1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 #include "../tools/lib/bpf/relo_core.h" 29 30 /* BTF (BPF Type Format) is the meta data format which describes 31 * the data types of BPF program/map. Hence, it basically focus 32 * on the C programming language which the modern BPF is primary 33 * using. 34 * 35 * ELF Section: 36 * ~~~~~~~~~~~ 37 * The BTF data is stored under the ".BTF" ELF section 38 * 39 * struct btf_type: 40 * ~~~~~~~~~~~~~~~ 41 * Each 'struct btf_type' object describes a C data type. 42 * Depending on the type it is describing, a 'struct btf_type' 43 * object may be followed by more data. F.e. 44 * To describe an array, 'struct btf_type' is followed by 45 * 'struct btf_array'. 46 * 47 * 'struct btf_type' and any extra data following it are 48 * 4 bytes aligned. 49 * 50 * Type section: 51 * ~~~~~~~~~~~~~ 52 * The BTF type section contains a list of 'struct btf_type' objects. 53 * Each one describes a C type. Recall from the above section 54 * that a 'struct btf_type' object could be immediately followed by extra 55 * data in order to describe some particular C types. 56 * 57 * type_id: 58 * ~~~~~~~ 59 * Each btf_type object is identified by a type_id. The type_id 60 * is implicitly implied by the location of the btf_type object in 61 * the BTF type section. The first one has type_id 1. The second 62 * one has type_id 2...etc. Hence, an earlier btf_type has 63 * a smaller type_id. 64 * 65 * A btf_type object may refer to another btf_type object by using 66 * type_id (i.e. the "type" in the "struct btf_type"). 67 * 68 * NOTE that we cannot assume any reference-order. 69 * A btf_type object can refer to an earlier btf_type object 70 * but it can also refer to a later btf_type object. 71 * 72 * For example, to describe "const void *". A btf_type 73 * object describing "const" may refer to another btf_type 74 * object describing "void *". This type-reference is done 75 * by specifying type_id: 76 * 77 * [1] CONST (anon) type_id=2 78 * [2] PTR (anon) type_id=0 79 * 80 * The above is the btf_verifier debug log: 81 * - Each line started with "[?]" is a btf_type object 82 * - [?] is the type_id of the btf_type object. 83 * - CONST/PTR is the BTF_KIND_XXX 84 * - "(anon)" is the name of the type. It just 85 * happens that CONST and PTR has no name. 86 * - type_id=XXX is the 'u32 type' in btf_type 87 * 88 * NOTE: "void" has type_id 0 89 * 90 * String section: 91 * ~~~~~~~~~~~~~~ 92 * The BTF string section contains the names used by the type section. 93 * Each string is referred by an "offset" from the beginning of the 94 * string section. 95 * 96 * Each string is '\0' terminated. 97 * 98 * The first character in the string section must be '\0' 99 * which is used to mean 'anonymous'. Some btf_type may not 100 * have a name. 101 */ 102 103 /* BTF verification: 104 * 105 * To verify BTF data, two passes are needed. 106 * 107 * Pass #1 108 * ~~~~~~~ 109 * The first pass is to collect all btf_type objects to 110 * an array: "btf->types". 111 * 112 * Depending on the C type that a btf_type is describing, 113 * a btf_type may be followed by extra data. We don't know 114 * how many btf_type is there, and more importantly we don't 115 * know where each btf_type is located in the type section. 116 * 117 * Without knowing the location of each type_id, most verifications 118 * cannot be done. e.g. an earlier btf_type may refer to a later 119 * btf_type (recall the "const void *" above), so we cannot 120 * check this type-reference in the first pass. 121 * 122 * In the first pass, it still does some verifications (e.g. 123 * checking the name is a valid offset to the string section). 124 * 125 * Pass #2 126 * ~~~~~~~ 127 * The main focus is to resolve a btf_type that is referring 128 * to another type. 129 * 130 * We have to ensure the referring type: 131 * 1) does exist in the BTF (i.e. in btf->types[]) 132 * 2) does not cause a loop: 133 * struct A { 134 * struct B b; 135 * }; 136 * 137 * struct B { 138 * struct A a; 139 * }; 140 * 141 * btf_type_needs_resolve() decides if a btf_type needs 142 * to be resolved. 143 * 144 * The needs_resolve type implements the "resolve()" ops which 145 * essentially does a DFS and detects backedge. 146 * 147 * During resolve (or DFS), different C types have different 148 * "RESOLVED" conditions. 149 * 150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 151 * members because a member is always referring to another 152 * type. A struct's member can be treated as "RESOLVED" if 153 * it is referring to a BTF_KIND_PTR. Otherwise, the 154 * following valid C struct would be rejected: 155 * 156 * struct A { 157 * int m; 158 * struct A *a; 159 * }; 160 * 161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 162 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 163 * detect a pointer loop, e.g.: 164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 165 * ^ | 166 * +-----------------------------------------+ 167 * 168 */ 169 170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 174 #define BITS_ROUNDUP_BYTES(bits) \ 175 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 176 177 #define BTF_INFO_MASK 0x9f00ffff 178 #define BTF_INT_MASK 0x0fffffff 179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 181 182 /* 16MB for 64k structs and each has 16 members and 183 * a few MB spaces for the string section. 184 * The hard limit is S32_MAX. 185 */ 186 #define BTF_MAX_SIZE (16 * 1024 * 1024) 187 188 #define for_each_member_from(i, from, struct_type, member) \ 189 for (i = from, member = btf_type_member(struct_type) + from; \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 DEFINE_IDR(btf_idr); 199 DEFINE_SPINLOCK(btf_idr_lock); 200 201 enum btf_kfunc_hook { 202 BTF_KFUNC_HOOK_XDP, 203 BTF_KFUNC_HOOK_TC, 204 BTF_KFUNC_HOOK_STRUCT_OPS, 205 BTF_KFUNC_HOOK_TRACING, 206 BTF_KFUNC_HOOK_SYSCALL, 207 BTF_KFUNC_HOOK_MAX, 208 }; 209 210 enum { 211 BTF_KFUNC_SET_MAX_CNT = 32, 212 BTF_DTOR_KFUNC_MAX_CNT = 256, 213 }; 214 215 struct btf_kfunc_set_tab { 216 struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX]; 217 }; 218 219 struct btf_id_dtor_kfunc_tab { 220 u32 cnt; 221 struct btf_id_dtor_kfunc dtors[]; 222 }; 223 224 struct btf { 225 void *data; 226 struct btf_type **types; 227 u32 *resolved_ids; 228 u32 *resolved_sizes; 229 const char *strings; 230 void *nohdr_data; 231 struct btf_header hdr; 232 u32 nr_types; /* includes VOID for base BTF */ 233 u32 types_size; 234 u32 data_size; 235 refcount_t refcnt; 236 u32 id; 237 struct rcu_head rcu; 238 struct btf_kfunc_set_tab *kfunc_set_tab; 239 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 240 241 /* split BTF support */ 242 struct btf *base_btf; 243 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 244 u32 start_str_off; /* first string offset (0 for base BTF) */ 245 char name[MODULE_NAME_LEN]; 246 bool kernel_btf; 247 }; 248 249 enum verifier_phase { 250 CHECK_META, 251 CHECK_TYPE, 252 }; 253 254 struct resolve_vertex { 255 const struct btf_type *t; 256 u32 type_id; 257 u16 next_member; 258 }; 259 260 enum visit_state { 261 NOT_VISITED, 262 VISITED, 263 RESOLVED, 264 }; 265 266 enum resolve_mode { 267 RESOLVE_TBD, /* To Be Determined */ 268 RESOLVE_PTR, /* Resolving for Pointer */ 269 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 270 * or array 271 */ 272 }; 273 274 #define MAX_RESOLVE_DEPTH 32 275 276 struct btf_sec_info { 277 u32 off; 278 u32 len; 279 }; 280 281 struct btf_verifier_env { 282 struct btf *btf; 283 u8 *visit_states; 284 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 285 struct bpf_verifier_log log; 286 u32 log_type_id; 287 u32 top_stack; 288 enum verifier_phase phase; 289 enum resolve_mode resolve_mode; 290 }; 291 292 static const char * const btf_kind_str[NR_BTF_KINDS] = { 293 [BTF_KIND_UNKN] = "UNKNOWN", 294 [BTF_KIND_INT] = "INT", 295 [BTF_KIND_PTR] = "PTR", 296 [BTF_KIND_ARRAY] = "ARRAY", 297 [BTF_KIND_STRUCT] = "STRUCT", 298 [BTF_KIND_UNION] = "UNION", 299 [BTF_KIND_ENUM] = "ENUM", 300 [BTF_KIND_FWD] = "FWD", 301 [BTF_KIND_TYPEDEF] = "TYPEDEF", 302 [BTF_KIND_VOLATILE] = "VOLATILE", 303 [BTF_KIND_CONST] = "CONST", 304 [BTF_KIND_RESTRICT] = "RESTRICT", 305 [BTF_KIND_FUNC] = "FUNC", 306 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 307 [BTF_KIND_VAR] = "VAR", 308 [BTF_KIND_DATASEC] = "DATASEC", 309 [BTF_KIND_FLOAT] = "FLOAT", 310 [BTF_KIND_DECL_TAG] = "DECL_TAG", 311 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 312 }; 313 314 const char *btf_type_str(const struct btf_type *t) 315 { 316 return btf_kind_str[BTF_INFO_KIND(t->info)]; 317 } 318 319 /* Chunk size we use in safe copy of data to be shown. */ 320 #define BTF_SHOW_OBJ_SAFE_SIZE 32 321 322 /* 323 * This is the maximum size of a base type value (equivalent to a 324 * 128-bit int); if we are at the end of our safe buffer and have 325 * less than 16 bytes space we can't be assured of being able 326 * to copy the next type safely, so in such cases we will initiate 327 * a new copy. 328 */ 329 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 330 331 /* Type name size */ 332 #define BTF_SHOW_NAME_SIZE 80 333 334 /* 335 * Common data to all BTF show operations. Private show functions can add 336 * their own data to a structure containing a struct btf_show and consult it 337 * in the show callback. See btf_type_show() below. 338 * 339 * One challenge with showing nested data is we want to skip 0-valued 340 * data, but in order to figure out whether a nested object is all zeros 341 * we need to walk through it. As a result, we need to make two passes 342 * when handling structs, unions and arrays; the first path simply looks 343 * for nonzero data, while the second actually does the display. The first 344 * pass is signalled by show->state.depth_check being set, and if we 345 * encounter a non-zero value we set show->state.depth_to_show to 346 * the depth at which we encountered it. When we have completed the 347 * first pass, we will know if anything needs to be displayed if 348 * depth_to_show > depth. See btf_[struct,array]_show() for the 349 * implementation of this. 350 * 351 * Another problem is we want to ensure the data for display is safe to 352 * access. To support this, the anonymous "struct {} obj" tracks the data 353 * object and our safe copy of it. We copy portions of the data needed 354 * to the object "copy" buffer, but because its size is limited to 355 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 356 * traverse larger objects for display. 357 * 358 * The various data type show functions all start with a call to 359 * btf_show_start_type() which returns a pointer to the safe copy 360 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 361 * raw data itself). btf_show_obj_safe() is responsible for 362 * using copy_from_kernel_nofault() to update the safe data if necessary 363 * as we traverse the object's data. skbuff-like semantics are 364 * used: 365 * 366 * - obj.head points to the start of the toplevel object for display 367 * - obj.size is the size of the toplevel object 368 * - obj.data points to the current point in the original data at 369 * which our safe data starts. obj.data will advance as we copy 370 * portions of the data. 371 * 372 * In most cases a single copy will suffice, but larger data structures 373 * such as "struct task_struct" will require many copies. The logic in 374 * btf_show_obj_safe() handles the logic that determines if a new 375 * copy_from_kernel_nofault() is needed. 376 */ 377 struct btf_show { 378 u64 flags; 379 void *target; /* target of show operation (seq file, buffer) */ 380 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 381 const struct btf *btf; 382 /* below are used during iteration */ 383 struct { 384 u8 depth; 385 u8 depth_to_show; 386 u8 depth_check; 387 u8 array_member:1, 388 array_terminated:1; 389 u16 array_encoding; 390 u32 type_id; 391 int status; /* non-zero for error */ 392 const struct btf_type *type; 393 const struct btf_member *member; 394 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 395 } state; 396 struct { 397 u32 size; 398 void *head; 399 void *data; 400 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 401 } obj; 402 }; 403 404 struct btf_kind_operations { 405 s32 (*check_meta)(struct btf_verifier_env *env, 406 const struct btf_type *t, 407 u32 meta_left); 408 int (*resolve)(struct btf_verifier_env *env, 409 const struct resolve_vertex *v); 410 int (*check_member)(struct btf_verifier_env *env, 411 const struct btf_type *struct_type, 412 const struct btf_member *member, 413 const struct btf_type *member_type); 414 int (*check_kflag_member)(struct btf_verifier_env *env, 415 const struct btf_type *struct_type, 416 const struct btf_member *member, 417 const struct btf_type *member_type); 418 void (*log_details)(struct btf_verifier_env *env, 419 const struct btf_type *t); 420 void (*show)(const struct btf *btf, const struct btf_type *t, 421 u32 type_id, void *data, u8 bits_offsets, 422 struct btf_show *show); 423 }; 424 425 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 426 static struct btf_type btf_void; 427 428 static int btf_resolve(struct btf_verifier_env *env, 429 const struct btf_type *t, u32 type_id); 430 431 static int btf_func_check(struct btf_verifier_env *env, 432 const struct btf_type *t); 433 434 static bool btf_type_is_modifier(const struct btf_type *t) 435 { 436 /* Some of them is not strictly a C modifier 437 * but they are grouped into the same bucket 438 * for BTF concern: 439 * A type (t) that refers to another 440 * type through t->type AND its size cannot 441 * be determined without following the t->type. 442 * 443 * ptr does not fall into this bucket 444 * because its size is always sizeof(void *). 445 */ 446 switch (BTF_INFO_KIND(t->info)) { 447 case BTF_KIND_TYPEDEF: 448 case BTF_KIND_VOLATILE: 449 case BTF_KIND_CONST: 450 case BTF_KIND_RESTRICT: 451 case BTF_KIND_TYPE_TAG: 452 return true; 453 } 454 455 return false; 456 } 457 458 bool btf_type_is_void(const struct btf_type *t) 459 { 460 return t == &btf_void; 461 } 462 463 static bool btf_type_is_fwd(const struct btf_type *t) 464 { 465 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 466 } 467 468 static bool btf_type_nosize(const struct btf_type *t) 469 { 470 return btf_type_is_void(t) || btf_type_is_fwd(t) || 471 btf_type_is_func(t) || btf_type_is_func_proto(t); 472 } 473 474 static bool btf_type_nosize_or_null(const struct btf_type *t) 475 { 476 return !t || btf_type_nosize(t); 477 } 478 479 static bool __btf_type_is_struct(const struct btf_type *t) 480 { 481 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 482 } 483 484 static bool btf_type_is_array(const struct btf_type *t) 485 { 486 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 487 } 488 489 static bool btf_type_is_datasec(const struct btf_type *t) 490 { 491 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 492 } 493 494 static bool btf_type_is_decl_tag(const struct btf_type *t) 495 { 496 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 497 } 498 499 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 500 { 501 return btf_type_is_func(t) || btf_type_is_struct(t) || 502 btf_type_is_var(t) || btf_type_is_typedef(t); 503 } 504 505 u32 btf_nr_types(const struct btf *btf) 506 { 507 u32 total = 0; 508 509 while (btf) { 510 total += btf->nr_types; 511 btf = btf->base_btf; 512 } 513 514 return total; 515 } 516 517 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 518 { 519 const struct btf_type *t; 520 const char *tname; 521 u32 i, total; 522 523 total = btf_nr_types(btf); 524 for (i = 1; i < total; i++) { 525 t = btf_type_by_id(btf, i); 526 if (BTF_INFO_KIND(t->info) != kind) 527 continue; 528 529 tname = btf_name_by_offset(btf, t->name_off); 530 if (!strcmp(tname, name)) 531 return i; 532 } 533 534 return -ENOENT; 535 } 536 537 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 538 { 539 struct btf *btf; 540 s32 ret; 541 int id; 542 543 btf = bpf_get_btf_vmlinux(); 544 if (IS_ERR(btf)) 545 return PTR_ERR(btf); 546 if (!btf) 547 return -EINVAL; 548 549 ret = btf_find_by_name_kind(btf, name, kind); 550 /* ret is never zero, since btf_find_by_name_kind returns 551 * positive btf_id or negative error. 552 */ 553 if (ret > 0) { 554 btf_get(btf); 555 *btf_p = btf; 556 return ret; 557 } 558 559 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 560 spin_lock_bh(&btf_idr_lock); 561 idr_for_each_entry(&btf_idr, btf, id) { 562 if (!btf_is_module(btf)) 563 continue; 564 /* linear search could be slow hence unlock/lock 565 * the IDR to avoiding holding it for too long 566 */ 567 btf_get(btf); 568 spin_unlock_bh(&btf_idr_lock); 569 ret = btf_find_by_name_kind(btf, name, kind); 570 if (ret > 0) { 571 *btf_p = btf; 572 return ret; 573 } 574 spin_lock_bh(&btf_idr_lock); 575 btf_put(btf); 576 } 577 spin_unlock_bh(&btf_idr_lock); 578 return ret; 579 } 580 581 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 582 u32 id, u32 *res_id) 583 { 584 const struct btf_type *t = btf_type_by_id(btf, id); 585 586 while (btf_type_is_modifier(t)) { 587 id = t->type; 588 t = btf_type_by_id(btf, t->type); 589 } 590 591 if (res_id) 592 *res_id = id; 593 594 return t; 595 } 596 597 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 598 u32 id, u32 *res_id) 599 { 600 const struct btf_type *t; 601 602 t = btf_type_skip_modifiers(btf, id, NULL); 603 if (!btf_type_is_ptr(t)) 604 return NULL; 605 606 return btf_type_skip_modifiers(btf, t->type, res_id); 607 } 608 609 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 610 u32 id, u32 *res_id) 611 { 612 const struct btf_type *ptype; 613 614 ptype = btf_type_resolve_ptr(btf, id, res_id); 615 if (ptype && btf_type_is_func_proto(ptype)) 616 return ptype; 617 618 return NULL; 619 } 620 621 /* Types that act only as a source, not sink or intermediate 622 * type when resolving. 623 */ 624 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 625 { 626 return btf_type_is_var(t) || 627 btf_type_is_decl_tag(t) || 628 btf_type_is_datasec(t); 629 } 630 631 /* What types need to be resolved? 632 * 633 * btf_type_is_modifier() is an obvious one. 634 * 635 * btf_type_is_struct() because its member refers to 636 * another type (through member->type). 637 * 638 * btf_type_is_var() because the variable refers to 639 * another type. btf_type_is_datasec() holds multiple 640 * btf_type_is_var() types that need resolving. 641 * 642 * btf_type_is_array() because its element (array->type) 643 * refers to another type. Array can be thought of a 644 * special case of struct while array just has the same 645 * member-type repeated by array->nelems of times. 646 */ 647 static bool btf_type_needs_resolve(const struct btf_type *t) 648 { 649 return btf_type_is_modifier(t) || 650 btf_type_is_ptr(t) || 651 btf_type_is_struct(t) || 652 btf_type_is_array(t) || 653 btf_type_is_var(t) || 654 btf_type_is_func(t) || 655 btf_type_is_decl_tag(t) || 656 btf_type_is_datasec(t); 657 } 658 659 /* t->size can be used */ 660 static bool btf_type_has_size(const struct btf_type *t) 661 { 662 switch (BTF_INFO_KIND(t->info)) { 663 case BTF_KIND_INT: 664 case BTF_KIND_STRUCT: 665 case BTF_KIND_UNION: 666 case BTF_KIND_ENUM: 667 case BTF_KIND_DATASEC: 668 case BTF_KIND_FLOAT: 669 return true; 670 } 671 672 return false; 673 } 674 675 static const char *btf_int_encoding_str(u8 encoding) 676 { 677 if (encoding == 0) 678 return "(none)"; 679 else if (encoding == BTF_INT_SIGNED) 680 return "SIGNED"; 681 else if (encoding == BTF_INT_CHAR) 682 return "CHAR"; 683 else if (encoding == BTF_INT_BOOL) 684 return "BOOL"; 685 else 686 return "UNKN"; 687 } 688 689 static u32 btf_type_int(const struct btf_type *t) 690 { 691 return *(u32 *)(t + 1); 692 } 693 694 static const struct btf_array *btf_type_array(const struct btf_type *t) 695 { 696 return (const struct btf_array *)(t + 1); 697 } 698 699 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 700 { 701 return (const struct btf_enum *)(t + 1); 702 } 703 704 static const struct btf_var *btf_type_var(const struct btf_type *t) 705 { 706 return (const struct btf_var *)(t + 1); 707 } 708 709 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 710 { 711 return (const struct btf_decl_tag *)(t + 1); 712 } 713 714 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 715 { 716 return kind_ops[BTF_INFO_KIND(t->info)]; 717 } 718 719 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 720 { 721 if (!BTF_STR_OFFSET_VALID(offset)) 722 return false; 723 724 while (offset < btf->start_str_off) 725 btf = btf->base_btf; 726 727 offset -= btf->start_str_off; 728 return offset < btf->hdr.str_len; 729 } 730 731 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 732 { 733 if ((first ? !isalpha(c) : 734 !isalnum(c)) && 735 c != '_' && 736 ((c == '.' && !dot_ok) || 737 c != '.')) 738 return false; 739 return true; 740 } 741 742 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 743 { 744 while (offset < btf->start_str_off) 745 btf = btf->base_btf; 746 747 offset -= btf->start_str_off; 748 if (offset < btf->hdr.str_len) 749 return &btf->strings[offset]; 750 751 return NULL; 752 } 753 754 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 755 { 756 /* offset must be valid */ 757 const char *src = btf_str_by_offset(btf, offset); 758 const char *src_limit; 759 760 if (!__btf_name_char_ok(*src, true, dot_ok)) 761 return false; 762 763 /* set a limit on identifier length */ 764 src_limit = src + KSYM_NAME_LEN; 765 src++; 766 while (*src && src < src_limit) { 767 if (!__btf_name_char_ok(*src, false, dot_ok)) 768 return false; 769 src++; 770 } 771 772 return !*src; 773 } 774 775 /* Only C-style identifier is permitted. This can be relaxed if 776 * necessary. 777 */ 778 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 779 { 780 return __btf_name_valid(btf, offset, false); 781 } 782 783 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 784 { 785 return __btf_name_valid(btf, offset, true); 786 } 787 788 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 789 { 790 const char *name; 791 792 if (!offset) 793 return "(anon)"; 794 795 name = btf_str_by_offset(btf, offset); 796 return name ?: "(invalid-name-offset)"; 797 } 798 799 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 800 { 801 return btf_str_by_offset(btf, offset); 802 } 803 804 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 805 { 806 while (type_id < btf->start_id) 807 btf = btf->base_btf; 808 809 type_id -= btf->start_id; 810 if (type_id >= btf->nr_types) 811 return NULL; 812 return btf->types[type_id]; 813 } 814 815 /* 816 * Regular int is not a bit field and it must be either 817 * u8/u16/u32/u64 or __int128. 818 */ 819 static bool btf_type_int_is_regular(const struct btf_type *t) 820 { 821 u8 nr_bits, nr_bytes; 822 u32 int_data; 823 824 int_data = btf_type_int(t); 825 nr_bits = BTF_INT_BITS(int_data); 826 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 827 if (BITS_PER_BYTE_MASKED(nr_bits) || 828 BTF_INT_OFFSET(int_data) || 829 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 830 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 831 nr_bytes != (2 * sizeof(u64)))) { 832 return false; 833 } 834 835 return true; 836 } 837 838 /* 839 * Check that given struct member is a regular int with expected 840 * offset and size. 841 */ 842 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 843 const struct btf_member *m, 844 u32 expected_offset, u32 expected_size) 845 { 846 const struct btf_type *t; 847 u32 id, int_data; 848 u8 nr_bits; 849 850 id = m->type; 851 t = btf_type_id_size(btf, &id, NULL); 852 if (!t || !btf_type_is_int(t)) 853 return false; 854 855 int_data = btf_type_int(t); 856 nr_bits = BTF_INT_BITS(int_data); 857 if (btf_type_kflag(s)) { 858 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 859 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 860 861 /* if kflag set, int should be a regular int and 862 * bit offset should be at byte boundary. 863 */ 864 return !bitfield_size && 865 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 866 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 867 } 868 869 if (BTF_INT_OFFSET(int_data) || 870 BITS_PER_BYTE_MASKED(m->offset) || 871 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 872 BITS_PER_BYTE_MASKED(nr_bits) || 873 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 874 return false; 875 876 return true; 877 } 878 879 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 880 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 881 u32 id) 882 { 883 const struct btf_type *t = btf_type_by_id(btf, id); 884 885 while (btf_type_is_modifier(t) && 886 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 887 t = btf_type_by_id(btf, t->type); 888 } 889 890 return t; 891 } 892 893 #define BTF_SHOW_MAX_ITER 10 894 895 #define BTF_KIND_BIT(kind) (1ULL << kind) 896 897 /* 898 * Populate show->state.name with type name information. 899 * Format of type name is 900 * 901 * [.member_name = ] (type_name) 902 */ 903 static const char *btf_show_name(struct btf_show *show) 904 { 905 /* BTF_MAX_ITER array suffixes "[]" */ 906 const char *array_suffixes = "[][][][][][][][][][]"; 907 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 908 /* BTF_MAX_ITER pointer suffixes "*" */ 909 const char *ptr_suffixes = "**********"; 910 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 911 const char *name = NULL, *prefix = "", *parens = ""; 912 const struct btf_member *m = show->state.member; 913 const struct btf_type *t; 914 const struct btf_array *array; 915 u32 id = show->state.type_id; 916 const char *member = NULL; 917 bool show_member = false; 918 u64 kinds = 0; 919 int i; 920 921 show->state.name[0] = '\0'; 922 923 /* 924 * Don't show type name if we're showing an array member; 925 * in that case we show the array type so don't need to repeat 926 * ourselves for each member. 927 */ 928 if (show->state.array_member) 929 return ""; 930 931 /* Retrieve member name, if any. */ 932 if (m) { 933 member = btf_name_by_offset(show->btf, m->name_off); 934 show_member = strlen(member) > 0; 935 id = m->type; 936 } 937 938 /* 939 * Start with type_id, as we have resolved the struct btf_type * 940 * via btf_modifier_show() past the parent typedef to the child 941 * struct, int etc it is defined as. In such cases, the type_id 942 * still represents the starting type while the struct btf_type * 943 * in our show->state points at the resolved type of the typedef. 944 */ 945 t = btf_type_by_id(show->btf, id); 946 if (!t) 947 return ""; 948 949 /* 950 * The goal here is to build up the right number of pointer and 951 * array suffixes while ensuring the type name for a typedef 952 * is represented. Along the way we accumulate a list of 953 * BTF kinds we have encountered, since these will inform later 954 * display; for example, pointer types will not require an 955 * opening "{" for struct, we will just display the pointer value. 956 * 957 * We also want to accumulate the right number of pointer or array 958 * indices in the format string while iterating until we get to 959 * the typedef/pointee/array member target type. 960 * 961 * We start by pointing at the end of pointer and array suffix 962 * strings; as we accumulate pointers and arrays we move the pointer 963 * or array string backwards so it will show the expected number of 964 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 965 * and/or arrays and typedefs are supported as a precaution. 