1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 278 }; 279 280 enum verifier_phase { 281 CHECK_META, 282 CHECK_TYPE, 283 }; 284 285 struct resolve_vertex { 286 const struct btf_type *t; 287 u32 type_id; 288 u16 next_member; 289 }; 290 291 enum visit_state { 292 NOT_VISITED, 293 VISITED, 294 RESOLVED, 295 }; 296 297 enum resolve_mode { 298 RESOLVE_TBD, /* To Be Determined */ 299 RESOLVE_PTR, /* Resolving for Pointer */ 300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 301 * or array 302 */ 303 }; 304 305 #define MAX_RESOLVE_DEPTH 32 306 307 struct btf_sec_info { 308 u32 off; 309 u32 len; 310 }; 311 312 struct btf_verifier_env { 313 struct btf *btf; 314 u8 *visit_states; 315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 316 struct bpf_verifier_log log; 317 u32 log_type_id; 318 u32 top_stack; 319 enum verifier_phase phase; 320 enum resolve_mode resolve_mode; 321 }; 322 323 static const char * const btf_kind_str[NR_BTF_KINDS] = { 324 [BTF_KIND_UNKN] = "UNKNOWN", 325 [BTF_KIND_INT] = "INT", 326 [BTF_KIND_PTR] = "PTR", 327 [BTF_KIND_ARRAY] = "ARRAY", 328 [BTF_KIND_STRUCT] = "STRUCT", 329 [BTF_KIND_UNION] = "UNION", 330 [BTF_KIND_ENUM] = "ENUM", 331 [BTF_KIND_FWD] = "FWD", 332 [BTF_KIND_TYPEDEF] = "TYPEDEF", 333 [BTF_KIND_VOLATILE] = "VOLATILE", 334 [BTF_KIND_CONST] = "CONST", 335 [BTF_KIND_RESTRICT] = "RESTRICT", 336 [BTF_KIND_FUNC] = "FUNC", 337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 338 [BTF_KIND_VAR] = "VAR", 339 [BTF_KIND_DATASEC] = "DATASEC", 340 [BTF_KIND_FLOAT] = "FLOAT", 341 [BTF_KIND_DECL_TAG] = "DECL_TAG", 342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 343 [BTF_KIND_ENUM64] = "ENUM64", 344 }; 345 346 const char *btf_type_str(const struct btf_type *t) 347 { 348 return btf_kind_str[BTF_INFO_KIND(t->info)]; 349 } 350 351 /* Chunk size we use in safe copy of data to be shown. */ 352 #define BTF_SHOW_OBJ_SAFE_SIZE 32 353 354 /* 355 * This is the maximum size of a base type value (equivalent to a 356 * 128-bit int); if we are at the end of our safe buffer and have 357 * less than 16 bytes space we can't be assured of being able 358 * to copy the next type safely, so in such cases we will initiate 359 * a new copy. 360 */ 361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 362 363 /* Type name size */ 364 #define BTF_SHOW_NAME_SIZE 80 365 366 /* 367 * The suffix of a type that indicates it cannot alias another type when 368 * comparing BTF IDs for kfunc invocations. 369 */ 370 #define NOCAST_ALIAS_SUFFIX "___init" 371 372 /* 373 * Common data to all BTF show operations. Private show functions can add 374 * their own data to a structure containing a struct btf_show and consult it 375 * in the show callback. See btf_type_show() below. 376 * 377 * One challenge with showing nested data is we want to skip 0-valued 378 * data, but in order to figure out whether a nested object is all zeros 379 * we need to walk through it. As a result, we need to make two passes 380 * when handling structs, unions and arrays; the first path simply looks 381 * for nonzero data, while the second actually does the display. The first 382 * pass is signalled by show->state.depth_check being set, and if we 383 * encounter a non-zero value we set show->state.depth_to_show to 384 * the depth at which we encountered it. When we have completed the 385 * first pass, we will know if anything needs to be displayed if 386 * depth_to_show > depth. See btf_[struct,array]_show() for the 387 * implementation of this. 388 * 389 * Another problem is we want to ensure the data for display is safe to 390 * access. To support this, the anonymous "struct {} obj" tracks the data 391 * object and our safe copy of it. We copy portions of the data needed 392 * to the object "copy" buffer, but because its size is limited to 393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 394 * traverse larger objects for display. 395 * 396 * The various data type show functions all start with a call to 397 * btf_show_start_type() which returns a pointer to the safe copy 398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 399 * raw data itself). btf_show_obj_safe() is responsible for 400 * using copy_from_kernel_nofault() to update the safe data if necessary 401 * as we traverse the object's data. skbuff-like semantics are 402 * used: 403 * 404 * - obj.head points to the start of the toplevel object for display 405 * - obj.size is the size of the toplevel object 406 * - obj.data points to the current point in the original data at 407 * which our safe data starts. obj.data will advance as we copy 408 * portions of the data. 409 * 410 * In most cases a single copy will suffice, but larger data structures 411 * such as "struct task_struct" will require many copies. The logic in 412 * btf_show_obj_safe() handles the logic that determines if a new 413 * copy_from_kernel_nofault() is needed. 414 */ 415 struct btf_show { 416 u64 flags; 417 void *target; /* target of show operation (seq file, buffer) */ 418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 419 const struct btf *btf; 420 /* below are used during iteration */ 421 struct { 422 u8 depth; 423 u8 depth_to_show; 424 u8 depth_check; 425 u8 array_member:1, 426 array_terminated:1; 427 u16 array_encoding; 428 u32 type_id; 429 int status; /* non-zero for error */ 430 const struct btf_type *type; 431 const struct btf_member *member; 432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 433 } state; 434 struct { 435 u32 size; 436 void *head; 437 void *data; 438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 439 } obj; 440 }; 441 442 struct btf_kind_operations { 443 s32 (*check_meta)(struct btf_verifier_env *env, 444 const struct btf_type *t, 445 u32 meta_left); 446 int (*resolve)(struct btf_verifier_env *env, 447 const struct resolve_vertex *v); 448 int (*check_member)(struct btf_verifier_env *env, 449 const struct btf_type *struct_type, 450 const struct btf_member *member, 451 const struct btf_type *member_type); 452 int (*check_kflag_member)(struct btf_verifier_env *env, 453 const struct btf_type *struct_type, 454 const struct btf_member *member, 455 const struct btf_type *member_type); 456 void (*log_details)(struct btf_verifier_env *env, 457 const struct btf_type *t); 458 void (*show)(const struct btf *btf, const struct btf_type *t, 459 u32 type_id, void *data, u8 bits_offsets, 460 struct btf_show *show); 461 }; 462 463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 464 static struct btf_type btf_void; 465 466 static int btf_resolve(struct btf_verifier_env *env, 467 const struct btf_type *t, u32 type_id); 468 469 static int btf_func_check(struct btf_verifier_env *env, 470 const struct btf_type *t); 471 472 static bool btf_type_is_modifier(const struct btf_type *t) 473 { 474 /* Some of them is not strictly a C modifier 475 * but they are grouped into the same bucket 476 * for BTF concern: 477 * A type (t) that refers to another 478 * type through t->type AND its size cannot 479 * be determined without following the t->type. 480 * 481 * ptr does not fall into this bucket 482 * because its size is always sizeof(void *). 483 */ 484 switch (BTF_INFO_KIND(t->info)) { 485 case BTF_KIND_TYPEDEF: 486 case BTF_KIND_VOLATILE: 487 case BTF_KIND_CONST: 488 case BTF_KIND_RESTRICT: 489 case BTF_KIND_TYPE_TAG: 490 return true; 491 } 492 493 return false; 494 } 495 496 bool btf_type_is_void(const struct btf_type *t) 497 { 498 return t == &btf_void; 499 } 500 501 static bool btf_type_is_fwd(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 504 } 505 506 static bool btf_type_is_datasec(const struct btf_type *t) 507 { 508 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 509 } 510 511 static bool btf_type_is_decl_tag(const struct btf_type *t) 512 { 513 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 514 } 515 516 static bool btf_type_nosize(const struct btf_type *t) 517 { 518 return btf_type_is_void(t) || btf_type_is_fwd(t) || 519 btf_type_is_func(t) || btf_type_is_func_proto(t) || 520 btf_type_is_decl_tag(t); 521 } 522 523 static bool btf_type_nosize_or_null(const struct btf_type *t) 524 { 525 return !t || btf_type_nosize(t); 526 } 527 528 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 529 { 530 return btf_type_is_func(t) || btf_type_is_struct(t) || 531 btf_type_is_var(t) || btf_type_is_typedef(t); 532 } 533 534 bool btf_is_vmlinux(const struct btf *btf) 535 { 536 return btf->kernel_btf && !btf->base_btf; 537 } 538 539 u32 btf_nr_types(const struct btf *btf) 540 { 541 u32 total = 0; 542 543 while (btf) { 544 total += btf->nr_types; 545 btf = btf->base_btf; 546 } 547 548 return total; 549 } 550 551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 552 { 553 const struct btf_type *t; 554 const char *tname; 555 u32 i, total; 556 557 total = btf_nr_types(btf); 558 for (i = 1; i < total; i++) { 559 t = btf_type_by_id(btf, i); 560 if (BTF_INFO_KIND(t->info) != kind) 561 continue; 562 563 tname = btf_name_by_offset(btf, t->name_off); 564 if (!strcmp(tname, name)) 565 return i; 566 } 567 568 return -ENOENT; 569 } 570 571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 572 { 573 struct btf *btf; 574 s32 ret; 575 int id; 576 577 btf = bpf_get_btf_vmlinux(); 578 if (IS_ERR(btf)) 579 return PTR_ERR(btf); 580 if (!btf) 581 return -EINVAL; 582 583 ret = btf_find_by_name_kind(btf, name, kind); 584 /* ret is never zero, since btf_find_by_name_kind returns 585 * positive btf_id or negative error. 586 */ 587 if (ret > 0) { 588 btf_get(btf); 589 *btf_p = btf; 590 return ret; 591 } 592 593 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 594 spin_lock_bh(&btf_idr_lock); 595 idr_for_each_entry(&btf_idr, btf, id) { 596 if (!btf_is_module(btf)) 597 continue; 598 /* linear search could be slow hence unlock/lock 599 * the IDR to avoiding holding it for too long 600 */ 601 btf_get(btf); 602 spin_unlock_bh(&btf_idr_lock); 603 ret = btf_find_by_name_kind(btf, name, kind); 604 if (ret > 0) { 605 *btf_p = btf; 606 return ret; 607 } 608 btf_put(btf); 609 spin_lock_bh(&btf_idr_lock); 610 } 611 spin_unlock_bh(&btf_idr_lock); 612 return ret; 613 } 614 615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 616 u32 id, u32 *res_id) 617 { 618 const struct btf_type *t = btf_type_by_id(btf, id); 619 620 while (btf_type_is_modifier(t)) { 621 id = t->type; 622 t = btf_type_by_id(btf, t->type); 623 } 624 625 if (res_id) 626 *res_id = id; 627 628 return t; 629 } 630 631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 632 u32 id, u32 *res_id) 633 { 634 const struct btf_type *t; 635 636 t = btf_type_skip_modifiers(btf, id, NULL); 637 if (!btf_type_is_ptr(t)) 638 return NULL; 639 640 return btf_type_skip_modifiers(btf, t->type, res_id); 641 } 642 643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 644 u32 id, u32 *res_id) 645 { 646 const struct btf_type *ptype; 647 648 ptype = btf_type_resolve_ptr(btf, id, res_id); 649 if (ptype && btf_type_is_func_proto(ptype)) 650 return ptype; 651 652 return NULL; 653 } 654 655 /* Types that act only as a source, not sink or intermediate 656 * type when resolving. 657 */ 658 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 659 { 660 return btf_type_is_var(t) || 661 btf_type_is_decl_tag(t) || 662 btf_type_is_datasec(t); 663 } 664 665 /* What types need to be resolved? 666 * 667 * btf_type_is_modifier() is an obvious one. 668 * 669 * btf_type_is_struct() because its member refers to 670 * another type (through member->type). 671 * 672 * btf_type_is_var() because the variable refers to 673 * another type. btf_type_is_datasec() holds multiple 674 * btf_type_is_var() types that need resolving. 675 * 676 * btf_type_is_array() because its element (array->type) 677 * refers to another type. Array can be thought of a 678 * special case of struct while array just has the same 679 * member-type repeated by array->nelems of times. 680 */ 681 static bool btf_type_needs_resolve(const struct btf_type *t) 682 { 683 return btf_type_is_modifier(t) || 684 btf_type_is_ptr(t) || 685 btf_type_is_struct(t) || 686 btf_type_is_array(t) || 687 btf_type_is_var(t) || 688 btf_type_is_func(t) || 689 btf_type_is_decl_tag(t) || 690 btf_type_is_datasec(t); 691 } 692 693 /* t->size can be used */ 694 static bool btf_type_has_size(const struct btf_type *t) 695 { 696 switch (BTF_INFO_KIND(t->info)) { 697 case BTF_KIND_INT: 698 case BTF_KIND_STRUCT: 699 case BTF_KIND_UNION: 700 case BTF_KIND_ENUM: 701 case BTF_KIND_DATASEC: 702 case BTF_KIND_FLOAT: 703 case BTF_KIND_ENUM64: 704 return true; 705 } 706 707 return false; 708 } 709 710 static const char *btf_int_encoding_str(u8 encoding) 711 { 712 if (encoding == 0) 713 return "(none)"; 714 else if (encoding == BTF_INT_SIGNED) 715 return "SIGNED"; 716 else if (encoding == BTF_INT_CHAR) 717 return "CHAR"; 718 else if (encoding == BTF_INT_BOOL) 719 return "BOOL"; 720 else 721 return "UNKN"; 722 } 723 724 static u32 btf_type_int(const struct btf_type *t) 725 { 726 return *(u32 *)(t + 1); 727 } 728 729 static const struct btf_array *btf_type_array(const struct btf_type *t) 730 { 731 return (const struct btf_array *)(t + 1); 732 } 733 734 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 735 { 736 return (const struct btf_enum *)(t + 1); 737 } 738 739 static const struct btf_var *btf_type_var(const struct btf_type *t) 740 { 741 return (const struct btf_var *)(t + 1); 742 } 743 744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 745 { 746 return (const struct btf_decl_tag *)(t + 1); 747 } 748 749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 750 { 751 return (const struct btf_enum64 *)(t + 1); 752 } 753 754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 755 { 756 return kind_ops[BTF_INFO_KIND(t->info)]; 757 } 758 759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 760 { 761 if (!BTF_STR_OFFSET_VALID(offset)) 762 return false; 763 764 while (offset < btf->start_str_off) 765 btf = btf->base_btf; 766 767 offset -= btf->start_str_off; 768 return offset < btf->hdr.str_len; 769 } 770 771 static bool __btf_name_char_ok(char c, bool first) 772 { 773 if ((first ? !isalpha(c) : 774 !isalnum(c)) && 775 c != '_' && 776 c != '.') 777 return false; 778 return true; 779 } 780 781 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 782 { 783 while (offset < btf->start_str_off) 784 btf = btf->base_btf; 785 786 offset -= btf->start_str_off; 787 if (offset < btf->hdr.str_len) 788 return &btf->strings[offset]; 789 790 return NULL; 791 } 792 793 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 794 { 795 /* offset must be valid */ 796 const char *src = btf_str_by_offset(btf, offset); 797 const char *src_limit; 798 799 if (!__btf_name_char_ok(*src, true)) 800 return false; 801 802 /* set a limit on identifier length */ 803 src_limit = src + KSYM_NAME_LEN; 804 src++; 805 while (*src && src < src_limit) { 806 if (!__btf_name_char_ok(*src, false)) 807 return false; 808 src++; 809 } 810 811 return !*src; 812 } 813 814 /* Allow any printable character in DATASEC names */ 815 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 816 { 817 /* offset must be valid */ 818 const char *src = btf_str_by_offset(btf, offset); 819 const char *src_limit; 820 821 if (!*src) 822 return false; 823 824 /* set a limit on identifier length */ 825 src_limit = src + KSYM_NAME_LEN; 826 while (*src && src < src_limit) { 827 if (!isprint(*src)) 828 return false; 829 src++; 830 } 831 832 return !*src; 833 } 834 835 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 836 { 837 const char *name; 838 839 if (!offset) 840 return "(anon)"; 841 842 name = btf_str_by_offset(btf, offset); 843 return name ?: "(invalid-name-offset)"; 844 } 845 846 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 847 { 848 return btf_str_by_offset(btf, offset); 849 } 850 851 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 852 { 853 while (type_id < btf->start_id) 854 btf = btf->base_btf; 855 856 type_id -= btf->start_id; 857 if (type_id >= btf->nr_types) 858 return NULL; 859 return btf->types[type_id]; 860 } 861 EXPORT_SYMBOL_GPL(btf_type_by_id); 862 863 /* 864 * Regular int is not a bit field and it must be either 865 * u8/u16/u32/u64 or __int128. 866 */ 867 static bool btf_type_int_is_regular(const struct btf_type *t) 868 { 869 u8 nr_bits, nr_bytes; 870 u32 int_data; 871 872 int_data = btf_type_int(t); 873 nr_bits = BTF_INT_BITS(int_data); 874 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 875 if (BITS_PER_BYTE_MASKED(nr_bits) || 876 BTF_INT_OFFSET(int_data) || 877 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 878 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 879 nr_bytes != (2 * sizeof(u64)))) { 880 return false; 881 } 882 883 return true; 884 } 885 886 /* 887 * Check that given struct member is a regular int with expected 888 * offset and size. 889 */ 890 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 891 const struct btf_member *m, 892 u32 expected_offset, u32 expected_size) 893 { 894 const struct btf_type *t; 895 u32 id, int_data; 896 u8 nr_bits; 897 898 id = m->type; 899 t = btf_type_id_size(btf, &id, NULL); 900 if (!t || !btf_type_is_int(t)) 901 return false; 902 903 int_data = btf_type_int(t); 904 nr_bits = BTF_INT_BITS(int_data); 905 if (btf_type_kflag(s)) { 906 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 907 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 908 909 /* if kflag set, int should be a regular int and 910 * bit offset should be at byte boundary. 911 */ 912 return !bitfield_size && 913 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 914 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 915 } 916 917 if (BTF_INT_OFFSET(int_data) || 918 BITS_PER_BYTE_MASKED(m->offset) || 919 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 920 BITS_PER_BYTE_MASKED(nr_bits) || 921 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 922 return false; 923 924 return true; 925 } 926 927 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 928 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 929 u32 id) 930 { 931 const struct btf_type *t = btf_type_by_id(btf, id); 932 933 while (btf_type_is_modifier(t) && 934 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 935 t = btf_type_by_id(btf, t->type); 936 } 937 938 return t; 939 } 940 941 #define BTF_SHOW_MAX_ITER 10 942 943 #define BTF_KIND_BIT(kind) (1ULL << kind) 944 945 /* 946 * Populate show->state.name with type name information. 947 * Format of type name is 948 * 949 * [.member_name = ] (type_name) 950 */ 951 static const char *btf_show_name(struct btf_show *show) 952 { 953 /* BTF_MAX_ITER array suffixes "[]" */ 954 const char *array_suffixes = "[][][][][][][][][][]"; 955 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 956 /* BTF_MAX_ITER pointer suffixes "*" */ 957 const char *ptr_suffixes = "**********"; 958 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 959 const char *name = NULL, *prefix = "", *parens = ""; 960 const struct btf_member *m = show->state.member; 961 const struct btf_type *t; 962 const struct btf_array *array; 963 u32 id = show->state.type_id; 964 const char *member = NULL; 965 bool show_member = false; 966 u64 kinds = 0; 967 int i; 968 969 show->state.name[0] = '\0'; 970 971 /* 972 * Don't show type name if we're showing an array member; 973 * in that case we show the array type so don't need to repeat 974 * ourselves for each member. 975 */ 976 if (show->state.array_member) 977 return ""; 978 979 /* Retrieve member name, if any. */ 980 if (m) { 981 member = btf_name_by_offset(show->btf, m->name_off); 982 show_member = strlen(member) > 0; 983 id = m->type; 984 } 985 986 /* 987 * Start with type_id, as we have resolved the struct btf_type * 988 * via btf_modifier_show() past the parent typedef to the child 989 * struct, int etc it is defined as. In such cases, the type_id 990 * still represents the starting type while the struct btf_type * 991 * in our show->state points at the resolved type of the typedef. 992 */ 993 t = btf_type_by_id(show->btf, id); 994 if (!t) 995 return ""; 996 997 /* 998 * The goal here is to build up the right number of pointer and 999 * array suffixes while ensuring the type name for a typedef 1000 * is represented. Along the way we accumulate a list of 1001 * BTF kinds we have encountered, since these will inform later 1002 * display; for example, pointer types will not require an 1003 * opening "{" for struct, we will just display the pointer value. 1004 * 1005 * We also want to accumulate the right number of pointer or array 1006 * indices in the format string while iterating until we get to 1007 * the typedef/pointee/array member target type. 1008 * 1009 * We start by pointing at the end of pointer and array suffix 1010 * strings; as we accumulate pointers and arrays we move the pointer 1011 * or array string backwards so it will show the expected number of 1012 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1013 * and/or arrays and typedefs are supported as a precaution. 1014 * 1015 * We also want to get typedef name while proceeding to resolve 1016 * type it points to so that we can add parentheses if it is a 1017 * "typedef struct" etc. 1018 */ 1019 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1020 1021 switch (BTF_INFO_KIND(t->info)) { 1022 case BTF_KIND_TYPEDEF: 1023 if (!name) 1024 name = btf_name_by_offset(show->btf, 1025 t->name_off); 1026 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1027 id = t->type; 1028 break; 1029 case BTF_KIND_ARRAY: 1030 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1031 parens = "["; 1032 if (!t) 1033 return ""; 1034 array = btf_type_array(t); 1035 if (array_suffix > array_suffixes) 1036 array_suffix -= 2; 1037 id = array->type; 1038 break; 1039 case BTF_KIND_PTR: 1040 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1041 if (ptr_suffix > ptr_suffixes) 1042 ptr_suffix -= 1; 1043 id = t->type; 1044 break; 1045 default: 1046 id = 0; 1047 break; 1048 } 1049 if (!id) 1050 break; 1051 t = btf_type_skip_qualifiers(show->btf, id); 1052 } 1053 /* We may not be able to represent this type; bail to be safe */ 1054 if (i == BTF_SHOW_MAX_ITER) 1055 return ""; 1056 1057 if (!name) 1058 name = btf_name_by_offset(show->btf, t->name_off); 1059 1060 switch (BTF_INFO_KIND(t->info)) { 1061 case BTF_KIND_STRUCT: 1062 case BTF_KIND_UNION: 1063 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1064 "struct" : "union"; 1065 /* if it's an array of struct/union, parens is already set */ 1066 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1067 parens = "{"; 1068 break; 1069 case BTF_KIND_ENUM: 1070 case BTF_KIND_ENUM64: 1071 prefix = "enum"; 1072 break; 1073 default: 1074 break; 1075 } 1076 1077 /* pointer does not require parens */ 1078 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1079 parens = ""; 1080 /* typedef does not require struct/union/enum prefix */ 1081 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1082 prefix = ""; 1083 1084 if (!name) 1085 name = ""; 1086 1087 /* Even if we don't want type name info, we want parentheses etc */ 1088 if (show->flags & BTF_SHOW_NONAME) 1089 snprintf(show->state.name, sizeof(show->state.name), "%s", 1090 parens); 1091 else 1092 snprintf(show->state.name, sizeof(show->state.name), 1093 "%s%s%s(%s%s%s%s%s%s)%s", 1094 /* first 3 strings comprise ".member = " */ 1095 show_member ? "." : "", 1096 show_member ? member : "", 1097 show_member ? " = " : "", 1098 /* ...next is our prefix (struct, enum, etc) */ 1099 prefix, 1100 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1101 /* ...this is the type name itself */ 1102 name, 1103 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1104 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1105 array_suffix, parens); 1106 1107 return show->state.name; 1108 } 1109 1110 static const char *__btf_show_indent(struct btf_show *show) 1111 { 1112 const char *indents = " "; 1113 const char *indent = &indents[strlen(indents)]; 1114 1115 if ((indent - show->state.depth) >= indents) 1116 return indent - show->state.depth; 1117 return indents; 1118 } 1119 1120 static const char *btf_show_indent(struct btf_show *show) 1121 { 1122 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1123 } 1124 1125 static const char *btf_show_newline(struct btf_show *show) 1126 { 1127 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1128 } 1129 1130 static const char *btf_show_delim(struct btf_show *show) 1131 { 1132 if (show->state.depth == 0) 1133 return ""; 1134 1135 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1136 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1137 return "|"; 1138 1139 return ","; 1140 } 1141 1142 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1143 { 1144 va_list args; 1145 1146 if (!show->state.depth_check) { 1147 va_start(args, fmt); 1148 show->showfn(show, fmt, args); 1149 va_end(args); 1150 } 1151 } 1152 1153 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1154 * format specifiers to the format specifier passed in; these do the work of 1155 * adding indentation, delimiters etc while the caller simply has to specify 1156 * the type value(s) in the format specifier + value(s). 1157 */ 1158 #define btf_show_type_value(show, fmt, value) \ 1159 do { \ 1160 if ((value) != (__typeof__(value))0 || \ 1161 (show->flags & BTF_SHOW_ZERO) || \ 1162 show->state.depth == 0) { \ 1163 btf_show(show, "%s%s" fmt "%s%s", \ 1164 btf_show_indent(show), \ 1165 btf_show_name(show), \ 1166 value, btf_show_delim(show), \ 1167 btf_show_newline(show)); \ 1168 if (show->state.depth > show->state.depth_to_show) \ 1169 show->state.depth_to_show = show->state.depth; \ 1170 } \ 1171 } while (0) 1172 1173 #define btf_show_type_values(show, fmt, ...) \ 1174 do { \ 1175 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1176 btf_show_name(show), \ 1177 __VA_ARGS__, btf_show_delim(show), \ 1178 btf_show_newline(show)); \ 1179 if (show->state.depth > show->state.depth_to_show) \ 1180 show->state.depth_to_show = show->state.depth; \ 1181 } while (0) 1182 1183 /* How much is left to copy to safe buffer after @data? */ 1184 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1185 { 1186 return show->obj.head + show->obj.size - data; 1187 } 1188 1189 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1190 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1191 { 1192 return data >= show->obj.data && 1193 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1194 } 1195 1196 /* 1197 * If object pointed to by @data of @size falls within our safe buffer, return 1198 * the equivalent pointer to the same safe data. Assumes 1199 * copy_from_kernel_nofault() has already happened and our safe buffer is 1200 * populated. 1201 */ 1202 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1203 { 1204 if (btf_show_obj_is_safe(show, data, size)) 1205 return show->obj.safe + (data - show->obj.data); 1206 return NULL; 1207 } 1208 1209 /* 1210 * Return a safe-to-access version of data pointed to by @data. 1211 * We do this by copying the relevant amount of information 1212 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1213 * 1214 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1215 * safe copy is needed. 1216 * 1217 * Otherwise we need to determine if we have the required amount 1218 * of data (determined by the @data pointer and the size of the 1219 * largest base type we can encounter (represented by 1220 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1221 * that we will be able to print some of the current object, 1222 * and if more is needed a copy will be triggered. 1223 * Some objects such as structs will not fit into the buffer; 1224 * in such cases additional copies when we iterate over their 1225 * members may be needed. 1226 * 1227 * btf_show_obj_safe() is used to return a safe buffer for 1228 * btf_show_start_type(); this ensures that as we recurse into 1229 * nested types we always have safe data for the given type. 1230 * This approach is somewhat wasteful; it's possible for example 1231 * that when iterating over a large union we'll end up copying the 1232 * same data repeatedly, but the goal is safety not performance. 1233 * We use stack data as opposed to per-CPU buffers because the 1234 * iteration over a type can take some time, and preemption handling 1235 * would greatly complicate use of the safe buffer. 1236 */ 1237 static void *btf_show_obj_safe(struct btf_show *show, 1238 const struct btf_type *t, 1239 void *data) 1240 { 1241 const struct btf_type *rt; 1242 int size_left, size; 1243 void *safe = NULL; 1244 1245 if (show->flags & BTF_SHOW_UNSAFE) 1246 return data; 1247 1248 rt = btf_resolve_size(show->btf, t, &size); 1249 if (IS_ERR(rt)) { 1250 show->state.status = PTR_ERR(rt); 1251 return NULL; 1252 } 1253 1254 /* 1255 * Is this toplevel object? If so, set total object size and 1256 * initialize pointers. Otherwise check if we still fall within 1257 * our safe object data. 1258 */ 1259 if (show->state.depth == 0) { 1260 show->obj.size = size; 1261 show->obj.head = data; 1262 } else { 1263 /* 1264 * If the size of the current object is > our remaining 1265 * safe buffer we _may_ need to do a new copy. However 1266 * consider the case of a nested struct; it's size pushes 1267 * us over the safe buffer limit, but showing any individual 1268 * struct members does not. In such cases, we don't need 1269 * to initiate a fresh copy yet; however we definitely need 1270 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1271 * in our buffer, regardless of the current object size. 1272 * The logic here is that as we resolve types we will 1273 * hit a base type at some point, and we need to be sure 1274 * the next chunk of data is safely available to display 1275 * that type info safely. We cannot rely on the size of 1276 * the current object here because it may be much larger 1277 * than our current buffer (e.g. task_struct is 8k). 1278 * All we want to do here is ensure that we can print the 1279 * next basic type, which we can if either 1280 * - the current type size is within the safe buffer; or 1281 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1282 * the safe buffer. 1283 */ 1284 safe = __btf_show_obj_safe(show, data, 1285 min(size, 1286 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1287 } 1288 1289 /* 1290 * We need a new copy to our safe object, either because we haven't 1291 * yet copied and are initializing safe data, or because the data 1292 * we want falls outside the boundaries of the safe object. 