xref: /linux/kernel/bpf/btf.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to describe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101 
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *	struct A {
133  *		struct B b;
134  *	};
135  *
136  *	struct B {
137  *		struct A a;
138  *	};
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *	struct A {
156  *		int m;
157  *		struct A *a;
158  *	};
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168 
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175 
176 #define BTF_INFO_MASK 0x9f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180 
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186 
187 #define for_each_member_from(i, from, struct_type, member)		\
188 	for (i = from, member = btf_type_member(struct_type) + from;	\
189 	     i < btf_type_vlen(struct_type);				\
190 	     i++, member++)
191 
192 #define for_each_vsi_from(i, from, struct_type, member)				\
193 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);					\
195 	     i++, member++)
196 
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199 
200 struct btf {
201 	void *data;
202 	struct btf_type **types;
203 	u32 *resolved_ids;
204 	u32 *resolved_sizes;
205 	const char *strings;
206 	void *nohdr_data;
207 	struct btf_header hdr;
208 	u32 nr_types; /* includes VOID for base BTF */
209 	u32 types_size;
210 	u32 data_size;
211 	refcount_t refcnt;
212 	u32 id;
213 	struct rcu_head rcu;
214 
215 	/* split BTF support */
216 	struct btf *base_btf;
217 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 	u32 start_str_off; /* first string offset (0 for base BTF) */
219 	char name[MODULE_NAME_LEN];
220 	bool kernel_btf;
221 };
222 
223 enum verifier_phase {
224 	CHECK_META,
225 	CHECK_TYPE,
226 };
227 
228 struct resolve_vertex {
229 	const struct btf_type *t;
230 	u32 type_id;
231 	u16 next_member;
232 };
233 
234 enum visit_state {
235 	NOT_VISITED,
236 	VISITED,
237 	RESOLVED,
238 };
239 
240 enum resolve_mode {
241 	RESOLVE_TBD,	/* To Be Determined */
242 	RESOLVE_PTR,	/* Resolving for Pointer */
243 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
244 					 * or array
245 					 */
246 };
247 
248 #define MAX_RESOLVE_DEPTH 32
249 
250 struct btf_sec_info {
251 	u32 off;
252 	u32 len;
253 };
254 
255 struct btf_verifier_env {
256 	struct btf *btf;
257 	u8 *visit_states;
258 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259 	struct bpf_verifier_log log;
260 	u32 log_type_id;
261 	u32 top_stack;
262 	enum verifier_phase phase;
263 	enum resolve_mode resolve_mode;
264 };
265 
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 	[BTF_KIND_UNKN]		= "UNKNOWN",
268 	[BTF_KIND_INT]		= "INT",
269 	[BTF_KIND_PTR]		= "PTR",
270 	[BTF_KIND_ARRAY]	= "ARRAY",
271 	[BTF_KIND_STRUCT]	= "STRUCT",
272 	[BTF_KIND_UNION]	= "UNION",
273 	[BTF_KIND_ENUM]		= "ENUM",
274 	[BTF_KIND_FWD]		= "FWD",
275 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
276 	[BTF_KIND_VOLATILE]	= "VOLATILE",
277 	[BTF_KIND_CONST]	= "CONST",
278 	[BTF_KIND_RESTRICT]	= "RESTRICT",
279 	[BTF_KIND_FUNC]		= "FUNC",
280 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
281 	[BTF_KIND_VAR]		= "VAR",
282 	[BTF_KIND_DATASEC]	= "DATASEC",
283 	[BTF_KIND_FLOAT]	= "FLOAT",
284 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
285 };
286 
287 const char *btf_type_str(const struct btf_type *t)
288 {
289 	return btf_kind_str[BTF_INFO_KIND(t->info)];
290 }
291 
292 /* Chunk size we use in safe copy of data to be shown. */
293 #define BTF_SHOW_OBJ_SAFE_SIZE		32
294 
295 /*
296  * This is the maximum size of a base type value (equivalent to a
297  * 128-bit int); if we are at the end of our safe buffer and have
298  * less than 16 bytes space we can't be assured of being able
299  * to copy the next type safely, so in such cases we will initiate
300  * a new copy.
301  */
302 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
303 
304 /* Type name size */
305 #define BTF_SHOW_NAME_SIZE		80
306 
307 /*
308  * Common data to all BTF show operations. Private show functions can add
309  * their own data to a structure containing a struct btf_show and consult it
310  * in the show callback.  See btf_type_show() below.
311  *
312  * One challenge with showing nested data is we want to skip 0-valued
313  * data, but in order to figure out whether a nested object is all zeros
314  * we need to walk through it.  As a result, we need to make two passes
315  * when handling structs, unions and arrays; the first path simply looks
316  * for nonzero data, while the second actually does the display.  The first
317  * pass is signalled by show->state.depth_check being set, and if we
318  * encounter a non-zero value we set show->state.depth_to_show to
319  * the depth at which we encountered it.  When we have completed the
320  * first pass, we will know if anything needs to be displayed if
321  * depth_to_show > depth.  See btf_[struct,array]_show() for the
322  * implementation of this.
323  *
324  * Another problem is we want to ensure the data for display is safe to
325  * access.  To support this, the anonymous "struct {} obj" tracks the data
326  * object and our safe copy of it.  We copy portions of the data needed
327  * to the object "copy" buffer, but because its size is limited to
328  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
329  * traverse larger objects for display.
330  *
331  * The various data type show functions all start with a call to
332  * btf_show_start_type() which returns a pointer to the safe copy
333  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
334  * raw data itself).  btf_show_obj_safe() is responsible for
335  * using copy_from_kernel_nofault() to update the safe data if necessary
336  * as we traverse the object's data.  skbuff-like semantics are
337  * used:
338  *
339  * - obj.head points to the start of the toplevel object for display
340  * - obj.size is the size of the toplevel object
341  * - obj.data points to the current point in the original data at
342  *   which our safe data starts.  obj.data will advance as we copy
343  *   portions of the data.
344  *
345  * In most cases a single copy will suffice, but larger data structures
346  * such as "struct task_struct" will require many copies.  The logic in
347  * btf_show_obj_safe() handles the logic that determines if a new
348  * copy_from_kernel_nofault() is needed.
349  */
350 struct btf_show {
351 	u64 flags;
352 	void *target;	/* target of show operation (seq file, buffer) */
353 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
354 	const struct btf *btf;
355 	/* below are used during iteration */
356 	struct {
357 		u8 depth;
358 		u8 depth_to_show;
359 		u8 depth_check;
360 		u8 array_member:1,
361 		   array_terminated:1;
362 		u16 array_encoding;
363 		u32 type_id;
364 		int status;			/* non-zero for error */
365 		const struct btf_type *type;
366 		const struct btf_member *member;
367 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
368 	} state;
369 	struct {
370 		u32 size;
371 		void *head;
372 		void *data;
373 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
374 	} obj;
375 };
376 
377 struct btf_kind_operations {
378 	s32 (*check_meta)(struct btf_verifier_env *env,
379 			  const struct btf_type *t,
380 			  u32 meta_left);
381 	int (*resolve)(struct btf_verifier_env *env,
382 		       const struct resolve_vertex *v);
383 	int (*check_member)(struct btf_verifier_env *env,
384 			    const struct btf_type *struct_type,
385 			    const struct btf_member *member,
386 			    const struct btf_type *member_type);
387 	int (*check_kflag_member)(struct btf_verifier_env *env,
388 				  const struct btf_type *struct_type,
389 				  const struct btf_member *member,
390 				  const struct btf_type *member_type);
391 	void (*log_details)(struct btf_verifier_env *env,
392 			    const struct btf_type *t);
393 	void (*show)(const struct btf *btf, const struct btf_type *t,
394 			 u32 type_id, void *data, u8 bits_offsets,
395 			 struct btf_show *show);
396 };
397 
398 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
399 static struct btf_type btf_void;
400 
401 static int btf_resolve(struct btf_verifier_env *env,
402 		       const struct btf_type *t, u32 type_id);
403 
404 static bool btf_type_is_modifier(const struct btf_type *t)
405 {
406 	/* Some of them is not strictly a C modifier
407 	 * but they are grouped into the same bucket
408 	 * for BTF concern:
409 	 *   A type (t) that refers to another
410 	 *   type through t->type AND its size cannot
411 	 *   be determined without following the t->type.
412 	 *
413 	 * ptr does not fall into this bucket
414 	 * because its size is always sizeof(void *).
415 	 */
416 	switch (BTF_INFO_KIND(t->info)) {
417 	case BTF_KIND_TYPEDEF:
418 	case BTF_KIND_VOLATILE:
419 	case BTF_KIND_CONST:
420 	case BTF_KIND_RESTRICT:
421 		return true;
422 	}
423 
424 	return false;
425 }
426 
427 bool btf_type_is_void(const struct btf_type *t)
428 {
429 	return t == &btf_void;
430 }
431 
432 static bool btf_type_is_fwd(const struct btf_type *t)
433 {
434 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
435 }
436 
437 static bool btf_type_nosize(const struct btf_type *t)
438 {
439 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
440 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
441 }
442 
443 static bool btf_type_nosize_or_null(const struct btf_type *t)
444 {
445 	return !t || btf_type_nosize(t);
446 }
447 
448 static bool __btf_type_is_struct(const struct btf_type *t)
449 {
450 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
451 }
452 
453 static bool btf_type_is_array(const struct btf_type *t)
454 {
455 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
456 }
457 
458 static bool btf_type_is_datasec(const struct btf_type *t)
459 {
460 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
461 }
462 
463 static bool btf_type_is_decl_tag(const struct btf_type *t)
464 {
465 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
466 }
467 
468 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
469 {
470 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
471 	       btf_type_is_var(t) || btf_type_is_typedef(t);
472 }
473 
474 u32 btf_nr_types(const struct btf *btf)
475 {
476 	u32 total = 0;
477 
478 	while (btf) {
479 		total += btf->nr_types;
480 		btf = btf->base_btf;
481 	}
482 
483 	return total;
484 }
485 
486 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
487 {
488 	const struct btf_type *t;
489 	const char *tname;
490 	u32 i, total;
491 
492 	total = btf_nr_types(btf);
493 	for (i = 1; i < total; i++) {
494 		t = btf_type_by_id(btf, i);
495 		if (BTF_INFO_KIND(t->info) != kind)
496 			continue;
497 
498 		tname = btf_name_by_offset(btf, t->name_off);
499 		if (!strcmp(tname, name))
500 			return i;
501 	}
502 
503 	return -ENOENT;
504 }
505 
506 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
507 					       u32 id, u32 *res_id)
508 {
509 	const struct btf_type *t = btf_type_by_id(btf, id);
510 
511 	while (btf_type_is_modifier(t)) {
512 		id = t->type;
513 		t = btf_type_by_id(btf, t->type);
514 	}
515 
516 	if (res_id)
517 		*res_id = id;
518 
519 	return t;
520 }
521 
522 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
523 					    u32 id, u32 *res_id)
524 {
525 	const struct btf_type *t;
526 
527 	t = btf_type_skip_modifiers(btf, id, NULL);
528 	if (!btf_type_is_ptr(t))
529 		return NULL;
530 
531 	return btf_type_skip_modifiers(btf, t->type, res_id);
532 }
533 
534 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
535 						 u32 id, u32 *res_id)
536 {
537 	const struct btf_type *ptype;
538 
539 	ptype = btf_type_resolve_ptr(btf, id, res_id);
540 	if (ptype && btf_type_is_func_proto(ptype))
541 		return ptype;
542 
543 	return NULL;
544 }
545 
546 /* Types that act only as a source, not sink or intermediate
547  * type when resolving.
548  */
549 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
550 {
551 	return btf_type_is_var(t) ||
552 	       btf_type_is_decl_tag(t) ||
553 	       btf_type_is_datasec(t);
554 }
555 
556 /* What types need to be resolved?
557  *
558  * btf_type_is_modifier() is an obvious one.
559  *
560  * btf_type_is_struct() because its member refers to
561  * another type (through member->type).
562  *
563  * btf_type_is_var() because the variable refers to
564  * another type. btf_type_is_datasec() holds multiple
565  * btf_type_is_var() types that need resolving.
566  *
567  * btf_type_is_array() because its element (array->type)
568  * refers to another type.  Array can be thought of a
569  * special case of struct while array just has the same
570  * member-type repeated by array->nelems of times.
571  */
572 static bool btf_type_needs_resolve(const struct btf_type *t)
573 {
574 	return btf_type_is_modifier(t) ||
575 	       btf_type_is_ptr(t) ||
576 	       btf_type_is_struct(t) ||
577 	       btf_type_is_array(t) ||
578 	       btf_type_is_var(t) ||
579 	       btf_type_is_decl_tag(t) ||
580 	       btf_type_is_datasec(t);
581 }
582 
583 /* t->size can be used */
584 static bool btf_type_has_size(const struct btf_type *t)
585 {
586 	switch (BTF_INFO_KIND(t->info)) {
587 	case BTF_KIND_INT:
588 	case BTF_KIND_STRUCT:
589 	case BTF_KIND_UNION:
590 	case BTF_KIND_ENUM:
591 	case BTF_KIND_DATASEC:
592 	case BTF_KIND_FLOAT:
593 		return true;
594 	}
595 
596 	return false;
597 }
598 
599 static const char *btf_int_encoding_str(u8 encoding)
600 {
601 	if (encoding == 0)
602 		return "(none)";
603 	else if (encoding == BTF_INT_SIGNED)
604 		return "SIGNED";
605 	else if (encoding == BTF_INT_CHAR)
606 		return "CHAR";
607 	else if (encoding == BTF_INT_BOOL)
608 		return "BOOL";
609 	else
610 		return "UNKN";
611 }
612 
613 static u32 btf_type_int(const struct btf_type *t)
614 {
615 	return *(u32 *)(t + 1);
616 }
617 
618 static const struct btf_array *btf_type_array(const struct btf_type *t)
619 {
620 	return (const struct btf_array *)(t + 1);
621 }
622 
623 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
624 {
625 	return (const struct btf_enum *)(t + 1);
626 }
627 
628 static const struct btf_var *btf_type_var(const struct btf_type *t)
629 {
630 	return (const struct btf_var *)(t + 1);
631 }
632 
633 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
634 {
635 	return (const struct btf_decl_tag *)(t + 1);
636 }
637 
638 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
639 {
640 	return kind_ops[BTF_INFO_KIND(t->info)];
641 }
642 
643 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
644 {
645 	if (!BTF_STR_OFFSET_VALID(offset))
646 		return false;
647 
648 	while (offset < btf->start_str_off)
649 		btf = btf->base_btf;
650 
651 	offset -= btf->start_str_off;
652 	return offset < btf->hdr.str_len;
653 }
654 
655 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
656 {
657 	if ((first ? !isalpha(c) :
658 		     !isalnum(c)) &&
659 	    c != '_' &&
660 	    ((c == '.' && !dot_ok) ||
661 	      c != '.'))
662 		return false;
663 	return true;
664 }
665 
666 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
667 {
668 	while (offset < btf->start_str_off)
669 		btf = btf->base_btf;
670 
671 	offset -= btf->start_str_off;
672 	if (offset < btf->hdr.str_len)
673 		return &btf->strings[offset];
674 
675 	return NULL;
676 }
677 
678 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
679 {
680 	/* offset must be valid */
681 	const char *src = btf_str_by_offset(btf, offset);
682 	const char *src_limit;
683 
684 	if (!__btf_name_char_ok(*src, true, dot_ok))
685 		return false;
686 
687 	/* set a limit on identifier length */
688 	src_limit = src + KSYM_NAME_LEN;
689 	src++;
690 	while (*src && src < src_limit) {
691 		if (!__btf_name_char_ok(*src, false, dot_ok))
692 			return false;
693 		src++;
694 	}
695 
696 	return !*src;
697 }
698 
699 /* Only C-style identifier is permitted. This can be relaxed if
700  * necessary.
701  */
702 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
703 {
704 	return __btf_name_valid(btf, offset, false);
705 }
706 
707 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
708 {
709 	return __btf_name_valid(btf, offset, true);
710 }
711 
712 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
713 {
714 	const char *name;
715 
716 	if (!offset)
717 		return "(anon)";
718 
719 	name = btf_str_by_offset(btf, offset);
720 	return name ?: "(invalid-name-offset)";
721 }
722 
723 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
724 {
725 	return btf_str_by_offset(btf, offset);
726 }
727 
728 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
729 {
730 	while (type_id < btf->start_id)
731 		btf = btf->base_btf;
732 
733 	type_id -= btf->start_id;
734 	if (type_id >= btf->nr_types)
735 		return NULL;
736 	return btf->types[type_id];
737 }
738 
739 /*
740  * Regular int is not a bit field and it must be either
741  * u8/u16/u32/u64 or __int128.
742  */
743 static bool btf_type_int_is_regular(const struct btf_type *t)
744 {
745 	u8 nr_bits, nr_bytes;
746 	u32 int_data;
747 
748 	int_data = btf_type_int(t);
749 	nr_bits = BTF_INT_BITS(int_data);
750 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
751 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
752 	    BTF_INT_OFFSET(int_data) ||
753 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
754 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
755 	     nr_bytes != (2 * sizeof(u64)))) {
756 		return false;
757 	}
758 
759 	return true;
760 }
761 
762 /*
763  * Check that given struct member is a regular int with expected
764  * offset and size.
765  */
766 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
767 			   const struct btf_member *m,
768 			   u32 expected_offset, u32 expected_size)
769 {
770 	const struct btf_type *t;
771 	u32 id, int_data;
772 	u8 nr_bits;
773 
774 	id = m->type;
775 	t = btf_type_id_size(btf, &id, NULL);
776 	if (!t || !btf_type_is_int(t))
777 		return false;
778 
779 	int_data = btf_type_int(t);
780 	nr_bits = BTF_INT_BITS(int_data);
781 	if (btf_type_kflag(s)) {
782 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
783 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
784 
785 		/* if kflag set, int should be a regular int and
786 		 * bit offset should be at byte boundary.
787 		 */
788 		return !bitfield_size &&
789 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
790 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
791 	}
792 
793 	if (BTF_INT_OFFSET(int_data) ||
794 	    BITS_PER_BYTE_MASKED(m->offset) ||
795 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
796 	    BITS_PER_BYTE_MASKED(nr_bits) ||
797 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
798 		return false;
799 
800 	return true;
801 }
802 
803 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
804 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
805 						       u32 id)
806 {
807 	const struct btf_type *t = btf_type_by_id(btf, id);
808 
809 	while (btf_type_is_modifier(t) &&
810 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
811 		t = btf_type_by_id(btf, t->type);
812 	}
813 
814 	return t;
815 }
816 
817 #define BTF_SHOW_MAX_ITER	10
818 
819 #define BTF_KIND_BIT(kind)	(1ULL << kind)
820 
821 /*
822  * Populate show->state.name with type name information.
823  * Format of type name is
824  *
825  * [.member_name = ] (type_name)
826  */
827 static const char *btf_show_name(struct btf_show *show)
828 {
829 	/* BTF_MAX_ITER array suffixes "[]" */
830 	const char *array_suffixes = "[][][][][][][][][][]";
831 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
832 	/* BTF_MAX_ITER pointer suffixes "*" */
833 	const char *ptr_suffixes = "**********";
834 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
835 	const char *name = NULL, *prefix = "", *parens = "";
836 	const struct btf_member *m = show->state.member;
837 	const struct btf_type *t = show->state.type;
838 	const struct btf_array *array;
839 	u32 id = show->state.type_id;
840 	const char *member = NULL;
841 	bool show_member = false;
842 	u64 kinds = 0;
843 	int i;
844 
845 	show->state.name[0] = '\0';
846 
847 	/*
848 	 * Don't show type name if we're showing an array member;
849 	 * in that case we show the array type so don't need to repeat
850 	 * ourselves for each member.
851 	 */
852 	if (show->state.array_member)
853 		return "";
854 
855 	/* Retrieve member name, if any. */
856 	if (m) {
857 		member = btf_name_by_offset(show->btf, m->name_off);
858 		show_member = strlen(member) > 0;
859 		id = m->type;
860 	}
861 
862 	/*
863 	 * Start with type_id, as we have resolved the struct btf_type *
864 	 * via btf_modifier_show() past the parent typedef to the child
865 	 * struct, int etc it is defined as.  In such cases, the type_id
866 	 * still represents the starting type while the struct btf_type *
867 	 * in our show->state points at the resolved type of the typedef.
868 	 */
869 	t = btf_type_by_id(show->btf, id);
870 	if (!t)
871 		return "";
872 
873 	/*
874 	 * The goal here is to build up the right number of pointer and
875 	 * array suffixes while ensuring the type name for a typedef
876 	 * is represented.  Along the way we accumulate a list of
877 	 * BTF kinds we have encountered, since these will inform later
878 	 * display; for example, pointer types will not require an
879 	 * opening "{" for struct, we will just display the pointer value.
880 	 *
881 	 * We also want to accumulate the right number of pointer or array
882 	 * indices in the format string while iterating until we get to
883 	 * the typedef/pointee/array member target type.
884 	 *
885 	 * We start by pointing at the end of pointer and array suffix
886 	 * strings; as we accumulate pointers and arrays we move the pointer
887 	 * or array string backwards so it will show the expected number of
888 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
889 	 * and/or arrays and typedefs are supported as a precaution.
890 	 *
891 	 * We also want to get typedef name while proceeding to resolve
892 	 * type it points to so that we can add parentheses if it is a
893 	 * "typedef struct" etc.
894 	 */
895 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
896 
897 		switch (BTF_INFO_KIND(t->info)) {
898 		case BTF_KIND_TYPEDEF:
899 			if (!name)
900 				name = btf_name_by_offset(show->btf,
901 							       t->name_off);
902 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
903 			id = t->type;
904 			break;
905 		case BTF_KIND_ARRAY:
906 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
907 			parens = "[";
908 			if (!t)
909 				return "";
910 			array = btf_type_array(t);
911 			if (array_suffix > array_suffixes)
912 				array_suffix -= 2;
913 			id = array->type;
914 			break;
915 		case BTF_KIND_PTR:
916 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
917 			if (ptr_suffix > ptr_suffixes)
918 				ptr_suffix -= 1;
919 			id = t->type;
920 			break;
921 		default:
922 			id = 0;
923 			break;
924 		}
925 		if (!id)
926 			break;
927 		t = btf_type_skip_qualifiers(show->btf, id);
928 	}
929 	/* We may not be able to represent this type; bail to be safe */
930 	if (i == BTF_SHOW_MAX_ITER)
931 		return "";
932 
933 	if (!name)
934 		name = btf_name_by_offset(show->btf, t->name_off);
935 
936 	switch (BTF_INFO_KIND(t->info)) {
937 	case BTF_KIND_STRUCT:
938 	case BTF_KIND_UNION:
939 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
940 			 "struct" : "union";
941 		/* if it's an array of struct/union, parens is already set */
942 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
943 			parens = "{";
944 		break;
945 	case BTF_KIND_ENUM:
946 		prefix = "enum";
947 		break;
948 	default:
949 		break;
950 	}
951 
952 	/* pointer does not require parens */
953 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
954 		parens = "";
955 	/* typedef does not require struct/union/enum prefix */
956 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
957 		prefix = "";
958 
959 	if (!name)
960 		name = "";
961 
962 	/* Even if we don't want type name info, we want parentheses etc */
963 	if (show->flags & BTF_SHOW_NONAME)
964 		snprintf(show->state.name, sizeof(show->state.name), "%s",
965 			 parens);
966 	else
967 		snprintf(show->state.name, sizeof(show->state.name),
968 			 "%s%s%s(%s%s%s%s%s%s)%s",
969 			 /* first 3 strings comprise ".member = " */
970 			 show_member ? "." : "",
971 			 show_member ? member : "",
972 			 show_member ? " = " : "",
973 			 /* ...next is our prefix (struct, enum, etc) */
974 			 prefix,
975 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
976 			 /* ...this is the type name itself */
977 			 name,
978 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
979 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
980 			 array_suffix, parens);
981 
982 	return show->state.name;
983 }
984 
985 static const char *__btf_show_indent(struct btf_show *show)
986 {
987 	const char *indents = "                                ";
988 	const char *indent = &indents[strlen(indents)];
989 
990 	if ((indent - show->state.depth) >= indents)
991 		return indent - show->state.depth;
992 	return indents;
993 }
994 
995 static const char *btf_show_indent(struct btf_show *show)
996 {
997 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
998 }
999 
1000 static const char *btf_show_newline(struct btf_show *show)
1001 {
1002 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1003 }
1004 
1005 static const char *btf_show_delim(struct btf_show *show)
1006 {
1007 	if (show->state.depth == 0)
1008 		return "";
1009 
1010 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1011 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1012 		return "|";
1013 
1014 	return ",";
1015 }
1016 
1017 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1018 {
1019 	va_list args;
1020 
1021 	if (!show->state.depth_check) {
1022 		va_start(args, fmt);
1023 		show->showfn(show, fmt, args);
1024 		va_end(args);
1025 	}
1026 }
1027 
1028 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1029  * format specifiers to the format specifier passed in; these do the work of
1030  * adding indentation, delimiters etc while the caller simply has to specify
1031  * the type value(s) in the format specifier + value(s).
