.check_member = btf_df_check_member,
1913 	.log_details = btf_func_proto_log,
1914 	.seq_show = btf_df_seq_show,
1915 };
1916 
1917 static s32 btf_func_check_meta(struct btf_verifier_env *env,
1918 			       const struct btf_type *t,
1919 			       u32 meta_left)
1920 {
1921 	if (!t->name_off ||
1922 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1923 		btf_verifier_log_type(env, t, "Invalid name");
1924 		return -EINVAL;
1925 	}
1926 
1927 	if (btf_type_vlen(t)) {
1928 		btf_verifier_log_type(env, t, "vlen != 0");
1929 		return -EINVAL;
1930 	}
1931 
1932 	btf_verifier_log_type(env, t, NULL);
1933 
1934 	return 0;
1935 }
1936 
1937 static struct btf_kind_operations func_ops = {
1938 	.check_meta = btf_func_check_meta,
1939 	.resolve = btf_df_resolve,
1940 	.check_member = btf_df_check_member,
1941 	.log_details = btf_ref_type_log,
1942 	.seq_show = btf_df_seq_show,
1943 };
1944 
1945 static int btf_func_proto_check(struct btf_verifier_env *env,
1946 				const struct btf_type *t)
1947 {
1948 	const struct btf_type *ret_type;
1949 	const struct btf_param *args;
1950 	const struct btf *btf;
1951 	u16 nr_args, i;
1952 	int err;
1953 
1954 	btf = env->btf;
1955 	args = (const struct btf_param *)(t + 1);
1956 	nr_args = btf_type_vlen(t);
1957 
1958 	/* Check func return type which could be "void" (t->type == 0) */
1959 	if (t->type) {
1960 		u32 ret_type_id = t->type;
1961 
1962 		ret_type = btf_type_by_id(btf, ret_type_id);
1963 		if (!ret_type) {
1964 			btf_verifier_log_type(env, t, "Invalid return type");
1965 			return -EINVAL;
1966 		}
1967 
1968 		if (btf_type_needs_resolve(ret_type) &&
1969 		    !env_type_is_resolved(env, ret_type_id)) {
1970 			err = btf_resolve(env, ret_type, ret_type_id);
1971 			if (err)
1972 				return err;
1973 		}
1974 
1975 		/* Ensure the return type is a type that has a size */
1976 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
1977 			btf_verifier_log_type(env, t, "Invalid return type");
1978 			return -EINVAL;
1979 		}
1980 	}
1981 
1982 	if (!nr_args)
1983 		return 0;
1984 
1985 	/* Last func arg type_id could be 0 if it is a vararg */
1986 	if (!args[nr_args - 1].type) {
1987 		if (args[nr_args - 1].name_off) {
1988 			btf_verifier_log_type(env, t, "Invalid arg#%u",
1989 					      nr_args);
1990 			return -EINVAL;
1991 		}
1992 		nr_args--;
1993 	}
1994 
1995 	err = 0;
1996 	for (i = 0; i < nr_args; i++) {
1997 		const struct btf_type *arg_type;
1998 		u32 arg_type_id;
1999 
2000 		arg_type_id = args[i].type;
2001 		arg_type = btf_type_by_id(btf, arg_type_id);
2002 		if (!arg_type) {
2003 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2004 			err = -EINVAL;
2005 			break;
2006 		}
2007 
2008 		if (args[i].name_off &&
2009 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2010 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2011 			btf_verifier_log_type(env, t,
2012 					      "Invalid arg#%u", i + 1);
2013 			err = -EINVAL;
2014 			break;
2015 		}
2016 
2017 		if (btf_type_needs_resolve(arg_type) &&
2018 		    !env_type_is_resolved(env, arg_type_id)) {
2019 			err = btf_resolve(env, arg_type, arg_type_id);
2020 			if (err)
2021 				break;
2022 		}
2023 
2024 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2025 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2026 			err = -EINVAL;
2027 			break;
2028 		}
2029 	}
2030 
2031 	return err;
2032 }
2033 
2034 static int btf_func_check(struct btf_verifier_env *env,
2035 			  const struct btf_type *t)
2036 {
2037 	const struct btf_type *proto_type;
2038 	const struct btf_param *args;