1293 */ 1294 if (!safe) { 1295 size_left = btf_show_obj_size_left(show, data); 1296 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1297 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1298 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1299 data, size_left); 1300 if (!show->state.status) { 1301 show->obj.data = data; 1302 safe = show->obj.safe; 1303 } 1304 } 1305 1306 return safe; 1307 } 1308 1309 /* 1310 * Set the type we are starting to show and return a safe data pointer 1311 * to be used for showing the associated data. 1312 */ 1313 static void *btf_show_start_type(struct btf_show *show, 1314 const struct btf_type *t, 1315 u32 type_id, void *data) 1316 { 1317 show->state.type = t; 1318 show->state.type_id = type_id; 1319 show->state.name[0] = '\0'; 1320 1321 return btf_show_obj_safe(show, t, data); 1322 } 1323 1324 static void btf_show_end_type(struct btf_show *show) 1325 { 1326 show->state.type = NULL; 1327 show->state.type_id = 0; 1328 show->state.name[0] = '\0'; 1329 } 1330 1331 static void *btf_show_start_aggr_type(struct btf_show *show, 1332 const struct btf_type *t, 1333 u32 type_id, void *data) 1334 { 1335 void *safe_data = btf_show_start_type(show, t, type_id, data); 1336 1337 if (!safe_data) 1338 return safe_data; 1339 1340 btf_show(show, "%s%s%s", btf_show_indent(show), 1341 btf_show_name(show), 1342 btf_show_newline(show)); 1343 show->state.depth++; 1344 return safe_data; 1345 } 1346 1347 static void btf_show_end_aggr_type(struct btf_show *show, 1348 const char *suffix) 1349 { 1350 show->state.depth--; 1351 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1352 btf_show_delim(show), btf_show_newline(show)); 1353 btf_show_end_type(show); 1354 } 1355 1356 static void btf_show_start_member(struct btf_show *show, 1357 const struct btf_member *m) 1358 { 1359 show->state.member = m; 1360 } 1361 1362 static void btf_show_start_array_member(struct btf_show *show) 1363 { 1364 show->state.array_member = 1; 1365 btf_show_start_member(show, NULL); 1366 } 1367 1368 static void btf_show_end_member(struct btf_show *show) 1369 { 1370 show->state.member = NULL; 1371 } 1372 1373 static void btf_show_end_array_member(struct btf_show *show) 1374 { 1375 show->state.array_member = 0; 1376 btf_show_end_member(show); 1377 } 1378 1379 static void *btf_show_start_array_type(struct btf_show *show, 1380 const struct btf_type *t, 1381 u32 type_id, 1382 u16 array_encoding, 1383 void *data) 1384 { 1385 show->state.array_encoding = array_encoding; 1386 show->state.array_terminated = 0; 1387 return btf_show_start_aggr_type(show, t, type_id, data); 1388 } 1389 1390 static void btf_show_end_array_type(struct btf_show *show) 1391 { 1392 show->state.array_encoding = 0; 1393 show->state.array_terminated = 0; 1394 btf_show_end_aggr_type(show, "]"); 1395 } 1396 1397 static void *btf_show_start_struct_type(struct btf_show *show, 1398 const struct btf_type *t, 1399 u32 type_id, 1400 void *data) 1401 { 1402 return btf_show_start_aggr_type(show, t, type_id, data); 1403 } 1404 1405 static void btf_show_end_struct_type(struct btf_show *show) 1406 { 1407 btf_show_end_aggr_type(show, "}"); 1408 } 1409 1410 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1411 const char *fmt, ...) 1412 { 1413 va_list args; 1414 1415 va_start(args, fmt); 1416 bpf_verifier_vlog(log, fmt, args); 1417 va_end(args); 1418 } 1419 1420 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1421 const char *fmt, ...) 1422 { 1423 struct bpf_verifier_log *log = &env->log; 1424 va_list args; 1425 1426 if (!bpf_verifier_log_needed(log)) 1427 return; 1428 1429 va_start(args, fmt); 1430 bpf_verifier_vlog(log, fmt, args); 1431 va_end(args); 1432 } 1433 1434 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1435 const struct btf_type *t, 1436 bool log_details, 1437 const char *fmt, ...) 1438 { 1439 struct bpf_verifier_log *log = &env->log; 1440 struct btf *btf = env->btf; 1441 va_list args; 1442 1443 if (!bpf_verifier_log_needed(log)) 1444 return; 1445 1446 if (log->level == BPF_LOG_KERNEL) { 1447 /* btf verifier prints all types it is processing via 1448 * btf_verifier_log_type(..., fmt = NULL). 1449 * Skip those prints for in-kernel BTF verification. 1450 */ 1451 if (!fmt) 1452 return; 1453 1454 /* Skip logging when loading module BTF with mismatches permitted */ 1455 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1456 return; 1457 } 1458 1459 __btf_verifier_log(log, "[%u] %s %s%s", 1460 env->log_type_id, 1461 btf_type_str(t), 1462 __btf_name_by_offset(btf, t->name_off), 1463 log_details ? " " : ""); 1464 1465 if (log_details) 1466 btf_type_ops(t)->log_details(env, t); 1467 1468 if (fmt && *fmt) { 1469 __btf_verifier_log(log, " "); 1470 va_start(args, fmt); 1471 bpf_verifier_vlog(log, fmt, args); 1472 va_end(args); 1473 } 1474 1475 __btf_verifier_log(log, "\n"); 1476 } 1477 1478 #define btf_verifier_log_type(env, t, ...) \ 1479 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1480 #define btf_verifier_log_basic(env, t, ...) \ 1481 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1482 1483 __printf(4, 5) 1484 static void btf_verifier_log_member(struct btf_verifier_env *env, 1485 const struct btf_type *struct_type, 1486 const struct btf_member *member, 1487 const char *fmt, ...) 1488 { 1489 struct bpf_verifier_log *log = &env->log; 1490 struct btf *btf = env->btf; 1491 va_list args; 1492 1493 if (!bpf_verifier_log_needed(log)) 1494 return; 1495 1496 if (log->level == BPF_LOG_KERNEL) { 1497 if (!fmt) 1498 return; 1499 1500 /* Skip logging when loading module BTF with mismatches permitted */ 1501 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1502 return; 1503 } 1504 1505 /* The CHECK_META phase already did a btf dump. 1506 * 1507 * If member is logged again, it must hit an error in 1508 * parsing this member. It is useful to print out which 1509 * struct this member belongs to. 1510 */ 1511 if (env->phase != CHECK_META) 1512 btf_verifier_log_type(env, struct_type, NULL); 1513 1514 if (btf_type_kflag(struct_type)) 1515 __btf_verifier_log(log, 1516 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1517 __btf_name_by_offset(btf, member->name_off), 1518 member->type, 1519 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1520 BTF_MEMBER_BIT_OFFSET(member->offset)); 1521 else 1522 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1523 __btf_name_by_offset(btf, member->name_off), 1524 member->type, member->offset); 1525 1526 if (fmt && *fmt) { 1527 __btf_verifier_log(log, " "); 1528 va_start(args, fmt); 1529 bpf_verifier_vlog(log, fmt, args); 1530 va_end(args); 1531 } 1532 1533 __btf_verifier_log(log, "\n"); 1534 } 1535 1536 __printf(4, 5) 1537 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1538 const struct btf_type *datasec_type, 1539 const struct btf_var_secinfo *vsi, 1540 const char *fmt, ...) 1541 { 1542 struct bpf_verifier_log *log = &env->log; 1543 va_list args; 1544 1545 if (!bpf_verifier_log_needed(log)) 1546 return; 1547 if (log->level == BPF_LOG_KERNEL && !fmt) 1548 return; 1549 if (env->phase != CHECK_META) 1550 btf_verifier_log_type(env, datasec_type, NULL); 1551 1552 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1553 vsi->type, vsi->offset, vsi->size); 1554 if (fmt && *fmt) { 1555 __btf_verifier_log(log, " "); 1556 va_start(args, fmt); 1557 bpf_verifier_vlog(log, fmt, args); 1558 va_end(args); 1559 } 1560 1561 __btf_verifier_log(log, "\n"); 1562 } 1563 1564 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1565 u32 btf_data_size) 1566 { 1567 struct bpf_verifier_log *log = &env->log; 1568 const struct btf *btf = env->btf; 1569 const struct btf_header *hdr; 1570 1571 if (!bpf_verifier_log_needed(log)) 1572 return; 1573 1574 if (log->level == BPF_LOG_KERNEL) 1575 return; 1576 hdr = &btf->hdr; 1577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1578 __btf_verifier_log(log, "version: %u\n", hdr->version); 1579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1586 } 1587 1588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1589 { 1590 struct btf *btf = env->btf; 1591 1592 if (btf->types_size == btf->nr_types) { 1593 /* Expand 'types' array */ 1594 1595 struct btf_type **new_types; 1596 u32 expand_by, new_size; 1597 1598 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1599 btf_verifier_log(env, "Exceeded max num of types"); 1600 return -E2BIG; 1601 } 1602 1603 expand_by = max_t(u32, btf->types_size >> 2, 16); 1604 new_size = min_t(u32, BTF_MAX_TYPE, 1605 btf->types_size + expand_by); 1606 1607 new_types = kvcalloc(new_size, sizeof(*new_types), 1608 GFP_KERNEL | __GFP_NOWARN); 1609 if (!new_types) 1610 return -ENOMEM; 1611 1612 if (btf->nr_types == 0) { 1613 if (!btf->base_btf) { 1614 /* lazily init VOID type */ 1615 new_types[0] = &btf_void; 1616 btf->nr_types++; 1617 } 1618 } else { 1619 memcpy(new_types, btf->types, 1620 sizeof(*btf->types) * btf->nr_types); 1621 } 1622 1623 kvfree(btf->types); 1624 btf->types = new_types; 1625 btf->types_size = new_size; 1626 } 1627 1628 btf->types[btf->nr_types++] = t; 1629 1630 return 0; 1631 } 1632 1633 static int btf_alloc_id(struct btf *btf) 1634 { 1635 int id; 1636 1637 idr_preload(GFP_KERNEL); 1638 spin_lock_bh(&btf_idr_lock); 1639 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1640 if (id > 0) 1641 btf->id = id; 1642 spin_unlock_bh(&btf_idr_lock); 1643 idr_preload_end(); 1644 1645 if (WARN_ON_ONCE(!id)) 1646 return -ENOSPC; 1647 1648 return id > 0 ? 0 : id; 1649 } 1650 1651 static void btf_free_id(struct btf *btf) 1652 { 1653 unsigned long flags; 1654 1655 /* 1656 * In map-in-map, calling map_delete_elem() on outer 1657 * map will call bpf_map_put on the inner map. 1658 * It will then eventually call btf_free_id() 1659 * on the inner map. Some of the map_delete_elem() 1660 * implementation may have irq disabled, so 1661 * we need to use the _irqsave() version instead 1662 * of the _bh() version. 1663 */ 1664 spin_lock_irqsave(&btf_idr_lock, flags); 1665 idr_remove(&btf_idr, btf->id); 1666 spin_unlock_irqrestore(&btf_idr_lock, flags); 1667 } 1668 1669 static void btf_free_kfunc_set_tab(struct btf *btf) 1670 { 1671 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1672 int hook; 1673 1674 if (!tab) 1675 return; 1676 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1677 kfree(tab->sets[hook]); 1678 kfree(tab); 1679 btf->kfunc_set_tab = NULL; 1680 } 1681 1682 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1683 { 1684 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1685 1686 if (!tab) 1687 return; 1688 kfree(tab); 1689 btf->dtor_kfunc_tab = NULL; 1690 } 1691 1692 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1693 { 1694 int i; 1695 1696 if (!tab) 1697 return; 1698 for (i = 0; i < tab->cnt; i++) 1699 btf_record_free(tab->types[i].record); 1700 kfree(tab); 1701 } 1702 1703 static void btf_free_struct_meta_tab(struct btf *btf) 1704 { 1705 struct btf_struct_metas *tab = btf->struct_meta_tab; 1706 1707 btf_struct_metas_free(tab); 1708 btf->struct_meta_tab = NULL; 1709 } 1710 1711 static void btf_free_struct_ops_tab(struct btf *btf) 1712 { 1713 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1714 u32 i; 1715 1716 if (!tab) 1717 return; 1718 1719 for (i = 0; i < tab->cnt; i++) 1720 bpf_struct_ops_desc_release(&tab->ops[i]); 1721 1722 kfree(tab); 1723 btf->struct_ops_tab = NULL; 1724 } 1725 1726 static void btf_free(struct btf *btf) 1727 { 1728 btf_free_struct_meta_tab(btf); 1729 btf_free_dtor_kfunc_tab(btf); 1730 btf_free_kfunc_set_tab(btf); 1731 btf_free_struct_ops_tab(btf); 1732 kvfree(btf->types); 1733 kvfree(btf->resolved_sizes); 1734 kvfree(btf->resolved_ids); 1735 /* vmlinux does not allocate btf->data, it simply points it at 1736 * __start_BTF. 1737 */ 1738 if (!btf_is_vmlinux(btf)) 1739 kvfree(btf->data); 1740 kvfree(btf->base_id_map); 1741 kfree(btf); 1742 } 1743 1744 static void btf_free_rcu(struct rcu_head *rcu) 1745 { 1746 struct btf *btf = container_of(rcu, struct btf, rcu); 1747 1748 btf_free(btf); 1749 } 1750 1751 const char *btf_get_name(const struct btf *btf) 1752 { 1753 return btf->name; 1754 } 1755 1756 void btf_get(struct btf *btf) 1757 { 1758 refcount_inc(&btf->refcnt); 1759 } 1760 1761 void btf_put(struct btf *btf) 1762 { 1763 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1764 btf_free_id(btf); 1765 call_rcu(&btf->rcu, btf_free_rcu); 1766 } 1767 } 1768 1769 struct btf *btf_base_btf(const struct btf *btf) 1770 { 1771 return btf->base_btf; 1772 } 1773 1774 const struct btf_header *btf_header(const struct btf *btf) 1775 { 1776 return &btf->hdr; 1777 } 1778 1779 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1780 { 1781 btf->base_btf = (struct btf *)base_btf; 1782 btf->start_id = btf_nr_types(base_btf); 1783 btf->start_str_off = base_btf->hdr.str_len; 1784 } 1785 1786 static int env_resolve_init(struct btf_verifier_env *env) 1787 { 1788 struct btf *btf = env->btf; 1789 u32 nr_types = btf->nr_types; 1790 u32 *resolved_sizes = NULL; 1791 u32 *resolved_ids = NULL; 1792 u8 *visit_states = NULL; 1793 1794 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1795 GFP_KERNEL | __GFP_NOWARN); 1796 if (!resolved_sizes) 1797 goto nomem; 1798 1799 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1800 GFP_KERNEL | __GFP_NOWARN); 1801 if (!resolved_ids) 1802 goto nomem; 1803 1804 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1805 GFP_KERNEL | __GFP_NOWARN); 1806 if (!visit_states) 1807 goto nomem; 1808 1809 btf->resolved_sizes = resolved_sizes; 1810 btf->resolved_ids = resolved_ids; 1811 env->visit_states = visit_states; 1812 1813 return 0; 1814 1815 nomem: 1816 kvfree(resolved_sizes); 1817 kvfree(resolved_ids); 1818 kvfree(visit_states); 1819 return -ENOMEM; 1820 } 1821 1822 static void btf_verifier_env_free(struct btf_verifier_env *env) 1823 { 1824 kvfree(env->visit_states); 1825 kfree(env); 1826 } 1827 1828 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1829 const struct btf_type *next_type) 1830 { 1831 switch (env->resolve_mode) { 1832 case RESOLVE_TBD: 1833 /* int, enum or void is a sink */ 1834 return !btf_type_needs_resolve(next_type); 1835 case RESOLVE_PTR: 1836 /* int, enum, void, struct, array, func or func_proto is a sink 1837 * for ptr 1838 */ 1839 return !btf_type_is_modifier(next_type) && 1840 !btf_type_is_ptr(next_type); 1841 case RESOLVE_STRUCT_OR_ARRAY: 1842 /* int, enum, void, ptr, func or func_proto is a sink 1843 * for struct and array 1844 */ 1845 return !btf_type_is_modifier(next_type) && 1846 !btf_type_is_array(next_type) && 1847 !btf_type_is_struct(next_type); 1848 default: 1849 BUG(); 1850 } 1851 } 1852 1853 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1854 u32 type_id) 1855 { 1856 /* base BTF types should be resolved by now */ 1857 if (type_id < env->btf->start_id) 1858 return true; 1859 1860 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1861 } 1862 1863 static int env_stack_push(struct btf_verifier_env *env, 1864 const struct btf_type *t, u32 type_id) 1865 { 1866 const struct btf *btf = env->btf; 1867 struct resolve_vertex *v; 1868 1869 if (env->top_stack == MAX_RESOLVE_DEPTH) 1870 return -E2BIG; 1871 1872 if (type_id < btf->start_id 1873 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1874 return -EEXIST; 1875 1876 env->visit_states[type_id - btf->start_id] = VISITED; 1877 1878 v = &env->stack[env->top_stack++]; 1879 v->t = t; 1880 v->type_id = type_id; 1881 v->next_member = 0; 1882 1883 if (env->resolve_mode == RESOLVE_TBD) { 1884 if (btf_type_is_ptr(t)) 1885 env->resolve_mode = RESOLVE_PTR; 1886 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1887 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1888 } 1889 1890 return 0; 1891 } 1892 1893 static void env_stack_set_next_member(struct btf_verifier_env *env, 1894 u16 next_member) 1895 { 1896 env->stack[env->top_stack - 1].next_member = next_member; 1897 } 1898 1899 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1900 u32 resolved_type_id, 1901 u32 resolved_size) 1902 { 1903 u32 type_id = env->stack[--(env->top_stack)].type_id; 1904 struct btf *btf = env->btf; 1905 1906 type_id -= btf->start_id; /* adjust to local type id */ 1907 btf->resolved_sizes[type_id] = resolved_size; 1908 btf->resolved_ids[type_id] = resolved_type_id; 1909 env->visit_states[type_id] = RESOLVED; 1910 } 1911 1912 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1913 { 1914 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1915 } 1916 1917 /* Resolve the size of a passed-in "type" 1918 * 1919 * type: is an array (e.g. u32 array[x][y]) 1920 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1921 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1922 * corresponds to the return type. 1923 * *elem_type: u32 1924 * *elem_id: id of u32 1925 * *total_nelems: (x * y). Hence, individual elem size is 1926 * (*type_size / *total_nelems) 1927 * *type_id: id of type if it's changed within the function, 0 if not 1928 * 1929 * type: is not an array (e.g. const struct X) 1930 * return type: type "struct X" 1931 * *type_size: sizeof(struct X) 1932 * *elem_type: same as return type ("struct X") 1933 * *elem_id: 0 1934 * *total_nelems: 1 1935 * *type_id: id of type if it's changed within the function, 0 if not 1936 */ 1937 static const struct btf_type * 1938 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1939 u32 *type_size, const struct btf_type **elem_type, 1940 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1941 { 1942 const struct btf_type *array_type = NULL; 1943 const struct btf_array *array = NULL; 1944 u32 i, size, nelems = 1, id = 0; 1945 1946 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1947 switch (BTF_INFO_KIND(type->info)) { 1948 /* type->size can be used */ 1949 case BTF_KIND_INT: 1950 case BTF_KIND_STRUCT: 1951 case BTF_KIND_UNION: 1952 case BTF_KIND_ENUM: 1953 case BTF_KIND_FLOAT: 1954 case BTF_KIND_ENUM64: 1955 size = type->size; 1956 goto resolved; 1957 1958 case BTF_KIND_PTR: 1959 size = sizeof(void *); 1960 goto resolved; 1961 1962 /* Modifiers */ 1963 case BTF_KIND_TYPEDEF: 1964 case BTF_KIND_VOLATILE: 1965 case BTF_KIND_CONST: 1966 case BTF_KIND_RESTRICT: 1967 case BTF_KIND_TYPE_TAG: 1968 id = type->type; 1969 type = btf_type_by_id(btf, type->type); 1970 break; 1971 1972 case BTF_KIND_ARRAY: 1973 if (!array_type) 1974 array_type = type; 1975 array = btf_type_array(type); 1976 if (nelems && array->nelems > U32_MAX / nelems) 1977 return ERR_PTR(-EINVAL); 1978 nelems *= array->nelems; 1979 type = btf_type_by_id(btf, array->type); 1980 break; 1981 1982 /* type without size */ 1983 default: 1984 return ERR_PTR(-EINVAL); 1985 } 1986 } 1987 1988 return ERR_PTR(-EINVAL); 1989 1990 resolved: 1991 if (nelems && size > U32_MAX / nelems) 1992 return ERR_PTR(-EINVAL); 1993 1994 *type_size = nelems * size; 1995 if (total_nelems) 1996 *total_nelems = nelems; 1997 if (elem_type) 1998 *elem_type = type; 1999 if (elem_id) 2000 *elem_id = array ? array->type : 0; 2001 if (type_id && id) 2002 *type_id = id; 2003 2004 return array_type ? : type; 2005 } 2006 2007 const struct btf_type * 2008 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2009 u32 *type_size) 2010 { 2011 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2012 } 2013 2014 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2015 { 2016 while (type_id < btf->start_id) 2017 btf = btf->base_btf; 2018 2019 return btf->resolved_ids[type_id - btf->start_id]; 2020 } 2021 2022 /* The input param "type_id" must point to a needs_resolve type */ 2023 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2024 u32 *type_id) 2025 { 2026 *type_id = btf_resolved_type_id(btf, *type_id); 2027 return btf_type_by_id(btf, *type_id); 2028 } 2029 2030 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2031 { 2032 while (type_id < btf->start_id) 2033 btf = btf->base_btf; 2034 2035 return btf->resolved_sizes[type_id - btf->start_id]; 2036 } 2037 2038 const struct btf_type *btf_type_id_size(const struct btf *btf, 2039 u32 *type_id, u32 *ret_size) 2040 { 2041 const struct btf_type *size_type; 2042 u32 size_type_id = *type_id; 2043 u32 size = 0; 2044 2045 size_type = btf_type_by_id(btf, size_type_id); 2046 if (btf_type_nosize_or_null(size_type)) 2047 return NULL; 2048 2049 if (btf_type_has_size(size_type)) { 2050 size = size_type->size; 2051 } else if (btf_type_is_array(size_type)) { 2052 size = btf_resolved_type_size(btf, size_type_id); 2053 } else if (btf_type_is_ptr(size_type)) { 2054 size = sizeof(void *); 2055 } else { 2056 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2057 !btf_type_is_var(size_type))) 2058 return NULL; 2059 2060 size_type_id = btf_resolved_type_id(btf, size_type_id); 2061 size_type = btf_type_by_id(btf, size_type_id); 2062 if (btf_type_nosize_or_null(size_type)) 2063 return NULL; 2064 else if (btf_type_has_size(size_type)) 2065 size = size_type->size; 2066 else if (btf_type_is_array(size_type)) 2067 size = btf_resolved_type_size(btf, size_type_id); 2068 else if (btf_type_is_ptr(size_type)) 2069 size = sizeof(void *); 2070 else 2071 return NULL; 2072 } 2073 2074 *type_id = size_type_id; 2075 if (ret_size) 2076 *ret_size = size; 2077 2078 return size_type; 2079 } 2080 2081 static int btf_df_check_member(struct btf_verifier_env *env, 2082 const struct btf_type *struct_type, 2083 const struct btf_member *member, 2084 const struct btf_type *member_type) 2085 { 2086 btf_verifier_log_basic(env, struct_type, 2087 "Unsupported check_member"); 2088 return -EINVAL; 2089 } 2090 2091 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2092 const struct btf_type *struct_type, 2093 const struct btf_member *member, 2094 const struct btf_type *member_type) 2095 { 2096 btf_verifier_log_basic(env, struct_type, 2097 "Unsupported check_kflag_member"); 2098 return -EINVAL; 2099 } 2100 2101 /* Used for ptr, array struct/union and float type members. 2102 * int, enum and modifier types have their specific callback functions. 2103 */ 2104 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2105 const struct btf_type *struct_type, 2106 const struct btf_member *member, 2107 const struct btf_type *member_type) 2108 { 2109 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2110 btf_verifier_log_member(env, struct_type, member, 2111 "Invalid member bitfield_size"); 2112 return -EINVAL; 2113 } 2114 2115 /* bitfield size is 0, so member->offset represents bit offset only. 2116 * It is safe to call non kflag check_member variants. 2117 */ 2118 return btf_type_ops(member_type)->check_member(env, struct_type, 2119 member, 2120 member_type); 2121 } 2122 2123 static int btf_df_resolve(struct btf_verifier_env *env, 2124 const struct resolve_vertex *v) 2125 { 2126 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2127 return -EINVAL; 2128 } 2129 2130 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2131 u32 type_id, void *data, u8 bits_offsets, 2132 struct btf_show *show) 2133 { 2134 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2135 } 2136 2137 static int btf_int_check_member(struct btf_verifier_env *env, 2138 const struct btf_type *struct_type, 2139 const struct btf_member *member, 2140 const struct btf_type *member_type) 2141 { 2142 u32 int_data = btf_type_int(member_type); 2143 u32 struct_bits_off = member->offset; 2144 u32 struct_size = struct_type->size; 2145 u32 nr_copy_bits; 2146 u32 bytes_offset; 2147 2148 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2149 btf_verifier_log_member(env, struct_type, member, 2150 "bits_offset exceeds U32_MAX"); 2151 return -EINVAL; 2152 } 2153 2154 struct_bits_off += BTF_INT_OFFSET(int_data); 2155 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2156 nr_copy_bits = BTF_INT_BITS(int_data) + 2157 BITS_PER_BYTE_MASKED(struct_bits_off); 2158 2159 if (nr_copy_bits > BITS_PER_U128) { 2160 btf_verifier_log_member(env, struct_type, member, 2161 "nr_copy_bits exceeds 128"); 2162 return -EINVAL; 2163 } 2164 2165 if (struct_size < bytes_offset || 2166 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2167 btf_verifier_log_member(env, struct_type, member, 2168 "Member exceeds struct_size"); 2169 return -EINVAL; 2170 } 2171 2172 return 0; 2173 } 2174 2175 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2176 const struct btf_type *struct_type, 2177 const struct btf_member *member, 2178 const struct btf_type *member_type) 2179 { 2180 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2181 u32 int_data = btf_type_int(member_type); 2182 u32 struct_size = struct_type->size; 2183 u32 nr_copy_bits; 2184 2185 /* a regular int type is required for the kflag int member */ 2186 if (!btf_type_int_is_regular(member_type)) { 2187 btf_verifier_log_member(env, struct_type, member, 2188 "Invalid member base type"); 2189 return -EINVAL; 2190 } 2191 2192 /* check sanity of bitfield size */ 2193 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2194 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2195 nr_int_data_bits = BTF_INT_BITS(int_data); 2196 if (!nr_bits) { 2197 /* Not a bitfield member, member offset must be at byte 2198 * boundary. 2199 */ 2200 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2201 btf_verifier_log_member(env, struct_type, member, 2202 "Invalid member offset"); 2203 return -EINVAL; 2204 } 2205 2206 nr_bits = nr_int_data_bits; 2207 } else if (nr_bits > nr_int_data_bits) { 2208 btf_verifier_log_member(env, struct_type, member, 2209 "Invalid member bitfield_size"); 2210 return -EINVAL; 2211 } 2212 2213 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2214 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2215 if (nr_copy_bits > BITS_PER_U128) { 2216 btf_verifier_log_member(env, struct_type, member, 2217 "nr_copy_bits exceeds 128"); 2218 return -EINVAL; 2219 } 2220 2221 if (struct_size < bytes_offset || 2222 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2223 btf_verifier_log_member(env, struct_type, member, 2224 "Member exceeds struct_size"); 2225 return -EINVAL; 2226 } 2227 2228 return 0; 2229 } 2230 2231 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2232 const struct btf_type *t, 2233 u32 meta_left) 2234 { 2235 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2236 u16 encoding; 2237 2238 if (meta_left < meta_needed) { 2239 btf_verifier_log_basic(env, t, 2240 "meta_left:%u meta_needed:%u", 2241 meta_left, meta_needed); 2242 return -EINVAL; 2243 } 2244 2245 if (btf_type_vlen(t)) { 2246 btf_verifier_log_type(env, t, "vlen != 0"); 2247 return -EINVAL; 2248 } 2249 2250 if (btf_type_kflag(t)) { 2251 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2252 return -EINVAL; 2253 } 2254 2255 int_data = btf_type_int(t); 2256 if (int_data & ~BTF_INT_MASK) { 2257 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2258 int_data); 2259 return -EINVAL; 2260 } 2261 2262 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2263 2264 if (nr_bits > BITS_PER_U128) { 2265 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2266 BITS_PER_U128); 2267 return -EINVAL; 2268 } 2269 2270 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2271 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2272 return -EINVAL; 2273 } 2274 2275 /* 2276 * Only one of the encoding bits is allowed and it 2277 * should be sufficient for the pretty print purpose (i.e. decoding). 2278 * Multiple bits can be allowed later if it is found 2279 * to be insufficient. 2280 */ 2281 encoding = BTF_INT_ENCODING(int_data); 2282 if (encoding && 2283 encoding != BTF_INT_SIGNED && 2284 encoding != BTF_INT_CHAR && 2285 encoding != BTF_INT_BOOL) { 2286 btf_verifier_log_type(env, t, "Unsupported encoding"); 2287 return -ENOTSUPP; 2288 } 2289 2290 btf_verifier_log_type(env, t, NULL); 2291 2292 return meta_needed; 2293 } 2294 2295 static void btf_int_log(struct btf_verifier_env *env, 2296 const struct btf_type *t) 2297 { 2298 int int_data = btf_type_int(t); 2299 2300 btf_verifier_log(env, 2301 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2302 t->size, BTF_INT_OFFSET(int_data), 2303 BTF_INT_BITS(int_data), 2304 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2305 } 2306 2307 static void btf_int128_print(struct btf_show *show, void *data) 2308 { 2309 /* data points to a __int128 number. 2310 * Suppose 2311 * int128_num = *(__int128 *)data; 2312 * The below formulas shows what upper_num and lower_num represents: 2313 * upper_num = int128_num >> 64; 2314 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2315 */ 2316 u64 upper_num, lower_num; 2317 2318 #ifdef __BIG_ENDIAN_BITFIELD 2319 upper_num = *(u64 *)data; 2320 lower_num = *(u64 *)(data + 8); 2321 #else 2322 upper_num = *(u64 *)(data + 8); 2323 lower_num = *(u64 *)data; 2324 #endif 2325 if (upper_num == 0) 2326 btf_show_type_value(show, "0x%llx", lower_num); 2327 else 2328 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2329 lower_num); 2330 } 2331 2332 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2333 u16 right_shift_bits) 2334 { 2335 u64 upper_num, lower_num; 2336 2337 #ifdef __BIG_ENDIAN_BITFIELD 2338 upper_num = print_num[0]; 2339 lower_num = print_num[1]; 2340 #else 2341 upper_num = print_num[1]; 2342 lower_num = print_num[0]; 2343 #endif 2344 2345 /* shake out un-needed bits by shift/or operations */ 2346 if (left_shift_bits >= 64) { 2347 upper_num = lower_num << (left_shift_bits - 64); 2348 lower_num = 0; 2349 } else { 2350 upper_num = (upper_num << left_shift_bits) | 2351 (lower_num >> (64 - left_shift_bits)); 2352 lower_num = lower_num << left_shift_bits; 2353 } 2354 2355 if (right_shift_bits >= 64) { 2356 lower_num = upper_num >> (right_shift_bits - 64); 2357 upper_num = 0; 2358 } else { 2359 lower_num = (lower_num >> right_shift_bits) | 2360 (upper_num << (64 - right_shift_bits)); 2361 upper_num = upper_num >> right_shift_bits; 2362 } 2363 2364 #ifdef __BIG_ENDIAN_BITFIELD 2365 print_num[0] = upper_num; 2366 print_num[1] = lower_num; 2367 #else 2368 print_num[0] = lower_num; 2369 print_num[1] = upper_num; 2370 #endif 2371 } 2372 2373 static void btf_bitfield_show(void *data, u8 bits_offset, 2374 u8 nr_bits, struct btf_show *show) 2375 { 2376 u16 left_shift_bits, right_shift_bits; 2377 u8 nr_copy_bytes; 2378 u8 nr_copy_bits; 2379 u64 print_num[2] = {}; 2380 2381 nr_copy_bits = nr_bits + bits_offset; 2382 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2383 2384 memcpy(print_num, data, nr_copy_bytes); 2385 2386 #ifdef __BIG_ENDIAN_BITFIELD 2387 left_shift_bits = bits_offset; 2388 #else 2389 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2390 #endif 2391 right_shift_bits = BITS_PER_U128 - nr_bits; 2392 2393 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2394 btf_int128_print(show, print_num); 2395 } 2396 2397 2398 static void btf_int_bits_show(const struct btf *btf, 2399 const struct btf_type *t, 2400 void *data, u8 bits_offset, 2401 struct btf_show *show) 2402 { 2403 u32 int_data = btf_type_int(t); 2404 u8 nr_bits = BTF_INT_BITS(int_data); 2405 u8 total_bits_offset; 2406 2407 /* 2408 * bits_offset is at most 7. 