1032  */
1033 #define btf_show_type_value(show, fmt, value)				       \
1034 	do {								       \
1035 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1036 		    show->state.depth == 0) {				       \
1037 			btf_show(show, "%s%s" fmt "%s%s",		       \
1038 				 btf_show_indent(show),			       \
1039 				 btf_show_name(show),			       \
1040 				 value, btf_show_delim(show),		       \
1041 				 btf_show_newline(show));		       \
1042 			if (show->state.depth > show->state.depth_to_show)     \
1043 				show->state.depth_to_show = show->state.depth; \
1044 		}							       \
1045 	} while (0)
1046 
1047 #define btf_show_type_values(show, fmt, ...)				       \
1048 	do {								       \
1049 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1050 			 btf_show_name(show),				       \
1051 			 __VA_ARGS__, btf_show_delim(show),		       \
1052 			 btf_show_newline(show));			       \
1053 		if (show->state.depth > show->state.depth_to_show)	       \
1054 			show->state.depth_to_show = show->state.depth;	       \
1055 	} while (0)
1056 
1057 /* How much is left to copy to safe buffer after @data? */
1058 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1059 {
1060 	return show->obj.head + show->obj.size - data;
1061 }
1062 
1063 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1064 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1065 {
1066 	return data >= show->obj.data &&
1067 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1068 }
1069 
1070 /*
1071  * If object pointed to by @data of @size falls within our safe buffer, return
1072  * the equivalent pointer to the same safe data.  Assumes
1073  * copy_from_kernel_nofault() has already happened and our safe buffer is
1074  * populated.
1075  */
1076 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1077 {
1078 	if (btf_show_obj_is_safe(show, data, size))
1079 		return show->obj.safe + (data - show->obj.data);
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * Return a safe-to-access version of data pointed to by @data.
1085  * We do this by copying the relevant amount of information
1086  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1087  *
1088  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1089  * safe copy is needed.
1090  *
1091  * Otherwise we need to determine if we have the required amount
1092  * of data (determined by the @data pointer and the size of the
1093  * largest base type we can encounter (represented by
1094  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1095  * that we will be able to print some of the current object,
1096  * and if more is needed a copy will be triggered.
1097  * Some objects such as structs will not fit into the buffer;
1098  * in such cases additional copies when we iterate over their
1099  * members may be needed.
1100  *
1101  * btf_show_obj_safe() is used to return a safe buffer for
1102  * btf_show_start_type(); this ensures that as we recurse into
1103  * nested types we always have safe data for the given type.
1104  * This approach is somewhat wasteful; it's possible for example
1105  * that when iterating over a large union we'll end up copying the
1106  * same data repeatedly, but the goal is safety not performance.
1107  * We use stack data as opposed to per-CPU buffers because the
1108  * iteration over a type can take some time, and preemption handling
1109  * would greatly complicate use of the safe buffer.
1110  */
1111 static void *btf_show_obj_safe(struct btf_show *show,
1112 			       const struct btf_type *t,
1113 			       void *data)
1114 {
1115 	const struct btf_type *rt;
1116 	int size_left, size;
1117 	void *safe = NULL;
1118 
1119 	if (show->flags & BTF_SHOW_UNSAFE)
1120 		return data;
1121 
1122 	rt = btf_resolve_size(show->btf, t, &size);
1123 	if (IS_ERR(rt)) {
1124 		show->state.status = PTR_ERR(rt);
1125 		return NULL;
1126 	}
1127 
1128 	/*
1129 	 * Is this toplevel object? If so, set total object size and
1130 	 * initialize pointers.  Otherwise check if we still fall within
1131 	 * our safe object data.
1132 	 */
1133 	if (show->state.depth == 0) {
1134 		show->obj.size = size;
1135 		show->obj.head = data;
1136 	} else {
1137 		/*
1138 		 * If the size of the current object is > our remaining
1139 		 * safe buffer we _may_ need to do a new copy.  However
1140 		 * consider the case of a nested struct; it's size pushes
1141 		 * us over the safe buffer limit, but showing any individual
1142 		 * struct members does not.  In such cases, we don't need
1143 		 * to initiate a fresh copy yet; however we definitely need
1144 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1145 		 * in our buffer, regardless of the current object size.
1146 		 * The logic here is that as we resolve types we will
1147 		 * hit a base type at some point, and we need to be sure
1148 		 * the next chunk of data is safely available to display
1149 		 * that type info safely.  We cannot rely on the size of
1150 		 * the current object here because it may be much larger
1151 		 * than our current buffer (e.g. task_struct is 8k).
1152 		 * All we want to do here is ensure that we can print the
1153 		 * next basic type, which we can if either
1154 		 * - the current type size is within the safe buffer; or
1155 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1156 		 *   the safe buffer.
1157 		 */
1158 		safe = __btf_show_obj_safe(show, data,
1159 					   min(size,
1160 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1161 	}
1162 
1163 	/*
1164 	 * We need a new copy to our safe object, either because we haven't
1165 	 * yet copied and are initializing safe data, or because the data
1166 	 * we want falls outside the boundaries of the safe object.
1167 	 */
1168 	if (!safe) {
1169 		size_left = btf_show_obj_size_left(show, data);
1170 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1171 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1172 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1173 							      data, size_left);
1174 		if (!show->state.status) {
1175 			show->obj.data = data;
1176 			safe = show->obj.safe;
1177 		}
1178 	}
1179 
1180 	return safe;
1181 }
1182 
1183 /*
1184  * Set the type we are starting to show and return a safe data pointer
1185  * to be used for showing the associated data.
1186  */
1187 static void *btf_show_start_type(struct btf_show *show,
1188 				 const struct btf_type *t,
1189 				 u32 type_id, void *data)
1190 {
1191 	show->state.type = t;
1192 	show->state.type_id = type_id;
1193 	show->state.name[0] = '\0';
1194 
1195 	return btf_show_obj_safe(show, t, data);
1196 }
1197 
1198 static void btf_show_end_type(struct btf_show *show)
1199 {
1200 	show->state.type = NULL;
1201 	show->state.type_id = 0;
1202 	show->state.name[0] = '\0';
1203 }
1204 
1205 static void *btf_show_start_aggr_type(struct btf_show *show,
1206 				      const struct btf_type *t,
1207 				      u32 type_id, void *data)
1208 {
1209 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1210 
1211 	if (!safe_data)
1212 		return safe_data;
1213 
1214 	btf_show(show, "%s%s%s", btf_show_indent(show),
1215 		 btf_show_name(show),
1216 		 btf_show_newline(show));
1217 	show->state.depth++;
1218 	return safe_data;
1219 }
1220 
1221 static void btf_show_end_aggr_type(struct btf_show *show,
1222 				   const char *suffix)
1223 {
1224 	show->state.depth--;
1225 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1226 		 btf_show_delim(show), btf_show_newline(show));
1227 	btf_show_end_type(show);
1228 }
1229 
1230 static void btf_show_start_member(struct btf_show *show,
1231 				  const struct btf_member *m)
1232 {
1233 	show->state.member = m;
1234 }
1235 
1236 static void btf_show_start_array_member(struct btf_show *show)
1237 {
1238 	show->state.array_member = 1;
1239 	btf_show_start_member(show, NULL);
1240 }
1241 
1242 static void btf_show_end_member(struct btf_show *show)
1243 {
1244 	show->state.member = NULL;
1245 }
1246 
1247 static void btf_show_end_array_member(struct btf_show *show)
1248 {
1249 	show->state.array_member = 0;
1250 	btf_show_end_member(show);
1251 }
1252 
1253 static void *btf_show_start_array_type(struct btf_show *show,
1254 				       const struct btf_type *t,
1255 				       u32 type_id,
1256 				       u16 array_encoding,
1257 				       void *data)
1258 {
1259 	show->state.array_encoding = array_encoding;
1260 	show->state.array_terminated = 0;
1261 	return btf_show_start_aggr_type(show, t, type_id, data);
1262 }
1263 
1264 static void btf_show_end_array_type(struct btf_show *show)
1265 {
1266 	show->state.array_encoding = 0;
1267 	show->state.array_terminated = 0;
1268 	btf_show_end_aggr_type(show, "]");
1269 }
1270 
1271 static void *btf_show_start_struct_type(struct btf_show *show,
1272 					const struct btf_type *t,
1273 					u32 type_id,
1274 					void *data)
1275 {
1276 	return btf_show_start_aggr_type(show, t, type_id, data);
1277 }
1278 
1279 static void btf_show_end_struct_type(struct btf_show *show)
1280 {
1281 	btf_show_end_aggr_type(show, "}");
1282 }
1283 
1284 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1285 					      const char *fmt, ...)
1286 {
1287 	va_list args;
1288 
1289 	va_start(args, fmt);
1290 	bpf_verifier_vlog(log, fmt, args);
1291 	va_end(args);
1292 }
1293 
1294 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1295 					    const char *fmt, ...)
1296 {
1297 	struct bpf_verifier_log *log = &env->log;
1298 	va_list args;
1299 
1300 	if (!bpf_verifier_log_needed(log))
1301 		return;
1302 
1303 	va_start(args, fmt);
1304 	bpf_verifier_vlog(log, fmt, args);
1305 	va_end(args);
1306 }
1307 
1308 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1309 						   const struct btf_type *t,
1310 						   bool log_details,
1311 						   const char *fmt, ...)
1312 {
1313 	struct bpf_verifier_log *log = &env->log;
1314 	u8 kind = BTF_INFO_KIND(t->info);
1315 	struct btf *btf = env->btf;
1316 	va_list args;
1317 
1318 	if (!bpf_verifier_log_needed(log))
1319 		return;
1320 
1321 	/* btf verifier prints all types it is processing via
1322 	 * btf_verifier_log_type(..., fmt = NULL).
1323 	 * Skip those prints for in-kernel BTF verification.
1324 	 */
1325 	if (log->level == BPF_LOG_KERNEL && !fmt)
1326 		return;
1327 
1328 	__btf_verifier_log(log, "[%u] %s %s%s",
1329 			   env->log_type_id,
1330 			   btf_kind_str[kind],
1331 			   __btf_name_by_offset(btf, t->name_off),
1332 			   log_details ? " " : "");
1333 
1334 	if (log_details)
1335 		btf_type_ops(t)->log_details(env, t);
1336 
1337 	if (fmt && *fmt) {
1338 		__btf_verifier_log(log, " ");
1339 		va_start(args, fmt);
1340 		bpf_verifier_vlog(log, fmt, args);
1341 		va_end(args);
1342 	}
1343 
1344 	__btf_verifier_log(log, "\n");
1345 }
1346 
1347 #define btf_verifier_log_type(env, t, ...) \
1348 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1349 #define btf_verifier_log_basic(env, t, ...) \
1350 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1351 
1352 __printf(4, 5)
1353 static void btf_verifier_log_member(struct btf_verifier_env *env,
1354 				    const struct btf_type *struct_type,
1355 				    const struct btf_member *member,
1356 				    const char *fmt, ...)
1357 {
1358 	struct bpf_verifier_log *log = &env->log;
1359 	struct btf *btf = env->btf;
1360 	va_list args;
1361 
1362 	if (!bpf_verifier_log_needed(log))
1363 		return;
1364 
1365 	if (log->level == BPF_LOG_KERNEL && !fmt)
1366 		return;
1367 	/* The CHECK_META phase already did a btf dump.
1368 	 *
1369 	 * If member is logged again, it must hit an error in
1370 	 * parsing this member.  It is useful to print out which
1371 	 * struct this member belongs to.
1372 	 */
1373 	if (env->phase != CHECK_META)
1374 		btf_verifier_log_type(env, struct_type, NULL);
1375 
1376 	if (btf_type_kflag(struct_type))
1377 		__btf_verifier_log(log,
1378 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1379 				   __btf_name_by_offset(btf, member->name_off),
1380 				   member->type,
1381 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1382 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1383 	else
1384 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1385 				   __btf_name_by_offset(btf, member->name_off),
1386 				   member->type, member->offset);
1387 
1388 	if (fmt && *fmt) {
1389 		__btf_verifier_log(log, " ");
1390 		va_start(args, fmt);
1391 		bpf_verifier_vlog(log, fmt, args);
1392 		va_end(args);
1393 	}
1394 
1395 	__btf_verifier_log(log, "\n");
1396 }
1397 
1398 __printf(4, 5)
1399 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1400 				 const struct btf_type *datasec_type,
1401 				 const struct btf_var_secinfo *vsi,
1402 				 const char *fmt, ...)
1403 {
1404 	struct bpf_verifier_log *log = &env->log;
1405 	va_list args;
1406 
1407 	if (!bpf_verifier_log_needed(log))
1408 		return;
1409 	if (log->level == BPF_LOG_KERNEL && !fmt)
1410 		return;
1411 	if (env->phase != CHECK_META)
1412 		btf_verifier_log_type(env, datasec_type, NULL);
1413 
1414 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1415 			   vsi->type, vsi->offset, vsi->size);
1416 	if (fmt && *fmt) {
1417 		__btf_verifier_log(log, " ");
1418 		va_start(args, fmt);
1419 		bpf_verifier_vlog(log, fmt, args);
1420 		va_end(args);
1421 	}
1422 
1423 	__btf_verifier_log(log, "\n");
1424 }
1425 
1426 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1427 				 u32 btf_data_size)
1428 {
1429 	struct bpf_verifier_log *log = &env->log;
1430 	const struct btf *btf = env->btf;
1431 	const struct btf_header *hdr;
1432 
1433 	if (!bpf_verifier_log_needed(log))
1434 		return;
1435 
1436 	if (log->level == BPF_LOG_KERNEL)
1437 		return;
1438 	hdr = &btf->hdr;
1439 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1440 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1441 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1442 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1443 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1444 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1445 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1446 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1447 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1448 }
1449 
1450 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1451 {
1452 	struct btf *btf = env->btf;
1453 
1454 	if (btf->types_size == btf->nr_types) {
1455 		/* Expand 'types' array */
1456 
1457 		struct btf_type **new_types;
1458 		u32 expand_by, new_size;
1459 
1460 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1461 			btf_verifier_log(env, "Exceeded max num of types");
1462 			return -E2BIG;
1463 		}
1464 
1465 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1466 		new_size = min_t(u32, BTF_MAX_TYPE,
1467 				 btf->types_size + expand_by);
1468 
1469 		new_types = kvcalloc(new_size, sizeof(*new_types),
1470 				     GFP_KERNEL | __GFP_NOWARN);
1471 		if (!new_types)
1472 			return -ENOMEM;
1473 
1474 		if (btf->nr_types == 0) {
1475 			if (!btf->base_btf) {
1476 				/* lazily init VOID type */
1477 				new_types[0] = &btf_void;
1478 				btf->nr_types++;
1479 			}
1480 		} else {
1481 			memcpy(new_types, btf->types,
1482 			       sizeof(*btf->types) * btf->nr_types);
1483 		}
1484 
1485 		kvfree(btf->types);
1486 		btf->types = new_types;
1487 		btf->types_size = new_size;
1488 	}
1489 
1490 	btf->types[btf->nr_types++] = t;
1491 
1492 	return 0;
1493 }
1494 
1495 static int btf_alloc_id(struct btf *btf)
1496 {
1497 	int id;
1498 
1499 	idr_preload(GFP_KERNEL);
1500 	spin_lock_bh(&btf_idr_lock);
1501 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1502 	if (id > 0)
1503 		btf->id = id;
1504 	spin_unlock_bh(&btf_idr_lock);
1505 	idr_preload_end();
1506 
1507 	if (WARN_ON_ONCE(!id))
1508 		return -ENOSPC;
1509 
1510 	return id > 0 ? 0 : id;
1511 }
1512 
1513 static void btf_free_id(struct btf *btf)
1514 {
1515 	unsigned long flags;
1516 
1517 	/*
1518 	 * In map-in-map, calling map_delete_elem() on outer
1519 	 * map will call bpf_map_put on the inner map.
1520 	 * It will then eventually call btf_free_id()
1521 	 * on the inner map.  Some of the map_delete_elem()
1522 	 * implementation may have irq disabled, so
1523 	 * we need to use the _irqsave() version instead
1524 	 * of the _bh() version.
1525 	 */
1526 	spin_lock_irqsave(&btf_idr_lock, flags);
1527 	idr_remove(&btf_idr, btf->id);
1528 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1529 }
1530 
1531 static void btf_free(struct btf *btf)
1532 {
1533 	kvfree(btf->types);
1534 	kvfree(btf->resolved_sizes);
1535 	kvfree(btf->resolved_ids);
1536 	kvfree(btf->data);
1537 	kfree(btf);
1538 }
1539 
1540 static void btf_free_rcu(struct rcu_head *rcu)
1541 {
1542 	struct btf *btf = container_of(rcu, struct btf, rcu);
1543 
1544 	btf_free(btf);
1545 }
1546 
1547 void btf_get(struct btf *btf)
1548 {
1549 	refcount_inc(&btf->refcnt);
1550 }
1551 
1552 void btf_put(struct btf *btf)
1553 {
1554 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1555 		btf_free_id(btf);
1556 		call_rcu(&btf->rcu, btf_free_rcu);
1557 	}
1558 }
1559 
1560 static int env_resolve_init(struct btf_verifier_env *env)
1561 {
1562 	struct btf *btf = env->btf;
1563 	u32 nr_types = btf->nr_types;
1564 	u32 *resolved_sizes = NULL;
1565 	u32 *resolved_ids = NULL;
1566 	u8 *visit_states = NULL;
1567 
1568 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1569 				  GFP_KERNEL | __GFP_NOWARN);
1570 	if (!resolved_sizes)
1571 		goto nomem;
1572 
1573 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1574 				GFP_KERNEL | __GFP_NOWARN);
1575 	if (!resolved_ids)
1576 		goto nomem;
1577 
1578 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1579 				GFP_KERNEL | __GFP_NOWARN);
1580 	if (!visit_states)
1581 		goto nomem;
1582 
1583 	btf->resolved_sizes = resolved_sizes;
1584 	btf->resolved_ids = resolved_ids;
1585 	env->visit_states = visit_states;
1586 
1587 	return 0;
1588 
1589 nomem:
1590 	kvfree(resolved_sizes);
1591 	kvfree(resolved_ids);
1592 	kvfree(visit_states);
1593 	return -ENOMEM;
1594 }
1595 
1596 static void btf_verifier_env_free(struct btf_verifier_env *env)
1597 {
1598 	kvfree(env->visit_states);
1599 	kfree(env);
1600 }
1601 
1602 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1603 				     const struct btf_type *next_type)
1604 {
1605 	switch (env->resolve_mode) {
1606 	case RESOLVE_TBD:
1607 		/* int, enum or void is a sink */
1608 		return !btf_type_needs_resolve(next_type);
1609 	case RESOLVE_PTR:
1610 		/* int, enum, void, struct, array, func or func_proto is a sink
1611 		 * for ptr
1612 		 */
1613 		return !btf_type_is_modifier(next_type) &&
1614 			!btf_type_is_ptr(next_type);
1615 	case RESOLVE_STRUCT_OR_ARRAY:
1616 		/* int, enum, void, ptr, func or func_proto is a sink
1617 		 * for struct and array
1618 		 */
1619 		return !btf_type_is_modifier(next_type) &&
1620 			!btf_type_is_array(next_type) &&
1621 			!btf_type_is_struct(next_type);
1622 	default:
1623 		BUG();
1624 	}
1625 }
1626 
1627 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1628 				 u32 type_id)
1629 {
1630 	/* base BTF types should be resolved by now */
1631 	if (type_id < env->btf->start_id)
1632 		return true;
1633 
1634 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1635 }
1636 
1637 static int env_stack_push(struct btf_verifier_env *env,
1638 			  const struct btf_type *t, u32 type_id)
1639 {
1640 	const struct btf *btf = env->btf;
1641 	struct resolve_vertex *v;
1642 
1643 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1644 		return -E2BIG;
1645 
1646 	if (type_id < btf->start_id
1647 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1648 		return -EEXIST;
1649 
1650 	env->visit_states[type_id - btf->start_id] = VISITED;
1651 
1652 	v = &env->stack[env->top_stack++];
1653 	v->t = t;
1654 	v->type_id = type_id;
1655 	v->next_member = 0;
1656 
1657 	if (env->resolve_mode == RESOLVE_TBD) {
1658 		if (btf_type_is_ptr(t))
1659 			env->resolve_mode = RESOLVE_PTR;
1660 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1661 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static void env_stack_set_next_member(struct btf_verifier_env *env,
1668 				      u16 next_member)
1669 {
1670 	env->stack[env->top_stack - 1].next_member = next_member;
1671 }
1672 
1673 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1674 				   u32 resolved_type_id,
1675 				   u32 resolved_size)
1676 {
1677 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1678 	struct btf *btf = env->btf;
1679 
1680 	type_id -= btf->start_id; /* adjust to local type id */
1681 	btf->resolved_sizes[type_id] = resolved_size;
1682 	btf->resolved_ids[type_id] = resolved_type_id;
1683 	env->visit_states[type_id] = RESOLVED;
1684 }
1685 
1686 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1687 {
1688 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1689 }
1690 
1691 /* Resolve the size of a passed-in "type"
1692  *
1693  * type: is an array (e.g. u32 array[x][y])
1694  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1695  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1696  *             corresponds to the return type.
