xref: /linux/kernel/bpf/btf.c (revision 4e887471e8e3a513607495d18333c44f59a82c5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP_SKB,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_MAX,
222 };
223 
224 enum {
225 	BTF_KFUNC_SET_MAX_CNT = 256,
226 	BTF_DTOR_KFUNC_MAX_CNT = 256,
227 	BTF_KFUNC_FILTER_MAX_CNT = 16,
228 };
229 
230 struct btf_kfunc_hook_filter {
231 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
232 	u32 nr_filters;
233 };
234 
235 struct btf_kfunc_set_tab {
236 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
237 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
238 };
239 
240 struct btf_id_dtor_kfunc_tab {
241 	u32 cnt;
242 	struct btf_id_dtor_kfunc dtors[];
243 };
244 
245 struct btf_struct_ops_tab {
246 	u32 cnt;
247 	u32 capacity;
248 	struct bpf_struct_ops_desc ops[];
249 };
250 
251 struct btf {
252 	void *data;
253 	struct btf_type **types;
254 	u32 *resolved_ids;
255 	u32 *resolved_sizes;
256 	const char *strings;
257 	void *nohdr_data;
258 	struct btf_header hdr;
259 	u32 nr_types; /* includes VOID for base BTF */
260 	u32 types_size;
261 	u32 data_size;
262 	refcount_t refcnt;
263 	u32 id;
264 	struct rcu_head rcu;
265 	struct btf_kfunc_set_tab *kfunc_set_tab;
266 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
267 	struct btf_struct_metas *struct_meta_tab;
268 	struct btf_struct_ops_tab *struct_ops_tab;
269 
270 	/* split BTF support */
271 	struct btf *base_btf;
272 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
273 	u32 start_str_off; /* first string offset (0 for base BTF) */
274 	char name[MODULE_NAME_LEN];
275 	bool kernel_btf;
276 };
277 
278 enum verifier_phase {
279 	CHECK_META,
280 	CHECK_TYPE,
281 };
282 
283 struct resolve_vertex {
284 	const struct btf_type *t;
285 	u32 type_id;
286 	u16 next_member;
287 };
288 
289 enum visit_state {
290 	NOT_VISITED,
291 	VISITED,
292 	RESOLVED,
293 };
294 
295 enum resolve_mode {
296 	RESOLVE_TBD,	/* To Be Determined */
297 	RESOLVE_PTR,	/* Resolving for Pointer */
298 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
299 					 * or array
300 					 */
301 };
302 
303 #define MAX_RESOLVE_DEPTH 32
304 
305 struct btf_sec_info {
306 	u32 off;
307 	u32 len;
308 };
309 
310 struct btf_verifier_env {
311 	struct btf *btf;
312 	u8 *visit_states;
313 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
314 	struct bpf_verifier_log log;
315 	u32 log_type_id;
316 	u32 top_stack;
317 	enum verifier_phase phase;
318 	enum resolve_mode resolve_mode;
319 };
320 
321 static const char * const btf_kind_str[NR_BTF_KINDS] = {
322 	[BTF_KIND_UNKN]		= "UNKNOWN",
323 	[BTF_KIND_INT]		= "INT",
324 	[BTF_KIND_PTR]		= "PTR",
325 	[BTF_KIND_ARRAY]	= "ARRAY",
326 	[BTF_KIND_STRUCT]	= "STRUCT",
327 	[BTF_KIND_UNION]	= "UNION",
328 	[BTF_KIND_ENUM]		= "ENUM",
329 	[BTF_KIND_FWD]		= "FWD",
330 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
331 	[BTF_KIND_VOLATILE]	= "VOLATILE",
332 	[BTF_KIND_CONST]	= "CONST",
333 	[BTF_KIND_RESTRICT]	= "RESTRICT",
334 	[BTF_KIND_FUNC]		= "FUNC",
335 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
336 	[BTF_KIND_VAR]		= "VAR",
337 	[BTF_KIND_DATASEC]	= "DATASEC",
338 	[BTF_KIND_FLOAT]	= "FLOAT",
339 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
340 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
341 	[BTF_KIND_ENUM64]	= "ENUM64",
342 };
343 
344 const char *btf_type_str(const struct btf_type *t)
345 {
346 	return btf_kind_str[BTF_INFO_KIND(t->info)];
347 }
348 
349 /* Chunk size we use in safe copy of data to be shown. */
350 #define BTF_SHOW_OBJ_SAFE_SIZE		32
351 
352 /*
353  * This is the maximum size of a base type value (equivalent to a
354  * 128-bit int); if we are at the end of our safe buffer and have
355  * less than 16 bytes space we can't be assured of being able
356  * to copy the next type safely, so in such cases we will initiate
357  * a new copy.
358  */
359 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
360 
361 /* Type name size */
362 #define BTF_SHOW_NAME_SIZE		80
363 
364 /*
365  * The suffix of a type that indicates it cannot alias another type when
366  * comparing BTF IDs for kfunc invocations.
367  */
368 #define NOCAST_ALIAS_SUFFIX		"___init"
369 
370 /*
371  * Common data to all BTF show operations. Private show functions can add
372  * their own data to a structure containing a struct btf_show and consult it
373  * in the show callback.  See btf_type_show() below.
374  *
375  * One challenge with showing nested data is we want to skip 0-valued
376  * data, but in order to figure out whether a nested object is all zeros
377  * we need to walk through it.  As a result, we need to make two passes
378  * when handling structs, unions and arrays; the first path simply looks
379  * for nonzero data, while the second actually does the display.  The first
380  * pass is signalled by show->state.depth_check being set, and if we
381  * encounter a non-zero value we set show->state.depth_to_show to
382  * the depth at which we encountered it.  When we have completed the
383  * first pass, we will know if anything needs to be displayed if
384  * depth_to_show > depth.  See btf_[struct,array]_show() for the
385  * implementation of this.
386  *
387  * Another problem is we want to ensure the data for display is safe to
388  * access.  To support this, the anonymous "struct {} obj" tracks the data
389  * object and our safe copy of it.  We copy portions of the data needed
390  * to the object "copy" buffer, but because its size is limited to
391  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
392  * traverse larger objects for display.
393  *
394  * The various data type show functions all start with a call to
395  * btf_show_start_type() which returns a pointer to the safe copy
396  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
397  * raw data itself).  btf_show_obj_safe() is responsible for
398  * using copy_from_kernel_nofault() to update the safe data if necessary
399  * as we traverse the object's data.  skbuff-like semantics are
400  * used:
401  *
402  * - obj.head points to the start of the toplevel object for display
403  * - obj.size is the size of the toplevel object
404  * - obj.data points to the current point in the original data at
405  *   which our safe data starts.  obj.data will advance as we copy
406  *   portions of the data.
407  *
408  * In most cases a single copy will suffice, but larger data structures
409  * such as "struct task_struct" will require many copies.  The logic in
410  * btf_show_obj_safe() handles the logic that determines if a new
411  * copy_from_kernel_nofault() is needed.
412  */
413 struct btf_show {
414 	u64 flags;
415 	void *target;	/* target of show operation (seq file, buffer) */
416 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
417 	const struct btf *btf;
418 	/* below are used during iteration */
419 	struct {
420 		u8 depth;
421 		u8 depth_to_show;
422 		u8 depth_check;
423 		u8 array_member:1,
424 		   array_terminated:1;
425 		u16 array_encoding;
426 		u32 type_id;
427 		int status;			/* non-zero for error */
428 		const struct btf_type *type;
429 		const struct btf_member *member;
430 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
431 	} state;
432 	struct {
433 		u32 size;
434 		void *head;
435 		void *data;
436 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
437 	} obj;
438 };
439 
440 struct btf_kind_operations {
441 	s32 (*check_meta)(struct btf_verifier_env *env,
442 			  const struct btf_type *t,
443 			  u32 meta_left);
444 	int (*resolve)(struct btf_verifier_env *env,
445 		       const struct resolve_vertex *v);
446 	int (*check_member)(struct btf_verifier_env *env,
447 			    const struct btf_type *struct_type,
448 			    const struct btf_member *member,
449 			    const struct btf_type *member_type);
450 	int (*check_kflag_member)(struct btf_verifier_env *env,
451 				  const struct btf_type *struct_type,
452 				  const struct btf_member *member,
453 				  const struct btf_type *member_type);
454 	void (*log_details)(struct btf_verifier_env *env,
455 			    const struct btf_type *t);
456 	void (*show)(const struct btf *btf, const struct btf_type *t,
457 			 u32 type_id, void *data, u8 bits_offsets,
458 			 struct btf_show *show);
459 };
460 
461 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
462 static struct btf_type btf_void;
463 
464 static int btf_resolve(struct btf_verifier_env *env,
465 		       const struct btf_type *t, u32 type_id);
466 
467 static int btf_func_check(struct btf_verifier_env *env,
468 			  const struct btf_type *t);
469 
470 static bool btf_type_is_modifier(const struct btf_type *t)
471 {
472 	/* Some of them is not strictly a C modifier
473 	 * but they are grouped into the same bucket
474 	 * for BTF concern:
475 	 *   A type (t) that refers to another
476 	 *   type through t->type AND its size cannot
477 	 *   be determined without following the t->type.
478 	 *
479 	 * ptr does not fall into this bucket
480 	 * because its size is always sizeof(void *).
481 	 */
482 	switch (BTF_INFO_KIND(t->info)) {
483 	case BTF_KIND_TYPEDEF:
484 	case BTF_KIND_VOLATILE:
485 	case BTF_KIND_CONST:
486 	case BTF_KIND_RESTRICT:
487 	case BTF_KIND_TYPE_TAG:
488 		return true;
489 	}
490 
491 	return false;
492 }
493 
494 bool btf_type_is_void(const struct btf_type *t)
495 {
496 	return t == &btf_void;
497 }
498 
499 static bool btf_type_is_fwd(const struct btf_type *t)
500 {
501 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
502 }
503 
504 static bool btf_type_is_datasec(const struct btf_type *t)
505 {
506 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
507 }
508 
509 static bool btf_type_is_decl_tag(const struct btf_type *t)
510 {
511 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
512 }
513 
514 static bool btf_type_nosize(const struct btf_type *t)
515 {
516 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
517 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
518 	       btf_type_is_decl_tag(t);
519 }
520 
521 static bool btf_type_nosize_or_null(const struct btf_type *t)
522 {
523 	return !t || btf_type_nosize(t);
524 }
525 
526 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
527 {
528 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
529 	       btf_type_is_var(t) || btf_type_is_typedef(t);
530 }
531 
532 u32 btf_nr_types(const struct btf *btf)
533 {
534 	u32 total = 0;
535 
536 	while (btf) {
537 		total += btf->nr_types;
538 		btf = btf->base_btf;
539 	}
540 
541 	return total;
542 }
543 
544 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
545 {
546 	const struct btf_type *t;
547 	const char *tname;
548 	u32 i, total;
549 
550 	total = btf_nr_types(btf);
551 	for (i = 1; i < total; i++) {
552 		t = btf_type_by_id(btf, i);
553 		if (BTF_INFO_KIND(t->info) != kind)
554 			continue;
555 
556 		tname = btf_name_by_offset(btf, t->name_off);
557 		if (!strcmp(tname, name))
558 			return i;
559 	}
560 
561 	return -ENOENT;
562 }
563 
564 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
565 {
566 	struct btf *btf;
567 	s32 ret;
568 	int id;
569 
570 	btf = bpf_get_btf_vmlinux();
571 	if (IS_ERR(btf))
572 		return PTR_ERR(btf);
573 	if (!btf)
574 		return -EINVAL;
575 
576 	ret = btf_find_by_name_kind(btf, name, kind);
577 	/* ret is never zero, since btf_find_by_name_kind returns
578 	 * positive btf_id or negative error.
579 	 */
580 	if (ret > 0) {
581 		btf_get(btf);
582 		*btf_p = btf;
583 		return ret;
584 	}
585 
586 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
587 	spin_lock_bh(&btf_idr_lock);
588 	idr_for_each_entry(&btf_idr, btf, id) {
589 		if (!btf_is_module(btf))
590 			continue;
591 		/* linear search could be slow hence unlock/lock
592 		 * the IDR to avoiding holding it for too long
593 		 */
594 		btf_get(btf);
595 		spin_unlock_bh(&btf_idr_lock);
596 		ret = btf_find_by_name_kind(btf, name, kind);
597 		if (ret > 0) {
598 			*btf_p = btf;
599 			return ret;
600 		}
601 		btf_put(btf);
602 		spin_lock_bh(&btf_idr_lock);
603 	}
604 	spin_unlock_bh(&btf_idr_lock);
605 	return ret;
606 }
607 
608 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
609 					       u32 id, u32 *res_id)
610 {
611 	const struct btf_type *t = btf_type_by_id(btf, id);
612 
613 	while (btf_type_is_modifier(t)) {
614 		id = t->type;
615 		t = btf_type_by_id(btf, t->type);
616 	}
617 
618 	if (res_id)
619 		*res_id = id;
620 
621 	return t;
622 }
623 
624 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
625 					    u32 id, u32 *res_id)
626 {
627 	const struct btf_type *t;
628 
629 	t = btf_type_skip_modifiers(btf, id, NULL);
630 	if (!btf_type_is_ptr(t))
631 		return NULL;
632 
633 	return btf_type_skip_modifiers(btf, t->type, res_id);
634 }
635 
636 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
637 						 u32 id, u32 *res_id)
638 {
639 	const struct btf_type *ptype;
640 
641 	ptype = btf_type_resolve_ptr(btf, id, res_id);
642 	if (ptype && btf_type_is_func_proto(ptype))
643 		return ptype;
644 
645 	return NULL;
646 }
647 
648 /* Types that act only as a source, not sink or intermediate
649  * type when resolving.
650  */
651 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
652 {
653 	return btf_type_is_var(t) ||
654 	       btf_type_is_decl_tag(t) ||
655 	       btf_type_is_datasec(t);
656 }
657 
658 /* What types need to be resolved?
659  *
660  * btf_type_is_modifier() is an obvious one.
661  *
662  * btf_type_is_struct() because its member refers to
663  * another type (through member->type).
664  *
665  * btf_type_is_var() because the variable refers to
666  * another type. btf_type_is_datasec() holds multiple
667  * btf_type_is_var() types that need resolving.
668  *
669  * btf_type_is_array() because its element (array->type)
670  * refers to another type.  Array can be thought of a
671  * special case of struct while array just has the same
672  * member-type repeated by array->nelems of times.
673  */
674 static bool btf_type_needs_resolve(const struct btf_type *t)
675 {
676 	return btf_type_is_modifier(t) ||
677 	       btf_type_is_ptr(t) ||
678 	       btf_type_is_struct(t) ||
679 	       btf_type_is_array(t) ||
680 	       btf_type_is_var(t) ||
681 	       btf_type_is_func(t) ||
682 	       btf_type_is_decl_tag(t) ||
683 	       btf_type_is_datasec(t);
684 }
685 
686 /* t->size can be used */
687 static bool btf_type_has_size(const struct btf_type *t)
688 {
689 	switch (BTF_INFO_KIND(t->info)) {
690 	case BTF_KIND_INT:
691 	case BTF_KIND_STRUCT:
692 	case BTF_KIND_UNION:
693 	case BTF_KIND_ENUM:
694 	case BTF_KIND_DATASEC:
695 	case BTF_KIND_FLOAT:
696 	case BTF_KIND_ENUM64:
697 		return true;
698 	}
699 
700 	return false;
701 }
702 
703 static const char *btf_int_encoding_str(u8 encoding)
704 {
705 	if (encoding == 0)
706 		return "(none)";
707 	else if (encoding == BTF_INT_SIGNED)
708 		return "SIGNED";
709 	else if (encoding == BTF_INT_CHAR)
710 		return "CHAR";
711 	else if (encoding == BTF_INT_BOOL)
712 		return "BOOL";
713 	else
714 		return "UNKN";
715 }
716 
717 static u32 btf_type_int(const struct btf_type *t)
718 {
719 	return *(u32 *)(t + 1);
720 }
721 
722 static const struct btf_array *btf_type_array(const struct btf_type *t)
723 {
724 	return (const struct btf_array *)(t + 1);
725 }
726 
727 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
728 {
729 	return (const struct btf_enum *)(t + 1);
730 }
731 
732 static const struct btf_var *btf_type_var(const struct btf_type *t)
733 {
734 	return (const struct btf_var *)(t + 1);
735 }
736 
737 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
738 {
739 	return (const struct btf_decl_tag *)(t + 1);
740 }
741 
742 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
743 {
744 	return (const struct btf_enum64 *)(t + 1);
745 }
746 
747 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
748 {
749 	return kind_ops[BTF_INFO_KIND(t->info)];
750 }
751 
752 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
753 {
754 	if (!BTF_STR_OFFSET_VALID(offset))
755 		return false;
756 
757 	while (offset < btf->start_str_off)
758 		btf = btf->base_btf;
759 
760 	offset -= btf->start_str_off;
761 	return offset < btf->hdr.str_len;
762 }
763 
764 static bool __btf_name_char_ok(char c, bool first)
765 {
766 	if ((first ? !isalpha(c) :
767 		     !isalnum(c)) &&
768 	    c != '_' &&
769 	    c != '.')
770 		return false;
771 	return true;
772 }
773 
774 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
775 {
776 	while (offset < btf->start_str_off)
777 		btf = btf->base_btf;
778 
779 	offset -= btf->start_str_off;
780 	if (offset < btf->hdr.str_len)
781 		return &btf->strings[offset];
782 
783 	return NULL;
784 }
785 
786 static bool __btf_name_valid(const struct btf *btf, u32 offset)
787 {
788 	/* offset must be valid */
789 	const char *src = btf_str_by_offset(btf, offset);
790 	const char *src_limit;
791 
792 	if (!__btf_name_char_ok(*src, true))
793 		return false;
794 
795 	/* set a limit on identifier length */
796 	src_limit = src + KSYM_NAME_LEN;
797 	src++;
798 	while (*src && src < src_limit) {
799 		if (!__btf_name_char_ok(*src, false))
800 			return false;
801 		src++;
802 	}
803 
804 	return !*src;
805 }
806 
807 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
808 {
809 	return __btf_name_valid(btf, offset);
810 }
811 
812 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
813 {
814 	return __btf_name_valid(btf, offset);
815 }
816 
817 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
818 {
819 	const char *name;
820 
821 	if (!offset)
822 		return "(anon)";
823 
824 	name = btf_str_by_offset(btf, offset);
825 	return name ?: "(invalid-name-offset)";
826 }
827 
828 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
829 {
830 	return btf_str_by_offset(btf, offset);
831 }
832 
833 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
834 {
835 	while (type_id < btf->start_id)
836 		btf = btf->base_btf;
837 
838 	type_id -= btf->start_id;
839 	if (type_id >= btf->nr_types)
840 		return NULL;
841 	return btf->types[type_id];
842 }
843 EXPORT_SYMBOL_GPL(btf_type_by_id);
844 
845 /*
846  * Regular int is not a bit field and it must be either
847  * u8/u16/u32/u64 or __int128.
848  */
849 static bool btf_type_int_is_regular(const struct btf_type *t)
850 {
851 	u8 nr_bits, nr_bytes;
852 	u32 int_data;
853 
854 	int_data = btf_type_int(t);
855 	nr_bits = BTF_INT_BITS(int_data);
856 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
857 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
858 	    BTF_INT_OFFSET(int_data) ||
859 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
860 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
861 	     nr_bytes != (2 * sizeof(u64)))) {
862 		return false;
863 	}
864 
865 	return true;
866 }
867 
868 /*
869  * Check that given struct member is a regular int with expected
870  * offset and size.
871  */
872 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
873 			   const struct btf_member *m,
874 			   u32 expected_offset, u32 expected_size)
875 {
876 	const struct btf_type *t;
877 	u32 id, int_data;
878 	u8 nr_bits;
879 
880 	id = m->type;
881 	t = btf_type_id_size(btf, &id, NULL);
882 	if (!t || !btf_type_is_int(t))
883 		return false;
884 
885 	int_data = btf_type_int(t);
886 	nr_bits = BTF_INT_BITS(int_data);
887 	if (btf_type_kflag(s)) {
888 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
889 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
890 
891 		/* if kflag set, int should be a regular int and
892 		 * bit offset should be at byte boundary.
893 		 */
894 		return !bitfield_size &&
895 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
896 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
897 	}
898 
899 	if (BTF_INT_OFFSET(int_data) ||
900 	    BITS_PER_BYTE_MASKED(m->offset) ||
901 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
902 	    BITS_PER_BYTE_MASKED(nr_bits) ||
903 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
904 		return false;
905 
906 	return true;
907 }
908 
909 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
910 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
911 						       u32 id)
912 {
913 	const struct btf_type *t = btf_type_by_id(btf, id);
914 
915 	while (btf_type_is_modifier(t) &&
916 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
917 		t = btf_type_by_id(btf, t->type);
918 	}
919 
920 	return t;
921 }
922 
923 #define BTF_SHOW_MAX_ITER	10
924 
925 #define BTF_KIND_BIT(kind)	(1ULL << kind)
926 
927 /*
928  * Populate show->state.name with type name information.
929  * Format of type name is
930  *
931  * [.member_name = ] (type_name)
932  */
933 static const char *btf_show_name(struct btf_show *show)
934 {
935 	/* BTF_MAX_ITER array suffixes "[]" */
936 	const char *array_suffixes = "[][][][][][][][][][]";
937 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
938 	/* BTF_MAX_ITER pointer suffixes "*" */
939 	const char *ptr_suffixes = "**********";
940 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
941 	const char *name = NULL, *prefix = "", *parens = "";
942 	const struct btf_member *m = show->state.member;
943 	const struct btf_type *t;
944 	const struct btf_array *array;
945 	u32 id = show->state.type_id;
946 	const char *member = NULL;
947 	bool show_member = false;
948 	u64 kinds = 0;
949 	int i;
950 
951 	show->state.name[0] = '\0';
952 
953 	/*
954 	 * Don't show type name if we're showing an array member;
955 	 * in that case we show the array type so don't need to repeat
956 	 * ourselves for each member.
957 	 */
958 	if (show->state.array_member)
959 		return "";
960 
961 	/* Retrieve member name, if any. */
962 	if (m) {
963 		member = btf_name_by_offset(show->btf, m->name_off);
964 		show_member = strlen(member) > 0;
965 		id = m->type;
966 	}
967 
968 	/*
969 	 * Start with type_id, as we have resolved the struct btf_type *
970 	 * via btf_modifier_show() past the parent typedef to the child
971 	 * struct, int etc it is defined as.  In such cases, the type_id
972 	 * still represents the starting type while the struct btf_type *
973 	 * in our show->state points at the resolved type of the typedef.
974 	 */
975 	t = btf_type_by_id(show->btf, id);
976 	if (!t)
977 		return "";
978 
979 	/*
980 	 * The goal here is to build up the right number of pointer and
981 	 * array suffixes while ensuring the type name for a typedef
982 	 * is represented.  Along the way we accumulate a list of
983 	 * BTF kinds we have encountered, since these will inform later
984 	 * display; for example, pointer types will not require an
985 	 * opening "{" for struct, we will just display the pointer value.
986 	 *
987 	 * We also want to accumulate the right number of pointer or array
988 	 * indices in the format string while iterating until we get to
989 	 * the typedef/pointee/array member target type.
990 	 *
991 	 * We start by pointing at the end of pointer and array suffix
992 	 * strings; as we accumulate pointers and arrays we move the pointer
993 	 * or array string backwards so it will show the expected number of
994 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
995 	 * and/or arrays and typedefs are supported as a precaution.
996 	 *
997 	 * We also want to get typedef name while proceeding to resolve
998 	 * type it points to so that we can add parentheses if it is a
999 	 * "typedef struct" etc.
