xref: /linux/kernel/bpf/btf.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP_SKB,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_KPROBE,
222 	BTF_KFUNC_HOOK_MAX,
223 };
224 
225 enum {
226 	BTF_KFUNC_SET_MAX_CNT = 256,
227 	BTF_DTOR_KFUNC_MAX_CNT = 256,
228 	BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230 
231 struct btf_kfunc_hook_filter {
232 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233 	u32 nr_filters;
234 };
235 
236 struct btf_kfunc_set_tab {
237 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240 
241 struct btf_id_dtor_kfunc_tab {
242 	u32 cnt;
243 	struct btf_id_dtor_kfunc dtors[];
244 };
245 
246 struct btf_struct_ops_tab {
247 	u32 cnt;
248 	u32 capacity;
249 	struct bpf_struct_ops_desc ops[];
250 };
251 
252 struct btf {
253 	void *data;
254 	struct btf_type **types;
255 	u32 *resolved_ids;
256 	u32 *resolved_sizes;
257 	const char *strings;
258 	void *nohdr_data;
259 	struct btf_header hdr;
260 	u32 nr_types; /* includes VOID for base BTF */
261 	u32 types_size;
262 	u32 data_size;
263 	refcount_t refcnt;
264 	u32 id;
265 	struct rcu_head rcu;
266 	struct btf_kfunc_set_tab *kfunc_set_tab;
267 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268 	struct btf_struct_metas *struct_meta_tab;
269 	struct btf_struct_ops_tab *struct_ops_tab;
270 
271 	/* split BTF support */
272 	struct btf *base_btf;
273 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274 	u32 start_str_off; /* first string offset (0 for base BTF) */
275 	char name[MODULE_NAME_LEN];
276 	bool kernel_btf;
277 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279 
280 enum verifier_phase {
281 	CHECK_META,
282 	CHECK_TYPE,
283 };
284 
285 struct resolve_vertex {
286 	const struct btf_type *t;
287 	u32 type_id;
288 	u16 next_member;
289 };
290 
291 enum visit_state {
292 	NOT_VISITED,
293 	VISITED,
294 	RESOLVED,
295 };
296 
297 enum resolve_mode {
298 	RESOLVE_TBD,	/* To Be Determined */
299 	RESOLVE_PTR,	/* Resolving for Pointer */
300 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
301 					 * or array
302 					 */
303 };
304 
305 #define MAX_RESOLVE_DEPTH 32
306 
307 struct btf_sec_info {
308 	u32 off;
309 	u32 len;
310 };
311 
312 struct btf_verifier_env {
313 	struct btf *btf;
314 	u8 *visit_states;
315 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316 	struct bpf_verifier_log log;
317 	u32 log_type_id;
318 	u32 top_stack;
319 	enum verifier_phase phase;
320 	enum resolve_mode resolve_mode;
321 };
322 
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324 	[BTF_KIND_UNKN]		= "UNKNOWN",
325 	[BTF_KIND_INT]		= "INT",
326 	[BTF_KIND_PTR]		= "PTR",
327 	[BTF_KIND_ARRAY]	= "ARRAY",
328 	[BTF_KIND_STRUCT]	= "STRUCT",
329 	[BTF_KIND_UNION]	= "UNION",
330 	[BTF_KIND_ENUM]		= "ENUM",
331 	[BTF_KIND_FWD]		= "FWD",
332 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
333 	[BTF_KIND_VOLATILE]	= "VOLATILE",
334 	[BTF_KIND_CONST]	= "CONST",
335 	[BTF_KIND_RESTRICT]	= "RESTRICT",
336 	[BTF_KIND_FUNC]		= "FUNC",
337 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
338 	[BTF_KIND_VAR]		= "VAR",
339 	[BTF_KIND_DATASEC]	= "DATASEC",
340 	[BTF_KIND_FLOAT]	= "FLOAT",
341 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
342 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
343 	[BTF_KIND_ENUM64]	= "ENUM64",
344 };
345 
346 const char *btf_type_str(const struct btf_type *t)
347 {
348 	return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350 
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE		32
353 
354 /*
355  * This is the maximum size of a base type value (equivalent to a
356  * 128-bit int); if we are at the end of our safe buffer and have
357  * less than 16 bytes space we can't be assured of being able
358  * to copy the next type safely, so in such cases we will initiate
359  * a new copy.
360  */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
362 
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE		80
365 
366 /*
367  * The suffix of a type that indicates it cannot alias another type when
368  * comparing BTF IDs for kfunc invocations.
369  */
370 #define NOCAST_ALIAS_SUFFIX		"___init"
371 
372 /*
373  * Common data to all BTF show operations. Private show functions can add
374  * their own data to a structure containing a struct btf_show and consult it
375  * in the show callback.  See btf_type_show() below.
376  *
377  * One challenge with showing nested data is we want to skip 0-valued
378  * data, but in order to figure out whether a nested object is all zeros
379  * we need to walk through it.  As a result, we need to make two passes
380  * when handling structs, unions and arrays; the first path simply looks
381  * for nonzero data, while the second actually does the display.  The first
382  * pass is signalled by show->state.depth_check being set, and if we
383  * encounter a non-zero value we set show->state.depth_to_show to
384  * the depth at which we encountered it.  When we have completed the
385  * first pass, we will know if anything needs to be displayed if
386  * depth_to_show > depth.  See btf_[struct,array]_show() for the
387  * implementation of this.
388  *
389  * Another problem is we want to ensure the data for display is safe to
390  * access.  To support this, the anonymous "struct {} obj" tracks the data
391  * object and our safe copy of it.  We copy portions of the data needed
392  * to the object "copy" buffer, but because its size is limited to
393  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394  * traverse larger objects for display.
395  *
396  * The various data type show functions all start with a call to
397  * btf_show_start_type() which returns a pointer to the safe copy
398  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399  * raw data itself).  btf_show_obj_safe() is responsible for
400  * using copy_from_kernel_nofault() to update the safe data if necessary
401  * as we traverse the object's data.  skbuff-like semantics are
402  * used:
403  *
404  * - obj.head points to the start of the toplevel object for display
405  * - obj.size is the size of the toplevel object
406  * - obj.data points to the current point in the original data at
407  *   which our safe data starts.  obj.data will advance as we copy
408  *   portions of the data.
409  *
410  * In most cases a single copy will suffice, but larger data structures
411  * such as "struct task_struct" will require many copies.  The logic in
412  * btf_show_obj_safe() handles the logic that determines if a new
413  * copy_from_kernel_nofault() is needed.
414  */
415 struct btf_show {
416 	u64 flags;
417 	void *target;	/* target of show operation (seq file, buffer) */
418 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419 	const struct btf *btf;
420 	/* below are used during iteration */
421 	struct {
422 		u8 depth;
423 		u8 depth_to_show;
424 		u8 depth_check;
425 		u8 array_member:1,
426 		   array_terminated:1;
427 		u16 array_encoding;
428 		u32 type_id;
429 		int status;			/* non-zero for error */
430 		const struct btf_type *type;
431 		const struct btf_member *member;
432 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
433 	} state;
434 	struct {
435 		u32 size;
436 		void *head;
437 		void *data;
438 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439 	} obj;
440 };
441 
442 struct btf_kind_operations {
443 	s32 (*check_meta)(struct btf_verifier_env *env,
444 			  const struct btf_type *t,
445 			  u32 meta_left);
446 	int (*resolve)(struct btf_verifier_env *env,
447 		       const struct resolve_vertex *v);
448 	int (*check_member)(struct btf_verifier_env *env,
449 			    const struct btf_type *struct_type,
450 			    const struct btf_member *member,
451 			    const struct btf_type *member_type);
452 	int (*check_kflag_member)(struct btf_verifier_env *env,
453 				  const struct btf_type *struct_type,
454 				  const struct btf_member *member,
455 				  const struct btf_type *member_type);
456 	void (*log_details)(struct btf_verifier_env *env,
457 			    const struct btf_type *t);
458 	void (*show)(const struct btf *btf, const struct btf_type *t,
459 			 u32 type_id, void *data, u8 bits_offsets,
460 			 struct btf_show *show);
461 };
462 
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465 
466 static int btf_resolve(struct btf_verifier_env *env,
467 		       const struct btf_type *t, u32 type_id);
468 
469 static int btf_func_check(struct btf_verifier_env *env,
470 			  const struct btf_type *t);
471 
472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474 	/* Some of them is not strictly a C modifier
475 	 * but they are grouped into the same bucket
476 	 * for BTF concern:
477 	 *   A type (t) that refers to another
478 	 *   type through t->type AND its size cannot
479 	 *   be determined without following the t->type.
480 	 *
481 	 * ptr does not fall into this bucket
482 	 * because its size is always sizeof(void *).
483 	 */
484 	switch (BTF_INFO_KIND(t->info)) {
485 	case BTF_KIND_TYPEDEF:
486 	case BTF_KIND_VOLATILE:
487 	case BTF_KIND_CONST:
488 	case BTF_KIND_RESTRICT:
489 	case BTF_KIND_TYPE_TAG:
490 		return true;
491 	}
492 
493 	return false;
494 }
495 
496 bool btf_type_is_void(const struct btf_type *t)
497 {
498 	return t == &btf_void;
499 }
500 
501 static bool btf_type_is_fwd(const struct btf_type *t)
502 {
503 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
504 }
505 
506 static bool btf_type_is_datasec(const struct btf_type *t)
507 {
508 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
509 }
510 
511 static bool btf_type_is_decl_tag(const struct btf_type *t)
512 {
513 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
514 }
515 
516 static bool btf_type_nosize(const struct btf_type *t)
517 {
518 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
519 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
520 	       btf_type_is_decl_tag(t);
521 }
522 
523 static bool btf_type_nosize_or_null(const struct btf_type *t)
524 {
525 	return !t || btf_type_nosize(t);
526 }
527 
528 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
529 {
530 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
531 	       btf_type_is_var(t) || btf_type_is_typedef(t);
532 }
533 
534 bool btf_is_vmlinux(const struct btf *btf)
535 {
536 	return btf->kernel_btf && !btf->base_btf;
537 }
538 
539 u32 btf_nr_types(const struct btf *btf)
540 {
541 	u32 total = 0;
542 
543 	while (btf) {
544 		total += btf->nr_types;
545 		btf = btf->base_btf;
546 	}
547 
548 	return total;
549 }
550 
551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
552 {
553 	const struct btf_type *t;
554 	const char *tname;
555 	u32 i, total;
556 
557 	total = btf_nr_types(btf);
558 	for (i = 1; i < total; i++) {
559 		t = btf_type_by_id(btf, i);
560 		if (BTF_INFO_KIND(t->info) != kind)
561 			continue;
562 
563 		tname = btf_name_by_offset(btf, t->name_off);
564 		if (!strcmp(tname, name))
565 			return i;
566 	}
567 
568 	return -ENOENT;
569 }
570 
571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
572 {
573 	struct btf *btf;
574 	s32 ret;
575 	int id;
576 
577 	btf = bpf_get_btf_vmlinux();
578 	if (IS_ERR(btf))
579 		return PTR_ERR(btf);
580 	if (!btf)
581 		return -EINVAL;
582 
583 	ret = btf_find_by_name_kind(btf, name, kind);
584 	/* ret is never zero, since btf_find_by_name_kind returns
585 	 * positive btf_id or negative error.
586 	 */
587 	if (ret > 0) {
588 		btf_get(btf);
589 		*btf_p = btf;
590 		return ret;
591 	}
592 
593 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
594 	spin_lock_bh(&btf_idr_lock);
595 	idr_for_each_entry(&btf_idr, btf, id) {
596 		if (!btf_is_module(btf))
597 			continue;
598 		/* linear search could be slow hence unlock/lock
599 		 * the IDR to avoiding holding it for too long
600 		 */
601 		btf_get(btf);
602 		spin_unlock_bh(&btf_idr_lock);
603 		ret = btf_find_by_name_kind(btf, name, kind);
604 		if (ret > 0) {
605 			*btf_p = btf;
606 			return ret;
607 		}
608 		btf_put(btf);
609 		spin_lock_bh(&btf_idr_lock);
610 	}
611 	spin_unlock_bh(&btf_idr_lock);
612 	return ret;
613 }
614 
615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
616 					       u32 id, u32 *res_id)
617 {
618 	const struct btf_type *t = btf_type_by_id(btf, id);
619 
620 	while (btf_type_is_modifier(t)) {
621 		id = t->type;
622 		t = btf_type_by_id(btf, t->type);
623 	}
624 
625 	if (res_id)
626 		*res_id = id;
627 
628 	return t;
629 }
630 
631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
632 					    u32 id, u32 *res_id)
633 {
634 	const struct btf_type *t;
635 
636 	t = btf_type_skip_modifiers(btf, id, NULL);
637 	if (!btf_type_is_ptr(t))
638 		return NULL;
639 
640 	return btf_type_skip_modifiers(btf, t->type, res_id);
641 }
642 
643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
644 						 u32 id, u32 *res_id)
645 {
646 	const struct btf_type *ptype;
647 
648 	ptype = btf_type_resolve_ptr(btf, id, res_id);
649 	if (ptype && btf_type_is_func_proto(ptype))
650 		return ptype;
651 
652 	return NULL;
653 }
654 
655 /* Types that act only as a source, not sink or intermediate
656  * type when resolving.
657  */
658 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
659 {
660 	return btf_type_is_var(t) ||
661 	       btf_type_is_decl_tag(t) ||
662 	       btf_type_is_datasec(t);
663 }
664 
665 /* What types need to be resolved?
666  *
667  * btf_type_is_modifier() is an obvious one.
668  *
669  * btf_type_is_struct() because its member refers to
670  * another type (through member->type).
671  *
672  * btf_type_is_var() because the variable refers to
673  * another type. btf_type_is_datasec() holds multiple
674  * btf_type_is_var() types that need resolving.
675  *
676  * btf_type_is_array() because its element (array->type)
677  * refers to another type.  Array can be thought of a
678  * special case of struct while array just has the same
679  * member-type repeated by array->nelems of times.
680  */
681 static bool btf_type_needs_resolve(const struct btf_type *t)
682 {
683 	return btf_type_is_modifier(t) ||
684 	       btf_type_is_ptr(t) ||
685 	       btf_type_is_struct(t) ||
686 	       btf_type_is_array(t) ||
687 	       btf_type_is_var(t) ||
688 	       btf_type_is_func(t) ||
689 	       btf_type_is_decl_tag(t) ||
690 	       btf_type_is_datasec(t);
691 }
692 
693 /* t->size can be used */
694 static bool btf_type_has_size(const struct btf_type *t)
695 {
696 	switch (BTF_INFO_KIND(t->info)) {
697 	case BTF_KIND_INT:
698 	case BTF_KIND_STRUCT:
699 	case BTF_KIND_UNION:
700 	case BTF_KIND_ENUM:
701 	case BTF_KIND_DATASEC:
702 	case BTF_KIND_FLOAT:
703 	case BTF_KIND_ENUM64:
704 		return true;
705 	}
706 
707 	return false;
708 }
709 
710 static const char *btf_int_encoding_str(u8 encoding)
711 {
712 	if (encoding == 0)
713 		return "(none)";
714 	else if (encoding == BTF_INT_SIGNED)
715 		return "SIGNED";
716 	else if (encoding == BTF_INT_CHAR)
717 		return "CHAR";
718 	else if (encoding == BTF_INT_BOOL)
719 		return "BOOL";
720 	else
721 		return "UNKN";
722 }
723 
724 static u32 btf_type_int(const struct btf_type *t)
725 {
726 	return *(u32 *)(t + 1);
727 }
728 
729 static const struct btf_array *btf_type_array(const struct btf_type *t)
730 {
731 	return (const struct btf_array *)(t + 1);
732 }
733 
734 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
735 {
736 	return (const struct btf_enum *)(t + 1);
737 }
738 
739 static const struct btf_var *btf_type_var(const struct btf_type *t)
740 {
741 	return (const struct btf_var *)(t + 1);
742 }
743 
744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
745 {
746 	return (const struct btf_decl_tag *)(t + 1);
747 }
748 
749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
750 {
751 	return (const struct btf_enum64 *)(t + 1);
752 }
753 
754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
755 {
756 	return kind_ops[BTF_INFO_KIND(t->info)];
757 }
758 
759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
760 {
761 	if (!BTF_STR_OFFSET_VALID(offset))
762 		return false;
763 
764 	while (offset < btf->start_str_off)
765 		btf = btf->base_btf;
766 
767 	offset -= btf->start_str_off;
768 	return offset < btf->hdr.str_len;
769 }
770 
771 static bool __btf_name_char_ok(char c, bool first)
772 {
773 	if ((first ? !isalpha(c) :
774 		     !isalnum(c)) &&
775 	    c != '_' &&
776 	    c != '.')
777 		return false;
778 	return true;
779 }
780 
781 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
782 {
783 	while (offset < btf->start_str_off)
784 		btf = btf->base_btf;
785 
786 	offset -= btf->start_str_off;
787 	if (offset < btf->hdr.str_len)
788 		return &btf->strings[offset];
789 
790 	return NULL;
791 }
792 
793 static bool __btf_name_valid(const struct btf *btf, u32 offset)
794 {
795 	/* offset must be valid */
796 	const char *src = btf_str_by_offset(btf, offset);
797 	const char *src_limit;
798 
799 	if (!__btf_name_char_ok(*src, true))
800 		return false;
801 
802 	/* set a limit on identifier length */
803 	src_limit = src + KSYM_NAME_LEN;
804 	src++;
805 	while (*src && src < src_limit) {
806 		if (!__btf_name_char_ok(*src, false))
807 			return false;
808 		src++;
809 	}
810 
811 	return !*src;
812 }
813 
814 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
815 {
816 	return __btf_name_valid(btf, offset);
817 }
818 
819 /* Allow any printable character in DATASEC names */
820 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
821 {
822 	/* offset must be valid */
823 	const char *src = btf_str_by_offset(btf, offset);
824 	const char *src_limit;
825 
826 	if (!*src)
827 		return false;
828 
829 	/* set a limit on identifier length */
830 	src_limit = src + KSYM_NAME_LEN;
831 	while (*src && src < src_limit) {
832 		if (!isprint(*src))
833 			return false;
834 		src++;
835 	}
836 
837 	return !*src;
838 }
839 
840 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
841 {
842 	const char *name;
843 
844 	if (!offset)
845 		return "(anon)";
846 
847 	name = btf_str_by_offset(btf, offset);
848 	return name ?: "(invalid-name-offset)";
849 }
850 
851 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
852 {
853 	return btf_str_by_offset(btf, offset);
854 }
855 
856 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
857 {
858 	while (type_id < btf->start_id)
859 		btf = btf->base_btf;
860 
861 	type_id -= btf->start_id;
862 	if (type_id >= btf->nr_types)
863 		return NULL;
864 	return btf->types[type_id];
865 }
866 EXPORT_SYMBOL_GPL(btf_type_by_id);
867 
868 /*
869  * Regular int is not a bit field and it must be either
870  * u8/u16/u32/u64 or __int128.
871  */
872 static bool btf_type_int_is_regular(const struct btf_type *t)
873 {
874 	u8 nr_bits, nr_bytes;
875 	u32 int_data;
876 
877 	int_data = btf_type_int(t);
878 	nr_bits = BTF_INT_BITS(int_data);
879 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
880 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
881 	    BTF_INT_OFFSET(int_data) ||
882 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
883 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
884 	     nr_bytes != (2 * sizeof(u64)))) {
885 		return false;
886 	}
887 
888 	return true;
889 }
890 
891 /*
892  * Check that given struct member is a regular int with expected
893  * offset and size.
894  */
895 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
896 			   const struct btf_member *m,
897 			   u32 expected_offset, u32 expected_size)
898 {
899 	const struct btf_type *t;
900 	u32 id, int_data;
901 	u8 nr_bits;
902 
903 	id = m->type;
904 	t = btf_type_id_size(btf, &id, NULL);
905 	if (!t || !btf_type_is_int(t))
906 		return false;
907 
908 	int_data = btf_type_int(t);
909 	nr_bits = BTF_INT_BITS(int_data);
910 	if (btf_type_kflag(s)) {
911 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
912 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
913 
914 		/* if kflag set, int should be a regular int and
915 		 * bit offset should be at byte boundary.
916 		 */
917 		return !bitfield_size &&
918 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
919 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
920 	}
921 
922 	if (BTF_INT_OFFSET(int_data) ||
923 	    BITS_PER_BYTE_MASKED(m->offset) ||
924 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
925 	    BITS_PER_BYTE_MASKED(nr_bits) ||
926 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
927 		return false;
928 
929 	return true;
930 }
931 
932 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
933 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
934 						       u32 id)
935 {
936 	const struct btf_type *t = btf_type_by_id(btf, id);
937 
938 	while (btf_type_is_modifier(t) &&
939 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
940 		t = btf_type_by_id(btf, t->type);
941 	}
942 
943 	return t;
944 }
945 
946 #define BTF_SHOW_MAX_ITER	10
947 
948 #define BTF_KIND_BIT(kind)	(1ULL << kind)
949 
950 /*
951  * Populate show->state.name with type name information.
952  * Format of type name is
953  *
954  * [.member_name = ] (type_name)
955  */
956 static const char *btf_show_name(struct btf_show *show)
957 {
958 	/* BTF_MAX_ITER array suffixes "[]" */
959 	const char *array_suffixes = "[][][][][][][][][][]";
960 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
961 	/* BTF_MAX_ITER pointer suffixes "*" */
962 	const char *ptr_suffixes = "**********";
963 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
964 	const char *name = NULL, *prefix = "", *parens = "";
965 	const struct btf_member *m = show->state.member;
966 	const struct btf_type *t;
967 	const struct btf_array *array;
968 	u32 id = show->state.type_id;
969 	const char *member = NULL;
970 	bool show_member = false;
971 	u64 kinds = 0;
972 	int i;
973 
974 	show->state.name[0] = '\0';
975 
976 	/*
977 	 * Don't show type name if we're showing an array member;
978 	 * in that case we show the array type so don't need to repeat
979 	 * ourselves for each member.
980 	 */
981 	if (show->state.array_member)
982 		return "";
983 
984 	/* Retrieve member name, if any. */
985 	if (m) {
986 		member = btf_name_by_offset(show->btf, m->name_off);
987 		show_member = strlen(member) > 0;
988 		id = m->type;
989 	}
990 
991 	/*
992 	 * Start with type_id, as we have resolved the struct btf_type *
993 	 * via btf_modifier_show() past the parent typedef to the child
994 	 * struct, int etc it is defined as.  In such cases, the type_id
995 	 * still represents the starting type while the struct btf_type *
996 	 * in our show->state points at the resolved type of the typedef.
997 	 */
998 	t = btf_type_by_id(show->btf, id);
999 	if (!t)
1000 		return "";
1001 
1002 	/*
1003 	 * The goal here is to build up the right number of pointer and
1004 	 * array suffixes while ensuring the type name for a typedef
1005 	 * is represented.  Along the way we accumulate a list of
1006 	 * BTF kinds we have encountered, since these will inform later
1007 	 * display; for example, pointer types will not require an
1008 	 * opening "{" for struct, we will just display the pointer value.
1009 	 *
1010 	 * We also want to accumulate the right number of pointer or array
1011 	 * indices in the format string while iterating until we get to
1012 	 * the typedef/pointee/array member target type.
1013 	 *
1014 	 * We start by pointing at the end of pointer and array suffix
1015 	 * strings; as we accumulate pointers and arrays we move the pointer
1016 	 * or array string backwards so it will show the expected number of
1017 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1018 	 * and/or arrays and typedefs are supported as a precaution.
1019 	 *
1020 	 * We also want to get typedef name while proceeding to resolve
1021 	 * type it points to so that we can add parentheses if it is a
1022 	 * "typedef struct" etc.
1023 	 */
1024 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1025 
1026 		switch (BTF_INFO_KIND(t->info)) {
1027 		case BTF_KIND_TYPEDEF:
1028 			if (!name)
1029 				name = btf_name_by_offset(show->btf,
1030 							       t->name_off);
1031 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1032 			id = t->type;
1033 			break;
1034 		case BTF_KIND_ARRAY:
1035 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1036 			parens = "[";
1037 			if (!t)
1038 				return "";
1039 			array = btf_type_array(t);
1040 			if (array_suffix > array_suffixes)
1041 				array_suffix -= 2;
1042 			id = array->type;
1043 			break;
1044 		case BTF_KIND_PTR:
1045 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1046 			if (ptr_suffix > ptr_suffixes)
1047 				ptr_suffix -= 1;
1048 			id = t->type;
1049 			break;
1050 		default:
1051 			id = 0;
1052 			break;
1053 		}
1054 		if (!id)
1055 			break;
1056 		t = btf_type_skip_qualifiers(show->btf, id);
1057 	}
1058 	/* We may not be able to represent this type; bail to be safe */
1059 	if (i == BTF_SHOW_MAX_ITER)
1060 		return "";
1061 
1062 	if (!name)
1063 		name = btf_name_by_offset(show->btf, t->name_off);
1064 
1065 	switch (BTF_INFO_KIND(t->info)) {
1066 	case BTF_KIND_STRUCT:
1067 	case BTF_KIND_UNION:
1068 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1069 			 "struct" : "union";
1070 		/* if it's an array of struct/union, parens is already set */
1071 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1072 			parens = "{";
1073 		break;
1074 	case BTF_KIND_ENUM:
1075 	case BTF_KIND_ENUM64:
1076 		prefix = "enum";
1077 		break;
1078 	default:
1079 		break;
1080 	}
1081 
1082 	/* pointer does not require parens */
1083 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1084 		parens = "";
1085 	/* typedef does not require struct/union/enum prefix */
1086 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1087 		prefix = "";
1088 
1089 	if (!name)
1090 		name = "";
1091 
1092 	/* Even if we don't want type name info, we want parentheses etc */
1093 	if (show->flags & BTF_SHOW_NONAME)
1094 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1095 			 parens);
1096 	else
1097 		snprintf(show->state.name, sizeof(show->state.name),
1098 			 "%s%s%s(%s%s%s%s%s%s)%s",
1099 			 /* first 3 strings comprise ".member = " */
1100 			 show_member ? "." : "",
1101 			 show_member ? member : "",
1102 			 show_member ? " = " : "",
1103 			 /* ...next is our prefix (struct, enum, etc) */
1104 			 prefix,
1105 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1106 			 /* ...this is the type name itself */
1107 			 name,
1108 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1109 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1110 			 array_suffix, parens);
1111 
1112 	return show->state.name;
1113 }
1114 
1115 static const char *__btf_show_indent(struct btf_show *show)
1116 {
1117 	const char *indents = "                                ";
1118 	const char *indent = &indents[strlen(indents)];
1119 
1120 	if ((indent - show->state.depth) >= indents)
1121 		return indent - show->state.depth;
1122 	return indents;
1123 }
1124 
1125 static const char *btf_show_indent(struct btf_show *show)
1126 {
1127 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1128 }
1129 
1130 static const char *btf_show_newline(struct btf_show *show)
1131 {
1132 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1133 }
1134 
1135 static const char *btf_show_delim(struct btf_show *show)
1136 {
1137 	if (show->state.depth == 0)
1138 		return "";
1139 
1140 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1141 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1142 		return "|";
1143 
1144 	return ",";
1145 }
1146 
1147 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1148 {
1149 	va_list args;
1150 
1151 	if (!show->state.depth_check) {
1152 		va_start(args, fmt);
1153 		show->showfn(show, fmt, args);
1154 		va_end(args);
1155 	}
1156 }
1157 
1158 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1159  * format specifiers to the format specifier passed in; these do the work of
1160  * adding indentation, delimiters etc while the caller simply has to specify
1161  * the type value(s) in the format specifier + value(s).
1162  */
1163 #define btf_show_type_value(show, fmt, value)				       \
1164 	do {								       \
1165 		if ((value) != (__typeof__(value))0 ||			       \
1166 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1167 		    show->state.depth == 0) {				       \
1168 			btf_show(show, "%s%s" fmt "%s%s",		       \
1169 				 btf_show_indent(show),			       \
1170 				 btf_show_name(show),			       \
1171 				 value, btf_show_delim(show),		       \
1172 				 btf_show_newline(show));		       \
1173 			if (show->state.depth > show->state.depth_to_show)     \
1174 				show->state.depth_to_show = show->state.depth; \
1175 		}							       \
1176 	} while (0)
1177 
1178 #define btf_show_type_values(show, fmt, ...)				       \
1179 	do {								       \
1180 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1181 			 btf_show_name(show),				       \
1182 			 __VA_ARGS__, btf_show_delim(show),		       \
1183 			 btf_show_newline(show));			       \
1184 		if (show->state.depth > show->state.depth_to_show)	       \
1185 			show->state.depth_to_show = show->state.depth;	       \
1186 	} while (0)
1187 
1188 /* How much is left to copy to safe buffer after @data? */
1189 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1190 {
1191 	return show->obj.head + show->obj.size - data;
1192 }
1193 
1194 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1195 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1196 {
1197 	return data >= show->obj.data &&
1198 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1199 }
1200 
1201 /*
1202  * If object pointed to by @data of @size falls within our safe buffer, return
1203  * the equivalent pointer to the same safe data.  Assumes
1204  * copy_from_kernel_nofault() has already happened and our safe buffer is
1205  * populated.
1206  */
1207 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1208 {
1209 	if (btf_show_obj_is_safe(show, data, size))
1210 		return show->obj.safe + (data - show->obj.data);
1211 	return NULL;
1212 }
1213 
1214 /*
1215  * Return a safe-to-access version of data pointed to by @data.
1216  * We do this by copying the relevant amount of information
1217  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1218  *
1219  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1220  * safe copy is needed.
1221  *
1222  * Otherwise we need to determine if we have the required amount
1223  * of data (determined by the @data pointer and the size of the
1224  * largest base type we can encounter (represented by
1225  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1226  * that we will be able to print some of the current object,
1227  * and if more is needed a copy will be triggered.
1228  * Some objects such as structs will not fit into the buffer;
1229  * in such cases additional copies when we iterate over their
1230  * members may be needed.
1231  *
1232  * btf_show_obj_safe() is used to return a safe buffer for
1233  * btf_show_start_type(); this ensures that as we recurse into
1234  * nested types we always have safe data for the given type.
1235  * This approach is somewhat wasteful; it's possible for example
1236  * that when iterating over a large union we'll end up copying the
1237  * same data repeatedly, but the goal is safety not performance.
1238  * We use stack data as opposed to per-CPU buffers because the
1239  * iteration over a type can take some time, and preemption handling
1240  * would greatly complicate use of the safe buffer.
1241  */
1242 static void *btf_show_obj_safe(struct btf_show *show,
1243 			       const struct btf_type *t,
1244 			       void *data)
1245 {
1246 	const struct btf_type *rt;
1247 	int size_left, size;
1248 	void *safe = NULL;
1249 
1250 	if (show->flags & BTF_SHOW_UNSAFE)
1251 		return data;
1252 
1253 	rt = btf_resolve_size(show->btf, t, &size);
1254 	if (IS_ERR(rt)) {
1255 		show->state.status = PTR_ERR(rt);
1256 		return NULL;
1257 	}
1258 
1259 	/*
1260 	 * Is this toplevel object? If so, set total object size and
1261 	 * initialize pointers.  Otherwise check if we still fall within
1262 	 * our safe object data.
1263 	 */
1264 	if (show->state.depth == 0) {
1265 		show->obj.size = size;
1266 		show->obj.head = data;
1267 	} else {
1268 		/*
1269 		 * If the size of the current object is > our remaining
1270 		 * safe buffer we _may_ need to do a new copy.  However
1271 		 * consider the case of a nested struct; it's size pushes
1272 		 * us over the safe buffer limit, but showing any individual
1273 		 * struct members does not.  In such cases, we don't need
1274 		 * to initiate a fresh copy yet; however we definitely need
1275 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1276 		 * in our buffer, regardless of the current object size.
1277 		 * The logic here is that as we resolve types we will
1278 		 * hit a base type at some point, and we need to be sure
1279 		 * the next chunk of data is safely available to display
1280 		 * that type info safely.  We cannot rely on the size of
1281 		 * the current object here because it may be much larger
1282 		 * than our current buffer (e.g. task_struct is 8k).
1283 		 * All we want to do here is ensure that we can print the
1284 		 * next basic type, which we can if either
1285 		 * - the current type size is within the safe buffer; or
1286 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1287 		 *   the safe buffer.
1288 		 */
1289 		safe = __btf_show_obj_safe(show, data,
1290 					   min(size,
1291 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1292 	}
1293 
1294 	/*
1295 	 * We need a new copy to our safe object, either because we haven't
1296 	 * yet copied and are initializing safe data, or because the data
1297 	 * we want falls outside the boundaries of the safe object.
1298 	 */
1299 	if (!safe) {
1300 		size_left = btf_show_obj_size_left(show, data);
1301 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1302 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1303 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1304 							      data, size_left);
1305 		if (!show->state.status) {
1306 			show->obj.data = data;
1307 			safe = show->obj.safe;
1308 		}
1309 	}
1310 
1311 	return safe;
1312 }
1313 
1314 /*
1315  * Set the type we are starting to show and return a safe data pointer
1316  * to be used for showing the associated data.