1697  * *elem_type: u32
1698  * *elem_id: id of u32
1699  * *total_nelems: (x * y).  Hence, individual elem size is
1700  *                (*type_size / *total_nelems)
1701  * *type_id: id of type if it's changed within the function, 0 if not
1702  *
1703  * type: is not an array (e.g. const struct X)
1704  * return type: type "struct X"
1705  * *type_size: sizeof(struct X)
1706  * *elem_type: same as return type ("struct X")
1707  * *elem_id: 0
1708  * *total_nelems: 1
1709  * *type_id: id of type if it's changed within the function, 0 if not
1710  */
1711 static const struct btf_type *
1712 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1713 		   u32 *type_size, const struct btf_type **elem_type,
1714 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1715 {
1716 	const struct btf_type *array_type = NULL;
1717 	const struct btf_array *array = NULL;
1718 	u32 i, size, nelems = 1, id = 0;
1719 
1720 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1721 		switch (BTF_INFO_KIND(type->info)) {
1722 		/* type->size can be used */
1723 		case BTF_KIND_INT:
1724 		case BTF_KIND_STRUCT:
1725 		case BTF_KIND_UNION:
1726 		case BTF_KIND_ENUM:
1727 		case BTF_KIND_FLOAT:
1728 			size = type->size;
1729 			goto resolved;
1730 
1731 		case BTF_KIND_PTR:
1732 			size = sizeof(void *);
1733 			goto resolved;
1734 
1735 		/* Modifiers */
1736 		case BTF_KIND_TYPEDEF:
1737 		case BTF_KIND_VOLATILE:
1738 		case BTF_KIND_CONST:
1739 		case BTF_KIND_RESTRICT:
1740 			id = type->type;
1741 			type = btf_type_by_id(btf, type->type);
1742 			break;
1743 
1744 		case BTF_KIND_ARRAY:
1745 			if (!array_type)
1746 				array_type = type;
1747 			array = btf_type_array(type);
1748 			if (nelems && array->nelems > U32_MAX / nelems)
1749 				return ERR_PTR(-EINVAL);
1750 			nelems *= array->nelems;
1751 			type = btf_type_by_id(btf, array->type);
1752 			break;
1753 
1754 		/* type without size */
1755 		default:
1756 			return ERR_PTR(-EINVAL);
1757 		}
1758 	}
1759 
1760 	return ERR_PTR(-EINVAL);
1761 
1762 resolved:
1763 	if (nelems && size > U32_MAX / nelems)
1764 		return ERR_PTR(-EINVAL);
1765 
1766 	*type_size = nelems * size;
1767 	if (total_nelems)
1768 		*total_nelems = nelems;
1769 	if (elem_type)
1770 		*elem_type = type;
1771 	if (elem_id)
1772 		*elem_id = array ? array->type : 0;
1773 	if (type_id && id)
1774 		*type_id = id;
1775 
1776 	return array_type ? : type;
1777 }
1778 
1779 const struct btf_type *
1780 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1781 		 u32 *type_size)
1782 {
1783 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1784 }
1785 
1786 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1787 {
1788 	while (type_id < btf->start_id)
1789 		btf = btf->base_btf;
1790 
1791 	return btf->resolved_ids[type_id - btf->start_id];
1792 }
1793 
1794 /* The input param "type_id" must point to a needs_resolve type */
1795 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1796 						  u32 *type_id)
1797 {
1798 	*type_id = btf_resolved_type_id(btf, *type_id);
1799 	return btf_type_by_id(btf, *type_id);
1800 }
1801 
1802 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1803 {
1804 	while (type_id < btf->start_id)
1805 		btf = btf->base_btf;
1806 
1807 	return btf->resolved_sizes[type_id - btf->start_id];
1808 }
1809 
1810 const struct btf_type *btf_type_id_size(const struct btf *btf,
1811 					u32 *type_id, u32 *ret_size)
1812 {
1813 	const struct btf_type *size_type;
1814 	u32 size_type_id = *type_id;
1815 	u32 size = 0;
1816 
1817 	size_type = btf_type_by_id(btf, size_type_id);
1818 	if (btf_type_nosize_or_null(size_type))
1819 		return NULL;
1820 
1821 	if (btf_type_has_size(size_type)) {
1822 		size = size_type->size;
1823 	} else if (btf_type_is_array(size_type)) {
1824 		size = btf_resolved_type_size(btf, size_type_id);
1825 	} else if (btf_type_is_ptr(size_type)) {
1826 		size = sizeof(void *);
1827 	} else {
1828 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1829 				 !btf_type_is_var(size_type)))
1830 			return NULL;
1831 
1832 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1833 		size_type = btf_type_by_id(btf, size_type_id);
1834 		if (btf_type_nosize_or_null(size_type))
1835 			return NULL;
1836 		else if (btf_type_has_size(size_type))
1837 			size = size_type->size;
1838 		else if (btf_type_is_array(size_type))
1839 			size = btf_resolved_type_size(btf, size_type_id);
1840 		else if (btf_type_is_ptr(size_type))
1841 			size = sizeof(void *);
1842 		else
1843 			return NULL;
1844 	}
1845 
1846 	*type_id = size_type_id;
1847 	if (ret_size)
1848 		*ret_size = size;
1849 
1850 	return size_type;
1851 }
1852 
1853 static int btf_df_check_member(struct btf_verifier_env *env,
1854 			       const struct btf_type *struct_type,
1855 			       const struct btf_member *member,
1856 			       const struct btf_type *member_type)
1857 {
1858 	btf_verifier_log_basic(env, struct_type,
1859 			       "Unsupported check_member");
1860 	return -EINVAL;
1861 }
1862 
1863 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1864 				     const struct btf_type *struct_type,
1865 				     const struct btf_member *member,
1866 				     const struct btf_type *member_type)
1867 {
1868 	btf_verifier_log_basic(env, struct_type,
1869 			       "Unsupported check_kflag_member");
1870 	return -EINVAL;
1871 }
1872 
1873 /* Used for ptr, array struct/union and float type members.
1874  * int, enum and modifier types have their specific callback functions.
1875  */
1876 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1877 					  const struct btf_type *struct_type,
1878 					  const struct btf_member *member,
1879 					  const struct btf_type *member_type)
1880 {
1881 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1882 		btf_verifier_log_member(env, struct_type, member,
1883 					"Invalid member bitfield_size");
1884 		return -EINVAL;
1885 	}
1886 
1887 	/* bitfield size is 0, so member->offset represents bit offset only.
1888 	 * It is safe to call non kflag check_member variants.
1889 	 */
1890 	return btf_type_ops(member_type)->check_member(env, struct_type,
1891 						       member,
1892 						       member_type);
1893 }
1894 
1895 static int btf_df_resolve(struct btf_verifier_env *env,
1896 			  const struct resolve_vertex *v)
1897 {
1898 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1899 	return -EINVAL;
1900 }
1901 
1902 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1903 			u32 type_id, void *data, u8 bits_offsets,
1904 			struct btf_show *show)
1905 {
1906 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1907 }
1908 
1909 static int btf_int_check_member(struct btf_verifier_env *env,
1910 				const struct btf_type *struct_type,
1911 				const struct btf_member *member,
1912 				const struct btf_type *member_type)
1913 {
1914 	u32 int_data = btf_type_int(member_type);
1915 	u32 struct_bits_off = member->offset;
1916 	u32 struct_size = struct_type->size;
1917 	u32 nr_copy_bits;
1918 	u32 bytes_offset;
1919 
1920 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1921 		btf_verifier_log_member(env, struct_type, member,
1922 					"bits_offset exceeds U32_MAX");
1923 		return -EINVAL;
1924 	}
1925 
1926 	struct_bits_off += BTF_INT_OFFSET(int_data);
1927 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1928 	nr_copy_bits = BTF_INT_BITS(int_data) +
1929 		BITS_PER_BYTE_MASKED(struct_bits_off);
1930 
1931 	if (nr_copy_bits > BITS_PER_U128) {
1932 		btf_verifier_log_member(env, struct_type, member,
1933 					"nr_copy_bits exceeds 128");
1934 		return -EINVAL;
1935 	}
1936 
1937 	if (struct_size < bytes_offset ||
1938 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1939 		btf_verifier_log_member(env, struct_type, member,
1940 					"Member exceeds struct_size");
1941 		return -EINVAL;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1948 				      const struct btf_type *struct_type,
1949 				      const struct btf_member *member,
1950 				      const struct btf_type *member_type)
1951 {
1952 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1953 	u32 int_data = btf_type_int(member_type);
1954 	u32 struct_size = struct_type->size;
1955 	u32 nr_copy_bits;
1956 
1957 	/* a regular int type is required for the kflag int member */
1958 	if (!btf_type_int_is_regular(member_type)) {
1959 		btf_verifier_log_member(env, struct_type, member,
1960 					"Invalid member base type");
1961 		return -EINVAL;
1962 	}
1963 
1964 	/* check sanity of bitfield size */
1965 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1966 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1967 	nr_int_data_bits = BTF_INT_BITS(int_data);
1968 	if (!nr_bits) {
1969 		/* Not a bitfield member, member offset must be at byte
1970 		 * boundary.
1971 		 */
1972 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1973 			btf_verifier_log_member(env, struct_type, member,
1974 						"Invalid member offset");
1975 			return -EINVAL;
1976 		}
1977 
1978 		nr_bits = nr_int_data_bits;
1979 	} else if (nr_bits > nr_int_data_bits) {
1980 		btf_verifier_log_member(env, struct_type, member,
1981 					"Invalid member bitfield_size");
1982 		return -EINVAL;
1983 	}
1984 
1985 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1986 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1987 	if (nr_copy_bits > BITS_PER_U128) {
1988 		btf_verifier_log_member(env, struct_type, member,
1989 					"nr_copy_bits exceeds 128");
1990 		return -EINVAL;
1991 	}
1992 
1993 	if (struct_size < bytes_offset ||
1994 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1995 		btf_verifier_log_member(env, struct_type, member,
1996 					"Member exceeds struct_size");
1997 		return -EINVAL;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2004 			      const struct btf_type *t,
2005 			      u32 meta_left)
2006 {
2007 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2008 	u16 encoding;
2009 
2010 	if (meta_left < meta_needed) {
2011 		btf_verifier_log_basic(env, t,
2012 				       "meta_left:%u meta_needed:%u",
2013 				       meta_left, meta_needed);
2014 		return -EINVAL;
2015 	}
2016 
2017 	if (btf_type_vlen(t)) {
2018 		btf_verifier_log_type(env, t, "vlen != 0");
2019 		return -EINVAL;
2020 	}
2021 
2022 	if (btf_type_kflag(t)) {
2023 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2024 		return -EINVAL;
2025 	}
2026 
2027 	int_data = btf_type_int(t);
2028 	if (int_data & ~BTF_INT_MASK) {
2029 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2030 				       int_data);
2031 		return -EINVAL;
2032 	}
2033 
2034 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2035 
2036 	if (nr_bits > BITS_PER_U128) {
2037 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2038 				      BITS_PER_U128);
2039 		return -EINVAL;
2040 	}
2041 
2042 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2043 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2044 		return -EINVAL;
2045 	}
2046 
2047 	/*
2048 	 * Only one of the encoding bits is allowed and it
2049 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2050 	 * Multiple bits can be allowed later if it is found
2051 	 * to be insufficient.
2052 	 */
2053 	encoding = BTF_INT_ENCODING(int_data);
2054 	if (encoding &&
2055 	    encoding != BTF_INT_SIGNED &&
2056 	    encoding != BTF_INT_CHAR &&
2057 	    encoding != BTF_INT_BOOL) {
2058 		btf_verifier_log_type(env, t, "Unsupported encoding");
2059 		return -ENOTSUPP;
2060 	}
2061 
2062 	btf_verifier_log_type(env, t, NULL);
2063 
2064 	return meta_needed;
2065 }
2066 
2067 static void btf_int_log(struct btf_verifier_env *env,
2068 			const struct btf_type *t)
2069 {
2070 	int int_data = btf_type_int(t);
2071 
2072 	btf_verifier_log(env,
2073 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2074 			 t->size, BTF_INT_OFFSET(int_data),
2075 			 BTF_INT_BITS(int_data),
2076 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2077 }
2078 
2079 static void btf_int128_print(struct btf_show *show, void *data)
2080 {
2081 	/* data points to a __int128 number.
2082 	 * Suppose
2083 	 *     int128_num = *(__int128 *)data;
2084 	 * The below formulas shows what upper_num and lower_num represents:
2085 	 *     upper_num = int128_num >> 64;
2086 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2087 	 */
2088 	u64 upper_num, lower_num;
2089 
2090 #ifdef __BIG_ENDIAN_BITFIELD
2091 	upper_num = *(u64 *)data;
2092 	lower_num = *(u64 *)(data + 8);
2093 #else
2094 	upper_num = *(u64 *)(data + 8);
2095 	lower_num = *(u64 *)data;
2096 #endif
2097 	if (upper_num == 0)
2098 		btf_show_type_value(show, "0x%llx", lower_num);
2099 	else
2100 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2101 				     lower_num);
2102 }
2103 
2104 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2105 			     u16 right_shift_bits)
2106 {
2107 	u64 upper_num, lower_num;
2108 
2109 #ifdef __BIG_ENDIAN_BITFIELD
2110 	upper_num = print_num[0];
2111 	lower_num = print_num[1];
2112 #else
2113 	upper_num = print_num[1];
2114 	lower_num = print_num[0];
2115 #endif
2116 
2117 	/* shake out un-needed bits by shift/or operations */
2118 	if (left_shift_bits >= 64) {
2119 		upper_num = lower_num << (left_shift_bits - 64);
2120 		lower_num = 0;
2121 	} else {
2122 		upper_num = (upper_num << left_shift_bits) |
2123 			    (lower_num >> (64 - left_shift_bits));
2124 		lower_num = lower_num << left_shift_bits;
2125 	}
2126 
2127 	if (right_shift_bits >= 64) {
2128 		lower_num = upper_num >> (right_shift_bits - 64);
2129 		upper_num = 0;
2130 	} else {
2131 		lower_num = (lower_num >> right_shift_bits) |
2132 			    (upper_num << (64 - right_shift_bits));
2133 		upper_num = upper_num >> right_shift_bits;
2134 	}
2135 
2136 #ifdef __BIG_ENDIAN_BITFIELD
2137 	print_num[0] = upper_num;
2138 	print_num[1] = lower_num;
2139 #else
2140 	print_num[0] = lower_num;
2141 	print_num[1] = upper_num;
2142 #endif
2143 }
2144 
2145 static void btf_bitfield_show(void *data, u8 bits_offset,
2146 			      u8 nr_bits, struct btf_show *show)
2147 {
2148 	u16 left_shift_bits, right_shift_bits;
2149 	u8 nr_copy_bytes;
2150 	u8 nr_copy_bits;
2151 	u64 print_num[2] = {};
2152 
2153 	nr_copy_bits = nr_bits + bits_offset;
2154 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2155 
2156 	memcpy(print_num, data, nr_copy_bytes);
2157 
2158 #ifdef __BIG_ENDIAN_BITFIELD
2159 	left_shift_bits = bits_offset;
2160 #else
2161 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2162 #endif
2163 	right_shift_bits = BITS_PER_U128 - nr_bits;
2164 
2165 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2166 	btf_int128_print(show, print_num);
2167 }
2168 
2169 
2170 static void btf_int_bits_show(const struct btf *btf,
2171 			      const struct btf_type *t,
2172 			      void *data, u8 bits_offset,
2173 			      struct btf_show *show)
2174 {
2175 	u32 int_data = btf_type_int(t);
2176 	u8 nr_bits = BTF_INT_BITS(int_data);
2177 	u8 total_bits_offset;
2178 
2179 	/*
2180 	 * bits_offset is at most 7.
2181 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2182 	 */
2183 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2184 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2185 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2186 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2187 }
2188 
2189 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2190 			 u32 type_id, void *data, u8 bits_offset,
2191 			 struct btf_show *show)
2192 {
2193 	u32 int_data = btf_type_int(t);
2194 	u8 encoding = BTF_INT_ENCODING(int_data);
2195 	bool sign = encoding & BTF_INT_SIGNED;
2196 	u8 nr_bits = BTF_INT_BITS(int_data);
2197 	void *safe_data;
2198 
2199 	safe_data = btf_show_start_type(show, t, type_id, data);
2200 	if (!safe_data)
2201 		return;
2202 
2203 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2204 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2205 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2206 		goto out;
2207 	}
2208 
2209 	switch (nr_bits) {
2210 	case 128:
2211 		btf_int128_print(show, safe_data);
2212 		break;
2213 	case 64:
2214 		if (sign)
2215 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2216 		else
2217 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2218 		break;
2219 	case 32:
2220 		if (sign)
2221 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2222 		else
2223 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2224 		break;
2225 	case 16:
2226 		if (sign)
2227 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2228 		else
2229 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2230 		break;
2231 	case 8:
2232 		if (show->state.array_encoding == BTF_INT_CHAR) {
2233 			/* check for null terminator */
2234 			if (show->state.array_terminated)
2235 				break;
2236 			if (*(char *)data == '\0') {
2237 				show->state.array_terminated = 1;
2238 				break;
2239 			}
2240 			if (isprint(*(char *)data)) {
2241 				btf_show_type_value(show, "'%c'",
2242 						    *(char *)safe_data);
2243 				break;
2244 			}
2245 		}
2246 		if (sign)
2247 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2248 		else
2249 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2250 		break;
2251 	default:
2252 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2253 		break;
2254 	}
2255 out:
2256 	btf_show_end_type(show);
2257 }
2258 
2259 static const struct btf_kind_operations int_ops = {
2260 	.check_meta = btf_int_check_meta,
2261 	.resolve = btf_df_resolve,
2262 	.check_member = btf_int_check_member,
2263 	.check_kflag_member = btf_int_check_kflag_member,
2264 	.log_details = btf_int_log,
2265 	.show = btf_int_show,
2266 };
2267 
2268 static int btf_modifier_check_member(struct btf_verifier_env *env,
2269 				     const struct btf_type *struct_type,
2270 				     const struct btf_member *member,
2271 				     const struct btf_type *member_type)
2272 {
2273 	const struct btf_type *resolved_type;
2274 	u32 resolved_type_id = member->type;
2275 	struct btf_member resolved_member;
2276 	struct btf *btf = env->btf;
2277 
2278 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2279 	if (!resolved_type) {
2280 		btf_verifier_log_member(env, struct_type, member,
2281 					"Invalid member");
2282 		return -EINVAL;
2283 	}
2284 
2285 	resolved_member = *member;
2286 	resolved_member.type = resolved_type_id;
2287 
2288 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2289 							 &resolved_member,
2290 							 resolved_type);
2291 }
2292 
2293 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2294 					   const struct btf_type *struct_type,
2295 					   const struct btf_member *member,
2296 					   const struct btf_type *member_type)
2297 {
2298 	const struct btf_type *resolved_type;
2299 	u32 resolved_type_id = member->type;
2300 	struct btf_member resolved_member;
2301 	struct btf *btf = env->btf;
2302 
2303 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2304 	if (!resolved_type) {
2305 		btf_verifier_log_member(env, struct_type, member,
2306 					"Invalid member");
2307 		return -EINVAL;
2308 	}
2309 
2310 	resolved_member = *member;
2311 	resolved_member.type = resolved_type_id;
2312 
2313 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2314 							       &resolved_member,
2315 							       resolved_type);
2316 }
2317 
2318 static int btf_ptr_check_member(struct btf_verifier_env *env,
2319 				const struct btf_type *struct_type,
2320 				const struct btf_member *member,
2321 				const struct btf_type *member_type)
2322 {
2323 	u32 struct_size, struct_bits_off, bytes_offset;
2324 
2325 	struct_size = struct_type->size;
2326 	struct_bits_off = member->offset;
2327 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2328 
2329 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2330 		btf_verifier_log_member(env, struct_type, member,
2331 					"Member is not byte aligned");
2332 		return -EINVAL;
2333 	}
2334 
2335 	if (struct_size - bytes_offset < sizeof(void *)) {
2336 		btf_verifier_log_member(env, struct_type, member,
2337 					"Member exceeds struct_size");
2338 		return -EINVAL;
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2345 				   const struct btf_type *t,
2346 				   u32 meta_left)
2347 {
2348 	if (btf_type_vlen(t)) {
2349 		btf_verifier_log_type(env, t, "vlen != 0");
2350 		return -EINVAL;
2351 	}
2352 
2353 	if (btf_type_kflag(t)) {
2354 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2355 		return -EINVAL;
2356 	}
2357 
2358 	if (!BTF_TYPE_ID_VALID(t->type)) {
2359 		btf_verifier_log_type(env, t, "Invalid type_id");
2360 		return -EINVAL;
2361 	}
2362 
2363 	/* typedef type must have a valid name, and other ref types,
2364 	 * volatile, const, restrict, should have a null name.
2365 	 */
2366 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2367 		if (!t->name_off ||
2368 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2369 			btf_verifier_log_type(env, t, "Invalid name");
2370 			return -EINVAL;
2371 		}
2372 	} else {
2373 		if (t->name_off) {
2374 			btf_verifier_log_type(env, t, "Invalid name");
2375 			return -EINVAL;
2376 		}
2377 	}
2378 
2379 	btf_verifier_log_type(env, t, NULL);
2380 
2381 	return 0;
2382 }
2383 
2384 static int btf_modifier_resolve(struct btf_verifier_env *env,
2385 				const struct resolve_vertex *v)
2386 {
2387 	const struct btf_type *t = v->t;
2388 	const struct btf_type *next_type;
2389 	u32 next_type_id = t->type;
2390 	struct btf *btf = env->btf;
2391 
2392 	next_type = btf_type_by_id(btf, next_type_id);
2393 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2394 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2395 		return -EINVAL;
2396 	}
2397 
2398 	if (!env_type_is_resolve_sink(env, next_type) &&
2399 	    !env_type_is_resolved(env, next_type_id))
2400 		return env_stack_push(env, next_type, next_type_id);
2401 
2402 	/* Figure out the resolved next_type_id with size.
2403 	 * They will be stored in the current modifier's
2404 	 * resolved_ids and resolved_sizes such that it can
2405 	 * save us a few type-following when we use it later (e.g. in
2406 	 * pretty print).
2407 	 */
2408 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2409 		if (env_type_is_resolved(env, next_type_id))
2410 			next_type = btf_type_id_resolve(btf, &next_type_id);
2411 
2412 		/* "typedef void new_void", "const void"...etc */
2413 		if (!btf_type_is_void(next_type) &&
2414 		    !btf_type_is_fwd(next_type) &&
2415 		    !btf_type_is_func_proto(next_type)) {
2416 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2417 			return -EINVAL;
2418 		}
2419 	}
2420 
2421 	env_stack_pop_resolved(env, next_type_id, 0);
2422 
2423 	return 0;
2424 }
2425 
2426 static int btf_var_resolve(struct btf_verifier_env *env,
2427 			   const struct resolve_vertex *v)
2428 {
2429 	const struct btf_type *next_type;
2430 	const struct btf_type *t = v->t;
2431 	u32 next_type_id = t->type;
2432 	struct btf *btf = env->btf;
2433 
2434 	next_type = btf_type_by_id(btf, next_type_id);
2435 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2436 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2437 		return -EINVAL;
2438 	}
2439 
2440 	if (!env_type_is_resolve_sink(env, next_type) &&
2441 	    !env_type_is_resolved(env, next_type_id))
2442 		return env_stack_push(env, next_type, next_type_id);
2443 
2444 	if (btf_type_is_modifier(next_type)) {
2445 		const struct btf_type *resolved_type;
2446 		u32 resolved_type_id;
2447 
2448 		resolved_type_id = next_type_id;
2449 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2450 
2451 		if (btf_type_is_ptr(resolved_type) &&
2452 		    !env_type_is_resolve_sink(env, resolved_type) &&
2453 		    !env_type_is_resolved(env, resolved_type_id))
2454 			return env_stack_push(env, resolved_type,
2455 					      resolved_type_id);
2456 	}
2457 
2458 	/* We must resolve to something concrete at this point, no
2459 	 * forward types or similar that would resolve to size of
2460 	 * zero is allowed.
2461 	 */
2462 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2463 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2464 		return -EINVAL;
2465 	}
2466 
2467 	env_stack_pop_resolved(env, next_type_id, 0);
2468 
2469 	return 0;
2470 }
2471 
2472 static int btf_ptr_resolve(struct btf_verifier_env *env,
2473 			   const struct resolve_vertex *v)
2474 {
2475 	const struct btf_type *next_type;
2476 	const struct btf_type *t = v->t;
2477 	u32 next_type_id = t->type;
2478 	struct btf *btf = env->btf;
2479 
2480 	next_type = btf_type_by_id(btf, next_type_id);
2481 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2482 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2483 		return -EINVAL;
2484 	}
2485 
2486 	if (!env_type_is_resolve_sink(env, next_type) &&
2487 	    !env_type_is_resolved(env, next_type_id))
2488 		return env_stack_push(env, next_type, next_type_id);
2489 
2490 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2491 	 * the modifier may have stopped resolving when it was resolved
2492 	 * to a ptr (last-resolved-ptr).
2493 	 *
2494 	 * We now need to continue from the last-resolved-ptr to
2495 	 * ensure the last-resolved-ptr will not referring back to
2496 	 * the currenct ptr (t).
