xref: /linux/kernel/bpf/btf.c (revision 55c70bffc772897f00336b36ff74a4007f7a346d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190 
191 struct btf {
192 	void *data;
193 	struct btf_type **types;
194 	u32 *resolved_ids;
195 	u32 *resolved_sizes;
196 	const char *strings;
197 	void *nohdr_data;
198 	struct btf_header hdr;
199 	u32 nr_types;
200 	u32 types_size;
201 	u32 data_size;
202 	refcount_t refcnt;
203 	u32 id;
204 	struct rcu_head rcu;
205 };
206 
207 enum verifier_phase {
208 	CHECK_META,
209 	CHECK_TYPE,
210 };
211 
212 struct resolve_vertex {
213 	const struct btf_type *t;
214 	u32 type_id;
215 	u16 next_member;
216 };
217 
218 enum visit_state {
219 	NOT_VISITED,
220 	VISITED,
221 	RESOLVED,
222 };
223 
224 enum resolve_mode {
225 	RESOLVE_TBD,	/* To Be Determined */
226 	RESOLVE_PTR,	/* Resolving for Pointer */
227 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
228 					 * or array
229 					 */
230 };
231 
232 #define MAX_RESOLVE_DEPTH 32
233 
234 struct btf_sec_info {
235 	u32 off;
236 	u32 len;
237 };
238 
239 struct btf_verifier_env {
240 	struct btf *btf;
241 	u8 *visit_states;
242 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 	struct bpf_verifier_log log;
244 	u32 log_type_id;
245 	u32 top_stack;
246 	enum verifier_phase phase;
247 	enum resolve_mode resolve_mode;
248 };
249 
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 	[BTF_KIND_UNKN]		= "UNKNOWN",
252 	[BTF_KIND_INT]		= "INT",
253 	[BTF_KIND_PTR]		= "PTR",
254 	[BTF_KIND_ARRAY]	= "ARRAY",
255 	[BTF_KIND_STRUCT]	= "STRUCT",
256 	[BTF_KIND_UNION]	= "UNION",
257 	[BTF_KIND_ENUM]		= "ENUM",
258 	[BTF_KIND_FWD]		= "FWD",
259 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
260 	[BTF_KIND_VOLATILE]	= "VOLATILE",
261 	[BTF_KIND_CONST]	= "CONST",
262 	[BTF_KIND_RESTRICT]	= "RESTRICT",
263 	[BTF_KIND_FUNC]		= "FUNC",
264 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
265 };
266 
267 struct btf_kind_operations {
268 	s32 (*check_meta)(struct btf_verifier_env *env,
269 			  const struct btf_type *t,
270 			  u32 meta_left);
271 	int (*resolve)(struct btf_verifier_env *env,
272 		       const struct resolve_vertex *v);
273 	int (*check_member)(struct btf_verifier_env *env,
274 			    const struct btf_type *struct_type,
275 			    const struct btf_member *member,
276 			    const struct btf_type *member_type);
277 	int (*check_kflag_member)(struct btf_verifier_env *env,
278 				  const struct btf_type *struct_type,
279 				  const struct btf_member *member,
280 				  const struct btf_type *member_type);
281 	void (*log_details)(struct btf_verifier_env *env,
282 			    const struct btf_type *t);
283 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
284 			 u32 type_id, void *data, u8 bits_offsets,
285 			 struct seq_file *m);
286 };
287 
288 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
289 static struct btf_type btf_void;
290 
291 static int btf_resolve(struct btf_verifier_env *env,
292 		       const struct btf_type *t, u32 type_id);
293 
294 static bool btf_type_is_modifier(const struct btf_type *t)
295 {
296 	/* Some of them is not strictly a C modifier
297 	 * but they are grouped into the same bucket
298 	 * for BTF concern:
299 	 *   A type (t) that refers to another
300 	 *   type through t->type AND its size cannot
301 	 *   be determined without following the t->type.
302 	 *
303 	 * ptr does not fall into this bucket
304 	 * because its size is always sizeof(void *).
305 	 */
306 	switch (BTF_INFO_KIND(t->info)) {
307 	case BTF_KIND_TYPEDEF:
308 	case BTF_KIND_VOLATILE:
309 	case BTF_KIND_CONST:
310 	case BTF_KIND_RESTRICT:
311 		return true;
312 	}
313 
314 	return false;
315 }
316 
317 static bool btf_type_is_void(const struct btf_type *t)
318 {
319 	return t == &btf_void;
320 }
321 
322 static bool btf_type_is_fwd(const struct btf_type *t)
323 {
324 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
325 }
326 
327 static bool btf_type_is_func(const struct btf_type *t)
328 {
329 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
330 }
331 
332 static bool btf_type_is_func_proto(const struct btf_type *t)
333 {
334 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
335 }
336 
337 static bool btf_type_nosize(const struct btf_type *t)
338 {
339 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
340 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
341 }
342 
343 static bool btf_type_nosize_or_null(const struct btf_type *t)
344 {
345 	return !t || btf_type_nosize(t);
346 }
347 
348 /* union is only a special case of struct:
349  * all its offsetof(member) == 0
350  */
351 static bool btf_type_is_struct(const struct btf_type *t)
352 {
353 	u8 kind = BTF_INFO_KIND(t->info);
354 
355 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
356 }
357 
358 static bool btf_type_is_array(const struct btf_type *t)
359 {
360 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
361 }
362 
363 static bool btf_type_is_ptr(const struct btf_type *t)
364 {
365 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
366 }
367 
368 static bool btf_type_is_int(const struct btf_type *t)
369 {
370 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
371 }
372 
373 /* What types need to be resolved?
374  *
375  * btf_type_is_modifier() is an obvious one.
376  *
377  * btf_type_is_struct() because its member refers to
378  * another type (through member->type).
379 
380  * btf_type_is_array() because its element (array->type)
381  * refers to another type.  Array can be thought of a
382  * special case of struct while array just has the same
383  * member-type repeated by array->nelems of times.
384  */
385 static bool btf_type_needs_resolve(const struct btf_type *t)
386 {
387 	return btf_type_is_modifier(t) ||
388 		btf_type_is_ptr(t) ||
389 		btf_type_is_struct(t) ||
390 		btf_type_is_array(t);
391 }
392 
393 /* t->size can be used */
394 static bool btf_type_has_size(const struct btf_type *t)
395 {
396 	switch (BTF_INFO_KIND(t->info)) {
397 	case BTF_KIND_INT:
398 	case BTF_KIND_STRUCT:
399 	case BTF_KIND_UNION:
400 	case BTF_KIND_ENUM:
401 		return true;
402 	}
403 
404 	return false;
405 }
406 
407 static const char *btf_int_encoding_str(u8 encoding)
408 {
409 	if (encoding == 0)
410 		return "(none)";
411 	else if (encoding == BTF_INT_SIGNED)
412 		return "SIGNED";
413 	else if (encoding == BTF_INT_CHAR)
414 		return "CHAR";
415 	else if (encoding == BTF_INT_BOOL)
416 		return "BOOL";
417 	else
418 		return "UNKN";
419 }
420 
421 static u16 btf_type_vlen(const struct btf_type *t)
422 {
423 	return BTF_INFO_VLEN(t->info);
424 }
425 
426 static bool btf_type_kflag(const struct btf_type *t)
427 {
428 	return BTF_INFO_KFLAG(t->info);
429 }
430 
431 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
432 			     const struct btf_member *member)
433 {
434 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
435 					   : member->offset;
436 }
437 
438 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
439 				    const struct btf_member *member)
440 {
441 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
442 					   : 0;
443 }
444 
445 static u32 btf_type_int(const struct btf_type *t)
446 {
447 	return *(u32 *)(t + 1);
448 }
449 
450 static const struct btf_array *btf_type_array(const struct btf_type *t)
451 {
452 	return (const struct btf_array *)(t + 1);
453 }
454 
455 static const struct btf_member *btf_type_member(const struct btf_type *t)
456 {
457 	return (const struct btf_member *)(t + 1);
458 }
459 
460 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
461 {
462 	return (const struct btf_enum *)(t + 1);
463 }
464 
465 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
466 {
467 	return kind_ops[BTF_INFO_KIND(t->info)];
468 }
469 
470 bool btf_name_offset_valid(const struct btf *btf, u32 offset)
471 {
472 	return BTF_STR_OFFSET_VALID(offset) &&
473 		offset < btf->hdr.str_len;
474 }
475 
476 /* Only C-style identifier is permitted. This can be relaxed if
477  * necessary.
478  */
479 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
480 {
481 	/* offset must be valid */
482 	const char *src = &btf->strings[offset];
483 	const char *src_limit;
484 
485 	if (!isalpha(*src) && *src != '_')
486 		return false;
487 
488 	/* set a limit on identifier length */
489 	src_limit = src + KSYM_NAME_LEN;
490 	src++;
491 	while (*src && src < src_limit) {
492 		if (!isalnum(*src) && *src != '_')
493 			return false;
494 		src++;
495 	}
496 
497 	return !*src;
498 }
499 
500 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
501 {
502 	if (!offset)
503 		return "(anon)";
504 	else if (offset < btf->hdr.str_len)
505 		return &btf->strings[offset];
506 	else
507 		return "(invalid-name-offset)";
508 }
509 
510 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
511 {
512 	if (offset < btf->hdr.str_len)
513 		return &btf->strings[offset];
514 
515 	return NULL;
516 }
517 
518 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
519 {
520 	if (type_id > btf->nr_types)
521 		return NULL;
522 
523 	return btf->types[type_id];
524 }
525 
526 /*
527  * Regular int is not a bit field and it must be either
528  * u8/u16/u32/u64 or __int128.
529  */
530 static bool btf_type_int_is_regular(const struct btf_type *t)
531 {
532 	u8 nr_bits, nr_bytes;
533 	u32 int_data;
534 
535 	int_data = btf_type_int(t);
536 	nr_bits = BTF_INT_BITS(int_data);
537 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
538 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
539 	    BTF_INT_OFFSET(int_data) ||
540 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
541 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
542 	     nr_bytes != (2 * sizeof(u64)))) {
543 		return false;
544 	}
545 
546 	return true;
547 }
548 
549 /*
550  * Check that given struct member is a regular int with expected
551  * offset and size.
552  */
553 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
554 			   const struct btf_member *m,
555 			   u32 expected_offset, u32 expected_size)
556 {
557 	const struct btf_type *t;
558 	u32 id, int_data;
559 	u8 nr_bits;
560 
561 	id = m->type;
562 	t = btf_type_id_size(btf, &id, NULL);
563 	if (!t || !btf_type_is_int(t))
564 		return false;
565 
566 	int_data = btf_type_int(t);
567 	nr_bits = BTF_INT_BITS(int_data);
568 	if (btf_type_kflag(s)) {
569 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
570 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
571 
572 		/* if kflag set, int should be a regular int and
573 		 * bit offset should be at byte boundary.
574 		 */
575 		return !bitfield_size &&
576 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
577 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
578 	}
579 
580 	if (BTF_INT_OFFSET(int_data) ||
581 	    BITS_PER_BYTE_MASKED(m->offset) ||
582 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
583 	    BITS_PER_BYTE_MASKED(nr_bits) ||
584 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
585 		return false;
586 
587 	return true;
588 }
589 
590 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
591 					      const char *fmt, ...)