1000 	 */
1001 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1002 
1003 		switch (BTF_INFO_KIND(t->info)) {
1004 		case BTF_KIND_TYPEDEF:
1005 			if (!name)
1006 				name = btf_name_by_offset(show->btf,
1007 							       t->name_off);
1008 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1009 			id = t->type;
1010 			break;
1011 		case BTF_KIND_ARRAY:
1012 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1013 			parens = "[";
1014 			if (!t)
1015 				return "";
1016 			array = btf_type_array(t);
1017 			if (array_suffix > array_suffixes)
1018 				array_suffix -= 2;
1019 			id = array->type;
1020 			break;
1021 		case BTF_KIND_PTR:
1022 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1023 			if (ptr_suffix > ptr_suffixes)
1024 				ptr_suffix -= 1;
1025 			id = t->type;
1026 			break;
1027 		default:
1028 			id = 0;
1029 			break;
1030 		}
1031 		if (!id)
1032 			break;
1033 		t = btf_type_skip_qualifiers(show->btf, id);
1034 	}
1035 	/* We may not be able to represent this type; bail to be safe */
1036 	if (i == BTF_SHOW_MAX_ITER)
1037 		return "";
1038 
1039 	if (!name)
1040 		name = btf_name_by_offset(show->btf, t->name_off);
1041 
1042 	switch (BTF_INFO_KIND(t->info)) {
1043 	case BTF_KIND_STRUCT:
1044 	case BTF_KIND_UNION:
1045 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1046 			 "struct" : "union";
1047 		/* if it's an array of struct/union, parens is already set */
1048 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1049 			parens = "{";
1050 		break;
1051 	case BTF_KIND_ENUM:
1052 	case BTF_KIND_ENUM64:
1053 		prefix = "enum";
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	/* pointer does not require parens */
1060 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1061 		parens = "";
1062 	/* typedef does not require struct/union/enum prefix */
1063 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1064 		prefix = "";
1065 
1066 	if (!name)
1067 		name = "";
1068 
1069 	/* Even if we don't want type name info, we want parentheses etc */
1070 	if (show->flags & BTF_SHOW_NONAME)
1071 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1072 			 parens);
1073 	else
1074 		snprintf(show->state.name, sizeof(show->state.name),
1075 			 "%s%s%s(%s%s%s%s%s%s)%s",
1076 			 /* first 3 strings comprise ".member = " */
1077 			 show_member ? "." : "",
1078 			 show_member ? member : "",
1079 			 show_member ? " = " : "",
1080 			 /* ...next is our prefix (struct, enum, etc) */
1081 			 prefix,
1082 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1083 			 /* ...this is the type name itself */
1084 			 name,
1085 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1086 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1087 			 array_suffix, parens);
1088 
1089 	return show->state.name;
1090 }
1091 
1092 static const char *__btf_show_indent(struct btf_show *show)
1093 {
1094 	const char *indents = "                                ";
1095 	const char *indent = &indents[strlen(indents)];
1096 
1097 	if ((indent - show->state.depth) >= indents)
1098 		return indent - show->state.depth;
1099 	return indents;
1100 }
1101 
1102 static const char *btf_show_indent(struct btf_show *show)
1103 {
1104 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1105 }
1106 
1107 static const char *btf_show_newline(struct btf_show *show)
1108 {
1109 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1110 }
1111 
1112 static const char *btf_show_delim(struct btf_show *show)
1113 {
1114 	if (show->state.depth == 0)
1115 		return "";
1116 
1117 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1118 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1119 		return "|";
1120 
1121 	return ",";
1122 }
1123 
1124 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1125 {
1126 	va_list args;
1127 
1128 	if (!show->state.depth_check) {
1129 		va_start(args, fmt);
1130 		show->showfn(show, fmt, args);
1131 		va_end(args);
1132 	}
1133 }
1134 
1135 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1136  * format specifiers to the format specifier passed in; these do the work of
1137  * adding indentation, delimiters etc while the caller simply has to specify
1138  * the type value(s) in the format specifier + value(s).
1139  */
1140 #define btf_show_type_value(show, fmt, value)				       \
1141 	do {								       \
1142 		if ((value) != (__typeof__(value))0 ||			       \
1143 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1144 		    show->state.depth == 0) {				       \
1145 			btf_show(show, "%s%s" fmt "%s%s",		       \
1146 				 btf_show_indent(show),			       \
1147 				 btf_show_name(show),			       \
1148 				 value, btf_show_delim(show),		       \
1149 				 btf_show_newline(show));		       \
1150 			if (show->state.depth > show->state.depth_to_show)     \
1151 				show->state.depth_to_show = show->state.depth; \
1152 		}							       \
1153 	} while (0)
1154 
1155 #define btf_show_type_values(show, fmt, ...)				       \
1156 	do {								       \
1157 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1158 			 btf_show_name(show),				       \
1159 			 __VA_ARGS__, btf_show_delim(show),		       \
1160 			 btf_show_newline(show));			       \
1161 		if (show->state.depth > show->state.depth_to_show)	       \
1162 			show->state.depth_to_show = show->state.depth;	       \
1163 	} while (0)
1164 
1165 /* How much is left to copy to safe buffer after @data? */
1166 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1167 {
1168 	return show->obj.head + show->obj.size - data;
1169 }
1170 
1171 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1172 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1173 {
1174 	return data >= show->obj.data &&
1175 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1176 }
1177 
1178 /*
1179  * If object pointed to by @data of @size falls within our safe buffer, return
1180  * the equivalent pointer to the same safe data.  Assumes
1181  * copy_from_kernel_nofault() has already happened and our safe buffer is
1182  * populated.
1183  */
1184 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1185 {
1186 	if (btf_show_obj_is_safe(show, data, size))
1187 		return show->obj.safe + (data - show->obj.data);
1188 	return NULL;
1189 }
1190 
1191 /*
1192  * Return a safe-to-access version of data pointed to by @data.
1193  * We do this by copying the relevant amount of information
1194  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1195  *
1196  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1197  * safe copy is needed.
1198  *
1199  * Otherwise we need to determine if we have the required amount
1200  * of data (determined by the @data pointer and the size of the
1201  * largest base type we can encounter (represented by
1202  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1203  * that we will be able to print some of the current object,
1204  * and if more is needed a copy will be triggered.
1205  * Some objects such as structs will not fit into the buffer;
1206  * in such cases additional copies when we iterate over their
1207  * members may be needed.
1208  *
1209  * btf_show_obj_safe() is used to return a safe buffer for
1210  * btf_show_start_type(); this ensures that as we recurse into
1211  * nested types we always have safe data for the given type.
1212  * This approach is somewhat wasteful; it's possible for example
1213  * that when iterating over a large union we'll end up copying the
1214  * same data repeatedly, but the goal is safety not performance.
1215  * We use stack data as opposed to per-CPU buffers because the
1216  * iteration over a type can take some time, and preemption handling
1217  * would greatly complicate use of the safe buffer.
1218  */
1219 static void *btf_show_obj_safe(struct btf_show *show,
1220 			       const struct btf_type *t,
1221 			       void *data)
1222 {
1223 	const struct btf_type *rt;
1224 	int size_left, size;
1225 	void *safe = NULL;
1226 
1227 	if (show->flags & BTF_SHOW_UNSAFE)
1228 		return data;
1229 
1230 	rt = btf_resolve_size(show->btf, t, &size);
1231 	if (IS_ERR(rt)) {
1232 		show->state.status = PTR_ERR(rt);
1233 		return NULL;
1234 	}
1235 
1236 	/*
1237 	 * Is this toplevel object? If so, set total object size and
1238 	 * initialize pointers.  Otherwise check if we still fall within
1239 	 * our safe object data.
1240 	 */
1241 	if (show->state.depth == 0) {
1242 		show->obj.size = size;
1243 		show->obj.head = data;
1244 	} else {
1245 		/*
1246 		 * If the size of the current object is > our remaining
1247 		 * safe buffer we _may_ need to do a new copy.  However
1248 		 * consider the case of a nested struct; it's size pushes
1249 		 * us over the safe buffer limit, but showing any individual
1250 		 * struct members does not.  In such cases, we don't need
1251 		 * to initiate a fresh copy yet; however we definitely need
1252 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1253 		 * in our buffer, regardless of the current object size.
1254 		 * The logic here is that as we resolve types we will
1255 		 * hit a base type at some point, and we need to be sure
1256 		 * the next chunk of data is safely available to display
1257 		 * that type info safely.  We cannot rely on the size of
1258 		 * the current object here because it may be much larger
1259 		 * than our current buffer (e.g. task_struct is 8k).
1260 		 * All we want to do here is ensure that we can print the
1261 		 * next basic type, which we can if either
1262 		 * - the current type size is within the safe buffer; or
1263 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1264 		 *   the safe buffer.
1265 		 */
1266 		safe = __btf_show_obj_safe(show, data,
1267 					   min(size,
1268 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1269 	}
1270 
1271 	/*
1272 	 * We need a new copy to our safe object, either because we haven't
1273 	 * yet copied and are initializing safe data, or because the data
1274 	 * we want falls outside the boundaries of the safe object.
1275 	 */
1276 	if (!safe) {
1277 		size_left = btf_show_obj_size_left(show, data);
1278 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1279 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1280 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1281 							      data, size_left);
1282 		if (!show->state.status) {
1283 			show->obj.data = data;
1284 			safe = show->obj.safe;
1285 		}
1286 	}
1287 
1288 	return safe;
1289 }
1290 
1291 /*
1292  * Set the type we are starting to show and return a safe data pointer
1293  * to be used for showing the associated data.
1294  */
1295 static void *btf_show_start_type(struct btf_show *show,
1296 				 const struct btf_type *t,
1297 				 u32 type_id, void *data)
1298 {
1299 	show->state.type = t;
1300 	show->state.type_id = type_id;
1301 	show->state.name[0] = '\0';
1302 
1303 	return btf_show_obj_safe(show, t, data);
1304 }
1305 
1306 static void btf_show_end_type(struct btf_show *show)
1307 {
1308 	show->state.type = NULL;
1309 	show->state.type_id = 0;
1310 	show->state.name[0] = '\0';
1311 }
1312 
1313 static void *btf_show_start_aggr_type(struct btf_show *show,
1314 				      const struct btf_type *t,
1315 				      u32 type_id, void *data)
1316 {
1317 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1318 
1319 	if (!safe_data)
1320 		return safe_data;
1321 
1322 	btf_show(show, "%s%s%s", btf_show_indent(show),
1323 		 btf_show_name(show),
1324 		 btf_show_newline(show));
1325 	show->state.depth++;
1326 	return safe_data;
1327 }
1328 
1329 static void btf_show_end_aggr_type(struct btf_show *show,
1330 				   const char *suffix)
1331 {
1332 	show->state.depth--;
1333 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1334 		 btf_show_delim(show), btf_show_newline(show));
1335 	btf_show_end_type(show);
1336 }
1337 
1338 static void btf_show_start_member(struct btf_show *show,
1339 				  const struct btf_member *m)
1340 {
1341 	show->state.member = m;
1342 }
1343 
1344 static void btf_show_start_array_member(struct btf_show *show)
1345 {
1346 	show->state.array_member = 1;
1347 	btf_show_start_member(show, NULL);
1348 }
1349 
1350 static void btf_show_end_member(struct btf_show *show)
1351 {
1352 	show->state.member = NULL;
1353 }
1354 
1355 static void btf_show_end_array_member(struct btf_show *show)
1356 {
1357 	show->state.array_member = 0;
1358 	btf_show_end_member(show);
1359 }
1360 
1361 static void *btf_show_start_array_type(struct btf_show *show,
1362 				       const struct btf_type *t,
1363 				       u32 type_id,
1364 				       u16 array_encoding,
1365 				       void *data)
1366 {
1367 	show->state.array_encoding = array_encoding;
1368 	show->state.array_terminated = 0;
1369 	return btf_show_start_aggr_type(show, t, type_id, data);
1370 }
1371 
1372 static void btf_show_end_array_type(struct btf_show *show)
1373 {
1374 	show->state.array_encoding = 0;
1375 	show->state.array_terminated = 0;
1376 	btf_show_end_aggr_type(show, "]");
1377 }
1378 
1379 static void *btf_show_start_struct_type(struct btf_show *show,
1380 					const struct btf_type *t,
1381 					u32 type_id,
1382 					void *data)
1383 {
1384 	return btf_show_start_aggr_type(show, t, type_id, data);
1385 }
1386 
1387 static void btf_show_end_struct_type(struct btf_show *show)
1388 {
1389 	btf_show_end_aggr_type(show, "}");
1390 }
1391 
1392 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1393 					      const char *fmt, ...)
1394 {
1395 	va_list args;
1396 
1397 	va_start(args, fmt);
1398 	bpf_verifier_vlog(log, fmt, args);
1399 	va_end(args);
1400 }
1401 
1402 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1403 					    const char *fmt, ...)
1404 {
1405 	struct bpf_verifier_log *log = &env->log;
1406 	va_list args;
1407 
1408 	if (!bpf_verifier_log_needed(log))
1409 		return;
1410 
1411 	va_start(args, fmt);
1412 	bpf_verifier_vlog(log, fmt, args);
1413 	va_end(args);
1414 }
1415 
1416 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1417 						   const struct btf_type *t,
1418 						   bool log_details,
1419 						   const char *fmt, ...)
1420 {
1421 	struct bpf_verifier_log *log = &env->log;
1422 	struct btf *btf = env->btf;
1423 	va_list args;
1424 
1425 	if (!bpf_verifier_log_needed(log))
1426 		return;
1427 
1428 	if (log->level == BPF_LOG_KERNEL) {
1429 		/* btf verifier prints all types it is processing via
1430 		 * btf_verifier_log_type(..., fmt = NULL).
1431 		 * Skip those prints for in-kernel BTF verification.
1432 		 */
1433 		if (!fmt)
1434 			return;
1435 
1436 		/* Skip logging when loading module BTF with mismatches permitted */
1437 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1438 			return;
1439 	}
1440 
1441 	__btf_verifier_log(log, "[%u] %s %s%s",
1442 			   env->log_type_id,
1443 			   btf_type_str(t),
1444 			   __btf_name_by_offset(btf, t->name_off),
1445 			   log_details ? " " : "");
1446 
1447 	if (log_details)
1448 		btf_type_ops(t)->log_details(env, t);
1449 
1450 	if (fmt && *fmt) {
1451 		__btf_verifier_log(log, " ");
1452 		va_start(args, fmt);
1453 		bpf_verifier_vlog(log, fmt, args);
1454 		va_end(args);
1455 	}
1456 
1457 	__btf_verifier_log(log, "\n");
1458 }
1459 
1460 #define btf_verifier_log_type(env, t, ...) \
1461 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1462 #define btf_verifier_log_basic(env, t, ...) \
1463 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1464 
1465 __printf(4, 5)
1466 static void btf_verifier_log_member(struct btf_verifier_env *env,
1467 				    const struct btf_type *struct_type,
1468 				    const struct btf_member *member,
1469 				    const char *fmt, ...)
1470 {
1471 	struct bpf_verifier_log *log = &env->log;
1472 	struct btf *btf = env->btf;
1473 	va_list args;
1474 
1475 	if (!bpf_verifier_log_needed(log))
1476 		return;
1477 
1478 	if (log->level == BPF_LOG_KERNEL) {
1479 		if (!fmt)
1480 			return;
1481 
1482 		/* Skip logging when loading module BTF with mismatches permitted */
1483 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1484 			return;
1485 	}
1486 
1487 	/* The CHECK_META phase already did a btf dump.
1488 	 *
1489 	 * If member is logged again, it must hit an error in
1490 	 * parsing this member.  It is useful to print out which
1491 	 * struct this member belongs to.
1492 	 */
1493 	if (env->phase != CHECK_META)
1494 		btf_verifier_log_type(env, struct_type, NULL);
1495 
1496 	if (btf_type_kflag(struct_type))
1497 		__btf_verifier_log(log,
1498 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1499 				   __btf_name_by_offset(btf, member->name_off),
1500 				   member->type,
1501 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1502 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1503 	else
1504 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1505 				   __btf_name_by_offset(btf, member->name_off),
1506 				   member->type, member->offset);
1507 
1508 	if (fmt && *fmt) {
1509 		__btf_verifier_log(log, " ");
1510 		va_start(args, fmt);
1511 		bpf_verifier_vlog(log, fmt, args);
1512 		va_end(args);
1513 	}
1514 
1515 	__btf_verifier_log(log, "\n");
1516 }
1517 
1518 __printf(4, 5)
1519 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1520 				 const struct btf_type *datasec_type,
1521 				 const struct btf_var_secinfo *vsi,
1522 				 const char *fmt, ...)
1523 {
1524 	struct bpf_verifier_log *log = &env->log;
1525 	va_list args;
1526 
1527 	if (!bpf_verifier_log_needed(log))
1528 		return;
1529 	if (log->level == BPF_LOG_KERNEL && !fmt)
1530 		return;
1531 	if (env->phase != CHECK_META)
1532 		btf_verifier_log_type(env, datasec_type, NULL);
1533 
1534 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1535 			   vsi->type, vsi->offset, vsi->size);
1536 	if (fmt && *fmt) {
1537 		__btf_verifier_log(log, " ");
1538 		va_start(args, fmt);
1539 		bpf_verifier_vlog(log, fmt, args);
1540 		va_end(args);
1541 	}
1542 
1543 	__btf_verifier_log(log, "\n");
1544 }
1545 
1546 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1547 				 u32 btf_data_size)
1548 {
1549 	struct bpf_verifier_log *log = &env->log;
1550 	const struct btf *btf = env->btf;
1551 	const struct btf_header *hdr;
1552 
1553 	if (!bpf_verifier_log_needed(log))
1554 		return;
1555 
1556 	if (log->level == BPF_LOG_KERNEL)
1557 		return;
1558 	hdr = &btf->hdr;
1559 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1560 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1561 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1562 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1563 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1564 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1565 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1566 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1567 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1568 }
1569 
1570 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1571 {
1572 	struct btf *btf = env->btf;
1573 
1574 	if (btf->types_size == btf->nr_types) {
1575 		/* Expand 'types' array */
1576 
1577 		struct btf_type **new_types;
1578 		u32 expand_by, new_size;
1579 
1580 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1581 			btf_verifier_log(env, "Exceeded max num of types");
1582 			return -E2BIG;
1583 		}
1584 
1585 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1586 		new_size = min_t(u32, BTF_MAX_TYPE,
1587 				 btf->types_size + expand_by);
1588 
1589 		new_types = kvcalloc(new_size, sizeof(*new_types),
1590 				     GFP_KERNEL | __GFP_NOWARN);
1591 		if (!new_types)
1592 			return -ENOMEM;
1593 
1594 		if (btf->nr_types == 0) {
1595 			if (!btf->base_btf) {
1596 				/* lazily init VOID type */
1597 				new_types[0] = &btf_void;
1598 				btf->nr_types++;
1599 			}
1600 		} else {
1601 			memcpy(new_types, btf->types,
1602 			       sizeof(*btf->types) * btf->nr_types);
1603 		}
1604 
1605 		kvfree(btf->types);
1606 		btf->types = new_types;
1607 		btf->types_size = new_size;
1608 	}
1609 
1610 	btf->types[btf->nr_types++] = t;
1611 
1612 	return 0;
1613 }
1614 
1615 static int btf_alloc_id(struct btf *btf)
1616 {
1617 	int id;
1618 
1619 	idr_preload(GFP_KERNEL);
1620 	spin_lock_bh(&btf_idr_lock);
1621 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1622 	if (id > 0)
1623 		btf->id = id;
1624 	spin_unlock_bh(&btf_idr_lock);
1625 	idr_preload_end();
1626 
1627 	if (WARN_ON_ONCE(!id))
1628 		return -ENOSPC;
1629 
1630 	return id > 0 ? 0 : id;
1631 }
1632 
1633 static void btf_free_id(struct btf *btf)
1634 {
1635 	unsigned long flags;
1636 
1637 	/*
1638 	 * In map-in-map, calling map_delete_elem() on outer
1639 	 * map will call bpf_map_put on the inner map.
1640 	 * It will then eventually call btf_free_id()
1641 	 * on the inner map.  Some of the map_delete_elem()
1642 	 * implementation may have irq disabled, so
1643 	 * we need to use the _irqsave() version instead
1644 	 * of the _bh() version.
1645 	 */
1646 	spin_lock_irqsave(&btf_idr_lock, flags);
1647 	idr_remove(&btf_idr, btf->id);
1648 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1649 }
1650 
1651 static void btf_free_kfunc_set_tab(struct btf *btf)
1652 {
1653 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1654 	int hook;
1655 
1656 	if (!tab)
1657 		return;
1658 	/* For module BTF, we directly assign the sets being registered, so
1659 	 * there is nothing to free except kfunc_set_tab.
1660 	 */
1661 	if (btf_is_module(btf))
1662 		goto free_tab;
1663 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1664 		kfree(tab->sets[hook]);
1665 free_tab:
1666 	kfree(tab);
1667 	btf->kfunc_set_tab = NULL;
1668 }
1669 
1670 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1671 {
1672 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1673 
1674 	if (!tab)
1675 		return;
1676 	kfree(tab);
1677 	btf->dtor_kfunc_tab = NULL;
1678 }
1679 
1680 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1681 {
1682 	int i;
1683 
1684 	if (!tab)
1685 		return;
1686 	for (i = 0; i < tab->cnt; i++)
1687 		btf_record_free(tab->types[i].record);
1688 	kfree(tab);
1689 }
1690 
1691 static void btf_free_struct_meta_tab(struct btf *btf)
1692 {
1693 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1694 
1695 	btf_struct_metas_free(tab);
1696 	btf->struct_meta_tab = NULL;
1697 }
1698 
1699 static void btf_free_struct_ops_tab(struct btf *btf)
1700 {
1701 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1702 	u32 i;
1703 
1704 	if (!tab)
1705 		return;
1706 
1707 	for (i = 0; i < tab->cnt; i++)
1708 		bpf_struct_ops_desc_release(&tab->ops[i]);
1709 
1710 	kfree(tab);
1711 	btf->struct_ops_tab = NULL;
1712 }
1713 
1714 static void btf_free(struct btf *btf)
1715 {
1716 	btf_free_struct_meta_tab(btf);
1717 	btf_free_dtor_kfunc_tab(btf);
1718 	btf_free_kfunc_set_tab(btf);
1719 	btf_free_struct_ops_tab(btf);
1720 	kvfree(btf->types);
1721 	kvfree(btf->resolved_sizes);
1722 	kvfree(btf->resolved_ids);
1723 	kvfree(btf->data);
1724 	kfree(btf);
1725 }
1726 
1727 static void btf_free_rcu(struct rcu_head *rcu)
1728 {
1729 	struct btf *btf = container_of(rcu, struct btf, rcu);
1730 
1731 	btf_free(btf);
1732 }
1733 
1734 const char *btf_get_name(const struct btf *btf)
1735 {
1736 	return btf->name;
1737 }
1738 
1739 void btf_get(struct btf *btf)
1740 {
1741 	refcount_inc(&btf->refcnt);
1742 }
1743 
1744 void btf_put(struct btf *btf)
1745 {
1746 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1747 		btf_free_id(btf);
1748 		call_rcu(&btf->rcu, btf_free_rcu);
1749 	}
1750 }
1751 
1752 static int env_resolve_init(struct btf_verifier_env *env)
1753 {
1754 	struct btf *btf = env->btf;
1755 	u32 nr_types = btf->nr_types;
1756 	u32 *resolved_sizes = NULL;
1757 	u32 *resolved_ids = NULL;
1758 	u8 *visit_states = NULL;
1759 
1760 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1761 				  GFP_KERNEL | __GFP_NOWARN);
1762 	if (!resolved_sizes)
1763 		goto nomem;
1764 
1765 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1766 				GFP_KERNEL | __GFP_NOWARN);
1767 	if (!resolved_ids)
1768 		goto nomem;
1769 
1770 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1771 				GFP_KERNEL | __GFP_NOWARN);
1772 	if (!visit_states)
1773 		goto nomem;
1774 
1775 	btf->resolved_sizes = resolved_sizes;
1776 	btf->resolved_ids = resolved_ids;
1777 	env->visit_states = visit_states;
1778 
1779 	return 0;
1780 
1781 nomem:
1782 	kvfree(resolved_sizes);
1783 	kvfree(resolved_ids);
1784 	kvfree(visit_states);
1785 	return -ENOMEM;
1786 }
1787 
1788 static void btf_verifier_env_free(struct btf_verifier_env *env)
1789 {
1790 	kvfree(env->visit_states);
1791 	kfree(env);
1792 }
1793 
1794 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1795 				     const struct btf_type *next_type)
1796 {
1797 	switch (env->resolve_mode) {
1798 	case RESOLVE_TBD:
1799 		/* int, enum or void is a sink */
1800 		return !btf_type_needs_resolve(next_type);
1801 	case RESOLVE_PTR:
1802 		/* int, enum, void, struct, array, func or func_proto is a sink
1803 		 * for ptr
1804 		 */
1805 		return !btf_type_is_modifier(next_type) &&
1806 			!btf_type_is_ptr(next_type);
1807 	case RESOLVE_STRUCT_OR_ARRAY:
1808 		/* int, enum, void, ptr, func or func_proto is a sink
1809 		 * for struct and array
1810 		 */
1811 		return !btf_type_is_modifier(next_type) &&
1812 			!btf_type_is_array(next_type) &&
1813 			!btf_type_is_struct(next_type);
1814 	default:
1815 		BUG();
1816 	}
1817 }
1818 
1819 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1820 				 u32 type_id)
1821 {
1822 	/* base BTF types should be resolved by now */
1823 	if (type_id < env->btf->start_id)
1824 		return true;
1825 
1826 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1827 }
1828 
1829 static int env_stack_push(struct btf_verifier_env *env,
1830 			  const struct btf_type *t, u32 type_id)
1831 {
1832 	const struct btf *btf = env->btf;
1833 	struct resolve_vertex *v;
1834 
1835 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1836 		return -E2BIG;
1837 
1838 	if (type_id < btf->start_id
1839 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1840 		return -EEXIST;
1841 
1842 	env->visit_states[type_id - btf->start_id] = VISITED;
1843 
1844 	v = &env->stack[env->top_stack++];
1845 	v->t = t;
1846 	v->type_id = type_id;
1847 	v->next_member = 0;
1848 
1849 	if (env->resolve_mode == RESOLVE_TBD) {
1850 		if (btf_type_is_ptr(t))
1851 			env->resolve_mode = RESOLVE_PTR;
1852 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1853 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static void env_stack_set_next_member(struct btf_verifier_env *env,
1860 				      u16 next_member)
1861 {
1862 	env->stack[env->top_stack - 1].next_member = next_member;
1863 }
1864 
1865 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1866 				   u32 resolved_type_id,
1867 				   u32 resolved_size)
1868 {
1869 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1870 	struct btf *btf = env->btf;
1871 
1872 	type_id -= btf->start_id; /* adjust to local type id */
1873 	btf->resolved_sizes[type_id] = resolved_size;
1874 	btf->resolved_ids[type_id] = resolved_type_id;
1875 	env->visit_states[type_id] = RESOLVED;
1876 }
1877 
1878 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1879 {
1880 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1881 }
1882 
1883 /* Resolve the size of a passed-in "type"
1884  *
1885  * type: is an array (e.g. u32 array[x][y])
1886  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1887  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1888  *             corresponds to the return type.