2497 	 */
2498 	if (btf_type_is_modifier(next_type)) {
2499 		const struct btf_type *resolved_type;
2500 		u32 resolved_type_id;
2501 
2502 		resolved_type_id = next_type_id;
2503 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2504 
2505 		if (btf_type_is_ptr(resolved_type) &&
2506 		    !env_type_is_resolve_sink(env, resolved_type) &&
2507 		    !env_type_is_resolved(env, resolved_type_id))
2508 			return env_stack_push(env, resolved_type,
2509 					      resolved_type_id);
2510 	}
2511 
2512 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2513 		if (env_type_is_resolved(env, next_type_id))
2514 			next_type = btf_type_id_resolve(btf, &next_type_id);
2515 
2516 		if (!btf_type_is_void(next_type) &&
2517 		    !btf_type_is_fwd(next_type) &&
2518 		    !btf_type_is_func_proto(next_type)) {
2519 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2520 			return -EINVAL;
2521 		}
2522 	}
2523 
2524 	env_stack_pop_resolved(env, next_type_id, 0);
2525 
2526 	return 0;
2527 }
2528 
2529 static void btf_modifier_show(const struct btf *btf,
2530 			      const struct btf_type *t,
2531 			      u32 type_id, void *data,
2532 			      u8 bits_offset, struct btf_show *show)
2533 {
2534 	if (btf->resolved_ids)
2535 		t = btf_type_id_resolve(btf, &type_id);
2536 	else
2537 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2538 
2539 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2540 }
2541 
2542 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2543 			 u32 type_id, void *data, u8 bits_offset,
2544 			 struct btf_show *show)
2545 {
2546 	t = btf_type_id_resolve(btf, &type_id);
2547 
2548 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2549 }
2550 
2551 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2552 			 u32 type_id, void *data, u8 bits_offset,
2553 			 struct btf_show *show)
2554 {
2555 	void *safe_data;
2556 
2557 	safe_data = btf_show_start_type(show, t, type_id, data);
2558 	if (!safe_data)
2559 		return;
2560 
2561 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2562 	if (show->flags & BTF_SHOW_PTR_RAW)
2563 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2564 	else
2565 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2566 	btf_show_end_type(show);
2567 }
2568 
2569 static void btf_ref_type_log(struct btf_verifier_env *env,
2570 			     const struct btf_type *t)
2571 {
2572 	btf_verifier_log(env, "type_id=%u", t->type);
2573 }
2574 
2575 static struct btf_kind_operations modifier_ops = {
2576 	.check_meta = btf_ref_type_check_meta,
2577 	.resolve = btf_modifier_resolve,
2578 	.check_member = btf_modifier_check_member,
2579 	.check_kflag_member = btf_modifier_check_kflag_member,
2580 	.log_details = btf_ref_type_log,
2581 	.show = btf_modifier_show,
2582 };
2583 
2584 static struct btf_kind_operations ptr_ops = {
2585 	.check_meta = btf_ref_type_check_meta,
2586 	.resolve = btf_ptr_resolve,
2587 	.check_member = btf_ptr_check_member,
2588 	.check_kflag_member = btf_generic_check_kflag_member,
2589 	.log_details = btf_ref_type_log,
2590 	.show = btf_ptr_show,
2591 };
2592 
2593 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2594 			      const struct btf_type *t,
2595 			      u32 meta_left)
2596 {
2597 	if (btf_type_vlen(t)) {
2598 		btf_verifier_log_type(env, t, "vlen != 0");
2599 		return -EINVAL;
2600 	}
2601 
2602 	if (t->type) {
2603 		btf_verifier_log_type(env, t, "type != 0");
2604 		return -EINVAL;
2605 	}
2606 
2607 	/* fwd type must have a valid name */
2608 	if (!t->name_off ||
2609 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2610 		btf_verifier_log_type(env, t, "Invalid name");
2611 		return -EINVAL;
2612 	}
2613 
2614 	btf_verifier_log_type(env, t, NULL);
2615 
2616 	return 0;
2617 }
2618 
2619 static void btf_fwd_type_log(struct btf_verifier_env *env,
2620 			     const struct btf_type *t)
2621 {
2622 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2623 }
2624 
2625 static struct btf_kind_operations fwd_ops = {
2626 	.check_meta = btf_fwd_check_meta,
2627 	.resolve = btf_df_resolve,
2628 	.check_member = btf_df_check_member,
2629 	.check_kflag_member = btf_df_check_kflag_member,
2630 	.log_details = btf_fwd_type_log,
2631 	.show = btf_df_show,
2632 };
2633 
2634 static int btf_array_check_member(struct btf_verifier_env *env,
2635 				  const struct btf_type *struct_type,
2636 				  const struct btf_member *member,
2637 				  const struct btf_type *member_type)
2638 {
2639 	u32 struct_bits_off = member->offset;
2640 	u32 struct_size, bytes_offset;
2641 	u32 array_type_id, array_size;
2642 	struct btf *btf = env->btf;
2643 
2644 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2645 		btf_verifier_log_member(env, struct_type, member,
2646 					"Member is not byte aligned");
2647 		return -EINVAL;
2648 	}
2649 
2650 	array_type_id = member->type;
2651 	btf_type_id_size(btf, &array_type_id, &array_size);
2652 	struct_size = struct_type->size;
2653 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2654 	if (struct_size - bytes_offset < array_size) {
2655 		btf_verifier_log_member(env, struct_type, member,
2656 					"Member exceeds struct_size");
2657 		return -EINVAL;
2658 	}
2659 
2660 	return 0;
2661 }
2662 
2663 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2664 				const struct btf_type *t,
2665 				u32 meta_left)
2666 {
2667 	const struct btf_array *array = btf_type_array(t);
2668 	u32 meta_needed = sizeof(*array);
2669 
2670 	if (meta_left < meta_needed) {
2671 		btf_verifier_log_basic(env, t,
2672 				       "meta_left:%u meta_needed:%u",
2673 				       meta_left, meta_needed);
2674 		return -EINVAL;
2675 	}
2676 
2677 	/* array type should not have a name */
2678 	if (t->name_off) {
2679 		btf_verifier_log_type(env, t, "Invalid name");
2680 		return -EINVAL;
2681 	}
2682 
2683 	if (btf_type_vlen(t)) {
2684 		btf_verifier_log_type(env, t, "vlen != 0");
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (btf_type_kflag(t)) {
2689 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2690 		return -EINVAL;
2691 	}
2692 
2693 	if (t->size) {
2694 		btf_verifier_log_type(env, t, "size != 0");
2695 		return -EINVAL;
2696 	}
2697 
2698 	/* Array elem type and index type cannot be in type void,
2699 	 * so !array->type and !array->index_type are not allowed.
2700 	 */
2701 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2702 		btf_verifier_log_type(env, t, "Invalid elem");
2703 		return -EINVAL;
2704 	}
2705 
2706 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2707 		btf_verifier_log_type(env, t, "Invalid index");
2708 		return -EINVAL;
2709 	}
2710 
2711 	btf_verifier_log_type(env, t, NULL);
2712 
2713 	return meta_needed;
2714 }
2715 
2716 static int btf_array_resolve(struct btf_verifier_env *env,
2717 			     const struct resolve_vertex *v)
2718 {
2719 	const struct btf_array *array = btf_type_array(v->t);
2720 	const struct btf_type *elem_type, *index_type;
2721 	u32 elem_type_id, index_type_id;
2722 	struct btf *btf = env->btf;
2723 	u32 elem_size;
2724 
2725 	/* Check array->index_type */
2726 	index_type_id = array->index_type;
2727 	index_type = btf_type_by_id(btf, index_type_id);
2728 	if (btf_type_nosize_or_null(index_type) ||
2729 	    btf_type_is_resolve_source_only(index_type)) {
2730 		btf_verifier_log_type(env, v->t, "Invalid index");
2731 		return -EINVAL;
2732 	}
2733 
2734 	if (!env_type_is_resolve_sink(env, index_type) &&
2735 	    !env_type_is_resolved(env, index_type_id))
2736 		return env_stack_push(env, index_type, index_type_id);
2737 
2738 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2739 	if (!index_type || !btf_type_is_int(index_type) ||
2740 	    !btf_type_int_is_regular(index_type)) {
2741 		btf_verifier_log_type(env, v->t, "Invalid index");
2742 		return -EINVAL;
2743 	}
2744 
2745 	/* Check array->type */
2746 	elem_type_id = array->type;
2747 	elem_type = btf_type_by_id(btf, elem_type_id);
2748 	if (btf_type_nosize_or_null(elem_type) ||
2749 	    btf_type_is_resolve_source_only(elem_type)) {
2750 		btf_verifier_log_type(env, v->t,
2751 				      "Invalid elem");
2752 		return -EINVAL;
2753 	}
2754 
2755 	if (!env_type_is_resolve_sink(env, elem_type) &&
2756 	    !env_type_is_resolved(env, elem_type_id))
2757 		return env_stack_push(env, elem_type, elem_type_id);
2758 
2759 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2760 	if (!elem_type) {
2761 		btf_verifier_log_type(env, v->t, "Invalid elem");
2762 		return -EINVAL;
2763 	}
2764 
2765 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2766 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2767 		return -EINVAL;
2768 	}
2769 
2770 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2771 		btf_verifier_log_type(env, v->t,
2772 				      "Array size overflows U32_MAX");
2773 		return -EINVAL;
2774 	}
2775 
2776 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2777 
2778 	return 0;
2779 }
2780 
2781 static void btf_array_log(struct btf_verifier_env *env,
2782 			  const struct btf_type *t)
2783 {
2784 	const struct btf_array *array = btf_type_array(t);
2785 
2786 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2787 			 array->type, array->index_type, array->nelems);
2788 }
2789 
2790 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2791 			     u32 type_id, void *data, u8 bits_offset,
2792 			     struct btf_show *show)
2793 {
2794 	const struct btf_array *array = btf_type_array(t);
2795 	const struct btf_kind_operations *elem_ops;
2796 	const struct btf_type *elem_type;
2797 	u32 i, elem_size = 0, elem_type_id;
2798 	u16 encoding = 0;
2799 
2800 	elem_type_id = array->type;
2801 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2802 	if (elem_type && btf_type_has_size(elem_type))
2803 		elem_size = elem_type->size;
2804 
2805 	if (elem_type && btf_type_is_int(elem_type)) {
2806 		u32 int_type = btf_type_int(elem_type);
2807 
2808 		encoding = BTF_INT_ENCODING(int_type);
2809 
2810 		/*
2811 		 * BTF_INT_CHAR encoding never seems to be set for
2812 		 * char arrays, so if size is 1 and element is
2813 		 * printable as a char, we'll do that.
2814 		 */
2815 		if (elem_size == 1)
2816 			encoding = BTF_INT_CHAR;
2817 	}
2818 
2819 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2820 		return;
2821 
2822 	if (!elem_type)
2823 		goto out;
2824 	elem_ops = btf_type_ops(elem_type);
2825 
2826 	for (i = 0; i < array->nelems; i++) {
2827 
2828 		btf_show_start_array_member(show);
2829 
2830 		elem_ops->show(btf, elem_type, elem_type_id, data,
2831 			       bits_offset, show);
2832 		data += elem_size;
2833 
2834 		btf_show_end_array_member(show);
2835 
2836 		if (show->state.array_terminated)
2837 			break;
2838 	}
2839 out:
2840 	btf_show_end_array_type(show);
2841 }
2842 
2843 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2844 			   u32 type_id, void *data, u8 bits_offset,
2845 			   struct btf_show *show)
2846 {
2847 	const struct btf_member *m = show->state.member;
2848 
2849 	/*
2850 	 * First check if any members would be shown (are non-zero).
2851 	 * See comments above "struct btf_show" definition for more
2852 	 * details on how this works at a high-level.
2853 	 */
2854 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2855 		if (!show->state.depth_check) {
2856 			show->state.depth_check = show->state.depth + 1;
2857 			show->state.depth_to_show = 0;
2858 		}
2859 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2860 		show->state.member = m;
2861 
2862 		if (show->state.depth_check != show->state.depth + 1)
2863 			return;
2864 		show->state.depth_check = 0;
2865 
2866 		if (show->state.depth_to_show <= show->state.depth)
2867 			return;
2868 		/*
2869 		 * Reaching here indicates we have recursed and found
2870 		 * non-zero array member(s).
2871 		 */
2872 	}
2873 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2874 }
2875 
2876 static struct btf_kind_operations array_ops = {
2877 	.check_meta = btf_array_check_meta,
2878 	.resolve = btf_array_resolve,
2879 	.check_member = btf_array_check_member,
2880 	.check_kflag_member = btf_generic_check_kflag_member,
2881 	.log_details = btf_array_log,
2882 	.show = btf_array_show,
2883 };
2884 
2885 static int btf_struct_check_member(struct btf_verifier_env *env,
2886 				   const struct btf_type *struct_type,
2887 				   const struct btf_member *member,
2888 				   const struct btf_type *member_type)
2889 {
2890 	u32 struct_bits_off = member->offset;
2891 	u32 struct_size, bytes_offset;
2892 
2893 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2894 		btf_verifier_log_member(env, struct_type, member,
2895 					"Member is not byte aligned");
2896 		return -EINVAL;
2897 	}
2898 
2899 	struct_size = struct_type->size;
2900 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2901 	if (struct_size - bytes_offset < member_type->size) {
2902 		btf_verifier_log_member(env, struct_type, member,
2903 					"Member exceeds struct_size");
2904 		return -EINVAL;
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2911 				 const struct btf_type *t,
2912 				 u32 meta_left)
2913 {
2914 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2915 	const struct btf_member *member;
2916 	u32 meta_needed, last_offset;
2917 	struct btf *btf = env->btf;
2918 	u32 struct_size = t->size;
2919 	u32 offset;
2920 	u16 i;
2921 
2922 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2923 	if (meta_left < meta_needed) {
2924 		btf_verifier_log_basic(env, t,
2925 				       "meta_left:%u meta_needed:%u",
2926 				       meta_left, meta_needed);
2927 		return -EINVAL;
2928 	}
2929 
2930 	/* struct type either no name or a valid one */
2931 	if (t->name_off &&
2932 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2933 		btf_verifier_log_type(env, t, "Invalid name");
2934 		return -EINVAL;
2935 	}
2936 
2937 	btf_verifier_log_type(env, t, NULL);
2938 
2939 	last_offset = 0;
2940 	for_each_member(i, t, member) {
2941 		if (!btf_name_offset_valid(btf, member->name_off)) {
2942 			btf_verifier_log_member(env, t, member,
2943 						"Invalid member name_offset:%u",
2944 						member->name_off);
2945 			return -EINVAL;
2946 		}
2947 
2948 		/* struct member either no name or a valid one */
2949 		if (member->name_off &&
2950 		    !btf_name_valid_identifier(btf, member->name_off)) {
2951 			btf_verifier_log_member(env, t, member, "Invalid name");
2952 			return -EINVAL;
2953 		}
2954 		/* A member cannot be in type void */
2955 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2956 			btf_verifier_log_member(env, t, member,
2957 						"Invalid type_id");
2958 			return -EINVAL;
2959 		}
2960 
2961 		offset = btf_member_bit_offset(t, member);
2962 		if (is_union && offset) {
2963 			btf_verifier_log_member(env, t, member,
2964 						"Invalid member bits_offset");
2965 			return -EINVAL;
2966 		}
2967 
2968 		/*
2969 		 * ">" instead of ">=" because the last member could be
2970 		 * "char a[0];"
2971 		 */
2972 		if (last_offset > offset) {
2973 			btf_verifier_log_member(env, t, member,
2974 						"Invalid member bits_offset");
2975 			return -EINVAL;
2976 		}
2977 
2978 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2979 			btf_verifier_log_member(env, t, member,
2980 						"Member bits_offset exceeds its struct size");
2981 			return -EINVAL;
2982 		}
2983 
2984 		btf_verifier_log_member(env, t, member, NULL);
2985 		last_offset = offset;
2986 	}
2987 
2988 	return meta_needed;
2989 }
2990 
2991 static int btf_struct_resolve(struct btf_verifier_env *env,
2992 			      const struct resolve_vertex *v)
2993 {
2994 	const struct btf_member *member;
2995 	int err;
2996 	u16 i;
2997 
2998 	/* Before continue resolving the next_member,
2999 	 * ensure the last member is indeed resolved to a
3000 	 * type with size info.
3001 	 */
3002 	if (v->next_member) {
3003 		const struct btf_type *last_member_type;
3004 		const struct btf_member *last_member;
3005 		u16 last_member_type_id;
3006 
3007 		last_member = btf_type_member(v->t) + v->next_member - 1;
3008 		last_member_type_id = last_member->type;
3009 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3010 						       last_member_type_id)))
3011 			return -EINVAL;
3012 
3013 		last_member_type = btf_type_by_id(env->btf,
3014 						  last_member_type_id);
3015 		if (btf_type_kflag(v->t))
3016 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3017 								last_member,
3018 								last_member_type);
3019 		else
3020 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3021 								last_member,
3022 								last_member_type);
3023 		if (err)
3024 			return err;
3025 	}
3026 
3027 	for_each_member_from(i, v->next_member, v->t, member) {
3028 		u32 member_type_id = member->type;
3029 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3030 								member_type_id);
3031 
3032 		if (btf_type_nosize_or_null(member_type) ||
3033 		    btf_type_is_resolve_source_only(member_type)) {
3034 			btf_verifier_log_member(env, v->t, member,
3035 						"Invalid member");
3036 			return -EINVAL;
3037 		}
3038 
3039 		if (!env_type_is_resolve_sink(env, member_type) &&
3040 		    !env_type_is_resolved(env, member_type_id)) {
3041 			env_stack_set_next_member(env, i + 1);
3042 			return env_stack_push(env, member_type, member_type_id);
3043 		}
3044 
3045 		if (btf_type_kflag(v->t))
3046 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3047 									    member,
3048 									    member_type);
3049 		else
3050 			err = btf_type_ops(member_type)->check_member(env, v->t,
3051 								      member,
3052 								      member_type);
3053 		if (err)
3054 			return err;
3055 	}
3056 
3057 	env_stack_pop_resolved(env, 0, 0);
3058 
3059 	return 0;
3060 }
3061 
3062 static void btf_struct_log(struct btf_verifier_env *env,
3063 			   const struct btf_type *t)
3064 {
3065 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3066 }
3067 
3068 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3069 				 const char *name, int sz, int align)
3070 {
3071 	const struct btf_member *member;
3072 	u32 i, off = -ENOENT;
3073 
3074 	for_each_member(i, t, member) {
3075 		const struct btf_type *member_type = btf_type_by_id(btf,
3076 								    member->type);
3077 		if (!__btf_type_is_struct(member_type))
3078 			continue;
3079 		if (member_type->size != sz)
3080 			continue;
3081 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3082 			continue;
3083 		if (off != -ENOENT)
3084 			/* only one such field is allowed */
3085 			return -E2BIG;
3086 		off = btf_member_bit_offset(t, member);
3087 		if (off % 8)
3088 			/* valid C code cannot generate such BTF */
3089 			return -EINVAL;
3090 		off /= 8;
3091 		if (off % align)
3092 			return -EINVAL;
3093 	}
3094 	return off;
3095 }
3096 
3097 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3098 				const char *name, int sz, int align)
3099 {
3100 	const struct btf_var_secinfo *vsi;
3101 	u32 i, off = -ENOENT;
3102 
3103 	for_each_vsi(i, t, vsi) {
3104 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3105 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3106 
3107 		if (!__btf_type_is_struct(var_type))
3108 			continue;
3109 		if (var_type->size != sz)
3110 			continue;
3111 		if (vsi->size != sz)
3112 			continue;
3113 		if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3114 			continue;
3115 		if (off != -ENOENT)
3116 			/* only one such field is allowed */
3117 			return -E2BIG;
3118 		off = vsi->offset;
3119 		if (off % align)
3120 			return -EINVAL;
3121 	}
3122 	return off;
3123 }
3124 
3125 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3126 			  const char *name, int sz, int align)
3127 {
3128 
3129 	if (__btf_type_is_struct(t))
3130 		return btf_find_struct_field(btf, t, name, sz, align);
3131 	else if (btf_type_is_datasec(t))
3132 		return btf_find_datasec_var(btf, t, name, sz, align);
3133 	return -EINVAL;
3134 }
3135 
3136 /* find 'struct bpf_spin_lock' in map value.
3137  * return >= 0 offset if found
3138  * and < 0 in case of error
3139  */
3140 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3141 {
3142 	return btf_find_field(btf, t, "bpf_spin_lock",
3143 			      sizeof(struct bpf_spin_lock),
3144 			      __alignof__(struct bpf_spin_lock));
3145 }
3146 
3147 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3148 {
3149 	return btf_find_field(btf, t, "bpf_timer",
3150 			      sizeof(struct bpf_timer),
3151 			      __alignof__(struct bpf_timer));
3152 }
3153 
3154 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3155 			      u32 type_id, void *data, u8 bits_offset,
3156 			      struct btf_show *show)
3157 {
3158 	const struct btf_member *member;
3159 	void *safe_data;
3160 	u32 i;
3161 
3162 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3163 	if (!safe_data)
3164 		return;
3165 
3166 	for_each_member(i, t, member) {
3167 		const struct btf_type *member_type = btf_type_by_id(btf,
3168 								member->type);
3169 		const struct btf_kind_operations *ops;
3170 		u32 member_offset, bitfield_size;
3171 		u32 bytes_offset;
3172 		u8 bits8_offset;
3173 
3174 		btf_show_start_member(show, member);
3175 
3176 		member_offset = btf_member_bit_offset(t, member);
3177 		bitfield_size = btf_member_bitfield_size(t, member);
3178 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3179 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3180 		if (bitfield_size) {
3181 			safe_data = btf_show_start_type(show, member_type,
3182 							member->type,
3183 							data + bytes_offset);
3184 			if (safe_data)
3185 				btf_bitfield_show(safe_data,
3186 						  bits8_offset,
3187 						  bitfield_size, show);
3188 			btf_show_end_type(show);
3189 		} else {
3190 			ops = btf_type_ops(member_type);
3191 			ops->show(btf, member_type, member->type,
3192 				  data + bytes_offset, bits8_offset, show);
3193 		}
3194 
3195 		btf_show_end_member(show);
3196 	}
3197 
3198 	btf_show_end_struct_type(show);
3199 }
3200 
3201 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3202 			    u32 type_id, void *data, u8 bits_offset,
3203 			    struct btf_show *show)
3204 {
3205 	const struct btf_member *m = show->state.member;
3206 
3207 	/*
3208 	 * First check if any members would be shown (are non-zero).
3209 	 * See comments above "struct btf_show" definition for more
3210 	 * details on how this works at a high-level.
3211 	 */
3212 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3213 		if (!show->state.depth_check) {
3214 			show->state.depth_check = show->state.depth + 1;
3215 			show->state.depth_to_show = 0;
3216 		}
3217 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3218 		/* Restore saved member data here */
3219 		show->state.member = m;
3220 		if (show->state.depth_check != show->state.depth + 1)
3221 			return;
3222 		show->state.depth_check = 0;
3223 
3224 		if (show->state.depth_to_show <= show->state.depth)
3225 			return;
3226 		/*
3227 		 * Reaching here indicates we have recursed and found
3228 		 * non-zero child values.
