xref: /linux/kernel/bpf/btf.c (revision 521fe8bb5874963d5f6fd58d5c5ad80fbc9c6b1c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/skmsg.h>
22 #include <linux/perf_event.h>
23 #include <net/sock.h>
24 
25 /* BTF (BPF Type Format) is the meta data format which describes
26  * the data types of BPF program/map.  Hence, it basically focus
27  * on the C programming language which the modern BPF is primary
28  * using.
29  *
30  * ELF Section:
31  * ~~~~~~~~~~~
32  * The BTF data is stored under the ".BTF" ELF section
33  *
34  * struct btf_type:
35  * ~~~~~~~~~~~~~~~
36  * Each 'struct btf_type' object describes a C data type.
37  * Depending on the type it is describing, a 'struct btf_type'
38  * object may be followed by more data.  F.e.
39  * To describe an array, 'struct btf_type' is followed by
40  * 'struct btf_array'.
41  *
42  * 'struct btf_type' and any extra data following it are
43  * 4 bytes aligned.
44  *
45  * Type section:
46  * ~~~~~~~~~~~~~
47  * The BTF type section contains a list of 'struct btf_type' objects.
48  * Each one describes a C type.  Recall from the above section
49  * that a 'struct btf_type' object could be immediately followed by extra
50  * data in order to desribe some particular C types.
51  *
52  * type_id:
53  * ~~~~~~~
54  * Each btf_type object is identified by a type_id.  The type_id
55  * is implicitly implied by the location of the btf_type object in
56  * the BTF type section.  The first one has type_id 1.  The second
57  * one has type_id 2...etc.  Hence, an earlier btf_type has
58  * a smaller type_id.
59  *
60  * A btf_type object may refer to another btf_type object by using
61  * type_id (i.e. the "type" in the "struct btf_type").
62  *
63  * NOTE that we cannot assume any reference-order.
64  * A btf_type object can refer to an earlier btf_type object
65  * but it can also refer to a later btf_type object.
66  *
67  * For example, to describe "const void *".  A btf_type
68  * object describing "const" may refer to another btf_type
69  * object describing "void *".  This type-reference is done
70  * by specifying type_id:
71  *
72  * [1] CONST (anon) type_id=2
73  * [2] PTR (anon) type_id=0
74  *
75  * The above is the btf_verifier debug log:
76  *   - Each line started with "[?]" is a btf_type object
77  *   - [?] is the type_id of the btf_type object.
78  *   - CONST/PTR is the BTF_KIND_XXX
79  *   - "(anon)" is the name of the type.  It just
80  *     happens that CONST and PTR has no name.
81  *   - type_id=XXX is the 'u32 type' in btf_type
82  *
83  * NOTE: "void" has type_id 0
84  *
85  * String section:
86  * ~~~~~~~~~~~~~~
87  * The BTF string section contains the names used by the type section.
88  * Each string is referred by an "offset" from the beginning of the
89  * string section.
90  *
91  * Each string is '\0' terminated.
92  *
93  * The first character in the string section must be '\0'
94  * which is used to mean 'anonymous'. Some btf_type may not
95  * have a name.
96  */
97 
98 /* BTF verification:
99  *
100  * To verify BTF data, two passes are needed.
101  *
102  * Pass #1
103  * ~~~~~~~
104  * The first pass is to collect all btf_type objects to
105  * an array: "btf->types".
106  *
107  * Depending on the C type that a btf_type is describing,
108  * a btf_type may be followed by extra data.  We don't know
109  * how many btf_type is there, and more importantly we don't
110  * know where each btf_type is located in the type section.
111  *
112  * Without knowing the location of each type_id, most verifications
113  * cannot be done.  e.g. an earlier btf_type may refer to a later
114  * btf_type (recall the "const void *" above), so we cannot
115  * check this type-reference in the first pass.
116  *
117  * In the first pass, it still does some verifications (e.g.
118  * checking the name is a valid offset to the string section).
119  *
120  * Pass #2
121  * ~~~~~~~
122  * The main focus is to resolve a btf_type that is referring
123  * to another type.
124  *
125  * We have to ensure the referring type:
126  * 1) does exist in the BTF (i.e. in btf->types[])
127  * 2) does not cause a loop:
128  *	struct A {
129  *		struct B b;
130  *	};
131  *
132  *	struct B {
133  *		struct A a;
134  *	};
135  *
136  * btf_type_needs_resolve() decides if a btf_type needs
137  * to be resolved.
138  *
139  * The needs_resolve type implements the "resolve()" ops which
140  * essentially does a DFS and detects backedge.
141  *
142  * During resolve (or DFS), different C types have different
143  * "RESOLVED" conditions.
144  *
145  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
146  * members because a member is always referring to another
147  * type.  A struct's member can be treated as "RESOLVED" if
148  * it is referring to a BTF_KIND_PTR.  Otherwise, the
149  * following valid C struct would be rejected:
150  *
151  *	struct A {
152  *		int m;
153  *		struct A *a;
154  *	};
155  *
156  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
157  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
158  * detect a pointer loop, e.g.:
159  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
160  *                        ^                                         |
161  *                        +-----------------------------------------+
162  *
163  */
164 
165 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
166 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
167 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
168 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
169 #define BITS_ROUNDUP_BYTES(bits) \
170 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
171 
172 #define BTF_INFO_MASK 0x8f00ffff
173 #define BTF_INT_MASK 0x0fffffff
174 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
175 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
176 
177 /* 16MB for 64k structs and each has 16 members and
178  * a few MB spaces for the string section.
179  * The hard limit is S32_MAX.
180  */
181 #define BTF_MAX_SIZE (16 * 1024 * 1024)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 #define for_each_vsi(i, struct_type, member)			\
189 	for (i = 0, member = btf_type_var_secinfo(struct_type);	\
190 	     i < btf_type_vlen(struct_type);			\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 struct btf {
202 	void *data;
203 	struct btf_type **types;
204 	u32 *resolved_ids;
205 	u32 *resolved_sizes;
206 	const char *strings;
207 	void *nohdr_data;
208 	struct btf_header hdr;
209 	u32 nr_types;
210 	u32 types_size;
211 	u32 data_size;
212 	refcount_t refcnt;
213 	u32 id;
214 	struct rcu_head rcu;
215 };
216 
217 enum verifier_phase {
218 	CHECK_META,
219 	CHECK_TYPE,
220 };
221 
222 struct resolve_vertex {
223 	const struct btf_type *t;
224 	u32 type_id;
225 	u16 next_member;
226 };
227 
228 enum visit_state {
229 	NOT_VISITED,
230 	VISITED,
231 	RESOLVED,
232 };
233 
234 enum resolve_mode {
235 	RESOLVE_TBD,	/* To Be Determined */
236 	RESOLVE_PTR,	/* Resolving for Pointer */
237 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
238 					 * or array
239 					 */
240 };
241 
242 #define MAX_RESOLVE_DEPTH 32
243 
244 struct btf_sec_info {
245 	u32 off;
246 	u32 len;
247 };
248 
249 struct btf_verifier_env {
250 	struct btf *btf;
251 	u8 *visit_states;
252 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253 	struct bpf_verifier_log log;
254 	u32 log_type_id;
255 	u32 top_stack;
256 	enum verifier_phase phase;
257 	enum resolve_mode resolve_mode;
258 };
259 
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261 	[BTF_KIND_UNKN]		= "UNKNOWN",
262 	[BTF_KIND_INT]		= "INT",
263 	[BTF_KIND_PTR]		= "PTR",
264 	[BTF_KIND_ARRAY]	= "ARRAY",
265 	[BTF_KIND_STRUCT]	= "STRUCT",
266 	[BTF_KIND_UNION]	= "UNION",
267 	[BTF_KIND_ENUM]		= "ENUM",
268 	[BTF_KIND_FWD]		= "FWD",
269 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
270 	[BTF_KIND_VOLATILE]	= "VOLATILE",
271 	[BTF_KIND_CONST]	= "CONST",
272 	[BTF_KIND_RESTRICT]	= "RESTRICT",
273 	[BTF_KIND_FUNC]		= "FUNC",
274 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
275 	[BTF_KIND_VAR]		= "VAR",
276 	[BTF_KIND_DATASEC]	= "DATASEC",
277 };
278 
279 struct btf_kind_operations {
280 	s32 (*check_meta)(struct btf_verifier_env *env,
281 			  const struct btf_type *t,
282 			  u32 meta_left);
283 	int (*resolve)(struct btf_verifier_env *env,
284 		       const struct resolve_vertex *v);
285 	int (*check_member)(struct btf_verifier_env *env,
286 			    const struct btf_type *struct_type,
287 			    const struct btf_member *member,
288 			    const struct btf_type *member_type);
289 	int (*check_kflag_member)(struct btf_verifier_env *env,
290 				  const struct btf_type *struct_type,
291 				  const struct btf_member *member,
292 				  const struct btf_type *member_type);
293 	void (*log_details)(struct btf_verifier_env *env,
294 			    const struct btf_type *t);
295 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
296 			 u32 type_id, void *data, u8 bits_offsets,
297 			 struct seq_file *m);
298 };
299 
300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
301 static struct btf_type btf_void;
302 
303 static int btf_resolve(struct btf_verifier_env *env,
304 		       const struct btf_type *t, u32 type_id);
305 
306 static bool btf_type_is_modifier(const struct btf_type *t)
307 {
308 	/* Some of them is not strictly a C modifier
309 	 * but they are grouped into the same bucket
310 	 * for BTF concern:
311 	 *   A type (t) that refers to another
312 	 *   type through t->type AND its size cannot
313 	 *   be determined without following the t->type.
314 	 *
315 	 * ptr does not fall into this bucket
316 	 * because its size is always sizeof(void *).
317 	 */
318 	switch (BTF_INFO_KIND(t->info)) {
319 	case BTF_KIND_TYPEDEF:
320 	case BTF_KIND_VOLATILE:
321 	case BTF_KIND_CONST:
322 	case BTF_KIND_RESTRICT:
323 		return true;
324 	}
325 
326 	return false;
327 }
328 
329 bool btf_type_is_void(const struct btf_type *t)
330 {
331 	return t == &btf_void;
332 }
333 
334 static bool btf_type_is_fwd(const struct btf_type *t)
335 {
336 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
337 }
338 
339 static bool btf_type_nosize(const struct btf_type *t)
340 {
341 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
342 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
343 }
344 
345 static bool btf_type_nosize_or_null(const struct btf_type *t)
346 {
347 	return !t || btf_type_nosize(t);
348 }
349 
350 /* union is only a special case of struct:
351  * all its offsetof(member) == 0
352  */
353 static bool btf_type_is_struct(const struct btf_type *t)
354 {
355 	u8 kind = BTF_INFO_KIND(t->info);
356 
357 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
358 }
359 
360 static bool __btf_type_is_struct(const struct btf_type *t)
361 {
362 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
363 }
364 
365 static bool btf_type_is_array(const struct btf_type *t)
366 {
367 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
368 }
369 
370 static bool btf_type_is_var(const struct btf_type *t)
371 {
372 	return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
373 }
374 
375 static bool btf_type_is_datasec(const struct btf_type *t)
376 {
377 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
378 }
379 
380 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
381 {
382 	const struct btf_type *t;
383 	const char *tname;
384 	u32 i;
385 
386 	for (i = 1; i <= btf->nr_types; i++) {
387 		t = btf->types[i];
388 		if (BTF_INFO_KIND(t->info) != kind)
389 			continue;
390 
391 		tname = btf_name_by_offset(btf, t->name_off);
392 		if (!strcmp(tname, name))
393 			return i;
394 	}
395 
396 	return -ENOENT;
397 }
398 
399 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
400 					       u32 id, u32 *res_id)
401 {
402 	const struct btf_type *t = btf_type_by_id(btf, id);
403 
404 	while (btf_type_is_modifier(t)) {
405 		id = t->type;
406 		t = btf_type_by_id(btf, t->type);
407 	}
408 
409 	if (res_id)
410 		*res_id = id;
411 
412 	return t;
413 }
414 
415 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
416 					    u32 id, u32 *res_id)
417 {
418 	const struct btf_type *t;
419 
420 	t = btf_type_skip_modifiers(btf, id, NULL);
421 	if (!btf_type_is_ptr(t))
422 		return NULL;
423 
424 	return btf_type_skip_modifiers(btf, t->type, res_id);
425 }
426 
427 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
428 						 u32 id, u32 *res_id)
429 {
430 	const struct btf_type *ptype;
431 
432 	ptype = btf_type_resolve_ptr(btf, id, res_id);
433 	if (ptype && btf_type_is_func_proto(ptype))
434 		return ptype;
435 
436 	return NULL;
437 }
438 
439 /* Types that act only as a source, not sink or intermediate
440  * type when resolving.
441  */
442 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
443 {
444 	return btf_type_is_var(t) ||
445 	       btf_type_is_datasec(t);
446 }
447 
448 /* What types need to be resolved?
449  *
450  * btf_type_is_modifier() is an obvious one.
451  *
452  * btf_type_is_struct() because its member refers to
453  * another type (through member->type).
454  *
455  * btf_type_is_var() because the variable refers to
456  * another type. btf_type_is_datasec() holds multiple
457  * btf_type_is_var() types that need resolving.
458  *
459  * btf_type_is_array() because its element (array->type)
460  * refers to another type.  Array can be thought of a
461  * special case of struct while array just has the same
462  * member-type repeated by array->nelems of times.
463  */
464 static bool btf_type_needs_resolve(const struct btf_type *t)
465 {
466 	return btf_type_is_modifier(t) ||
467 	       btf_type_is_ptr(t) ||
468 	       btf_type_is_struct(t) ||
469 	       btf_type_is_array(t) ||
470 	       btf_type_is_var(t) ||
471 	       btf_type_is_datasec(t);
472 }
473 
474 /* t->size can be used */
475 static bool btf_type_has_size(const struct btf_type *t)
476 {
477 	switch (BTF_INFO_KIND(t->info)) {
478 	case BTF_KIND_INT:
479 	case BTF_KIND_STRUCT:
480 	case BTF_KIND_UNION:
481 	case BTF_KIND_ENUM:
482 	case BTF_KIND_DATASEC:
483 		return true;
484 	}
485 
486 	return false;
487 }
488 
489 static const char *btf_int_encoding_str(u8 encoding)
490 {
491 	if (encoding == 0)
492 		return "(none)";
493 	else if (encoding == BTF_INT_SIGNED)
494 		return "SIGNED";
495 	else if (encoding == BTF_INT_CHAR)
496 		return "CHAR";
497 	else if (encoding == BTF_INT_BOOL)
498 		return "BOOL";
499 	else
500 		return "UNKN";
501 }
502 
503 static u32 btf_type_int(const struct btf_type *t)
504 {
505 	return *(u32 *)(t + 1);
506 }
507 
508 static const struct btf_array *btf_type_array(const struct btf_type *t)
509 {
510 	return (const struct btf_array *)(t + 1);
511 }
512 
513 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
514 {
515 	return (const struct btf_enum *)(t + 1);
516 }
517 
518 static const struct btf_var *btf_type_var(const struct btf_type *t)
519 {
520 	return (const struct btf_var *)(t + 1);
521 }
522 
523 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
524 {
525 	return (const struct btf_var_secinfo *)(t + 1);
526 }
527 
528 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
529 {
530 	return kind_ops[BTF_INFO_KIND(t->info)];
531 }
532 
533 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
534 {
535 	return BTF_STR_OFFSET_VALID(offset) &&
536 		offset < btf->hdr.str_len;
537 }
538 
539 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
540 {
541 	if ((first ? !isalpha(c) :
542 		     !isalnum(c)) &&
543 	    c != '_' &&
544 	    ((c == '.' && !dot_ok) ||
545 	      c != '.'))
546 		return false;
547 	return true;
548 }
549 
550 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
551 {
552 	/* offset must be valid */
553 	const char *src = &btf->strings[offset];
554 	const char *src_limit;
555 
556 	if (!__btf_name_char_ok(*src, true, dot_ok))
557 		return false;
558 
559 	/* set a limit on identifier length */
560 	src_limit = src + KSYM_NAME_LEN;
561 	src++;
562 	while (*src && src < src_limit) {
563 		if (!__btf_name_char_ok(*src, false, dot_ok))
564 			return false;
565 		src++;
566 	}
567 
568 	return !*src;
569 }
570 
571 /* Only C-style identifier is permitted. This can be relaxed if
572  * necessary.
573  */
574 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
575 {
576 	return __btf_name_valid(btf, offset, false);
577 }
578 
579 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
580 {
581 	return __btf_name_valid(btf, offset, true);
582 }
583 
584 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
585 {
586 	if (!offset)
587 		return "(anon)";
588 	else if (offset < btf->hdr.str_len)
589 		return &btf->strings[offset];
590 	else
591 		return "(invalid-name-offset)";
592 }
593 
594 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
595 {
596 	if (offset < btf->hdr.str_len)
597 		return &btf->strings[offset];
598 
599 	return NULL;
600 }
601 
602 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
603 {
604 	if (type_id > btf->nr_types)
605 		return NULL;
606 
607 	return btf->types[type_id];
608 }
609 
610 /*
611  * Regular int is not a bit field and it must be either
612  * u8/u16/u32/u64 or __int128.
613  */
614 static bool btf_type_int_is_regular(const struct btf_type *t)
615 {
616 	u8 nr_bits, nr_bytes;
617 	u32 int_data;
618 
619 	int_data = btf_type_int(t);
620 	nr_bits = BTF_INT_BITS(int_data);
621 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
622 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
623 	    BTF_INT_OFFSET(int_data) ||
624 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
625 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
626 	     nr_bytes != (2 * sizeof(u64)))) {
627 		return false;
628 	}
629 
630 	return true;
631 }
632 
633 /*
634  * Check that given struct member is a regular int with expected
635  * offset and size.