966 * 967 * We also want to get typedef name while proceeding to resolve 968 * type it points to so that we can add parentheses if it is a 969 * "typedef struct" etc. 970 */ 971 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 972 973 switch (BTF_INFO_KIND(t->info)) { 974 case BTF_KIND_TYPEDEF: 975 if (!name) 976 name = btf_name_by_offset(show->btf, 977 t->name_off); 978 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 979 id = t->type; 980 break; 981 case BTF_KIND_ARRAY: 982 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 983 parens = "["; 984 if (!t) 985 return ""; 986 array = btf_type_array(t); 987 if (array_suffix > array_suffixes) 988 array_suffix -= 2; 989 id = array->type; 990 break; 991 case BTF_KIND_PTR: 992 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 993 if (ptr_suffix > ptr_suffixes) 994 ptr_suffix -= 1; 995 id = t->type; 996 break; 997 default: 998 id = 0; 999 break; 1000 } 1001 if (!id) 1002 break; 1003 t = btf_type_skip_qualifiers(show->btf, id); 1004 } 1005 /* We may not be able to represent this type; bail to be safe */ 1006 if (i == BTF_SHOW_MAX_ITER) 1007 return ""; 1008 1009 if (!name) 1010 name = btf_name_by_offset(show->btf, t->name_off); 1011 1012 switch (BTF_INFO_KIND(t->info)) { 1013 case BTF_KIND_STRUCT: 1014 case BTF_KIND_UNION: 1015 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1016 "struct" : "union"; 1017 /* if it's an array of struct/union, parens is already set */ 1018 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1019 parens = "{"; 1020 break; 1021 case BTF_KIND_ENUM: 1022 prefix = "enum"; 1023 break; 1024 default: 1025 break; 1026 } 1027 1028 /* pointer does not require parens */ 1029 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1030 parens = ""; 1031 /* typedef does not require struct/union/enum prefix */ 1032 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1033 prefix = ""; 1034 1035 if (!name) 1036 name = ""; 1037 1038 /* Even if we don't want type name info, we want parentheses etc */ 1039 if (show->flags & BTF_SHOW_NONAME) 1040 snprintf(show->state.name, sizeof(show->state.name), "%s", 1041 parens); 1042 else 1043 snprintf(show->state.name, sizeof(show->state.name), 1044 "%s%s%s(%s%s%s%s%s%s)%s", 1045 /* first 3 strings comprise ".member = " */ 1046 show_member ? "." : "", 1047 show_member ? member : "", 1048 show_member ? " = " : "", 1049 /* ...next is our prefix (struct, enum, etc) */ 1050 prefix, 1051 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1052 /* ...this is the type name itself */ 1053 name, 1054 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1055 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1056 array_suffix, parens); 1057 1058 return show->state.name; 1059 } 1060 1061 static const char *__btf_show_indent(struct btf_show *show) 1062 { 1063 const char *indents = " "; 1064 const char *indent = &indents[strlen(indents)]; 1065 1066 if ((indent - show->state.depth) >= indents) 1067 return indent - show->state.depth; 1068 return indents; 1069 } 1070 1071 static const char *btf_show_indent(struct btf_show *show) 1072 { 1073 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1074 } 1075 1076 static const char *btf_show_newline(struct btf_show *show) 1077 { 1078 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1079 } 1080 1081 static const char *btf_show_delim(struct btf_show *show) 1082 { 1083 if (show->state.depth == 0) 1084 return ""; 1085 1086 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1087 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1088 return "|"; 1089 1090 return ","; 1091 } 1092 1093 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1094 { 1095 va_list args; 1096 1097 if (!show->state.depth_check) { 1098 va_start(args, fmt); 1099 show->showfn(show, fmt, args); 1100 va_end(args); 1101 } 1102 } 1103 1104 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1105 * format specifiers to the format specifier passed in; these do the work of 1106 * adding indentation, delimiters etc while the caller simply has to specify 1107 * the type value(s) in the format specifier + value(s). 1108 */ 1109 #define btf_show_type_value(show, fmt, value) \ 1110 do { \ 1111 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1112 show->state.depth == 0) { \ 1113 btf_show(show, "%s%s" fmt "%s%s", \ 1114 btf_show_indent(show), \ 1115 btf_show_name(show), \ 1116 value, btf_show_delim(show), \ 1117 btf_show_newline(show)); \ 1118 if (show->state.depth > show->state.depth_to_show) \ 1119 show->state.depth_to_show = show->state.depth; \ 1120 } \ 1121 } while (0) 1122 1123 #define btf_show_type_values(show, fmt, ...) \ 1124 do { \ 1125 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1126 btf_show_name(show), \ 1127 __VA_ARGS__, btf_show_delim(show), \ 1128 btf_show_newline(show)); \ 1129 if (show->state.depth > show->state.depth_to_show) \ 1130 show->state.depth_to_show = show->state.depth; \ 1131 } while (0) 1132 1133 /* How much is left to copy to safe buffer after @data? */ 1134 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1135 { 1136 return show->obj.head + show->obj.size - data; 1137 } 1138 1139 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1140 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1141 { 1142 return data >= show->obj.data && 1143 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1144 } 1145 1146 /* 1147 * If object pointed to by @data of @size falls within our safe buffer, return 1148 * the equivalent pointer to the same safe data. Assumes 1149 * copy_from_kernel_nofault() has already happened and our safe buffer is 1150 * populated. 1151 */ 1152 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1153 { 1154 if (btf_show_obj_is_safe(show, data, size)) 1155 return show->obj.safe + (data - show->obj.data); 1156 return NULL; 1157 } 1158 1159 /* 1160 * Return a safe-to-access version of data pointed to by @data. 1161 * We do this by copying the relevant amount of information 1162 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1163 * 1164 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1165 * safe copy is needed. 1166 * 1167 * Otherwise we need to determine if we have the required amount 1168 * of data (determined by the @data pointer and the size of the 1169 * largest base type we can encounter (represented by 1170 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1171 * that we will be able to print some of the current object, 1172 * and if more is needed a copy will be triggered. 1173 * Some objects such as structs will not fit into the buffer; 1174 * in such cases additional copies when we iterate over their 1175 * members may be needed. 1176 * 1177 * btf_show_obj_safe() is used to return a safe buffer for 1178 * btf_show_start_type(); this ensures that as we recurse into 1179 * nested types we always have safe data for the given type. 1180 * This approach is somewhat wasteful; it's possible for example 1181 * that when iterating over a large union we'll end up copying the 1182 * same data repeatedly, but the goal is safety not performance. 1183 * We use stack data as opposed to per-CPU buffers because the 1184 * iteration over a type can take some time, and preemption handling 1185 * would greatly complicate use of the safe buffer. 1186 */ 1187 static void *btf_show_obj_safe(struct btf_show *show, 1188 const struct btf_type *t, 1189 void *data) 1190 { 1191 const struct btf_type *rt; 1192 int size_left, size; 1193 void *safe = NULL; 1194 1195 if (show->flags & BTF_SHOW_UNSAFE) 1196 return data; 1197 1198 rt = btf_resolve_size(show->btf, t, &size); 1199 if (IS_ERR(rt)) { 1200 show->state.status = PTR_ERR(rt); 1201 return NULL; 1202 } 1203 1204 /* 1205 * Is this toplevel object? If so, set total object size and 1206 * initialize pointers. Otherwise check if we still fall within 1207 * our safe object data. 1208 */ 1209 if (show->state.depth == 0) { 1210 show->obj.size = size; 1211 show->obj.head = data; 1212 } else { 1213 /* 1214 * If the size of the current object is > our remaining 1215 * safe buffer we _may_ need to do a new copy. However 1216 * consider the case of a nested struct; it's size pushes 1217 * us over the safe buffer limit, but showing any individual 1218 * struct members does not. In such cases, we don't need 1219 * to initiate a fresh copy yet; however we definitely need 1220 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1221 * in our buffer, regardless of the current object size. 1222 * The logic here is that as we resolve types we will 1223 * hit a base type at some point, and we need to be sure 1224 * the next chunk of data is safely available to display 1225 * that type info safely. We cannot rely on the size of 1226 * the current object here because it may be much larger 1227 * than our current buffer (e.g. task_struct is 8k). 1228 * All we want to do here is ensure that we can print the 1229 * next basic type, which we can if either 1230 * - the current type size is within the safe buffer; or 1231 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1232 * the safe buffer. 1233 */ 1234 safe = __btf_show_obj_safe(show, data, 1235 min(size, 1236 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1237 } 1238 1239 /* 1240 * We need a new copy to our safe object, either because we haven't 1241 * yet copied and are initializing safe data, or because the data 1242 * we want falls outside the boundaries of the safe object. 1243 */ 1244 if (!safe) { 1245 size_left = btf_show_obj_size_left(show, data); 1246 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1247 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1248 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1249 data, size_left); 1250 if (!show->state.status) { 1251 show->obj.data = data; 1252 safe = show->obj.safe; 1253 } 1254 } 1255 1256 return safe; 1257 } 1258 1259 /* 1260 * Set the type we are starting to show and return a safe data pointer 1261 * to be used for showing the associated data. 1262 */ 1263 static void *btf_show_start_type(struct btf_show *show, 1264 const struct btf_type *t, 1265 u32 type_id, void *data) 1266 { 1267 show->state.type = t; 1268 show->state.type_id = type_id; 1269 show->state.name[0] = '\0'; 1270 1271 return btf_show_obj_safe(show, t, data); 1272 } 1273 1274 static void btf_show_end_type(struct btf_show *show) 1275 { 1276 show->state.type = NULL; 1277 show->state.type_id = 0; 1278 show->state.name[0] = '\0'; 1279 } 1280 1281 static void *btf_show_start_aggr_type(struct btf_show *show, 1282 const struct btf_type *t, 1283 u32 type_id, void *data) 1284 { 1285 void *safe_data = btf_show_start_type(show, t, type_id, data); 1286 1287 if (!safe_data) 1288 return safe_data; 1289 1290 btf_show(show, "%s%s%s", btf_show_indent(show), 1291 btf_show_name(show), 1292 btf_show_newline(show)); 1293 show->state.depth++; 1294 return safe_data; 1295 } 1296 1297 static void btf_show_end_aggr_type(struct btf_show *show, 1298 const char *suffix) 1299 { 1300 show->state.depth--; 1301 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1302 btf_show_delim(show), btf_show_newline(show)); 1303 btf_show_end_type(show); 1304 } 1305 1306 static void btf_show_start_member(struct btf_show *show, 1307 const struct btf_member *m) 1308 { 1309 show->state.member = m; 1310 } 1311 1312 static void btf_show_start_array_member(struct btf_show *show) 1313 { 1314 show->state.array_member = 1; 1315 btf_show_start_member(show, NULL); 1316 } 1317 1318 static void btf_show_end_member(struct btf_show *show) 1319 { 1320 show->state.member = NULL; 1321 } 1322 1323 static void btf_show_end_array_member(struct btf_show *show) 1324 { 1325 show->state.array_member = 0; 1326 btf_show_end_member(show); 1327 } 1328 1329 static void *btf_show_start_array_type(struct btf_show *show, 1330 const struct btf_type *t, 1331 u32 type_id, 1332 u16 array_encoding, 1333 void *data) 1334 { 1335 show->state.array_encoding = array_encoding; 1336 show->state.array_terminated = 0; 1337 return btf_show_start_aggr_type(show, t, type_id, data); 1338 } 1339 1340 static void btf_show_end_array_type(struct btf_show *show) 1341 { 1342 show->state.array_encoding = 0; 1343 show->state.array_terminated = 0; 1344 btf_show_end_aggr_type(show, "]"); 1345 } 1346 1347 static void *btf_show_start_struct_type(struct btf_show *show, 1348 const struct btf_type *t, 1349 u32 type_id, 1350 void *data) 1351 { 1352 return btf_show_start_aggr_type(show, t, type_id, data); 1353 } 1354 1355 static void btf_show_end_struct_type(struct btf_show *show) 1356 { 1357 btf_show_end_aggr_type(show, "}"); 1358 } 1359 1360 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1361 const char *fmt, ...) 1362 { 1363 va_list args; 1364 1365 va_start(args, fmt); 1366 bpf_verifier_vlog(log, fmt, args); 1367 va_end(args); 1368 } 1369 1370 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1371 const char *fmt, ...) 1372 { 1373 struct bpf_verifier_log *log = &env->log; 1374 va_list args; 1375 1376 if (!bpf_verifier_log_needed(log)) 1377 return; 1378 1379 va_start(args, fmt); 1380 bpf_verifier_vlog(log, fmt, args); 1381 va_end(args); 1382 } 1383 1384 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1385 const struct btf_type *t, 1386 bool log_details, 1387 const char *fmt, ...) 1388 { 1389 struct bpf_verifier_log *log = &env->log; 1390 u8 kind = BTF_INFO_KIND(t->info); 1391 struct btf *btf = env->btf; 1392 va_list args; 1393 1394 if (!bpf_verifier_log_needed(log)) 1395 return; 1396 1397 /* btf verifier prints all types it is processing via 1398 * btf_verifier_log_type(..., fmt = NULL). 1399 * Skip those prints for in-kernel BTF verification. 1400 */ 1401 if (log->level == BPF_LOG_KERNEL && !fmt) 1402 return; 1403 1404 __btf_verifier_log(log, "[%u] %s %s%s", 1405 env->log_type_id, 1406 btf_kind_str[kind], 1407 __btf_name_by_offset(btf, t->name_off), 1408 log_details ? " " : ""); 1409 1410 if (log_details) 1411 btf_type_ops(t)->log_details(env, t); 1412 1413 if (fmt && *fmt) { 1414 __btf_verifier_log(log, " "); 1415 va_start(args, fmt); 1416 bpf_verifier_vlog(log, fmt, args); 1417 va_end(args); 1418 } 1419 1420 __btf_verifier_log(log, "\n"); 1421 } 1422 1423 #define btf_verifier_log_type(env, t, ...) \ 1424 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1425 #define btf_verifier_log_basic(env, t, ...) \ 1426 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1427 1428 __printf(4, 5) 1429 static void btf_verifier_log_member(struct btf_verifier_env *env, 1430 const struct btf_type *struct_type, 1431 const struct btf_member *member, 1432 const char *fmt, ...) 1433 { 1434 struct bpf_verifier_log *log = &env->log; 1435 struct btf *btf = env->btf; 1436 va_list args; 1437 1438 if (!bpf_verifier_log_needed(log)) 1439 return; 1440 1441 if (log->level == BPF_LOG_KERNEL && !fmt) 1442 return; 1443 /* The CHECK_META phase already did a btf dump. 1444 * 1445 * If member is logged again, it must hit an error in 1446 * parsing this member. It is useful to print out which 1447 * struct this member belongs to. 1448 */ 1449 if (env->phase != CHECK_META) 1450 btf_verifier_log_type(env, struct_type, NULL); 1451 1452 if (btf_type_kflag(struct_type)) 1453 __btf_verifier_log(log, 1454 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1455 __btf_name_by_offset(btf, member->name_off), 1456 member->type, 1457 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1458 BTF_MEMBER_BIT_OFFSET(member->offset)); 1459 else 1460 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1461 __btf_name_by_offset(btf, member->name_off), 1462 member->type, member->offset); 1463 1464 if (fmt && *fmt) { 1465 __btf_verifier_log(log, " "); 1466 va_start(args, fmt); 1467 bpf_verifier_vlog(log, fmt, args); 1468 va_end(args); 1469 } 1470 1471 __btf_verifier_log(log, "\n"); 1472 } 1473 1474 __printf(4, 5) 1475 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1476 const struct btf_type *datasec_type, 1477 const struct btf_var_secinfo *vsi, 1478 const char *fmt, ...) 1479 { 1480 struct bpf_verifier_log *log = &env->log; 1481 va_list args; 1482 1483 if (!bpf_verifier_log_needed(log)) 1484 return; 1485 if (log->level == BPF_LOG_KERNEL && !fmt) 1486 return; 1487 if (env->phase != CHECK_META) 1488 btf_verifier_log_type(env, datasec_type, NULL); 1489 1490 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1491 vsi->type, vsi->offset, vsi->size); 1492 if (fmt && *fmt) { 1493 __btf_verifier_log(log, " "); 1494 va_start(args, fmt); 1495 bpf_verifier_vlog(log, fmt, args); 1496 va_end(args); 1497 } 1498 1499 __btf_verifier_log(log, "\n"); 1500 } 1501 1502 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1503 u32 btf_data_size) 1504 { 1505 struct bpf_verifier_log *log = &env->log; 1506 const struct btf *btf = env->btf; 1507 const struct btf_header *hdr; 1508 1509 if (!bpf_verifier_log_needed(log)) 1510 return; 1511 1512 if (log->level == BPF_LOG_KERNEL) 1513 return; 1514 hdr = &btf->hdr; 1515 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1516 __btf_verifier_log(log, "version: %u\n", hdr->version); 1517 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1518 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1519 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1520 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1521 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1522 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1523 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1524 } 1525 1526 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1527 { 1528 struct btf *btf = env->btf; 1529 1530 if (btf->types_size == btf->nr_types) { 1531 /* Expand 'types' array */ 1532 1533 struct btf_type **new_types; 1534 u32 expand_by, new_size; 1535 1536 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1537 btf_verifier_log(env, "Exceeded max num of types"); 1538 return -E2BIG; 1539 } 1540 1541 expand_by = max_t(u32, btf->types_size >> 2, 16); 1542 new_size = min_t(u32, BTF_MAX_TYPE, 1543 btf->types_size + expand_by); 1544 1545 new_types = kvcalloc(new_size, sizeof(*new_types), 1546 GFP_KERNEL | __GFP_NOWARN); 1547 if (!new_types) 1548 return -ENOMEM; 1549 1550 if (btf->nr_types == 0) { 1551 if (!btf->base_btf) { 1552 /* lazily init VOID type */ 1553 new_types[0] = &btf_void; 1554 btf->nr_types++; 1555 } 1556 } else { 1557 memcpy(new_types, btf->types, 1558 sizeof(*btf->types) * btf->nr_types); 1559 } 1560 1561 kvfree(btf->types); 1562 btf->types = new_types; 1563 btf->types_size = new_size; 1564 } 1565 1566 btf->types[btf->nr_types++] = t; 1567 1568 return 0; 1569 } 1570 1571 static int btf_alloc_id(struct btf *btf) 1572 { 1573 int id; 1574 1575 idr_preload(GFP_KERNEL); 1576 spin_lock_bh(&btf_idr_lock); 1577 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1578 if (id > 0) 1579 btf->id = id; 1580 spin_unlock_bh(&btf_idr_lock); 1581 idr_preload_end(); 1582 1583 if (WARN_ON_ONCE(!id)) 1584 return -ENOSPC; 1585 1586 return id > 0 ? 0 : id; 1587 } 1588 1589 static void btf_free_id(struct btf *btf) 1590 { 1591 unsigned long flags; 1592 1593 /* 1594 * In map-in-map, calling map_delete_elem() on outer 1595 * map will call bpf_map_put on the inner map. 1596 * It will then eventually call btf_free_id() 1597 * on the inner map. Some of the map_delete_elem() 1598 * implementation may have irq disabled, so 1599 * we need to use the _irqsave() version instead 1600 * of the _bh() version. 1601 */ 1602 spin_lock_irqsave(&btf_idr_lock, flags); 1603 idr_remove(&btf_idr, btf->id); 1604 spin_unlock_irqrestore(&btf_idr_lock, flags); 1605 } 1606 1607 static void btf_free_kfunc_set_tab(struct btf *btf) 1608 { 1609 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1610 int hook, type; 1611 1612 if (!tab) 1613 return; 1614 /* For module BTF, we directly assign the sets being registered, so 1615 * there is nothing to free except kfunc_set_tab. 1616 */ 1617 if (btf_is_module(btf)) 1618 goto free_tab; 1619 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) { 1620 for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++) 1621 kfree(tab->sets[hook][type]); 1622 } 1623 free_tab: 1624 kfree(tab); 1625 btf->kfunc_set_tab = NULL; 1626 } 1627 1628 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1629 { 1630 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1631 1632 if (!tab) 1633 return; 1634 kfree(tab); 1635 btf->dtor_kfunc_tab = NULL; 1636 } 1637 1638 static void btf_free(struct btf *btf) 1639 { 1640 btf_free_dtor_kfunc_tab(btf); 1641 btf_free_kfunc_set_tab(btf); 1642 kvfree(btf->types); 1643 kvfree(btf->resolved_sizes); 1644 kvfree(btf->resolved_ids); 1645 kvfree(btf->data); 1646 kfree(btf); 1647 } 1648 1649 static void btf_free_rcu(struct rcu_head *rcu) 1650 { 1651 struct btf *btf = container_of(rcu, struct btf, rcu); 1652 1653 btf_free(btf); 1654 } 1655 1656 void btf_get(struct btf *btf) 1657 { 1658 refcount_inc(&btf->refcnt); 1659 } 1660 1661 void btf_put(struct btf *btf) 1662 { 1663 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1664 btf_free_id(btf); 1665 call_rcu(&btf->rcu, btf_free_rcu); 1666 } 1667 } 1668 1669 static int env_resolve_init(struct btf_verifier_env *env) 1670 { 1671 struct btf *btf = env->btf; 1672 u32 nr_types = btf->nr_types; 1673 u32 *resolved_sizes = NULL; 1674 u32 *resolved_ids = NULL; 1675 u8 *visit_states = NULL; 1676 1677 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1678 GFP_KERNEL | __GFP_NOWARN); 1679 if (!resolved_sizes) 1680 goto nomem; 1681 1682 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1683 GFP_KERNEL | __GFP_NOWARN); 1684 if (!resolved_ids) 1685 goto nomem; 1686 1687 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1688 GFP_KERNEL | __GFP_NOWARN); 1689 if (!visit_states) 1690 goto nomem; 1691 1692 btf->resolved_sizes = resolved_sizes; 1693 btf->resolved_ids = resolved_ids; 1694 env->visit_states = visit_states; 1695 1696 return 0; 1697 1698 nomem: 1699 kvfree(resolved_sizes); 1700 kvfree(resolved_ids); 1701 kvfree(visit_states); 1702 return -ENOMEM; 1703 } 1704 1705 static void btf_verifier_env_free(struct btf_verifier_env *env) 1706 { 1707 kvfree(env->visit_states); 1708 kfree(env); 1709 } 1710 1711 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1712 const struct btf_type *next_type) 1713 { 1714 switch (env->resolve_mode) { 1715 case RESOLVE_TBD: 1716 /* int, enum or void is a sink */ 1717 return !btf_type_needs_resolve(next_type); 1718 case RESOLVE_PTR: 1719 /* int, enum, void, struct, array, func or func_proto is a sink 1720 * for ptr 1721 */ 1722 return !btf_type_is_modifier(next_type) && 1723 !btf_type_is_ptr(next_type); 1724 case RESOLVE_STRUCT_OR_ARRAY: 1725 /* int, enum, void, ptr, func or func_proto is a sink 1726 * for struct and array 1727 */ 1728 return !btf_type_is_modifier(next_type) && 1729 !btf_type_is_array(next_type) && 1730 !btf_type_is_struct(next_type); 1731 default: 1732 BUG(); 1733 } 1734 } 1735 1736 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1737 u32 type_id) 1738 { 1739 /* base BTF types should be resolved by now */ 1740 if (type_id < env->btf->start_id) 1741 return true; 1742 1743 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1744 } 1745 1746 static int env_stack_push(struct btf_verifier_env *env, 1747 const struct btf_type *t, u32 type_id) 1748 { 1749 const struct btf *btf = env->btf; 1750 struct resolve_vertex *v; 1751 1752 if (env->top_stack == MAX_RESOLVE_DEPTH) 1753 return -E2BIG; 1754 1755 if (type_id < btf->start_id 1756 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1757 return -EEXIST; 1758 1759 env->visit_states[type_id - btf->start_id] = VISITED; 1760 1761 v = &env->stack[env->top_stack++]; 1762 v->t = t; 1763 v->type_id = type_id; 1764 v->next_member = 0; 1765 1766 if (env->resolve_mode == RESOLVE_TBD) { 1767 if (btf_type_is_ptr(t)) 1768 env->resolve_mode = RESOLVE_PTR; 1769 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1770 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1771 } 1772 1773 return 0; 1774 } 1775 1776 static void env_stack_set_next_member(struct btf_verifier_env *env, 1777 u16 next_member) 1778 { 1779 env->stack[env->top_stack - 1].next_member = next_member; 1780 } 1781 1782 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1783 u32 resolved_type_id, 1784 u32 resolved_size) 1785 { 1786 u32 type_id = env->stack[--(env->top_stack)].type_id; 1787 struct btf *btf = env->btf; 1788 1789 type_id -= btf->start_id; /* adjust to local type id */ 1790 btf->resolved_sizes[type_id] = resolved_size; 1791 btf->resolved_ids[type_id] = resolved_type_id; 1792 env->visit_states[type_id] = RESOLVED; 1793 } 1794 1795 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1796 { 1797 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1798 } 1799 1800 /* Resolve the size of a passed-in "type" 1801 * 1802 * type: is an array (e.g. u32 array[x][y]) 1803 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1804 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1805 * corresponds to the return type. 1806 * *elem_type: u32 1807 * *elem_id: id of u32 1808 * *total_nelems: (x * y). Hence, individual elem size is 1809 * (*type_size / *total_nelems) 1810 * *type_id: id of type if it's changed within the function, 0 if not 1811 * 1812 * type: is not an array (e.g. const struct X) 1813 * return type: type "struct X" 1814 * *type_size: sizeof(struct X) 1815 * *elem_type: same as return type ("struct X") 1816 * *elem_id: 0 1817 * *total_nelems: 1 1818 * *type_id: id of type if it's changed within the function, 0 if not 1819 */ 1820 static const struct btf_type * 1821 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1822 u32 *type_size, const struct btf_type **elem_type, 1823 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1824 { 1825 const struct btf_type *array_type = NULL; 1826 const struct btf_array *array = NULL; 1827 u32 i, size, nelems = 1, id = 0; 1828 1829 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1830 switch (BTF_INFO_KIND(type->info)) { 1831 /* type->size can be used */ 1832 case BTF_KIND_INT: 1833 case BTF_KIND_STRUCT: 1834 case BTF_KIND_UNION: 1835 case BTF_KIND_ENUM: 1836 case BTF_KIND_FLOAT: 1837 size = type->size; 1838 goto resolved; 1839 1840 case BTF_KIND_PTR: 1841 size = sizeof(void *); 1842 goto resolved; 1843 1844 /* Modifiers */ 1845 case BTF_KIND_TYPEDEF: 1846 case BTF_KIND_VOLATILE: 1847 case BTF_KIND_CONST: 1848 case BTF_KIND_RESTRICT: 1849 case BTF_KIND_TYPE_TAG: 1850 id = type->type; 1851 type = btf_type_by_id(btf, type->type); 1852 break; 1853 1854 case BTF_KIND_ARRAY: 1855 if (!array_type) 1856 array_type = type; 1857 array = btf_type_array(type); 1858 if (nelems && array->nelems > U32_MAX / nelems) 1859 return ERR_PTR(-EINVAL); 1860 nelems *= array->nelems; 1861 type = btf_type_by_id(btf, array->type); 1862 break; 1863 1864 /* type without size */ 1865 default: 1866 return ERR_PTR(-EINVAL); 1867 } 1868 } 1869 1870 return ERR_PTR(-EINVAL); 1871 1872 resolved: 1873 if (nelems && size > U32_MAX / nelems) 1874 return ERR_PTR(-EINVAL); 1875 1876 *type_size = nelems * size; 1877 if (total_nelems) 1878 *total_nelems = nelems; 1879 if (elem_type) 1880 *elem_type = type; 1881 if (elem_id) 1882 *elem_id = array ? array->type : 0; 1883 if (type_id && id) 1884 *type_id = id; 1885 1886 return array_type ? : type; 1887 } 1888 1889 const struct btf_type * 1890 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1891 u32 *type_size) 1892 { 1893 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1894 } 1895 1896 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1897 { 1898 while (type_id < btf->start_id) 1899 btf = btf->base_btf; 1900 1901 return btf->resolved_ids[type_id - btf->start_id]; 1902 } 1903 1904 /* The input param "type_id" must point to a needs_resolve type */ 1905 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1906 u32 *type_id) 1907 { 1908 *type_id = btf_resolved_type_id(btf, *type_id); 1909 return btf_type_by_id(btf, *type_id); 1910 } 1911 1912 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1913 { 1914 while (type_id < btf->start_id) 1915 btf = btf->base_btf; 1916 1917 return btf->resolved_sizes[type_id - btf->start_id]; 1918 } 1919 1920 const struct btf_type *btf_type_id_size(const struct btf *btf, 1921 u32 *type_id, u32 *ret_size) 1922 { 1923 const struct btf_type *size_type; 1924 u32 size_type_id = *type_id; 1925 u32 size = 0; 1926 1927 size_type = btf_type_by_id(btf, size_type_id); 1928 if (btf_type_nosize_or_null(size_type)) 1929 return NULL; 1930 1931 if (btf_type_has_size(size_type)) { 1932 size = size_type->size; 1933 } else if (btf_type_is_array(size_type)) { 1934 size = btf_resolved_type_size(btf, size_type_id); 1935 } else if (btf_type_is_ptr(size_type)) { 1936 size = sizeof(void *); 1937 } else { 1938 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1939 !btf_type_is_var(size_type))) 1940 return NULL; 1941 1942 size_type_id = btf_resolved_type_id(btf, size_type_id); 1943 size_type = btf_type_by_id(btf, size_type_id); 1944 if (btf_type_nosize_or_null(size_type)) 1945 return NULL; 1946 else if (btf_type_has_size(size_type)) 1947 size = size_type->size; 1948 else if (btf_type_is_array(size_type)) 1949 size = btf_resolved_type_size(btf, size_type_id); 1950 else if (btf_type_is_ptr(size_type)) 1951 size = sizeof(void *); 1952 else 1953 return NULL; 1954 } 1955 1956 *type_id = size_type_id; 1957 if (ret_size) 1958 *ret_size = size; 1959 1960 return size_type; 1961 } 1962 1963 static int btf_df_check_member(struct btf_verifier_env *env, 1964 const struct btf_type *struct_type, 1965 const struct btf_member *member, 1966 const struct btf_type *member_type) 1967 { 1968 btf_verifier_log_basic(env, struct_type, 1969 "Unsupported check_member"); 1970 return -EINVAL; 1971 } 1972 1973 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1974 const struct btf_type *struct_type, 1975 const struct btf_member *member, 1976 const struct btf_type *member_type) 1977 { 1978 btf_verifier_log_basic(env, struct_type, 1979 "Unsupported check_kflag_member"); 1980 return -EINVAL; 1981 } 1982 1983 /* Used for ptr, array struct/union and float type members. 