1889  * *elem_type: u32
1890  * *elem_id: id of u32
1891  * *total_nelems: (x * y).  Hence, individual elem size is
1892  *                (*type_size / *total_nelems)
1893  * *type_id: id of type if it's changed within the function, 0 if not
1894  *
1895  * type: is not an array (e.g. const struct X)
1896  * return type: type "struct X"
1897  * *type_size: sizeof(struct X)
1898  * *elem_type: same as return type ("struct X")
1899  * *elem_id: 0
1900  * *total_nelems: 1
1901  * *type_id: id of type if it's changed within the function, 0 if not
1902  */
1903 static const struct btf_type *
1904 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1905 		   u32 *type_size, const struct btf_type **elem_type,
1906 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1907 {
1908 	const struct btf_type *array_type = NULL;
1909 	const struct btf_array *array = NULL;
1910 	u32 i, size, nelems = 1, id = 0;
1911 
1912 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1913 		switch (BTF_INFO_KIND(type->info)) {
1914 		/* type->size can be used */
1915 		case BTF_KIND_INT:
1916 		case BTF_KIND_STRUCT:
1917 		case BTF_KIND_UNION:
1918 		case BTF_KIND_ENUM:
1919 		case BTF_KIND_FLOAT:
1920 		case BTF_KIND_ENUM64:
1921 			size = type->size;
1922 			goto resolved;
1923 
1924 		case BTF_KIND_PTR:
1925 			size = sizeof(void *);
1926 			goto resolved;
1927 
1928 		/* Modifiers */
1929 		case BTF_KIND_TYPEDEF:
1930 		case BTF_KIND_VOLATILE:
1931 		case BTF_KIND_CONST:
1932 		case BTF_KIND_RESTRICT:
1933 		case BTF_KIND_TYPE_TAG:
1934 			id = type->type;
1935 			type = btf_type_by_id(btf, type->type);
1936 			break;
1937 
1938 		case BTF_KIND_ARRAY:
1939 			if (!array_type)
1940 				array_type = type;
1941 			array = btf_type_array(type);
1942 			if (nelems && array->nelems > U32_MAX / nelems)
1943 				return ERR_PTR(-EINVAL);
1944 			nelems *= array->nelems;
1945 			type = btf_type_by_id(btf, array->type);
1946 			break;
1947 
1948 		/* type without size */
1949 		default:
1950 			return ERR_PTR(-EINVAL);
1951 		}
1952 	}
1953 
1954 	return ERR_PTR(-EINVAL);
1955 
1956 resolved:
1957 	if (nelems && size > U32_MAX / nelems)
1958 		return ERR_PTR(-EINVAL);
1959 
1960 	*type_size = nelems * size;
1961 	if (total_nelems)
1962 		*total_nelems = nelems;
1963 	if (elem_type)
1964 		*elem_type = type;
1965 	if (elem_id)
1966 		*elem_id = array ? array->type : 0;
1967 	if (type_id && id)
1968 		*type_id = id;
1969 
1970 	return array_type ? : type;
1971 }
1972 
1973 const struct btf_type *
1974 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1975 		 u32 *type_size)
1976 {
1977 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1978 }
1979 
1980 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1981 {
1982 	while (type_id < btf->start_id)
1983 		btf = btf->base_btf;
1984 
1985 	return btf->resolved_ids[type_id - btf->start_id];
1986 }
1987 
1988 /* The input param "type_id" must point to a needs_resolve type */
1989 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1990 						  u32 *type_id)
1991 {
1992 	*type_id = btf_resolved_type_id(btf, *type_id);
1993 	return btf_type_by_id(btf, *type_id);
1994 }
1995 
1996 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1997 {
1998 	while (type_id < btf->start_id)
1999 		btf = btf->base_btf;
2000 
2001 	return btf->resolved_sizes[type_id - btf->start_id];
2002 }
2003 
2004 const struct btf_type *btf_type_id_size(const struct btf *btf,
2005 					u32 *type_id, u32 *ret_size)
2006 {
2007 	const struct btf_type *size_type;
2008 	u32 size_type_id = *type_id;
2009 	u32 size = 0;
2010 
2011 	size_type = btf_type_by_id(btf, size_type_id);
2012 	if (btf_type_nosize_or_null(size_type))
2013 		return NULL;
2014 
2015 	if (btf_type_has_size(size_type)) {
2016 		size = size_type->size;
2017 	} else if (btf_type_is_array(size_type)) {
2018 		size = btf_resolved_type_size(btf, size_type_id);
2019 	} else if (btf_type_is_ptr(size_type)) {
2020 		size = sizeof(void *);
2021 	} else {
2022 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2023 				 !btf_type_is_var(size_type)))
2024 			return NULL;
2025 
2026 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2027 		size_type = btf_type_by_id(btf, size_type_id);
2028 		if (btf_type_nosize_or_null(size_type))
2029 			return NULL;
2030 		else if (btf_type_has_size(size_type))
2031 			size = size_type->size;
2032 		else if (btf_type_is_array(size_type))
2033 			size = btf_resolved_type_size(btf, size_type_id);
2034 		else if (btf_type_is_ptr(size_type))
2035 			size = sizeof(void *);
2036 		else
2037 			return NULL;
2038 	}
2039 
2040 	*type_id = size_type_id;
2041 	if (ret_size)
2042 		*ret_size = size;
2043 
2044 	return size_type;
2045 }
2046 
2047 static int btf_df_check_member(struct btf_verifier_env *env,
2048 			       const struct btf_type *struct_type,
2049 			       const struct btf_member *member,
2050 			       const struct btf_type *member_type)
2051 {
2052 	btf_verifier_log_basic(env, struct_type,
2053 			       "Unsupported check_member");
2054 	return -EINVAL;
2055 }
2056 
2057 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2058 				     const struct btf_type *struct_type,
2059 				     const struct btf_member *member,
2060 				     const struct btf_type *member_type)
2061 {
2062 	btf_verifier_log_basic(env, struct_type,
2063 			       "Unsupported check_kflag_member");
2064 	return -EINVAL;
2065 }
2066 
2067 /* Used for ptr, array struct/union and float type members.
2068  * int, enum and modifier types have their specific callback functions.
2069  */
2070 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2071 					  const struct btf_type *struct_type,
2072 					  const struct btf_member *member,
2073 					  const struct btf_type *member_type)
2074 {
2075 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2076 		btf_verifier_log_member(env, struct_type, member,
2077 					"Invalid member bitfield_size");
2078 		return -EINVAL;
2079 	}
2080 
2081 	/* bitfield size is 0, so member->offset represents bit offset only.
2082 	 * It is safe to call non kflag check_member variants.
2083 	 */
2084 	return btf_type_ops(member_type)->check_member(env, struct_type,
2085 						       member,
2086 						       member_type);
2087 }
2088 
2089 static int btf_df_resolve(struct btf_verifier_env *env,
2090 			  const struct resolve_vertex *v)
2091 {
2092 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2093 	return -EINVAL;
2094 }
2095 
2096 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2097 			u32 type_id, void *data, u8 bits_offsets,
2098 			struct btf_show *show)
2099 {
2100 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2101 }
2102 
2103 static int btf_int_check_member(struct btf_verifier_env *env,
2104 				const struct btf_type *struct_type,
2105 				const struct btf_member *member,
2106 				const struct btf_type *member_type)
2107 {
2108 	u32 int_data = btf_type_int(member_type);
2109 	u32 struct_bits_off = member->offset;
2110 	u32 struct_size = struct_type->size;
2111 	u32 nr_copy_bits;
2112 	u32 bytes_offset;
2113 
2114 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2115 		btf_verifier_log_member(env, struct_type, member,
2116 					"bits_offset exceeds U32_MAX");
2117 		return -EINVAL;
2118 	}
2119 
2120 	struct_bits_off += BTF_INT_OFFSET(int_data);
2121 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2122 	nr_copy_bits = BTF_INT_BITS(int_data) +
2123 		BITS_PER_BYTE_MASKED(struct_bits_off);
2124 
2125 	if (nr_copy_bits > BITS_PER_U128) {
2126 		btf_verifier_log_member(env, struct_type, member,
2127 					"nr_copy_bits exceeds 128");
2128 		return -EINVAL;
2129 	}
2130 
2131 	if (struct_size < bytes_offset ||
2132 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2133 		btf_verifier_log_member(env, struct_type, member,
2134 					"Member exceeds struct_size");
2135 		return -EINVAL;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2142 				      const struct btf_type *struct_type,
2143 				      const struct btf_member *member,
2144 				      const struct btf_type *member_type)
2145 {
2146 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2147 	u32 int_data = btf_type_int(member_type);
2148 	u32 struct_size = struct_type->size;
2149 	u32 nr_copy_bits;
2150 
2151 	/* a regular int type is required for the kflag int member */
2152 	if (!btf_type_int_is_regular(member_type)) {
2153 		btf_verifier_log_member(env, struct_type, member,
2154 					"Invalid member base type");
2155 		return -EINVAL;
2156 	}
2157 
2158 	/* check sanity of bitfield size */
2159 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2160 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2161 	nr_int_data_bits = BTF_INT_BITS(int_data);
2162 	if (!nr_bits) {
2163 		/* Not a bitfield member, member offset must be at byte
2164 		 * boundary.
2165 		 */
2166 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2167 			btf_verifier_log_member(env, struct_type, member,
2168 						"Invalid member offset");
2169 			return -EINVAL;
2170 		}
2171 
2172 		nr_bits = nr_int_data_bits;
2173 	} else if (nr_bits > nr_int_data_bits) {
2174 		btf_verifier_log_member(env, struct_type, member,
2175 					"Invalid member bitfield_size");
2176 		return -EINVAL;
2177 	}
2178 
2179 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2180 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2181 	if (nr_copy_bits > BITS_PER_U128) {
2182 		btf_verifier_log_member(env, struct_type, member,
2183 					"nr_copy_bits exceeds 128");
2184 		return -EINVAL;
2185 	}
2186 
2187 	if (struct_size < bytes_offset ||
2188 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2189 		btf_verifier_log_member(env, struct_type, member,
2190 					"Member exceeds struct_size");
2191 		return -EINVAL;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2198 			      const struct btf_type *t,
2199 			      u32 meta_left)
2200 {
2201 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2202 	u16 encoding;
2203 
2204 	if (meta_left < meta_needed) {
2205 		btf_verifier_log_basic(env, t,
2206 				       "meta_left:%u meta_needed:%u",
2207 				       meta_left, meta_needed);
2208 		return -EINVAL;
2209 	}
2210 
2211 	if (btf_type_vlen(t)) {
2212 		btf_verifier_log_type(env, t, "vlen != 0");
2213 		return -EINVAL;
2214 	}
2215 
2216 	if (btf_type_kflag(t)) {
2217 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2218 		return -EINVAL;
2219 	}
2220 
2221 	int_data = btf_type_int(t);
2222 	if (int_data & ~BTF_INT_MASK) {
2223 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2224 				       int_data);
2225 		return -EINVAL;
2226 	}
2227 
2228 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2229 
2230 	if (nr_bits > BITS_PER_U128) {
2231 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2232 				      BITS_PER_U128);
2233 		return -EINVAL;
2234 	}
2235 
2236 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2237 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2238 		return -EINVAL;
2239 	}
2240 
2241 	/*
2242 	 * Only one of the encoding bits is allowed and it
2243 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2244 	 * Multiple bits can be allowed later if it is found
2245 	 * to be insufficient.
2246 	 */
2247 	encoding = BTF_INT_ENCODING(int_data);
2248 	if (encoding &&
2249 	    encoding != BTF_INT_SIGNED &&
2250 	    encoding != BTF_INT_CHAR &&
2251 	    encoding != BTF_INT_BOOL) {
2252 		btf_verifier_log_type(env, t, "Unsupported encoding");
2253 		return -ENOTSUPP;
2254 	}
2255 
2256 	btf_verifier_log_type(env, t, NULL);
2257 
2258 	return meta_needed;
2259 }
2260 
2261 static void btf_int_log(struct btf_verifier_env *env,
2262 			const struct btf_type *t)
2263 {
2264 	int int_data = btf_type_int(t);
2265 
2266 	btf_verifier_log(env,
2267 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2268 			 t->size, BTF_INT_OFFSET(int_data),
2269 			 BTF_INT_BITS(int_data),
2270 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2271 }
2272 
2273 static void btf_int128_print(struct btf_show *show, void *data)
2274 {
2275 	/* data points to a __int128 number.
2276 	 * Suppose
2277 	 *     int128_num = *(__int128 *)data;
2278 	 * The below formulas shows what upper_num and lower_num represents:
2279 	 *     upper_num = int128_num >> 64;
2280 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2281 	 */
2282 	u64 upper_num, lower_num;
2283 
2284 #ifdef __BIG_ENDIAN_BITFIELD
2285 	upper_num = *(u64 *)data;
2286 	lower_num = *(u64 *)(data + 8);
2287 #else
2288 	upper_num = *(u64 *)(data + 8);
2289 	lower_num = *(u64 *)data;
2290 #endif
2291 	if (upper_num == 0)
2292 		btf_show_type_value(show, "0x%llx", lower_num);
2293 	else
2294 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2295 				     lower_num);
2296 }
2297 
2298 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2299 			     u16 right_shift_bits)
2300 {
2301 	u64 upper_num, lower_num;
2302 
2303 #ifdef __BIG_ENDIAN_BITFIELD
2304 	upper_num = print_num[0];
2305 	lower_num = print_num[1];
2306 #else
2307 	upper_num = print_num[1];
2308 	lower_num = print_num[0];
2309 #endif
2310 
2311 	/* shake out un-needed bits by shift/or operations */
2312 	if (left_shift_bits >= 64) {
2313 		upper_num = lower_num << (left_shift_bits - 64);
2314 		lower_num = 0;
2315 	} else {
2316 		upper_num = (upper_num << left_shift_bits) |
2317 			    (lower_num >> (64 - left_shift_bits));
2318 		lower_num = lower_num << left_shift_bits;
2319 	}
2320 
2321 	if (right_shift_bits >= 64) {
2322 		lower_num = upper_num >> (right_shift_bits - 64);
2323 		upper_num = 0;
2324 	} else {
2325 		lower_num = (lower_num >> right_shift_bits) |
2326 			    (upper_num << (64 - right_shift_bits));
2327 		upper_num = upper_num >> right_shift_bits;
2328 	}
2329 
2330 #ifdef __BIG_ENDIAN_BITFIELD
2331 	print_num[0] = upper_num;
2332 	print_num[1] = lower_num;
2333 #else
2334 	print_num[0] = lower_num;
2335 	print_num[1] = upper_num;
2336 #endif
2337 }
2338 
2339 static void btf_bitfield_show(void *data, u8 bits_offset,
2340 			      u8 nr_bits, struct btf_show *show)
2341 {
2342 	u16 left_shift_bits, right_shift_bits;
2343 	u8 nr_copy_bytes;
2344 	u8 nr_copy_bits;
2345 	u64 print_num[2] = {};
2346 
2347 	nr_copy_bits = nr_bits + bits_offset;
2348 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2349 
2350 	memcpy(print_num, data, nr_copy_bytes);
2351 
2352 #ifdef __BIG_ENDIAN_BITFIELD
2353 	left_shift_bits = bits_offset;
2354 #else
2355 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2356 #endif
2357 	right_shift_bits = BITS_PER_U128 - nr_bits;
2358 
2359 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2360 	btf_int128_print(show, print_num);
2361 }
2362 
2363 
2364 static void btf_int_bits_show(const struct btf *btf,
2365 			      const struct btf_type *t,
2366 			      void *data, u8 bits_offset,
2367 			      struct btf_show *show)
2368 {
2369 	u32 int_data = btf_type_int(t);
2370 	u8 nr_bits = BTF_INT_BITS(int_data);
2371 	u8 total_bits_offset;
2372 
2373 	/*
2374 	 * bits_offset is at most 7.
2375 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2376 	 */
2377 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2378 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2379 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2380 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2381 }
2382 
2383 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2384 			 u32 type_id, void *data, u8 bits_offset,
2385 			 struct btf_show *show)
2386 {
2387 	u32 int_data = btf_type_int(t);
2388 	u8 encoding = BTF_INT_ENCODING(int_data);
2389 	bool sign = encoding & BTF_INT_SIGNED;
2390 	u8 nr_bits = BTF_INT_BITS(int_data);
2391 	void *safe_data;
2392 
2393 	safe_data = btf_show_start_type(show, t, type_id, data);
2394 	if (!safe_data)
2395 		return;
2396 
2397 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2398 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2399 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2400 		goto out;
2401 	}
2402 
2403 	switch (nr_bits) {
2404 	case 128:
2405 		btf_int128_print(show, safe_data);
2406 		break;
2407 	case 64:
2408 		if (sign)
2409 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2410 		else
2411 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2412 		break;
2413 	case 32:
2414 		if (sign)
2415 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2416 		else
2417 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2418 		break;
2419 	case 16:
2420 		if (sign)
2421 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2422 		else
2423 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2424 		break;
2425 	case 8:
2426 		if (show->state.array_encoding == BTF_INT_CHAR) {
2427 			/* check for null terminator */
2428 			if (show->state.array_terminated)
2429 				break;
2430 			if (*(char *)data == '\0') {
2431 				show->state.array_terminated = 1;
2432 				break;
2433 			}
2434 			if (isprint(*(char *)data)) {
2435 				btf_show_type_value(show, "'%c'",
2436 						    *(char *)safe_data);
2437 				break;
2438 			}
2439 		}
2440 		if (sign)
2441 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2442 		else
2443 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2444 		break;
2445 	default:
2446 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2447 		break;
2448 	}
2449 out:
2450 	btf_show_end_type(show);
2451 }
2452 
2453 static const struct btf_kind_operations int_ops = {
2454 	.check_meta = btf_int_check_meta,
2455 	.resolve = btf_df_resolve,
2456 	.check_member = btf_int_check_member,
2457 	.check_kflag_member = btf_int_check_kflag_member,
2458 	.log_details = btf_int_log,
2459 	.show = btf_int_show,
2460 };
2461 
2462 static int btf_modifier_check_member(struct btf_verifier_env *env,
2463 				     const struct btf_type *struct_type,
2464 				     const struct btf_member *member,
2465 				     const struct btf_type *member_type)
2466 {
2467 	const struct btf_type *resolved_type;
2468 	u32 resolved_type_id = member->type;
2469 	struct btf_member resolved_member;
2470 	struct btf *btf = env->btf;
2471 
2472 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2473 	if (!resolved_type) {
2474 		btf_verifier_log_member(env, struct_type, member,
2475 					"Invalid member");
2476 		return -EINVAL;
2477 	}
2478 
2479 	resolved_member = *member;
2480 	resolved_member.type = resolved_type_id;
2481 
2482 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2483 							 &resolved_member,
2484 							 resolved_type);
2485 }
2486 
2487 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2488 					   const struct btf_type *struct_type,
2489 					   const struct btf_member *member,
2490 					   const struct btf_type *member_type)
2491 {
2492 	const struct btf_type *resolved_type;
2493 	u32 resolved_type_id = member->type;
2494 	struct btf_member resolved_member;
2495 	struct btf *btf = env->btf;
2496 
2497 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2498 	if (!resolved_type) {
2499 		btf_verifier_log_member(env, struct_type, member,
2500 					"Invalid member");
2501 		return -EINVAL;
2502 	}
2503 
2504 	resolved_member = *member;
2505 	resolved_member.type = resolved_type_id;
2506 
2507 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2508 							       &resolved_member,
2509 							       resolved_type);
2510 }
2511 
2512 static int btf_ptr_check_member(struct btf_verifier_env *env,
2513 				const struct btf_type *struct_type,
2514 				const struct btf_member *member,
2515 				const struct btf_type *member_type)
2516 {
2517 	u32 struct_size, struct_bits_off, bytes_offset;
2518 
2519 	struct_size = struct_type->size;
2520 	struct_bits_off = member->offset;
2521 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2522 
2523 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2524 		btf_verifier_log_member(env, struct_type, member,
2525 					"Member is not byte aligned");
2526 		return -EINVAL;
2527 	}
2528 
2529 	if (struct_size - bytes_offset < sizeof(void *)) {
2530 		btf_verifier_log_member(env, struct_type, member,
2531 					"Member exceeds struct_size");
2532 		return -EINVAL;
2533 	}
2534 
2535 	return 0;
2536 }
2537 
2538 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2539 				   const struct btf_type *t,
2540 				   u32 meta_left)
2541 {
2542 	const char *value;
2543 
2544 	if (btf_type_vlen(t)) {
2545 		btf_verifier_log_type(env, t, "vlen != 0");
2546 		return -EINVAL;
2547 	}
2548 
2549 	if (btf_type_kflag(t)) {
2550 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2551 		return -EINVAL;
2552 	}
2553 
2554 	if (!BTF_TYPE_ID_VALID(t->type)) {
2555 		btf_verifier_log_type(env, t, "Invalid type_id");
2556 		return -EINVAL;
2557 	}
2558 
2559 	/* typedef/type_tag type must have a valid name, and other ref types,
2560 	 * volatile, const, restrict, should have a null name.
2561 	 */
2562 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2563 		if (!t->name_off ||
2564 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2565 			btf_verifier_log_type(env, t, "Invalid name");
2566 			return -EINVAL;
2567 		}
2568 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2569 		value = btf_name_by_offset(env->btf, t->name_off);
2570 		if (!value || !value[0]) {
2571 			btf_verifier_log_type(env, t, "Invalid name");
2572 			return -EINVAL;
2573 		}
2574 	} else {
2575 		if (t->name_off) {
2576 			btf_verifier_log_type(env, t, "Invalid name");
2577 			return -EINVAL;
2578 		}
2579 	}
2580 
2581 	btf_verifier_log_type(env, t, NULL);
2582 
2583 	return 0;
2584 }
2585 
2586 static int btf_modifier_resolve(struct btf_verifier_env *env,
2587 				const struct resolve_vertex *v)
2588 {
2589 	const struct btf_type *t = v->t;
2590 	const struct btf_type *next_type;
2591 	u32 next_type_id = t->type;
2592 	struct btf *btf = env->btf;
2593 
2594 	next_type = btf_type_by_id(btf, next_type_id);
2595 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2596 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2597 		return -EINVAL;
2598 	}
2599 
2600 	if (!env_type_is_resolve_sink(env, next_type) &&
2601 	    !env_type_is_resolved(env, next_type_id))
2602 		return env_stack_push(env, next_type, next_type_id);
2603 
2604 	/* Figure out the resolved next_type_id with size.
2605 	 * They will be stored in the current modifier's
2606 	 * resolved_ids and resolved_sizes such that it can
2607 	 * save us a few type-following when we use it later (e.g. in
2608 	 * pretty print).
2609 	 */
2610 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2611 		if (env_type_is_resolved(env, next_type_id))
2612 			next_type = btf_type_id_resolve(btf, &next_type_id);
2613 
2614 		/* "typedef void new_void", "const void"...etc */
2615 		if (!btf_type_is_void(next_type) &&
2616 		    !btf_type_is_fwd(next_type) &&
2617 		    !btf_type_is_func_proto(next_type)) {
2618 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2619 			return -EINVAL;
2620 		}
2621 	}
2622 
2623 	env_stack_pop_resolved(env, next_type_id, 0);
2624 
2625 	return 0;
2626 }
2627 
2628 static int btf_var_resolve(struct btf_verifier_env *env,
2629 			   const struct resolve_vertex *v)
2630 {
2631 	const struct btf_type *next_type;
2632 	const struct btf_type *t = v->t;
2633 	u32 next_type_id = t->type;
2634 	struct btf *btf = env->btf;
2635 
2636 	next_type = btf_type_by_id(btf, next_type_id);
2637 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2638 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2639 		return -EINVAL;
2640 	}
2641 
2642 	if (!env_type_is_resolve_sink(env, next_type) &&
2643 	    !env_type_is_resolved(env, next_type_id))
2644 		return env_stack_push(env, next_type, next_type_id);
2645 
2646 	if (btf_type_is_modifier(next_type)) {
2647 		const struct btf_type *resolved_type;
2648 		u32 resolved_type_id;
2649 
2650 		resolved_type_id = next_type_id;
2651 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2652 
2653 		if (btf_type_is_ptr(resolved_type) &&
2654 		    !env_type_is_resolve_sink(env, resolved_type) &&
2655 		    !env_type_is_resolved(env, resolved_type_id))
2656 			return env_stack_push(env, resolved_type,
2657 					      resolved_type_id);
2658 	}
2659 
2660 	/* We must resolve to something concrete at this point, no
2661 	 * forward types or similar that would resolve to size of
2662 	 * zero is allowed.