636  */
637 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
638 			   const struct btf_member *m,
639 			   u32 expected_offset, u32 expected_size)
640 {
641 	const struct btf_type *t;
642 	u32 id, int_data;
643 	u8 nr_bits;
644 
645 	id = m->type;
646 	t = btf_type_id_size(btf, &id, NULL);
647 	if (!t || !btf_type_is_int(t))
648 		return false;
649 
650 	int_data = btf_type_int(t);
651 	nr_bits = BTF_INT_BITS(int_data);
652 	if (btf_type_kflag(s)) {
653 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
654 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
655 
656 		/* if kflag set, int should be a regular int and
657 		 * bit offset should be at byte boundary.
658 		 */
659 		return !bitfield_size &&
660 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
661 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
662 	}
663 
664 	if (BTF_INT_OFFSET(int_data) ||
665 	    BITS_PER_BYTE_MASKED(m->offset) ||
666 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
667 	    BITS_PER_BYTE_MASKED(nr_bits) ||
668 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
669 		return false;
670 
671 	return true;
672 }
673 
674 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
675 					      const char *fmt, ...)
676 {
677 	va_list args;
678 
679 	va_start(args, fmt);
680 	bpf_verifier_vlog(log, fmt, args);
681 	va_end(args);
682 }
683 
684 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
685 					    const char *fmt, ...)
686 {
687 	struct bpf_verifier_log *log = &env->log;
688 	va_list args;
689 
690 	if (!bpf_verifier_log_needed(log))
691 		return;
692 
693 	va_start(args, fmt);
694 	bpf_verifier_vlog(log, fmt, args);
695 	va_end(args);
696 }
697 
698 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
699 						   const struct btf_type *t,
700 						   bool log_details,
701 						   const char *fmt, ...)
702 {
703 	struct bpf_verifier_log *log = &env->log;
704 	u8 kind = BTF_INFO_KIND(t->info);
705 	struct btf *btf = env->btf;
706 	va_list args;
707 
708 	if (!bpf_verifier_log_needed(log))
709 		return;
710 
711 	/* btf verifier prints all types it is processing via
712 	 * btf_verifier_log_type(..., fmt = NULL).
713 	 * Skip those prints for in-kernel BTF verification.
714 	 */
715 	if (log->level == BPF_LOG_KERNEL && !fmt)
716 		return;
717 
718 	__btf_verifier_log(log, "[%u] %s %s%s",
719 			   env->log_type_id,
720 			   btf_kind_str[kind],
721 			   __btf_name_by_offset(btf, t->name_off),
722 			   log_details ? " " : "");
723 
724 	if (log_details)
725 		btf_type_ops(t)->log_details(env, t);
726 
727 	if (fmt && *fmt) {
728 		__btf_verifier_log(log, " ");
729 		va_start(args, fmt);
730 		bpf_verifier_vlog(log, fmt, args);
731 		va_end(args);
732 	}
733 
734 	__btf_verifier_log(log, "\n");
735 }
736 
737 #define btf_verifier_log_type(env, t, ...) \
738 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
739 #define btf_verifier_log_basic(env, t, ...) \
740 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
741 
742 __printf(4, 5)
743 static void btf_verifier_log_member(struct btf_verifier_env *env,
744 				    const struct btf_type *struct_type,
745 				    const struct btf_member *member,
746 				    const char *fmt, ...)
747 {
748 	struct bpf_verifier_log *log = &env->log;
749 	struct btf *btf = env->btf;
750 	va_list args;
751 
752 	if (!bpf_verifier_log_needed(log))
753 		return;
754 
755 	if (log->level == BPF_LOG_KERNEL && !fmt)
756 		return;
757 	/* The CHECK_META phase already did a btf dump.
758 	 *
759 	 * If member is logged again, it must hit an error in
760 	 * parsing this member.  It is useful to print out which
761 	 * struct this member belongs to.
762 	 */
763 	if (env->phase != CHECK_META)
764 		btf_verifier_log_type(env, struct_type, NULL);
765 
766 	if (btf_type_kflag(struct_type))
767 		__btf_verifier_log(log,
768 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
769 				   __btf_name_by_offset(btf, member->name_off),
770 				   member->type,
771 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
772 				   BTF_MEMBER_BIT_OFFSET(member->offset));
773 	else
774 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
775 				   __btf_name_by_offset(btf, member->name_off),
776 				   member->type, member->offset);
777 
778 	if (fmt && *fmt) {
779 		__btf_verifier_log(log, " ");
780 		va_start(args, fmt);
781 		bpf_verifier_vlog(log, fmt, args);
782 		va_end(args);
783 	}
784 
785 	__btf_verifier_log(log, "\n");
786 }
787 
788 __printf(4, 5)
789 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
790 				 const struct btf_type *datasec_type,
791 				 const struct btf_var_secinfo *vsi,
792 				 const char *fmt, ...)
793 {
794 	struct bpf_verifier_log *log = &env->log;
795 	va_list args;
796 
797 	if (!bpf_verifier_log_needed(log))
798 		return;
799 	if (log->level == BPF_LOG_KERNEL && !fmt)
800 		return;
801 	if (env->phase != CHECK_META)
802 		btf_verifier_log_type(env, datasec_type, NULL);
803 
804 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
805 			   vsi->type, vsi->offset, vsi->size);
806 	if (fmt && *fmt) {
807 		__btf_verifier_log(log, " ");
808 		va_start(args, fmt);
809 		bpf_verifier_vlog(log, fmt, args);
810 		va_end(args);
811 	}
812 
813 	__btf_verifier_log(log, "\n");
814 }
815 
816 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
817 				 u32 btf_data_size)
818 {
819 	struct bpf_verifier_log *log = &env->log;
820 	const struct btf *btf = env->btf;
821 	const struct btf_header *hdr;
822 
823 	if (!bpf_verifier_log_needed(log))
824 		return;
825 
826 	if (log->level == BPF_LOG_KERNEL)
827 		return;
828 	hdr = &btf->hdr;
829 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
830 	__btf_verifier_log(log, "version: %u\n", hdr->version);
831 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
832 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
833 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
834 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
835 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
836 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
837 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
838 }
839 
840 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
841 {
842 	struct btf *btf = env->btf;
843 
844 	/* < 2 because +1 for btf_void which is always in btf->types[0].
845 	 * btf_void is not accounted in btf->nr_types because btf_void
846 	 * does not come from the BTF file.
847 	 */
848 	if (btf->types_size - btf->nr_types < 2) {
849 		/* Expand 'types' array */
850 
851 		struct btf_type **new_types;
852 		u32 expand_by, new_size;
853 
854 		if (btf->types_size == BTF_MAX_TYPE) {
855 			btf_verifier_log(env, "Exceeded max num of types");
856 			return -E2BIG;
857 		}
858 
859 		expand_by = max_t(u32, btf->types_size >> 2, 16);
860 		new_size = min_t(u32, BTF_MAX_TYPE,
861 				 btf->types_size + expand_by);
862 
863 		new_types = kvcalloc(new_size, sizeof(*new_types),
864 				     GFP_KERNEL | __GFP_NOWARN);
865 		if (!new_types)
866 			return -ENOMEM;
867 
868 		if (btf->nr_types == 0)
869 			new_types[0] = &btf_void;
870 		else
871 			memcpy(new_types, btf->types,
872 			       sizeof(*btf->types) * (btf->nr_types + 1));
873 
874 		kvfree(btf->types);
875 		btf->types = new_types;
876 		btf->types_size = new_size;
877 	}
878 
879 	btf->types[++(btf->nr_types)] = t;
880 
881 	return 0;
882 }
883 
884 static int btf_alloc_id(struct btf *btf)
885 {
886 	int id;
887 
888 	idr_preload(GFP_KERNEL);
889 	spin_lock_bh(&btf_idr_lock);
890 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
891 	if (id > 0)
892 		btf->id = id;
893 	spin_unlock_bh(&btf_idr_lock);
894 	idr_preload_end();
895 
896 	if (WARN_ON_ONCE(!id))
897 		return -ENOSPC;
898 
899 	return id > 0 ? 0 : id;
900 }
901 
902 static void btf_free_id(struct btf *btf)
903 {
904 	unsigned long flags;
905 
906 	/*
907 	 * In map-in-map, calling map_delete_elem() on outer
908 	 * map will call bpf_map_put on the inner map.
909 	 * It will then eventually call btf_free_id()
910 	 * on the inner map.  Some of the map_delete_elem()
911 	 * implementation may have irq disabled, so
912 	 * we need to use the _irqsave() version instead
913 	 * of the _bh() version.
914 	 */
915 	spin_lock_irqsave(&btf_idr_lock, flags);
916 	idr_remove(&btf_idr, btf->id);
917 	spin_unlock_irqrestore(&btf_idr_lock, flags);
918 }
919 
920 static void btf_free(struct btf *btf)
921 {
922 	kvfree(btf->types);
923 	kvfree(btf->resolved_sizes);
924 	kvfree(btf->resolved_ids);
925 	kvfree(btf->data);
926 	kfree(btf);
927 }
928 
929 static void btf_free_rcu(struct rcu_head *rcu)
930 {
931 	struct btf *btf = container_of(rcu, struct btf, rcu);
932 
933 	btf_free(btf);
934 }
935 
936 void btf_put(struct btf *btf)
937 {
938 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
939 		btf_free_id(btf);
940 		call_rcu(&btf->rcu, btf_free_rcu);
941 	}
942 }
943 
944 static int env_resolve_init(struct btf_verifier_env *env)
945 {
946 	struct btf *btf = env->btf;
947 	u32 nr_types = btf->nr_types;
948 	u32 *resolved_sizes = NULL;
949 	u32 *resolved_ids = NULL;
950 	u8 *visit_states = NULL;
951 
952 	/* +1 for btf_void */
953 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
954 				  GFP_KERNEL | __GFP_NOWARN);
955 	if (!resolved_sizes)
956 		goto nomem;
957 
958 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
959 				GFP_KERNEL | __GFP_NOWARN);
960 	if (!resolved_ids)
961 		goto nomem;
962 
963 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
964 				GFP_KERNEL | __GFP_NOWARN);
965 	if (!visit_states)
966 		goto nomem;
967 
968 	btf->resolved_sizes = resolved_sizes;
969 	btf->resolved_ids = resolved_ids;
970 	env->visit_states = visit_states;
971 
972 	return 0;
973 
974 nomem:
975 	kvfree(resolved_sizes);
976 	kvfree(resolved_ids);
977 	kvfree(visit_states);
978 	return -ENOMEM;
979 }
980 
981 static void btf_verifier_env_free(struct btf_verifier_env *env)
982 {
983 	kvfree(env->visit_states);
984 	kfree(env);
985 }
986 
987 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
988 				     const struct btf_type *next_type)
989 {
990 	switch (env->resolve_mode) {
991 	case RESOLVE_TBD:
992 		/* int, enum or void is a sink */
993 		return !btf_type_needs_resolve(next_type);
994 	case RESOLVE_PTR:
995 		/* int, enum, void, struct, array, func or func_proto is a sink
996 		 * for ptr
997 		 */
998 		return !btf_type_is_modifier(next_type) &&
999 			!btf_type_is_ptr(next_type);
1000 	case RESOLVE_STRUCT_OR_ARRAY:
1001 		/* int, enum, void, ptr, func or func_proto is a sink
1002 		 * for struct and array
1003 		 */
1004 		return !btf_type_is_modifier(next_type) &&
1005 			!btf_type_is_array(next_type) &&
1006 			!btf_type_is_struct(next_type);
1007 	default:
1008 		BUG();
1009 	}
1010 }
1011 
1012 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1013 				 u32 type_id)
1014 {
1015 	return env->visit_states[type_id] == RESOLVED;
1016 }
1017 
1018 static int env_stack_push(struct btf_verifier_env *env,
1019 			  const struct btf_type *t, u32 type_id)
1020 {
1021 	struct resolve_vertex *v;
1022 
1023 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1024 		return -E2BIG;
1025 
1026 	if (env->visit_states[type_id] != NOT_VISITED)
1027 		return -EEXIST;
1028 
1029 	env->visit_states[type_id] = VISITED;
1030 
1031 	v = &env->stack[env->top_stack++];
1032 	v->t = t;
1033 	v->type_id = type_id;
1034 	v->next_member = 0;
1035 
1036 	if (env->resolve_mode == RESOLVE_TBD) {
1037 		if (btf_type_is_ptr(t))
1038 			env->resolve_mode = RESOLVE_PTR;
1039 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1040 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static void env_stack_set_next_member(struct btf_verifier_env *env,
1047 				      u16 next_member)
1048 {
1049 	env->stack[env->top_stack - 1].next_member = next_member;
1050 }
1051 
1052 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1053 				   u32 resolved_type_id,
1054 				   u32 resolved_size)
1055 {
1056 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1057 	struct btf *btf = env->btf;
1058 
1059 	btf->resolved_sizes[type_id] = resolved_size;
1060 	btf->resolved_ids[type_id] = resolved_type_id;
1061 	env->visit_states[type_id] = RESOLVED;
1062 }
1063 
1064 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1065 {
1066 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1067 }
1068 
1069 /* Resolve the size of a passed-in "type"
1070  *
1071  * type: is an array (e.g. u32 array[x][y])
1072  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1073  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1074  *             corresponds to the return type.
1075  * *elem_type: u32
1076  * *total_nelems: (x * y).  Hence, individual elem size is
1077  *                (*type_size / *total_nelems)
1078  *
1079  * type: is not an array (e.g. const struct X)
1080  * return type: type "struct X"
1081  * *type_size: sizeof(struct X)
1082  * *elem_type: same as return type ("struct X")
1083  * *total_nelems: 1
1084  */
1085 const struct btf_type *
1086 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1087 		 u32 *type_size, const struct btf_type **elem_type,
1088 		 u32 *total_nelems)
1089 {
1090 	const struct btf_type *array_type = NULL;
1091 	const struct btf_array *array;
1092 	u32 i, size, nelems = 1;
1093 
1094 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1095 		switch (BTF_INFO_KIND(type->info)) {
1096 		/* type->size can be used */
1097 		case BTF_KIND_INT:
1098 		case BTF_KIND_STRUCT:
1099 		case BTF_KIND_UNION:
1100 		case BTF_KIND_ENUM:
1101 			size = type->size;
1102 			goto resolved;
1103 
1104 		case BTF_KIND_PTR:
1105 			size = sizeof(void *);
1106 			goto resolved;
1107 
1108 		/* Modifiers */
1109 		case BTF_KIND_TYPEDEF:
1110 		case BTF_KIND_VOLATILE:
1111 		case BTF_KIND_CONST:
1112 		case BTF_KIND_RESTRICT:
1113 			type = btf_type_by_id(btf, type->type);
1114 			break;
1115 
1116 		case BTF_KIND_ARRAY:
1117 			if (!array_type)
1118 				array_type = type;
1119 			array = btf_type_array(type);
1120 			if (nelems && array->nelems > U32_MAX / nelems)
1121 				return ERR_PTR(-EINVAL);
1122 			nelems *= array->nelems;
1123 			type = btf_type_by_id(btf, array->type);
1124 			break;
1125 
1126 		/* type without size */
1127 		default:
1128 			return ERR_PTR(-EINVAL);
1129 		}
1130 	}
1131 
1132 	return ERR_PTR(-EINVAL);
1133 
1134 resolved:
1135 	if (nelems && size > U32_MAX / nelems)
1136 		return ERR_PTR(-EINVAL);
1137 
1138 	*type_size = nelems * size;
1139 	if (total_nelems)
1140 		*total_nelems = nelems;
1141 	if (elem_type)
1142 		*elem_type = type;
1143 
1144 	return array_type ? : type;
1145 }
1146 
1147 /* The input param "type_id" must point to a needs_resolve type */
1148 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1149 						  u32 *type_id)
1150 {
1151 	*type_id = btf->resolved_ids[*type_id];
1152 	return btf_type_by_id(btf, *type_id);
1153 }
1154 
1155 const struct btf_type *btf_type_id_size(const struct btf *btf,
1156 					u32 *type_id, u32 *ret_size)
1157 {
1158 	const struct btf_type *size_type;
1159 	u32 size_type_id = *type_id;
1160 	u32 size = 0;
1161 
1162 	size_type = btf_type_by_id(btf, size_type_id);
1163 	if (btf_type_nosize_or_null(size_type))
1164 		return NULL;
1165 
1166 	if (btf_type_has_size(size_type)) {
1167 		size = size_type->size;
1168 	} else if (btf_type_is_array(size_type)) {
1169 		size = btf->resolved_sizes[size_type_id];
1170 	} else if (btf_type_is_ptr(size_type)) {
1171 		size = sizeof(void *);
1172 	} else {
1173 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1174 				 !btf_type_is_var(size_type)))
1175 			return NULL;
1176 
1177 		size_type_id = btf->resolved_ids[size_type_id];
1178 		size_type = btf_type_by_id(btf, size_type_id);
1179 		if (btf_type_nosize_or_null(size_type))
1180 			return NULL;
1181 		else if (btf_type_has_size(size_type))
1182 			size = size_type->size;
1183 		else if (btf_type_is_array(size_type))
1184 			size = btf->resolved_sizes[size_type_id];
1185 		else if (btf_type_is_ptr(size_type))
1186 			size = sizeof(void *);
1187 		else
1188 			return NULL;
1189 	}
1190 
1191 	*type_id = size_type_id;
1192 	if (ret_size)
1193 		*ret_size = size;
1194 
1195 	return size_type;
1196 }
1197 
1198 static int btf_df_check_member(struct btf_verifier_env *env,
1199 			       const struct btf_type *struct_type,
1200 			       const struct btf_member *member,
1201 			       const struct btf_type *member_type)
1202 {
1203 	btf_verifier_log_basic(env, struct_type,
1204 			       "Unsupported check_member");
1205 	return -EINVAL;
1206 }
1207 
1208 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1209 				     const struct btf_type *struct_type,
1210 				     const struct btf_member *member,
1211 				     const struct btf_type *member_type)
1212 {
1213 	btf_verifier_log_basic(env, struct_type,
1214 			       "Unsupported check_kflag_member");
1215 	return -EINVAL;
1216 }
1217 
1218 /* Used for ptr, array and struct/union type members.