592 {
593 	va_list args;
594 
595 	va_start(args, fmt);
596 	bpf_verifier_vlog(log, fmt, args);
597 	va_end(args);
598 }
599 
600 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
601 					    const char *fmt, ...)
602 {
603 	struct bpf_verifier_log *log = &env->log;
604 	va_list args;
605 
606 	if (!bpf_verifier_log_needed(log))
607 		return;
608 
609 	va_start(args, fmt);
610 	bpf_verifier_vlog(log, fmt, args);
611 	va_end(args);
612 }
613 
614 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
615 						   const struct btf_type *t,
616 						   bool log_details,
617 						   const char *fmt, ...)
618 {
619 	struct bpf_verifier_log *log = &env->log;
620 	u8 kind = BTF_INFO_KIND(t->info);
621 	struct btf *btf = env->btf;
622 	va_list args;
623 
624 	if (!bpf_verifier_log_needed(log))
625 		return;
626 
627 	__btf_verifier_log(log, "[%u] %s %s%s",
628 			   env->log_type_id,
629 			   btf_kind_str[kind],
630 			   __btf_name_by_offset(btf, t->name_off),
631 			   log_details ? " " : "");
632 
633 	if (log_details)
634 		btf_type_ops(t)->log_details(env, t);
635 
636 	if (fmt && *fmt) {
637 		__btf_verifier_log(log, " ");
638 		va_start(args, fmt);
639 		bpf_verifier_vlog(log, fmt, args);
640 		va_end(args);
641 	}
642 
643 	__btf_verifier_log(log, "\n");
644 }
645 
646 #define btf_verifier_log_type(env, t, ...) \
647 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
648 #define btf_verifier_log_basic(env, t, ...) \
649 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
650 
651 __printf(4, 5)
652 static void btf_verifier_log_member(struct btf_verifier_env *env,
653 				    const struct btf_type *struct_type,
654 				    const struct btf_member *member,
655 				    const char *fmt, ...)
656 {
657 	struct bpf_verifier_log *log = &env->log;
658 	struct btf *btf = env->btf;
659 	va_list args;
660 
661 	if (!bpf_verifier_log_needed(log))
662 		return;
663 
664 	/* The CHECK_META phase already did a btf dump.
665 	 *
666 	 * If member is logged again, it must hit an error in
667 	 * parsing this member.  It is useful to print out which
668 	 * struct this member belongs to.
669 	 */
670 	if (env->phase != CHECK_META)
671 		btf_verifier_log_type(env, struct_type, NULL);
672 
673 	if (btf_type_kflag(struct_type))
674 		__btf_verifier_log(log,
675 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
676 				   __btf_name_by_offset(btf, member->name_off),
677 				   member->type,
678 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
679 				   BTF_MEMBER_BIT_OFFSET(member->offset));
680 	else
681 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
682 				   __btf_name_by_offset(btf, member->name_off),
683 				   member->type, member->offset);
684 
685 	if (fmt && *fmt) {
686 		__btf_verifier_log(log, " ");
687 		va_start(args, fmt);
688 		bpf_verifier_vlog(log, fmt, args);
689 		va_end(args);
690 	}
691 
692 	__btf_verifier_log(log, "\n");
693 }
694 
695 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
696 				 u32 btf_data_size)
697 {
698 	struct bpf_verifier_log *log = &env->log;
699 	const struct btf *btf = env->btf;
700 	const struct btf_header *hdr;
701 
702 	if (!bpf_verifier_log_needed(log))
703 		return;
704 
705 	hdr = &btf->hdr;
706 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
707 	__btf_verifier_log(log, "version: %u\n", hdr->version);
708 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
709 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
710 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
711 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
712 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
713 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
714 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
715 }
716 
717 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
718 {
719 	struct btf *btf = env->btf;
720 
721 	/* < 2 because +1 for btf_void which is always in btf->types[0].
722 	 * btf_void is not accounted in btf->nr_types because btf_void
723 	 * does not come from the BTF file.
724 	 */
725 	if (btf->types_size - btf->nr_types < 2) {
726 		/* Expand 'types' array */
727 
728 		struct btf_type **new_types;
729 		u32 expand_by, new_size;
730 
731 		if (btf->types_size == BTF_MAX_TYPE) {
732 			btf_verifier_log(env, "Exceeded max num of types");
733 			return -E2BIG;
734 		}
735 
736 		expand_by = max_t(u32, btf->types_size >> 2, 16);
737 		new_size = min_t(u32, BTF_MAX_TYPE,
738 				 btf->types_size + expand_by);
739 
740 		new_types = kvcalloc(new_size, sizeof(*new_types),
741 				     GFP_KERNEL | __GFP_NOWARN);
742 		if (!new_types)
743 			return -ENOMEM;
744 
745 		if (btf->nr_types == 0)
746 			new_types[0] = &btf_void;
747 		else
748 			memcpy(new_types, btf->types,
749 			       sizeof(*btf->types) * (btf->nr_types + 1));
750 
751 		kvfree(btf->types);
752 		btf->types = new_types;
753 		btf->types_size = new_size;
754 	}
755 
756 	btf->types[++(btf->nr_types)] = t;
757 
758 	return 0;
759 }
760 
761 static int btf_alloc_id(struct btf *btf)
762 {
763 	int id;
764 
765 	idr_preload(GFP_KERNEL);
766 	spin_lock_bh(&btf_idr_lock);
767 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
768 	if (id > 0)
769 		btf->id = id;
770 	spin_unlock_bh(&btf_idr_lock);
771 	idr_preload_end();
772 
773 	if (WARN_ON_ONCE(!id))
774 		return -ENOSPC;
775 
776 	return id > 0 ? 0 : id;
777 }
778 
779 static void btf_free_id(struct btf *btf)
780 {
781 	unsigned long flags;
782 
783 	/*
784 	 * In map-in-map, calling map_delete_elem() on outer
785 	 * map will call bpf_map_put on the inner map.
786 	 * It will then eventually call btf_free_id()
787 	 * on the inner map.  Some of the map_delete_elem()
788 	 * implementation may have irq disabled, so
789 	 * we need to use the _irqsave() version instead
790 	 * of the _bh() version.
791 	 */
792 	spin_lock_irqsave(&btf_idr_lock, flags);
793 	idr_remove(&btf_idr, btf->id);
794 	spin_unlock_irqrestore(&btf_idr_lock, flags);
795 }
796 
797 static void btf_free(struct btf *btf)
798 {
799 	kvfree(btf->types);
800 	kvfree(btf->resolved_sizes);
801 	kvfree(btf->resolved_ids);
802 	kvfree(btf->data);
803 	kfree(btf);
804 }
805 
806 static void btf_free_rcu(struct rcu_head *rcu)
807 {
808 	struct btf *btf = container_of(rcu, struct btf, rcu);
809 
810 	btf_free(btf);
811 }
812 
813 void btf_put(struct btf *btf)
814 {
815 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
816 		btf_free_id(btf);
817 		call_rcu(&btf->rcu, btf_free_rcu);
818 	}
819 }
820 
821 static int env_resolve_init(struct btf_verifier_env *env)
822 {
823 	struct btf *btf = env->btf;
824 	u32 nr_types = btf->nr_types;
825 	u32 *resolved_sizes = NULL;
826 	u32 *resolved_ids = NULL;
827 	u8 *visit_states = NULL;
828 
829 	/* +1 for btf_void */
830 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
831 				  GFP_KERNEL | __GFP_NOWARN);
832 	if (!resolved_sizes)
833 		goto nomem;
834 
835 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
836 				GFP_KERNEL | __GFP_NOWARN);
837 	if (!resolved_ids)
838 		goto nomem;
839 
840 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
841 				GFP_KERNEL | __GFP_NOWARN);
842 	if (!visit_states)
843 		goto nomem;
844 
845 	btf->resolved_sizes = resolved_sizes;
846 	btf->resolved_ids = resolved_ids;
847 	env->visit_states = visit_states;
848 
849 	return 0;
850 
851 nomem:
852 	kvfree(resolved_sizes);
853 	kvfree(resolved_ids);
854 	kvfree(visit_states);
855 	return -ENOMEM;
856 }
857 
858 static void btf_verifier_env_free(struct btf_verifier_env *env)
859 {
860 	kvfree(env->visit_states);
861 	kfree(env);
862 }
863 
864 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
865 				     const struct btf_type *next_type)
866 {
867 	switch (env->resolve_mode) {
868 	case RESOLVE_TBD:
869 		/* int, enum or void is a sink */
870 		return !btf_type_needs_resolve(next_type);
871 	case RESOLVE_PTR:
872 		/* int, enum, void, struct, array, func or func_proto is a sink
873 		 * for ptr
874 		 */
875 		return !btf_type_is_modifier(next_type) &&
876 			!btf_type_is_ptr(next_type);
877 	case RESOLVE_STRUCT_OR_ARRAY:
878 		/* int, enum, void, ptr, func or func_proto is a sink
879 		 * for struct and array
880 		 */
881 		return !btf_type_is_modifier(next_type) &&
882 			!btf_type_is_array(next_type) &&
883 			!btf_type_is_struct(next_type);
884 	default:
885 		BUG();
886 	}
887 }
888 
889 static bool env_type_is_resolved(const struct btf_verifier_env *env,
890 				 u32 type_id)
891 {
892 	return env->visit_states[type_id] == RESOLVED;
893 }
894 
895 static int env_stack_push(struct btf_verifier_env *env,
896 			  const struct btf_type *t, u32 type_id)
897 {
898 	struct resolve_vertex *v;
899 
900 	if (env->top_stack == MAX_RESOLVE_DEPTH)
901 		return -E2BIG;
902 
903 	if (env->visit_states[type_id] != NOT_VISITED)
904 		return -EEXIST;
905 
906 	env->visit_states[type_id] = VISITED;
907 
908 	v = &env->stack[env->top_stack++];
909 	v->t = t;
910 	v->type_id = type_id;
911 	v->next_member = 0;
912 
913 	if (env->resolve_mode == RESOLVE_TBD) {
914 		if (btf_type_is_ptr(t))
915 			env->resolve_mode = RESOLVE_PTR;
916 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
917 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
918 	}
919 
920 	return 0;
921 }
922 
923 static void env_stack_set_next_member(struct btf_verifier_env *env,
924 				      u16 next_member)
925 {
926 	env->stack[env->top_stack - 1].next_member = next_member;
927 }
928 
929 static void env_stack_pop_resolved(struct btf_verifier_env *env,
930 				   u32 resolved_type_id,
931 				   u32 resolved_size)
932 {
933 	u32 type_id = env->stack[--(env->top_stack)].type_id;
934 	struct btf *btf = env->btf;
935 
936 	btf->resolved_sizes[type_id] = resolved_size;
937 	btf->resolved_ids[type_id] = resolved_type_id;
938 	env->visit_states[type_id] = RESOLVED;
939 }
940 
941 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
942 {
943 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
944 }
945 
946 /* The input param "type_id" must point to a needs_resolve type */
947 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
948 						  u32 *type_id)
949 {
950 	*type_id = btf->resolved_ids[*type_id];
951 	return btf_type_by_id(btf, *type_id);
952 }
953 
954 const struct btf_type *btf_type_id_size(const struct btf *btf,
955 					u32 *type_id, u32 *ret_size)
956 {
957 	const struct btf_type *size_type;
958 	u32 size_type_id = *type_id;
959 	u32 size = 0;
960 
961 	size_type = btf_type_by_id(btf, size_type_id);
962 	if (btf_type_nosize_or_null(size_type))
963 		return NULL;
964 
965 	if (btf_type_has_size(size_type)) {
966 		size = size_type->size;
967 	} else if (btf_type_is_array(size_type)) {
968 		size = btf->resolved_sizes[size_type_id];
969 	} else if (btf_type_is_ptr(size_type)) {
970 		size = sizeof(void *);
971 	} else {
972 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
973 			return NULL;
974 
975 		size = btf->resolved_sizes[size_type_id];
976 		size_type_id = btf->resolved_ids[size_type_id];
977 		size_type = btf_type_by_id(btf, size_type_id);
978 		if (btf_type_nosize_or_null(size_type))
979 			return NULL;
980 	}
981 
982 	*type_id = size_type_id;
983 	if (ret_size)
984 		*ret_size = size;
985 
986 	return size_type;
987 }
988 
989 static int btf_df_check_member(struct btf_verifier_env *env,
990 			       const struct btf_type *struct_type,
991 			       const struct btf_member *member,
992 			       const struct btf_type *member_type)
993 {
994 	btf_verifier_log_basic(env, struct_type,
995 			       "Unsupported check_member");
996 	return -EINVAL;
997 }
998 
999 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1000 				     const struct btf_type *struct_type,
1001 				     const struct btf_member *member,
1002 				     const struct btf_type *member_type)
1003 {
1004 	btf_verifier_log_basic(env, struct_type,
1005 			       "Unsupported check_kflag_member");
1006 	return -EINVAL;
1007 }
1008 
1009 /* Used for ptr, array and struct/union type members.