3229 		 */
3230 	}
3231 
3232 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3233 }
3234 
3235 static struct btf_kind_operations struct_ops = {
3236 	.check_meta = btf_struct_check_meta,
3237 	.resolve = btf_struct_resolve,
3238 	.check_member = btf_struct_check_member,
3239 	.check_kflag_member = btf_generic_check_kflag_member,
3240 	.log_details = btf_struct_log,
3241 	.show = btf_struct_show,
3242 };
3243 
3244 static int btf_enum_check_member(struct btf_verifier_env *env,
3245 				 const struct btf_type *struct_type,
3246 				 const struct btf_member *member,
3247 				 const struct btf_type *member_type)
3248 {
3249 	u32 struct_bits_off = member->offset;
3250 	u32 struct_size, bytes_offset;
3251 
3252 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3253 		btf_verifier_log_member(env, struct_type, member,
3254 					"Member is not byte aligned");
3255 		return -EINVAL;
3256 	}
3257 
3258 	struct_size = struct_type->size;
3259 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3260 	if (struct_size - bytes_offset < member_type->size) {
3261 		btf_verifier_log_member(env, struct_type, member,
3262 					"Member exceeds struct_size");
3263 		return -EINVAL;
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3270 				       const struct btf_type *struct_type,
3271 				       const struct btf_member *member,
3272 				       const struct btf_type *member_type)
3273 {
3274 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3275 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3276 
3277 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3278 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3279 	if (!nr_bits) {
3280 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3281 			btf_verifier_log_member(env, struct_type, member,
3282 						"Member is not byte aligned");
3283 			return -EINVAL;
3284 		}
3285 
3286 		nr_bits = int_bitsize;
3287 	} else if (nr_bits > int_bitsize) {
3288 		btf_verifier_log_member(env, struct_type, member,
3289 					"Invalid member bitfield_size");
3290 		return -EINVAL;
3291 	}
3292 
3293 	struct_size = struct_type->size;
3294 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3295 	if (struct_size < bytes_end) {
3296 		btf_verifier_log_member(env, struct_type, member,
3297 					"Member exceeds struct_size");
3298 		return -EINVAL;
3299 	}
3300 
3301 	return 0;
3302 }
3303 
3304 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3305 			       const struct btf_type *t,
3306 			       u32 meta_left)
3307 {
3308 	const struct btf_enum *enums = btf_type_enum(t);
3309 	struct btf *btf = env->btf;
3310 	u16 i, nr_enums;
3311 	u32 meta_needed;
3312 
3313 	nr_enums = btf_type_vlen(t);
3314 	meta_needed = nr_enums * sizeof(*enums);
3315 
3316 	if (meta_left < meta_needed) {
3317 		btf_verifier_log_basic(env, t,
3318 				       "meta_left:%u meta_needed:%u",
3319 				       meta_left, meta_needed);
3320 		return -EINVAL;
3321 	}
3322 
3323 	if (btf_type_kflag(t)) {
3324 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3325 		return -EINVAL;
3326 	}
3327 
3328 	if (t->size > 8 || !is_power_of_2(t->size)) {
3329 		btf_verifier_log_type(env, t, "Unexpected size");
3330 		return -EINVAL;
3331 	}
3332 
3333 	/* enum type either no name or a valid one */
3334 	if (t->name_off &&
3335 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3336 		btf_verifier_log_type(env, t, "Invalid name");
3337 		return -EINVAL;
3338 	}
3339 
3340 	btf_verifier_log_type(env, t, NULL);
3341 
3342 	for (i = 0; i < nr_enums; i++) {
3343 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3344 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3345 					 enums[i].name_off);
3346 			return -EINVAL;
3347 		}
3348 
3349 		/* enum member must have a valid name */
3350 		if (!enums[i].name_off ||
3351 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3352 			btf_verifier_log_type(env, t, "Invalid name");
3353 			return -EINVAL;
3354 		}
3355 
3356 		if (env->log.level == BPF_LOG_KERNEL)
3357 			continue;
3358 		btf_verifier_log(env, "\t%s val=%d\n",
3359 				 __btf_name_by_offset(btf, enums[i].name_off),
3360 				 enums[i].val);
3361 	}
3362 
3363 	return meta_needed;
3364 }
3365 
3366 static void btf_enum_log(struct btf_verifier_env *env,
3367 			 const struct btf_type *t)
3368 {
3369 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3370 }
3371 
3372 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3373 			  u32 type_id, void *data, u8 bits_offset,
3374 			  struct btf_show *show)
3375 {
3376 	const struct btf_enum *enums = btf_type_enum(t);
3377 	u32 i, nr_enums = btf_type_vlen(t);
3378 	void *safe_data;
3379 	int v;
3380 
3381 	safe_data = btf_show_start_type(show, t, type_id, data);
3382 	if (!safe_data)
3383 		return;
3384 
3385 	v = *(int *)safe_data;
3386 
3387 	for (i = 0; i < nr_enums; i++) {
3388 		if (v != enums[i].val)
3389 			continue;
3390 
3391 		btf_show_type_value(show, "%s",
3392 				    __btf_name_by_offset(btf,
3393 							 enums[i].name_off));
3394 
3395 		btf_show_end_type(show);
3396 		return;
3397 	}
3398 
3399 	btf_show_type_value(show, "%d", v);
3400 	btf_show_end_type(show);
3401 }
3402 
3403 static struct btf_kind_operations enum_ops = {
3404 	.check_meta = btf_enum_check_meta,
3405 	.resolve = btf_df_resolve,
3406 	.check_member = btf_enum_check_member,
3407 	.check_kflag_member = btf_enum_check_kflag_member,
3408 	.log_details = btf_enum_log,
3409 	.show = btf_enum_show,
3410 };
3411 
3412 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3413 				     const struct btf_type *t,
3414 				     u32 meta_left)
3415 {
3416 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3417 
3418 	if (meta_left < meta_needed) {
3419 		btf_verifier_log_basic(env, t,
3420 				       "meta_left:%u meta_needed:%u",
3421 				       meta_left, meta_needed);
3422 		return -EINVAL;
3423 	}
3424 
3425 	if (t->name_off) {
3426 		btf_verifier_log_type(env, t, "Invalid name");
3427 		return -EINVAL;
3428 	}
3429 
3430 	if (btf_type_kflag(t)) {
3431 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3432 		return -EINVAL;
3433 	}
3434 
3435 	btf_verifier_log_type(env, t, NULL);
3436 
3437 	return meta_needed;
3438 }
3439 
3440 static void btf_func_proto_log(struct btf_verifier_env *env,
3441 			       const struct btf_type *t)
3442 {
3443 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3444 	u16 nr_args = btf_type_vlen(t), i;
3445 
3446 	btf_verifier_log(env, "return=%u args=(", t->type);
3447 	if (!nr_args) {
3448 		btf_verifier_log(env, "void");
3449 		goto done;
3450 	}
3451 
3452 	if (nr_args == 1 && !args[0].type) {
3453 		/* Only one vararg */
3454 		btf_verifier_log(env, "vararg");
3455 		goto done;
3456 	}
3457 
3458 	btf_verifier_log(env, "%u %s", args[0].type,
3459 			 __btf_name_by_offset(env->btf,
3460 					      args[0].name_off));
3461 	for (i = 1; i < nr_args - 1; i++)
3462 		btf_verifier_log(env, ", %u %s", args[i].type,
3463 				 __btf_name_by_offset(env->btf,
3464 						      args[i].name_off));
3465 
3466 	if (nr_args > 1) {
3467 		const struct btf_param *last_arg = &args[nr_args - 1];
3468 
3469 		if (last_arg->type)
3470 			btf_verifier_log(env, ", %u %s", last_arg->type,
3471 					 __btf_name_by_offset(env->btf,
3472 							      last_arg->name_off));
3473 		else
3474 			btf_verifier_log(env, ", vararg");
3475 	}
3476 
3477 done:
3478 	btf_verifier_log(env, ")");
3479 }
3480 
3481 static struct btf_kind_operations func_proto_ops = {
3482 	.check_meta = btf_func_proto_check_meta,
3483 	.resolve = btf_df_resolve,
3484 	/*
3485 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3486 	 * a struct's member.
3487 	 *
3488 	 * It should be a function pointer instead.
3489 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3490 	 *
3491 	 * Hence, there is no btf_func_check_member().
3492 	 */
3493 	.check_member = btf_df_check_member,
3494 	.check_kflag_member = btf_df_check_kflag_member,
3495 	.log_details = btf_func_proto_log,
3496 	.show = btf_df_show,
3497 };
3498 
3499 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3500 			       const struct btf_type *t,
3501 			       u32 meta_left)
3502 {
3503 	if (!t->name_off ||
3504 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3505 		btf_verifier_log_type(env, t, "Invalid name");
3506 		return -EINVAL;
3507 	}
3508 
3509 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3510 		btf_verifier_log_type(env, t, "Invalid func linkage");
3511 		return -EINVAL;
3512 	}
3513 
3514 	if (btf_type_kflag(t)) {
3515 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3516 		return -EINVAL;
3517 	}
3518 
3519 	btf_verifier_log_type(env, t, NULL);
3520 
3521 	return 0;
3522 }
3523 
3524 static struct btf_kind_operations func_ops = {
3525 	.check_meta = btf_func_check_meta,
3526 	.resolve = btf_df_resolve,
3527 	.check_member = btf_df_check_member,
3528 	.check_kflag_member = btf_df_check_kflag_member,
3529 	.log_details = btf_ref_type_log,
3530 	.show = btf_df_show,
3531 };
3532 
3533 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3534 			      const struct btf_type *t,
3535 			      u32 meta_left)
3536 {
3537 	const struct btf_var *var;
3538 	u32 meta_needed = sizeof(*var);
3539 
3540 	if (meta_left < meta_needed) {
3541 		btf_verifier_log_basic(env, t,
3542 				       "meta_left:%u meta_needed:%u",
3543 				       meta_left, meta_needed);
3544 		return -EINVAL;
3545 	}
3546 
3547 	if (btf_type_vlen(t)) {
3548 		btf_verifier_log_type(env, t, "vlen != 0");
3549 		return -EINVAL;
3550 	}
3551 
3552 	if (btf_type_kflag(t)) {
3553 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3554 		return -EINVAL;
3555 	}
3556 
3557 	if (!t->name_off ||
3558 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3559 		btf_verifier_log_type(env, t, "Invalid name");
3560 		return -EINVAL;
3561 	}
3562 
3563 	/* A var cannot be in type void */
3564 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3565 		btf_verifier_log_type(env, t, "Invalid type_id");
3566 		return -EINVAL;
3567 	}
3568 
3569 	var = btf_type_var(t);
3570 	if (var->linkage != BTF_VAR_STATIC &&
3571 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3572 		btf_verifier_log_type(env, t, "Linkage not supported");
3573 		return -EINVAL;
3574 	}
3575 
3576 	btf_verifier_log_type(env, t, NULL);
3577 
3578 	return meta_needed;
3579 }
3580 
3581 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3582 {
3583 	const struct btf_var *var = btf_type_var(t);
3584 
3585 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3586 }
3587 
3588 static const struct btf_kind_operations var_ops = {
3589 	.check_meta		= btf_var_check_meta,
3590 	.resolve		= btf_var_resolve,
3591 	.check_member		= btf_df_check_member,
3592 	.check_kflag_member	= btf_df_check_kflag_member,
3593 	.log_details		= btf_var_log,
3594 	.show			= btf_var_show,
3595 };
3596 
3597 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3598 				  const struct btf_type *t,
3599 				  u32 meta_left)
3600 {
3601 	const struct btf_var_secinfo *vsi;
3602 	u64 last_vsi_end_off = 0, sum = 0;
3603 	u32 i, meta_needed;
3604 
3605 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3606 	if (meta_left < meta_needed) {
3607 		btf_verifier_log_basic(env, t,
3608 				       "meta_left:%u meta_needed:%u",
3609 				       meta_left, meta_needed);
3610 		return -EINVAL;
3611 	}
3612 
3613 	if (!t->size) {
3614 		btf_verifier_log_type(env, t, "size == 0");
3615 		return -EINVAL;
3616 	}
3617 
3618 	if (btf_type_kflag(t)) {
3619 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3620 		return -EINVAL;
3621 	}
3622 
3623 	if (!t->name_off ||
3624 	    !btf_name_valid_section(env->btf, t->name_off)) {
3625 		btf_verifier_log_type(env, t, "Invalid name");
3626 		return -EINVAL;
3627 	}
3628 
3629 	btf_verifier_log_type(env, t, NULL);
3630 
3631 	for_each_vsi(i, t, vsi) {
3632 		/* A var cannot be in type void */
3633 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3634 			btf_verifier_log_vsi(env, t, vsi,
3635 					     "Invalid type_id");
3636 			return -EINVAL;
3637 		}
3638 
3639 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3640 			btf_verifier_log_vsi(env, t, vsi,
3641 					     "Invalid offset");
3642 			return -EINVAL;
3643 		}
3644 
3645 		if (!vsi->size || vsi->size > t->size) {
3646 			btf_verifier_log_vsi(env, t, vsi,
3647 					     "Invalid size");
3648 			return -EINVAL;
3649 		}
3650 
3651 		last_vsi_end_off = vsi->offset + vsi->size;
3652 		if (last_vsi_end_off > t->size) {
3653 			btf_verifier_log_vsi(env, t, vsi,
3654 					     "Invalid offset+size");
3655 			return -EINVAL;
3656 		}
3657 
3658 		btf_verifier_log_vsi(env, t, vsi, NULL);
3659 		sum += vsi->size;
3660 	}
3661 
3662 	if (t->size < sum) {
3663 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3664 		return -EINVAL;
3665 	}
3666 
3667 	return meta_needed;
3668 }
3669 
3670 static int btf_datasec_resolve(struct btf_verifier_env *env,
3671 			       const struct resolve_vertex *v)
3672 {
3673 	const struct btf_var_secinfo *vsi;
3674 	struct btf *btf = env->btf;
3675 	u16 i;
3676 
3677 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3678 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3679 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3680 								 var_type_id);
3681 		if (!var_type || !btf_type_is_var(var_type)) {
3682 			btf_verifier_log_vsi(env, v->t, vsi,
3683 					     "Not a VAR kind member");
3684 			return -EINVAL;
3685 		}
3686 
3687 		if (!env_type_is_resolve_sink(env, var_type) &&
3688 		    !env_type_is_resolved(env, var_type_id)) {
3689 			env_stack_set_next_member(env, i + 1);
3690 			return env_stack_push(env, var_type, var_type_id);
3691 		}
3692 
3693 		type_id = var_type->type;
3694 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3695 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3696 			return -EINVAL;
3697 		}
3698 
3699 		if (vsi->size < type_size) {
3700 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3701 			return -EINVAL;
3702 		}
3703 	}
3704 
3705 	env_stack_pop_resolved(env, 0, 0);
3706 	return 0;
3707 }
3708 
3709 static void btf_datasec_log(struct btf_verifier_env *env,
3710 			    const struct btf_type *t)
3711 {
3712 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3713 }
3714 
3715 static void btf_datasec_show(const struct btf *btf,
3716 			     const struct btf_type *t, u32 type_id,
3717 			     void *data, u8 bits_offset,
3718 			     struct btf_show *show)
3719 {
3720 	const struct btf_var_secinfo *vsi;
3721 	const struct btf_type *var;
3722 	u32 i;
3723 
3724 	if (!btf_show_start_type(show, t, type_id, data))
3725 		return;
3726 
3727 	btf_show_type_value(show, "section (\"%s\") = {",
3728 			    __btf_name_by_offset(btf, t->name_off));
3729 	for_each_vsi(i, t, vsi) {
3730 		var = btf_type_by_id(btf, vsi->type);
3731 		if (i)
3732 			btf_show(show, ",");
3733 		btf_type_ops(var)->show(btf, var, vsi->type,
3734 					data + vsi->offset, bits_offset, show);
3735 	}
3736 	btf_show_end_type(show);
3737 }
3738 
3739 static const struct btf_kind_operations datasec_ops = {
3740 	.check_meta		= btf_datasec_check_meta,
3741 	.resolve		= btf_datasec_resolve,
3742 	.check_member		= btf_df_check_member,
3743 	.check_kflag_member	= btf_df_check_kflag_member,
3744 	.log_details		= btf_datasec_log,
3745 	.show			= btf_datasec_show,
3746 };
3747 
3748 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3749 				const struct btf_type *t,
3750 				u32 meta_left)
3751 {
3752 	if (btf_type_vlen(t)) {
3753 		btf_verifier_log_type(env, t, "vlen != 0");
3754 		return -EINVAL;
3755 	}
3756 
3757 	if (btf_type_kflag(t)) {
3758 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3759 		return -EINVAL;
3760 	}
3761 
3762 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3763 	    t->size != 16) {
3764 		btf_verifier_log_type(env, t, "Invalid type_size");
3765 		return -EINVAL;
3766 	}
3767 
3768 	btf_verifier_log_type(env, t, NULL);
3769 
3770 	return 0;
3771 }
3772 
3773 static int btf_float_check_member(struct btf_verifier_env *env,
3774 				  const struct btf_type *struct_type,
3775 				  const struct btf_member *member,
3776 				  const struct btf_type *member_type)
3777 {
3778 	u64 start_offset_bytes;
3779 	u64 end_offset_bytes;
3780 	u64 misalign_bits;
3781 	u64 align_bytes;
3782 	u64 align_bits;
3783 
3784 	/* Different architectures have different alignment requirements, so
3785 	 * here we check only for the reasonable minimum. This way we ensure
3786 	 * that types after CO-RE can pass the kernel BTF verifier.
3787 	 */
3788 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3789 	align_bits = align_bytes * BITS_PER_BYTE;
3790 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3791 	if (misalign_bits) {
3792 		btf_verifier_log_member(env, struct_type, member,
3793 					"Member is not properly aligned");
3794 		return -EINVAL;
3795 	}
3796 
3797 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3798 	end_offset_bytes = start_offset_bytes + member_type->size;
3799 	if (end_offset_bytes > struct_type->size) {
3800 		btf_verifier_log_member(env, struct_type, member,
3801 					"Member exceeds struct_size");
3802 		return -EINVAL;
3803 	}
3804 
3805 	return 0;
3806 }
3807 
3808 static void btf_float_log(struct btf_verifier_env *env,
3809 			  const struct btf_type *t)
3810 {
3811 	btf_verifier_log(env, "size=%u", t->size);
3812 }
3813 
3814 static const struct btf_kind_operations float_ops = {
3815 	.check_meta = btf_float_check_meta,
3816 	.resolve = btf_df_resolve,
3817 	.check_member = btf_float_check_member,
3818 	.check_kflag_member = btf_generic_check_kflag_member,
3819 	.log_details = btf_float_log,
3820 	.show = btf_df_show,
3821 };
3822 
3823 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
3824 			      const struct btf_type *t,
3825 			      u32 meta_left)
3826 {
3827 	const struct btf_decl_tag *tag;
3828 	u32 meta_needed = sizeof(*tag);
3829 	s32 component_idx;
3830 	const char *value;
3831 
3832 	if (meta_left < meta_needed) {
3833 		btf_verifier_log_basic(env, t,
3834 				       "meta_left:%u meta_needed:%u",
3835 				       meta_left, meta_needed);
3836 		return -EINVAL;
3837 	}
3838 
3839 	value = btf_name_by_offset(env->btf, t->name_off);
3840 	if (!value || !value[0]) {
3841 		btf_verifier_log_type(env, t, "Invalid value");
3842 		return -EINVAL;
3843 	}
3844 
3845 	if (btf_type_vlen(t)) {
3846 		btf_verifier_log_type(env, t, "vlen != 0");
3847 		return -EINVAL;
3848 	}
3849 
3850 	if (btf_type_kflag(t)) {
3851 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3852 		return -EINVAL;
3853 	}
3854 
3855 	component_idx = btf_type_decl_tag(t)->component_idx;
3856 	if (component_idx < -1) {
3857 		btf_verifier_log_type(env, t, "Invalid component_idx");
3858 		return -EINVAL;
3859 	}
3860 
3861 	btf_verifier_log_type(env, t, NULL);
3862 
3863 	return meta_needed;
3864 }
3865 
3866 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
3867 			   const struct resolve_vertex *v)
3868 {
3869 	const struct btf_type *next_type;
3870 	const struct btf_type *t = v->t;
3871 	u32 next_type_id = t->type;
3872 	struct btf *btf = env->btf;
3873 	s32 component_idx;
3874 	u32 vlen;
3875 
3876 	next_type = btf_type_by_id(btf, next_type_id);
3877 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
3878 		btf_verifier_log_type(env, v->t, "Invalid type_id");
3879 		return -EINVAL;
3880 	}
3881 
3882 	if (!env_type_is_resolve_sink(env, next_type) &&
3883 	    !env_type_is_resolved(env, next_type_id))
3884 		return env_stack_push(env, next_type, next_type_id);
3885 
3886 	component_idx = btf_type_decl_tag(t)->component_idx;
3887 	if (component_idx != -1) {
3888 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
3889 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
3890 			return -EINVAL;
3891 		}
3892 
3893 		if (btf_type_is_struct(next_type)) {
3894 			vlen = btf_type_vlen(next_type);
3895 		} else {
3896 			/* next_type should be a function */
3897 			next_type = btf_type_by_id(btf, next_type->type);
3898 			vlen = btf_type_vlen(next_type);
3899 		}
3900 
3901 		if ((u32)component_idx >= vlen) {
3902 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
3903 			return -EINVAL;
3904 		}
3905 	}
3906 
3907 	env_stack_pop_resolved(env, next_type_id, 0);
3908 
3909 	return 0;
3910 }
3911 
3912 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
3913 {
3914 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
3915 			 btf_type_decl_tag(t)->component_idx);
3916 }
3917 
3918 static const struct btf_kind_operations decl_tag_ops = {
3919 	.check_meta = btf_decl_tag_check_meta,
3920 	.resolve = btf_decl_tag_resolve,
3921 	.check_member = btf_df_check_member,
3922 	.check_kflag_member = btf_df_check_kflag_member,
3923 	.log_details = btf_decl_tag_log,
3924 	.show = btf_df_show,
3925 };
3926 
3927 static int btf_func_proto_check(struct btf_verifier_env *env,
3928 				const struct btf_type *t)
3929 {
3930 	const struct btf_type *ret_type;
3931 	const struct btf_param *args;
3932 	const struct btf *btf;
3933 	u16 nr_args, i;
3934 	int err;
3935 
3936 	btf = env->btf;
3937 	args = (const struct btf_param *)(t + 1);
3938 	nr_args = btf_type_vlen(t);
3939 
3940 	/* Check func return type which could be "void" (t->type == 0) */
3941 	if (t->type) {
3942 		u32 ret_type_id = t->type;
3943 
3944 		ret_type = btf_type_by_id(btf, ret_type_id);
3945 		if (!ret_type) {
3946 			btf_verifier_log_type(env, t, "Invalid return type");
3947 			return -EINVAL;
3948 		}
3949 
3950 		if (btf_type_needs_resolve(ret_type) &&
3951 		    !env_type_is_resolved(env, ret_type_id)) {
3952 			err = btf_resolve(env, ret_type, ret_type_id);
3953 			if (err)
3954 				return err;
3955 		}
3956 
3957 		/* Ensure the return type is a type that has a size */
3958 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3959 			btf_verifier_log_type(env, t, "Invalid return type");
3960 			return -EINVAL;
3961 		}
3962 	}
3963 
3964 	if (!nr_args)
3965 		return 0;
3966 
3967 	/* Last func arg type_id could be 0 if it is a vararg */
3968 	if (!args[nr_args - 1].type) {
3969 		if (args[nr_args - 1].name_off) {
3970 			btf_verifier_log_type(env, t, "Invalid arg#%u",
3971 					      nr_args);
3972 			return -EINVAL;
3973 		}
3974 		nr_args--;
3975 	}
3976 
3977 	err = 0;
3978 	for (i = 0; i < nr_args; i++) {
3979 		const struct btf_type *arg_type;
3980 		u32 arg_type_id;
3981 
3982 		arg_type_id = args[i].type;
3983 		arg_type = btf_type_by_id(btf, arg_type_id);
3984 		if (!arg_type) {
3985 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3986 			err = -EINVAL;
3987 			break;
3988 		}
3989 
3990 		if (args[i].name_off &&
3991 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
3992 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
3993 			btf_verifier_log_type(env, t,
3994 					      "Invalid arg#%u", i + 1);
3995 			err = -EINVAL;
3996 			break;
3997 		}
3998 
3999 		if (btf_type_needs_resolve(arg_type) &&
4000 		    !env_type_is_resolved(env, arg_type_id)) {
4001 			err = btf_resolve(env, arg_type, arg_type_id);
4002 			if (err)
4003 				break;
4004 		}
4005 
4006 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4007 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4008 			err = -EINVAL;
4009 			break;
4010 		}
4011 	}
4012 
4013 	return err;
4014 }
4015 
4016 static int btf_func_check(struct btf_verifier_env *env,
4017 			  const struct btf_type *t)
4018 {
4019 	const struct btf_type *proto_type;
4020 	const struct btf_param *args;
4021 	const struct btf *btf;
4022 	u16 nr_args, i;
4023 
4024 	btf = env->btf;
4025 	proto_type = btf_type_by_id(btf, t->type);
4026 
4027 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4028 		btf_verifier_log_type(env, t, "Invalid type_id");
4029 		return -EINVAL;
4030 	}
4031 
4032 	args = (const struct btf_param *)(proto_type + 1);
4033 	nr_args = btf_type_vlen(proto_type);
4034 	for (i = 0; i < nr_args; i++) {
4035 		if (!args[i].name_off && args[i].type) {