1219  * int, enum and modifier types have their specific callback functions.
1220  */
1221 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1222 					  const struct btf_type *struct_type,
1223 					  const struct btf_member *member,
1224 					  const struct btf_type *member_type)
1225 {
1226 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1227 		btf_verifier_log_member(env, struct_type, member,
1228 					"Invalid member bitfield_size");
1229 		return -EINVAL;
1230 	}
1231 
1232 	/* bitfield size is 0, so member->offset represents bit offset only.
1233 	 * It is safe to call non kflag check_member variants.
1234 	 */
1235 	return btf_type_ops(member_type)->check_member(env, struct_type,
1236 						       member,
1237 						       member_type);
1238 }
1239 
1240 static int btf_df_resolve(struct btf_verifier_env *env,
1241 			  const struct resolve_vertex *v)
1242 {
1243 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1244 	return -EINVAL;
1245 }
1246 
1247 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1248 			    u32 type_id, void *data, u8 bits_offsets,
1249 			    struct seq_file *m)
1250 {
1251 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1252 }
1253 
1254 static int btf_int_check_member(struct btf_verifier_env *env,
1255 				const struct btf_type *struct_type,
1256 				const struct btf_member *member,
1257 				const struct btf_type *member_type)
1258 {
1259 	u32 int_data = btf_type_int(member_type);
1260 	u32 struct_bits_off = member->offset;
1261 	u32 struct_size = struct_type->size;
1262 	u32 nr_copy_bits;
1263 	u32 bytes_offset;
1264 
1265 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1266 		btf_verifier_log_member(env, struct_type, member,
1267 					"bits_offset exceeds U32_MAX");
1268 		return -EINVAL;
1269 	}
1270 
1271 	struct_bits_off += BTF_INT_OFFSET(int_data);
1272 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1273 	nr_copy_bits = BTF_INT_BITS(int_data) +
1274 		BITS_PER_BYTE_MASKED(struct_bits_off);
1275 
1276 	if (nr_copy_bits > BITS_PER_U128) {
1277 		btf_verifier_log_member(env, struct_type, member,
1278 					"nr_copy_bits exceeds 128");
1279 		return -EINVAL;
1280 	}
1281 
1282 	if (struct_size < bytes_offset ||
1283 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1284 		btf_verifier_log_member(env, struct_type, member,
1285 					"Member exceeds struct_size");
1286 		return -EINVAL;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1293 				      const struct btf_type *struct_type,
1294 				      const struct btf_member *member,
1295 				      const struct btf_type *member_type)
1296 {
1297 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1298 	u32 int_data = btf_type_int(member_type);
1299 	u32 struct_size = struct_type->size;
1300 	u32 nr_copy_bits;
1301 
1302 	/* a regular int type is required for the kflag int member */
1303 	if (!btf_type_int_is_regular(member_type)) {
1304 		btf_verifier_log_member(env, struct_type, member,
1305 					"Invalid member base type");
1306 		return -EINVAL;
1307 	}
1308 
1309 	/* check sanity of bitfield size */
1310 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1311 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1312 	nr_int_data_bits = BTF_INT_BITS(int_data);
1313 	if (!nr_bits) {
1314 		/* Not a bitfield member, member offset must be at byte
1315 		 * boundary.
1316 		 */
1317 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1318 			btf_verifier_log_member(env, struct_type, member,
1319 						"Invalid member offset");
1320 			return -EINVAL;
1321 		}
1322 
1323 		nr_bits = nr_int_data_bits;
1324 	} else if (nr_bits > nr_int_data_bits) {
1325 		btf_verifier_log_member(env, struct_type, member,
1326 					"Invalid member bitfield_size");
1327 		return -EINVAL;
1328 	}
1329 
1330 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1331 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1332 	if (nr_copy_bits > BITS_PER_U128) {
1333 		btf_verifier_log_member(env, struct_type, member,
1334 					"nr_copy_bits exceeds 128");
1335 		return -EINVAL;
1336 	}
1337 
1338 	if (struct_size < bytes_offset ||
1339 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1340 		btf_verifier_log_member(env, struct_type, member,
1341 					"Member exceeds struct_size");
1342 		return -EINVAL;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1349 			      const struct btf_type *t,
1350 			      u32 meta_left)
1351 {
1352 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1353 	u16 encoding;
1354 
1355 	if (meta_left < meta_needed) {
1356 		btf_verifier_log_basic(env, t,
1357 				       "meta_left:%u meta_needed:%u",
1358 				       meta_left, meta_needed);
1359 		return -EINVAL;
1360 	}
1361 
1362 	if (btf_type_vlen(t)) {
1363 		btf_verifier_log_type(env, t, "vlen != 0");
1364 		return -EINVAL;
1365 	}
1366 
1367 	if (btf_type_kflag(t)) {
1368 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1369 		return -EINVAL;
1370 	}
1371 
1372 	int_data = btf_type_int(t);
1373 	if (int_data & ~BTF_INT_MASK) {
1374 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1375 				       int_data);
1376 		return -EINVAL;
1377 	}
1378 
1379 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1380 
1381 	if (nr_bits > BITS_PER_U128) {
1382 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1383 				      BITS_PER_U128);
1384 		return -EINVAL;
1385 	}
1386 
1387 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1388 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1389 		return -EINVAL;
1390 	}
1391 
1392 	/*
1393 	 * Only one of the encoding bits is allowed and it
1394 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1395 	 * Multiple bits can be allowed later if it is found
1396 	 * to be insufficient.
1397 	 */
1398 	encoding = BTF_INT_ENCODING(int_data);
1399 	if (encoding &&
1400 	    encoding != BTF_INT_SIGNED &&
1401 	    encoding != BTF_INT_CHAR &&
1402 	    encoding != BTF_INT_BOOL) {
1403 		btf_verifier_log_type(env, t, "Unsupported encoding");
1404 		return -ENOTSUPP;
1405 	}
1406 
1407 	btf_verifier_log_type(env, t, NULL);
1408 
1409 	return meta_needed;
1410 }
1411 
1412 static void btf_int_log(struct btf_verifier_env *env,
1413 			const struct btf_type *t)
1414 {
1415 	int int_data = btf_type_int(t);
1416 
1417 	btf_verifier_log(env,
1418 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1419 			 t->size, BTF_INT_OFFSET(int_data),
1420 			 BTF_INT_BITS(int_data),
1421 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1422 }
1423 
1424 static void btf_int128_print(struct seq_file *m, void *data)
1425 {
1426 	/* data points to a __int128 number.
1427 	 * Suppose
1428 	 *     int128_num = *(__int128 *)data;
1429 	 * The below formulas shows what upper_num and lower_num represents:
1430 	 *     upper_num = int128_num >> 64;
1431 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1432 	 */
1433 	u64 upper_num, lower_num;
1434 
1435 #ifdef __BIG_ENDIAN_BITFIELD
1436 	upper_num = *(u64 *)data;
1437 	lower_num = *(u64 *)(data + 8);
1438 #else
1439 	upper_num = *(u64 *)(data + 8);
1440 	lower_num = *(u64 *)data;
1441 #endif
1442 	if (upper_num == 0)
1443 		seq_printf(m, "0x%llx", lower_num);
1444 	else
1445 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1446 }
1447 
1448 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1449 			     u16 right_shift_bits)
1450 {
1451 	u64 upper_num, lower_num;
1452 
1453 #ifdef __BIG_ENDIAN_BITFIELD
1454 	upper_num = print_num[0];
1455 	lower_num = print_num[1];
1456 #else
1457 	upper_num = print_num[1];
1458 	lower_num = print_num[0];
1459 #endif
1460 
1461 	/* shake out un-needed bits by shift/or operations */
1462 	if (left_shift_bits >= 64) {
1463 		upper_num = lower_num << (left_shift_bits - 64);
1464 		lower_num = 0;
1465 	} else {
1466 		upper_num = (upper_num << left_shift_bits) |
1467 			    (lower_num >> (64 - left_shift_bits));
1468 		lower_num = lower_num << left_shift_bits;
1469 	}
1470 
1471 	if (right_shift_bits >= 64) {
1472 		lower_num = upper_num >> (right_shift_bits - 64);
1473 		upper_num = 0;
1474 	} else {
1475 		lower_num = (lower_num >> right_shift_bits) |
1476 			    (upper_num << (64 - right_shift_bits));
1477 		upper_num = upper_num >> right_shift_bits;
1478 	}
1479 
1480 #ifdef __BIG_ENDIAN_BITFIELD
1481 	print_num[0] = upper_num;
1482 	print_num[1] = lower_num;
1483 #else
1484 	print_num[0] = lower_num;
1485 	print_num[1] = upper_num;
1486 #endif
1487 }
1488 
1489 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1490 				  u8 nr_bits, struct seq_file *m)
1491 {
1492 	u16 left_shift_bits, right_shift_bits;
1493 	u8 nr_copy_bytes;
1494 	u8 nr_copy_bits;
1495 	u64 print_num[2] = {};
1496 
1497 	nr_copy_bits = nr_bits + bits_offset;
1498 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1499 
1500 	memcpy(print_num, data, nr_copy_bytes);
1501 
1502 #ifdef __BIG_ENDIAN_BITFIELD
1503 	left_shift_bits = bits_offset;
1504 #else
1505 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1506 #endif
1507 	right_shift_bits = BITS_PER_U128 - nr_bits;
1508 
1509 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1510 	btf_int128_print(m, print_num);
1511 }
1512 
1513 
1514 static void btf_int_bits_seq_show(const struct btf *btf,
1515 				  const struct btf_type *t,
1516 				  void *data, u8 bits_offset,
1517 				  struct seq_file *m)
1518 {
1519 	u32 int_data = btf_type_int(t);
1520 	u8 nr_bits = BTF_INT_BITS(int_data);
1521 	u8 total_bits_offset;
1522 
1523 	/*
1524 	 * bits_offset is at most 7.
1525 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1526 	 */
1527 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1528 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1529 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1530 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1531 }
1532 
1533 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1534 			     u32 type_id, void *data, u8 bits_offset,
1535 			     struct seq_file *m)
1536 {
1537 	u32 int_data = btf_type_int(t);
1538 	u8 encoding = BTF_INT_ENCODING(int_data);
1539 	bool sign = encoding & BTF_INT_SIGNED;
1540 	u8 nr_bits = BTF_INT_BITS(int_data);
1541 
1542 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1543 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1544 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1545 		return;
1546 	}
1547 
1548 	switch (nr_bits) {
1549 	case 128:
1550 		btf_int128_print(m, data);
1551 		break;
1552 	case 64:
1553 		if (sign)
1554 			seq_printf(m, "%lld", *(s64 *)data);
1555 		else
1556 			seq_printf(m, "%llu", *(u64 *)data);
1557 		break;
1558 	case 32:
1559 		if (sign)
1560 			seq_printf(m, "%d", *(s32 *)data);
1561 		else
1562 			seq_printf(m, "%u", *(u32 *)data);
1563 		break;
1564 	case 16:
1565 		if (sign)
1566 			seq_printf(m, "%d", *(s16 *)data);
1567 		else
1568 			seq_printf(m, "%u", *(u16 *)data);
1569 		break;
1570 	case 8:
1571 		if (sign)
1572 			seq_printf(m, "%d", *(s8 *)data);
1573 		else
1574 			seq_printf(m, "%u", *(u8 *)data);
1575 		break;
1576 	default:
1577 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1578 	}
1579 }
1580 
1581 static const struct btf_kind_operations int_ops = {
1582 	.check_meta = btf_int_check_meta,
1583 	.resolve = btf_df_resolve,
1584 	.check_member = btf_int_check_member,
1585 	.check_kflag_member = btf_int_check_kflag_member,
1586 	.log_details = btf_int_log,
1587 	.seq_show = btf_int_seq_show,
1588 };
1589 
1590 static int btf_modifier_check_member(struct btf_verifier_env *env,
1591 				     const struct btf_type *struct_type,
1592 				     const struct btf_member *member,
1593 				     const struct btf_type *member_type)
1594 {
1595 	const struct btf_type *resolved_type;
1596 	u32 resolved_type_id = member->type;
1597 	struct btf_member resolved_member;
1598 	struct btf *btf = env->btf;
1599 
1600 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1601 	if (!resolved_type) {
1602 		btf_verifier_log_member(env, struct_type, member,
1603 					"Invalid member");
1604 		return -EINVAL;
1605 	}
1606 
1607 	resolved_member = *member;
1608 	resolved_member.type = resolved_type_id;
1609 
1610 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1611 							 &resolved_member,
1612 							 resolved_type);
1613 }
1614 
1615 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1616 					   const struct btf_type *struct_type,
1617 					   const struct btf_member *member,
1618 					   const struct btf_type *member_type)
1619 {
1620 	const struct btf_type *resolved_type;
1621 	u32 resolved_type_id = member->type;
1622 	struct btf_member resolved_member;
1623 	struct btf *btf = env->btf;
1624 
1625 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1626 	if (!resolved_type) {
1627 		btf_verifier_log_member(env, struct_type, member,
1628 					"Invalid member");
1629 		return -EINVAL;
1630 	}
1631 
1632 	resolved_member = *member;
1633 	resolved_member.type = resolved_type_id;
1634 
1635 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1636 							       &resolved_member,
1637 							       resolved_type);
1638 }
1639 
1640 static int btf_ptr_check_member(struct btf_verifier_env *env,
1641 				const struct btf_type *struct_type,
1642 				const struct btf_member *member,
1643 				const struct btf_type *member_type)
1644 {
1645 	u32 struct_size, struct_bits_off, bytes_offset;
1646 
1647 	struct_size = struct_type->size;
1648 	struct_bits_off = member->offset;
1649 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1650 
1651 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1652 		btf_verifier_log_member(env, struct_type, member,
1653 					"Member is not byte aligned");
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (struct_size - bytes_offset < sizeof(void *)) {
1658 		btf_verifier_log_member(env, struct_type, member,
1659 					"Member exceeds struct_size");
1660 		return -EINVAL;
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1667 				   const struct btf_type *t,
1668 				   u32 meta_left)
1669 {
1670 	if (btf_type_vlen(t)) {
1671 		btf_verifier_log_type(env, t, "vlen != 0");
1672 		return -EINVAL;
1673 	}
1674 
1675 	if (btf_type_kflag(t)) {
1676 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1677 		return -EINVAL;
1678 	}
1679 
1680 	if (!BTF_TYPE_ID_VALID(t->type)) {
1681 		btf_verifier_log_type(env, t, "Invalid type_id");
1682 		return -EINVAL;
1683 	}
1684 
1685 	/* typedef type must have a valid name, and other ref types,
1686 	 * volatile, const, restrict, should have a null name.
1687 	 */
1688 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1689 		if (!t->name_off ||
1690 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1691 			btf_verifier_log_type(env, t, "Invalid name");
1692 			return -EINVAL;
1693 		}
1694 	} else {
1695 		if (t->name_off) {
1696 			btf_verifier_log_type(env, t, "Invalid name");
1697 			return -EINVAL;
1698 		}
1699 	}
1700 
1701 	btf_verifier_log_type(env, t, NULL);
1702 
1703 	return 0;
1704 }
1705 
1706 static int btf_modifier_resolve(struct btf_verifier_env *env,
1707 				const struct resolve_vertex *v)
1708 {
1709 	const struct btf_type *t = v->t;
1710 	const struct btf_type *next_type;
1711 	u32 next_type_id = t->type;
1712 	struct btf *btf = env->btf;
1713 
1714 	next_type = btf_type_by_id(btf, next_type_id);
1715 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1716 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1717 		return -EINVAL;
1718 	}
1719 
1720 	if (!env_type_is_resolve_sink(env, next_type) &&
1721 	    !env_type_is_resolved(env, next_type_id))
1722 		return env_stack_push(env, next_type, next_type_id);
1723 
1724 	/* Figure out the resolved next_type_id with size.
1725 	 * They will be stored in the current modifier's
1726 	 * resolved_ids and resolved_sizes such that it can
1727 	 * save us a few type-following when we use it later (e.g. in
1728 	 * pretty print).