2663 	 */
2664 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2665 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2666 		return -EINVAL;
2667 	}
2668 
2669 	env_stack_pop_resolved(env, next_type_id, 0);
2670 
2671 	return 0;
2672 }
2673 
2674 static int btf_ptr_resolve(struct btf_verifier_env *env,
2675 			   const struct resolve_vertex *v)
2676 {
2677 	const struct btf_type *next_type;
2678 	const struct btf_type *t = v->t;
2679 	u32 next_type_id = t->type;
2680 	struct btf *btf = env->btf;
2681 
2682 	next_type = btf_type_by_id(btf, next_type_id);
2683 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2684 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (!env_type_is_resolve_sink(env, next_type) &&
2689 	    !env_type_is_resolved(env, next_type_id))
2690 		return env_stack_push(env, next_type, next_type_id);
2691 
2692 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2693 	 * the modifier may have stopped resolving when it was resolved
2694 	 * to a ptr (last-resolved-ptr).
2695 	 *
2696 	 * We now need to continue from the last-resolved-ptr to
2697 	 * ensure the last-resolved-ptr will not referring back to
2698 	 * the current ptr (t).
2699 	 */
2700 	if (btf_type_is_modifier(next_type)) {
2701 		const struct btf_type *resolved_type;
2702 		u32 resolved_type_id;
2703 
2704 		resolved_type_id = next_type_id;
2705 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2706 
2707 		if (btf_type_is_ptr(resolved_type) &&
2708 		    !env_type_is_resolve_sink(env, resolved_type) &&
2709 		    !env_type_is_resolved(env, resolved_type_id))
2710 			return env_stack_push(env, resolved_type,
2711 					      resolved_type_id);
2712 	}
2713 
2714 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2715 		if (env_type_is_resolved(env, next_type_id))
2716 			next_type = btf_type_id_resolve(btf, &next_type_id);
2717 
2718 		if (!btf_type_is_void(next_type) &&
2719 		    !btf_type_is_fwd(next_type) &&
2720 		    !btf_type_is_func_proto(next_type)) {
2721 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2722 			return -EINVAL;
2723 		}
2724 	}
2725 
2726 	env_stack_pop_resolved(env, next_type_id, 0);
2727 
2728 	return 0;
2729 }
2730 
2731 static void btf_modifier_show(const struct btf *btf,
2732 			      const struct btf_type *t,
2733 			      u32 type_id, void *data,
2734 			      u8 bits_offset, struct btf_show *show)
2735 {
2736 	if (btf->resolved_ids)
2737 		t = btf_type_id_resolve(btf, &type_id);
2738 	else
2739 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2740 
2741 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2742 }
2743 
2744 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2745 			 u32 type_id, void *data, u8 bits_offset,
2746 			 struct btf_show *show)
2747 {
2748 	t = btf_type_id_resolve(btf, &type_id);
2749 
2750 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2751 }
2752 
2753 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2754 			 u32 type_id, void *data, u8 bits_offset,
2755 			 struct btf_show *show)
2756 {
2757 	void *safe_data;
2758 
2759 	safe_data = btf_show_start_type(show, t, type_id, data);
2760 	if (!safe_data)
2761 		return;
2762 
2763 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2764 	if (show->flags & BTF_SHOW_PTR_RAW)
2765 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2766 	else
2767 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2768 	btf_show_end_type(show);
2769 }
2770 
2771 static void btf_ref_type_log(struct btf_verifier_env *env,
2772 			     const struct btf_type *t)
2773 {
2774 	btf_verifier_log(env, "type_id=%u", t->type);
2775 }
2776 
2777 static struct btf_kind_operations modifier_ops = {
2778 	.check_meta = btf_ref_type_check_meta,
2779 	.resolve = btf_modifier_resolve,
2780 	.check_member = btf_modifier_check_member,
2781 	.check_kflag_member = btf_modifier_check_kflag_member,
2782 	.log_details = btf_ref_type_log,
2783 	.show = btf_modifier_show,
2784 };
2785 
2786 static struct btf_kind_operations ptr_ops = {
2787 	.check_meta = btf_ref_type_check_meta,
2788 	.resolve = btf_ptr_resolve,
2789 	.check_member = btf_ptr_check_member,
2790 	.check_kflag_member = btf_generic_check_kflag_member,
2791 	.log_details = btf_ref_type_log,
2792 	.show = btf_ptr_show,
2793 };
2794 
2795 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2796 			      const struct btf_type *t,
2797 			      u32 meta_left)
2798 {
2799 	if (btf_type_vlen(t)) {
2800 		btf_verifier_log_type(env, t, "vlen != 0");
2801 		return -EINVAL;
2802 	}
2803 
2804 	if (t->type) {
2805 		btf_verifier_log_type(env, t, "type != 0");
2806 		return -EINVAL;
2807 	}
2808 
2809 	/* fwd type must have a valid name */
2810 	if (!t->name_off ||
2811 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2812 		btf_verifier_log_type(env, t, "Invalid name");
2813 		return -EINVAL;
2814 	}
2815 
2816 	btf_verifier_log_type(env, t, NULL);
2817 
2818 	return 0;
2819 }
2820 
2821 static void btf_fwd_type_log(struct btf_verifier_env *env,
2822 			     const struct btf_type *t)
2823 {
2824 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2825 }
2826 
2827 static struct btf_kind_operations fwd_ops = {
2828 	.check_meta = btf_fwd_check_meta,
2829 	.resolve = btf_df_resolve,
2830 	.check_member = btf_df_check_member,
2831 	.check_kflag_member = btf_df_check_kflag_member,
2832 	.log_details = btf_fwd_type_log,
2833 	.show = btf_df_show,
2834 };
2835 
2836 static int btf_array_check_member(struct btf_verifier_env *env,
2837 				  const struct btf_type *struct_type,
2838 				  const struct btf_member *member,
2839 				  const struct btf_type *member_type)
2840 {
2841 	u32 struct_bits_off = member->offset;
2842 	u32 struct_size, bytes_offset;
2843 	u32 array_type_id, array_size;
2844 	struct btf *btf = env->btf;
2845 
2846 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2847 		btf_verifier_log_member(env, struct_type, member,
2848 					"Member is not byte aligned");
2849 		return -EINVAL;
2850 	}
2851 
2852 	array_type_id = member->type;
2853 	btf_type_id_size(btf, &array_type_id, &array_size);
2854 	struct_size = struct_type->size;
2855 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2856 	if (struct_size - bytes_offset < array_size) {
2857 		btf_verifier_log_member(env, struct_type, member,
2858 					"Member exceeds struct_size");
2859 		return -EINVAL;
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2866 				const struct btf_type *t,
2867 				u32 meta_left)
2868 {
2869 	const struct btf_array *array = btf_type_array(t);
2870 	u32 meta_needed = sizeof(*array);
2871 
2872 	if (meta_left < meta_needed) {
2873 		btf_verifier_log_basic(env, t,
2874 				       "meta_left:%u meta_needed:%u",
2875 				       meta_left, meta_needed);
2876 		return -EINVAL;
2877 	}
2878 
2879 	/* array type should not have a name */
2880 	if (t->name_off) {
2881 		btf_verifier_log_type(env, t, "Invalid name");
2882 		return -EINVAL;
2883 	}
2884 
2885 	if (btf_type_vlen(t)) {
2886 		btf_verifier_log_type(env, t, "vlen != 0");
2887 		return -EINVAL;
2888 	}
2889 
2890 	if (btf_type_kflag(t)) {
2891 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2892 		return -EINVAL;
2893 	}
2894 
2895 	if (t->size) {
2896 		btf_verifier_log_type(env, t, "size != 0");
2897 		return -EINVAL;
2898 	}
2899 
2900 	/* Array elem type and index type cannot be in type void,
2901 	 * so !array->type and !array->index_type are not allowed.
2902 	 */
2903 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2904 		btf_verifier_log_type(env, t, "Invalid elem");
2905 		return -EINVAL;
2906 	}
2907 
2908 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2909 		btf_verifier_log_type(env, t, "Invalid index");
2910 		return -EINVAL;
2911 	}
2912 
2913 	btf_verifier_log_type(env, t, NULL);
2914 
2915 	return meta_needed;
2916 }
2917 
2918 static int btf_array_resolve(struct btf_verifier_env *env,
2919 			     const struct resolve_vertex *v)
2920 {
2921 	const struct btf_array *array = btf_type_array(v->t);
2922 	const struct btf_type *elem_type, *index_type;
2923 	u32 elem_type_id, index_type_id;
2924 	struct btf *btf = env->btf;
2925 	u32 elem_size;
2926 
2927 	/* Check array->index_type */
2928 	index_type_id = array->index_type;
2929 	index_type = btf_type_by_id(btf, index_type_id);
2930 	if (btf_type_nosize_or_null(index_type) ||
2931 	    btf_type_is_resolve_source_only(index_type)) {
2932 		btf_verifier_log_type(env, v->t, "Invalid index");
2933 		return -EINVAL;
2934 	}
2935 
2936 	if (!env_type_is_resolve_sink(env, index_type) &&
2937 	    !env_type_is_resolved(env, index_type_id))
2938 		return env_stack_push(env, index_type, index_type_id);
2939 
2940 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2941 	if (!index_type || !btf_type_is_int(index_type) ||
2942 	    !btf_type_int_is_regular(index_type)) {
2943 		btf_verifier_log_type(env, v->t, "Invalid index");
2944 		return -EINVAL;
2945 	}
2946 
2947 	/* Check array->type */
2948 	elem_type_id = array->type;
2949 	elem_type = btf_type_by_id(btf, elem_type_id);
2950 	if (btf_type_nosize_or_null(elem_type) ||
2951 	    btf_type_is_resolve_source_only(elem_type)) {
2952 		btf_verifier_log_type(env, v->t,
2953 				      "Invalid elem");
2954 		return -EINVAL;
2955 	}
2956 
2957 	if (!env_type_is_resolve_sink(env, elem_type) &&
2958 	    !env_type_is_resolved(env, elem_type_id))
2959 		return env_stack_push(env, elem_type, elem_type_id);
2960 
2961 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2962 	if (!elem_type) {
2963 		btf_verifier_log_type(env, v->t, "Invalid elem");
2964 		return -EINVAL;
2965 	}
2966 
2967 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2968 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2969 		return -EINVAL;
2970 	}
2971 
2972 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2973 		btf_verifier_log_type(env, v->t,
2974 				      "Array size overflows U32_MAX");
2975 		return -EINVAL;
2976 	}
2977 
2978 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2979 
2980 	return 0;
2981 }
2982 
2983 static void btf_array_log(struct btf_verifier_env *env,
2984 			  const struct btf_type *t)
2985 {
2986 	const struct btf_array *array = btf_type_array(t);
2987 
2988 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2989 			 array->type, array->index_type, array->nelems);
2990 }
2991 
2992 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2993 			     u32 type_id, void *data, u8 bits_offset,
2994 			     struct btf_show *show)
2995 {
2996 	const struct btf_array *array = btf_type_array(t);
2997 	const struct btf_kind_operations *elem_ops;
2998 	const struct btf_type *elem_type;
2999 	u32 i, elem_size = 0, elem_type_id;
3000 	u16 encoding = 0;
3001 
3002 	elem_type_id = array->type;
3003 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3004 	if (elem_type && btf_type_has_size(elem_type))
3005 		elem_size = elem_type->size;
3006 
3007 	if (elem_type && btf_type_is_int(elem_type)) {
3008 		u32 int_type = btf_type_int(elem_type);
3009 
3010 		encoding = BTF_INT_ENCODING(int_type);
3011 
3012 		/*
3013 		 * BTF_INT_CHAR encoding never seems to be set for
3014 		 * char arrays, so if size is 1 and element is
3015 		 * printable as a char, we'll do that.
3016 		 */
3017 		if (elem_size == 1)
3018 			encoding = BTF_INT_CHAR;
3019 	}
3020 
3021 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3022 		return;
3023 
3024 	if (!elem_type)
3025 		goto out;
3026 	elem_ops = btf_type_ops(elem_type);
3027 
3028 	for (i = 0; i < array->nelems; i++) {
3029 
3030 		btf_show_start_array_member(show);
3031 
3032 		elem_ops->show(btf, elem_type, elem_type_id, data,
3033 			       bits_offset, show);
3034 		data += elem_size;
3035 
3036 		btf_show_end_array_member(show);
3037 
3038 		if (show->state.array_terminated)
3039 			break;
3040 	}
3041 out:
3042 	btf_show_end_array_type(show);
3043 }
3044 
3045 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3046 			   u32 type_id, void *data, u8 bits_offset,
3047 			   struct btf_show *show)
3048 {
3049 	const struct btf_member *m = show->state.member;
3050 
3051 	/*
3052 	 * First check if any members would be shown (are non-zero).
3053 	 * See comments above "struct btf_show" definition for more
3054 	 * details on how this works at a high-level.
3055 	 */
3056 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3057 		if (!show->state.depth_check) {
3058 			show->state.depth_check = show->state.depth + 1;
3059 			show->state.depth_to_show = 0;
3060 		}
3061 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3062 		show->state.member = m;
3063 
3064 		if (show->state.depth_check != show->state.depth + 1)
3065 			return;
3066 		show->state.depth_check = 0;
3067 
3068 		if (show->state.depth_to_show <= show->state.depth)
3069 			return;
3070 		/*
3071 		 * Reaching here indicates we have recursed and found
3072 		 * non-zero array member(s).
3073 		 */
3074 	}
3075 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3076 }
3077 
3078 static struct btf_kind_operations array_ops = {
3079 	.check_meta = btf_array_check_meta,
3080 	.resolve = btf_array_resolve,
3081 	.check_member = btf_array_check_member,
3082 	.check_kflag_member = btf_generic_check_kflag_member,
3083 	.log_details = btf_array_log,
3084 	.show = btf_array_show,
3085 };
3086 
3087 static int btf_struct_check_member(struct btf_verifier_env *env,
3088 				   const struct btf_type *struct_type,
3089 				   const struct btf_member *member,
3090 				   const struct btf_type *member_type)
3091 {
3092 	u32 struct_bits_off = member->offset;
3093 	u32 struct_size, bytes_offset;
3094 
3095 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3096 		btf_verifier_log_member(env, struct_type, member,
3097 					"Member is not byte aligned");
3098 		return -EINVAL;
3099 	}
3100 
3101 	struct_size = struct_type->size;
3102 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3103 	if (struct_size - bytes_offset < member_type->size) {
3104 		btf_verifier_log_member(env, struct_type, member,
3105 					"Member exceeds struct_size");
3106 		return -EINVAL;
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3113 				 const struct btf_type *t,
3114 				 u32 meta_left)
3115 {
3116 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3117 	const struct btf_member *member;
3118 	u32 meta_needed, last_offset;
3119 	struct btf *btf = env->btf;
3120 	u32 struct_size = t->size;
3121 	u32 offset;
3122 	u16 i;
3123 
3124 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3125 	if (meta_left < meta_needed) {
3126 		btf_verifier_log_basic(env, t,
3127 				       "meta_left:%u meta_needed:%u",
3128 				       meta_left, meta_needed);
3129 		return -EINVAL;
3130 	}
3131 
3132 	/* struct type either no name or a valid one */
3133 	if (t->name_off &&
3134 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3135 		btf_verifier_log_type(env, t, "Invalid name");
3136 		return -EINVAL;
3137 	}
3138 
3139 	btf_verifier_log_type(env, t, NULL);
3140 
3141 	last_offset = 0;
3142 	for_each_member(i, t, member) {
3143 		if (!btf_name_offset_valid(btf, member->name_off)) {
3144 			btf_verifier_log_member(env, t, member,
3145 						"Invalid member name_offset:%u",
3146 						member->name_off);
3147 			return -EINVAL;
3148 		}
3149 
3150 		/* struct member either no name or a valid one */
3151 		if (member->name_off &&
3152 		    !btf_name_valid_identifier(btf, member->name_off)) {
3153 			btf_verifier_log_member(env, t, member, "Invalid name");
3154 			return -EINVAL;
3155 		}
3156 		/* A member cannot be in type void */
3157 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3158 			btf_verifier_log_member(env, t, member,
3159 						"Invalid type_id");
3160 			return -EINVAL;
3161 		}
3162 
3163 		offset = __btf_member_bit_offset(t, member);
3164 		if (is_union && offset) {
3165 			btf_verifier_log_member(env, t, member,
3166 						"Invalid member bits_offset");
3167 			return -EINVAL;
3168 		}
3169 
3170 		/*
3171 		 * ">" instead of ">=" because the last member could be
3172 		 * "char a[0];"
3173 		 */
3174 		if (last_offset > offset) {
3175 			btf_verifier_log_member(env, t, member,
3176 						"Invalid member bits_offset");
3177 			return -EINVAL;
3178 		}
3179 
3180 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3181 			btf_verifier_log_member(env, t, member,
3182 						"Member bits_offset exceeds its struct size");
3183 			return -EINVAL;
3184 		}
3185 
3186 		btf_verifier_log_member(env, t, member, NULL);
3187 		last_offset = offset;
3188 	}
3189 
3190 	return meta_needed;
3191 }
3192 
3193 static int btf_struct_resolve(struct btf_verifier_env *env,
3194 			      const struct resolve_vertex *v)
3195 {
3196 	const struct btf_member *member;
3197 	int err;
3198 	u16 i;
3199 
3200 	/* Before continue resolving the next_member,
3201 	 * ensure the last member is indeed resolved to a
3202 	 * type with size info.
3203 	 */
3204 	if (v->next_member) {
3205 		const struct btf_type *last_member_type;
3206 		const struct btf_member *last_member;
3207 		u32 last_member_type_id;
3208 
3209 		last_member = btf_type_member(v->t) + v->next_member - 1;
3210 		last_member_type_id = last_member->type;
3211 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3212 						       last_member_type_id)))
3213 			return -EINVAL;
3214 
3215 		last_member_type = btf_type_by_id(env->btf,
3216 						  last_member_type_id);
3217 		if (btf_type_kflag(v->t))
3218 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3219 								last_member,
3220 								last_member_type);
3221 		else
3222 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3223 								last_member,
3224 								last_member_type);
3225 		if (err)
3226 			return err;
3227 	}
3228 
3229 	for_each_member_from(i, v->next_member, v->t, member) {
3230 		u32 member_type_id = member->type;
3231 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3232 								member_type_id);
3233 
3234 		if (btf_type_nosize_or_null(member_type) ||
3235 		    btf_type_is_resolve_source_only(member_type)) {
3236 			btf_verifier_log_member(env, v->t, member,
3237 						"Invalid member");
3238 			return -EINVAL;
3239 		}
3240 
3241 		if (!env_type_is_resolve_sink(env, member_type) &&
3242 		    !env_type_is_resolved(env, member_type_id)) {
3243 			env_stack_set_next_member(env, i + 1);
3244 			return env_stack_push(env, member_type, member_type_id);
3245 		}
3246 
3247 		if (btf_type_kflag(v->t))
3248 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3249 									    member,
3250 									    member_type);
3251 		else
3252 			err = btf_type_ops(member_type)->check_member(env, v->t,
3253 								      member,
3254 								      member_type);
3255 		if (err)
3256 			return err;
3257 	}
3258 
3259 	env_stack_pop_resolved(env, 0, 0);
3260 
3261 	return 0;
3262 }
3263 
3264 static void btf_struct_log(struct btf_verifier_env *env,
3265 			   const struct btf_type *t)
3266 {
3267 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3268 }
3269 
3270 enum {
3271 	BTF_FIELD_IGNORE = 0,
3272 	BTF_FIELD_FOUND  = 1,
3273 };
3274 
3275 struct btf_field_info {
3276 	enum btf_field_type type;
3277 	u32 off;
3278 	union {
3279 		struct {
3280 			u32 type_id;
3281 		} kptr;
3282 		struct {
3283 			const char *node_name;
3284 			u32 value_btf_id;
3285 		} graph_root;
3286 	};
3287 };
3288 
3289 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3290 			   u32 off, int sz, enum btf_field_type field_type,
3291 			   struct btf_field_info *info)
3292 {
3293 	if (!__btf_type_is_struct(t))
3294 		return BTF_FIELD_IGNORE;
3295 	if (t->size != sz)
3296 		return BTF_FIELD_IGNORE;
3297 	info->type = field_type;
3298 	info->off = off;
3299 	return BTF_FIELD_FOUND;
3300 }
3301 
3302 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3303 			 u32 off, int sz, struct btf_field_info *info)
3304 {
3305 	enum btf_field_type type;
3306 	u32 res_id;
3307 
3308 	/* Permit modifiers on the pointer itself */
3309 	if (btf_type_is_volatile(t))
3310 		t = btf_type_by_id(btf, t->type);
3311 	/* For PTR, sz is always == 8 */
3312 	if (!btf_type_is_ptr(t))
3313 		return BTF_FIELD_IGNORE;
3314 	t = btf_type_by_id(btf, t->type);
3315 
3316 	if (!btf_type_is_type_tag(t))
3317 		return BTF_FIELD_IGNORE;
3318 	/* Reject extra tags */
3319 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3320 		return -EINVAL;
3321 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3322 		type = BPF_KPTR_UNREF;
3323 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3324 		type = BPF_KPTR_REF;
3325 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3326 		type = BPF_KPTR_PERCPU;
3327 	else
3328 		return -EINVAL;
3329 
3330 	/* Get the base type */
3331 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3332 	/* Only pointer to struct is allowed */
3333 	if (!__btf_type_is_struct(t))
3334 		return -EINVAL;
3335 
3336 	info->type = type;
3337 	info->off = off;
3338 	info->kptr.type_id = res_id;
3339 	return BTF_FIELD_FOUND;
3340 }
3341 
3342 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3343 			   int comp_idx, const char *tag_key, int last_id)
3344 {
3345 	int len = strlen(tag_key);
3346 	int i, n;
3347 
3348 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3349 		const struct btf_type *t = btf_type_by_id(btf, i);
3350 
3351 		if (!btf_type_is_decl_tag(t))
3352 			continue;
3353 		if (pt != btf_type_by_id(btf, t->type))
3354 			continue;
3355 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3356 			continue;
3357 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3358 			continue;
3359 		return i;
3360 	}
3361 	return -ENOENT;
3362 }
3363 
3364 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3365 				    int comp_idx, const char *tag_key)
3366 {
3367 	const char *value = NULL;
3368 	const struct btf_type *t;
3369 	int len, id;
3370 
3371 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3372 	if (id < 0)
3373 		return ERR_PTR(id);
3374 
3375 	t = btf_type_by_id(btf, id);
3376 	len = strlen(tag_key);
3377 	value = __btf_name_by_offset(btf, t->name_off) + len;
3378 
3379 	/* Prevent duplicate entries for same type */
3380 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3381 	if (id >= 0)
3382 		return ERR_PTR(-EEXIST);
3383 
3384 	return value;
3385 }
3386 
3387 static int
3388 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3389 		    const struct btf_type *t, int comp_idx, u32 off,
3390 		    int sz, struct btf_field_info *info,
3391 		    enum btf_field_type head_type)
3392 {
3393 	const char *node_field_name;
3394 	const char *value_type;
3395 	s32 id;
3396 
3397 	if (!__btf_type_is_struct(t))
3398 		return BTF_FIELD_IGNORE;
3399 	if (t->size != sz)
3400 		return BTF_FIELD_IGNORE;
3401 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3402 	if (IS_ERR(value_type))
3403 		return -EINVAL;
3404 	node_field_name = strstr(value_type, ":");
3405 	if (!node_field_name)
3406 		return -EINVAL;
3407 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3408 	if (!value_type)
3409 		return -ENOMEM;
3410 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3411 	kfree(value_type);
3412 	if (id < 0)
3413 		return id;
3414 	node_field_name++;
3415 	if (str_is_empty(node_field_name))
3416 		return -EINVAL;
3417 	info->type = head_type;
3418 	info->off = off;
3419 	info->graph_root.value_btf_id = id;
3420 	info->graph_root.node_name = node_field_name;
3421 	return BTF_FIELD_FOUND;
3422 }
3423 
3424 #define field_mask_test_name(field_type, field_type_str) \
3425 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3426 		type = field_type;					\
3427 		goto end;						\
3428 	}
3429 
3430 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3431 			      int *align, int *sz)
3432 {
3433 	int type = 0;
3434 
3435 	if (field_mask & BPF_SPIN_LOCK) {
3436 		if (!strcmp(name, "bpf_spin_lock")) {
3437 			if (*seen_mask & BPF_SPIN_LOCK)
3438 				return -E2BIG;
3439 			*seen_mask |= BPF_SPIN_LOCK;
3440 			type = BPF_SPIN_LOCK;
3441 			goto end;
3442 		}
3443 	}
3444 	if (field_mask & BPF_TIMER) {
3445 		if (!strcmp(name, "bpf_timer")) {
3446 			if (*seen_mask & BPF_TIMER)
3447 				return -E2BIG;
3448 			*seen_mask |= BPF_TIMER;
3449 			type = BPF_TIMER;
3450 			goto end;
3451 		}
3452 	}
3453 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3454 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3455 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3456 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3457 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3458 
3459 	/* Only return BPF_KPTR when all other types with matchable names fail */
3460 	if (field_mask & BPF_KPTR) {
3461 		type = BPF_KPTR_REF;
3462 		goto end;
3463 	}
3464 	return 0;
3465 end:
3466 	*sz = btf_field_type_size(type);
3467 	*align = btf_field_type_align(type);
3468 	return type;
3469 }
3470 
3471 #undef field_mask_test_name
3472 
3473 static int btf_find_struct_field(const struct btf *btf,
3474 				 const struct btf_type *t, u32 field_mask,
3475 				 struct btf_field_info *info, int info_cnt)
3476 {
3477 	int ret, idx = 0, align, sz, field_type;
3478 	const struct btf_member *member;
3479 	struct btf_field_info tmp;
3480 	u32 i, off, seen_mask = 0;
3481 
3482 	for_each_member(i, t, member) {
3483 		const struct btf_type *member_type = btf_type_by_id(btf,
3484 								    member->type);
3485 
3486 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3487 						field_mask, &seen_mask, &align, &sz);
3488 		if (field_type == 0)
3489 			continue;
3490 		if (field_type < 0)
3491 			return field_type;
3492 
3493 		off = __btf_member_bit_offset(t, member);
3494 		if (off % 8)
3495 			/* valid C code cannot generate such BTF */
3496 			return -EINVAL;
3497 		off /= 8;
3498 		if (off % align)
3499 			continue;
3500 
3501 		switch (field_type) {
3502 		case BPF_SPIN_LOCK:
3503 		case BPF_TIMER:
3504 		case BPF_LIST_NODE:
3505 		case BPF_RB_NODE:
3506 		case BPF_REFCOUNT:
3507 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3508 					      idx < info_cnt ? &info[idx] : &tmp);
3509 			if (ret < 0)
3510 				return ret;
3511 			break;
3512 		case BPF_KPTR_UNREF:
3513 		case BPF_KPTR_REF:
3514 		case BPF_KPTR_PERCPU:
3515 			ret = btf_find_kptr(btf, member_type, off, sz,
3516 					    idx < info_cnt ? &info[idx] : &tmp);
3517 			if (ret < 0)
3518 				return ret;
3519 			break;
3520 		case BPF_LIST_HEAD:
3521 		case BPF_RB_ROOT:
3522 			ret = btf_find_graph_root(btf, t, member_type,
3523 						  i, off, sz,
3524 						  idx < info_cnt ? &info[idx] : &tmp,
3525 						  field_type);
3526 			if (ret < 0)
3527 				return ret;
3528 			break;
3529 		default:
3530 			return -EFAULT;
3531 		}
3532 
3533 		if (ret == BTF_FIELD_IGNORE)
3534 			continue;
3535 		if (idx >= info_cnt)
3536 			return -E2BIG;
3537 		++idx;
3538 	}
3539 	return idx;
3540 }
3541 
3542 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3543 				u32 field_mask, struct btf_field_info *info,
3544 				int info_cnt)
3545 {
3546 	int ret, idx = 0, align, sz, field_type;
3547 	const struct btf_var_secinfo *vsi;
3548 	struct btf_field_info tmp;
3549 	u32 i, off, seen_mask = 0;
3550 
3551 	for_each_vsi(i, t, vsi) {
3552 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3553 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3554 
3555 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3556 						field_mask, &seen_mask, &align, &sz);
3557 		if (field_type == 0)
3558 			continue;
3559 		if (field_type < 0)
3560 			return field_type;
3561 
3562 		off = vsi->offset;
3563 		if (vsi->size != sz)
3564 			continue;
3565 		if (off % align)
3566 			continue;
3567 
3568 		switch (field_type) {
3569 		case BPF_SPIN_LOCK:
3570 		case BPF_TIMER:
3571 		case BPF_LIST_NODE:
3572 		case BPF_RB_NODE:
3573 		case BPF_REFCOUNT:
3574 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3575 					      idx < info_cnt ? &info[idx] : &tmp);
3576 			if (ret < 0)
3577 				return ret;
3578 			break;
3579 		case BPF_KPTR_UNREF:
3580 		case BPF_KPTR_REF:
3581 		case BPF_KPTR_PERCPU:
3582 			ret = btf_find_kptr(btf, var_type, off, sz,
3583 					    idx < info_cnt ? &info[idx] : &tmp);
3584 			if (ret < 0)
3585 				return ret;
3586 			break;
3587 		case BPF_LIST_HEAD:
3588 		case BPF_RB_ROOT:
3589 			ret = btf_find_graph_root(btf, var, var_type,
3590 						  -1, off, sz,
3591 						  idx < info_cnt ? &info[idx] : &tmp,
3592 						  field_type);
3593 			if (ret < 0)
3594 				return ret;
3595 			break;
3596 		default:
3597 			return -EFAULT;
3598 		}
3599 
3600 		if (ret == BTF_FIELD_IGNORE)
3601 			continue;
3602 		if (idx >= info_cnt)
3603 			return -E2BIG;
3604 		++idx;
3605 	}
3606 	return idx;
3607 }
3608 
3609 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3610 			  u32 field_mask, struct btf_field_info *info,
3611 			  int info_cnt)
3612 {
3613 	if (__btf_type_is_struct(t))
3614 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3615 	else if (btf_type_is_datasec(t))
3616 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3617 	return -EINVAL;
3618 }
3619 
3620 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3621 			  struct btf_field_info *info)
3622 {
3623 	struct module *mod = NULL;
3624 	const struct btf_type *t;
3625 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3626 	 * is that BTF, otherwise it's program BTF
3627 	 */
3628 	struct btf *kptr_btf;
3629 	int ret;
3630 	s32 id;
3631 
3632 	/* Find type in map BTF, and use it to look up the matching type
3633 	 * in vmlinux or module BTFs, by name and kind.