1317  */
1318 static void *btf_show_start_type(struct btf_show *show,
1319 				 const struct btf_type *t,
1320 				 u32 type_id, void *data)
1321 {
1322 	show->state.type = t;
1323 	show->state.type_id = type_id;
1324 	show->state.name[0] = '\0';
1325 
1326 	return btf_show_obj_safe(show, t, data);
1327 }
1328 
1329 static void btf_show_end_type(struct btf_show *show)
1330 {
1331 	show->state.type = NULL;
1332 	show->state.type_id = 0;
1333 	show->state.name[0] = '\0';
1334 }
1335 
1336 static void *btf_show_start_aggr_type(struct btf_show *show,
1337 				      const struct btf_type *t,
1338 				      u32 type_id, void *data)
1339 {
1340 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1341 
1342 	if (!safe_data)
1343 		return safe_data;
1344 
1345 	btf_show(show, "%s%s%s", btf_show_indent(show),
1346 		 btf_show_name(show),
1347 		 btf_show_newline(show));
1348 	show->state.depth++;
1349 	return safe_data;
1350 }
1351 
1352 static void btf_show_end_aggr_type(struct btf_show *show,
1353 				   const char *suffix)
1354 {
1355 	show->state.depth--;
1356 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1357 		 btf_show_delim(show), btf_show_newline(show));
1358 	btf_show_end_type(show);
1359 }
1360 
1361 static void btf_show_start_member(struct btf_show *show,
1362 				  const struct btf_member *m)
1363 {
1364 	show->state.member = m;
1365 }
1366 
1367 static void btf_show_start_array_member(struct btf_show *show)
1368 {
1369 	show->state.array_member = 1;
1370 	btf_show_start_member(show, NULL);
1371 }
1372 
1373 static void btf_show_end_member(struct btf_show *show)
1374 {
1375 	show->state.member = NULL;
1376 }
1377 
1378 static void btf_show_end_array_member(struct btf_show *show)
1379 {
1380 	show->state.array_member = 0;
1381 	btf_show_end_member(show);
1382 }
1383 
1384 static void *btf_show_start_array_type(struct btf_show *show,
1385 				       const struct btf_type *t,
1386 				       u32 type_id,
1387 				       u16 array_encoding,
1388 				       void *data)
1389 {
1390 	show->state.array_encoding = array_encoding;
1391 	show->state.array_terminated = 0;
1392 	return btf_show_start_aggr_type(show, t, type_id, data);
1393 }
1394 
1395 static void btf_show_end_array_type(struct btf_show *show)
1396 {
1397 	show->state.array_encoding = 0;
1398 	show->state.array_terminated = 0;
1399 	btf_show_end_aggr_type(show, "]");
1400 }
1401 
1402 static void *btf_show_start_struct_type(struct btf_show *show,
1403 					const struct btf_type *t,
1404 					u32 type_id,
1405 					void *data)
1406 {
1407 	return btf_show_start_aggr_type(show, t, type_id, data);
1408 }
1409 
1410 static void btf_show_end_struct_type(struct btf_show *show)
1411 {
1412 	btf_show_end_aggr_type(show, "}");
1413 }
1414 
1415 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1416 					      const char *fmt, ...)
1417 {
1418 	va_list args;
1419 
1420 	va_start(args, fmt);
1421 	bpf_verifier_vlog(log, fmt, args);
1422 	va_end(args);
1423 }
1424 
1425 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1426 					    const char *fmt, ...)
1427 {
1428 	struct bpf_verifier_log *log = &env->log;
1429 	va_list args;
1430 
1431 	if (!bpf_verifier_log_needed(log))
1432 		return;
1433 
1434 	va_start(args, fmt);
1435 	bpf_verifier_vlog(log, fmt, args);
1436 	va_end(args);
1437 }
1438 
1439 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1440 						   const struct btf_type *t,
1441 						   bool log_details,
1442 						   const char *fmt, ...)
1443 {
1444 	struct bpf_verifier_log *log = &env->log;
1445 	struct btf *btf = env->btf;
1446 	va_list args;
1447 
1448 	if (!bpf_verifier_log_needed(log))
1449 		return;
1450 
1451 	if (log->level == BPF_LOG_KERNEL) {
1452 		/* btf verifier prints all types it is processing via
1453 		 * btf_verifier_log_type(..., fmt = NULL).
1454 		 * Skip those prints for in-kernel BTF verification.
1455 		 */
1456 		if (!fmt)
1457 			return;
1458 
1459 		/* Skip logging when loading module BTF with mismatches permitted */
1460 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1461 			return;
1462 	}
1463 
1464 	__btf_verifier_log(log, "[%u] %s %s%s",
1465 			   env->log_type_id,
1466 			   btf_type_str(t),
1467 			   __btf_name_by_offset(btf, t->name_off),
1468 			   log_details ? " " : "");
1469 
1470 	if (log_details)
1471 		btf_type_ops(t)->log_details(env, t);
1472 
1473 	if (fmt && *fmt) {
1474 		__btf_verifier_log(log, " ");
1475 		va_start(args, fmt);
1476 		bpf_verifier_vlog(log, fmt, args);
1477 		va_end(args);
1478 	}
1479 
1480 	__btf_verifier_log(log, "\n");
1481 }
1482 
1483 #define btf_verifier_log_type(env, t, ...) \
1484 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1485 #define btf_verifier_log_basic(env, t, ...) \
1486 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1487 
1488 __printf(4, 5)
1489 static void btf_verifier_log_member(struct btf_verifier_env *env,
1490 				    const struct btf_type *struct_type,
1491 				    const struct btf_member *member,
1492 				    const char *fmt, ...)
1493 {
1494 	struct bpf_verifier_log *log = &env->log;
1495 	struct btf *btf = env->btf;
1496 	va_list args;
1497 
1498 	if (!bpf_verifier_log_needed(log))
1499 		return;
1500 
1501 	if (log->level == BPF_LOG_KERNEL) {
1502 		if (!fmt)
1503 			return;
1504 
1505 		/* Skip logging when loading module BTF with mismatches permitted */
1506 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1507 			return;
1508 	}
1509 
1510 	/* The CHECK_META phase already did a btf dump.
1511 	 *
1512 	 * If member is logged again, it must hit an error in
1513 	 * parsing this member.  It is useful to print out which
1514 	 * struct this member belongs to.
1515 	 */
1516 	if (env->phase != CHECK_META)
1517 		btf_verifier_log_type(env, struct_type, NULL);
1518 
1519 	if (btf_type_kflag(struct_type))
1520 		__btf_verifier_log(log,
1521 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1522 				   __btf_name_by_offset(btf, member->name_off),
1523 				   member->type,
1524 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1525 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1526 	else
1527 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1528 				   __btf_name_by_offset(btf, member->name_off),
1529 				   member->type, member->offset);
1530 
1531 	if (fmt && *fmt) {
1532 		__btf_verifier_log(log, " ");
1533 		va_start(args, fmt);
1534 		bpf_verifier_vlog(log, fmt, args);
1535 		va_end(args);
1536 	}
1537 
1538 	__btf_verifier_log(log, "\n");
1539 }
1540 
1541 __printf(4, 5)
1542 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1543 				 const struct btf_type *datasec_type,
1544 				 const struct btf_var_secinfo *vsi,
1545 				 const char *fmt, ...)
1546 {
1547 	struct bpf_verifier_log *log = &env->log;
1548 	va_list args;
1549 
1550 	if (!bpf_verifier_log_needed(log))
1551 		return;
1552 	if (log->level == BPF_LOG_KERNEL && !fmt)
1553 		return;
1554 	if (env->phase != CHECK_META)
1555 		btf_verifier_log_type(env, datasec_type, NULL);
1556 
1557 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1558 			   vsi->type, vsi->offset, vsi->size);
1559 	if (fmt && *fmt) {
1560 		__btf_verifier_log(log, " ");
1561 		va_start(args, fmt);
1562 		bpf_verifier_vlog(log, fmt, args);
1563 		va_end(args);
1564 	}
1565 
1566 	__btf_verifier_log(log, "\n");
1567 }
1568 
1569 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1570 				 u32 btf_data_size)
1571 {
1572 	struct bpf_verifier_log *log = &env->log;
1573 	const struct btf *btf = env->btf;
1574 	const struct btf_header *hdr;
1575 
1576 	if (!bpf_verifier_log_needed(log))
1577 		return;
1578 
1579 	if (log->level == BPF_LOG_KERNEL)
1580 		return;
1581 	hdr = &btf->hdr;
1582 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1583 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1584 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1585 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1586 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1587 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1588 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1589 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1590 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1591 }
1592 
1593 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1594 {
1595 	struct btf *btf = env->btf;
1596 
1597 	if (btf->types_size == btf->nr_types) {
1598 		/* Expand 'types' array */
1599 
1600 		struct btf_type **new_types;
1601 		u32 expand_by, new_size;
1602 
1603 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1604 			btf_verifier_log(env, "Exceeded max num of types");
1605 			return -E2BIG;
1606 		}
1607 
1608 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1609 		new_size = min_t(u32, BTF_MAX_TYPE,
1610 				 btf->types_size + expand_by);
1611 
1612 		new_types = kvcalloc(new_size, sizeof(*new_types),
1613 				     GFP_KERNEL | __GFP_NOWARN);
1614 		if (!new_types)
1615 			return -ENOMEM;
1616 
1617 		if (btf->nr_types == 0) {
1618 			if (!btf->base_btf) {
1619 				/* lazily init VOID type */
1620 				new_types[0] = &btf_void;
1621 				btf->nr_types++;
1622 			}
1623 		} else {
1624 			memcpy(new_types, btf->types,
1625 			       sizeof(*btf->types) * btf->nr_types);
1626 		}
1627 
1628 		kvfree(btf->types);
1629 		btf->types = new_types;
1630 		btf->types_size = new_size;
1631 	}
1632 
1633 	btf->types[btf->nr_types++] = t;
1634 
1635 	return 0;
1636 }
1637 
1638 static int btf_alloc_id(struct btf *btf)
1639 {
1640 	int id;
1641 
1642 	idr_preload(GFP_KERNEL);
1643 	spin_lock_bh(&btf_idr_lock);
1644 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1645 	if (id > 0)
1646 		btf->id = id;
1647 	spin_unlock_bh(&btf_idr_lock);
1648 	idr_preload_end();
1649 
1650 	if (WARN_ON_ONCE(!id))
1651 		return -ENOSPC;
1652 
1653 	return id > 0 ? 0 : id;
1654 }
1655 
1656 static void btf_free_id(struct btf *btf)
1657 {
1658 	unsigned long flags;
1659 
1660 	/*
1661 	 * In map-in-map, calling map_delete_elem() on outer
1662 	 * map will call bpf_map_put on the inner map.
1663 	 * It will then eventually call btf_free_id()
1664 	 * on the inner map.  Some of the map_delete_elem()
1665 	 * implementation may have irq disabled, so
1666 	 * we need to use the _irqsave() version instead
1667 	 * of the _bh() version.
1668 	 */
1669 	spin_lock_irqsave(&btf_idr_lock, flags);
1670 	idr_remove(&btf_idr, btf->id);
1671 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1672 }
1673 
1674 static void btf_free_kfunc_set_tab(struct btf *btf)
1675 {
1676 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1677 	int hook;
1678 
1679 	if (!tab)
1680 		return;
1681 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1682 		kfree(tab->sets[hook]);
1683 	kfree(tab);
1684 	btf->kfunc_set_tab = NULL;
1685 }
1686 
1687 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1688 {
1689 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1690 
1691 	if (!tab)
1692 		return;
1693 	kfree(tab);
1694 	btf->dtor_kfunc_tab = NULL;
1695 }
1696 
1697 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1698 {
1699 	int i;
1700 
1701 	if (!tab)
1702 		return;
1703 	for (i = 0; i < tab->cnt; i++)
1704 		btf_record_free(tab->types[i].record);
1705 	kfree(tab);
1706 }
1707 
1708 static void btf_free_struct_meta_tab(struct btf *btf)
1709 {
1710 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1711 
1712 	btf_struct_metas_free(tab);
1713 	btf->struct_meta_tab = NULL;
1714 }
1715 
1716 static void btf_free_struct_ops_tab(struct btf *btf)
1717 {
1718 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1719 	u32 i;
1720 
1721 	if (!tab)
1722 		return;
1723 
1724 	for (i = 0; i < tab->cnt; i++)
1725 		bpf_struct_ops_desc_release(&tab->ops[i]);
1726 
1727 	kfree(tab);
1728 	btf->struct_ops_tab = NULL;
1729 }
1730 
1731 static void btf_free(struct btf *btf)
1732 {
1733 	btf_free_struct_meta_tab(btf);
1734 	btf_free_dtor_kfunc_tab(btf);
1735 	btf_free_kfunc_set_tab(btf);
1736 	btf_free_struct_ops_tab(btf);
1737 	kvfree(btf->types);
1738 	kvfree(btf->resolved_sizes);
1739 	kvfree(btf->resolved_ids);
1740 	/* vmlinux does not allocate btf->data, it simply points it at
1741 	 * __start_BTF.
1742 	 */
1743 	if (!btf_is_vmlinux(btf))
1744 		kvfree(btf->data);
1745 	kvfree(btf->base_id_map);
1746 	kfree(btf);
1747 }
1748 
1749 static void btf_free_rcu(struct rcu_head *rcu)
1750 {
1751 	struct btf *btf = container_of(rcu, struct btf, rcu);
1752 
1753 	btf_free(btf);
1754 }
1755 
1756 const char *btf_get_name(const struct btf *btf)
1757 {
1758 	return btf->name;
1759 }
1760 
1761 void btf_get(struct btf *btf)
1762 {
1763 	refcount_inc(&btf->refcnt);
1764 }
1765 
1766 void btf_put(struct btf *btf)
1767 {
1768 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1769 		btf_free_id(btf);
1770 		call_rcu(&btf->rcu, btf_free_rcu);
1771 	}
1772 }
1773 
1774 struct btf *btf_base_btf(const struct btf *btf)
1775 {
1776 	return btf->base_btf;
1777 }
1778 
1779 const struct btf_header *btf_header(const struct btf *btf)
1780 {
1781 	return &btf->hdr;
1782 }
1783 
1784 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1785 {
1786 	btf->base_btf = (struct btf *)base_btf;
1787 	btf->start_id = btf_nr_types(base_btf);
1788 	btf->start_str_off = base_btf->hdr.str_len;
1789 }
1790 
1791 static int env_resolve_init(struct btf_verifier_env *env)
1792 {
1793 	struct btf *btf = env->btf;
1794 	u32 nr_types = btf->nr_types;
1795 	u32 *resolved_sizes = NULL;
1796 	u32 *resolved_ids = NULL;
1797 	u8 *visit_states = NULL;
1798 
1799 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1800 				  GFP_KERNEL | __GFP_NOWARN);
1801 	if (!resolved_sizes)
1802 		goto nomem;
1803 
1804 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1805 				GFP_KERNEL | __GFP_NOWARN);
1806 	if (!resolved_ids)
1807 		goto nomem;
1808 
1809 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1810 				GFP_KERNEL | __GFP_NOWARN);
1811 	if (!visit_states)
1812 		goto nomem;
1813 
1814 	btf->resolved_sizes = resolved_sizes;
1815 	btf->resolved_ids = resolved_ids;
1816 	env->visit_states = visit_states;
1817 
1818 	return 0;
1819 
1820 nomem:
1821 	kvfree(resolved_sizes);
1822 	kvfree(resolved_ids);
1823 	kvfree(visit_states);
1824 	return -ENOMEM;
1825 }
1826 
1827 static void btf_verifier_env_free(struct btf_verifier_env *env)
1828 {
1829 	kvfree(env->visit_states);
1830 	kfree(env);
1831 }
1832 
1833 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1834 				     const struct btf_type *next_type)
1835 {
1836 	switch (env->resolve_mode) {
1837 	case RESOLVE_TBD:
1838 		/* int, enum or void is a sink */
1839 		return !btf_type_needs_resolve(next_type);
1840 	case RESOLVE_PTR:
1841 		/* int, enum, void, struct, array, func or func_proto is a sink
1842 		 * for ptr
1843 		 */
1844 		return !btf_type_is_modifier(next_type) &&
1845 			!btf_type_is_ptr(next_type);
1846 	case RESOLVE_STRUCT_OR_ARRAY:
1847 		/* int, enum, void, ptr, func or func_proto is a sink
1848 		 * for struct and array
1849 		 */
1850 		return !btf_type_is_modifier(next_type) &&
1851 			!btf_type_is_array(next_type) &&
1852 			!btf_type_is_struct(next_type);
1853 	default:
1854 		BUG();
1855 	}
1856 }
1857 
1858 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1859 				 u32 type_id)
1860 {
1861 	/* base BTF types should be resolved by now */
1862 	if (type_id < env->btf->start_id)
1863 		return true;
1864 
1865 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1866 }
1867 
1868 static int env_stack_push(struct btf_verifier_env *env,
1869 			  const struct btf_type *t, u32 type_id)
1870 {
1871 	const struct btf *btf = env->btf;
1872 	struct resolve_vertex *v;
1873 
1874 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1875 		return -E2BIG;
1876 
1877 	if (type_id < btf->start_id
1878 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1879 		return -EEXIST;
1880 
1881 	env->visit_states[type_id - btf->start_id] = VISITED;
1882 
1883 	v = &env->stack[env->top_stack++];
1884 	v->t = t;
1885 	v->type_id = type_id;
1886 	v->next_member = 0;
1887 
1888 	if (env->resolve_mode == RESOLVE_TBD) {
1889 		if (btf_type_is_ptr(t))
1890 			env->resolve_mode = RESOLVE_PTR;
1891 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1892 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static void env_stack_set_next_member(struct btf_verifier_env *env,
1899 				      u16 next_member)
1900 {
1901 	env->stack[env->top_stack - 1].next_member = next_member;
1902 }
1903 
1904 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1905 				   u32 resolved_type_id,
1906 				   u32 resolved_size)
1907 {
1908 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1909 	struct btf *btf = env->btf;
1910 
1911 	type_id -= btf->start_id; /* adjust to local type id */
1912 	btf->resolved_sizes[type_id] = resolved_size;
1913 	btf->resolved_ids[type_id] = resolved_type_id;
1914 	env->visit_states[type_id] = RESOLVED;
1915 }
1916 
1917 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1918 {
1919 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1920 }
1921 
1922 /* Resolve the size of a passed-in "type"
1923  *
1924  * type: is an array (e.g. u32 array[x][y])
1925  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1926  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1927  *             corresponds to the return type.
1928  * *elem_type: u32
1929  * *elem_id: id of u32
1930  * *total_nelems: (x * y).  Hence, individual elem size is
1931  *                (*type_size / *total_nelems)
1932  * *type_id: id of type if it's changed within the function, 0 if not
1933  *
1934  * type: is not an array (e.g. const struct X)
1935  * return type: type "struct X"
1936  * *type_size: sizeof(struct X)
1937  * *elem_type: same as return type ("struct X")
1938  * *elem_id: 0
1939  * *total_nelems: 1
1940  * *type_id: id of type if it's changed within the function, 0 if not
1941  */
1942 static const struct btf_type *
1943 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1944 		   u32 *type_size, const struct btf_type **elem_type,
1945 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1946 {
1947 	const struct btf_type *array_type = NULL;
1948 	const struct btf_array *array = NULL;
1949 	u32 i, size, nelems = 1, id = 0;
1950 
1951 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1952 		switch (BTF_INFO_KIND(type->info)) {
1953 		/* type->size can be used */
1954 		case BTF_KIND_INT:
1955 		case BTF_KIND_STRUCT:
1956 		case BTF_KIND_UNION:
1957 		case BTF_KIND_ENUM:
1958 		case BTF_KIND_FLOAT:
1959 		case BTF_KIND_ENUM64:
1960 			size = type->size;
1961 			goto resolved;
1962 
1963 		case BTF_KIND_PTR:
1964 			size = sizeof(void *);
1965 			goto resolved;
1966 
1967 		/* Modifiers */
1968 		case BTF_KIND_TYPEDEF:
1969 		case BTF_KIND_VOLATILE:
1970 		case BTF_KIND_CONST:
1971 		case BTF_KIND_RESTRICT:
1972 		case BTF_KIND_TYPE_TAG:
1973 			id = type->type;
1974 			type = btf_type_by_id(btf, type->type);
1975 			break;
1976 
1977 		case BTF_KIND_ARRAY:
1978 			if (!array_type)
1979 				array_type = type;
1980 			array = btf_type_array(type);
1981 			if (nelems && array->nelems > U32_MAX / nelems)
1982 				return ERR_PTR(-EINVAL);
1983 			nelems *= array->nelems;
1984 			type = btf_type_by_id(btf, array->type);
1985 			break;
1986 
1987 		/* type without size */
1988 		default:
1989 			return ERR_PTR(-EINVAL);
1990 		}
1991 	}
1992 
1993 	return ERR_PTR(-EINVAL);
1994 
1995 resolved:
1996 	if (nelems && size > U32_MAX / nelems)
1997 		return ERR_PTR(-EINVAL);
1998 
1999 	*type_size = nelems * size;
2000 	if (total_nelems)
2001 		*total_nelems = nelems;
2002 	if (elem_type)
2003 		*elem_type = type;
2004 	if (elem_id)
2005 		*elem_id = array ? array->type : 0;
2006 	if (type_id && id)
2007 		*type_id = id;
2008 
2009 	return array_type ? : type;
2010 }
2011 
2012 const struct btf_type *
2013 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2014 		 u32 *type_size)
2015 {
2016 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2017 }
2018 
2019 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2020 {
2021 	while (type_id < btf->start_id)
2022 		btf = btf->base_btf;
2023 
2024 	return btf->resolved_ids[type_id - btf->start_id];
2025 }
2026 
2027 /* The input param "type_id" must point to a needs_resolve type */
2028 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2029 						  u32 *type_id)
2030 {
2031 	*type_id = btf_resolved_type_id(btf, *type_id);
2032 	return btf_type_by_id(btf, *type_id);
2033 }
2034 
2035 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2036 {
2037 	while (type_id < btf->start_id)
2038 		btf = btf->base_btf;
2039 
2040 	return btf->resolved_sizes[type_id - btf->start_id];
2041 }
2042 
2043 const struct btf_type *btf_type_id_size(const struct btf *btf,
2044 					u32 *type_id, u32 *ret_size)
2045 {
2046 	const struct btf_type *size_type;
2047 	u32 size_type_id = *type_id;
2048 	u32 size = 0;
2049 
2050 	size_type = btf_type_by_id(btf, size_type_id);
2051 	if (btf_type_nosize_or_null(size_type))
2052 		return NULL;
2053 
2054 	if (btf_type_has_size(size_type)) {
2055 		size = size_type->size;
2056 	} else if (btf_type_is_array(size_type)) {
2057 		size = btf_resolved_type_size(btf, size_type_id);
2058 	} else if (btf_type_is_ptr(size_type)) {
2059 		size = sizeof(void *);
2060 	} else {
2061 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2062 				 !btf_type_is_var(size_type)))
2063 			return NULL;
2064 
2065 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2066 		size_type = btf_type_by_id(btf, size_type_id);
2067 		if (btf_type_nosize_or_null(size_type))
2068 			return NULL;
2069 		else if (btf_type_has_size(size_type))
2070 			size = size_type->size;
2071 		else if (btf_type_is_array(size_type))
2072 			size = btf_resolved_type_size(btf, size_type_id);
2073 		else if (btf_type_is_ptr(size_type))
2074 			size = sizeof(void *);
2075 		else
2076 			return NULL;
2077 	}
2078 
2079 	*type_id = size_type_id;
2080 	if (ret_size)
2081 		*ret_size = size;
2082 
2083 	return size_type;
2084 }
2085 
2086 static int btf_df_check_member(struct btf_verifier_env *env,
2087 			       const struct btf_type *struct_type,
2088 			       const struct btf_member *member,
2089 			       const struct btf_type *member_type)
2090 {
2091 	btf_verifier_log_basic(env, struct_type,
2092 			       "Unsupported check_member");
2093 	return -EINVAL;
2094 }
2095 
2096 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2097 				     const struct btf_type *struct_type,
2098 				     const struct btf_member *member,
2099 				     const struct btf_type *member_type)
2100 {
2101 	btf_verifier_log_basic(env, struct_type,
2102 			       "Unsupported check_kflag_member");
2103 	return -EINVAL;
2104 }
2105 
2106 /* Used for ptr, array struct/union and float type members.
2107  * int, enum and modifier types have their specific callback functions.
2108  */
2109 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2110 					  const struct btf_type *struct_type,
2111 					  const struct btf_member *member,
2112 					  const struct btf_type *member_type)
2113 {
2114 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2115 		btf_verifier_log_member(env, struct_type, member,
2116 					"Invalid member bitfield_size");
2117 		return -EINVAL;
2118 	}
2119 
2120 	/* bitfield size is 0, so member->offset represents bit offset only.
2121 	 * It is safe to call non kflag check_member variants.
2122 	 */
2123 	return btf_type_ops(member_type)->check_member(env, struct_type,
2124 						       member,
2125 						       member_type);
2126 }
2127 
2128 static int btf_df_resolve(struct btf_verifier_env *env,
2129 			  const struct resolve_vertex *v)
2130 {
2131 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2132 	return -EINVAL;
2133 }
2134 
2135 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2136 			u32 type_id, void *data, u8 bits_offsets,
2137 			struct btf_show *show)
2138 {
2139 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2140 }
2141 
2142 static int btf_int_check_member(struct btf_verifier_env *env,
2143 				const struct btf_type *struct_type,
2144 				const struct btf_member *member,
2145 				const struct btf_type *member_type)
2146 {
2147 	u32 int_data = btf_type_int(member_type);
2148 	u32 struct_bits_off = member->offset;
2149 	u32 struct_size = struct_type->size;
2150 	u32 nr_copy_bits;
2151 	u32 bytes_offset;
2152 
2153 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2154 		btf_verifier_log_member(env, struct_type, member,
2155 					"bits_offset exceeds U32_MAX");
2156 		return -EINVAL;
2157 	}
2158 
2159 	struct_bits_off += BTF_INT_OFFSET(int_data);
2160 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2161 	nr_copy_bits = BTF_INT_BITS(int_data) +
2162 		BITS_PER_BYTE_MASKED(struct_bits_off);
2163 
2164 	if (nr_copy_bits > BITS_PER_U128) {
2165 		btf_verifier_log_member(env, struct_type, member,
2166 					"nr_copy_bits exceeds 128");
2167 		return -EINVAL;
2168 	}
2169 
2170 	if (struct_size < bytes_offset ||
2171 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2172 		btf_verifier_log_member(env, struct_type, member,
2173 					"Member exceeds struct_size");
2174 		return -EINVAL;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2181 				      const struct btf_type *struct_type,
2182 				      const struct btf_member *member,
2183 				      const struct btf_type *member_type)
2184 {
2185 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2186 	u32 int_data = btf_type_int(member_type);
2187 	u32 struct_size = struct_type->size;
2188 	u32 nr_copy_bits;
2189 
2190 	/* a regular int type is required for the kflag int member */
2191 	if (!btf_type_int_is_regular(member_type)) {
2192 		btf_verifier_log_member(env, struct_type, member,
2193 					"Invalid member base type");
2194 		return -EINVAL;
2195 	}
2196 
2197 	/* check sanity of bitfield size */
2198 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2199 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2200 	nr_int_data_bits = BTF_INT_BITS(int_data);
2201 	if (!nr_bits) {
2202 		/* Not a bitfield member, member offset must be at byte
2203 		 * boundary.
2204 		 */
2205 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2206 			btf_verifier_log_member(env, struct_type, member,
2207 						"Invalid member offset");
2208 			return -EINVAL;
2209 		}
2210 
2211 		nr_bits = nr_int_data_bits;
2212 	} else if (nr_bits > nr_int_data_bits) {
2213 		btf_verifier_log_member(env, struct_type, member,
2214 					"Invalid member bitfield_size");
2215 		return -EINVAL;
2216 	}
2217 
2218 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2219 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2220 	if (nr_copy_bits > BITS_PER_U128) {
2221 		btf_verifier_log_member(env, struct_type, member,
2222 					"nr_copy_bits exceeds 128");
2223 		return -EINVAL;
2224 	}
2225 
2226 	if (struct_size < bytes_offset ||
2227 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2228 		btf_verifier_log_member(env, struct_type, member,
2229 					"Member exceeds struct_size");
2230 		return -EINVAL;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2237 			      const struct btf_type *t,
2238 			      u32 meta_left)
2239 {
2240 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2241 	u16 encoding;
2242 
2243 	if (meta_left < meta_needed) {
2244 		btf_verifier_log_basic(env, t,
2245 				       "meta_left:%u meta_needed:%u",
2246 				       meta_left, meta_needed);
2247 		return -EINVAL;
2248 	}
2249 
2250 	if (btf_type_vlen(t)) {
2251 		btf_verifier_log_type(env, t, "vlen != 0");
2252 		return -EINVAL;
2253 	}
2254 
2255 	if (btf_type_kflag(t)) {
2256 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2257 		return -EINVAL;
2258 	}
2259 
2260 	int_data = btf_type_int(t);
2261 	if (int_data & ~BTF_INT_MASK) {
2262 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2263 				       int_data);
2264 		return -EINVAL;
2265 	}
2266 
2267 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2268 
2269 	if (nr_bits > BITS_PER_U128) {
2270 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2271 				      BITS_PER_U128);
2272 		return -EINVAL;
2273 	}
2274 
2275 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2276 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2277 		return -EINVAL;
2278 	}
2279 
2280 	/*
2281 	 * Only one of the encoding bits is allowed and it
2282 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2283 	 * Multiple bits can be allowed later if it is found
2284 	 * to be insufficient.
2285 	 */
2286 	encoding = BTF_INT_ENCODING(int_data);
2287 	if (encoding &&
2288 	    encoding != BTF_INT_SIGNED &&
2289 	    encoding != BTF_INT_CHAR &&
2290 	    encoding != BTF_INT_BOOL) {
2291 		btf_verifier_log_type(env, t, "Unsupported encoding");
2292 		return -ENOTSUPP;
2293 	}
2294 
2295 	btf_verifier_log_type(env, t, NULL);
2296 
2297 	return meta_needed;
2298 }
2299 
2300 static void btf_int_log(struct btf_verifier_env *env,
2301 			const struct btf_type *t)
2302 {
2303 	int int_data = btf_type_int(t);
2304 
2305 	btf_verifier_log(env,
2306 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2307 			 t->size, BTF_INT_OFFSET(int_data),
2308 			 BTF_INT_BITS(int_data),
2309 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2310 }
2311 
2312 static void btf_int128_print(struct btf_show *show, void *data)
2313 {
2314 	/* data points to a __int128 number.
2315 	 * Suppose
2316 	 *     int128_num = *(__int128 *)data;
2317 	 * The below formulas shows what upper_num and lower_num represents:
2318 	 *     upper_num = int128_num >> 64;
2319 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2320 	 */
2321 	u64 upper_num, lower_num;
2322 
2323 #ifdef __BIG_ENDIAN_BITFIELD
2324 	upper_num = *(u64 *)data;
2325 	lower_num = *(u64 *)(data + 8);
2326 #else
2327 	upper_num = *(u64 *)(data + 8);
2328 	lower_num = *(u64 *)data;
2329 #endif
2330 	if (upper_num == 0)
2331 		btf_show_type_value(show, "0x%llx", lower_num);
2332 	else
2333 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2334 				     lower_num);
2335 }
2336 
2337 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2338 			     u16 right_shift_bits)
2339 {
2340 	u64 upper_num, lower_num;
2341 
2342 #ifdef __BIG_ENDIAN_BITFIELD
2343 	upper_num = print_num[0];
2344 	lower_num = print_num[1];
2345 #else
2346 	upper_num = print_num[1];
2347 	lower_num = print_num[0];
2348 #endif
2349 
2350 	/* shake out un-needed bits by shift/or operations */
2351 	if (left_shift_bits >= 64) {
2352 		upper_num = lower_num << (left_shift_bits - 64);
2353 		lower_num = 0;
2354 	} else {
2355 		upper_num = (upper_num << left_shift_bits) |
2356 			    (lower_num >> (64 - left_shift_bits));
2357 		lower_num = lower_num << left_shift_bits;
2358 	}
2359 
2360 	if (right_shift_bits >= 64) {
2361 		lower_num = upper_num >> (right_shift_bits - 64);
2362 		upper_num = 0;
2363 	} else {
2364 		lower_num = (lower_num >> right_shift_bits) |
2365 			    (upper_num << (64 - right_shift_bits));
2366 		upper_num = upper_num >> right_shift_bits;
2367 	}
2368 
2369 #ifdef __BIG_ENDIAN_BITFIELD
2370 	print_num[0] = upper_num;
2371 	print_num[1] = lower_num;
2372 #else
2373 	print_num[0] = lower_num;
2374 	print_num[1] = upper_num;
2375 #endif
2376 }
2377 
2378 static void btf_bitfield_show(void *data, u8 bits_offset,
2379 			      u8 nr_bits, struct btf_show *show)
2380 {
2381 	u16 left_shift_bits, right_shift_bits;
2382 	u8 nr_copy_bytes;
2383 	u8 nr_copy_bits;
2384 	u64 print_num[2] = {};
2385 
2386 	nr_copy_bits = nr_bits + bits_offset;
2387 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2388 
2389 	memcpy(print_num, data, nr_copy_bytes);
2390 
2391 #ifdef __BIG_ENDIAN_BITFIELD
2392 	left_shift_bits = bits_offset;
2393 #else
2394 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2395 #endif
2396 	right_shift_bits = BITS_PER_U128 - nr_bits;
2397 
2398 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2399 	btf_int128_print(show, print_num);
2400 }
2401 
2402 
2403 static void btf_int_bits_show(const struct btf *btf,
2404 			      const struct btf_type *t,
2405 			      void *data, u8 bits_offset,
2406 			      struct btf_show *show)
2407 {
2408 	u32 int_data = btf_type_int(t);
2409 	u8 nr_bits = BTF_INT_BITS(int_data);
2410 	u8 total_bits_offset;
2411 
2412 	/*
2413 	 * bits_offset is at most 7.