1729 	 */
1730 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1731 		if (env_type_is_resolved(env, next_type_id))
1732 			next_type = btf_type_id_resolve(btf, &next_type_id);
1733 
1734 		/* "typedef void new_void", "const void"...etc */
1735 		if (!btf_type_is_void(next_type) &&
1736 		    !btf_type_is_fwd(next_type) &&
1737 		    !btf_type_is_func_proto(next_type)) {
1738 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1739 			return -EINVAL;
1740 		}
1741 	}
1742 
1743 	env_stack_pop_resolved(env, next_type_id, 0);
1744 
1745 	return 0;
1746 }
1747 
1748 static int btf_var_resolve(struct btf_verifier_env *env,
1749 			   const struct resolve_vertex *v)
1750 {
1751 	const struct btf_type *next_type;
1752 	const struct btf_type *t = v->t;
1753 	u32 next_type_id = t->type;
1754 	struct btf *btf = env->btf;
1755 
1756 	next_type = btf_type_by_id(btf, next_type_id);
1757 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1758 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1759 		return -EINVAL;
1760 	}
1761 
1762 	if (!env_type_is_resolve_sink(env, next_type) &&
1763 	    !env_type_is_resolved(env, next_type_id))
1764 		return env_stack_push(env, next_type, next_type_id);
1765 
1766 	if (btf_type_is_modifier(next_type)) {
1767 		const struct btf_type *resolved_type;
1768 		u32 resolved_type_id;
1769 
1770 		resolved_type_id = next_type_id;
1771 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1772 
1773 		if (btf_type_is_ptr(resolved_type) &&
1774 		    !env_type_is_resolve_sink(env, resolved_type) &&
1775 		    !env_type_is_resolved(env, resolved_type_id))
1776 			return env_stack_push(env, resolved_type,
1777 					      resolved_type_id);
1778 	}
1779 
1780 	/* We must resolve to something concrete at this point, no
1781 	 * forward types or similar that would resolve to size of
1782 	 * zero is allowed.
1783 	 */
1784 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1785 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1786 		return -EINVAL;
1787 	}
1788 
1789 	env_stack_pop_resolved(env, next_type_id, 0);
1790 
1791 	return 0;
1792 }
1793 
1794 static int btf_ptr_resolve(struct btf_verifier_env *env,
1795 			   const struct resolve_vertex *v)
1796 {
1797 	const struct btf_type *next_type;
1798 	const struct btf_type *t = v->t;
1799 	u32 next_type_id = t->type;
1800 	struct btf *btf = env->btf;
1801 
1802 	next_type = btf_type_by_id(btf, next_type_id);
1803 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1804 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1805 		return -EINVAL;
1806 	}
1807 
1808 	if (!env_type_is_resolve_sink(env, next_type) &&
1809 	    !env_type_is_resolved(env, next_type_id))
1810 		return env_stack_push(env, next_type, next_type_id);
1811 
1812 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1813 	 * the modifier may have stopped resolving when it was resolved
1814 	 * to a ptr (last-resolved-ptr).
1815 	 *
1816 	 * We now need to continue from the last-resolved-ptr to
1817 	 * ensure the last-resolved-ptr will not referring back to
1818 	 * the currenct ptr (t).
1819 	 */
1820 	if (btf_type_is_modifier(next_type)) {
1821 		const struct btf_type *resolved_type;
1822 		u32 resolved_type_id;
1823 
1824 		resolved_type_id = next_type_id;
1825 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1826 
1827 		if (btf_type_is_ptr(resolved_type) &&
1828 		    !env_type_is_resolve_sink(env, resolved_type) &&
1829 		    !env_type_is_resolved(env, resolved_type_id))
1830 			return env_stack_push(env, resolved_type,
1831 					      resolved_type_id);
1832 	}
1833 
1834 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1835 		if (env_type_is_resolved(env, next_type_id))
1836 			next_type = btf_type_id_resolve(btf, &next_type_id);
1837 
1838 		if (!btf_type_is_void(next_type) &&
1839 		    !btf_type_is_fwd(next_type) &&
1840 		    !btf_type_is_func_proto(next_type)) {
1841 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1842 			return -EINVAL;
1843 		}
1844 	}
1845 
1846 	env_stack_pop_resolved(env, next_type_id, 0);
1847 
1848 	return 0;
1849 }
1850 
1851 static void btf_modifier_seq_show(const struct btf *btf,
1852 				  const struct btf_type *t,
1853 				  u32 type_id, void *data,
1854 				  u8 bits_offset, struct seq_file *m)
1855 {
1856 	if (btf->resolved_ids)
1857 		t = btf_type_id_resolve(btf, &type_id);
1858 	else
1859 		t = btf_type_skip_modifiers(btf, type_id, NULL);
1860 
1861 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1862 }
1863 
1864 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1865 			     u32 type_id, void *data, u8 bits_offset,
1866 			     struct seq_file *m)
1867 {
1868 	t = btf_type_id_resolve(btf, &type_id);
1869 
1870 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1871 }
1872 
1873 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1874 			     u32 type_id, void *data, u8 bits_offset,
1875 			     struct seq_file *m)
1876 {
1877 	/* It is a hashed value */
1878 	seq_printf(m, "%p", *(void **)data);
1879 }
1880 
1881 static void btf_ref_type_log(struct btf_verifier_env *env,
1882 			     const struct btf_type *t)
1883 {
1884 	btf_verifier_log(env, "type_id=%u", t->type);
1885 }
1886 
1887 static struct btf_kind_operations modifier_ops = {
1888 	.check_meta = btf_ref_type_check_meta,
1889 	.resolve = btf_modifier_resolve,
1890 	.check_member = btf_modifier_check_member,
1891 	.check_kflag_member = btf_modifier_check_kflag_member,
1892 	.log_details = btf_ref_type_log,
1893 	.seq_show = btf_modifier_seq_show,
1894 };
1895 
1896 static struct btf_kind_operations ptr_ops = {
1897 	.check_meta = btf_ref_type_check_meta,
1898 	.resolve = btf_ptr_resolve,
1899 	.check_member = btf_ptr_check_member,
1900 	.check_kflag_member = btf_generic_check_kflag_member,
1901 	.log_details = btf_ref_type_log,
1902 	.seq_show = btf_ptr_seq_show,
1903 };
1904 
1905 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1906 			      const struct btf_type *t,
1907 			      u32 meta_left)
1908 {
1909 	if (btf_type_vlen(t)) {
1910 		btf_verifier_log_type(env, t, "vlen != 0");
1911 		return -EINVAL;
1912 	}
1913 
1914 	if (t->type) {
1915 		btf_verifier_log_type(env, t, "type != 0");
1916 		return -EINVAL;
1917 	}
1918 
1919 	/* fwd type must have a valid name */
1920 	if (!t->name_off ||
1921 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1922 		btf_verifier_log_type(env, t, "Invalid name");
1923 		return -EINVAL;
1924 	}
1925 
1926 	btf_verifier_log_type(env, t, NULL);
1927 
1928 	return 0;
1929 }
1930 
1931 static void btf_fwd_type_log(struct btf_verifier_env *env,
1932 			     const struct btf_type *t)
1933 {
1934 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1935 }
1936 
1937 static struct btf_kind_operations fwd_ops = {
1938 	.check_meta = btf_fwd_check_meta,
1939 	.resolve = btf_df_resolve,
1940 	.check_member = btf_df_check_member,
1941 	.check_kflag_member = btf_df_check_kflag_member,
1942 	.log_details = btf_fwd_type_log,
1943 	.seq_show = btf_df_seq_show,
1944 };
1945 
1946 static int btf_array_check_member(struct btf_verifier_env *env,
1947 				  const struct btf_type *struct_type,
1948 				  const struct btf_member *member,
1949 				  const struct btf_type *member_type)
1950 {
1951 	u32 struct_bits_off = member->offset;
1952 	u32 struct_size, bytes_offset;
1953 	u32 array_type_id, array_size;
1954 	struct btf *btf = env->btf;
1955 
1956 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1957 		btf_verifier_log_member(env, struct_type, member,
1958 					"Member is not byte aligned");
1959 		return -EINVAL;
1960 	}
1961 
1962 	array_type_id = member->type;
1963 	btf_type_id_size(btf, &array_type_id, &array_size);
1964 	struct_size = struct_type->size;
1965 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1966 	if (struct_size - bytes_offset < array_size) {
1967 		btf_verifier_log_member(env, struct_type, member,
1968 					"Member exceeds struct_size");
1969 		return -EINVAL;
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1976 				const struct btf_type *t,
1977 				u32 meta_left)
1978 {
1979 	const struct btf_array *array = btf_type_array(t);
1980 	u32 meta_needed = sizeof(*array);
1981 
1982 	if (meta_left < meta_needed) {
1983 		btf_verifier_log_basic(env, t,
1984 				       "meta_left:%u meta_needed:%u",
1985 				       meta_left, meta_needed);
1986 		return -EINVAL;
1987 	}
1988 
1989 	/* array type should not have a name */
1990 	if (t->name_off) {
1991 		btf_verifier_log_type(env, t, "Invalid name");
1992 		return -EINVAL;
1993 	}
1994 
1995 	if (btf_type_vlen(t)) {
1996 		btf_verifier_log_type(env, t, "vlen != 0");
1997 		return -EINVAL;
1998 	}
1999 
2000 	if (btf_type_kflag(t)) {
2001 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (t->size) {
2006 		btf_verifier_log_type(env, t, "size != 0");
2007 		return -EINVAL;
2008 	}
2009 
2010 	/* Array elem type and index type cannot be in type void,
2011 	 * so !array->type and !array->index_type are not allowed.
2012 	 */
2013 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2014 		btf_verifier_log_type(env, t, "Invalid elem");
2015 		return -EINVAL;
2016 	}
2017 
2018 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2019 		btf_verifier_log_type(env, t, "Invalid index");
2020 		return -EINVAL;
2021 	}
2022 
2023 	btf_verifier_log_type(env, t, NULL);
2024 
2025 	return meta_needed;
2026 }
2027 
2028 static int btf_array_resolve(struct btf_verifier_env *env,
2029 			     const struct resolve_vertex *v)
2030 {
2031 	const struct btf_array *array = btf_type_array(v->t);
2032 	const struct btf_type *elem_type, *index_type;
2033 	u32 elem_type_id, index_type_id;
2034 	struct btf *btf = env->btf;
2035 	u32 elem_size;
2036 
2037 	/* Check array->index_type */
2038 	index_type_id = array->index_type;
2039 	index_type = btf_type_by_id(btf, index_type_id);
2040 	if (btf_type_nosize_or_null(index_type) ||
2041 	    btf_type_is_resolve_source_only(index_type)) {
2042 		btf_verifier_log_type(env, v->t, "Invalid index");
2043 		return -EINVAL;
2044 	}
2045 
2046 	if (!env_type_is_resolve_sink(env, index_type) &&
2047 	    !env_type_is_resolved(env, index_type_id))
2048 		return env_stack_push(env, index_type, index_type_id);
2049 
2050 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2051 	if (!index_type || !btf_type_is_int(index_type) ||
2052 	    !btf_type_int_is_regular(index_type)) {
2053 		btf_verifier_log_type(env, v->t, "Invalid index");
2054 		return -EINVAL;
2055 	}
2056 
2057 	/* Check array->type */
2058 	elem_type_id = array->type;
2059 	elem_type = btf_type_by_id(btf, elem_type_id);
2060 	if (btf_type_nosize_or_null(elem_type) ||
2061 	    btf_type_is_resolve_source_only(elem_type)) {
2062 		btf_verifier_log_type(env, v->t,
2063 				      "Invalid elem");
2064 		return -EINVAL;
2065 	}
2066 
2067 	if (!env_type_is_resolve_sink(env, elem_type) &&
2068 	    !env_type_is_resolved(env, elem_type_id))
2069 		return env_stack_push(env, elem_type, elem_type_id);
2070 
2071 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2072 	if (!elem_type) {
2073 		btf_verifier_log_type(env, v->t, "Invalid elem");
2074 		return -EINVAL;
2075 	}
2076 
2077 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2078 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2079 		return -EINVAL;
2080 	}
2081 
2082 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2083 		btf_verifier_log_type(env, v->t,
2084 				      "Array size overflows U32_MAX");
2085 		return -EINVAL;
2086 	}
2087 
2088 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2089 
2090 	return 0;
2091 }
2092 
2093 static void btf_array_log(struct btf_verifier_env *env,
2094 			  const struct btf_type *t)
2095 {
2096 	const struct btf_array *array = btf_type_array(t);
2097 
2098 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2099 			 array->type, array->index_type, array->nelems);
2100 }
2101 
2102 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2103 			       u32 type_id, void *data, u8 bits_offset,
2104 			       struct seq_file *m)
2105 {
2106 	const struct btf_array *array = btf_type_array(t);
2107 	const struct btf_kind_operations *elem_ops;
2108 	const struct btf_type *elem_type;
2109 	u32 i, elem_size, elem_type_id;
2110 
2111 	elem_type_id = array->type;
2112 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2113 	elem_ops = btf_type_ops(elem_type);
2114 	seq_puts(m, "[");
2115 	for (i = 0; i < array->nelems; i++) {
2116 		if (i)
2117 			seq_puts(m, ",");
2118 
2119 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2120 				   bits_offset, m);
2121 		data += elem_size;
2122 	}
2123 	seq_puts(m, "]");
2124 }
2125 
2126 static struct btf_kind_operations array_ops = {
2127 	.check_meta = btf_array_check_meta,
2128 	.resolve = btf_array_resolve,
2129 	.check_member = btf_array_check_member,
2130 	.check_kflag_member = btf_generic_check_kflag_member,
2131 	.log_details = btf_array_log,
2132 	.seq_show = btf_array_seq_show,
2133 };
2134 
2135 static int btf_struct_check_member(struct btf_verifier_env *env,
2136 				   const struct btf_type *struct_type,
2137 				   const struct btf_member *member,
2138 				   const struct btf_type *member_type)
2139 {
2140 	u32 struct_bits_off = member->offset;
2141 	u32 struct_size, bytes_offset;
2142 
2143 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2144 		btf_verifier_log_member(env, struct_type, member,
2145 					"Member is not byte aligned");
2146 		return -EINVAL;
2147 	}
2148 
2149 	struct_size = struct_type->size;
2150 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2151 	if (struct_size - bytes_offset < member_type->size) {
2152 		btf_verifier_log_member(env, struct_type, member,
2153 					"Member exceeds struct_size");
2154 		return -EINVAL;
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2161 				 const struct btf_type *t,
2162 				 u32 meta_left)
2163 {
2164 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2165 	const struct btf_member *member;
2166 	u32 meta_needed, last_offset;
2167 	struct btf *btf = env->btf;
2168 	u32 struct_size = t->size;
2169 	u32 offset;
2170 	u16 i;
2171 
2172 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2173 	if (meta_left < meta_needed) {
2174 		btf_verifier_log_basic(env, t,
2175 				       "meta_left:%u meta_needed:%u",
2176 				       meta_left, meta_needed);
2177 		return -EINVAL;
2178 	}
2179 
2180 	/* struct type either no name or a valid one */
2181 	if (t->name_off &&
2182 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2183 		btf_verifier_log_type(env, t, "Invalid name");
2184 		return -EINVAL;
2185 	}
2186 
2187 	btf_verifier_log_type(env, t, NULL);
2188 
2189 	last_offset = 0;
2190 	for_each_member(i, t, member) {
2191 		if (!btf_name_offset_valid(btf, member->name_off)) {
2192 			btf_verifier_log_member(env, t, member,
2193 						"Invalid member name_offset:%u",
2194 						member->name_off);
2195 			return -EINVAL;
2196 		}
2197 
2198 		/* struct member either no name or a valid one */
2199 		if (member->name_off &&
2200 		    !btf_name_valid_identifier(btf, member->name_off)) {
2201 			btf_verifier_log_member(env, t, member, "Invalid name");
2202 			return -EINVAL;
2203 		}
2204 		/* A member cannot be in type void */
2205 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2206 			btf_verifier_log_member(env, t, member,
2207 						"Invalid type_id");
2208 			return -EINVAL;
2209 		}
2210 
2211 		offset = btf_member_bit_offset(t, member);
2212 		if (is_union && offset) {
2213 			btf_verifier_log_member(env, t, member,
2214 						"Invalid member bits_offset");
2215 			return -EINVAL;
2216 		}
2217 
2218 		/*
2219 		 * ">" instead of ">=" because the last member could be
2220 		 * "char a[0];"
2221 		 */
2222 		if (last_offset > offset) {
2223 			btf_verifier_log_member(env, t, member,
2224 						"Invalid member bits_offset");
2225 			return -EINVAL;
2226 		}
2227 
2228 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2229 			btf_verifier_log_member(env, t, member,
2230 						"Member bits_offset exceeds its struct size");
2231 			return -EINVAL;
2232 		}
2233 
2234 		btf_verifier_log_member(env, t, member, NULL);
2235 		last_offset = offset;
2236 	}
2237 
2238 	return meta_needed;
2239 }
2240 
2241 static int btf_struct_resolve(struct btf_verifier_env *env,
2242 			      const struct resolve_vertex *v)
2243 {
2244 	const struct btf_member *member;
2245 	int err;
2246 	u16 i;
2247 
2248 	/* Before continue resolving the next_member,
2249 	 * ensure the last member is indeed resolved to a
2250 	 * type with size info.
2251 	 */
2252 	if (v->next_member) {
2253 		const struct btf_type *last_member_type;
2254 		const struct btf_member *last_member;
2255 		u16 last_member_type_id;
2256 
2257 		last_member = btf_type_member(v->t) + v->next_member - 1;
2258 		last_member_type_id = last_member->type;
2259 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2260 						       last_member_type_id)))
2261 			return -EINVAL;
2262 
2263 		last_member_type = btf_type_by_id(env->btf,
2264 						  last_member_type_id);
2265 		if (btf_type_kflag(v->t))
2266 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2267 								last_member,
2268 								last_member_type);
2269 		else
2270 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2271 								last_member,
2272 								last_member_type);
2273 		if (err)
2274 			return err;
2275 	}
2276 
2277 	for_each_member_from(i, v->next_member, v->t, member) {
2278 		u32 member_type_id = member->type;
2279 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2280 								member_type_id);
2281 
2282 		if (btf_type_nosize_or_null(member_type) ||
2283 		    btf_type_is_resolve_source_only(member_type)) {
2284 			btf_verifier_log_member(env, v->t, member,
2285 						"Invalid member");
2286 			return -EINVAL;
2287 		}
2288 
2289 		if (!env_type_is_resolve_sink(env, member_type) &&
2290 		    !env_type_is_resolved(env, member_type_id)) {
2291 			env_stack_set_next_member(env, i + 1);
2292 			return env_stack_push(env, member_type, member_type_id);
2293 		}
2294 
2295 		if (btf_type_kflag(v->t))
2296 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2297 									    member,
2298 									    member_type);
2299 		else
2300 			err = btf_type_ops(member_type)->check_member(env, v->t,
2301 								      member,
2302 								      member_type);
2303 		if (err)
2304 			return err;
2305 	}
2306 
2307 	env_stack_pop_resolved(env, 0, 0);
2308 
2309 	return 0;
2310 }
2311 
2312 static void btf_struct_log(struct btf_verifier_env *env,
2313 			   const struct btf_type *t)
2314 {
2315 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2316 }
2317 
2318 /* find 'struct bpf_spin_lock' in map value.