2409 * BTF_INT_OFFSET() cannot exceed 128 bits. 2410 */ 2411 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2412 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2413 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2414 btf_bitfield_show(data, bits_offset, nr_bits, show); 2415 } 2416 2417 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2418 u32 type_id, void *data, u8 bits_offset, 2419 struct btf_show *show) 2420 { 2421 u32 int_data = btf_type_int(t); 2422 u8 encoding = BTF_INT_ENCODING(int_data); 2423 bool sign = encoding & BTF_INT_SIGNED; 2424 u8 nr_bits = BTF_INT_BITS(int_data); 2425 void *safe_data; 2426 2427 safe_data = btf_show_start_type(show, t, type_id, data); 2428 if (!safe_data) 2429 return; 2430 2431 if (bits_offset || BTF_INT_OFFSET(int_data) || 2432 BITS_PER_BYTE_MASKED(nr_bits)) { 2433 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2434 goto out; 2435 } 2436 2437 switch (nr_bits) { 2438 case 128: 2439 btf_int128_print(show, safe_data); 2440 break; 2441 case 64: 2442 if (sign) 2443 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2444 else 2445 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2446 break; 2447 case 32: 2448 if (sign) 2449 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2450 else 2451 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2452 break; 2453 case 16: 2454 if (sign) 2455 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2456 else 2457 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2458 break; 2459 case 8: 2460 if (show->state.array_encoding == BTF_INT_CHAR) { 2461 /* check for null terminator */ 2462 if (show->state.array_terminated) 2463 break; 2464 if (*(char *)data == '\0') { 2465 show->state.array_terminated = 1; 2466 break; 2467 } 2468 if (isprint(*(char *)data)) { 2469 btf_show_type_value(show, "'%c'", 2470 *(char *)safe_data); 2471 break; 2472 } 2473 } 2474 if (sign) 2475 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2476 else 2477 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2478 break; 2479 default: 2480 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2481 break; 2482 } 2483 out: 2484 btf_show_end_type(show); 2485 } 2486 2487 static const struct btf_kind_operations int_ops = { 2488 .check_meta = btf_int_check_meta, 2489 .resolve = btf_df_resolve, 2490 .check_member = btf_int_check_member, 2491 .check_kflag_member = btf_int_check_kflag_member, 2492 .log_details = btf_int_log, 2493 .show = btf_int_show, 2494 }; 2495 2496 static int btf_modifier_check_member(struct btf_verifier_env *env, 2497 const struct btf_type *struct_type, 2498 const struct btf_member *member, 2499 const struct btf_type *member_type) 2500 { 2501 const struct btf_type *resolved_type; 2502 u32 resolved_type_id = member->type; 2503 struct btf_member resolved_member; 2504 struct btf *btf = env->btf; 2505 2506 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2507 if (!resolved_type) { 2508 btf_verifier_log_member(env, struct_type, member, 2509 "Invalid member"); 2510 return -EINVAL; 2511 } 2512 2513 resolved_member = *member; 2514 resolved_member.type = resolved_type_id; 2515 2516 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2517 &resolved_member, 2518 resolved_type); 2519 } 2520 2521 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2522 const struct btf_type *struct_type, 2523 const struct btf_member *member, 2524 const struct btf_type *member_type) 2525 { 2526 const struct btf_type *resolved_type; 2527 u32 resolved_type_id = member->type; 2528 struct btf_member resolved_member; 2529 struct btf *btf = env->btf; 2530 2531 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2532 if (!resolved_type) { 2533 btf_verifier_log_member(env, struct_type, member, 2534 "Invalid member"); 2535 return -EINVAL; 2536 } 2537 2538 resolved_member = *member; 2539 resolved_member.type = resolved_type_id; 2540 2541 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2542 &resolved_member, 2543 resolved_type); 2544 } 2545 2546 static int btf_ptr_check_member(struct btf_verifier_env *env, 2547 const struct btf_type *struct_type, 2548 const struct btf_member *member, 2549 const struct btf_type *member_type) 2550 { 2551 u32 struct_size, struct_bits_off, bytes_offset; 2552 2553 struct_size = struct_type->size; 2554 struct_bits_off = member->offset; 2555 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2556 2557 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2558 btf_verifier_log_member(env, struct_type, member, 2559 "Member is not byte aligned"); 2560 return -EINVAL; 2561 } 2562 2563 if (struct_size - bytes_offset < sizeof(void *)) { 2564 btf_verifier_log_member(env, struct_type, member, 2565 "Member exceeds struct_size"); 2566 return -EINVAL; 2567 } 2568 2569 return 0; 2570 } 2571 2572 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2573 const struct btf_type *t, 2574 u32 meta_left) 2575 { 2576 const char *value; 2577 2578 if (btf_type_vlen(t)) { 2579 btf_verifier_log_type(env, t, "vlen != 0"); 2580 return -EINVAL; 2581 } 2582 2583 if (btf_type_kflag(t)) { 2584 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2585 return -EINVAL; 2586 } 2587 2588 if (!BTF_TYPE_ID_VALID(t->type)) { 2589 btf_verifier_log_type(env, t, "Invalid type_id"); 2590 return -EINVAL; 2591 } 2592 2593 /* typedef/type_tag type must have a valid name, and other ref types, 2594 * volatile, const, restrict, should have a null name. 2595 */ 2596 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2597 if (!t->name_off || 2598 !btf_name_valid_identifier(env->btf, t->name_off)) { 2599 btf_verifier_log_type(env, t, "Invalid name"); 2600 return -EINVAL; 2601 } 2602 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2603 value = btf_name_by_offset(env->btf, t->name_off); 2604 if (!value || !value[0]) { 2605 btf_verifier_log_type(env, t, "Invalid name"); 2606 return -EINVAL; 2607 } 2608 } else { 2609 if (t->name_off) { 2610 btf_verifier_log_type(env, t, "Invalid name"); 2611 return -EINVAL; 2612 } 2613 } 2614 2615 btf_verifier_log_type(env, t, NULL); 2616 2617 return 0; 2618 } 2619 2620 static int btf_modifier_resolve(struct btf_verifier_env *env, 2621 const struct resolve_vertex *v) 2622 { 2623 const struct btf_type *t = v->t; 2624 const struct btf_type *next_type; 2625 u32 next_type_id = t->type; 2626 struct btf *btf = env->btf; 2627 2628 next_type = btf_type_by_id(btf, next_type_id); 2629 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2630 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2631 return -EINVAL; 2632 } 2633 2634 if (!env_type_is_resolve_sink(env, next_type) && 2635 !env_type_is_resolved(env, next_type_id)) 2636 return env_stack_push(env, next_type, next_type_id); 2637 2638 /* Figure out the resolved next_type_id with size. 2639 * They will be stored in the current modifier's 2640 * resolved_ids and resolved_sizes such that it can 2641 * save us a few type-following when we use it later (e.g. in 2642 * pretty print). 2643 */ 2644 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2645 if (env_type_is_resolved(env, next_type_id)) 2646 next_type = btf_type_id_resolve(btf, &next_type_id); 2647 2648 /* "typedef void new_void", "const void"...etc */ 2649 if (!btf_type_is_void(next_type) && 2650 !btf_type_is_fwd(next_type) && 2651 !btf_type_is_func_proto(next_type)) { 2652 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2653 return -EINVAL; 2654 } 2655 } 2656 2657 env_stack_pop_resolved(env, next_type_id, 0); 2658 2659 return 0; 2660 } 2661 2662 static int btf_var_resolve(struct btf_verifier_env *env, 2663 const struct resolve_vertex *v) 2664 { 2665 const struct btf_type *next_type; 2666 const struct btf_type *t = v->t; 2667 u32 next_type_id = t->type; 2668 struct btf *btf = env->btf; 2669 2670 next_type = btf_type_by_id(btf, next_type_id); 2671 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2672 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2673 return -EINVAL; 2674 } 2675 2676 if (!env_type_is_resolve_sink(env, next_type) && 2677 !env_type_is_resolved(env, next_type_id)) 2678 return env_stack_push(env, next_type, next_type_id); 2679 2680 if (btf_type_is_modifier(next_type)) { 2681 const struct btf_type *resolved_type; 2682 u32 resolved_type_id; 2683 2684 resolved_type_id = next_type_id; 2685 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2686 2687 if (btf_type_is_ptr(resolved_type) && 2688 !env_type_is_resolve_sink(env, resolved_type) && 2689 !env_type_is_resolved(env, resolved_type_id)) 2690 return env_stack_push(env, resolved_type, 2691 resolved_type_id); 2692 } 2693 2694 /* We must resolve to something concrete at this point, no 2695 * forward types or similar that would resolve to size of 2696 * zero is allowed. 2697 */ 2698 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2699 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2700 return -EINVAL; 2701 } 2702 2703 env_stack_pop_resolved(env, next_type_id, 0); 2704 2705 return 0; 2706 } 2707 2708 static int btf_ptr_resolve(struct btf_verifier_env *env, 2709 const struct resolve_vertex *v) 2710 { 2711 const struct btf_type *next_type; 2712 const struct btf_type *t = v->t; 2713 u32 next_type_id = t->type; 2714 struct btf *btf = env->btf; 2715 2716 next_type = btf_type_by_id(btf, next_type_id); 2717 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2718 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2719 return -EINVAL; 2720 } 2721 2722 if (!env_type_is_resolve_sink(env, next_type) && 2723 !env_type_is_resolved(env, next_type_id)) 2724 return env_stack_push(env, next_type, next_type_id); 2725 2726 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2727 * the modifier may have stopped resolving when it was resolved 2728 * to a ptr (last-resolved-ptr). 2729 * 2730 * We now need to continue from the last-resolved-ptr to 2731 * ensure the last-resolved-ptr will not referring back to 2732 * the current ptr (t). 2733 */ 2734 if (btf_type_is_modifier(next_type)) { 2735 const struct btf_type *resolved_type; 2736 u32 resolved_type_id; 2737 2738 resolved_type_id = next_type_id; 2739 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2740 2741 if (btf_type_is_ptr(resolved_type) && 2742 !env_type_is_resolve_sink(env, resolved_type) && 2743 !env_type_is_resolved(env, resolved_type_id)) 2744 return env_stack_push(env, resolved_type, 2745 resolved_type_id); 2746 } 2747 2748 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2749 if (env_type_is_resolved(env, next_type_id)) 2750 next_type = btf_type_id_resolve(btf, &next_type_id); 2751 2752 if (!btf_type_is_void(next_type) && 2753 !btf_type_is_fwd(next_type) && 2754 !btf_type_is_func_proto(next_type)) { 2755 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2756 return -EINVAL; 2757 } 2758 } 2759 2760 env_stack_pop_resolved(env, next_type_id, 0); 2761 2762 return 0; 2763 } 2764 2765 static void btf_modifier_show(const struct btf *btf, 2766 const struct btf_type *t, 2767 u32 type_id, void *data, 2768 u8 bits_offset, struct btf_show *show) 2769 { 2770 if (btf->resolved_ids) 2771 t = btf_type_id_resolve(btf, &type_id); 2772 else 2773 t = btf_type_skip_modifiers(btf, type_id, NULL); 2774 2775 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2776 } 2777 2778 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2779 u32 type_id, void *data, u8 bits_offset, 2780 struct btf_show *show) 2781 { 2782 t = btf_type_id_resolve(btf, &type_id); 2783 2784 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2785 } 2786 2787 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2788 u32 type_id, void *data, u8 bits_offset, 2789 struct btf_show *show) 2790 { 2791 void *safe_data; 2792 2793 safe_data = btf_show_start_type(show, t, type_id, data); 2794 if (!safe_data) 2795 return; 2796 2797 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2798 if (show->flags & BTF_SHOW_PTR_RAW) 2799 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2800 else 2801 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2802 btf_show_end_type(show); 2803 } 2804 2805 static void btf_ref_type_log(struct btf_verifier_env *env, 2806 const struct btf_type *t) 2807 { 2808 btf_verifier_log(env, "type_id=%u", t->type); 2809 } 2810 2811 static struct btf_kind_operations modifier_ops = { 2812 .check_meta = btf_ref_type_check_meta, 2813 .resolve = btf_modifier_resolve, 2814 .check_member = btf_modifier_check_member, 2815 .check_kflag_member = btf_modifier_check_kflag_member, 2816 .log_details = btf_ref_type_log, 2817 .show = btf_modifier_show, 2818 }; 2819 2820 static struct btf_kind_operations ptr_ops = { 2821 .check_meta = btf_ref_type_check_meta, 2822 .resolve = btf_ptr_resolve, 2823 .check_member = btf_ptr_check_member, 2824 .check_kflag_member = btf_generic_check_kflag_member, 2825 .log_details = btf_ref_type_log, 2826 .show = btf_ptr_show, 2827 }; 2828 2829 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2830 const struct btf_type *t, 2831 u32 meta_left) 2832 { 2833 if (btf_type_vlen(t)) { 2834 btf_verifier_log_type(env, t, "vlen != 0"); 2835 return -EINVAL; 2836 } 2837 2838 if (t->type) { 2839 btf_verifier_log_type(env, t, "type != 0"); 2840 return -EINVAL; 2841 } 2842 2843 /* fwd type must have a valid name */ 2844 if (!t->name_off || 2845 !btf_name_valid_identifier(env->btf, t->name_off)) { 2846 btf_verifier_log_type(env, t, "Invalid name"); 2847 return -EINVAL; 2848 } 2849 2850 btf_verifier_log_type(env, t, NULL); 2851 2852 return 0; 2853 } 2854 2855 static void btf_fwd_type_log(struct btf_verifier_env *env, 2856 const struct btf_type *t) 2857 { 2858 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2859 } 2860 2861 static struct btf_kind_operations fwd_ops = { 2862 .check_meta = btf_fwd_check_meta, 2863 .resolve = btf_df_resolve, 2864 .check_member = btf_df_check_member, 2865 .check_kflag_member = btf_df_check_kflag_member, 2866 .log_details = btf_fwd_type_log, 2867 .show = btf_df_show, 2868 }; 2869 2870 static int btf_array_check_member(struct btf_verifier_env *env, 2871 const struct btf_type *struct_type, 2872 const struct btf_member *member, 2873 const struct btf_type *member_type) 2874 { 2875 u32 struct_bits_off = member->offset; 2876 u32 struct_size, bytes_offset; 2877 u32 array_type_id, array_size; 2878 struct btf *btf = env->btf; 2879 2880 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2881 btf_verifier_log_member(env, struct_type, member, 2882 "Member is not byte aligned"); 2883 return -EINVAL; 2884 } 2885 2886 array_type_id = member->type; 2887 btf_type_id_size(btf, &array_type_id, &array_size); 2888 struct_size = struct_type->size; 2889 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2890 if (struct_size - bytes_offset < array_size) { 2891 btf_verifier_log_member(env, struct_type, member, 2892 "Member exceeds struct_size"); 2893 return -EINVAL; 2894 } 2895 2896 return 0; 2897 } 2898 2899 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2900 const struct btf_type *t, 2901 u32 meta_left) 2902 { 2903 const struct btf_array *array = btf_type_array(t); 2904 u32 meta_needed = sizeof(*array); 2905 2906 if (meta_left < meta_needed) { 2907 btf_verifier_log_basic(env, t, 2908 "meta_left:%u meta_needed:%u", 2909 meta_left, meta_needed); 2910 return -EINVAL; 2911 } 2912 2913 /* array type should not have a name */ 2914 if (t->name_off) { 2915 btf_verifier_log_type(env, t, "Invalid name"); 2916 return -EINVAL; 2917 } 2918 2919 if (btf_type_vlen(t)) { 2920 btf_verifier_log_type(env, t, "vlen != 0"); 2921 return -EINVAL; 2922 } 2923 2924 if (btf_type_kflag(t)) { 2925 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2926 return -EINVAL; 2927 } 2928 2929 if (t->size) { 2930 btf_verifier_log_type(env, t, "size != 0"); 2931 return -EINVAL; 2932 } 2933 2934 /* Array elem type and index type cannot be in type void, 2935 * so !array->type and !array->index_type are not allowed. 2936 */ 2937 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2938 btf_verifier_log_type(env, t, "Invalid elem"); 2939 return -EINVAL; 2940 } 2941 2942 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2943 btf_verifier_log_type(env, t, "Invalid index"); 2944 return -EINVAL; 2945 } 2946 2947 btf_verifier_log_type(env, t, NULL); 2948 2949 return meta_needed; 2950 } 2951 2952 static int btf_array_resolve(struct btf_verifier_env *env, 2953 const struct resolve_vertex *v) 2954 { 2955 const struct btf_array *array = btf_type_array(v->t); 2956 const struct btf_type *elem_type, *index_type; 2957 u32 elem_type_id, index_type_id; 2958 struct btf *btf = env->btf; 2959 u32 elem_size; 2960 2961 /* Check array->index_type */ 2962 index_type_id = array->index_type; 2963 index_type = btf_type_by_id(btf, index_type_id); 2964 if (btf_type_nosize_or_null(index_type) || 2965 btf_type_is_resolve_source_only(index_type)) { 2966 btf_verifier_log_type(env, v->t, "Invalid index"); 2967 return -EINVAL; 2968 } 2969 2970 if (!env_type_is_resolve_sink(env, index_type) && 2971 !env_type_is_resolved(env, index_type_id)) 2972 return env_stack_push(env, index_type, index_type_id); 2973 2974 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2975 if (!index_type || !btf_type_is_int(index_type) || 2976 !btf_type_int_is_regular(index_type)) { 2977 btf_verifier_log_type(env, v->t, "Invalid index"); 2978 return -EINVAL; 2979 } 2980 2981 /* Check array->type */ 2982 elem_type_id = array->type; 2983 elem_type = btf_type_by_id(btf, elem_type_id); 2984 if (btf_type_nosize_or_null(elem_type) || 2985 btf_type_is_resolve_source_only(elem_type)) { 2986 btf_verifier_log_type(env, v->t, 2987 "Invalid elem"); 2988 return -EINVAL; 2989 } 2990 2991 if (!env_type_is_resolve_sink(env, elem_type) && 2992 !env_type_is_resolved(env, elem_type_id)) 2993 return env_stack_push(env, elem_type, elem_type_id); 2994 2995 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2996 if (!elem_type) { 2997 btf_verifier_log_type(env, v->t, "Invalid elem"); 2998 return -EINVAL; 2999 } 3000 3001 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 3002 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3003 return -EINVAL; 3004 } 3005 3006 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3007 btf_verifier_log_type(env, v->t, 3008 "Array size overflows U32_MAX"); 3009 return -EINVAL; 3010 } 3011 3012 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3013 3014 return 0; 3015 } 3016 3017 static void btf_array_log(struct btf_verifier_env *env, 3018 const struct btf_type *t) 3019 { 3020 const struct btf_array *array = btf_type_array(t); 3021 3022 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3023 array->type, array->index_type, array->nelems); 3024 } 3025 3026 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3027 u32 type_id, void *data, u8 bits_offset, 3028 struct btf_show *show) 3029 { 3030 const struct btf_array *array = btf_type_array(t); 3031 const struct btf_kind_operations *elem_ops; 3032 const struct btf_type *elem_type; 3033 u32 i, elem_size = 0, elem_type_id; 3034 u16 encoding = 0; 3035 3036 elem_type_id = array->type; 3037 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3038 if (elem_type && btf_type_has_size(elem_type)) 3039 elem_size = elem_type->size; 3040 3041 if (elem_type && btf_type_is_int(elem_type)) { 3042 u32 int_type = btf_type_int(elem_type); 3043 3044 encoding = BTF_INT_ENCODING(int_type); 3045 3046 /* 3047 * BTF_INT_CHAR encoding never seems to be set for 3048 * char arrays, so if size is 1 and element is 3049 * printable as a char, we'll do that. 3050 */ 3051 if (elem_size == 1) 3052 encoding = BTF_INT_CHAR; 3053 } 3054 3055 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3056 return; 3057 3058 if (!elem_type) 3059 goto out; 3060 elem_ops = btf_type_ops(elem_type); 3061 3062 for (i = 0; i < array->nelems; i++) { 3063 3064 btf_show_start_array_member(show); 3065 3066 elem_ops->show(btf, elem_type, elem_type_id, data, 3067 bits_offset, show); 3068 data += elem_size; 3069 3070 btf_show_end_array_member(show); 3071 3072 if (show->state.array_terminated) 3073 break; 3074 } 3075 out: 3076 btf_show_end_array_type(show); 3077 } 3078 3079 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3080 u32 type_id, void *data, u8 bits_offset, 3081 struct btf_show *show) 3082 { 3083 const struct btf_member *m = show->state.member; 3084 3085 /* 3086 * First check if any members would be shown (are non-zero). 3087 * See comments above "struct btf_show" definition for more 3088 * details on how this works at a high-level. 3089 */ 3090 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3091 if (!show->state.depth_check) { 3092 show->state.depth_check = show->state.depth + 1; 3093 show->state.depth_to_show = 0; 3094 } 3095 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3096 show->state.member = m; 3097 3098 if (show->state.depth_check != show->state.depth + 1) 3099 return; 3100 show->state.depth_check = 0; 3101 3102 if (show->state.depth_to_show <= show->state.depth) 3103 return; 3104 /* 3105 * Reaching here indicates we have recursed and found 3106 * non-zero array member(s). 3107 */ 3108 } 3109 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3110 } 3111 3112 static struct btf_kind_operations array_ops = { 3113 .check_meta = btf_array_check_meta, 3114 .resolve = btf_array_resolve, 3115 .check_member = btf_array_check_member, 3116 .check_kflag_member = btf_generic_check_kflag_member, 3117 .log_details = btf_array_log, 3118 .show = btf_array_show, 3119 }; 3120 3121 static int btf_struct_check_member(struct btf_verifier_env *env, 3122 const struct btf_type *struct_type, 3123 const struct btf_member *member, 3124 const struct btf_type *member_type) 3125 { 3126 u32 struct_bits_off = member->offset; 3127 u32 struct_size, bytes_offset; 3128 3129 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3130 btf_verifier_log_member(env, struct_type, member, 3131 "Member is not byte aligned"); 3132 return -EINVAL; 3133 } 3134 3135 struct_size = struct_type->size; 3136 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3137 if (struct_size - bytes_offset < member_type->size) { 3138 btf_verifier_log_member(env, struct_type, member, 3139 "Member exceeds struct_size"); 3140 return -EINVAL; 3141 } 3142 3143 return 0; 3144 } 3145 3146 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3147 const struct btf_type *t, 3148 u32 meta_left) 3149 { 3150 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3151 const struct btf_member *member; 3152 u32 meta_needed, last_offset; 3153 struct btf *btf = env->btf; 3154 u32 struct_size = t->size; 3155 u32 offset; 3156 u16 i; 3157 3158 meta_needed = btf_type_vlen(t) * sizeof(*member); 3159 if (meta_left < meta_needed) { 3160 btf_verifier_log_basic(env, t, 3161 "meta_left:%u meta_needed:%u", 3162 meta_left, meta_needed); 3163 return -EINVAL; 3164 } 3165 3166 /* struct type either no name or a valid one */ 3167 if (t->name_off && 3168 !btf_name_valid_identifier(env->btf, t->name_off)) { 3169 btf_verifier_log_type(env, t, "Invalid name"); 3170 return -EINVAL; 3171 } 3172 3173 btf_verifier_log_type(env, t, NULL); 3174 3175 last_offset = 0; 3176 for_each_member(i, t, member) { 3177 if (!btf_name_offset_valid(btf, member->name_off)) { 3178 btf_verifier_log_member(env, t, member, 3179 "Invalid member name_offset:%u", 3180 member->name_off); 3181 return -EINVAL; 3182 } 3183 3184 /* struct member either no name or a valid one */ 3185 if (member->name_off && 3186 !btf_name_valid_identifier(btf, member->name_off)) { 3187 btf_verifier_log_member(env, t, member, "Invalid name"); 3188 return -EINVAL; 3189 } 3190 /* A member cannot be in type void */ 3191 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3192 btf_verifier_log_member(env, t, member, 3193 "Invalid type_id"); 3194 return -EINVAL; 3195 } 3196 3197 offset = __btf_member_bit_offset(t, member); 3198 if (is_union && offset) { 3199 btf_verifier_log_member(env, t, member, 3200 "Invalid member bits_offset"); 3201 return -EINVAL; 3202 } 3203 3204 /* 3205 * ">" instead of ">=" because the last member could be 3206 * "char a[0];" 3207 */ 3208 if (last_offset > offset) { 3209 btf_verifier_log_member(env, t, member, 3210 "Invalid member bits_offset"); 3211 return -EINVAL; 3212 } 3213 3214 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3215 btf_verifier_log_member(env, t, member, 3216 "Member bits_offset exceeds its struct size"); 3217 return -EINVAL; 3218 } 3219 3220 btf_verifier_log_member(env, t, member, NULL); 3221 last_offset = offset; 3222 } 3223 3224 return meta_needed; 3225 } 3226 3227 static int btf_struct_resolve(struct btf_verifier_env *env, 3228 const struct resolve_vertex *v) 3229 { 3230 const struct btf_member *member; 3231 int err; 3232 u16 i; 3233 3234 /* Before continue resolving the next_member, 3235 * ensure the last member is indeed resolved to a 3236 * type with size info. 3237 */ 3238 if (v->next_member) { 3239 const struct btf_type *last_member_type; 3240 const struct btf_member *last_member; 3241 u32 last_member_type_id; 3242 3243 last_member = btf_type_member(v->t) + v->next_member - 1; 3244 last_member_type_id = last_member->type; 3245 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3246 last_member_type_id))) 3247 return -EINVAL; 3248 3249 last_member_type = btf_type_by_id(env->btf, 3250 last_member_type_id); 3251 if (btf_type_kflag(v->t)) 3252 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3253 last_member, 3254 last_member_type); 3255 else 3256 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3257 last_member, 3258 last_member_type); 3259 if (err) 3260 return err; 3261 } 3262 3263 for_each_member_from(i, v->next_member, v->t, member) { 3264 u32 member_type_id = member->type; 3265 const struct btf_type *member_type = btf_type_by_id(env->btf, 3266 member_type_id); 3267 3268 if (btf_type_nosize_or_null(member_type) || 3269 btf_type_is_resolve_source_only(member_type)) { 3270 btf_verifier_log_member(env, v->t, member, 3271 "Invalid member"); 3272 return -EINVAL; 3273 } 3274 3275 if (!env_type_is_resolve_sink(env, member_type) && 3276 !env_type_is_resolved(env, member_type_id)) { 3277 env_stack_set_next_member(env, i + 1); 3278 return env_stack_push(env, member_type, member_type_id); 3279 } 3280 3281 if (btf_type_kflag(v->t)) 3282 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3283 member, 3284 member_type); 3285 else 3286 err = btf_type_ops(member_type)->check_member(env, v->t, 3287 member, 3288 member_type); 3289 if (err) 3290 return err; 3291 } 3292 3293 env_stack_pop_resolved(env, 0, 0); 3294 3295 return 0; 3296 } 3297 3298 static void btf_struct_log(struct btf_verifier_env *env, 3299 const struct btf_type *t) 3300 { 3301 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3302 } 3303 3304 enum { 3305 BTF_FIELD_IGNORE = 0, 3306 BTF_FIELD_FOUND = 1, 3307 }; 3308 3309 struct btf_field_info { 3310 enum btf_field_type type; 3311 u32 off; 3312 union { 3313 struct { 3314 u32 type_id; 3315 } kptr; 3316 struct { 3317 const char *node_name; 3318 u32 value_btf_id; 3319 } graph_root; 3320 }; 3321 }; 3322 3323 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3324 u32 off, int sz, enum btf_field_type field_type, 3325 struct btf_field_info *info) 3326 { 3327 if (!__btf_type_is_struct(t)) 3328 return BTF_FIELD_IGNORE; 3329 if (t->size != sz) 3330 return BTF_FIELD_IGNORE; 3331 info->type = field_type; 3332 info->off = off; 3333 return BTF_FIELD_FOUND; 3334 } 3335 3336 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3337 u32 off, int sz, struct btf_field_info *info) 3338 { 3339 enum btf_field_type type; 3340 u32 res_id; 3341 3342 /* Permit modifiers on the pointer itself */ 3343 if (btf_type_is_volatile(t)) 3344 t = btf_type_by_id(btf, t->type); 3345 /* For PTR, sz is always == 8 */ 3346 if (!btf_type_is_ptr(t)) 3347 return BTF_FIELD_IGNORE; 3348 t = btf_type_by_id(btf, t->type); 3349 3350 if (!btf_type_is_type_tag(t)) 3351 return BTF_FIELD_IGNORE; 3352 /* Reject extra tags */ 3353 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3354 return -EINVAL; 3355 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3356 type = BPF_KPTR_UNREF; 3357 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3358 type = BPF_KPTR_REF; 3359 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3360 type = BPF_KPTR_PERCPU; 3361 else 3362 return -EINVAL; 3363 3364 /* Get the base type */ 3365 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3366 /* Only pointer to struct is allowed */ 3367 if (!__btf_type_is_struct(t)) 3368 return -EINVAL; 3369 3370 info->type = type; 3371 info->off = off; 3372 info->kptr.type_id = res_id; 3373 return BTF_FIELD_FOUND; 3374 } 3375 3376 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3377 int comp_idx, const char *tag_key, int last_id) 3378 { 3379 int len = strlen(tag_key); 3380 int i, n; 3381 3382 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3383 const struct btf_type *t = btf_type_by_id(btf, i); 3384 3385 if (!btf_type_is_decl_tag(t)) 3386 continue; 3387 if (pt != btf_type_by_id(btf, t->type)) 3388 continue; 3389 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3390 continue; 3391 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3392 continue; 3393 return i; 3394 } 3395 return -ENOENT; 3396 } 3397 3398 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3399 int comp_idx, const char *tag_key) 3400 { 3401 const char *value = NULL; 3402 const struct btf_type *t; 3403 int len, id; 3404 3405 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3406 if (id < 0) 3407 return ERR_PTR(id); 3408 3409 t = btf_type_by_id(btf, id); 3410 len = strlen(tag_key); 3411 value = __btf_name_by_offset(btf, t->name_off) + len; 3412 3413 /* Prevent duplicate entries for same type */ 3414 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3415 if (id >= 0) 3416 return ERR_PTR(-EEXIST); 3417 3418 return value; 3419 } 3420 3421 static int 3422 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3423 const struct btf_type *t, int comp_idx, u32 off, 3424 int sz, struct btf_field_info *info, 3425 enum btf_field_type head_type) 3426 { 3427 const char *node_field_name; 3428 const char *value_type; 3429 s32 id; 3430 3431 if (!__btf_type_is_struct(t)) 3432 return BTF_FIELD_IGNORE; 3433 if (t->size != sz) 3434 return BTF_FIELD_IGNORE; 3435 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3436 if (IS_ERR(value_type)) 3437 return -EINVAL; 3438 node_field_name = strstr(value_type, ":"); 3439 if (!node_field_name) 3440 return -EINVAL; 3441 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3442 if (!value_type) 3443 return -ENOMEM; 3444 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3445 kfree(value_type); 3446 if (id < 0) 3447 return id; 3448 node_field_name++; 3449 if (str_is_empty(node_field_name)) 3450 return -EINVAL; 3451 info->type = head_type; 3452 info->off = off; 3453 info->graph_root.value_btf_id = id; 3454 info->graph_root.node_name = node_field_name; 3455 return BTF_FIELD_FOUND; 3456 } 3457 3458 #define field_mask_test_name(field_type, field_type_str) \ 3459 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3460 type = field_type; \ 3461 goto end; \ 3462 } 3463 3464 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3465 u32 field_mask, u32 *seen_mask, 3466 int *align, int *sz) 3467 { 3468 int type = 0; 3469 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3470 3471 if (field_mask & BPF_SPIN_LOCK) { 3472 if (!strcmp(name, "bpf_spin_lock")) { 3473 if (*seen_mask & BPF_SPIN_LOCK) 3474 return -E2BIG; 3475 *seen_mask |= BPF_SPIN_LOCK; 3476 type = BPF_SPIN_LOCK; 3477 goto end; 3478 } 3479 } 3480 if (field_mask & BPF_TIMER) { 3481 if (!strcmp(name, "bpf_timer")) { 3482 if (*seen_mask & BPF_TIMER) 3483 return -E2BIG; 3484 *seen_mask |= BPF_TIMER; 3485 type = BPF_TIMER; 3486 goto end; 3487 } 3488 } 3489 if (field_mask & BPF_WORKQUEUE) { 3490 if (!strcmp(name, "bpf_wq")) { 3491 if (*seen_mask & BPF_WORKQUEUE) 3492 return -E2BIG; 3493 *seen_mask |= BPF_WORKQUEUE; 3494 type = BPF_WORKQUEUE; 3495 goto end; 3496 } 3497 } 3498 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3499 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3500 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3501 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3502 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3503 3504 /* Only return BPF_KPTR when all other types with matchable names fail */ 3505 if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) { 3506 type = BPF_KPTR_REF; 3507 goto end; 3508 } 3509 return 0; 3510 end: 3511 *sz = btf_field_type_size(type); 3512 *align = btf_field_type_align(type); 3513 return type; 3514 } 3515 3516 #undef field_mask_test_name 3517 3518 /* Repeat a number of fields for a specified number of times. 3519 * 3520 * Copy the fields starting from the first field and repeat them for 3521 * repeat_cnt times. The fields are repeated by adding the offset of each 3522 * field with 3523 * (i + 1) * elem_size 3524 * where i is the repeat index and elem_size is the size of an element. 3525 */ 3526 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3527 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3528 { 3529 u32 i, j; 3530 u32 cur; 3531 3532 /* Ensure not repeating fields that should not be repeated. */ 3533 for (i = 0; i < field_cnt; i++) { 3534 switch (info[i].type) { 3535 case BPF_KPTR_UNREF: 3536 case BPF_KPTR_REF: 3537 case BPF_KPTR_PERCPU: 3538 case BPF_LIST_HEAD: 3539 case BPF_RB_ROOT: 3540 break; 3541 default: 3542 return -EINVAL; 3543 } 3544 } 3545 3546 /* The type of struct size or variable size is u32, 3547 * so the multiplication will not overflow. 3548 */ 3549 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3550 return -E2BIG; 3551 3552 cur = field_cnt; 3553 for (i = 0; i < repeat_cnt; i++) { 3554 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3555 for (j = 0; j < field_cnt; j++) 3556 info[cur++].off += (i + 1) * elem_size; 3557 } 3558 3559 return 0; 3560 } 3561 3562 static int btf_find_struct_field(const struct btf *btf, 3563 const struct btf_type *t, u32 field_mask, 3564 struct btf_field_info *info, int info_cnt, 3565 u32 level); 3566 3567 /* Find special fields in the struct type of a field. 3568 * 3569 * This function is used to find fields of special types that is not a 3570 * global variable or a direct field of a struct type. It also handles the 3571 * repetition if it is the element type of an array. 