4036 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4037 			return -EINVAL;
4038 		}
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4045 	[BTF_KIND_INT] = &int_ops,
4046 	[BTF_KIND_PTR] = &ptr_ops,
4047 	[BTF_KIND_ARRAY] = &array_ops,
4048 	[BTF_KIND_STRUCT] = &struct_ops,
4049 	[BTF_KIND_UNION] = &struct_ops,
4050 	[BTF_KIND_ENUM] = &enum_ops,
4051 	[BTF_KIND_FWD] = &fwd_ops,
4052 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4053 	[BTF_KIND_VOLATILE] = &modifier_ops,
4054 	[BTF_KIND_CONST] = &modifier_ops,
4055 	[BTF_KIND_RESTRICT] = &modifier_ops,
4056 	[BTF_KIND_FUNC] = &func_ops,
4057 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4058 	[BTF_KIND_VAR] = &var_ops,
4059 	[BTF_KIND_DATASEC] = &datasec_ops,
4060 	[BTF_KIND_FLOAT] = &float_ops,
4061 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4062 };
4063 
4064 static s32 btf_check_meta(struct btf_verifier_env *env,
4065 			  const struct btf_type *t,
4066 			  u32 meta_left)
4067 {
4068 	u32 saved_meta_left = meta_left;
4069 	s32 var_meta_size;
4070 
4071 	if (meta_left < sizeof(*t)) {
4072 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4073 				 env->log_type_id, meta_left, sizeof(*t));
4074 		return -EINVAL;
4075 	}
4076 	meta_left -= sizeof(*t);
4077 
4078 	if (t->info & ~BTF_INFO_MASK) {
4079 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4080 				 env->log_type_id, t->info);
4081 		return -EINVAL;
4082 	}
4083 
4084 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4085 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4086 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4087 				 env->log_type_id, BTF_INFO_KIND(t->info));
4088 		return -EINVAL;
4089 	}
4090 
4091 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4092 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4093 				 env->log_type_id, t->name_off);
4094 		return -EINVAL;
4095 	}
4096 
4097 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4098 	if (var_meta_size < 0)
4099 		return var_meta_size;
4100 
4101 	meta_left -= var_meta_size;
4102 
4103 	return saved_meta_left - meta_left;
4104 }
4105 
4106 static int btf_check_all_metas(struct btf_verifier_env *env)
4107 {
4108 	struct btf *btf = env->btf;
4109 	struct btf_header *hdr;
4110 	void *cur, *end;
4111 
4112 	hdr = &btf->hdr;
4113 	cur = btf->nohdr_data + hdr->type_off;
4114 	end = cur + hdr->type_len;
4115 
4116 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4117 	while (cur < end) {
4118 		struct btf_type *t = cur;
4119 		s32 meta_size;
4120 
4121 		meta_size = btf_check_meta(env, t, end - cur);
4122 		if (meta_size < 0)
4123 			return meta_size;
4124 
4125 		btf_add_type(env, t);
4126 		cur += meta_size;
4127 		env->log_type_id++;
4128 	}
4129 
4130 	return 0;
4131 }
4132 
4133 static bool btf_resolve_valid(struct btf_verifier_env *env,
4134 			      const struct btf_type *t,
4135 			      u32 type_id)
4136 {
4137 	struct btf *btf = env->btf;
4138 
4139 	if (!env_type_is_resolved(env, type_id))
4140 		return false;
4141 
4142 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4143 		return !btf_resolved_type_id(btf, type_id) &&
4144 		       !btf_resolved_type_size(btf, type_id);
4145 
4146 	if (btf_type_is_decl_tag(t))
4147 		return btf_resolved_type_id(btf, type_id) &&
4148 		       !btf_resolved_type_size(btf, type_id);
4149 
4150 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4151 	    btf_type_is_var(t)) {
4152 		t = btf_type_id_resolve(btf, &type_id);
4153 		return t &&
4154 		       !btf_type_is_modifier(t) &&
4155 		       !btf_type_is_var(t) &&
4156 		       !btf_type_is_datasec(t);
4157 	}
4158 
4159 	if (btf_type_is_array(t)) {
4160 		const struct btf_array *array = btf_type_array(t);
4161 		const struct btf_type *elem_type;
4162 		u32 elem_type_id = array->type;
4163 		u32 elem_size;
4164 
4165 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4166 		return elem_type && !btf_type_is_modifier(elem_type) &&
4167 			(array->nelems * elem_size ==
4168 			 btf_resolved_type_size(btf, type_id));
4169 	}
4170 
4171 	return false;
4172 }
4173 
4174 static int btf_resolve(struct btf_verifier_env *env,
4175 		       const struct btf_type *t, u32 type_id)
4176 {
4177 	u32 save_log_type_id = env->log_type_id;
4178 	const struct resolve_vertex *v;
4179 	int err = 0;
4180 
4181 	env->resolve_mode = RESOLVE_TBD;
4182 	env_stack_push(env, t, type_id);
4183 	while (!err && (v = env_stack_peak(env))) {
4184 		env->log_type_id = v->type_id;
4185 		err = btf_type_ops(v->t)->resolve(env, v);
4186 	}
4187 
4188 	env->log_type_id = type_id;
4189 	if (err == -E2BIG) {
4190 		btf_verifier_log_type(env, t,
4191 				      "Exceeded max resolving depth:%u",
4192 				      MAX_RESOLVE_DEPTH);
4193 	} else if (err == -EEXIST) {
4194 		btf_verifier_log_type(env, t, "Loop detected");
4195 	}
4196 
4197 	/* Final sanity check */
4198 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4199 		btf_verifier_log_type(env, t, "Invalid resolve state");
4200 		err = -EINVAL;
4201 	}
4202 
4203 	env->log_type_id = save_log_type_id;
4204 	return err;
4205 }
4206 
4207 static int btf_check_all_types(struct btf_verifier_env *env)
4208 {
4209 	struct btf *btf = env->btf;
4210 	const struct btf_type *t;
4211 	u32 type_id, i;
4212 	int err;
4213 
4214 	err = env_resolve_init(env);
4215 	if (err)
4216 		return err;
4217 
4218 	env->phase++;
4219 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4220 		type_id = btf->start_id + i;
4221 		t = btf_type_by_id(btf, type_id);
4222 
4223 		env->log_type_id = type_id;
4224 		if (btf_type_needs_resolve(t) &&
4225 		    !env_type_is_resolved(env, type_id)) {
4226 			err = btf_resolve(env, t, type_id);
4227 			if (err)
4228 				return err;
4229 		}
4230 
4231 		if (btf_type_is_func_proto(t)) {
4232 			err = btf_func_proto_check(env, t);
4233 			if (err)
4234 				return err;
4235 		}
4236 
4237 		if (btf_type_is_func(t)) {
4238 			err = btf_func_check(env, t);
4239 			if (err)
4240 				return err;
4241 		}
4242 	}
4243 
4244 	return 0;
4245 }
4246 
4247 static int btf_parse_type_sec(struct btf_verifier_env *env)
4248 {
4249 	const struct btf_header *hdr = &env->btf->hdr;
4250 	int err;
4251 
4252 	/* Type section must align to 4 bytes */
4253 	if (hdr->type_off & (sizeof(u32) - 1)) {
4254 		btf_verifier_log(env, "Unaligned type_off");
4255 		return -EINVAL;
4256 	}
4257 
4258 	if (!env->btf->base_btf && !hdr->type_len) {
4259 		btf_verifier_log(env, "No type found");
4260 		return -EINVAL;
4261 	}
4262 
4263 	err = btf_check_all_metas(env);
4264 	if (err)
4265 		return err;
4266 
4267 	return btf_check_all_types(env);
4268 }
4269 
4270 static int btf_parse_str_sec(struct btf_verifier_env *env)
4271 {
4272 	const struct btf_header *hdr;
4273 	struct btf *btf = env->btf;
4274 	const char *start, *end;
4275 
4276 	hdr = &btf->hdr;
4277 	start = btf->nohdr_data + hdr->str_off;
4278 	end = start + hdr->str_len;
4279 
4280 	if (end != btf->data + btf->data_size) {
4281 		btf_verifier_log(env, "String section is not at the end");
4282 		return -EINVAL;
4283 	}
4284 
4285 	btf->strings = start;
4286 
4287 	if (btf->base_btf && !hdr->str_len)
4288 		return 0;
4289 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4290 		btf_verifier_log(env, "Invalid string section");
4291 		return -EINVAL;
4292 	}
4293 	if (!btf->base_btf && start[0]) {
4294 		btf_verifier_log(env, "Invalid string section");
4295 		return -EINVAL;
4296 	}
4297 
4298 	return 0;
4299 }
4300 
4301 static const size_t btf_sec_info_offset[] = {
4302 	offsetof(struct btf_header, type_off),
4303 	offsetof(struct btf_header, str_off),
4304 };
4305 
4306 static int btf_sec_info_cmp(const void *a, const void *b)
4307 {
4308 	const struct btf_sec_info *x = a;
4309 	const struct btf_sec_info *y = b;
4310 
4311 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4312 }
4313 
4314 static int btf_check_sec_info(struct btf_verifier_env *env,
4315 			      u32 btf_data_size)
4316 {
4317 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4318 	u32 total, expected_total, i;
4319 	const struct btf_header *hdr;
4320 	const struct btf *btf;
4321 
4322 	btf = env->btf;
4323 	hdr = &btf->hdr;
4324 
4325 	/* Populate the secs from hdr */
4326 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4327 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4328 						   btf_sec_info_offset[i]);
4329 
4330 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4331 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4332 
4333 	/* Check for gaps and overlap among sections */
4334 	total = 0;
4335 	expected_total = btf_data_size - hdr->hdr_len;
4336 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4337 		if (expected_total < secs[i].off) {
4338 			btf_verifier_log(env, "Invalid section offset");
4339 			return -EINVAL;
4340 		}
4341 		if (total < secs[i].off) {
4342 			/* gap */
4343 			btf_verifier_log(env, "Unsupported section found");
4344 			return -EINVAL;
4345 		}
4346 		if (total > secs[i].off) {
4347 			btf_verifier_log(env, "Section overlap found");
4348 			return -EINVAL;
4349 		}
4350 		if (expected_total - total < secs[i].len) {
4351 			btf_verifier_log(env,
4352 					 "Total section length too long");
4353 			return -EINVAL;
4354 		}
4355 		total += secs[i].len;
4356 	}
4357 
4358 	/* There is data other than hdr and known sections */
4359 	if (expected_total != total) {
4360 		btf_verifier_log(env, "Unsupported section found");
4361 		return -EINVAL;
4362 	}
4363 
4364 	return 0;
4365 }
4366 
4367 static int btf_parse_hdr(struct btf_verifier_env *env)
4368 {
4369 	u32 hdr_len, hdr_copy, btf_data_size;
4370 	const struct btf_header *hdr;
4371 	struct btf *btf;
4372 	int err;
4373 
4374 	btf = env->btf;
4375 	btf_data_size = btf->data_size;
4376 
4377 	if (btf_data_size <
4378 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4379 		btf_verifier_log(env, "hdr_len not found");
4380 		return -EINVAL;
4381 	}
4382 
4383 	hdr = btf->data;
4384 	hdr_len = hdr->hdr_len;
4385 	if (btf_data_size < hdr_len) {
4386 		btf_verifier_log(env, "btf_header not found");
4387 		return -EINVAL;
4388 	}
4389 
4390 	/* Ensure the unsupported header fields are zero */
4391 	if (hdr_len > sizeof(btf->hdr)) {
4392 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4393 		u8 *end = btf->data + hdr_len;
4394 
4395 		for (; expected_zero < end; expected_zero++) {
4396 			if (*expected_zero) {
4397 				btf_verifier_log(env, "Unsupported btf_header");
4398 				return -E2BIG;
4399 			}
4400 		}
4401 	}
4402 
4403 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4404 	memcpy(&btf->hdr, btf->data, hdr_copy);
4405 
4406 	hdr = &btf->hdr;
4407 
4408 	btf_verifier_log_hdr(env, btf_data_size);
4409 
4410 	if (hdr->magic != BTF_MAGIC) {
4411 		btf_verifier_log(env, "Invalid magic");
4412 		return -EINVAL;
4413 	}
4414 
4415 	if (hdr->version != BTF_VERSION) {
4416 		btf_verifier_log(env, "Unsupported version");
4417 		return -ENOTSUPP;
4418 	}
4419 
4420 	if (hdr->flags) {
4421 		btf_verifier_log(env, "Unsupported flags");
4422 		return -ENOTSUPP;
4423 	}
4424 
4425 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4426 		btf_verifier_log(env, "No data");
4427 		return -EINVAL;
4428 	}
4429 
4430 	err = btf_check_sec_info(env, btf_data_size);
4431 	if (err)
4432 		return err;
4433 
4434 	return 0;
4435 }
4436 
4437 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4438 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4439 {
4440 	struct btf_verifier_env *env = NULL;
4441 	struct bpf_verifier_log *log;
4442 	struct btf *btf = NULL;
4443 	u8 *data;
4444 	int err;
4445 
4446 	if (btf_data_size > BTF_MAX_SIZE)
4447 		return ERR_PTR(-E2BIG);
4448 
4449 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4450 	if (!env)
4451 		return ERR_PTR(-ENOMEM);
4452 
4453 	log = &env->log;
4454 	if (log_level || log_ubuf || log_size) {
4455 		/* user requested verbose verifier output
4456 		 * and supplied buffer to store the verification trace
4457 		 */
4458 		log->level = log_level;
4459 		log->ubuf = log_ubuf;
4460 		log->len_total = log_size;
4461 
4462 		/* log attributes have to be sane */
4463 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4464 		    !log->level || !log->ubuf) {
4465 			err = -EINVAL;
4466 			goto errout;
4467 		}
4468 	}
4469 
4470 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4471 	if (!btf) {
4472 		err = -ENOMEM;
4473 		goto errout;
4474 	}
4475 	env->btf = btf;
4476 
4477 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4478 	if (!data) {
4479 		err = -ENOMEM;
4480 		goto errout;
4481 	}
4482 
4483 	btf->data = data;
4484 	btf->data_size = btf_data_size;
4485 
4486 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4487 		err = -EFAULT;
4488 		goto errout;
4489 	}
4490 
4491 	err = btf_parse_hdr(env);
4492 	if (err)
4493 		goto errout;
4494 
4495 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4496 
4497 	err = btf_parse_str_sec(env);
4498 	if (err)
4499 		goto errout;
4500 
4501 	err = btf_parse_type_sec(env);
4502 	if (err)
4503 		goto errout;
4504 
4505 	if (log->level && bpf_verifier_log_full(log)) {
4506 		err = -ENOSPC;
4507 		goto errout;
4508 	}
4509 
4510 	btf_verifier_env_free(env);
4511 	refcount_set(&btf->refcnt, 1);
4512 	return btf;
4513 
4514 errout:
4515 	btf_verifier_env_free(env);
4516 	if (btf)
4517 		btf_free(btf);
4518 	return ERR_PTR(err);
4519 }
4520 
4521 extern char __weak __start_BTF[];
4522 extern char __weak __stop_BTF[];
4523 extern struct btf *btf_vmlinux;
4524 
4525 #define BPF_MAP_TYPE(_id, _ops)
4526 #define BPF_LINK_TYPE(_id, _name)
4527 static union {
4528 	struct bpf_ctx_convert {
4529 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4530 	prog_ctx_type _id##_prog; \
4531 	kern_ctx_type _id##_kern;
4532 #include <linux/bpf_types.h>
4533 #undef BPF_PROG_TYPE
4534 	} *__t;
4535 	/* 't' is written once under lock. Read many times. */
4536 	const struct btf_type *t;
4537 } bpf_ctx_convert;
4538 enum {
4539 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4540 	__ctx_convert##_id,
4541 #include <linux/bpf_types.h>
4542 #undef BPF_PROG_TYPE
4543 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4544 };
4545 static u8 bpf_ctx_convert_map[] = {
4546 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4547 	[_id] = __ctx_convert##_id,
4548 #include <linux/bpf_types.h>
4549 #undef BPF_PROG_TYPE
4550 	0, /* avoid empty array */
4551 };
4552 #undef BPF_MAP_TYPE
4553 #undef BPF_LINK_TYPE
4554 
4555 static const struct btf_member *
4556 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4557 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4558 		      int arg)
4559 {
4560 	const struct btf_type *conv_struct;
4561 	const struct btf_type *ctx_struct;
4562 	const struct btf_member *ctx_type;
4563 	const char *tname, *ctx_tname;
4564 
4565 	conv_struct = bpf_ctx_convert.t;
4566 	if (!conv_struct) {
4567 		bpf_log(log, "btf_vmlinux is malformed\n");
4568 		return NULL;
4569 	}
4570 	t = btf_type_by_id(btf, t->type);
4571 	while (btf_type_is_modifier(t))
4572 		t = btf_type_by_id(btf, t->type);
4573 	if (!btf_type_is_struct(t)) {
4574 		/* Only pointer to struct is supported for now.
4575 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4576 		 * is not supported yet.
4577 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4578 		 */
4579 		return NULL;
4580 	}
4581 	tname = btf_name_by_offset(btf, t->name_off);
4582 	if (!tname) {
4583 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4584 		return NULL;
4585 	}
4586 	/* prog_type is valid bpf program type. No need for bounds check. */
4587 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4588 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4589 	 * Like 'struct __sk_buff'
4590 	 */
4591 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4592 	if (!ctx_struct)
4593 		/* should not happen */
4594 		return NULL;
4595 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4596 	if (!ctx_tname) {
4597 		/* should not happen */
4598 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4599 		return NULL;
4600 	}
4601 	/* only compare that prog's ctx type name is the same as
4602 	 * kernel expects. No need to compare field by field.
4603 	 * It's ok for bpf prog to do:
4604 	 * struct __sk_buff {};
4605 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4606 	 * { // no fields of skb are ever used }
4607 	 */
4608 	if (strcmp(ctx_tname, tname))
4609 		return NULL;
4610 	return ctx_type;
4611 }
4612 
4613 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4614 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4615 #define BPF_LINK_TYPE(_id, _name)
4616 #define BPF_MAP_TYPE(_id, _ops) \
4617 	[_id] = &_ops,
4618 #include <linux/bpf_types.h>
4619 #undef BPF_PROG_TYPE
4620 #undef BPF_LINK_TYPE
4621 #undef BPF_MAP_TYPE
4622 };
4623 
4624 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4625 				    struct bpf_verifier_log *log)
4626 {
4627 	const struct bpf_map_ops *ops;
4628 	int i, btf_id;
4629 
4630 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4631 		ops = btf_vmlinux_map_ops[i];
4632 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4633 			continue;
4634 		if (!ops->map_btf_name || !ops->map_btf_id) {
4635 			bpf_log(log, "map type %d is misconfigured\n", i);
4636 			return -EINVAL;
4637 		}
4638 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4639 					       BTF_KIND_STRUCT);
4640 		if (btf_id < 0)
4641 			return btf_id;
4642 		*ops->map_btf_id = btf_id;
4643 	}
4644 
4645 	return 0;
4646 }
4647 
4648 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4649 				     struct btf *btf,
4650 				     const struct btf_type *t,
4651 				     enum bpf_prog_type prog_type,
4652 				     int arg)
4653 {
4654 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4655 
4656 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4657 	if (!prog_ctx_type)
4658 		return -ENOENT;
4659 	kern_ctx_type = prog_ctx_type + 1;
4660 	return kern_ctx_type->type;
4661 }
4662 
4663 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4664 BTF_ID(struct, bpf_ctx_convert)
4665 
4666 struct btf *btf_parse_vmlinux(void)
4667 {
4668 	struct btf_verifier_env *env = NULL;
4669 	struct bpf_verifier_log *log;
4670 	struct btf *btf = NULL;
4671 	int err;
4672 
4673 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4674 	if (!env)
4675 		return ERR_PTR(-ENOMEM);
4676 
4677 	log = &env->log;
4678 	log->level = BPF_LOG_KERNEL;
4679 
4680 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4681 	if (!btf) {
4682 		err = -ENOMEM;
4683 		goto errout;
4684 	}
4685 	env->btf = btf;
4686 
4687 	btf->data = __start_BTF;
4688 	btf->data_size = __stop_BTF - __start_BTF;
4689 	btf->kernel_btf = true;
4690 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4691 
4692 	err = btf_parse_hdr(env);
4693 	if (err)
4694 		goto errout;
4695 
4696 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4697 
4698 	err = btf_parse_str_sec(env);
4699 	if (err)
4700 		goto errout;
4701 
4702 	err = btf_check_all_metas(env);
4703 	if (err)
4704 		goto errout;
4705 
4706 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4707 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4708 
4709 	/* find bpf map structs for map_ptr access checking */
4710 	err = btf_vmlinux_map_ids_init(btf, log);
4711 	if (err < 0)
4712 		goto errout;
4713 
4714 	bpf_struct_ops_init(btf, log);
4715 
4716 	refcount_set(&btf->refcnt, 1);
4717 
4718 	err = btf_alloc_id(btf);
4719 	if (err)
4720 		goto errout;
4721 
4722 	btf_verifier_env_free(env);
4723 	return btf;
4724 
4725 errout:
4726 	btf_verifier_env_free(env);
4727 	if (btf) {
4728 		kvfree(btf->types);
4729 		kfree(btf);
4730 	}
4731 	return ERR_PTR(err);
4732 }
4733 
4734 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4735 
4736 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4737 {
4738 	struct btf_verifier_env *env = NULL;
4739 	struct bpf_verifier_log *log;
4740 	struct btf *btf = NULL, *base_btf;
4741 	int err;
4742 
4743 	base_btf = bpf_get_btf_vmlinux();
4744 	if (IS_ERR(base_btf))
4745 		return base_btf;
4746 	if (!base_btf)
4747 		return ERR_PTR(-EINVAL);
4748 
4749 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4750 	if (!env)
4751 		return ERR_PTR(-ENOMEM);
4752 
4753 	log = &env->log;
4754 	log->level = BPF_LOG_KERNEL;
4755 
4756 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4757 	if (!btf) {
4758 		err = -ENOMEM;
4759 		goto errout;
4760 	}
4761 	env->btf = btf;
4762 
4763 	btf->base_btf = base_btf;
4764 	btf->start_id = base_btf->nr_types;
4765 	btf->start_str_off = base_btf->hdr.str_len;
4766 	btf->kernel_btf = true;
4767 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4768 
4769 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4770 	if (!btf->data) {
4771 		err = -ENOMEM;
4772 		goto errout;
4773 	}
4774 	memcpy(btf->data, data, data_size);
4775 	btf->data_size = data_size;
4776 
4777 	err = btf_parse_hdr(env);
4778 	if (err)
4779 		goto errout;
4780 
4781 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4782 
4783 	err = btf_parse_str_sec(env);
4784 	if (err)
4785 		goto errout;
4786 
4787 	err = btf_check_all_metas(env);
4788 	if (err)
4789 		goto errout;
4790 
4791 	btf_verifier_env_free(env);
4792 	refcount_set(&btf->refcnt, 1);
4793 	return btf;
4794 
4795 errout:
4796 	btf_verifier_env_free(env);
4797 	if (btf) {
4798 		kvfree(btf->data);
4799 		kvfree(btf->types);
4800 		kfree(btf);
4801 	}
4802 	return ERR_PTR(err);
4803 }
4804 
4805 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4806 
4807 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4808 {
4809 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4810 
4811 	if (tgt_prog)
4812 		return tgt_prog->aux->btf;
4813 	else
4814 		return prog->aux->attach_btf;
4815 }
4816 
4817 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4818 {
4819 	/* t comes in already as a pointer */
4820 	t = btf_type_by_id(btf, t->type);
4821 
4822 	/* allow const */
4823 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4824 		t = btf_type_by_id(btf, t->type);
4825 
4826 	/* char, signed char, unsigned char */
4827 	return btf_type_is_int(t) && t->size == 1;
4828 }
4829 
4830 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4831 		    const struct bpf_prog *prog,
4832 		    struct bpf_insn_access_aux *info)
4833 {
4834 	const struct btf_type *t = prog->aux->attach_func_proto;
4835 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4836 	struct btf *btf = bpf_prog_get_target_btf(prog);
4837 	const char *tname = prog->aux->attach_func_name;
4838 	struct bpf_verifier_log *log = info->log;
4839 	const struct btf_param *args;
4840 	u32 nr_args, arg;
4841 	int i, ret;
4842 
4843 	if (off % 8) {
4844 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4845 			tname, off);
4846 		return false;
4847 	}
4848 	arg = off / 8;
4849 	args = (const struct btf_param *)(t + 1);
4850 	/* if (t == NULL) Fall back to default BPF prog with
4851 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4852 	 */
4853 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4854 	if (prog->aux->attach_btf_trace) {
4855 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4856 		args++;
4857 		nr_args--;
4858 	}
4859 
4860 	if (arg > nr_args) {
4861 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4862 			tname, arg + 1);
4863 		return false;
4864 	}
4865 
4866 	if (arg == nr_args) {
4867 		switch (prog->expected_attach_type) {
4868 		case BPF_LSM_MAC:
4869 		case BPF_TRACE_FEXIT:
4870 			/* When LSM programs are attached to void LSM hooks
4871 			 * they use FEXIT trampolines and when attached to
4872 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4873 			 *
4874 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4875 			 * the check:
4876 			 *
4877 			 *	if (ret_type != 'int')
4878 			 *		return -EINVAL;
4879 			 *
4880 			 * is _not_ done here. This is still safe as LSM hooks
4881 			 * have only void and int return types.