1010  * int, enum and modifier types have their specific callback functions.
1011  */
1012 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1013 					  const struct btf_type *struct_type,
1014 					  const struct btf_member *member,
1015 					  const struct btf_type *member_type)
1016 {
1017 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1018 		btf_verifier_log_member(env, struct_type, member,
1019 					"Invalid member bitfield_size");
1020 		return -EINVAL;
1021 	}
1022 
1023 	/* bitfield size is 0, so member->offset represents bit offset only.
1024 	 * It is safe to call non kflag check_member variants.
1025 	 */
1026 	return btf_type_ops(member_type)->check_member(env, struct_type,
1027 						       member,
1028 						       member_type);
1029 }
1030 
1031 static int btf_df_resolve(struct btf_verifier_env *env,
1032 			  const struct resolve_vertex *v)
1033 {
1034 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1035 	return -EINVAL;
1036 }
1037 
1038 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1039 			    u32 type_id, void *data, u8 bits_offsets,
1040 			    struct seq_file *m)
1041 {
1042 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1043 }
1044 
1045 static int btf_int_check_member(struct btf_verifier_env *env,
1046 				const struct btf_type *struct_type,
1047 				const struct btf_member *member,
1048 				const struct btf_type *member_type)
1049 {
1050 	u32 int_data = btf_type_int(member_type);
1051 	u32 struct_bits_off = member->offset;
1052 	u32 struct_size = struct_type->size;
1053 	u32 nr_copy_bits;
1054 	u32 bytes_offset;
1055 
1056 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1057 		btf_verifier_log_member(env, struct_type, member,
1058 					"bits_offset exceeds U32_MAX");
1059 		return -EINVAL;
1060 	}
1061 
1062 	struct_bits_off += BTF_INT_OFFSET(int_data);
1063 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1064 	nr_copy_bits = BTF_INT_BITS(int_data) +
1065 		BITS_PER_BYTE_MASKED(struct_bits_off);
1066 
1067 	if (nr_copy_bits > BITS_PER_U128) {
1068 		btf_verifier_log_member(env, struct_type, member,
1069 					"nr_copy_bits exceeds 128");
1070 		return -EINVAL;
1071 	}
1072 
1073 	if (struct_size < bytes_offset ||
1074 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1075 		btf_verifier_log_member(env, struct_type, member,
1076 					"Member exceeds struct_size");
1077 		return -EINVAL;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1084 				      const struct btf_type *struct_type,
1085 				      const struct btf_member *member,
1086 				      const struct btf_type *member_type)
1087 {
1088 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1089 	u32 int_data = btf_type_int(member_type);
1090 	u32 struct_size = struct_type->size;
1091 	u32 nr_copy_bits;
1092 
1093 	/* a regular int type is required for the kflag int member */
1094 	if (!btf_type_int_is_regular(member_type)) {
1095 		btf_verifier_log_member(env, struct_type, member,
1096 					"Invalid member base type");
1097 		return -EINVAL;
1098 	}
1099 
1100 	/* check sanity of bitfield size */
1101 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1102 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1103 	nr_int_data_bits = BTF_INT_BITS(int_data);
1104 	if (!nr_bits) {
1105 		/* Not a bitfield member, member offset must be at byte
1106 		 * boundary.
1107 		 */
1108 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1109 			btf_verifier_log_member(env, struct_type, member,
1110 						"Invalid member offset");
1111 			return -EINVAL;
1112 		}
1113 
1114 		nr_bits = nr_int_data_bits;
1115 	} else if (nr_bits > nr_int_data_bits) {
1116 		btf_verifier_log_member(env, struct_type, member,
1117 					"Invalid member bitfield_size");
1118 		return -EINVAL;
1119 	}
1120 
1121 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1122 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1123 	if (nr_copy_bits > BITS_PER_U128) {
1124 		btf_verifier_log_member(env, struct_type, member,
1125 					"nr_copy_bits exceeds 128");
1126 		return -EINVAL;
1127 	}
1128 
1129 	if (struct_size < bytes_offset ||
1130 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1131 		btf_verifier_log_member(env, struct_type, member,
1132 					"Member exceeds struct_size");
1133 		return -EINVAL;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1140 			      const struct btf_type *t,
1141 			      u32 meta_left)
1142 {
1143 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1144 	u16 encoding;
1145 
1146 	if (meta_left < meta_needed) {
1147 		btf_verifier_log_basic(env, t,
1148 				       "meta_left:%u meta_needed:%u",
1149 				       meta_left, meta_needed);
1150 		return -EINVAL;
1151 	}
1152 
1153 	if (btf_type_vlen(t)) {
1154 		btf_verifier_log_type(env, t, "vlen != 0");
1155 		return -EINVAL;
1156 	}
1157 
1158 	if (btf_type_kflag(t)) {
1159 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1160 		return -EINVAL;
1161 	}
1162 
1163 	int_data = btf_type_int(t);
1164 	if (int_data & ~BTF_INT_MASK) {
1165 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1166 				       int_data);
1167 		return -EINVAL;
1168 	}
1169 
1170 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1171 
1172 	if (nr_bits > BITS_PER_U128) {
1173 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1174 				      BITS_PER_U128);
1175 		return -EINVAL;
1176 	}
1177 
1178 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1179 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1180 		return -EINVAL;
1181 	}
1182 
1183 	/*
1184 	 * Only one of the encoding bits is allowed and it
1185 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1186 	 * Multiple bits can be allowed later if it is found
1187 	 * to be insufficient.
1188 	 */
1189 	encoding = BTF_INT_ENCODING(int_data);
1190 	if (encoding &&
1191 	    encoding != BTF_INT_SIGNED &&
1192 	    encoding != BTF_INT_CHAR &&
1193 	    encoding != BTF_INT_BOOL) {
1194 		btf_verifier_log_type(env, t, "Unsupported encoding");
1195 		return -ENOTSUPP;
1196 	}
1197 
1198 	btf_verifier_log_type(env, t, NULL);
1199 
1200 	return meta_needed;
1201 }
1202 
1203 static void btf_int_log(struct btf_verifier_env *env,
1204 			const struct btf_type *t)
1205 {
1206 	int int_data = btf_type_int(t);
1207 
1208 	btf_verifier_log(env,
1209 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1210 			 t->size, BTF_INT_OFFSET(int_data),
1211 			 BTF_INT_BITS(int_data),
1212 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1213 }
1214 
1215 static void btf_int128_print(struct seq_file *m, void *data)
1216 {
1217 	/* data points to a __int128 number.
1218 	 * Suppose
1219 	 *     int128_num = *(__int128 *)data;
1220 	 * The below formulas shows what upper_num and lower_num represents:
1221 	 *     upper_num = int128_num >> 64;
1222 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1223 	 */
1224 	u64 upper_num, lower_num;
1225 
1226 #ifdef __BIG_ENDIAN_BITFIELD
1227 	upper_num = *(u64 *)data;
1228 	lower_num = *(u64 *)(data + 8);
1229 #else
1230 	upper_num = *(u64 *)(data + 8);
1231 	lower_num = *(u64 *)data;
1232 #endif
1233 	if (upper_num == 0)
1234 		seq_printf(m, "0x%llx", lower_num);
1235 	else
1236 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1237 }
1238 
1239 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1240 			     u16 right_shift_bits)
1241 {
1242 	u64 upper_num, lower_num;
1243 
1244 #ifdef __BIG_ENDIAN_BITFIELD
1245 	upper_num = print_num[0];
1246 	lower_num = print_num[1];
1247 #else
1248 	upper_num = print_num[1];
1249 	lower_num = print_num[0];
1250 #endif
1251 
1252 	/* shake out un-needed bits by shift/or operations */
1253 	if (left_shift_bits >= 64) {
1254 		upper_num = lower_num << (left_shift_bits - 64);
1255 		lower_num = 0;
1256 	} else {
1257 		upper_num = (upper_num << left_shift_bits) |
1258 			    (lower_num >> (64 - left_shift_bits));
1259 		lower_num = lower_num << left_shift_bits;
1260 	}
1261 
1262 	if (right_shift_bits >= 64) {
1263 		lower_num = upper_num >> (right_shift_bits - 64);
1264 		upper_num = 0;
1265 	} else {
1266 		lower_num = (lower_num >> right_shift_bits) |
1267 			    (upper_num << (64 - right_shift_bits));
1268 		upper_num = upper_num >> right_shift_bits;
1269 	}
1270 
1271 #ifdef __BIG_ENDIAN_BITFIELD
1272 	print_num[0] = upper_num;
1273 	print_num[1] = lower_num;
1274 #else
1275 	print_num[0] = lower_num;
1276 	print_num[1] = upper_num;
1277 #endif
1278 }
1279 
1280 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1281 				  u8 nr_bits, struct seq_file *m)
1282 {
1283 	u16 left_shift_bits, right_shift_bits;
1284 	u8 nr_copy_bytes;
1285 	u8 nr_copy_bits;
1286 	u64 print_num[2] = {};
1287 
1288 	nr_copy_bits = nr_bits + bits_offset;
1289 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1290 
1291 	memcpy(print_num, data, nr_copy_bytes);
1292 
1293 #ifdef __BIG_ENDIAN_BITFIELD
1294 	left_shift_bits = bits_offset;
1295 #else
1296 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1297 #endif
1298 	right_shift_bits = BITS_PER_U128 - nr_bits;
1299 
1300 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1301 	btf_int128_print(m, print_num);
1302 }
1303 
1304 
1305 static void btf_int_bits_seq_show(const struct btf *btf,
1306 				  const struct btf_type *t,
1307 				  void *data, u8 bits_offset,
1308 				  struct seq_file *m)
1309 {
1310 	u32 int_data = btf_type_int(t);
1311 	u8 nr_bits = BTF_INT_BITS(int_data);
1312 	u8 total_bits_offset;
1313 
1314 	/*
1315 	 * bits_offset is at most 7.