2319  * return >= 0 offset if found
2320  * and < 0 in case of error
2321  */
2322 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2323 {
2324 	const struct btf_member *member;
2325 	u32 i, off = -ENOENT;
2326 
2327 	if (!__btf_type_is_struct(t))
2328 		return -EINVAL;
2329 
2330 	for_each_member(i, t, member) {
2331 		const struct btf_type *member_type = btf_type_by_id(btf,
2332 								    member->type);
2333 		if (!__btf_type_is_struct(member_type))
2334 			continue;
2335 		if (member_type->size != sizeof(struct bpf_spin_lock))
2336 			continue;
2337 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2338 			   "bpf_spin_lock"))
2339 			continue;
2340 		if (off != -ENOENT)
2341 			/* only one 'struct bpf_spin_lock' is allowed */
2342 			return -E2BIG;
2343 		off = btf_member_bit_offset(t, member);
2344 		if (off % 8)
2345 			/* valid C code cannot generate such BTF */
2346 			return -EINVAL;
2347 		off /= 8;
2348 		if (off % __alignof__(struct bpf_spin_lock))
2349 			/* valid struct bpf_spin_lock will be 4 byte aligned */
2350 			return -EINVAL;
2351 	}
2352 	return off;
2353 }
2354 
2355 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2356 				u32 type_id, void *data, u8 bits_offset,
2357 				struct seq_file *m)
2358 {
2359 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2360 	const struct btf_member *member;
2361 	u32 i;
2362 
2363 	seq_puts(m, "{");
2364 	for_each_member(i, t, member) {
2365 		const struct btf_type *member_type = btf_type_by_id(btf,
2366 								member->type);
2367 		const struct btf_kind_operations *ops;
2368 		u32 member_offset, bitfield_size;
2369 		u32 bytes_offset;
2370 		u8 bits8_offset;
2371 
2372 		if (i)
2373 			seq_puts(m, seq);
2374 
2375 		member_offset = btf_member_bit_offset(t, member);
2376 		bitfield_size = btf_member_bitfield_size(t, member);
2377 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2378 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2379 		if (bitfield_size) {
2380 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2381 					      bitfield_size, m);
2382 		} else {
2383 			ops = btf_type_ops(member_type);
2384 			ops->seq_show(btf, member_type, member->type,
2385 				      data + bytes_offset, bits8_offset, m);
2386 		}
2387 	}
2388 	seq_puts(m, "}");
2389 }
2390 
2391 static struct btf_kind_operations struct_ops = {
2392 	.check_meta = btf_struct_check_meta,
2393 	.resolve = btf_struct_resolve,
2394 	.check_member = btf_struct_check_member,
2395 	.check_kflag_member = btf_generic_check_kflag_member,
2396 	.log_details = btf_struct_log,
2397 	.seq_show = btf_struct_seq_show,
2398 };
2399 
2400 static int btf_enum_check_member(struct btf_verifier_env *env,
2401 				 const struct btf_type *struct_type,
2402 				 const struct btf_member *member,
2403 				 const struct btf_type *member_type)
2404 {
2405 	u32 struct_bits_off = member->offset;
2406 	u32 struct_size, bytes_offset;
2407 
2408 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2409 		btf_verifier_log_member(env, struct_type, member,
2410 					"Member is not byte aligned");
2411 		return -EINVAL;
2412 	}
2413 
2414 	struct_size = struct_type->size;
2415 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2416 	if (struct_size - bytes_offset < sizeof(int)) {
2417 		btf_verifier_log_member(env, struct_type, member,
2418 					"Member exceeds struct_size");
2419 		return -EINVAL;
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2426 				       const struct btf_type *struct_type,
2427 				       const struct btf_member *member,
2428 				       const struct btf_type *member_type)
2429 {
2430 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2431 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2432 
2433 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2434 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2435 	if (!nr_bits) {
2436 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2437 			btf_verifier_log_member(env, struct_type, member,
2438 						"Member is not byte aligned");
2439 			return -EINVAL;
2440 		}
2441 
2442 		nr_bits = int_bitsize;
2443 	} else if (nr_bits > int_bitsize) {
2444 		btf_verifier_log_member(env, struct_type, member,
2445 					"Invalid member bitfield_size");
2446 		return -EINVAL;
2447 	}
2448 
2449 	struct_size = struct_type->size;
2450 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2451 	if (struct_size < bytes_end) {
2452 		btf_verifier_log_member(env, struct_type, member,
2453 					"Member exceeds struct_size");
2454 		return -EINVAL;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2461 			       const struct btf_type *t,
2462 			       u32 meta_left)
2463 {
2464 	const struct btf_enum *enums = btf_type_enum(t);
2465 	struct btf *btf = env->btf;
2466 	u16 i, nr_enums;
2467 	u32 meta_needed;
2468 
2469 	nr_enums = btf_type_vlen(t);
2470 	meta_needed = nr_enums * sizeof(*enums);
2471 
2472 	if (meta_left < meta_needed) {
2473 		btf_verifier_log_basic(env, t,
2474 				       "meta_left:%u meta_needed:%u",
2475 				       meta_left, meta_needed);
2476 		return -EINVAL;
2477 	}
2478 
2479 	if (btf_type_kflag(t)) {
2480 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2481 		return -EINVAL;
2482 	}
2483 
2484 	if (t->size > 8 || !is_power_of_2(t->size)) {
2485 		btf_verifier_log_type(env, t, "Unexpected size");
2486 		return -EINVAL;
2487 	}
2488 
2489 	/* enum type either no name or a valid one */
2490 	if (t->name_off &&
2491 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2492 		btf_verifier_log_type(env, t, "Invalid name");
2493 		return -EINVAL;
2494 	}
2495 
2496 	btf_verifier_log_type(env, t, NULL);
2497 
2498 	for (i = 0; i < nr_enums; i++) {
2499 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2500 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2501 					 enums[i].name_off);
2502 			return -EINVAL;
2503 		}
2504 
2505 		/* enum member must have a valid name */
2506 		if (!enums[i].name_off ||
2507 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2508 			btf_verifier_log_type(env, t, "Invalid name");
2509 			return -EINVAL;
2510 		}
2511 
2512 		if (env->log.level == BPF_LOG_KERNEL)
2513 			continue;
2514 		btf_verifier_log(env, "\t%s val=%d\n",
2515 				 __btf_name_by_offset(btf, enums[i].name_off),
2516 				 enums[i].val);
2517 	}
2518 
2519 	return meta_needed;
2520 }
2521 
2522 static void btf_enum_log(struct btf_verifier_env *env,
2523 			 const struct btf_type *t)
2524 {
2525 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2526 }
2527 
2528 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2529 			      u32 type_id, void *data, u8 bits_offset,
2530 			      struct seq_file *m)
2531 {
2532 	const struct btf_enum *enums = btf_type_enum(t);
2533 	u32 i, nr_enums = btf_type_vlen(t);
2534 	int v = *(int *)data;
2535 
2536 	for (i = 0; i < nr_enums; i++) {
2537 		if (v == enums[i].val) {
2538 			seq_printf(m, "%s",
2539 				   __btf_name_by_offset(btf,
2540 							enums[i].name_off));
2541 			return;
2542 		}
2543 	}
2544 
2545 	seq_printf(m, "%d", v);
2546 }
2547 
2548 static struct btf_kind_operations enum_ops = {
2549 	.check_meta = btf_enum_check_meta,
2550 	.resolve = btf_df_resolve,
2551 	.check_member = btf_enum_check_member,
2552 	.check_kflag_member = btf_enum_check_kflag_member,
2553 	.log_details = btf_enum_log,
2554 	.seq_show = btf_enum_seq_show,
2555 };
2556 
2557 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2558 				     const struct btf_type *t,
2559 				     u32 meta_left)
2560 {
2561 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2562 
2563 	if (meta_left < meta_needed) {
2564 		btf_verifier_log_basic(env, t,
2565 				       "meta_left:%u meta_needed:%u",
2566 				       meta_left, meta_needed);
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (t->name_off) {
2571 		btf_verifier_log_type(env, t, "Invalid name");
2572 		return -EINVAL;
2573 	}
2574 
2575 	if (btf_type_kflag(t)) {
2576 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2577 		return -EINVAL;
2578 	}
2579 
2580 	btf_verifier_log_type(env, t, NULL);
2581 
2582 	return meta_needed;
2583 }
2584 
2585 static void btf_func_proto_log(struct btf_verifier_env *env,
2586 			       const struct btf_type *t)
2587 {
2588 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2589 	u16 nr_args = btf_type_vlen(t), i;
2590 
2591 	btf_verifier_log(env, "return=%u args=(", t->type);
2592 	if (!nr_args) {
2593 		btf_verifier_log(env, "void");
2594 		goto done;
2595 	}
2596 
2597 	if (nr_args == 1 && !args[0].type) {
2598 		/* Only one vararg */
2599 		btf_verifier_log(env, "vararg");
2600 		goto done;
2601 	}
2602 
2603 	btf_verifier_log(env, "%u %s", args[0].type,
2604 			 __btf_name_by_offset(env->btf,
2605 					      args[0].name_off));
2606 	for (i = 1; i < nr_args - 1; i++)
2607 		btf_verifier_log(env, ", %u %s", args[i].type,
2608 				 __btf_name_by_offset(env->btf,
2609 						      args[i].name_off));
2610 
2611 	if (nr_args > 1) {
2612 		const struct btf_param *last_arg = &args[nr_args - 1];
2613 
2614 		if (last_arg->type)
2615 			btf_verifier_log(env, ", %u %s", last_arg->type,
2616 					 __btf_name_by_offset(env->btf,
2617 							      last_arg->name_off));
2618 		else
2619 			btf_verifier_log(env, ", vararg");
2620 	}
2621 
2622 done:
2623 	btf_verifier_log(env, ")");
2624 }
2625 
2626 static struct btf_kind_operations func_proto_ops = {
2627 	.check_meta = btf_func_proto_check_meta,
2628 	.resolve = btf_df_resolve,
2629 	/*
2630 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2631 	 * a struct's member.
2632 	 *
2633 	 * It should be a funciton pointer instead.
2634 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2635 	 *
2636 	 * Hence, there is no btf_func_check_member().
2637 	 */
2638 	.check_member = btf_df_check_member,
2639 	.check_kflag_member = btf_df_check_kflag_member,
2640 	.log_details = btf_func_proto_log,
2641 	.seq_show = btf_df_seq_show,
2642 };
2643 
2644 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2645 			       const struct btf_type *t,
2646 			       u32 meta_left)
2647 {
2648 	if (!t->name_off ||
2649 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2650 		btf_verifier_log_type(env, t, "Invalid name");
2651 		return -EINVAL;
2652 	}
2653 
2654 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
2655 		btf_verifier_log_type(env, t, "Invalid func linkage");
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (btf_type_kflag(t)) {
2660 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2661 		return -EINVAL;
2662 	}
2663 
2664 	btf_verifier_log_type(env, t, NULL);
2665 
2666 	return 0;
2667 }
2668 
2669 static struct btf_kind_operations func_ops = {
2670 	.check_meta = btf_func_check_meta,
2671 	.resolve = btf_df_resolve,
2672 	.check_member = btf_df_check_member,
2673 	.check_kflag_member = btf_df_check_kflag_member,
2674 	.log_details = btf_ref_type_log,
2675 	.seq_show = btf_df_seq_show,
2676 };
2677 
2678 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2679 			      const struct btf_type *t,
2680 			      u32 meta_left)
2681 {
2682 	const struct btf_var *var;
2683 	u32 meta_needed = sizeof(*var);
2684 
2685 	if (meta_left < meta_needed) {
2686 		btf_verifier_log_basic(env, t,
2687 				       "meta_left:%u meta_needed:%u",
2688 				       meta_left, meta_needed);
2689 		return -EINVAL;
2690 	}
2691 
2692 	if (btf_type_vlen(t)) {
2693 		btf_verifier_log_type(env, t, "vlen != 0");
2694 		return -EINVAL;
2695 	}
2696 
2697 	if (btf_type_kflag(t)) {
2698 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2699 		return -EINVAL;
2700 	}
2701 
2702 	if (!t->name_off ||
2703 	    !__btf_name_valid(env->btf, t->name_off, true)) {
2704 		btf_verifier_log_type(env, t, "Invalid name");
2705 		return -EINVAL;
2706 	}
2707 
2708 	/* A var cannot be in type void */
2709 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2710 		btf_verifier_log_type(env, t, "Invalid type_id");
2711 		return -EINVAL;
2712 	}
2713 
2714 	var = btf_type_var(t);
2715 	if (var->linkage != BTF_VAR_STATIC &&
2716 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2717 		btf_verifier_log_type(env, t, "Linkage not supported");
2718 		return -EINVAL;
2719 	}
2720 
2721 	btf_verifier_log_type(env, t, NULL);
2722 
2723 	return meta_needed;
2724 }
2725 
2726 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2727 {
2728 	const struct btf_var *var = btf_type_var(t);
2729 
2730 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2731 }
2732 
2733 static const struct btf_kind_operations var_ops = {
2734 	.check_meta		= btf_var_check_meta,
2735 	.resolve		= btf_var_resolve,
2736 	.check_member		= btf_df_check_member,
2737 	.check_kflag_member	= btf_df_check_kflag_member,
2738 	.log_details		= btf_var_log,
2739 	.seq_show		= btf_var_seq_show,
2740 };
2741 
2742 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2743 				  const struct btf_type *t,
2744 				  u32 meta_left)
2745 {
2746 	const struct btf_var_secinfo *vsi;
2747 	u64 last_vsi_end_off = 0, sum = 0;
2748 	u32 i, meta_needed;
2749 
2750 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2751 	if (meta_left < meta_needed) {
2752 		btf_verifier_log_basic(env, t,
2753 				       "meta_left:%u meta_needed:%u",
2754 				       meta_left, meta_needed);
2755 		return -EINVAL;
2756 	}
2757 
2758 	if (!btf_type_vlen(t)) {
2759 		btf_verifier_log_type(env, t, "vlen == 0");
2760 		return -EINVAL;
2761 	}
2762 
2763 	if (!t->size) {
2764 		btf_verifier_log_type(env, t, "size == 0");
2765 		return -EINVAL;
2766 	}
2767 
2768 	if (btf_type_kflag(t)) {
2769 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2770 		return -EINVAL;
2771 	}
2772 
2773 	if (!t->name_off ||
2774 	    !btf_name_valid_section(env->btf, t->name_off)) {
2775 		btf_verifier_log_type(env, t, "Invalid name");
2776 		return -EINVAL;
2777 	}
2778 
2779 	btf_verifier_log_type(env, t, NULL);
2780 
2781 	for_each_vsi(i, t, vsi) {
2782 		/* A var cannot be in type void */
2783 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2784 			btf_verifier_log_vsi(env, t, vsi,
2785 					     "Invalid type_id");
2786 			return -EINVAL;
2787 		}
2788 
2789 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2790 			btf_verifier_log_vsi(env, t, vsi,
2791 					     "Invalid offset");
2792 			return -EINVAL;
2793 		}
2794 
2795 		if (!vsi->size || vsi->size > t->size) {
2796 			btf_verifier_log_vsi(env, t, vsi,
2797 					     "Invalid size");
2798 			return -EINVAL;
2799 		}
2800 
2801 		last_vsi_end_off = vsi->offset + vsi->size;
2802 		if (last_vsi_end_off > t->size) {
2803 			btf_verifier_log_vsi(env, t, vsi,
2804 					     "Invalid offset+size");
2805 			return -EINVAL;
2806 		}
2807 
2808 		btf_verifier_log_vsi(env, t, vsi, NULL);
2809 		sum += vsi->size;
2810 	}
2811 
2812 	if (t->size < sum) {
2813 		btf_verifier_log_type(env, t, "Invalid btf_info size");
2814 		return -EINVAL;
2815 	}
2816 
2817 	return meta_needed;
2818 }
2819 
2820 static int btf_datasec_resolve(struct btf_verifier_env *env,
2821 			       const struct resolve_vertex *v)
2822 {
2823 	const struct btf_var_secinfo *vsi;
2824 	struct btf *btf = env->btf;
2825 	u16 i;
2826 
2827 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
2828 		u32 var_type_id = vsi->type, type_id, type_size = 0;
2829 		const struct btf_type *var_type = btf_type_by_id(env->btf,
2830 								 var_type_id);
2831 		if (!var_type || !btf_type_is_var(var_type)) {
2832 			btf_verifier_log_vsi(env, v->t, vsi,
2833 					     "Not a VAR kind member");
2834 			return -EINVAL;
2835 		}
2836 
2837 		if (!env_type_is_resolve_sink(env, var_type) &&
2838 		    !env_type_is_resolved(env, var_type_id)) {
2839 			env_stack_set_next_member(env, i + 1);
2840 			return env_stack_push(env, var_type, var_type_id);
2841 		}
2842 
2843 		type_id = var_type->type;
2844 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
2845 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2846 			return -EINVAL;
2847 		}
2848 
2849 		if (vsi->size < type_size) {
2850 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2851 			return -EINVAL;
2852 		}
2853 	}
2854 
2855 	env_stack_pop_resolved(env, 0, 0);
2856 	return 0;
2857 }
2858 
2859 static void btf_datasec_log(struct btf_verifier_env *env,
2860 			    const struct btf_type *t)
2861 {
2862 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2863 }
2864 
2865 static void btf_datasec_seq_show(const struct btf *btf,
2866 				 const struct btf_type *t, u32 type_id,
2867 				 void *data, u8 bits_offset,
2868 				 struct seq_file *m)
2869 {
2870 	const struct btf_var_secinfo *vsi;
2871 	const struct btf_type *var;
2872 	u32 i;
2873 
2874 	seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2875 	for_each_vsi(i, t, vsi) {
2876 		var = btf_type_by_id(btf, vsi->type);
2877 		if (i)
2878 			seq_puts(m, ",");
2879 		btf_type_ops(var)->seq_show(btf, var, vsi->type,
2880 					    data + vsi->offset, bits_offset, m);
2881 	}
2882 	seq_puts(m, "}");
2883 }
2884 
2885 static const struct btf_kind_operations datasec_ops = {
2886 	.check_meta		= btf_datasec_check_meta,
2887 	.resolve		= btf_datasec_resolve,
2888 	.check_member		= btf_df_check_member,
2889 	.check_kflag_member	= btf_df_check_kflag_member,
2890 	.log_details		= btf_datasec_log,
2891 	.seq_show		= btf_datasec_seq_show,
2892 };
2893 
2894 static int btf_func_proto_check(struct btf_verifier_env *env,
2895 				const struct btf_type *t)
2896 {
2897 	const struct btf_type *ret_type;
2898 	const struct btf_param *args;
2899 	const struct btf *btf;
2900 	u16 nr_args, i;
2901 	int err;
2902 