2414 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2415 	 */
2416 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2417 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2418 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2419 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2420 }
2421 
2422 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2423 			 u32 type_id, void *data, u8 bits_offset,
2424 			 struct btf_show *show)
2425 {
2426 	u32 int_data = btf_type_int(t);
2427 	u8 encoding = BTF_INT_ENCODING(int_data);
2428 	bool sign = encoding & BTF_INT_SIGNED;
2429 	u8 nr_bits = BTF_INT_BITS(int_data);
2430 	void *safe_data;
2431 
2432 	safe_data = btf_show_start_type(show, t, type_id, data);
2433 	if (!safe_data)
2434 		return;
2435 
2436 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2437 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2438 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2439 		goto out;
2440 	}
2441 
2442 	switch (nr_bits) {
2443 	case 128:
2444 		btf_int128_print(show, safe_data);
2445 		break;
2446 	case 64:
2447 		if (sign)
2448 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2449 		else
2450 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2451 		break;
2452 	case 32:
2453 		if (sign)
2454 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2455 		else
2456 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2457 		break;
2458 	case 16:
2459 		if (sign)
2460 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2461 		else
2462 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2463 		break;
2464 	case 8:
2465 		if (show->state.array_encoding == BTF_INT_CHAR) {
2466 			/* check for null terminator */
2467 			if (show->state.array_terminated)
2468 				break;
2469 			if (*(char *)data == '\0') {
2470 				show->state.array_terminated = 1;
2471 				break;
2472 			}
2473 			if (isprint(*(char *)data)) {
2474 				btf_show_type_value(show, "'%c'",
2475 						    *(char *)safe_data);
2476 				break;
2477 			}
2478 		}
2479 		if (sign)
2480 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2481 		else
2482 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2483 		break;
2484 	default:
2485 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2486 		break;
2487 	}
2488 out:
2489 	btf_show_end_type(show);
2490 }
2491 
2492 static const struct btf_kind_operations int_ops = {
2493 	.check_meta = btf_int_check_meta,
2494 	.resolve = btf_df_resolve,
2495 	.check_member = btf_int_check_member,
2496 	.check_kflag_member = btf_int_check_kflag_member,
2497 	.log_details = btf_int_log,
2498 	.show = btf_int_show,
2499 };
2500 
2501 static int btf_modifier_check_member(struct btf_verifier_env *env,
2502 				     const struct btf_type *struct_type,
2503 				     const struct btf_member *member,
2504 				     const struct btf_type *member_type)
2505 {
2506 	const struct btf_type *resolved_type;
2507 	u32 resolved_type_id = member->type;
2508 	struct btf_member resolved_member;
2509 	struct btf *btf = env->btf;
2510 
2511 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2512 	if (!resolved_type) {
2513 		btf_verifier_log_member(env, struct_type, member,
2514 					"Invalid member");
2515 		return -EINVAL;
2516 	}
2517 
2518 	resolved_member = *member;
2519 	resolved_member.type = resolved_type_id;
2520 
2521 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2522 							 &resolved_member,
2523 							 resolved_type);
2524 }
2525 
2526 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2527 					   const struct btf_type *struct_type,
2528 					   const struct btf_member *member,
2529 					   const struct btf_type *member_type)
2530 {
2531 	const struct btf_type *resolved_type;
2532 	u32 resolved_type_id = member->type;
2533 	struct btf_member resolved_member;
2534 	struct btf *btf = env->btf;
2535 
2536 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2537 	if (!resolved_type) {
2538 		btf_verifier_log_member(env, struct_type, member,
2539 					"Invalid member");
2540 		return -EINVAL;
2541 	}
2542 
2543 	resolved_member = *member;
2544 	resolved_member.type = resolved_type_id;
2545 
2546 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2547 							       &resolved_member,
2548 							       resolved_type);
2549 }
2550 
2551 static int btf_ptr_check_member(struct btf_verifier_env *env,
2552 				const struct btf_type *struct_type,
2553 				const struct btf_member *member,
2554 				const struct btf_type *member_type)
2555 {
2556 	u32 struct_size, struct_bits_off, bytes_offset;
2557 
2558 	struct_size = struct_type->size;
2559 	struct_bits_off = member->offset;
2560 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2561 
2562 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2563 		btf_verifier_log_member(env, struct_type, member,
2564 					"Member is not byte aligned");
2565 		return -EINVAL;
2566 	}
2567 
2568 	if (struct_size - bytes_offset < sizeof(void *)) {
2569 		btf_verifier_log_member(env, struct_type, member,
2570 					"Member exceeds struct_size");
2571 		return -EINVAL;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2578 				   const struct btf_type *t,
2579 				   u32 meta_left)
2580 {
2581 	const char *value;
2582 
2583 	if (btf_type_vlen(t)) {
2584 		btf_verifier_log_type(env, t, "vlen != 0");
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (btf_type_kflag(t)) {
2589 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2590 		return -EINVAL;
2591 	}
2592 
2593 	if (!BTF_TYPE_ID_VALID(t->type)) {
2594 		btf_verifier_log_type(env, t, "Invalid type_id");
2595 		return -EINVAL;
2596 	}
2597 
2598 	/* typedef/type_tag type must have a valid name, and other ref types,
2599 	 * volatile, const, restrict, should have a null name.
2600 	 */
2601 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2602 		if (!t->name_off ||
2603 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2604 			btf_verifier_log_type(env, t, "Invalid name");
2605 			return -EINVAL;
2606 		}
2607 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2608 		value = btf_name_by_offset(env->btf, t->name_off);
2609 		if (!value || !value[0]) {
2610 			btf_verifier_log_type(env, t, "Invalid name");
2611 			return -EINVAL;
2612 		}
2613 	} else {
2614 		if (t->name_off) {
2615 			btf_verifier_log_type(env, t, "Invalid name");
2616 			return -EINVAL;
2617 		}
2618 	}
2619 
2620 	btf_verifier_log_type(env, t, NULL);
2621 
2622 	return 0;
2623 }
2624 
2625 static int btf_modifier_resolve(struct btf_verifier_env *env,
2626 				const struct resolve_vertex *v)
2627 {
2628 	const struct btf_type *t = v->t;
2629 	const struct btf_type *next_type;
2630 	u32 next_type_id = t->type;
2631 	struct btf *btf = env->btf;
2632 
2633 	next_type = btf_type_by_id(btf, next_type_id);
2634 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2635 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2636 		return -EINVAL;
2637 	}
2638 
2639 	if (!env_type_is_resolve_sink(env, next_type) &&
2640 	    !env_type_is_resolved(env, next_type_id))
2641 		return env_stack_push(env, next_type, next_type_id);
2642 
2643 	/* Figure out the resolved next_type_id with size.
2644 	 * They will be stored in the current modifier's
2645 	 * resolved_ids and resolved_sizes such that it can
2646 	 * save us a few type-following when we use it later (e.g. in
2647 	 * pretty print).
2648 	 */
2649 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2650 		if (env_type_is_resolved(env, next_type_id))
2651 			next_type = btf_type_id_resolve(btf, &next_type_id);
2652 
2653 		/* "typedef void new_void", "const void"...etc */
2654 		if (!btf_type_is_void(next_type) &&
2655 		    !btf_type_is_fwd(next_type) &&
2656 		    !btf_type_is_func_proto(next_type)) {
2657 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2658 			return -EINVAL;
2659 		}
2660 	}
2661 
2662 	env_stack_pop_resolved(env, next_type_id, 0);
2663 
2664 	return 0;
2665 }
2666 
2667 static int btf_var_resolve(struct btf_verifier_env *env,
2668 			   const struct resolve_vertex *v)
2669 {
2670 	const struct btf_type *next_type;
2671 	const struct btf_type *t = v->t;
2672 	u32 next_type_id = t->type;
2673 	struct btf *btf = env->btf;
2674 
2675 	next_type = btf_type_by_id(btf, next_type_id);
2676 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2677 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2678 		return -EINVAL;
2679 	}
2680 
2681 	if (!env_type_is_resolve_sink(env, next_type) &&
2682 	    !env_type_is_resolved(env, next_type_id))
2683 		return env_stack_push(env, next_type, next_type_id);
2684 
2685 	if (btf_type_is_modifier(next_type)) {
2686 		const struct btf_type *resolved_type;
2687 		u32 resolved_type_id;
2688 
2689 		resolved_type_id = next_type_id;
2690 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2691 
2692 		if (btf_type_is_ptr(resolved_type) &&
2693 		    !env_type_is_resolve_sink(env, resolved_type) &&
2694 		    !env_type_is_resolved(env, resolved_type_id))
2695 			return env_stack_push(env, resolved_type,
2696 					      resolved_type_id);
2697 	}
2698 
2699 	/* We must resolve to something concrete at this point, no
2700 	 * forward types or similar that would resolve to size of
2701 	 * zero is allowed.
2702 	 */
2703 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2704 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2705 		return -EINVAL;
2706 	}
2707 
2708 	env_stack_pop_resolved(env, next_type_id, 0);
2709 
2710 	return 0;
2711 }
2712 
2713 static int btf_ptr_resolve(struct btf_verifier_env *env,
2714 			   const struct resolve_vertex *v)
2715 {
2716 	const struct btf_type *next_type;
2717 	const struct btf_type *t = v->t;
2718 	u32 next_type_id = t->type;
2719 	struct btf *btf = env->btf;
2720 
2721 	next_type = btf_type_by_id(btf, next_type_id);
2722 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2723 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2724 		return -EINVAL;
2725 	}
2726 
2727 	if (!env_type_is_resolve_sink(env, next_type) &&
2728 	    !env_type_is_resolved(env, next_type_id))
2729 		return env_stack_push(env, next_type, next_type_id);
2730 
2731 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2732 	 * the modifier may have stopped resolving when it was resolved
2733 	 * to a ptr (last-resolved-ptr).
2734 	 *
2735 	 * We now need to continue from the last-resolved-ptr to
2736 	 * ensure the last-resolved-ptr will not referring back to
2737 	 * the current ptr (t).
2738 	 */
2739 	if (btf_type_is_modifier(next_type)) {
2740 		const struct btf_type *resolved_type;
2741 		u32 resolved_type_id;
2742 
2743 		resolved_type_id = next_type_id;
2744 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2745 
2746 		if (btf_type_is_ptr(resolved_type) &&
2747 		    !env_type_is_resolve_sink(env, resolved_type) &&
2748 		    !env_type_is_resolved(env, resolved_type_id))
2749 			return env_stack_push(env, resolved_type,
2750 					      resolved_type_id);
2751 	}
2752 
2753 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2754 		if (env_type_is_resolved(env, next_type_id))
2755 			next_type = btf_type_id_resolve(btf, &next_type_id);
2756 
2757 		if (!btf_type_is_void(next_type) &&
2758 		    !btf_type_is_fwd(next_type) &&
2759 		    !btf_type_is_func_proto(next_type)) {
2760 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2761 			return -EINVAL;
2762 		}
2763 	}
2764 
2765 	env_stack_pop_resolved(env, next_type_id, 0);
2766 
2767 	return 0;
2768 }
2769 
2770 static void btf_modifier_show(const struct btf *btf,
2771 			      const struct btf_type *t,
2772 			      u32 type_id, void *data,
2773 			      u8 bits_offset, struct btf_show *show)
2774 {
2775 	if (btf->resolved_ids)
2776 		t = btf_type_id_resolve(btf, &type_id);
2777 	else
2778 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2779 
2780 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2781 }
2782 
2783 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2784 			 u32 type_id, void *data, u8 bits_offset,
2785 			 struct btf_show *show)
2786 {
2787 	t = btf_type_id_resolve(btf, &type_id);
2788 
2789 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2790 }
2791 
2792 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2793 			 u32 type_id, void *data, u8 bits_offset,
2794 			 struct btf_show *show)
2795 {
2796 	void *safe_data;
2797 
2798 	safe_data = btf_show_start_type(show, t, type_id, data);
2799 	if (!safe_data)
2800 		return;
2801 
2802 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2803 	if (show->flags & BTF_SHOW_PTR_RAW)
2804 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2805 	else
2806 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2807 	btf_show_end_type(show);
2808 }
2809 
2810 static void btf_ref_type_log(struct btf_verifier_env *env,
2811 			     const struct btf_type *t)
2812 {
2813 	btf_verifier_log(env, "type_id=%u", t->type);
2814 }
2815 
2816 static struct btf_kind_operations modifier_ops = {
2817 	.check_meta = btf_ref_type_check_meta,
2818 	.resolve = btf_modifier_resolve,
2819 	.check_member = btf_modifier_check_member,
2820 	.check_kflag_member = btf_modifier_check_kflag_member,
2821 	.log_details = btf_ref_type_log,
2822 	.show = btf_modifier_show,
2823 };
2824 
2825 static struct btf_kind_operations ptr_ops = {
2826 	.check_meta = btf_ref_type_check_meta,
2827 	.resolve = btf_ptr_resolve,
2828 	.check_member = btf_ptr_check_member,
2829 	.check_kflag_member = btf_generic_check_kflag_member,
2830 	.log_details = btf_ref_type_log,
2831 	.show = btf_ptr_show,
2832 };
2833 
2834 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2835 			      const struct btf_type *t,
2836 			      u32 meta_left)
2837 {
2838 	if (btf_type_vlen(t)) {
2839 		btf_verifier_log_type(env, t, "vlen != 0");
2840 		return -EINVAL;
2841 	}
2842 
2843 	if (t->type) {
2844 		btf_verifier_log_type(env, t, "type != 0");
2845 		return -EINVAL;
2846 	}
2847 
2848 	/* fwd type must have a valid name */
2849 	if (!t->name_off ||
2850 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2851 		btf_verifier_log_type(env, t, "Invalid name");
2852 		return -EINVAL;
2853 	}
2854 
2855 	btf_verifier_log_type(env, t, NULL);
2856 
2857 	return 0;
2858 }
2859 
2860 static void btf_fwd_type_log(struct btf_verifier_env *env,
2861 			     const struct btf_type *t)
2862 {
2863 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2864 }
2865 
2866 static struct btf_kind_operations fwd_ops = {
2867 	.check_meta = btf_fwd_check_meta,
2868 	.resolve = btf_df_resolve,
2869 	.check_member = btf_df_check_member,
2870 	.check_kflag_member = btf_df_check_kflag_member,
2871 	.log_details = btf_fwd_type_log,
2872 	.show = btf_df_show,
2873 };
2874 
2875 static int btf_array_check_member(struct btf_verifier_env *env,
2876 				  const struct btf_type *struct_type,
2877 				  const struct btf_member *member,
2878 				  const struct btf_type *member_type)
2879 {
2880 	u32 struct_bits_off = member->offset;
2881 	u32 struct_size, bytes_offset;
2882 	u32 array_type_id, array_size;
2883 	struct btf *btf = env->btf;
2884 
2885 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2886 		btf_verifier_log_member(env, struct_type, member,
2887 					"Member is not byte aligned");
2888 		return -EINVAL;
2889 	}
2890 
2891 	array_type_id = member->type;
2892 	btf_type_id_size(btf, &array_type_id, &array_size);
2893 	struct_size = struct_type->size;
2894 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2895 	if (struct_size - bytes_offset < array_size) {
2896 		btf_verifier_log_member(env, struct_type, member,
2897 					"Member exceeds struct_size");
2898 		return -EINVAL;
2899 	}
2900 
2901 	return 0;
2902 }
2903 
2904 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2905 				const struct btf_type *t,
2906 				u32 meta_left)
2907 {
2908 	const struct btf_array *array = btf_type_array(t);
2909 	u32 meta_needed = sizeof(*array);
2910 
2911 	if (meta_left < meta_needed) {
2912 		btf_verifier_log_basic(env, t,
2913 				       "meta_left:%u meta_needed:%u",
2914 				       meta_left, meta_needed);
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* array type should not have a name */
2919 	if (t->name_off) {
2920 		btf_verifier_log_type(env, t, "Invalid name");
2921 		return -EINVAL;
2922 	}
2923 
2924 	if (btf_type_vlen(t)) {
2925 		btf_verifier_log_type(env, t, "vlen != 0");
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (btf_type_kflag(t)) {
2930 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2931 		return -EINVAL;
2932 	}
2933 
2934 	if (t->size) {
2935 		btf_verifier_log_type(env, t, "size != 0");
2936 		return -EINVAL;
2937 	}
2938 
2939 	/* Array elem type and index type cannot be in type void,
2940 	 * so !array->type and !array->index_type are not allowed.
2941 	 */
2942 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2943 		btf_verifier_log_type(env, t, "Invalid elem");
2944 		return -EINVAL;
2945 	}
2946 
2947 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2948 		btf_verifier_log_type(env, t, "Invalid index");
2949 		return -EINVAL;
2950 	}
2951 
2952 	btf_verifier_log_type(env, t, NULL);
2953 
2954 	return meta_needed;
2955 }
2956 
2957 static int btf_array_resolve(struct btf_verifier_env *env,
2958 			     const struct resolve_vertex *v)
2959 {
2960 	const struct btf_array *array = btf_type_array(v->t);
2961 	const struct btf_type *elem_type, *index_type;
2962 	u32 elem_type_id, index_type_id;
2963 	struct btf *btf = env->btf;
2964 	u32 elem_size;
2965 
2966 	/* Check array->index_type */
2967 	index_type_id = array->index_type;
2968 	index_type = btf_type_by_id(btf, index_type_id);
2969 	if (btf_type_nosize_or_null(index_type) ||
2970 	    btf_type_is_resolve_source_only(index_type)) {
2971 		btf_verifier_log_type(env, v->t, "Invalid index");
2972 		return -EINVAL;
2973 	}
2974 
2975 	if (!env_type_is_resolve_sink(env, index_type) &&
2976 	    !env_type_is_resolved(env, index_type_id))
2977 		return env_stack_push(env, index_type, index_type_id);
2978 
2979 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2980 	if (!index_type || !btf_type_is_int(index_type) ||
2981 	    !btf_type_int_is_regular(index_type)) {
2982 		btf_verifier_log_type(env, v->t, "Invalid index");
2983 		return -EINVAL;
2984 	}
2985 
2986 	/* Check array->type */
2987 	elem_type_id = array->type;
2988 	elem_type = btf_type_by_id(btf, elem_type_id);
2989 	if (btf_type_nosize_or_null(elem_type) ||
2990 	    btf_type_is_resolve_source_only(elem_type)) {
2991 		btf_verifier_log_type(env, v->t,
2992 				      "Invalid elem");
2993 		return -EINVAL;
2994 	}
2995 
2996 	if (!env_type_is_resolve_sink(env, elem_type) &&
2997 	    !env_type_is_resolved(env, elem_type_id))
2998 		return env_stack_push(env, elem_type, elem_type_id);
2999 
3000 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3001 	if (!elem_type) {
3002 		btf_verifier_log_type(env, v->t, "Invalid elem");
3003 		return -EINVAL;
3004 	}
3005 
3006 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3007 		btf_verifier_log_type(env, v->t, "Invalid array of int");
3008 		return -EINVAL;
3009 	}
3010 
3011 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3012 		btf_verifier_log_type(env, v->t,
3013 				      "Array size overflows U32_MAX");
3014 		return -EINVAL;
3015 	}
3016 
3017 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3018 
3019 	return 0;
3020 }
3021 
3022 static void btf_array_log(struct btf_verifier_env *env,
3023 			  const struct btf_type *t)
3024 {
3025 	const struct btf_array *array = btf_type_array(t);
3026 
3027 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3028 			 array->type, array->index_type, array->nelems);
3029 }
3030 
3031 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3032 			     u32 type_id, void *data, u8 bits_offset,
3033 			     struct btf_show *show)
3034 {
3035 	const struct btf_array *array = btf_type_array(t);
3036 	const struct btf_kind_operations *elem_ops;
3037 	const struct btf_type *elem_type;
3038 	u32 i, elem_size = 0, elem_type_id;
3039 	u16 encoding = 0;
3040 
3041 	elem_type_id = array->type;
3042 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3043 	if (elem_type && btf_type_has_size(elem_type))
3044 		elem_size = elem_type->size;
3045 
3046 	if (elem_type && btf_type_is_int(elem_type)) {
3047 		u32 int_type = btf_type_int(elem_type);
3048 
3049 		encoding = BTF_INT_ENCODING(int_type);
3050 
3051 		/*
3052 		 * BTF_INT_CHAR encoding never seems to be set for
3053 		 * char arrays, so if size is 1 and element is
3054 		 * printable as a char, we'll do that.
3055 		 */
3056 		if (elem_size == 1)
3057 			encoding = BTF_INT_CHAR;
3058 	}
3059 
3060 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3061 		return;
3062 
3063 	if (!elem_type)
3064 		goto out;
3065 	elem_ops = btf_type_ops(elem_type);
3066 
3067 	for (i = 0; i < array->nelems; i++) {
3068 
3069 		btf_show_start_array_member(show);
3070 
3071 		elem_ops->show(btf, elem_type, elem_type_id, data,
3072 			       bits_offset, show);
3073 		data += elem_size;
3074 
3075 		btf_show_end_array_member(show);
3076 
3077 		if (show->state.array_terminated)
3078 			break;
3079 	}
3080 out:
3081 	btf_show_end_array_type(show);
3082 }
3083 
3084 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3085 			   u32 type_id, void *data, u8 bits_offset,
3086 			   struct btf_show *show)
3087 {
3088 	const struct btf_member *m = show->state.member;
3089 
3090 	/*
3091 	 * First check if any members would be shown (are non-zero).
3092 	 * See comments above "struct btf_show" definition for more
3093 	 * details on how this works at a high-level.
3094 	 */
3095 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3096 		if (!show->state.depth_check) {
3097 			show->state.depth_check = show->state.depth + 1;
3098 			show->state.depth_to_show = 0;
3099 		}
3100 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3101 		show->state.member = m;
3102 
3103 		if (show->state.depth_check != show->state.depth + 1)
3104 			return;
3105 		show->state.depth_check = 0;
3106 
3107 		if (show->state.depth_to_show <= show->state.depth)
3108 			return;
3109 		/*
3110 		 * Reaching here indicates we have recursed and found
3111 		 * non-zero array member(s).
3112 		 */
3113 	}
3114 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3115 }
3116 
3117 static struct btf_kind_operations array_ops = {
3118 	.check_meta = btf_array_check_meta,
3119 	.resolve = btf_array_resolve,
3120 	.check_member = btf_array_check_member,
3121 	.check_kflag_member = btf_generic_check_kflag_member,
3122 	.log_details = btf_array_log,
3123 	.show = btf_array_show,
3124 };
3125 
3126 static int btf_struct_check_member(struct btf_verifier_env *env,
3127 				   const struct btf_type *struct_type,
3128 				   const struct btf_member *member,
3129 				   const struct btf_type *member_type)
3130 {
3131 	u32 struct_bits_off = member->offset;
3132 	u32 struct_size, bytes_offset;
3133 
3134 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3135 		btf_verifier_log_member(env, struct_type, member,
3136 					"Member is not byte aligned");
3137 		return -EINVAL;
3138 	}
3139 
3140 	struct_size = struct_type->size;
3141 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3142 	if (struct_size - bytes_offset < member_type->size) {
3143 		btf_verifier_log_member(env, struct_type, member,
3144 					"Member exceeds struct_size");
3145 		return -EINVAL;
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3152 				 const struct btf_type *t,
3153 				 u32 meta_left)
3154 {
3155 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3156 	const struct btf_member *member;
3157 	u32 meta_needed, last_offset;
3158 	struct btf *btf = env->btf;
3159 	u32 struct_size = t->size;
3160 	u32 offset;
3161 	u16 i;
3162 
3163 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3164 	if (meta_left < meta_needed) {
3165 		btf_verifier_log_basic(env, t,
3166 				       "meta_left:%u meta_needed:%u",
3167 				       meta_left, meta_needed);
3168 		return -EINVAL;
3169 	}
3170 
3171 	/* struct type either no name or a valid one */
3172 	if (t->name_off &&
3173 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3174 		btf_verifier_log_type(env, t, "Invalid name");
3175 		return -EINVAL;
3176 	}
3177 
3178 	btf_verifier_log_type(env, t, NULL);
3179 
3180 	last_offset = 0;
3181 	for_each_member(i, t, member) {
3182 		if (!btf_name_offset_valid(btf, member->name_off)) {
3183 			btf_verifier_log_member(env, t, member,
3184 						"Invalid member name_offset:%u",
3185 						member->name_off);
3186 			return -EINVAL;
3187 		}
3188 
3189 		/* struct member either no name or a valid one */
3190 		if (member->name_off &&
3191 		    !btf_name_valid_identifier(btf, member->name_off)) {
3192 			btf_verifier_log_member(env, t, member, "Invalid name");
3193 			return -EINVAL;
3194 		}
3195 		/* A member cannot be in type void */
3196 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3197 			btf_verifier_log_member(env, t, member,
3198 						"Invalid type_id");
3199 			return -EINVAL;
3200 		}
3201 
3202 		offset = __btf_member_bit_offset(t, member);
3203 		if (is_union && offset) {
3204 			btf_verifier_log_member(env, t, member,
3205 						"Invalid member bits_offset");
3206 			return -EINVAL;
3207 		}
3208 
3209 		/*
3210 		 * ">" instead of ">=" because the last member could be
3211 		 * "char a[0];"
3212 		 */
3213 		if (last_offset > offset) {
3214 			btf_verifier_log_member(env, t, member,
3215 						"Invalid member bits_offset");
3216 			return -EINVAL;
3217 		}
3218 
3219 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3220 			btf_verifier_log_member(env, t, member,
3221 						"Member bits_offset exceeds its struct size");
3222 			return -EINVAL;
3223 		}
3224 
3225 		btf_verifier_log_member(env, t, member, NULL);
3226 		last_offset = offset;
3227 	}
3228 
3229 	return meta_needed;
3230 }
3231 
3232 static int btf_struct_resolve(struct btf_verifier_env *env,
3233 			      const struct resolve_vertex *v)
3234 {
3235 	const struct btf_member *member;
3236 	int err;
3237 	u16 i;
3238 
3239 	/* Before continue resolving the next_member,
3240 	 * ensure the last member is indeed resolved to a
3241 	 * type with size info.
3242 	 */
3243 	if (v->next_member) {
3244 		const struct btf_type *last_member_type;
3245 		const struct btf_member *last_member;
3246 		u32 last_member_type_id;
3247 
3248 		last_member = btf_type_member(v->t) + v->next_member - 1;
3249 		last_member_type_id = last_member->type;
3250 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3251 						       last_member_type_id)))
3252 			return -EINVAL;
3253 
3254 		last_member_type = btf_type_by_id(env->btf,
3255 						  last_member_type_id);
3256 		if (btf_type_kflag(v->t))
3257 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3258 								last_member,
3259 								last_member_type);
3260 		else
3261 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3262 								last_member,
3263 								last_member_type);
3264 		if (err)
3265 			return err;
3266 	}
3267 
3268 	for_each_member_from(i, v->next_member, v->t, member) {
3269 		u32 member_type_id = member->type;
3270 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3271 								member_type_id);
3272 
3273 		if (btf_type_nosize_or_null(member_type) ||
3274 		    btf_type_is_resolve_source_only(member_type)) {
3275 			btf_verifier_log_member(env, v->t, member,
3276 						"Invalid member");
3277 			return -EINVAL;
3278 		}
3279 
3280 		if (!env_type_is_resolve_sink(env, member_type) &&
3281 		    !env_type_is_resolved(env, member_type_id)) {
3282 			env_stack_set_next_member(env, i + 1);
3283 			return env_stack_push(env, member_type, member_type_id);
3284 		}
3285 
3286 		if (btf_type_kflag(v->t))
3287 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3288 									    member,
3289 									    member_type);
3290 		else
3291 			err = btf_type_ops(member_type)->check_member(env, v->t,
3292 								      member,
3293 								      member_type);
3294 		if (err)
3295 			return err;
3296 	}
3297 
3298 	env_stack_pop_resolved(env, 0, 0);
3299 
3300 	return 0;
3301 }
3302 
3303 static void btf_struct_log(struct btf_verifier_env *env,
3304 			   const struct btf_type *t)
3305 {
3306 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3307 }
3308 
3309 enum {
3310 	BTF_FIELD_IGNORE = 0,
3311 	BTF_FIELD_FOUND  = 1,
3312 };
3313 
3314 struct btf_field_info {
3315 	enum btf_field_type type;
3316 	u32 off;
3317 	union {
3318 		struct {
3319 			u32 type_id;
3320 		} kptr;
3321 		struct {
3322 			const char *node_name;
3323 			u32 value_btf_id;
3324 		} graph_root;
3325 	};
3326 };
3327 
3328 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3329 			   u32 off, int sz, enum btf_field_type field_type,
3330 			   struct btf_field_info *info)
3331 {
3332 	if (!__btf_type_is_struct(t))
3333 		return BTF_FIELD_IGNORE;
3334 	if (t->size != sz)
3335 		return BTF_FIELD_IGNORE;
3336 	info->type = field_type;
3337 	info->off = off;
3338 	return BTF_FIELD_FOUND;
3339 }
3340 
3341 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3342 			 u32 off, int sz, struct btf_field_info *info)
3343 {
3344 	enum btf_field_type type;
3345 	u32 res_id;
3346 
3347 	/* Permit modifiers on the pointer itself */
3348 	if (btf_type_is_volatile(t))
3349 		t = btf_type_by_id(btf, t->type);
3350 	/* For PTR, sz is always == 8 */
3351 	if (!btf_type_is_ptr(t))
3352 		return BTF_FIELD_IGNORE;
3353 	t = btf_type_by_id(btf, t->type);
3354 
3355 	if (!btf_type_is_type_tag(t))
3356 		return BTF_FIELD_IGNORE;
3357 	/* Reject extra tags */
3358 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3359 		return -EINVAL;
3360 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3361 		type = BPF_KPTR_UNREF;
3362 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3363 		type = BPF_KPTR_REF;
3364 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3365 		type = BPF_KPTR_PERCPU;
3366 	else
3367 		return -EINVAL;
3368 
3369 	/* Get the base type */
3370 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3371 	/* Only pointer to struct is allowed */
3372 	if (!__btf_type_is_struct(t))
3373 		return -EINVAL;
3374 
3375 	info->type = type;
3376 	info->off = off;
3377 	info->kptr.type_id = res_id;
3378 	return BTF_FIELD_FOUND;
3379 }
3380 
3381 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3382 			   int comp_idx, const char *tag_key, int last_id)
3383 {
3384 	int len = strlen(tag_key);
3385 	int i, n;
3386 
3387 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3388 		const struct btf_type *t = btf_type_by_id(btf, i);
3389 
3390 		if (!btf_type_is_decl_tag(t))
3391 			continue;
3392 		if (pt != btf_type_by_id(btf, t->type))
3393 			continue;
3394 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3395 			continue;
3396 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3397 			continue;
3398 		return i;
3399 	}
3400 	return -ENOENT;
3401 }
3402 
3403 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3404 				    int comp_idx, const char *tag_key)
3405 {
3406 	const char *value = NULL;
3407 	const struct btf_type *t;
3408 	int len, id;
3409 
3410 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3411 	if (id < 0)
3412 		return ERR_PTR(id);
3413 
3414 	t = btf_type_by_id(btf, id);
3415 	len = strlen(tag_key);
3416 	value = __btf_name_by_offset(btf, t->name_off) + len;
3417 
3418 	/* Prevent duplicate entries for same type */
3419 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3420 	if (id >= 0)
3421 		return ERR_PTR(-EEXIST);
3422 
3423 	return value;
3424 }
3425 
3426 static int
3427 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3428 		    const struct btf_type *t, int comp_idx, u32 off,
3429 		    int sz, struct btf_field_info *info,
3430 		    enum btf_field_type head_type)
3431 {
3432 	const char *node_field_name;
3433 	const char *value_type;
3434 	s32 id;
3435 
3436 	if (!__btf_type_is_struct(t))
3437 		return BTF_FIELD_IGNORE;
3438 	if (t->size != sz)
3439 		return BTF_FIELD_IGNORE;
3440 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3441 	if (IS_ERR(value_type))
3442 		return -EINVAL;
3443 	node_field_name = strstr(value_type, ":");
3444 	if (!node_field_name)
3445 		return -EINVAL;
3446 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3447 	if (!value_type)
3448 		return -ENOMEM;
3449 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3450 	kfree(value_type);
3451 	if (id < 0)
3452 		return id;
3453 	node_field_name++;
3454 	if (str_is_empty(node_field_name))
3455 		return -EINVAL;
3456 	info->type = head_type;
3457 	info->off = off;
3458 	info->graph_root.value_btf_id = id;
3459 	info->graph_root.node_name = node_field_name;
3460 	return BTF_FIELD_FOUND;
3461 }
3462 
3463 #define field_mask_test_name(field_type, field_type_str) \
3464 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3465 		type = field_type;					\
3466 		goto end;						\
3467 	}
3468 
3469 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3470 			      u32 field_mask, u32 *seen_mask,
3471 			      int *align, int *sz)
3472 {
3473 	int type = 0;
3474 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3475 
3476 	if (field_mask & BPF_SPIN_LOCK) {
3477 		if (!strcmp(name, "bpf_spin_lock")) {
3478 			if (*seen_mask & BPF_SPIN_LOCK)
3479 				return -E2BIG;
3480 			*seen_mask |= BPF_SPIN_LOCK;
3481 			type = BPF_SPIN_LOCK;
3482 			goto end;
3483 		}
3484 	}
3485 	if (field_mask & BPF_TIMER) {
3486 		if (!strcmp(name, "bpf_timer")) {
3487 			if (*seen_mask & BPF_TIMER)
3488 				return -E2BIG;
3489 			*seen_mask |= BPF_TIMER;
3490 			type = BPF_TIMER;
3491 			goto end;
3492 		}
3493 	}
3494 	if (field_mask & BPF_WORKQUEUE) {
3495 		if (!strcmp(name, "bpf_wq")) {
3496 			if (*seen_mask & BPF_WORKQUEUE)
3497 				return -E2BIG;
3498 			*seen_mask |= BPF_WORKQUEUE;
3499 			type = BPF_WORKQUEUE;
3500 			goto end;
3501 		}
3502 	}
3503 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3504 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3505 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3506 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3507 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3508 
3509 	/* Only return BPF_KPTR when all other types with matchable names fail */
3510 	if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) {
3511 		type = BPF_KPTR_REF;
3512 		goto end;
3513 	}
3514 	return 0;
3515 end:
3516 	*sz = btf_field_type_size(type);
3517 	*align = btf_field_type_align(type);
3518 	return type;
3519 }
3520 
3521 #undef field_mask_test_name
3522 
3523 /* Repeat a number of fields for a specified number of times.
3524  *
3525  * Copy the fields starting from the first field and repeat them for
3526  * repeat_cnt times. The fields are repeated by adding the offset of each
3527  * field with
3528  *   (i + 1) * elem_size
3529  * where i is the repeat index and elem_size is the size of an element.
3530  */
3531 static int btf_repeat_fields(struct btf_field_info *info,
3532 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3533 {
3534 	u32 i, j;
3535 	u32 cur;
3536 
3537 	/* Ensure not repeating fields that should not be repeated. */
3538 	for (i = 0; i < field_cnt; i++) {
3539 		switch (info[i].type) {
3540 		case BPF_KPTR_UNREF:
3541 		case BPF_KPTR_REF:
3542 		case BPF_KPTR_PERCPU:
3543 		case BPF_LIST_HEAD:
3544 		case BPF_RB_ROOT:
3545 			break;
3546 		default:
3547 			return -EINVAL;
3548 		}
3549 	}
3550 
3551 	cur = field_cnt;
3552 	for (i = 0; i < repeat_cnt; i++) {
3553 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3554 		for (j = 0; j < field_cnt; j++)
3555 			info[cur++].off += (i + 1) * elem_size;
3556 	}
3557 
3558 	return 0;
3559 }
3560 
3561 static int btf_find_struct_field(const struct btf *btf,
3562 				 const struct btf_type *t, u32 field_mask,
3563 				 struct btf_field_info *info, int info_cnt,
3564 				 u32 level);
3565 
3566 /* Find special fields in the struct type of a field.
3567  *
3568  * This function is used to find fields of special types that is not a
3569  * global variable or a direct field of a struct type. It also handles the
3570  * repetition if it is the element type of an array.