3572 */ 3573 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3574 u32 off, u32 nelems, 3575 u32 field_mask, struct btf_field_info *info, 3576 int info_cnt, u32 level) 3577 { 3578 int ret, err, i; 3579 3580 level++; 3581 if (level >= MAX_RESOLVE_DEPTH) 3582 return -E2BIG; 3583 3584 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3585 3586 if (ret <= 0) 3587 return ret; 3588 3589 /* Shift the offsets of the nested struct fields to the offsets 3590 * related to the container. 3591 */ 3592 for (i = 0; i < ret; i++) 3593 info[i].off += off; 3594 3595 if (nelems > 1) { 3596 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3597 if (err == 0) 3598 ret *= nelems; 3599 else 3600 ret = err; 3601 } 3602 3603 return ret; 3604 } 3605 3606 static int btf_find_field_one(const struct btf *btf, 3607 const struct btf_type *var, 3608 const struct btf_type *var_type, 3609 int var_idx, 3610 u32 off, u32 expected_size, 3611 u32 field_mask, u32 *seen_mask, 3612 struct btf_field_info *info, int info_cnt, 3613 u32 level) 3614 { 3615 int ret, align, sz, field_type; 3616 struct btf_field_info tmp; 3617 const struct btf_array *array; 3618 u32 i, nelems = 1; 3619 3620 /* Walk into array types to find the element type and the number of 3621 * elements in the (flattened) array. 3622 */ 3623 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3624 array = btf_array(var_type); 3625 nelems *= array->nelems; 3626 var_type = btf_type_by_id(btf, array->type); 3627 } 3628 if (i == MAX_RESOLVE_DEPTH) 3629 return -E2BIG; 3630 if (nelems == 0) 3631 return 0; 3632 3633 field_type = btf_get_field_type(btf, var_type, 3634 field_mask, seen_mask, &align, &sz); 3635 /* Look into variables of struct types */ 3636 if (!field_type && __btf_type_is_struct(var_type)) { 3637 sz = var_type->size; 3638 if (expected_size && expected_size != sz * nelems) 3639 return 0; 3640 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3641 &info[0], info_cnt, level); 3642 return ret; 3643 } 3644 3645 if (field_type == 0) 3646 return 0; 3647 if (field_type < 0) 3648 return field_type; 3649 3650 if (expected_size && expected_size != sz * nelems) 3651 return 0; 3652 if (off % align) 3653 return 0; 3654 3655 switch (field_type) { 3656 case BPF_SPIN_LOCK: 3657 case BPF_TIMER: 3658 case BPF_WORKQUEUE: 3659 case BPF_LIST_NODE: 3660 case BPF_RB_NODE: 3661 case BPF_REFCOUNT: 3662 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3663 info_cnt ? &info[0] : &tmp); 3664 if (ret < 0) 3665 return ret; 3666 break; 3667 case BPF_KPTR_UNREF: 3668 case BPF_KPTR_REF: 3669 case BPF_KPTR_PERCPU: 3670 ret = btf_find_kptr(btf, var_type, off, sz, 3671 info_cnt ? &info[0] : &tmp); 3672 if (ret < 0) 3673 return ret; 3674 break; 3675 case BPF_LIST_HEAD: 3676 case BPF_RB_ROOT: 3677 ret = btf_find_graph_root(btf, var, var_type, 3678 var_idx, off, sz, 3679 info_cnt ? &info[0] : &tmp, 3680 field_type); 3681 if (ret < 0) 3682 return ret; 3683 break; 3684 default: 3685 return -EFAULT; 3686 } 3687 3688 if (ret == BTF_FIELD_IGNORE) 3689 return 0; 3690 if (!info_cnt) 3691 return -E2BIG; 3692 if (nelems > 1) { 3693 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3694 if (ret < 0) 3695 return ret; 3696 } 3697 return nelems; 3698 } 3699 3700 static int btf_find_struct_field(const struct btf *btf, 3701 const struct btf_type *t, u32 field_mask, 3702 struct btf_field_info *info, int info_cnt, 3703 u32 level) 3704 { 3705 int ret, idx = 0; 3706 const struct btf_member *member; 3707 u32 i, off, seen_mask = 0; 3708 3709 for_each_member(i, t, member) { 3710 const struct btf_type *member_type = btf_type_by_id(btf, 3711 member->type); 3712 3713 off = __btf_member_bit_offset(t, member); 3714 if (off % 8) 3715 /* valid C code cannot generate such BTF */ 3716 return -EINVAL; 3717 off /= 8; 3718 3719 ret = btf_find_field_one(btf, t, member_type, i, 3720 off, 0, 3721 field_mask, &seen_mask, 3722 &info[idx], info_cnt - idx, level); 3723 if (ret < 0) 3724 return ret; 3725 idx += ret; 3726 } 3727 return idx; 3728 } 3729 3730 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3731 u32 field_mask, struct btf_field_info *info, 3732 int info_cnt, u32 level) 3733 { 3734 int ret, idx = 0; 3735 const struct btf_var_secinfo *vsi; 3736 u32 i, off, seen_mask = 0; 3737 3738 for_each_vsi(i, t, vsi) { 3739 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3740 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3741 3742 off = vsi->offset; 3743 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3744 field_mask, &seen_mask, 3745 &info[idx], info_cnt - idx, 3746 level); 3747 if (ret < 0) 3748 return ret; 3749 idx += ret; 3750 } 3751 return idx; 3752 } 3753 3754 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3755 u32 field_mask, struct btf_field_info *info, 3756 int info_cnt) 3757 { 3758 if (__btf_type_is_struct(t)) 3759 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3760 else if (btf_type_is_datasec(t)) 3761 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3762 return -EINVAL; 3763 } 3764 3765 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3766 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3767 struct btf_field_info *info) 3768 { 3769 struct module *mod = NULL; 3770 const struct btf_type *t; 3771 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3772 * is that BTF, otherwise it's program BTF 3773 */ 3774 struct btf *kptr_btf; 3775 int ret; 3776 s32 id; 3777 3778 /* Find type in map BTF, and use it to look up the matching type 3779 * in vmlinux or module BTFs, by name and kind. 3780 */ 3781 t = btf_type_by_id(btf, info->kptr.type_id); 3782 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3783 &kptr_btf); 3784 if (id == -ENOENT) { 3785 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3786 WARN_ON_ONCE(btf_is_kernel(btf)); 3787 3788 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3789 * kptr allocated via bpf_obj_new 3790 */ 3791 field->kptr.dtor = NULL; 3792 id = info->kptr.type_id; 3793 kptr_btf = (struct btf *)btf; 3794 goto found_dtor; 3795 } 3796 if (id < 0) 3797 return id; 3798 3799 /* Find and stash the function pointer for the destruction function that 3800 * needs to be eventually invoked from the map free path. 3801 */ 3802 if (info->type == BPF_KPTR_REF) { 3803 const struct btf_type *dtor_func; 3804 const char *dtor_func_name; 3805 unsigned long addr; 3806 s32 dtor_btf_id; 3807 3808 /* This call also serves as a whitelist of allowed objects that 3809 * can be used as a referenced pointer and be stored in a map at 3810 * the same time. 3811 */ 3812 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3813 if (dtor_btf_id < 0) { 3814 ret = dtor_btf_id; 3815 goto end_btf; 3816 } 3817 3818 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3819 if (!dtor_func) { 3820 ret = -ENOENT; 3821 goto end_btf; 3822 } 3823 3824 if (btf_is_module(kptr_btf)) { 3825 mod = btf_try_get_module(kptr_btf); 3826 if (!mod) { 3827 ret = -ENXIO; 3828 goto end_btf; 3829 } 3830 } 3831 3832 /* We already verified dtor_func to be btf_type_is_func 3833 * in register_btf_id_dtor_kfuncs. 3834 */ 3835 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3836 addr = kallsyms_lookup_name(dtor_func_name); 3837 if (!addr) { 3838 ret = -EINVAL; 3839 goto end_mod; 3840 } 3841 field->kptr.dtor = (void *)addr; 3842 } 3843 3844 found_dtor: 3845 field->kptr.btf_id = id; 3846 field->kptr.btf = kptr_btf; 3847 field->kptr.module = mod; 3848 return 0; 3849 end_mod: 3850 module_put(mod); 3851 end_btf: 3852 btf_put(kptr_btf); 3853 return ret; 3854 } 3855 3856 static int btf_parse_graph_root(const struct btf *btf, 3857 struct btf_field *field, 3858 struct btf_field_info *info, 3859 const char *node_type_name, 3860 size_t node_type_align) 3861 { 3862 const struct btf_type *t, *n = NULL; 3863 const struct btf_member *member; 3864 u32 offset; 3865 int i; 3866 3867 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3868 /* We've already checked that value_btf_id is a struct type. We 3869 * just need to figure out the offset of the list_node, and 3870 * verify its type. 3871 */ 3872 for_each_member(i, t, member) { 3873 if (strcmp(info->graph_root.node_name, 3874 __btf_name_by_offset(btf, member->name_off))) 3875 continue; 3876 /* Invalid BTF, two members with same name */ 3877 if (n) 3878 return -EINVAL; 3879 n = btf_type_by_id(btf, member->type); 3880 if (!__btf_type_is_struct(n)) 3881 return -EINVAL; 3882 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3883 return -EINVAL; 3884 offset = __btf_member_bit_offset(n, member); 3885 if (offset % 8) 3886 return -EINVAL; 3887 offset /= 8; 3888 if (offset % node_type_align) 3889 return -EINVAL; 3890 3891 field->graph_root.btf = (struct btf *)btf; 3892 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3893 field->graph_root.node_offset = offset; 3894 } 3895 if (!n) 3896 return -ENOENT; 3897 return 0; 3898 } 3899 3900 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3901 struct btf_field_info *info) 3902 { 3903 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3904 __alignof__(struct bpf_list_node)); 3905 } 3906 3907 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3908 struct btf_field_info *info) 3909 { 3910 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3911 __alignof__(struct bpf_rb_node)); 3912 } 3913 3914 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3915 { 3916 const struct btf_field *a = (const struct btf_field *)_a; 3917 const struct btf_field *b = (const struct btf_field *)_b; 3918 3919 if (a->offset < b->offset) 3920 return -1; 3921 else if (a->offset > b->offset) 3922 return 1; 3923 return 0; 3924 } 3925 3926 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3927 u32 field_mask, u32 value_size) 3928 { 3929 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3930 u32 next_off = 0, field_type_size; 3931 struct btf_record *rec; 3932 int ret, i, cnt; 3933 3934 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3935 if (ret < 0) 3936 return ERR_PTR(ret); 3937 if (!ret) 3938 return NULL; 3939 3940 cnt = ret; 3941 /* This needs to be kzalloc to zero out padding and unused fields, see 3942 * comment in btf_record_equal. 3943 */ 3944 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3945 if (!rec) 3946 return ERR_PTR(-ENOMEM); 3947 3948 rec->spin_lock_off = -EINVAL; 3949 rec->timer_off = -EINVAL; 3950 rec->wq_off = -EINVAL; 3951 rec->refcount_off = -EINVAL; 3952 for (i = 0; i < cnt; i++) { 3953 field_type_size = btf_field_type_size(info_arr[i].type); 3954 if (info_arr[i].off + field_type_size > value_size) { 3955 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3956 ret = -EFAULT; 3957 goto end; 3958 } 3959 if (info_arr[i].off < next_off) { 3960 ret = -EEXIST; 3961 goto end; 3962 } 3963 next_off = info_arr[i].off + field_type_size; 3964 3965 rec->field_mask |= info_arr[i].type; 3966 rec->fields[i].offset = info_arr[i].off; 3967 rec->fields[i].type = info_arr[i].type; 3968 rec->fields[i].size = field_type_size; 3969 3970 switch (info_arr[i].type) { 3971 case BPF_SPIN_LOCK: 3972 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3973 /* Cache offset for faster lookup at runtime */ 3974 rec->spin_lock_off = rec->fields[i].offset; 3975 break; 3976 case BPF_TIMER: 3977 WARN_ON_ONCE(rec->timer_off >= 0); 3978 /* Cache offset for faster lookup at runtime */ 3979 rec->timer_off = rec->fields[i].offset; 3980 break; 3981 case BPF_WORKQUEUE: 3982 WARN_ON_ONCE(rec->wq_off >= 0); 3983 /* Cache offset for faster lookup at runtime */ 3984 rec->wq_off = rec->fields[i].offset; 3985 break; 3986 case BPF_REFCOUNT: 3987 WARN_ON_ONCE(rec->refcount_off >= 0); 3988 /* Cache offset for faster lookup at runtime */ 3989 rec->refcount_off = rec->fields[i].offset; 3990 break; 3991 case BPF_KPTR_UNREF: 3992 case BPF_KPTR_REF: 3993 case BPF_KPTR_PERCPU: 3994 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3995 if (ret < 0) 3996 goto end; 3997 break; 3998 case BPF_LIST_HEAD: 3999 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4000 if (ret < 0) 4001 goto end; 4002 break; 4003 case BPF_RB_ROOT: 4004 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4005 if (ret < 0) 4006 goto end; 4007 break; 4008 case BPF_LIST_NODE: 4009 case BPF_RB_NODE: 4010 break; 4011 default: 4012 ret = -EFAULT; 4013 goto end; 4014 } 4015 rec->cnt++; 4016 } 4017 4018 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4019 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4020 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 4021 ret = -EINVAL; 4022 goto end; 4023 } 4024 4025 if (rec->refcount_off < 0 && 4026 btf_record_has_field(rec, BPF_LIST_NODE) && 4027 btf_record_has_field(rec, BPF_RB_NODE)) { 4028 ret = -EINVAL; 4029 goto end; 4030 } 4031 4032 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4033 NULL, rec); 4034 4035 return rec; 4036 end: 4037 btf_record_free(rec); 4038 return ERR_PTR(ret); 4039 } 4040 4041 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4042 { 4043 int i; 4044 4045 /* There are three types that signify ownership of some other type: 4046 * kptr_ref, bpf_list_head, bpf_rb_root. 4047 * kptr_ref only supports storing kernel types, which can't store 4048 * references to program allocated local types. 4049 * 4050 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4051 * does not form cycles. 4052 */ 4053 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT)) 4054 return 0; 4055 for (i = 0; i < rec->cnt; i++) { 4056 struct btf_struct_meta *meta; 4057 u32 btf_id; 4058 4059 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4060 continue; 4061 btf_id = rec->fields[i].graph_root.value_btf_id; 4062 meta = btf_find_struct_meta(btf, btf_id); 4063 if (!meta) 4064 return -EFAULT; 4065 rec->fields[i].graph_root.value_rec = meta->record; 4066 4067 /* We need to set value_rec for all root types, but no need 4068 * to check ownership cycle for a type unless it's also a 4069 * node type. 4070 */ 4071 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4072 continue; 4073 4074 /* We need to ensure ownership acyclicity among all types. The 4075 * proper way to do it would be to topologically sort all BTF 4076 * IDs based on the ownership edges, since there can be multiple 4077 * bpf_{list_head,rb_node} in a type. Instead, we use the 4078 * following resaoning: 4079 * 4080 * - A type can only be owned by another type in user BTF if it 4081 * has a bpf_{list,rb}_node. Let's call these node types. 4082 * - A type can only _own_ another type in user BTF if it has a 4083 * bpf_{list_head,rb_root}. Let's call these root types. 4084 * 4085 * We ensure that if a type is both a root and node, its 4086 * element types cannot be root types. 4087 * 4088 * To ensure acyclicity: 4089 * 4090 * When A is an root type but not a node, its ownership 4091 * chain can be: 4092 * A -> B -> C 4093 * Where: 4094 * - A is an root, e.g. has bpf_rb_root. 4095 * - B is both a root and node, e.g. has bpf_rb_node and 4096 * bpf_list_head. 4097 * - C is only an root, e.g. has bpf_list_node 4098 * 4099 * When A is both a root and node, some other type already 4100 * owns it in the BTF domain, hence it can not own 4101 * another root type through any of the ownership edges. 4102 * A -> B 4103 * Where: 4104 * - A is both an root and node. 4105 * - B is only an node. 4106 */ 4107 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4108 return -ELOOP; 4109 } 4110 return 0; 4111 } 4112 4113 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4114 u32 type_id, void *data, u8 bits_offset, 4115 struct btf_show *show) 4116 { 4117 const struct btf_member *member; 4118 void *safe_data; 4119 u32 i; 4120 4121 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4122 if (!safe_data) 4123 return; 4124 4125 for_each_member(i, t, member) { 4126 const struct btf_type *member_type = btf_type_by_id(btf, 4127 member->type); 4128 const struct btf_kind_operations *ops; 4129 u32 member_offset, bitfield_size; 4130 u32 bytes_offset; 4131 u8 bits8_offset; 4132 4133 btf_show_start_member(show, member); 4134 4135 member_offset = __btf_member_bit_offset(t, member); 4136 bitfield_size = __btf_member_bitfield_size(t, member); 4137 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4138 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4139 if (bitfield_size) { 4140 safe_data = btf_show_start_type(show, member_type, 4141 member->type, 4142 data + bytes_offset); 4143 if (safe_data) 4144 btf_bitfield_show(safe_data, 4145 bits8_offset, 4146 bitfield_size, show); 4147 btf_show_end_type(show); 4148 } else { 4149 ops = btf_type_ops(member_type); 4150 ops->show(btf, member_type, member->type, 4151 data + bytes_offset, bits8_offset, show); 4152 } 4153 4154 btf_show_end_member(show); 4155 } 4156 4157 btf_show_end_struct_type(show); 4158 } 4159 4160 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4161 u32 type_id, void *data, u8 bits_offset, 4162 struct btf_show *show) 4163 { 4164 const struct btf_member *m = show->state.member; 4165 4166 /* 4167 * First check if any members would be shown (are non-zero). 4168 * See comments above "struct btf_show" definition for more 4169 * details on how this works at a high-level. 4170 */ 4171 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4172 if (!show->state.depth_check) { 4173 show->state.depth_check = show->state.depth + 1; 4174 show->state.depth_to_show = 0; 4175 } 4176 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4177 /* Restore saved member data here */ 4178 show->state.member = m; 4179 if (show->state.depth_check != show->state.depth + 1) 4180 return; 4181 show->state.depth_check = 0; 4182 4183 if (show->state.depth_to_show <= show->state.depth) 4184 return; 4185 /* 4186 * Reaching here indicates we have recursed and found 4187 * non-zero child values. 4188 */ 4189 } 4190 4191 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4192 } 4193 4194 static struct btf_kind_operations struct_ops = { 4195 .check_meta = btf_struct_check_meta, 4196 .resolve = btf_struct_resolve, 4197 .check_member = btf_struct_check_member, 4198 .check_kflag_member = btf_generic_check_kflag_member, 4199 .log_details = btf_struct_log, 4200 .show = btf_struct_show, 4201 }; 4202 4203 static int btf_enum_check_member(struct btf_verifier_env *env, 4204 const struct btf_type *struct_type, 4205 const struct btf_member *member, 4206 const struct btf_type *member_type) 4207 { 4208 u32 struct_bits_off = member->offset; 4209 u32 struct_size, bytes_offset; 4210 4211 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4212 btf_verifier_log_member(env, struct_type, member, 4213 "Member is not byte aligned"); 4214 return -EINVAL; 4215 } 4216 4217 struct_size = struct_type->size; 4218 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4219 if (struct_size - bytes_offset < member_type->size) { 4220 btf_verifier_log_member(env, struct_type, member, 4221 "Member exceeds struct_size"); 4222 return -EINVAL; 4223 } 4224 4225 return 0; 4226 } 4227 4228 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4229 const struct btf_type *struct_type, 4230 const struct btf_member *member, 4231 const struct btf_type *member_type) 4232 { 4233 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4234 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4235 4236 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4237 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4238 if (!nr_bits) { 4239 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4240 btf_verifier_log_member(env, struct_type, member, 4241 "Member is not byte aligned"); 4242 return -EINVAL; 4243 } 4244 4245 nr_bits = int_bitsize; 4246 } else if (nr_bits > int_bitsize) { 4247 btf_verifier_log_member(env, struct_type, member, 4248 "Invalid member bitfield_size"); 4249 return -EINVAL; 4250 } 4251 4252 struct_size = struct_type->size; 4253 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4254 if (struct_size < bytes_end) { 4255 btf_verifier_log_member(env, struct_type, member, 4256 "Member exceeds struct_size"); 4257 return -EINVAL; 4258 } 4259 4260 return 0; 4261 } 4262 4263 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4264 const struct btf_type *t, 4265 u32 meta_left) 4266 { 4267 const struct btf_enum *enums = btf_type_enum(t); 4268 struct btf *btf = env->btf; 4269 const char *fmt_str; 4270 u16 i, nr_enums; 4271 u32 meta_needed; 4272 4273 nr_enums = btf_type_vlen(t); 4274 meta_needed = nr_enums * sizeof(*enums); 4275 4276 if (meta_left < meta_needed) { 4277 btf_verifier_log_basic(env, t, 4278 "meta_left:%u meta_needed:%u", 4279 meta_left, meta_needed); 4280 return -EINVAL; 4281 } 4282 4283 if (t->size > 8 || !is_power_of_2(t->size)) { 4284 btf_verifier_log_type(env, t, "Unexpected size"); 4285 return -EINVAL; 4286 } 4287 4288 /* enum type either no name or a valid one */ 4289 if (t->name_off && 4290 !btf_name_valid_identifier(env->btf, t->name_off)) { 4291 btf_verifier_log_type(env, t, "Invalid name"); 4292 return -EINVAL; 4293 } 4294 4295 btf_verifier_log_type(env, t, NULL); 4296 4297 for (i = 0; i < nr_enums; i++) { 4298 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4299 btf_verifier_log(env, "\tInvalid name_offset:%u", 4300 enums[i].name_off); 4301 return -EINVAL; 4302 } 4303 4304 /* enum member must have a valid name */ 4305 if (!enums[i].name_off || 4306 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4307 btf_verifier_log_type(env, t, "Invalid name"); 4308 return -EINVAL; 4309 } 4310 4311 if (env->log.level == BPF_LOG_KERNEL) 4312 continue; 4313 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4314 btf_verifier_log(env, fmt_str, 4315 __btf_name_by_offset(btf, enums[i].name_off), 4316 enums[i].val); 4317 } 4318 4319 return meta_needed; 4320 } 4321 4322 static void btf_enum_log(struct btf_verifier_env *env, 4323 const struct btf_type *t) 4324 { 4325 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4326 } 4327 4328 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4329 u32 type_id, void *data, u8 bits_offset, 4330 struct btf_show *show) 4331 { 4332 const struct btf_enum *enums = btf_type_enum(t); 4333 u32 i, nr_enums = btf_type_vlen(t); 4334 void *safe_data; 4335 int v; 4336 4337 safe_data = btf_show_start_type(show, t, type_id, data); 4338 if (!safe_data) 4339 return; 4340 4341 v = *(int *)safe_data; 4342 4343 for (i = 0; i < nr_enums; i++) { 4344 if (v != enums[i].val) 4345 continue; 4346 4347 btf_show_type_value(show, "%s", 4348 __btf_name_by_offset(btf, 4349 enums[i].name_off)); 4350 4351 btf_show_end_type(show); 4352 return; 4353 } 4354 4355 if (btf_type_kflag(t)) 4356 btf_show_type_value(show, "%d", v); 4357 else 4358 btf_show_type_value(show, "%u", v); 4359 btf_show_end_type(show); 4360 } 4361 4362 static struct btf_kind_operations enum_ops = { 4363 .check_meta = btf_enum_check_meta, 4364 .resolve = btf_df_resolve, 4365 .check_member = btf_enum_check_member, 4366 .check_kflag_member = btf_enum_check_kflag_member, 4367 .log_details = btf_enum_log, 4368 .show = btf_enum_show, 4369 }; 4370 4371 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4372 const struct btf_type *t, 4373 u32 meta_left) 4374 { 4375 const struct btf_enum64 *enums = btf_type_enum64(t); 4376 struct btf *btf = env->btf; 4377 const char *fmt_str; 4378 u16 i, nr_enums; 4379 u32 meta_needed; 4380 4381 nr_enums = btf_type_vlen(t); 4382 meta_needed = nr_enums * sizeof(*enums); 4383 4384 if (meta_left < meta_needed) { 4385 btf_verifier_log_basic(env, t, 4386 "meta_left:%u meta_needed:%u", 4387 meta_left, meta_needed); 4388 return -EINVAL; 4389 } 4390 4391 if (t->size > 8 || !is_power_of_2(t->size)) { 4392 btf_verifier_log_type(env, t, "Unexpected size"); 4393 return -EINVAL; 4394 } 4395 4396 /* enum type either no name or a valid one */ 4397 if (t->name_off && 4398 !btf_name_valid_identifier(env->btf, t->name_off)) { 4399 btf_verifier_log_type(env, t, "Invalid name"); 4400 return -EINVAL; 4401 } 4402 4403 btf_verifier_log_type(env, t, NULL); 4404 4405 for (i = 0; i < nr_enums; i++) { 4406 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4407 btf_verifier_log(env, "\tInvalid name_offset:%u", 4408 enums[i].name_off); 4409 return -EINVAL; 4410 } 4411 4412 /* enum member must have a valid name */ 4413 if (!enums[i].name_off || 4414 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4415 btf_verifier_log_type(env, t, "Invalid name"); 4416 return -EINVAL; 4417 } 4418 4419 if (env->log.level == BPF_LOG_KERNEL) 4420 continue; 4421 4422 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4423 btf_verifier_log(env, fmt_str, 4424 __btf_name_by_offset(btf, enums[i].name_off), 4425 btf_enum64_value(enums + i)); 4426 } 4427 4428 return meta_needed; 4429 } 4430 4431 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4432 u32 type_id, void *data, u8 bits_offset, 4433 struct btf_show *show) 4434 { 4435 const struct btf_enum64 *enums = btf_type_enum64(t); 4436 u32 i, nr_enums = btf_type_vlen(t); 4437 void *safe_data; 4438 s64 v; 4439 4440 safe_data = btf_show_start_type(show, t, type_id, data); 4441 if (!safe_data) 4442 return; 4443 4444 v = *(u64 *)safe_data; 4445 4446 for (i = 0; i < nr_enums; i++) { 4447 if (v != btf_enum64_value(enums + i)) 4448 continue; 4449 4450 btf_show_type_value(show, "%s", 4451 __btf_name_by_offset(btf, 4452 enums[i].name_off)); 4453 4454 btf_show_end_type(show); 4455 return; 4456 } 4457 4458 if (btf_type_kflag(t)) 4459 btf_show_type_value(show, "%lld", v); 4460 else 4461 btf_show_type_value(show, "%llu", v); 4462 btf_show_end_type(show); 4463 } 4464 4465 static struct btf_kind_operations enum64_ops = { 4466 .check_meta = btf_enum64_check_meta, 4467 .resolve = btf_df_resolve, 4468 .check_member = btf_enum_check_member, 4469 .check_kflag_member = btf_enum_check_kflag_member, 4470 .log_details = btf_enum_log, 4471 .show = btf_enum64_show, 4472 }; 4473 4474 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4475 const struct btf_type *t, 4476 u32 meta_left) 4477 { 4478 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4479 4480 if (meta_left < meta_needed) { 4481 btf_verifier_log_basic(env, t, 4482 "meta_left:%u meta_needed:%u", 4483 meta_left, meta_needed); 4484 return -EINVAL; 4485 } 4486 4487 if (t->name_off) { 4488 btf_verifier_log_type(env, t, "Invalid name"); 4489 return -EINVAL; 4490 } 4491 4492 if (btf_type_kflag(t)) { 4493 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4494 return -EINVAL; 4495 } 4496 4497 btf_verifier_log_type(env, t, NULL); 4498 4499 return meta_needed; 4500 } 4501 4502 static void btf_func_proto_log(struct btf_verifier_env *env, 4503 const struct btf_type *t) 4504 { 4505 const struct btf_param *args = (const struct btf_param *)(t + 1); 4506 u16 nr_args = btf_type_vlen(t), i; 4507 4508 btf_verifier_log(env, "return=%u args=(", t->type); 4509 if (!nr_args) { 4510 btf_verifier_log(env, "void"); 4511 goto done; 4512 } 4513 4514 if (nr_args == 1 && !args[0].type) { 4515 /* Only one vararg */ 4516 btf_verifier_log(env, "vararg"); 4517 goto done; 4518 } 4519 4520 btf_verifier_log(env, "%u %s", args[0].type, 4521 __btf_name_by_offset(env->btf, 4522 args[0].name_off)); 4523 for (i = 1; i < nr_args - 1; i++) 4524 btf_verifier_log(env, ", %u %s", args[i].type, 4525 __btf_name_by_offset(env->btf, 4526 args[i].name_off)); 4527 4528 if (nr_args > 1) { 4529 const struct btf_param *last_arg = &args[nr_args - 1]; 4530 4531 if (last_arg->type) 4532 btf_verifier_log(env, ", %u %s", last_arg->type, 4533 __btf_name_by_offset(env->btf, 4534 last_arg->name_off)); 4535 else 4536 btf_verifier_log(env, ", vararg"); 4537 } 4538 4539 done: 4540 btf_verifier_log(env, ")"); 4541 } 4542 4543 static struct btf_kind_operations func_proto_ops = { 4544 .check_meta = btf_func_proto_check_meta, 4545 .resolve = btf_df_resolve, 4546 /* 4547 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4548 * a struct's member. 4549 * 4550 * It should be a function pointer instead. 4551 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4552 * 4553 * Hence, there is no btf_func_check_member(). 