1984 * int, enum and modifier types have their specific callback functions. 1985 */ 1986 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1987 const struct btf_type *struct_type, 1988 const struct btf_member *member, 1989 const struct btf_type *member_type) 1990 { 1991 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1992 btf_verifier_log_member(env, struct_type, member, 1993 "Invalid member bitfield_size"); 1994 return -EINVAL; 1995 } 1996 1997 /* bitfield size is 0, so member->offset represents bit offset only. 1998 * It is safe to call non kflag check_member variants. 1999 */ 2000 return btf_type_ops(member_type)->check_member(env, struct_type, 2001 member, 2002 member_type); 2003 } 2004 2005 static int btf_df_resolve(struct btf_verifier_env *env, 2006 const struct resolve_vertex *v) 2007 { 2008 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2009 return -EINVAL; 2010 } 2011 2012 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2013 u32 type_id, void *data, u8 bits_offsets, 2014 struct btf_show *show) 2015 { 2016 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2017 } 2018 2019 static int btf_int_check_member(struct btf_verifier_env *env, 2020 const struct btf_type *struct_type, 2021 const struct btf_member *member, 2022 const struct btf_type *member_type) 2023 { 2024 u32 int_data = btf_type_int(member_type); 2025 u32 struct_bits_off = member->offset; 2026 u32 struct_size = struct_type->size; 2027 u32 nr_copy_bits; 2028 u32 bytes_offset; 2029 2030 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2031 btf_verifier_log_member(env, struct_type, member, 2032 "bits_offset exceeds U32_MAX"); 2033 return -EINVAL; 2034 } 2035 2036 struct_bits_off += BTF_INT_OFFSET(int_data); 2037 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2038 nr_copy_bits = BTF_INT_BITS(int_data) + 2039 BITS_PER_BYTE_MASKED(struct_bits_off); 2040 2041 if (nr_copy_bits > BITS_PER_U128) { 2042 btf_verifier_log_member(env, struct_type, member, 2043 "nr_copy_bits exceeds 128"); 2044 return -EINVAL; 2045 } 2046 2047 if (struct_size < bytes_offset || 2048 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2049 btf_verifier_log_member(env, struct_type, member, 2050 "Member exceeds struct_size"); 2051 return -EINVAL; 2052 } 2053 2054 return 0; 2055 } 2056 2057 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2058 const struct btf_type *struct_type, 2059 const struct btf_member *member, 2060 const struct btf_type *member_type) 2061 { 2062 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2063 u32 int_data = btf_type_int(member_type); 2064 u32 struct_size = struct_type->size; 2065 u32 nr_copy_bits; 2066 2067 /* a regular int type is required for the kflag int member */ 2068 if (!btf_type_int_is_regular(member_type)) { 2069 btf_verifier_log_member(env, struct_type, member, 2070 "Invalid member base type"); 2071 return -EINVAL; 2072 } 2073 2074 /* check sanity of bitfield size */ 2075 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2076 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2077 nr_int_data_bits = BTF_INT_BITS(int_data); 2078 if (!nr_bits) { 2079 /* Not a bitfield member, member offset must be at byte 2080 * boundary. 2081 */ 2082 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2083 btf_verifier_log_member(env, struct_type, member, 2084 "Invalid member offset"); 2085 return -EINVAL; 2086 } 2087 2088 nr_bits = nr_int_data_bits; 2089 } else if (nr_bits > nr_int_data_bits) { 2090 btf_verifier_log_member(env, struct_type, member, 2091 "Invalid member bitfield_size"); 2092 return -EINVAL; 2093 } 2094 2095 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2096 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2097 if (nr_copy_bits > BITS_PER_U128) { 2098 btf_verifier_log_member(env, struct_type, member, 2099 "nr_copy_bits exceeds 128"); 2100 return -EINVAL; 2101 } 2102 2103 if (struct_size < bytes_offset || 2104 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2105 btf_verifier_log_member(env, struct_type, member, 2106 "Member exceeds struct_size"); 2107 return -EINVAL; 2108 } 2109 2110 return 0; 2111 } 2112 2113 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2114 const struct btf_type *t, 2115 u32 meta_left) 2116 { 2117 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2118 u16 encoding; 2119 2120 if (meta_left < meta_needed) { 2121 btf_verifier_log_basic(env, t, 2122 "meta_left:%u meta_needed:%u", 2123 meta_left, meta_needed); 2124 return -EINVAL; 2125 } 2126 2127 if (btf_type_vlen(t)) { 2128 btf_verifier_log_type(env, t, "vlen != 0"); 2129 return -EINVAL; 2130 } 2131 2132 if (btf_type_kflag(t)) { 2133 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2134 return -EINVAL; 2135 } 2136 2137 int_data = btf_type_int(t); 2138 if (int_data & ~BTF_INT_MASK) { 2139 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2140 int_data); 2141 return -EINVAL; 2142 } 2143 2144 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2145 2146 if (nr_bits > BITS_PER_U128) { 2147 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2148 BITS_PER_U128); 2149 return -EINVAL; 2150 } 2151 2152 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2153 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2154 return -EINVAL; 2155 } 2156 2157 /* 2158 * Only one of the encoding bits is allowed and it 2159 * should be sufficient for the pretty print purpose (i.e. decoding). 2160 * Multiple bits can be allowed later if it is found 2161 * to be insufficient. 2162 */ 2163 encoding = BTF_INT_ENCODING(int_data); 2164 if (encoding && 2165 encoding != BTF_INT_SIGNED && 2166 encoding != BTF_INT_CHAR && 2167 encoding != BTF_INT_BOOL) { 2168 btf_verifier_log_type(env, t, "Unsupported encoding"); 2169 return -ENOTSUPP; 2170 } 2171 2172 btf_verifier_log_type(env, t, NULL); 2173 2174 return meta_needed; 2175 } 2176 2177 static void btf_int_log(struct btf_verifier_env *env, 2178 const struct btf_type *t) 2179 { 2180 int int_data = btf_type_int(t); 2181 2182 btf_verifier_log(env, 2183 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2184 t->size, BTF_INT_OFFSET(int_data), 2185 BTF_INT_BITS(int_data), 2186 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2187 } 2188 2189 static void btf_int128_print(struct btf_show *show, void *data) 2190 { 2191 /* data points to a __int128 number. 2192 * Suppose 2193 * int128_num = *(__int128 *)data; 2194 * The below formulas shows what upper_num and lower_num represents: 2195 * upper_num = int128_num >> 64; 2196 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2197 */ 2198 u64 upper_num, lower_num; 2199 2200 #ifdef __BIG_ENDIAN_BITFIELD 2201 upper_num = *(u64 *)data; 2202 lower_num = *(u64 *)(data + 8); 2203 #else 2204 upper_num = *(u64 *)(data + 8); 2205 lower_num = *(u64 *)data; 2206 #endif 2207 if (upper_num == 0) 2208 btf_show_type_value(show, "0x%llx", lower_num); 2209 else 2210 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2211 lower_num); 2212 } 2213 2214 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2215 u16 right_shift_bits) 2216 { 2217 u64 upper_num, lower_num; 2218 2219 #ifdef __BIG_ENDIAN_BITFIELD 2220 upper_num = print_num[0]; 2221 lower_num = print_num[1]; 2222 #else 2223 upper_num = print_num[1]; 2224 lower_num = print_num[0]; 2225 #endif 2226 2227 /* shake out un-needed bits by shift/or operations */ 2228 if (left_shift_bits >= 64) { 2229 upper_num = lower_num << (left_shift_bits - 64); 2230 lower_num = 0; 2231 } else { 2232 upper_num = (upper_num << left_shift_bits) | 2233 (lower_num >> (64 - left_shift_bits)); 2234 lower_num = lower_num << left_shift_bits; 2235 } 2236 2237 if (right_shift_bits >= 64) { 2238 lower_num = upper_num >> (right_shift_bits - 64); 2239 upper_num = 0; 2240 } else { 2241 lower_num = (lower_num >> right_shift_bits) | 2242 (upper_num << (64 - right_shift_bits)); 2243 upper_num = upper_num >> right_shift_bits; 2244 } 2245 2246 #ifdef __BIG_ENDIAN_BITFIELD 2247 print_num[0] = upper_num; 2248 print_num[1] = lower_num; 2249 #else 2250 print_num[0] = lower_num; 2251 print_num[1] = upper_num; 2252 #endif 2253 } 2254 2255 static void btf_bitfield_show(void *data, u8 bits_offset, 2256 u8 nr_bits, struct btf_show *show) 2257 { 2258 u16 left_shift_bits, right_shift_bits; 2259 u8 nr_copy_bytes; 2260 u8 nr_copy_bits; 2261 u64 print_num[2] = {}; 2262 2263 nr_copy_bits = nr_bits + bits_offset; 2264 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2265 2266 memcpy(print_num, data, nr_copy_bytes); 2267 2268 #ifdef __BIG_ENDIAN_BITFIELD 2269 left_shift_bits = bits_offset; 2270 #else 2271 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2272 #endif 2273 right_shift_bits = BITS_PER_U128 - nr_bits; 2274 2275 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2276 btf_int128_print(show, print_num); 2277 } 2278 2279 2280 static void btf_int_bits_show(const struct btf *btf, 2281 const struct btf_type *t, 2282 void *data, u8 bits_offset, 2283 struct btf_show *show) 2284 { 2285 u32 int_data = btf_type_int(t); 2286 u8 nr_bits = BTF_INT_BITS(int_data); 2287 u8 total_bits_offset; 2288 2289 /* 2290 * bits_offset is at most 7. 2291 * BTF_INT_OFFSET() cannot exceed 128 bits. 2292 */ 2293 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2294 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2295 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2296 btf_bitfield_show(data, bits_offset, nr_bits, show); 2297 } 2298 2299 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2300 u32 type_id, void *data, u8 bits_offset, 2301 struct btf_show *show) 2302 { 2303 u32 int_data = btf_type_int(t); 2304 u8 encoding = BTF_INT_ENCODING(int_data); 2305 bool sign = encoding & BTF_INT_SIGNED; 2306 u8 nr_bits = BTF_INT_BITS(int_data); 2307 void *safe_data; 2308 2309 safe_data = btf_show_start_type(show, t, type_id, data); 2310 if (!safe_data) 2311 return; 2312 2313 if (bits_offset || BTF_INT_OFFSET(int_data) || 2314 BITS_PER_BYTE_MASKED(nr_bits)) { 2315 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2316 goto out; 2317 } 2318 2319 switch (nr_bits) { 2320 case 128: 2321 btf_int128_print(show, safe_data); 2322 break; 2323 case 64: 2324 if (sign) 2325 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2326 else 2327 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2328 break; 2329 case 32: 2330 if (sign) 2331 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2332 else 2333 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2334 break; 2335 case 16: 2336 if (sign) 2337 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2338 else 2339 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2340 break; 2341 case 8: 2342 if (show->state.array_encoding == BTF_INT_CHAR) { 2343 /* check for null terminator */ 2344 if (show->state.array_terminated) 2345 break; 2346 if (*(char *)data == '\0') { 2347 show->state.array_terminated = 1; 2348 break; 2349 } 2350 if (isprint(*(char *)data)) { 2351 btf_show_type_value(show, "'%c'", 2352 *(char *)safe_data); 2353 break; 2354 } 2355 } 2356 if (sign) 2357 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2358 else 2359 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2360 break; 2361 default: 2362 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2363 break; 2364 } 2365 out: 2366 btf_show_end_type(show); 2367 } 2368 2369 static const struct btf_kind_operations int_ops = { 2370 .check_meta = btf_int_check_meta, 2371 .resolve = btf_df_resolve, 2372 .check_member = btf_int_check_member, 2373 .check_kflag_member = btf_int_check_kflag_member, 2374 .log_details = btf_int_log, 2375 .show = btf_int_show, 2376 }; 2377 2378 static int btf_modifier_check_member(struct btf_verifier_env *env, 2379 const struct btf_type *struct_type, 2380 const struct btf_member *member, 2381 const struct btf_type *member_type) 2382 { 2383 const struct btf_type *resolved_type; 2384 u32 resolved_type_id = member->type; 2385 struct btf_member resolved_member; 2386 struct btf *btf = env->btf; 2387 2388 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2389 if (!resolved_type) { 2390 btf_verifier_log_member(env, struct_type, member, 2391 "Invalid member"); 2392 return -EINVAL; 2393 } 2394 2395 resolved_member = *member; 2396 resolved_member.type = resolved_type_id; 2397 2398 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2399 &resolved_member, 2400 resolved_type); 2401 } 2402 2403 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2404 const struct btf_type *struct_type, 2405 const struct btf_member *member, 2406 const struct btf_type *member_type) 2407 { 2408 const struct btf_type *resolved_type; 2409 u32 resolved_type_id = member->type; 2410 struct btf_member resolved_member; 2411 struct btf *btf = env->btf; 2412 2413 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2414 if (!resolved_type) { 2415 btf_verifier_log_member(env, struct_type, member, 2416 "Invalid member"); 2417 return -EINVAL; 2418 } 2419 2420 resolved_member = *member; 2421 resolved_member.type = resolved_type_id; 2422 2423 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2424 &resolved_member, 2425 resolved_type); 2426 } 2427 2428 static int btf_ptr_check_member(struct btf_verifier_env *env, 2429 const struct btf_type *struct_type, 2430 const struct btf_member *member, 2431 const struct btf_type *member_type) 2432 { 2433 u32 struct_size, struct_bits_off, bytes_offset; 2434 2435 struct_size = struct_type->size; 2436 struct_bits_off = member->offset; 2437 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2438 2439 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2440 btf_verifier_log_member(env, struct_type, member, 2441 "Member is not byte aligned"); 2442 return -EINVAL; 2443 } 2444 2445 if (struct_size - bytes_offset < sizeof(void *)) { 2446 btf_verifier_log_member(env, struct_type, member, 2447 "Member exceeds struct_size"); 2448 return -EINVAL; 2449 } 2450 2451 return 0; 2452 } 2453 2454 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2455 const struct btf_type *t, 2456 u32 meta_left) 2457 { 2458 const char *value; 2459 2460 if (btf_type_vlen(t)) { 2461 btf_verifier_log_type(env, t, "vlen != 0"); 2462 return -EINVAL; 2463 } 2464 2465 if (btf_type_kflag(t)) { 2466 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2467 return -EINVAL; 2468 } 2469 2470 if (!BTF_TYPE_ID_VALID(t->type)) { 2471 btf_verifier_log_type(env, t, "Invalid type_id"); 2472 return -EINVAL; 2473 } 2474 2475 /* typedef/type_tag type must have a valid name, and other ref types, 2476 * volatile, const, restrict, should have a null name. 2477 */ 2478 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2479 if (!t->name_off || 2480 !btf_name_valid_identifier(env->btf, t->name_off)) { 2481 btf_verifier_log_type(env, t, "Invalid name"); 2482 return -EINVAL; 2483 } 2484 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2485 value = btf_name_by_offset(env->btf, t->name_off); 2486 if (!value || !value[0]) { 2487 btf_verifier_log_type(env, t, "Invalid name"); 2488 return -EINVAL; 2489 } 2490 } else { 2491 if (t->name_off) { 2492 btf_verifier_log_type(env, t, "Invalid name"); 2493 return -EINVAL; 2494 } 2495 } 2496 2497 btf_verifier_log_type(env, t, NULL); 2498 2499 return 0; 2500 } 2501 2502 static int btf_modifier_resolve(struct btf_verifier_env *env, 2503 const struct resolve_vertex *v) 2504 { 2505 const struct btf_type *t = v->t; 2506 const struct btf_type *next_type; 2507 u32 next_type_id = t->type; 2508 struct btf *btf = env->btf; 2509 2510 next_type = btf_type_by_id(btf, next_type_id); 2511 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2512 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2513 return -EINVAL; 2514 } 2515 2516 if (!env_type_is_resolve_sink(env, next_type) && 2517 !env_type_is_resolved(env, next_type_id)) 2518 return env_stack_push(env, next_type, next_type_id); 2519 2520 /* Figure out the resolved next_type_id with size. 2521 * They will be stored in the current modifier's 2522 * resolved_ids and resolved_sizes such that it can 2523 * save us a few type-following when we use it later (e.g. in 2524 * pretty print). 2525 */ 2526 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2527 if (env_type_is_resolved(env, next_type_id)) 2528 next_type = btf_type_id_resolve(btf, &next_type_id); 2529 2530 /* "typedef void new_void", "const void"...etc */ 2531 if (!btf_type_is_void(next_type) && 2532 !btf_type_is_fwd(next_type) && 2533 !btf_type_is_func_proto(next_type)) { 2534 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2535 return -EINVAL; 2536 } 2537 } 2538 2539 env_stack_pop_resolved(env, next_type_id, 0); 2540 2541 return 0; 2542 } 2543 2544 static int btf_var_resolve(struct btf_verifier_env *env, 2545 const struct resolve_vertex *v) 2546 { 2547 const struct btf_type *next_type; 2548 const struct btf_type *t = v->t; 2549 u32 next_type_id = t->type; 2550 struct btf *btf = env->btf; 2551 2552 next_type = btf_type_by_id(btf, next_type_id); 2553 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2554 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2555 return -EINVAL; 2556 } 2557 2558 if (!env_type_is_resolve_sink(env, next_type) && 2559 !env_type_is_resolved(env, next_type_id)) 2560 return env_stack_push(env, next_type, next_type_id); 2561 2562 if (btf_type_is_modifier(next_type)) { 2563 const struct btf_type *resolved_type; 2564 u32 resolved_type_id; 2565 2566 resolved_type_id = next_type_id; 2567 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2568 2569 if (btf_type_is_ptr(resolved_type) && 2570 !env_type_is_resolve_sink(env, resolved_type) && 2571 !env_type_is_resolved(env, resolved_type_id)) 2572 return env_stack_push(env, resolved_type, 2573 resolved_type_id); 2574 } 2575 2576 /* We must resolve to something concrete at this point, no 2577 * forward types or similar that would resolve to size of 2578 * zero is allowed. 2579 */ 2580 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2581 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2582 return -EINVAL; 2583 } 2584 2585 env_stack_pop_resolved(env, next_type_id, 0); 2586 2587 return 0; 2588 } 2589 2590 static int btf_ptr_resolve(struct btf_verifier_env *env, 2591 const struct resolve_vertex *v) 2592 { 2593 const struct btf_type *next_type; 2594 const struct btf_type *t = v->t; 2595 u32 next_type_id = t->type; 2596 struct btf *btf = env->btf; 2597 2598 next_type = btf_type_by_id(btf, next_type_id); 2599 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2600 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2601 return -EINVAL; 2602 } 2603 2604 if (!env_type_is_resolve_sink(env, next_type) && 2605 !env_type_is_resolved(env, next_type_id)) 2606 return env_stack_push(env, next_type, next_type_id); 2607 2608 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2609 * the modifier may have stopped resolving when it was resolved 2610 * to a ptr (last-resolved-ptr). 2611 * 2612 * We now need to continue from the last-resolved-ptr to 2613 * ensure the last-resolved-ptr will not referring back to 2614 * the current ptr (t). 2615 */ 2616 if (btf_type_is_modifier(next_type)) { 2617 const struct btf_type *resolved_type; 2618 u32 resolved_type_id; 2619 2620 resolved_type_id = next_type_id; 2621 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2622 2623 if (btf_type_is_ptr(resolved_type) && 2624 !env_type_is_resolve_sink(env, resolved_type) && 2625 !env_type_is_resolved(env, resolved_type_id)) 2626 return env_stack_push(env, resolved_type, 2627 resolved_type_id); 2628 } 2629 2630 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2631 if (env_type_is_resolved(env, next_type_id)) 2632 next_type = btf_type_id_resolve(btf, &next_type_id); 2633 2634 if (!btf_type_is_void(next_type) && 2635 !btf_type_is_fwd(next_type) && 2636 !btf_type_is_func_proto(next_type)) { 2637 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2638 return -EINVAL; 2639 } 2640 } 2641 2642 env_stack_pop_resolved(env, next_type_id, 0); 2643 2644 return 0; 2645 } 2646 2647 static void btf_modifier_show(const struct btf *btf, 2648 const struct btf_type *t, 2649 u32 type_id, void *data, 2650 u8 bits_offset, struct btf_show *show) 2651 { 2652 if (btf->resolved_ids) 2653 t = btf_type_id_resolve(btf, &type_id); 2654 else 2655 t = btf_type_skip_modifiers(btf, type_id, NULL); 2656 2657 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2658 } 2659 2660 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2661 u32 type_id, void *data, u8 bits_offset, 2662 struct btf_show *show) 2663 { 2664 t = btf_type_id_resolve(btf, &type_id); 2665 2666 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2667 } 2668 2669 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2670 u32 type_id, void *data, u8 bits_offset, 2671 struct btf_show *show) 2672 { 2673 void *safe_data; 2674 2675 safe_data = btf_show_start_type(show, t, type_id, data); 2676 if (!safe_data) 2677 return; 2678 2679 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2680 if (show->flags & BTF_SHOW_PTR_RAW) 2681 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2682 else 2683 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2684 btf_show_end_type(show); 2685 } 2686 2687 static void btf_ref_type_log(struct btf_verifier_env *env, 2688 const struct btf_type *t) 2689 { 2690 btf_verifier_log(env, "type_id=%u", t->type); 2691 } 2692 2693 static struct btf_kind_operations modifier_ops = { 2694 .check_meta = btf_ref_type_check_meta, 2695 .resolve = btf_modifier_resolve, 2696 .check_member = btf_modifier_check_member, 2697 .check_kflag_member = btf_modifier_check_kflag_member, 2698 .log_details = btf_ref_type_log, 2699 .show = btf_modifier_show, 2700 }; 2701 2702 static struct btf_kind_operations ptr_ops = { 2703 .check_meta = btf_ref_type_check_meta, 2704 .resolve = btf_ptr_resolve, 2705 .check_member = btf_ptr_check_member, 2706 .check_kflag_member = btf_generic_check_kflag_member, 2707 .log_details = btf_ref_type_log, 2708 .show = btf_ptr_show, 2709 }; 2710 2711 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2712 const struct btf_type *t, 2713 u32 meta_left) 2714 { 2715 if (btf_type_vlen(t)) { 2716 btf_verifier_log_type(env, t, "vlen != 0"); 2717 return -EINVAL; 2718 } 2719 2720 if (t->type) { 2721 btf_verifier_log_type(env, t, "type != 0"); 2722 return -EINVAL; 2723 } 2724 2725 /* fwd type must have a valid name */ 2726 if (!t->name_off || 2727 !btf_name_valid_identifier(env->btf, t->name_off)) { 2728 btf_verifier_log_type(env, t, "Invalid name"); 2729 return -EINVAL; 2730 } 2731 2732 btf_verifier_log_type(env, t, NULL); 2733 2734 return 0; 2735 } 2736 2737 static void btf_fwd_type_log(struct btf_verifier_env *env, 2738 const struct btf_type *t) 2739 { 2740 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2741 } 2742 2743 static struct btf_kind_operations fwd_ops = { 2744 .check_meta = btf_fwd_check_meta, 2745 .resolve = btf_df_resolve, 2746 .check_member = btf_df_check_member, 2747 .check_kflag_member = btf_df_check_kflag_member, 2748 .log_details = btf_fwd_type_log, 2749 .show = btf_df_show, 2750 }; 2751 2752 static int btf_array_check_member(struct btf_verifier_env *env, 2753 const struct btf_type *struct_type, 2754 const struct btf_member *member, 2755 const struct btf_type *member_type) 2756 { 2757 u32 struct_bits_off = member->offset; 2758 u32 struct_size, bytes_offset; 2759 u32 array_type_id, array_size; 2760 struct btf *btf = env->btf; 2761 2762 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2763 btf_verifier_log_member(env, struct_type, member, 2764 "Member is not byte aligned"); 2765 return -EINVAL; 2766 } 2767 2768 array_type_id = member->type; 2769 btf_type_id_size(btf, &array_type_id, &array_size); 2770 struct_size = struct_type->size; 2771 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2772 if (struct_size - bytes_offset < array_size) { 2773 btf_verifier_log_member(env, struct_type, member, 2774 "Member exceeds struct_size"); 2775 return -EINVAL; 2776 } 2777 2778 return 0; 2779 } 2780 2781 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2782 const struct btf_type *t, 2783 u32 meta_left) 2784 { 2785 const struct btf_array *array = btf_type_array(t); 2786 u32 meta_needed = sizeof(*array); 2787 2788 if (meta_left < meta_needed) { 2789 btf_verifier_log_basic(env, t, 2790 "meta_left:%u meta_needed:%u", 2791 meta_left, meta_needed); 2792 return -EINVAL; 2793 } 2794 2795 /* array type should not have a name */ 2796 if (t->name_off) { 2797 btf_verifier_log_type(env, t, "Invalid name"); 2798 return -EINVAL; 2799 } 2800 2801 if (btf_type_vlen(t)) { 2802 btf_verifier_log_type(env, t, "vlen != 0"); 2803 return -EINVAL; 2804 } 2805 2806 if (btf_type_kflag(t)) { 2807 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2808 return -EINVAL; 2809 } 2810 2811 if (t->size) { 2812 btf_verifier_log_type(env, t, "size != 0"); 2813 return -EINVAL; 2814 } 2815 2816 /* Array elem type and index type cannot be in type void, 2817 * so !array->type and !array->index_type are not allowed. 