1316 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1317 	 */
1318 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1319 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1320 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1321 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1322 }
1323 
1324 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1325 			     u32 type_id, void *data, u8 bits_offset,
1326 			     struct seq_file *m)
1327 {
1328 	u32 int_data = btf_type_int(t);
1329 	u8 encoding = BTF_INT_ENCODING(int_data);
1330 	bool sign = encoding & BTF_INT_SIGNED;
1331 	u8 nr_bits = BTF_INT_BITS(int_data);
1332 
1333 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1334 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1335 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1336 		return;
1337 	}
1338 
1339 	switch (nr_bits) {
1340 	case 128:
1341 		btf_int128_print(m, data);
1342 		break;
1343 	case 64:
1344 		if (sign)
1345 			seq_printf(m, "%lld", *(s64 *)data);
1346 		else
1347 			seq_printf(m, "%llu", *(u64 *)data);
1348 		break;
1349 	case 32:
1350 		if (sign)
1351 			seq_printf(m, "%d", *(s32 *)data);
1352 		else
1353 			seq_printf(m, "%u", *(u32 *)data);
1354 		break;
1355 	case 16:
1356 		if (sign)
1357 			seq_printf(m, "%d", *(s16 *)data);
1358 		else
1359 			seq_printf(m, "%u", *(u16 *)data);
1360 		break;
1361 	case 8:
1362 		if (sign)
1363 			seq_printf(m, "%d", *(s8 *)data);
1364 		else
1365 			seq_printf(m, "%u", *(u8 *)data);
1366 		break;
1367 	default:
1368 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1369 	}
1370 }
1371 
1372 static const struct btf_kind_operations int_ops = {
1373 	.check_meta = btf_int_check_meta,
1374 	.resolve = btf_df_resolve,
1375 	.check_member = btf_int_check_member,
1376 	.check_kflag_member = btf_int_check_kflag_member,
1377 	.log_details = btf_int_log,
1378 	.seq_show = btf_int_seq_show,
1379 };
1380 
1381 static int btf_modifier_check_member(struct btf_verifier_env *env,
1382 				     const struct btf_type *struct_type,
1383 				     const struct btf_member *member,
1384 				     const struct btf_type *member_type)
1385 {
1386 	const struct btf_type *resolved_type;
1387 	u32 resolved_type_id = member->type;
1388 	struct btf_member resolved_member;
1389 	struct btf *btf = env->btf;
1390 
1391 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1392 	if (!resolved_type) {
1393 		btf_verifier_log_member(env, struct_type, member,
1394 					"Invalid member");
1395 		return -EINVAL;
1396 	}
1397 
1398 	resolved_member = *member;
1399 	resolved_member.type = resolved_type_id;
1400 
1401 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1402 							 &resolved_member,
1403 							 resolved_type);
1404 }
1405 
1406 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1407 					   const struct btf_type *struct_type,
1408 					   const struct btf_member *member,
1409 					   const struct btf_type *member_type)
1410 {
1411 	const struct btf_type *resolved_type;
1412 	u32 resolved_type_id = member->type;
1413 	struct btf_member resolved_member;
1414 	struct btf *btf = env->btf;
1415 
1416 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1417 	if (!resolved_type) {
1418 		btf_verifier_log_member(env, struct_type, member,
1419 					"Invalid member");
1420 		return -EINVAL;
1421 	}
1422 
1423 	resolved_member = *member;
1424 	resolved_member.type = resolved_type_id;
1425 
1426 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1427 							       &resolved_member,
1428 							       resolved_type);
1429 }
1430 
1431 static int btf_ptr_check_member(struct btf_verifier_env *env,
1432 				const struct btf_type *struct_type,
1433 				const struct btf_member *member,
1434 				const struct btf_type *member_type)
1435 {
1436 	u32 struct_size, struct_bits_off, bytes_offset;
1437 
1438 	struct_size = struct_type->size;
1439 	struct_bits_off = member->offset;
1440 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1441 
1442 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1443 		btf_verifier_log_member(env, struct_type, member,
1444 					"Member is not byte aligned");
1445 		return -EINVAL;
1446 	}
1447 
1448 	if (struct_size - bytes_offset < sizeof(void *)) {
1449 		btf_verifier_log_member(env, struct_type, member,
1450 					"Member exceeds struct_size");
1451 		return -EINVAL;
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1458 				   const struct btf_type *t,
1459 				   u32 meta_left)
1460 {
1461 	if (btf_type_vlen(t)) {
1462 		btf_verifier_log_type(env, t, "vlen != 0");
1463 		return -EINVAL;
1464 	}
1465 
1466 	if (btf_type_kflag(t)) {
1467 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1468 		return -EINVAL;
1469 	}
1470 
1471 	if (!BTF_TYPE_ID_VALID(t->type)) {
1472 		btf_verifier_log_type(env, t, "Invalid type_id");
1473 		return -EINVAL;
1474 	}
1475 
1476 	/* typedef type must have a valid name, and other ref types,
1477 	 * volatile, const, restrict, should have a null name.
1478 	 */
1479 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1480 		if (!t->name_off ||
1481 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1482 			btf_verifier_log_type(env, t, "Invalid name");
1483 			return -EINVAL;
1484 		}
1485 	} else {
1486 		if (t->name_off) {
1487 			btf_verifier_log_type(env, t, "Invalid name");
1488 			return -EINVAL;
1489 		}
1490 	}
1491 
1492 	btf_verifier_log_type(env, t, NULL);
1493 
1494 	return 0;
1495 }
1496 
1497 static int btf_modifier_resolve(struct btf_verifier_env *env,
1498 				const struct resolve_vertex *v)
1499 {
1500 	const struct btf_type *t = v->t;
1501 	const struct btf_type *next_type;
1502 	u32 next_type_id = t->type;
1503 	struct btf *btf = env->btf;
1504 	u32 next_type_size = 0;
1505 
1506 	next_type = btf_type_by_id(btf, next_type_id);
1507 	if (!next_type) {
1508 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1509 		return -EINVAL;
1510 	}
1511 
1512 	if (!env_type_is_resolve_sink(env, next_type) &&
1513 	    !env_type_is_resolved(env, next_type_id))
1514 		return env_stack_push(env, next_type, next_type_id);
1515 
1516 	/* Figure out the resolved next_type_id with size.
1517 	 * They will be stored in the current modifier's
1518 	 * resolved_ids and resolved_sizes such that it can
1519 	 * save us a few type-following when we use it later (e.g. in
1520 	 * pretty print).
1521 	 */
1522 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1523 		if (env_type_is_resolved(env, next_type_id))
1524 			next_type = btf_type_id_resolve(btf, &next_type_id);
1525 
1526 		/* "typedef void new_void", "const void"...etc */
1527 		if (!btf_type_is_void(next_type) &&
1528 		    !btf_type_is_fwd(next_type)) {
1529 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1530 			return -EINVAL;
1531 		}
1532 	}
1533 
1534 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1535 
1536 	return 0;
1537 }
1538 
1539 static int btf_ptr_resolve(struct btf_verifier_env *env,
1540 			   const struct resolve_vertex *v)
1541 {
1542 	const struct btf_type *next_type;
1543 	const struct btf_type *t = v->t;
1544 	u32 next_type_id = t->type;
1545 	struct btf *btf = env->btf;
1546 
1547 	next_type = btf_type_by_id(btf, next_type_id);
1548 	if (!next_type) {
1549 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1550 		return -EINVAL;
1551 	}
1552 
1553 	if (!env_type_is_resolve_sink(env, next_type) &&
1554 	    !env_type_is_resolved(env, next_type_id))
1555 		return env_stack_push(env, next_type, next_type_id);
1556 
1557 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1558 	 * the modifier may have stopped resolving when it was resolved
1559 	 * to a ptr (last-resolved-ptr).
1560 	 *
1561 	 * We now need to continue from the last-resolved-ptr to
1562 	 * ensure the last-resolved-ptr will not referring back to
1563 	 * the currenct ptr (t).