3634 	 */
3635 	t = btf_type_by_id(btf, info->kptr.type_id);
3636 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3637 			     &kptr_btf);
3638 	if (id == -ENOENT) {
3639 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3640 		WARN_ON_ONCE(btf_is_kernel(btf));
3641 
3642 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3643 		 * kptr allocated via bpf_obj_new
3644 		 */
3645 		field->kptr.dtor = NULL;
3646 		id = info->kptr.type_id;
3647 		kptr_btf = (struct btf *)btf;
3648 		btf_get(kptr_btf);
3649 		goto found_dtor;
3650 	}
3651 	if (id < 0)
3652 		return id;
3653 
3654 	/* Find and stash the function pointer for the destruction function that
3655 	 * needs to be eventually invoked from the map free path.
3656 	 */
3657 	if (info->type == BPF_KPTR_REF) {
3658 		const struct btf_type *dtor_func;
3659 		const char *dtor_func_name;
3660 		unsigned long addr;
3661 		s32 dtor_btf_id;
3662 
3663 		/* This call also serves as a whitelist of allowed objects that
3664 		 * can be used as a referenced pointer and be stored in a map at
3665 		 * the same time.
3666 		 */
3667 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3668 		if (dtor_btf_id < 0) {
3669 			ret = dtor_btf_id;
3670 			goto end_btf;
3671 		}
3672 
3673 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3674 		if (!dtor_func) {
3675 			ret = -ENOENT;
3676 			goto end_btf;
3677 		}
3678 
3679 		if (btf_is_module(kptr_btf)) {
3680 			mod = btf_try_get_module(kptr_btf);
3681 			if (!mod) {
3682 				ret = -ENXIO;
3683 				goto end_btf;
3684 			}
3685 		}
3686 
3687 		/* We already verified dtor_func to be btf_type_is_func
3688 		 * in register_btf_id_dtor_kfuncs.
3689 		 */
3690 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3691 		addr = kallsyms_lookup_name(dtor_func_name);
3692 		if (!addr) {
3693 			ret = -EINVAL;
3694 			goto end_mod;
3695 		}
3696 		field->kptr.dtor = (void *)addr;
3697 	}
3698 
3699 found_dtor:
3700 	field->kptr.btf_id = id;
3701 	field->kptr.btf = kptr_btf;
3702 	field->kptr.module = mod;
3703 	return 0;
3704 end_mod:
3705 	module_put(mod);
3706 end_btf:
3707 	btf_put(kptr_btf);
3708 	return ret;
3709 }
3710 
3711 static int btf_parse_graph_root(const struct btf *btf,
3712 				struct btf_field *field,
3713 				struct btf_field_info *info,
3714 				const char *node_type_name,
3715 				size_t node_type_align)
3716 {
3717 	const struct btf_type *t, *n = NULL;
3718 	const struct btf_member *member;
3719 	u32 offset;
3720 	int i;
3721 
3722 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3723 	/* We've already checked that value_btf_id is a struct type. We
3724 	 * just need to figure out the offset of the list_node, and
3725 	 * verify its type.
3726 	 */
3727 	for_each_member(i, t, member) {
3728 		if (strcmp(info->graph_root.node_name,
3729 			   __btf_name_by_offset(btf, member->name_off)))
3730 			continue;
3731 		/* Invalid BTF, two members with same name */
3732 		if (n)
3733 			return -EINVAL;
3734 		n = btf_type_by_id(btf, member->type);
3735 		if (!__btf_type_is_struct(n))
3736 			return -EINVAL;
3737 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3738 			return -EINVAL;
3739 		offset = __btf_member_bit_offset(n, member);
3740 		if (offset % 8)
3741 			return -EINVAL;
3742 		offset /= 8;
3743 		if (offset % node_type_align)
3744 			return -EINVAL;
3745 
3746 		field->graph_root.btf = (struct btf *)btf;
3747 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3748 		field->graph_root.node_offset = offset;
3749 	}
3750 	if (!n)
3751 		return -ENOENT;
3752 	return 0;
3753 }
3754 
3755 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3756 			       struct btf_field_info *info)
3757 {
3758 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3759 					    __alignof__(struct bpf_list_node));
3760 }
3761 
3762 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3763 			     struct btf_field_info *info)
3764 {
3765 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3766 					    __alignof__(struct bpf_rb_node));
3767 }
3768 
3769 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3770 {
3771 	const struct btf_field *a = (const struct btf_field *)_a;
3772 	const struct btf_field *b = (const struct btf_field *)_b;
3773 
3774 	if (a->offset < b->offset)
3775 		return -1;
3776 	else if (a->offset > b->offset)
3777 		return 1;
3778 	return 0;
3779 }
3780 
3781 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3782 				    u32 field_mask, u32 value_size)
3783 {
3784 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3785 	u32 next_off = 0, field_type_size;
3786 	struct btf_record *rec;
3787 	int ret, i, cnt;
3788 
3789 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3790 	if (ret < 0)
3791 		return ERR_PTR(ret);
3792 	if (!ret)
3793 		return NULL;
3794 
3795 	cnt = ret;
3796 	/* This needs to be kzalloc to zero out padding and unused fields, see
3797 	 * comment in btf_record_equal.
3798 	 */
3799 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3800 	if (!rec)
3801 		return ERR_PTR(-ENOMEM);
3802 
3803 	rec->spin_lock_off = -EINVAL;
3804 	rec->timer_off = -EINVAL;
3805 	rec->refcount_off = -EINVAL;
3806 	for (i = 0; i < cnt; i++) {
3807 		field_type_size = btf_field_type_size(info_arr[i].type);
3808 		if (info_arr[i].off + field_type_size > value_size) {
3809 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3810 			ret = -EFAULT;
3811 			goto end;
3812 		}
3813 		if (info_arr[i].off < next_off) {
3814 			ret = -EEXIST;
3815 			goto end;
3816 		}
3817 		next_off = info_arr[i].off + field_type_size;
3818 
3819 		rec->field_mask |= info_arr[i].type;
3820 		rec->fields[i].offset = info_arr[i].off;
3821 		rec->fields[i].type = info_arr[i].type;
3822 		rec->fields[i].size = field_type_size;
3823 
3824 		switch (info_arr[i].type) {
3825 		case BPF_SPIN_LOCK:
3826 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3827 			/* Cache offset for faster lookup at runtime */
3828 			rec->spin_lock_off = rec->fields[i].offset;
3829 			break;
3830 		case BPF_TIMER:
3831 			WARN_ON_ONCE(rec->timer_off >= 0);
3832 			/* Cache offset for faster lookup at runtime */
3833 			rec->timer_off = rec->fields[i].offset;
3834 			break;
3835 		case BPF_REFCOUNT:
3836 			WARN_ON_ONCE(rec->refcount_off >= 0);
3837 			/* Cache offset for faster lookup at runtime */
3838 			rec->refcount_off = rec->fields[i].offset;
3839 			break;
3840 		case BPF_KPTR_UNREF:
3841 		case BPF_KPTR_REF:
3842 		case BPF_KPTR_PERCPU:
3843 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3844 			if (ret < 0)
3845 				goto end;
3846 			break;
3847 		case BPF_LIST_HEAD:
3848 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3849 			if (ret < 0)
3850 				goto end;
3851 			break;
3852 		case BPF_RB_ROOT:
3853 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3854 			if (ret < 0)
3855 				goto end;
3856 			break;
3857 		case BPF_LIST_NODE:
3858 		case BPF_RB_NODE:
3859 			break;
3860 		default:
3861 			ret = -EFAULT;
3862 			goto end;
3863 		}
3864 		rec->cnt++;
3865 	}
3866 
3867 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3868 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3869 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3870 		ret = -EINVAL;
3871 		goto end;
3872 	}
3873 
3874 	if (rec->refcount_off < 0 &&
3875 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3876 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3877 		ret = -EINVAL;
3878 		goto end;
3879 	}
3880 
3881 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3882 	       NULL, rec);
3883 
3884 	return rec;
3885 end:
3886 	btf_record_free(rec);
3887 	return ERR_PTR(ret);
3888 }
3889 
3890 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3891 {
3892 	int i;
3893 
3894 	/* There are three types that signify ownership of some other type:
3895 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3896 	 * kptr_ref only supports storing kernel types, which can't store
3897 	 * references to program allocated local types.
3898 	 *
3899 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3900 	 * does not form cycles.
3901 	 */
3902 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3903 		return 0;
3904 	for (i = 0; i < rec->cnt; i++) {
3905 		struct btf_struct_meta *meta;
3906 		u32 btf_id;
3907 
3908 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3909 			continue;
3910 		btf_id = rec->fields[i].graph_root.value_btf_id;
3911 		meta = btf_find_struct_meta(btf, btf_id);
3912 		if (!meta)
3913 			return -EFAULT;
3914 		rec->fields[i].graph_root.value_rec = meta->record;
3915 
3916 		/* We need to set value_rec for all root types, but no need
3917 		 * to check ownership cycle for a type unless it's also a
3918 		 * node type.
3919 		 */
3920 		if (!(rec->field_mask & BPF_GRAPH_NODE))
3921 			continue;
3922 
3923 		/* We need to ensure ownership acyclicity among all types. The
3924 		 * proper way to do it would be to topologically sort all BTF
3925 		 * IDs based on the ownership edges, since there can be multiple
3926 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3927 		 * following resaoning:
3928 		 *
3929 		 * - A type can only be owned by another type in user BTF if it
3930 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3931 		 * - A type can only _own_ another type in user BTF if it has a
3932 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3933 		 *
3934 		 * We ensure that if a type is both a root and node, its
3935 		 * element types cannot be root types.
3936 		 *
3937 		 * To ensure acyclicity:
3938 		 *
3939 		 * When A is an root type but not a node, its ownership
3940 		 * chain can be:
3941 		 *	A -> B -> C
3942 		 * Where:
3943 		 * - A is an root, e.g. has bpf_rb_root.
3944 		 * - B is both a root and node, e.g. has bpf_rb_node and
3945 		 *   bpf_list_head.
3946 		 * - C is only an root, e.g. has bpf_list_node
3947 		 *
3948 		 * When A is both a root and node, some other type already
3949 		 * owns it in the BTF domain, hence it can not own
3950 		 * another root type through any of the ownership edges.
3951 		 *	A -> B
3952 		 * Where:
3953 		 * - A is both an root and node.
3954 		 * - B is only an node.
3955 		 */
3956 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
3957 			return -ELOOP;
3958 	}
3959 	return 0;
3960 }
3961 
3962 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3963 			      u32 type_id, void *data, u8 bits_offset,
3964 			      struct btf_show *show)
3965 {
3966 	const struct btf_member *member;
3967 	void *safe_data;
3968 	u32 i;
3969 
3970 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3971 	if (!safe_data)
3972 		return;
3973 
3974 	for_each_member(i, t, member) {
3975 		const struct btf_type *member_type = btf_type_by_id(btf,
3976 								member->type);
3977 		const struct btf_kind_operations *ops;
3978 		u32 member_offset, bitfield_size;
3979 		u32 bytes_offset;
3980 		u8 bits8_offset;
3981 
3982 		btf_show_start_member(show, member);
3983 
3984 		member_offset = __btf_member_bit_offset(t, member);
3985 		bitfield_size = __btf_member_bitfield_size(t, member);
3986 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3987 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3988 		if (bitfield_size) {
3989 			safe_data = btf_show_start_type(show, member_type,
3990 							member->type,
3991 							data + bytes_offset);
3992 			if (safe_data)
3993 				btf_bitfield_show(safe_data,
3994 						  bits8_offset,
3995 						  bitfield_size, show);
3996 			btf_show_end_type(show);
3997 		} else {
3998 			ops = btf_type_ops(member_type);
3999 			ops->show(btf, member_type, member->type,
4000 				  data + bytes_offset, bits8_offset, show);
4001 		}
4002 
4003 		btf_show_end_member(show);
4004 	}
4005 
4006 	btf_show_end_struct_type(show);
4007 }
4008 
4009 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4010 			    u32 type_id, void *data, u8 bits_offset,
4011 			    struct btf_show *show)
4012 {
4013 	const struct btf_member *m = show->state.member;
4014 
4015 	/*
4016 	 * First check if any members would be shown (are non-zero).
4017 	 * See comments above "struct btf_show" definition for more
4018 	 * details on how this works at a high-level.
4019 	 */
4020 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4021 		if (!show->state.depth_check) {
4022 			show->state.depth_check = show->state.depth + 1;
4023 			show->state.depth_to_show = 0;
4024 		}
4025 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4026 		/* Restore saved member data here */
4027 		show->state.member = m;
4028 		if (show->state.depth_check != show->state.depth + 1)
4029 			return;
4030 		show->state.depth_check = 0;
4031 
4032 		if (show->state.depth_to_show <= show->state.depth)
4033 			return;
4034 		/*
4035 		 * Reaching here indicates we have recursed and found
4036 		 * non-zero child values.
4037 		 */
4038 	}
4039 
4040 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4041 }
4042 
4043 static struct btf_kind_operations struct_ops = {
4044 	.check_meta = btf_struct_check_meta,
4045 	.resolve = btf_struct_resolve,
4046 	.check_member = btf_struct_check_member,
4047 	.check_kflag_member = btf_generic_check_kflag_member,
4048 	.log_details = btf_struct_log,
4049 	.show = btf_struct_show,
4050 };
4051 
4052 static int btf_enum_check_member(struct btf_verifier_env *env,
4053 				 const struct btf_type *struct_type,
4054 				 const struct btf_member *member,
4055 				 const struct btf_type *member_type)
4056 {
4057 	u32 struct_bits_off = member->offset;
4058 	u32 struct_size, bytes_offset;
4059 
4060 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4061 		btf_verifier_log_member(env, struct_type, member,
4062 					"Member is not byte aligned");
4063 		return -EINVAL;
4064 	}
4065 
4066 	struct_size = struct_type->size;
4067 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4068 	if (struct_size - bytes_offset < member_type->size) {
4069 		btf_verifier_log_member(env, struct_type, member,
4070 					"Member exceeds struct_size");
4071 		return -EINVAL;
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4078 				       const struct btf_type *struct_type,
4079 				       const struct btf_member *member,
4080 				       const struct btf_type *member_type)
4081 {
4082 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4083 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4084 
4085 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4086 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4087 	if (!nr_bits) {
4088 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4089 			btf_verifier_log_member(env, struct_type, member,
4090 						"Member is not byte aligned");
4091 			return -EINVAL;
4092 		}
4093 
4094 		nr_bits = int_bitsize;
4095 	} else if (nr_bits > int_bitsize) {
4096 		btf_verifier_log_member(env, struct_type, member,
4097 					"Invalid member bitfield_size");
4098 		return -EINVAL;
4099 	}
4100 
4101 	struct_size = struct_type->size;
4102 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4103 	if (struct_size < bytes_end) {
4104 		btf_verifier_log_member(env, struct_type, member,
4105 					"Member exceeds struct_size");
4106 		return -EINVAL;
4107 	}
4108 
4109 	return 0;
4110 }
4111 
4112 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4113 			       const struct btf_type *t,
4114 			       u32 meta_left)
4115 {
4116 	const struct btf_enum *enums = btf_type_enum(t);
4117 	struct btf *btf = env->btf;
4118 	const char *fmt_str;
4119 	u16 i, nr_enums;
4120 	u32 meta_needed;
4121 
4122 	nr_enums = btf_type_vlen(t);
4123 	meta_needed = nr_enums * sizeof(*enums);
4124 
4125 	if (meta_left < meta_needed) {
4126 		btf_verifier_log_basic(env, t,
4127 				       "meta_left:%u meta_needed:%u",
4128 				       meta_left, meta_needed);
4129 		return -EINVAL;
4130 	}
4131 
4132 	if (t->size > 8 || !is_power_of_2(t->size)) {
4133 		btf_verifier_log_type(env, t, "Unexpected size");
4134 		return -EINVAL;
4135 	}
4136 
4137 	/* enum type either no name or a valid one */
4138 	if (t->name_off &&
4139 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4140 		btf_verifier_log_type(env, t, "Invalid name");
4141 		return -EINVAL;
4142 	}
4143 
4144 	btf_verifier_log_type(env, t, NULL);
4145 
4146 	for (i = 0; i < nr_enums; i++) {
4147 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4148 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4149 					 enums[i].name_off);
4150 			return -EINVAL;
4151 		}
4152 
4153 		/* enum member must have a valid name */
4154 		if (!enums[i].name_off ||
4155 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4156 			btf_verifier_log_type(env, t, "Invalid name");
4157 			return -EINVAL;
4158 		}
4159 
4160 		if (env->log.level == BPF_LOG_KERNEL)
4161 			continue;
4162 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4163 		btf_verifier_log(env, fmt_str,
4164 				 __btf_name_by_offset(btf, enums[i].name_off),
4165 				 enums[i].val);
4166 	}
4167 
4168 	return meta_needed;
4169 }
4170 
4171 static void btf_enum_log(struct btf_verifier_env *env,
4172 			 const struct btf_type *t)
4173 {
4174 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4175 }
4176 
4177 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4178 			  u32 type_id, void *data, u8 bits_offset,
4179 			  struct btf_show *show)
4180 {
4181 	const struct btf_enum *enums = btf_type_enum(t);
4182 	u32 i, nr_enums = btf_type_vlen(t);
4183 	void *safe_data;
4184 	int v;
4185 
4186 	safe_data = btf_show_start_type(show, t, type_id, data);
4187 	if (!safe_data)
4188 		return;
4189 
4190 	v = *(int *)safe_data;
4191 
4192 	for (i = 0; i < nr_enums; i++) {
4193 		if (v != enums[i].val)
4194 			continue;
4195 
4196 		btf_show_type_value(show, "%s",
4197 				    __btf_name_by_offset(btf,
4198 							 enums[i].name_off));
4199 
4200 		btf_show_end_type(show);
4201 		return;
4202 	}
4203 
4204 	if (btf_type_kflag(t))
4205 		btf_show_type_value(show, "%d", v);
4206 	else
4207 		btf_show_type_value(show, "%u", v);
4208 	btf_show_end_type(show);
4209 }
4210 
4211 static struct btf_kind_operations enum_ops = {
4212 	.check_meta = btf_enum_check_meta,
4213 	.resolve = btf_df_resolve,
4214 	.check_member = btf_enum_check_member,
4215 	.check_kflag_member = btf_enum_check_kflag_member,
4216 	.log_details = btf_enum_log,
4217 	.show = btf_enum_show,
4218 };
4219 
4220 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4221 				 const struct btf_type *t,
4222 				 u32 meta_left)
4223 {
4224 	const struct btf_enum64 *enums = btf_type_enum64(t);
4225 	struct btf *btf = env->btf;
4226 	const char *fmt_str;
4227 	u16 i, nr_enums;
4228 	u32 meta_needed;
4229 
4230 	nr_enums = btf_type_vlen(t);
4231 	meta_needed = nr_enums * sizeof(*enums);
4232 
4233 	if (meta_left < meta_needed) {
4234 		btf_verifier_log_basic(env, t,
4235 				       "meta_left:%u meta_needed:%u",
4236 				       meta_left, meta_needed);
4237 		return -EINVAL;
4238 	}
4239 
4240 	if (t->size > 8 || !is_power_of_2(t->size)) {
4241 		btf_verifier_log_type(env, t, "Unexpected size");
4242 		return -EINVAL;
4243 	}
4244 
4245 	/* enum type either no name or a valid one */
4246 	if (t->name_off &&
4247 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4248 		btf_verifier_log_type(env, t, "Invalid name");
4249 		return -EINVAL;
4250 	}
4251 
4252 	btf_verifier_log_type(env, t, NULL);
4253 
4254 	for (i = 0; i < nr_enums; i++) {
4255 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4256 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4257 					 enums[i].name_off);
4258 			return -EINVAL;
4259 		}
4260 
4261 		/* enum member must have a valid name */
4262 		if (!enums[i].name_off ||
4263 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4264 			btf_verifier_log_type(env, t, "Invalid name");
4265 			return -EINVAL;
4266 		}
4267 
4268 		if (env->log.level == BPF_LOG_KERNEL)
4269 			continue;
4270 
4271 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4272 		btf_verifier_log(env, fmt_str,
4273 				 __btf_name_by_offset(btf, enums[i].name_off),
4274 				 btf_enum64_value(enums + i));
4275 	}
4276 
4277 	return meta_needed;
4278 }
4279 
4280 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4281 			    u32 type_id, void *data, u8 bits_offset,
4282 			    struct btf_show *show)
4283 {
4284 	const struct btf_enum64 *enums = btf_type_enum64(t);
4285 	u32 i, nr_enums = btf_type_vlen(t);
4286 	void *safe_data;
4287 	s64 v;
4288 
4289 	safe_data = btf_show_start_type(show, t, type_id, data);
4290 	if (!safe_data)
4291 		return;
4292 
4293 	v = *(u64 *)safe_data;
4294 
4295 	for (i = 0; i < nr_enums; i++) {
4296 		if (v != btf_enum64_value(enums + i))
4297 			continue;
4298 
4299 		btf_show_type_value(show, "%s",
4300 				    __btf_name_by_offset(btf,
4301 							 enums[i].name_off));
4302 
4303 		btf_show_end_type(show);
4304 		return;
4305 	}
4306 
4307 	if (btf_type_kflag(t))
4308 		btf_show_type_value(show, "%lld", v);
4309 	else
4310 		btf_show_type_value(show, "%llu", v);
4311 	btf_show_end_type(show);
4312 }
4313 
4314 static struct btf_kind_operations enum64_ops = {
4315 	.check_meta = btf_enum64_check_meta,
4316 	.resolve = btf_df_resolve,
4317 	.check_member = btf_enum_check_member,
4318 	.check_kflag_member = btf_enum_check_kflag_member,
4319 	.log_details = btf_enum_log,
4320 	.show = btf_enum64_show,
4321 };
4322 
4323 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4324 				     const struct btf_type *t,
4325 				     u32 meta_left)
4326 {
4327 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4328 
4329 	if (meta_left < meta_needed) {
4330 		btf_verifier_log_basic(env, t,
4331 				       "meta_left:%u meta_needed:%u",
4332 				       meta_left, meta_needed);
4333 		return -EINVAL;
4334 	}
4335 
4336 	if (t->name_off) {
4337 		btf_verifier_log_type(env, t, "Invalid name");
4338 		return -EINVAL;
4339 	}
4340 
4341 	if (btf_type_kflag(t)) {
4342 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4343 		return -EINVAL;
4344 	}
4345 
4346 	btf_verifier_log_type(env, t, NULL);
4347 
4348 	return meta_needed;
4349 }
4350 
4351 static void btf_func_proto_log(struct btf_verifier_env *env,
4352 			       const struct btf_type *t)
4353 {
4354 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4355 	u16 nr_args = btf_type_vlen(t), i;
4356 
4357 	btf_verifier_log(env, "return=%u args=(", t->type);
4358 	if (!nr_args) {
4359 		btf_verifier_log(env, "void");
4360 		goto done;
4361 	}
4362 
4363 	if (nr_args == 1 && !args[0].type) {
4364 		/* Only one vararg */
4365 		btf_verifier_log(env, "vararg");
4366 		goto done;
4367 	}
4368 
4369 	btf_verifier_log(env, "%u %s", args[0].type,
4370 			 __btf_name_by_offset(env->btf,
4371 					      args[0].name_off));
4372 	for (i = 1; i < nr_args - 1; i++)
4373 		btf_verifier_log(env, ", %u %s", args[i].type,
4374 				 __btf_name_by_offset(env->btf,
4375 						      args[i].name_off));
4376 
4377 	if (nr_args > 1) {
4378 		const struct btf_param *last_arg = &args[nr_args - 1];
4379 
4380 		if (last_arg->type)
4381 			btf_verifier_log(env, ", %u %s", last_arg->type,
4382 					 __btf_name_by_offset(env->btf,
4383 							      last_arg->name_off));
4384 		else
4385 			btf_verifier_log(env, ", vararg");
4386 	}
4387 
4388 done:
4389 	btf_verifier_log(env, ")");
4390 }
4391 
4392 static struct btf_kind_operations func_proto_ops = {
4393 	.check_meta = btf_func_proto_check_meta,
4394 	.resolve = btf_df_resolve,
4395 	/*
4396 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4397 	 * a struct's member.