2818 */ 2819 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2820 btf_verifier_log_type(env, t, "Invalid elem"); 2821 return -EINVAL; 2822 } 2823 2824 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2825 btf_verifier_log_type(env, t, "Invalid index"); 2826 return -EINVAL; 2827 } 2828 2829 btf_verifier_log_type(env, t, NULL); 2830 2831 return meta_needed; 2832 } 2833 2834 static int btf_array_resolve(struct btf_verifier_env *env, 2835 const struct resolve_vertex *v) 2836 { 2837 const struct btf_array *array = btf_type_array(v->t); 2838 const struct btf_type *elem_type, *index_type; 2839 u32 elem_type_id, index_type_id; 2840 struct btf *btf = env->btf; 2841 u32 elem_size; 2842 2843 /* Check array->index_type */ 2844 index_type_id = array->index_type; 2845 index_type = btf_type_by_id(btf, index_type_id); 2846 if (btf_type_nosize_or_null(index_type) || 2847 btf_type_is_resolve_source_only(index_type)) { 2848 btf_verifier_log_type(env, v->t, "Invalid index"); 2849 return -EINVAL; 2850 } 2851 2852 if (!env_type_is_resolve_sink(env, index_type) && 2853 !env_type_is_resolved(env, index_type_id)) 2854 return env_stack_push(env, index_type, index_type_id); 2855 2856 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2857 if (!index_type || !btf_type_is_int(index_type) || 2858 !btf_type_int_is_regular(index_type)) { 2859 btf_verifier_log_type(env, v->t, "Invalid index"); 2860 return -EINVAL; 2861 } 2862 2863 /* Check array->type */ 2864 elem_type_id = array->type; 2865 elem_type = btf_type_by_id(btf, elem_type_id); 2866 if (btf_type_nosize_or_null(elem_type) || 2867 btf_type_is_resolve_source_only(elem_type)) { 2868 btf_verifier_log_type(env, v->t, 2869 "Invalid elem"); 2870 return -EINVAL; 2871 } 2872 2873 if (!env_type_is_resolve_sink(env, elem_type) && 2874 !env_type_is_resolved(env, elem_type_id)) 2875 return env_stack_push(env, elem_type, elem_type_id); 2876 2877 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2878 if (!elem_type) { 2879 btf_verifier_log_type(env, v->t, "Invalid elem"); 2880 return -EINVAL; 2881 } 2882 2883 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2884 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2885 return -EINVAL; 2886 } 2887 2888 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2889 btf_verifier_log_type(env, v->t, 2890 "Array size overflows U32_MAX"); 2891 return -EINVAL; 2892 } 2893 2894 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2895 2896 return 0; 2897 } 2898 2899 static void btf_array_log(struct btf_verifier_env *env, 2900 const struct btf_type *t) 2901 { 2902 const struct btf_array *array = btf_type_array(t); 2903 2904 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2905 array->type, array->index_type, array->nelems); 2906 } 2907 2908 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2909 u32 type_id, void *data, u8 bits_offset, 2910 struct btf_show *show) 2911 { 2912 const struct btf_array *array = btf_type_array(t); 2913 const struct btf_kind_operations *elem_ops; 2914 const struct btf_type *elem_type; 2915 u32 i, elem_size = 0, elem_type_id; 2916 u16 encoding = 0; 2917 2918 elem_type_id = array->type; 2919 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2920 if (elem_type && btf_type_has_size(elem_type)) 2921 elem_size = elem_type->size; 2922 2923 if (elem_type && btf_type_is_int(elem_type)) { 2924 u32 int_type = btf_type_int(elem_type); 2925 2926 encoding = BTF_INT_ENCODING(int_type); 2927 2928 /* 2929 * BTF_INT_CHAR encoding never seems to be set for 2930 * char arrays, so if size is 1 and element is 2931 * printable as a char, we'll do that. 2932 */ 2933 if (elem_size == 1) 2934 encoding = BTF_INT_CHAR; 2935 } 2936 2937 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2938 return; 2939 2940 if (!elem_type) 2941 goto out; 2942 elem_ops = btf_type_ops(elem_type); 2943 2944 for (i = 0; i < array->nelems; i++) { 2945 2946 btf_show_start_array_member(show); 2947 2948 elem_ops->show(btf, elem_type, elem_type_id, data, 2949 bits_offset, show); 2950 data += elem_size; 2951 2952 btf_show_end_array_member(show); 2953 2954 if (show->state.array_terminated) 2955 break; 2956 } 2957 out: 2958 btf_show_end_array_type(show); 2959 } 2960 2961 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2962 u32 type_id, void *data, u8 bits_offset, 2963 struct btf_show *show) 2964 { 2965 const struct btf_member *m = show->state.member; 2966 2967 /* 2968 * First check if any members would be shown (are non-zero). 2969 * See comments above "struct btf_show" definition for more 2970 * details on how this works at a high-level. 2971 */ 2972 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2973 if (!show->state.depth_check) { 2974 show->state.depth_check = show->state.depth + 1; 2975 show->state.depth_to_show = 0; 2976 } 2977 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2978 show->state.member = m; 2979 2980 if (show->state.depth_check != show->state.depth + 1) 2981 return; 2982 show->state.depth_check = 0; 2983 2984 if (show->state.depth_to_show <= show->state.depth) 2985 return; 2986 /* 2987 * Reaching here indicates we have recursed and found 2988 * non-zero array member(s). 2989 */ 2990 } 2991 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2992 } 2993 2994 static struct btf_kind_operations array_ops = { 2995 .check_meta = btf_array_check_meta, 2996 .resolve = btf_array_resolve, 2997 .check_member = btf_array_check_member, 2998 .check_kflag_member = btf_generic_check_kflag_member, 2999 .log_details = btf_array_log, 3000 .show = btf_array_show, 3001 }; 3002 3003 static int btf_struct_check_member(struct btf_verifier_env *env, 3004 const struct btf_type *struct_type, 3005 const struct btf_member *member, 3006 const struct btf_type *member_type) 3007 { 3008 u32 struct_bits_off = member->offset; 3009 u32 struct_size, bytes_offset; 3010 3011 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3012 btf_verifier_log_member(env, struct_type, member, 3013 "Member is not byte aligned"); 3014 return -EINVAL; 3015 } 3016 3017 struct_size = struct_type->size; 3018 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3019 if (struct_size - bytes_offset < member_type->size) { 3020 btf_verifier_log_member(env, struct_type, member, 3021 "Member exceeds struct_size"); 3022 return -EINVAL; 3023 } 3024 3025 return 0; 3026 } 3027 3028 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3029 const struct btf_type *t, 3030 u32 meta_left) 3031 { 3032 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3033 const struct btf_member *member; 3034 u32 meta_needed, last_offset; 3035 struct btf *btf = env->btf; 3036 u32 struct_size = t->size; 3037 u32 offset; 3038 u16 i; 3039 3040 meta_needed = btf_type_vlen(t) * sizeof(*member); 3041 if (meta_left < meta_needed) { 3042 btf_verifier_log_basic(env, t, 3043 "meta_left:%u meta_needed:%u", 3044 meta_left, meta_needed); 3045 return -EINVAL; 3046 } 3047 3048 /* struct type either no name or a valid one */ 3049 if (t->name_off && 3050 !btf_name_valid_identifier(env->btf, t->name_off)) { 3051 btf_verifier_log_type(env, t, "Invalid name"); 3052 return -EINVAL; 3053 } 3054 3055 btf_verifier_log_type(env, t, NULL); 3056 3057 last_offset = 0; 3058 for_each_member(i, t, member) { 3059 if (!btf_name_offset_valid(btf, member->name_off)) { 3060 btf_verifier_log_member(env, t, member, 3061 "Invalid member name_offset:%u", 3062 member->name_off); 3063 return -EINVAL; 3064 } 3065 3066 /* struct member either no name or a valid one */ 3067 if (member->name_off && 3068 !btf_name_valid_identifier(btf, member->name_off)) { 3069 btf_verifier_log_member(env, t, member, "Invalid name"); 3070 return -EINVAL; 3071 } 3072 /* A member cannot be in type void */ 3073 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3074 btf_verifier_log_member(env, t, member, 3075 "Invalid type_id"); 3076 return -EINVAL; 3077 } 3078 3079 offset = __btf_member_bit_offset(t, member); 3080 if (is_union && offset) { 3081 btf_verifier_log_member(env, t, member, 3082 "Invalid member bits_offset"); 3083 return -EINVAL; 3084 } 3085 3086 /* 3087 * ">" instead of ">=" because the last member could be 3088 * "char a[0];" 3089 */ 3090 if (last_offset > offset) { 3091 btf_verifier_log_member(env, t, member, 3092 "Invalid member bits_offset"); 3093 return -EINVAL; 3094 } 3095 3096 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3097 btf_verifier_log_member(env, t, member, 3098 "Member bits_offset exceeds its struct size"); 3099 return -EINVAL; 3100 } 3101 3102 btf_verifier_log_member(env, t, member, NULL); 3103 last_offset = offset; 3104 } 3105 3106 return meta_needed; 3107 } 3108 3109 static int btf_struct_resolve(struct btf_verifier_env *env, 3110 const struct resolve_vertex *v) 3111 { 3112 const struct btf_member *member; 3113 int err; 3114 u16 i; 3115 3116 /* Before continue resolving the next_member, 3117 * ensure the last member is indeed resolved to a 3118 * type with size info. 3119 */ 3120 if (v->next_member) { 3121 const struct btf_type *last_member_type; 3122 const struct btf_member *last_member; 3123 u16 last_member_type_id; 3124 3125 last_member = btf_type_member(v->t) + v->next_member - 1; 3126 last_member_type_id = last_member->type; 3127 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3128 last_member_type_id))) 3129 return -EINVAL; 3130 3131 last_member_type = btf_type_by_id(env->btf, 3132 last_member_type_id); 3133 if (btf_type_kflag(v->t)) 3134 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3135 last_member, 3136 last_member_type); 3137 else 3138 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3139 last_member, 3140 last_member_type); 3141 if (err) 3142 return err; 3143 } 3144 3145 for_each_member_from(i, v->next_member, v->t, member) { 3146 u32 member_type_id = member->type; 3147 const struct btf_type *member_type = btf_type_by_id(env->btf, 3148 member_type_id); 3149 3150 if (btf_type_nosize_or_null(member_type) || 3151 btf_type_is_resolve_source_only(member_type)) { 3152 btf_verifier_log_member(env, v->t, member, 3153 "Invalid member"); 3154 return -EINVAL; 3155 } 3156 3157 if (!env_type_is_resolve_sink(env, member_type) && 3158 !env_type_is_resolved(env, member_type_id)) { 3159 env_stack_set_next_member(env, i + 1); 3160 return env_stack_push(env, member_type, member_type_id); 3161 } 3162 3163 if (btf_type_kflag(v->t)) 3164 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3165 member, 3166 member_type); 3167 else 3168 err = btf_type_ops(member_type)->check_member(env, v->t, 3169 member, 3170 member_type); 3171 if (err) 3172 return err; 3173 } 3174 3175 env_stack_pop_resolved(env, 0, 0); 3176 3177 return 0; 3178 } 3179 3180 static void btf_struct_log(struct btf_verifier_env *env, 3181 const struct btf_type *t) 3182 { 3183 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3184 } 3185 3186 enum btf_field_type { 3187 BTF_FIELD_SPIN_LOCK, 3188 BTF_FIELD_TIMER, 3189 BTF_FIELD_KPTR, 3190 }; 3191 3192 enum { 3193 BTF_FIELD_IGNORE = 0, 3194 BTF_FIELD_FOUND = 1, 3195 }; 3196 3197 struct btf_field_info { 3198 u32 type_id; 3199 u32 off; 3200 enum bpf_kptr_type type; 3201 }; 3202 3203 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3204 u32 off, int sz, struct btf_field_info *info) 3205 { 3206 if (!__btf_type_is_struct(t)) 3207 return BTF_FIELD_IGNORE; 3208 if (t->size != sz) 3209 return BTF_FIELD_IGNORE; 3210 info->off = off; 3211 return BTF_FIELD_FOUND; 3212 } 3213 3214 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3215 u32 off, int sz, struct btf_field_info *info) 3216 { 3217 enum bpf_kptr_type type; 3218 u32 res_id; 3219 3220 /* For PTR, sz is always == 8 */ 3221 if (!btf_type_is_ptr(t)) 3222 return BTF_FIELD_IGNORE; 3223 t = btf_type_by_id(btf, t->type); 3224 3225 if (!btf_type_is_type_tag(t)) 3226 return BTF_FIELD_IGNORE; 3227 /* Reject extra tags */ 3228 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3229 return -EINVAL; 3230 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3231 type = BPF_KPTR_UNREF; 3232 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) 3233 type = BPF_KPTR_REF; 3234 else 3235 return -EINVAL; 3236 3237 /* Get the base type */ 3238 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3239 /* Only pointer to struct is allowed */ 3240 if (!__btf_type_is_struct(t)) 3241 return -EINVAL; 3242 3243 info->type_id = res_id; 3244 info->off = off; 3245 info->type = type; 3246 return BTF_FIELD_FOUND; 3247 } 3248 3249 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, 3250 const char *name, int sz, int align, 3251 enum btf_field_type field_type, 3252 struct btf_field_info *info, int info_cnt) 3253 { 3254 const struct btf_member *member; 3255 struct btf_field_info tmp; 3256 int ret, idx = 0; 3257 u32 i, off; 3258 3259 for_each_member(i, t, member) { 3260 const struct btf_type *member_type = btf_type_by_id(btf, 3261 member->type); 3262 3263 if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) 3264 continue; 3265 3266 off = __btf_member_bit_offset(t, member); 3267 if (off % 8) 3268 /* valid C code cannot generate such BTF */ 3269 return -EINVAL; 3270 off /= 8; 3271 if (off % align) 3272 return -EINVAL; 3273 3274 switch (field_type) { 3275 case BTF_FIELD_SPIN_LOCK: 3276 case BTF_FIELD_TIMER: 3277 ret = btf_find_struct(btf, member_type, off, sz, 3278 idx < info_cnt ? &info[idx] : &tmp); 3279 if (ret < 0) 3280 return ret; 3281 break; 3282 case BTF_FIELD_KPTR: 3283 ret = btf_find_kptr(btf, member_type, off, sz, 3284 idx < info_cnt ? &info[idx] : &tmp); 3285 if (ret < 0) 3286 return ret; 3287 break; 3288 default: 3289 return -EFAULT; 3290 } 3291 3292 if (ret == BTF_FIELD_IGNORE) 3293 continue; 3294 if (idx >= info_cnt) 3295 return -E2BIG; 3296 ++idx; 3297 } 3298 return idx; 3299 } 3300 3301 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3302 const char *name, int sz, int align, 3303 enum btf_field_type field_type, 3304 struct btf_field_info *info, int info_cnt) 3305 { 3306 const struct btf_var_secinfo *vsi; 3307 struct btf_field_info tmp; 3308 int ret, idx = 0; 3309 u32 i, off; 3310 3311 for_each_vsi(i, t, vsi) { 3312 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3313 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3314 3315 off = vsi->offset; 3316 3317 if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) 3318 continue; 3319 if (vsi->size != sz) 3320 continue; 3321 if (off % align) 3322 return -EINVAL; 3323 3324 switch (field_type) { 3325 case BTF_FIELD_SPIN_LOCK: 3326 case BTF_FIELD_TIMER: 3327 ret = btf_find_struct(btf, var_type, off, sz, 3328 idx < info_cnt ? &info[idx] : &tmp); 3329 if (ret < 0) 3330 return ret; 3331 break; 3332 case BTF_FIELD_KPTR: 3333 ret = btf_find_kptr(btf, var_type, off, sz, 3334 idx < info_cnt ? &info[idx] : &tmp); 3335 if (ret < 0) 3336 return ret; 3337 break; 3338 default: 3339 return -EFAULT; 3340 } 3341 3342 if (ret == BTF_FIELD_IGNORE) 3343 continue; 3344 if (idx >= info_cnt) 3345 return -E2BIG; 3346 ++idx; 3347 } 3348 return idx; 3349 } 3350 3351 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3352 enum btf_field_type field_type, 3353 struct btf_field_info *info, int info_cnt) 3354 { 3355 const char *name; 3356 int sz, align; 3357 3358 switch (field_type) { 3359 case BTF_FIELD_SPIN_LOCK: 3360 name = "bpf_spin_lock"; 3361 sz = sizeof(struct bpf_spin_lock); 3362 align = __alignof__(struct bpf_spin_lock); 3363 break; 3364 case BTF_FIELD_TIMER: 3365 name = "bpf_timer"; 3366 sz = sizeof(struct bpf_timer); 3367 align = __alignof__(struct bpf_timer); 3368 break; 3369 case BTF_FIELD_KPTR: 3370 name = NULL; 3371 sz = sizeof(u64); 3372 align = 8; 3373 break; 3374 default: 3375 return -EFAULT; 3376 } 3377 3378 if (__btf_type_is_struct(t)) 3379 return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt); 3380 else if (btf_type_is_datasec(t)) 3381 return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt); 3382 return -EINVAL; 3383 } 3384 3385 /* find 'struct bpf_spin_lock' in map value. 3386 * return >= 0 offset if found 3387 * and < 0 in case of error 3388 */ 3389 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3390 { 3391 struct btf_field_info info; 3392 int ret; 3393 3394 ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1); 3395 if (ret < 0) 3396 return ret; 3397 if (!ret) 3398 return -ENOENT; 3399 return info.off; 3400 } 3401 3402 int btf_find_timer(const struct btf *btf, const struct btf_type *t) 3403 { 3404 struct btf_field_info info; 3405 int ret; 3406 3407 ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1); 3408 if (ret < 0) 3409 return ret; 3410 if (!ret) 3411 return -ENOENT; 3412 return info.off; 3413 } 3414 3415 struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf, 3416 const struct btf_type *t) 3417 { 3418 struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX]; 3419 struct bpf_map_value_off *tab; 3420 struct btf *kernel_btf = NULL; 3421 struct module *mod = NULL; 3422 int ret, i, nr_off; 3423 3424 ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr)); 3425 if (ret < 0) 3426 return ERR_PTR(ret); 3427 if (!ret) 3428 return NULL; 3429 3430 nr_off = ret; 3431 tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN); 3432 if (!tab) 3433 return ERR_PTR(-ENOMEM); 3434 3435 for (i = 0; i < nr_off; i++) { 3436 const struct btf_type *t; 3437 s32 id; 3438 3439 /* Find type in map BTF, and use it to look up the matching type 3440 * in vmlinux or module BTFs, by name and kind. 3441 */ 3442 t = btf_type_by_id(btf, info_arr[i].type_id); 3443 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3444 &kernel_btf); 3445 if (id < 0) { 3446 ret = id; 3447 goto end; 3448 } 3449 3450 /* Find and stash the function pointer for the destruction function that 3451 * needs to be eventually invoked from the map free path. 3452 */ 3453 if (info_arr[i].type == BPF_KPTR_REF) { 3454 const struct btf_type *dtor_func; 3455 const char *dtor_func_name; 3456 unsigned long addr; 3457 s32 dtor_btf_id; 3458 3459 /* This call also serves as a whitelist of allowed objects that 3460 * can be used as a referenced pointer and be stored in a map at 3461 * the same time. 3462 */ 3463 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); 3464 if (dtor_btf_id < 0) { 3465 ret = dtor_btf_id; 3466 goto end_btf; 3467 } 3468 3469 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); 3470 if (!dtor_func) { 3471 ret = -ENOENT; 3472 goto end_btf; 3473 } 3474 3475 if (btf_is_module(kernel_btf)) { 3476 mod = btf_try_get_module(kernel_btf); 3477 if (!mod) { 3478 ret = -ENXIO; 3479 goto end_btf; 3480 } 3481 } 3482 3483 /* We already verified dtor_func to be btf_type_is_func 3484 * in register_btf_id_dtor_kfuncs. 3485 */ 3486 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); 3487 addr = kallsyms_lookup_name(dtor_func_name); 3488 if (!addr) { 3489 ret = -EINVAL; 3490 goto end_mod; 3491 } 3492 tab->off[i].kptr.dtor = (void *)addr; 3493 } 3494 3495 tab->off[i].offset = info_arr[i].off; 3496 tab->off[i].type = info_arr[i].type; 3497 tab->off[i].kptr.btf_id = id; 3498 tab->off[i].kptr.btf = kernel_btf; 3499 tab->off[i].kptr.module = mod; 3500 } 3501 tab->nr_off = nr_off; 3502 return tab; 3503 end_mod: 3504 module_put(mod); 3505 end_btf: 3506 btf_put(kernel_btf); 3507 end: 3508 while (i--) { 3509 btf_put(tab->off[i].kptr.btf); 3510 if (tab->off[i].kptr.module) 3511 module_put(tab->off[i].kptr.module); 3512 } 3513 kfree(tab); 3514 return ERR_PTR(ret); 3515 } 3516 3517 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3518 u32 type_id, void *data, u8 bits_offset, 3519 struct btf_show *show) 3520 { 3521 const struct btf_member *member; 3522 void *safe_data; 3523 u32 i; 3524 3525 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3526 if (!safe_data) 3527 return; 3528 3529 for_each_member(i, t, member) { 3530 const struct btf_type *member_type = btf_type_by_id(btf, 3531 member->type); 3532 const struct btf_kind_operations *ops; 3533 u32 member_offset, bitfield_size; 3534 u32 bytes_offset; 3535 u8 bits8_offset; 3536 3537 btf_show_start_member(show, member); 3538 3539 member_offset = __btf_member_bit_offset(t, member); 3540 bitfield_size = __btf_member_bitfield_size(t, member); 3541 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3542 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3543 if (bitfield_size) { 3544 safe_data = btf_show_start_type(show, member_type, 3545 member->type, 3546 data + bytes_offset); 3547 if (safe_data) 3548 btf_bitfield_show(safe_data, 3549 bits8_offset, 3550 bitfield_size, show); 3551 btf_show_end_type(show); 3552 } else { 3553 ops = btf_type_ops(member_type); 3554 ops->show(btf, member_type, member->type, 3555 data + bytes_offset, bits8_offset, show); 3556 } 3557 3558 btf_show_end_member(show); 3559 } 3560 3561 btf_show_end_struct_type(show); 3562 } 3563 3564 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3565 u32 type_id, void *data, u8 bits_offset, 3566 struct btf_show *show) 3567 { 3568 const struct btf_member *m = show->state.member; 3569 3570 /* 3571 * First check if any members would be shown (are non-zero). 3572 * See comments above "struct btf_show" definition for more 3573 * details on how this works at a high-level. 3574 */ 3575 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3576 if (!show->state.depth_check) { 3577 show->state.depth_check = show->state.depth + 1; 3578 show->state.depth_to_show = 0; 3579 } 3580 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3581 /* Restore saved member data here */ 3582 show->state.member = m; 3583 if (show->state.depth_check != show->state.depth + 1) 3584 return; 3585 show->state.depth_check = 0; 3586 3587 if (show->state.depth_to_show <= show->state.depth) 3588 return; 3589 /* 3590 * Reaching here indicates we have recursed and found 3591 * non-zero child values. 3592 */ 3593 } 3594 3595 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3596 } 3597 3598 static struct btf_kind_operations struct_ops = { 3599 .check_meta = btf_struct_check_meta, 3600 .resolve = btf_struct_resolve, 3601 .check_member = btf_struct_check_member, 3602 .check_kflag_member = btf_generic_check_kflag_member, 3603 .log_details = btf_struct_log, 3604 .show = btf_struct_show, 3605 }; 3606 3607 static int btf_enum_check_member(struct btf_verifier_env *env, 3608 const struct btf_type *struct_type, 3609 const struct btf_member *member, 3610 const struct btf_type *member_type) 3611 { 3612 u32 struct_bits_off = member->offset; 3613 u32 struct_size, bytes_offset; 3614 3615 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3616 btf_verifier_log_member(env, struct_type, member, 3617 "Member is not byte aligned"); 3618 return -EINVAL; 3619 } 3620 3621 struct_size = struct_type->size; 3622 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3623 if (struct_size - bytes_offset < member_type->size) { 3624 btf_verifier_log_member(env, struct_type, member, 3625 "Member exceeds struct_size"); 3626 return -EINVAL; 3627 } 3628 3629 return 0; 3630 } 3631 3632 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3633 const struct btf_type *struct_type, 3634 const struct btf_member *member, 3635 const struct btf_type *member_type) 3636 { 3637 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3638 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3639 3640 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3641 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3642 if (!nr_bits) { 3643 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3644 btf_verifier_log_member(env, struct_type, member, 3645 "Member is not byte aligned"); 3646 return -EINVAL; 3647 } 3648 3649 nr_bits = int_bitsize; 3650 } else if (nr_bits > int_bitsize) { 3651 btf_verifier_log_member(env, struct_type, member, 3652 "Invalid member bitfield_size"); 3653 return -EINVAL; 3654 } 3655 3656 struct_size = struct_type->size; 3657 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3658 if (struct_size < bytes_end) { 3659 btf_verifier_log_member(env, struct_type, member, 3660 "Member exceeds struct_size"); 3661 return -EINVAL; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3668 const struct btf_type *t, 3669 u32 meta_left) 3670 { 3671 const struct btf_enum *enums = btf_type_enum(t); 3672 struct btf *btf = env->btf; 3673 u16 i, nr_enums; 3674 u32 meta_needed; 3675 3676 nr_enums = btf_type_vlen(t); 3677 meta_needed = nr_enums * sizeof(*enums); 3678 3679 if (meta_left < meta_needed) { 3680 btf_verifier_log_basic(env, t, 3681 "meta_left:%u meta_needed:%u", 3682 meta_left, meta_needed); 3683 return -EINVAL; 3684 } 3685 3686 if (btf_type_kflag(t)) { 3687 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3688 return -EINVAL; 3689 } 3690 3691 if (t->size > 8 || !is_power_of_2(t->size)) { 3692 btf_verifier_log_type(env, t, "Unexpected size"); 3693 return -EINVAL; 3694 } 3695 3696 /* enum type either no name or a valid one */ 3697 if (t->name_off && 3698 !btf_name_valid_identifier(env->btf, t->name_off)) { 3699 btf_verifier_log_type(env, t, "Invalid name"); 3700 return -EINVAL; 3701 } 3702 3703 btf_verifier_log_type(env, t, NULL); 3704 3705 for (i = 0; i < nr_enums; i++) { 3706 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3707 btf_verifier_log(env, "\tInvalid name_offset:%u", 3708 enums[i].name_off); 3709 return -EINVAL; 3710 } 3711 3712 /* enum member must have a valid name */ 3713 if (!enums[i].name_off || 3714 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3715 btf_verifier_log_type(env, t, "Invalid name"); 3716 return -EINVAL; 3717 } 3718 3719 if (env->log.level == BPF_LOG_KERNEL) 3720 continue; 3721 btf_verifier_log(env, "\t%s val=%d\n", 3722 __btf_name_by_offset(btf, enums[i].name_off), 3723 enums[i].val); 3724 } 3725 3726 return meta_needed; 3727 } 3728 3729 static void btf_enum_log(struct btf_verifier_env *env, 3730 const struct btf_type *t) 3731 { 3732 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3733 } 3734 3735 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3736 u32 type_id, void *data, u8 bits_offset, 3737 struct btf_show *show) 3738 { 3739 const struct btf_enum *enums = btf_type_enum(t); 3740 u32 i, nr_enums = btf_type_vlen(t); 3741 void *safe_data; 3742 int v; 3743 3744 safe_data = btf_show_start_type(show, t, type_id, data); 3745 if (!safe_data) 3746 return; 3747 3748 v = *(int *)safe_data; 3749 3750 for (i = 0; i < nr_enums; i++) { 3751 if (v != enums[i].val) 3752 continue; 3753 3754 btf_show_type_value(show, "%s", 3755 __btf_name_by_offset(btf, 3756 enums[i].name_off)); 3757 3758 btf_show_end_type(show); 3759 return; 3760 } 3761 3762 btf_show_type_value(show, "%d", v); 3763 btf_show_end_type(show); 3764 } 3765 3766 static struct btf_kind_operations enum_ops = { 3767 .check_meta = btf_enum_check_meta, 3768 .resolve = btf_df_resolve, 3769 .check_member = btf_enum_check_member, 3770 .check_kflag_member = btf_enum_check_kflag_member, 3771 .log_details = btf_enum_log, 3772 .show = btf_enum_show, 3773 }; 3774 3775 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3776 const struct btf_type *t, 3777 u32 meta_left) 3778 { 3779 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3780 3781 if (meta_left < meta_needed) { 3782 btf_verifier_log_basic(env, t, 3783 "meta_left:%u meta_needed:%u", 3784 meta_left, meta_needed); 3785 return -EINVAL; 3786 } 3787 3788 if (t->name_off) { 3789 btf_verifier_log_type(env, t, "Invalid name"); 3790 return -EINVAL; 3791 } 3792 3793 if (btf_type_kflag(t)) { 3794 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3795 return -EINVAL; 3796 } 3797 3798 btf_verifier_log_type(env, t, NULL); 3799 3800 return meta_needed; 3801 } 3802 3803 static void btf_func_proto_log(struct btf_verifier_env *env, 3804 const struct btf_type *t) 3805 { 3806 const struct btf_param *args = (const struct btf_param *)(t + 1); 3807 u16 nr_args = btf_type_vlen(t), i; 3808 3809 btf_verifier_log(env, "return=%u args=(", t->type); 3810 if (!nr_args) { 3811 btf_verifier_log(env, "void"); 3812 goto done; 3813 } 3814 3815 if (nr_args == 1 && !args[0].type) { 3816 /* Only one vararg */ 3817 btf_verifier_log(env, "vararg"); 3818 goto done; 3819 } 3820 3821 btf_verifier_log(env, "%u %s", args[0].type, 3822 __btf_name_by_offset(env->btf, 3823 args[0].name_off)); 3824 for (i = 1; i < nr_args - 1; i++) 3825 btf_verifier_log(env, ", %u %s", args[i].type, 3826 __btf_name_by_offset(env->btf, 3827 args[i].name_off)); 3828 3829 if (nr_args > 1) { 3830 const struct btf_param *last_arg = &args[nr_args - 1]; 3831 3832 if (last_arg->type) 3833 btf_verifier_log(env, ", %u %s", last_arg->type, 3834 __btf_name_by_offset(env->btf, 3835 last_arg->name_off)); 3836 else 3837 btf_verifier_log(env, ", vararg"); 3838 } 3839 3840 done: 3841 btf_verifier_log(env, ")"); 3842 } 3843 3844 static struct btf_kind_operations func_proto_ops = { 3845 .check_meta = btf_func_proto_check_meta, 3846 .resolve = btf_df_resolve, 3847 /* 3848 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3849 * a struct's member. 3850 * 3851 * It should be a function pointer instead. 