1564 	 */
1565 	if (btf_type_is_modifier(next_type)) {
1566 		const struct btf_type *resolved_type;
1567 		u32 resolved_type_id;
1568 
1569 		resolved_type_id = next_type_id;
1570 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1571 
1572 		if (btf_type_is_ptr(resolved_type) &&
1573 		    !env_type_is_resolve_sink(env, resolved_type) &&
1574 		    !env_type_is_resolved(env, resolved_type_id))
1575 			return env_stack_push(env, resolved_type,
1576 					      resolved_type_id);
1577 	}
1578 
1579 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1580 		if (env_type_is_resolved(env, next_type_id))
1581 			next_type = btf_type_id_resolve(btf, &next_type_id);
1582 
1583 		if (!btf_type_is_void(next_type) &&
1584 		    !btf_type_is_fwd(next_type) &&
1585 		    !btf_type_is_func_proto(next_type)) {
1586 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1587 			return -EINVAL;
1588 		}
1589 	}
1590 
1591 	env_stack_pop_resolved(env, next_type_id, 0);
1592 
1593 	return 0;
1594 }
1595 
1596 static void btf_modifier_seq_show(const struct btf *btf,
1597 				  const struct btf_type *t,
1598 				  u32 type_id, void *data,
1599 				  u8 bits_offset, struct seq_file *m)
1600 {
1601 	t = btf_type_id_resolve(btf, &type_id);
1602 
1603 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1604 }
1605 
1606 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1607 			     u32 type_id, void *data, u8 bits_offset,
1608 			     struct seq_file *m)
1609 {
1610 	/* It is a hashed value */
1611 	seq_printf(m, "%p", *(void **)data);
1612 }
1613 
1614 static void btf_ref_type_log(struct btf_verifier_env *env,
1615 			     const struct btf_type *t)
1616 {
1617 	btf_verifier_log(env, "type_id=%u", t->type);
1618 }
1619 
1620 static struct btf_kind_operations modifier_ops = {
1621 	.check_meta = btf_ref_type_check_meta,
1622 	.resolve = btf_modifier_resolve,
1623 	.check_member = btf_modifier_check_member,
1624 	.check_kflag_member = btf_modifier_check_kflag_member,
1625 	.log_details = btf_ref_type_log,
1626 	.seq_show = btf_modifier_seq_show,
1627 };
1628 
1629 static struct btf_kind_operations ptr_ops = {
1630 	.check_meta = btf_ref_type_check_meta,
1631 	.resolve = btf_ptr_resolve,
1632 	.check_member = btf_ptr_check_member,
1633 	.check_kflag_member = btf_generic_check_kflag_member,
1634 	.log_details = btf_ref_type_log,
1635 	.seq_show = btf_ptr_seq_show,
1636 };
1637 
1638 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1639 			      const struct btf_type *t,
1640 			      u32 meta_left)
1641 {
1642 	if (btf_type_vlen(t)) {
1643 		btf_verifier_log_type(env, t, "vlen != 0");
1644 		return -EINVAL;
1645 	}
1646 
1647 	if (t->type) {
1648 		btf_verifier_log_type(env, t, "type != 0");
1649 		return -EINVAL;
1650 	}
1651 
1652 	/* fwd type must have a valid name */
1653 	if (!t->name_off ||
1654 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1655 		btf_verifier_log_type(env, t, "Invalid name");
1656 		return -EINVAL;
1657 	}
1658 
1659 	btf_verifier_log_type(env, t, NULL);
1660 
1661 	return 0;
1662 }
1663 
1664 static void btf_fwd_type_log(struct btf_verifier_env *env,
1665 			     const struct btf_type *t)
1666 {
1667 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1668 }
1669 
1670 static struct btf_kind_operations fwd_ops = {
1671 	.check_meta = btf_fwd_check_meta,
1672 	.resolve = btf_df_resolve,
1673 	.check_member = btf_df_check_member,
1674 	.check_kflag_member = btf_df_check_kflag_member,
1675 	.log_details = btf_fwd_type_log,
1676 	.seq_show = btf_df_seq_show,
1677 };
1678 
1679 static int btf_array_check_member(struct btf_verifier_env *env,
1680 				  const struct btf_type *struct_type,
1681 				  const struct btf_member *member,
1682 				  const struct btf_type *member_type)
1683 {
1684 	u32 struct_bits_off = member->offset;
1685 	u32 struct_size, bytes_offset;
1686 	u32 array_type_id, array_size;
1687 	struct btf *btf = env->btf;
1688 
1689 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1690 		btf_verifier_log_member(env, struct_type, member,
1691 					"Member is not byte aligned");
1692 		return -EINVAL;
1693 	}
1694 
1695 	array_type_id = member->type;
1696 	btf_type_id_size(btf, &array_type_id, &array_size);
1697 	struct_size = struct_type->size;
1698 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1699 	if (struct_size - bytes_offset < array_size) {
1700 		btf_verifier_log_member(env, struct_type, member,
1701 					"Member exceeds struct_size");
1702 		return -EINVAL;
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1709 				const struct btf_type *t,
1710 				u32 meta_left)
1711 {
1712 	const struct btf_array *array = btf_type_array(t);
1713 	u32 meta_needed = sizeof(*array);
1714 
1715 	if (meta_left < meta_needed) {
1716 		btf_verifier_log_basic(env, t,
1717 				       "meta_left:%u meta_needed:%u",
1718 				       meta_left, meta_needed);
1719 		return -EINVAL;
1720 	}
1721 
1722 	/* array type should not have a name */
1723 	if (t->name_off) {
1724 		btf_verifier_log_type(env, t, "Invalid name");
1725 		return -EINVAL;
1726 	}
1727 
1728 	if (btf_type_vlen(t)) {
1729 		btf_verifier_log_type(env, t, "vlen != 0");
1730 		return -EINVAL;
1731 	}
1732 
1733 	if (btf_type_kflag(t)) {
1734 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1735 		return -EINVAL;
1736 	}
1737 
1738 	if (t->size) {
1739 		btf_verifier_log_type(env, t, "size != 0");
1740 		return -EINVAL;
1741 	}
1742 
1743 	/* Array elem type and index type cannot be in type void,
1744 	 * so !array->type and !array->index_type are not allowed.
1745 	 */
1746 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1747 		btf_verifier_log_type(env, t, "Invalid elem");
1748 		return -EINVAL;
1749 	}
1750 
1751 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1752 		btf_verifier_log_type(env, t, "Invalid index");
1753 		return -EINVAL;
1754 	}
1755 
1756 	btf_verifier_log_type(env, t, NULL);
1757 
1758 	return meta_needed;
1759 }
1760 
1761 static int btf_array_resolve(struct btf_verifier_env *env,
1762 			     const struct resolve_vertex *v)
1763 {
1764 	const struct btf_array *array = btf_type_array(v->t);
1765 	const struct btf_type *elem_type, *index_type;
1766 	u32 elem_type_id, index_type_id;
1767 	struct btf *btf = env->btf;
1768 	u32 elem_size;
1769 
1770 	/* Check array->index_type */
1771 	index_type_id = array->index_type;
1772 	index_type = btf_type_by_id(btf, index_type_id);
1773 	if (btf_type_nosize_or_null(index_type)) {
1774 		btf_verifier_log_type(env, v->t, "Invalid index");
1775 		return -EINVAL;
1776 	}
1777 
1778 	if (!env_type_is_resolve_sink(env, index_type) &&
1779 	    !env_type_is_resolved(env, index_type_id))
1780 		return env_stack_push(env, index_type, index_type_id);
1781 
1782 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1783 	if (!index_type || !btf_type_is_int(index_type) ||
1784 	    !btf_type_int_is_regular(index_type)) {
1785 		btf_verifier_log_type(env, v->t, "Invalid index");
1786 		return -EINVAL;
1787 	}
1788 
1789 	/* Check array->type */
1790 	elem_type_id = array->type;
1791 	elem_type = btf_type_by_id(btf, elem_type_id);
1792 	if (btf_type_nosize_or_null(elem_type)) {
1793 		btf_verifier_log_type(env, v->t,
1794 				      "Invalid elem");
1795 		return -EINVAL;
1796 	}
1797 
1798 	if (!env_type_is_resolve_sink(env, elem_type) &&
1799 	    !env_type_is_resolved(env, elem_type_id))
1800 		return env_stack_push(env, elem_type, elem_type_id);
1801 
1802 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1803 	if (!elem_type) {
1804 		btf_verifier_log_type(env, v->t, "Invalid elem");
1805 		return -EINVAL;
1806 	}
1807 
1808 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1809 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1810 		return -EINVAL;
1811 	}
1812 
1813 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1814 		btf_verifier_log_type(env, v->t,
1815 				      "Array size overflows U32_MAX");
1816 		return -EINVAL;
1817 	}
1818 
1819 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1820 
1821 	return 0;
1822 }
1823 
1824 static void btf_array_log(struct btf_verifier_env *env,
1825 			  const struct btf_type *t)
1826 {
1827 	const struct btf_array *array = btf_type_array(t);
1828 
1829 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1830 			 array->type, array->index_type, array->nelems);
1831 }
1832 
1833 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1834 			       u32 type_id, void *data, u8 bits_offset,
1835 			       struct seq_file *m)
1836 {
1837 	const struct btf_array *array = btf_type_array(t);
1838 	const struct btf_kind_operations *elem_ops;
1839 	const struct btf_type *elem_type;
1840 	u32 i, elem_size, elem_type_id;
1841 
1842 	elem_type_id = array->type;
1843 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1844 	elem_ops = btf_type_ops(elem_type);
1845 	seq_puts(m, "[");
1846 	for (i = 0; i < array->nelems; i++) {
1847 		if (i)
1848 			seq_puts(m, ",");
1849 
1850 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1851 				   bits_offset, m);
1852 		data += elem_size;
1853 	}
1854 	seq_puts(m, "]");
1855 }
1856 
1857 static struct btf_kind_operations array_ops = {
1858 	.check_meta = btf_array_check_meta,
1859 	.resolve = btf_array_resolve,
1860 	.check_member = btf_array_check_member,
1861 	.check_kflag_member = btf_generic_check_kflag_member,
1862 	.log_details = btf_array_log,
1863 	.seq_show = btf_array_seq_show,
1864 };
1865 
1866 static int btf_struct_check_member(struct btf_verifier_env *env,
1867 				   const struct btf_type *struct_type,
1868 				   const struct btf_member *member,
1869 				   const struct btf_type *member_type)
1870 {
1871 	u32 struct_bits_off = member->offset;
1872 	u32 struct_size, bytes_offset;
1873 
1874 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1875 		btf_verifier_log_member(env, struct_type, member,
1876 					"Member is not byte aligned");
1877 		return -EINVAL;
1878 	}
1879 
1880 	struct_size = struct_type->size;
1881 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1882 	if (struct_size - bytes_offset < member_type->size) {
1883 		btf_verifier_log_member(env, struct_type, member,
1884 					"Member exceeds struct_size");
1885 		return -EINVAL;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1892 				 const struct btf_type *t,
1893 				 u32 meta_left)
1894 {
1895 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1896 	const struct btf_member *member;
1897 	u32 meta_needed, last_offset;
1898 	struct btf *btf = env->btf;
1899 	u32 struct_size = t->size;
1900 	u32 offset;
1901 	u16 i;
1902 
1903 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1904 	if (meta_left < meta_needed) {
1905 		btf_verifier_log_basic(env, t,
1906 				       "meta_left:%u meta_needed:%u",
1907 				       meta_left, meta_needed);
1908 		return -EINVAL;
1909 	}
1910 
1911 	/* struct type either no name or a valid one */
1912 	if (t->name_off &&
1913 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1914 		btf_verifier_log_type(env, t, "Invalid name");
1915 		return -EINVAL;
1916 	}
1917 
1918 	btf_verifier_log_type(env, t, NULL);
1919 
1920 	last_offset = 0;
1921 	for_each_member(i, t, member) {
1922 		if (!btf_name_offset_valid(btf, member->name_off)) {
1923 			btf_verifier_log_member(env, t, member,
1924 						"Invalid member name_offset:%u",
1925 						member->name_off);
1926 			return -EINVAL;
1927 		}
1928 
1929 		/* struct member either no name or a valid one */
1930 		if (member->name_off &&
1931 		    !btf_name_valid_identifier(btf, member->name_off)) {
1932 			btf_verifier_log_member(env, t, member, "Invalid name");
1933 			return -EINVAL;
1934 		}
1935 		/* A member cannot be in type void */
1936 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1937 			btf_verifier_log_member(env, t, member,
1938 						"Invalid type_id");
1939 			return -EINVAL;
1940 		}
1941 
1942 		offset = btf_member_bit_offset(t, member);
1943 		if (is_union && offset) {
1944 			btf_verifier_log_member(env, t, member,
1945 						"Invalid member bits_offset");
1946 			return -EINVAL;
1947 		}
1948 
1949 		/*
1950 		 * ">" instead of ">=" because the last member could be
1951 		 * "char a[0];"
1952 		 */
1953 		if (last_offset > offset) {
1954 			btf_verifier_log_member(env, t, member,
1955 						"Invalid member bits_offset");
1956 			return -EINVAL;
1957 		}
1958 
1959 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
1960 			btf_verifier_log_member(env, t, member,
1961 						"Member bits_offset exceeds its struct size");
1962 			return -EINVAL;
1963 		}
1964 
1965 		btf_verifier_log_member(env, t, member, NULL);
1966 		last_offset = offset;
1967 	}
1968 
1969 	return meta_needed;
1970 }
1971 
1972 static int btf_struct_resolve(struct btf_verifier_env *env,
1973 			      const struct resolve_vertex *v)
1974 {
1975 	const struct btf_member *member;
1976 	int err;
1977 	u16 i;
1978 
1979 	/* Before continue resolving the next_member,
1980 	 * ensure the last member is indeed resolved to a
1981 	 * type with size info.