4554 */ 4555 .check_member = btf_df_check_member, 4556 .check_kflag_member = btf_df_check_kflag_member, 4557 .log_details = btf_func_proto_log, 4558 .show = btf_df_show, 4559 }; 4560 4561 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4562 const struct btf_type *t, 4563 u32 meta_left) 4564 { 4565 if (!t->name_off || 4566 !btf_name_valid_identifier(env->btf, t->name_off)) { 4567 btf_verifier_log_type(env, t, "Invalid name"); 4568 return -EINVAL; 4569 } 4570 4571 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4572 btf_verifier_log_type(env, t, "Invalid func linkage"); 4573 return -EINVAL; 4574 } 4575 4576 if (btf_type_kflag(t)) { 4577 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4578 return -EINVAL; 4579 } 4580 4581 btf_verifier_log_type(env, t, NULL); 4582 4583 return 0; 4584 } 4585 4586 static int btf_func_resolve(struct btf_verifier_env *env, 4587 const struct resolve_vertex *v) 4588 { 4589 const struct btf_type *t = v->t; 4590 u32 next_type_id = t->type; 4591 int err; 4592 4593 err = btf_func_check(env, t); 4594 if (err) 4595 return err; 4596 4597 env_stack_pop_resolved(env, next_type_id, 0); 4598 return 0; 4599 } 4600 4601 static struct btf_kind_operations func_ops = { 4602 .check_meta = btf_func_check_meta, 4603 .resolve = btf_func_resolve, 4604 .check_member = btf_df_check_member, 4605 .check_kflag_member = btf_df_check_kflag_member, 4606 .log_details = btf_ref_type_log, 4607 .show = btf_df_show, 4608 }; 4609 4610 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4611 const struct btf_type *t, 4612 u32 meta_left) 4613 { 4614 const struct btf_var *var; 4615 u32 meta_needed = sizeof(*var); 4616 4617 if (meta_left < meta_needed) { 4618 btf_verifier_log_basic(env, t, 4619 "meta_left:%u meta_needed:%u", 4620 meta_left, meta_needed); 4621 return -EINVAL; 4622 } 4623 4624 if (btf_type_vlen(t)) { 4625 btf_verifier_log_type(env, t, "vlen != 0"); 4626 return -EINVAL; 4627 } 4628 4629 if (btf_type_kflag(t)) { 4630 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4631 return -EINVAL; 4632 } 4633 4634 if (!t->name_off || 4635 !btf_name_valid_identifier(env->btf, t->name_off)) { 4636 btf_verifier_log_type(env, t, "Invalid name"); 4637 return -EINVAL; 4638 } 4639 4640 /* A var cannot be in type void */ 4641 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4642 btf_verifier_log_type(env, t, "Invalid type_id"); 4643 return -EINVAL; 4644 } 4645 4646 var = btf_type_var(t); 4647 if (var->linkage != BTF_VAR_STATIC && 4648 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4649 btf_verifier_log_type(env, t, "Linkage not supported"); 4650 return -EINVAL; 4651 } 4652 4653 btf_verifier_log_type(env, t, NULL); 4654 4655 return meta_needed; 4656 } 4657 4658 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4659 { 4660 const struct btf_var *var = btf_type_var(t); 4661 4662 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4663 } 4664 4665 static const struct btf_kind_operations var_ops = { 4666 .check_meta = btf_var_check_meta, 4667 .resolve = btf_var_resolve, 4668 .check_member = btf_df_check_member, 4669 .check_kflag_member = btf_df_check_kflag_member, 4670 .log_details = btf_var_log, 4671 .show = btf_var_show, 4672 }; 4673 4674 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4675 const struct btf_type *t, 4676 u32 meta_left) 4677 { 4678 const struct btf_var_secinfo *vsi; 4679 u64 last_vsi_end_off = 0, sum = 0; 4680 u32 i, meta_needed; 4681 4682 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4683 if (meta_left < meta_needed) { 4684 btf_verifier_log_basic(env, t, 4685 "meta_left:%u meta_needed:%u", 4686 meta_left, meta_needed); 4687 return -EINVAL; 4688 } 4689 4690 if (!t->size) { 4691 btf_verifier_log_type(env, t, "size == 0"); 4692 return -EINVAL; 4693 } 4694 4695 if (btf_type_kflag(t)) { 4696 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4697 return -EINVAL; 4698 } 4699 4700 if (!t->name_off || 4701 !btf_name_valid_section(env->btf, t->name_off)) { 4702 btf_verifier_log_type(env, t, "Invalid name"); 4703 return -EINVAL; 4704 } 4705 4706 btf_verifier_log_type(env, t, NULL); 4707 4708 for_each_vsi(i, t, vsi) { 4709 /* A var cannot be in type void */ 4710 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4711 btf_verifier_log_vsi(env, t, vsi, 4712 "Invalid type_id"); 4713 return -EINVAL; 4714 } 4715 4716 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4717 btf_verifier_log_vsi(env, t, vsi, 4718 "Invalid offset"); 4719 return -EINVAL; 4720 } 4721 4722 if (!vsi->size || vsi->size > t->size) { 4723 btf_verifier_log_vsi(env, t, vsi, 4724 "Invalid size"); 4725 return -EINVAL; 4726 } 4727 4728 last_vsi_end_off = vsi->offset + vsi->size; 4729 if (last_vsi_end_off > t->size) { 4730 btf_verifier_log_vsi(env, t, vsi, 4731 "Invalid offset+size"); 4732 return -EINVAL; 4733 } 4734 4735 btf_verifier_log_vsi(env, t, vsi, NULL); 4736 sum += vsi->size; 4737 } 4738 4739 if (t->size < sum) { 4740 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4741 return -EINVAL; 4742 } 4743 4744 return meta_needed; 4745 } 4746 4747 static int btf_datasec_resolve(struct btf_verifier_env *env, 4748 const struct resolve_vertex *v) 4749 { 4750 const struct btf_var_secinfo *vsi; 4751 struct btf *btf = env->btf; 4752 u16 i; 4753 4754 env->resolve_mode = RESOLVE_TBD; 4755 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4756 u32 var_type_id = vsi->type, type_id, type_size = 0; 4757 const struct btf_type *var_type = btf_type_by_id(env->btf, 4758 var_type_id); 4759 if (!var_type || !btf_type_is_var(var_type)) { 4760 btf_verifier_log_vsi(env, v->t, vsi, 4761 "Not a VAR kind member"); 4762 return -EINVAL; 4763 } 4764 4765 if (!env_type_is_resolve_sink(env, var_type) && 4766 !env_type_is_resolved(env, var_type_id)) { 4767 env_stack_set_next_member(env, i + 1); 4768 return env_stack_push(env, var_type, var_type_id); 4769 } 4770 4771 type_id = var_type->type; 4772 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4773 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4774 return -EINVAL; 4775 } 4776 4777 if (vsi->size < type_size) { 4778 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4779 return -EINVAL; 4780 } 4781 } 4782 4783 env_stack_pop_resolved(env, 0, 0); 4784 return 0; 4785 } 4786 4787 static void btf_datasec_log(struct btf_verifier_env *env, 4788 const struct btf_type *t) 4789 { 4790 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4791 } 4792 4793 static void btf_datasec_show(const struct btf *btf, 4794 const struct btf_type *t, u32 type_id, 4795 void *data, u8 bits_offset, 4796 struct btf_show *show) 4797 { 4798 const struct btf_var_secinfo *vsi; 4799 const struct btf_type *var; 4800 u32 i; 4801 4802 if (!btf_show_start_type(show, t, type_id, data)) 4803 return; 4804 4805 btf_show_type_value(show, "section (\"%s\") = {", 4806 __btf_name_by_offset(btf, t->name_off)); 4807 for_each_vsi(i, t, vsi) { 4808 var = btf_type_by_id(btf, vsi->type); 4809 if (i) 4810 btf_show(show, ","); 4811 btf_type_ops(var)->show(btf, var, vsi->type, 4812 data + vsi->offset, bits_offset, show); 4813 } 4814 btf_show_end_type(show); 4815 } 4816 4817 static const struct btf_kind_operations datasec_ops = { 4818 .check_meta = btf_datasec_check_meta, 4819 .resolve = btf_datasec_resolve, 4820 .check_member = btf_df_check_member, 4821 .check_kflag_member = btf_df_check_kflag_member, 4822 .log_details = btf_datasec_log, 4823 .show = btf_datasec_show, 4824 }; 4825 4826 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4827 const struct btf_type *t, 4828 u32 meta_left) 4829 { 4830 if (btf_type_vlen(t)) { 4831 btf_verifier_log_type(env, t, "vlen != 0"); 4832 return -EINVAL; 4833 } 4834 4835 if (btf_type_kflag(t)) { 4836 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4837 return -EINVAL; 4838 } 4839 4840 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4841 t->size != 16) { 4842 btf_verifier_log_type(env, t, "Invalid type_size"); 4843 return -EINVAL; 4844 } 4845 4846 btf_verifier_log_type(env, t, NULL); 4847 4848 return 0; 4849 } 4850 4851 static int btf_float_check_member(struct btf_verifier_env *env, 4852 const struct btf_type *struct_type, 4853 const struct btf_member *member, 4854 const struct btf_type *member_type) 4855 { 4856 u64 start_offset_bytes; 4857 u64 end_offset_bytes; 4858 u64 misalign_bits; 4859 u64 align_bytes; 4860 u64 align_bits; 4861 4862 /* Different architectures have different alignment requirements, so 4863 * here we check only for the reasonable minimum. This way we ensure 4864 * that types after CO-RE can pass the kernel BTF verifier. 4865 */ 4866 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4867 align_bits = align_bytes * BITS_PER_BYTE; 4868 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4869 if (misalign_bits) { 4870 btf_verifier_log_member(env, struct_type, member, 4871 "Member is not properly aligned"); 4872 return -EINVAL; 4873 } 4874 4875 start_offset_bytes = member->offset / BITS_PER_BYTE; 4876 end_offset_bytes = start_offset_bytes + member_type->size; 4877 if (end_offset_bytes > struct_type->size) { 4878 btf_verifier_log_member(env, struct_type, member, 4879 "Member exceeds struct_size"); 4880 return -EINVAL; 4881 } 4882 4883 return 0; 4884 } 4885 4886 static void btf_float_log(struct btf_verifier_env *env, 4887 const struct btf_type *t) 4888 { 4889 btf_verifier_log(env, "size=%u", t->size); 4890 } 4891 4892 static const struct btf_kind_operations float_ops = { 4893 .check_meta = btf_float_check_meta, 4894 .resolve = btf_df_resolve, 4895 .check_member = btf_float_check_member, 4896 .check_kflag_member = btf_generic_check_kflag_member, 4897 .log_details = btf_float_log, 4898 .show = btf_df_show, 4899 }; 4900 4901 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4902 const struct btf_type *t, 4903 u32 meta_left) 4904 { 4905 const struct btf_decl_tag *tag; 4906 u32 meta_needed = sizeof(*tag); 4907 s32 component_idx; 4908 const char *value; 4909 4910 if (meta_left < meta_needed) { 4911 btf_verifier_log_basic(env, t, 4912 "meta_left:%u meta_needed:%u", 4913 meta_left, meta_needed); 4914 return -EINVAL; 4915 } 4916 4917 value = btf_name_by_offset(env->btf, t->name_off); 4918 if (!value || !value[0]) { 4919 btf_verifier_log_type(env, t, "Invalid value"); 4920 return -EINVAL; 4921 } 4922 4923 if (btf_type_vlen(t)) { 4924 btf_verifier_log_type(env, t, "vlen != 0"); 4925 return -EINVAL; 4926 } 4927 4928 if (btf_type_kflag(t)) { 4929 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4930 return -EINVAL; 4931 } 4932 4933 component_idx = btf_type_decl_tag(t)->component_idx; 4934 if (component_idx < -1) { 4935 btf_verifier_log_type(env, t, "Invalid component_idx"); 4936 return -EINVAL; 4937 } 4938 4939 btf_verifier_log_type(env, t, NULL); 4940 4941 return meta_needed; 4942 } 4943 4944 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4945 const struct resolve_vertex *v) 4946 { 4947 const struct btf_type *next_type; 4948 const struct btf_type *t = v->t; 4949 u32 next_type_id = t->type; 4950 struct btf *btf = env->btf; 4951 s32 component_idx; 4952 u32 vlen; 4953 4954 next_type = btf_type_by_id(btf, next_type_id); 4955 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4956 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4957 return -EINVAL; 4958 } 4959 4960 if (!env_type_is_resolve_sink(env, next_type) && 4961 !env_type_is_resolved(env, next_type_id)) 4962 return env_stack_push(env, next_type, next_type_id); 4963 4964 component_idx = btf_type_decl_tag(t)->component_idx; 4965 if (component_idx != -1) { 4966 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4967 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4968 return -EINVAL; 4969 } 4970 4971 if (btf_type_is_struct(next_type)) { 4972 vlen = btf_type_vlen(next_type); 4973 } else { 4974 /* next_type should be a function */ 4975 next_type = btf_type_by_id(btf, next_type->type); 4976 vlen = btf_type_vlen(next_type); 4977 } 4978 4979 if ((u32)component_idx >= vlen) { 4980 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4981 return -EINVAL; 4982 } 4983 } 4984 4985 env_stack_pop_resolved(env, next_type_id, 0); 4986 4987 return 0; 4988 } 4989 4990 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4991 { 4992 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4993 btf_type_decl_tag(t)->component_idx); 4994 } 4995 4996 static const struct btf_kind_operations decl_tag_ops = { 4997 .check_meta = btf_decl_tag_check_meta, 4998 .resolve = btf_decl_tag_resolve, 4999 .check_member = btf_df_check_member, 5000 .check_kflag_member = btf_df_check_kflag_member, 5001 .log_details = btf_decl_tag_log, 5002 .show = btf_df_show, 5003 }; 5004 5005 static int btf_func_proto_check(struct btf_verifier_env *env, 5006 const struct btf_type *t) 5007 { 5008 const struct btf_type *ret_type; 5009 const struct btf_param *args; 5010 const struct btf *btf; 5011 u16 nr_args, i; 5012 int err; 5013 5014 btf = env->btf; 5015 args = (const struct btf_param *)(t + 1); 5016 nr_args = btf_type_vlen(t); 5017 5018 /* Check func return type which could be "void" (t->type == 0) */ 5019 if (t->type) { 5020 u32 ret_type_id = t->type; 5021 5022 ret_type = btf_type_by_id(btf, ret_type_id); 5023 if (!ret_type) { 5024 btf_verifier_log_type(env, t, "Invalid return type"); 5025 return -EINVAL; 5026 } 5027 5028 if (btf_type_is_resolve_source_only(ret_type)) { 5029 btf_verifier_log_type(env, t, "Invalid return type"); 5030 return -EINVAL; 5031 } 5032 5033 if (btf_type_needs_resolve(ret_type) && 5034 !env_type_is_resolved(env, ret_type_id)) { 5035 err = btf_resolve(env, ret_type, ret_type_id); 5036 if (err) 5037 return err; 5038 } 5039 5040 /* Ensure the return type is a type that has a size */ 5041 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5042 btf_verifier_log_type(env, t, "Invalid return type"); 5043 return -EINVAL; 5044 } 5045 } 5046 5047 if (!nr_args) 5048 return 0; 5049 5050 /* Last func arg type_id could be 0 if it is a vararg */ 5051 if (!args[nr_args - 1].type) { 5052 if (args[nr_args - 1].name_off) { 5053 btf_verifier_log_type(env, t, "Invalid arg#%u", 5054 nr_args); 5055 return -EINVAL; 5056 } 5057 nr_args--; 5058 } 5059 5060 for (i = 0; i < nr_args; i++) { 5061 const struct btf_type *arg_type; 5062 u32 arg_type_id; 5063 5064 arg_type_id = args[i].type; 5065 arg_type = btf_type_by_id(btf, arg_type_id); 5066 if (!arg_type) { 5067 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5068 return -EINVAL; 5069 } 5070 5071 if (btf_type_is_resolve_source_only(arg_type)) { 5072 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5073 return -EINVAL; 5074 } 5075 5076 if (args[i].name_off && 5077 (!btf_name_offset_valid(btf, args[i].name_off) || 5078 !btf_name_valid_identifier(btf, args[i].name_off))) { 5079 btf_verifier_log_type(env, t, 5080 "Invalid arg#%u", i + 1); 5081 return -EINVAL; 5082 } 5083 5084 if (btf_type_needs_resolve(arg_type) && 5085 !env_type_is_resolved(env, arg_type_id)) { 5086 err = btf_resolve(env, arg_type, arg_type_id); 5087 if (err) 5088 return err; 5089 } 5090 5091 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5092 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5093 return -EINVAL; 5094 } 5095 } 5096 5097 return 0; 5098 } 5099 5100 static int btf_func_check(struct btf_verifier_env *env, 5101 const struct btf_type *t) 5102 { 5103 const struct btf_type *proto_type; 5104 const struct btf_param *args; 5105 const struct btf *btf; 5106 u16 nr_args, i; 5107 5108 btf = env->btf; 5109 proto_type = btf_type_by_id(btf, t->type); 5110 5111 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5112 btf_verifier_log_type(env, t, "Invalid type_id"); 5113 return -EINVAL; 5114 } 5115 5116 args = (const struct btf_param *)(proto_type + 1); 5117 nr_args = btf_type_vlen(proto_type); 5118 for (i = 0; i < nr_args; i++) { 5119 if (!args[i].name_off && args[i].type) { 5120 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5121 return -EINVAL; 5122 } 5123 } 5124 5125 return 0; 5126 } 5127 5128 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5129 [BTF_KIND_INT] = &int_ops, 5130 [BTF_KIND_PTR] = &ptr_ops, 5131 [BTF_KIND_ARRAY] = &array_ops, 5132 [BTF_KIND_STRUCT] = &struct_ops, 5133 [BTF_KIND_UNION] = &struct_ops, 5134 [BTF_KIND_ENUM] = &enum_ops, 5135 [BTF_KIND_FWD] = &fwd_ops, 5136 [BTF_KIND_TYPEDEF] = &modifier_ops, 5137 [BTF_KIND_VOLATILE] = &modifier_ops, 5138 [BTF_KIND_CONST] = &modifier_ops, 5139 [BTF_KIND_RESTRICT] = &modifier_ops, 5140 [BTF_KIND_FUNC] = &func_ops, 5141 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5142 [BTF_KIND_VAR] = &var_ops, 5143 [BTF_KIND_DATASEC] = &datasec_ops, 5144 [BTF_KIND_FLOAT] = &float_ops, 5145 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5146 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5147 [BTF_KIND_ENUM64] = &enum64_ops, 5148 }; 5149 5150 static s32 btf_check_meta(struct btf_verifier_env *env, 5151 const struct btf_type *t, 5152 u32 meta_left) 5153 { 5154 u32 saved_meta_left = meta_left; 5155 s32 var_meta_size; 5156 5157 if (meta_left < sizeof(*t)) { 5158 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5159 env->log_type_id, meta_left, sizeof(*t)); 5160 return -EINVAL; 5161 } 5162 meta_left -= sizeof(*t); 5163 5164 if (t->info & ~BTF_INFO_MASK) { 5165 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5166 env->log_type_id, t->info); 5167 return -EINVAL; 5168 } 5169 5170 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5171 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5172 btf_verifier_log(env, "[%u] Invalid kind:%u", 5173 env->log_type_id, BTF_INFO_KIND(t->info)); 5174 return -EINVAL; 5175 } 5176 5177 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5178 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5179 env->log_type_id, t->name_off); 5180 return -EINVAL; 5181 } 5182 5183 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5184 if (var_meta_size < 0) 5185 return var_meta_size; 5186 5187 meta_left -= var_meta_size; 5188 5189 return saved_meta_left - meta_left; 5190 } 5191 5192 static int btf_check_all_metas(struct btf_verifier_env *env) 5193 { 5194 struct btf *btf = env->btf; 5195 struct btf_header *hdr; 5196 void *cur, *end; 5197 5198 hdr = &btf->hdr; 5199 cur = btf->nohdr_data + hdr->type_off; 5200 end = cur + hdr->type_len; 5201 5202 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5203 while (cur < end) { 5204 struct btf_type *t = cur; 5205 s32 meta_size; 5206 5207 meta_size = btf_check_meta(env, t, end - cur); 5208 if (meta_size < 0) 5209 return meta_size; 5210 5211 btf_add_type(env, t); 5212 cur += meta_size; 5213 env->log_type_id++; 5214 } 5215 5216 return 0; 5217 } 5218 5219 static bool btf_resolve_valid(struct btf_verifier_env *env, 5220 const struct btf_type *t, 5221 u32 type_id) 5222 { 5223 struct btf *btf = env->btf; 5224 5225 if (!env_type_is_resolved(env, type_id)) 5226 return false; 5227 5228 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5229 return !btf_resolved_type_id(btf, type_id) && 5230 !btf_resolved_type_size(btf, type_id); 5231 5232 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5233 return btf_resolved_type_id(btf, type_id) && 5234 !btf_resolved_type_size(btf, type_id); 5235 5236 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5237 btf_type_is_var(t)) { 5238 t = btf_type_id_resolve(btf, &type_id); 5239 return t && 5240 !btf_type_is_modifier(t) && 5241 !btf_type_is_var(t) && 5242 !btf_type_is_datasec(t); 5243 } 5244 5245 if (btf_type_is_array(t)) { 5246 const struct btf_array *array = btf_type_array(t); 5247 const struct btf_type *elem_type; 5248 u32 elem_type_id = array->type; 5249 u32 elem_size; 5250 5251 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5252 return elem_type && !btf_type_is_modifier(elem_type) && 5253 (array->nelems * elem_size == 5254 btf_resolved_type_size(btf, type_id)); 5255 } 5256 5257 return false; 5258 } 5259 5260 static int btf_resolve(struct btf_verifier_env *env, 5261 const struct btf_type *t, u32 type_id) 5262 { 5263 u32 save_log_type_id = env->log_type_id; 5264 const struct resolve_vertex *v; 5265 int err = 0; 5266 5267 env->resolve_mode = RESOLVE_TBD; 5268 env_stack_push(env, t, type_id); 5269 while (!err && (v = env_stack_peak(env))) { 5270 env->log_type_id = v->type_id; 5271 err = btf_type_ops(v->t)->resolve(env, v); 5272 } 5273 5274 env->log_type_id = type_id; 5275 if (err == -E2BIG) { 5276 btf_verifier_log_type(env, t, 5277 "Exceeded max resolving depth:%u", 5278 MAX_RESOLVE_DEPTH); 5279 } else if (err == -EEXIST) { 5280 btf_verifier_log_type(env, t, "Loop detected"); 5281 } 5282 5283 /* Final sanity check */ 5284 if (!err && !btf_resolve_valid(env, t, type_id)) { 5285 btf_verifier_log_type(env, t, "Invalid resolve state"); 5286 err = -EINVAL; 5287 } 5288 5289 env->log_type_id = save_log_type_id; 5290 return err; 5291 } 5292 5293 static int btf_check_all_types(struct btf_verifier_env *env) 5294 { 5295 struct btf *btf = env->btf; 5296 const struct btf_type *t; 5297 u32 type_id, i; 5298 int err; 5299 5300 err = env_resolve_init(env); 5301 if (err) 5302 return err; 5303 5304 env->phase++; 5305 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5306 type_id = btf->start_id + i; 5307 t = btf_type_by_id(btf, type_id); 5308 5309 env->log_type_id = type_id; 5310 if (btf_type_needs_resolve(t) && 5311 !env_type_is_resolved(env, type_id)) { 5312 err = btf_resolve(env, t, type_id); 5313 if (err) 5314 return err; 5315 } 5316 5317 if (btf_type_is_func_proto(t)) { 5318 err = btf_func_proto_check(env, t); 5319 if (err) 5320 return err; 5321 } 5322 } 5323 5324 return 0; 5325 } 5326 5327 static int btf_parse_type_sec(struct btf_verifier_env *env) 5328 { 5329 const struct btf_header *hdr = &env->btf->hdr; 5330 int err; 5331 5332 /* Type section must align to 4 bytes */ 5333 if (hdr->type_off & (sizeof(u32) - 1)) { 5334 btf_verifier_log(env, "Unaligned type_off"); 5335 return -EINVAL; 5336 } 5337 5338 if (!env->btf->base_btf && !hdr->type_len) { 5339 btf_verifier_log(env, "No type found"); 5340 return -EINVAL; 5341 } 5342 5343 err = btf_check_all_metas(env); 5344 if (err) 5345 return err; 5346 5347 return btf_check_all_types(env); 5348 } 5349 5350 static int btf_parse_str_sec(struct btf_verifier_env *env) 5351 { 5352 const struct btf_header *hdr; 5353 struct btf *btf = env->btf; 5354 const char *start, *end; 5355 5356 hdr = &btf->hdr; 5357 start = btf->nohdr_data + hdr->str_off; 5358 end = start + hdr->str_len; 5359 5360 if (end != btf->data + btf->data_size) { 5361 btf_verifier_log(env, "String section is not at the end"); 5362 return -EINVAL; 5363 } 5364 5365 btf->strings = start; 5366 5367 if (btf->base_btf && !hdr->str_len) 5368 return 0; 5369 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5370 btf_verifier_log(env, "Invalid string section"); 5371 return -EINVAL; 5372 } 5373 if (!btf->base_btf && start[0]) { 5374 btf_verifier_log(env, "Invalid string section"); 5375 return -EINVAL; 5376 } 5377 5378 return 0; 5379 } 5380 5381 static const size_t btf_sec_info_offset[] = { 5382 offsetof(struct btf_header, type_off), 5383 offsetof(struct btf_header, str_off), 5384 }; 5385 5386 static int btf_sec_info_cmp(const void *a, const void *b) 5387 { 5388 const struct btf_sec_info *x = a; 5389 const struct btf_sec_info *y = b; 5390 5391 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5392 } 5393 5394 static int btf_check_sec_info(struct btf_verifier_env *env, 5395 u32 btf_data_size) 5396 { 5397 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5398 u32 total, expected_total, i; 5399 const struct btf_header *hdr; 5400 const struct btf *btf; 5401 5402 btf = env->btf; 5403 hdr = &btf->hdr; 5404 5405 /* Populate the secs from hdr */ 5406 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5407 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5408 btf_sec_info_offset[i]); 5409 5410 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5411 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5412 5413 /* Check for gaps and overlap among sections */ 5414 total = 0; 5415 expected_total = btf_data_size - hdr->hdr_len; 5416 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5417 if (expected_total < secs[i].off) { 5418 btf_verifier_log(env, "Invalid section offset"); 5419 return -EINVAL; 5420 } 5421 if (total < secs[i].off) { 5422 /* gap */ 5423 btf_verifier_log(env, "Unsupported section found"); 5424 return -EINVAL; 5425 } 5426 if (total > secs[i].off) { 5427 btf_verifier_log(env, "Section overlap found"); 5428 return -EINVAL; 5429 } 5430 if (expected_total - total < secs[i].len) { 5431 btf_verifier_log(env, 5432 "Total section length too long"); 5433 return -EINVAL; 5434 } 5435 total += secs[i].len; 5436 } 5437 5438 /* There is data other than hdr and known sections */ 5439 if (expected_total != total) { 5440 btf_verifier_log(env, "Unsupported section found"); 5441 return -EINVAL; 5442 } 5443 5444 return 0; 5445 } 5446 5447 static int btf_parse_hdr(struct btf_verifier_env *env) 5448 { 5449 u32 hdr_len, hdr_copy, btf_data_size; 5450 const struct btf_header *hdr; 5451 struct btf *btf; 5452 5453 btf = env->btf; 5454 btf_data_size = btf->data_size; 5455 5456 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5457 btf_verifier_log(env, "hdr_len not found"); 5458 return -EINVAL; 5459 } 5460 5461 hdr = btf->data; 5462 hdr_len = hdr->hdr_len; 5463 if (btf_data_size < hdr_len) { 5464 btf_verifier_log(env, "btf_header not found"); 5465 return -EINVAL; 5466 } 5467 5468 /* Ensure the unsupported header fields are zero */ 5469 if (hdr_len > sizeof(btf->hdr)) { 5470 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5471 u8 *end = btf->data + hdr_len; 5472 5473 for (; expected_zero < end; expected_zero++) { 5474 if (*expected_zero) { 5475 btf_verifier_log(env, "Unsupported btf_header"); 5476 return -E2BIG; 5477 } 5478 } 5479 } 5480 5481 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5482 memcpy(&btf->hdr, btf->data, hdr_copy); 5483 5484 hdr = &btf->hdr; 5485 5486 btf_verifier_log_hdr(env, btf_data_size); 5487 5488 if (hdr->magic != BTF_MAGIC) { 5489 btf_verifier_log(env, "Invalid magic"); 5490 return -EINVAL; 5491 } 5492 5493 if (hdr->version != BTF_VERSION) { 5494 btf_verifier_log(env, "Unsupported version"); 5495 return -ENOTSUPP; 5496 } 5497 5498 if (hdr->flags) { 5499 btf_verifier_log(env, "Unsupported flags"); 5500 return -ENOTSUPP; 5501 } 5502 5503 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5504 btf_verifier_log(env, "No data"); 5505 return -EINVAL; 5506 } 5507 5508 return btf_check_sec_info(env, btf_data_size); 5509 } 5510 5511 static const char *alloc_obj_fields[] = { 5512 "bpf_spin_lock", 5513 "bpf_list_head", 5514 "bpf_list_node", 5515 "bpf_rb_root", 5516 "bpf_rb_node", 5517 "bpf_refcount", 5518 }; 5519 5520 static struct btf_struct_metas * 5521 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5522 { 5523 struct btf_struct_metas *tab = NULL; 5524 struct btf_id_set *aof; 5525 int i, n, id, ret; 5526 5527 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5528 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5529 5530 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5531 if (!aof) 5532 return ERR_PTR(-ENOMEM); 5533 aof->cnt = 0; 5534 5535 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5536 /* Try to find whether this special type exists in user BTF, and 5537 * if so remember its ID so we can easily find it among members 5538 * of structs that we iterate in the next loop. 5539 */ 5540 struct btf_id_set *new_aof; 5541 5542 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5543 if (id < 0) 5544 continue; 5545 5546 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5547 GFP_KERNEL | __GFP_NOWARN); 5548 if (!new_aof) { 5549 ret = -ENOMEM; 5550 goto free_aof; 5551 } 5552 aof = new_aof; 5553 aof->ids[aof->cnt++] = id; 5554 } 5555 5556 n = btf_nr_types(btf); 5557 for (i = 1; i < n; i++) { 5558 /* Try to find if there are kptrs in user BTF and remember their ID */ 5559 struct btf_id_set *new_aof; 5560 struct btf_field_info tmp; 5561 const struct btf_type *t; 5562 5563 t = btf_type_by_id(btf, i); 5564 if (!t) { 5565 ret = -EINVAL; 5566 goto free_aof; 5567 } 5568 5569 ret = btf_find_kptr(btf, t, 0, 0, &tmp); 5570 if (ret != BTF_FIELD_FOUND) 5571 continue; 5572 5573 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5574 GFP_KERNEL | __GFP_NOWARN); 5575 if (!new_aof) { 5576 ret = -ENOMEM; 5577 goto free_aof; 5578 } 5579 aof = new_aof; 5580 aof->ids[aof->cnt++] = i; 5581 } 5582 5583 if (!aof->cnt) { 5584 kfree(aof); 5585 return NULL; 5586 } 5587 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5588 5589 for (i = 1; i < n; i++) { 5590 struct btf_struct_metas *new_tab; 5591 const struct btf_member *member; 5592 struct btf_struct_meta *type; 5593 struct btf_record *record; 5594 const struct btf_type *t; 5595 int j, tab_cnt; 5596 5597 t = btf_type_by_id(btf, i); 5598 if (!__btf_type_is_struct(t)) 5599 continue; 5600 5601 cond_resched(); 5602 5603 for_each_member(j, t, member) { 5604 if (btf_id_set_contains(aof, member->type)) 5605 goto parse; 5606 } 5607 continue; 5608 parse: 5609 tab_cnt = tab ? tab->cnt : 0; 5610 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5611 GFP_KERNEL | __GFP_NOWARN); 5612 if (!new_tab) { 5613 ret = -ENOMEM; 5614 goto free; 5615 } 5616 if (!tab) 5617 new_tab->cnt = 0; 5618 tab = new_tab; 5619 5620 type = &tab->types[tab->cnt]; 5621 type->btf_id = i; 5622 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5623 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5624 BPF_KPTR, t->size); 5625 /* The record cannot be unset, treat it as an error if so */ 5626 if (IS_ERR_OR_NULL(record)) { 5627 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5628 goto free; 5629 } 5630 type->record = record; 5631 tab->cnt++; 5632 } 5633 kfree(aof); 5634 return tab; 5635 free: 5636 btf_struct_metas_free(tab); 5637 free_aof: 5638 kfree(aof); 5639 return ERR_PTR(ret); 5640 } 5641 5642 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5643 { 5644 struct btf_struct_metas *tab; 5645 5646 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5647 tab = btf->struct_meta_tab; 5648 if (!tab) 5649 return NULL; 5650 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5651 } 5652 5653 static int btf_check_type_tags(struct btf_verifier_env *env, 5654 struct btf *btf, int start_id) 5655 { 5656 int i, n, good_id = start_id - 1; 5657 bool in_tags; 5658 5659 n = btf_nr_types(btf); 5660 for (i = start_id; i < n; i++) { 5661 const struct btf_type *t; 5662 int chain_limit = 32; 5663 u32 cur_id = i; 5664 5665 t = btf_type_by_id(btf, i); 5666 if (!t) 5667 return -EINVAL; 5668 if (!btf_type_is_modifier(t)) 5669 continue; 5670 5671 cond_resched(); 5672 5673 in_tags = btf_type_is_type_tag(t); 5674 while (btf_type_is_modifier(t)) { 5675 if (!chain_limit--) { 5676 btf_verifier_log(env, "Max chain length or cycle detected"); 5677 return -ELOOP; 5678 } 5679 if (btf_type_is_type_tag(t)) { 5680 if (!in_tags) { 5681 btf_verifier_log(env, "Type tags don't precede modifiers"); 5682 return -EINVAL; 5683 } 5684 } else if (in_tags) { 5685 in_tags = false; 5686 } 5687 if (cur_id <= good_id) 5688 break; 5689 /* Move to next type */ 5690 cur_id = t->type; 5691 t = btf_type_by_id(btf, cur_id); 5692 if (!t) 5693 return -EINVAL; 5694 } 5695 good_id = i; 5696 } 5697 return 0; 5698 } 5699 5700 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5701 { 5702 u32 log_true_size; 5703 int err; 5704 5705 err = bpf_vlog_finalize(log, &log_true_size); 5706 5707 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5708 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5709 &log_true_size, sizeof(log_true_size))) 5710 err = -EFAULT; 5711 5712 return err; 5713 } 5714 5715 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5716 { 5717 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5718 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5719 struct btf_struct_metas *struct_meta_tab; 5720 struct btf_verifier_env *env = NULL; 5721 struct btf *btf = NULL; 5722 u8 *data; 5723 int err, ret; 5724 5725 if (attr->btf_size > BTF_MAX_SIZE) 5726 return ERR_PTR(-E2BIG); 5727 5728 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5729 if (!env) 5730 return ERR_PTR(-ENOMEM); 5731 5732 /* user could have requested verbose verifier output 5733 * and supplied buffer to store the verification trace 5734 */ 5735 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5736 log_ubuf, attr->btf_log_size); 5737 if (err) 5738 goto errout_free; 5739 5740 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5741 if (!btf) { 5742 err = -ENOMEM; 5743 goto errout; 5744 } 5745 env->btf = btf; 5746 5747 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5748 if (!data) { 5749 err = -ENOMEM; 5750 goto errout; 5751 } 5752 5753 btf->data = data; 5754 btf->data_size = attr->btf_size; 5755 5756 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5757 err = -EFAULT; 5758 goto errout; 5759 } 5760 5761 err = btf_parse_hdr(env); 5762 if (err) 5763 goto errout; 5764 5765 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5766 5767 err = btf_parse_str_sec(env); 5768 if (err) 5769 goto errout; 5770 5771 err = btf_parse_type_sec(env); 5772 if (err) 5773 goto errout; 5774 5775 err = btf_check_type_tags(env, btf, 1); 5776 if (err) 5777 goto errout; 5778 5779 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5780 if (IS_ERR(struct_meta_tab)) { 5781 err = PTR_ERR(struct_meta_tab); 5782 goto errout; 5783 } 5784 btf->struct_meta_tab = struct_meta_tab; 5785 5786 if (struct_meta_tab) { 5787 int i; 5788 5789 for (i = 0; i < struct_meta_tab->cnt; i++) { 5790 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5791 if (err < 0) 5792 goto errout_meta; 5793 } 5794 } 5795 5796 err = finalize_log(&env->log, uattr, uattr_size); 5797 if (err) 5798 goto errout_free; 5799 5800 btf_verifier_env_free(env); 5801 refcount_set(&btf->refcnt, 1); 5802 return btf; 5803 5804 errout_meta: 5805 btf_free_struct_meta_tab(btf); 5806 errout: 5807 /* overwrite err with -ENOSPC or -EFAULT */ 5808 ret = finalize_log(&env->log, uattr, uattr_size); 5809 if (ret) 5810 err = ret; 5811 errout_free: 5812 btf_verifier_env_free(env); 5813 if (btf) 5814 btf_free(btf); 5815 return ERR_PTR(err); 5816 } 5817 5818 extern char __start_BTF[]; 5819 extern char __stop_BTF[]; 5820 extern struct btf *btf_vmlinux; 5821 5822 #define BPF_MAP_TYPE(_id, _ops) 5823 #define BPF_LINK_TYPE(_id, _name) 5824 static union { 5825 struct bpf_ctx_convert { 5826 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5827 prog_ctx_type _id##_prog; \ 5828 kern_ctx_type _id##_kern; 5829 #include <linux/bpf_types.h> 5830 #undef BPF_PROG_TYPE 5831 } *__t; 5832 /* 't' is written once under lock. Read many times. */ 5833 const struct btf_type *t; 5834 } bpf_ctx_convert; 5835 enum { 5836 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5837 __ctx_convert##_id, 5838 #include <linux/bpf_types.h> 5839 #undef BPF_PROG_TYPE 5840 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5841 }; 5842 static u8 bpf_ctx_convert_map[] = { 5843 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5844 [_id] = __ctx_convert##_id, 5845 #include <linux/bpf_types.h> 5846 #undef BPF_PROG_TYPE 5847 0, /* avoid empty array */ 5848 }; 5849 #undef BPF_MAP_TYPE 5850 #undef BPF_LINK_TYPE 5851 5852 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5853 { 5854 const struct btf_type *conv_struct; 5855 const struct btf_member *ctx_type; 5856 5857 conv_struct = bpf_ctx_convert.t; 5858 if (!conv_struct) 5859 return NULL; 5860 /* prog_type is valid bpf program type. No need for bounds check. */ 5861 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5862 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5863 * Like 'struct __sk_buff' 5864 */ 5865 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5866 } 5867 5868 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5869 { 5870 const struct btf_type *conv_struct; 5871 const struct btf_member *ctx_type; 5872 5873 conv_struct = bpf_ctx_convert.t; 5874 if (!conv_struct) 5875 return -EFAULT; 5876 /* prog_type is valid bpf program type. No need for bounds check. */ 5877 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5878 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5879 * Like 'struct sk_buff' 5880 */ 5881 return ctx_type->type; 5882 } 5883 5884 bool btf_is_projection_of(const char *pname, const char *tname) 5885 { 5886 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5887 return true; 5888 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5889 return true; 5890 return false; 5891 } 5892 5893 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5894 const struct btf_type *t, enum bpf_prog_type prog_type, 5895 int arg) 5896 { 5897 const struct btf_type *ctx_type; 5898 const char *tname, *ctx_tname; 5899 5900 t = btf_type_by_id(btf, t->type); 5901 5902 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5903 * check before we skip all the typedef below. 