3852 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3853 * 3854 * Hence, there is no btf_func_check_member(). 3855 */ 3856 .check_member = btf_df_check_member, 3857 .check_kflag_member = btf_df_check_kflag_member, 3858 .log_details = btf_func_proto_log, 3859 .show = btf_df_show, 3860 }; 3861 3862 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3863 const struct btf_type *t, 3864 u32 meta_left) 3865 { 3866 if (!t->name_off || 3867 !btf_name_valid_identifier(env->btf, t->name_off)) { 3868 btf_verifier_log_type(env, t, "Invalid name"); 3869 return -EINVAL; 3870 } 3871 3872 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3873 btf_verifier_log_type(env, t, "Invalid func linkage"); 3874 return -EINVAL; 3875 } 3876 3877 if (btf_type_kflag(t)) { 3878 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3879 return -EINVAL; 3880 } 3881 3882 btf_verifier_log_type(env, t, NULL); 3883 3884 return 0; 3885 } 3886 3887 static int btf_func_resolve(struct btf_verifier_env *env, 3888 const struct resolve_vertex *v) 3889 { 3890 const struct btf_type *t = v->t; 3891 u32 next_type_id = t->type; 3892 int err; 3893 3894 err = btf_func_check(env, t); 3895 if (err) 3896 return err; 3897 3898 env_stack_pop_resolved(env, next_type_id, 0); 3899 return 0; 3900 } 3901 3902 static struct btf_kind_operations func_ops = { 3903 .check_meta = btf_func_check_meta, 3904 .resolve = btf_func_resolve, 3905 .check_member = btf_df_check_member, 3906 .check_kflag_member = btf_df_check_kflag_member, 3907 .log_details = btf_ref_type_log, 3908 .show = btf_df_show, 3909 }; 3910 3911 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3912 const struct btf_type *t, 3913 u32 meta_left) 3914 { 3915 const struct btf_var *var; 3916 u32 meta_needed = sizeof(*var); 3917 3918 if (meta_left < meta_needed) { 3919 btf_verifier_log_basic(env, t, 3920 "meta_left:%u meta_needed:%u", 3921 meta_left, meta_needed); 3922 return -EINVAL; 3923 } 3924 3925 if (btf_type_vlen(t)) { 3926 btf_verifier_log_type(env, t, "vlen != 0"); 3927 return -EINVAL; 3928 } 3929 3930 if (btf_type_kflag(t)) { 3931 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3932 return -EINVAL; 3933 } 3934 3935 if (!t->name_off || 3936 !__btf_name_valid(env->btf, t->name_off, true)) { 3937 btf_verifier_log_type(env, t, "Invalid name"); 3938 return -EINVAL; 3939 } 3940 3941 /* A var cannot be in type void */ 3942 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3943 btf_verifier_log_type(env, t, "Invalid type_id"); 3944 return -EINVAL; 3945 } 3946 3947 var = btf_type_var(t); 3948 if (var->linkage != BTF_VAR_STATIC && 3949 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3950 btf_verifier_log_type(env, t, "Linkage not supported"); 3951 return -EINVAL; 3952 } 3953 3954 btf_verifier_log_type(env, t, NULL); 3955 3956 return meta_needed; 3957 } 3958 3959 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3960 { 3961 const struct btf_var *var = btf_type_var(t); 3962 3963 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3964 } 3965 3966 static const struct btf_kind_operations var_ops = { 3967 .check_meta = btf_var_check_meta, 3968 .resolve = btf_var_resolve, 3969 .check_member = btf_df_check_member, 3970 .check_kflag_member = btf_df_check_kflag_member, 3971 .log_details = btf_var_log, 3972 .show = btf_var_show, 3973 }; 3974 3975 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3976 const struct btf_type *t, 3977 u32 meta_left) 3978 { 3979 const struct btf_var_secinfo *vsi; 3980 u64 last_vsi_end_off = 0, sum = 0; 3981 u32 i, meta_needed; 3982 3983 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3984 if (meta_left < meta_needed) { 3985 btf_verifier_log_basic(env, t, 3986 "meta_left:%u meta_needed:%u", 3987 meta_left, meta_needed); 3988 return -EINVAL; 3989 } 3990 3991 if (!t->size) { 3992 btf_verifier_log_type(env, t, "size == 0"); 3993 return -EINVAL; 3994 } 3995 3996 if (btf_type_kflag(t)) { 3997 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3998 return -EINVAL; 3999 } 4000 4001 if (!t->name_off || 4002 !btf_name_valid_section(env->btf, t->name_off)) { 4003 btf_verifier_log_type(env, t, "Invalid name"); 4004 return -EINVAL; 4005 } 4006 4007 btf_verifier_log_type(env, t, NULL); 4008 4009 for_each_vsi(i, t, vsi) { 4010 /* A var cannot be in type void */ 4011 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4012 btf_verifier_log_vsi(env, t, vsi, 4013 "Invalid type_id"); 4014 return -EINVAL; 4015 } 4016 4017 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4018 btf_verifier_log_vsi(env, t, vsi, 4019 "Invalid offset"); 4020 return -EINVAL; 4021 } 4022 4023 if (!vsi->size || vsi->size > t->size) { 4024 btf_verifier_log_vsi(env, t, vsi, 4025 "Invalid size"); 4026 return -EINVAL; 4027 } 4028 4029 last_vsi_end_off = vsi->offset + vsi->size; 4030 if (last_vsi_end_off > t->size) { 4031 btf_verifier_log_vsi(env, t, vsi, 4032 "Invalid offset+size"); 4033 return -EINVAL; 4034 } 4035 4036 btf_verifier_log_vsi(env, t, vsi, NULL); 4037 sum += vsi->size; 4038 } 4039 4040 if (t->size < sum) { 4041 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4042 return -EINVAL; 4043 } 4044 4045 return meta_needed; 4046 } 4047 4048 static int btf_datasec_resolve(struct btf_verifier_env *env, 4049 const struct resolve_vertex *v) 4050 { 4051 const struct btf_var_secinfo *vsi; 4052 struct btf *btf = env->btf; 4053 u16 i; 4054 4055 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4056 u32 var_type_id = vsi->type, type_id, type_size = 0; 4057 const struct btf_type *var_type = btf_type_by_id(env->btf, 4058 var_type_id); 4059 if (!var_type || !btf_type_is_var(var_type)) { 4060 btf_verifier_log_vsi(env, v->t, vsi, 4061 "Not a VAR kind member"); 4062 return -EINVAL; 4063 } 4064 4065 if (!env_type_is_resolve_sink(env, var_type) && 4066 !env_type_is_resolved(env, var_type_id)) { 4067 env_stack_set_next_member(env, i + 1); 4068 return env_stack_push(env, var_type, var_type_id); 4069 } 4070 4071 type_id = var_type->type; 4072 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4073 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4074 return -EINVAL; 4075 } 4076 4077 if (vsi->size < type_size) { 4078 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4079 return -EINVAL; 4080 } 4081 } 4082 4083 env_stack_pop_resolved(env, 0, 0); 4084 return 0; 4085 } 4086 4087 static void btf_datasec_log(struct btf_verifier_env *env, 4088 const struct btf_type *t) 4089 { 4090 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4091 } 4092 4093 static void btf_datasec_show(const struct btf *btf, 4094 const struct btf_type *t, u32 type_id, 4095 void *data, u8 bits_offset, 4096 struct btf_show *show) 4097 { 4098 const struct btf_var_secinfo *vsi; 4099 const struct btf_type *var; 4100 u32 i; 4101 4102 if (!btf_show_start_type(show, t, type_id, data)) 4103 return; 4104 4105 btf_show_type_value(show, "section (\"%s\") = {", 4106 __btf_name_by_offset(btf, t->name_off)); 4107 for_each_vsi(i, t, vsi) { 4108 var = btf_type_by_id(btf, vsi->type); 4109 if (i) 4110 btf_show(show, ","); 4111 btf_type_ops(var)->show(btf, var, vsi->type, 4112 data + vsi->offset, bits_offset, show); 4113 } 4114 btf_show_end_type(show); 4115 } 4116 4117 static const struct btf_kind_operations datasec_ops = { 4118 .check_meta = btf_datasec_check_meta, 4119 .resolve = btf_datasec_resolve, 4120 .check_member = btf_df_check_member, 4121 .check_kflag_member = btf_df_check_kflag_member, 4122 .log_details = btf_datasec_log, 4123 .show = btf_datasec_show, 4124 }; 4125 4126 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4127 const struct btf_type *t, 4128 u32 meta_left) 4129 { 4130 if (btf_type_vlen(t)) { 4131 btf_verifier_log_type(env, t, "vlen != 0"); 4132 return -EINVAL; 4133 } 4134 4135 if (btf_type_kflag(t)) { 4136 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4137 return -EINVAL; 4138 } 4139 4140 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4141 t->size != 16) { 4142 btf_verifier_log_type(env, t, "Invalid type_size"); 4143 return -EINVAL; 4144 } 4145 4146 btf_verifier_log_type(env, t, NULL); 4147 4148 return 0; 4149 } 4150 4151 static int btf_float_check_member(struct btf_verifier_env *env, 4152 const struct btf_type *struct_type, 4153 const struct btf_member *member, 4154 const struct btf_type *member_type) 4155 { 4156 u64 start_offset_bytes; 4157 u64 end_offset_bytes; 4158 u64 misalign_bits; 4159 u64 align_bytes; 4160 u64 align_bits; 4161 4162 /* Different architectures have different alignment requirements, so 4163 * here we check only for the reasonable minimum. This way we ensure 4164 * that types after CO-RE can pass the kernel BTF verifier. 4165 */ 4166 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4167 align_bits = align_bytes * BITS_PER_BYTE; 4168 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4169 if (misalign_bits) { 4170 btf_verifier_log_member(env, struct_type, member, 4171 "Member is not properly aligned"); 4172 return -EINVAL; 4173 } 4174 4175 start_offset_bytes = member->offset / BITS_PER_BYTE; 4176 end_offset_bytes = start_offset_bytes + member_type->size; 4177 if (end_offset_bytes > struct_type->size) { 4178 btf_verifier_log_member(env, struct_type, member, 4179 "Member exceeds struct_size"); 4180 return -EINVAL; 4181 } 4182 4183 return 0; 4184 } 4185 4186 static void btf_float_log(struct btf_verifier_env *env, 4187 const struct btf_type *t) 4188 { 4189 btf_verifier_log(env, "size=%u", t->size); 4190 } 4191 4192 static const struct btf_kind_operations float_ops = { 4193 .check_meta = btf_float_check_meta, 4194 .resolve = btf_df_resolve, 4195 .check_member = btf_float_check_member, 4196 .check_kflag_member = btf_generic_check_kflag_member, 4197 .log_details = btf_float_log, 4198 .show = btf_df_show, 4199 }; 4200 4201 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4202 const struct btf_type *t, 4203 u32 meta_left) 4204 { 4205 const struct btf_decl_tag *tag; 4206 u32 meta_needed = sizeof(*tag); 4207 s32 component_idx; 4208 const char *value; 4209 4210 if (meta_left < meta_needed) { 4211 btf_verifier_log_basic(env, t, 4212 "meta_left:%u meta_needed:%u", 4213 meta_left, meta_needed); 4214 return -EINVAL; 4215 } 4216 4217 value = btf_name_by_offset(env->btf, t->name_off); 4218 if (!value || !value[0]) { 4219 btf_verifier_log_type(env, t, "Invalid value"); 4220 return -EINVAL; 4221 } 4222 4223 if (btf_type_vlen(t)) { 4224 btf_verifier_log_type(env, t, "vlen != 0"); 4225 return -EINVAL; 4226 } 4227 4228 if (btf_type_kflag(t)) { 4229 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4230 return -EINVAL; 4231 } 4232 4233 component_idx = btf_type_decl_tag(t)->component_idx; 4234 if (component_idx < -1) { 4235 btf_verifier_log_type(env, t, "Invalid component_idx"); 4236 return -EINVAL; 4237 } 4238 4239 btf_verifier_log_type(env, t, NULL); 4240 4241 return meta_needed; 4242 } 4243 4244 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4245 const struct resolve_vertex *v) 4246 { 4247 const struct btf_type *next_type; 4248 const struct btf_type *t = v->t; 4249 u32 next_type_id = t->type; 4250 struct btf *btf = env->btf; 4251 s32 component_idx; 4252 u32 vlen; 4253 4254 next_type = btf_type_by_id(btf, next_type_id); 4255 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4256 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4257 return -EINVAL; 4258 } 4259 4260 if (!env_type_is_resolve_sink(env, next_type) && 4261 !env_type_is_resolved(env, next_type_id)) 4262 return env_stack_push(env, next_type, next_type_id); 4263 4264 component_idx = btf_type_decl_tag(t)->component_idx; 4265 if (component_idx != -1) { 4266 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4267 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4268 return -EINVAL; 4269 } 4270 4271 if (btf_type_is_struct(next_type)) { 4272 vlen = btf_type_vlen(next_type); 4273 } else { 4274 /* next_type should be a function */ 4275 next_type = btf_type_by_id(btf, next_type->type); 4276 vlen = btf_type_vlen(next_type); 4277 } 4278 4279 if ((u32)component_idx >= vlen) { 4280 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4281 return -EINVAL; 4282 } 4283 } 4284 4285 env_stack_pop_resolved(env, next_type_id, 0); 4286 4287 return 0; 4288 } 4289 4290 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4291 { 4292 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4293 btf_type_decl_tag(t)->component_idx); 4294 } 4295 4296 static const struct btf_kind_operations decl_tag_ops = { 4297 .check_meta = btf_decl_tag_check_meta, 4298 .resolve = btf_decl_tag_resolve, 4299 .check_member = btf_df_check_member, 4300 .check_kflag_member = btf_df_check_kflag_member, 4301 .log_details = btf_decl_tag_log, 4302 .show = btf_df_show, 4303 }; 4304 4305 static int btf_func_proto_check(struct btf_verifier_env *env, 4306 const struct btf_type *t) 4307 { 4308 const struct btf_type *ret_type; 4309 const struct btf_param *args; 4310 const struct btf *btf; 4311 u16 nr_args, i; 4312 int err; 4313 4314 btf = env->btf; 4315 args = (const struct btf_param *)(t + 1); 4316 nr_args = btf_type_vlen(t); 4317 4318 /* Check func return type which could be "void" (t->type == 0) */ 4319 if (t->type) { 4320 u32 ret_type_id = t->type; 4321 4322 ret_type = btf_type_by_id(btf, ret_type_id); 4323 if (!ret_type) { 4324 btf_verifier_log_type(env, t, "Invalid return type"); 4325 return -EINVAL; 4326 } 4327 4328 if (btf_type_needs_resolve(ret_type) && 4329 !env_type_is_resolved(env, ret_type_id)) { 4330 err = btf_resolve(env, ret_type, ret_type_id); 4331 if (err) 4332 return err; 4333 } 4334 4335 /* Ensure the return type is a type that has a size */ 4336 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4337 btf_verifier_log_type(env, t, "Invalid return type"); 4338 return -EINVAL; 4339 } 4340 } 4341 4342 if (!nr_args) 4343 return 0; 4344 4345 /* Last func arg type_id could be 0 if it is a vararg */ 4346 if (!args[nr_args - 1].type) { 4347 if (args[nr_args - 1].name_off) { 4348 btf_verifier_log_type(env, t, "Invalid arg#%u", 4349 nr_args); 4350 return -EINVAL; 4351 } 4352 nr_args--; 4353 } 4354 4355 err = 0; 4356 for (i = 0; i < nr_args; i++) { 4357 const struct btf_type *arg_type; 4358 u32 arg_type_id; 4359 4360 arg_type_id = args[i].type; 4361 arg_type = btf_type_by_id(btf, arg_type_id); 4362 if (!arg_type) { 4363 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4364 err = -EINVAL; 4365 break; 4366 } 4367 4368 if (args[i].name_off && 4369 (!btf_name_offset_valid(btf, args[i].name_off) || 4370 !btf_name_valid_identifier(btf, args[i].name_off))) { 4371 btf_verifier_log_type(env, t, 4372 "Invalid arg#%u", i + 1); 4373 err = -EINVAL; 4374 break; 4375 } 4376 4377 if (btf_type_needs_resolve(arg_type) && 4378 !env_type_is_resolved(env, arg_type_id)) { 4379 err = btf_resolve(env, arg_type, arg_type_id); 4380 if (err) 4381 break; 4382 } 4383 4384 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4385 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4386 err = -EINVAL; 4387 break; 4388 } 4389 } 4390 4391 return err; 4392 } 4393 4394 static int btf_func_check(struct btf_verifier_env *env, 4395 const struct btf_type *t) 4396 { 4397 const struct btf_type *proto_type; 4398 const struct btf_param *args; 4399 const struct btf *btf; 4400 u16 nr_args, i; 4401 4402 btf = env->btf; 4403 proto_type = btf_type_by_id(btf, t->type); 4404 4405 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4406 btf_verifier_log_type(env, t, "Invalid type_id"); 4407 return -EINVAL; 4408 } 4409 4410 args = (const struct btf_param *)(proto_type + 1); 4411 nr_args = btf_type_vlen(proto_type); 4412 for (i = 0; i < nr_args; i++) { 4413 if (!args[i].name_off && args[i].type) { 4414 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4415 return -EINVAL; 4416 } 4417 } 4418 4419 return 0; 4420 } 4421 4422 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4423 [BTF_KIND_INT] = &int_ops, 4424 [BTF_KIND_PTR] = &ptr_ops, 4425 [BTF_KIND_ARRAY] = &array_ops, 4426 [BTF_KIND_STRUCT] = &struct_ops, 4427 [BTF_KIND_UNION] = &struct_ops, 4428 [BTF_KIND_ENUM] = &enum_ops, 4429 [BTF_KIND_FWD] = &fwd_ops, 4430 [BTF_KIND_TYPEDEF] = &modifier_ops, 4431 [BTF_KIND_VOLATILE] = &modifier_ops, 4432 [BTF_KIND_CONST] = &modifier_ops, 4433 [BTF_KIND_RESTRICT] = &modifier_ops, 4434 [BTF_KIND_FUNC] = &func_ops, 4435 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4436 [BTF_KIND_VAR] = &var_ops, 4437 [BTF_KIND_DATASEC] = &datasec_ops, 4438 [BTF_KIND_FLOAT] = &float_ops, 4439 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4440 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4441 }; 4442 4443 static s32 btf_check_meta(struct btf_verifier_env *env, 4444 const struct btf_type *t, 4445 u32 meta_left) 4446 { 4447 u32 saved_meta_left = meta_left; 4448 s32 var_meta_size; 4449 4450 if (meta_left < sizeof(*t)) { 4451 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4452 env->log_type_id, meta_left, sizeof(*t)); 4453 return -EINVAL; 4454 } 4455 meta_left -= sizeof(*t); 4456 4457 if (t->info & ~BTF_INFO_MASK) { 4458 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4459 env->log_type_id, t->info); 4460 return -EINVAL; 4461 } 4462 4463 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4464 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4465 btf_verifier_log(env, "[%u] Invalid kind:%u", 4466 env->log_type_id, BTF_INFO_KIND(t->info)); 4467 return -EINVAL; 4468 } 4469 4470 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4471 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4472 env->log_type_id, t->name_off); 4473 return -EINVAL; 4474 } 4475 4476 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4477 if (var_meta_size < 0) 4478 return var_meta_size; 4479 4480 meta_left -= var_meta_size; 4481 4482 return saved_meta_left - meta_left; 4483 } 4484 4485 static int btf_check_all_metas(struct btf_verifier_env *env) 4486 { 4487 struct btf *btf = env->btf; 4488 struct btf_header *hdr; 4489 void *cur, *end; 4490 4491 hdr = &btf->hdr; 4492 cur = btf->nohdr_data + hdr->type_off; 4493 end = cur + hdr->type_len; 4494 4495 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4496 while (cur < end) { 4497 struct btf_type *t = cur; 4498 s32 meta_size; 4499 4500 meta_size = btf_check_meta(env, t, end - cur); 4501 if (meta_size < 0) 4502 return meta_size; 4503 4504 btf_add_type(env, t); 4505 cur += meta_size; 4506 env->log_type_id++; 4507 } 4508 4509 return 0; 4510 } 4511 4512 static bool btf_resolve_valid(struct btf_verifier_env *env, 4513 const struct btf_type *t, 4514 u32 type_id) 4515 { 4516 struct btf *btf = env->btf; 4517 4518 if (!env_type_is_resolved(env, type_id)) 4519 return false; 4520 4521 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4522 return !btf_resolved_type_id(btf, type_id) && 4523 !btf_resolved_type_size(btf, type_id); 4524 4525 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 4526 return btf_resolved_type_id(btf, type_id) && 4527 !btf_resolved_type_size(btf, type_id); 4528 4529 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4530 btf_type_is_var(t)) { 4531 t = btf_type_id_resolve(btf, &type_id); 4532 return t && 4533 !btf_type_is_modifier(t) && 4534 !btf_type_is_var(t) && 4535 !btf_type_is_datasec(t); 4536 } 4537 4538 if (btf_type_is_array(t)) { 4539 const struct btf_array *array = btf_type_array(t); 4540 const struct btf_type *elem_type; 4541 u32 elem_type_id = array->type; 4542 u32 elem_size; 4543 4544 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4545 return elem_type && !btf_type_is_modifier(elem_type) && 4546 (array->nelems * elem_size == 4547 btf_resolved_type_size(btf, type_id)); 4548 } 4549 4550 return false; 4551 } 4552 4553 static int btf_resolve(struct btf_verifier_env *env, 4554 const struct btf_type *t, u32 type_id) 4555 { 4556 u32 save_log_type_id = env->log_type_id; 4557 const struct resolve_vertex *v; 4558 int err = 0; 4559 4560 env->resolve_mode = RESOLVE_TBD; 4561 env_stack_push(env, t, type_id); 4562 while (!err && (v = env_stack_peak(env))) { 4563 env->log_type_id = v->type_id; 4564 err = btf_type_ops(v->t)->resolve(env, v); 4565 } 4566 4567 env->log_type_id = type_id; 4568 if (err == -E2BIG) { 4569 btf_verifier_log_type(env, t, 4570 "Exceeded max resolving depth:%u", 4571 MAX_RESOLVE_DEPTH); 4572 } else if (err == -EEXIST) { 4573 btf_verifier_log_type(env, t, "Loop detected"); 4574 } 4575 4576 /* Final sanity check */ 4577 if (!err && !btf_resolve_valid(env, t, type_id)) { 4578 btf_verifier_log_type(env, t, "Invalid resolve state"); 4579 err = -EINVAL; 4580 } 4581 4582 env->log_type_id = save_log_type_id; 4583 return err; 4584 } 4585 4586 static int btf_check_all_types(struct btf_verifier_env *env) 4587 { 4588 struct btf *btf = env->btf; 4589 const struct btf_type *t; 4590 u32 type_id, i; 4591 int err; 4592 4593 err = env_resolve_init(env); 4594 if (err) 4595 return err; 4596 4597 env->phase++; 4598 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4599 type_id = btf->start_id + i; 4600 t = btf_type_by_id(btf, type_id); 4601 4602 env->log_type_id = type_id; 4603 if (btf_type_needs_resolve(t) && 4604 !env_type_is_resolved(env, type_id)) { 4605 err = btf_resolve(env, t, type_id); 4606 if (err) 4607 return err; 4608 } 4609 4610 if (btf_type_is_func_proto(t)) { 4611 err = btf_func_proto_check(env, t); 4612 if (err) 4613 return err; 4614 } 4615 } 4616 4617 return 0; 4618 } 4619 4620 static int btf_parse_type_sec(struct btf_verifier_env *env) 4621 { 4622 const struct btf_header *hdr = &env->btf->hdr; 4623 int err; 4624 4625 /* Type section must align to 4 bytes */ 4626 if (hdr->type_off & (sizeof(u32) - 1)) { 4627 btf_verifier_log(env, "Unaligned type_off"); 4628 return -EINVAL; 4629 } 4630 4631 if (!env->btf->base_btf && !hdr->type_len) { 4632 btf_verifier_log(env, "No type found"); 4633 return -EINVAL; 4634 } 4635 4636 err = btf_check_all_metas(env); 4637 if (err) 4638 return err; 4639 4640 return btf_check_all_types(env); 4641 } 4642 4643 static int btf_parse_str_sec(struct btf_verifier_env *env) 4644 { 4645 const struct btf_header *hdr; 4646 struct btf *btf = env->btf; 4647 const char *start, *end; 4648 4649 hdr = &btf->hdr; 4650 start = btf->nohdr_data + hdr->str_off; 4651 end = start + hdr->str_len; 4652 4653 if (end != btf->data + btf->data_size) { 4654 btf_verifier_log(env, "String section is not at the end"); 4655 return -EINVAL; 4656 } 4657 4658 btf->strings = start; 4659 4660 if (btf->base_btf && !hdr->str_len) 4661 return 0; 4662 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4663 btf_verifier_log(env, "Invalid string section"); 4664 return -EINVAL; 4665 } 4666 if (!btf->base_btf && start[0]) { 4667 btf_verifier_log(env, "Invalid string section"); 4668 return -EINVAL; 4669 } 4670 4671 return 0; 4672 } 4673 4674 static const size_t btf_sec_info_offset[] = { 4675 offsetof(struct btf_header, type_off), 4676 offsetof(struct btf_header, str_off), 4677 }; 4678 4679 static int btf_sec_info_cmp(const void *a, const void *b) 4680 { 4681 const struct btf_sec_info *x = a; 4682 const struct btf_sec_info *y = b; 4683 4684 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4685 } 4686 4687 static int btf_check_sec_info(struct btf_verifier_env *env, 4688 u32 btf_data_size) 4689 { 4690 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4691 u32 total, expected_total, i; 4692 const struct btf_header *hdr; 4693 const struct btf *btf; 4694 4695 btf = env->btf; 4696 hdr = &btf->hdr; 4697 4698 /* Populate the secs from hdr */ 4699 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4700 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4701 btf_sec_info_offset[i]); 4702 4703 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4704 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4705 4706 /* Check for gaps and overlap among sections */ 4707 total = 0; 4708 expected_total = btf_data_size - hdr->hdr_len; 4709 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4710 if (expected_total < secs[i].off) { 4711 btf_verifier_log(env, "Invalid section offset"); 4712 return -EINVAL; 4713 } 4714 if (total < secs[i].off) { 4715 /* gap */ 4716 btf_verifier_log(env, "Unsupported section found"); 4717 return -EINVAL; 4718 } 4719 if (total > secs[i].off) { 4720 btf_verifier_log(env, "Section overlap found"); 4721 return -EINVAL; 4722 } 4723 if (expected_total - total < secs[i].len) { 4724 btf_verifier_log(env, 4725 "Total section length too long"); 4726 return -EINVAL; 4727 } 4728 total += secs[i].len; 4729 } 4730 4731 /* There is data other than hdr and known sections */ 4732 if (expected_total != total) { 4733 btf_verifier_log(env, "Unsupported section found"); 4734 return -EINVAL; 4735 } 4736 4737 return 0; 4738 } 4739 4740 static int btf_parse_hdr(struct btf_verifier_env *env) 4741 { 4742 u32 hdr_len, hdr_copy, btf_data_size; 4743 const struct btf_header *hdr; 4744 struct btf *btf; 4745 int err; 4746 4747 btf = env->btf; 4748 btf_data_size = btf->data_size; 4749 4750 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 4751 btf_verifier_log(env, "hdr_len not found"); 4752 return -EINVAL; 4753 } 4754 4755 hdr = btf->data; 4756 hdr_len = hdr->hdr_len; 4757 if (btf_data_size < hdr_len) { 4758 btf_verifier_log(env, "btf_header not found"); 4759 return -EINVAL; 4760 } 4761 4762 /* Ensure the unsupported header fields are zero */ 4763 if (hdr_len > sizeof(btf->hdr)) { 4764 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4765 u8 *end = btf->data + hdr_len; 4766 4767 for (; expected_zero < end; expected_zero++) { 4768 if (*expected_zero) { 4769 btf_verifier_log(env, "Unsupported btf_header"); 4770 return -E2BIG; 4771 } 4772 } 4773 } 4774 4775 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4776 memcpy(&btf->hdr, btf->data, hdr_copy); 4777 4778 hdr = &btf->hdr; 4779 4780 btf_verifier_log_hdr(env, btf_data_size); 4781 4782 if (hdr->magic != BTF_MAGIC) { 4783 btf_verifier_log(env, "Invalid magic"); 4784 return -EINVAL; 4785 } 4786 4787 if (hdr->version != BTF_VERSION) { 4788 btf_verifier_log(env, "Unsupported version"); 4789 return -ENOTSUPP; 4790 } 4791 4792 if (hdr->flags) { 4793 btf_verifier_log(env, "Unsupported flags"); 4794 return -ENOTSUPP; 4795 } 4796 4797 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4798 btf_verifier_log(env, "No data"); 4799 return -EINVAL; 4800 } 4801 4802 err = btf_check_sec_info(env, btf_data_size); 4803 if (err) 4804 return err; 4805 4806 return 0; 4807 } 4808 4809 static int btf_check_type_tags(struct btf_verifier_env *env, 4810 struct btf *btf, int start_id) 4811 { 4812 int i, n, good_id = start_id - 1; 4813 bool in_tags; 4814 4815 n = btf_nr_types(btf); 4816 for (i = start_id; i < n; i++) { 4817 const struct btf_type *t; 4818 int chain_limit = 32; 4819 u32 cur_id = i; 4820 4821 t = btf_type_by_id(btf, i); 4822 if (!t) 4823 return -EINVAL; 4824 if (!btf_type_is_modifier(t)) 4825 continue; 4826 4827 cond_resched(); 4828 4829 in_tags = btf_type_is_type_tag(t); 4830 while (btf_type_is_modifier(t)) { 4831 if (!chain_limit--) { 4832 btf_verifier_log(env, "Max chain length or cycle detected"); 4833 return -ELOOP; 4834 } 4835 if (btf_type_is_type_tag(t)) { 4836 if (!in_tags) { 4837 btf_verifier_log(env, "Type tags don't precede modifiers"); 4838 return -EINVAL; 4839 } 4840 } else if (in_tags) { 4841 in_tags = false; 4842 } 4843 if (cur_id <= good_id) 4844 break; 4845 /* Move to next type */ 4846 cur_id = t->type; 4847 t = btf_type_by_id(btf, cur_id); 4848 if (!t) 4849 return -EINVAL; 4850 } 4851 good_id = i; 4852 } 4853 return 0; 4854 } 4855 4856 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 4857 u32 log_level, char __user *log_ubuf, u32 log_size) 4858 { 4859 struct btf_verifier_env *env = NULL; 4860 struct bpf_verifier_log *log; 4861 struct btf *btf = NULL; 4862 u8 *data; 4863 int err; 4864 4865 if (btf_data_size > BTF_MAX_SIZE) 4866 return ERR_PTR(-E2BIG); 4867 4868 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4869 