2039 	const struct btf *btf;
2040 	u16 nr_args, i;
2041 
2042 	btf = env->btf;
2043 	proto_type = btf_type_by_id(btf, t->type);
2044 
2045 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2046 		btf_verifier_log_type(env, t, "Invalid type_id");
2047 		return -EINVAL;
2048 	}
2049 
2050 	args = (const struct btf_param *)(proto_type + 1);
2051 	nr_args = btf_type_vlen(proto_type);
2052 	for (i = 0; i < nr_args; i++) {
2053 		if (!args[i].name_off && args[i].type) {
2054 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2055 			return -EINVAL;
2056 		}
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2063 	[BTF_KIND_INT] = &int_ops,
2064 	[BTF_KIND_PTR] = &ptr_ops,
2065 	[BTF_KIND_ARRAY] = &array_ops,
2066 	[BTF_KIND_STRUCT] = &struct_ops,
2067 	[BTF_KIND_UNION] = &struct_ops,
2068 	[BTF_KIND_ENUM] = &enum_ops,
2069 	[BTF_KIND_FWD] = &fwd_ops,
2070 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2071 	[BTF_KIND_VOLATILE] = &modifier_ops,
2072 	[BTF_KIND_CONST] = &modifier_ops,
2073 	[BTF_KIND_RESTRICT] = &modifier_ops,
2074 	[BTF_KIND_FUNC] = &func_ops,
2075 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2076 };
2077 
2078 static s32 btf_check_meta(struct btf_verifier_env *env,
2079 			  const struct btf_type *t,
2080 			  u32 meta_left)
2081 {
2082 	u32 saved_meta_left = meta_left;
2083 	s32 var_meta_size;
2084 
2085 	if (meta_left < sizeof(*t)) {
2086 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2087 				 env->log_type_id, meta_left, sizeof(*t));
2088 		return -EINVAL;
2089 	}
2090 	meta_left -= sizeof(*t);
2091 
2092 	if (t->info & ~BTF_INFO_MASK) {
2093 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2094 				 env->log_type_id, t->info);
2095 		return -EINVAL;
2096 	}
2097 
2098 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2099 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2100 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2101 				 env->log_type_id, BTF_INFO_KIND(t->info));
2102 		return -EINVAL;
2103 	}
2104 
2105 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2106 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2107 				 env->log_type_id, t->name_off);
2108 		return -EINVAL;
2109 	}
2110 
2111 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2112 	if (var_meta_size < 0)
2113 		return var_meta_size;
2114 
2115 	meta_left -= var_meta_size;
2116 
2117 	return saved_meta_left - meta_left;
2118 }
2119 
2120 static int btf_check_all_metas(struct btf_verifier_env *env)
2121 {
2122 	struct btf *btf = env->btf;
2123 	struct btf_header *hdr;
2124 	void *cur, *end;
2125 
2126 	hdr = &btf->hdr;
2127 	cur = btf->nohdr_data + hdr->type_off;
2128 	end = cur + hdr->type_len;
2129 
2130 	env->log_type_id = 1;
2131 	while (cur < end) {
2132 		struct btf_type *t = cur;
2133 		s32 meta_size;
2134 
2135 		meta_size = btf_check_meta(env, t, end - cur);
2136 		if (meta_size < 0)
2137 			return meta_size;
2138 
2139 		btf_add_type(env, t);
2140 		cur += meta_size;
2141 		env->log_type_id++;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static bool btf_resolve_valid(struct btf_verifier_env *env,
2148 			      const struct btf_type *t,
2149 			      u32 type_id)
2150 {
2151 	struct btf *btf = env->btf;
2152 
2153 	if (!env_type_is_resolved(env, type_id))
2154 		return false;
2155 
2156 	if (btf_type_is_struct(t))
2157 		return !btf->resolved_ids[type_id] &&
2158 			!btf->resolved_sizes[type_id];
2159 
2160 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
2161 		t = btf_type_id_resolve(btf, &type_id);