3571  */
3572 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3573 				  u32 off, u32 nelems,
3574 				  u32 field_mask, struct btf_field_info *info,
3575 				  int info_cnt, u32 level)
3576 {
3577 	int ret, err, i;
3578 
3579 	level++;
3580 	if (level >= MAX_RESOLVE_DEPTH)
3581 		return -E2BIG;
3582 
3583 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3584 
3585 	if (ret <= 0)
3586 		return ret;
3587 
3588 	/* Shift the offsets of the nested struct fields to the offsets
3589 	 * related to the container.
3590 	 */
3591 	for (i = 0; i < ret; i++)
3592 		info[i].off += off;
3593 
3594 	if (nelems > 1) {
3595 		err = btf_repeat_fields(info, ret, nelems - 1, t->size);
3596 		if (err == 0)
3597 			ret *= nelems;
3598 		else
3599 			ret = err;
3600 	}
3601 
3602 	return ret;
3603 }
3604 
3605 static int btf_find_field_one(const struct btf *btf,
3606 			      const struct btf_type *var,
3607 			      const struct btf_type *var_type,
3608 			      int var_idx,
3609 			      u32 off, u32 expected_size,
3610 			      u32 field_mask, u32 *seen_mask,
3611 			      struct btf_field_info *info, int info_cnt,
3612 			      u32 level)
3613 {
3614 	int ret, align, sz, field_type;
3615 	struct btf_field_info tmp;
3616 	const struct btf_array *array;
3617 	u32 i, nelems = 1;
3618 
3619 	/* Walk into array types to find the element type and the number of
3620 	 * elements in the (flattened) array.
3621 	 */
3622 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3623 		array = btf_array(var_type);
3624 		nelems *= array->nelems;
3625 		var_type = btf_type_by_id(btf, array->type);
3626 	}
3627 	if (i == MAX_RESOLVE_DEPTH)
3628 		return -E2BIG;
3629 	if (nelems == 0)
3630 		return 0;
3631 
3632 	field_type = btf_get_field_type(btf, var_type,
3633 					field_mask, seen_mask, &align, &sz);
3634 	/* Look into variables of struct types */
3635 	if (!field_type && __btf_type_is_struct(var_type)) {
3636 		sz = var_type->size;
3637 		if (expected_size && expected_size != sz * nelems)
3638 			return 0;
3639 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3640 					     &info[0], info_cnt, level);
3641 		return ret;
3642 	}
3643 
3644 	if (field_type == 0)
3645 		return 0;
3646 	if (field_type < 0)
3647 		return field_type;
3648 
3649 	if (expected_size && expected_size != sz * nelems)
3650 		return 0;
3651 	if (off % align)
3652 		return 0;
3653 
3654 	switch (field_type) {
3655 	case BPF_SPIN_LOCK:
3656 	case BPF_TIMER:
3657 	case BPF_WORKQUEUE:
3658 	case BPF_LIST_NODE:
3659 	case BPF_RB_NODE:
3660 	case BPF_REFCOUNT:
3661 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3662 				      info_cnt ? &info[0] : &tmp);
3663 		if (ret < 0)
3664 			return ret;
3665 		break;
3666 	case BPF_KPTR_UNREF:
3667 	case BPF_KPTR_REF:
3668 	case BPF_KPTR_PERCPU:
3669 		ret = btf_find_kptr(btf, var_type, off, sz,
3670 				    info_cnt ? &info[0] : &tmp);
3671 		if (ret < 0)
3672 			return ret;
3673 		break;
3674 	case BPF_LIST_HEAD:
3675 	case BPF_RB_ROOT:
3676 		ret = btf_find_graph_root(btf, var, var_type,
3677 					  var_idx, off, sz,
3678 					  info_cnt ? &info[0] : &tmp,
3679 					  field_type);
3680 		if (ret < 0)
3681 			return ret;
3682 		break;
3683 	default:
3684 		return -EFAULT;
3685 	}
3686 
3687 	if (ret == BTF_FIELD_IGNORE)
3688 		return 0;
3689 	if (nelems > info_cnt)
3690 		return -E2BIG;
3691 	if (nelems > 1) {
3692 		ret = btf_repeat_fields(info, 1, nelems - 1, sz);
3693 		if (ret < 0)
3694 			return ret;
3695 	}
3696 	return nelems;
3697 }
3698 
3699 static int btf_find_struct_field(const struct btf *btf,
3700 				 const struct btf_type *t, u32 field_mask,
3701 				 struct btf_field_info *info, int info_cnt,
3702 				 u32 level)
3703 {
3704 	int ret, idx = 0;
3705 	const struct btf_member *member;
3706 	u32 i, off, seen_mask = 0;
3707 
3708 	for_each_member(i, t, member) {
3709 		const struct btf_type *member_type = btf_type_by_id(btf,
3710 								    member->type);
3711 
3712 		off = __btf_member_bit_offset(t, member);
3713 		if (off % 8)
3714 			/* valid C code cannot generate such BTF */
3715 			return -EINVAL;
3716 		off /= 8;
3717 
3718 		ret = btf_find_field_one(btf, t, member_type, i,
3719 					 off, 0,
3720 					 field_mask, &seen_mask,
3721 					 &info[idx], info_cnt - idx, level);
3722 		if (ret < 0)
3723 			return ret;
3724 		idx += ret;
3725 	}
3726 	return idx;
3727 }
3728 
3729 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3730 				u32 field_mask, struct btf_field_info *info,
3731 				int info_cnt, u32 level)
3732 {
3733 	int ret, idx = 0;
3734 	const struct btf_var_secinfo *vsi;
3735 	u32 i, off, seen_mask = 0;
3736 
3737 	for_each_vsi(i, t, vsi) {
3738 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3739 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3740 
3741 		off = vsi->offset;
3742 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3743 					 field_mask, &seen_mask,
3744 					 &info[idx], info_cnt - idx,
3745 					 level);
3746 		if (ret < 0)
3747 			return ret;
3748 		idx += ret;
3749 	}
3750 	return idx;
3751 }
3752 
3753 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3754 			  u32 field_mask, struct btf_field_info *info,
3755 			  int info_cnt)
3756 {
3757 	if (__btf_type_is_struct(t))
3758 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3759 	else if (btf_type_is_datasec(t))
3760 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3761 	return -EINVAL;
3762 }
3763 
3764 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3765 			  struct btf_field_info *info)
3766 {
3767 	struct module *mod = NULL;
3768 	const struct btf_type *t;
3769 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3770 	 * is that BTF, otherwise it's program BTF
3771 	 */
3772 	struct btf *kptr_btf;
3773 	int ret;
3774 	s32 id;
3775 
3776 	/* Find type in map BTF, and use it to look up the matching type
3777 	 * in vmlinux or module BTFs, by name and kind.
3778 	 */
3779 	t = btf_type_by_id(btf, info->kptr.type_id);
3780 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3781 			     &kptr_btf);
3782 	if (id == -ENOENT) {
3783 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3784 		WARN_ON_ONCE(btf_is_kernel(btf));
3785 
3786 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3787 		 * kptr allocated via bpf_obj_new
3788 		 */
3789 		field->kptr.dtor = NULL;
3790 		id = info->kptr.type_id;
3791 		kptr_btf = (struct btf *)btf;
3792 		btf_get(kptr_btf);
3793 		goto found_dtor;
3794 	}
3795 	if (id < 0)
3796 		return id;
3797 
3798 	/* Find and stash the function pointer for the destruction function that
3799 	 * needs to be eventually invoked from the map free path.
3800 	 */
3801 	if (info->type == BPF_KPTR_REF) {
3802 		const struct btf_type *dtor_func;
3803 		const char *dtor_func_name;
3804 		unsigned long addr;
3805 		s32 dtor_btf_id;
3806 
3807 		/* This call also serves as a whitelist of allowed objects that
3808 		 * can be used as a referenced pointer and be stored in a map at
3809 		 * the same time.
3810 		 */
3811 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3812 		if (dtor_btf_id < 0) {
3813 			ret = dtor_btf_id;
3814 			goto end_btf;
3815 		}
3816 
3817 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3818 		if (!dtor_func) {
3819 			ret = -ENOENT;
3820 			goto end_btf;
3821 		}
3822 
3823 		if (btf_is_module(kptr_btf)) {
3824 			mod = btf_try_get_module(kptr_btf);
3825 			if (!mod) {
3826 				ret = -ENXIO;
3827 				goto end_btf;
3828 			}
3829 		}
3830 
3831 		/* We already verified dtor_func to be btf_type_is_func
3832 		 * in register_btf_id_dtor_kfuncs.
3833 		 */
3834 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3835 		addr = kallsyms_lookup_name(dtor_func_name);
3836 		if (!addr) {
3837 			ret = -EINVAL;
3838 			goto end_mod;
3839 		}
3840 		field->kptr.dtor = (void *)addr;
3841 	}
3842 
3843 found_dtor:
3844 	field->kptr.btf_id = id;
3845 	field->kptr.btf = kptr_btf;
3846 	field->kptr.module = mod;
3847 	return 0;
3848 end_mod:
3849 	module_put(mod);
3850 end_btf:
3851 	btf_put(kptr_btf);
3852 	return ret;
3853 }
3854 
3855 static int btf_parse_graph_root(const struct btf *btf,
3856 				struct btf_field *field,
3857 				struct btf_field_info *info,
3858 				const char *node_type_name,
3859 				size_t node_type_align)
3860 {
3861 	const struct btf_type *t, *n = NULL;
3862 	const struct btf_member *member;
3863 	u32 offset;
3864 	int i;
3865 
3866 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3867 	/* We've already checked that value_btf_id is a struct type. We
3868 	 * just need to figure out the offset of the list_node, and
3869 	 * verify its type.
3870 	 */
3871 	for_each_member(i, t, member) {
3872 		if (strcmp(info->graph_root.node_name,
3873 			   __btf_name_by_offset(btf, member->name_off)))
3874 			continue;
3875 		/* Invalid BTF, two members with same name */
3876 		if (n)
3877 			return -EINVAL;
3878 		n = btf_type_by_id(btf, member->type);
3879 		if (!__btf_type_is_struct(n))
3880 			return -EINVAL;
3881 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3882 			return -EINVAL;
3883 		offset = __btf_member_bit_offset(n, member);
3884 		if (offset % 8)
3885 			return -EINVAL;
3886 		offset /= 8;
3887 		if (offset % node_type_align)
3888 			return -EINVAL;
3889 
3890 		field->graph_root.btf = (struct btf *)btf;
3891 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3892 		field->graph_root.node_offset = offset;
3893 	}
3894 	if (!n)
3895 		return -ENOENT;
3896 	return 0;
3897 }
3898 
3899 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3900 			       struct btf_field_info *info)
3901 {
3902 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3903 					    __alignof__(struct bpf_list_node));
3904 }
3905 
3906 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3907 			     struct btf_field_info *info)
3908 {
3909 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3910 					    __alignof__(struct bpf_rb_node));
3911 }
3912 
3913 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3914 {
3915 	const struct btf_field *a = (const struct btf_field *)_a;
3916 	const struct btf_field *b = (const struct btf_field *)_b;
3917 
3918 	if (a->offset < b->offset)
3919 		return -1;
3920 	else if (a->offset > b->offset)
3921 		return 1;
3922 	return 0;
3923 }
3924 
3925 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3926 				    u32 field_mask, u32 value_size)
3927 {
3928 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3929 	u32 next_off = 0, field_type_size;
3930 	struct btf_record *rec;
3931 	int ret, i, cnt;
3932 
3933 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3934 	if (ret < 0)
3935 		return ERR_PTR(ret);
3936 	if (!ret)
3937 		return NULL;
3938 
3939 	cnt = ret;
3940 	/* This needs to be kzalloc to zero out padding and unused fields, see
3941 	 * comment in btf_record_equal.
3942 	 */
3943 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3944 	if (!rec)
3945 		return ERR_PTR(-ENOMEM);
3946 
3947 	rec->spin_lock_off = -EINVAL;
3948 	rec->timer_off = -EINVAL;
3949 	rec->wq_off = -EINVAL;
3950 	rec->refcount_off = -EINVAL;
3951 	for (i = 0; i < cnt; i++) {
3952 		field_type_size = btf_field_type_size(info_arr[i].type);
3953 		if (info_arr[i].off + field_type_size > value_size) {
3954 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3955 			ret = -EFAULT;
3956 			goto end;
3957 		}
3958 		if (info_arr[i].off < next_off) {
3959 			ret = -EEXIST;
3960 			goto end;
3961 		}
3962 		next_off = info_arr[i].off + field_type_size;
3963 
3964 		rec->field_mask |= info_arr[i].type;
3965 		rec->fields[i].offset = info_arr[i].off;
3966 		rec->fields[i].type = info_arr[i].type;
3967 		rec->fields[i].size = field_type_size;
3968 
3969 		switch (info_arr[i].type) {
3970 		case BPF_SPIN_LOCK:
3971 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3972 			/* Cache offset for faster lookup at runtime */
3973 			rec->spin_lock_off = rec->fields[i].offset;
3974 			break;
3975 		case BPF_TIMER:
3976 			WARN_ON_ONCE(rec->timer_off >= 0);
3977 			/* Cache offset for faster lookup at runtime */
3978 			rec->timer_off = rec->fields[i].offset;
3979 			break;
3980 		case BPF_WORKQUEUE:
3981 			WARN_ON_ONCE(rec->wq_off >= 0);
3982 			/* Cache offset for faster lookup at runtime */
3983 			rec->wq_off = rec->fields[i].offset;
3984 			break;
3985 		case BPF_REFCOUNT:
3986 			WARN_ON_ONCE(rec->refcount_off >= 0);
3987 			/* Cache offset for faster lookup at runtime */
3988 			rec->refcount_off = rec->fields[i].offset;
3989 			break;
3990 		case BPF_KPTR_UNREF:
3991 		case BPF_KPTR_REF:
3992 		case BPF_KPTR_PERCPU:
3993 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3994 			if (ret < 0)
3995 				goto end;
3996 			break;
3997 		case BPF_LIST_HEAD:
3998 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3999 			if (ret < 0)
4000 				goto end;
4001 			break;
4002 		case BPF_RB_ROOT:
4003 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4004 			if (ret < 0)
4005 				goto end;
4006 			break;
4007 		case BPF_LIST_NODE:
4008 		case BPF_RB_NODE:
4009 			break;
4010 		default:
4011 			ret = -EFAULT;
4012 			goto end;
4013 		}
4014 		rec->cnt++;
4015 	}
4016 
4017 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4018 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4019 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4020 		ret = -EINVAL;
4021 		goto end;
4022 	}
4023 
4024 	if (rec->refcount_off < 0 &&
4025 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4026 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4027 		ret = -EINVAL;
4028 		goto end;
4029 	}
4030 
4031 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4032 	       NULL, rec);
4033 
4034 	return rec;
4035 end:
4036 	btf_record_free(rec);
4037 	return ERR_PTR(ret);
4038 }
4039 
4040 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4041 {
4042 	int i;
4043 
4044 	/* There are three types that signify ownership of some other type:
4045 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4046 	 * kptr_ref only supports storing kernel types, which can't store
4047 	 * references to program allocated local types.
4048 	 *
4049 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4050 	 * does not form cycles.
4051 	 */
4052 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
4053 		return 0;
4054 	for (i = 0; i < rec->cnt; i++) {
4055 		struct btf_struct_meta *meta;
4056 		u32 btf_id;
4057 
4058 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4059 			continue;
4060 		btf_id = rec->fields[i].graph_root.value_btf_id;
4061 		meta = btf_find_struct_meta(btf, btf_id);
4062 		if (!meta)
4063 			return -EFAULT;
4064 		rec->fields[i].graph_root.value_rec = meta->record;
4065 
4066 		/* We need to set value_rec for all root types, but no need
4067 		 * to check ownership cycle for a type unless it's also a
4068 		 * node type.
4069 		 */
4070 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4071 			continue;
4072 
4073 		/* We need to ensure ownership acyclicity among all types. The
4074 		 * proper way to do it would be to topologically sort all BTF
4075 		 * IDs based on the ownership edges, since there can be multiple
4076 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4077 		 * following resaoning:
4078 		 *
4079 		 * - A type can only be owned by another type in user BTF if it
4080 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4081 		 * - A type can only _own_ another type in user BTF if it has a
4082 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4083 		 *
4084 		 * We ensure that if a type is both a root and node, its
4085 		 * element types cannot be root types.
4086 		 *
4087 		 * To ensure acyclicity:
4088 		 *
4089 		 * When A is an root type but not a node, its ownership
4090 		 * chain can be:
4091 		 *	A -> B -> C
4092 		 * Where:
4093 		 * - A is an root, e.g. has bpf_rb_root.
4094 		 * - B is both a root and node, e.g. has bpf_rb_node and
4095 		 *   bpf_list_head.
4096 		 * - C is only an root, e.g. has bpf_list_node
4097 		 *
4098 		 * When A is both a root and node, some other type already
4099 		 * owns it in the BTF domain, hence it can not own
4100 		 * another root type through any of the ownership edges.
4101 		 *	A -> B
4102 		 * Where:
4103 		 * - A is both an root and node.
4104 		 * - B is only an node.
4105 		 */
4106 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4107 			return -ELOOP;
4108 	}
4109 	return 0;
4110 }
4111 
4112 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4113 			      u32 type_id, void *data, u8 bits_offset,
4114 			      struct btf_show *show)
4115 {
4116 	const struct btf_member *member;
4117 	void *safe_data;
4118 	u32 i;
4119 
4120 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4121 	if (!safe_data)
4122 		return;
4123 
4124 	for_each_member(i, t, member) {
4125 		const struct btf_type *member_type = btf_type_by_id(btf,
4126 								member->type);
4127 		const struct btf_kind_operations *ops;
4128 		u32 member_offset, bitfield_size;
4129 		u32 bytes_offset;
4130 		u8 bits8_offset;
4131 
4132 		btf_show_start_member(show, member);
4133 
4134 		member_offset = __btf_member_bit_offset(t, member);
4135 		bitfield_size = __btf_member_bitfield_size(t, member);
4136 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4137 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4138 		if (bitfield_size) {
4139 			safe_data = btf_show_start_type(show, member_type,
4140 							member->type,
4141 							data + bytes_offset);
4142 			if (safe_data)
4143 				btf_bitfield_show(safe_data,
4144 						  bits8_offset,
4145 						  bitfield_size, show);
4146 			btf_show_end_type(show);
4147 		} else {
4148 			ops = btf_type_ops(member_type);
4149 			ops->show(btf, member_type, member->type,
4150 				  data + bytes_offset, bits8_offset, show);
4151 		}
4152 
4153 		btf_show_end_member(show);
4154 	}
4155 
4156 	btf_show_end_struct_type(show);
4157 }
4158 
4159 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4160 			    u32 type_id, void *data, u8 bits_offset,
4161 			    struct btf_show *show)
4162 {
4163 	const struct btf_member *m = show->state.member;
4164 
4165 	/*
4166 	 * First check if any members would be shown (are non-zero).
4167 	 * See comments above "struct btf_show" definition for more
4168 	 * details on how this works at a high-level.
4169 	 */
4170 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4171 		if (!show->state.depth_check) {
4172 			show->state.depth_check = show->state.depth + 1;
4173 			show->state.depth_to_show = 0;
4174 		}
4175 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4176 		/* Restore saved member data here */
4177 		show->state.member = m;
4178 		if (show->state.depth_check != show->state.depth + 1)
4179 			return;
4180 		show->state.depth_check = 0;
4181 
4182 		if (show->state.depth_to_show <= show->state.depth)
4183 			return;
4184 		/*
4185 		 * Reaching here indicates we have recursed and found
4186 		 * non-zero child values.
4187 		 */
4188 	}
4189 
4190 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4191 }
4192 
4193 static struct btf_kind_operations struct_ops = {
4194 	.check_meta = btf_struct_check_meta,
4195 	.resolve = btf_struct_resolve,
4196 	.check_member = btf_struct_check_member,
4197 	.check_kflag_member = btf_generic_check_kflag_member,
4198 	.log_details = btf_struct_log,
4199 	.show = btf_struct_show,
4200 };
4201 
4202 static int btf_enum_check_member(struct btf_verifier_env *env,
4203 				 const struct btf_type *struct_type,
4204 				 const struct btf_member *member,
4205 				 const struct btf_type *member_type)
4206 {
4207 	u32 struct_bits_off = member->offset;
4208 	u32 struct_size, bytes_offset;
4209 
4210 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4211 		btf_verifier_log_member(env, struct_type, member,
4212 					"Member is not byte aligned");
4213 		return -EINVAL;
4214 	}
4215 
4216 	struct_size = struct_type->size;
4217 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4218 	if (struct_size - bytes_offset < member_type->size) {
4219 		btf_verifier_log_member(env, struct_type, member,
4220 					"Member exceeds struct_size");
4221 		return -EINVAL;
4222 	}
4223 
4224 	return 0;
4225 }
4226 
4227 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4228 				       const struct btf_type *struct_type,
4229 				       const struct btf_member *member,
4230 				       const struct btf_type *member_type)
4231 {
4232 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4233 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4234 
4235 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4236 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4237 	if (!nr_bits) {
4238 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4239 			btf_verifier_log_member(env, struct_type, member,
4240 						"Member is not byte aligned");
4241 			return -EINVAL;
4242 		}
4243 
4244 		nr_bits = int_bitsize;
4245 	} else if (nr_bits > int_bitsize) {
4246 		btf_verifier_log_member(env, struct_type, member,
4247 					"Invalid member bitfield_size");
4248 		return -EINVAL;
4249 	}
4250 
4251 	struct_size = struct_type->size;
4252 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4253 	if (struct_size < bytes_end) {
4254 		btf_verifier_log_member(env, struct_type, member,
4255 					"Member exceeds struct_size");
4256 		return -EINVAL;
4257 	}
4258 
4259 	return 0;
4260 }
4261 
4262 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4263 			       const struct btf_type *t,
4264 			       u32 meta_left)
4265 {
4266 	const struct btf_enum *enums = btf_type_enum(t);
4267 	struct btf *btf = env->btf;
4268 	const char *fmt_str;
4269 	u16 i, nr_enums;
4270 	u32 meta_needed;
4271 
4272 	nr_enums = btf_type_vlen(t);
4273 	meta_needed = nr_enums * sizeof(*enums);
4274 
4275 	if (meta_left < meta_needed) {
4276 		btf_verifier_log_basic(env, t,
4277 				       "meta_left:%u meta_needed:%u",
4278 				       meta_left, meta_needed);
4279 		return -EINVAL;
4280 	}
4281 
4282 	if (t->size > 8 || !is_power_of_2(t->size)) {
4283 		btf_verifier_log_type(env, t, "Unexpected size");
4284 		return -EINVAL;
4285 	}
4286 
4287 	/* enum type either no name or a valid one */
4288 	if (t->name_off &&
4289 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4290 		btf_verifier_log_type(env, t, "Invalid name");
4291 		return -EINVAL;
4292 	}
4293 
4294 	btf_verifier_log_type(env, t, NULL);
4295 
4296 	for (i = 0; i < nr_enums; i++) {
4297 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4298 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4299 					 enums[i].name_off);
4300 			return -EINVAL;
4301 		}
4302 
4303 		/* enum member must have a valid name */
4304 		if (!enums[i].name_off ||
4305 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4306 			btf_verifier_log_type(env, t, "Invalid name");
4307 			return -EINVAL;
4308 		}
4309 
4310 		if (env->log.level == BPF_LOG_KERNEL)
4311 			continue;
4312 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4313 		btf_verifier_log(env, fmt_str,
4314 				 __btf_name_by_offset(btf, enums[i].name_off),
4315 				 enums[i].val);
4316 	}
4317 
4318 	return meta_needed;
4319 }
4320 
4321 static void btf_enum_log(struct btf_verifier_env *env,
4322 			 const struct btf_type *t)
4323 {
4324 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4325 }
4326 
4327 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4328 			  u32 type_id, void *data, u8 bits_offset,
4329 			  struct btf_show *show)
4330 {
4331 	const struct btf_enum *enums = btf_type_enum(t);
4332 	u32 i, nr_enums = btf_type_vlen(t);
4333 	void *safe_data;
4334 	int v;
4335 
4336 	safe_data = btf_show_start_type(show, t, type_id, data);
4337 	if (!safe_data)
4338 		return;
4339 
4340 	v = *(int *)safe_data;
4341 
4342 	for (i = 0; i < nr_enums; i++) {
4343 		if (v != enums[i].val)
4344 			continue;
4345 
4346 		btf_show_type_value(show, "%s",
4347 				    __btf_name_by_offset(btf,
4348 							 enums[i].name_off));
4349 
4350 		btf_show_end_type(show);
4351 		return;
4352 	}
4353 
4354 	if (btf_type_kflag(t))
4355 		btf_show_type_value(show, "%d", v);
4356 	else
4357 		btf_show_type_value(show, "%u", v);
4358 	btf_show_end_type(show);
4359 }
4360 
4361 static struct btf_kind_operations enum_ops = {
4362 	.check_meta = btf_enum_check_meta,
4363 	.resolve = btf_df_resolve,
4364 	.check_member = btf_enum_check_member,
4365 	.check_kflag_member = btf_enum_check_kflag_member,
4366 	.log_details = btf_enum_log,
4367 	.show = btf_enum_show,
4368 };
4369 
4370 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4371 				 const struct btf_type *t,
4372 				 u32 meta_left)
4373 {
4374 	const struct btf_enum64 *enums = btf_type_enum64(t);
4375 	struct btf *btf = env->btf;
4376 	const char *fmt_str;
4377 	u16 i, nr_enums;
4378 	u32 meta_needed;
4379 
4380 	nr_enums = btf_type_vlen(t);
4381 	meta_needed = nr_enums * sizeof(*enums);
4382 
4383 	if (meta_left < meta_needed) {
4384 		btf_verifier_log_basic(env, t,
4385 				       "meta_left:%u meta_needed:%u",
4386 				       meta_left, meta_needed);
4387 		return -EINVAL;
4388 	}
4389 
4390 	if (t->size > 8 || !is_power_of_2(t->size)) {
4391 		btf_verifier_log_type(env, t, "Unexpected size");
4392 		return -EINVAL;
4393 	}
4394 
4395 	/* enum type either no name or a valid one */
4396 	if (t->name_off &&
4397 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4398 		btf_verifier_log_type(env, t, "Invalid name");
4399 		return -EINVAL;
4400 	}
4401 
4402 	btf_verifier_log_type(env, t, NULL);
4403 
4404 	for (i = 0; i < nr_enums; i++) {
4405 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4406 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4407 					 enums[i].name_off);
4408 			return -EINVAL;
4409 		}
4410 
4411 		/* enum member must have a valid name */
4412 		if (!enums[i].name_off ||
4413 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4414 			btf_verifier_log_type(env, t, "Invalid name");
4415 			return -EINVAL;
4416 		}
4417 
4418 		if (env->log.level == BPF_LOG_KERNEL)
4419 			continue;
4420 
4421 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4422 		btf_verifier_log(env, fmt_str,
4423 				 __btf_name_by_offset(btf, enums[i].name_off),
4424 				 btf_enum64_value(enums + i));
4425 	}
4426 
4427 	return meta_needed;
4428 }
4429 
4430 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4431 			    u32 type_id, void *data, u8 bits_offset,
4432 			    struct btf_show *show)
4433 {
4434 	const struct btf_enum64 *enums = btf_type_enum64(t);
4435 	u32 i, nr_enums = btf_type_vlen(t);
4436 	void *safe_data;
4437 	s64 v;
4438 
4439 	safe_data = btf_show_start_type(show, t, type_id, data);
4440 	if (!safe_data)
4441 		return;
4442 
4443 	v = *(u64 *)safe_data;
4444 
4445 	for (i = 0; i < nr_enums; i++) {
4446 		if (v != btf_enum64_value(enums + i))
4447 			continue;
4448 
4449 		btf_show_type_value(show, "%s",
4450 				    __btf_name_by_offset(btf,
4451 							 enums[i].name_off));
4452 
4453 		btf_show_end_type(show);
4454 		return;
4455 	}
4456 
4457 	if (btf_type_kflag(t))
4458 		btf_show_type_value(show, "%lld", v);
4459 	else
4460 		btf_show_type_value(show, "%llu", v);
4461 	btf_show_end_type(show);
4462 }
4463 
4464 static struct btf_kind_operations enum64_ops = {
4465 	.check_meta = btf_enum64_check_meta,
4466 	.resolve = btf_df_resolve,
4467 	.check_member = btf_enum_check_member,
4468 	.check_kflag_member = btf_enum_check_kflag_member,
4469 	.log_details = btf_enum_log,
4470 	.show = btf_enum64_show,
4471 };
4472 
4473 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4474 				     const struct btf_type *t,
4475 				     u32 meta_left)
4476 {
4477 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4478 
4479 	if (meta_left < meta_needed) {
4480 		btf_verifier_log_basic(env, t,
4481 				       "meta_left:%u meta_needed:%u",
4482 				       meta_left, meta_needed);
4483 		return -EINVAL;
4484 	}
4485 
4486 	if (t->name_off) {
4487 		btf_verifier_log_type(env, t, "Invalid name");
4488 		return -EINVAL;
4489 	}
4490 
4491 	if (btf_type_kflag(t)) {
4492 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4493 		return -EINVAL;
4494 	}
4495 
4496 	btf_verifier_log_type(env, t, NULL);
4497 
4498 	return meta_needed;
4499 }
4500 
4501 static void btf_func_proto_log(struct btf_verifier_env *env,
4502 			       const struct btf_type *t)
4503 {
4504 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4505 	u16 nr_args = btf_type_vlen(t), i;
4506 
4507 	btf_verifier_log(env, "return=%u args=(", t->type);
4508 	if (!nr_args) {
4509 		btf_verifier_log(env, "void");
4510 		goto done;
4511 	}
4512 
4513 	if (nr_args == 1 && !args[0].type) {
4514 		/* Only one vararg */
4515 		btf_verifier_log(env, "vararg");
4516 		goto done;
4517 	}
4518 
4519 	btf_verifier_log(env, "%u %s", args[0].type,
4520 			 __btf_name_by_offset(env->btf,
4521 					      args[0].name_off));
4522 	for (i = 1; i < nr_args - 1; i++)
4523 		btf_verifier_log(env, ", %u %s", args[i].type,
4524 				 __btf_name_by_offset(env->btf,
4525 						      args[i].name_off));
4526 
4527 	if (nr_args > 1) {
4528 		const struct btf_param *last_arg = &args[nr_args - 1];
4529 
4530 		if (last_arg->type)
4531 			btf_verifier_log(env, ", %u %s", last_arg->type,
4532 					 __btf_name_by_offset(env->btf,
4533 							      last_arg->name_off));
4534 		else
4535 			btf_verifier_log(env, ", vararg");
4536 	}
4537 
4538 done:
4539 	btf_verifier_log(env, ")");
4540 }
4541 
4542 static struct btf_kind_operations func_proto_ops = {
4543 	.check_meta = btf_func_proto_check_meta,
4544 	.resolve = btf_df_resolve,
4545 	/*
4546 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4547 	 * a struct's member.
4548 	 *
4549 	 * It should be a function pointer instead.
4550 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4551 	 *
4552 	 * Hence, there is no btf_func_check_member().