5904 */ 5905 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5906 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5907 t = btf_type_by_id(btf, t->type); 5908 5909 if (btf_type_is_typedef(t)) { 5910 tname = btf_name_by_offset(btf, t->name_off); 5911 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5912 return true; 5913 } 5914 } 5915 5916 while (btf_type_is_modifier(t)) 5917 t = btf_type_by_id(btf, t->type); 5918 if (!btf_type_is_struct(t)) { 5919 /* Only pointer to struct is supported for now. 5920 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5921 * is not supported yet. 5922 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5923 */ 5924 return false; 5925 } 5926 tname = btf_name_by_offset(btf, t->name_off); 5927 if (!tname) { 5928 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5929 return false; 5930 } 5931 5932 ctx_type = find_canonical_prog_ctx_type(prog_type); 5933 if (!ctx_type) { 5934 bpf_log(log, "btf_vmlinux is malformed\n"); 5935 /* should not happen */ 5936 return false; 5937 } 5938 again: 5939 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5940 if (!ctx_tname) { 5941 /* should not happen */ 5942 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5943 return false; 5944 } 5945 /* program types without named context types work only with arg:ctx tag */ 5946 if (ctx_tname[0] == '\0') 5947 return false; 5948 /* only compare that prog's ctx type name is the same as 5949 * kernel expects. No need to compare field by field. 5950 * It's ok for bpf prog to do: 5951 * struct __sk_buff {}; 5952 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5953 * { // no fields of skb are ever used } 5954 */ 5955 if (btf_is_projection_of(ctx_tname, tname)) 5956 return true; 5957 if (strcmp(ctx_tname, tname)) { 5958 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5959 * underlying struct and check name again 5960 */ 5961 if (!btf_type_is_modifier(ctx_type)) 5962 return false; 5963 while (btf_type_is_modifier(ctx_type)) 5964 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5965 goto again; 5966 } 5967 return true; 5968 } 5969 5970 /* forward declarations for arch-specific underlying types of 5971 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5972 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5973 * works correctly with __builtin_types_compatible_p() on respective 5974 * architectures 5975 */ 5976 struct user_regs_struct; 5977 struct user_pt_regs; 5978 5979 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5980 const struct btf_type *t, int arg, 5981 enum bpf_prog_type prog_type, 5982 enum bpf_attach_type attach_type) 5983 { 5984 const struct btf_type *ctx_type; 5985 const char *tname, *ctx_tname; 5986 5987 if (!btf_is_ptr(t)) { 5988 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 5989 return -EINVAL; 5990 } 5991 t = btf_type_by_id(btf, t->type); 5992 5993 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 5994 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 5995 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5996 t = btf_type_by_id(btf, t->type); 5997 5998 if (btf_type_is_typedef(t)) { 5999 tname = btf_name_by_offset(btf, t->name_off); 6000 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6001 return 0; 6002 } 6003 } 6004 6005 /* all other program types don't use typedefs for context type */ 6006 while (btf_type_is_modifier(t)) 6007 t = btf_type_by_id(btf, t->type); 6008 6009 /* `void *ctx __arg_ctx` is always valid */ 6010 if (btf_type_is_void(t)) 6011 return 0; 6012 6013 tname = btf_name_by_offset(btf, t->name_off); 6014 if (str_is_empty(tname)) { 6015 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6016 return -EINVAL; 6017 } 6018 6019 /* special cases */ 6020 switch (prog_type) { 6021 case BPF_PROG_TYPE_KPROBE: 6022 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6023 return 0; 6024 break; 6025 case BPF_PROG_TYPE_PERF_EVENT: 6026 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6027 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6028 return 0; 6029 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6030 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6031 return 0; 6032 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6033 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6034 return 0; 6035 break; 6036 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6037 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6038 /* allow u64* as ctx */ 6039 if (btf_is_int(t) && t->size == 8) 6040 return 0; 6041 break; 6042 case BPF_PROG_TYPE_TRACING: 6043 switch (attach_type) { 6044 case BPF_TRACE_RAW_TP: 6045 /* tp_btf program is TRACING, so need special case here */ 6046 if (__btf_type_is_struct(t) && 6047 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6048 return 0; 6049 /* allow u64* as ctx */ 6050 if (btf_is_int(t) && t->size == 8) 6051 return 0; 6052 break; 6053 case BPF_TRACE_ITER: 6054 /* allow struct bpf_iter__xxx types only */ 6055 if (__btf_type_is_struct(t) && 6056 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6057 return 0; 6058 break; 6059 case BPF_TRACE_FENTRY: 6060 case BPF_TRACE_FEXIT: 6061 case BPF_MODIFY_RETURN: 6062 /* allow u64* as ctx */ 6063 if (btf_is_int(t) && t->size == 8) 6064 return 0; 6065 break; 6066 default: 6067 break; 6068 } 6069 break; 6070 case BPF_PROG_TYPE_LSM: 6071 case BPF_PROG_TYPE_STRUCT_OPS: 6072 /* allow u64* as ctx */ 6073 if (btf_is_int(t) && t->size == 8) 6074 return 0; 6075 break; 6076 case BPF_PROG_TYPE_TRACEPOINT: 6077 case BPF_PROG_TYPE_SYSCALL: 6078 case BPF_PROG_TYPE_EXT: 6079 return 0; /* anything goes */ 6080 default: 6081 break; 6082 } 6083 6084 ctx_type = find_canonical_prog_ctx_type(prog_type); 6085 if (!ctx_type) { 6086 /* should not happen */ 6087 bpf_log(log, "btf_vmlinux is malformed\n"); 6088 return -EINVAL; 6089 } 6090 6091 /* resolve typedefs and check that underlying structs are matching as well */ 6092 while (btf_type_is_modifier(ctx_type)) 6093 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6094 6095 /* if program type doesn't have distinctly named struct type for 6096 * context, then __arg_ctx argument can only be `void *`, which we 6097 * already checked above 6098 */ 6099 if (!__btf_type_is_struct(ctx_type)) { 6100 bpf_log(log, "arg#%d should be void pointer\n", arg); 6101 return -EINVAL; 6102 } 6103 6104 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6105 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6106 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6107 return -EINVAL; 6108 } 6109 6110 return 0; 6111 } 6112 6113 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6114 struct btf *btf, 6115 const struct btf_type *t, 6116 enum bpf_prog_type prog_type, 6117 int arg) 6118 { 6119 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6120 return -ENOENT; 6121 return find_kern_ctx_type_id(prog_type); 6122 } 6123 6124 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6125 { 6126 const struct btf_member *kctx_member; 6127 const struct btf_type *conv_struct; 6128 const struct btf_type *kctx_type; 6129 u32 kctx_type_id; 6130 6131 conv_struct = bpf_ctx_convert.t; 6132 /* get member for kernel ctx type */ 6133 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6134 kctx_type_id = kctx_member->type; 6135 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6136 if (!btf_type_is_struct(kctx_type)) { 6137 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6138 return -EINVAL; 6139 } 6140 6141 return kctx_type_id; 6142 } 6143 6144 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6145 BTF_ID(struct, bpf_ctx_convert) 6146 6147 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6148 void *data, unsigned int data_size) 6149 { 6150 struct btf *btf = NULL; 6151 int err; 6152 6153 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6154 return ERR_PTR(-ENOENT); 6155 6156 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6157 if (!btf) { 6158 err = -ENOMEM; 6159 goto errout; 6160 } 6161 env->btf = btf; 6162 6163 btf->data = data; 6164 btf->data_size = data_size; 6165 btf->kernel_btf = true; 6166 snprintf(btf->name, sizeof(btf->name), "%s", name); 6167 6168 err = btf_parse_hdr(env); 6169 if (err) 6170 goto errout; 6171 6172 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6173 6174 err = btf_parse_str_sec(env); 6175 if (err) 6176 goto errout; 6177 6178 err = btf_check_all_metas(env); 6179 if (err) 6180 goto errout; 6181 6182 err = btf_check_type_tags(env, btf, 1); 6183 if (err) 6184 goto errout; 6185 6186 refcount_set(&btf->refcnt, 1); 6187 6188 return btf; 6189 6190 errout: 6191 if (btf) { 6192 kvfree(btf->types); 6193 kfree(btf); 6194 } 6195 return ERR_PTR(err); 6196 } 6197 6198 struct btf *btf_parse_vmlinux(void) 6199 { 6200 struct btf_verifier_env *env = NULL; 6201 struct bpf_verifier_log *log; 6202 struct btf *btf; 6203 int err; 6204 6205 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6206 if (!env) 6207 return ERR_PTR(-ENOMEM); 6208 6209 log = &env->log; 6210 log->level = BPF_LOG_KERNEL; 6211 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6212 if (IS_ERR(btf)) 6213 goto err_out; 6214 6215 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6216 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6217 err = btf_alloc_id(btf); 6218 if (err) { 6219 btf_free(btf); 6220 btf = ERR_PTR(err); 6221 } 6222 err_out: 6223 btf_verifier_env_free(env); 6224 return btf; 6225 } 6226 6227 /* If .BTF_ids section was created with distilled base BTF, both base and 6228 * split BTF ids will need to be mapped to actual base/split ids for 6229 * BTF now that it has been relocated. 6230 */ 6231 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6232 { 6233 if (!btf->base_btf || !btf->base_id_map) 6234 return id; 6235 return btf->base_id_map[id]; 6236 } 6237 6238 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6239 6240 static struct btf *btf_parse_module(const char *module_name, const void *data, 6241 unsigned int data_size, void *base_data, 6242 unsigned int base_data_size) 6243 { 6244 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6245 struct btf_verifier_env *env = NULL; 6246 struct bpf_verifier_log *log; 6247 int err = 0; 6248 6249 vmlinux_btf = bpf_get_btf_vmlinux(); 6250 if (IS_ERR(vmlinux_btf)) 6251 return vmlinux_btf; 6252 if (!vmlinux_btf) 6253 return ERR_PTR(-EINVAL); 6254 6255 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6256 if (!env) 6257 return ERR_PTR(-ENOMEM); 6258 6259 log = &env->log; 6260 log->level = BPF_LOG_KERNEL; 6261 6262 if (base_data) { 6263 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6264 if (IS_ERR(base_btf)) { 6265 err = PTR_ERR(base_btf); 6266 goto errout; 6267 } 6268 } else { 6269 base_btf = vmlinux_btf; 6270 } 6271 6272 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6273 if (!btf) { 6274 err = -ENOMEM; 6275 goto errout; 6276 } 6277 env->btf = btf; 6278 6279 btf->base_btf = base_btf; 6280 btf->start_id = base_btf->nr_types; 6281 btf->start_str_off = base_btf->hdr.str_len; 6282 btf->kernel_btf = true; 6283 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6284 6285 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6286 if (!btf->data) { 6287 err = -ENOMEM; 6288 goto errout; 6289 } 6290 btf->data_size = data_size; 6291 6292 err = btf_parse_hdr(env); 6293 if (err) 6294 goto errout; 6295 6296 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6297 6298 err = btf_parse_str_sec(env); 6299 if (err) 6300 goto errout; 6301 6302 err = btf_check_all_metas(env); 6303 if (err) 6304 goto errout; 6305 6306 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6307 if (err) 6308 goto errout; 6309 6310 if (base_btf != vmlinux_btf) { 6311 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6312 if (err) 6313 goto errout; 6314 btf_free(base_btf); 6315 base_btf = vmlinux_btf; 6316 } 6317 6318 btf_verifier_env_free(env); 6319 refcount_set(&btf->refcnt, 1); 6320 return btf; 6321 6322 errout: 6323 btf_verifier_env_free(env); 6324 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6325 btf_free(base_btf); 6326 if (btf) { 6327 kvfree(btf->data); 6328 kvfree(btf->types); 6329 kfree(btf); 6330 } 6331 return ERR_PTR(err); 6332 } 6333 6334 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6335 6336 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6337 { 6338 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6339 6340 if (tgt_prog) 6341 return tgt_prog->aux->btf; 6342 else 6343 return prog->aux->attach_btf; 6344 } 6345 6346 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6347 { 6348 /* skip modifiers */ 6349 t = btf_type_skip_modifiers(btf, t->type, NULL); 6350 6351 return btf_type_is_int(t); 6352 } 6353 6354 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6355 int off) 6356 { 6357 const struct btf_param *args; 6358 const struct btf_type *t; 6359 u32 offset = 0, nr_args; 6360 int i; 6361 6362 if (!func_proto) 6363 return off / 8; 6364 6365 nr_args = btf_type_vlen(func_proto); 6366 args = (const struct btf_param *)(func_proto + 1); 6367 for (i = 0; i < nr_args; i++) { 6368 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6369 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6370 if (off < offset) 6371 return i; 6372 } 6373 6374 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6375 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6376 if (off < offset) 6377 return nr_args; 6378 6379 return nr_args + 1; 6380 } 6381 6382 static bool prog_args_trusted(const struct bpf_prog *prog) 6383 { 6384 enum bpf_attach_type atype = prog->expected_attach_type; 6385 6386 switch (prog->type) { 6387 case BPF_PROG_TYPE_TRACING: 6388 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6389 case BPF_PROG_TYPE_LSM: 6390 return bpf_lsm_is_trusted(prog); 6391 case BPF_PROG_TYPE_STRUCT_OPS: 6392 return true; 6393 default: 6394 return false; 6395 } 6396 } 6397 6398 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6399 u32 arg_no) 6400 { 6401 const struct btf_param *args; 6402 const struct btf_type *t; 6403 int off = 0, i; 6404 u32 sz; 6405 6406 args = btf_params(func_proto); 6407 for (i = 0; i < arg_no; i++) { 6408 t = btf_type_by_id(btf, args[i].type); 6409 t = btf_resolve_size(btf, t, &sz); 6410 if (IS_ERR(t)) 6411 return PTR_ERR(t); 6412 off += roundup(sz, 8); 6413 } 6414 6415 return off; 6416 } 6417 6418 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6419 const struct bpf_prog *prog, 6420 struct bpf_insn_access_aux *info) 6421 { 6422 const struct btf_type *t = prog->aux->attach_func_proto; 6423 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6424 struct btf *btf = bpf_prog_get_target_btf(prog); 6425 const char *tname = prog->aux->attach_func_name; 6426 struct bpf_verifier_log *log = info->log; 6427 const struct btf_param *args; 6428 const char *tag_value; 6429 u32 nr_args, arg; 6430 int i, ret; 6431 6432 if (off % 8) { 6433 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6434 tname, off); 6435 return false; 6436 } 6437 arg = get_ctx_arg_idx(btf, t, off); 6438 args = (const struct btf_param *)(t + 1); 6439 /* if (t == NULL) Fall back to default BPF prog with 6440 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6441 */ 6442 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6443 if (prog->aux->attach_btf_trace) { 6444 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6445 args++; 6446 nr_args--; 6447 } 6448 6449 if (arg > nr_args) { 6450 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6451 tname, arg + 1); 6452 return false; 6453 } 6454 6455 if (arg == nr_args) { 6456 switch (prog->expected_attach_type) { 6457 case BPF_LSM_MAC: 6458 /* mark we are accessing the return value */ 6459 info->is_retval = true; 6460 fallthrough; 6461 case BPF_LSM_CGROUP: 6462 case BPF_TRACE_FEXIT: 6463 /* When LSM programs are attached to void LSM hooks 6464 * they use FEXIT trampolines and when attached to 6465 * int LSM hooks, they use MODIFY_RETURN trampolines. 6466 * 6467 * While the LSM programs are BPF_MODIFY_RETURN-like 6468 * the check: 6469 * 6470 * if (ret_type != 'int') 6471 * return -EINVAL; 6472 * 6473 * is _not_ done here. This is still safe as LSM hooks 6474 * have only void and int return types. 6475 */ 6476 if (!t) 6477 return true; 6478 t = btf_type_by_id(btf, t->type); 6479 break; 6480 case BPF_MODIFY_RETURN: 6481 /* For now the BPF_MODIFY_RETURN can only be attached to 6482 * functions that return an int. 6483 */ 6484 if (!t) 6485 return false; 6486 6487 t = btf_type_skip_modifiers(btf, t->type, NULL); 6488 if (!btf_type_is_small_int(t)) { 6489 bpf_log(log, 6490 "ret type %s not allowed for fmod_ret\n", 6491 btf_type_str(t)); 6492 return false; 6493 } 6494 break; 6495 default: 6496 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6497 tname, arg + 1); 6498 return false; 6499 } 6500 } else { 6501 if (!t) 6502 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6503 return true; 6504 t = btf_type_by_id(btf, args[arg].type); 6505 } 6506 6507 /* skip modifiers */ 6508 while (btf_type_is_modifier(t)) 6509 t = btf_type_by_id(btf, t->type); 6510 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6511 /* accessing a scalar */ 6512 return true; 6513 if (!btf_type_is_ptr(t)) { 6514 bpf_log(log, 6515 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6516 tname, arg, 6517 __btf_name_by_offset(btf, t->name_off), 6518 btf_type_str(t)); 6519 return false; 6520 } 6521 6522 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6523 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6524 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6525 u32 type, flag; 6526 6527 type = base_type(ctx_arg_info->reg_type); 6528 flag = type_flag(ctx_arg_info->reg_type); 6529 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6530 (flag & PTR_MAYBE_NULL)) { 6531 info->reg_type = ctx_arg_info->reg_type; 6532 return true; 6533 } 6534 } 6535 6536 if (t->type == 0) 6537 /* This is a pointer to void. 6538 * It is the same as scalar from the verifier safety pov. 6539 * No further pointer walking is allowed. 6540 */ 6541 return true; 6542 6543 if (is_int_ptr(btf, t)) 6544 return true; 6545 6546 /* this is a pointer to another type */ 6547 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6548 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6549 6550 if (ctx_arg_info->offset == off) { 6551 if (!ctx_arg_info->btf_id) { 6552 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6553 return false; 6554 } 6555 6556 info->reg_type = ctx_arg_info->reg_type; 6557 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6558 info->btf_id = ctx_arg_info->btf_id; 6559 return true; 6560 } 6561 } 6562 6563 info->reg_type = PTR_TO_BTF_ID; 6564 if (prog_args_trusted(prog)) 6565 info->reg_type |= PTR_TRUSTED; 6566 6567 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6568 info->reg_type |= PTR_MAYBE_NULL; 6569 6570 if (tgt_prog) { 6571 enum bpf_prog_type tgt_type; 6572 6573 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6574 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6575 else 6576 tgt_type = tgt_prog->type; 6577 6578 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6579 if (ret > 0) { 6580 info->btf = btf_vmlinux; 6581 info->btf_id = ret; 6582 return true; 6583 } else { 6584 return false; 6585 } 6586 } 6587 6588 info->btf = btf; 6589 info->btf_id = t->type; 6590 t = btf_type_by_id(btf, t->type); 6591 6592 if (btf_type_is_type_tag(t)) { 6593 tag_value = __btf_name_by_offset(btf, t->name_off); 6594 if (strcmp(tag_value, "user") == 0) 6595 info->reg_type |= MEM_USER; 6596 if (strcmp(tag_value, "percpu") == 0) 6597 info->reg_type |= MEM_PERCPU; 6598 } 6599 6600 /* skip modifiers */ 6601 while (btf_type_is_modifier(t)) { 6602 info->btf_id = t->type; 6603 t = btf_type_by_id(btf, t->type); 6604 } 6605 if (!btf_type_is_struct(t)) { 6606 bpf_log(log, 6607 "func '%s' arg%d type %s is not a struct\n", 6608 tname, arg, btf_type_str(t)); 6609 return false; 6610 } 6611 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6612 tname, arg, info->btf_id, btf_type_str(t), 6613 __btf_name_by_offset(btf, t->name_off)); 6614 return true; 6615 } 6616 EXPORT_SYMBOL_GPL(btf_ctx_access); 6617 6618 enum bpf_struct_walk_result { 6619 /* < 0 error */ 6620 WALK_SCALAR = 0, 6621 WALK_PTR, 6622 WALK_STRUCT, 6623 }; 6624 6625 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6626 const struct btf_type *t, int off, int size, 6627 u32 *next_btf_id, enum bpf_type_flag *flag, 6628 const char **field_name) 6629 { 6630 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6631 const struct btf_type *mtype, *elem_type = NULL; 6632 const struct btf_member *member; 6633 const char *tname, *mname, *tag_value; 6634 u32 vlen, elem_id, mid; 6635 6636 again: 6637 if (btf_type_is_modifier(t)) 6638 t = btf_type_skip_modifiers(btf, t->type, NULL); 6639 tname = __btf_name_by_offset(btf, t->name_off); 6640 if (!btf_type_is_struct(t)) { 6641 bpf_log(log, "Type '%s' is not a struct\n", tname); 6642 return -EINVAL; 6643 } 6644 6645 vlen = btf_type_vlen(t); 6646 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6647 /* 6648 * walking unions yields untrusted pointers 6649 * with exception of __bpf_md_ptr and other 6650 * unions with a single member 6651 */ 6652 *flag |= PTR_UNTRUSTED; 6653 6654 if (off + size > t->size) { 6655 /* If the last element is a variable size array, we may 6656 * need to relax the rule. 6657 */ 6658 struct btf_array *array_elem; 6659 6660 if (vlen == 0) 6661 goto error; 6662 6663 member = btf_type_member(t) + vlen - 1; 6664 mtype = btf_type_skip_modifiers(btf, member->type, 6665 NULL); 6666 if (!btf_type_is_array(mtype)) 6667 goto error; 6668 6669 array_elem = (struct btf_array *)(mtype + 1); 6670 if (array_elem->nelems != 0) 6671 goto error; 6672 6673 moff = __btf_member_bit_offset(t, member) / 8; 6674 if (off < moff) 6675 goto error; 6676 6677 /* allow structure and integer */ 6678 t = btf_type_skip_modifiers(btf, array_elem->type, 6679 NULL); 6680 6681 if (btf_type_is_int(t)) 6682 return WALK_SCALAR; 6683 6684 if (!btf_type_is_struct(t)) 6685 goto error; 6686 6687 off = (off - moff) % t->size; 6688 goto again; 6689 6690 error: 6691 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6692 tname, off, size); 6693 return -EACCES; 6694 } 6695 6696 for_each_member(i, t, member) { 6697 /* offset of the field in bytes */ 6698 moff = __btf_member_bit_offset(t, member) / 8; 6699 if (off + size <= moff) 6700 /* won't find anything, field is already too far */ 6701 break; 6702 6703 if (__btf_member_bitfield_size(t, member)) { 6704 u32 end_bit = __btf_member_bit_offset(t, member) + 6705 __btf_member_bitfield_size(t, member); 6706 6707 /* off <= moff instead of off == moff because clang 6708 * does not generate a BTF member for anonymous 6709 * bitfield like the ":16" here: 6710 * struct { 6711 * int :16; 6712 * int x:8; 6713 * }; 6714 */ 6715 if (off <= moff && 6716 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6717 return WALK_SCALAR; 6718 6719 /* off may be accessing a following member 6720 * 6721 * or 6722 * 6723 * Doing partial access at either end of this 6724 * bitfield. Continue on this case also to 6725 * treat it as not accessing this bitfield 6726 * and eventually error out as field not 6727 * found to keep it simple. 6728 * It could be relaxed if there was a legit 6729 * partial access case later. 6730 */ 6731 continue; 6732 } 6733 6734 /* In case of "off" is pointing to holes of a struct */ 6735 if (off < moff) 6736 break; 6737 6738 /* type of the field */ 6739 mid = member->type; 6740 mtype = btf_type_by_id(btf, member->type); 6741 mname = __btf_name_by_offset(btf, member->name_off); 6742 6743 mtype = __btf_resolve_size(btf, mtype, &msize, 6744 &elem_type, &elem_id, &total_nelems, 6745 &mid); 6746 if (IS_ERR(mtype)) { 6747 bpf_log(log, "field %s doesn't have size\n", mname); 6748 return -EFAULT; 6749 } 6750 6751 mtrue_end = moff + msize; 6752 if (off >= mtrue_end) 6753 /* no overlap with member, keep iterating */ 6754 continue; 6755 6756 if (btf_type_is_array(mtype)) { 6757 u32 elem_idx; 6758 6759 /* __btf_resolve_size() above helps to 6760 * linearize a multi-dimensional array. 6761 * 6762 * The logic here is treating an array 6763 * in a struct as the following way: 6764 * 6765 * struct outer { 6766 * struct inner array[2][2]; 6767 * }; 6768 * 6769 * looks like: 6770 * 6771 * struct outer { 6772 * struct inner array_elem0; 6773 * struct inner array_elem1; 6774 * struct inner array_elem2; 6775 * struct inner array_elem3; 6776 * }; 6777 * 6778 * When accessing outer->array[1][0], it moves 6779 * moff to "array_elem2", set mtype to 6780 * "struct inner", and msize also becomes 6781 * sizeof(struct inner). Then most of the 6782 * remaining logic will fall through without 6783 * caring the current member is an array or 6784 * not. 6785 * 6786 * Unlike mtype/msize/moff, mtrue_end does not 6787 * change. The naming difference ("_true") tells 6788 * that it is not always corresponding to 6789 * the current mtype/msize/moff. 6790 * It is the true end of the current 6791 * member (i.e. array in this case). That 6792 * will allow an int array to be accessed like 6793 * a scratch space, 6794 * i.e. allow access beyond the size of 6795 * the array's element as long as it is 6796 * within the mtrue_end boundary. 6797 */ 6798 6799 /* skip empty array */ 6800 if (moff == mtrue_end) 6801 continue; 6802 6803 msize /= total_nelems; 6804 elem_idx = (off - moff) / msize; 6805 moff += elem_idx * msize; 6806 mtype = elem_type; 6807 mid = elem_id; 6808 } 6809 6810 /* the 'off' we're looking for is either equal to start 6811 * of this field or inside of this struct 6812 */ 6813 if (btf_type_is_struct(mtype)) { 6814 /* our field must be inside that union or struct */ 6815 t = mtype; 6816 6817 /* return if the offset matches the member offset */ 6818 if (off == moff) { 6819 *next_btf_id = mid; 6820 return WALK_STRUCT; 6821 } 6822 6823 /* adjust offset we're looking for */ 6824 off -= moff; 6825 goto again; 6826 } 6827 6828 if (btf_type_is_ptr(mtype)) { 6829 const struct btf_type *stype, *t; 6830 enum bpf_type_flag tmp_flag = 0; 6831 u32 id; 6832 6833 if (msize != size || off != moff) { 6834 bpf_log(log, 6835 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6836 mname, moff, tname, off, size); 6837 return -EACCES; 6838 } 6839 6840 /* check type tag */ 6841 t = btf_type_by_id(btf, mtype->type); 6842 if (btf_type_is_type_tag(t)) { 6843 tag_value = __btf_name_by_offset(btf, t->name_off); 6844 /* check __user tag */ 6845 if (strcmp(tag_value, "user") == 0) 6846 tmp_flag = MEM_USER; 6847 /* check __percpu tag */ 6848 if (strcmp(tag_value, "percpu") == 0) 6849 tmp_flag = MEM_PERCPU; 6850 /* check __rcu tag */ 6851 if (strcmp(tag_value, "rcu") == 0) 6852 tmp_flag = MEM_RCU; 6853 } 6854 6855 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6856 if (btf_type_is_struct(stype)) { 6857 *next_btf_id = id; 6858 *flag |= tmp_flag; 6859 if (field_name) 6860 *field_name = mname; 6861 return WALK_PTR; 6862 } 6863 } 6864 6865 /* Allow more flexible access within an int as long as 6866 * it is within mtrue_end. 6867 * Since mtrue_end could be the end of an array, 6868 * that also allows using an array of int as a scratch 6869 * space. e.g. skb->cb[]. 6870 */ 6871 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 6872 bpf_log(log, 6873 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6874 mname, mtrue_end, tname, off, size); 6875 return -EACCES; 6876 } 6877 6878 return WALK_SCALAR; 6879 } 6880 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6881 return -EINVAL; 6882 } 6883 6884 int btf_struct_access(struct bpf_verifier_log *log, 6885 const struct bpf_reg_state *reg, 6886 int off, int size, enum bpf_access_type atype __maybe_unused, 6887 u32 *next_btf_id, enum bpf_type_flag *flag, 6888 const char **field_name) 6889 { 6890 const struct btf *btf = reg->btf; 6891 enum bpf_type_flag tmp_flag = 0; 6892 const struct btf_type *t; 6893 u32 id = reg->btf_id; 6894 int err; 6895 6896 while (type_is_alloc(reg->type)) { 6897 struct btf_struct_meta *meta; 6898 struct btf_record *rec; 6899 int i; 6900 6901 meta = btf_find_struct_meta(btf, id); 6902 if (!meta) 6903 break; 6904 rec = meta->record; 6905 for (i = 0; i < rec->cnt; i++) { 6906 struct btf_field *field = &rec->fields[i]; 6907 u32 offset = field->offset; 6908 if (off < offset + field->size && offset < off + size) { 6909 bpf_log(log, 6910 "direct access to %s is disallowed\n", 6911 btf_field_type_name(field->type)); 6912 return -EACCES; 6913 } 6914 } 6915 break; 6916 } 6917 6918 t = btf_type_by_id(btf, id); 6919 do { 6920 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6921 6922 switch (err) { 6923 case WALK_PTR: 6924 /* For local types, the destination register cannot 6925 * become a pointer again. 6926 */ 6927 if (type_is_alloc(reg->type)) 6928 return SCALAR_VALUE; 6929 /* If we found the pointer or scalar on t+off, 6930 * we're done. 6931 */ 6932 *next_btf_id = id; 6933 *flag = tmp_flag; 6934 return PTR_TO_BTF_ID; 6935 case WALK_SCALAR: 6936 return SCALAR_VALUE; 6937 case WALK_STRUCT: 6938 /* We found nested struct, so continue the search 6939 * by diving in it. At this point the offset is 6940 * aligned with the new type, so set it to 0. 6941 */ 6942 t = btf_type_by_id(btf, id); 6943 off = 0; 6944 break; 6945 default: 6946 /* It's either error or unknown return value.. 6947 * scream and leave. 6948 */ 6949 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6950 return -EINVAL; 6951 return err; 6952 } 6953 } while (t); 6954 6955 return -EINVAL; 6956 } 6957 6958 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6959 * the same. Trivial ID check is not enough due to module BTFs, because we can 6960 * end up with two different module BTFs, but IDs point to the common type in 6961 * vmlinux BTF. 6962 */ 6963 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6964 const struct btf *btf2, u32 id2) 6965 { 6966 if (id1 != id2) 6967 return false; 6968 if (btf1 == btf2) 6969 return true; 6970 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6971 } 6972 6973 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6974 const struct btf *btf, u32 id, int off, 6975 const struct btf *need_btf, u32 need_type_id, 6976 bool strict) 6977 { 6978 const struct btf_type *type; 6979 enum bpf_type_flag flag = 0; 6980 int err; 6981 6982 /* Are we already done? */ 6983 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6984 return true; 6985 /* In case of strict type match, we do not walk struct, the top level 6986 * type match must succeed. When strict is true, off should have already 6987 * been 0. 