2162 		return t && !btf_type_is_modifier(t);
2163 	}
2164 
2165 	if (btf_type_is_array(t)) {
2166 		const struct btf_array *array = btf_type_array(t);
2167 		const struct btf_type *elem_type;
2168 		u32 elem_type_id = array->type;
2169 		u32 elem_size;
2170 
2171 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2172 		return elem_type && !btf_type_is_modifier(elem_type) &&
2173 			(array->nelems * elem_size ==
2174 			 btf->resolved_sizes[type_id]);
2175 	}
2176 
2177 	return false;
2178 }
2179 
2180 static int btf_resolve(struct btf_verifier_env *env,
2181 		       const struct btf_type *t, u32 type_id)
2182 {
2183 	u32 save_log_type_id = env->log_type_id;
2184 	const struct resolve_vertex *v;
2185 	int err = 0;
2186 
2187 	env->resolve_mode = RESOLVE_TBD;
2188 	env_stack_push(env, t, type_id);
2189 	while (!err && (v = env_stack_peak(env))) {
2190 		env->log_type_id = v->type_id;
2191 		err = btf_type_ops(v->t)->resolve(env, v);
2192 	}
2193 
2194 	env->log_type_id = type_id;
2195 	if (err == -E2BIG) {
2196 		btf_verifier_log_type(env, t,
2197 				      "Exceeded max resolving depth:%u",
2198 				      MAX_RESOLVE_DEPTH);
2199 	} else if (err == -EEXIST) {
2200 		btf_verifier_log_type(env, t, "Loop detected");
2201 	}
2202 
2203 	/* Final sanity check */
2204 	if (!err && !btf_resolve_valid(env, t, type_id)) {
2205 		btf_verifier_log_type(env, t, "Invalid resolve state");
2206 		err = -EINVAL;
2207 	}
2208 
2209 	env->log_type_id = save_log_type_id;
2210 	return err;
2211 }
2212 
2213 static int btf_check_all_types(struct btf_verifier_env *env)
2214 {
2215 	struct btf *btf = env->btf;
2216 	u32 type_id;
2217 	int err;
2218 
2219 	err = env_resolve_init(env);
2220 	if (err)
2221 		return err;
2222 
2223 	env->phase++;
2224 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2225 		const struct btf_type *t = btf_type_by_id(btf, type_id);
2226 
2227 		env->log_type_id = type_id;
2228 		if (btf_type_needs_resolve(t) &&
2229 		    !env_type_is_resolved(env, type_id)) {
2230 			err = btf_resolve(env, t, type_id);
2231 			if (err)
2232 				return err;
2233 		}
2234 
2235 		if (btf_type_is_func_proto(t)) {
2236 			err = btf_func_proto_check(env, t);
2237 			if (err)
2238 				return err;
2239 		}
2240 
2241 		if (btf_type_is_func(t)) {
2242 			err = btf_func_check(env, t);
2243 			if (err)
2244 				return err;
2245 		}
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 static int btf_parse_type_sec(struct btf_verifier_env *env)
2252 {
2253 	const struct btf_header *hdr = &env->btf->hdr;
2254 	int err;
2255 
2256 	/* Type section must align to 4 bytes */
2257 	if (hdr->type_off & (sizeof(u32) - 1)) {
2258 		btf_verifier_log(env, "Unaligned type_off");
2259 		return -EINVAL;
2260 	}
2261 
2262 	if (!hdr->type_len) {
2263 		btf_verifier_log(env, "No type found");
2264 		return -EINVAL;
2265 	}
2266 
2267 	err = btf_check_all_metas(env);
2268 	if (err)
2269 		return err;
2270 
2271 	return btf_check_all_types(env);
2272 }
2273 
2274 static int btf_parse_str_sec(struct btf_verifier_env *env)
2275 {
2276 	const struct btf_header *hdr;
2277 	struct btf *btf = env->btf;
2278 	const char *start, *end;
2279 
2280 	hdr = &btf->hdr;
2281 	start = btf->nohdr_data + hdr->str_off;
2282 	end = start + hdr->str_len;
2283 
2284 	if (end != btf->data + btf->data_size) {
2285 		btf_verifier_log(env, "String section is not at the end");
2286 		return -EINVAL;
2287 	}
2288 
2289 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2290 	    start[0] || end[-1]) {
2291 		btf_verifier_log(env, "Invalid string section");