4398 	 *
4399 	 * It should be a function pointer instead.
4400 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4401 	 *
4402 	 * Hence, there is no btf_func_check_member().
4403 	 */
4404 	.check_member = btf_df_check_member,
4405 	.check_kflag_member = btf_df_check_kflag_member,
4406 	.log_details = btf_func_proto_log,
4407 	.show = btf_df_show,
4408 };
4409 
4410 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4411 			       const struct btf_type *t,
4412 			       u32 meta_left)
4413 {
4414 	if (!t->name_off ||
4415 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4416 		btf_verifier_log_type(env, t, "Invalid name");
4417 		return -EINVAL;
4418 	}
4419 
4420 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4421 		btf_verifier_log_type(env, t, "Invalid func linkage");
4422 		return -EINVAL;
4423 	}
4424 
4425 	if (btf_type_kflag(t)) {
4426 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4427 		return -EINVAL;
4428 	}
4429 
4430 	btf_verifier_log_type(env, t, NULL);
4431 
4432 	return 0;
4433 }
4434 
4435 static int btf_func_resolve(struct btf_verifier_env *env,
4436 			    const struct resolve_vertex *v)
4437 {
4438 	const struct btf_type *t = v->t;
4439 	u32 next_type_id = t->type;
4440 	int err;
4441 
4442 	err = btf_func_check(env, t);
4443 	if (err)
4444 		return err;
4445 
4446 	env_stack_pop_resolved(env, next_type_id, 0);
4447 	return 0;
4448 }
4449 
4450 static struct btf_kind_operations func_ops = {
4451 	.check_meta = btf_func_check_meta,
4452 	.resolve = btf_func_resolve,
4453 	.check_member = btf_df_check_member,
4454 	.check_kflag_member = btf_df_check_kflag_member,
4455 	.log_details = btf_ref_type_log,
4456 	.show = btf_df_show,
4457 };
4458 
4459 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4460 			      const struct btf_type *t,
4461 			      u32 meta_left)
4462 {
4463 	const struct btf_var *var;
4464 	u32 meta_needed = sizeof(*var);
4465 
4466 	if (meta_left < meta_needed) {
4467 		btf_verifier_log_basic(env, t,
4468 				       "meta_left:%u meta_needed:%u",
4469 				       meta_left, meta_needed);
4470 		return -EINVAL;
4471 	}
4472 
4473 	if (btf_type_vlen(t)) {
4474 		btf_verifier_log_type(env, t, "vlen != 0");
4475 		return -EINVAL;
4476 	}
4477 
4478 	if (btf_type_kflag(t)) {
4479 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4480 		return -EINVAL;
4481 	}
4482 
4483 	if (!t->name_off ||
4484 	    !__btf_name_valid(env->btf, t->name_off)) {
4485 		btf_verifier_log_type(env, t, "Invalid name");
4486 		return -EINVAL;
4487 	}
4488 
4489 	/* A var cannot be in type void */
4490 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4491 		btf_verifier_log_type(env, t, "Invalid type_id");
4492 		return -EINVAL;
4493 	}
4494 
4495 	var = btf_type_var(t);
4496 	if (var->linkage != BTF_VAR_STATIC &&
4497 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4498 		btf_verifier_log_type(env, t, "Linkage not supported");
4499 		return -EINVAL;
4500 	}
4501 
4502 	btf_verifier_log_type(env, t, NULL);
4503 
4504 	return meta_needed;
4505 }
4506 
4507 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4508 {
4509 	const struct btf_var *var = btf_type_var(t);
4510 
4511 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4512 }
4513 
4514 static const struct btf_kind_operations var_ops = {
4515 	.check_meta		= btf_var_check_meta,
4516 	.resolve		= btf_var_resolve,
4517 	.check_member		= btf_df_check_member,
4518 	.check_kflag_member	= btf_df_check_kflag_member,
4519 	.log_details		= btf_var_log,
4520 	.show			= btf_var_show,
4521 };
4522 
4523 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4524 				  const struct btf_type *t,
4525 				  u32 meta_left)
4526 {
4527 	const struct btf_var_secinfo *vsi;
4528 	u64 last_vsi_end_off = 0, sum = 0;
4529 	u32 i, meta_needed;
4530 
4531 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4532 	if (meta_left < meta_needed) {
4533 		btf_verifier_log_basic(env, t,
4534 				       "meta_left:%u meta_needed:%u",
4535 				       meta_left, meta_needed);
4536 		return -EINVAL;
4537 	}
4538 
4539 	if (!t->size) {
4540 		btf_verifier_log_type(env, t, "size == 0");
4541 		return -EINVAL;
4542 	}
4543 
4544 	if (btf_type_kflag(t)) {
4545 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4546 		return -EINVAL;
4547 	}
4548 
4549 	if (!t->name_off ||
4550 	    !btf_name_valid_section(env->btf, t->name_off)) {
4551 		btf_verifier_log_type(env, t, "Invalid name");
4552 		return -EINVAL;
4553 	}
4554 
4555 	btf_verifier_log_type(env, t, NULL);
4556 
4557 	for_each_vsi(i, t, vsi) {
4558 		/* A var cannot be in type void */
4559 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4560 			btf_verifier_log_vsi(env, t, vsi,
4561 					     "Invalid type_id");
4562 			return -EINVAL;
4563 		}
4564 
4565 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4566 			btf_verifier_log_vsi(env, t, vsi,
4567 					     "Invalid offset");
4568 			return -EINVAL;
4569 		}
4570 
4571 		if (!vsi->size || vsi->size > t->size) {
4572 			btf_verifier_log_vsi(env, t, vsi,
4573 					     "Invalid size");
4574 			return -EINVAL;
4575 		}
4576 
4577 		last_vsi_end_off = vsi->offset + vsi->size;
4578 		if (last_vsi_end_off > t->size) {
4579 			btf_verifier_log_vsi(env, t, vsi,
4580 					     "Invalid offset+size");
4581 			return -EINVAL;
4582 		}
4583 
4584 		btf_verifier_log_vsi(env, t, vsi, NULL);
4585 		sum += vsi->size;
4586 	}
4587 
4588 	if (t->size < sum) {
4589 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4590 		return -EINVAL;
4591 	}
4592 
4593 	return meta_needed;
4594 }
4595 
4596 static int btf_datasec_resolve(struct btf_verifier_env *env,
4597 			       const struct resolve_vertex *v)
4598 {
4599 	const struct btf_var_secinfo *vsi;
4600 	struct btf *btf = env->btf;
4601 	u16 i;
4602 
4603 	env->resolve_mode = RESOLVE_TBD;
4604 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4605 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4606 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4607 								 var_type_id);
4608 		if (!var_type || !btf_type_is_var(var_type)) {
4609 			btf_verifier_log_vsi(env, v->t, vsi,
4610 					     "Not a VAR kind member");
4611 			return -EINVAL;
4612 		}
4613 
4614 		if (!env_type_is_resolve_sink(env, var_type) &&
4615 		    !env_type_is_resolved(env, var_type_id)) {
4616 			env_stack_set_next_member(env, i + 1);
4617 			return env_stack_push(env, var_type, var_type_id);
4618 		}
4619 
4620 		type_id = var_type->type;
4621 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4622 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4623 			return -EINVAL;
4624 		}
4625 
4626 		if (vsi->size < type_size) {
4627 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4628 			return -EINVAL;
4629 		}
4630 	}
4631 
4632 	env_stack_pop_resolved(env, 0, 0);
4633 	return 0;
4634 }
4635 
4636 static void btf_datasec_log(struct btf_verifier_env *env,
4637 			    const struct btf_type *t)
4638 {
4639 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4640 }
4641 
4642 static void btf_datasec_show(const struct btf *btf,
4643 			     const struct btf_type *t, u32 type_id,
4644 			     void *data, u8 bits_offset,
4645 			     struct btf_show *show)
4646 {
4647 	const struct btf_var_secinfo *vsi;
4648 	const struct btf_type *var;
4649 	u32 i;
4650 
4651 	if (!btf_show_start_type(show, t, type_id, data))
4652 		return;
4653 
4654 	btf_show_type_value(show, "section (\"%s\") = {",
4655 			    __btf_name_by_offset(btf, t->name_off));
4656 	for_each_vsi(i, t, vsi) {
4657 		var = btf_type_by_id(btf, vsi->type);
4658 		if (i)
4659 			btf_show(show, ",");
4660 		btf_type_ops(var)->show(btf, var, vsi->type,
4661 					data + vsi->offset, bits_offset, show);
4662 	}
4663 	btf_show_end_type(show);
4664 }
4665 
4666 static const struct btf_kind_operations datasec_ops = {
4667 	.check_meta		= btf_datasec_check_meta,
4668 	.resolve		= btf_datasec_resolve,
4669 	.check_member		= btf_df_check_member,
4670 	.check_kflag_member	= btf_df_check_kflag_member,
4671 	.log_details		= btf_datasec_log,
4672 	.show			= btf_datasec_show,
4673 };
4674 
4675 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4676 				const struct btf_type *t,
4677 				u32 meta_left)
4678 {
4679 	if (btf_type_vlen(t)) {
4680 		btf_verifier_log_type(env, t, "vlen != 0");
4681 		return -EINVAL;
4682 	}
4683 
4684 	if (btf_type_kflag(t)) {
4685 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4686 		return -EINVAL;
4687 	}
4688 
4689 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4690 	    t->size != 16) {
4691 		btf_verifier_log_type(env, t, "Invalid type_size");
4692 		return -EINVAL;
4693 	}
4694 
4695 	btf_verifier_log_type(env, t, NULL);
4696 
4697 	return 0;
4698 }
4699 
4700 static int btf_float_check_member(struct btf_verifier_env *env,
4701 				  const struct btf_type *struct_type,
4702 				  const struct btf_member *member,
4703 				  const struct btf_type *member_type)
4704 {
4705 	u64 start_offset_bytes;
4706 	u64 end_offset_bytes;
4707 	u64 misalign_bits;
4708 	u64 align_bytes;
4709 	u64 align_bits;
4710 
4711 	/* Different architectures have different alignment requirements, so
4712 	 * here we check only for the reasonable minimum. This way we ensure
4713 	 * that types after CO-RE can pass the kernel BTF verifier.
4714 	 */
4715 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4716 	align_bits = align_bytes * BITS_PER_BYTE;
4717 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4718 	if (misalign_bits) {
4719 		btf_verifier_log_member(env, struct_type, member,
4720 					"Member is not properly aligned");
4721 		return -EINVAL;
4722 	}
4723 
4724 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4725 	end_offset_bytes = start_offset_bytes + member_type->size;
4726 	if (end_offset_bytes > struct_type->size) {
4727 		btf_verifier_log_member(env, struct_type, member,
4728 					"Member exceeds struct_size");
4729 		return -EINVAL;
4730 	}
4731 
4732 	return 0;
4733 }
4734 
4735 static void btf_float_log(struct btf_verifier_env *env,
4736 			  const struct btf_type *t)
4737 {
4738 	btf_verifier_log(env, "size=%u", t->size);
4739 }
4740 
4741 static const struct btf_kind_operations float_ops = {
4742 	.check_meta = btf_float_check_meta,
4743 	.resolve = btf_df_resolve,
4744 	.check_member = btf_float_check_member,
4745 	.check_kflag_member = btf_generic_check_kflag_member,
4746 	.log_details = btf_float_log,
4747 	.show = btf_df_show,
4748 };
4749 
4750 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4751 			      const struct btf_type *t,
4752 			      u32 meta_left)
4753 {
4754 	const struct btf_decl_tag *tag;
4755 	u32 meta_needed = sizeof(*tag);
4756 	s32 component_idx;
4757 	const char *value;
4758 
4759 	if (meta_left < meta_needed) {
4760 		btf_verifier_log_basic(env, t,
4761 				       "meta_left:%u meta_needed:%u",
4762 				       meta_left, meta_needed);
4763 		return -EINVAL;
4764 	}
4765 
4766 	value = btf_name_by_offset(env->btf, t->name_off);
4767 	if (!value || !value[0]) {
4768 		btf_verifier_log_type(env, t, "Invalid value");
4769 		return -EINVAL;
4770 	}
4771 
4772 	if (btf_type_vlen(t)) {
4773 		btf_verifier_log_type(env, t, "vlen != 0");
4774 		return -EINVAL;
4775 	}
4776 
4777 	if (btf_type_kflag(t)) {
4778 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4779 		return -EINVAL;
4780 	}
4781 
4782 	component_idx = btf_type_decl_tag(t)->component_idx;
4783 	if (component_idx < -1) {
4784 		btf_verifier_log_type(env, t, "Invalid component_idx");
4785 		return -EINVAL;
4786 	}
4787 
4788 	btf_verifier_log_type(env, t, NULL);
4789 
4790 	return meta_needed;
4791 }
4792 
4793 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4794 			   const struct resolve_vertex *v)
4795 {
4796 	const struct btf_type *next_type;
4797 	const struct btf_type *t = v->t;
4798 	u32 next_type_id = t->type;
4799 	struct btf *btf = env->btf;
4800 	s32 component_idx;
4801 	u32 vlen;
4802 
4803 	next_type = btf_type_by_id(btf, next_type_id);
4804 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4805 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4806 		return -EINVAL;
4807 	}
4808 
4809 	if (!env_type_is_resolve_sink(env, next_type) &&
4810 	    !env_type_is_resolved(env, next_type_id))
4811 		return env_stack_push(env, next_type, next_type_id);
4812 
4813 	component_idx = btf_type_decl_tag(t)->component_idx;
4814 	if (component_idx != -1) {
4815 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4816 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4817 			return -EINVAL;
4818 		}
4819 
4820 		if (btf_type_is_struct(next_type)) {
4821 			vlen = btf_type_vlen(next_type);
4822 		} else {
4823 			/* next_type should be a function */
4824 			next_type = btf_type_by_id(btf, next_type->type);
4825 			vlen = btf_type_vlen(next_type);
4826 		}
4827 
4828 		if ((u32)component_idx >= vlen) {
4829 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4830 			return -EINVAL;
4831 		}
4832 	}
4833 
4834 	env_stack_pop_resolved(env, next_type_id, 0);
4835 
4836 	return 0;
4837 }
4838 
4839 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4840 {
4841 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4842 			 btf_type_decl_tag(t)->component_idx);
4843 }
4844 
4845 static const struct btf_kind_operations decl_tag_ops = {
4846 	.check_meta = btf_decl_tag_check_meta,
4847 	.resolve = btf_decl_tag_resolve,
4848 	.check_member = btf_df_check_member,
4849 	.check_kflag_member = btf_df_check_kflag_member,
4850 	.log_details = btf_decl_tag_log,
4851 	.show = btf_df_show,
4852 };
4853 
4854 static int btf_func_proto_check(struct btf_verifier_env *env,
4855 				const struct btf_type *t)
4856 {
4857 	const struct btf_type *ret_type;
4858 	const struct btf_param *args;
4859 	const struct btf *btf;
4860 	u16 nr_args, i;
4861 	int err;
4862 
4863 	btf = env->btf;
4864 	args = (const struct btf_param *)(t + 1);
4865 	nr_args = btf_type_vlen(t);
4866 
4867 	/* Check func return type which could be "void" (t->type == 0) */
4868 	if (t->type) {
4869 		u32 ret_type_id = t->type;
4870 
4871 		ret_type = btf_type_by_id(btf, ret_type_id);
4872 		if (!ret_type) {
4873 			btf_verifier_log_type(env, t, "Invalid return type");
4874 			return -EINVAL;
4875 		}
4876 
4877 		if (btf_type_is_resolve_source_only(ret_type)) {
4878 			btf_verifier_log_type(env, t, "Invalid return type");
4879 			return -EINVAL;
4880 		}
4881 
4882 		if (btf_type_needs_resolve(ret_type) &&
4883 		    !env_type_is_resolved(env, ret_type_id)) {
4884 			err = btf_resolve(env, ret_type, ret_type_id);
4885 			if (err)
4886 				return err;
4887 		}
4888 
4889 		/* Ensure the return type is a type that has a size */
4890 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4891 			btf_verifier_log_type(env, t, "Invalid return type");
4892 			return -EINVAL;
4893 		}
4894 	}
4895 
4896 	if (!nr_args)
4897 		return 0;
4898 
4899 	/* Last func arg type_id could be 0 if it is a vararg */
4900 	if (!args[nr_args - 1].type) {
4901 		if (args[nr_args - 1].name_off) {
4902 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4903 					      nr_args);
4904 			return -EINVAL;
4905 		}
4906 		nr_args--;
4907 	}
4908 
4909 	for (i = 0; i < nr_args; i++) {
4910 		const struct btf_type *arg_type;
4911 		u32 arg_type_id;
4912 
4913 		arg_type_id = args[i].type;
4914 		arg_type = btf_type_by_id(btf, arg_type_id);
4915 		if (!arg_type) {
4916 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4917 			return -EINVAL;
4918 		}
4919 
4920 		if (btf_type_is_resolve_source_only(arg_type)) {
4921 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4922 			return -EINVAL;
4923 		}
4924 
4925 		if (args[i].name_off &&
4926 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4927 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4928 			btf_verifier_log_type(env, t,
4929 					      "Invalid arg#%u", i + 1);
4930 			return -EINVAL;
4931 		}
4932 
4933 		if (btf_type_needs_resolve(arg_type) &&
4934 		    !env_type_is_resolved(env, arg_type_id)) {
4935 			err = btf_resolve(env, arg_type, arg_type_id);
4936 			if (err)
4937 				return err;
4938 		}
4939 
4940 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4941 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4942 			return -EINVAL;
4943 		}
4944 	}
4945 
4946 	return 0;
4947 }
4948 
4949 static int btf_func_check(struct btf_verifier_env *env,
4950 			  const struct btf_type *t)
4951 {
4952 	const struct btf_type *proto_type;
4953 	const struct btf_param *args;
4954 	const struct btf *btf;
4955 	u16 nr_args, i;
4956 
4957 	btf = env->btf;
4958 	proto_type = btf_type_by_id(btf, t->type);
4959 
4960 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4961 		btf_verifier_log_type(env, t, "Invalid type_id");
4962 		return -EINVAL;
4963 	}
4964 
4965 	args = (const struct btf_param *)(proto_type + 1);
4966 	nr_args = btf_type_vlen(proto_type);
4967 	for (i = 0; i < nr_args; i++) {
4968 		if (!args[i].name_off && args[i].type) {
4969 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4970 			return -EINVAL;
4971 		}
4972 	}
4973 
4974 	return 0;
4975 }
4976 
4977 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4978 	[BTF_KIND_INT] = &int_ops,
4979 	[BTF_KIND_PTR] = &ptr_ops,
4980 	[BTF_KIND_ARRAY] = &array_ops,
4981 	[BTF_KIND_STRUCT] = &struct_ops,
4982 	[BTF_KIND_UNION] = &struct_ops,
4983 	[BTF_KIND_ENUM] = &enum_ops,
4984 	[BTF_KIND_FWD] = &fwd_ops,
4985 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4986 	[BTF_KIND_VOLATILE] = &modifier_ops,
4987 	[BTF_KIND_CONST] = &modifier_ops,
4988 	[BTF_KIND_RESTRICT] = &modifier_ops,
4989 	[BTF_KIND_FUNC] = &func_ops,
4990 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4991 	[BTF_KIND_VAR] = &var_ops,
4992 	[BTF_KIND_DATASEC] = &datasec_ops,
4993 	[BTF_KIND_FLOAT] = &float_ops,
4994 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4995 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4996 	[BTF_KIND_ENUM64] = &enum64_ops,
4997 };
4998 
4999 static s32 btf_check_meta(struct btf_verifier_env *env,
5000 			  const struct btf_type *t,
5001 			  u32 meta_left)
5002 {
5003 	u32 saved_meta_left = meta_left;
5004 	s32 var_meta_size;
5005 
5006 	if (meta_left < sizeof(*t)) {
5007 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5008 				 env->log_type_id, meta_left, sizeof(*t));
5009 		return -EINVAL;
5010 	}
5011 	meta_left -= sizeof(*t);
5012 
5013 	if (t->info & ~BTF_INFO_MASK) {
5014 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5015 				 env->log_type_id, t->info);
5016 		return -EINVAL;
5017 	}
5018 
5019 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5020 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5021 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5022 				 env->log_type_id, BTF_INFO_KIND(t->info));
5023 		return -EINVAL;
5024 	}
5025 
5026 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5027 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5028 				 env->log_type_id, t->name_off);
5029 		return -EINVAL;
5030 	}
5031 
5032 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5033 	if (var_meta_size < 0)
5034 		return var_meta_size;
5035 
5036 	meta_left -= var_meta_size;
5037 
5038 	return saved_meta_left - meta_left;
5039 }
5040 
5041 static int btf_check_all_metas(struct btf_verifier_env *env)
5042 {
5043 	struct btf *btf = env->btf;
5044 	struct btf_header *hdr;
5045 	void *cur, *end;
5046 
5047 	hdr = &btf->hdr;
5048 	cur = btf->nohdr_data + hdr->type_off;
5049 	end = cur + hdr->type_len;
5050 
5051 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5052 	while (cur < end) {
5053 		struct btf_type *t = cur;
5054 		s32 meta_size;
5055 
5056 		meta_size = btf_check_meta(env, t, end - cur);
5057 		if (meta_size < 0)
5058 			return meta_size;
5059 
5060 		btf_add_type(env, t);