1982 	 */
1983 	if (v->next_member) {
1984 		const struct btf_type *last_member_type;
1985 		const struct btf_member *last_member;
1986 		u16 last_member_type_id;
1987 
1988 		last_member = btf_type_member(v->t) + v->next_member - 1;
1989 		last_member_type_id = last_member->type;
1990 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1991 						       last_member_type_id)))
1992 			return -EINVAL;
1993 
1994 		last_member_type = btf_type_by_id(env->btf,
1995 						  last_member_type_id);
1996 		if (btf_type_kflag(v->t))
1997 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
1998 								last_member,
1999 								last_member_type);
2000 		else
2001 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2002 								last_member,
2003 								last_member_type);
2004 		if (err)
2005 			return err;
2006 	}
2007 
2008 	for_each_member_from(i, v->next_member, v->t, member) {
2009 		u32 member_type_id = member->type;
2010 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2011 								member_type_id);
2012 
2013 		if (btf_type_nosize_or_null(member_type)) {
2014 			btf_verifier_log_member(env, v->t, member,
2015 						"Invalid member");
2016 			return -EINVAL;
2017 		}
2018 
2019 		if (!env_type_is_resolve_sink(env, member_type) &&
2020 		    !env_type_is_resolved(env, member_type_id)) {
2021 			env_stack_set_next_member(env, i + 1);
2022 			return env_stack_push(env, member_type, member_type_id);
2023 		}
2024 
2025 		if (btf_type_kflag(v->t))
2026 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2027 									    member,
2028 									    member_type);
2029 		else
2030 			err = btf_type_ops(member_type)->check_member(env, v->t,
2031 								      member,
2032 								      member_type);
2033 		if (err)
2034 			return err;
2035 	}
2036 
2037 	env_stack_pop_resolved(env, 0, 0);
2038 
2039 	return 0;
2040 }
2041 
2042 static void btf_struct_log(struct btf_verifier_env *env,
2043 			   const struct btf_type *t)
2044 {
2045 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2046 }
2047 
2048 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2049 				u32 type_id, void *data, u8 bits_offset,
2050 				struct seq_file *m)
2051 {
2052 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2053 	const struct btf_member *member;
2054 	u32 i;
2055 
2056 	seq_puts(m, "{");
2057 	for_each_member(i, t, member) {
2058 		const struct btf_type *member_type = btf_type_by_id(btf,
2059 								member->type);
2060 		const struct btf_kind_operations *ops;
2061 		u32 member_offset, bitfield_size;
2062 		u32 bytes_offset;
2063 		u8 bits8_offset;
2064 
2065 		if (i)
2066 			seq_puts(m, seq);
2067 
2068 		member_offset = btf_member_bit_offset(t, member);
2069 		bitfield_size = btf_member_bitfield_size(t, member);
2070 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2071 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2072 		if (bitfield_size) {
2073 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2074 					      bitfield_size, m);
2075 		} else {
2076 			ops = btf_type_ops(member_type);
2077 			ops->seq_show(btf, member_type, member->type,
2078 				      data + bytes_offset, bits8_offset, m);
2079 		}
2080 	}
2081 	seq_puts(m, "}");
2082 }
2083 
2084 static struct btf_kind_operations struct_ops = {
2085 	.check_meta = btf_struct_check_meta,
2086 	.resolve = btf_struct_resolve,
2087 	.check_member = btf_struct_check_member,
2088 	.check_kflag_member = btf_generic_check_kflag_member,
2089 	.log_details = btf_struct_log,
2090 	.seq_show = btf_struct_seq_show,
2091 };
2092 
2093 static int btf_enum_check_member(struct btf_verifier_env *env,
2094 				 const struct btf_type *struct_type,
2095 				 const struct btf_member *member,
2096 				 const struct btf_type *member_type)
2097 {
2098 	u32 struct_bits_off = member->offset;
2099 	u32 struct_size, bytes_offset;
2100 
2101 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2102 		btf_verifier_log_member(env, struct_type, member,
2103 					"Member is not byte aligned");
2104 		return -EINVAL;
2105 	}
2106 
2107 	struct_size = struct_type->size;
2108 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2109 	if (struct_size - bytes_offset < sizeof(int)) {
2110 		btf_verifier_log_member(env, struct_type, member,
2111 					"Member exceeds struct_size");
2112 		return -EINVAL;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2119 				       const struct btf_type *struct_type,
2120 				       const struct btf_member *member,
2121 				       const struct btf_type *member_type)
2122 {
2123 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2124 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2125 
2126 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2127 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2128 	if (!nr_bits) {
2129 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2130 			btf_verifier_log_member(env, struct_type, member,
2131 						"Member is not byte aligned");
2132 				return -EINVAL;
2133 		}
2134 
2135 		nr_bits = int_bitsize;
2136 	} else if (nr_bits > int_bitsize) {
2137 		btf_verifier_log_member(env, struct_type, member,
2138 					"Invalid member bitfield_size");
2139 		return -EINVAL;
2140 	}
2141 
2142 	struct_size = struct_type->size;
2143 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2144 	if (struct_size < bytes_end) {
2145 		btf_verifier_log_member(env, struct_type, member,
2146 					"Member exceeds struct_size");
2147 		return -EINVAL;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2154 			       const struct btf_type *t,
2155 			       u32 meta_left)
2156 {
2157 	const struct btf_enum *enums = btf_type_enum(t);
2158 	struct btf *btf = env->btf;
2159 	u16 i, nr_enums;
2160 	u32 meta_needed;
2161 
2162 	nr_enums = btf_type_vlen(t);
2163 	meta_needed = nr_enums * sizeof(*enums);
2164 
2165 	if (meta_left < meta_needed) {
2166 		btf_verifier_log_basic(env, t,
2167 				       "meta_left:%u meta_needed:%u",
2168 				       meta_left, meta_needed);
2169 		return -EINVAL;
2170 	}
2171 
2172 	if (btf_type_kflag(t)) {
2173 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2174 		return -EINVAL;
2175 	}
2176 
2177 	if (t->size != sizeof(int)) {
2178 		btf_verifier_log_type(env, t, "Expected size:%zu",
2179 				      sizeof(int));
2180 		return -EINVAL;
2181 	}
2182 
2183 	/* enum type either no name or a valid one */
2184 	if (t->name_off &&
2185 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2186 		btf_verifier_log_type(env, t, "Invalid name");
2187 		return -EINVAL;
2188 	}
2189 
2190 	btf_verifier_log_type(env, t, NULL);
2191 
2192 	for (i = 0; i < nr_enums; i++) {
2193 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2194 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2195 					 enums[i].name_off);
2196 			return -EINVAL;
2197 		}
2198 
2199 		/* enum member must have a valid name */
2200 		if (!enums[i].name_off ||
2201 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2202 			btf_verifier_log_type(env, t, "Invalid name");
2203 			return -EINVAL;
2204 		}
2205 
2206 
2207 		btf_verifier_log(env, "\t%s val=%d\n",
2208 				 __btf_name_by_offset(btf, enums[i].name_off),
2209 				 enums[i].val);
2210 	}
2211 
2212 	return meta_needed;
2213 }
2214 
2215 static void btf_enum_log(struct btf_verifier_env *env,
2216 			 const struct btf_type *t)
2217 {
2218 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2219 }
2220 
2221 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2222 			      u32 type_id, void *data, u8 bits_offset,
2223 			      struct seq_file *m)
2224 {
2225 	const struct btf_enum *enums = btf_type_enum(t);
2226 	u32 i, nr_enums = btf_type_vlen(t);
2227 	int v = *(int *)data;
2228 
2229 	for (i = 0; i < nr_enums; i++) {
2230 		if (v == enums[i].val) {
2231 			seq_printf(m, "%s",
2232 				   __btf_name_by_offset(btf,
2233 							enums[i].name_off));
2234 			return;
2235 		}
2236 	}
2237 
2238 	seq_printf(m, "%d", v);
2239 }
2240 
2241 static struct btf_kind_operations enum_ops = {
2242 	.check_meta = btf_enum_check_meta,
2243 	.resolve = btf_df_resolve,
2244 	.check_member = btf_enum_check_member,
2245 	.check_kflag_member = btf_enum_check_kflag_member,
2246 	.log_details = btf_enum_log,
2247 	.seq_show = btf_enum_seq_show,
2248 };
2249 
2250 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2251 				     const struct btf_type *t,
2252 				     u32 meta_left)
2253 {
2254 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2255 
2256 	if (meta_left < meta_needed) {
2257 		btf_verifier_log_basic(env, t,
2258 				       "meta_left:%u meta_needed:%u",
2259 				       meta_left, meta_needed);
2260 		return -EINVAL;
2261 	}
2262 
2263 	if (t->name_off) {
2264 		btf_verifier_log_type(env, t, "Invalid name");
2265 		return -EINVAL;
2266 	}
2267 
2268 	if (btf_type_kflag(t)) {
2269 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2270 		return -EINVAL;
2271 	}
2272 
2273 	btf_verifier_log_type(env, t, NULL);
2274 
2275 	return meta_needed;
2276 }
2277 
2278 static void btf_func_proto_log(struct btf_verifier_env *env,
2279 			       const struct btf_type *t)
2280 {
2281 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2282 	u16 nr_args = btf_type_vlen(t), i;
2283 
2284 	btf_verifier_log(env, "return=%u args=(", t->type);
2285 	if (!nr_args) {
2286 		btf_verifier_log(env, "void");
2287 		goto done;
2288 	}
2289 
2290 	if (nr_args == 1 && !args[0].type) {
2291 		/* Only one vararg */
2292 		btf_verifier_log(env, "vararg");
2293 		goto done;
2294 	}
2295 
2296 	btf_verifier_log(env, "%u %s", args[0].type,
2297 			 __btf_name_by_offset(env->btf,
2298 					      args[0].name_off));
2299 	for (i = 1; i < nr_args - 1; i++)
2300 		btf_verifier_log(env, ", %u %s", args[i].type,
2301 				 __btf_name_by_offset(env->btf,
2302 						      args[i].name_off));
2303 
2304 	if (nr_args > 1) {
2305 		const struct btf_param *last_arg = &args[nr_args - 1];
2306 
2307 		if (last_arg->type)
2308 			btf_verifier_log(env, ", %u %s", last_arg->type,
2309 					 __btf_name_by_offset(env->btf,
2310 							      last_arg->name_off));
2311 		else
2312 			btf_verifier_log(env, ", vararg");
2313 	}
2314 
2315 done:
2316 	btf_verifier_log(env, ")");
2317 }
2318 
2319 static struct btf_kind_operations func_proto_ops = {
2320 	.check_meta = btf_func_proto_check_meta,
2321 	.resolve = btf_df_resolve,
2322 	/*
2323 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2324 	 * a struct's member.
2325 	 *
2326 	 * It should be a funciton pointer instead.
2327 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2328 	 *
2329 	 * Hence, there is no btf_func_check_member().