2292 		return -EINVAL;
2293 	}
2294 
2295 	btf->strings = start;
2296 
2297 	return 0;
2298 }
2299 
2300 static const size_t btf_sec_info_offset[] = {
2301 	offsetof(struct btf_header, type_off),
2302 	offsetof(struct btf_header, str_off),
2303 };
2304 
2305 static int btf_sec_info_cmp(const void *a, const void *b)
2306 {
2307 	const struct btf_sec_info *x = a;
2308 	const struct btf_sec_info *y = b;
2309 
2310 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2311 }
2312 
2313 static int btf_check_sec_info(struct btf_verifier_env *env,
2314 			      u32 btf_data_size)
2315 {
2316 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2317 	u32 total, expected_total, i;
2318 	const struct btf_header *hdr;
2319 	const struct btf *btf;
2320 
2321 	btf = env->btf;
2322 	hdr = &btf->hdr;
2323 
2324 	/* Populate the secs from hdr */
2325 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2326 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2327 						   btf_sec_info_offset[i]);
2328 
2329 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2330 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2331 
2332 	/* Check for gaps and overlap among sections */
2333 	total = 0;
2334 	expected_total = btf_data_size - hdr->hdr_len;
2335 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2336 		if (expected_total < secs[i].off) {
2337 			btf_verifier_log(env, "Invalid section offset");
2338 			return -EINVAL;
2339 		}
2340 		if (total < secs[i].off) {
2341 			/* gap */
2342 			btf_verifier_log(env, "Unsupported section found");
2343 			return -EINVAL;
2344 		}
2345 		if (total > secs[i].off) {
2346 			btf_verifier_log(env, "Section overlap found");
2347 			return -EINVAL;
2348 		}
2349 		if (expected_total - total < secs[i].len) {
2350 			btf_verifier_log(env,
2351 					 "Total section length too long");
2352 			return -EINVAL;
2353 		}
2354 		total += secs[i].len;
2355 	}
2356 
2357 	/* There is data other than hdr and known sections */
2358 	if (expected_total != total) {
2359 		btf_verifier_log(env, "Unsupported section found");
2360 		return -EINVAL;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static int btf_parse_hdr(struct btf_verifier_env *env)
2367 {
2368 	u32 hdr_len, hdr_copy, btf_data_size;
2369 	const struct btf_header *hdr;
2370 	struct btf *btf;
2371 	int err;
2372 
2373 	btf = env->btf;
2374 	btf_data_size = btf->data_size;
2375 
2376 	if (btf_data_size <
2377 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2378 		btf_verifier_log(env, "hdr_len not found");
2379 		return -EINVAL;
2380 	}
2381 
2382 	hdr = btf->data;
2383 	hdr_len = hdr->hdr_len;
2384 	if (btf_data_size < hdr_len) {
2385 		btf_verifier_log(env, "btf_header not found");
2386 		return -EINVAL;
2387 	}
2388 
2389 	/* Ensure the unsupported header fields are zero */
2390 	if (hdr_len > sizeof(btf->hdr)) {
2391 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
2392 		u8 *end = btf->data + hdr_len;
2393 
2394 		for (; expected_zero < end; expected_zero++) {
2395 			if (*expected_zero) {
2396 				btf_verifier_log(env, "Unsupported btf_header");
2397 				return -E2BIG;
2398 			}
2399 		}
2400 	}
2401 
2402 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2403 	memcpy(&btf->hdr, btf->data, hdr_copy);
2404 
2405 	hdr = &btf->hdr;
2406 
2407 	btf_verifier_log_hdr(env, btf_data_size);
2408 
2409 	if (hdr->magic != BTF_MAGIC) {
2410 		btf_verifier_log(env, "Invalid magic");
2411 		return -EINVAL;
2412 	}
2413 
2414 	if (hdr->version != BTF_VERSION) {
2415 		btf_verifier_log(env, "Unsupported version");