4882 			 */
4883 			if (!t)
4884 				return true;
4885 			t = btf_type_by_id(btf, t->type);
4886 			break;
4887 		case BPF_MODIFY_RETURN:
4888 			/* For now the BPF_MODIFY_RETURN can only be attached to
4889 			 * functions that return an int.
4890 			 */
4891 			if (!t)
4892 				return false;
4893 
4894 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4895 			if (!btf_type_is_small_int(t)) {
4896 				bpf_log(log,
4897 					"ret type %s not allowed for fmod_ret\n",
4898 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4899 				return false;
4900 			}
4901 			break;
4902 		default:
4903 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4904 				tname, arg + 1);
4905 			return false;
4906 		}
4907 	} else {
4908 		if (!t)
4909 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4910 			return true;
4911 		t = btf_type_by_id(btf, args[arg].type);
4912 	}
4913 
4914 	/* skip modifiers */
4915 	while (btf_type_is_modifier(t))
4916 		t = btf_type_by_id(btf, t->type);
4917 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4918 		/* accessing a scalar */
4919 		return true;
4920 	if (!btf_type_is_ptr(t)) {
4921 		bpf_log(log,
4922 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4923 			tname, arg,
4924 			__btf_name_by_offset(btf, t->name_off),
4925 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4926 		return false;
4927 	}
4928 
4929 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4930 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4931 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4932 
4933 		if (ctx_arg_info->offset == off &&
4934 		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4935 		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4936 			info->reg_type = ctx_arg_info->reg_type;
4937 			return true;
4938 		}
4939 	}
4940 
4941 	if (t->type == 0)
4942 		/* This is a pointer to void.
4943 		 * It is the same as scalar from the verifier safety pov.
4944 		 * No further pointer walking is allowed.
4945 		 */
4946 		return true;
4947 
4948 	if (is_string_ptr(btf, t))
4949 		return true;
4950 
4951 	/* this is a pointer to another type */
4952 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4953 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4954 
4955 		if (ctx_arg_info->offset == off) {
4956 			if (!ctx_arg_info->btf_id) {
4957 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
4958 				return false;
4959 			}
4960 
4961 			info->reg_type = ctx_arg_info->reg_type;
4962 			info->btf = btf_vmlinux;
4963 			info->btf_id = ctx_arg_info->btf_id;
4964 			return true;
4965 		}
4966 	}
4967 
4968 	info->reg_type = PTR_TO_BTF_ID;
4969 	if (tgt_prog) {
4970 		enum bpf_prog_type tgt_type;
4971 
4972 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4973 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
4974 		else
4975 			tgt_type = tgt_prog->type;
4976 
4977 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4978 		if (ret > 0) {
4979 			info->btf = btf_vmlinux;
4980 			info->btf_id = ret;
4981 			return true;
4982 		} else {
4983 			return false;
4984 		}
4985 	}
4986 
4987 	info->btf = btf;
4988 	info->btf_id = t->type;
4989 	t = btf_type_by_id(btf, t->type);
4990 	/* skip modifiers */
4991 	while (btf_type_is_modifier(t)) {
4992 		info->btf_id = t->type;
4993 		t = btf_type_by_id(btf, t->type);
4994 	}
4995 	if (!btf_type_is_struct(t)) {
4996 		bpf_log(log,
4997 			"func '%s' arg%d type %s is not a struct\n",
4998 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4999 		return false;
5000 	}
5001 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5002 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5003 		__btf_name_by_offset(btf, t->name_off));
5004 	return true;
5005 }
5006 
5007 enum bpf_struct_walk_result {
5008 	/* < 0 error */
5009 	WALK_SCALAR = 0,
5010 	WALK_PTR,
5011 	WALK_STRUCT,
5012 };
5013 
5014 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5015 			   const struct btf_type *t, int off, int size,
5016 			   u32 *next_btf_id)
5017 {
5018 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5019 	const struct btf_type *mtype, *elem_type = NULL;
5020 	const struct btf_member *member;
5021 	const char *tname, *mname;
5022 	u32 vlen, elem_id, mid;
5023 
5024 again:
5025 	tname = __btf_name_by_offset(btf, t->name_off);
5026 	if (!btf_type_is_struct(t)) {
5027 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5028 		return -EINVAL;
5029 	}
5030 
5031 	vlen = btf_type_vlen(t);
5032 	if (off + size > t->size) {
5033 		/* If the last element is a variable size array, we may
5034 		 * need to relax the rule.
5035 		 */
5036 		struct btf_array *array_elem;
5037 
5038 		if (vlen == 0)
5039 			goto error;
5040 
5041 		member = btf_type_member(t) + vlen - 1;
5042 		mtype = btf_type_skip_modifiers(btf, member->type,
5043 						NULL);
5044 		if (!btf_type_is_array(mtype))
5045 			goto error;
5046 
5047 		array_elem = (struct btf_array *)(mtype + 1);
5048 		if (array_elem->nelems != 0)
5049 			goto error;
5050 
5051 		moff = btf_member_bit_offset(t, member) / 8;
5052 		if (off < moff)
5053 			goto error;
5054 
5055 		/* Only allow structure for now, can be relaxed for
5056 		 * other types later.
5057 		 */
5058 		t = btf_type_skip_modifiers(btf, array_elem->type,
5059 					    NULL);
5060 		if (!btf_type_is_struct(t))
5061 			goto error;
5062 
5063 		off = (off - moff) % t->size;
5064 		goto again;
5065 
5066 error:
5067 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5068 			tname, off, size);
5069 		return -EACCES;
5070 	}
5071 
5072 	for_each_member(i, t, member) {
5073 		/* offset of the field in bytes */
5074 		moff = btf_member_bit_offset(t, member) / 8;
5075 		if (off + size <= moff)
5076 			/* won't find anything, field is already too far */
5077 			break;
5078 
5079 		if (btf_member_bitfield_size(t, member)) {
5080 			u32 end_bit = btf_member_bit_offset(t, member) +
5081 				btf_member_bitfield_size(t, member);
5082 
5083 			/* off <= moff instead of off == moff because clang
5084 			 * does not generate a BTF member for anonymous
5085 			 * bitfield like the ":16" here:
5086 			 * struct {
5087 			 *	int :16;
5088 			 *	int x:8;
5089 			 * };
5090 			 */
5091 			if (off <= moff &&
5092 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5093 				return WALK_SCALAR;
5094 
5095 			/* off may be accessing a following member
5096 			 *
5097 			 * or
5098 			 *
5099 			 * Doing partial access at either end of this
5100 			 * bitfield.  Continue on this case also to
5101 			 * treat it as not accessing this bitfield
5102 			 * and eventually error out as field not
5103 			 * found to keep it simple.
5104 			 * It could be relaxed if there was a legit
5105 			 * partial access case later.
5106 			 */
5107 			continue;
5108 		}
5109 
5110 		/* In case of "off" is pointing to holes of a struct */
5111 		if (off < moff)
5112 			break;
5113 
5114 		/* type of the field */
5115 		mid = member->type;
5116 		mtype = btf_type_by_id(btf, member->type);
5117 		mname = __btf_name_by_offset(btf, member->name_off);
5118 
5119 		mtype = __btf_resolve_size(btf, mtype, &msize,
5120 					   &elem_type, &elem_id, &total_nelems,
5121 					   &mid);
5122 		if (IS_ERR(mtype)) {
5123 			bpf_log(log, "field %s doesn't have size\n", mname);
5124 			return -EFAULT;
5125 		}
5126 
5127 		mtrue_end = moff + msize;
5128 		if (off >= mtrue_end)
5129 			/* no overlap with member, keep iterating */
5130 			continue;
5131 
5132 		if (btf_type_is_array(mtype)) {
5133 			u32 elem_idx;
5134 
5135 			/* __btf_resolve_size() above helps to
5136 			 * linearize a multi-dimensional array.
5137 			 *
5138 			 * The logic here is treating an array
5139 			 * in a struct as the following way:
5140 			 *
5141 			 * struct outer {
5142 			 *	struct inner array[2][2];
5143 			 * };
5144 			 *
5145 			 * looks like:
5146 			 *
5147 			 * struct outer {
5148 			 *	struct inner array_elem0;
5149 			 *	struct inner array_elem1;
5150 			 *	struct inner array_elem2;
5151 			 *	struct inner array_elem3;
5152 			 * };
5153 			 *
5154 			 * When accessing outer->array[1][0], it moves
5155 			 * moff to "array_elem2", set mtype to
5156 			 * "struct inner", and msize also becomes
5157 			 * sizeof(struct inner).  Then most of the
5158 			 * remaining logic will fall through without
5159 			 * caring the current member is an array or
5160 			 * not.
5161 			 *
5162 			 * Unlike mtype/msize/moff, mtrue_end does not
5163 			 * change.  The naming difference ("_true") tells
5164 			 * that it is not always corresponding to
5165 			 * the current mtype/msize/moff.
5166 			 * It is the true end of the current
5167 			 * member (i.e. array in this case).  That
5168 			 * will allow an int array to be accessed like
5169 			 * a scratch space,
5170 			 * i.e. allow access beyond the size of
5171 			 *      the array's element as long as it is
5172 			 *      within the mtrue_end boundary.
5173 			 */
5174 
5175 			/* skip empty array */
5176 			if (moff == mtrue_end)
5177 				continue;
5178 
5179 			msize /= total_nelems;
5180 			elem_idx = (off - moff) / msize;
5181 			moff += elem_idx * msize;
5182 			mtype = elem_type;
5183 			mid = elem_id;
5184 		}
5185 
5186 		/* the 'off' we're looking for is either equal to start
5187 		 * of this field or inside of this struct
5188 		 */
5189 		if (btf_type_is_struct(mtype)) {
5190 			/* our field must be inside that union or struct */
5191 			t = mtype;
5192 
5193 			/* return if the offset matches the member offset */
5194 			if (off == moff) {
5195 				*next_btf_id = mid;
5196 				return WALK_STRUCT;
5197 			}
5198 
5199 			/* adjust offset we're looking for */
5200 			off -= moff;
5201 			goto again;
5202 		}
5203 
5204 		if (btf_type_is_ptr(mtype)) {
5205 			const struct btf_type *stype;
5206 			u32 id;
5207 
5208 			if (msize != size || off != moff) {
5209 				bpf_log(log,
5210 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5211 					mname, moff, tname, off, size);
5212 				return -EACCES;
5213 			}
5214 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5215 			if (btf_type_is_struct(stype)) {
5216 				*next_btf_id = id;
5217 				return WALK_PTR;
5218 			}
5219 		}
5220 
5221 		/* Allow more flexible access within an int as long as
5222 		 * it is within mtrue_end.
5223 		 * Since mtrue_end could be the end of an array,
5224 		 * that also allows using an array of int as a scratch
5225 		 * space. e.g. skb->cb[].
5226 		 */
5227 		if (off + size > mtrue_end) {
5228 			bpf_log(log,
5229 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5230 				mname, mtrue_end, tname, off, size);
5231 			return -EACCES;
5232 		}
5233 
5234 		return WALK_SCALAR;
5235 	}
5236 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5237 	return -EINVAL;
5238 }
5239 
5240 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5241 		      const struct btf_type *t, int off, int size,
5242 		      enum bpf_access_type atype __maybe_unused,
5243 		      u32 *next_btf_id)
5244 {
5245 	int err;
5246 	u32 id;
5247 
5248 	do {
5249 		err = btf_struct_walk(log, btf, t, off, size, &id);
5250 
5251 		switch (err) {
5252 		case WALK_PTR:
5253 			/* If we found the pointer or scalar on t+off,
5254 			 * we're done.
5255 			 */
5256 			*next_btf_id = id;
5257 			return PTR_TO_BTF_ID;
5258 		case WALK_SCALAR:
5259 			return SCALAR_VALUE;
5260 		case WALK_STRUCT:
5261 			/* We found nested struct, so continue the search
5262 			 * by diving in it. At this point the offset is
5263 			 * aligned with the new type, so set it to 0.
5264 			 */
5265 			t = btf_type_by_id(btf, id);
5266 			off = 0;
5267 			break;
5268 		default:
5269 			/* It's either error or unknown return value..
5270 			 * scream and leave.
5271 			 */
5272 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5273 				return -EINVAL;
5274 			return err;
5275 		}
5276 	} while (t);
5277 
5278 	return -EINVAL;
5279 }
5280 
5281 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5282  * the same. Trivial ID check is not enough due to module BTFs, because we can
5283  * end up with two different module BTFs, but IDs point to the common type in
5284  * vmlinux BTF.
5285  */
5286 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5287 			       const struct btf *btf2, u32 id2)
5288 {
5289 	if (id1 != id2)
5290 		return false;
5291 	if (btf1 == btf2)
5292 		return true;
5293 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5294 }
5295 
5296 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5297 			  const struct btf *btf, u32 id, int off,
5298 			  const struct btf *need_btf, u32 need_type_id)
5299 {
5300 	const struct btf_type *type;
5301 	int err;
5302 
5303 	/* Are we already done? */
5304 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5305 		return true;
5306 
5307 again:
5308 	type = btf_type_by_id(btf, id);
5309 	if (!type)
5310 		return false;
5311 	err = btf_struct_walk(log, btf, type, off, 1, &id);
5312 	if (err != WALK_STRUCT)
5313 		return false;
5314 
5315 	/* We found nested struct object. If it matches
5316 	 * the requested ID, we're done. Otherwise let's
5317 	 * continue the search with offset 0 in the new
5318 	 * type.
5319 	 */
5320 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5321 		off = 0;
5322 		goto again;
5323 	}
5324 
5325 	return true;
5326 }
5327 
5328 static int __get_type_size(struct btf *btf, u32 btf_id,
5329 			   const struct btf_type **bad_type)
5330 {
5331 	const struct btf_type *t;
5332 
5333 	if (!btf_id)
5334 		/* void */
5335 		return 0;
5336 	t = btf_type_by_id(btf, btf_id);
5337 	while (t && btf_type_is_modifier(t))
5338 		t = btf_type_by_id(btf, t->type);
5339 	if (!t) {
5340 		*bad_type = btf_type_by_id(btf, 0);
5341 		return -EINVAL;
5342 	}
5343 	if (btf_type_is_ptr(t))
5344 		/* kernel size of pointer. Not BPF's size of pointer*/
5345 		return sizeof(void *);
5346 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5347 		return t->size;
5348 	*bad_type = t;
5349 	return -EINVAL;
5350 }
5351 
5352 int btf_distill_func_proto(struct bpf_verifier_log *log,
5353 			   struct btf *btf,
5354 			   const struct btf_type *func,
5355 			   const char *tname,
5356 			   struct btf_func_model *m)
5357 {
5358 	const struct btf_param *args;
5359 	const struct btf_type *t;
5360 	u32 i, nargs;
5361 	int ret;
5362 
5363 	if (!func) {
5364 		/* BTF function prototype doesn't match the verifier types.
5365 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5366 		 */
5367 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5368 			m->arg_size[i] = 8;
5369 		m->ret_size = 8;
5370 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5371 		return 0;
5372 	}
5373 	args = (const struct btf_param *)(func + 1);
5374 	nargs = btf_type_vlen(func);
5375 	if (nargs >= MAX_BPF_FUNC_ARGS) {
5376 		bpf_log(log,
5377 			"The function %s has %d arguments. Too many.\n",
5378 			tname, nargs);
5379 		return -EINVAL;
5380 	}
5381 	ret = __get_type_size(btf, func->type, &t);
5382 	if (ret < 0) {
5383 		bpf_log(log,
5384 			"The function %s return type %s is unsupported.\n",
5385 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5386 		return -EINVAL;
5387 	}
5388 	m->ret_size = ret;
5389 
5390 	for (i = 0; i < nargs; i++) {
5391 		if (i == nargs - 1 && args[i].type == 0) {
5392 			bpf_log(log,
5393 				"The function %s with variable args is unsupported.\n",
5394 				tname);
5395 			return -EINVAL;
5396 		}
5397 		ret = __get_type_size(btf, args[i].type, &t);
5398 		if (ret < 0) {
5399 			bpf_log(log,
5400 				"The function %s arg%d type %s is unsupported.\n",
5401 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5402 			return -EINVAL;
5403 		}
5404 		if (ret == 0) {
5405 			bpf_log(log,
5406 				"The function %s has malformed void argument.\n",
5407 				tname);
5408 			return -EINVAL;
5409 		}
5410 		m->arg_size[i] = ret;
5411 	}
5412 	m->nr_args = nargs;
5413 	return 0;
5414 }
5415 
5416 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5417  * t1 points to BTF_KIND_FUNC in btf1
5418  * t2 points to BTF_KIND_FUNC in btf2
5419  * Returns:
5420  * EINVAL - function prototype mismatch
5421  * EFAULT - verifier bug
5422  * 0 - 99% match. The last 1% is validated by the verifier.
5423  */
5424 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5425 				     struct btf *btf1, const struct btf_type *t1,
5426 				     struct btf *btf2, const struct btf_type *t2)
5427 {
5428 	const struct btf_param *args1, *args2;
5429 	const char *fn1, *fn2, *s1, *s2;
5430 	u32 nargs1, nargs2, i;
5431 
5432 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5433 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5434 
5435 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5436 		bpf_log(log, "%s() is not a global function\n", fn1);
5437 		return -EINVAL;
5438 	}
5439 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5440 		bpf_log(log, "%s() is not a global function\n", fn2);
5441 		return -EINVAL;
5442 	}
5443 
5444 	t1 = btf_type_by_id(btf1, t1->type);
5445 	if (!t1 || !btf_type_is_func_proto(t1))
5446 		return -EFAULT;
5447 	t2 = btf_type_by_id(btf2, t2->type);
5448 	if (!t2 || !btf_type_is_func_proto(t2))
5449 		return -EFAULT;
5450 
5451 	args1 = (const struct btf_param *)(t1 + 1);
5452 	nargs1 = btf_type_vlen(t1);
5453 	args2 = (const struct btf_param *)(t2 + 1);
5454 	nargs2 = btf_type_vlen(t2);
5455 
5456 	if (nargs1 != nargs2) {
5457 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5458 			fn1, nargs1, fn2, nargs2);
5459 		return -EINVAL;
5460 	}
5461 
5462 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5463 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5464 	if (t1->info != t2->info) {
5465 		bpf_log(log,
5466 			"Return type %s of %s() doesn't match type %s of %s()\n",
5467 			btf_type_str(t1), fn1,
5468 			btf_type_str(t2), fn2);
5469 		return -EINVAL;
5470 	}
5471 
5472 	for (i = 0; i < nargs1; i++) {
5473 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5474 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5475 
5476 		if (t1->info != t2->info) {
5477 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5478 				i, fn1, btf_type_str(t1),
5479 				fn2, btf_type_str(t2));
5480 			return -EINVAL;
5481 		}
5482 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5483 			bpf_log(log,
5484 				"arg%d in %s() has size %d while %s() has %d\n",
5485 				i, fn1, t1->size,
5486 				fn2, t2->size);
5487 			return -EINVAL;
5488 		}
5489 
5490 		/* global functions are validated with scalars and pointers
5491 		 * to context only. And only global functions can be replaced.
5492 		 * Hence type check only those types.
5493 		 */
5494 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5495 			continue;
5496 		if (!btf_type_is_ptr(t1)) {
5497 			bpf_log(log,
5498 				"arg%d in %s() has unrecognized type\n",
5499 				i, fn1);
5500 			return -EINVAL;
5501 		}
5502 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5503 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5504 		if (!btf_type_is_struct(t1)) {
5505 			bpf_log(log,
5506 				"arg%d in %s() is not a pointer to context\n",
5507 				i, fn1);
5508 			return -EINVAL;
5509 		}
5510 		if (!btf_type_is_struct(t2)) {
5511 			bpf_log(log,
5512 				"arg%d in %s() is not a pointer to context\n",
5513 				i, fn2);
5514 			return -EINVAL;
5515 		}
5516 		/* This is an optional check to make program writing easier.
5517 		 * Compare names of structs and report an error to the user.
5518 		 * btf_prepare_func_args() already checked that t2 struct
5519 		 * is a context type. btf_prepare_func_args() will check
5520 		 * later that t1 struct is a context type as well.
5521 		 */
5522 		s1 = btf_name_by_offset(btf1, t1->name_off);
5523 		s2 = btf_name_by_offset(btf2, t2->name_off);
5524 		if (strcmp(s1, s2)) {
5525 			bpf_log(log,
5526 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5527 				i, fn1, s1, fn2, s2);
5528 			return -EINVAL;
5529 		}
5530 	}
5531 	return 0;
5532 }
5533 
5534 /* Compare BTFs of given program with BTF of target program */
5535 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5536 			 struct btf *btf2, const struct btf_type *t2)
5537 {
5538 	struct btf *btf1 = prog->aux->btf;
5539 	const struct btf_type *t1;
5540 	u32 btf_id = 0;
5541 
5542 	if (!prog->aux->func_info) {
5543 		bpf_log(log, "Program extension requires BTF\n");
5544 		return -EINVAL;
5545 	}
5546 
5547 	btf_id = prog->aux->func_info[0].type_id;
5548 	if (!btf_id)
5549 		return -EFAULT;
5550 
5551 	t1 = btf_type_by_id(btf1, btf_id);
5552 	if (!t1 || !btf_type_is_func(t1))
5553 		return -EFAULT;
5554 
5555 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5556 }
5557 
5558 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5559 #ifdef CONFIG_NET
5560 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5561 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5562 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5563 #endif
5564 };
5565 
5566 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5567 				    const struct btf *btf, u32 func_id,
5568 				    struct bpf_reg_state *regs,
5569 				    bool ptr_to_mem_ok)
5570 {
5571 	struct bpf_verifier_log *log = &env->log;
5572 	const char *func_name, *ref_tname;
5573 	const struct btf_type *t, *ref_t;
5574 	const struct btf_param *args;
5575 	u32 i, nargs, ref_id;
5576 
5577 	t = btf_type_by_id(btf, func_id);
5578 	if (!t || !btf_type_is_func(t)) {
5579 		/* These checks were already done by the verifier while loading
5580 		 * struct bpf_func_info or in add_kfunc_call().
5581 		 */
5582 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5583 			func_id);
5584 		return -EFAULT;
5585 	}
5586 	func_name = btf_name_by_offset(btf, t->name_off);
5587 
5588 	t = btf_type_by_id(btf, t->type);
5589 	if (!t || !btf_type_is_func_proto(t)) {
5590 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
5591 		return -EFAULT;
5592 	}
5593 	args = (const struct btf_param *)(t + 1);
5594 	nargs = btf_type_vlen(t);
5595 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5596 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5597 			MAX_BPF_FUNC_REG_ARGS);
5598 		return -EINVAL;
5599 	}
5600 
5601 	/* check that BTF function arguments match actual types that the
5602 	 * verifier sees.
5603 	 */
5604 	for (i = 0; i < nargs; i++) {
5605 		u32 regno = i + 1;
5606 		struct bpf_reg_state *reg = &regs[regno];
5607 
5608 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5609 		if (btf_type_is_scalar(t)) {
5610 			if (reg->type == SCALAR_VALUE)
5611 				continue;
5612 			bpf_log(log, "R%d is not a scalar\n", regno);
5613 			return -EINVAL;
5614 		}
5615 
5616 		if (!btf_type_is_ptr(t)) {
5617 			bpf_log(log, "Unrecognized arg#%d type %s\n",
5618 				i, btf_type_str(t));
5619 			return -EINVAL;
5620 		}
5621 
5622 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5623 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5624 		if (btf_is_kernel(btf)) {
5625 			const struct btf_type *reg_ref_t;
5626 			const struct btf *reg_btf;
5627 			const char *reg_ref_tname;
5628 			u32 reg_ref_id;
5629 
5630 			if (!btf_type_is_struct(ref_t)) {
5631 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5632 					func_name, i, btf_type_str(ref_t),
5633 					ref_tname);
5634 				return -EINVAL;
5635 			}
5636 
5637 			if (reg->type == PTR_TO_BTF_ID) {
5638 				reg_btf = reg->btf;
5639 				reg_ref_id = reg->btf_id;
5640 			} else if (reg2btf_ids[reg->type]) {
5641 				reg_btf = btf_vmlinux;
5642 				reg_ref_id = *reg2btf_ids[reg->type];
5643 			} else {
5644 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5645 					func_name, i,
5646 					btf_type_str(ref_t), ref_tname, regno);
5647 				return -EINVAL;
5648 			}
5649 
5650 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5651 							    &reg_ref_id);
5652 			reg_ref_tname = btf_name_by_offset(reg_btf,
5653 							   reg_ref_t->name_off);
5654 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5655 						  reg->off, btf, ref_id)) {
5656 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5657 					func_name, i,
5658 					btf_type_str(ref_t), ref_tname,
5659 					regno, btf_type_str(reg_ref_t),
5660 					reg_ref_tname);
5661 				return -EINVAL;
5662 			}
5663 		} else if (btf_get_prog_ctx_type(log, btf, t,
5664 						 env->prog->type, i)) {
5665 			/* If function expects ctx type in BTF check that caller
5666 			 * is passing PTR_TO_CTX.