6988 */ 6989 if (strict) 6990 return false; 6991 again: 6992 type = btf_type_by_id(btf, id); 6993 if (!type) 6994 return false; 6995 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6996 if (err != WALK_STRUCT) 6997 return false; 6998 6999 /* We found nested struct object. If it matches 7000 * the requested ID, we're done. Otherwise let's 7001 * continue the search with offset 0 in the new 7002 * type. 7003 */ 7004 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7005 off = 0; 7006 goto again; 7007 } 7008 7009 return true; 7010 } 7011 7012 static int __get_type_size(struct btf *btf, u32 btf_id, 7013 const struct btf_type **ret_type) 7014 { 7015 const struct btf_type *t; 7016 7017 *ret_type = btf_type_by_id(btf, 0); 7018 if (!btf_id) 7019 /* void */ 7020 return 0; 7021 t = btf_type_by_id(btf, btf_id); 7022 while (t && btf_type_is_modifier(t)) 7023 t = btf_type_by_id(btf, t->type); 7024 if (!t) 7025 return -EINVAL; 7026 *ret_type = t; 7027 if (btf_type_is_ptr(t)) 7028 /* kernel size of pointer. Not BPF's size of pointer*/ 7029 return sizeof(void *); 7030 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7031 return t->size; 7032 return -EINVAL; 7033 } 7034 7035 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7036 { 7037 u8 flags = 0; 7038 7039 if (__btf_type_is_struct(t)) 7040 flags |= BTF_FMODEL_STRUCT_ARG; 7041 if (btf_type_is_signed_int(t)) 7042 flags |= BTF_FMODEL_SIGNED_ARG; 7043 7044 return flags; 7045 } 7046 7047 int btf_distill_func_proto(struct bpf_verifier_log *log, 7048 struct btf *btf, 7049 const struct btf_type *func, 7050 const char *tname, 7051 struct btf_func_model *m) 7052 { 7053 const struct btf_param *args; 7054 const struct btf_type *t; 7055 u32 i, nargs; 7056 int ret; 7057 7058 if (!func) { 7059 /* BTF function prototype doesn't match the verifier types. 7060 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7061 */ 7062 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7063 m->arg_size[i] = 8; 7064 m->arg_flags[i] = 0; 7065 } 7066 m->ret_size = 8; 7067 m->ret_flags = 0; 7068 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7069 return 0; 7070 } 7071 args = (const struct btf_param *)(func + 1); 7072 nargs = btf_type_vlen(func); 7073 if (nargs > MAX_BPF_FUNC_ARGS) { 7074 bpf_log(log, 7075 "The function %s has %d arguments. Too many.\n", 7076 tname, nargs); 7077 return -EINVAL; 7078 } 7079 ret = __get_type_size(btf, func->type, &t); 7080 if (ret < 0 || __btf_type_is_struct(t)) { 7081 bpf_log(log, 7082 "The function %s return type %s is unsupported.\n", 7083 tname, btf_type_str(t)); 7084 return -EINVAL; 7085 } 7086 m->ret_size = ret; 7087 m->ret_flags = __get_type_fmodel_flags(t); 7088 7089 for (i = 0; i < nargs; i++) { 7090 if (i == nargs - 1 && args[i].type == 0) { 7091 bpf_log(log, 7092 "The function %s with variable args is unsupported.\n", 7093 tname); 7094 return -EINVAL; 7095 } 7096 ret = __get_type_size(btf, args[i].type, &t); 7097 7098 /* No support of struct argument size greater than 16 bytes */ 7099 if (ret < 0 || ret > 16) { 7100 bpf_log(log, 7101 "The function %s arg%d type %s is unsupported.\n", 7102 tname, i, btf_type_str(t)); 7103 return -EINVAL; 7104 } 7105 if (ret == 0) { 7106 bpf_log(log, 7107 "The function %s has malformed void argument.\n", 7108 tname); 7109 return -EINVAL; 7110 } 7111 m->arg_size[i] = ret; 7112 m->arg_flags[i] = __get_type_fmodel_flags(t); 7113 } 7114 m->nr_args = nargs; 7115 return 0; 7116 } 7117 7118 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7119 * t1 points to BTF_KIND_FUNC in btf1 7120 * t2 points to BTF_KIND_FUNC in btf2 7121 * Returns: 7122 * EINVAL - function prototype mismatch 7123 * EFAULT - verifier bug 7124 * 0 - 99% match. The last 1% is validated by the verifier. 7125 */ 7126 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7127 struct btf *btf1, const struct btf_type *t1, 7128 struct btf *btf2, const struct btf_type *t2) 7129 { 7130 const struct btf_param *args1, *args2; 7131 const char *fn1, *fn2, *s1, *s2; 7132 u32 nargs1, nargs2, i; 7133 7134 fn1 = btf_name_by_offset(btf1, t1->name_off); 7135 fn2 = btf_name_by_offset(btf2, t2->name_off); 7136 7137 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7138 bpf_log(log, "%s() is not a global function\n", fn1); 7139 return -EINVAL; 7140 } 7141 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7142 bpf_log(log, "%s() is not a global function\n", fn2); 7143 return -EINVAL; 7144 } 7145 7146 t1 = btf_type_by_id(btf1, t1->type); 7147 if (!t1 || !btf_type_is_func_proto(t1)) 7148 return -EFAULT; 7149 t2 = btf_type_by_id(btf2, t2->type); 7150 if (!t2 || !btf_type_is_func_proto(t2)) 7151 return -EFAULT; 7152 7153 args1 = (const struct btf_param *)(t1 + 1); 7154 nargs1 = btf_type_vlen(t1); 7155 args2 = (const struct btf_param *)(t2 + 1); 7156 nargs2 = btf_type_vlen(t2); 7157 7158 if (nargs1 != nargs2) { 7159 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7160 fn1, nargs1, fn2, nargs2); 7161 return -EINVAL; 7162 } 7163 7164 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7165 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7166 if (t1->info != t2->info) { 7167 bpf_log(log, 7168 "Return type %s of %s() doesn't match type %s of %s()\n", 7169 btf_type_str(t1), fn1, 7170 btf_type_str(t2), fn2); 7171 return -EINVAL; 7172 } 7173 7174 for (i = 0; i < nargs1; i++) { 7175 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7176 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7177 7178 if (t1->info != t2->info) { 7179 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7180 i, fn1, btf_type_str(t1), 7181 fn2, btf_type_str(t2)); 7182 return -EINVAL; 7183 } 7184 if (btf_type_has_size(t1) && t1->size != t2->size) { 7185 bpf_log(log, 7186 "arg%d in %s() has size %d while %s() has %d\n", 7187 i, fn1, t1->size, 7188 fn2, t2->size); 7189 return -EINVAL; 7190 } 7191 7192 /* global functions are validated with scalars and pointers 7193 * to context only. And only global functions can be replaced. 7194 * Hence type check only those types. 7195 */ 7196 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7197 continue; 7198 if (!btf_type_is_ptr(t1)) { 7199 bpf_log(log, 7200 "arg%d in %s() has unrecognized type\n", 7201 i, fn1); 7202 return -EINVAL; 7203 } 7204 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7205 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7206 if (!btf_type_is_struct(t1)) { 7207 bpf_log(log, 7208 "arg%d in %s() is not a pointer to context\n", 7209 i, fn1); 7210 return -EINVAL; 7211 } 7212 if (!btf_type_is_struct(t2)) { 7213 bpf_log(log, 7214 "arg%d in %s() is not a pointer to context\n", 7215 i, fn2); 7216 return -EINVAL; 7217 } 7218 /* This is an optional check to make program writing easier. 7219 * Compare names of structs and report an error to the user. 7220 * btf_prepare_func_args() already checked that t2 struct 7221 * is a context type. btf_prepare_func_args() will check 7222 * later that t1 struct is a context type as well. 7223 */ 7224 s1 = btf_name_by_offset(btf1, t1->name_off); 7225 s2 = btf_name_by_offset(btf2, t2->name_off); 7226 if (strcmp(s1, s2)) { 7227 bpf_log(log, 7228 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7229 i, fn1, s1, fn2, s2); 7230 return -EINVAL; 7231 } 7232 } 7233 return 0; 7234 } 7235 7236 /* Compare BTFs of given program with BTF of target program */ 7237 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7238 struct btf *btf2, const struct btf_type *t2) 7239 { 7240 struct btf *btf1 = prog->aux->btf; 7241 const struct btf_type *t1; 7242 u32 btf_id = 0; 7243 7244 if (!prog->aux->func_info) { 7245 bpf_log(log, "Program extension requires BTF\n"); 7246 return -EINVAL; 7247 } 7248 7249 btf_id = prog->aux->func_info[0].type_id; 7250 if (!btf_id) 7251 return -EFAULT; 7252 7253 t1 = btf_type_by_id(btf1, btf_id); 7254 if (!t1 || !btf_type_is_func(t1)) 7255 return -EFAULT; 7256 7257 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7258 } 7259 7260 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7261 { 7262 const char *name; 7263 7264 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7265 7266 while (btf_type_is_modifier(t)) 7267 t = btf_type_by_id(btf, t->type); 7268 7269 /* allow either struct or struct forward declaration */ 7270 if (btf_type_is_struct(t) || 7271 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7272 name = btf_str_by_offset(btf, t->name_off); 7273 return name && strcmp(name, "bpf_dynptr") == 0; 7274 } 7275 7276 return false; 7277 } 7278 7279 struct bpf_cand_cache { 7280 const char *name; 7281 u32 name_len; 7282 u16 kind; 7283 u16 cnt; 7284 struct { 7285 const struct btf *btf; 7286 u32 id; 7287 } cands[]; 7288 }; 7289 7290 static DEFINE_MUTEX(cand_cache_mutex); 7291 7292 static struct bpf_cand_cache * 7293 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7294 7295 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7296 const struct btf *btf, const struct btf_type *t) 7297 { 7298 struct bpf_cand_cache *cc; 7299 struct bpf_core_ctx ctx = { 7300 .btf = btf, 7301 .log = log, 7302 }; 7303 u32 kern_type_id, type_id; 7304 int err = 0; 7305 7306 /* skip PTR and modifiers */ 7307 type_id = t->type; 7308 t = btf_type_by_id(btf, t->type); 7309 while (btf_type_is_modifier(t)) { 7310 type_id = t->type; 7311 t = btf_type_by_id(btf, t->type); 7312 } 7313 7314 mutex_lock(&cand_cache_mutex); 7315 cc = bpf_core_find_cands(&ctx, type_id); 7316 if (IS_ERR(cc)) { 7317 err = PTR_ERR(cc); 7318 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7319 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7320 err); 7321 goto cand_cache_unlock; 7322 } 7323 if (cc->cnt != 1) { 7324 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7325 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7326 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7327 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7328 goto cand_cache_unlock; 7329 } 7330 if (btf_is_module(cc->cands[0].btf)) { 7331 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7332 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7333 err = -EOPNOTSUPP; 7334 goto cand_cache_unlock; 7335 } 7336 kern_type_id = cc->cands[0].id; 7337 7338 cand_cache_unlock: 7339 mutex_unlock(&cand_cache_mutex); 7340 if (err) 7341 return err; 7342 7343 return kern_type_id; 7344 } 7345 7346 enum btf_arg_tag { 7347 ARG_TAG_CTX = BIT_ULL(0), 7348 ARG_TAG_NONNULL = BIT_ULL(1), 7349 ARG_TAG_TRUSTED = BIT_ULL(2), 7350 ARG_TAG_NULLABLE = BIT_ULL(3), 7351 ARG_TAG_ARENA = BIT_ULL(4), 7352 }; 7353 7354 /* Process BTF of a function to produce high-level expectation of function 7355 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7356 * is cached in subprog info for reuse. 7357 * Returns: 7358 * EFAULT - there is a verifier bug. Abort verification. 7359 * EINVAL - cannot convert BTF. 7360 * 0 - Successfully processed BTF and constructed argument expectations. 7361 */ 7362 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7363 { 7364 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7365 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7366 struct bpf_verifier_log *log = &env->log; 7367 struct bpf_prog *prog = env->prog; 7368 enum bpf_prog_type prog_type = prog->type; 7369 struct btf *btf = prog->aux->btf; 7370 const struct btf_param *args; 7371 const struct btf_type *t, *ref_t, *fn_t; 7372 u32 i, nargs, btf_id; 7373 const char *tname; 7374 7375 if (sub->args_cached) 7376 return 0; 7377 7378 if (!prog->aux->func_info) { 7379 bpf_log(log, "Verifier bug\n"); 7380 return -EFAULT; 7381 } 7382 7383 btf_id = prog->aux->func_info[subprog].type_id; 7384 if (!btf_id) { 7385 if (!is_global) /* not fatal for static funcs */ 7386 return -EINVAL; 7387 bpf_log(log, "Global functions need valid BTF\n"); 7388 return -EFAULT; 7389 } 7390 7391 fn_t = btf_type_by_id(btf, btf_id); 7392 if (!fn_t || !btf_type_is_func(fn_t)) { 7393 /* These checks were already done by the verifier while loading 7394 * struct bpf_func_info 7395 */ 7396 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7397 subprog); 7398 return -EFAULT; 7399 } 7400 tname = btf_name_by_offset(btf, fn_t->name_off); 7401 7402 if (prog->aux->func_info_aux[subprog].unreliable) { 7403 bpf_log(log, "Verifier bug in function %s()\n", tname); 7404 return -EFAULT; 7405 } 7406 if (prog_type == BPF_PROG_TYPE_EXT) 7407 prog_type = prog->aux->dst_prog->type; 7408 7409 t = btf_type_by_id(btf, fn_t->type); 7410 if (!t || !btf_type_is_func_proto(t)) { 7411 bpf_log(log, "Invalid type of function %s()\n", tname); 7412 return -EFAULT; 7413 } 7414 args = (const struct btf_param *)(t + 1); 7415 nargs = btf_type_vlen(t); 7416 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7417 if (!is_global) 7418 return -EINVAL; 7419 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7420 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7421 return -EINVAL; 7422 } 7423 /* check that function returns int, exception cb also requires this */ 7424 t = btf_type_by_id(btf, t->type); 7425 while (btf_type_is_modifier(t)) 7426 t = btf_type_by_id(btf, t->type); 7427 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7428 if (!is_global) 7429 return -EINVAL; 7430 bpf_log(log, 7431 "Global function %s() doesn't return scalar. Only those are supported.\n", 7432 tname); 7433 return -EINVAL; 7434 } 7435 /* Convert BTF function arguments into verifier types. 7436 * Only PTR_TO_CTX and SCALAR are supported atm. 7437 */ 7438 for (i = 0; i < nargs; i++) { 7439 u32 tags = 0; 7440 int id = 0; 7441 7442 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7443 * register type from BTF type itself 7444 */ 7445 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7446 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7447 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7448 7449 /* disallow arg tags in static subprogs */ 7450 if (!is_global) { 7451 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7452 return -EOPNOTSUPP; 7453 } 7454 7455 if (strcmp(tag, "ctx") == 0) { 7456 tags |= ARG_TAG_CTX; 7457 } else if (strcmp(tag, "trusted") == 0) { 7458 tags |= ARG_TAG_TRUSTED; 7459 } else if (strcmp(tag, "nonnull") == 0) { 7460 tags |= ARG_TAG_NONNULL; 7461 } else if (strcmp(tag, "nullable") == 0) { 7462 tags |= ARG_TAG_NULLABLE; 7463 } else if (strcmp(tag, "arena") == 0) { 7464 tags |= ARG_TAG_ARENA; 7465 } else { 7466 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7467 return -EOPNOTSUPP; 7468 } 7469 } 7470 if (id != -ENOENT) { 7471 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7472 return id; 7473 } 7474 7475 t = btf_type_by_id(btf, args[i].type); 7476 while (btf_type_is_modifier(t)) 7477 t = btf_type_by_id(btf, t->type); 7478 if (!btf_type_is_ptr(t)) 7479 goto skip_pointer; 7480 7481 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7482 if (tags & ~ARG_TAG_CTX) { 7483 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7484 return -EINVAL; 7485 } 7486 if ((tags & ARG_TAG_CTX) && 7487 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7488 prog->expected_attach_type)) 7489 return -EINVAL; 7490 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7491 continue; 7492 } 7493 if (btf_is_dynptr_ptr(btf, t)) { 7494 if (tags) { 7495 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7496 return -EINVAL; 7497 } 7498 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7499 continue; 7500 } 7501 if (tags & ARG_TAG_TRUSTED) { 7502 int kern_type_id; 7503 7504 if (tags & ARG_TAG_NONNULL) { 7505 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7506 return -EINVAL; 7507 } 7508 7509 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7510 if (kern_type_id < 0) 7511 return kern_type_id; 7512 7513 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7514 if (tags & ARG_TAG_NULLABLE) 7515 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7516 sub->args[i].btf_id = kern_type_id; 7517 continue; 7518 } 7519 if (tags & ARG_TAG_ARENA) { 7520 if (tags & ~ARG_TAG_ARENA) { 7521 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7522 return -EINVAL; 7523 } 7524 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7525 continue; 7526 } 7527 if (is_global) { /* generic user data pointer */ 7528 u32 mem_size; 7529 7530 if (tags & ARG_TAG_NULLABLE) { 7531 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7532 return -EINVAL; 7533 } 7534 7535 t = btf_type_skip_modifiers(btf, t->type, NULL); 7536 ref_t = btf_resolve_size(btf, t, &mem_size); 7537 if (IS_ERR(ref_t)) { 7538 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7539 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7540 PTR_ERR(ref_t)); 7541 return -EINVAL; 7542 } 7543 7544 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7545 if (tags & ARG_TAG_NONNULL) 7546 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7547 sub->args[i].mem_size = mem_size; 7548 continue; 7549 } 7550 7551 skip_pointer: 7552 if (tags) { 7553 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7554 return -EINVAL; 7555 } 7556 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7557 sub->args[i].arg_type = ARG_ANYTHING; 7558 continue; 7559 } 7560 if (!is_global) 7561 return -EINVAL; 7562 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7563 i, btf_type_str(t), tname); 7564 return -EINVAL; 7565 } 7566 7567 sub->arg_cnt = nargs; 7568 sub->args_cached = true; 7569 7570 return 0; 7571 } 7572 7573 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7574 struct btf_show *show) 7575 { 7576 const struct btf_type *t = btf_type_by_id(btf, type_id); 7577 7578 show->btf = btf; 7579 memset(&show->state, 0, sizeof(show->state)); 7580 memset(&show->obj, 0, sizeof(show->obj)); 7581 7582 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7583 } 7584 7585 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7586 va_list args) 7587 { 7588 seq_vprintf((struct seq_file *)show->target, fmt, args); 7589 } 7590 7591 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7592 void *obj, struct seq_file *m, u64 flags) 7593 { 7594 struct btf_show sseq; 7595 7596 sseq.target = m; 7597 sseq.showfn = btf_seq_show; 7598 sseq.flags = flags; 7599 7600 btf_type_show(btf, type_id, obj, &sseq); 7601 7602 return sseq.state.status; 7603 } 7604 7605 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7606 struct seq_file *m) 7607 { 7608 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7609 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7610 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7611 } 7612 7613 struct btf_show_snprintf { 7614 struct btf_show show; 7615 int len_left; /* space left in string */ 7616 int len; /* length we would have written */ 7617 }; 7618 7619 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7620 va_list args) 7621 { 7622 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7623 int len; 7624 7625 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7626 7627 if (len < 0) { 7628 ssnprintf->len_left = 0; 7629 ssnprintf->len = len; 7630 } else if (len >= ssnprintf->len_left) { 7631 /* no space, drive on to get length we would have written */ 7632 ssnprintf->len_left = 0; 7633 ssnprintf->len += len; 7634 } else { 7635 ssnprintf->len_left -= len; 7636 ssnprintf->len += len; 7637 show->target += len; 7638 } 7639 } 7640 7641 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7642 char *buf, int len, u64 flags) 7643 { 7644 struct btf_show_snprintf ssnprintf; 7645 7646 ssnprintf.show.target = buf; 7647 ssnprintf.show.flags = flags; 7648 ssnprintf.show.showfn = btf_snprintf_show; 7649 ssnprintf.len_left = len; 7650 ssnprintf.len = 0; 7651 7652 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7653 7654 /* If we encountered an error, return it. */ 7655 if (ssnprintf.show.state.status) 7656 return ssnprintf.show.state.status; 7657 7658 /* Otherwise return length we would have written */ 7659 return ssnprintf.len; 7660 } 7661 7662 #ifdef CONFIG_PROC_FS 7663 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7664 { 7665 const struct btf *btf = filp->private_data; 7666 7667 seq_printf(m, "btf_id:\t%u\n", btf->id); 7668 } 7669 #endif 7670 7671 static int btf_release(struct inode *inode, struct file *filp) 7672 { 7673 btf_put(filp->private_data); 7674 return 0; 7675 } 7676 7677 const struct file_operations btf_fops = { 7678 #ifdef CONFIG_PROC_FS 7679 .show_fdinfo = bpf_btf_show_fdinfo, 7680 #endif 7681 .release = btf_release, 7682 }; 7683 7684 static int __btf_new_fd(struct btf *btf) 7685 { 7686 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7687 } 7688 7689 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7690 { 7691 struct btf *btf; 7692 int ret; 7693 7694 btf = btf_parse(attr, uattr, uattr_size); 7695 if (IS_ERR(btf)) 7696 return PTR_ERR(btf); 7697 7698 ret = btf_alloc_id(btf); 7699 if (ret) { 7700 btf_free(btf); 7701 return ret; 7702 } 7703 7704 /* 7705 * The BTF ID is published to the userspace. 7706 * All BTF free must go through call_rcu() from 7707 * now on (i.e. free by calling btf_put()). 7708 */ 7709 7710 ret = __btf_new_fd(btf); 7711 if (ret < 0) 7712 btf_put(btf); 7713 7714 return ret; 7715 } 7716 7717 struct btf *btf_get_by_fd(int fd) 7718 { 7719 struct btf *btf; 7720 CLASS(fd, f)(fd); 7721 7722 if (fd_empty(f)) 7723 return ERR_PTR(-EBADF); 7724 7725 if (fd_file(f)->f_op != &btf_fops) 7726 return ERR_PTR(-EINVAL); 7727 7728 btf = fd_file(f)->private_data; 7729 refcount_inc(&btf->refcnt); 7730 7731 return btf; 7732 } 7733 7734 int btf_get_info_by_fd(const struct btf *btf, 7735 const union bpf_attr *attr, 7736 union bpf_attr __user *uattr) 7737 { 7738 struct bpf_btf_info __user *uinfo; 7739 struct bpf_btf_info info; 7740 u32 info_copy, btf_copy; 7741 void __user *ubtf; 7742 char __user *uname; 7743 u32 uinfo_len, uname_len, name_len; 7744 int ret = 0; 7745 7746 uinfo = u64_to_user_ptr(attr->info.info); 7747 uinfo_len = attr->info.info_len; 7748 7749 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7750 memset(&info, 0, sizeof(info)); 7751 if (copy_from_user(&info, uinfo, info_copy)) 7752 return -EFAULT; 7753 7754 info.id = btf->id; 7755 ubtf = u64_to_user_ptr(info.btf); 7756 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7757 if (copy_to_user(ubtf, btf->data, btf_copy)) 7758 return -EFAULT; 7759 info.btf_size = btf->data_size; 7760 7761 info.kernel_btf = btf->kernel_btf; 7762 7763 uname = u64_to_user_ptr(info.name); 7764 uname_len = info.name_len; 7765 if (!uname ^ !uname_len) 7766 return -EINVAL; 7767 7768 name_len = strlen(btf->name); 7769 info.name_len = name_len; 7770 7771 if (uname) { 7772 if (uname_len >= name_len + 1) { 7773 if (copy_to_user(uname, btf->name, name_len + 1)) 7774 return -EFAULT; 7775 } else { 7776 char zero = '\0'; 7777 7778 if (copy_to_user(uname, btf->name, uname_len - 1)) 7779 return -EFAULT; 7780 if (put_user(zero, uname + uname_len - 1)) 7781 return -EFAULT; 7782 /* let user-space know about too short buffer */ 7783 ret = -ENOSPC; 7784 } 7785 } 7786 7787 if (copy_to_user(uinfo, &info, info_copy) || 7788 put_user(info_copy, &uattr->info.info_len)) 7789 return -EFAULT; 7790 7791 return ret; 7792 } 7793 7794 int btf_get_fd_by_id(u32 id) 7795 { 7796 struct btf *btf; 7797 int fd; 7798 7799 rcu_read_lock(); 7800 btf = idr_find(&btf_idr, id); 7801 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7802 btf = ERR_PTR(-ENOENT); 7803 rcu_read_unlock(); 7804 7805 if (IS_ERR(btf)) 7806 return PTR_ERR(btf); 7807 7808 fd = __btf_new_fd(btf); 7809 if (fd < 0) 7810 btf_put(btf); 7811 7812 return fd; 7813 } 7814 7815 u32 btf_obj_id(const struct btf *btf) 7816 { 7817 return btf->id; 7818 } 7819 7820 bool btf_is_kernel(const struct btf *btf) 7821 { 7822 return btf->kernel_btf; 7823 } 7824 7825 bool btf_is_module(const struct btf *btf) 7826 { 7827 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7828 } 7829 7830 enum { 7831 BTF_MODULE_F_LIVE = (1 << 0), 7832 }; 7833 7834 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7835 struct btf_module { 7836 struct list_head list; 7837 struct module *module; 7838 struct btf *btf; 7839 struct bin_attribute *sysfs_attr; 7840 int flags; 7841 }; 7842 7843 static LIST_HEAD(btf_modules); 7844 static DEFINE_MUTEX(btf_module_mutex); 7845 7846 static ssize_t 7847 btf_module_read(struct file *file, struct kobject *kobj, 7848 struct bin_attribute *bin_attr, 7849 char *buf, loff_t off, size_t len) 7850 { 7851 const struct btf *btf = bin_attr->private; 7852 7853 memcpy(buf, btf->data + off, len); 7854 return len; 7855 } 7856 7857 static void purge_cand_cache(struct btf *btf); 7858 7859 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7860 void *module) 7861 { 7862 struct btf_module *btf_mod, *tmp; 7863 struct module *mod = module; 7864 struct btf *btf; 7865 int err = 0; 7866 7867 if (mod->btf_data_size == 0 || 7868 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7869 op != MODULE_STATE_GOING)) 7870 goto out; 7871 7872 switch (op) { 7873 case MODULE_STATE_COMING: 7874 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7875 if (!btf_mod) { 7876 err = -ENOMEM; 7877 goto out; 7878 } 7879 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 7880 mod->btf_base_data, mod->btf_base_data_size); 7881 if (IS_ERR(btf)) { 7882 kfree(btf_mod); 7883 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7884 pr_warn("failed to validate module [%s] BTF: %ld\n", 7885 mod->name, PTR_ERR(btf)); 7886 err = PTR_ERR(btf); 7887 } else { 7888 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7889 } 7890 goto out; 7891 } 7892 err = btf_alloc_id(btf); 7893 if (err) { 7894 btf_free(btf); 7895 kfree(btf_mod); 7896 goto out; 7897 } 7898 7899 purge_cand_cache(NULL); 7900 mutex_lock(&btf_module_mutex); 7901 btf_mod->module = module; 7902 btf_mod->btf = btf; 7903 list_add(&btf_mod->list, &btf_modules); 7904 mutex_unlock(&btf_module_mutex); 7905 7906 if (IS_ENABLED(CONFIG_SYSFS)) { 7907 struct bin_attribute *attr; 7908 7909 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7910 if (!attr) 7911 goto out; 7912 7913 sysfs_bin_attr_init(attr); 7914 attr->attr.name = btf->name; 7915 attr->attr.mode = 0444; 7916 attr->size = btf->data_size; 7917 attr->private = btf; 7918 attr->read = btf_module_read; 7919 7920 err = sysfs_create_bin_file(btf_kobj, attr); 7921 if (err) { 7922 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7923 mod->name, err); 7924 kfree(attr); 7925 err = 0; 7926 goto out; 7927 } 7928 7929 btf_mod->sysfs_attr = attr; 7930 } 7931 7932 break; 7933 case MODULE_STATE_LIVE: 7934 mutex_lock(&btf_module_mutex); 7935 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7936 if (btf_mod->module != module) 7937 continue; 7938 7939 btf_mod->flags |= BTF_MODULE_F_LIVE; 7940 break; 7941 } 7942 mutex_unlock(&btf_module_mutex); 7943 break; 7944 case MODULE_STATE_GOING: 7945 mutex_lock(&btf_module_mutex); 7946 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7947 if (btf_mod->module != module) 7948 continue; 7949 7950 list_del(&btf_mod->list); 7951 if (btf_mod->sysfs_attr) 7952 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7953 purge_cand_cache(btf_mod->btf); 7954 btf_put(btf_mod->btf); 7955 kfree(btf_mod->sysfs_attr); 7956 kfree(btf_mod); 7957 break; 7958 } 7959 mutex_unlock(&btf_module_mutex); 7960 break; 7961 } 7962 out: 7963 return notifier_from_errno(err); 7964 } 7965 7966 static struct notifier_block btf_module_nb = { 7967 .notifier_call = btf_module_notify, 7968 }; 7969 7970 static int __init btf_module_init(void) 7971 { 7972 register_module_notifier(&btf_module_nb); 7973 return 0; 7974 } 7975 7976 fs_initcall(btf_module_init); 7977 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7978 7979 struct module *btf_try_get_module(const struct btf *btf) 7980 { 7981 struct module *res = NULL; 7982 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7983 struct btf_module *btf_mod, *tmp; 7984 7985 mutex_lock(&btf_module_mutex); 7986 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7987 if (btf_mod->btf != btf) 7988 continue; 7989 7990 /* We must only consider module whose __init routine has 7991 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7992 * which is set from the notifier callback for 7993 * MODULE_STATE_LIVE. 7994 */ 7995 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7996 res = btf_mod->module; 7997 7998 break; 7999 } 8000 mutex_unlock(&btf_module_mutex); 8001 #endif 8002 8003 return res; 8004 } 8005 8006 /* Returns struct btf corresponding to the struct module. 8007 * This function can return NULL or ERR_PTR. 8008 */ 8009 static struct btf *btf_get_module_btf(const struct module *module) 8010 { 8011 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8012 struct btf_module *btf_mod, *tmp; 8013 #endif 8014 struct btf *btf = NULL; 8015 8016 if (!module) { 8017 btf = bpf_get_btf_vmlinux(); 8018 if (!IS_ERR_OR_NULL(btf)) 8019 btf_get(btf); 8020 return btf; 8021 } 8022 8023 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8024 mutex_lock(&btf_module_mutex); 8025 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8026 if (btf_mod->module != module) 8027 continue; 8028 8029 btf_get(btf_mod->btf); 8030 btf = btf_mod->btf; 8031 break; 8032 } 8033 mutex_unlock(&btf_module_mutex); 8034 #endif 8035 8036 return btf; 8037 } 8038 8039 static int check_btf_kconfigs(const struct module *module, const char *feature) 8040 { 8041 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8042 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8043 return -ENOENT; 8044 } 8045 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8046 pr_warn("missing module BTF, cannot register %s\n", feature); 8047 return 0; 8048 } 8049 8050 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8051 { 8052 struct btf *btf = NULL; 8053 int btf_obj_fd = 0; 8054 long ret; 8055 8056 if (flags) 8057 return -EINVAL; 8058 8059 if (name_sz <= 1 || name[name_sz - 1]) 8060 return -EINVAL; 8061 8062 ret = bpf_find_btf_id(name, kind, &btf); 8063 if (ret > 0 && btf_is_module(btf)) { 8064 btf_obj_fd = __btf_new_fd(btf); 8065 if (btf_obj_fd < 0) { 8066 btf_put(btf); 8067 return btf_obj_fd; 8068 } 8069 return ret | (((u64)btf_obj_fd) << 32); 8070 } 8071 if (ret > 0) 8072 btf_put(btf); 8073 return ret; 8074 } 8075 8076 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8077 .func = bpf_btf_find_by_name_kind, 8078 .gpl_only = false, 8079 .ret_type = RET_INTEGER, 8080 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8081 .arg2_type = ARG_CONST_SIZE, 8082 .arg3_type = ARG_ANYTHING, 8083 .arg4_type = ARG_ANYTHING, 8084 }; 8085 8086 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8087 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8088 BTF_TRACING_TYPE_xxx 8089 #undef BTF_TRACING_TYPE 8090 8091 /* Validate well-formedness of iter argument type. 8092 * On success, return positive BTF ID of iter state's STRUCT type. 8093 * On error, negative error is returned. 8094 */ 8095 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8096 { 8097 const struct btf_param *arg; 8098 const struct btf_type *t; 8099 const char *name; 8100 int btf_id; 8101 8102 if (btf_type_vlen(func) <= arg_idx) 8103 return -EINVAL; 8104 8105 arg = &btf_params(func)[arg_idx]; 8106 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8107 if (!t || !btf_type_is_ptr(t)) 8108 return -EINVAL; 8109 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8110 if (!t || !