2903 	btf = env->btf;
2904 	args = (const struct btf_param *)(t + 1);
2905 	nr_args = btf_type_vlen(t);
2906 
2907 	/* Check func return type which could be "void" (t->type == 0) */
2908 	if (t->type) {
2909 		u32 ret_type_id = t->type;
2910 
2911 		ret_type = btf_type_by_id(btf, ret_type_id);
2912 		if (!ret_type) {
2913 			btf_verifier_log_type(env, t, "Invalid return type");
2914 			return -EINVAL;
2915 		}
2916 
2917 		if (btf_type_needs_resolve(ret_type) &&
2918 		    !env_type_is_resolved(env, ret_type_id)) {
2919 			err = btf_resolve(env, ret_type, ret_type_id);
2920 			if (err)
2921 				return err;
2922 		}
2923 
2924 		/* Ensure the return type is a type that has a size */
2925 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2926 			btf_verifier_log_type(env, t, "Invalid return type");
2927 			return -EINVAL;
2928 		}
2929 	}
2930 
2931 	if (!nr_args)
2932 		return 0;
2933 
2934 	/* Last func arg type_id could be 0 if it is a vararg */
2935 	if (!args[nr_args - 1].type) {
2936 		if (args[nr_args - 1].name_off) {
2937 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2938 					      nr_args);
2939 			return -EINVAL;
2940 		}
2941 		nr_args--;
2942 	}
2943 
2944 	err = 0;
2945 	for (i = 0; i < nr_args; i++) {
2946 		const struct btf_type *arg_type;
2947 		u32 arg_type_id;
2948 
2949 		arg_type_id = args[i].type;
2950 		arg_type = btf_type_by_id(btf, arg_type_id);
2951 		if (!arg_type) {
2952 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2953 			err = -EINVAL;
2954 			break;
2955 		}
2956 
2957 		if (args[i].name_off &&
2958 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2959 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2960 			btf_verifier_log_type(env, t,
2961 					      "Invalid arg#%u", i + 1);
2962 			err = -EINVAL;
2963 			break;
2964 		}
2965 
2966 		if (btf_type_needs_resolve(arg_type) &&
2967 		    !env_type_is_resolved(env, arg_type_id)) {
2968 			err = btf_resolve(env, arg_type, arg_type_id);
2969 			if (err)
2970 				break;
2971 		}
2972 
2973 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2974 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2975 			err = -EINVAL;
2976 			break;
2977 		}
2978 	}
2979 
2980 	return err;
2981 }
2982 
2983 static int btf_func_check(struct btf_verifier_env *env,
2984 			  const struct btf_type *t)
2985 {
2986 	const struct btf_type *proto_type;
2987 	const struct btf_param *args;
2988 	const struct btf *btf;
2989 	u16 nr_args, i;
2990 
2991 	btf = env->btf;
2992 	proto_type = btf_type_by_id(btf, t->type);
2993 
2994 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2995 		btf_verifier_log_type(env, t, "Invalid type_id");
2996 		return -EINVAL;
2997 	}
2998 
2999 	args = (const struct btf_param *)(proto_type + 1);
3000 	nr_args = btf_type_vlen(proto_type);
3001 	for (i = 0; i < nr_args; i++) {
3002 		if (!args[i].name_off && args[i].type) {
3003 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3004 			return -EINVAL;
3005 		}
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3012 	[BTF_KIND_INT] = &int_ops,
3013 	[BTF_KIND_PTR] = &ptr_ops,
3014 	[BTF_KIND_ARRAY] = &array_ops,
3015 	[BTF_KIND_STRUCT] = &struct_ops,
3016 	[BTF_KIND_UNION] = &struct_ops,
3017 	[BTF_KIND_ENUM] = &enum_ops,
3018 	[BTF_KIND_FWD] = &fwd_ops,
3019 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3020 	[BTF_KIND_VOLATILE] = &modifier_ops,
3021 	[BTF_KIND_CONST] = &modifier_ops,
3022 	[BTF_KIND_RESTRICT] = &modifier_ops,
3023 	[BTF_KIND_FUNC] = &func_ops,
3024 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3025 	[BTF_KIND_VAR] = &var_ops,
3026 	[BTF_KIND_DATASEC] = &datasec_ops,
3027 };
3028 
3029 static s32 btf_check_meta(struct btf_verifier_env *env,
3030 			  const struct btf_type *t,
3031 			  u32 meta_left)
3032 {
3033 	u32 saved_meta_left = meta_left;
3034 	s32 var_meta_size;
3035 
3036 	if (meta_left < sizeof(*t)) {
3037 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3038 				 env->log_type_id, meta_left, sizeof(*t));
3039 		return -EINVAL;
3040 	}
3041 	meta_left -= sizeof(*t);
3042 
3043 	if (t->info & ~BTF_INFO_MASK) {
3044 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3045 				 env->log_type_id, t->info);
3046 		return -EINVAL;
3047 	}
3048 
3049 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3050 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3051 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3052 				 env->log_type_id, BTF_INFO_KIND(t->info));
3053 		return -EINVAL;
3054 	}
3055 
3056 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3057 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3058 				 env->log_type_id, t->name_off);
3059 		return -EINVAL;
3060 	}
3061 
3062 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3063 	if (var_meta_size < 0)
3064 		return var_meta_size;
3065 
3066 	meta_left -= var_meta_size;
3067 
3068 	return saved_meta_left - meta_left;
3069 }
3070 
3071 static int btf_check_all_metas(struct btf_verifier_env *env)
3072 {
3073 	struct btf *btf = env->btf;
3074 	struct btf_header *hdr;
3075 	void *cur, *end;
3076 
3077 	hdr = &btf->hdr;
3078 	cur = btf->nohdr_data + hdr->type_off;
3079 	end = cur + hdr->type_len;
3080 
3081 	env->log_type_id = 1;
3082 	while (cur < end) {
3083 		struct btf_type *t = cur;
3084 		s32 meta_size;
3085 
3086 		meta_size = btf_check_meta(env, t, end - cur);
3087 		if (meta_size < 0)
3088 			return meta_size;
3089 
3090 		btf_add_type(env, t);
3091 		cur += meta_size;
3092 		env->log_type_id++;
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 static bool btf_resolve_valid(struct btf_verifier_env *env,
3099 			      const struct btf_type *t,
3100 			      u32 type_id)
3101 {
3102 	struct btf *btf = env->btf;
3103 
3104 	if (!env_type_is_resolved(env, type_id))
3105 		return false;
3106 
3107 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3108 		return !btf->resolved_ids[type_id] &&
3109 		       !btf->resolved_sizes[type_id];
3110 
3111 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3112 	    btf_type_is_var(t)) {
3113 		t = btf_type_id_resolve(btf, &type_id);
3114 		return t &&
3115 		       !btf_type_is_modifier(t) &&
3116 		       !btf_type_is_var(t) &&
3117 		       !btf_type_is_datasec(t);
3118 	}
3119 
3120 	if (btf_type_is_array(t)) {
3121 		const struct btf_array *array = btf_type_array(t);
3122 		const struct btf_type *elem_type;
3123 		u32 elem_type_id = array->type;
3124 		u32 elem_size;
3125 
3126 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3127 		return elem_type && !btf_type_is_modifier(elem_type) &&
3128 			(array->nelems * elem_size ==
3129 			 btf->resolved_sizes[type_id]);
3130 	}
3131 
3132 	return false;
3133 }
3134 
3135 static int btf_resolve(struct btf_verifier_env *env,
3136 		       const struct btf_type *t, u32 type_id)
3137 {
3138 	u32 save_log_type_id = env->log_type_id;
3139 	const struct resolve_vertex *v;
3140 	int err = 0;
3141 
3142 	env->resolve_mode = RESOLVE_TBD;
3143 	env_stack_push(env, t, type_id);
3144 	while (!err && (v = env_stack_peak(env))) {
3145 		env->log_type_id = v->type_id;
3146 		err = btf_type_ops(v->t)->resolve(env, v);
3147 	}
3148 
3149 	env->log_type_id = type_id;
3150 	if (err == -E2BIG) {
3151 		btf_verifier_log_type(env, t,
3152 				      "Exceeded max resolving depth:%u",
3153 				      MAX_RESOLVE_DEPTH);
3154 	} else if (err == -EEXIST) {
3155 		btf_verifier_log_type(env, t, "Loop detected");
3156 	}
3157 
3158 	/* Final sanity check */
3159 	if (!err && !btf_resolve_valid(env, t, type_id)) {
3160 		btf_verifier_log_type(env, t, "Invalid resolve state");
3161 		err = -EINVAL;
3162 	}
3163 
3164 	env->log_type_id = save_log_type_id;
3165 	return err;
3166 }
3167 
3168 static int btf_check_all_types(struct btf_verifier_env *env)
3169 {
3170 	struct btf *btf = env->btf;
3171 	u32 type_id;
3172 	int err;
3173 
3174 	err = env_resolve_init(env);
3175 	if (err)
3176 		return err;
3177 
3178 	env->phase++;
3179 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3180 		const struct btf_type *t = btf_type_by_id(btf, type_id);
3181 
3182 		env->log_type_id = type_id;
3183 		if (btf_type_needs_resolve(t) &&
3184 		    !env_type_is_resolved(env, type_id)) {
3185 			err = btf_resolve(env, t, type_id);
3186 			if (err)
3187 				return err;
3188 		}
3189 
3190 		if (btf_type_is_func_proto(t)) {
3191 			err = btf_func_proto_check(env, t);
3192 			if (err)
3193 				return err;
3194 		}
3195 
3196 		if (btf_type_is_func(t)) {
3197 			err = btf_func_check(env, t);
3198 			if (err)
3199 				return err;
3200 		}
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int btf_parse_type_sec(struct btf_verifier_env *env)
3207 {
3208 	const struct btf_header *hdr = &env->btf->hdr;
3209 	int err;
3210 
3211 	/* Type section must align to 4 bytes */
3212 	if (hdr->type_off & (sizeof(u32) - 1)) {
3213 		btf_verifier_log(env, "Unaligned type_off");
3214 		return -EINVAL;
3215 	}
3216 
3217 	if (!hdr->type_len) {
3218 		btf_verifier_log(env, "No type found");
3219 		return -EINVAL;
3220 	}
3221 
3222 	err = btf_check_all_metas(env);
3223 	if (err)
3224 		return err;
3225 
3226 	return btf_check_all_types(env);
3227 }
3228 
3229 static int btf_parse_str_sec(struct btf_verifier_env *env)
3230 {
3231 	const struct btf_header *hdr;
3232 	struct btf *btf = env->btf;
3233 	const char *start, *end;
3234 
3235 	hdr = &btf->hdr;
3236 	start = btf->nohdr_data + hdr->str_off;
3237 	end = start + hdr->str_len;
3238 
3239 	if (end != btf->data + btf->data_size) {
3240 		btf_verifier_log(env, "String section is not at the end");
3241 		return -EINVAL;
3242 	}
3243 
3244 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3245 	    start[0] || end[-1]) {
3246 		btf_verifier_log(env, "Invalid string section");
3247 		return -EINVAL;
3248 	}
3249 
3250 	btf->strings = start;
3251 
3252 	return 0;
3253 }
3254 
3255 static const size_t btf_sec_info_offset[] = {
3256 	offsetof(struct btf_header, type_off),
3257 	offsetof(struct btf_header, str_off),
3258 };
3259 
3260 static int btf_sec_info_cmp(const void *a, const void *b)
3261 {
3262 	const struct btf_sec_info *x = a;
3263 	const struct btf_sec_info *y = b;
3264 
3265 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3266 }
3267 
3268 static int btf_check_sec_info(struct btf_verifier_env *env,
3269 			      u32 btf_data_size)
3270 {
3271 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3272 	u32 total, expected_total, i;
3273 	const struct btf_header *hdr;
3274 	const struct btf *btf;
3275 
3276 	btf = env->btf;
3277 	hdr = &btf->hdr;
3278 
3279 	/* Populate the secs from hdr */
3280 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3281 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
3282 						   btf_sec_info_offset[i]);
3283 
3284 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3285 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3286 
3287 	/* Check for gaps and overlap among sections */
3288 	total = 0;
3289 	expected_total = btf_data_size - hdr->hdr_len;
3290 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3291 		if (expected_total < secs[i].off) {
3292 			btf_verifier_log(env, "Invalid section offset");
3293 			return -EINVAL;
3294 		}
3295 		if (total < secs[i].off) {
3296 			/* gap */
3297 			btf_verifier_log(env, "Unsupported section found");
3298 			return -EINVAL;
3299 		}
3300 		if (total > secs[i].off) {
3301 			btf_verifier_log(env, "Section overlap found");
3302 			return -EINVAL;
3303 		}
3304 		if (expected_total - total < secs[i].len) {
3305 			btf_verifier_log(env,
3306 					 "Total section length too long");
3307 			return -EINVAL;
3308 		}
3309 		total += secs[i].len;
3310 	}
3311 
3312 	/* There is data other than hdr and known sections */
3313 	if (expected_total != total) {
3314 		btf_verifier_log(env, "Unsupported section found");
3315 		return -EINVAL;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 static int btf_parse_hdr(struct btf_verifier_env *env)
3322 {
3323 	u32 hdr_len, hdr_copy, btf_data_size;
3324 	const struct btf_header *hdr;
3325 	struct btf *btf;
3326 	int err;
3327 
3328 	btf = env->btf;
3329 	btf_data_size = btf->data_size;
3330 
3331 	if (btf_data_size <
3332 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3333 		btf_verifier_log(env, "hdr_len not found");
3334 		return -EINVAL;
3335 	}
3336 
3337 	hdr = btf->data;
3338 	hdr_len = hdr->hdr_len;
3339 	if (btf_data_size < hdr_len) {
3340 		btf_verifier_log(env, "btf_header not found");
3341 		return -EINVAL;
3342 	}
3343 
3344 	/* Ensure the unsupported header fields are zero */
3345 	if (hdr_len > sizeof(btf->hdr)) {
3346 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
3347 		u8 *end = btf->data + hdr_len;
3348 
3349 		for (; expected_zero < end; expected_zero++) {
3350 			if (*expected_zero) {
3351 				btf_verifier_log(env, "Unsupported btf_header");
3352 				return -E2BIG;
3353 			}
3354 		}
3355 	}
3356 
3357 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3358 	memcpy(&btf->hdr, btf->data, hdr_copy);
3359 
3360 	hdr = &btf->hdr;
3361 
3362 	btf_verifier_log_hdr(env, btf_data_size);
3363 
3364 	if (hdr->magic != BTF_MAGIC) {
3365 		btf_verifier_log(env, "Invalid magic");
3366 		return -EINVAL;
3367 	}
3368 
3369 	if (hdr->version != BTF_VERSION) {
3370 		btf_verifier_log(env, "Unsupported version");
3371 		return -ENOTSUPP;
3372 	}
3373 
3374 	if (hdr->flags) {
3375 		btf_verifier_log(env, "Unsupported flags");
3376 		return -ENOTSUPP;
3377 	}
3378 
3379 	if (btf_data_size == hdr->hdr_len) {
3380 		btf_verifier_log(env, "No data");
3381 		return -EINVAL;
3382 	}
3383 
3384 	err = btf_check_sec_info(env, btf_data_size);
3385 	if (err)
3386 		return err;
3387 
3388 	return 0;
3389 }
3390 
3391 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3392 			     u32 log_level, char __user *log_ubuf, u32 log_size)
3393 {
3394 	struct btf_verifier_env *env = NULL;
3395 	struct bpf_verifier_log *log;
3396 	struct btf *btf = NULL;
3397 	u8 *data;
3398 	int err;
3399 
3400 	if (btf_data_size > BTF_MAX_SIZE)
3401 		return ERR_PTR(-E2BIG);
3402 
3403 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3404 	if (!env)
3405 		return ERR_PTR(-ENOMEM);
3406 
3407 	log = &env->log;
3408 	if (log_level || log_ubuf || log_size) {
3409 		/* user requested verbose verifier output
3410 		 * and supplied buffer to store the verification trace
3411 		 */
3412 		log->level = log_level;
3413 		log->ubuf = log_ubuf;
3414 		log->len_total = log_size;
3415 
3416 		/* log attributes have to be sane */
3417 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3418 		    !log->level || !log->ubuf) {
3419 			err = -EINVAL;
3420 			goto errout;
3421 		}
3422 	}
3423 
3424 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3425 	if (!btf) {
3426 		err = -ENOMEM;
3427 		goto errout;
3428 	}
3429 	env->btf = btf;
3430 
3431 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3432 	if (!data) {
3433 		err = -ENOMEM;
3434 		goto errout;
3435 	}
3436 
3437 	btf->data = data;
3438 	btf->data_size = btf_data_size;
3439 
3440 	if (copy_from_user(data, btf_data, btf_data_size)) {
3441 		err = -EFAULT;
3442 		goto errout;
3443 	}
3444 
3445 	err = btf_parse_hdr(env);
3446 	if (err)
3447 		goto errout;
3448 
3449 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3450 
3451 	err = btf_parse_str_sec(env);
3452 	if (err)
3453 		goto errout;
3454 
3455 	err = btf_parse_type_sec(env);
3456 	if (err)
3457 		goto errout;
3458 
3459 	if (log->level && bpf_verifier_log_full(log)) {
3460 		err = -ENOSPC;
3461 		goto errout;
3462 	}
3463 
3464 	btf_verifier_env_free(env);
3465 	refcount_set(&btf->refcnt, 1);
3466 	return btf;
3467 
3468 errout:
3469 	btf_verifier_env_free(env);
3470 	if (btf)
3471 		btf_free(btf);
3472 	return ERR_PTR(err);
3473 }
3474 
3475 extern char __weak _binary__btf_vmlinux_bin_start[];
3476 extern char __weak _binary__btf_vmlinux_bin_end[];
3477 extern struct btf *btf_vmlinux;
3478 
3479 #define BPF_MAP_TYPE(_id, _ops)
3480 static union {
3481 	struct bpf_ctx_convert {
3482 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3483 	prog_ctx_type _id##_prog; \
3484 	kern_ctx_type _id##_kern;
3485 #include <linux/bpf_types.h>
3486 #undef BPF_PROG_TYPE
3487 	} *__t;
3488 	/* 't' is written once under lock. Read many times. */
3489 	const struct btf_type *t;
3490 } bpf_ctx_convert;
3491 enum {
3492 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3493 	__ctx_convert##_id,
3494 #include <linux/bpf_types.h>
3495 #undef BPF_PROG_TYPE
3496 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
3497 };
3498 static u8 bpf_ctx_convert_map[] = {
3499 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3500 	[_id] = __ctx_convert##_id,
3501 #include <linux/bpf_types.h>
3502 #undef BPF_PROG_TYPE
3503 	0, /* avoid empty array */
3504 };
3505 #undef BPF_MAP_TYPE
3506 
3507 static const struct btf_member *
3508 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3509 		      const struct btf_type *t, enum bpf_prog_type prog_type,
3510 		      int arg)
3511 {
3512 	const struct btf_type *conv_struct;
3513 	const struct btf_type *ctx_struct;
3514 	const struct btf_member *ctx_type;
3515 	const char *tname, *ctx_tname;
3516 
3517 	conv_struct = bpf_ctx_convert.t;
3518 	if (!conv_struct) {
3519 		bpf_log(log, "btf_vmlinux is malformed\n");
3520 		return NULL;
3521 	}
3522 	t = btf_type_by_id(btf, t->type);
3523 	while (btf_type_is_modifier(t))
3524 		t = btf_type_by_id(btf, t->type);
3525 	if (!btf_type_is_struct(t)) {
3526 		/* Only pointer to struct is supported for now.