2330 	 */
2331 	.check_member = btf_df_check_member,
2332 	.check_kflag_member = btf_df_check_kflag_member,
2333 	.log_details = btf_func_proto_log,
2334 	.seq_show = btf_df_seq_show,
2335 };
2336 
2337 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2338 			       const struct btf_type *t,
2339 			       u32 meta_left)
2340 {
2341 	if (!t->name_off ||
2342 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2343 		btf_verifier_log_type(env, t, "Invalid name");
2344 		return -EINVAL;
2345 	}
2346 
2347 	if (btf_type_vlen(t)) {
2348 		btf_verifier_log_type(env, t, "vlen != 0");
2349 		return -EINVAL;
2350 	}
2351 
2352 	if (btf_type_kflag(t)) {
2353 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2354 		return -EINVAL;
2355 	}
2356 
2357 	btf_verifier_log_type(env, t, NULL);
2358 
2359 	return 0;
2360 }
2361 
2362 static struct btf_kind_operations func_ops = {
2363 	.check_meta = btf_func_check_meta,
2364 	.resolve = btf_df_resolve,
2365 	.check_member = btf_df_check_member,
2366 	.check_kflag_member = btf_df_check_kflag_member,
2367 	.log_details = btf_ref_type_log,
2368 	.seq_show = btf_df_seq_show,
2369 };
2370 
2371 static int btf_func_proto_check(struct btf_verifier_env *env,
2372 				const struct btf_type *t)
2373 {
2374 	const struct btf_type *ret_type;
2375 	const struct btf_param *args;
2376 	const struct btf *btf;
2377 	u16 nr_args, i;
2378 	int err;
2379 
2380 	btf = env->btf;
2381 	args = (const struct btf_param *)(t + 1);
2382 	nr_args = btf_type_vlen(t);
2383 
2384 	/* Check func return type which could be "void" (t->type == 0) */
2385 	if (t->type) {
2386 		u32 ret_type_id = t->type;
2387 
2388 		ret_type = btf_type_by_id(btf, ret_type_id);
2389 		if (!ret_type) {
2390 			btf_verifier_log_type(env, t, "Invalid return type");
2391 			return -EINVAL;
2392 		}
2393 
2394 		if (btf_type_needs_resolve(ret_type) &&
2395 		    !env_type_is_resolved(env, ret_type_id)) {
2396 			err = btf_resolve(env, ret_type, ret_type_id);
2397 			if (err)
2398 				return err;
2399 		}
2400 
2401 		/* Ensure the return type is a type that has a size */
2402 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2403 			btf_verifier_log_type(env, t, "Invalid return type");
2404 			return -EINVAL;
2405 		}
2406 	}
2407 
2408 	if (!nr_args)
2409 		return 0;
2410 
2411 	/* Last func arg type_id could be 0 if it is a vararg */
2412 	if (!args[nr_args - 1].type) {
2413 		if (args[nr_args - 1].name_off) {
2414 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2415 					      nr_args);
2416 			return -EINVAL;
2417 		}
2418 		nr_args--;
2419 	}
2420 
2421 	err = 0;
2422 	for (i = 0; i < nr_args; i++) {
2423 		const struct btf_type *arg_type;
2424 		u32 arg_type_id;
2425 
2426 		arg_type_id = args[i].type;
2427 		arg_type = btf_type_by_id(btf, arg_type_id);
2428 		if (!arg_type) {
2429 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2430 			err = -EINVAL;
2431 			break;
2432 		}
2433 
2434 		if (args[i].name_off &&
2435 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2436 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2437 			btf_verifier_log_type(env, t,
2438 					      "Invalid arg#%u", i + 1);
2439 			err = -EINVAL;
2440 			break;
2441 		}
2442 
2443 		if (btf_type_needs_resolve(arg_type) &&
2444 		    !env_type_is_resolved(env, arg_type_id)) {
2445 			err = btf_resolve(env, arg_type, arg_type_id);
2446 			if (err)
2447 				break;
2448 		}
2449 
2450 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2451 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2452 			err = -EINVAL;
2453 			break;
2454 		}
2455 	}
2456 
2457 	return err;
2458 }
2459 
2460 static int btf_func_check(struct btf_verifier_env *env,
2461 			  const struct btf_type *t)
2462 {
2463 	const struct btf_type *proto_type;
2464 	const struct btf_param *args;
2465 	const struct btf *btf;
2466 	u16 nr_args, i;
2467 
2468 	btf = env->btf;
2469 	proto_type = btf_type_by_id(btf, t->type);
2470 
2471 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2472 		btf_verifier_log_type(env, t, "Invalid type_id");
2473 		return -EINVAL;
2474 	}
2475 
2476 	args = (const struct btf_param *)(proto_type + 1);
2477 	nr_args = btf_type_vlen(proto_type);
2478 	for (i = 0; i < nr_args; i++) {
2479 		if (!args[i].name_off && args[i].type) {
2480 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2481 			return -EINVAL;
2482 		}
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2489 	[BTF_KIND_INT] = &int_ops,
2490 	[BTF_KIND_PTR] = &ptr_ops,
2491 	[BTF_KIND_ARRAY] = &array_ops,
2492 	[BTF_KIND_STRUCT] = &struct_ops,
2493 	[BTF_KIND_UNION] = &struct_ops,
2494 	[BTF_KIND_ENUM] = &enum_ops,
2495 	[BTF_KIND_FWD] = &fwd_ops,
2496 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2497 	[BTF_KIND_VOLATILE] = &modifier_ops,
2498 	[BTF_KIND_CONST] = &modifier_ops,
2499 	[BTF_KIND_RESTRICT] = &modifier_ops,
2500 	[BTF_KIND_FUNC] = &func_ops,
2501 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2502 };
2503 
2504 static s32 btf_check_meta(struct btf_verifier_env *env,
2505 			  const struct btf_type *t,
2506 			  u32 meta_left)
2507 {
2508 	u32 saved_meta_left = meta_left;
2509 	s32 var_meta_size;
2510 
2511 	if (meta_left < sizeof(*t)) {
2512 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2513 				 env->log_type_id, meta_left, sizeof(*t));
2514 		return -EINVAL;
2515 	}
2516 	meta_left -= sizeof(*t);
2517 
2518 	if (t->info & ~BTF_INFO_MASK) {
2519 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2520 				 env->log_type_id, t->info);
2521 		return -EINVAL;
2522 	}
2523 
2524 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2525 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2526 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2527 				 env->log_type_id, BTF_INFO_KIND(t->info));
2528 		return -EINVAL;
2529 	}
2530 
2531 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2532 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2533 				 env->log_type_id, t->name_off);
2534 		return -EINVAL;
2535 	}
2536 
2537 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2538 	if (var_meta_size < 0)
2539 		return var_meta_size;
2540 
2541 	meta_left -= var_meta_size;
2542 
2543 	return saved_meta_left - meta_left;
2544 }
2545 
2546 static int btf_check_all_metas(struct btf_verifier_env *env)
2547 {
2548 	struct btf *btf = env->btf;
2549 	struct btf_header *hdr;
2550 	void *cur, *end;
2551 
2552 	hdr = &btf->hdr;
2553 	cur = btf->nohdr_data + hdr->type_off;
2554 	end = cur + hdr->type_len;
2555 
2556 	env->log_type_id = 1;
2557 	while (cur < end) {
2558 		struct btf_type *t = cur;
2559 		s32 meta_size;
2560 
2561 		meta_size = btf_check_meta(env, t, end - cur);
2562 		if (meta_size < 0)
2563 			return meta_size;
2564 
2565 		btf_add_type(env, t);
2566 		cur += meta_size;
2567 		env->log_type_id++;
2568 	}
2569 
2570 	return 0;
2571 }
2572 
2573 static bool btf_resolve_valid(struct btf_verifier_env *env,
2574 			      const struct btf_type *t,
2575 			      u32 type_id)
2576 {
2577 	struct btf *btf = env->btf;
2578 
2579 	if (!env_type_is_resolved(env, type_id))
2580 		return false;
2581 
2582 	if (btf_type_is_struct(t))
2583 		return !btf->resolved_ids[type_id] &&
2584 			!btf->resolved_sizes[type_id];
2585 
2586 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
2587 		t = btf_type_id_resolve(btf, &type_id);
2588 		return t && !btf_type_is_modifier(t);
2589 	}
2590 
2591 	if (btf_type_is_array(t)) {
2592 		const struct btf_array *array = btf_type_array(t);
2593 		const struct btf_type *elem_type;
2594 		u32 elem_type_id = array->type;
2595 		u32 elem_size;
2596 
2597 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2598 		return elem_type && !btf_type_is_modifier(elem_type) &&
2599 			(array->nelems * elem_size ==
2600 			 btf->resolved_sizes[type_id]);
2601 	}
2602 
2603 	return false;
2604 }
2605 
2606 static int btf_resolve(struct btf_verifier_env *env,
2607 		       const struct btf_type *t, u32 type_id)
2608 {
2609 	u32 save_log_type_id = env->log_type_id;
2610 	const struct resolve_vertex *v;
2611 	int err = 0;
2612 
2613 	env->resolve_mode = RESOLVE_TBD;
2614 	env_stack_push(env, t, type_id);
2615 	while (!err && (v = env_stack_peak(env))) {
2616 		env->log_type_id = v->type_id;
2617 		err = btf_type_ops(v->t)->resolve(env, v);
2618 	}
2619 
2620 	env->log_type_id = type_id;
2621 	if (err == -E2BIG) {
2622 		btf_verifier_log_type(env, t,
2623 				      "Exceeded max resolving depth:%u",
2624 				      MAX_RESOLVE_DEPTH);
2625 	} else if (err == -EEXIST) {
2626 		btf_verifier_log_type(env, t, "Loop detected");
2627 	}
2628 
2629 	/* Final sanity check */
2630 	if (!err && !btf_resolve_valid(env, t, type_id)) {
2631 		btf_verifier_log_type(env, t, "Invalid resolve state");
2632 		err = -EINVAL;
2633 	}
2634 
2635 	env->log_type_id = save_log_type_id;
2636 	return err;
2637 }
2638 
2639 static int btf_check_all_types(struct btf_verifier_env *env)
2640 {
2641 	struct btf *btf = env->btf;
2642 	u32 type_id;
2643 	int err;
2644 
2645 	err = env_resolve_init(env);
2646 	if (err)
2647 		return err;
2648 
2649 	env->phase++;
2650 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2651 		const struct btf_type *t = btf_type_by_id(btf, type_id);
2652 
2653 		env->log_type_id = type_id;
2654 		if (btf_type_needs_resolve(t) &&
2655 		    !env_type_is_resolved(env, type_id)) {
2656 			err = btf_resolve(env, t, type_id);
2657 			if (err)
2658 				return err;
2659 		}
2660 
2661 		if (btf_type_is_func_proto(t)) {
2662 			err = btf_func_proto_check(env, t);
2663 			if (err)
2664 				return err;
2665 		}
2666 
2667 		if (btf_type_is_func(t)) {
2668 			err = btf_func_check(env, t);
2669 			if (err)
2670 				return err;
2671 		}
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static int btf_parse_type_sec(struct btf_verifier_env *env)
2678 {
2679 	const struct btf_header *hdr = &env->btf->hdr;
2680 	int err;
2681 
2682 	/* Type section must align to 4 bytes */
2683 	if (hdr->type_off & (sizeof(u32) - 1)) {
2684 		btf_verifier_log(env, "Unaligned type_off");