4553 	 */
4554 	.check_member = btf_df_check_member,
4555 	.check_kflag_member = btf_df_check_kflag_member,
4556 	.log_details = btf_func_proto_log,
4557 	.show = btf_df_show,
4558 };
4559 
4560 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4561 			       const struct btf_type *t,
4562 			       u32 meta_left)
4563 {
4564 	if (!t->name_off ||
4565 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4566 		btf_verifier_log_type(env, t, "Invalid name");
4567 		return -EINVAL;
4568 	}
4569 
4570 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4571 		btf_verifier_log_type(env, t, "Invalid func linkage");
4572 		return -EINVAL;
4573 	}
4574 
4575 	if (btf_type_kflag(t)) {
4576 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4577 		return -EINVAL;
4578 	}
4579 
4580 	btf_verifier_log_type(env, t, NULL);
4581 
4582 	return 0;
4583 }
4584 
4585 static int btf_func_resolve(struct btf_verifier_env *env,
4586 			    const struct resolve_vertex *v)
4587 {
4588 	const struct btf_type *t = v->t;
4589 	u32 next_type_id = t->type;
4590 	int err;
4591 
4592 	err = btf_func_check(env, t);
4593 	if (err)
4594 		return err;
4595 
4596 	env_stack_pop_resolved(env, next_type_id, 0);
4597 	return 0;
4598 }
4599 
4600 static struct btf_kind_operations func_ops = {
4601 	.check_meta = btf_func_check_meta,
4602 	.resolve = btf_func_resolve,
4603 	.check_member = btf_df_check_member,
4604 	.check_kflag_member = btf_df_check_kflag_member,
4605 	.log_details = btf_ref_type_log,
4606 	.show = btf_df_show,
4607 };
4608 
4609 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4610 			      const struct btf_type *t,
4611 			      u32 meta_left)
4612 {
4613 	const struct btf_var *var;
4614 	u32 meta_needed = sizeof(*var);
4615 
4616 	if (meta_left < meta_needed) {
4617 		btf_verifier_log_basic(env, t,
4618 				       "meta_left:%u meta_needed:%u",
4619 				       meta_left, meta_needed);
4620 		return -EINVAL;
4621 	}
4622 
4623 	if (btf_type_vlen(t)) {
4624 		btf_verifier_log_type(env, t, "vlen != 0");
4625 		return -EINVAL;
4626 	}
4627 
4628 	if (btf_type_kflag(t)) {
4629 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4630 		return -EINVAL;
4631 	}
4632 
4633 	if (!t->name_off ||
4634 	    !__btf_name_valid(env->btf, t->name_off)) {
4635 		btf_verifier_log_type(env, t, "Invalid name");
4636 		return -EINVAL;
4637 	}
4638 
4639 	/* A var cannot be in type void */
4640 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4641 		btf_verifier_log_type(env, t, "Invalid type_id");
4642 		return -EINVAL;
4643 	}
4644 
4645 	var = btf_type_var(t);
4646 	if (var->linkage != BTF_VAR_STATIC &&
4647 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4648 		btf_verifier_log_type(env, t, "Linkage not supported");
4649 		return -EINVAL;
4650 	}
4651 
4652 	btf_verifier_log_type(env, t, NULL);
4653 
4654 	return meta_needed;
4655 }
4656 
4657 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4658 {
4659 	const struct btf_var *var = btf_type_var(t);
4660 
4661 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4662 }
4663 
4664 static const struct btf_kind_operations var_ops = {
4665 	.check_meta		= btf_var_check_meta,
4666 	.resolve		= btf_var_resolve,
4667 	.check_member		= btf_df_check_member,
4668 	.check_kflag_member	= btf_df_check_kflag_member,
4669 	.log_details		= btf_var_log,
4670 	.show			= btf_var_show,
4671 };
4672 
4673 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4674 				  const struct btf_type *t,
4675 				  u32 meta_left)
4676 {
4677 	const struct btf_var_secinfo *vsi;
4678 	u64 last_vsi_end_off = 0, sum = 0;
4679 	u32 i, meta_needed;
4680 
4681 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4682 	if (meta_left < meta_needed) {
4683 		btf_verifier_log_basic(env, t,
4684 				       "meta_left:%u meta_needed:%u",
4685 				       meta_left, meta_needed);
4686 		return -EINVAL;
4687 	}
4688 
4689 	if (!t->size) {
4690 		btf_verifier_log_type(env, t, "size == 0");
4691 		return -EINVAL;
4692 	}
4693 
4694 	if (btf_type_kflag(t)) {
4695 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4696 		return -EINVAL;
4697 	}
4698 
4699 	if (!t->name_off ||
4700 	    !btf_name_valid_section(env->btf, t->name_off)) {
4701 		btf_verifier_log_type(env, t, "Invalid name");
4702 		return -EINVAL;
4703 	}
4704 
4705 	btf_verifier_log_type(env, t, NULL);
4706 
4707 	for_each_vsi(i, t, vsi) {
4708 		/* A var cannot be in type void */
4709 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4710 			btf_verifier_log_vsi(env, t, vsi,
4711 					     "Invalid type_id");
4712 			return -EINVAL;
4713 		}
4714 
4715 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4716 			btf_verifier_log_vsi(env, t, vsi,
4717 					     "Invalid offset");
4718 			return -EINVAL;
4719 		}
4720 
4721 		if (!vsi->size || vsi->size > t->size) {
4722 			btf_verifier_log_vsi(env, t, vsi,
4723 					     "Invalid size");
4724 			return -EINVAL;
4725 		}
4726 
4727 		last_vsi_end_off = vsi->offset + vsi->size;
4728 		if (last_vsi_end_off > t->size) {
4729 			btf_verifier_log_vsi(env, t, vsi,
4730 					     "Invalid offset+size");
4731 			return -EINVAL;
4732 		}
4733 
4734 		btf_verifier_log_vsi(env, t, vsi, NULL);
4735 		sum += vsi->size;
4736 	}
4737 
4738 	if (t->size < sum) {
4739 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4740 		return -EINVAL;
4741 	}
4742 
4743 	return meta_needed;
4744 }
4745 
4746 static int btf_datasec_resolve(struct btf_verifier_env *env,
4747 			       const struct resolve_vertex *v)
4748 {
4749 	const struct btf_var_secinfo *vsi;
4750 	struct btf *btf = env->btf;
4751 	u16 i;
4752 
4753 	env->resolve_mode = RESOLVE_TBD;
4754 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4755 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4756 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4757 								 var_type_id);
4758 		if (!var_type || !btf_type_is_var(var_type)) {
4759 			btf_verifier_log_vsi(env, v->t, vsi,
4760 					     "Not a VAR kind member");
4761 			return -EINVAL;
4762 		}
4763 
4764 		if (!env_type_is_resolve_sink(env, var_type) &&
4765 		    !env_type_is_resolved(env, var_type_id)) {
4766 			env_stack_set_next_member(env, i + 1);
4767 			return env_stack_push(env, var_type, var_type_id);
4768 		}
4769 
4770 		type_id = var_type->type;
4771 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4772 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4773 			return -EINVAL;
4774 		}
4775 
4776 		if (vsi->size < type_size) {
4777 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4778 			return -EINVAL;
4779 		}
4780 	}
4781 
4782 	env_stack_pop_resolved(env, 0, 0);
4783 	return 0;
4784 }
4785 
4786 static void btf_datasec_log(struct btf_verifier_env *env,
4787 			    const struct btf_type *t)
4788 {
4789 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4790 }
4791 
4792 static void btf_datasec_show(const struct btf *btf,
4793 			     const struct btf_type *t, u32 type_id,
4794 			     void *data, u8 bits_offset,
4795 			     struct btf_show *show)
4796 {
4797 	const struct btf_var_secinfo *vsi;
4798 	const struct btf_type *var;
4799 	u32 i;
4800 
4801 	if (!btf_show_start_type(show, t, type_id, data))
4802 		return;
4803 
4804 	btf_show_type_value(show, "section (\"%s\") = {",
4805 			    __btf_name_by_offset(btf, t->name_off));
4806 	for_each_vsi(i, t, vsi) {
4807 		var = btf_type_by_id(btf, vsi->type);
4808 		if (i)
4809 			btf_show(show, ",");
4810 		btf_type_ops(var)->show(btf, var, vsi->type,
4811 					data + vsi->offset, bits_offset, show);
4812 	}
4813 	btf_show_end_type(show);
4814 }
4815 
4816 static const struct btf_kind_operations datasec_ops = {
4817 	.check_meta		= btf_datasec_check_meta,
4818 	.resolve		= btf_datasec_resolve,
4819 	.check_member		= btf_df_check_member,
4820 	.check_kflag_member	= btf_df_check_kflag_member,
4821 	.log_details		= btf_datasec_log,
4822 	.show			= btf_datasec_show,
4823 };
4824 
4825 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4826 				const struct btf_type *t,
4827 				u32 meta_left)
4828 {
4829 	if (btf_type_vlen(t)) {
4830 		btf_verifier_log_type(env, t, "vlen != 0");
4831 		return -EINVAL;
4832 	}
4833 
4834 	if (btf_type_kflag(t)) {
4835 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4836 		return -EINVAL;
4837 	}
4838 
4839 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4840 	    t->size != 16) {
4841 		btf_verifier_log_type(env, t, "Invalid type_size");
4842 		return -EINVAL;
4843 	}
4844 
4845 	btf_verifier_log_type(env, t, NULL);
4846 
4847 	return 0;
4848 }
4849 
4850 static int btf_float_check_member(struct btf_verifier_env *env,
4851 				  const struct btf_type *struct_type,
4852 				  const struct btf_member *member,
4853 				  const struct btf_type *member_type)
4854 {
4855 	u64 start_offset_bytes;
4856 	u64 end_offset_bytes;
4857 	u64 misalign_bits;
4858 	u64 align_bytes;
4859 	u64 align_bits;
4860 
4861 	/* Different architectures have different alignment requirements, so
4862 	 * here we check only for the reasonable minimum. This way we ensure
4863 	 * that types after CO-RE can pass the kernel BTF verifier.
4864 	 */
4865 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4866 	align_bits = align_bytes * BITS_PER_BYTE;
4867 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4868 	if (misalign_bits) {
4869 		btf_verifier_log_member(env, struct_type, member,
4870 					"Member is not properly aligned");
4871 		return -EINVAL;
4872 	}
4873 
4874 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4875 	end_offset_bytes = start_offset_bytes + member_type->size;
4876 	if (end_offset_bytes > struct_type->size) {
4877 		btf_verifier_log_member(env, struct_type, member,
4878 					"Member exceeds struct_size");
4879 		return -EINVAL;
4880 	}
4881 
4882 	return 0;
4883 }
4884 
4885 static void btf_float_log(struct btf_verifier_env *env,
4886 			  const struct btf_type *t)
4887 {
4888 	btf_verifier_log(env, "size=%u", t->size);
4889 }
4890 
4891 static const struct btf_kind_operations float_ops = {
4892 	.check_meta = btf_float_check_meta,
4893 	.resolve = btf_df_resolve,
4894 	.check_member = btf_float_check_member,
4895 	.check_kflag_member = btf_generic_check_kflag_member,
4896 	.log_details = btf_float_log,
4897 	.show = btf_df_show,
4898 };
4899 
4900 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4901 			      const struct btf_type *t,
4902 			      u32 meta_left)
4903 {
4904 	const struct btf_decl_tag *tag;
4905 	u32 meta_needed = sizeof(*tag);
4906 	s32 component_idx;
4907 	const char *value;
4908 
4909 	if (meta_left < meta_needed) {
4910 		btf_verifier_log_basic(env, t,
4911 				       "meta_left:%u meta_needed:%u",
4912 				       meta_left, meta_needed);
4913 		return -EINVAL;
4914 	}
4915 
4916 	value = btf_name_by_offset(env->btf, t->name_off);
4917 	if (!value || !value[0]) {
4918 		btf_verifier_log_type(env, t, "Invalid value");
4919 		return -EINVAL;
4920 	}
4921 
4922 	if (btf_type_vlen(t)) {
4923 		btf_verifier_log_type(env, t, "vlen != 0");
4924 		return -EINVAL;
4925 	}
4926 
4927 	if (btf_type_kflag(t)) {
4928 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4929 		return -EINVAL;
4930 	}
4931 
4932 	component_idx = btf_type_decl_tag(t)->component_idx;
4933 	if (component_idx < -1) {
4934 		btf_verifier_log_type(env, t, "Invalid component_idx");
4935 		return -EINVAL;
4936 	}
4937 
4938 	btf_verifier_log_type(env, t, NULL);
4939 
4940 	return meta_needed;
4941 }
4942 
4943 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4944 			   const struct resolve_vertex *v)
4945 {
4946 	const struct btf_type *next_type;
4947 	const struct btf_type *t = v->t;
4948 	u32 next_type_id = t->type;
4949 	struct btf *btf = env->btf;
4950 	s32 component_idx;
4951 	u32 vlen;
4952 
4953 	next_type = btf_type_by_id(btf, next_type_id);
4954 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4955 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4956 		return -EINVAL;
4957 	}
4958 
4959 	if (!env_type_is_resolve_sink(env, next_type) &&
4960 	    !env_type_is_resolved(env, next_type_id))
4961 		return env_stack_push(env, next_type, next_type_id);
4962 
4963 	component_idx = btf_type_decl_tag(t)->component_idx;
4964 	if (component_idx != -1) {
4965 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4966 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4967 			return -EINVAL;
4968 		}
4969 
4970 		if (btf_type_is_struct(next_type)) {
4971 			vlen = btf_type_vlen(next_type);
4972 		} else {
4973 			/* next_type should be a function */
4974 			next_type = btf_type_by_id(btf, next_type->type);
4975 			vlen = btf_type_vlen(next_type);
4976 		}
4977 
4978 		if ((u32)component_idx >= vlen) {
4979 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4980 			return -EINVAL;
4981 		}
4982 	}
4983 
4984 	env_stack_pop_resolved(env, next_type_id, 0);
4985 
4986 	return 0;
4987 }
4988 
4989 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4990 {
4991 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4992 			 btf_type_decl_tag(t)->component_idx);
4993 }
4994 
4995 static const struct btf_kind_operations decl_tag_ops = {
4996 	.check_meta = btf_decl_tag_check_meta,
4997 	.resolve = btf_decl_tag_resolve,
4998 	.check_member = btf_df_check_member,
4999 	.check_kflag_member = btf_df_check_kflag_member,
5000 	.log_details = btf_decl_tag_log,
5001 	.show = btf_df_show,
5002 };
5003 
5004 static int btf_func_proto_check(struct btf_verifier_env *env,
5005 				const struct btf_type *t)
5006 {
5007 	const struct btf_type *ret_type;
5008 	const struct btf_param *args;
5009 	const struct btf *btf;
5010 	u16 nr_args, i;
5011 	int err;
5012 
5013 	btf = env->btf;
5014 	args = (const struct btf_param *)(t + 1);
5015 	nr_args = btf_type_vlen(t);
5016 
5017 	/* Check func return type which could be "void" (t->type == 0) */
5018 	if (t->type) {
5019 		u32 ret_type_id = t->type;
5020 
5021 		ret_type = btf_type_by_id(btf, ret_type_id);
5022 		if (!ret_type) {
5023 			btf_verifier_log_type(env, t, "Invalid return type");
5024 			return -EINVAL;
5025 		}
5026 
5027 		if (btf_type_is_resolve_source_only(ret_type)) {
5028 			btf_verifier_log_type(env, t, "Invalid return type");
5029 			return -EINVAL;
5030 		}
5031 
5032 		if (btf_type_needs_resolve(ret_type) &&
5033 		    !env_type_is_resolved(env, ret_type_id)) {
5034 			err = btf_resolve(env, ret_type, ret_type_id);
5035 			if (err)
5036 				return err;
5037 		}
5038 
5039 		/* Ensure the return type is a type that has a size */
5040 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5041 			btf_verifier_log_type(env, t, "Invalid return type");
5042 			return -EINVAL;
5043 		}
5044 	}
5045 
5046 	if (!nr_args)
5047 		return 0;
5048 
5049 	/* Last func arg type_id could be 0 if it is a vararg */
5050 	if (!args[nr_args - 1].type) {
5051 		if (args[nr_args - 1].name_off) {
5052 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5053 					      nr_args);
5054 			return -EINVAL;
5055 		}
5056 		nr_args--;
5057 	}
5058 
5059 	for (i = 0; i < nr_args; i++) {
5060 		const struct btf_type *arg_type;
5061 		u32 arg_type_id;
5062 
5063 		arg_type_id = args[i].type;
5064 		arg_type = btf_type_by_id(btf, arg_type_id);
5065 		if (!arg_type) {
5066 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5067 			return -EINVAL;
5068 		}
5069 
5070 		if (btf_type_is_resolve_source_only(arg_type)) {
5071 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5072 			return -EINVAL;
5073 		}
5074 
5075 		if (args[i].name_off &&
5076 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5077 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5078 			btf_verifier_log_type(env, t,
5079 					      "Invalid arg#%u", i + 1);
5080 			return -EINVAL;
5081 		}
5082 
5083 		if (btf_type_needs_resolve(arg_type) &&
5084 		    !env_type_is_resolved(env, arg_type_id)) {
5085 			err = btf_resolve(env, arg_type, arg_type_id);
5086 			if (err)
5087 				return err;
5088 		}
5089 
5090 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5091 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5092 			return -EINVAL;
5093 		}
5094 	}
5095 
5096 	return 0;
5097 }
5098 
5099 static int btf_func_check(struct btf_verifier_env *env,
5100 			  const struct btf_type *t)
5101 {
5102 	const struct btf_type *proto_type;
5103 	const struct btf_param *args;
5104 	const struct btf *btf;
5105 	u16 nr_args, i;
5106 
5107 	btf = env->btf;
5108 	proto_type = btf_type_by_id(btf, t->type);
5109 
5110 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5111 		btf_verifier_log_type(env, t, "Invalid type_id");
5112 		return -EINVAL;
5113 	}
5114 
5115 	args = (const struct btf_param *)(proto_type + 1);
5116 	nr_args = btf_type_vlen(proto_type);
5117 	for (i = 0; i < nr_args; i++) {
5118 		if (!args[i].name_off && args[i].type) {
5119 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5120 			return -EINVAL;
5121 		}
5122 	}
5123 
5124 	return 0;
5125 }
5126 
5127 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5128 	[BTF_KIND_INT] = &int_ops,
5129 	[BTF_KIND_PTR] = &ptr_ops,
5130 	[BTF_KIND_ARRAY] = &array_ops,
5131 	[BTF_KIND_STRUCT] = &struct_ops,
5132 	[BTF_KIND_UNION] = &struct_ops,
5133 	[BTF_KIND_ENUM] = &enum_ops,
5134 	[BTF_KIND_FWD] = &fwd_ops,
5135 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5136 	[BTF_KIND_VOLATILE] = &modifier_ops,
5137 	[BTF_KIND_CONST] = &modifier_ops,
5138 	[BTF_KIND_RESTRICT] = &modifier_ops,
5139 	[BTF_KIND_FUNC] = &func_ops,
5140 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5141 	[BTF_KIND_VAR] = &var_ops,
5142 	[BTF_KIND_DATASEC] = &datasec_ops,
5143 	[BTF_KIND_FLOAT] = &float_ops,
5144 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5145 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5146 	[BTF_KIND_ENUM64] = &enum64_ops,
5147 };
5148 
5149 static s32 btf_check_meta(struct btf_verifier_env *env,
5150 			  const struct btf_type *t,
5151 			  u32 meta_left)
5152 {
5153 	u32 saved_meta_left = meta_left;
5154 	s32 var_meta_size;
5155 
5156 	if (meta_left < sizeof(*t)) {
5157 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5158 				 env->log_type_id, meta_left, sizeof(*t));
5159 		return -EINVAL;
5160 	}
5161 	meta_left -= sizeof(*t);
5162 
5163 	if (t->info & ~BTF_INFO_MASK) {
5164 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5165 				 env->log_type_id, t->info);
5166 		return -EINVAL;
5167 	}
5168 
5169 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5170 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5171 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5172 				 env->log_type_id, BTF_INFO_KIND(t->info));
5173 		return -EINVAL;
5174 	}
5175 
5176 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5177 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5178 				 env->log_type_id, t->name_off);
5179 		return -EINVAL;
5180 	}
5181 
5182 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5183 	if (var_meta_size < 0)
5184 		return var_meta_size;
5185 
5186 	meta_left -= var_meta_size;
5187 
5188 	return saved_meta_left - meta_left;
5189 }
5190 
5191 static int btf_check_all_metas(struct btf_verifier_env *env)
5192 {
5193 	struct btf *btf = env->btf;
5194 	struct btf_header *hdr;
5195 	void *cur, *end;
5196 
5197 	hdr = &btf->hdr;
5198 	cur = btf->nohdr_data + hdr->type_off;
5199 	end = cur + hdr->type_len;
5200 
5201 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5202 	while (cur < end) {
5203 		struct btf_type *t = cur;
5204 		s32 meta_size;
5205 
5206 		meta_size = btf_check_meta(env, t, end - cur);
5207 		if (meta_size < 0)
5208 			return meta_size;
5209 
5210 		btf_add_type(env, t);
5211 		cur += meta_size;
5212 		env->log_type_id++;
5213 	}
5214 
5215 	return 0;
5216 }
5217 
5218 static bool btf_resolve_valid(struct btf_verifier_env *env,
5219 			      const struct btf_type *t,
5220 			      u32 type_id)
5221 {
5222 	struct btf *btf = env->btf;
5223 
5224 	if (!env_type_is_resolved(env, type_id))
5225 		return false;
5226 
5227 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5228 		return !btf_resolved_type_id(btf, type_id) &&
5229 		       !btf_resolved_type_size(btf, type_id);
5230 
5231 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5232 		return btf_resolved_type_id(btf, type_id) &&
5233 		       !btf_resolved_type_size(btf, type_id);
5234 
5235 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5236 	    btf_type_is_var(t)) {
5237 		t = btf_type_id_resolve(btf, &type_id);
5238 		return t &&
5239 		       !btf_type_is_modifier(t) &&
5240 		       !btf_type_is_var(t) &&
5241 		       !btf_type_is_datasec(t);
5242 	}
5243 
5244 	if (btf_type_is_array(t)) {
5245 		const struct btf_array *array = btf_type_array(t);
5246 		const struct btf_type *elem_type;
5247 		u32 elem_type_id = array->type;
5248 		u32 elem_size;
5249 
5250 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5251 		return elem_type && !btf_type_is_modifier(elem_type) &&
5252 			(array->nelems * elem_size ==
5253 			 btf_resolved_type_size(btf, type_id));
5254 	}
5255 
5256 	return false;
5257 }
5258 
5259 static int btf_resolve(struct btf_verifier_env *env,
5260 		       const struct btf_type *t, u32 type_id)
5261 {
5262 	u32 save_log_type_id = env->log_type_id;
5263 	const struct resolve_vertex *v;
5264 	int err = 0;
5265 
5266 	env->resolve_mode = RESOLVE_TBD;
5267 	env_stack_push(env, t, type_id);
5268 	while (!err && (v = env_stack_peak(env))) {
5269 		env->log_type_id = v->type_id;
5270 		err = btf_type_ops(v->t)->resolve(env, v);
5271 	}
5272 
5273 	env->log_type_id = type_id;
5274 	if (err == -E2BIG) {
5275 		btf_verifier_log_type(env, t,
5276 				      "Exceeded max resolving depth:%u",
5277 				      MAX_RESOLVE_DEPTH);
5278 	} else if (err == -EEXIST) {
5279 		btf_verifier_log_type(env, t, "Loop detected");
5280 	}
5281 
5282 	/* Final sanity check */
5283 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5284 		btf_verifier_log_type(env, t, "Invalid resolve state");
5285 		err = -EINVAL;
5286 	}
5287 
5288 	env->log_type_id = save_log_type_id;
5289 	return err;
5290 }
5291 
5292 static int btf_check_all_types(struct btf_verifier_env *env)
5293 {
5294 	struct btf *btf = env->btf;
5295 	const struct btf_type *t;
5296 	u32 type_id, i;
5297 	int err;
5298 
5299 	err = env_resolve_init(env);
5300 	if (err)
5301 		return err;
5302 
5303 	env->phase++;
5304 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5305 		type_id = btf->start_id + i;
5306 		t = btf_type_by_id(btf, type_id);
5307 
5308 		env->log_type_id = type_id;
5309 		if (btf_type_needs_resolve(t) &&
5310 		    !env_type_is_resolved(env, type_id)) {
5311 			err = btf_resolve(env, t, type_id);
5312 			if (err)
5313 				return err;
5314 		}
5315 
5316 		if (btf_type_is_func_proto(t)) {
5317 			err = btf_func_proto_check(env, t);
5318 			if (err)
5319 				return err;
5320 		}
5321 	}
5322 
5323 	return 0;
5324 }
5325 
5326 static int btf_parse_type_sec(struct btf_verifier_env *env)
5327 {
5328 	const struct btf_header *hdr = &env->btf->hdr;
5329 	int err;
5330 
5331 	/* Type section must align to 4 bytes */
5332 	if (hdr->type_off & (sizeof(u32) - 1)) {
5333 		btf_verifier_log(env, "Unaligned type_off");
5334 		return -EINVAL;
5335 	}
5336 
5337 	if (!env->btf->base_btf && !hdr->type_len) {
5338 		btf_verifier_log(env, "No type found");
5339 		return -EINVAL;
5340 	}
5341 
5342 	err = btf_check_all_metas(env);
5343 	if (err)
5344 		return err;
5345 
5346 	return btf_check_all_types(env);
5347 }
5348 
5349 static int btf_parse_str_sec(struct btf_verifier_env *env)
5350 {
5351 	const struct btf_header *hdr;
5352 	struct btf *btf = env->btf;
5353 	const char *start, *end;
5354 
5355 	hdr = &btf->hdr;
5356 	start = btf->nohdr_data + hdr->str_off;
5357 	end = start + hdr->str_len;
5358 
5359 	if (end != btf->data + btf->data_size) {
5360 		btf_verifier_log(env, "String section is not at the end");
5361 		return -EINVAL;
5362 	}
5363 
5364 	btf->strings = start;
5365 
5366 	if (btf->base_btf && !hdr->str_len)
5367 		return 0;
5368 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5369 		btf_verifier_log(env, "Invalid string section");
5370 		return -EINVAL;
5371 	}
5372 	if (!btf->base_btf && start[0]) {
5373 		btf_verifier_log(env, "Invalid string section");
5374 		return -EINVAL;
5375 	}
5376 
5377 	return 0;
5378 }
5379 
5380 static const size_t btf_sec_info_offset[] = {
5381 	offsetof(struct btf_header, type_off),
5382 	offsetof(struct btf_header, str_off),
5383 };
5384 
5385 static int btf_sec_info_cmp(const void *a, const void *b)
5386 {
5387 	const struct btf_sec_info *x = a;
5388 	const struct btf_sec_info *y = b;
5389 
5390 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5391 }
5392 
5393 static int btf_check_sec_info(struct btf_verifier_env *env,
5394 			      u32 btf_data_size)
5395 {
5396 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5397 	u32 total, expected_total, i;
5398 	const struct btf_header *hdr;
5399 	const struct btf *btf;
5400 
5401 	btf = env->btf;
5402 	hdr = &btf->hdr;
5403 
5404 	/* Populate the secs from hdr */
5405 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5406 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5407 						   btf_sec_info_offset[i]);
5408 
5409 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5410 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5411 
5412 	/* Check for gaps and overlap among sections */
5413 	total = 0;
5414 	expected_total = btf_data_size - hdr->hdr_len;
5415 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5416 		if (expected_total < secs[i].off) {
5417 			btf_verifier_log(env, "Invalid section offset");
5418 			return -EINVAL;
5419 		}
5420 		if (total < secs[i].off) {
5421 			/* gap */
5422 			btf_verifier_log(env, "Unsupported section found");
5423 			return -EINVAL;
5424 		}
5425 		if (total > secs[i].off) {
5426 			btf_verifier_log(env, "Section overlap found");
5427 			return -EINVAL;
5428 		}
5429 		if (expected_total - total < secs[i].len) {
5430 			btf_verifier_log(env,
5431 					 "Total section length too long");
5432 			return -EINVAL;
5433 		}
5434 		total += secs[i].len;
5435 	}
5436 
5437 	/* There is data other than hdr and known sections */
5438 	if (expected_total != total) {
5439 		btf_verifier_log(env, "Unsupported section found");
5440 		return -EINVAL;
5441 	}
5442 
5443 	return 0;
5444 }
5445 
5446 static int btf_parse_hdr(struct btf_verifier_env *env)
5447 {
5448 	u32 hdr_len, hdr_copy, btf_data_size;
5449 	const struct btf_header *hdr;
5450 	struct btf *btf;
5451 
5452 	btf = env->btf;
5453 	btf_data_size = btf->data_size;
5454 
5455 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5456 		btf_verifier_log(env, "hdr_len not found");
5457 		return -EINVAL;
5458 	}
5459 
5460 	hdr = btf->data;
5461 	hdr_len = hdr->hdr_len;
5462 	if (btf_data_size < hdr_len) {
5463 		btf_verifier_log(env, "btf_header not found");
5464 		return -EINVAL;
5465 	}
5466 
5467 	/* Ensure the unsupported header fields are zero */
5468 	if (hdr_len > sizeof(btf->hdr)) {
5469 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5470 		u8 *end = btf->data + hdr_len;
5471 
5472 		for (; expected_zero < end; expected_zero++) {
5473 			if (*expected_zero) {
5474 				btf_verifier_log(env, "Unsupported btf_header");
5475 				return -E2BIG;
5476 			}
5477 		}
5478 	}
5479 
5480 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5481 	memcpy(&btf->hdr, btf->data, hdr_copy);
5482 
5483 	hdr = &btf->hdr;
5484 
5485 	btf_verifier_log_hdr(env, btf_data_size);
5486 
5487 	if (hdr->magic != BTF_MAGIC) {
5488 		btf_verifier_log(env, "Invalid magic");
5489 		return -EINVAL;
5490 	}
5491 
5492 	if (hdr->version != BTF_VERSION) {
5493 		btf_verifier_log(env, "Unsupported version");
5494 		return -ENOTSUPP;
5495 	}
5496 
5497 	if (hdr->flags) {
5498 		btf_verifier_log(env, "Unsupported flags");
5499 		return -ENOTSUPP;
5500 	}
5501 
5502 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5503 		btf_verifier_log(env, "No data");
5504 		return -EINVAL;
5505 	}
5506 
5507 	return btf_check_sec_info(env, btf_data_size);
5508 }
5509 
5510 static const char *alloc_obj_fields[] = {
5511 	"bpf_spin_lock",
5512 	"bpf_list_head",
5513 	"bpf_list_node",
5514 	"bpf_rb_root",
5515 	"bpf_rb_node",
5516 	"bpf_refcount",
5517 };
5518 
5519 static struct btf_struct_metas *
5520 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5521 {
5522 	union {
5523 		struct btf_id_set set;
5524 		struct {
5525 			u32 _cnt;
5526 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5527 		} _arr;
5528 	} aof;
5529 	struct btf_struct_metas *tab = NULL;
5530 	int i, n, id, ret;
5531 
5532 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5533 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5534 
5535 	memset(&aof, 0, sizeof(aof));
5536 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5537 		/* Try to find whether this special type exists in user BTF, and
5538 		 * if so remember its ID so we can easily find it among members
5539 		 * of structs that we iterate in the next loop.
5540 		 */
5541 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5542 		if (id < 0)
5543 			continue;
5544 		aof.set.ids[aof.set.cnt++] = id;
5545 	}
5546 
5547 	if (!aof.set.cnt)
5548 		return NULL;
5549 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5550 
5551 	n = btf_nr_types(btf);
5552 	for (i = 1; i < n; i++) {
5553 		struct btf_struct_metas *new_tab;
5554 		const struct btf_member *member;
5555 		struct btf_struct_meta *type;
5556 		struct btf_record *record;
5557 		const struct btf_type *t;
5558 		int j, tab_cnt;
5559 
5560 		t = btf_type_by_id(btf, i);
5561 		if (!t) {
5562 			ret = -EINVAL;
5563 			goto free;
5564 		}
5565 		if (!__btf_type_is_struct(t))
5566 			continue;
5567 
5568 		cond_resched();
5569 
5570 		for_each_member(j, t, member) {
5571 			if (btf_id_set_contains(&aof.set, member->type))
5572 				goto parse;
5573 		}
5574 		continue;
5575 	parse:
5576 		tab_cnt = tab ? tab->cnt : 0;
5577 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5578 				   GFP_KERNEL | __GFP_NOWARN);
5579 		if (!new_tab) {
5580 			ret = -ENOMEM;
5581 			goto free;
5582 		}
5583 		if (!tab)
5584 			new_tab->cnt = 0;
5585 		tab = new_tab;
5586 
5587 		type = &tab->types[tab->cnt];
5588 		type->btf_id = i;
5589 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5590 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5591 		/* The record cannot be unset, treat it as an error if so */
5592 		if (IS_ERR_OR_NULL(record)) {
5593 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5594 			goto free;
5595 		}
5596 		type->record = record;
5597 		tab->cnt++;
5598 	}
5599 	return tab;
5600 free:
5601 	btf_struct_metas_free(tab);
5602 	return ERR_PTR(ret);
5603 }
5604 
5605 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5606 {
5607 	struct btf_struct_metas *tab;
5608 
5609 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5610 	tab = btf->struct_meta_tab;
5611 	if (!tab)
5612 		return NULL;
5613 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5614 }
5615 
5616 static int btf_check_type_tags(struct btf_verifier_env *env,
5617 			       struct btf *btf, int start_id)
5618 {
5619 	int i, n, good_id = start_id - 1;
5620 	bool in_tags;
5621 
5622 	n = btf_nr_types(btf);
5623 	for (i = start_id; i < n; i++) {
5624 		const struct btf_type *t;
5625 		int chain_limit = 32;
5626 		u32 cur_id = i;
5627 
5628 		t = btf_type_by_id(btf, i);
5629 		if (!t)
5630 			return -EINVAL;
5631 		if (!btf_type_is_modifier(t))
5632 			continue;
5633 
5634 		cond_resched();
5635 
5636 		in_tags = btf_type_is_type_tag(t);
5637 		while (btf_type_is_modifier(t)) {
5638 			if (!chain_limit--) {
5639 				btf_verifier_log(env, "Max chain length or cycle detected");
5640 				return -ELOOP;
5641 			}
5642 			if (btf_type_is_type_tag(t)) {
5643 				if (!in_tags) {
5644 					btf_verifier_log(env, "Type tags don't precede modifiers");
5645 					return -EINVAL;
5646 				}
5647 			} else if (in_tags) {
5648 				in_tags = false;
5649 			}
5650 			if (cur_id <= good_id)
5651 				break;
5652 			/* Move to next type */
5653 			cur_id = t->type;
5654 			t = btf_type_by_id(btf, cur_id);
5655 			if (!t)
5656 				return -EINVAL;
5657 		}
5658 		good_id = i;
5659 	}
5660 	return 0;
5661 }
5662 
5663 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5664 {
5665 	u32 log_true_size;
5666 	int err;
5667 
5668 	err = bpf_vlog_finalize(log, &log_true_size);
5669 
5670 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5671 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5672 				  &log_true_size, sizeof(log_true_size)))
5673 		err = -EFAULT;
5674 
5675 	return err;
5676 }
5677 
5678 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5679 {
5680 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5681 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5682 	struct btf_struct_metas *struct_meta_tab;
5683 	struct btf_verifier_env *env = NULL;
5684 	struct btf *btf = NULL;
5685 	u8 *data;
5686 	int err, ret;
5687 
5688 	if (attr->btf_size > BTF_MAX_SIZE)
5689 		return ERR_PTR(-E2BIG);
5690 
5691 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5692 	if (!env)
5693 		return ERR_PTR(-ENOMEM);
5694 
5695 	/* user could have requested verbose verifier output
5696 	 * and supplied buffer to store the verification trace
5697 	 */
5698 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5699 			    log_ubuf, attr->btf_log_size);
5700 	if (err)
5701 		goto errout_free;
5702 
5703 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5704 	if (!btf) {
5705 		err = -ENOMEM;
5706 		goto errout;
5707 	}
5708 	env->btf = btf;
5709 
5710 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5711 	if (!data) {
5712 		err = -ENOMEM;
5713 		goto errout;
5714 	}
5715 
5716 	btf->data = data;
5717 	btf->data_size = attr->btf_size;
5718 
5719 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5720 		err = -EFAULT;
5721 		goto errout;
5722 	}
5723 
5724 	err = btf_parse_hdr(env);
5725 	if (err)
5726 		goto errout;
5727 
5728 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5729 
5730 	err = btf_parse_str_sec(env);
5731 	if (err)
5732 		goto errout;
5733 
5734 	err = btf_parse_type_sec(env);
5735 	if (err)
5736 		goto errout;
5737 
5738 	err = btf_check_type_tags(env, btf, 1);
5739 	if (err)
5740 		goto errout;
5741 
5742 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5743 	if (IS_ERR(struct_meta_tab)) {
5744 		err = PTR_ERR(struct_meta_tab);
5745 		goto errout;
5746 	}
5747 	btf->struct_meta_tab = struct_meta_tab;
5748 
5749 	if (struct_meta_tab) {
5750 		int i;
5751 
5752 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5753 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5754 			if (err < 0)
5755 				goto errout_meta;
5756 		}
5757 	}
5758 
5759 	err = finalize_log(&env->log, uattr, uattr_size);
5760 	if (err)
5761 		goto errout_free;
5762 
5763 	btf_verifier_env_free(env);
5764 	refcount_set(&btf->refcnt, 1);
5765 	return btf;
5766 
5767 errout_meta:
5768 	btf_free_struct_meta_tab(btf);
5769 errout:
5770 	/* overwrite err with -ENOSPC or -EFAULT */
5771 	ret = finalize_log(&env->log, uattr, uattr_size);
5772 	if (ret)
5773 		err = ret;
5774 errout_free:
5775 	btf_verifier_env_free(env);
5776 	if (btf)
5777 		btf_free(btf);
5778 	return ERR_PTR(err);
5779 }
5780 
5781 extern char __start_BTF[];
5782 extern char __stop_BTF[];
5783 extern struct btf *btf_vmlinux;
5784 
5785 #define BPF_MAP_TYPE(_id, _ops)
5786 #define BPF_LINK_TYPE(_id, _name)
5787 static union {
5788 	struct bpf_ctx_convert {
5789 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5790 	prog_ctx_type _id##_prog; \
5791 	kern_ctx_type _id##_kern;
5792 #include <linux/bpf_types.h>
5793 #undef BPF_PROG_TYPE
5794 	} *__t;
5795 	/* 't' is written once under lock. Read many times. */
5796 	const struct btf_type *t;
5797 } bpf_ctx_convert;
5798 enum {
5799 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5800 	__ctx_convert##_id,
5801 #include <linux/bpf_types.h>
5802 #undef BPF_PROG_TYPE
5803 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5804 };
5805 static u8 bpf_ctx_convert_map[] = {
5806 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5807 	[_id] = __ctx_convert##_id,
5808 #include <linux/bpf_types.h>
5809 #undef BPF_PROG_TYPE
5810 	0, /* avoid empty array */
5811 };
5812 #undef BPF_MAP_TYPE
5813 #undef BPF_LINK_TYPE
5814 
5815 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5816 {
5817 	const struct btf_type *conv_struct;
5818 	const struct btf_member *ctx_type;
5819 
5820 	conv_struct = bpf_ctx_convert.t;
5821 	if (!conv_struct)
5822 		return NULL;
5823 	/* prog_type is valid bpf program type. No need for bounds check. */
5824 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5825 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5826 	 * Like 'struct __sk_buff'
5827 	 */
5828 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5829 }
5830 
5831 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5832 {
5833 	const struct btf_type *conv_struct;
5834 	const struct btf_member *ctx_type;
5835 
5836 	conv_struct = bpf_ctx_convert.t;
5837 	if (!conv_struct)
5838 		return -EFAULT;
5839 	/* prog_type is valid bpf program type. No need for bounds check. */
5840 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5841 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5842 	 * Like 'struct sk_buff'
5843 	 */
5844 	return ctx_type->type;
5845 }
5846 
5847 bool btf_is_projection_of(const char *pname, const char *tname)
5848 {
5849 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5850 		return true;
5851 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5852 		return true;
5853 	return false;
5854 }
5855 
5856 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5857 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5858 			  int arg)
5859 {
5860 	const struct btf_type *ctx_type;
5861 	const char *tname, *ctx_tname;
5862 
5863 	t = btf_type_by_id(btf, t->type);
5864 
5865 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5866 	 * check before we skip all the typedef below.