3527 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3528 		 * is not supported yet.
3529 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3530 		 */
3531 		if (log->level & BPF_LOG_LEVEL)
3532 			bpf_log(log, "arg#%d type is not a struct\n", arg);
3533 		return NULL;
3534 	}
3535 	tname = btf_name_by_offset(btf, t->name_off);
3536 	if (!tname) {
3537 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
3538 		return NULL;
3539 	}
3540 	/* prog_type is valid bpf program type. No need for bounds check. */
3541 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3542 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3543 	 * Like 'struct __sk_buff'
3544 	 */
3545 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3546 	if (!ctx_struct)
3547 		/* should not happen */
3548 		return NULL;
3549 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3550 	if (!ctx_tname) {
3551 		/* should not happen */
3552 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3553 		return NULL;
3554 	}
3555 	/* only compare that prog's ctx type name is the same as
3556 	 * kernel expects. No need to compare field by field.
3557 	 * It's ok for bpf prog to do:
3558 	 * struct __sk_buff {};
3559 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
3560 	 * { // no fields of skb are ever used }
3561 	 */
3562 	if (strcmp(ctx_tname, tname))
3563 		return NULL;
3564 	return ctx_type;
3565 }
3566 
3567 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3568 				     struct btf *btf,
3569 				     const struct btf_type *t,
3570 				     enum bpf_prog_type prog_type,
3571 				     int arg)
3572 {
3573 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
3574 
3575 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
3576 	if (!prog_ctx_type)
3577 		return -ENOENT;
3578 	kern_ctx_type = prog_ctx_type + 1;
3579 	return kern_ctx_type->type;
3580 }
3581 
3582 struct btf *btf_parse_vmlinux(void)
3583 {
3584 	struct btf_verifier_env *env = NULL;
3585 	struct bpf_verifier_log *log;
3586 	struct btf *btf = NULL;
3587 	int err, i;
3588 
3589 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3590 	if (!env)
3591 		return ERR_PTR(-ENOMEM);
3592 
3593 	log = &env->log;
3594 	log->level = BPF_LOG_KERNEL;
3595 
3596 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3597 	if (!btf) {
3598 		err = -ENOMEM;
3599 		goto errout;
3600 	}
3601 	env->btf = btf;
3602 
3603 	btf->data = _binary__btf_vmlinux_bin_start;
3604 	btf->data_size = _binary__btf_vmlinux_bin_end -
3605 		_binary__btf_vmlinux_bin_start;
3606 
3607 	err = btf_parse_hdr(env);
3608 	if (err)
3609 		goto errout;
3610 
3611 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3612 
3613 	err = btf_parse_str_sec(env);
3614 	if (err)
3615 		goto errout;
3616 
3617 	err = btf_check_all_metas(env);
3618 	if (err)
3619 		goto errout;
3620 
3621 	/* find struct bpf_ctx_convert for type checking later */
3622 	for (i = 1; i <= btf->nr_types; i++) {
3623 		const struct btf_type *t;
3624 		const char *tname;
3625 
3626 		t = btf_type_by_id(btf, i);
3627 		if (!__btf_type_is_struct(t))
3628 			continue;
3629 		tname = __btf_name_by_offset(btf, t->name_off);
3630 		if (!strcmp(tname, "bpf_ctx_convert")) {
3631 			/* btf_parse_vmlinux() runs under bpf_verifier_lock */
3632 			bpf_ctx_convert.t = t;
3633 			break;
3634 		}
3635 	}
3636 	if (i > btf->nr_types) {
3637 		err = -ENOENT;
3638 		goto errout;
3639 	}
3640 
3641 	bpf_struct_ops_init(btf);
3642 
3643 	btf_verifier_env_free(env);
3644 	refcount_set(&btf->refcnt, 1);
3645 	return btf;
3646 
3647 errout:
3648 	btf_verifier_env_free(env);
3649 	if (btf) {
3650 		kvfree(btf->types);
3651 		kfree(btf);
3652 	}
3653 	return ERR_PTR(err);
3654 }
3655 
3656 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3657 {
3658 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3659 
3660 	if (tgt_prog) {
3661 		return tgt_prog->aux->btf;
3662 	} else {
3663 		return btf_vmlinux;
3664 	}
3665 }
3666 
3667 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3668 		    const struct bpf_prog *prog,
3669 		    struct bpf_insn_access_aux *info)
3670 {
3671 	const struct btf_type *t = prog->aux->attach_func_proto;
3672 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3673 	struct btf *btf = bpf_prog_get_target_btf(prog);
3674 	const char *tname = prog->aux->attach_func_name;
3675 	struct bpf_verifier_log *log = info->log;
3676 	const struct btf_param *args;
3677 	u32 nr_args, arg;
3678 	int ret;
3679 
3680 	if (off % 8) {
3681 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3682 			tname, off);
3683 		return false;
3684 	}
3685 	arg = off / 8;
3686 	args = (const struct btf_param *)(t + 1);
3687 	/* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3688 	nr_args = t ? btf_type_vlen(t) : 5;
3689 	if (prog->aux->attach_btf_trace) {
3690 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
3691 		args++;
3692 		nr_args--;
3693 	}
3694 
3695 	if (prog->expected_attach_type == BPF_TRACE_FEXIT &&
3696 	    arg == nr_args) {
3697 		if (!t)
3698 			/* Default prog with 5 args. 6th arg is retval. */
3699 			return true;
3700 		/* function return type */
3701 		t = btf_type_by_id(btf, t->type);
3702 	} else if (arg >= nr_args) {
3703 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3704 			tname, arg + 1);
3705 		return false;
3706 	} else {
3707 		if (!t)
3708 			/* Default prog with 5 args */
3709 			return true;
3710 		t = btf_type_by_id(btf, args[arg].type);
3711 	}
3712 	/* skip modifiers */
3713 	while (btf_type_is_modifier(t))
3714 		t = btf_type_by_id(btf, t->type);
3715 	if (btf_type_is_int(t) || btf_type_is_enum(t))
3716 		/* accessing a scalar */
3717 		return true;
3718 	if (!btf_type_is_ptr(t)) {
3719 		bpf_log(log,
3720 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3721 			tname, arg,
3722 			__btf_name_by_offset(btf, t->name_off),
3723 			btf_kind_str[BTF_INFO_KIND(t->info)]);
3724 		return false;
3725 	}
3726 	if (t->type == 0)
3727 		/* This is a pointer to void.
3728 		 * It is the same as scalar from the verifier safety pov.
3729 		 * No further pointer walking is allowed.
3730 		 */
3731 		return true;
3732 
3733 	/* this is a pointer to another type */
3734 	info->reg_type = PTR_TO_BTF_ID;
3735 
3736 	if (tgt_prog) {
3737 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
3738 		if (ret > 0) {
3739 			info->btf_id = ret;
3740 			return true;
3741 		} else {
3742 			return false;
3743 		}
3744 	}
3745 
3746 	info->btf_id = t->type;
3747 	t = btf_type_by_id(btf, t->type);
3748 	/* skip modifiers */
3749 	while (btf_type_is_modifier(t)) {
3750 		info->btf_id = t->type;
3751 		t = btf_type_by_id(btf, t->type);
3752 	}
3753 	if (!btf_type_is_struct(t)) {
3754 		bpf_log(log,
3755 			"func '%s' arg%d type %s is not a struct\n",
3756 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3757 		return false;
3758 	}
3759 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3760 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3761 		__btf_name_by_offset(btf, t->name_off));
3762 	return true;
3763 }
3764 
3765 int btf_struct_access(struct bpf_verifier_log *log,
3766 		      const struct btf_type *t, int off, int size,
3767 		      enum bpf_access_type atype,
3768 		      u32 *next_btf_id)
3769 {
3770 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3771 	const struct btf_type *mtype, *elem_type = NULL;
3772 	const struct btf_member *member;
3773 	const char *tname, *mname;
3774 
3775 again:
3776 	tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3777 	if (!btf_type_is_struct(t)) {
3778 		bpf_log(log, "Type '%s' is not a struct\n", tname);
3779 		return -EINVAL;
3780 	}
3781 
3782 	if (off + size > t->size) {
3783 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
3784 			tname, off, size);
3785 		return -EACCES;
3786 	}
3787 
3788 	for_each_member(i, t, member) {
3789 		/* offset of the field in bytes */
3790 		moff = btf_member_bit_offset(t, member) / 8;
3791 		if (off + size <= moff)
3792 			/* won't find anything, field is already too far */
3793 			break;
3794 
3795 		if (btf_member_bitfield_size(t, member)) {
3796 			u32 end_bit = btf_member_bit_offset(t, member) +
3797 				btf_member_bitfield_size(t, member);
3798 
3799 			/* off <= moff instead of off == moff because clang
3800 			 * does not generate a BTF member for anonymous
3801 			 * bitfield like the ":16" here:
3802 			 * struct {
3803 			 *	int :16;
3804 			 *	int x:8;
3805 			 * };
3806 			 */
3807 			if (off <= moff &&
3808 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
3809 				return SCALAR_VALUE;
3810 
3811 			/* off may be accessing a following member
3812 			 *
3813 			 * or
3814 			 *
3815 			 * Doing partial access at either end of this
3816 			 * bitfield.  Continue on this case also to
3817 			 * treat it as not accessing this bitfield
3818 			 * and eventually error out as field not
3819 			 * found to keep it simple.
3820 			 * It could be relaxed if there was a legit
3821 			 * partial access case later.
3822 			 */
3823 			continue;
3824 		}
3825 
3826 		/* In case of "off" is pointing to holes of a struct */
3827 		if (off < moff)
3828 			break;
3829 
3830 		/* type of the field */
3831 		mtype = btf_type_by_id(btf_vmlinux, member->type);
3832 		mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3833 
3834 		mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3835 					 &elem_type, &total_nelems);
3836 		if (IS_ERR(mtype)) {
3837 			bpf_log(log, "field %s doesn't have size\n", mname);
3838 			return -EFAULT;
3839 		}
3840 
3841 		mtrue_end = moff + msize;
3842 		if (off >= mtrue_end)
3843 			/* no overlap with member, keep iterating */
3844 			continue;
3845 
3846 		if (btf_type_is_array(mtype)) {
3847 			u32 elem_idx;
3848 
3849 			/* btf_resolve_size() above helps to
3850 			 * linearize a multi-dimensional array.
3851 			 *
3852 			 * The logic here is treating an array
3853 			 * in a struct as the following way:
3854 			 *
3855 			 * struct outer {
3856 			 *	struct inner array[2][2];
3857 			 * };
3858 			 *
3859 			 * looks like:
3860 			 *
3861 			 * struct outer {
3862 			 *	struct inner array_elem0;
3863 			 *	struct inner array_elem1;
3864 			 *	struct inner array_elem2;
3865 			 *	struct inner array_elem3;
3866 			 * };
3867 			 *
3868 			 * When accessing outer->array[1][0], it moves
3869 			 * moff to "array_elem2", set mtype to
3870 			 * "struct inner", and msize also becomes
3871 			 * sizeof(struct inner).  Then most of the
3872 			 * remaining logic will fall through without
3873 			 * caring the current member is an array or
3874 			 * not.
3875 			 *
3876 			 * Unlike mtype/msize/moff, mtrue_end does not
3877 			 * change.  The naming difference ("_true") tells
3878 			 * that it is not always corresponding to
3879 			 * the current mtype/msize/moff.
3880 			 * It is the true end of the current
3881 			 * member (i.e. array in this case).  That
3882 			 * will allow an int array to be accessed like
3883 			 * a scratch space,
3884 			 * i.e. allow access beyond the size of
3885 			 *      the array's element as long as it is
3886 			 *      within the mtrue_end boundary.
3887 			 */
3888 
3889 			/* skip empty array */
3890 			if (moff == mtrue_end)
3891 				continue;
3892 
3893 			msize /= total_nelems;
3894 			elem_idx = (off - moff) / msize;
3895 			moff += elem_idx * msize;
3896 			mtype = elem_type;
3897 		}
3898 
3899 		/* the 'off' we're looking for is either equal to start
3900 		 * of this field or inside of this struct
3901 		 */
3902 		if (btf_type_is_struct(mtype)) {
3903 			/* our field must be inside that union or struct */
3904 			t = mtype;
3905 
3906 			/* adjust offset we're looking for */
3907 			off -= moff;
3908 			goto again;
3909 		}
3910 
3911 		if (btf_type_is_ptr(mtype)) {
3912 			const struct btf_type *stype;
3913 
3914 			if (msize != size || off != moff) {
3915 				bpf_log(log,
3916 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
3917 					mname, moff, tname, off, size);
3918 				return -EACCES;
3919 			}
3920 
3921 			stype = btf_type_by_id(btf_vmlinux, mtype->type);
3922 			/* skip modifiers */
3923 			while (btf_type_is_modifier(stype))
3924 				stype = btf_type_by_id(btf_vmlinux, stype->type);
3925 			if (btf_type_is_struct(stype)) {
3926 				*next_btf_id = mtype->type;
3927 				return PTR_TO_BTF_ID;
3928 			}
3929 		}
3930 
3931 		/* Allow more flexible access within an int as long as
3932 		 * it is within mtrue_end.
3933 		 * Since mtrue_end could be the end of an array,
3934 		 * that also allows using an array of int as a scratch
3935 		 * space. e.g. skb->cb[].