__btf_type_is_struct(t)) 8111 return -EINVAL; 8112 8113 name = btf_name_by_offset(btf, t->name_off); 8114 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8115 return -EINVAL; 8116 8117 return btf_id; 8118 } 8119 8120 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8121 const struct btf_type *func, u32 func_flags) 8122 { 8123 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8124 const char *sfx, *iter_name; 8125 const struct btf_type *t; 8126 char exp_name[128]; 8127 u32 nr_args; 8128 int btf_id; 8129 8130 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8131 if (!flags || (flags & (flags - 1))) 8132 return -EINVAL; 8133 8134 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8135 nr_args = btf_type_vlen(func); 8136 if (nr_args < 1) 8137 return -EINVAL; 8138 8139 btf_id = btf_check_iter_arg(btf, func, 0); 8140 if (btf_id < 0) 8141 return btf_id; 8142 8143 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8144 * fit nicely in stack slots 8145 */ 8146 t = btf_type_by_id(btf, btf_id); 8147 if (t->size == 0 || (t->size % 8)) 8148 return -EINVAL; 8149 8150 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8151 * naming pattern 8152 */ 8153 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8154 if (flags & KF_ITER_NEW) 8155 sfx = "new"; 8156 else if (flags & KF_ITER_NEXT) 8157 sfx = "next"; 8158 else /* (flags & KF_ITER_DESTROY) */ 8159 sfx = "destroy"; 8160 8161 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8162 if (strcmp(func_name, exp_name)) 8163 return -EINVAL; 8164 8165 /* only iter constructor should have extra arguments */ 8166 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8167 return -EINVAL; 8168 8169 if (flags & KF_ITER_NEXT) { 8170 /* bpf_iter_<type>_next() should return pointer */ 8171 t = btf_type_skip_modifiers(btf, func->type, NULL); 8172 if (!t || !btf_type_is_ptr(t)) 8173 return -EINVAL; 8174 } 8175 8176 if (flags & KF_ITER_DESTROY) { 8177 /* bpf_iter_<type>_destroy() should return void */ 8178 t = btf_type_by_id(btf, func->type); 8179 if (!t || !btf_type_is_void(t)) 8180 return -EINVAL; 8181 } 8182 8183 return 0; 8184 } 8185 8186 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8187 { 8188 const struct btf_type *func; 8189 const char *func_name; 8190 int err; 8191 8192 /* any kfunc should be FUNC -> FUNC_PROTO */ 8193 func = btf_type_by_id(btf, func_id); 8194 if (!func || !btf_type_is_func(func)) 8195 return -EINVAL; 8196 8197 /* sanity check kfunc name */ 8198 func_name = btf_name_by_offset(btf, func->name_off); 8199 if (!func_name || !func_name[0]) 8200 return -EINVAL; 8201 8202 func = btf_type_by_id(btf, func->type); 8203 if (!func || !btf_type_is_func_proto(func)) 8204 return -EINVAL; 8205 8206 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8207 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8208 if (err) 8209 return err; 8210 } 8211 8212 return 0; 8213 } 8214 8215 /* Kernel Function (kfunc) BTF ID set registration API */ 8216 8217 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8218 const struct btf_kfunc_id_set *kset) 8219 { 8220 struct btf_kfunc_hook_filter *hook_filter; 8221 struct btf_id_set8 *add_set = kset->set; 8222 bool vmlinux_set = !btf_is_module(btf); 8223 bool add_filter = !!kset->filter; 8224 struct btf_kfunc_set_tab *tab; 8225 struct btf_id_set8 *set; 8226 u32 set_cnt, i; 8227 int ret; 8228 8229 if (hook >= BTF_KFUNC_HOOK_MAX) { 8230 ret = -EINVAL; 8231 goto end; 8232 } 8233 8234 if (!add_set->cnt) 8235 return 0; 8236 8237 tab = btf->kfunc_set_tab; 8238 8239 if (tab && add_filter) { 8240 u32 i; 8241 8242 hook_filter = &tab->hook_filters[hook]; 8243 for (i = 0; i < hook_filter->nr_filters; i++) { 8244 if (hook_filter->filters[i] == kset->filter) { 8245 add_filter = false; 8246 break; 8247 } 8248 } 8249 8250 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8251 ret = -E2BIG; 8252 goto end; 8253 } 8254 } 8255 8256 if (!tab) { 8257 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8258 if (!tab) 8259 return -ENOMEM; 8260 btf->kfunc_set_tab = tab; 8261 } 8262 8263 set = tab->sets[hook]; 8264 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8265 * for module sets. 8266 */ 8267 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8268 ret = -EINVAL; 8269 goto end; 8270 } 8271 8272 /* In case of vmlinux sets, there may be more than one set being 8273 * registered per hook. To create a unified set, we allocate a new set 8274 * and concatenate all individual sets being registered. While each set 8275 * is individually sorted, they may become unsorted when concatenated, 8276 * hence re-sorting the final set again is required to make binary 8277 * searching the set using btf_id_set8_contains function work. 8278 * 8279 * For module sets, we need to allocate as we may need to relocate 8280 * BTF ids. 8281 */ 8282 set_cnt = set ? set->cnt : 0; 8283 8284 if (set_cnt > U32_MAX - add_set->cnt) { 8285 ret = -EOVERFLOW; 8286 goto end; 8287 } 8288 8289 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8290 ret = -E2BIG; 8291 goto end; 8292 } 8293 8294 /* Grow set */ 8295 set = krealloc(tab->sets[hook], 8296 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8297 GFP_KERNEL | __GFP_NOWARN); 8298 if (!set) { 8299 ret = -ENOMEM; 8300 goto end; 8301 } 8302 8303 /* For newly allocated set, initialize set->cnt to 0 */ 8304 if (!tab->sets[hook]) 8305 set->cnt = 0; 8306 tab->sets[hook] = set; 8307 8308 /* Concatenate the two sets */ 8309 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8310 /* Now that the set is copied, update with relocated BTF ids */ 8311 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8312 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8313 8314 set->cnt += add_set->cnt; 8315 8316 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8317 8318 if (add_filter) { 8319 hook_filter = &tab->hook_filters[hook]; 8320 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8321 } 8322 return 0; 8323 end: 8324 btf_free_kfunc_set_tab(btf); 8325 return ret; 8326 } 8327 8328 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8329 enum btf_kfunc_hook hook, 8330 u32 kfunc_btf_id, 8331 const struct bpf_prog *prog) 8332 { 8333 struct btf_kfunc_hook_filter *hook_filter; 8334 struct btf_id_set8 *set; 8335 u32 *id, i; 8336 8337 if (hook >= BTF_KFUNC_HOOK_MAX) 8338 return NULL; 8339 if (!btf->kfunc_set_tab) 8340 return NULL; 8341 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8342 for (i = 0; i < hook_filter->nr_filters; i++) { 8343 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8344 return NULL; 8345 } 8346 set = btf->kfunc_set_tab->sets[hook]; 8347 if (!set) 8348 return NULL; 8349 id = btf_id_set8_contains(set, kfunc_btf_id); 8350 if (!id) 8351 return NULL; 8352 /* The flags for BTF ID are located next to it */ 8353 return id + 1; 8354 } 8355 8356 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8357 { 8358 switch (prog_type) { 8359 case BPF_PROG_TYPE_UNSPEC: 8360 return BTF_KFUNC_HOOK_COMMON; 8361 case BPF_PROG_TYPE_XDP: 8362 return BTF_KFUNC_HOOK_XDP; 8363 case BPF_PROG_TYPE_SCHED_CLS: 8364 return BTF_KFUNC_HOOK_TC; 8365 case BPF_PROG_TYPE_STRUCT_OPS: 8366 return BTF_KFUNC_HOOK_STRUCT_OPS; 8367 case BPF_PROG_TYPE_TRACING: 8368 case BPF_PROG_TYPE_TRACEPOINT: 8369 case BPF_PROG_TYPE_PERF_EVENT: 8370 case BPF_PROG_TYPE_LSM: 8371 return BTF_KFUNC_HOOK_TRACING; 8372 case BPF_PROG_TYPE_SYSCALL: 8373 return BTF_KFUNC_HOOK_SYSCALL; 8374 case BPF_PROG_TYPE_CGROUP_SKB: 8375 case BPF_PROG_TYPE_CGROUP_SOCK: 8376 case BPF_PROG_TYPE_CGROUP_DEVICE: 8377 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8378 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8379 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8380 return BTF_KFUNC_HOOK_CGROUP; 8381 case BPF_PROG_TYPE_SCHED_ACT: 8382 return BTF_KFUNC_HOOK_SCHED_ACT; 8383 case BPF_PROG_TYPE_SK_SKB: 8384 return BTF_KFUNC_HOOK_SK_SKB; 8385 case BPF_PROG_TYPE_SOCKET_FILTER: 8386 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8387 case BPF_PROG_TYPE_LWT_OUT: 8388 case BPF_PROG_TYPE_LWT_IN: 8389 case BPF_PROG_TYPE_LWT_XMIT: 8390 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8391 return BTF_KFUNC_HOOK_LWT; 8392 case BPF_PROG_TYPE_NETFILTER: 8393 return BTF_KFUNC_HOOK_NETFILTER; 8394 case BPF_PROG_TYPE_KPROBE: 8395 return BTF_KFUNC_HOOK_KPROBE; 8396 default: 8397 return BTF_KFUNC_HOOK_MAX; 8398 } 8399 } 8400 8401 /* Caution: 8402 * Reference to the module (obtained using btf_try_get_module) corresponding to 8403 * the struct btf *MUST* be held when calling this function from verifier 8404 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8405 * keeping the reference for the duration of the call provides the necessary 8406 * protection for looking up a well-formed btf->kfunc_set_tab. 8407 */ 8408 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8409 u32 kfunc_btf_id, 8410 const struct bpf_prog *prog) 8411 { 8412 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8413 enum btf_kfunc_hook hook; 8414 u32 *kfunc_flags; 8415 8416 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8417 if (kfunc_flags) 8418 return kfunc_flags; 8419 8420 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8421 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8422 } 8423 8424 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8425 const struct bpf_prog *prog) 8426 { 8427 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8428 } 8429 8430 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8431 const struct btf_kfunc_id_set *kset) 8432 { 8433 struct btf *btf; 8434 int ret, i; 8435 8436 btf = btf_get_module_btf(kset->owner); 8437 if (!btf) 8438 return check_btf_kconfigs(kset->owner, "kfunc"); 8439 if (IS_ERR(btf)) 8440 return PTR_ERR(btf); 8441 8442 for (i = 0; i < kset->set->cnt; i++) { 8443 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8444 kset->set->pairs[i].flags); 8445 if (ret) 8446 goto err_out; 8447 } 8448 8449 ret = btf_populate_kfunc_set(btf, hook, kset); 8450 8451 err_out: 8452 btf_put(btf); 8453 return ret; 8454 } 8455 8456 /* This function must be invoked only from initcalls/module init functions */ 8457 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8458 const struct btf_kfunc_id_set *kset) 8459 { 8460 enum btf_kfunc_hook hook; 8461 8462 /* All kfuncs need to be tagged as such in BTF. 8463 * WARN() for initcall registrations that do not check errors. 8464 */ 8465 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8466 WARN_ON(!kset->owner); 8467 return -EINVAL; 8468 } 8469 8470 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8471 return __register_btf_kfunc_id_set(hook, kset); 8472 } 8473 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8474 8475 /* This function must be invoked only from initcalls/module init functions */ 8476 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8477 { 8478 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8479 } 8480 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8481 8482 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8483 { 8484 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8485 struct btf_id_dtor_kfunc *dtor; 8486 8487 if (!tab) 8488 return -ENOENT; 8489 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8490 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8491 */ 8492 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8493 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8494 if (!dtor) 8495 return -ENOENT; 8496 return dtor->kfunc_btf_id; 8497 } 8498 8499 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8500 { 8501 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8502 const struct btf_param *args; 8503 s32 dtor_btf_id; 8504 u32 nr_args, i; 8505 8506 for (i = 0; i < cnt; i++) { 8507 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8508 8509 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8510 if (!dtor_func || !btf_type_is_func(dtor_func)) 8511 return -EINVAL; 8512 8513 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8514 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8515 return -EINVAL; 8516 8517 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8518 t = btf_type_by_id(btf, dtor_func_proto->type); 8519 if (!t || !btf_type_is_void(t)) 8520 return -EINVAL; 8521 8522 nr_args = btf_type_vlen(dtor_func_proto); 8523 if (nr_args != 1) 8524 return -EINVAL; 8525 args = btf_params(dtor_func_proto); 8526 t = btf_type_by_id(btf, args[0].type); 8527 /* Allow any pointer type, as width on targets Linux supports 8528 * will be same for all pointer types (i.e. sizeof(void *)) 8529 */ 8530 if (!t || !btf_type_is_ptr(t)) 8531 return -EINVAL; 8532 } 8533 return 0; 8534 } 8535 8536 /* This function must be invoked only from initcalls/module init functions */ 8537 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8538 struct module *owner) 8539 { 8540 struct btf_id_dtor_kfunc_tab *tab; 8541 struct btf *btf; 8542 u32 tab_cnt, i; 8543 int ret; 8544 8545 btf = btf_get_module_btf(owner); 8546 if (!btf) 8547 return check_btf_kconfigs(owner, "dtor kfuncs"); 8548 if (IS_ERR(btf)) 8549 return PTR_ERR(btf); 8550 8551 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8552 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8553 ret = -E2BIG; 8554 goto end; 8555 } 8556 8557 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8558 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8559 if (ret < 0) 8560 goto end; 8561 8562 tab = btf->dtor_kfunc_tab; 8563 /* Only one call allowed for modules */ 8564 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8565 ret = -EINVAL; 8566 goto end; 8567 } 8568 8569 tab_cnt = tab ? tab->cnt : 0; 8570 if (tab_cnt > U32_MAX - add_cnt) { 8571 ret = -EOVERFLOW; 8572 goto end; 8573 } 8574 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8575 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8576 ret = -E2BIG; 8577 goto end; 8578 } 8579 8580 tab = krealloc(btf->dtor_kfunc_tab, 8581 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8582 GFP_KERNEL | __GFP_NOWARN); 8583 if (!tab) { 8584 ret = -ENOMEM; 8585 goto end; 8586 } 8587 8588 if (!btf->dtor_kfunc_tab) 8589 tab->cnt = 0; 8590 btf->dtor_kfunc_tab = tab; 8591 8592 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8593 8594 /* remap BTF ids based on BTF relocation (if any) */ 8595 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8596 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8597 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8598 } 8599 8600 tab->cnt += add_cnt; 8601 8602 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8603 8604 end: 8605 if (ret) 8606 btf_free_dtor_kfunc_tab(btf); 8607 btf_put(btf); 8608 return ret; 8609 } 8610 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8611 8612 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8613 8614 /* Check local and target types for compatibility. This check is used for 8615 * type-based CO-RE relocations and follow slightly different rules than 8616 * field-based relocations. This function assumes that root types were already 8617 * checked for name match. Beyond that initial root-level name check, names 8618 * are completely ignored. Compatibility rules are as follows: 8619 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8620 * kind should match for local and target types (i.e., STRUCT is not 8621 * compatible with UNION); 8622 * - for ENUMs/ENUM64s, the size is ignored; 8623 * - for INT, size and signedness are ignored; 8624 * - for ARRAY, dimensionality is ignored, element types are checked for 8625 * compatibility recursively; 8626 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8627 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8628 * - FUNC_PROTOs are compatible if they have compatible signature: same 8629 * number of input args and compatible return and argument types. 8630 * These rules are not set in stone and probably will be adjusted as we get 8631 * more experience with using BPF CO-RE relocations. 8632 */ 8633 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8634 const struct btf *targ_btf, __u32 targ_id) 8635 { 8636 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8637 MAX_TYPES_ARE_COMPAT_DEPTH); 8638 } 8639 8640 #define MAX_TYPES_MATCH_DEPTH 2 8641 8642 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8643 const struct btf *targ_btf, u32 targ_id) 8644 { 8645 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8646 MAX_TYPES_MATCH_DEPTH); 8647 } 8648 8649 static bool bpf_core_is_flavor_sep(const char *s) 8650 { 8651 /* check X___Y name pattern, where X and Y are not underscores */ 8652 return s[0] != '_' && /* X */ 8653 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8654 s[4] != '_'; /* Y */ 8655 } 8656 8657 size_t bpf_core_essential_name_len(const char *name) 8658 { 8659 size_t n = strlen(name); 8660 int i; 8661 8662 for (i = n - 5; i >= 0; i--) { 8663 if (bpf_core_is_flavor_sep(name + i)) 8664 return i + 1; 8665 } 8666 return n; 8667 } 8668 8669 static void bpf_free_cands(struct bpf_cand_cache *cands) 8670 { 8671 if (!cands->cnt) 8672 /* empty candidate array was allocated on stack */ 8673 return; 8674 kfree(cands); 8675 } 8676 8677 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8678 { 8679 kfree(cands->name); 8680 kfree(cands); 8681 } 8682 8683 #define VMLINUX_CAND_CACHE_SIZE 31 8684 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8685 8686 #define MODULE_CAND_CACHE_SIZE 31 8687 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8688 8689 static void __print_cand_cache(struct bpf_verifier_log *log, 8690 struct bpf_cand_cache **cache, 8691 int cache_size) 8692 { 8693 struct bpf_cand_cache *cc; 8694 int i, j; 8695 8696 for (i = 0; i < cache_size; i++) { 8697 cc = cache[i]; 8698 if (!cc) 8699 continue; 8700 bpf_log(log, "[%d]%s(", i, cc->name); 8701 for (j = 0; j < cc->cnt; j++) { 8702 bpf_log(log, "%d", cc->cands[j].id); 8703 if (j < cc->cnt - 1) 8704 bpf_log(log, " "); 8705 } 8706 bpf_log(log, "), "); 8707 } 8708 } 8709 8710 static void print_cand_cache(struct bpf_verifier_log *log) 8711 { 8712 mutex_lock(&cand_cache_mutex); 8713 bpf_log(log, "vmlinux_cand_cache:"); 8714 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8715 bpf_log(log, "\nmodule_cand_cache:"); 8716 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8717 bpf_log(log, "\n"); 8718 mutex_unlock(&cand_cache_mutex); 8719 } 8720 8721 static u32 hash_cands(struct bpf_cand_cache *cands) 8722 { 8723 return jhash(cands->name, cands->name_len, 0); 8724 } 8725 8726 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8727 struct bpf_cand_cache **cache, 8728 int cache_size) 8729 { 8730 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8731 8732 if (cc && cc->name_len == cands->name_len && 8733 !strncmp(cc->name, cands->name, cands->name_len)) 8734 return cc; 8735 return NULL; 8736 } 8737 8738 static size_t sizeof_cands(int cnt) 8739 { 8740 return offsetof(struct bpf_cand_cache, cands[cnt]); 8741 } 8742 8743 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8744 struct bpf_cand_cache **cache, 8745 int cache_size) 8746 { 8747 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8748 8749 if (*cc) { 8750 bpf_free_cands_from_cache(*cc); 8751 *cc = NULL; 8752 } 8753 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8754 if (!new_cands) { 8755 bpf_free_cands(cands); 8756 return ERR_PTR(-ENOMEM); 8757 } 8758 /* strdup the name, since it will stay in cache. 8759 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8760 */ 8761 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8762 bpf_free_cands(cands); 8763 if (!new_cands->name) { 8764 kfree(new_cands); 8765 return ERR_PTR(-ENOMEM); 8766 } 8767 *cc = new_cands; 8768 return new_cands; 8769 } 8770 8771 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8772 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8773 int cache_size) 8774 { 8775 struct bpf_cand_cache *cc; 8776 int i, j; 8777 8778 for (i = 0; i < cache_size; i++) { 8779 cc = cache[i]; 8780 if (!cc) 8781 continue; 8782 if (!btf) { 8783 /* when new module is loaded purge all of module_cand_cache, 8784 * since new module might have candidates with the name 8785 * that matches cached cands. 8786 */ 8787 bpf_free_cands_from_cache(cc); 8788 cache[i] = NULL; 8789 continue; 8790 } 8791 /* when module is unloaded purge cache entries 8792 * that match module's btf 8793 */ 8794 for (j = 0; j < cc->cnt; j++) 8795 if (cc->cands[j].btf == btf) { 8796 bpf_free_cands_from_cache(cc); 8797 cache[i] = NULL; 8798 break; 8799 } 8800 } 8801 8802 } 8803 8804 static void purge_cand_cache(struct btf *btf) 8805 { 8806 mutex_lock(&cand_cache_mutex); 8807 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8808 mutex_unlock(&cand_cache_mutex); 8809 } 8810 #endif 8811 8812 static struct bpf_cand_cache * 8813 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8814 int targ_start_id) 8815 { 8816 struct bpf_cand_cache *new_cands; 8817 const struct btf_type *t; 8818 const char *targ_name; 8819 size_t targ_essent_len; 8820 int n, i; 8821 8822 n = btf_nr_types(targ_btf); 8823 for (i = targ_start_id; i < n; i++) { 8824 t = btf_type_by_id(targ_btf, i); 8825 if (btf_kind(t) != cands->kind) 8826 continue; 8827 8828 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8829 if (!targ_name) 8830 continue; 8831 8832 /* the resched point is before strncmp to make sure that search 8833 * for non-existing name will have a chance to schedule(). 8834 */ 8835 cond_resched(); 8836 8837 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8838 continue; 8839 8840 targ_essent_len = bpf_core_essential_name_len(targ_name); 8841 if (targ_essent_len != cands->name_len) 8842 continue; 8843 8844 /* most of the time there is only one candidate for a given kind+name pair */ 8845 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8846 if (!new_cands) { 8847 bpf_free_cands(cands); 8848 return ERR_PTR(-ENOMEM); 8849 } 8850 8851 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8852 bpf_free_cands(cands); 8853 cands = new_cands; 8854 cands->cands[cands->cnt].btf = targ_btf; 8855 cands->cands[cands->cnt].id = i; 8856 cands->cnt++; 8857 } 8858 return cands; 8859 } 8860 8861 static struct bpf_cand_cache * 8862 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8863 { 8864 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8865 const struct btf *local_btf = ctx->btf; 8866 const struct btf_type *local_type; 8867 const struct btf *main_btf; 8868 size_t local_essent_len; 8869 struct btf *mod_btf; 8870 const char *name; 8871 int id; 8872 8873 main_btf = bpf_get_btf_vmlinux(); 8874 if (IS_ERR(main_btf)) 8875 return ERR_CAST(main_btf); 8876 if (!main_btf) 8877 return ERR_PTR(-EINVAL); 8878 8879 local_type = btf_type_by_id(local_btf, local_type_id); 8880 if (!local_type) 8881 return ERR_PTR(-EINVAL); 8882 8883 name = btf_name_by_offset(local_btf, local_type->name_off); 8884 if (str_is_empty(name)) 8885 return ERR_PTR(-EINVAL); 8886 local_essent_len = bpf_core_essential_name_len(name); 8887 8888 cands = &local_cand; 8889 cands->name = name; 8890 cands->kind = btf_kind(local_type); 8891 cands->name_len = local_essent_len; 8892 8893 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8894 /* cands is a pointer to stack here */ 8895 if (cc) { 8896 if (cc->cnt) 8897 return cc; 8898 goto check_modules; 8899 } 8900 8901 /* Attempt to find target candidates in vmlinux BTF first */ 8902 cands = bpf_core_add_cands(cands, main_btf, 1); 8903 if (IS_ERR(cands)) 8904 return ERR_CAST(cands); 8905 8906 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8907 8908 /* populate cache even when cands->cnt == 0 */ 8909 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8910 if (IS_ERR(cc)) 8911 return ERR_CAST(cc); 8912 8913 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8914 if (cc->cnt) 8915 return cc; 8916 8917 check_modules: 8918 /* cands is a pointer to stack here and cands->cnt == 0 */ 8919 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8920 if (cc) 8921 /* if cache has it return it even if cc->cnt == 0 */ 8922 return cc; 8923 8924 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8925 spin_lock_bh(&btf_idr_lock); 8926 idr_for_each_entry(&btf_idr, mod_btf, id) { 8927 if (!btf_is_module(mod_btf)) 8928 continue; 8929 /* linear search could be slow hence unlock/lock 8930 * the IDR to avoiding holding it for too long 8931 */ 8932 btf_get(mod_btf); 8933 spin_unlock_bh(&btf_idr_lock); 8934 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8935 btf_put(mod_btf); 8936 if (IS_ERR(cands)) 8937 return ERR_CAST(cands); 8938 spin_lock_bh(&btf_idr_lock); 8939 } 8940 spin_unlock_bh(&btf_idr_lock); 8941 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8942 * or pointer to stack if cands->cnd == 0. 8943 * Copy it into the cache even when cands->cnt == 0 and 8944 * return the result. 8945 */ 8946 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8947 } 8948 8949 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8950 int relo_idx, void *insn) 8951 { 8952 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8953 struct bpf_core_cand_list cands = {}; 8954 struct bpf_core_relo_res targ_res; 8955 struct bpf_core_spec *specs; 8956 const struct btf_type *type; 8957 int err; 8958 8959 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8960 * into arrays of btf_ids of struct fields and array indices. 8961 */ 8962 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8963 if (!specs) 8964 return -ENOMEM; 8965 8966 type = btf_type_by_id(ctx->btf, relo->type_id); 8967 if (!type) { 8968 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 8969 relo_idx, relo->type_id); 8970 kfree(specs); 8971 return -EINVAL; 8972 } 8973 8974 if (need_cands) { 8975 struct bpf_cand_cache *cc; 8976 int i; 8977 8978 mutex_lock(&cand_cache_mutex); 8979 cc = bpf_core_find_cands(ctx, relo->type_id); 8980 if (IS_ERR(cc)) { 8981 bpf_log(ctx->log, "target candidate search failed for %d\n", 8982 relo->type_id); 8983 err = PTR_ERR(cc); 8984 goto out; 8985 } 8986 if (cc->cnt) { 8987 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8988 if (!cands.cands) { 8989 err = -ENOMEM; 8990 goto out; 8991 } 8992 } 8993 for (i = 0; i < cc->cnt; i++) { 8994 bpf_log(ctx->log, 8995 "CO-RE relocating %s %s: found target candidate [%d]\n", 8996 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8997 cands.cands[i].btf = cc->cands[i].btf; 8998 cands.cands[i].id = cc->cands[i].id; 8999 } 9000 cands.len = cc->cnt; 9001 /* cand_cache_mutex needs to span the cache lookup and 9002 * copy of btf pointer into bpf_core_cand_list, 9003 * since module can be unloaded while bpf_core_calc_relo_insn 9004 * is working with module's btf. 9005 */ 9006 } 9007 9008 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9009 &targ_res); 9010 if (err) 9011 goto out; 9012 9013 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9014 &targ_res); 9015 9016 out: 9017 kfree(specs); 9018 if (need_cands) { 9019 kfree(cands.cands); 9020 mutex_unlock(&cand_cache_mutex); 9021 if (ctx->log->level & BPF_LOG_LEVEL2) 9022 print_cand_cache(ctx->log); 9023 } 9024 return err; 9025 } 9026 9027 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9028 const struct bpf_reg_state *reg, 9029 const char *field_name, u32 btf_id, const char *suffix) 9030 { 9031 struct btf *btf = reg->btf; 9032 const struct btf_type *walk_type, *safe_type; 9033 const char *tname; 9034 char safe_tname[64]; 9035 long ret, safe_id; 9036 const struct btf_member *member; 9037 u32 i; 9038 9039 walk_type = btf_type_by_id(btf, reg->btf_id); 9040 if (!walk_type) 9041 return false; 9042 9043 tname = btf_name_by_offset(btf, walk_type->name_off); 9044 9045 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9046 if (ret >= sizeof(safe_tname)) 9047 return false; 9048 9049 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9050 if (safe_id < 0) 9051 return false; 9052 9053 safe_type = btf_type_by_id(btf, safe_id); 9054 if (!safe_type) 9055 return false; 9056 9057 for_each_member(i, safe_type, member) { 9058 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9059 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9060 u32 id; 9061 9062 if (!btf_type_is_ptr(mtype)) 9063 continue; 9064 9065 btf_type_skip_modifiers(btf, mtype->type, &id); 9066 /* If we match on both type and name, the field is considered trusted. */ 9067 if (btf_id == id && !strcmp(field_name, m_name)) 9068 return true; 9069 } 9070 9071 return false; 9072 } 9073 9074 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9075 const struct btf *reg_btf, u32 reg_id, 9076 const struct btf *arg_btf, u32 arg_id) 9077 { 9078 const char *reg_name, *arg_name, *search_needle; 9079 const struct btf_type *reg_type, *arg_type; 9080 int reg_len, arg_len, cmp_len; 9081 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9082 9083 reg_type = btf_type_by_id(reg_btf, reg_id); 9084 if (!reg_type) 9085 return false; 9086 9087 arg_type = btf_type_by_id(arg_btf, arg_id); 9088 if (!arg_type) 9089 return false; 9090 9091 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9092 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9093 9094 reg_len = strlen(reg_name); 9095 arg_len = strlen(arg_name); 9096 9097 /* Exactly one of the two type names may be suffixed with ___init, so 9098 * if the strings are the same size, they can't possibly be no-cast 9099 * aliases of one another. If you have two of the same type names, e.g. 9100 * they're both nf_conn___init, it would be improper to return true 9101 * because they are _not_ no-cast aliases, they are the same type. 9102 */ 9103 if (reg_len == arg_len) 9104 return false; 9105 9106 /* Either of the two names must be the other name, suffixed with ___init. */ 9107 if ((reg_len != arg_len + pattern_len) && 9108 (arg_len != reg_len + pattern_len)) 9109 return false; 9110 9111 if (reg_len < arg_len) { 9112 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9113 cmp_len = reg_len; 9114 } else { 9115 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9116 cmp_len = arg_len; 9117 } 9118 9119 if (!search_needle) 9120 return false; 9121 9122 /* ___init suffix must come at the end of the name */ 9123 if (*(search_needle + pattern_len) != '\0') 9124 return false; 9125 9126 return !strncmp(reg_name, arg_name, cmp_len); 9127 } 9128 9129 #ifdef CONFIG_BPF_JIT 9130 static int 9131 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9132 struct bpf_verifier_log *log) 9133 { 9134 struct btf_struct_ops_tab *tab, *new_tab; 9135 int i, err; 9136 9137 tab = btf->struct_ops_tab; 9138 if (!tab) { 9139 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 9140 GFP_KERNEL); 9141 if (!tab) 9142 return -ENOMEM; 9143 tab->capacity = 4; 9144 btf->struct_ops_tab = tab; 9145 } 9146 9147 for (i = 0; i < tab->cnt; i++) 9148 if (tab->ops[i].st_ops == st_ops) 9149 return -EEXIST; 9150 9151 if (tab->cnt == tab->capacity) { 9152 new_tab = krealloc(tab, 9153 offsetof(struct btf_struct_ops_tab, 9154 ops[tab->capacity * 2]), 9155 GFP_KERNEL); 9156 if (!new_tab) 9157 return -ENOMEM; 9158 tab = new_tab; 9159 tab->capacity *= 2; 9160 btf->struct_ops_tab = tab; 9161 } 9162 9163 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9164 9165 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9166 if (err) 9167 return err; 9168 9169 btf->struct_ops_tab->cnt++; 9170 9171 return 0; 9172 } 9173 9174 const struct bpf_struct_ops_desc * 9175 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9176 { 9177 const struct bpf_struct_ops_desc *st_ops_list; 9178 unsigned int i; 9179 u32 cnt; 9180 9181 if (!value_id) 9182 return NULL; 9183 if (!btf->struct_ops_tab) 9184 return NULL; 9185 9186 cnt = btf->struct_ops_tab->cnt; 9187 st_ops_list = btf->struct_ops_tab->ops; 9188 for (i = 0; i < cnt; i++) { 9189 if (st_ops_list[i].value_id == value_id) 9190 return &st_ops_list[i]; 9191 } 9192 9193 return NULL; 9194 } 9195 9196 const struct bpf_struct_ops_desc * 9197 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9198 { 9199 const struct bpf_struct_ops_desc *st_ops_list; 9200 unsigned int i; 9201 u32 cnt; 9202 9203 if (!type_id) 9204 return NULL; 9205 if (!btf->struct_ops_tab) 9206 return NULL; 9207 9208 cnt = btf->struct_ops_tab->cnt; 9209 st_ops_list = btf->struct_ops_tab->ops; 9210 for (i = 0; i < cnt; i++) { 9211 if (st_ops_list[i].type_id == type_id) 9212 return &st_ops_list[i]; 9213 } 9214 9215 return NULL; 9216 } 9217 9218 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9219 { 9220 struct bpf_verifier_log *log; 9221 struct btf *btf; 9222 int err = 0; 9223 9224 btf = btf_get_module_btf(st_ops->owner); 9225 if (!btf) 9226 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9227 if (IS_ERR(btf)) 9228 return PTR_ERR(btf); 9229 9230 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9231 if (!log) { 9232 err = -ENOMEM; 9233 goto errout; 9234 } 9235 9236 log->level = BPF_LOG_KERNEL; 9237 9238 err = btf_add_struct_ops(btf, st_ops, log); 9239 9240 errout: 9241 kfree(log); 9242 btf_put(btf); 9243 9244 return err; 9245 } 9246 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9247 #endif 9248 9249 bool btf_param_match_suffix(const struct btf *btf, 9250 const struct btf_param *arg, 9251 const char *suffix) 9252 { 9253 int suffix_len = strlen(suffix), len; 9254 const char *param_name; 9255 9256 /* In the future, this can be ported to use BTF tagging */ 9257 param_name = btf_name_by_offset(btf, arg->name_off); 9258 if (str_is_empty(param_name)) 9259 return false; 9260 len = strlen(param_name); 9261 if (len <= suffix_len) 9262 return false; 9263 param_name += len - suffix_len; 9264 return !strncmp(param_name, suffix, suffix_len); 9265 } 9266