if (!env) 4870 return ERR_PTR(-ENOMEM); 4871 4872 log = &env->log; 4873 if (log_level || log_ubuf || log_size) { 4874 /* user requested verbose verifier output 4875 * and supplied buffer to store the verification trace 4876 */ 4877 log->level = log_level; 4878 log->ubuf = log_ubuf; 4879 log->len_total = log_size; 4880 4881 /* log attributes have to be sane */ 4882 if (!bpf_verifier_log_attr_valid(log)) { 4883 err = -EINVAL; 4884 goto errout; 4885 } 4886 } 4887 4888 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4889 if (!btf) { 4890 err = -ENOMEM; 4891 goto errout; 4892 } 4893 env->btf = btf; 4894 4895 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4896 if (!data) { 4897 err = -ENOMEM; 4898 goto errout; 4899 } 4900 4901 btf->data = data; 4902 btf->data_size = btf_data_size; 4903 4904 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 4905 err = -EFAULT; 4906 goto errout; 4907 } 4908 4909 err = btf_parse_hdr(env); 4910 if (err) 4911 goto errout; 4912 4913 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4914 4915 err = btf_parse_str_sec(env); 4916 if (err) 4917 goto errout; 4918 4919 err = btf_parse_type_sec(env); 4920 if (err) 4921 goto errout; 4922 4923 err = btf_check_type_tags(env, btf, 1); 4924 if (err) 4925 goto errout; 4926 4927 if (log->level && bpf_verifier_log_full(log)) { 4928 err = -ENOSPC; 4929 goto errout; 4930 } 4931 4932 btf_verifier_env_free(env); 4933 refcount_set(&btf->refcnt, 1); 4934 return btf; 4935 4936 errout: 4937 btf_verifier_env_free(env); 4938 if (btf) 4939 btf_free(btf); 4940 return ERR_PTR(err); 4941 } 4942 4943 extern char __weak __start_BTF[]; 4944 extern char __weak __stop_BTF[]; 4945 extern struct btf *btf_vmlinux; 4946 4947 #define BPF_MAP_TYPE(_id, _ops) 4948 #define BPF_LINK_TYPE(_id, _name) 4949 static union { 4950 struct bpf_ctx_convert { 4951 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4952 prog_ctx_type _id##_prog; \ 4953 kern_ctx_type _id##_kern; 4954 #include <linux/bpf_types.h> 4955 #undef BPF_PROG_TYPE 4956 } *__t; 4957 /* 't' is written once under lock. Read many times. */ 4958 const struct btf_type *t; 4959 } bpf_ctx_convert; 4960 enum { 4961 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4962 __ctx_convert##_id, 4963 #include <linux/bpf_types.h> 4964 #undef BPF_PROG_TYPE 4965 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4966 }; 4967 static u8 bpf_ctx_convert_map[] = { 4968 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4969 [_id] = __ctx_convert##_id, 4970 #include <linux/bpf_types.h> 4971 #undef BPF_PROG_TYPE 4972 0, /* avoid empty array */ 4973 }; 4974 #undef BPF_MAP_TYPE 4975 #undef BPF_LINK_TYPE 4976 4977 static const struct btf_member * 4978 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 4979 const struct btf_type *t, enum bpf_prog_type prog_type, 4980 int arg) 4981 { 4982 const struct btf_type *conv_struct; 4983 const struct btf_type *ctx_struct; 4984 const struct btf_member *ctx_type; 4985 const char *tname, *ctx_tname; 4986 4987 conv_struct = bpf_ctx_convert.t; 4988 if (!conv_struct) { 4989 bpf_log(log, "btf_vmlinux is malformed\n"); 4990 return NULL; 4991 } 4992 t = btf_type_by_id(btf, t->type); 4993 while (btf_type_is_modifier(t)) 4994 t = btf_type_by_id(btf, t->type); 4995 if (!btf_type_is_struct(t)) { 4996 /* Only pointer to struct is supported for now. 4997 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4998 * is not supported yet. 4999 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5000 */ 5001 return NULL; 5002 } 5003 tname = btf_name_by_offset(btf, t->name_off); 5004 if (!tname) { 5005 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5006 return NULL; 5007 } 5008 /* prog_type is valid bpf program type. No need for bounds check. */ 5009 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5010 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5011 * Like 'struct __sk_buff' 5012 */ 5013 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5014 if (!ctx_struct) 5015 /* should not happen */ 5016 return NULL; 5017 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5018 if (!ctx_tname) { 5019 /* should not happen */ 5020 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5021 return NULL; 5022 } 5023 /* only compare that prog's ctx type name is the same as 5024 * kernel expects. No need to compare field by field. 5025 * It's ok for bpf prog to do: 5026 * struct __sk_buff {}; 5027 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5028 * { // no fields of skb are ever used } 5029 */ 5030 if (strcmp(ctx_tname, tname)) 5031 return NULL; 5032 return ctx_type; 5033 } 5034 5035 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5036 struct btf *btf, 5037 const struct btf_type *t, 5038 enum bpf_prog_type prog_type, 5039 int arg) 5040 { 5041 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5042 5043 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5044 if (!prog_ctx_type) 5045 return -ENOENT; 5046 kern_ctx_type = prog_ctx_type + 1; 5047 return kern_ctx_type->type; 5048 } 5049 5050 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5051 BTF_ID(struct, bpf_ctx_convert) 5052 5053 struct btf *btf_parse_vmlinux(void) 5054 { 5055 struct btf_verifier_env *env = NULL; 5056 struct bpf_verifier_log *log; 5057 struct btf *btf = NULL; 5058 int err; 5059 5060 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5061 if (!env) 5062 return ERR_PTR(-ENOMEM); 5063 5064 log = &env->log; 5065 log->level = BPF_LOG_KERNEL; 5066 5067 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5068 if (!btf) { 5069 err = -ENOMEM; 5070 goto errout; 5071 } 5072 env->btf = btf; 5073 5074 btf->data = __start_BTF; 5075 btf->data_size = __stop_BTF - __start_BTF; 5076 btf->kernel_btf = true; 5077 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5078 5079 err = btf_parse_hdr(env); 5080 if (err) 5081 goto errout; 5082 5083 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5084 5085 err = btf_parse_str_sec(env); 5086 if (err) 5087 goto errout; 5088 5089 err = btf_check_all_metas(env); 5090 if (err) 5091 goto errout; 5092 5093 err = btf_check_type_tags(env, btf, 1); 5094 if (err) 5095 goto errout; 5096 5097 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5098 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5099 5100 bpf_struct_ops_init(btf, log); 5101 5102 refcount_set(&btf->refcnt, 1); 5103 5104 err = btf_alloc_id(btf); 5105 if (err) 5106 goto errout; 5107 5108 btf_verifier_env_free(env); 5109 return btf; 5110 5111 errout: 5112 btf_verifier_env_free(env); 5113 if (btf) { 5114 kvfree(btf->types); 5115 kfree(btf); 5116 } 5117 return ERR_PTR(err); 5118 } 5119 5120 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5121 5122 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5123 { 5124 struct btf_verifier_env *env = NULL; 5125 struct bpf_verifier_log *log; 5126 struct btf *btf = NULL, *base_btf; 5127 int err; 5128 5129 base_btf = bpf_get_btf_vmlinux(); 5130 if (IS_ERR(base_btf)) 5131 return base_btf; 5132 if (!base_btf) 5133 return ERR_PTR(-EINVAL); 5134 5135 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5136 if (!env) 5137 return ERR_PTR(-ENOMEM); 5138 5139 log = &env->log; 5140 log->level = BPF_LOG_KERNEL; 5141 5142 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5143 if (!btf) { 5144 err = -ENOMEM; 5145 goto errout; 5146 } 5147 env->btf = btf; 5148 5149 btf->base_btf = base_btf; 5150 btf->start_id = base_btf->nr_types; 5151 btf->start_str_off = base_btf->hdr.str_len; 5152 btf->kernel_btf = true; 5153 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5154 5155 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5156 if (!btf->data) { 5157 err = -ENOMEM; 5158 goto errout; 5159 } 5160 memcpy(btf->data, data, data_size); 5161 btf->data_size = data_size; 5162 5163 err = btf_parse_hdr(env); 5164 if (err) 5165 goto errout; 5166 5167 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5168 5169 err = btf_parse_str_sec(env); 5170 if (err) 5171 goto errout; 5172 5173 err = btf_check_all_metas(env); 5174 if (err) 5175 goto errout; 5176 5177 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5178 if (err) 5179 goto errout; 5180 5181 btf_verifier_env_free(env); 5182 refcount_set(&btf->refcnt, 1); 5183 return btf; 5184 5185 errout: 5186 btf_verifier_env_free(env); 5187 if (btf) { 5188 kvfree(btf->data); 5189 kvfree(btf->types); 5190 kfree(btf); 5191 } 5192 return ERR_PTR(err); 5193 } 5194 5195 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5196 5197 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5198 { 5199 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5200 5201 if (tgt_prog) 5202 return tgt_prog->aux->btf; 5203 else 5204 return prog->aux->attach_btf; 5205 } 5206 5207 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5208 { 5209 /* t comes in already as a pointer */ 5210 t = btf_type_by_id(btf, t->type); 5211 5212 /* allow const */ 5213 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 5214 t = btf_type_by_id(btf, t->type); 5215 5216 return btf_type_is_int(t); 5217 } 5218 5219 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5220 const struct bpf_prog *prog, 5221 struct bpf_insn_access_aux *info) 5222 { 5223 const struct btf_type *t = prog->aux->attach_func_proto; 5224 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5225 struct btf *btf = bpf_prog_get_target_btf(prog); 5226 const char *tname = prog->aux->attach_func_name; 5227 struct bpf_verifier_log *log = info->log; 5228 const struct btf_param *args; 5229 const char *tag_value; 5230 u32 nr_args, arg; 5231 int i, ret; 5232 5233 if (off % 8) { 5234 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5235 tname, off); 5236 return false; 5237 } 5238 arg = off / 8; 5239 args = (const struct btf_param *)(t + 1); 5240 /* if (t == NULL) Fall back to default BPF prog with 5241 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5242 */ 5243 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5244 if (prog->aux->attach_btf_trace) { 5245 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5246 args++; 5247 nr_args--; 5248 } 5249 5250 if (arg > nr_args) { 5251 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5252 tname, arg + 1); 5253 return false; 5254 } 5255 5256 if (arg == nr_args) { 5257 switch (prog->expected_attach_type) { 5258 case BPF_LSM_MAC: 5259 case BPF_TRACE_FEXIT: 5260 /* When LSM programs are attached to void LSM hooks 5261 * they use FEXIT trampolines and when attached to 5262 * int LSM hooks, they use MODIFY_RETURN trampolines. 5263 * 5264 * While the LSM programs are BPF_MODIFY_RETURN-like 5265 * the check: 5266 * 5267 * if (ret_type != 'int') 5268 * return -EINVAL; 5269 * 5270 * is _not_ done here. This is still safe as LSM hooks 5271 * have only void and int return types. 5272 */ 5273 if (!t) 5274 return true; 5275 t = btf_type_by_id(btf, t->type); 5276 break; 5277 case BPF_MODIFY_RETURN: 5278 /* For now the BPF_MODIFY_RETURN can only be attached to 5279 * functions that return an int. 5280 */ 5281 if (!t) 5282 return false; 5283 5284 t = btf_type_skip_modifiers(btf, t->type, NULL); 5285 if (!btf_type_is_small_int(t)) { 5286 bpf_log(log, 5287 "ret type %s not allowed for fmod_ret\n", 5288 btf_kind_str[BTF_INFO_KIND(t->info)]); 5289 return false; 5290 } 5291 break; 5292 default: 5293 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5294 tname, arg + 1); 5295 return false; 5296 } 5297 } else { 5298 if (!t) 5299 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 5300 return true; 5301 t = btf_type_by_id(btf, args[arg].type); 5302 } 5303 5304 /* skip modifiers */ 5305 while (btf_type_is_modifier(t)) 5306 t = btf_type_by_id(btf, t->type); 5307 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 5308 /* accessing a scalar */ 5309 return true; 5310 if (!btf_type_is_ptr(t)) { 5311 bpf_log(log, 5312 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 5313 tname, arg, 5314 __btf_name_by_offset(btf, t->name_off), 5315 btf_kind_str[BTF_INFO_KIND(t->info)]); 5316 return false; 5317 } 5318 5319 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 5320 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5321 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5322 u32 type, flag; 5323 5324 type = base_type(ctx_arg_info->reg_type); 5325 flag = type_flag(ctx_arg_info->reg_type); 5326 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 5327 (flag & PTR_MAYBE_NULL)) { 5328 info->reg_type = ctx_arg_info->reg_type; 5329 return true; 5330 } 5331 } 5332 5333 if (t->type == 0) 5334 /* This is a pointer to void. 5335 * It is the same as scalar from the verifier safety pov. 5336 * No further pointer walking is allowed. 5337 */ 5338 return true; 5339 5340 if (is_int_ptr(btf, t)) 5341 return true; 5342 5343 /* this is a pointer to another type */ 5344 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5345 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5346 5347 if (ctx_arg_info->offset == off) { 5348 if (!ctx_arg_info->btf_id) { 5349 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 5350 return false; 5351 } 5352 5353 info->reg_type = ctx_arg_info->reg_type; 5354 info->btf = btf_vmlinux; 5355 info->btf_id = ctx_arg_info->btf_id; 5356 return true; 5357 } 5358 } 5359 5360 info->reg_type = PTR_TO_BTF_ID; 5361 if (tgt_prog) { 5362 enum bpf_prog_type tgt_type; 5363 5364 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 5365 tgt_type = tgt_prog->aux->saved_dst_prog_type; 5366 else 5367 tgt_type = tgt_prog->type; 5368 5369 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 5370 if (ret > 0) { 5371 info->btf = btf_vmlinux; 5372 info->btf_id = ret; 5373 return true; 5374 } else { 5375 return false; 5376 } 5377 } 5378 5379 info->btf = btf; 5380 info->btf_id = t->type; 5381 t = btf_type_by_id(btf, t->type); 5382 5383 if (btf_type_is_type_tag(t)) { 5384 tag_value = __btf_name_by_offset(btf, t->name_off); 5385 if (strcmp(tag_value, "user") == 0) 5386 info->reg_type |= MEM_USER; 5387 if (strcmp(tag_value, "percpu") == 0) 5388 info->reg_type |= MEM_PERCPU; 5389 } 5390 5391 /* skip modifiers */ 5392 while (btf_type_is_modifier(t)) { 5393 info->btf_id = t->type; 5394 t = btf_type_by_id(btf, t->type); 5395 } 5396 if (!btf_type_is_struct(t)) { 5397 bpf_log(log, 5398 "func '%s' arg%d type %s is not a struct\n", 5399 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 5400 return false; 5401 } 5402 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 5403 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 5404 __btf_name_by_offset(btf, t->name_off)); 5405 return true; 5406 } 5407 5408 enum bpf_struct_walk_result { 5409 /* < 0 error */ 5410 WALK_SCALAR = 0, 5411 WALK_PTR, 5412 WALK_STRUCT, 5413 }; 5414 5415 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 5416 const struct btf_type *t, int off, int size, 5417 u32 *next_btf_id, enum bpf_type_flag *flag) 5418 { 5419 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 5420 const struct btf_type *mtype, *elem_type = NULL; 5421 const struct btf_member *member; 5422 const char *tname, *mname, *tag_value; 5423 u32 vlen, elem_id, mid; 5424 5425 again: 5426 tname = __btf_name_by_offset(btf, t->name_off); 5427 if (!btf_type_is_struct(t)) { 5428 bpf_log(log, "Type '%s' is not a struct\n", tname); 5429 return -EINVAL; 5430 } 5431 5432 vlen = btf_type_vlen(t); 5433 if (off + size > t->size) { 5434 /* If the last element is a variable size array, we may 5435 * need to relax the rule. 5436 */ 5437 struct btf_array *array_elem; 5438 5439 if (vlen == 0) 5440 goto error; 5441 5442 member = btf_type_member(t) + vlen - 1; 5443 mtype = btf_type_skip_modifiers(btf, member->type, 5444 NULL); 5445 if (!btf_type_is_array(mtype)) 5446 goto error; 5447 5448 array_elem = (struct btf_array *)(mtype + 1); 5449 if (array_elem->nelems != 0) 5450 goto error; 5451 5452 moff = __btf_member_bit_offset(t, member) / 8; 5453 if (off < moff) 5454 goto error; 5455 5456 /* Only allow structure for now, can be relaxed for 5457 * other types later. 5458 */ 5459 t = btf_type_skip_modifiers(btf, array_elem->type, 5460 NULL); 5461 if (!btf_type_is_struct(t)) 5462 goto error; 5463 5464 off = (off - moff) % t->size; 5465 goto again; 5466 5467 error: 5468 bpf_log(log, "access beyond struct %s at off %u size %u\n", 5469 tname, off, size); 5470 return -EACCES; 5471 } 5472 5473 for_each_member(i, t, member) { 5474 /* offset of the field in bytes */ 5475 moff = __btf_member_bit_offset(t, member) / 8; 5476 if (off + size <= moff) 5477 /* won't find anything, field is already too far */ 5478 break; 5479 5480 if (__btf_member_bitfield_size(t, member)) { 5481 u32 end_bit = __btf_member_bit_offset(t, member) + 5482 __btf_member_bitfield_size(t, member); 5483 5484 /* off <= moff instead of off == moff because clang 5485 * does not generate a BTF member for anonymous 5486 * bitfield like the ":16" here: 5487 * struct { 5488 * int :16; 5489 * int x:8; 5490 * }; 5491 */ 5492 if (off <= moff && 5493 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 5494 return WALK_SCALAR; 5495 5496 /* off may be accessing a following member 5497 * 5498 * or 5499 * 5500 * Doing partial access at either end of this 5501 * bitfield. Continue on this case also to 5502 * treat it as not accessing this bitfield 5503 * and eventually error out as field not 5504 * found to keep it simple. 5505 * It could be relaxed if there was a legit 5506 * partial access case later. 5507 */ 5508 continue; 5509 } 5510 5511 /* In case of "off" is pointing to holes of a struct */ 5512 if (off < moff) 5513 break; 5514 5515 /* type of the field */ 5516 mid = member->type; 5517 mtype = btf_type_by_id(btf, member->type); 5518 mname = __btf_name_by_offset(btf, member->name_off); 5519 5520 mtype = __btf_resolve_size(btf, mtype, &msize, 5521 &elem_type, &elem_id, &total_nelems, 5522 &mid); 5523 if (IS_ERR(mtype)) { 5524 bpf_log(log, "field %s doesn't have size\n", mname); 5525 return -EFAULT; 5526 } 5527 5528 mtrue_end = moff + msize; 5529 if (off >= mtrue_end) 5530 /* no overlap with member, keep iterating */ 5531 continue; 5532 5533 if (btf_type_is_array(mtype)) { 5534 u32 elem_idx; 5535 5536 /* __btf_resolve_size() above helps to 5537 * linearize a multi-dimensional array. 5538 * 5539 * The logic here is treating an array 5540 * in a struct as the following way: 5541 * 5542 * struct outer { 5543 * struct inner array[2][2]; 5544 * }; 5545 * 5546 * looks like: 5547 * 5548 * struct outer { 5549 * struct inner array_elem0; 5550 * struct inner array_elem1; 5551 * struct inner array_elem2; 5552 * struct inner array_elem3; 5553 * }; 5554 * 5555 * When accessing outer->array[1][0], it moves 5556 * moff to "array_elem2", set mtype to 5557 * "struct inner", and msize also becomes 5558 * sizeof(struct inner). Then most of the 5559 * remaining logic will fall through without 5560 * caring the current member is an array or 5561 * not. 5562 * 5563 * Unlike mtype/msize/moff, mtrue_end does not 5564 * change. The naming difference ("_true") tells 5565 * that it is not always corresponding to 5566 * the current mtype/msize/moff. 5567 * It is the true end of the current 5568 * member (i.e. array in this case). That 5569 * will allow an int array to be accessed like 5570 * a scratch space, 5571 * i.e. allow access beyond the size of 5572 * the array's element as long as it is 5573 * within the mtrue_end boundary. 5574 */ 5575 5576 /* skip empty array */ 5577 if (moff == mtrue_end) 5578 continue; 5579 5580 msize /= total_nelems; 5581 elem_idx = (off - moff) / msize; 5582 moff += elem_idx * msize; 5583 mtype = elem_type; 5584 mid = elem_id; 5585 } 5586 5587 /* the 'off' we're looking for is either equal to start 5588 * of this field or inside of this struct 5589 */ 5590 if (btf_type_is_struct(mtype)) { 5591 /* our field must be inside that union or struct */ 5592 t = mtype; 5593 5594 /* return if the offset matches the member offset */ 5595 if (off == moff) { 5596 *next_btf_id = mid; 5597 return WALK_STRUCT; 5598 } 5599 5600 /* adjust offset we're looking for */ 5601 off -= moff; 5602 goto again; 5603 } 5604 5605 if (btf_type_is_ptr(mtype)) { 5606 const struct btf_type *stype, *t; 5607 enum bpf_type_flag tmp_flag = 0; 5608 u32 id; 5609 5610 if (msize != size || off != moff) { 5611 bpf_log(log, 5612 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5613 mname, moff, tname, off, size); 5614 return -EACCES; 5615 } 5616 5617 /* check type tag */ 5618 t = btf_type_by_id(btf, mtype->type); 5619 if (btf_type_is_type_tag(t)) { 5620 tag_value = __btf_name_by_offset(btf, t->name_off); 5621 /* check __user tag */ 5622 if (strcmp(tag_value, "user") == 0) 5623 tmp_flag = MEM_USER; 5624 /* check __percpu tag */ 5625 if (strcmp(tag_value, "percpu") == 0) 5626 tmp_flag = MEM_PERCPU; 5627 } 5628 5629 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5630 if (btf_type_is_struct(stype)) { 5631 *next_btf_id = id; 5632 *flag = tmp_flag; 5633 return WALK_PTR; 5634 } 5635 } 5636 5637 /* Allow more flexible access within an int as long as 5638 * it is within mtrue_end. 5639 * Since mtrue_end could be the end of an array, 5640 * that also allows using an array of int as a scratch 5641 * space. e.g. skb->cb[]. 5642 */ 5643 if (off + size > mtrue_end) { 5644 bpf_log(log, 5645 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5646 mname, mtrue_end, tname, off, size); 5647 return -EACCES; 5648 } 5649 5650 return WALK_SCALAR; 5651 } 5652 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5653 return -EINVAL; 5654 } 5655 5656 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5657 const struct btf_type *t, int off, int size, 5658 enum bpf_access_type atype __maybe_unused, 5659 u32 *next_btf_id, enum bpf_type_flag *flag) 5660 { 5661 enum bpf_type_flag tmp_flag = 0; 5662 int err; 5663 u32 id; 5664 5665 do { 5666 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); 5667 5668 switch (err) { 5669 case WALK_PTR: 5670 /* If we found the pointer or scalar on t+off, 5671 * we're done. 5672 */ 5673 *next_btf_id = id; 5674 *flag = tmp_flag; 5675 return PTR_TO_BTF_ID; 5676 case WALK_SCALAR: 5677 return SCALAR_VALUE; 5678 case WALK_STRUCT: 5679 /* We found nested struct, so continue the search 5680 * by diving in it. At this point the offset is 5681 * aligned with the new type, so set it to 0. 5682 */ 5683 t = btf_type_by_id(btf, id); 5684 off = 0; 5685 break; 5686 default: 5687 /* It's either error or unknown return value.. 5688 * scream and leave. 5689 */ 5690 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5691 return -EINVAL; 5692 return err; 5693 } 5694 } while (t); 5695 5696 return -EINVAL; 5697 } 5698 5699 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5700 * the same. Trivial ID check is not enough due to module BTFs, because we can 5701 * end up with two different module BTFs, but IDs point to the common type in 5702 * vmlinux BTF. 5703 */ 5704 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5705 const struct btf *btf2, u32 id2) 5706 { 5707 if (id1 != id2) 5708 return false; 5709 if (btf1 == btf2) 5710 return true; 5711 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5712 } 5713 5714 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5715 const struct btf *btf, u32 id, int off, 5716 const struct btf *need_btf, u32 need_type_id, 5717 bool strict) 5718 { 5719 const struct btf_type *type; 5720 enum bpf_type_flag flag; 5721 int err; 5722 5723 /* Are we already done? */ 5724 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5725 return true; 5726 /* In case of strict type match, we do not walk struct, the top level 5727 * type match must succeed. When strict is true, off should have already 5728 * been 0. 5729 */ 5730 if (strict) 5731 return false; 5732 again: 5733 type = btf_type_by_id(btf, id); 5734 if (!type) 5735 return false; 5736 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); 5737 if (err != WALK_STRUCT) 5738 return false; 5739 5740 /* We found nested struct object. If it matches 5741 * the requested ID, we're done. Otherwise let's 5742 * continue the search with offset 0 in the new 5743 * type. 5744 */ 5745 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5746 off = 0; 5747 goto again; 5748 } 5749 5750 return true; 5751 } 5752 5753 static int __get_type_size(struct btf *btf, u32 btf_id, 5754 const struct btf_type **bad_type) 5755 { 5756 const struct btf_type *t; 5757 5758 if (!btf_id) 5759 /* void */ 5760 return 0; 5761 t = btf_type_by_id(btf, btf_id); 5762 while (t && btf_type_is_modifier(t)) 5763 t = btf_type_by_id(btf, t->type); 5764 if (!t) { 5765 *bad_type = btf_type_by_id(btf, 0); 5766 return -EINVAL; 5767 } 5768 if (btf_type_is_ptr(t)) 5769 /* kernel size of pointer. Not BPF's size of pointer*/ 5770 return sizeof(void *); 5771 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5772 return t->size; 5773 *bad_type = t; 5774 return -EINVAL; 5775 } 5776 5777 int btf_distill_func_proto(struct bpf_verifier_log *log, 5778 struct btf *btf, 5779 const struct btf_type *func, 5780 const char *tname, 5781 struct btf_func_model *m) 5782 { 5783 const struct btf_param *args; 5784 const struct btf_type *t; 5785 u32 i, nargs; 5786 int ret; 5787 5788 if (!func) { 5789 /* BTF function prototype doesn't match the verifier types. 5790 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5791 */ 5792 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 5793 m->arg_size[i] = 8; 5794 m->ret_size = 8; 5795 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5796 return 0; 5797 } 5798 args = (const struct btf_param *)(func + 1); 5799 nargs = btf_type_vlen(func); 5800 if (nargs > MAX_BPF_FUNC_ARGS) { 5801 bpf_log(log, 5802 "The function %s has %d arguments. Too many.\n", 5803 tname, nargs); 5804 return -EINVAL; 5805 } 5806 ret = __get_type_size(btf, func->type, &t); 5807 if (ret < 0) { 5808 bpf_log(log, 5809 "The function %s return type %s is unsupported.\n", 5810 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5811 return -EINVAL; 5812 } 5813 m->ret_size = ret; 5814 5815 for (i = 0; i < nargs; i++) { 5816 if (i == nargs - 1 && args[i].type == 0) { 5817 bpf_log(log, 5818 "The function %s with variable args is unsupported.\n", 5819 tname); 5820 return -EINVAL; 5821 } 5822 ret = __get_type_size(btf, args[i].type, &t); 5823 if (ret < 0) { 5824 bpf_log(log, 5825 "The function %s arg%d type %s is unsupported.\n", 5826 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5827 return -EINVAL; 5828 } 5829 if (ret == 0) { 5830 bpf_log(log, 5831 "The function %s has malformed void argument.\n", 5832 tname); 5833 return -EINVAL; 5834 } 5835 m->arg_size[i] = ret; 5836 } 5837 m->nr_args = nargs; 5838 return 0; 5839 } 5840 5841 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5842 * t1 points to BTF_KIND_FUNC in btf1 5843 * t2 points to BTF_KIND_FUNC in btf2 5844 * Returns: 5845 * EINVAL - function prototype mismatch 5846 * EFAULT - verifier bug 5847 * 0 - 99% match. The last 1% is validated by the verifier. 