5867 	 */
5868 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5869 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5870 			t = btf_type_by_id(btf, t->type);
5871 
5872 		if (btf_type_is_typedef(t)) {
5873 			tname = btf_name_by_offset(btf, t->name_off);
5874 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5875 				return true;
5876 		}
5877 	}
5878 
5879 	while (btf_type_is_modifier(t))
5880 		t = btf_type_by_id(btf, t->type);
5881 	if (!btf_type_is_struct(t)) {
5882 		/* Only pointer to struct is supported for now.
5883 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5884 		 * is not supported yet.
5885 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5886 		 */
5887 		return false;
5888 	}
5889 	tname = btf_name_by_offset(btf, t->name_off);
5890 	if (!tname) {
5891 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5892 		return false;
5893 	}
5894 
5895 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5896 	if (!ctx_type) {
5897 		bpf_log(log, "btf_vmlinux is malformed\n");
5898 		/* should not happen */
5899 		return false;
5900 	}
5901 again:
5902 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5903 	if (!ctx_tname) {
5904 		/* should not happen */
5905 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5906 		return false;
5907 	}
5908 	/* program types without named context types work only with arg:ctx tag */
5909 	if (ctx_tname[0] == '\0')
5910 		return false;
5911 	/* only compare that prog's ctx type name is the same as
5912 	 * kernel expects. No need to compare field by field.
5913 	 * It's ok for bpf prog to do:
5914 	 * struct __sk_buff {};
5915 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5916 	 * { // no fields of skb are ever used }
5917 	 */
5918 	if (btf_is_projection_of(ctx_tname, tname))
5919 		return true;
5920 	if (strcmp(ctx_tname, tname)) {
5921 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5922 		 * underlying struct and check name again
5923 		 */
5924 		if (!btf_type_is_modifier(ctx_type))
5925 			return false;
5926 		while (btf_type_is_modifier(ctx_type))
5927 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5928 		goto again;
5929 	}
5930 	return true;
5931 }
5932 
5933 /* forward declarations for arch-specific underlying types of
5934  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5935  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5936  * works correctly with __builtin_types_compatible_p() on respective
5937  * architectures
5938  */
5939 struct user_regs_struct;
5940 struct user_pt_regs;
5941 
5942 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5943 				      const struct btf_type *t, int arg,
5944 				      enum bpf_prog_type prog_type,
5945 				      enum bpf_attach_type attach_type)
5946 {
5947 	const struct btf_type *ctx_type;
5948 	const char *tname, *ctx_tname;
5949 
5950 	if (!btf_is_ptr(t)) {
5951 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5952 		return -EINVAL;
5953 	}
5954 	t = btf_type_by_id(btf, t->type);
5955 
5956 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5957 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5958 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5959 			t = btf_type_by_id(btf, t->type);
5960 
5961 		if (btf_type_is_typedef(t)) {
5962 			tname = btf_name_by_offset(btf, t->name_off);
5963 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5964 				return 0;
5965 		}
5966 	}
5967 
5968 	/* all other program types don't use typedefs for context type */
5969 	while (btf_type_is_modifier(t))
5970 		t = btf_type_by_id(btf, t->type);
5971 
5972 	/* `void *ctx __arg_ctx` is always valid */
5973 	if (btf_type_is_void(t))
5974 		return 0;
5975 
5976 	tname = btf_name_by_offset(btf, t->name_off);
5977 	if (str_is_empty(tname)) {
5978 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5979 		return -EINVAL;
5980 	}
5981 
5982 	/* special cases */
5983 	switch (prog_type) {
5984 	case BPF_PROG_TYPE_KPROBE:
5985 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5986 			return 0;
5987 		break;
5988 	case BPF_PROG_TYPE_PERF_EVENT:
5989 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5990 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5991 			return 0;
5992 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5993 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5994 			return 0;
5995 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5996 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5997 			return 0;
5998 		break;
5999 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6000 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6001 		/* allow u64* as ctx */
6002 		if (btf_is_int(t) && t->size == 8)
6003 			return 0;
6004 		break;
6005 	case BPF_PROG_TYPE_TRACING:
6006 		switch (attach_type) {
6007 		case BPF_TRACE_RAW_TP:
6008 			/* tp_btf program is TRACING, so need special case here */
6009 			if (__btf_type_is_struct(t) &&
6010 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6011 				return 0;
6012 			/* allow u64* as ctx */
6013 			if (btf_is_int(t) && t->size == 8)
6014 				return 0;
6015 			break;
6016 		case BPF_TRACE_ITER:
6017 			/* allow struct bpf_iter__xxx types only */
6018 			if (__btf_type_is_struct(t) &&
6019 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6020 				return 0;
6021 			break;
6022 		case BPF_TRACE_FENTRY:
6023 		case BPF_TRACE_FEXIT:
6024 		case BPF_MODIFY_RETURN:
6025 			/* allow u64* as ctx */
6026 			if (btf_is_int(t) && t->size == 8)
6027 				return 0;
6028 			break;
6029 		default:
6030 			break;
6031 		}
6032 		break;
6033 	case BPF_PROG_TYPE_LSM:
6034 	case BPF_PROG_TYPE_STRUCT_OPS:
6035 		/* allow u64* as ctx */
6036 		if (btf_is_int(t) && t->size == 8)
6037 			return 0;
6038 		break;
6039 	case BPF_PROG_TYPE_TRACEPOINT:
6040 	case BPF_PROG_TYPE_SYSCALL:
6041 	case BPF_PROG_TYPE_EXT:
6042 		return 0; /* anything goes */
6043 	default:
6044 		break;
6045 	}
6046 
6047 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6048 	if (!ctx_type) {
6049 		/* should not happen */
6050 		bpf_log(log, "btf_vmlinux is malformed\n");
6051 		return -EINVAL;
6052 	}
6053 
6054 	/* resolve typedefs and check that underlying structs are matching as well */
6055 	while (btf_type_is_modifier(ctx_type))
6056 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6057 
6058 	/* if program type doesn't have distinctly named struct type for
6059 	 * context, then __arg_ctx argument can only be `void *`, which we
6060 	 * already checked above
6061 	 */
6062 	if (!__btf_type_is_struct(ctx_type)) {
6063 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6064 		return -EINVAL;
6065 	}
6066 
6067 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6068 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6069 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6070 		return -EINVAL;
6071 	}
6072 
6073 	return 0;
6074 }
6075 
6076 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6077 				     struct btf *btf,
6078 				     const struct btf_type *t,
6079 				     enum bpf_prog_type prog_type,
6080 				     int arg)
6081 {
6082 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6083 		return -ENOENT;
6084 	return find_kern_ctx_type_id(prog_type);
6085 }
6086 
6087 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6088 {
6089 	const struct btf_member *kctx_member;
6090 	const struct btf_type *conv_struct;
6091 	const struct btf_type *kctx_type;
6092 	u32 kctx_type_id;
6093 
6094 	conv_struct = bpf_ctx_convert.t;
6095 	/* get member for kernel ctx type */
6096 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6097 	kctx_type_id = kctx_member->type;
6098 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6099 	if (!btf_type_is_struct(kctx_type)) {
6100 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6101 		return -EINVAL;
6102 	}
6103 
6104 	return kctx_type_id;
6105 }
6106 
6107 BTF_ID_LIST(bpf_ctx_convert_btf_id)
6108 BTF_ID(struct, bpf_ctx_convert)
6109 
6110 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6111 				  void *data, unsigned int data_size)
6112 {
6113 	struct btf *btf = NULL;
6114 	int err;
6115 
6116 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6117 		return ERR_PTR(-ENOENT);
6118 
6119 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6120 	if (!btf) {
6121 		err = -ENOMEM;
6122 		goto errout;
6123 	}
6124 	env->btf = btf;
6125 
6126 	btf->data = data;
6127 	btf->data_size = data_size;
6128 	btf->kernel_btf = true;
6129 	snprintf(btf->name, sizeof(btf->name), "%s", name);
6130 
6131 	err = btf_parse_hdr(env);
6132 	if (err)
6133 		goto errout;
6134 
6135 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6136 
6137 	err = btf_parse_str_sec(env);
6138 	if (err)
6139 		goto errout;
6140 
6141 	err = btf_check_all_metas(env);
6142 	if (err)
6143 		goto errout;
6144 
6145 	err = btf_check_type_tags(env, btf, 1);
6146 	if (err)
6147 		goto errout;
6148 
6149 	refcount_set(&btf->refcnt, 1);
6150 
6151 	return btf;
6152 
6153 errout:
6154 	if (btf) {
6155 		kvfree(btf->types);
6156 		kfree(btf);
6157 	}
6158 	return ERR_PTR(err);
6159 }
6160 
6161 struct btf *btf_parse_vmlinux(void)
6162 {
6163 	struct btf_verifier_env *env = NULL;
6164 	struct bpf_verifier_log *log;
6165 	struct btf *btf;
6166 	int err;
6167 
6168 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6169 	if (!env)
6170 		return ERR_PTR(-ENOMEM);
6171 
6172 	log = &env->log;
6173 	log->level = BPF_LOG_KERNEL;
6174 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6175 	if (IS_ERR(btf))
6176 		goto err_out;
6177 
6178 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6179 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6180 	err = btf_alloc_id(btf);
6181 	if (err) {
6182 		btf_free(btf);
6183 		btf = ERR_PTR(err);
6184 	}
6185 err_out:
6186 	btf_verifier_env_free(env);
6187 	return btf;
6188 }
6189 
6190 /* If .BTF_ids section was created with distilled base BTF, both base and
6191  * split BTF ids will need to be mapped to actual base/split ids for
6192  * BTF now that it has been relocated.
6193  */
6194 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6195 {
6196 	if (!btf->base_btf || !btf->base_id_map)
6197 		return id;
6198 	return btf->base_id_map[id];
6199 }
6200 
6201 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6202 
6203 static struct btf *btf_parse_module(const char *module_name, const void *data,
6204 				    unsigned int data_size, void *base_data,
6205 				    unsigned int base_data_size)
6206 {
6207 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6208 	struct btf_verifier_env *env = NULL;
6209 	struct bpf_verifier_log *log;
6210 	int err = 0;
6211 
6212 	vmlinux_btf = bpf_get_btf_vmlinux();
6213 	if (IS_ERR(vmlinux_btf))
6214 		return vmlinux_btf;
6215 	if (!vmlinux_btf)
6216 		return ERR_PTR(-EINVAL);
6217 
6218 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6219 	if (!env)
6220 		return ERR_PTR(-ENOMEM);
6221 
6222 	log = &env->log;
6223 	log->level = BPF_LOG_KERNEL;
6224 
6225 	if (base_data) {
6226 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6227 		if (IS_ERR(base_btf)) {
6228 			err = PTR_ERR(base_btf);
6229 			goto errout;
6230 		}
6231 	} else {
6232 		base_btf = vmlinux_btf;
6233 	}
6234 
6235 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6236 	if (!btf) {
6237 		err = -ENOMEM;
6238 		goto errout;
6239 	}
6240 	env->btf = btf;
6241 
6242 	btf->base_btf = base_btf;
6243 	btf->start_id = base_btf->nr_types;
6244 	btf->start_str_off = base_btf->hdr.str_len;
6245 	btf->kernel_btf = true;
6246 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6247 
6248 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6249 	if (!btf->data) {
6250 		err = -ENOMEM;
6251 		goto errout;
6252 	}
6253 	memcpy(btf->data, data, data_size);
6254 	btf->data_size = data_size;
6255 
6256 	err = btf_parse_hdr(env);
6257 	if (err)
6258 		goto errout;
6259 
6260 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6261 
6262 	err = btf_parse_str_sec(env);
6263 	if (err)
6264 		goto errout;
6265 
6266 	err = btf_check_all_metas(env);
6267 	if (err)
6268 		goto errout;
6269 
6270 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6271 	if (err)
6272 		goto errout;
6273 
6274 	if (base_btf != vmlinux_btf) {
6275 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6276 		if (err)
6277 			goto errout;
6278 		btf_free(base_btf);
6279 		base_btf = vmlinux_btf;
6280 	}
6281 
6282 	btf_verifier_env_free(env);
6283 	refcount_set(&btf->refcnt, 1);
6284 	return btf;
6285 
6286 errout:
6287 	btf_verifier_env_free(env);
6288 	if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6289 		btf_free(base_btf);
6290 	if (btf) {
6291 		kvfree(btf->data);
6292 		kvfree(btf->types);
6293 		kfree(btf);
6294 	}
6295 	return ERR_PTR(err);
6296 }
6297 
6298 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6299 
6300 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6301 {
6302 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6303 
6304 	if (tgt_prog)
6305 		return tgt_prog->aux->btf;
6306 	else
6307 		return prog->aux->attach_btf;
6308 }
6309 
6310 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6311 {
6312 	/* skip modifiers */
6313 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6314 
6315 	return btf_type_is_int(t);
6316 }
6317 
6318 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6319 			   int off)
6320 {
6321 	const struct btf_param *args;
6322 	const struct btf_type *t;
6323 	u32 offset = 0, nr_args;
6324 	int i;
6325 
6326 	if (!func_proto)
6327 		return off / 8;
6328 
6329 	nr_args = btf_type_vlen(func_proto);
6330 	args = (const struct btf_param *)(func_proto + 1);
6331 	for (i = 0; i < nr_args; i++) {
6332 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6333 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6334 		if (off < offset)
6335 			return i;
6336 	}
6337 
6338 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6339 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6340 	if (off < offset)
6341 		return nr_args;
6342 
6343 	return nr_args + 1;
6344 }
6345 
6346 static bool prog_args_trusted(const struct bpf_prog *prog)
6347 {
6348 	enum bpf_attach_type atype = prog->expected_attach_type;
6349 
6350 	switch (prog->type) {
6351 	case BPF_PROG_TYPE_TRACING:
6352 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6353 	case BPF_PROG_TYPE_LSM:
6354 		return bpf_lsm_is_trusted(prog);
6355 	case BPF_PROG_TYPE_STRUCT_OPS:
6356 		return true;
6357 	default:
6358 		return false;
6359 	}
6360 }
6361 
6362 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6363 		       u32 arg_no)
6364 {
6365 	const struct btf_param *args;
6366 	const struct btf_type *t;
6367 	int off = 0, i;
6368 	u32 sz;
6369 
6370 	args = btf_params(func_proto);
6371 	for (i = 0; i < arg_no; i++) {
6372 		t = btf_type_by_id(btf, args[i].type);
6373 		t = btf_resolve_size(btf, t, &sz);
6374 		if (IS_ERR(t))
6375 			return PTR_ERR(t);
6376 		off += roundup(sz, 8);
6377 	}
6378 
6379 	return off;
6380 }
6381 
6382 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6383 		    const struct bpf_prog *prog,
6384 		    struct bpf_insn_access_aux *info)
6385 {
6386 	const struct btf_type *t = prog->aux->attach_func_proto;
6387 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6388 	struct btf *btf = bpf_prog_get_target_btf(prog);
6389 	const char *tname = prog->aux->attach_func_name;
6390 	struct bpf_verifier_log *log = info->log;
6391 	const struct btf_param *args;
6392 	const char *tag_value;
6393 	u32 nr_args, arg;
6394 	int i, ret;
6395 
6396 	if (off % 8) {
6397 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6398 			tname, off);
6399 		return false;
6400 	}
6401 	arg = get_ctx_arg_idx(btf, t, off);
6402 	args = (const struct btf_param *)(t + 1);
6403 	/* if (t == NULL) Fall back to default BPF prog with
6404 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6405 	 */
6406 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6407 	if (prog->aux->attach_btf_trace) {
6408 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6409 		args++;
6410 		nr_args--;
6411 	}
6412 
6413 	if (arg > nr_args) {
6414 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6415 			tname, arg + 1);
6416 		return false;
6417 	}
6418 
6419 	if (arg == nr_args) {
6420 		switch (prog->expected_attach_type) {
6421 		case BPF_LSM_CGROUP:
6422 		case BPF_LSM_MAC:
6423 		case BPF_TRACE_FEXIT:
6424 			/* When LSM programs are attached to void LSM hooks
6425 			 * they use FEXIT trampolines and when attached to
6426 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6427 			 *
6428 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6429 			 * the check:
6430 			 *
6431 			 *	if (ret_type != 'int')
6432 			 *		return -EINVAL;
6433 			 *
6434 			 * is _not_ done here. This is still safe as LSM hooks
6435 			 * have only void and int return types.
6436 			 */
6437 			if (!t)
6438 				return true;
6439 			t = btf_type_by_id(btf, t->type);
6440 			break;
6441 		case BPF_MODIFY_RETURN:
6442 			/* For now the BPF_MODIFY_RETURN can only be attached to
6443 			 * functions that return an int.
6444 			 */
6445 			if (!t)
6446 				return false;
6447 
6448 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6449 			if (!btf_type_is_small_int(t)) {
6450 				bpf_log(log,
6451 					"ret type %s not allowed for fmod_ret\n",
6452 					btf_type_str(t));
6453 				return false;
6454 			}
6455 			break;
6456 		default:
6457 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6458 				tname, arg + 1);
6459 			return false;
6460 		}
6461 	} else {
6462 		if (!t)
6463 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6464 			return true;
6465 		t = btf_type_by_id(btf, args[arg].type);
6466 	}
6467 
6468 	/* skip modifiers */
6469 	while (btf_type_is_modifier(t))
6470 		t = btf_type_by_id(btf, t->type);
6471 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6472 		/* accessing a scalar */
6473 		return true;
6474 	if (!btf_type_is_ptr(t)) {
6475 		bpf_log(log,
6476 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6477 			tname, arg,
6478 			__btf_name_by_offset(btf, t->name_off),
6479 			btf_type_str(t));
6480 		return false;
6481 	}
6482 
6483 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6484 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6485 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6486 		u32 type, flag;
6487 
6488 		type = base_type(ctx_arg_info->reg_type);
6489 		flag = type_flag(ctx_arg_info->reg_type);
6490 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6491 		    (flag & PTR_MAYBE_NULL)) {
6492 			info->reg_type = ctx_arg_info->reg_type;
6493 			return true;
6494 		}
6495 	}
6496 
6497 	if (t->type == 0)
6498 		/* This is a pointer to void.
6499 		 * It is the same as scalar from the verifier safety pov.
6500 		 * No further pointer walking is allowed.
6501 		 */
6502 		return true;
6503 
6504 	if (is_int_ptr(btf, t))
6505 		return true;
6506 
6507 	/* this is a pointer to another type */
6508 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6509 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6510 
6511 		if (ctx_arg_info->offset == off) {
6512 			if (!ctx_arg_info->btf_id) {
6513 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6514 				return false;
6515 			}
6516 
6517 			info->reg_type = ctx_arg_info->reg_type;
6518 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6519 			info->btf_id = ctx_arg_info->btf_id;
6520 			return true;
6521 		}
6522 	}
6523 
6524 	info->reg_type = PTR_TO_BTF_ID;
6525 	if (prog_args_trusted(prog))
6526 		info->reg_type |= PTR_TRUSTED;
6527 
6528 	if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6529 		info->reg_type |= PTR_MAYBE_NULL;
6530 
6531 	if (tgt_prog) {
6532 		enum bpf_prog_type tgt_type;
6533 
6534 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6535 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6536 		else
6537 			tgt_type = tgt_prog->type;
6538 
6539 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6540 		if (ret > 0) {
6541 			info->btf = btf_vmlinux;
6542 			info->btf_id = ret;
6543 			return true;
6544 		} else {
6545 			return false;
6546 		}
6547 	}
6548 
6549 	info->btf = btf;
6550 	info->btf_id = t->type;
6551 	t = btf_type_by_id(btf, t->type);
6552 
6553 	if (btf_type_is_type_tag(t)) {
6554 		tag_value = __btf_name_by_offset(btf, t->name_off);
6555 		if (strcmp(tag_value, "user") == 0)
6556 			info->reg_type |= MEM_USER;
6557 		if (strcmp(tag_value, "percpu") == 0)
6558 			info->reg_type |= MEM_PERCPU;
6559 	}
6560 
6561 	/* skip modifiers */
6562 	while (btf_type_is_modifier(t)) {
6563 		info->btf_id = t->type;
6564 		t = btf_type_by_id(btf, t->type);
6565 	}
6566 	if (!btf_type_is_struct(t)) {
6567 		bpf_log(log,
6568 			"func '%s' arg%d type %s is not a struct\n",
6569 			tname, arg, btf_type_str(t));
6570 		return false;
6571 	}
6572 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6573 		tname, arg, info->btf_id, btf_type_str(t),
6574 		__btf_name_by_offset(btf, t->name_off));
6575 	return true;
6576 }
6577 EXPORT_SYMBOL_GPL(btf_ctx_access);
6578 
6579 enum bpf_struct_walk_result {
6580 	/* < 0 error */
6581 	WALK_SCALAR = 0,
6582 	WALK_PTR,
6583 	WALK_STRUCT,
6584 };
6585 
6586 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6587 			   const struct btf_type *t, int off, int size,
6588 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6589 			   const char **field_name)
6590 {
6591 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6592 	const struct btf_type *mtype, *elem_type = NULL;
6593 	const struct btf_member *member;
6594 	const char *tname, *mname, *tag_value;
6595 	u32 vlen, elem_id, mid;
6596 
6597 again:
6598 	if (btf_type_is_modifier(t))
6599 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6600 	tname = __btf_name_by_offset(btf, t->name_off);
6601 	if (!btf_type_is_struct(t)) {
6602 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6603 		return -EINVAL;
6604 	}
6605 
6606 	vlen = btf_type_vlen(t);
6607 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6608 		/*
6609 		 * walking unions yields untrusted pointers
6610 		 * with exception of __bpf_md_ptr and other
6611 		 * unions with a single member
6612 		 */
6613 		*flag |= PTR_UNTRUSTED;
6614 
6615 	if (off + size > t->size) {
6616 		/* If the last element is a variable size array, we may
6617 		 * need to relax the rule.
6618 		 */
6619 		struct btf_array *array_elem;
6620 
6621 		if (vlen == 0)
6622 			goto error;
6623 
6624 		member = btf_type_member(t) + vlen - 1;
6625 		mtype = btf_type_skip_modifiers(btf, member->type,
6626 						NULL);
6627 		if (!btf_type_is_array(mtype))
6628 			goto error;
6629 
6630 		array_elem = (struct btf_array *)(mtype + 1);
6631 		if (array_elem->nelems != 0)
6632 			goto error;
6633 
6634 		moff = __btf_member_bit_offset(t, member) / 8;
6635 		if (off < moff)
6636 			goto error;
6637 
6638 		/* allow structure and integer */
6639 		t = btf_type_skip_modifiers(btf, array_elem->type,
6640 					    NULL);
6641 
6642 		if (btf_type_is_int(t))
6643 			return WALK_SCALAR;
6644 
6645 		if (!btf_type_is_struct(t))
6646 			goto error;
6647 
6648 		off = (off - moff) % t->size;
6649 		goto again;
6650 
6651 error:
6652 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6653 			tname, off, size);
6654 		return -EACCES;
6655 	}
6656 
6657 	for_each_member(i, t, member) {
6658 		/* offset of the field in bytes */
6659 		moff = __btf_member_bit_offset(t, member) / 8;
6660 		if (off + size <= moff)
6661 			/* won't find anything, field is already too far */
6662 			break;
6663 
6664 		if (__btf_member_bitfield_size(t, member)) {
6665 			u32 end_bit = __btf_member_bit_offset(t, member) +
6666 				__btf_member_bitfield_size(t, member);
6667 
6668 			/* off <= moff instead of off == moff because clang
6669 			 * does not generate a BTF member for anonymous
6670 			 * bitfield like the ":16" here:
6671 			 * struct {
6672 			 *	int :16;
6673 			 *	int x:8;
6674 			 * };
6675 			 */
6676 			if (off <= moff &&
6677 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6678 				return WALK_SCALAR;
6679 
6680 			/* off may be accessing a following member
6681 			 *
6682 			 * or
6683 			 *
6684 			 * Doing partial access at either end of this
6685 			 * bitfield.  Continue on this case also to
6686 			 * treat it as not accessing this bitfield
6687 			 * and eventually error out as field not
6688 			 * found to keep it simple.
6689 			 * It could be relaxed if there was a legit
6690 			 * partial access case later.
6691 			 */
6692 			continue;
6693 		}
6694 
6695 		/* In case of "off" is pointing to holes of a struct */
6696 		if (off < moff)
6697 			break;
6698 
6699 		/* type of the field */
6700 		mid = member->type;
6701 		mtype = btf_type_by_id(btf, member->type);
6702 		mname = __btf_name_by_offset(btf, member->name_off);
6703 
6704 		mtype = __btf_resolve_size(btf, mtype, &msize,
6705 					   &elem_type, &elem_id, &total_nelems,
6706 					   &mid);
6707 		if (IS_ERR(mtype)) {
6708 			bpf_log(log, "field %s doesn't have size\n", mname);
6709 			return -EFAULT;
6710 		}
6711 
6712 		mtrue_end = moff + msize;
6713 		if (off >= mtrue_end)
6714 			/* no overlap with member, keep iterating */
6715 			continue;
6716 
6717 		if (btf_type_is_array(mtype)) {
6718 			u32 elem_idx;
6719 
6720 			/* __btf_resolve_size() above helps to
6721 			 * linearize a multi-dimensional array.
6722 			 *
6723 			 * The logic here is treating an array
6724 			 * in a struct as the following way:
6725 			 *
6726 			 * struct outer {
6727 			 *	struct inner array[2][2];
6728 			 * };
6729 			 *
6730 			 * looks like:
6731 			 *
6732 			 * struct outer {
6733 			 *	struct inner array_elem0;
6734 			 *	struct inner array_elem1;
6735 			 *	struct inner array_elem2;
6736 			 *	struct inner array_elem3;
6737 			 * };
6738 			 *
6739 			 * When accessing outer->array[1][0], it moves
6740 			 * moff to "array_elem2", set mtype to
6741 			 * "struct inner", and msize also becomes
6742 			 * sizeof(struct inner).  Then most of the
6743 			 * remaining logic will fall through without
6744 			 * caring the current member is an array or
6745 			 * not.
6746 			 *
6747 			 * Unlike mtype/msize/moff, mtrue_end does not
6748 			 * change.  The naming difference ("_true") tells
6749 			 * that it is not always corresponding to
6750 			 * the current mtype/msize/moff.
6751 			 * It is the true end of the current
6752 			 * member (i.e. array in this case).  That
6753 			 * will allow an int array to be accessed like
6754 			 * a scratch space,
6755 			 * i.e. allow access beyond the size of
6756 			 *      the array's element as long as it is
6757 			 *      within the mtrue_end boundary.
6758 			 */
6759 
6760 			/* skip empty array */
6761 			if (moff == mtrue_end)
6762 				continue;
6763 
6764 			msize /= total_nelems;
6765 			elem_idx = (off - moff) / msize;
6766 			moff += elem_idx * msize;
6767 			mtype = elem_type;
6768 			mid = elem_id;
6769 		}
6770 
6771 		/* the 'off' we're looking for is either equal to start
6772 		 * of this field or inside of this struct
6773 		 */
6774 		if (btf_type_is_struct(mtype)) {
6775 			/* our field must be inside that union or struct */
6776 			t = mtype;
6777 
6778 			/* return if the offset matches the member offset */
6779 			if (off == moff) {
6780 				*next_btf_id = mid;
6781 				return WALK_STRUCT;
6782 			}
6783 
6784 			/* adjust offset we're looking for */
6785 			off -= moff;
6786 			goto again;
6787 		}
6788 
6789 		if (btf_type_is_ptr(mtype)) {
6790 			const struct btf_type *stype, *t;
6791 			enum bpf_type_flag tmp_flag = 0;
6792 			u32 id;
6793 
6794 			if (msize != size || off != moff) {
6795 				bpf_log(log,
6796 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6797 					mname, moff, tname, off, size);
6798 				return -EACCES;
6799 			}
6800 
6801 			/* check type tag */
6802 			t = btf_type_by_id(btf, mtype->type);
6803 			if (btf_type_is_type_tag(t)) {
6804 				tag_value = __btf_name_by_offset(btf, t->name_off);
6805 				/* check __user tag */
6806 				if (strcmp(tag_value, "user") == 0)
6807 					tmp_flag = MEM_USER;
6808 				/* check __percpu tag */
6809 				if (strcmp(tag_value, "percpu") == 0)
6810 					tmp_flag = MEM_PERCPU;
6811 				/* check __rcu tag */
6812 				if (strcmp(tag_value, "rcu") == 0)
6813 					tmp_flag = MEM_RCU;
6814 			}
6815 
6816 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6817 			if (btf_type_is_struct(stype)) {
6818 				*next_btf_id = id;
6819 				*flag |= tmp_flag;
6820 				if (field_name)
6821 					*field_name = mname;
6822 				return WALK_PTR;
6823 			}
6824 		}
6825 
6826 		/* Allow more flexible access within an int as long as
6827 		 * it is within mtrue_end.
6828 		 * Since mtrue_end could be the end of an array,
6829 		 * that also allows using an array of int as a scratch
6830 		 * space. e.g. skb->cb[].
6831 		 */
6832 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6833 			bpf_log(log,
6834 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6835 				mname, mtrue_end, tname, off, size);
6836 			return -EACCES;
6837 		}
6838 
6839 		return WALK_SCALAR;
6840 	}
6841 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6842 	return -EINVAL;
6843 }
6844 
6845 int btf_struct_access(struct bpf_verifier_log *log,
6846 		      const struct bpf_reg_state *reg,
6847 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6848 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6849 		      const char **field_name)
6850 {
6851 	const struct btf *btf = reg->btf;
6852 	enum bpf_type_flag tmp_flag = 0;
6853 	const struct btf_type *t;
6854 	u32 id = reg->btf_id;
6855 	int err;
6856 
6857 	while (type_is_alloc(reg->type)) {
6858 		struct btf_struct_meta *meta;
6859 		struct btf_record *rec;
6860 		int i;
6861 
6862 		meta = btf_find_struct_meta(btf, id);
6863 		if (!meta)
6864 			break;
6865 		rec = meta->record;
6866 		for (i = 0; i < rec->cnt; i++) {
6867 			struct btf_field *field = &rec->fields[i];
6868 			u32 offset = field->offset;
6869 			if (off < offset + field->size && offset < off + size) {
6870 				bpf_log(log,
6871 					"direct access to %s is disallowed\n",
6872 					btf_field_type_name(field->type));
6873 				return -EACCES;
6874 			}
6875 		}
6876 		break;
6877 	}
6878 
6879 	t = btf_type_by_id(btf, id);
6880 	do {
6881 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6882 
6883 		switch (err) {
6884 		case WALK_PTR:
6885 			/* For local types, the destination register cannot
6886 			 * become a pointer again.
6887 			 */
6888 			if (type_is_alloc(reg->type))
6889 				return SCALAR_VALUE;
6890 			/* If we found the pointer or scalar on t+off,
6891 			 * we're done.
6892 			 */
6893 			*next_btf_id = id;
6894 			*flag = tmp_flag;
6895 			return PTR_TO_BTF_ID;
6896 		case WALK_SCALAR:
6897 			return SCALAR_VALUE;
6898 		case WALK_STRUCT:
6899 			/* We found nested struct, so continue the search
6900 			 * by diving in it. At this point the offset is
6901 			 * aligned with the new type, so set it to 0.
6902 			 */
6903 			t = btf_type_by_id(btf, id);
6904 			off = 0;
6905 			break;
6906 		default:
6907 			/* It's either error or unknown return value..
6908 			 * scream and leave.
6909 			 */
6910 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6911 				return -EINVAL;
6912 			return err;
6913 		}
6914 	} while (t);
6915 
6916 	return -EINVAL;
6917 }
6918 
6919 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6920  * the same. Trivial ID check is not enough due to module BTFs, because we can
6921  * end up with two different module BTFs, but IDs point to the common type in
6922  * vmlinux BTF.