5061 		cur += meta_size;
5062 		env->log_type_id++;
5063 	}
5064 
5065 	return 0;
5066 }
5067 
5068 static bool btf_resolve_valid(struct btf_verifier_env *env,
5069 			      const struct btf_type *t,
5070 			      u32 type_id)
5071 {
5072 	struct btf *btf = env->btf;
5073 
5074 	if (!env_type_is_resolved(env, type_id))
5075 		return false;
5076 
5077 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5078 		return !btf_resolved_type_id(btf, type_id) &&
5079 		       !btf_resolved_type_size(btf, type_id);
5080 
5081 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5082 		return btf_resolved_type_id(btf, type_id) &&
5083 		       !btf_resolved_type_size(btf, type_id);
5084 
5085 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5086 	    btf_type_is_var(t)) {
5087 		t = btf_type_id_resolve(btf, &type_id);
5088 		return t &&
5089 		       !btf_type_is_modifier(t) &&
5090 		       !btf_type_is_var(t) &&
5091 		       !btf_type_is_datasec(t);
5092 	}
5093 
5094 	if (btf_type_is_array(t)) {
5095 		const struct btf_array *array = btf_type_array(t);
5096 		const struct btf_type *elem_type;
5097 		u32 elem_type_id = array->type;
5098 		u32 elem_size;
5099 
5100 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5101 		return elem_type && !btf_type_is_modifier(elem_type) &&
5102 			(array->nelems * elem_size ==
5103 			 btf_resolved_type_size(btf, type_id));
5104 	}
5105 
5106 	return false;
5107 }
5108 
5109 static int btf_resolve(struct btf_verifier_env *env,
5110 		       const struct btf_type *t, u32 type_id)
5111 {
5112 	u32 save_log_type_id = env->log_type_id;
5113 	const struct resolve_vertex *v;
5114 	int err = 0;
5115 
5116 	env->resolve_mode = RESOLVE_TBD;
5117 	env_stack_push(env, t, type_id);
5118 	while (!err && (v = env_stack_peak(env))) {
5119 		env->log_type_id = v->type_id;
5120 		err = btf_type_ops(v->t)->resolve(env, v);
5121 	}
5122 
5123 	env->log_type_id = type_id;
5124 	if (err == -E2BIG) {
5125 		btf_verifier_log_type(env, t,
5126 				      "Exceeded max resolving depth:%u",
5127 				      MAX_RESOLVE_DEPTH);
5128 	} else if (err == -EEXIST) {
5129 		btf_verifier_log_type(env, t, "Loop detected");
5130 	}
5131 
5132 	/* Final sanity check */
5133 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5134 		btf_verifier_log_type(env, t, "Invalid resolve state");
5135 		err = -EINVAL;
5136 	}
5137 
5138 	env->log_type_id = save_log_type_id;
5139 	return err;
5140 }
5141 
5142 static int btf_check_all_types(struct btf_verifier_env *env)
5143 {
5144 	struct btf *btf = env->btf;
5145 	const struct btf_type *t;
5146 	u32 type_id, i;
5147 	int err;
5148 
5149 	err = env_resolve_init(env);
5150 	if (err)
5151 		return err;
5152 
5153 	env->phase++;
5154 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5155 		type_id = btf->start_id + i;
5156 		t = btf_type_by_id(btf, type_id);
5157 
5158 		env->log_type_id = type_id;
5159 		if (btf_type_needs_resolve(t) &&
5160 		    !env_type_is_resolved(env, type_id)) {
5161 			err = btf_resolve(env, t, type_id);
5162 			if (err)
5163 				return err;
5164 		}
5165 
5166 		if (btf_type_is_func_proto(t)) {
5167 			err = btf_func_proto_check(env, t);
5168 			if (err)
5169 				return err;
5170 		}
5171 	}
5172 
5173 	return 0;
5174 }
5175 
5176 static int btf_parse_type_sec(struct btf_verifier_env *env)
5177 {
5178 	const struct btf_header *hdr = &env->btf->hdr;
5179 	int err;
5180 
5181 	/* Type section must align to 4 bytes */
5182 	if (hdr->type_off & (sizeof(u32) - 1)) {
5183 		btf_verifier_log(env, "Unaligned type_off");
5184 		return -EINVAL;
5185 	}
5186 
5187 	if (!env->btf->base_btf && !hdr->type_len) {
5188 		btf_verifier_log(env, "No type found");
5189 		return -EINVAL;
5190 	}
5191 
5192 	err = btf_check_all_metas(env);
5193 	if (err)
5194 		return err;
5195 
5196 	return btf_check_all_types(env);
5197 }
5198 
5199 static int btf_parse_str_sec(struct btf_verifier_env *env)
5200 {
5201 	const struct btf_header *hdr;
5202 	struct btf *btf = env->btf;
5203 	const char *start, *end;
5204 
5205 	hdr = &btf->hdr;
5206 	start = btf->nohdr_data + hdr->str_off;
5207 	end = start + hdr->str_len;
5208 
5209 	if (end != btf->data + btf->data_size) {
5210 		btf_verifier_log(env, "String section is not at the end");
5211 		return -EINVAL;
5212 	}
5213 
5214 	btf->strings = start;
5215 
5216 	if (btf->base_btf && !hdr->str_len)
5217 		return 0;
5218 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5219 		btf_verifier_log(env, "Invalid string section");
5220 		return -EINVAL;
5221 	}
5222 	if (!btf->base_btf && start[0]) {
5223 		btf_verifier_log(env, "Invalid string section");
5224 		return -EINVAL;
5225 	}
5226 
5227 	return 0;
5228 }
5229 
5230 static const size_t btf_sec_info_offset[] = {
5231 	offsetof(struct btf_header, type_off),
5232 	offsetof(struct btf_header, str_off),
5233 };
5234 
5235 static int btf_sec_info_cmp(const void *a, const void *b)
5236 {
5237 	const struct btf_sec_info *x = a;
5238 	const struct btf_sec_info *y = b;
5239 
5240 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5241 }
5242 
5243 static int btf_check_sec_info(struct btf_verifier_env *env,
5244 			      u32 btf_data_size)
5245 {
5246 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5247 	u32 total, expected_total, i;
5248 	const struct btf_header *hdr;
5249 	const struct btf *btf;
5250 
5251 	btf = env->btf;
5252 	hdr = &btf->hdr;
5253 
5254 	/* Populate the secs from hdr */
5255 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5256 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5257 						   btf_sec_info_offset[i]);
5258 
5259 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5260 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5261 
5262 	/* Check for gaps and overlap among sections */
5263 	total = 0;
5264 	expected_total = btf_data_size - hdr->hdr_len;
5265 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5266 		if (expected_total < secs[i].off) {
5267 			btf_verifier_log(env, "Invalid section offset");
5268 			return -EINVAL;
5269 		}
5270 		if (total < secs[i].off) {
5271 			/* gap */
5272 			btf_verifier_log(env, "Unsupported section found");
5273 			return -EINVAL;
5274 		}
5275 		if (total > secs[i].off) {
5276 			btf_verifier_log(env, "Section overlap found");
5277 			return -EINVAL;
5278 		}
5279 		if (expected_total - total < secs[i].len) {
5280 			btf_verifier_log(env,
5281 					 "Total section length too long");
5282 			return -EINVAL;
5283 		}
5284 		total += secs[i].len;
5285 	}
5286 
5287 	/* There is data other than hdr and known sections */
5288 	if (expected_total != total) {
5289 		btf_verifier_log(env, "Unsupported section found");
5290 		return -EINVAL;
5291 	}
5292 
5293 	return 0;
5294 }
5295 
5296 static int btf_parse_hdr(struct btf_verifier_env *env)
5297 {
5298 	u32 hdr_len, hdr_copy, btf_data_size;
5299 	const struct btf_header *hdr;
5300 	struct btf *btf;
5301 
5302 	btf = env->btf;
5303 	btf_data_size = btf->data_size;
5304 
5305 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5306 		btf_verifier_log(env, "hdr_len not found");
5307 		return -EINVAL;
5308 	}
5309 
5310 	hdr = btf->data;
5311 	hdr_len = hdr->hdr_len;
5312 	if (btf_data_size < hdr_len) {
5313 		btf_verifier_log(env, "btf_header not found");
5314 		return -EINVAL;
5315 	}
5316 
5317 	/* Ensure the unsupported header fields are zero */
5318 	if (hdr_len > sizeof(btf->hdr)) {
5319 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5320 		u8 *end = btf->data + hdr_len;
5321 
5322 		for (; expected_zero < end; expected_zero++) {
5323 			if (*expected_zero) {
5324 				btf_verifier_log(env, "Unsupported btf_header");
5325 				return -E2BIG;
5326 			}
5327 		}
5328 	}
5329 
5330 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5331 	memcpy(&btf->hdr, btf->data, hdr_copy);
5332 
5333 	hdr = &btf->hdr;
5334 
5335 	btf_verifier_log_hdr(env, btf_data_size);
5336 
5337 	if (hdr->magic != BTF_MAGIC) {
5338 		btf_verifier_log(env, "Invalid magic");
5339 		return -EINVAL;
5340 	}
5341 
5342 	if (hdr->version != BTF_VERSION) {
5343 		btf_verifier_log(env, "Unsupported version");
5344 		return -ENOTSUPP;
5345 	}
5346 
5347 	if (hdr->flags) {
5348 		btf_verifier_log(env, "Unsupported flags");
5349 		return -ENOTSUPP;
5350 	}
5351 
5352 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5353 		btf_verifier_log(env, "No data");
5354 		return -EINVAL;
5355 	}
5356 
5357 	return btf_check_sec_info(env, btf_data_size);
5358 }
5359 
5360 static const char *alloc_obj_fields[] = {
5361 	"bpf_spin_lock",
5362 	"bpf_list_head",
5363 	"bpf_list_node",
5364 	"bpf_rb_root",
5365 	"bpf_rb_node",
5366 	"bpf_refcount",
5367 };
5368 
5369 static struct btf_struct_metas *
5370 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5371 {
5372 	union {
5373 		struct btf_id_set set;
5374 		struct {
5375 			u32 _cnt;
5376 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5377 		} _arr;
5378 	} aof;
5379 	struct btf_struct_metas *tab = NULL;
5380 	int i, n, id, ret;
5381 
5382 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5383 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5384 
5385 	memset(&aof, 0, sizeof(aof));
5386 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5387 		/* Try to find whether this special type exists in user BTF, and
5388 		 * if so remember its ID so we can easily find it among members
5389 		 * of structs that we iterate in the next loop.
5390 		 */
5391 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5392 		if (id < 0)
5393 			continue;
5394 		aof.set.ids[aof.set.cnt++] = id;
5395 	}
5396 
5397 	if (!aof.set.cnt)
5398 		return NULL;
5399 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5400 
5401 	n = btf_nr_types(btf);
5402 	for (i = 1; i < n; i++) {
5403 		struct btf_struct_metas *new_tab;
5404 		const struct btf_member *member;
5405 		struct btf_struct_meta *type;
5406 		struct btf_record *record;
5407 		const struct btf_type *t;
5408 		int j, tab_cnt;
5409 
5410 		t = btf_type_by_id(btf, i);
5411 		if (!t) {
5412 			ret = -EINVAL;
5413 			goto free;
5414 		}
5415 		if (!__btf_type_is_struct(t))
5416 			continue;
5417 
5418 		cond_resched();
5419 
5420 		for_each_member(j, t, member) {
5421 			if (btf_id_set_contains(&aof.set, member->type))
5422 				goto parse;
5423 		}
5424 		continue;
5425 	parse:
5426 		tab_cnt = tab ? tab->cnt : 0;
5427 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5428 				   GFP_KERNEL | __GFP_NOWARN);
5429 		if (!new_tab) {
5430 			ret = -ENOMEM;
5431 			goto free;
5432 		}
5433 		if (!tab)
5434 			new_tab->cnt = 0;
5435 		tab = new_tab;
5436 
5437 		type = &tab->types[tab->cnt];
5438 		type->btf_id = i;
5439 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5440 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5441 		/* The record cannot be unset, treat it as an error if so */
5442 		if (IS_ERR_OR_NULL(record)) {
5443 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5444 			goto free;
5445 		}
5446 		type->record = record;
5447 		tab->cnt++;
5448 	}
5449 	return tab;
5450 free:
5451 	btf_struct_metas_free(tab);
5452 	return ERR_PTR(ret);
5453 }
5454 
5455 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5456 {
5457 	struct btf_struct_metas *tab;
5458 
5459 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5460 	tab = btf->struct_meta_tab;
5461 	if (!tab)
5462 		return NULL;
5463 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5464 }
5465 
5466 static int btf_check_type_tags(struct btf_verifier_env *env,
5467 			       struct btf *btf, int start_id)
5468 {
5469 	int i, n, good_id = start_id - 1;
5470 	bool in_tags;
5471 
5472 	n = btf_nr_types(btf);
5473 	for (i = start_id; i < n; i++) {
5474 		const struct btf_type *t;
5475 		int chain_limit = 32;
5476 		u32 cur_id = i;
5477 
5478 		t = btf_type_by_id(btf, i);
5479 		if (!t)
5480 			return -EINVAL;
5481 		if (!btf_type_is_modifier(t))
5482 			continue;
5483 
5484 		cond_resched();
5485 
5486 		in_tags = btf_type_is_type_tag(t);
5487 		while (btf_type_is_modifier(t)) {
5488 			if (!chain_limit--) {
5489 				btf_verifier_log(env, "Max chain length or cycle detected");
5490 				return -ELOOP;
5491 			}
5492 			if (btf_type_is_type_tag(t)) {
5493 				if (!in_tags) {
5494 					btf_verifier_log(env, "Type tags don't precede modifiers");
5495 					return -EINVAL;
5496 				}
5497 			} else if (in_tags) {
5498 				in_tags = false;
5499 			}
5500 			if (cur_id <= good_id)
5501 				break;
5502 			/* Move to next type */
5503 			cur_id = t->type;
5504 			t = btf_type_by_id(btf, cur_id);
5505 			if (!t)
5506 				return -EINVAL;
5507 		}
5508 		good_id = i;
5509 	}
5510 	return 0;
5511 }
5512 
5513 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5514 {
5515 	u32 log_true_size;
5516 	int err;
5517 
5518 	err = bpf_vlog_finalize(log, &log_true_size);
5519 
5520 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5521 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5522 				  &log_true_size, sizeof(log_true_size)))
5523 		err = -EFAULT;
5524 
5525 	return err;
5526 }
5527 
5528 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5529 {
5530 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5531 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5532 	struct btf_struct_metas *struct_meta_tab;
5533 	struct btf_verifier_env *env = NULL;
5534 	struct btf *btf = NULL;
5535 	u8 *data;
5536 	int err, ret;
5537 
5538 	if (attr->btf_size > BTF_MAX_SIZE)
5539 		return ERR_PTR(-E2BIG);
5540 
5541 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5542 	if (!env)
5543 		return ERR_PTR(-ENOMEM);
5544 
5545 	/* user could have requested verbose verifier output
5546 	 * and supplied buffer to store the verification trace
5547 	 */
5548 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5549 			    log_ubuf, attr->btf_log_size);
5550 	if (err)
5551 		goto errout_free;
5552 
5553 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5554 	if (!btf) {
5555 		err = -ENOMEM;
5556 		goto errout;
5557 	}
5558 	env->btf = btf;
5559 
5560 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5561 	if (!data) {
5562 		err = -ENOMEM;
5563 		goto errout;
5564 	}
5565 
5566 	btf->data = data;
5567 	btf->data_size = attr->btf_size;
5568 
5569 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5570 		err = -EFAULT;
5571 		goto errout;
5572 	}
5573 
5574 	err = btf_parse_hdr(env);
5575 	if (err)
5576 		goto errout;
5577 
5578 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5579 
5580 	err = btf_parse_str_sec(env);
5581 	if (err)
5582 		goto errout;
5583 
5584 	err = btf_parse_type_sec(env);
5585 	if (err)
5586 		goto errout;
5587 
5588 	err = btf_check_type_tags(env, btf, 1);
5589 	if (err)
5590 		goto errout;
5591 
5592 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5593 	if (IS_ERR(struct_meta_tab)) {
5594 		err = PTR_ERR(struct_meta_tab);
5595 		goto errout;
5596 	}
5597 	btf->struct_meta_tab = struct_meta_tab;
5598 
5599 	if (struct_meta_tab) {
5600 		int i;
5601 
5602 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5603 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5604 			if (err < 0)
5605 				goto errout_meta;
5606 		}
5607 	}
5608 
5609 	err = finalize_log(&env->log, uattr, uattr_size);
5610 	if (err)
5611 		goto errout_free;
5612 
5613 	btf_verifier_env_free(env);
5614 	refcount_set(&btf->refcnt, 1);
5615 	return btf;
5616 
5617 errout_meta:
5618 	btf_free_struct_meta_tab(btf);
5619 errout:
5620 	/* overwrite err with -ENOSPC or -EFAULT */
5621 	ret = finalize_log(&env->log, uattr, uattr_size);
5622 	if (ret)
5623 		err = ret;
5624 errout_free:
5625 	btf_verifier_env_free(env);
5626 	if (btf)
5627 		btf_free(btf);
5628 	return ERR_PTR(err);
5629 }
5630 
5631 extern char __weak __start_BTF[];
5632 extern char __weak __stop_BTF[];
5633 extern struct btf *btf_vmlinux;
5634 
5635 #define BPF_MAP_TYPE(_id, _ops)
5636 #define BPF_LINK_TYPE(_id, _name)
5637 static union {
5638 	struct bpf_ctx_convert {
5639 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5640 	prog_ctx_type _id##_prog; \
5641 	kern_ctx_type _id##_kern;
5642 #include <linux/bpf_types.h>
5643 #undef BPF_PROG_TYPE
5644 	} *__t;
5645 	/* 't' is written once under lock. Read many times. */
5646 	const struct btf_type *t;
5647 } bpf_ctx_convert;
5648 enum {
5649 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5650 	__ctx_convert##_id,
5651 #include <linux/bpf_types.h>
5652 #undef BPF_PROG_TYPE
5653 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5654 };
5655 static u8 bpf_ctx_convert_map[] = {
5656 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5657 	[_id] = __ctx_convert##_id,
5658 #include <linux/bpf_types.h>
5659 #undef BPF_PROG_TYPE
5660 	0, /* avoid empty array */
5661 };
5662 #undef BPF_MAP_TYPE
5663 #undef BPF_LINK_TYPE
5664 
5665 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5666 {
5667 	const struct btf_type *conv_struct;
5668 	const struct btf_member *ctx_type;
5669 
5670 	conv_struct = bpf_ctx_convert.t;
5671 	if (!conv_struct)
5672 		return NULL;
5673 	/* prog_type is valid bpf program type. No need for bounds check. */
5674 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5675 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5676 	 * Like 'struct __sk_buff'
5677 	 */
5678 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5679 }
5680 
5681 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5682 {
5683 	const struct btf_type *conv_struct;
5684 	const struct btf_member *ctx_type;
5685 
5686 	conv_struct = bpf_ctx_convert.t;
5687 	if (!conv_struct)
5688 		return -EFAULT;
5689 	/* prog_type is valid bpf program type. No need for bounds check. */
5690 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5691 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5692 	 * Like 'struct sk_buff'
5693 	 */
5694 	return ctx_type->type;
5695 }
5696 
5697 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5698 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5699 			  int arg)
5700 {
5701 	const struct btf_type *ctx_type;
5702 	const char *tname, *ctx_tname;
5703 
5704 	t = btf_type_by_id(btf, t->type);
5705 
5706 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5707 	 * check before we skip all the typedef below.
5708 	 */
5709 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5710 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5711 			t = btf_type_by_id(btf, t->type);
5712 
5713 		if (btf_type_is_typedef(t)) {
5714 			tname = btf_name_by_offset(btf, t->name_off);
5715 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5716 				return true;
5717 		}
5718 	}
5719 
5720 	while (btf_type_is_modifier(t))
5721 		t = btf_type_by_id(btf, t->type);
5722 	if (!btf_type_is_struct(t)) {
5723 		/* Only pointer to struct is supported for now.
5724 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5725 		 * is not supported yet.
5726 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5727 		 */
5728 		return false;
5729 	}
5730 	tname = btf_name_by_offset(btf, t->name_off);
5731 	if (!tname) {
5732 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5733 		return false;
5734 	}
5735 
5736 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5737 	if (!ctx_type) {
5738 		bpf_log(log, "btf_vmlinux is malformed\n");
5739 		/* should not happen */
5740 		return false;
5741 	}
5742 again:
5743 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5744 	if (!ctx_tname) {
5745 		/* should not happen */
5746 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5747 		return false;
5748 	}
5749 	/* program types without named context types work only with arg:ctx tag */
5750 	if (ctx_tname[0] == '\0')
5751 		return false;
5752 	/* only compare that prog's ctx type name is the same as
5753 	 * kernel expects. No need to compare field by field.