2416 		return -ENOTSUPP;
2417 	}
2418 
2419 	if (hdr->flags) {
2420 		btf_verifier_log(env, "Unsupported flags");
2421 		return -ENOTSUPP;
2422 	}
2423 
2424 	if (btf_data_size == hdr->hdr_len) {
2425 		btf_verifier_log(env, "No data");
2426 		return -EINVAL;
2427 	}
2428 
2429 	err = btf_check_sec_info(env, btf_data_size);
2430 	if (err)
2431 		return err;
2432 
2433 	return 0;
2434 }
2435 
2436 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2437 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2438 {
2439 	struct btf_verifier_env *env = NULL;
2440 	struct bpf_verifier_log *log;
2441 	struct btf *btf = NULL;
2442 	u8 *data;
2443 	int err;
2444 
2445 	if (btf_data_size > BTF_MAX_SIZE)
2446 		return ERR_PTR(-E2BIG);
2447 
2448 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2449 	if (!env)
2450 		return ERR_PTR(-ENOMEM);
2451 
2452 	log = &env->log;
2453 	if (log_level || log_ubuf || log_size) {
2454 		/* user requested verbose verifier output
2455 		 * and supplied buffer to store the verification trace
2456 		 */
2457 		log->level = log_level;
2458 		log->ubuf = log_ubuf;
2459 		log->len_total = log_size;
2460 
2461 		/* log attributes have to be sane */
2462 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2463 		    !log->level || !log->ubuf) {
2464 			err = -EINVAL;
2465 			goto errout;
2466 		}
2467 	}
2468 
2469 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2470 	if (!btf) {
2471 		err = -ENOMEM;
2472 		goto errout;
2473 	}
2474 	env->btf = btf;
2475 
2476 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2477 	if (!data) {
2478 		err = -ENOMEM;
2479 		goto errout;
2480 	}
2481 
2482 	btf->data = data;
2483 	btf->data_size = btf_data_size;
2484 
2485 	if (copy_from_user(data, btf_data, btf_data_size)) {
2486 		err = -EFAULT;
2487 		goto errout;
2488 	}
2489 
2490 	err = btf_parse_hdr(env);
2491 	if (err)
2492 		goto errout;
2493 
2494 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2495 
2496 	err = btf_parse_str_sec(env);
2497 	if (err)
2498 		goto errout;
2499 
2500 	err = btf_parse_type_sec(env);
2501 	if (err)
2502 		goto errout;
2503 
2504 	if (log->level && bpf_verifier_log_full(log)) {
2505 		err = -ENOSPC;
2506 		goto errout;
2507 	}
2508 
2509 	btf_verifier_env_free(env);
2510 	refcount_set(&btf->refcnt, 1);
2511 	return btf;
2512 
2513 errout:
2514 	btf_verifier_env_free(env);
2515 	if (btf)
2516 		btf_free(btf);
2517 	return ERR_PTR(err);
2518 }
2519 
2520 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2521 		       struct seq_file *m)
2522 {
2523 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2524 
2525 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2526 }
2527 
2528 static int btf_release(struct inode *inode, struct file *filp)
2529 {
2530 	btf_put(filp->private_data);
2531 	return 0;
2532 }
2533 
2534 const struct file_operations btf_fops = {
2535 	.release	= btf_release,
2536 };
2537 
2538 static int __btf_new_fd(struct btf *btf)
2539 {
2540 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2541 }
2542 
2543 int btf_new_fd(const union bpf_attr *attr)
2544 {
2545 	struct btf *btf;
2546 	int ret;
2547 
2548 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2549 			attr->btf_size, attr->btf_log_level,
2550 			u64_to_user_ptr(attr->btf_log_buf),
2551 			attr->btf_log_size);
2552 	if (IS_ERR(btf))
2553 		return PTR_ERR(btf);
2554 
2555 	ret = btf_alloc_id(btf);
2556 	if (ret) {
2557 		btf_free(btf);
2558 		return ret;
2559 	}
2560 
2561 	/*
2562 	 * The BTF ID is published to the userspace.