6923  */
6924 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6925 			const struct btf *btf2, u32 id2)
6926 {
6927 	if (id1 != id2)
6928 		return false;
6929 	if (btf1 == btf2)
6930 		return true;
6931 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6932 }
6933 
6934 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6935 			  const struct btf *btf, u32 id, int off,
6936 			  const struct btf *need_btf, u32 need_type_id,
6937 			  bool strict)
6938 {
6939 	const struct btf_type *type;
6940 	enum bpf_type_flag flag = 0;
6941 	int err;
6942 
6943 	/* Are we already done? */
6944 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6945 		return true;
6946 	/* In case of strict type match, we do not walk struct, the top level
6947 	 * type match must succeed. When strict is true, off should have already
6948 	 * been 0.
6949 	 */
6950 	if (strict)
6951 		return false;
6952 again:
6953 	type = btf_type_by_id(btf, id);
6954 	if (!type)
6955 		return false;
6956 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6957 	if (err != WALK_STRUCT)
6958 		return false;
6959 
6960 	/* We found nested struct object. If it matches
6961 	 * the requested ID, we're done. Otherwise let's
6962 	 * continue the search with offset 0 in the new
6963 	 * type.
6964 	 */
6965 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6966 		off = 0;
6967 		goto again;
6968 	}
6969 
6970 	return true;
6971 }
6972 
6973 static int __get_type_size(struct btf *btf, u32 btf_id,
6974 			   const struct btf_type **ret_type)
6975 {
6976 	const struct btf_type *t;
6977 
6978 	*ret_type = btf_type_by_id(btf, 0);
6979 	if (!btf_id)
6980 		/* void */
6981 		return 0;
6982 	t = btf_type_by_id(btf, btf_id);
6983 	while (t && btf_type_is_modifier(t))
6984 		t = btf_type_by_id(btf, t->type);
6985 	if (!t)
6986 		return -EINVAL;
6987 	*ret_type = t;
6988 	if (btf_type_is_ptr(t))
6989 		/* kernel size of pointer. Not BPF's size of pointer*/
6990 		return sizeof(void *);
6991 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6992 		return t->size;
6993 	return -EINVAL;
6994 }
6995 
6996 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6997 {
6998 	u8 flags = 0;
6999 
7000 	if (__btf_type_is_struct(t))
7001 		flags |= BTF_FMODEL_STRUCT_ARG;
7002 	if (btf_type_is_signed_int(t))
7003 		flags |= BTF_FMODEL_SIGNED_ARG;
7004 
7005 	return flags;
7006 }
7007 
7008 int btf_distill_func_proto(struct bpf_verifier_log *log,
7009 			   struct btf *btf,
7010 			   const struct btf_type *func,
7011 			   const char *tname,
7012 			   struct btf_func_model *m)
7013 {
7014 	const struct btf_param *args;
7015 	const struct btf_type *t;
7016 	u32 i, nargs;
7017 	int ret;
7018 
7019 	if (!func) {
7020 		/* BTF function prototype doesn't match the verifier types.
7021 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7022 		 */
7023 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7024 			m->arg_size[i] = 8;
7025 			m->arg_flags[i] = 0;
7026 		}
7027 		m->ret_size = 8;
7028 		m->ret_flags = 0;
7029 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7030 		return 0;
7031 	}
7032 	args = (const struct btf_param *)(func + 1);
7033 	nargs = btf_type_vlen(func);
7034 	if (nargs > MAX_BPF_FUNC_ARGS) {
7035 		bpf_log(log,
7036 			"The function %s has %d arguments. Too many.\n",
7037 			tname, nargs);
7038 		return -EINVAL;
7039 	}
7040 	ret = __get_type_size(btf, func->type, &t);
7041 	if (ret < 0 || __btf_type_is_struct(t)) {
7042 		bpf_log(log,
7043 			"The function %s return type %s is unsupported.\n",
7044 			tname, btf_type_str(t));
7045 		return -EINVAL;
7046 	}
7047 	m->ret_size = ret;
7048 	m->ret_flags = __get_type_fmodel_flags(t);
7049 
7050 	for (i = 0; i < nargs; i++) {
7051 		if (i == nargs - 1 && args[i].type == 0) {
7052 			bpf_log(log,
7053 				"The function %s with variable args is unsupported.\n",
7054 				tname);
7055 			return -EINVAL;
7056 		}
7057 		ret = __get_type_size(btf, args[i].type, &t);
7058 
7059 		/* No support of struct argument size greater than 16 bytes */
7060 		if (ret < 0 || ret > 16) {
7061 			bpf_log(log,
7062 				"The function %s arg%d type %s is unsupported.\n",
7063 				tname, i, btf_type_str(t));
7064 			return -EINVAL;
7065 		}
7066 		if (ret == 0) {
7067 			bpf_log(log,
7068 				"The function %s has malformed void argument.\n",
7069 				tname);
7070 			return -EINVAL;
7071 		}
7072 		m->arg_size[i] = ret;
7073 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7074 	}
7075 	m->nr_args = nargs;
7076 	return 0;
7077 }
7078 
7079 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7080  * t1 points to BTF_KIND_FUNC in btf1
7081  * t2 points to BTF_KIND_FUNC in btf2
7082  * Returns:
7083  * EINVAL - function prototype mismatch
7084  * EFAULT - verifier bug
7085  * 0 - 99% match. The last 1% is validated by the verifier.
7086  */
7087 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7088 				     struct btf *btf1, const struct btf_type *t1,
7089 				     struct btf *btf2, const struct btf_type *t2)
7090 {
7091 	const struct btf_param *args1, *args2;
7092 	const char *fn1, *fn2, *s1, *s2;
7093 	u32 nargs1, nargs2, i;
7094 
7095 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7096 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7097 
7098 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7099 		bpf_log(log, "%s() is not a global function\n", fn1);
7100 		return -EINVAL;
7101 	}
7102 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7103 		bpf_log(log, "%s() is not a global function\n", fn2);
7104 		return -EINVAL;
7105 	}
7106 
7107 	t1 = btf_type_by_id(btf1, t1->type);
7108 	if (!t1 || !btf_type_is_func_proto(t1))
7109 		return -EFAULT;
7110 	t2 = btf_type_by_id(btf2, t2->type);
7111 	if (!t2 || !btf_type_is_func_proto(t2))
7112 		return -EFAULT;
7113 
7114 	args1 = (const struct btf_param *)(t1 + 1);
7115 	nargs1 = btf_type_vlen(t1);
7116 	args2 = (const struct btf_param *)(t2 + 1);
7117 	nargs2 = btf_type_vlen(t2);
7118 
7119 	if (nargs1 != nargs2) {
7120 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7121 			fn1, nargs1, fn2, nargs2);
7122 		return -EINVAL;
7123 	}
7124 
7125 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7126 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7127 	if (t1->info != t2->info) {
7128 		bpf_log(log,
7129 			"Return type %s of %s() doesn't match type %s of %s()\n",
7130 			btf_type_str(t1), fn1,
7131 			btf_type_str(t2), fn2);
7132 		return -EINVAL;
7133 	}
7134 
7135 	for (i = 0; i < nargs1; i++) {
7136 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7137 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7138 
7139 		if (t1->info != t2->info) {
7140 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7141 				i, fn1, btf_type_str(t1),
7142 				fn2, btf_type_str(t2));
7143 			return -EINVAL;
7144 		}
7145 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7146 			bpf_log(log,
7147 				"arg%d in %s() has size %d while %s() has %d\n",
7148 				i, fn1, t1->size,
7149 				fn2, t2->size);
7150 			return -EINVAL;
7151 		}
7152 
7153 		/* global functions are validated with scalars and pointers
7154 		 * to context only. And only global functions can be replaced.
7155 		 * Hence type check only those types.
7156 		 */
7157 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7158 			continue;
7159 		if (!btf_type_is_ptr(t1)) {
7160 			bpf_log(log,
7161 				"arg%d in %s() has unrecognized type\n",
7162 				i, fn1);
7163 			return -EINVAL;
7164 		}
7165 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7166 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7167 		if (!btf_type_is_struct(t1)) {
7168 			bpf_log(log,
7169 				"arg%d in %s() is not a pointer to context\n",
7170 				i, fn1);
7171 			return -EINVAL;
7172 		}
7173 		if (!btf_type_is_struct(t2)) {
7174 			bpf_log(log,
7175 				"arg%d in %s() is not a pointer to context\n",
7176 				i, fn2);
7177 			return -EINVAL;
7178 		}
7179 		/* This is an optional check to make program writing easier.
7180 		 * Compare names of structs and report an error to the user.
7181 		 * btf_prepare_func_args() already checked that t2 struct
7182 		 * is a context type. btf_prepare_func_args() will check
7183 		 * later that t1 struct is a context type as well.
7184 		 */
7185 		s1 = btf_name_by_offset(btf1, t1->name_off);
7186 		s2 = btf_name_by_offset(btf2, t2->name_off);
7187 		if (strcmp(s1, s2)) {
7188 			bpf_log(log,
7189 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7190 				i, fn1, s1, fn2, s2);
7191 			return -EINVAL;
7192 		}
7193 	}
7194 	return 0;
7195 }
7196 
7197 /* Compare BTFs of given program with BTF of target program */
7198 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7199 			 struct btf *btf2, const struct btf_type *t2)
7200 {
7201 	struct btf *btf1 = prog->aux->btf;
7202 	const struct btf_type *t1;
7203 	u32 btf_id = 0;
7204 
7205 	if (!prog->aux->func_info) {
7206 		bpf_log(log, "Program extension requires BTF\n");
7207 		return -EINVAL;
7208 	}
7209 
7210 	btf_id = prog->aux->func_info[0].type_id;
7211 	if (!btf_id)
7212 		return -EFAULT;
7213 
7214 	t1 = btf_type_by_id(btf1, btf_id);
7215 	if (!t1 || !btf_type_is_func(t1))
7216 		return -EFAULT;
7217 
7218 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7219 }
7220 
7221 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7222 {
7223 	const char *name;
7224 
7225 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7226 
7227 	while (btf_type_is_modifier(t))
7228 		t = btf_type_by_id(btf, t->type);
7229 
7230 	/* allow either struct or struct forward declaration */
7231 	if (btf_type_is_struct(t) ||
7232 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7233 		name = btf_str_by_offset(btf, t->name_off);
7234 		return name && strcmp(name, "bpf_dynptr") == 0;
7235 	}
7236 
7237 	return false;
7238 }
7239 
7240 struct bpf_cand_cache {
7241 	const char *name;
7242 	u32 name_len;
7243 	u16 kind;
7244 	u16 cnt;
7245 	struct {
7246 		const struct btf *btf;
7247 		u32 id;
7248 	} cands[];
7249 };
7250 
7251 static DEFINE_MUTEX(cand_cache_mutex);
7252 
7253 static struct bpf_cand_cache *
7254 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7255 
7256 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7257 				 const struct btf *btf, const struct btf_type *t)
7258 {
7259 	struct bpf_cand_cache *cc;
7260 	struct bpf_core_ctx ctx = {
7261 		.btf = btf,
7262 		.log = log,
7263 	};
7264 	u32 kern_type_id, type_id;
7265 	int err = 0;
7266 
7267 	/* skip PTR and modifiers */
7268 	type_id = t->type;
7269 	t = btf_type_by_id(btf, t->type);
7270 	while (btf_type_is_modifier(t)) {
7271 		type_id = t->type;
7272 		t = btf_type_by_id(btf, t->type);
7273 	}
7274 
7275 	mutex_lock(&cand_cache_mutex);
7276 	cc = bpf_core_find_cands(&ctx, type_id);
7277 	if (IS_ERR(cc)) {
7278 		err = PTR_ERR(cc);
7279 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7280 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7281 			err);
7282 		goto cand_cache_unlock;
7283 	}
7284 	if (cc->cnt != 1) {
7285 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7286 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7287 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7288 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7289 		goto cand_cache_unlock;
7290 	}
7291 	if (btf_is_module(cc->cands[0].btf)) {
7292 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7293 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7294 		err = -EOPNOTSUPP;
7295 		goto cand_cache_unlock;
7296 	}
7297 	kern_type_id = cc->cands[0].id;
7298 
7299 cand_cache_unlock:
7300 	mutex_unlock(&cand_cache_mutex);
7301 	if (err)
7302 		return err;
7303 
7304 	return kern_type_id;
7305 }
7306 
7307 enum btf_arg_tag {
7308 	ARG_TAG_CTX	 = BIT_ULL(0),
7309 	ARG_TAG_NONNULL  = BIT_ULL(1),
7310 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7311 	ARG_TAG_NULLABLE = BIT_ULL(3),
7312 	ARG_TAG_ARENA	 = BIT_ULL(4),
7313 };
7314 
7315 /* Process BTF of a function to produce high-level expectation of function
7316  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7317  * is cached in subprog info for reuse.
7318  * Returns:
7319  * EFAULT - there is a verifier bug. Abort verification.
7320  * EINVAL - cannot convert BTF.
7321  * 0 - Successfully processed BTF and constructed argument expectations.
7322  */
7323 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7324 {
7325 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7326 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7327 	struct bpf_verifier_log *log = &env->log;
7328 	struct bpf_prog *prog = env->prog;
7329 	enum bpf_prog_type prog_type = prog->type;
7330 	struct btf *btf = prog->aux->btf;
7331 	const struct btf_param *args;
7332 	const struct btf_type *t, *ref_t, *fn_t;
7333 	u32 i, nargs, btf_id;
7334 	const char *tname;
7335 
7336 	if (sub->args_cached)
7337 		return 0;
7338 
7339 	if (!prog->aux->func_info) {
7340 		bpf_log(log, "Verifier bug\n");
7341 		return -EFAULT;
7342 	}
7343 
7344 	btf_id = prog->aux->func_info[subprog].type_id;
7345 	if (!btf_id) {
7346 		if (!is_global) /* not fatal for static funcs */
7347 			return -EINVAL;
7348 		bpf_log(log, "Global functions need valid BTF\n");
7349 		return -EFAULT;
7350 	}
7351 
7352 	fn_t = btf_type_by_id(btf, btf_id);
7353 	if (!fn_t || !btf_type_is_func(fn_t)) {
7354 		/* These checks were already done by the verifier while loading
7355 		 * struct bpf_func_info
7356 		 */
7357 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7358 			subprog);
7359 		return -EFAULT;
7360 	}
7361 	tname = btf_name_by_offset(btf, fn_t->name_off);
7362 
7363 	if (prog->aux->func_info_aux[subprog].unreliable) {
7364 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7365 		return -EFAULT;
7366 	}
7367 	if (prog_type == BPF_PROG_TYPE_EXT)
7368 		prog_type = prog->aux->dst_prog->type;
7369 
7370 	t = btf_type_by_id(btf, fn_t->type);
7371 	if (!t || !btf_type_is_func_proto(t)) {
7372 		bpf_log(log, "Invalid type of function %s()\n", tname);
7373 		return -EFAULT;
7374 	}
7375 	args = (const struct btf_param *)(t + 1);
7376 	nargs = btf_type_vlen(t);
7377 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7378 		if (!is_global)
7379 			return -EINVAL;
7380 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7381 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7382 		return -EINVAL;
7383 	}
7384 	/* check that function returns int, exception cb also requires this */
7385 	t = btf_type_by_id(btf, t->type);
7386 	while (btf_type_is_modifier(t))
7387 		t = btf_type_by_id(btf, t->type);
7388 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7389 		if (!is_global)
7390 			return -EINVAL;
7391 		bpf_log(log,
7392 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7393 			tname);
7394 		return -EINVAL;
7395 	}
7396 	/* Convert BTF function arguments into verifier types.
7397 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7398 	 */
7399 	for (i = 0; i < nargs; i++) {
7400 		u32 tags = 0;
7401 		int id = 0;
7402 
7403 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7404 		 * register type from BTF type itself
7405 		 */
7406 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7407 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7408 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7409 
7410 			/* disallow arg tags in static subprogs */
7411 			if (!is_global) {
7412 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7413 				return -EOPNOTSUPP;
7414 			}
7415 
7416 			if (strcmp(tag, "ctx") == 0) {
7417 				tags |= ARG_TAG_CTX;
7418 			} else if (strcmp(tag, "trusted") == 0) {
7419 				tags |= ARG_TAG_TRUSTED;
7420 			} else if (strcmp(tag, "nonnull") == 0) {
7421 				tags |= ARG_TAG_NONNULL;
7422 			} else if (strcmp(tag, "nullable") == 0) {
7423 				tags |= ARG_TAG_NULLABLE;
7424 			} else if (strcmp(tag, "arena") == 0) {
7425 				tags |= ARG_TAG_ARENA;
7426 			} else {
7427 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7428 				return -EOPNOTSUPP;
7429 			}
7430 		}
7431 		if (id != -ENOENT) {
7432 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7433 			return id;
7434 		}
7435 
7436 		t = btf_type_by_id(btf, args[i].type);
7437 		while (btf_type_is_modifier(t))
7438 			t = btf_type_by_id(btf, t->type);
7439 		if (!btf_type_is_ptr(t))
7440 			goto skip_pointer;
7441 
7442 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7443 			if (tags & ~ARG_TAG_CTX) {
7444 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7445 				return -EINVAL;
7446 			}
7447 			if ((tags & ARG_TAG_CTX) &&
7448 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7449 						       prog->expected_attach_type))
7450 				return -EINVAL;
7451 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7452 			continue;
7453 		}
7454 		if (btf_is_dynptr_ptr(btf, t)) {
7455 			if (tags) {
7456 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7457 				return -EINVAL;
7458 			}
7459 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7460 			continue;
7461 		}
7462 		if (tags & ARG_TAG_TRUSTED) {
7463 			int kern_type_id;
7464 
7465 			if (tags & ARG_TAG_NONNULL) {
7466 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7467 				return -EINVAL;
7468 			}
7469 
7470 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7471 			if (kern_type_id < 0)
7472 				return kern_type_id;
7473 
7474 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7475 			if (tags & ARG_TAG_NULLABLE)
7476 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7477 			sub->args[i].btf_id = kern_type_id;
7478 			continue;
7479 		}
7480 		if (tags & ARG_TAG_ARENA) {
7481 			if (tags & ~ARG_TAG_ARENA) {
7482 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7483 				return -EINVAL;
7484 			}
7485 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7486 			continue;
7487 		}
7488 		if (is_global) { /* generic user data pointer */
7489 			u32 mem_size;
7490 
7491 			if (tags & ARG_TAG_NULLABLE) {
7492 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7493 				return -EINVAL;
7494 			}
7495 
7496 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7497 			ref_t = btf_resolve_size(btf, t, &mem_size);
7498 			if (IS_ERR(ref_t)) {
7499 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7500 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7501 					PTR_ERR(ref_t));
7502 				return -EINVAL;
7503 			}
7504 
7505 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7506 			if (tags & ARG_TAG_NONNULL)
7507 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7508 			sub->args[i].mem_size = mem_size;
7509 			continue;
7510 		}
7511 
7512 skip_pointer:
7513 		if (tags) {
7514 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7515 			return -EINVAL;
7516 		}
7517 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7518 			sub->args[i].arg_type = ARG_ANYTHING;
7519 			continue;
7520 		}
7521 		if (!is_global)
7522 			return -EINVAL;
7523 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7524 			i, btf_type_str(t), tname);
7525 		return -EINVAL;
7526 	}
7527 
7528 	sub->arg_cnt = nargs;
7529 	sub->args_cached = true;
7530 
7531 	return 0;
7532 }
7533 
7534 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7535 			  struct btf_show *show)
7536 {
7537 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7538 
7539 	show->btf = btf;
7540 	memset(&show->state, 0, sizeof(show->state));
7541 	memset(&show->obj, 0, sizeof(show->obj));
7542 
7543 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7544 }
7545 
7546 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7547 					va_list args)
7548 {
7549 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7550 }
7551 
7552 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7553 			    void *obj, struct seq_file *m, u64 flags)
7554 {
7555 	struct btf_show sseq;
7556 
7557 	sseq.target = m;
7558 	sseq.showfn = btf_seq_show;
7559 	sseq.flags = flags;
7560 
7561 	btf_type_show(btf, type_id, obj, &sseq);
7562 
7563 	return sseq.state.status;
7564 }
7565 
7566 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7567 		       struct seq_file *m)
7568 {
7569 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7570 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7571 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7572 }
7573 
7574 struct btf_show_snprintf {
7575 	struct btf_show show;
7576 	int len_left;		/* space left in string */
7577 	int len;		/* length we would have written */
7578 };
7579 
7580 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7581 					     va_list args)
7582 {
7583 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7584 	int len;
7585 
7586 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7587 
7588 	if (len < 0) {
7589 		ssnprintf->len_left = 0;
7590 		ssnprintf->len = len;
7591 	} else if (len >= ssnprintf->len_left) {
7592 		/* no space, drive on to get length we would have written */
7593 		ssnprintf->len_left = 0;
7594 		ssnprintf->len += len;
7595 	} else {
7596 		ssnprintf->len_left -= len;
7597 		ssnprintf->len += len;
7598 		show->target += len;
7599 	}
7600 }
7601 
7602 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7603 			   char *buf, int len, u64 flags)
7604 {
7605 	struct btf_show_snprintf ssnprintf;
7606 
7607 	ssnprintf.show.target = buf;
7608 	ssnprintf.show.flags = flags;
7609 	ssnprintf.show.showfn = btf_snprintf_show;
7610 	ssnprintf.len_left = len;
7611 	ssnprintf.len = 0;
7612 
7613 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7614 
7615 	/* If we encountered an error, return it. */
7616 	if (ssnprintf.show.state.status)
7617 		return ssnprintf.show.state.status;
7618 
7619 	/* Otherwise return length we would have written */
7620 	return ssnprintf.len;
7621 }
7622 
7623 #ifdef CONFIG_PROC_FS
7624 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7625 {
7626 	const struct btf *btf = filp->private_data;
7627 
7628 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7629 }
7630 #endif
7631 
7632 static int btf_release(struct inode *inode, struct file *filp)
7633 {
7634 	btf_put(filp->private_data);
7635 	return 0;
7636 }
7637 
7638 const struct file_operations btf_fops = {
7639 #ifdef CONFIG_PROC_FS
7640 	.show_fdinfo	= bpf_btf_show_fdinfo,
7641 #endif
7642 	.release	= btf_release,
7643 };
7644 
7645 static int __btf_new_fd(struct btf *btf)
7646 {
7647 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7648 }
7649 
7650 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7651 {
7652 	struct btf *btf;
7653 	int ret;
7654 
7655 	btf = btf_parse(attr, uattr, uattr_size);
7656 	if (IS_ERR(btf))
7657 		return PTR_ERR(btf);
7658 
7659 	ret = btf_alloc_id(btf);
7660 	if (ret) {
7661 		btf_free(btf);
7662 		return ret;
7663 	}
7664 
7665 	/*
7666 	 * The BTF ID is published to the userspace.
7667 	 * All BTF free must go through call_rcu() from
7668 	 * now on (i.e. free by calling btf_put()).
7669 	 */
7670 
7671 	ret = __btf_new_fd(btf);
7672 	if (ret < 0)
7673 		btf_put(btf);
7674 
7675 	return ret;
7676 }
7677 
7678 struct btf *btf_get_by_fd(int fd)
7679 {
7680 	struct btf *btf;
7681 	struct fd f;
7682 
7683 	f = fdget(fd);
7684 
7685 	if (!f.file)
7686 		return ERR_PTR(-EBADF);
7687 
7688 	if (f.file->f_op != &btf_fops) {
7689 		fdput(f);
7690 		return ERR_PTR(-EINVAL);
7691 	}
7692 
7693 	btf = f.file->private_data;
7694 	refcount_inc(&btf->refcnt);
7695 	fdput(f);
7696 
7697 	return btf;
7698 }
7699 
7700 int btf_get_info_by_fd(const struct btf *btf,
7701 		       const union bpf_attr *attr,
7702 		       union bpf_attr __user *uattr)
7703 {
7704 	struct bpf_btf_info __user *uinfo;
7705 	struct bpf_btf_info info;
7706 	u32 info_copy, btf_copy;
7707 	void __user *ubtf;
7708 	char __user *uname;
7709 	u32 uinfo_len, uname_len, name_len;
7710 	int ret = 0;
7711 
7712 	uinfo = u64_to_user_ptr(attr->info.info);
7713 	uinfo_len = attr->info.info_len;
7714 
7715 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7716 	memset(&info, 0, sizeof(info));
7717 	if (copy_from_user(&info, uinfo, info_copy))
7718 		return -EFAULT;
7719 
7720 	info.id = btf->id;
7721 	ubtf = u64_to_user_ptr(info.btf);
7722 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7723 	if (copy_to_user(ubtf, btf->data, btf_copy))
7724 		return -EFAULT;
7725 	info.btf_size = btf->data_size;
7726 
7727 	info.kernel_btf = btf->kernel_btf;
7728 
7729 	uname = u64_to_user_ptr(info.name);
7730 	uname_len = info.name_len;
7731 	if (!uname ^ !uname_len)
7732 		return -EINVAL;
7733 
7734 	name_len = strlen(btf->name);
7735 	info.name_len = name_len;
7736 
7737 	if (uname) {
7738 		if (uname_len >= name_len + 1) {
7739 			if (copy_to_user(uname, btf->name, name_len + 1))
7740 				return -EFAULT;
7741 		} else {
7742 			char zero = '\0';
7743 
7744 			if (copy_to_user(uname, btf->name, uname_len - 1))
7745 				return -EFAULT;
7746 			if (put_user(zero, uname + uname_len - 1))
7747 				return -EFAULT;
7748 			/* let user-space know about too short buffer */
7749 			ret = -ENOSPC;
7750 		}
7751 	}
7752 
7753 	if (copy_to_user(uinfo, &info, info_copy) ||
7754 	    put_user(info_copy, &uattr->info.info_len))
7755 		return -EFAULT;
7756 
7757 	return ret;
7758 }
7759 
7760 int btf_get_fd_by_id(u32 id)
7761 {
7762 	struct btf *btf;
7763 	int fd;
7764 
7765 	rcu_read_lock();
7766 	btf = idr_find(&btf_idr, id);
7767 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7768 		btf = ERR_PTR(-ENOENT);
7769 	rcu_read_unlock();
7770 
7771 	if (IS_ERR(btf))
7772 		return PTR_ERR(btf);
7773 
7774 	fd = __btf_new_fd(btf);
7775 	if (fd < 0)
7776 		btf_put(btf);
7777 
7778 	return fd;
7779 }
7780 
7781 u32 btf_obj_id(const struct btf *btf)
7782 {
7783 	return btf->id;
7784 }
7785 
7786 bool btf_is_kernel(const struct btf *btf)
7787 {
7788 	return btf->kernel_btf;
7789 }
7790 
7791 bool btf_is_module(const struct btf *btf)
7792 {
7793 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7794 }
7795 
7796 enum {
7797 	BTF_MODULE_F_LIVE = (1 << 0),
7798 };
7799 
7800 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7801 struct btf_module {
7802 	struct list_head list;
7803 	struct module *module;
7804 	struct btf *btf;
7805 	struct bin_attribute *sysfs_attr;
7806 	int flags;
7807 };
7808 
7809 static LIST_HEAD(btf_modules);
7810 static DEFINE_MUTEX(btf_module_mutex);
7811 
7812 static ssize_t
7813 btf_module_read(struct file *file, struct kobject *kobj,
7814 		struct bin_attribute *bin_attr,
7815 		char *buf, loff_t off, size_t len)
7816 {
7817 	const struct btf *btf = bin_attr->private;
7818 
7819 	memcpy(buf, btf->data + off, len);
7820 	return len;
7821 }
7822 
7823 static void purge_cand_cache(struct btf *btf);
7824 
7825 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7826 			     void *module)
7827 {
7828 	struct btf_module *btf_mod, *tmp;
7829 	struct module *mod = module;
7830 	struct btf *btf;
7831 	int err = 0;
7832 
7833 	if (mod->btf_data_size == 0 ||
7834 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7835 	     op != MODULE_STATE_GOING))
7836 		goto out;
7837 
7838 	switch (op) {
7839 	case MODULE_STATE_COMING:
7840 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7841 		if (!btf_mod) {
7842 			err = -ENOMEM;
7843 			goto out;
7844 		}
7845 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
7846 				       mod->btf_base_data, mod->btf_base_data_size);
7847 		if (IS_ERR(btf)) {
7848 			kfree(btf_mod);
7849 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7850 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7851 					mod->name, PTR_ERR(btf));
7852 				err = PTR_ERR(btf);
7853 			} else {
7854 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7855 			}
7856 			goto out;
7857 		}
7858 		err = btf_alloc_id(btf);
7859 		if (err) {
7860 			btf_free(btf);
7861 			kfree(btf_mod);
7862 			goto out;
7863 		}
7864 
7865 		purge_cand_cache(NULL);
7866 		mutex_lock(&btf_module_mutex);
7867 		btf_mod->module = module;
7868 		btf_mod->btf = btf;
7869 		list_add(&btf_mod->list, &btf_modules);
7870 		mutex_unlock(&btf_module_mutex);
7871 
7872 		if (IS_ENABLED(CONFIG_SYSFS)) {
7873 			struct bin_attribute *attr;
7874 
7875 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7876 			if (!attr)
7877 				goto out;
7878 
7879 			sysfs_bin_attr_init(attr);
7880 			attr->attr.name = btf->name;
7881 			attr->attr.mode = 0444;
7882 			attr->size = btf->data_size;
7883 			attr->private = btf;
7884 			attr->read = btf_module_read;
7885 
7886 			err = sysfs_create_bin_file(btf_kobj, attr);
7887 			if (err) {
7888 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7889 					mod->name, err);
7890 				kfree(attr);
7891 				err = 0;
7892 				goto out;
7893 			}
7894 
7895 			btf_mod->sysfs_attr = attr;
7896 		}
7897 
7898 		break;
7899 	case MODULE_STATE_LIVE:
7900 		mutex_lock(&btf_module_mutex);
7901 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7902 			if (btf_mod->module != module)
7903 				continue;
7904 
7905 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7906 			break;
7907 		}
7908 		mutex_unlock(&btf_module_mutex);
7909 		break;
7910 	case MODULE_STATE_GOING:
7911 		mutex_lock(&btf_module_mutex);
7912 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7913 			if (btf_mod->module != module)
7914 				continue;
7915 
7916 			list_del(&btf_mod->list);
7917 			if (btf_mod->sysfs_attr)
7918 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7919 			purge_cand_cache(btf_mod->btf);
7920 			btf_put(btf_mod->btf);
7921 			kfree(btf_mod->sysfs_attr);
7922 			kfree(btf_mod);
7923 			break;
7924 		}
7925 		mutex_unlock(&btf_module_mutex);
7926 		break;
7927 	}
7928 out:
7929 	return notifier_from_errno(err);
7930 }
7931 
7932 static struct notifier_block btf_module_nb = {
7933 	.notifier_call = btf_module_notify,
7934 };
7935 
7936 static int __init btf_module_init(void)
7937 {
7938 	register_module_notifier(&btf_module_nb);
7939 	return 0;
7940 }
7941 
7942 fs_initcall(btf_module_init);
7943 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7944 
7945 struct module *btf_try_get_module(const struct btf *btf)
7946 {
7947 	struct module *res = NULL;
7948 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7949 	struct btf_module *btf_mod, *tmp;
7950 
7951 	mutex_lock(&btf_module_mutex);
7952 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7953 		if (btf_mod->btf != btf)
7954 			continue;
7955 
7956 		/* We must only consider module whose __init routine has
7957 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7958 		 * which is set from the notifier callback for
7959 		 * MODULE_STATE_LIVE.
7960 		 */
7961 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7962 			res = btf_mod->module;
7963 
7964 		break;
7965 	}
7966 	mutex_unlock(&btf_module_mutex);
7967 #endif
7968 
7969 	return res;
7970 }
7971 
7972 /* Returns struct btf corresponding to the struct module.
7973  * This function can return NULL or ERR_PTR.