5848 */ 5849 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5850 struct btf *btf1, const struct btf_type *t1, 5851 struct btf *btf2, const struct btf_type *t2) 5852 { 5853 const struct btf_param *args1, *args2; 5854 const char *fn1, *fn2, *s1, *s2; 5855 u32 nargs1, nargs2, i; 5856 5857 fn1 = btf_name_by_offset(btf1, t1->name_off); 5858 fn2 = btf_name_by_offset(btf2, t2->name_off); 5859 5860 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5861 bpf_log(log, "%s() is not a global function\n", fn1); 5862 return -EINVAL; 5863 } 5864 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5865 bpf_log(log, "%s() is not a global function\n", fn2); 5866 return -EINVAL; 5867 } 5868 5869 t1 = btf_type_by_id(btf1, t1->type); 5870 if (!t1 || !btf_type_is_func_proto(t1)) 5871 return -EFAULT; 5872 t2 = btf_type_by_id(btf2, t2->type); 5873 if (!t2 || !btf_type_is_func_proto(t2)) 5874 return -EFAULT; 5875 5876 args1 = (const struct btf_param *)(t1 + 1); 5877 nargs1 = btf_type_vlen(t1); 5878 args2 = (const struct btf_param *)(t2 + 1); 5879 nargs2 = btf_type_vlen(t2); 5880 5881 if (nargs1 != nargs2) { 5882 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5883 fn1, nargs1, fn2, nargs2); 5884 return -EINVAL; 5885 } 5886 5887 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5888 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5889 if (t1->info != t2->info) { 5890 bpf_log(log, 5891 "Return type %s of %s() doesn't match type %s of %s()\n", 5892 btf_type_str(t1), fn1, 5893 btf_type_str(t2), fn2); 5894 return -EINVAL; 5895 } 5896 5897 for (i = 0; i < nargs1; i++) { 5898 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5899 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5900 5901 if (t1->info != t2->info) { 5902 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5903 i, fn1, btf_type_str(t1), 5904 fn2, btf_type_str(t2)); 5905 return -EINVAL; 5906 } 5907 if (btf_type_has_size(t1) && t1->size != t2->size) { 5908 bpf_log(log, 5909 "arg%d in %s() has size %d while %s() has %d\n", 5910 i, fn1, t1->size, 5911 fn2, t2->size); 5912 return -EINVAL; 5913 } 5914 5915 /* global functions are validated with scalars and pointers 5916 * to context only. And only global functions can be replaced. 5917 * Hence type check only those types. 5918 */ 5919 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5920 continue; 5921 if (!btf_type_is_ptr(t1)) { 5922 bpf_log(log, 5923 "arg%d in %s() has unrecognized type\n", 5924 i, fn1); 5925 return -EINVAL; 5926 } 5927 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5928 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5929 if (!btf_type_is_struct(t1)) { 5930 bpf_log(log, 5931 "arg%d in %s() is not a pointer to context\n", 5932 i, fn1); 5933 return -EINVAL; 5934 } 5935 if (!btf_type_is_struct(t2)) { 5936 bpf_log(log, 5937 "arg%d in %s() is not a pointer to context\n", 5938 i, fn2); 5939 return -EINVAL; 5940 } 5941 /* This is an optional check to make program writing easier. 5942 * Compare names of structs and report an error to the user. 5943 * btf_prepare_func_args() already checked that t2 struct 5944 * is a context type. btf_prepare_func_args() will check 5945 * later that t1 struct is a context type as well. 5946 */ 5947 s1 = btf_name_by_offset(btf1, t1->name_off); 5948 s2 = btf_name_by_offset(btf2, t2->name_off); 5949 if (strcmp(s1, s2)) { 5950 bpf_log(log, 5951 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5952 i, fn1, s1, fn2, s2); 5953 return -EINVAL; 5954 } 5955 } 5956 return 0; 5957 } 5958 5959 /* Compare BTFs of given program with BTF of target program */ 5960 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5961 struct btf *btf2, const struct btf_type *t2) 5962 { 5963 struct btf *btf1 = prog->aux->btf; 5964 const struct btf_type *t1; 5965 u32 btf_id = 0; 5966 5967 if (!prog->aux->func_info) { 5968 bpf_log(log, "Program extension requires BTF\n"); 5969 return -EINVAL; 5970 } 5971 5972 btf_id = prog->aux->func_info[0].type_id; 5973 if (!btf_id) 5974 return -EFAULT; 5975 5976 t1 = btf_type_by_id(btf1, btf_id); 5977 if (!t1 || !btf_type_is_func(t1)) 5978 return -EFAULT; 5979 5980 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5981 } 5982 5983 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5984 #ifdef CONFIG_NET 5985 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5986 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5987 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5988 #endif 5989 }; 5990 5991 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 5992 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, 5993 const struct btf *btf, 5994 const struct btf_type *t, int rec) 5995 { 5996 const struct btf_type *member_type; 5997 const struct btf_member *member; 5998 u32 i; 5999 6000 if (!btf_type_is_struct(t)) 6001 return false; 6002 6003 for_each_member(i, t, member) { 6004 const struct btf_array *array; 6005 6006 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 6007 if (btf_type_is_struct(member_type)) { 6008 if (rec >= 3) { 6009 bpf_log(log, "max struct nesting depth exceeded\n"); 6010 return false; 6011 } 6012 if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) 6013 return false; 6014 continue; 6015 } 6016 if (btf_type_is_array(member_type)) { 6017 array = btf_type_array(member_type); 6018 if (!array->nelems) 6019 return false; 6020 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 6021 if (!btf_type_is_scalar(member_type)) 6022 return false; 6023 continue; 6024 } 6025 if (!btf_type_is_scalar(member_type)) 6026 return false; 6027 } 6028 return true; 6029 } 6030 6031 static bool is_kfunc_arg_mem_size(const struct btf *btf, 6032 const struct btf_param *arg, 6033 const struct bpf_reg_state *reg) 6034 { 6035 int len, sfx_len = sizeof("__sz") - 1; 6036 const struct btf_type *t; 6037 const char *param_name; 6038 6039 t = btf_type_skip_modifiers(btf, arg->type, NULL); 6040 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 6041 return false; 6042 6043 /* In the future, this can be ported to use BTF tagging */ 6044 param_name = btf_name_by_offset(btf, arg->name_off); 6045 if (str_is_empty(param_name)) 6046 return false; 6047 len = strlen(param_name); 6048 if (len < sfx_len) 6049 return false; 6050 param_name += len - sfx_len; 6051 if (strncmp(param_name, "__sz", sfx_len)) 6052 return false; 6053 6054 return true; 6055 } 6056 6057 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6058 const struct btf *btf, u32 func_id, 6059 struct bpf_reg_state *regs, 6060 bool ptr_to_mem_ok) 6061 { 6062 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6063 struct bpf_verifier_log *log = &env->log; 6064 u32 i, nargs, ref_id, ref_obj_id = 0; 6065 bool is_kfunc = btf_is_kernel(btf); 6066 bool rel = false, kptr_get = false; 6067 const char *func_name, *ref_tname; 6068 const struct btf_type *t, *ref_t; 6069 const struct btf_param *args; 6070 int ref_regno = 0, ret; 6071 6072 t = btf_type_by_id(btf, func_id); 6073 if (!t || !btf_type_is_func(t)) { 6074 /* These checks were already done by the verifier while loading 6075 * struct bpf_func_info or in add_kfunc_call(). 6076 */ 6077 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6078 func_id); 6079 return -EFAULT; 6080 } 6081 func_name = btf_name_by_offset(btf, t->name_off); 6082 6083 t = btf_type_by_id(btf, t->type); 6084 if (!t || !btf_type_is_func_proto(t)) { 6085 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6086 return -EFAULT; 6087 } 6088 args = (const struct btf_param *)(t + 1); 6089 nargs = btf_type_vlen(t); 6090 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6091 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6092 MAX_BPF_FUNC_REG_ARGS); 6093 return -EINVAL; 6094 } 6095 6096 if (is_kfunc) { 6097 /* Only kfunc can be release func */ 6098 rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog), 6099 BTF_KFUNC_TYPE_RELEASE, func_id); 6100 kptr_get = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog), 6101 BTF_KFUNC_TYPE_KPTR_ACQUIRE, func_id); 6102 } 6103 6104 /* check that BTF function arguments match actual types that the 6105 * verifier sees. 6106 */ 6107 for (i = 0; i < nargs; i++) { 6108 enum bpf_arg_type arg_type = ARG_DONTCARE; 6109 u32 regno = i + 1; 6110 struct bpf_reg_state *reg = ®s[regno]; 6111 6112 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6113 if (btf_type_is_scalar(t)) { 6114 if (reg->type == SCALAR_VALUE) 6115 continue; 6116 bpf_log(log, "R%d is not a scalar\n", regno); 6117 return -EINVAL; 6118 } 6119 6120 if (!btf_type_is_ptr(t)) { 6121 bpf_log(log, "Unrecognized arg#%d type %s\n", 6122 i, btf_type_str(t)); 6123 return -EINVAL; 6124 } 6125 6126 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6127 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6128 6129 if (rel && reg->ref_obj_id) 6130 arg_type |= OBJ_RELEASE; 6131 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6132 if (ret < 0) 6133 return ret; 6134 6135 /* kptr_get is only true for kfunc */ 6136 if (i == 0 && kptr_get) { 6137 struct bpf_map_value_off_desc *off_desc; 6138 6139 if (reg->type != PTR_TO_MAP_VALUE) { 6140 bpf_log(log, "arg#0 expected pointer to map value\n"); 6141 return -EINVAL; 6142 } 6143 6144 /* check_func_arg_reg_off allows var_off for 6145 * PTR_TO_MAP_VALUE, but we need fixed offset to find 6146 * off_desc. 6147 */ 6148 if (!tnum_is_const(reg->var_off)) { 6149 bpf_log(log, "arg#0 must have constant offset\n"); 6150 return -EINVAL; 6151 } 6152 6153 off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value); 6154 if (!off_desc || off_desc->type != BPF_KPTR_REF) { 6155 bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n", 6156 reg->off + reg->var_off.value); 6157 return -EINVAL; 6158 } 6159 6160 if (!btf_type_is_ptr(ref_t)) { 6161 bpf_log(log, "arg#0 BTF type must be a double pointer\n"); 6162 return -EINVAL; 6163 } 6164 6165 ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id); 6166 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6167 6168 if (!btf_type_is_struct(ref_t)) { 6169 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 6170 func_name, i, btf_type_str(ref_t), ref_tname); 6171 return -EINVAL; 6172 } 6173 if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf, 6174 off_desc->kptr.btf_id, true)) { 6175 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n", 6176 func_name, i, btf_type_str(ref_t), ref_tname); 6177 return -EINVAL; 6178 } 6179 /* rest of the arguments can be anything, like normal kfunc */ 6180 } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6181 /* If function expects ctx type in BTF check that caller 6182 * is passing PTR_TO_CTX. 6183 */ 6184 if (reg->type != PTR_TO_CTX) { 6185 bpf_log(log, 6186 "arg#%d expected pointer to ctx, but got %s\n", 6187 i, btf_type_str(t)); 6188 return -EINVAL; 6189 } 6190 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || 6191 (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { 6192 const struct btf_type *reg_ref_t; 6193 const struct btf *reg_btf; 6194 const char *reg_ref_tname; 6195 u32 reg_ref_id; 6196 6197 if (!btf_type_is_struct(ref_t)) { 6198 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 6199 func_name, i, btf_type_str(ref_t), 6200 ref_tname); 6201 return -EINVAL; 6202 } 6203 6204 if (reg->type == PTR_TO_BTF_ID) { 6205 reg_btf = reg->btf; 6206 reg_ref_id = reg->btf_id; 6207 /* Ensure only one argument is referenced PTR_TO_BTF_ID */ 6208 if (reg->ref_obj_id) { 6209 if (ref_obj_id) { 6210 bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6211 regno, reg->ref_obj_id, ref_obj_id); 6212 return -EFAULT; 6213 } 6214 ref_regno = regno; 6215 ref_obj_id = reg->ref_obj_id; 6216 } 6217 } else { 6218 reg_btf = btf_vmlinux; 6219 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 6220 } 6221 6222 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, 6223 ®_ref_id); 6224 reg_ref_tname = btf_name_by_offset(reg_btf, 6225 reg_ref_t->name_off); 6226 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, 6227 reg->off, btf, ref_id, rel && reg->ref_obj_id)) { 6228 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 6229 func_name, i, 6230 btf_type_str(ref_t), ref_tname, 6231 regno, btf_type_str(reg_ref_t), 6232 reg_ref_tname); 6233 return -EINVAL; 6234 } 6235 } else if (ptr_to_mem_ok) { 6236 const struct btf_type *resolve_ret; 6237 u32 type_size; 6238 6239 if (is_kfunc) { 6240 bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], ®s[regno + 1]); 6241 6242 /* Permit pointer to mem, but only when argument 6243 * type is pointer to scalar, or struct composed 6244 * (recursively) of scalars. 6245 * When arg_mem_size is true, the pointer can be 6246 * void *. 6247 */ 6248 if (!btf_type_is_scalar(ref_t) && 6249 !__btf_type_is_scalar_struct(log, btf, ref_t, 0) && 6250 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 6251 bpf_log(log, 6252 "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 6253 i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 6254 return -EINVAL; 6255 } 6256 6257 /* Check for mem, len pair */ 6258 if (arg_mem_size) { 6259 if (check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1)) { 6260 bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", 6261 i, i + 1); 6262 return -EINVAL; 6263 } 6264 i++; 6265 continue; 6266 } 6267 } 6268 6269 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6270 if (IS_ERR(resolve_ret)) { 6271 bpf_log(log, 6272 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6273 i, btf_type_str(ref_t), ref_tname, 6274 PTR_ERR(resolve_ret)); 6275 return -EINVAL; 6276 } 6277 6278 if (check_mem_reg(env, reg, regno, type_size)) 6279 return -EINVAL; 6280 } else { 6281 bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, 6282 is_kfunc ? "kernel " : "", func_name, func_id); 6283 return -EINVAL; 6284 } 6285 } 6286 6287 /* Either both are set, or neither */ 6288 WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno)); 6289 /* We already made sure ref_obj_id is set only for one argument. We do 6290 * allow (!rel && ref_obj_id), so that passing such referenced 6291 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when 6292 * is_kfunc is true. 6293 */ 6294 if (rel && !ref_obj_id) { 6295 bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 6296 func_name); 6297 return -EINVAL; 6298 } 6299 /* returns argument register number > 0 in case of reference release kfunc */ 6300 return rel ? ref_regno : 0; 6301 } 6302 6303 /* Compare BTF of a function with given bpf_reg_state. 6304 * Returns: 6305 * EFAULT - there is a verifier bug. Abort verification. 6306 * EINVAL - there is a type mismatch or BTF is not available. 6307 * 0 - BTF matches with what bpf_reg_state expects. 6308 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6309 */ 6310 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6311 struct bpf_reg_state *regs) 6312 { 6313 struct bpf_prog *prog = env->prog; 6314 struct btf *btf = prog->aux->btf; 6315 bool is_global; 6316 u32 btf_id; 6317 int err; 6318 6319 if (!prog->aux->func_info) 6320 return -EINVAL; 6321 6322 btf_id = prog->aux->func_info[subprog].type_id; 6323 if (!btf_id) 6324 return -EFAULT; 6325 6326 if (prog->aux->func_info_aux[subprog].unreliable) 6327 return -EINVAL; 6328 6329 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6330 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global); 6331 6332 /* Compiler optimizations can remove arguments from static functions 6333 * or mismatched type can be passed into a global function. 6334 * In such cases mark the function as unreliable from BTF point of view. 6335 */ 6336 if (err) 6337 prog->aux->func_info_aux[subprog].unreliable = true; 6338 return err; 6339 } 6340 6341 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 6342 const struct btf *btf, u32 func_id, 6343 struct bpf_reg_state *regs) 6344 { 6345 return btf_check_func_arg_match(env, btf, func_id, regs, true); 6346 } 6347 6348 /* Convert BTF of a function into bpf_reg_state if possible 6349 * Returns: 6350 * EFAULT - there is a verifier bug. Abort verification. 6351 * EINVAL - cannot convert BTF. 6352 * 0 - Successfully converted BTF into bpf_reg_state 6353 * (either PTR_TO_CTX or SCALAR_VALUE). 6354 */ 6355 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6356 struct bpf_reg_state *regs) 6357 { 6358 struct bpf_verifier_log *log = &env->log; 6359 struct bpf_prog *prog = env->prog; 6360 enum bpf_prog_type prog_type = prog->type; 6361 struct btf *btf = prog->aux->btf; 6362 const struct btf_param *args; 6363 const struct btf_type *t, *ref_t; 6364 u32 i, nargs, btf_id; 6365 const char *tname; 6366 6367 if (!prog->aux->func_info || 6368 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6369 bpf_log(log, "Verifier bug\n"); 6370 return -EFAULT; 6371 } 6372 6373 btf_id = prog->aux->func_info[subprog].type_id; 6374 if (!btf_id) { 6375 bpf_log(log, "Global functions need valid BTF\n"); 6376 return -EFAULT; 6377 } 6378 6379 t = btf_type_by_id(btf, btf_id); 6380 if (!t || !btf_type_is_func(t)) { 6381 /* These checks were already done by the verifier while loading 6382 * struct bpf_func_info 6383 */ 6384 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6385 subprog); 6386 return -EFAULT; 6387 } 6388 tname = btf_name_by_offset(btf, t->name_off); 6389 6390 if (log->level & BPF_LOG_LEVEL) 6391 bpf_log(log, "Validating %s() func#%d...\n", 6392 tname, subprog); 6393 6394 if (prog->aux->func_info_aux[subprog].unreliable) { 6395 bpf_log(log, "Verifier bug in function %s()\n", tname); 6396 return -EFAULT; 6397 } 6398 if (prog_type == BPF_PROG_TYPE_EXT) 6399 prog_type = prog->aux->dst_prog->type; 6400 6401 t = btf_type_by_id(btf, t->type); 6402 if (!t || !btf_type_is_func_proto(t)) { 6403 bpf_log(log, "Invalid type of function %s()\n", tname); 6404 return -EFAULT; 6405 } 6406 args = (const struct btf_param *)(t + 1); 6407 nargs = btf_type_vlen(t); 6408 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6409 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 6410 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 6411 return -EINVAL; 6412 } 6413 /* check that function returns int */ 6414 t = btf_type_by_id(btf, t->type); 6415 while (btf_type_is_modifier(t)) 6416 t = btf_type_by_id(btf, t->type); 6417 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 6418 bpf_log(log, 6419 "Global function %s() doesn't return scalar. Only those are supported.\n", 6420 tname); 6421 return -EINVAL; 6422 } 6423 /* Convert BTF function arguments into verifier types. 6424 * Only PTR_TO_CTX and SCALAR are supported atm. 6425 */ 6426 for (i = 0; i < nargs; i++) { 6427 struct bpf_reg_state *reg = ®s[i + 1]; 6428 6429 t = btf_type_by_id(btf, args[i].type); 6430 while (btf_type_is_modifier(t)) 6431 t = btf_type_by_id(btf, t->type); 6432 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 6433 reg->type = SCALAR_VALUE; 6434 continue; 6435 } 6436 if (btf_type_is_ptr(t)) { 6437 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6438 reg->type = PTR_TO_CTX; 6439 continue; 6440 } 6441 6442 t = btf_type_skip_modifiers(btf, t->type, NULL); 6443 6444 ref_t = btf_resolve_size(btf, t, ®->mem_size); 6445 if (IS_ERR(ref_t)) { 6446 bpf_log(log, 6447 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6448 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 6449 PTR_ERR(ref_t)); 6450 return -EINVAL; 6451 } 6452 6453 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6454 reg->id = ++env->id_gen; 6455 6456 continue; 6457 } 6458 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 6459 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 6460 return -EINVAL; 6461 } 6462 return 0; 6463 } 6464 6465 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 6466 struct btf_show *show) 6467 { 6468 const struct btf_type *t = btf_type_by_id(btf, type_id); 6469 6470 show->btf = btf; 6471 memset(&show->state, 0, sizeof(show->state)); 6472 memset(&show->obj, 0, sizeof(show->obj)); 6473 6474 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 6475 } 6476 6477 static void btf_seq_show(struct btf_show *show, const char *fmt, 6478 va_list args) 6479 { 6480 seq_vprintf((struct seq_file *)show->target, fmt, args); 6481 } 6482 6483 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 6484 void *obj, struct seq_file *m, u64 flags) 6485 { 6486 struct btf_show sseq; 6487 6488 sseq.target = m; 6489 sseq.showfn = btf_seq_show; 6490 sseq.flags = flags; 6491 6492 btf_type_show(btf, type_id, obj, &sseq); 6493 6494 return sseq.state.status; 6495 } 6496 6497 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 6498 struct seq_file *m) 6499 { 6500 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 6501 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 6502 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 6503 } 6504 6505 struct btf_show_snprintf { 6506 struct btf_show show; 6507 int len_left; /* space left in string */ 6508 int len; /* length we would have written */ 6509 }; 6510 6511 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 6512 va_list args) 6513 { 6514 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 6515 int len; 6516 6517 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 6518 6519 if (len < 0) { 6520 ssnprintf->len_left = 0; 6521 ssnprintf->len = len; 6522 } else if (len > ssnprintf->len_left) { 6523 /* no space, drive on to get length we would have written */ 6524 ssnprintf->len_left = 0; 6525 ssnprintf->len += len; 6526 } else { 6527 ssnprintf->len_left -= len; 6528 ssnprintf->len += len; 6529 show->target += len; 6530 } 6531 } 6532 6533 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 6534 char *buf, int len, u64 flags) 6535 { 6536 struct btf_show_snprintf ssnprintf; 6537 6538 ssnprintf.show.target = buf; 6539 ssnprintf.show.flags = flags; 6540 ssnprintf.show.showfn = btf_snprintf_show; 6541 ssnprintf.len_left = len; 6542 ssnprintf.len = 0; 6543 6544 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 6545 6546 /* If we encountered an error, return it. */ 6547 if (ssnprintf.show.state.status) 6548 return ssnprintf.show.state.status; 6549 6550 /* Otherwise return length we would have written */ 6551 return ssnprintf.len; 6552 } 6553 6554 #ifdef CONFIG_PROC_FS 6555 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 6556 { 6557 const struct btf *btf = filp->private_data; 6558 6559 seq_printf(m, "btf_id:\t%u\n", btf->id); 6560 } 6561 #endif 6562 6563 static int btf_release(struct inode *inode, struct file *filp) 6564 { 6565 btf_put(filp->private_data); 6566 return 0; 6567 } 6568 6569 const struct file_operations btf_fops = { 6570 #ifdef CONFIG_PROC_FS 6571 .show_fdinfo = bpf_btf_show_fdinfo, 6572 #endif 6573 .release = btf_release, 6574 }; 6575 6576 static int __btf_new_fd(struct btf *btf) 6577 { 6578 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 6579 } 6580 6581 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 6582 { 6583 struct btf *btf; 6584 int ret; 6585 6586 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 6587 attr->btf_size, attr->btf_log_level, 6588 u64_to_user_ptr(attr->btf_log_buf), 6589 attr->btf_log_size); 6590 if (IS_ERR(btf)) 6591 return PTR_ERR(btf); 6592 6593 ret = btf_alloc_id(btf); 6594 if (ret) { 6595 btf_free(btf); 6596 return ret; 6597 } 6598 6599 /* 6600 * The BTF ID is published to the userspace. 6601 * All BTF free must go through call_rcu() from 6602 * now on (i.e. free by calling btf_put()). 6603 */ 6604 6605 ret = __btf_new_fd(btf); 6606 if (ret < 0) 6607 btf_put(btf); 6608 6609 return ret; 6610 } 6611 6612 struct btf *btf_get_by_fd(int fd) 6613 { 6614 struct btf *btf; 6615 struct fd f; 6616 6617 f = fdget(fd); 6618 6619 if (!f.file) 6620 return ERR_PTR(-EBADF); 6621 6622 if (f.file->f_op != &btf_fops) { 6623 fdput(f); 6624 return ERR_PTR(-EINVAL); 6625 } 6626 6627 btf = f.file->private_data; 6628 refcount_inc(&btf->refcnt); 6629 fdput(f); 6630 6631 return btf; 6632 } 6633 6634 int btf_get_info_by_fd(const struct btf *btf, 6635 const union bpf_attr *attr, 6636 union bpf_attr __user *uattr) 6637 { 6638 struct bpf_btf_info __user *uinfo; 6639 struct bpf_btf_info info; 6640 u32 info_copy, btf_copy; 6641 void __user *ubtf; 6642 char __user *uname; 6643 u32 uinfo_len, uname_len, name_len; 6644 int ret = 0; 6645 6646 uinfo = u64_to_user_ptr(attr->info.info); 6647 uinfo_len = attr->info.info_len; 6648 6649 info_copy = min_t(u32, uinfo_len, sizeof(info)); 6650 memset(&info, 0, sizeof(info)); 6651 if (copy_from_user(&info, uinfo, info_copy)) 6652 return -EFAULT; 6653 6654 info.id = btf->id; 6655 ubtf = u64_to_user_ptr(info.btf); 6656 btf_copy = min_t(u32, btf->data_size, info.btf_size); 6657 if (copy_to_user(ubtf, btf->data, btf_copy)) 6658 return -EFAULT; 6659 info.btf_size = btf->data_size; 6660 6661 info.kernel_btf = btf->kernel_btf; 6662 6663 uname = u64_to_user_ptr(info.name); 6664 uname_len = info.name_len; 6665 if (!uname ^ !uname_len) 6666 return -EINVAL; 6667 6668 name_len = strlen(btf->name); 6669 info.name_len = name_len; 6670 6671 if (uname) { 6672 if (uname_len >= name_len + 1) { 6673 if (copy_to_user(uname, btf->name, name_len + 1)) 6674 return -EFAULT; 6675 } else { 6676 char zero = '\0'; 6677 6678 if (copy_to_user(uname, btf->name, uname_len - 1)) 6679 return -EFAULT; 6680 if (put_user(zero, uname + uname_len - 1)) 6681 return -EFAULT; 6682 /* let user-space know about too short buffer */ 6683 ret = -ENOSPC; 6684 } 6685 } 6686 6687 if (copy_to_user(uinfo, &info, info_copy) || 6688 put_user(info_copy, &uattr->info.info_len)) 6689 return -EFAULT; 6690 6691 return ret; 6692 } 6693 6694 int btf_get_fd_by_id(u32 id) 6695 { 6696 struct btf *btf; 6697 int fd; 6698 6699 rcu_read_lock(); 6700 btf = idr_find(&btf_idr, id); 6701 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 6702 btf = ERR_PTR(-ENOENT); 6703 rcu_read_unlock(); 6704 6705 if (IS_ERR(btf)) 6706 return PTR_ERR(btf); 6707 6708 fd = __btf_new_fd(btf); 6709 if (fd < 0) 6710 btf_put(btf); 6711 6712 return fd; 6713 } 6714 6715 u32 btf_obj_id(const struct btf *btf) 6716 { 6717 return btf->id; 6718 } 6719 6720 bool btf_is_kernel(const struct btf *btf) 6721 { 6722 return btf->kernel_btf; 6723 } 6724 6725 bool btf_is_module(const struct btf *btf) 6726 { 6727 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 6728 } 6729 6730 static int btf_id_cmp_func(const void *a, const void *b) 6731 { 6732 const int *pa = a, *pb = b; 6733 6734 return *pa - *pb; 6735 } 6736 6737 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 6738 { 6739 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 6740 } 6741 6742 enum { 6743 BTF_MODULE_F_LIVE = (1 << 0), 6744 }; 6745 6746 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6747 struct btf_module { 6748 struct list_head list; 6749 struct module *module; 6750 struct btf *btf; 6751 struct bin_attribute *sysfs_attr; 6752 int flags; 6753 }; 6754 6755 static LIST_HEAD(btf_modules); 6756 static DEFINE_MUTEX(btf_module_mutex); 6757 6758 static ssize_t 6759 btf_module_read(struct file *file, struct kobject *kobj, 6760 struct bin_attribute *bin_attr, 6761 char *buf, loff_t off, size_t len) 6762 { 6763 const struct btf *btf = bin_attr->private; 6764 6765 memcpy(buf, btf->data + off, len); 6766 return len; 6767 } 6768 6769 static void purge_cand_cache(struct btf *btf); 6770 6771 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 6772 void *module) 6773 { 6774 struct btf_module *btf_mod, *tmp; 6775 struct module *mod = module; 6776 struct btf *btf; 6777 int err = 0; 6778 6779 if (mod->btf_data_size == 0 || 6780 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 6781 op != MODULE_STATE_GOING)) 6782 goto out; 6783 6784 switch (op) { 6785 case MODULE_STATE_COMING: 6786 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 6787 if (!btf_mod) { 6788 err = -ENOMEM; 6789 goto out; 6790 } 6791 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 6792 if (IS_ERR(btf)) { 6793 pr_warn("failed to validate module [%s] BTF: %ld\n", 6794 mod->name, PTR_ERR(btf)); 6795 kfree(btf_mod); 6796 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 6797 err = PTR_ERR(btf); 6798 goto out; 6799 } 6800 err = btf_alloc_id(btf); 6801 if (err) { 6802 btf_free(btf); 6803 kfree(btf_mod); 6804 goto out; 6805 } 6806 6807 purge_cand_cache(NULL); 6808 mutex_lock(&btf_module_mutex); 6809 btf_mod->module = module; 6810 btf_mod->btf = btf; 6811 list_add(&btf_mod->list, &btf_modules); 6812 mutex_unlock(&btf_module_mutex); 6813 6814 if (IS_ENABLED(CONFIG_SYSFS)) { 6815 struct bin_attribute *attr; 6816 6817 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 6818 if (!attr) 6819 goto out; 6820 6821 sysfs_bin_attr_init(attr); 6822 attr->attr.name = btf->name; 6823 attr->attr.mode = 0444; 6824 attr->size = btf->data_size; 6825 attr->private = btf; 6826 attr->read = btf_module_read; 6827 6828 err = sysfs_create_bin_file(btf_kobj, attr); 6829 if (err) { 6830 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 6831 mod->name, err); 6832 kfree(attr); 6833 err = 0; 6834 goto out; 6835 } 6836 6837 btf_mod->sysfs_attr = attr; 6838 } 6839 6840 break; 6841 case MODULE_STATE_LIVE: 6842 mutex_lock(&btf_module_mutex); 6843 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6844 if (btf_mod->module != module) 6845 continue; 6846 6847 btf_mod->flags |= BTF_MODULE_F_LIVE; 6848 break; 6849 } 6850 mutex_unlock(&btf_module_mutex); 6851 break; 6852 case MODULE_STATE_GOING: 6853 mutex_lock(&btf_module_mutex); 6854 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6855 if (btf_mod->module != module) 6856 continue; 6857 6858 list_del(&btf_mod->list); 6859 if (btf_mod->sysfs_attr) 6860 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 6861 purge_cand_cache(btf_mod->btf); 6862 btf_put(btf_mod->btf); 6863 kfree(btf_mod->sysfs_attr); 6864 kfree(btf_mod); 6865 break; 6866 } 6867 mutex_unlock(&btf_module_mutex); 6868 break; 6869 } 6870 out: 6871 return notifier_from_errno(err); 6872 } 6873 6874 static struct notifier_block btf_module_nb = { 6875 .notifier_call = btf_module_notify, 6876 }; 6877 6878 static int __init btf_module_init(void) 6879 { 6880 register_module_notifier(&btf_module_nb); 6881 return 0; 6882 } 6883 6884 fs_initcall(btf_module_init); 6885 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6886 6887 struct module *btf_try_get_module(const struct btf *btf) 6888 { 6889 struct module *res = NULL; 6890 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6891 struct btf_module *btf_mod, *tmp; 6892 6893 mutex_lock(&btf_module_mutex); 6894 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6895 if (btf_mod->btf != btf) 6896 continue; 6897 6898 /* We must only consider module whose __init routine has 6899 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 6900 * which is set from the notifier callback for 6901 * MODULE_STATE_LIVE. 6902 */ 6903 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 6904 res = btf_mod->module; 6905 6906 break; 6907 } 6908 mutex_unlock(&btf_module_mutex); 6909 #endif 6910 6911 return res; 6912 } 6913 6914 /* Returns struct btf corresponding to the struct module. 