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (!hdr->type_len) {
2689 		btf_verifier_log(env, "No type found");
2690 		return -EINVAL;
2691 	}
2692 
2693 	err = btf_check_all_metas(env);
2694 	if (err)
2695 		return err;
2696 
2697 	return btf_check_all_types(env);
2698 }
2699 
2700 static int btf_parse_str_sec(struct btf_verifier_env *env)
2701 {
2702 	const struct btf_header *hdr;
2703 	struct btf *btf = env->btf;
2704 	const char *start, *end;
2705 
2706 	hdr = &btf->hdr;
2707 	start = btf->nohdr_data + hdr->str_off;
2708 	end = start + hdr->str_len;
2709 
2710 	if (end != btf->data + btf->data_size) {
2711 		btf_verifier_log(env, "String section is not at the end");
2712 		return -EINVAL;
2713 	}
2714 
2715 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2716 	    start[0] || end[-1]) {
2717 		btf_verifier_log(env, "Invalid string section");
2718 		return -EINVAL;
2719 	}
2720 
2721 	btf->strings = start;
2722 
2723 	return 0;
2724 }
2725 
2726 static const size_t btf_sec_info_offset[] = {
2727 	offsetof(struct btf_header, type_off),
2728 	offsetof(struct btf_header, str_off),
2729 };
2730 
2731 static int btf_sec_info_cmp(const void *a, const void *b)
2732 {
2733 	const struct btf_sec_info *x = a;
2734 	const struct btf_sec_info *y = b;
2735 
2736 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2737 }
2738 
2739 static int btf_check_sec_info(struct btf_verifier_env *env,
2740 			      u32 btf_data_size)
2741 {
2742 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2743 	u32 total, expected_total, i;
2744 	const struct btf_header *hdr;
2745 	const struct btf *btf;
2746 
2747 	btf = env->btf;
2748 	hdr = &btf->hdr;
2749 
2750 	/* Populate the secs from hdr */
2751 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2752 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2753 						   btf_sec_info_offset[i]);
2754 
2755 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2756 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2757 
2758 	/* Check for gaps and overlap among sections */
2759 	total = 0;
2760 	expected_total = btf_data_size - hdr->hdr_len;
2761 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2762 		if (expected_total < secs[i].off) {
2763 			btf_verifier_log(env, "Invalid section offset");
2764 			return -EINVAL;
2765 		}
2766 		if (total < secs[i].off) {
2767 			/* gap */
2768 			btf_verifier_log(env, "Unsupported section found");
2769 			return -EINVAL;
2770 		}
2771 		if (total > secs[i].off) {
2772 			btf_verifier_log(env, "Section overlap found");
2773 			return -EINVAL;
2774 		}
2775 		if (expected_total - total < secs[i].len) {
2776 			btf_verifier_log(env,
2777 					 "Total section length too long");
2778 			return -EINVAL;
2779 		}
2780 		total += secs[i].len;
2781 	}
2782 
2783 	/* There is data other than hdr and known sections */
2784 	if (expected_total != total) {
2785 		btf_verifier_log(env, "Unsupported section found");
2786 		return -EINVAL;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static int btf_parse_hdr(struct btf_verifier_env *env)
2793 {
2794 	u32 hdr_len, hdr_copy, btf_data_size;
2795 	const struct btf_header *hdr;
2796 	struct btf *btf;
2797 	int err;
2798 
2799 	btf = env->btf;
2800 	btf_data_size = btf->data_size;
2801 
2802 	if (btf_data_size <
2803 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2804 		btf_verifier_log(env, "hdr_len not found");
2805 		return -EINVAL;
2806 	}
2807 
2808 	hdr = btf->data;
2809 	hdr_len = hdr->hdr_len;
2810 	if (btf_data_size < hdr_len) {
2811 		btf_verifier_log(env, "btf_header not found");
2812 		return -EINVAL;
2813 	}
2814 
2815 	/* Ensure the unsupported header fields are zero */
2816 	if (hdr_len > sizeof(btf->hdr)) {
2817 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
2818 		u8 *end = btf->data + hdr_len;
2819 
2820 		for (; expected_zero < end; expected_zero++) {
2821 			if (*expected_zero) {
2822 				btf_verifier_log(env, "Unsupported btf_header");
2823 				return -E2BIG;
2824 			}
2825 		}
2826 	}
2827 
2828 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2829 	memcpy(&btf->hdr, btf->data, hdr_copy);
2830 
2831 	hdr = &btf->hdr;
2832 
2833 	btf_verifier_log_hdr(env, btf_data_size);
2834 
2835 	if (hdr->magic != BTF_MAGIC) {
2836 		btf_verifier_log(env, "Invalid magic");
2837 		return -EINVAL;
2838 	}
2839 
2840 	if (hdr->version != BTF_VERSION) {
2841 		btf_verifier_log(env, "Unsupported version");
2842 		return -ENOTSUPP;
2843 	}
2844 
2845 	if (hdr->flags) {
2846 		btf_verifier_log(env, "Unsupported flags");
2847 		return -ENOTSUPP;
2848 	}
2849 
2850 	if (btf_data_size == hdr->hdr_len) {
2851 		btf_verifier_log(env, "No data");
2852 		return -EINVAL;
2853 	}
2854 
2855 	err = btf_check_sec_info(env, btf_data_size);
2856 	if (err)
2857 		return err;
2858 
2859 	return 0;
2860 }
2861 
2862 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2863 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2864 {
2865 	struct btf_verifier_env *env = NULL;
2866 	struct bpf_verifier_log *log;
2867 	struct btf *btf = NULL;
2868 	u8 *data;
2869 	int err;
2870 
2871 	if (btf_data_size > BTF_MAX_SIZE)
2872 		return ERR_PTR(-E2BIG);
2873 
2874 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2875 	if (!env)
2876 		return ERR_PTR(-ENOMEM);
2877 
2878 	log = &env->log;
2879 	if (log_level || log_ubuf || log_size) {
2880 		/* user requested verbose verifier output
2881 		 * and supplied buffer to store the verification trace
2882 		 */
2883 		log->level = log_level;
2884 		log->ubuf = log_ubuf;
2885 		log->len_total = log_size;
2886 
2887 		/* log attributes have to be sane */
2888 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2889 		    !log->level || !log->ubuf) {
2890 			err = -EINVAL;
2891 			goto errout;
2892 		}
2893 	}
2894 
2895 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2896 	if (!btf) {
2897 		err = -ENOMEM;
2898 		goto errout;
2899 	}
2900 	env->btf = btf;
2901 
2902 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2903 	if (!data) {
2904 		err = -ENOMEM;
2905 		goto errout;
2906 	}
2907 
2908 	btf->data = data;
2909 	btf->data_size = btf_data_size;
2910 
2911 	if (copy_from_user(data, btf_data, btf_data_size)) {
2912 		err = -EFAULT;
2913 		goto errout;
2914 	}
2915 
2916 	err = btf_parse_hdr(env);
2917 	if (err)
2918 		goto errout;
2919 
2920 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2921 
2922 	err = btf_parse_str_sec(env);
2923 	if (err)
2924 		goto errout;
2925 
2926 	err = btf_parse_type_sec(env);
2927 	if (err)
2928 		goto errout;
2929 
2930 	if (log->level && bpf_verifier_log_full(log)) {
2931 		err = -ENOSPC;
2932 		goto errout;
2933 	}
2934 
2935 	btf_verifier_env_free(env);
2936 	refcount_set(&btf->refcnt, 1);
2937 	return btf;
2938 
2939 errout:
2940 	btf_verifier_env_free(env);
2941 	if (btf)
2942 		btf_free(btf);
2943 	return ERR_PTR(err);
2944 }
2945 
2946 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2947 		       struct seq_file *m)
2948 {
2949 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2950 
2951 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2952 }
2953 
2954 static int btf_release(struct inode *inode, struct file *filp)
2955 {
2956 	btf_put(filp->private_data);
2957 	return 0;
2958 }
2959 
2960 const struct file_operations btf_fops = {
2961 	.release	= btf_release,
2962 };
2963 
2964 static int __btf_new_fd(struct btf *btf)
2965 {
2966 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2967 }
2968 
2969 int btf_new_fd(const union bpf_attr *attr)
2970 {
2971 	struct btf *btf;
2972 	int ret;
2973 
2974 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2975 			attr->btf_size, attr->btf_log_level,
2976 			u64_to_user_ptr(attr->btf_log_buf),
2977 			attr->btf_log_size);
2978 	if (IS_ERR(btf))
2979 		return PTR_ERR(btf);
2980 
2981 	ret = btf_alloc_id(btf);
2982 	if (ret) {
2983 		btf_free(btf);
2984 		return ret;
2985 	}
2986 
2987 	/*
2988 	 * The BTF ID is published to the userspace.
2989 	 * All BTF free must go through call_rcu() from
2990 	 * now on (i.e. free by calling btf_put()).
2991 	 */
2992 
2993 	ret = __btf_new_fd(btf);
2994 	if (ret < 0)
2995 		btf_put(btf);
2996 
2997 	return ret;
2998 }
2999 
3000 struct btf *btf_get_by_fd(int fd)
3001 {
3002 	struct btf *btf;
3003 	struct fd f;
3004 
3005 	f = fdget(fd);
3006 
3007 	if (!f.file)
3008 		return ERR_PTR(-EBADF);
3009 
3010 	if (f.file->f_op != &btf_fops) {
3011 		fdput(f);
3012 		return ERR_PTR(-EINVAL);
3013 	}
3014 
3015 	btf = f.file->private_data;
3016 	refcount_inc(&btf->refcnt);
3017 	fdput(f);
3018 
3019 	return btf;
3020 }
3021 
3022 int btf_get_info_by_fd(const struct btf *btf,
3023 		       const union bpf_attr *attr,
3024 		       union bpf_attr __user *uattr)
3025 {
3026 	struct bpf_btf_info __user *uinfo;
3027 	struct bpf_btf_info info = {};
3028 	u32 info_copy, btf_copy;
3029 	void __user *ubtf;
3030 	u32 uinfo_len;
3031 
3032 	uinfo = u64_to_user_ptr(attr->info.info);
3033 	uinfo_len = attr->info.info_len;
3034 
3035 	info_copy = min_t(u32, uinfo_len, sizeof(info));
3036 	if (copy_from_user(&info, uinfo, info_copy))
3037 		return -EFAULT;
3038 
3039 	info.id = btf->id;
3040 	ubtf = u64_to_user_ptr(info.btf);
3041 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
3042 	if (copy_to_user(ubtf, btf->data, btf_copy))
3043 		return -EFAULT;
3044 	info.btf_size = btf->data_size;
3045 
3046 	if (copy_to_user(uinfo, &info, info_copy) ||
3047 	    put_user(info_copy, &uattr->info.info_len))
3048 		return -EFAULT;
3049 
3050 	return 0;
3051 }
3052 
3053 int btf_get_fd_by_id(u32 id)
3054 {
3055 	struct btf *btf;
3056 	int fd;
3057 
3058 	rcu_read_lock();
3059 	btf = idr_find(&btf_idr, id);
3060 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3061 		btf = ERR_PTR(-ENOENT);
3062 	rcu_read_unlock();
3063 
3064 	if (IS_ERR(btf))
3065 		return PTR_ERR(btf);
3066 
3067 	fd = __btf_new_fd(btf);
3068 	if (fd < 0)
3069 		btf_put(btf);
3070 
3071 	return fd;
3072 }
3073 
3074 u32 btf_id(const struct btf *btf)
3075 {
3076 	return btf->id;
3077 }
3078