2563 	 * All BTF free must go through call_rcu() from
2564 	 * now on (i.e. free by calling btf_put()).
2565 	 */
2566 
2567 	ret = __btf_new_fd(btf);
2568 	if (ret < 0)
2569 		btf_put(btf);
2570 
2571 	return ret;
2572 }
2573 
2574 struct btf *btf_get_by_fd(int fd)
2575 {
2576 	struct btf *btf;
2577 	struct fd f;
2578 
2579 	f = fdget(fd);
2580 
2581 	if (!f.file)
2582 		return ERR_PTR(-EBADF);
2583 
2584 	if (f.file->f_op != &btf_fops) {
2585 		fdput(f);
2586 		return ERR_PTR(-EINVAL);
2587 	}
2588 
2589 	btf = f.file->private_data;
2590 	refcount_inc(&btf->refcnt);
2591 	fdput(f);
2592 
2593 	return btf;
2594 }
2595 
2596 int btf_get_info_by_fd(const struct btf *btf,
2597 		       const union bpf_attr *attr,
2598 		       union bpf_attr __user *uattr)
2599 {
2600 	struct bpf_btf_info __user *uinfo;
2601 	struct bpf_btf_info info = {};
2602 	u32 info_copy, btf_copy;
2603 	void __user *ubtf;
2604 	u32 uinfo_len;
2605 
2606 	uinfo = u64_to_user_ptr(attr->info.info);
2607 	uinfo_len = attr->info.info_len;
2608 
2609 	info_copy = min_t(u32, uinfo_len, sizeof(info));
2610 	if (copy_from_user(&info, uinfo, info_copy))
2611 		return -EFAULT;
2612 
2613 	info.id = btf->id;
2614 	ubtf = u64_to_user_ptr(info.btf);
2615 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
2616 	if (copy_to_user(ubtf, btf->data, btf_copy))
2617 		return -EFAULT;
2618 	info.btf_size = btf->data_size;
2619 
2620 	if (copy_to_user(uinfo, &info, info_copy) ||
2621 	    put_user(info_copy, &uattr->info.info_len))
2622 		return -EFAULT;
2623 
2624 	return 0;
2625 }
2626 
2627 int btf_get_fd_by_id(u32 id)
2628 {
2629 	struct btf *btf;
2630 	int fd;
2631 
2632 	rcu_read_lock();
2633 	btf = idr_find(&btf_idr, id);
2634 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2635 		btf = ERR_PTR(-ENOENT);
2636 	rcu_read_unlock();
2637 
2638 	if (IS_ERR(btf))
2639 		return PTR_ERR(btf);
2640 
2641 	fd = __btf_new_fd(btf);
2642 	if (fd < 0)
2643 		btf_put(btf);
2644 
2645 	return fd;
2646 }
2647 
2648 u32 btf_id(const struct btf *btf)
2649 {
2650 	return btf->id;
2651 }
2652