6915 * This function can return NULL or ERR_PTR. 6916 */ 6917 static struct btf *btf_get_module_btf(const struct module *module) 6918 { 6919 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6920 struct btf_module *btf_mod, *tmp; 6921 #endif 6922 struct btf *btf = NULL; 6923 6924 if (!module) { 6925 btf = bpf_get_btf_vmlinux(); 6926 if (!IS_ERR_OR_NULL(btf)) 6927 btf_get(btf); 6928 return btf; 6929 } 6930 6931 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6932 mutex_lock(&btf_module_mutex); 6933 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6934 if (btf_mod->module != module) 6935 continue; 6936 6937 btf_get(btf_mod->btf); 6938 btf = btf_mod->btf; 6939 break; 6940 } 6941 mutex_unlock(&btf_module_mutex); 6942 #endif 6943 6944 return btf; 6945 } 6946 6947 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 6948 { 6949 struct btf *btf = NULL; 6950 int btf_obj_fd = 0; 6951 long ret; 6952 6953 if (flags) 6954 return -EINVAL; 6955 6956 if (name_sz <= 1 || name[name_sz - 1]) 6957 return -EINVAL; 6958 6959 ret = bpf_find_btf_id(name, kind, &btf); 6960 if (ret > 0 && btf_is_module(btf)) { 6961 btf_obj_fd = __btf_new_fd(btf); 6962 if (btf_obj_fd < 0) { 6963 btf_put(btf); 6964 return btf_obj_fd; 6965 } 6966 return ret | (((u64)btf_obj_fd) << 32); 6967 } 6968 if (ret > 0) 6969 btf_put(btf); 6970 return ret; 6971 } 6972 6973 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 6974 .func = bpf_btf_find_by_name_kind, 6975 .gpl_only = false, 6976 .ret_type = RET_INTEGER, 6977 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6978 .arg2_type = ARG_CONST_SIZE, 6979 .arg3_type = ARG_ANYTHING, 6980 .arg4_type = ARG_ANYTHING, 6981 }; 6982 6983 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 6984 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 6985 BTF_TRACING_TYPE_xxx 6986 #undef BTF_TRACING_TYPE 6987 6988 /* Kernel Function (kfunc) BTF ID set registration API */ 6989 6990 static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 6991 enum btf_kfunc_type type, 6992 struct btf_id_set *add_set, bool vmlinux_set) 6993 { 6994 struct btf_kfunc_set_tab *tab; 6995 struct btf_id_set *set; 6996 u32 set_cnt; 6997 int ret; 6998 6999 if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) { 7000 ret = -EINVAL; 7001 goto end; 7002 } 7003 7004 if (!add_set->cnt) 7005 return 0; 7006 7007 tab = btf->kfunc_set_tab; 7008 if (!tab) { 7009 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7010 if (!tab) 7011 return -ENOMEM; 7012 btf->kfunc_set_tab = tab; 7013 } 7014 7015 set = tab->sets[hook][type]; 7016 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7017 * for module sets. 7018 */ 7019 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7020 ret = -EINVAL; 7021 goto end; 7022 } 7023 7024 /* We don't need to allocate, concatenate, and sort module sets, because 7025 * only one is allowed per hook. Hence, we can directly assign the 7026 * pointer and return. 7027 */ 7028 if (!vmlinux_set) { 7029 tab->sets[hook][type] = add_set; 7030 return 0; 7031 } 7032 7033 /* In case of vmlinux sets, there may be more than one set being 7034 * registered per hook. To create a unified set, we allocate a new set 7035 * and concatenate all individual sets being registered. While each set 7036 * is individually sorted, they may become unsorted when concatenated, 7037 * hence re-sorting the final set again is required to make binary 7038 * searching the set using btf_id_set_contains function work. 7039 */ 7040 set_cnt = set ? set->cnt : 0; 7041 7042 if (set_cnt > U32_MAX - add_set->cnt) { 7043 ret = -EOVERFLOW; 7044 goto end; 7045 } 7046 7047 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7048 ret = -E2BIG; 7049 goto end; 7050 } 7051 7052 /* Grow set */ 7053 set = krealloc(tab->sets[hook][type], 7054 offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]), 7055 GFP_KERNEL | __GFP_NOWARN); 7056 if (!set) { 7057 ret = -ENOMEM; 7058 goto end; 7059 } 7060 7061 /* For newly allocated set, initialize set->cnt to 0 */ 7062 if (!tab->sets[hook][type]) 7063 set->cnt = 0; 7064 tab->sets[hook][type] = set; 7065 7066 /* Concatenate the two sets */ 7067 memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0])); 7068 set->cnt += add_set->cnt; 7069 7070 sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL); 7071 7072 return 0; 7073 end: 7074 btf_free_kfunc_set_tab(btf); 7075 return ret; 7076 } 7077 7078 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7079 const struct btf_kfunc_id_set *kset) 7080 { 7081 bool vmlinux_set = !btf_is_module(btf); 7082 int type, ret = 0; 7083 7084 for (type = 0; type < ARRAY_SIZE(kset->sets); type++) { 7085 if (!kset->sets[type]) 7086 continue; 7087 7088 ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set); 7089 if (ret) 7090 break; 7091 } 7092 return ret; 7093 } 7094 7095 static bool __btf_kfunc_id_set_contains(const struct btf *btf, 7096 enum btf_kfunc_hook hook, 7097 enum btf_kfunc_type type, 7098 u32 kfunc_btf_id) 7099 { 7100 struct btf_id_set *set; 7101 7102 if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) 7103 return false; 7104 if (!btf->kfunc_set_tab) 7105 return false; 7106 set = btf->kfunc_set_tab->sets[hook][type]; 7107 if (!set) 7108 return false; 7109 return btf_id_set_contains(set, kfunc_btf_id); 7110 } 7111 7112 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7113 { 7114 switch (prog_type) { 7115 case BPF_PROG_TYPE_XDP: 7116 return BTF_KFUNC_HOOK_XDP; 7117 case BPF_PROG_TYPE_SCHED_CLS: 7118 return BTF_KFUNC_HOOK_TC; 7119 case BPF_PROG_TYPE_STRUCT_OPS: 7120 return BTF_KFUNC_HOOK_STRUCT_OPS; 7121 case BPF_PROG_TYPE_TRACING: 7122 return BTF_KFUNC_HOOK_TRACING; 7123 case BPF_PROG_TYPE_SYSCALL: 7124 return BTF_KFUNC_HOOK_SYSCALL; 7125 default: 7126 return BTF_KFUNC_HOOK_MAX; 7127 } 7128 } 7129 7130 /* Caution: 7131 * Reference to the module (obtained using btf_try_get_module) corresponding to 7132 * the struct btf *MUST* be held when calling this function from verifier 7133 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7134 * keeping the reference for the duration of the call provides the necessary 7135 * protection for looking up a well-formed btf->kfunc_set_tab. 7136 */ 7137 bool btf_kfunc_id_set_contains(const struct btf *btf, 7138 enum bpf_prog_type prog_type, 7139 enum btf_kfunc_type type, u32 kfunc_btf_id) 7140 { 7141 enum btf_kfunc_hook hook; 7142 7143 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7144 return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id); 7145 } 7146 7147 /* This function must be invoked only from initcalls/module init functions */ 7148 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7149 const struct btf_kfunc_id_set *kset) 7150 { 7151 enum btf_kfunc_hook hook; 7152 struct btf *btf; 7153 int ret; 7154 7155 btf = btf_get_module_btf(kset->owner); 7156 if (!btf) { 7157 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7158 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7159 return -ENOENT; 7160 } 7161 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7162 pr_err("missing module BTF, cannot register kfuncs\n"); 7163 return -ENOENT; 7164 } 7165 return 0; 7166 } 7167 if (IS_ERR(btf)) 7168 return PTR_ERR(btf); 7169 7170 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7171 ret = btf_populate_kfunc_set(btf, hook, kset); 7172 btf_put(btf); 7173 return ret; 7174 } 7175 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7176 7177 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7178 { 7179 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7180 struct btf_id_dtor_kfunc *dtor; 7181 7182 if (!tab) 7183 return -ENOENT; 7184 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7185 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7186 */ 7187 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7188 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7189 if (!dtor) 7190 return -ENOENT; 7191 return dtor->kfunc_btf_id; 7192 } 7193 7194 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7195 { 7196 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7197 const struct btf_param *args; 7198 s32 dtor_btf_id; 7199 u32 nr_args, i; 7200 7201 for (i = 0; i < cnt; i++) { 7202 dtor_btf_id = dtors[i].kfunc_btf_id; 7203 7204 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7205 if (!dtor_func || !btf_type_is_func(dtor_func)) 7206 return -EINVAL; 7207 7208 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7209 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7210 return -EINVAL; 7211 7212 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7213 t = btf_type_by_id(btf, dtor_func_proto->type); 7214 if (!t || !btf_type_is_void(t)) 7215 return -EINVAL; 7216 7217 nr_args = btf_type_vlen(dtor_func_proto); 7218 if (nr_args != 1) 7219 return -EINVAL; 7220 args = btf_params(dtor_func_proto); 7221 t = btf_type_by_id(btf, args[0].type); 7222 /* Allow any pointer type, as width on targets Linux supports 7223 * will be same for all pointer types (i.e. sizeof(void *)) 7224 */ 7225 if (!t || !btf_type_is_ptr(t)) 7226 return -EINVAL; 7227 } 7228 return 0; 7229 } 7230 7231 /* This function must be invoked only from initcalls/module init functions */ 7232 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7233 struct module *owner) 7234 { 7235 struct btf_id_dtor_kfunc_tab *tab; 7236 struct btf *btf; 7237 u32 tab_cnt; 7238 int ret; 7239 7240 btf = btf_get_module_btf(owner); 7241 if (!btf) { 7242 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7243 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7244 return -ENOENT; 7245 } 7246 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7247 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7248 return -ENOENT; 7249 } 7250 return 0; 7251 } 7252 if (IS_ERR(btf)) 7253 return PTR_ERR(btf); 7254 7255 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7256 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7257 ret = -E2BIG; 7258 goto end; 7259 } 7260 7261 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7262 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7263 if (ret < 0) 7264 goto end; 7265 7266 tab = btf->dtor_kfunc_tab; 7267 /* Only one call allowed for modules */ 7268 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7269 ret = -EINVAL; 7270 goto end; 7271 } 7272 7273 tab_cnt = tab ? tab->cnt : 0; 7274 if (tab_cnt > U32_MAX - add_cnt) { 7275 ret = -EOVERFLOW; 7276 goto end; 7277 } 7278 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7279 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7280 ret = -E2BIG; 7281 goto end; 7282 } 7283 7284 tab = krealloc(btf->dtor_kfunc_tab, 7285 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 7286 GFP_KERNEL | __GFP_NOWARN); 7287 if (!tab) { 7288 ret = -ENOMEM; 7289 goto end; 7290 } 7291 7292 if (!btf->dtor_kfunc_tab) 7293 tab->cnt = 0; 7294 btf->dtor_kfunc_tab = tab; 7295 7296 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 7297 tab->cnt += add_cnt; 7298 7299 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 7300 7301 return 0; 7302 end: 7303 btf_free_dtor_kfunc_tab(btf); 7304 btf_put(btf); 7305 return ret; 7306 } 7307 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 7308 7309 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 7310 7311 static 7312 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 7313 const struct btf *targ_btf, __u32 targ_id, 7314 int level) 7315 { 7316 const struct btf_type *local_type, *targ_type; 7317 int depth = 32; /* max recursion depth */ 7318 7319 /* caller made sure that names match (ignoring flavor suffix) */ 7320 local_type = btf_type_by_id(local_btf, local_id); 7321 targ_type = btf_type_by_id(targ_btf, targ_id); 7322 if (btf_kind(local_type) != btf_kind(targ_type)) 7323 return 0; 7324 7325 recur: 7326 depth--; 7327 if (depth < 0) 7328 return -EINVAL; 7329 7330 local_type = btf_type_skip_modifiers(local_btf, local_id, &local_id); 7331 targ_type = btf_type_skip_modifiers(targ_btf, targ_id, &targ_id); 7332 if (!local_type || !targ_type) 7333 return -EINVAL; 7334 7335 if (btf_kind(local_type) != btf_kind(targ_type)) 7336 return 0; 7337 7338 switch (btf_kind(local_type)) { 7339 case BTF_KIND_UNKN: 7340 case BTF_KIND_STRUCT: 7341 case BTF_KIND_UNION: 7342 case BTF_KIND_ENUM: 7343 case BTF_KIND_FWD: 7344 return 1; 7345 case BTF_KIND_INT: 7346 /* just reject deprecated bitfield-like integers; all other 7347 * integers are by default compatible between each other 7348 */ 7349 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 7350 case BTF_KIND_PTR: 7351 local_id = local_type->type; 7352 targ_id = targ_type->type; 7353 goto recur; 7354 case BTF_KIND_ARRAY: 7355 local_id = btf_array(local_type)->type; 7356 targ_id = btf_array(targ_type)->type; 7357 goto recur; 7358 case BTF_KIND_FUNC_PROTO: { 7359 struct btf_param *local_p = btf_params(local_type); 7360 struct btf_param *targ_p = btf_params(targ_type); 7361 __u16 local_vlen = btf_vlen(local_type); 7362 __u16 targ_vlen = btf_vlen(targ_type); 7363 int i, err; 7364 7365 if (local_vlen != targ_vlen) 7366 return 0; 7367 7368 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 7369 if (level <= 0) 7370 return -EINVAL; 7371 7372 btf_type_skip_modifiers(local_btf, local_p->type, &local_id); 7373 btf_type_skip_modifiers(targ_btf, targ_p->type, &targ_id); 7374 err = __bpf_core_types_are_compat(local_btf, local_id, 7375 targ_btf, targ_id, 7376 level - 1); 7377 if (err <= 0) 7378 return err; 7379 } 7380 7381 /* tail recurse for return type check */ 7382 btf_type_skip_modifiers(local_btf, local_type->type, &local_id); 7383 btf_type_skip_modifiers(targ_btf, targ_type->type, &targ_id); 7384 goto recur; 7385 } 7386 default: 7387 return 0; 7388 } 7389 } 7390 7391 /* Check local and target types for compatibility. This check is used for 7392 * type-based CO-RE relocations and follow slightly different rules than 7393 * field-based relocations. This function assumes that root types were already 7394 * checked for name match. Beyond that initial root-level name check, names 7395 * are completely ignored. Compatibility rules are as follows: 7396 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 7397 * kind should match for local and target types (i.e., STRUCT is not 7398 * compatible with UNION); 7399 * - for ENUMs, the size is ignored; 7400 * - for INT, size and signedness are ignored; 7401 * - for ARRAY, dimensionality is ignored, element types are checked for 7402 * compatibility recursively; 7403 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 7404 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 7405 * - FUNC_PROTOs are compatible if they have compatible signature: same 7406 * number of input args and compatible return and argument types. 7407 * These rules are not set in stone and probably will be adjusted as we get 7408 * more experience with using BPF CO-RE relocations. 7409 */ 7410 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 7411 const struct btf *targ_btf, __u32 targ_id) 7412 { 7413 return __bpf_core_types_are_compat(local_btf, local_id, 7414 targ_btf, targ_id, 7415 MAX_TYPES_ARE_COMPAT_DEPTH); 7416 } 7417 7418 static bool bpf_core_is_flavor_sep(const char *s) 7419 { 7420 /* check X___Y name pattern, where X and Y are not underscores */ 7421 return s[0] != '_' && /* X */ 7422 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 7423 s[4] != '_'; /* Y */ 7424 } 7425 7426 size_t bpf_core_essential_name_len(const char *name) 7427 { 7428 size_t n = strlen(name); 7429 int i; 7430 7431 for (i = n - 5; i >= 0; i--) { 7432 if (bpf_core_is_flavor_sep(name + i)) 7433 return i + 1; 7434 } 7435 return n; 7436 } 7437 7438 struct bpf_cand_cache { 7439 const char *name; 7440 u32 name_len; 7441 u16 kind; 7442 u16 cnt; 7443 struct { 7444 const struct btf *btf; 7445 u32 id; 7446 } cands[]; 7447 }; 7448 7449 static void bpf_free_cands(struct bpf_cand_cache *cands) 7450 { 7451 if (!cands->cnt) 7452 /* empty candidate array was allocated on stack */ 7453 return; 7454 kfree(cands); 7455 } 7456 7457 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 7458 { 7459 kfree(cands->name); 7460 kfree(cands); 7461 } 7462 7463 #define VMLINUX_CAND_CACHE_SIZE 31 7464 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 7465 7466 #define MODULE_CAND_CACHE_SIZE 31 7467 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 7468 7469 static DEFINE_MUTEX(cand_cache_mutex); 7470 7471 static void __print_cand_cache(struct bpf_verifier_log *log, 7472 struct bpf_cand_cache **cache, 7473 int cache_size) 7474 { 7475 struct bpf_cand_cache *cc; 7476 int i, j; 7477 7478 for (i = 0; i < cache_size; i++) { 7479 cc = cache[i]; 7480 if (!cc) 7481 continue; 7482 bpf_log(log, "[%d]%s(", i, cc->name); 7483 for (j = 0; j < cc->cnt; j++) { 7484 bpf_log(log, "%d", cc->cands[j].id); 7485 if (j < cc->cnt - 1) 7486 bpf_log(log, " "); 7487 } 7488 bpf_log(log, "), "); 7489 } 7490 } 7491 7492 static void print_cand_cache(struct bpf_verifier_log *log) 7493 { 7494 mutex_lock(&cand_cache_mutex); 7495 bpf_log(log, "vmlinux_cand_cache:"); 7496 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7497 bpf_log(log, "\nmodule_cand_cache:"); 7498 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7499 bpf_log(log, "\n"); 7500 mutex_unlock(&cand_cache_mutex); 7501 } 7502 7503 static u32 hash_cands(struct bpf_cand_cache *cands) 7504 { 7505 return jhash(cands->name, cands->name_len, 0); 7506 } 7507 7508 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 7509 struct bpf_cand_cache **cache, 7510 int cache_size) 7511 { 7512 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 7513 7514 if (cc && cc->name_len == cands->name_len && 7515 !strncmp(cc->name, cands->name, cands->name_len)) 7516 return cc; 7517 return NULL; 7518 } 7519 7520 static size_t sizeof_cands(int cnt) 7521 { 7522 return offsetof(struct bpf_cand_cache, cands[cnt]); 7523 } 7524 7525 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 7526 struct bpf_cand_cache **cache, 7527 int cache_size) 7528 { 7529 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 7530 7531 if (*cc) { 7532 bpf_free_cands_from_cache(*cc); 7533 *cc = NULL; 7534 } 7535 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 7536 if (!new_cands) { 7537 bpf_free_cands(cands); 7538 return ERR_PTR(-ENOMEM); 7539 } 7540 /* strdup the name, since it will stay in cache. 7541 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 7542 */ 7543 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 7544 bpf_free_cands(cands); 7545 if (!new_cands->name) { 7546 kfree(new_cands); 7547 return ERR_PTR(-ENOMEM); 7548 } 7549 *cc = new_cands; 7550 return new_cands; 7551 } 7552 7553 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7554 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 7555 int cache_size) 7556 { 7557 struct bpf_cand_cache *cc; 7558 int i, j; 7559 7560 for (i = 0; i < cache_size; i++) { 7561 cc = cache[i]; 7562 if (!cc) 7563 continue; 7564 if (!btf) { 7565 /* when new module is loaded purge all of module_cand_cache, 7566 * since new module might have candidates with the name 7567 * that matches cached cands. 7568 */ 7569 bpf_free_cands_from_cache(cc); 7570 cache[i] = NULL; 7571 continue; 7572 } 7573 /* when module is unloaded purge cache entries 7574 * that match module's btf 7575 */ 7576 for (j = 0; j < cc->cnt; j++) 7577 if (cc->cands[j].btf == btf) { 7578 bpf_free_cands_from_cache(cc); 7579 cache[i] = NULL; 7580 break; 7581 } 7582 } 7583 7584 } 7585 7586 static void purge_cand_cache(struct btf *btf) 7587 { 7588 mutex_lock(&cand_cache_mutex); 7589 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7590 mutex_unlock(&cand_cache_mutex); 7591 } 7592 #endif 7593 7594 static struct bpf_cand_cache * 7595 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 7596 int targ_start_id) 7597 { 7598 struct bpf_cand_cache *new_cands; 7599 const struct btf_type *t; 7600 const char *targ_name; 7601 size_t targ_essent_len; 7602 int n, i; 7603 7604 n = btf_nr_types(targ_btf); 7605 for (i = targ_start_id; i < n; i++) { 7606 t = btf_type_by_id(targ_btf, i); 7607 if (btf_kind(t) != cands->kind) 7608 continue; 7609 7610 targ_name = btf_name_by_offset(targ_btf, t->name_off); 7611 if (!targ_name) 7612 continue; 7613 7614 /* the resched point is before strncmp to make sure that search 7615 * for non-existing name will have a chance to schedule(). 7616 */ 7617 cond_resched(); 7618 7619 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 7620 continue; 7621 7622 targ_essent_len = bpf_core_essential_name_len(targ_name); 7623 if (targ_essent_len != cands->name_len) 7624 continue; 7625 7626 /* most of the time there is only one candidate for a given kind+name pair */ 7627 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 7628 if (!new_cands) { 7629 bpf_free_cands(cands); 7630 return ERR_PTR(-ENOMEM); 7631 } 7632 7633 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 7634 bpf_free_cands(cands); 7635 cands = new_cands; 7636 cands->cands[cands->cnt].btf = targ_btf; 7637 cands->cands[cands->cnt].id = i; 7638 cands->cnt++; 7639 } 7640 return cands; 7641 } 7642 7643 static struct bpf_cand_cache * 7644 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 7645 { 7646 struct bpf_cand_cache *cands, *cc, local_cand = {}; 7647 const struct btf *local_btf = ctx->btf; 7648 const struct btf_type *local_type; 7649 const struct btf *main_btf; 7650 size_t local_essent_len; 7651 struct btf *mod_btf; 7652 const char *name; 7653 int id; 7654 7655 main_btf = bpf_get_btf_vmlinux(); 7656 if (IS_ERR(main_btf)) 7657 return ERR_CAST(main_btf); 7658 if (!main_btf) 7659 return ERR_PTR(-EINVAL); 7660 7661 local_type = btf_type_by_id(local_btf, local_type_id); 7662 if (!local_type) 7663 return ERR_PTR(-EINVAL); 7664 7665 name = btf_name_by_offset(local_btf, local_type->name_off); 7666 if (str_is_empty(name)) 7667 return ERR_PTR(-EINVAL); 7668 local_essent_len = bpf_core_essential_name_len(name); 7669 7670 cands = &local_cand; 7671 cands->name = name; 7672 cands->kind = btf_kind(local_type); 7673 cands->name_len = local_essent_len; 7674 7675 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7676 /* cands is a pointer to stack here */ 7677 if (cc) { 7678 if (cc->cnt) 7679 return cc; 7680 goto check_modules; 7681 } 7682 7683 /* Attempt to find target candidates in vmlinux BTF first */ 7684 cands = bpf_core_add_cands(cands, main_btf, 1); 7685 if (IS_ERR(cands)) 7686 return ERR_CAST(cands); 7687 7688 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 7689 7690 /* populate cache even when cands->cnt == 0 */ 7691 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7692 if (IS_ERR(cc)) 7693 return ERR_CAST(cc); 7694 7695 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 7696 if (cc->cnt) 7697 return cc; 7698 7699 check_modules: 7700 /* cands is a pointer to stack here and cands->cnt == 0 */ 7701 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7702 if (cc) 7703 /* if cache has it return it even if cc->cnt == 0 */ 7704 return cc; 7705 7706 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 7707 spin_lock_bh(&btf_idr_lock); 7708 idr_for_each_entry(&btf_idr, mod_btf, id) { 7709 if (!btf_is_module(mod_btf)) 7710 continue; 7711 /* linear search could be slow hence unlock/lock 7712 * the IDR to avoiding holding it for too long 7713 */ 7714 btf_get(mod_btf); 7715 spin_unlock_bh(&btf_idr_lock); 7716 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 7717 if (IS_ERR(cands)) { 7718 btf_put(mod_btf); 7719 return ERR_CAST(cands); 7720 } 7721 spin_lock_bh(&btf_idr_lock); 7722 btf_put(mod_btf); 7723 } 7724 spin_unlock_bh(&btf_idr_lock); 7725 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 7726 * or pointer to stack if cands->cnd == 0. 7727 * Copy it into the cache even when cands->cnt == 0 and 7728 * return the result. 7729 */ 7730 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7731 } 7732 7733 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 7734 int relo_idx, void *insn) 7735 { 7736 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 7737 struct bpf_core_cand_list cands = {}; 7738 struct bpf_core_relo_res targ_res; 7739 struct bpf_core_spec *specs; 7740 int err; 7741 7742 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 7743 * into arrays of btf_ids of struct fields and array indices. 7744 */ 7745 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 7746 if (!specs) 7747 return -ENOMEM; 7748 7749 if (need_cands) { 7750 struct bpf_cand_cache *cc; 7751 int i; 7752 7753 mutex_lock(&cand_cache_mutex); 7754 cc = bpf_core_find_cands(ctx, relo->type_id); 7755 if (IS_ERR(cc)) { 7756 bpf_log(ctx->log, "target candidate search failed for %d\n", 7757 relo->type_id); 7758 err = PTR_ERR(cc); 7759 goto out; 7760 } 7761 if (cc->cnt) { 7762 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 7763 if (!cands.cands) { 7764 err = -ENOMEM; 7765 goto out; 7766 } 7767 } 7768 for (i = 0; i < cc->cnt; i++) { 7769 bpf_log(ctx->log, 7770 "CO-RE relocating %s %s: found target candidate [%d]\n", 7771 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 7772 cands.cands[i].btf = cc->cands[i].btf; 7773 cands.cands[i].id = cc->cands[i].id; 7774 } 7775 cands.len = cc->cnt; 7776 /* cand_cache_mutex needs to span the cache lookup and 7777 * copy of btf pointer into bpf_core_cand_list, 7778 * since module can be unloaded while bpf_core_calc_relo_insn 7779 * is working with module's btf. 7780 */ 7781 } 7782 7783 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 7784 &targ_res); 7785 if (err) 7786 goto out; 7787 7788 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 7789 &targ_res); 7790 7791 out: 7792 kfree(specs); 7793 if (need_cands) { 7794 kfree(cands.cands); 7795 mutex_unlock(&cand_cache_mutex); 7796 if (ctx->log->level & BPF_LOG_LEVEL2) 7797 print_cand_cache(ctx->log); 7798 } 7799 return err; 7800 } 7801