5667 			 */
5668 			if (reg->type != PTR_TO_CTX) {
5669 				bpf_log(log,
5670 					"arg#%d expected pointer to ctx, but got %s\n",
5671 					i, btf_type_str(t));
5672 				return -EINVAL;
5673 			}
5674 			if (check_ctx_reg(env, reg, regno))
5675 				return -EINVAL;
5676 		} else if (ptr_to_mem_ok) {
5677 			const struct btf_type *resolve_ret;
5678 			u32 type_size;
5679 
5680 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5681 			if (IS_ERR(resolve_ret)) {
5682 				bpf_log(log,
5683 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5684 					i, btf_type_str(ref_t), ref_tname,
5685 					PTR_ERR(resolve_ret));
5686 				return -EINVAL;
5687 			}
5688 
5689 			if (check_mem_reg(env, reg, regno, type_size))
5690 				return -EINVAL;
5691 		} else {
5692 			return -EINVAL;
5693 		}
5694 	}
5695 
5696 	return 0;
5697 }
5698 
5699 /* Compare BTF of a function with given bpf_reg_state.
5700  * Returns:
5701  * EFAULT - there is a verifier bug. Abort verification.
5702  * EINVAL - there is a type mismatch or BTF is not available.
5703  * 0 - BTF matches with what bpf_reg_state expects.
5704  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5705  */
5706 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5707 				struct bpf_reg_state *regs)
5708 {
5709 	struct bpf_prog *prog = env->prog;
5710 	struct btf *btf = prog->aux->btf;
5711 	bool is_global;
5712 	u32 btf_id;
5713 	int err;
5714 
5715 	if (!prog->aux->func_info)
5716 		return -EINVAL;
5717 
5718 	btf_id = prog->aux->func_info[subprog].type_id;
5719 	if (!btf_id)
5720 		return -EFAULT;
5721 
5722 	if (prog->aux->func_info_aux[subprog].unreliable)
5723 		return -EINVAL;
5724 
5725 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5726 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5727 
5728 	/* Compiler optimizations can remove arguments from static functions
5729 	 * or mismatched type can be passed into a global function.
5730 	 * In such cases mark the function as unreliable from BTF point of view.
5731 	 */
5732 	if (err)
5733 		prog->aux->func_info_aux[subprog].unreliable = true;
5734 	return err;
5735 }
5736 
5737 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5738 			      const struct btf *btf, u32 func_id,
5739 			      struct bpf_reg_state *regs)
5740 {
5741 	return btf_check_func_arg_match(env, btf, func_id, regs, false);
5742 }
5743 
5744 /* Convert BTF of a function into bpf_reg_state if possible
5745  * Returns:
5746  * EFAULT - there is a verifier bug. Abort verification.
5747  * EINVAL - cannot convert BTF.
5748  * 0 - Successfully converted BTF into bpf_reg_state
5749  * (either PTR_TO_CTX or SCALAR_VALUE).
5750  */
5751 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5752 			  struct bpf_reg_state *regs)
5753 {
5754 	struct bpf_verifier_log *log = &env->log;
5755 	struct bpf_prog *prog = env->prog;
5756 	enum bpf_prog_type prog_type = prog->type;
5757 	struct btf *btf = prog->aux->btf;
5758 	const struct btf_param *args;
5759 	const struct btf_type *t, *ref_t;
5760 	u32 i, nargs, btf_id;
5761 	const char *tname;
5762 
5763 	if (!prog->aux->func_info ||
5764 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5765 		bpf_log(log, "Verifier bug\n");
5766 		return -EFAULT;
5767 	}
5768 
5769 	btf_id = prog->aux->func_info[subprog].type_id;
5770 	if (!btf_id) {
5771 		bpf_log(log, "Global functions need valid BTF\n");
5772 		return -EFAULT;
5773 	}
5774 
5775 	t = btf_type_by_id(btf, btf_id);
5776 	if (!t || !btf_type_is_func(t)) {
5777 		/* These checks were already done by the verifier while loading
5778 		 * struct bpf_func_info
5779 		 */
5780 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5781 			subprog);
5782 		return -EFAULT;
5783 	}
5784 	tname = btf_name_by_offset(btf, t->name_off);
5785 
5786 	if (log->level & BPF_LOG_LEVEL)
5787 		bpf_log(log, "Validating %s() func#%d...\n",
5788 			tname, subprog);
5789 
5790 	if (prog->aux->func_info_aux[subprog].unreliable) {
5791 		bpf_log(log, "Verifier bug in function %s()\n", tname);
5792 		return -EFAULT;
5793 	}
5794 	if (prog_type == BPF_PROG_TYPE_EXT)
5795 		prog_type = prog->aux->dst_prog->type;
5796 
5797 	t = btf_type_by_id(btf, t->type);
5798 	if (!t || !btf_type_is_func_proto(t)) {
5799 		bpf_log(log, "Invalid type of function %s()\n", tname);
5800 		return -EFAULT;
5801 	}
5802 	args = (const struct btf_param *)(t + 1);
5803 	nargs = btf_type_vlen(t);
5804 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5805 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5806 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5807 		return -EINVAL;
5808 	}
5809 	/* check that function returns int */
5810 	t = btf_type_by_id(btf, t->type);
5811 	while (btf_type_is_modifier(t))
5812 		t = btf_type_by_id(btf, t->type);
5813 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5814 		bpf_log(log,
5815 			"Global function %s() doesn't return scalar. Only those are supported.\n",
5816 			tname);
5817 		return -EINVAL;
5818 	}
5819 	/* Convert BTF function arguments into verifier types.
5820 	 * Only PTR_TO_CTX and SCALAR are supported atm.
5821 	 */
5822 	for (i = 0; i < nargs; i++) {
5823 		struct bpf_reg_state *reg = &regs[i + 1];
5824 
5825 		t = btf_type_by_id(btf, args[i].type);
5826 		while (btf_type_is_modifier(t))
5827 			t = btf_type_by_id(btf, t->type);
5828 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5829 			reg->type = SCALAR_VALUE;
5830 			continue;
5831 		}
5832 		if (btf_type_is_ptr(t)) {
5833 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5834 				reg->type = PTR_TO_CTX;
5835 				continue;
5836 			}
5837 
5838 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5839 
5840 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5841 			if (IS_ERR(ref_t)) {
5842 				bpf_log(log,
5843 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5844 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5845 					PTR_ERR(ref_t));
5846 				return -EINVAL;
5847 			}
5848 
5849 			reg->type = PTR_TO_MEM_OR_NULL;
5850 			reg->id = ++env->id_gen;
5851 
5852 			continue;
5853 		}
5854 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5855 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5856 		return -EINVAL;
5857 	}
5858 	return 0;
5859 }
5860 
5861 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5862 			  struct btf_show *show)
5863 {
5864 	const struct btf_type *t = btf_type_by_id(btf, type_id);
5865 
5866 	show->btf = btf;
5867 	memset(&show->state, 0, sizeof(show->state));
5868 	memset(&show->obj, 0, sizeof(show->obj));
5869 
5870 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5871 }
5872 
5873 static void btf_seq_show(struct btf_show *show, const char *fmt,
5874 			 va_list args)
5875 {
5876 	seq_vprintf((struct seq_file *)show->target, fmt, args);
5877 }
5878 
5879 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5880 			    void *obj, struct seq_file *m, u64 flags)
5881 {
5882 	struct btf_show sseq;
5883 
5884 	sseq.target = m;
5885 	sseq.showfn = btf_seq_show;
5886 	sseq.flags = flags;
5887 
5888 	btf_type_show(btf, type_id, obj, &sseq);
5889 
5890 	return sseq.state.status;
5891 }
5892 
5893 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5894 		       struct seq_file *m)
5895 {
5896 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
5897 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5898 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5899 }
5900 
5901 struct btf_show_snprintf {
5902 	struct btf_show show;
5903 	int len_left;		/* space left in string */
5904 	int len;		/* length we would have written */
5905 };
5906 
5907 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5908 			      va_list args)
5909 {
5910 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5911 	int len;
5912 
5913 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5914 
5915 	if (len < 0) {
5916 		ssnprintf->len_left = 0;
5917 		ssnprintf->len = len;
5918 	} else if (len > ssnprintf->len_left) {
5919 		/* no space, drive on to get length we would have written */
5920 		ssnprintf->len_left = 0;
5921 		ssnprintf->len += len;
5922 	} else {
5923 		ssnprintf->len_left -= len;
5924 		ssnprintf->len += len;
5925 		show->target += len;
5926 	}
5927 }
5928 
5929 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5930 			   char *buf, int len, u64 flags)
5931 {
5932 	struct btf_show_snprintf ssnprintf;
5933 
5934 	ssnprintf.show.target = buf;
5935 	ssnprintf.show.flags = flags;
5936 	ssnprintf.show.showfn = btf_snprintf_show;
5937 	ssnprintf.len_left = len;
5938 	ssnprintf.len = 0;
5939 
5940 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5941 
5942 	/* If we encontered an error, return it. */
5943 	if (ssnprintf.show.state.status)
5944 		return ssnprintf.show.state.status;
5945 
5946 	/* Otherwise return length we would have written */
5947 	return ssnprintf.len;
5948 }
5949 
5950 #ifdef CONFIG_PROC_FS
5951 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5952 {
5953 	const struct btf *btf = filp->private_data;
5954 
5955 	seq_printf(m, "btf_id:\t%u\n", btf->id);
5956 }
5957 #endif
5958 
5959 static int btf_release(struct inode *inode, struct file *filp)
5960 {
5961 	btf_put(filp->private_data);
5962 	return 0;
5963 }
5964 
5965 const struct file_operations btf_fops = {
5966 #ifdef CONFIG_PROC_FS
5967 	.show_fdinfo	= bpf_btf_show_fdinfo,
5968 #endif
5969 	.release	= btf_release,
5970 };
5971 
5972 static int __btf_new_fd(struct btf *btf)
5973 {
5974 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5975 }
5976 
5977 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
5978 {
5979 	struct btf *btf;
5980 	int ret;
5981 
5982 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
5983 			attr->btf_size, attr->btf_log_level,
5984 			u64_to_user_ptr(attr->btf_log_buf),
5985 			attr->btf_log_size);
5986 	if (IS_ERR(btf))
5987 		return PTR_ERR(btf);
5988 
5989 	ret = btf_alloc_id(btf);
5990 	if (ret) {
5991 		btf_free(btf);
5992 		return ret;
5993 	}
5994 
5995 	/*
5996 	 * The BTF ID is published to the userspace.
5997 	 * All BTF free must go through call_rcu() from
5998 	 * now on (i.e. free by calling btf_put()).
5999 	 */
6000 
6001 	ret = __btf_new_fd(btf);
6002 	if (ret < 0)
6003 		btf_put(btf);
6004 
6005 	return ret;
6006 }
6007 
6008 struct btf *btf_get_by_fd(int fd)
6009 {
6010 	struct btf *btf;
6011 	struct fd f;
6012 
6013 	f = fdget(fd);
6014 
6015 	if (!f.file)
6016 		return ERR_PTR(-EBADF);
6017 
6018 	if (f.file->f_op != &btf_fops) {
6019 		fdput(f);
6020 		return ERR_PTR(-EINVAL);
6021 	}
6022 
6023 	btf = f.file->private_data;
6024 	refcount_inc(&btf->refcnt);
6025 	fdput(f);
6026 
6027 	return btf;
6028 }
6029 
6030 int btf_get_info_by_fd(const struct btf *btf,
6031 		       const union bpf_attr *attr,
6032 		       union bpf_attr __user *uattr)
6033 {
6034 	struct bpf_btf_info __user *uinfo;
6035 	struct bpf_btf_info info;
6036 	u32 info_copy, btf_copy;
6037 	void __user *ubtf;
6038 	char __user *uname;
6039 	u32 uinfo_len, uname_len, name_len;
6040 	int ret = 0;
6041 
6042 	uinfo = u64_to_user_ptr(attr->info.info);
6043 	uinfo_len = attr->info.info_len;
6044 
6045 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6046 	memset(&info, 0, sizeof(info));
6047 	if (copy_from_user(&info, uinfo, info_copy))
6048 		return -EFAULT;
6049 
6050 	info.id = btf->id;
6051 	ubtf = u64_to_user_ptr(info.btf);
6052 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6053 	if (copy_to_user(ubtf, btf->data, btf_copy))
6054 		return -EFAULT;
6055 	info.btf_size = btf->data_size;
6056 
6057 	info.kernel_btf = btf->kernel_btf;
6058 
6059 	uname = u64_to_user_ptr(info.name);
6060 	uname_len = info.name_len;
6061 	if (!uname ^ !uname_len)
6062 		return -EINVAL;
6063 
6064 	name_len = strlen(btf->name);
6065 	info.name_len = name_len;
6066 
6067 	if (uname) {
6068 		if (uname_len >= name_len + 1) {
6069 			if (copy_to_user(uname, btf->name, name_len + 1))
6070 				return -EFAULT;
6071 		} else {
6072 			char zero = '\0';
6073 
6074 			if (copy_to_user(uname, btf->name, uname_len - 1))
6075 				return -EFAULT;
6076 			if (put_user(zero, uname + uname_len - 1))
6077 				return -EFAULT;
6078 			/* let user-space know about too short buffer */
6079 			ret = -ENOSPC;
6080 		}
6081 	}
6082 
6083 	if (copy_to_user(uinfo, &info, info_copy) ||
6084 	    put_user(info_copy, &uattr->info.info_len))
6085 		return -EFAULT;
6086 
6087 	return ret;
6088 }
6089 
6090 int btf_get_fd_by_id(u32 id)
6091 {
6092 	struct btf *btf;
6093 	int fd;
6094 
6095 	rcu_read_lock();
6096 	btf = idr_find(&btf_idr, id);
6097 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6098 		btf = ERR_PTR(-ENOENT);
6099 	rcu_read_unlock();
6100 
6101 	if (IS_ERR(btf))
6102 		return PTR_ERR(btf);
6103 
6104 	fd = __btf_new_fd(btf);
6105 	if (fd < 0)
6106 		btf_put(btf);
6107 
6108 	return fd;
6109 }
6110 
6111 u32 btf_obj_id(const struct btf *btf)
6112 {
6113 	return btf->id;
6114 }
6115 
6116 bool btf_is_kernel(const struct btf *btf)
6117 {
6118 	return btf->kernel_btf;
6119 }
6120 
6121 bool btf_is_module(const struct btf *btf)
6122 {
6123 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6124 }
6125 
6126 static int btf_id_cmp_func(const void *a, const void *b)
6127 {
6128 	const int *pa = a, *pb = b;
6129 
6130 	return *pa - *pb;
6131 }
6132 
6133 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6134 {
6135 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6136 }
6137 
6138 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6139 struct btf_module {
6140 	struct list_head list;
6141 	struct module *module;
6142 	struct btf *btf;
6143 	struct bin_attribute *sysfs_attr;
6144 };
6145 
6146 static LIST_HEAD(btf_modules);
6147 static DEFINE_MUTEX(btf_module_mutex);
6148 
6149 static ssize_t
6150 btf_module_read(struct file *file, struct kobject *kobj,
6151 		struct bin_attribute *bin_attr,
6152 		char *buf, loff_t off, size_t len)
6153 {
6154 	const struct btf *btf = bin_attr->private;
6155 
6156 	memcpy(buf, btf->data + off, len);
6157 	return len;
6158 }
6159 
6160 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6161 			     void *module)
6162 {
6163 	struct btf_module *btf_mod, *tmp;
6164 	struct module *mod = module;
6165 	struct btf *btf;
6166 	int err = 0;
6167 
6168 	if (mod->btf_data_size == 0 ||
6169 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
6170 		goto out;
6171 
6172 	switch (op) {
6173 	case MODULE_STATE_COMING:
6174 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6175 		if (!btf_mod) {
6176 			err = -ENOMEM;
6177 			goto out;
6178 		}
6179 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6180 		if (IS_ERR(btf)) {
6181 			pr_warn("failed to validate module [%s] BTF: %ld\n",
6182 				mod->name, PTR_ERR(btf));
6183 			kfree(btf_mod);
6184 			err = PTR_ERR(btf);
6185 			goto out;
6186 		}
6187 		err = btf_alloc_id(btf);
6188 		if (err) {
6189 			btf_free(btf);
6190 			kfree(btf_mod);
6191 			goto out;
6192 		}
6193 
6194 		mutex_lock(&btf_module_mutex);
6195 		btf_mod->module = module;
6196 		btf_mod->btf = btf;
6197 		list_add(&btf_mod->list, &btf_modules);
6198 		mutex_unlock(&btf_module_mutex);
6199 
6200 		if (IS_ENABLED(CONFIG_SYSFS)) {
6201 			struct bin_attribute *attr;
6202 
6203 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6204 			if (!attr)
6205 				goto out;
6206 
6207 			sysfs_bin_attr_init(attr);
6208 			attr->attr.name = btf->name;
6209 			attr->attr.mode = 0444;
6210 			attr->size = btf->data_size;
6211 			attr->private = btf;
6212 			attr->read = btf_module_read;
6213 
6214 			err = sysfs_create_bin_file(btf_kobj, attr);
6215 			if (err) {
6216 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6217 					mod->name, err);
6218 				kfree(attr);
6219 				err = 0;
6220 				goto out;
6221 			}
6222 
6223 			btf_mod->sysfs_attr = attr;
6224 		}
6225 
6226 		break;
6227 	case MODULE_STATE_GOING:
6228 		mutex_lock(&btf_module_mutex);
6229 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6230 			if (btf_mod->module != module)
6231 				continue;
6232 
6233 			list_del(&btf_mod->list);
6234 			if (btf_mod->sysfs_attr)
6235 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6236 			btf_put(btf_mod->btf);
6237 			kfree(btf_mod->sysfs_attr);
6238 			kfree(btf_mod);
6239 			break;
6240 		}
6241 		mutex_unlock(&btf_module_mutex);
6242 		break;
6243 	}
6244 out:
6245 	return notifier_from_errno(err);
6246 }
6247 
6248 static struct notifier_block btf_module_nb = {
6249 	.notifier_call = btf_module_notify,
6250 };
6251 
6252 static int __init btf_module_init(void)
6253 {
6254 	register_module_notifier(&btf_module_nb);
6255 	return 0;
6256 }
6257 
6258 fs_initcall(btf_module_init);
6259 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6260 
6261 struct module *btf_try_get_module(const struct btf *btf)
6262 {
6263 	struct module *res = NULL;
6264 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6265 	struct btf_module *btf_mod, *tmp;
6266 
6267 	mutex_lock(&btf_module_mutex);
6268 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6269 		if (btf_mod->btf != btf)
6270 			continue;
6271 
6272 		if (try_module_get(btf_mod->module))
6273 			res = btf_mod->module;
6274 
6275 		break;
6276 	}
6277 	mutex_unlock(&btf_module_mutex);
6278 #endif
6279 
6280 	return res;
6281 }
6282 
6283 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6284 {
6285 	struct btf *btf;
6286 	long ret;
6287 
6288 	if (flags)
6289 		return -EINVAL;
6290 
6291 	if (name_sz <= 1 || name[name_sz - 1])
6292 		return -EINVAL;
6293 
6294 	btf = bpf_get_btf_vmlinux();
6295 	if (IS_ERR(btf))
6296 		return PTR_ERR(btf);
6297 
6298 	ret = btf_find_by_name_kind(btf, name, kind);
6299 	/* ret is never zero, since btf_find_by_name_kind returns
6300 	 * positive btf_id or negative error.
6301 	 */
6302 	if (ret < 0) {
6303 		struct btf *mod_btf;
6304 		int id;
6305 
6306 		/* If name is not found in vmlinux's BTF then search in module's BTFs */
6307 		spin_lock_bh(&btf_idr_lock);
6308 		idr_for_each_entry(&btf_idr, mod_btf, id) {
6309 			if (!btf_is_module(mod_btf))
6310 				continue;
6311 			/* linear search could be slow hence unlock/lock
6312 			 * the IDR to avoiding holding it for too long
6313 			 */
6314 			btf_get(mod_btf);
6315 			spin_unlock_bh(&btf_idr_lock);
6316 			ret = btf_find_by_name_kind(mod_btf, name, kind);
6317 			if (ret > 0) {
6318 				int btf_obj_fd;
6319 
6320 				btf_obj_fd = __btf_new_fd(mod_btf);
6321 				if (btf_obj_fd < 0) {
6322 					btf_put(mod_btf);
6323 					return btf_obj_fd;
6324 				}
6325 				return ret | (((u64)btf_obj_fd) << 32);
6326 			}
6327 			spin_lock_bh(&btf_idr_lock);
6328 			btf_put(mod_btf);
6329 		}
6330 		spin_unlock_bh(&btf_idr_lock);
6331 	}
6332 	return ret;
6333 }
6334 
6335 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6336 	.func		= bpf_btf_find_by_name_kind,
6337 	.gpl_only	= false,
6338 	.ret_type	= RET_INTEGER,
6339 	.arg1_type	= ARG_PTR_TO_MEM,
6340 	.arg2_type	= ARG_CONST_SIZE,
6341 	.arg3_type	= ARG_ANYTHING,
6342 	.arg4_type	= ARG_ANYTHING,
6343 };
6344 
6345 BTF_ID_LIST_GLOBAL_SINGLE(btf_task_struct_ids, struct, task_struct)
6346 
6347 /* BTF ID set registration API for modules */
6348 
6349 struct kfunc_btf_id_list {
6350 	struct list_head list;
6351 	struct mutex mutex;
6352 };
6353 
6354 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6355 
6356 void register_kfunc_btf_id_set(struct kfunc_btf_id_list *l,
6357 			       struct kfunc_btf_id_set *s)
6358 {
6359 	mutex_lock(&l->mutex);
6360 	list_add(&s->list, &l->list);
6361 	mutex_unlock(&l->mutex);
6362 }
6363 EXPORT_SYMBOL_GPL(register_kfunc_btf_id_set);
6364 
6365 void unregister_kfunc_btf_id_set(struct kfunc_btf_id_list *l,
6366 				 struct kfunc_btf_id_set *s)
6367 {
6368 	mutex_lock(&l->mutex);
6369 	list_del_init(&s->list);
6370 	mutex_unlock(&l->mutex);
6371 }
6372 EXPORT_SYMBOL_GPL(unregister_kfunc_btf_id_set);
6373 
6374 bool bpf_check_mod_kfunc_call(struct kfunc_btf_id_list *klist, u32 kfunc_id,
6375 			      struct module *owner)
6376 {
6377 	struct kfunc_btf_id_set *s;
6378 
6379 	if (!owner)
6380 		return false;
6381 	mutex_lock(&klist->mutex);
6382 	list_for_each_entry(s, &klist->list, list) {
6383 		if (s->owner == owner && btf_id_set_contains(s->set, kfunc_id)) {
6384 			mutex_unlock(&klist->mutex);
6385 			return true;
6386 		}
6387 	}
6388 	mutex_unlock(&klist->mutex);
6389 	return false;
6390 }
6391 
6392 #endif
6393 
6394 #define DEFINE_KFUNC_BTF_ID_LIST(name)                                         \
6395 	struct kfunc_btf_id_list name = { LIST_HEAD_INIT(name.list),           \
6396 					  __MUTEX_INITIALIZER(name.mutex) };   \
6397 	EXPORT_SYMBOL_GPL(name)
6398 
6399 DEFINE_KFUNC_BTF_ID_LIST(bpf_tcp_ca_kfunc_list);
6400 DEFINE_KFUNC_BTF_ID_LIST(prog_test_kfunc_list);
6401