3936 		 */
3937 		if (off + size > mtrue_end) {
3938 			bpf_log(log,
3939 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
3940 				mname, mtrue_end, tname, off, size);
3941 			return -EACCES;
3942 		}
3943 
3944 		return SCALAR_VALUE;
3945 	}
3946 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
3947 	return -EINVAL;
3948 }
3949 
3950 static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
3951 				   int arg)
3952 {
3953 	char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
3954 	const struct btf_param *args;
3955 	const struct btf_type *t;
3956 	const char *tname, *sym;
3957 	u32 btf_id, i;
3958 
3959 	if (IS_ERR(btf_vmlinux)) {
3960 		bpf_log(log, "btf_vmlinux is malformed\n");
3961 		return -EINVAL;
3962 	}
3963 
3964 	sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
3965 	if (!sym) {
3966 		bpf_log(log, "kernel doesn't have kallsyms\n");
3967 		return -EFAULT;
3968 	}
3969 
3970 	for (i = 1; i <= btf_vmlinux->nr_types; i++) {
3971 		t = btf_type_by_id(btf_vmlinux, i);
3972 		if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
3973 			continue;
3974 		tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3975 		if (!strcmp(tname, fnname))
3976 			break;
3977 	}
3978 	if (i > btf_vmlinux->nr_types) {
3979 		bpf_log(log, "helper %s type is not found\n", fnname);
3980 		return -ENOENT;
3981 	}
3982 
3983 	t = btf_type_by_id(btf_vmlinux, t->type);
3984 	if (!btf_type_is_ptr(t))
3985 		return -EFAULT;
3986 	t = btf_type_by_id(btf_vmlinux, t->type);
3987 	if (!btf_type_is_func_proto(t))
3988 		return -EFAULT;
3989 
3990 	args = (const struct btf_param *)(t + 1);
3991 	if (arg >= btf_type_vlen(t)) {
3992 		bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
3993 			fnname, arg);
3994 		return -EINVAL;
3995 	}
3996 
3997 	t = btf_type_by_id(btf_vmlinux, args[arg].type);
3998 	if (!btf_type_is_ptr(t) || !t->type) {
3999 		/* anything but the pointer to struct is a helper config bug */
4000 		bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
4001 		return -EFAULT;
4002 	}
4003 	btf_id = t->type;
4004 	t = btf_type_by_id(btf_vmlinux, t->type);
4005 	/* skip modifiers */
4006 	while (btf_type_is_modifier(t)) {
4007 		btf_id = t->type;
4008 		t = btf_type_by_id(btf_vmlinux, t->type);
4009 	}
4010 	if (!btf_type_is_struct(t)) {
4011 		bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
4012 		return -EFAULT;
4013 	}
4014 	bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
4015 		arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
4016 	return btf_id;
4017 }
4018 
4019 int btf_resolve_helper_id(struct bpf_verifier_log *log,
4020 			  const struct bpf_func_proto *fn, int arg)
4021 {
4022 	int *btf_id = &fn->btf_id[arg];
4023 	int ret;
4024 
4025 	if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
4026 		return -EINVAL;
4027 
4028 	ret = READ_ONCE(*btf_id);
4029 	if (ret)
4030 		return ret;
4031 	/* ok to race the search. The result is the same */
4032 	ret = __btf_resolve_helper_id(log, fn->func, arg);
4033 	if (!ret) {
4034 		/* Function argument cannot be type 'void' */
4035 		bpf_log(log, "BTF resolution bug\n");
4036 		return -EFAULT;
4037 	}
4038 	WRITE_ONCE(*btf_id, ret);
4039 	return ret;
4040 }
4041 
4042 static int __get_type_size(struct btf *btf, u32 btf_id,
4043 			   const struct btf_type **bad_type)
4044 {
4045 	const struct btf_type *t;
4046 
4047 	if (!btf_id)
4048 		/* void */
4049 		return 0;
4050 	t = btf_type_by_id(btf, btf_id);
4051 	while (t && btf_type_is_modifier(t))
4052 		t = btf_type_by_id(btf, t->type);
4053 	if (!t) {
4054 		*bad_type = btf->types[0];
4055 		return -EINVAL;
4056 	}
4057 	if (btf_type_is_ptr(t))
4058 		/* kernel size of pointer. Not BPF's size of pointer*/
4059 		return sizeof(void *);
4060 	if (btf_type_is_int(t) || btf_type_is_enum(t))
4061 		return t->size;
4062 	*bad_type = t;
4063 	return -EINVAL;
4064 }
4065 
4066 int btf_distill_func_proto(struct bpf_verifier_log *log,
4067 			   struct btf *btf,
4068 			   const struct btf_type *func,
4069 			   const char *tname,
4070 			   struct btf_func_model *m)
4071 {
4072 	const struct btf_param *args;
4073 	const struct btf_type *t;
4074 	u32 i, nargs;
4075 	int ret;
4076 
4077 	if (!func) {
4078 		/* BTF function prototype doesn't match the verifier types.
4079 		 * Fall back to 5 u64 args.
4080 		 */
4081 		for (i = 0; i < 5; i++)
4082 			m->arg_size[i] = 8;
4083 		m->ret_size = 8;
4084 		m->nr_args = 5;
4085 		return 0;
4086 	}
4087 	args = (const struct btf_param *)(func + 1);
4088 	nargs = btf_type_vlen(func);
4089 	if (nargs >= MAX_BPF_FUNC_ARGS) {
4090 		bpf_log(log,
4091 			"The function %s has %d arguments. Too many.\n",
4092 			tname, nargs);
4093 		return -EINVAL;
4094 	}
4095 	ret = __get_type_size(btf, func->type, &t);
4096 	if (ret < 0) {
4097 		bpf_log(log,
4098 			"The function %s return type %s is unsupported.\n",
4099 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4100 		return -EINVAL;
4101 	}
4102 	m->ret_size = ret;
4103 
4104 	for (i = 0; i < nargs; i++) {
4105 		ret = __get_type_size(btf, args[i].type, &t);
4106 		if (ret < 0) {
4107 			bpf_log(log,
4108 				"The function %s arg%d type %s is unsupported.\n",
4109 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4110 			return -EINVAL;
4111 		}
4112 		m->arg_size[i] = ret;
4113 	}
4114 	m->nr_args = nargs;
4115 	return 0;
4116 }
4117 
4118 /* Compare BTF of a function with given bpf_reg_state.
4119  * Returns:
4120  * EFAULT - there is a verifier bug. Abort verification.
4121  * EINVAL - there is a type mismatch or BTF is not available.
4122  * 0 - BTF matches with what bpf_reg_state expects.
4123  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
4124  */
4125 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
4126 			     struct bpf_reg_state *reg)
4127 {
4128 	struct bpf_verifier_log *log = &env->log;
4129 	struct bpf_prog *prog = env->prog;
4130 	struct btf *btf = prog->aux->btf;
4131 	const struct btf_param *args;
4132 	const struct btf_type *t;
4133 	u32 i, nargs, btf_id;
4134 	const char *tname;
4135 
4136 	if (!prog->aux->func_info)
4137 		return -EINVAL;
4138 
4139 	btf_id = prog->aux->func_info[subprog].type_id;
4140 	if (!btf_id)
4141 		return -EFAULT;
4142 
4143 	if (prog->aux->func_info_aux[subprog].unreliable)
4144 		return -EINVAL;
4145 
4146 	t = btf_type_by_id(btf, btf_id);
4147 	if (!t || !btf_type_is_func(t)) {
4148 		/* These checks were already done by the verifier while loading
4149 		 * struct bpf_func_info
4150 		 */
4151 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4152 			subprog);
4153 		return -EFAULT;
4154 	}
4155 	tname = btf_name_by_offset(btf, t->name_off);
4156 
4157 	t = btf_type_by_id(btf, t->type);
4158 	if (!t || !btf_type_is_func_proto(t)) {
4159 		bpf_log(log, "Invalid BTF of func %s\n", tname);
4160 		return -EFAULT;
4161 	}
4162 	args = (const struct btf_param *)(t + 1);
4163 	nargs = btf_type_vlen(t);
4164 	if (nargs > 5) {
4165 		bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4166 		goto out;
4167 	}
4168 	/* check that BTF function arguments match actual types that the
4169 	 * verifier sees.
4170 	 */
4171 	for (i = 0; i < nargs; i++) {
4172 		t = btf_type_by_id(btf, args[i].type);
4173 		while (btf_type_is_modifier(t))
4174 			t = btf_type_by_id(btf, t->type);
4175 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4176 			if (reg[i + 1].type == SCALAR_VALUE)
4177 				continue;
4178 			bpf_log(log, "R%d is not a scalar\n", i + 1);
4179 			goto out;
4180 		}
4181 		if (btf_type_is_ptr(t)) {
4182 			if (reg[i + 1].type == SCALAR_VALUE) {
4183 				bpf_log(log, "R%d is not a pointer\n", i + 1);
4184 				goto out;
4185 			}
4186 			/* If function expects ctx type in BTF check that caller
4187 			 * is passing PTR_TO_CTX.
4188 			 */
4189 			if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4190 				if (reg[i + 1].type != PTR_TO_CTX) {
4191 					bpf_log(log,
4192 						"arg#%d expected pointer to ctx, but got %s\n",
4193 						i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4194 					goto out;
4195 				}
4196 				if (check_ctx_reg(env, &reg[i + 1], i + 1))
4197 					goto out;
4198 				continue;
4199 			}
4200 		}
4201 		bpf_log(log, "Unrecognized arg#%d type %s\n",
4202 			i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4203 		goto out;
4204 	}
4205 	return 0;
4206 out:
4207 	/* Compiler optimizations can remove arguments from static functions
4208 	 * or mismatched type can be passed into a global function.
4209 	 * In such cases mark the function as unreliable from BTF point of view.
4210 	 */
4211 	prog->aux->func_info_aux[subprog].unreliable = true;
4212 	return -EINVAL;
4213 }
4214 
4215 /* Convert BTF of a function into bpf_reg_state if possible
4216  * Returns:
4217  * EFAULT - there is a verifier bug. Abort verification.
4218  * EINVAL - cannot convert BTF.
4219  * 0 - Successfully converted BTF into bpf_reg_state
4220  * (either PTR_TO_CTX or SCALAR_VALUE).
4221  */
4222 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
4223 			  struct bpf_reg_state *reg)
4224 {
4225 	struct bpf_verifier_log *log = &env->log;
4226 	struct bpf_prog *prog = env->prog;
4227 	struct btf *btf = prog->aux->btf;
4228 	const struct btf_param *args;
4229 	const struct btf_type *t;
4230 	u32 i, nargs, btf_id;
4231 	const char *tname;
4232 
4233 	if (!prog->aux->func_info ||
4234 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
4235 		bpf_log(log, "Verifier bug\n");
4236 		return -EFAULT;
4237 	}
4238 
4239 	btf_id = prog->aux->func_info[subprog].type_id;
4240 	if (!btf_id) {
4241 		bpf_log(log, "Global functions need valid BTF\n");
4242 		return -EFAULT;
4243 	}
4244 
4245 	t = btf_type_by_id(btf, btf_id);
4246 	if (!t || !btf_type_is_func(t)) {
4247 		/* These checks were already done by the verifier while loading
4248 		 * struct bpf_func_info
4249 		 */
4250 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4251 			subprog);
4252 		return -EFAULT;
4253 	}
4254 	tname = btf_name_by_offset(btf, t->name_off);
4255 
4256 	if (log->level & BPF_LOG_LEVEL)
4257 		bpf_log(log, "Validating %s() func#%d...\n",
4258 			tname, subprog);
4259 
4260 	if (prog->aux->func_info_aux[subprog].unreliable) {
4261 		bpf_log(log, "Verifier bug in function %s()\n", tname);
4262 		return -EFAULT;
4263 	}
4264 
4265 	t = btf_type_by_id(btf, t->type);
4266 	if (!t || !btf_type_is_func_proto(t)) {
4267 		bpf_log(log, "Invalid type of function %s()\n", tname);
4268 		return -EFAULT;
4269 	}
4270 	args = (const struct btf_param *)(t + 1);
4271 	nargs = btf_type_vlen(t);
4272 	if (nargs > 5) {
4273 		bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
4274 			tname, nargs);
4275 		return -EINVAL;
4276 	}
4277 	/* check that function returns int */
4278 	t = btf_type_by_id(btf, t->type);
4279 	while (btf_type_is_modifier(t))
4280 		t = btf_type_by_id(btf, t->type);
4281 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
4282 		bpf_log(log,
4283 			"Global function %s() doesn't return scalar. Only those are supported.\n",
4284 			tname);
4285 		return -EINVAL;
4286 	}
4287 	/* Convert BTF function arguments into verifier types.
4288 	 * Only PTR_TO_CTX and SCALAR are supported atm.
4289 	 */
4290 	for (i = 0; i < nargs; i++) {
4291 		t = btf_type_by_id(btf, args[i].type);
4292 		while (btf_type_is_modifier(t))
4293 			t = btf_type_by_id(btf, t->type);
4294 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4295 			reg[i + 1].type = SCALAR_VALUE;
4296 			continue;
4297 		}
4298 		if (btf_type_is_ptr(t) &&
4299 		    btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4300 			reg[i + 1].type = PTR_TO_CTX;
4301 			continue;
4302 		}
4303 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
4304 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
4305 		return -EINVAL;
4306 	}
4307 	return 0;
4308 }
4309 
4310 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4311 		       struct seq_file *m)
4312 {
4313 	const struct btf_type *t = btf_type_by_id(btf, type_id);
4314 
4315 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4316 }
4317 
4318 #ifdef CONFIG_PROC_FS
4319 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4320 {
4321 	const struct btf *btf = filp->private_data;
4322 
4323 	seq_printf(m, "btf_id:\t%u\n", btf->id);
4324 }
4325 #endif
4326 
4327 static int btf_release(struct inode *inode, struct file *filp)
4328 {
4329 	btf_put(filp->private_data);
4330 	return 0;
4331 }
4332 
4333 const struct file_operations btf_fops = {
4334 #ifdef CONFIG_PROC_FS
4335 	.show_fdinfo	= bpf_btf_show_fdinfo,
4336 #endif
4337 	.release	= btf_release,
4338 };
4339 
4340 static int __btf_new_fd(struct btf *btf)
4341 {
4342 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4343 }
4344 
4345 int btf_new_fd(const union bpf_attr *attr)
4346 {
4347 	struct btf *btf;
4348 	int ret;
4349 
4350 	btf = btf_parse(u64_to_user_ptr(attr->btf),
4351 			attr->btf_size, attr->btf_log_level,
4352 			u64_to_user_ptr(attr->btf_log_buf),
4353 			attr->btf_log_size);
4354 	if (IS_ERR(btf))
4355 		return PTR_ERR(btf);
4356 
4357 	ret = btf_alloc_id(btf);
4358 	if (ret) {
4359 		btf_free(btf);
4360 		return ret;
4361 	}
4362 
4363 	/*
4364 	 * The BTF ID is published to the userspace.
4365 	 * All BTF free must go through call_rcu() from
4366 	 * now on (i.e. free by calling btf_put()).
4367 	 */
4368 
4369 	ret = __btf_new_fd(btf);
4370 	if (ret < 0)
4371 		btf_put(btf);
4372 
4373 	return ret;
4374 }
4375 
4376 struct btf *btf_get_by_fd(int fd)
4377 {
4378 	struct btf *btf;
4379 	struct fd f;
4380 
4381 	f = fdget(fd);
4382 
4383 	if (!f.file)
4384 		return ERR_PTR(-EBADF);
4385 
4386 	if (f.file->f_op != &btf_fops) {
4387 		fdput(f);
4388 		return ERR_PTR(-EINVAL);
4389 	}
4390 
4391 	btf = f.file->private_data;
4392 	refcount_inc(&btf->refcnt);
4393 	fdput(f);
4394 
4395 	return btf;
4396 }
4397 
4398 int btf_get_info_by_fd(const struct btf *btf,
4399 		       const union bpf_attr *attr,
4400 		       union bpf_attr __user *uattr)
4401 {
4402 	struct bpf_btf_info __user *uinfo;
4403 	struct bpf_btf_info info = {};
4404 	u32 info_copy, btf_copy;
4405 	void __user *ubtf;
4406 	u32 uinfo_len;
4407 
4408 	uinfo = u64_to_user_ptr(attr->info.info);
4409 	uinfo_len = attr->info.info_len;
4410 
4411 	info_copy = min_t(u32, uinfo_len, sizeof(info));
4412 	if (copy_from_user(&info, uinfo, info_copy))
4413 		return -EFAULT;
4414 
4415 	info.id = btf->id;
4416 	ubtf = u64_to_user_ptr(info.btf);
4417 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
4418 	if (copy_to_user(ubtf, btf->data, btf_copy))
4419 		return -EFAULT;
4420 	info.btf_size = btf->data_size;
4421 
4422 	if (copy_to_user(uinfo, &info, info_copy) ||
4423 	    put_user(info_copy, &uattr->info.info_len))
4424 		return -EFAULT;
4425 
4426 	return 0;
4427 }
4428 
4429 int btf_get_fd_by_id(u32 id)
4430 {
4431 	struct btf *btf;
4432 	int fd;
4433 
4434 	rcu_read_lock();
4435 	btf = idr_find(&btf_idr, id);
4436 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4437 		btf = ERR_PTR(-ENOENT);
4438 	rcu_read_unlock();
4439 
4440 	if (IS_ERR(btf))
4441 		return PTR_ERR(btf);
4442 
4443 	fd = __btf_new_fd(btf);
4444 	if (fd < 0)
4445 		btf_put(btf);
4446 
4447 	return fd;
4448 }
4449 
4450 u32 btf_id(const struct btf *btf)
4451 {
4452 	return btf->id;
4453 }
4454