7974  */
7975 static struct btf *btf_get_module_btf(const struct module *module)
7976 {
7977 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7978 	struct btf_module *btf_mod, *tmp;
7979 #endif
7980 	struct btf *btf = NULL;
7981 
7982 	if (!module) {
7983 		btf = bpf_get_btf_vmlinux();
7984 		if (!IS_ERR_OR_NULL(btf))
7985 			btf_get(btf);
7986 		return btf;
7987 	}
7988 
7989 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7990 	mutex_lock(&btf_module_mutex);
7991 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7992 		if (btf_mod->module != module)
7993 			continue;
7994 
7995 		btf_get(btf_mod->btf);
7996 		btf = btf_mod->btf;
7997 		break;
7998 	}
7999 	mutex_unlock(&btf_module_mutex);
8000 #endif
8001 
8002 	return btf;
8003 }
8004 
8005 static int check_btf_kconfigs(const struct module *module, const char *feature)
8006 {
8007 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8008 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8009 		return -ENOENT;
8010 	}
8011 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8012 		pr_warn("missing module BTF, cannot register %s\n", feature);
8013 	return 0;
8014 }
8015 
8016 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8017 {
8018 	struct btf *btf = NULL;
8019 	int btf_obj_fd = 0;
8020 	long ret;
8021 
8022 	if (flags)
8023 		return -EINVAL;
8024 
8025 	if (name_sz <= 1 || name[name_sz - 1])
8026 		return -EINVAL;
8027 
8028 	ret = bpf_find_btf_id(name, kind, &btf);
8029 	if (ret > 0 && btf_is_module(btf)) {
8030 		btf_obj_fd = __btf_new_fd(btf);
8031 		if (btf_obj_fd < 0) {
8032 			btf_put(btf);
8033 			return btf_obj_fd;
8034 		}
8035 		return ret | (((u64)btf_obj_fd) << 32);
8036 	}
8037 	if (ret > 0)
8038 		btf_put(btf);
8039 	return ret;
8040 }
8041 
8042 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8043 	.func		= bpf_btf_find_by_name_kind,
8044 	.gpl_only	= false,
8045 	.ret_type	= RET_INTEGER,
8046 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8047 	.arg2_type	= ARG_CONST_SIZE,
8048 	.arg3_type	= ARG_ANYTHING,
8049 	.arg4_type	= ARG_ANYTHING,
8050 };
8051 
8052 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8053 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8054 BTF_TRACING_TYPE_xxx
8055 #undef BTF_TRACING_TYPE
8056 
8057 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8058 				 const struct btf_type *func, u32 func_flags)
8059 {
8060 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8061 	const char *name, *sfx, *iter_name;
8062 	const struct btf_param *arg;
8063 	const struct btf_type *t;
8064 	char exp_name[128];
8065 	u32 nr_args;
8066 
8067 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8068 	if (!flags || (flags & (flags - 1)))
8069 		return -EINVAL;
8070 
8071 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8072 	nr_args = btf_type_vlen(func);
8073 	if (nr_args < 1)
8074 		return -EINVAL;
8075 
8076 	arg = &btf_params(func)[0];
8077 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8078 	if (!t || !btf_type_is_ptr(t))
8079 		return -EINVAL;
8080 	t = btf_type_skip_modifiers(btf, t->type, NULL);
8081 	if (!t || !__btf_type_is_struct(t))
8082 		return -EINVAL;
8083 
8084 	name = btf_name_by_offset(btf, t->name_off);
8085 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8086 		return -EINVAL;
8087 
8088 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8089 	 * fit nicely in stack slots
8090 	 */
8091 	if (t->size == 0 || (t->size % 8))
8092 		return -EINVAL;
8093 
8094 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8095 	 * naming pattern
8096 	 */
8097 	iter_name = name + sizeof(ITER_PREFIX) - 1;
8098 	if (flags & KF_ITER_NEW)
8099 		sfx = "new";
8100 	else if (flags & KF_ITER_NEXT)
8101 		sfx = "next";
8102 	else /* (flags & KF_ITER_DESTROY) */
8103 		sfx = "destroy";
8104 
8105 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8106 	if (strcmp(func_name, exp_name))
8107 		return -EINVAL;
8108 
8109 	/* only iter constructor should have extra arguments */
8110 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8111 		return -EINVAL;
8112 
8113 	if (flags & KF_ITER_NEXT) {
8114 		/* bpf_iter_<type>_next() should return pointer */
8115 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8116 		if (!t || !btf_type_is_ptr(t))
8117 			return -EINVAL;
8118 	}
8119 
8120 	if (flags & KF_ITER_DESTROY) {
8121 		/* bpf_iter_<type>_destroy() should return void */
8122 		t = btf_type_by_id(btf, func->type);
8123 		if (!t || !btf_type_is_void(t))
8124 			return -EINVAL;
8125 	}
8126 
8127 	return 0;
8128 }
8129 
8130 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8131 {
8132 	const struct btf_type *func;
8133 	const char *func_name;
8134 	int err;
8135 
8136 	/* any kfunc should be FUNC -> FUNC_PROTO */
8137 	func = btf_type_by_id(btf, func_id);
8138 	if (!func || !btf_type_is_func(func))
8139 		return -EINVAL;
8140 
8141 	/* sanity check kfunc name */
8142 	func_name = btf_name_by_offset(btf, func->name_off);
8143 	if (!func_name || !func_name[0])
8144 		return -EINVAL;
8145 
8146 	func = btf_type_by_id(btf, func->type);
8147 	if (!func || !btf_type_is_func_proto(func))
8148 		return -EINVAL;
8149 
8150 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8151 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8152 		if (err)
8153 			return err;
8154 	}
8155 
8156 	return 0;
8157 }
8158 
8159 /* Kernel Function (kfunc) BTF ID set registration API */
8160 
8161 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8162 				  const struct btf_kfunc_id_set *kset)
8163 {
8164 	struct btf_kfunc_hook_filter *hook_filter;
8165 	struct btf_id_set8 *add_set = kset->set;
8166 	bool vmlinux_set = !btf_is_module(btf);
8167 	bool add_filter = !!kset->filter;
8168 	struct btf_kfunc_set_tab *tab;
8169 	struct btf_id_set8 *set;
8170 	u32 set_cnt, i;
8171 	int ret;
8172 
8173 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8174 		ret = -EINVAL;
8175 		goto end;
8176 	}
8177 
8178 	if (!add_set->cnt)
8179 		return 0;
8180 
8181 	tab = btf->kfunc_set_tab;
8182 
8183 	if (tab && add_filter) {
8184 		u32 i;
8185 
8186 		hook_filter = &tab->hook_filters[hook];
8187 		for (i = 0; i < hook_filter->nr_filters; i++) {
8188 			if (hook_filter->filters[i] == kset->filter) {
8189 				add_filter = false;
8190 				break;
8191 			}
8192 		}
8193 
8194 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8195 			ret = -E2BIG;
8196 			goto end;
8197 		}
8198 	}
8199 
8200 	if (!tab) {
8201 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8202 		if (!tab)
8203 			return -ENOMEM;
8204 		btf->kfunc_set_tab = tab;
8205 	}
8206 
8207 	set = tab->sets[hook];
8208 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8209 	 * for module sets.
8210 	 */
8211 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8212 		ret = -EINVAL;
8213 		goto end;
8214 	}
8215 
8216 	/* In case of vmlinux sets, there may be more than one set being
8217 	 * registered per hook. To create a unified set, we allocate a new set
8218 	 * and concatenate all individual sets being registered. While each set
8219 	 * is individually sorted, they may become unsorted when concatenated,
8220 	 * hence re-sorting the final set again is required to make binary
8221 	 * searching the set using btf_id_set8_contains function work.
8222 	 *
8223 	 * For module sets, we need to allocate as we may need to relocate
8224 	 * BTF ids.
8225 	 */
8226 	set_cnt = set ? set->cnt : 0;
8227 
8228 	if (set_cnt > U32_MAX - add_set->cnt) {
8229 		ret = -EOVERFLOW;
8230 		goto end;
8231 	}
8232 
8233 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8234 		ret = -E2BIG;
8235 		goto end;
8236 	}
8237 
8238 	/* Grow set */
8239 	set = krealloc(tab->sets[hook],
8240 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8241 		       GFP_KERNEL | __GFP_NOWARN);
8242 	if (!set) {
8243 		ret = -ENOMEM;
8244 		goto end;
8245 	}
8246 
8247 	/* For newly allocated set, initialize set->cnt to 0 */
8248 	if (!tab->sets[hook])
8249 		set->cnt = 0;
8250 	tab->sets[hook] = set;
8251 
8252 	/* Concatenate the two sets */
8253 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8254 	/* Now that the set is copied, update with relocated BTF ids */
8255 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8256 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8257 
8258 	set->cnt += add_set->cnt;
8259 
8260 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8261 
8262 	if (add_filter) {
8263 		hook_filter = &tab->hook_filters[hook];
8264 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8265 	}
8266 	return 0;
8267 end:
8268 	btf_free_kfunc_set_tab(btf);
8269 	return ret;
8270 }
8271 
8272 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8273 					enum btf_kfunc_hook hook,
8274 					u32 kfunc_btf_id,
8275 					const struct bpf_prog *prog)
8276 {
8277 	struct btf_kfunc_hook_filter *hook_filter;
8278 	struct btf_id_set8 *set;
8279 	u32 *id, i;
8280 
8281 	if (hook >= BTF_KFUNC_HOOK_MAX)
8282 		return NULL;
8283 	if (!btf->kfunc_set_tab)
8284 		return NULL;
8285 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8286 	for (i = 0; i < hook_filter->nr_filters; i++) {
8287 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8288 			return NULL;
8289 	}
8290 	set = btf->kfunc_set_tab->sets[hook];
8291 	if (!set)
8292 		return NULL;
8293 	id = btf_id_set8_contains(set, kfunc_btf_id);
8294 	if (!id)
8295 		return NULL;
8296 	/* The flags for BTF ID are located next to it */
8297 	return id + 1;
8298 }
8299 
8300 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8301 {
8302 	switch (prog_type) {
8303 	case BPF_PROG_TYPE_UNSPEC:
8304 		return BTF_KFUNC_HOOK_COMMON;
8305 	case BPF_PROG_TYPE_XDP:
8306 		return BTF_KFUNC_HOOK_XDP;
8307 	case BPF_PROG_TYPE_SCHED_CLS:
8308 		return BTF_KFUNC_HOOK_TC;
8309 	case BPF_PROG_TYPE_STRUCT_OPS:
8310 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8311 	case BPF_PROG_TYPE_TRACING:
8312 	case BPF_PROG_TYPE_LSM:
8313 		return BTF_KFUNC_HOOK_TRACING;
8314 	case BPF_PROG_TYPE_SYSCALL:
8315 		return BTF_KFUNC_HOOK_SYSCALL;
8316 	case BPF_PROG_TYPE_CGROUP_SKB:
8317 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8318 		return BTF_KFUNC_HOOK_CGROUP_SKB;
8319 	case BPF_PROG_TYPE_SCHED_ACT:
8320 		return BTF_KFUNC_HOOK_SCHED_ACT;
8321 	case BPF_PROG_TYPE_SK_SKB:
8322 		return BTF_KFUNC_HOOK_SK_SKB;
8323 	case BPF_PROG_TYPE_SOCKET_FILTER:
8324 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8325 	case BPF_PROG_TYPE_LWT_OUT:
8326 	case BPF_PROG_TYPE_LWT_IN:
8327 	case BPF_PROG_TYPE_LWT_XMIT:
8328 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8329 		return BTF_KFUNC_HOOK_LWT;
8330 	case BPF_PROG_TYPE_NETFILTER:
8331 		return BTF_KFUNC_HOOK_NETFILTER;
8332 	case BPF_PROG_TYPE_KPROBE:
8333 		return BTF_KFUNC_HOOK_KPROBE;
8334 	default:
8335 		return BTF_KFUNC_HOOK_MAX;
8336 	}
8337 }
8338 
8339 /* Caution:
8340  * Reference to the module (obtained using btf_try_get_module) corresponding to
8341  * the struct btf *MUST* be held when calling this function from verifier
8342  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8343  * keeping the reference for the duration of the call provides the necessary
8344  * protection for looking up a well-formed btf->kfunc_set_tab.
8345  */
8346 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8347 			       u32 kfunc_btf_id,
8348 			       const struct bpf_prog *prog)
8349 {
8350 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8351 	enum btf_kfunc_hook hook;
8352 	u32 *kfunc_flags;
8353 
8354 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8355 	if (kfunc_flags)
8356 		return kfunc_flags;
8357 
8358 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8359 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8360 }
8361 
8362 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8363 				const struct bpf_prog *prog)
8364 {
8365 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8366 }
8367 
8368 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8369 				       const struct btf_kfunc_id_set *kset)
8370 {
8371 	struct btf *btf;
8372 	int ret, i;
8373 
8374 	btf = btf_get_module_btf(kset->owner);
8375 	if (!btf)
8376 		return check_btf_kconfigs(kset->owner, "kfunc");
8377 	if (IS_ERR(btf))
8378 		return PTR_ERR(btf);
8379 
8380 	for (i = 0; i < kset->set->cnt; i++) {
8381 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8382 					     kset->set->pairs[i].flags);
8383 		if (ret)
8384 			goto err_out;
8385 	}
8386 
8387 	ret = btf_populate_kfunc_set(btf, hook, kset);
8388 
8389 err_out:
8390 	btf_put(btf);
8391 	return ret;
8392 }
8393 
8394 /* This function must be invoked only from initcalls/module init functions */
8395 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8396 			      const struct btf_kfunc_id_set *kset)
8397 {
8398 	enum btf_kfunc_hook hook;
8399 
8400 	/* All kfuncs need to be tagged as such in BTF.
8401 	 * WARN() for initcall registrations that do not check errors.
8402 	 */
8403 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8404 		WARN_ON(!kset->owner);
8405 		return -EINVAL;
8406 	}
8407 
8408 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8409 	return __register_btf_kfunc_id_set(hook, kset);
8410 }
8411 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8412 
8413 /* This function must be invoked only from initcalls/module init functions */
8414 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8415 {
8416 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8417 }
8418 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8419 
8420 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8421 {
8422 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8423 	struct btf_id_dtor_kfunc *dtor;
8424 
8425 	if (!tab)
8426 		return -ENOENT;
8427 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8428 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8429 	 */
8430 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8431 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8432 	if (!dtor)
8433 		return -ENOENT;
8434 	return dtor->kfunc_btf_id;
8435 }
8436 
8437 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8438 {
8439 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8440 	const struct btf_param *args;
8441 	s32 dtor_btf_id;
8442 	u32 nr_args, i;
8443 
8444 	for (i = 0; i < cnt; i++) {
8445 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8446 
8447 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8448 		if (!dtor_func || !btf_type_is_func(dtor_func))
8449 			return -EINVAL;
8450 
8451 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8452 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8453 			return -EINVAL;
8454 
8455 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8456 		t = btf_type_by_id(btf, dtor_func_proto->type);
8457 		if (!t || !btf_type_is_void(t))
8458 			return -EINVAL;
8459 
8460 		nr_args = btf_type_vlen(dtor_func_proto);
8461 		if (nr_args != 1)
8462 			return -EINVAL;
8463 		args = btf_params(dtor_func_proto);
8464 		t = btf_type_by_id(btf, args[0].type);
8465 		/* Allow any pointer type, as width on targets Linux supports
8466 		 * will be same for all pointer types (i.e. sizeof(void *))
8467 		 */
8468 		if (!t || !btf_type_is_ptr(t))
8469 			return -EINVAL;
8470 	}
8471 	return 0;
8472 }
8473 
8474 /* This function must be invoked only from initcalls/module init functions */
8475 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8476 				struct module *owner)
8477 {
8478 	struct btf_id_dtor_kfunc_tab *tab;
8479 	struct btf *btf;
8480 	u32 tab_cnt, i;
8481 	int ret;
8482 
8483 	btf = btf_get_module_btf(owner);
8484 	if (!btf)
8485 		return check_btf_kconfigs(owner, "dtor kfuncs");
8486 	if (IS_ERR(btf))
8487 		return PTR_ERR(btf);
8488 
8489 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8490 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8491 		ret = -E2BIG;
8492 		goto end;
8493 	}
8494 
8495 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8496 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8497 	if (ret < 0)
8498 		goto end;
8499 
8500 	tab = btf->dtor_kfunc_tab;
8501 	/* Only one call allowed for modules */
8502 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8503 		ret = -EINVAL;
8504 		goto end;
8505 	}
8506 
8507 	tab_cnt = tab ? tab->cnt : 0;
8508 	if (tab_cnt > U32_MAX - add_cnt) {
8509 		ret = -EOVERFLOW;
8510 		goto end;
8511 	}
8512 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8513 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8514 		ret = -E2BIG;
8515 		goto end;
8516 	}
8517 
8518 	tab = krealloc(btf->dtor_kfunc_tab,
8519 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8520 		       GFP_KERNEL | __GFP_NOWARN);
8521 	if (!tab) {
8522 		ret = -ENOMEM;
8523 		goto end;
8524 	}
8525 
8526 	if (!btf->dtor_kfunc_tab)
8527 		tab->cnt = 0;
8528 	btf->dtor_kfunc_tab = tab;
8529 
8530 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8531 
8532 	/* remap BTF ids based on BTF relocation (if any) */
8533 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8534 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8535 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8536 	}
8537 
8538 	tab->cnt += add_cnt;
8539 
8540 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8541 
8542 end:
8543 	if (ret)
8544 		btf_free_dtor_kfunc_tab(btf);
8545 	btf_put(btf);
8546 	return ret;
8547 }
8548 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8549 
8550 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8551 
8552 /* Check local and target types for compatibility. This check is used for
8553  * type-based CO-RE relocations and follow slightly different rules than
8554  * field-based relocations. This function assumes that root types were already
8555  * checked for name match. Beyond that initial root-level name check, names
8556  * are completely ignored. Compatibility rules are as follows:
8557  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8558  *     kind should match for local and target types (i.e., STRUCT is not
8559  *     compatible with UNION);
8560  *   - for ENUMs/ENUM64s, the size is ignored;
8561  *   - for INT, size and signedness are ignored;
8562  *   - for ARRAY, dimensionality is ignored, element types are checked for
8563  *     compatibility recursively;
8564  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8565  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8566  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8567  *     number of input args and compatible return and argument types.
8568  * These rules are not set in stone and probably will be adjusted as we get
8569  * more experience with using BPF CO-RE relocations.
8570  */
8571 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8572 			      const struct btf *targ_btf, __u32 targ_id)
8573 {
8574 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8575 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8576 }
8577 
8578 #define MAX_TYPES_MATCH_DEPTH 2
8579 
8580 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8581 			 const struct btf *targ_btf, u32 targ_id)
8582 {
8583 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8584 				      MAX_TYPES_MATCH_DEPTH);
8585 }
8586 
8587 static bool bpf_core_is_flavor_sep(const char *s)
8588 {
8589 	/* check X___Y name pattern, where X and Y are not underscores */
8590 	return s[0] != '_' &&				      /* X */
8591 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8592 	       s[4] != '_';				      /* Y */
8593 }
8594 
8595 size_t bpf_core_essential_name_len(const char *name)
8596 {
8597 	size_t n = strlen(name);
8598 	int i;
8599 
8600 	for (i = n - 5; i >= 0; i--) {
8601 		if (bpf_core_is_flavor_sep(name + i))
8602 			return i + 1;
8603 	}
8604 	return n;
8605 }
8606 
8607 static void bpf_free_cands(struct bpf_cand_cache *cands)
8608 {
8609 	if (!cands->cnt)
8610 		/* empty candidate array was allocated on stack */
8611 		return;
8612 	kfree(cands);
8613 }
8614 
8615 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8616 {
8617 	kfree(cands->name);
8618 	kfree(cands);
8619 }
8620 
8621 #define VMLINUX_CAND_CACHE_SIZE 31
8622 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8623 
8624 #define MODULE_CAND_CACHE_SIZE 31
8625 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8626 
8627 static void __print_cand_cache(struct bpf_verifier_log *log,
8628 			       struct bpf_cand_cache **cache,
8629 			       int cache_size)
8630 {
8631 	struct bpf_cand_cache *cc;
8632 	int i, j;
8633 
8634 	for (i = 0; i < cache_size; i++) {
8635 		cc = cache[i];
8636 		if (!cc)
8637 			continue;
8638 		bpf_log(log, "[%d]%s(", i, cc->name);
8639 		for (j = 0; j < cc->cnt; j++) {
8640 			bpf_log(log, "%d", cc->cands[j].id);
8641 			if (j < cc->cnt - 1)
8642 				bpf_log(log, " ");
8643 		}
8644 		bpf_log(log, "), ");
8645 	}
8646 }
8647 
8648 static void print_cand_cache(struct bpf_verifier_log *log)
8649 {
8650 	mutex_lock(&cand_cache_mutex);
8651 	bpf_log(log, "vmlinux_cand_cache:");
8652 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8653 	bpf_log(log, "\nmodule_cand_cache:");
8654 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8655 	bpf_log(log, "\n");
8656 	mutex_unlock(&cand_cache_mutex);
8657 }
8658 
8659 static u32 hash_cands(struct bpf_cand_cache *cands)
8660 {
8661 	return jhash(cands->name, cands->name_len, 0);
8662 }
8663 
8664 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8665 					       struct bpf_cand_cache **cache,
8666 					       int cache_size)
8667 {
8668 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8669 
8670 	if (cc && cc->name_len == cands->name_len &&
8671 	    !strncmp(cc->name, cands->name, cands->name_len))
8672 		return cc;
8673 	return NULL;
8674 }
8675 
8676 static size_t sizeof_cands(int cnt)
8677 {
8678 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8679 }
8680 
8681 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8682 						  struct bpf_cand_cache **cache,
8683 						  int cache_size)
8684 {
8685 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8686 
8687 	if (*cc) {
8688 		bpf_free_cands_from_cache(*cc);
8689 		*cc = NULL;
8690 	}
8691 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8692 	if (!new_cands) {
8693 		bpf_free_cands(cands);
8694 		return ERR_PTR(-ENOMEM);
8695 	}
8696 	/* strdup the name, since it will stay in cache.
8697 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8698 	 */
8699 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8700 	bpf_free_cands(cands);
8701 	if (!new_cands->name) {
8702 		kfree(new_cands);
8703 		return ERR_PTR(-ENOMEM);
8704 	}
8705 	*cc = new_cands;
8706 	return new_cands;
8707 }
8708 
8709 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8710 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8711 			       int cache_size)
8712 {
8713 	struct bpf_cand_cache *cc;
8714 	int i, j;
8715 
8716 	for (i = 0; i < cache_size; i++) {
8717 		cc = cache[i];
8718 		if (!cc)
8719 			continue;
8720 		if (!btf) {
8721 			/* when new module is loaded purge all of module_cand_cache,
8722 			 * since new module might have candidates with the name
8723 			 * that matches cached cands.
8724 			 */
8725 			bpf_free_cands_from_cache(cc);
8726 			cache[i] = NULL;
8727 			continue;
8728 		}
8729 		/* when module is unloaded purge cache entries
8730 		 * that match module's btf
8731 		 */
8732 		for (j = 0; j < cc->cnt; j++)
8733 			if (cc->cands[j].btf == btf) {
8734 				bpf_free_cands_from_cache(cc);
8735 				cache[i] = NULL;
8736 				break;
8737 			}
8738 	}
8739 
8740 }
8741 
8742 static void purge_cand_cache(struct btf *btf)
8743 {
8744 	mutex_lock(&cand_cache_mutex);
8745 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8746 	mutex_unlock(&cand_cache_mutex);
8747 }
8748 #endif
8749 
8750 static struct bpf_cand_cache *
8751 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8752 		   int targ_start_id)
8753 {
8754 	struct bpf_cand_cache *new_cands;
8755 	const struct btf_type *t;
8756 	const char *targ_name;
8757 	size_t targ_essent_len;
8758 	int n, i;
8759 
8760 	n = btf_nr_types(targ_btf);
8761 	for (i = targ_start_id; i < n; i++) {
8762 		t = btf_type_by_id(targ_btf, i);
8763 		if (btf_kind(t) != cands->kind)
8764 			continue;
8765 
8766 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8767 		if (!targ_name)
8768 			continue;
8769 
8770 		/* the resched point is before strncmp to make sure that search
8771 		 * for non-existing name will have a chance to schedule().
8772 		 */
8773 		cond_resched();
8774 
8775 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8776 			continue;
8777 
8778 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8779 		if (targ_essent_len != cands->name_len)
8780 			continue;
8781 
8782 		/* most of the time there is only one candidate for a given kind+name pair */
8783 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8784 		if (!new_cands) {
8785 			bpf_free_cands(cands);
8786 			return ERR_PTR(-ENOMEM);
8787 		}
8788 
8789 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8790 		bpf_free_cands(cands);
8791 		cands = new_cands;
8792 		cands->cands[cands->cnt].btf = targ_btf;
8793 		cands->cands[cands->cnt].id = i;
8794 		cands->cnt++;
8795 	}
8796 	return cands;
8797 }
8798 
8799 static struct bpf_cand_cache *
8800 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8801 {
8802 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8803 	const struct btf *local_btf = ctx->btf;
8804 	const struct btf_type *local_type;
8805 	const struct btf *main_btf;
8806 	size_t local_essent_len;
8807 	struct btf *mod_btf;
8808 	const char *name;
8809 	int id;
8810 
8811 	main_btf = bpf_get_btf_vmlinux();
8812 	if (IS_ERR(main_btf))
8813 		return ERR_CAST(main_btf);
8814 	if (!main_btf)
8815 		return ERR_PTR(-EINVAL);
8816 
8817 	local_type = btf_type_by_id(local_btf, local_type_id);
8818 	if (!local_type)
8819 		return ERR_PTR(-EINVAL);
8820 
8821 	name = btf_name_by_offset(local_btf, local_type->name_off);
8822 	if (str_is_empty(name))
8823 		return ERR_PTR(-EINVAL);
8824 	local_essent_len = bpf_core_essential_name_len(name);
8825 
8826 	cands = &local_cand;
8827 	cands->name = name;
8828 	cands->kind = btf_kind(local_type);
8829 	cands->name_len = local_essent_len;
8830 
8831 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8832 	/* cands is a pointer to stack here */
8833 	if (cc) {
8834 		if (cc->cnt)
8835 			return cc;
8836 		goto check_modules;
8837 	}
8838 
8839 	/* Attempt to find target candidates in vmlinux BTF first */
8840 	cands = bpf_core_add_cands(cands, main_btf, 1);
8841 	if (IS_ERR(cands))
8842 		return ERR_CAST(cands);
8843 
8844 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8845 
8846 	/* populate cache even when cands->cnt == 0 */
8847 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8848 	if (IS_ERR(cc))
8849 		return ERR_CAST(cc);
8850 
8851 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8852 	if (cc->cnt)
8853 		return cc;
8854 
8855 check_modules:
8856 	/* cands is a pointer to stack here and cands->cnt == 0 */
8857 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8858 	if (cc)
8859 		/* if cache has it return it even if cc->cnt == 0 */
8860 		return cc;
8861 
8862 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8863 	spin_lock_bh(&btf_idr_lock);
8864 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8865 		if (!btf_is_module(mod_btf))
8866 			continue;
8867 		/* linear search could be slow hence unlock/lock
8868 		 * the IDR to avoiding holding it for too long
8869 		 */
8870 		btf_get(mod_btf);
8871 		spin_unlock_bh(&btf_idr_lock);
8872 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8873 		btf_put(mod_btf);
8874 		if (IS_ERR(cands))
8875 			return ERR_CAST(cands);
8876 		spin_lock_bh(&btf_idr_lock);
8877 	}
8878 	spin_unlock_bh(&btf_idr_lock);
8879 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8880 	 * or pointer to stack if cands->cnd == 0.
8881 	 * Copy it into the cache even when cands->cnt == 0 and
8882 	 * return the result.
8883 	 */
8884 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8885 }
8886 
8887 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8888 		   int relo_idx, void *insn)
8889 {
8890 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8891 	struct bpf_core_cand_list cands = {};
8892 	struct bpf_core_relo_res targ_res;
8893 	struct bpf_core_spec *specs;
8894 	int err;
8895 
8896 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8897 	 * into arrays of btf_ids of struct fields and array indices.
8898 	 */
8899 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8900 	if (!specs)
8901 		return -ENOMEM;
8902 
8903 	if (need_cands) {
8904 		struct bpf_cand_cache *cc;
8905 		int i;
8906 
8907 		mutex_lock(&cand_cache_mutex);
8908 		cc = bpf_core_find_cands(ctx, relo->type_id);
8909 		if (IS_ERR(cc)) {
8910 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8911 				relo->type_id);
8912 			err = PTR_ERR(cc);
8913 			goto out;
8914 		}
8915 		if (cc->cnt) {
8916 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8917 			if (!cands.cands) {
8918 				err = -ENOMEM;
8919 				goto out;
8920 			}
8921 		}
8922 		for (i = 0; i < cc->cnt; i++) {
8923 			bpf_log(ctx->log,
8924 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8925 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8926 			cands.cands[i].btf = cc->cands[i].btf;
8927 			cands.cands[i].id = cc->cands[i].id;
8928 		}
8929 		cands.len = cc->cnt;
8930 		/* cand_cache_mutex needs to span the cache lookup and
8931 		 * copy of btf pointer into bpf_core_cand_list,
8932 		 * since module can be unloaded while bpf_core_calc_relo_insn
8933 		 * is working with module's btf.
8934 		 */
8935 	}
8936 
8937 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8938 				      &targ_res);
8939 	if (err)
8940 		goto out;
8941 
8942 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8943 				  &targ_res);
8944 
8945 out:
8946 	kfree(specs);
8947 	if (need_cands) {
8948 		kfree(cands.cands);
8949 		mutex_unlock(&cand_cache_mutex);
8950 		if (ctx->log->level & BPF_LOG_LEVEL2)
8951 			print_cand_cache(ctx->log);
8952 	}
8953 	return err;
8954 }
8955 
8956 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8957 				const struct bpf_reg_state *reg,
8958 				const char *field_name, u32 btf_id, const char *suffix)
8959 {
8960 	struct btf *btf = reg->btf;
8961 	const struct btf_type *walk_type, *safe_type;
8962 	const char *tname;
8963 	char safe_tname[64];
8964 	long ret, safe_id;
8965 	const struct btf_member *member;
8966 	u32 i;
8967 
8968 	walk_type = btf_type_by_id(btf, reg->btf_id);
8969 	if (!walk_type)
8970 		return false;
8971 
8972 	tname = btf_name_by_offset(btf, walk_type->name_off);
8973 
8974 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8975 	if (ret >= sizeof(safe_tname))
8976 		return false;
8977 
8978 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8979 	if (safe_id < 0)
8980 		return false;
8981 
8982 	safe_type = btf_type_by_id(btf, safe_id);
8983 	if (!safe_type)
8984 		return false;
8985 
8986 	for_each_member(i, safe_type, member) {
8987 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8988 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8989 		u32 id;
8990 
8991 		if (!btf_type_is_ptr(mtype))
8992 			continue;
8993 
8994 		btf_type_skip_modifiers(btf, mtype->type, &id);
8995 		/* If we match on both type and name, the field is considered trusted. */
8996 		if (btf_id == id && !strcmp(field_name, m_name))
8997 			return true;
8998 	}
8999 
9000 	return false;
9001 }
9002 
9003 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9004 			       const struct btf *reg_btf, u32 reg_id,
9005 			       const struct btf *arg_btf, u32 arg_id)
9006 {
9007 	const char *reg_name, *arg_name, *search_needle;
9008 	const struct btf_type *reg_type, *arg_type;
9009 	int reg_len, arg_len, cmp_len;
9010 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9011 
9012 	reg_type = btf_type_by_id(reg_btf, reg_id);
9013 	if (!reg_type)
9014 		return false;
9015 
9016 	arg_type = btf_type_by_id(arg_btf, arg_id);
9017 	if (!arg_type)
9018 		return false;
9019 
9020 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9021 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9022 
9023 	reg_len = strlen(reg_name);
9024 	arg_len = strlen(arg_name);
9025 
9026 	/* Exactly one of the two type names may be suffixed with ___init, so
9027 	 * if the strings are the same size, they can't possibly be no-cast
9028 	 * aliases of one another. If you have two of the same type names, e.g.
9029 	 * they're both nf_conn___init, it would be improper to return true
9030 	 * because they are _not_ no-cast aliases, they are the same type.
9031 	 */
9032 	if (reg_len == arg_len)
9033 		return false;
9034 
9035 	/* Either of the two names must be the other name, suffixed with ___init. */
9036 	if ((reg_len != arg_len + pattern_len) &&
9037 	    (arg_len != reg_len + pattern_len))
9038 		return false;
9039 
9040 	if (reg_len < arg_len) {
9041 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9042 		cmp_len = reg_len;
9043 	} else {
9044 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9045 		cmp_len = arg_len;
9046 	}
9047 
9048 	if (!search_needle)
9049 		return false;
9050 
9051 	/* ___init suffix must come at the end of the name */
9052 	if (*(search_needle + pattern_len) != '\0')
9053 		return false;
9054 
9055 	return !strncmp(reg_name, arg_name, cmp_len);
9056 }
9057 
9058 #ifdef CONFIG_BPF_JIT
9059 static int
9060 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9061 		   struct bpf_verifier_log *log)
9062 {
9063 	struct btf_struct_ops_tab *tab, *new_tab;
9064 	int i, err;
9065 
9066 	tab = btf->struct_ops_tab;
9067 	if (!tab) {
9068 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9069 			      GFP_KERNEL);
9070 		if (!tab)
9071 			return -ENOMEM;
9072 		tab->capacity = 4;
9073 		btf->struct_ops_tab = tab;
9074 	}
9075 
9076 	for (i = 0; i < tab->cnt; i++)
9077 		if (tab->ops[i].st_ops == st_ops)
9078 			return -EEXIST;
9079 
9080 	if (tab->cnt == tab->capacity) {
9081 		new_tab = krealloc(tab,
9082 				   offsetof(struct btf_struct_ops_tab,
9083 					    ops[tab->capacity * 2]),
9084 				   GFP_KERNEL);
9085 		if (!new_tab)
9086 			return -ENOMEM;
9087 		tab = new_tab;
9088 		tab->capacity *= 2;
9089 		btf->struct_ops_tab = tab;
9090 	}
9091 
9092 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9093 
9094 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9095 	if (err)
9096 		return err;
9097 
9098 	btf->struct_ops_tab->cnt++;
9099 
9100 	return 0;
9101 }
9102 
9103 const struct bpf_struct_ops_desc *
9104 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9105 {
9106 	const struct bpf_struct_ops_desc *st_ops_list;
9107 	unsigned int i;
9108 	u32 cnt;
9109 
9110 	if (!value_id)
9111 		return NULL;
9112 	if (!btf->struct_ops_tab)
9113 		return NULL;
9114 
9115 	cnt = btf->struct_ops_tab->cnt;
9116 	st_ops_list = btf->struct_ops_tab->ops;
9117 	for (i = 0; i < cnt; i++) {
9118 		if (st_ops_list[i].value_id == value_id)
9119 			return &st_ops_list[i];
9120 	}
9121 
9122 	return NULL;
9123 }
9124 
9125 const struct bpf_struct_ops_desc *
9126 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9127 {
9128 	const struct bpf_struct_ops_desc *st_ops_list;
9129 	unsigned int i;
9130 	u32 cnt;
9131 
9132 	if (!type_id)
9133 		return NULL;
9134 	if (!btf->struct_ops_tab)
9135 		return NULL;
9136 
9137 	cnt = btf->struct_ops_tab->cnt;
9138 	st_ops_list = btf->struct_ops_tab->ops;
9139 	for (i = 0; i < cnt; i++) {
9140 		if (st_ops_list[i].type_id == type_id)
9141 			return &st_ops_list[i];
9142 	}
9143 
9144 	return NULL;
9145 }
9146 
9147 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9148 {
9149 	struct bpf_verifier_log *log;
9150 	struct btf *btf;
9151 	int err = 0;
9152 
9153 	btf = btf_get_module_btf(st_ops->owner);
9154 	if (!btf)
9155 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9156 	if (IS_ERR(btf))
9157 		return PTR_ERR(btf);
9158 
9159 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9160 	if (!log) {
9161 		err = -ENOMEM;
9162 		goto errout;
9163 	}
9164 
9165 	log->level = BPF_LOG_KERNEL;
9166 
9167 	err = btf_add_struct_ops(btf, st_ops, log);
9168 
9169 errout:
9170 	kfree(log);
9171 	btf_put(btf);
9172 
9173 	return err;
9174 }
9175 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9176 #endif
9177 
9178 bool btf_param_match_suffix(const struct btf *btf,
9179 			    const struct btf_param *arg,
9180 			    const char *suffix)
9181 {
9182 	int suffix_len = strlen(suffix), len;
9183 	const char *param_name;
9184 
9185 	/* In the future, this can be ported to use BTF tagging */
9186 	param_name = btf_name_by_offset(btf, arg->name_off);
9187 	if (str_is_empty(param_name))
9188 		return false;
9189 	len = strlen(param_name);
9190 	if (len <= suffix_len)
9191 		return false;
9192 	param_name += len - suffix_len;
9193 	return !strncmp(param_name, suffix, suffix_len);
9194 }
9195