5754 	 * It's ok for bpf prog to do:
5755 	 * struct __sk_buff {};
5756 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5757 	 * { // no fields of skb are ever used }
5758 	 */
5759 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5760 		return true;
5761 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5762 		return true;
5763 	if (strcmp(ctx_tname, tname)) {
5764 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5765 		 * underlying struct and check name again
5766 		 */
5767 		if (!btf_type_is_modifier(ctx_type))
5768 			return false;
5769 		while (btf_type_is_modifier(ctx_type))
5770 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5771 		goto again;
5772 	}
5773 	return true;
5774 }
5775 
5776 /* forward declarations for arch-specific underlying types of
5777  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5778  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5779  * works correctly with __builtin_types_compatible_p() on respective
5780  * architectures
5781  */
5782 struct user_regs_struct;
5783 struct user_pt_regs;
5784 
5785 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5786 				      const struct btf_type *t, int arg,
5787 				      enum bpf_prog_type prog_type,
5788 				      enum bpf_attach_type attach_type)
5789 {
5790 	const struct btf_type *ctx_type;
5791 	const char *tname, *ctx_tname;
5792 
5793 	if (!btf_is_ptr(t)) {
5794 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5795 		return -EINVAL;
5796 	}
5797 	t = btf_type_by_id(btf, t->type);
5798 
5799 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5800 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5801 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5802 			t = btf_type_by_id(btf, t->type);
5803 
5804 		if (btf_type_is_typedef(t)) {
5805 			tname = btf_name_by_offset(btf, t->name_off);
5806 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5807 				return 0;
5808 		}
5809 	}
5810 
5811 	/* all other program types don't use typedefs for context type */
5812 	while (btf_type_is_modifier(t))
5813 		t = btf_type_by_id(btf, t->type);
5814 
5815 	/* `void *ctx __arg_ctx` is always valid */
5816 	if (btf_type_is_void(t))
5817 		return 0;
5818 
5819 	tname = btf_name_by_offset(btf, t->name_off);
5820 	if (str_is_empty(tname)) {
5821 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5822 		return -EINVAL;
5823 	}
5824 
5825 	/* special cases */
5826 	switch (prog_type) {
5827 	case BPF_PROG_TYPE_KPROBE:
5828 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5829 			return 0;
5830 		break;
5831 	case BPF_PROG_TYPE_PERF_EVENT:
5832 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5833 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5834 			return 0;
5835 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5836 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5837 			return 0;
5838 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5839 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5840 			return 0;
5841 		break;
5842 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
5843 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5844 		/* allow u64* as ctx */
5845 		if (btf_is_int(t) && t->size == 8)
5846 			return 0;
5847 		break;
5848 	case BPF_PROG_TYPE_TRACING:
5849 		switch (attach_type) {
5850 		case BPF_TRACE_RAW_TP:
5851 			/* tp_btf program is TRACING, so need special case here */
5852 			if (__btf_type_is_struct(t) &&
5853 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5854 				return 0;
5855 			/* allow u64* as ctx */
5856 			if (btf_is_int(t) && t->size == 8)
5857 				return 0;
5858 			break;
5859 		case BPF_TRACE_ITER:
5860 			/* allow struct bpf_iter__xxx types only */
5861 			if (__btf_type_is_struct(t) &&
5862 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5863 				return 0;
5864 			break;
5865 		case BPF_TRACE_FENTRY:
5866 		case BPF_TRACE_FEXIT:
5867 		case BPF_MODIFY_RETURN:
5868 			/* allow u64* as ctx */
5869 			if (btf_is_int(t) && t->size == 8)
5870 				return 0;
5871 			break;
5872 		default:
5873 			break;
5874 		}
5875 		break;
5876 	case BPF_PROG_TYPE_LSM:
5877 	case BPF_PROG_TYPE_STRUCT_OPS:
5878 		/* allow u64* as ctx */
5879 		if (btf_is_int(t) && t->size == 8)
5880 			return 0;
5881 		break;
5882 	case BPF_PROG_TYPE_TRACEPOINT:
5883 	case BPF_PROG_TYPE_SYSCALL:
5884 	case BPF_PROG_TYPE_EXT:
5885 		return 0; /* anything goes */
5886 	default:
5887 		break;
5888 	}
5889 
5890 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5891 	if (!ctx_type) {
5892 		/* should not happen */
5893 		bpf_log(log, "btf_vmlinux is malformed\n");
5894 		return -EINVAL;
5895 	}
5896 
5897 	/* resolve typedefs and check that underlying structs are matching as well */
5898 	while (btf_type_is_modifier(ctx_type))
5899 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5900 
5901 	/* if program type doesn't have distinctly named struct type for
5902 	 * context, then __arg_ctx argument can only be `void *`, which we
5903 	 * already checked above
5904 	 */
5905 	if (!__btf_type_is_struct(ctx_type)) {
5906 		bpf_log(log, "arg#%d should be void pointer\n", arg);
5907 		return -EINVAL;
5908 	}
5909 
5910 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5911 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5912 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5913 		return -EINVAL;
5914 	}
5915 
5916 	return 0;
5917 }
5918 
5919 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5920 				     struct btf *btf,
5921 				     const struct btf_type *t,
5922 				     enum bpf_prog_type prog_type,
5923 				     int arg)
5924 {
5925 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
5926 		return -ENOENT;
5927 	return find_kern_ctx_type_id(prog_type);
5928 }
5929 
5930 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5931 {
5932 	const struct btf_member *kctx_member;
5933 	const struct btf_type *conv_struct;
5934 	const struct btf_type *kctx_type;
5935 	u32 kctx_type_id;
5936 
5937 	conv_struct = bpf_ctx_convert.t;
5938 	/* get member for kernel ctx type */
5939 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5940 	kctx_type_id = kctx_member->type;
5941 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5942 	if (!btf_type_is_struct(kctx_type)) {
5943 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5944 		return -EINVAL;
5945 	}
5946 
5947 	return kctx_type_id;
5948 }
5949 
5950 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5951 BTF_ID(struct, bpf_ctx_convert)
5952 
5953 struct btf *btf_parse_vmlinux(void)
5954 {
5955 	struct btf_verifier_env *env = NULL;
5956 	struct bpf_verifier_log *log;
5957 	struct btf *btf = NULL;
5958 	int err;
5959 
5960 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5961 	if (!env)
5962 		return ERR_PTR(-ENOMEM);
5963 
5964 	log = &env->log;
5965 	log->level = BPF_LOG_KERNEL;
5966 
5967 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5968 	if (!btf) {
5969 		err = -ENOMEM;
5970 		goto errout;
5971 	}
5972 	env->btf = btf;
5973 
5974 	btf->data = __start_BTF;
5975 	btf->data_size = __stop_BTF - __start_BTF;
5976 	btf->kernel_btf = true;
5977 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5978 
5979 	err = btf_parse_hdr(env);
5980 	if (err)
5981 		goto errout;
5982 
5983 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5984 
5985 	err = btf_parse_str_sec(env);
5986 	if (err)
5987 		goto errout;
5988 
5989 	err = btf_check_all_metas(env);
5990 	if (err)
5991 		goto errout;
5992 
5993 	err = btf_check_type_tags(env, btf, 1);
5994 	if (err)
5995 		goto errout;
5996 
5997 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5998 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5999 
6000 	refcount_set(&btf->refcnt, 1);
6001 
6002 	err = btf_alloc_id(btf);
6003 	if (err)
6004 		goto errout;
6005 
6006 	btf_verifier_env_free(env);
6007 	return btf;
6008 
6009 errout:
6010 	btf_verifier_env_free(env);
6011 	if (btf) {
6012 		kvfree(btf->types);
6013 		kfree(btf);
6014 	}
6015 	return ERR_PTR(err);
6016 }
6017 
6018 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6019 
6020 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
6021 {
6022 	struct btf_verifier_env *env = NULL;
6023 	struct bpf_verifier_log *log;
6024 	struct btf *btf = NULL, *base_btf;
6025 	int err;
6026 
6027 	base_btf = bpf_get_btf_vmlinux();
6028 	if (IS_ERR(base_btf))
6029 		return base_btf;
6030 	if (!base_btf)
6031 		return ERR_PTR(-EINVAL);
6032 
6033 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6034 	if (!env)
6035 		return ERR_PTR(-ENOMEM);
6036 
6037 	log = &env->log;
6038 	log->level = BPF_LOG_KERNEL;
6039 
6040 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6041 	if (!btf) {
6042 		err = -ENOMEM;
6043 		goto errout;
6044 	}
6045 	env->btf = btf;
6046 
6047 	btf->base_btf = base_btf;
6048 	btf->start_id = base_btf->nr_types;
6049 	btf->start_str_off = base_btf->hdr.str_len;
6050 	btf->kernel_btf = true;
6051 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6052 
6053 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6054 	if (!btf->data) {
6055 		err = -ENOMEM;
6056 		goto errout;
6057 	}
6058 	memcpy(btf->data, data, data_size);
6059 	btf->data_size = data_size;
6060 
6061 	err = btf_parse_hdr(env);
6062 	if (err)
6063 		goto errout;
6064 
6065 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6066 
6067 	err = btf_parse_str_sec(env);
6068 	if (err)
6069 		goto errout;
6070 
6071 	err = btf_check_all_metas(env);
6072 	if (err)
6073 		goto errout;
6074 
6075 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6076 	if (err)
6077 		goto errout;
6078 
6079 	btf_verifier_env_free(env);
6080 	refcount_set(&btf->refcnt, 1);
6081 	return btf;
6082 
6083 errout:
6084 	btf_verifier_env_free(env);
6085 	if (btf) {
6086 		kvfree(btf->data);
6087 		kvfree(btf->types);
6088 		kfree(btf);
6089 	}
6090 	return ERR_PTR(err);
6091 }
6092 
6093 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6094 
6095 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6096 {
6097 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6098 
6099 	if (tgt_prog)
6100 		return tgt_prog->aux->btf;
6101 	else
6102 		return prog->aux->attach_btf;
6103 }
6104 
6105 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6106 {
6107 	/* skip modifiers */
6108 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6109 
6110 	return btf_type_is_int(t);
6111 }
6112 
6113 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6114 			   int off)
6115 {
6116 	const struct btf_param *args;
6117 	const struct btf_type *t;
6118 	u32 offset = 0, nr_args;
6119 	int i;
6120 
6121 	if (!func_proto)
6122 		return off / 8;
6123 
6124 	nr_args = btf_type_vlen(func_proto);
6125 	args = (const struct btf_param *)(func_proto + 1);
6126 	for (i = 0; i < nr_args; i++) {
6127 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6128 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6129 		if (off < offset)
6130 			return i;
6131 	}
6132 
6133 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6134 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6135 	if (off < offset)
6136 		return nr_args;
6137 
6138 	return nr_args + 1;
6139 }
6140 
6141 static bool prog_args_trusted(const struct bpf_prog *prog)
6142 {
6143 	enum bpf_attach_type atype = prog->expected_attach_type;
6144 
6145 	switch (prog->type) {
6146 	case BPF_PROG_TYPE_TRACING:
6147 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6148 	case BPF_PROG_TYPE_LSM:
6149 		return bpf_lsm_is_trusted(prog);
6150 	case BPF_PROG_TYPE_STRUCT_OPS:
6151 		return true;
6152 	default:
6153 		return false;
6154 	}
6155 }
6156 
6157 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6158 		       u32 arg_no)
6159 {
6160 	const struct btf_param *args;
6161 	const struct btf_type *t;
6162 	int off = 0, i;
6163 	u32 sz;
6164 
6165 	args = btf_params(func_proto);
6166 	for (i = 0; i < arg_no; i++) {
6167 		t = btf_type_by_id(btf, args[i].type);
6168 		t = btf_resolve_size(btf, t, &sz);
6169 		if (IS_ERR(t))
6170 			return PTR_ERR(t);
6171 		off += roundup(sz, 8);
6172 	}
6173 
6174 	return off;
6175 }
6176 
6177 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6178 		    const struct bpf_prog *prog,
6179 		    struct bpf_insn_access_aux *info)
6180 {
6181 	const struct btf_type *t = prog->aux->attach_func_proto;
6182 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6183 	struct btf *btf = bpf_prog_get_target_btf(prog);
6184 	const char *tname = prog->aux->attach_func_name;
6185 	struct bpf_verifier_log *log = info->log;
6186 	const struct btf_param *args;
6187 	const char *tag_value;
6188 	u32 nr_args, arg;
6189 	int i, ret;
6190 
6191 	if (off % 8) {
6192 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6193 			tname, off);
6194 		return false;
6195 	}
6196 	arg = get_ctx_arg_idx(btf, t, off);
6197 	args = (const struct btf_param *)(t + 1);
6198 	/* if (t == NULL) Fall back to default BPF prog with
6199 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6200 	 */
6201 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6202 	if (prog->aux->attach_btf_trace) {
6203 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6204 		args++;
6205 		nr_args--;
6206 	}
6207 
6208 	if (arg > nr_args) {
6209 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6210 			tname, arg + 1);
6211 		return false;
6212 	}
6213 
6214 	if (arg == nr_args) {
6215 		switch (prog->expected_attach_type) {
6216 		case BPF_LSM_CGROUP:
6217 		case BPF_LSM_MAC:
6218 		case BPF_TRACE_FEXIT:
6219 			/* When LSM programs are attached to void LSM hooks
6220 			 * they use FEXIT trampolines and when attached to
6221 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6222 			 *
6223 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6224 			 * the check:
6225 			 *
6226 			 *	if (ret_type != 'int')
6227 			 *		return -EINVAL;
6228 			 *
6229 			 * is _not_ done here. This is still safe as LSM hooks
6230 			 * have only void and int return types.
6231 			 */
6232 			if (!t)
6233 				return true;
6234 			t = btf_type_by_id(btf, t->type);
6235 			break;
6236 		case BPF_MODIFY_RETURN:
6237 			/* For now the BPF_MODIFY_RETURN can only be attached to
6238 			 * functions that return an int.
6239 			 */
6240 			if (!t)
6241 				return false;
6242 
6243 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6244 			if (!btf_type_is_small_int(t)) {
6245 				bpf_log(log,
6246 					"ret type %s not allowed for fmod_ret\n",
6247 					btf_type_str(t));
6248 				return false;
6249 			}
6250 			break;
6251 		default:
6252 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6253 				tname, arg + 1);
6254 			return false;
6255 		}
6256 	} else {
6257 		if (!t)
6258 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6259 			return true;
6260 		t = btf_type_by_id(btf, args[arg].type);
6261 	}
6262 
6263 	/* skip modifiers */
6264 	while (btf_type_is_modifier(t))
6265 		t = btf_type_by_id(btf, t->type);
6266 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6267 		/* accessing a scalar */
6268 		return true;
6269 	if (!btf_type_is_ptr(t)) {
6270 		bpf_log(log,
6271 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6272 			tname, arg,
6273 			__btf_name_by_offset(btf, t->name_off),
6274 			btf_type_str(t));
6275 		return false;
6276 	}
6277 
6278 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6279 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6280 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6281 		u32 type, flag;
6282 
6283 		type = base_type(ctx_arg_info->reg_type);
6284 		flag = type_flag(ctx_arg_info->reg_type);
6285 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6286 		    (flag & PTR_MAYBE_NULL)) {
6287 			info->reg_type = ctx_arg_info->reg_type;
6288 			return true;
6289 		}
6290 	}
6291 
6292 	if (t->type == 0)
6293 		/* This is a pointer to void.
6294 		 * It is the same as scalar from the verifier safety pov.
6295 		 * No further pointer walking is allowed.
6296 		 */
6297 		return true;
6298 
6299 	if (is_int_ptr(btf, t))
6300 		return true;
6301 
6302 	/* this is a pointer to another type */
6303 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6304 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6305 
6306 		if (ctx_arg_info->offset == off) {
6307 			if (!ctx_arg_info->btf_id) {
6308 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6309 				return false;
6310 			}
6311 
6312 			info->reg_type = ctx_arg_info->reg_type;
6313 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6314 			info->btf_id = ctx_arg_info->btf_id;
6315 			return true;
6316 		}
6317 	}
6318 
6319 	info->reg_type = PTR_TO_BTF_ID;
6320 	if (prog_args_trusted(prog))
6321 		info->reg_type |= PTR_TRUSTED;
6322 
6323 	if (tgt_prog) {
6324 		enum bpf_prog_type tgt_type;
6325 
6326 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6327 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6328 		else
6329 			tgt_type = tgt_prog->type;
6330 
6331 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6332 		if (ret > 0) {
6333 			info->btf = btf_vmlinux;
6334 			info->btf_id = ret;
6335 			return true;
6336 		} else {
6337 			return false;
6338 		}
6339 	}
6340 
6341 	info->btf = btf;
6342 	info->btf_id = t->type;
6343 	t = btf_type_by_id(btf, t->type);
6344 
6345 	if (btf_type_is_type_tag(t)) {
6346 		tag_value = __btf_name_by_offset(btf, t->name_off);
6347 		if (strcmp(tag_value, "user") == 0)
6348 			info->reg_type |= MEM_USER;
6349 		if (strcmp(tag_value, "percpu") == 0)
6350 			info->reg_type |= MEM_PERCPU;
6351 	}
6352 
6353 	/* skip modifiers */
6354 	while (btf_type_is_modifier(t)) {
6355 		info->btf_id = t->type;
6356 		t = btf_type_by_id(btf, t->type);
6357 	}
6358 	if (!btf_type_is_struct(t)) {
6359 		bpf_log(log,
6360 			"func '%s' arg%d type %s is not a struct\n",
6361 			tname, arg, btf_type_str(t));
6362 		return false;
6363 	}
6364 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6365 		tname, arg, info->btf_id, btf_type_str(t),
6366 		__btf_name_by_offset(btf, t->name_off));
6367 	return true;
6368 }
6369 EXPORT_SYMBOL_GPL(btf_ctx_access);
6370 
6371 enum bpf_struct_walk_result {
6372 	/* < 0 error */
6373 	WALK_SCALAR = 0,
6374 	WALK_PTR,
6375 	WALK_STRUCT,
6376 };
6377 
6378 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6379 			   const struct btf_type *t, int off, int size,
6380 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6381 			   const char **field_name)
6382 {
6383 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6384 	const struct btf_type *mtype, *elem_type = NULL;
6385 	const struct btf_member *member;
6386 	const char *tname, *mname, *tag_value;
6387 	u32 vlen, elem_id, mid;
6388 
6389 again:
6390 	if (btf_type_is_modifier(t))
6391 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6392 	tname = __btf_name_by_offset(btf, t->name_off);
6393 	if (!btf_type_is_struct(t)) {
6394 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6395 		return -EINVAL;
6396 	}
6397 
6398 	vlen = btf_type_vlen(t);
6399 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6400 		/*
6401 		 * walking unions yields untrusted pointers
6402 		 * with exception of __bpf_md_ptr and other
6403 		 * unions with a single member
6404 		 */
6405 		*flag |= PTR_UNTRUSTED;
6406 
6407 	if (off + size > t->size) {
6408 		/* If the last element is a variable size array, we may
6409 		 * need to relax the rule.
6410 		 */
6411 		struct btf_array *array_elem;
6412 
6413 		if (vlen == 0)
6414 			goto error;
6415 
6416 		member = btf_type_member(t) + vlen - 1;
6417 		mtype = btf_type_skip_modifiers(btf, member->type,
6418 						NULL);
6419 		if (!btf_type_is_array(mtype))
6420 			goto error;
6421 
6422 		array_elem = (struct btf_array *)(mtype + 1);
6423 		if (array_elem->nelems != 0)
6424 			goto error;
6425 
6426 		moff = __btf_member_bit_offset(t, member) / 8;
6427 		if (off < moff)
6428 			goto error;
6429 
6430 		/* allow structure and integer */
6431 		t = btf_type_skip_modifiers(btf, array_elem->type,
6432 					    NULL);
6433 
6434 		if (btf_type_is_int(t))
6435 			return WALK_SCALAR;
6436 
6437 		if (!btf_type_is_struct(t))
6438 			goto error;
6439 
6440 		off = (off - moff) % t->size;
6441 		goto again;
6442 
6443 error:
6444 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6445 			tname, off, size);
6446 		return -EACCES;
6447 	}
6448 
6449 	for_each_member(i, t, member) {
6450 		/* offset of the field in bytes */
6451 		moff = __btf_member_bit_offset(t, member) / 8;
6452 		if (off + size <= moff)
6453 			/* won't find anything, field is already too far */
6454 			break;
6455 
6456 		if (__btf_member_bitfield_size(t, member)) {
6457 			u32 end_bit = __btf_member_bit_offset(t, member) +
6458 				__btf_member_bitfield_size(t, member);
6459 
6460 			/* off <= moff instead of off == moff because clang
6461 			 * does not generate a BTF member for anonymous
6462 			 * bitfield like the ":16" here:
6463 			 * struct {
6464 			 *	int :16;
6465 			 *	int x:8;
6466 			 * };
6467 			 */
6468 			if (off <= moff &&
6469 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6470 				return WALK_SCALAR;
6471 
6472 			/* off may be accessing a following member
6473 			 *
6474 			 * or
6475 			 *
6476 			 * Doing partial access at either end of this
6477 			 * bitfield.  Continue on this case also to
6478 			 * treat it as not accessing this bitfield
6479 			 * and eventually error out as field not
6480 			 * found to keep it simple.
6481 			 * It could be relaxed if there was a legit
6482 			 * partial access case later.
6483 			 */
6484 			continue;
6485 		}
6486 
6487 		/* In case of "off" is pointing to holes of a struct */
6488 		if (off < moff)
6489 			break;
6490 
6491 		/* type of the field */
6492 		mid = member->type;
6493 		mtype = btf_type_by_id(btf, member->type);
6494 		mname = __btf_name_by_offset(btf, member->name_off);
6495 
6496 		mtype = __btf_resolve_size(btf, mtype, &msize,
6497 					   &elem_type, &elem_id, &total_nelems,
6498 					   &mid);
6499 		if (IS_ERR(mtype)) {
6500 			bpf_log(log, "field %s doesn't have size\n", mname);
6501 			return -EFAULT;
6502 		}
6503 
6504 		mtrue_end = moff + msize;
6505 		if (off >= mtrue_end)
6506 			/* no overlap with member, keep iterating */
6507 			continue;
6508 
6509 		if (btf_type_is_array(mtype)) {
6510 			u32 elem_idx;
6511 
6512 			/* __btf_resolve_size() above helps to
6513 			 * linearize a multi-dimensional array.
6514 			 *
6515 			 * The logic here is treating an array
6516 			 * in a struct as the following way:
6517 			 *
6518 			 * struct outer {
6519 			 *	struct inner array[2][2];
6520 			 * };
6521 			 *
6522 			 * looks like:
6523 			 *
6524 			 * struct outer {
6525 			 *	struct inner array_elem0;
6526 			 *	struct inner array_elem1;
6527 			 *	struct inner array_elem2;
6528 			 *	struct inner array_elem3;
6529 			 * };
6530 			 *
6531 			 * When accessing outer->array[1][0], it moves
6532 			 * moff to "array_elem2", set mtype to
6533 			 * "struct inner", and msize also becomes
6534 			 * sizeof(struct inner).  Then most of the
6535 			 * remaining logic will fall through without
6536 			 * caring the current member is an array or
6537 			 * not.
6538 			 *
6539 			 * Unlike mtype/msize/moff, mtrue_end does not
6540 			 * change.  The naming difference ("_true") tells
6541 			 * that it is not always corresponding to
6542 			 * the current mtype/msize/moff.
6543 			 * It is the true end of the current
6544 			 * member (i.e. array in this case).  That
6545 			 * will allow an int array to be accessed like
6546 			 * a scratch space,
6547 			 * i.e. allow access beyond the size of
6548 			 *      the array's element as long as it is
6549 			 *      within the mtrue_end boundary.
6550 			 */
6551 
6552 			/* skip empty array */
6553 			if (moff == mtrue_end)
6554 				continue;
6555 
6556 			msize /= total_nelems;
6557 			elem_idx = (off - moff) / msize;
6558 			moff += elem_idx * msize;
6559 			mtype = elem_type;
6560 			mid = elem_id;
6561 		}
6562 
6563 		/* the 'off' we're looking for is either equal to start
6564 		 * of this field or inside of this struct
6565 		 */
6566 		if (btf_type_is_struct(mtype)) {
6567 			/* our field must be inside that union or struct */
6568 			t = mtype;
6569 
6570 			/* return if the offset matches the member offset */
6571 			if (off == moff) {
6572 				*next_btf_id = mid;
6573 				return WALK_STRUCT;
6574 			}
6575 
6576 			/* adjust offset we're looking for */
6577 			off -= moff;
6578 			goto again;
6579 		}
6580 
6581 		if (btf_type_is_ptr(mtype)) {
6582 			const struct btf_type *stype, *t;
6583 			enum bpf_type_flag tmp_flag = 0;
6584 			u32 id;
6585 
6586 			if (msize != size || off != moff) {
6587 				bpf_log(log,
6588 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6589 					mname, moff, tname, off, size);
6590 				return -EACCES;
6591 			}
6592 
6593 			/* check type tag */
6594 			t = btf_type_by_id(btf, mtype->type);
6595 			if (btf_type_is_type_tag(t)) {
6596 				tag_value = __btf_name_by_offset(btf, t->name_off);
6597 				/* check __user tag */
6598 				if (strcmp(tag_value, "user") == 0)
6599 					tmp_flag = MEM_USER;
6600 				/* check __percpu tag */
6601 				if (strcmp(tag_value, "percpu") == 0)
6602 					tmp_flag = MEM_PERCPU;
6603 				/* check __rcu tag */
6604 				if (strcmp(tag_value, "rcu") == 0)
6605 					tmp_flag = MEM_RCU;
6606 			}
6607 
6608 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6609 			if (btf_type_is_struct(stype)) {
6610 				*next_btf_id = id;
6611 				*flag |= tmp_flag;
6612 				if (field_name)
6613 					*field_name = mname;
6614 				return WALK_PTR;
6615 			}
6616 		}
6617 
6618 		/* Allow more flexible access within an int as long as
6619 		 * it is within mtrue_end.
6620 		 * Since mtrue_end could be the end of an array,
6621 		 * that also allows using an array of int as a scratch
6622 		 * space. e.g. skb->cb[].
6623 		 */
6624 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6625 			bpf_log(log,
6626 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6627 				mname, mtrue_end, tname, off, size);
6628 			return -EACCES;
6629 		}
6630 
6631 		return WALK_SCALAR;
6632 	}
6633 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6634 	return -EINVAL;
6635 }
6636 
6637 int btf_struct_access(struct bpf_verifier_log *log,
6638 		      const struct bpf_reg_state *reg,
6639 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6640 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6641 		      const char **field_name)
6642 {
6643 	const struct btf *btf = reg->btf;
6644 	enum bpf_type_flag tmp_flag = 0;
6645 	const struct btf_type *t;
6646 	u32 id = reg->btf_id;
6647 	int err;
6648 
6649 	while (type_is_alloc(reg->type)) {
6650 		struct btf_struct_meta *meta;
6651 		struct btf_record *rec;
6652 		int i;
6653 
6654 		meta = btf_find_struct_meta(btf, id);
6655 		if (!meta)
6656 			break;
6657 		rec = meta->record;
6658 		for (i = 0; i < rec->cnt; i++) {
6659 			struct btf_field *field = &rec->fields[i];
6660 			u32 offset = field->offset;
6661 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6662 				bpf_log(log,
6663 					"direct access to %s is disallowed\n",
6664 					btf_field_type_name(field->type));
6665 				return -EACCES;
6666 			}
6667 		}
6668 		break;
6669 	}
6670 
6671 	t = btf_type_by_id(btf, id);
6672 	do {
6673 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6674 
6675 		switch (err) {
6676 		case WALK_PTR:
6677 			/* For local types, the destination register cannot
6678 			 * become a pointer again.
6679 			 */
6680 			if (type_is_alloc(reg->type))
6681 				return SCALAR_VALUE;
6682 			/* If we found the pointer or scalar on t+off,
6683 			 * we're done.
6684 			 */
6685 			*next_btf_id = id;
6686 			*flag = tmp_flag;
6687 			return PTR_TO_BTF_ID;
6688 		case WALK_SCALAR:
6689 			return SCALAR_VALUE;
6690 		case WALK_STRUCT:
6691 			/* We found nested struct, so continue the search
6692 			 * by diving in it. At this point the offset is
6693 			 * aligned with the new type, so set it to 0.
6694 			 */
6695 			t = btf_type_by_id(btf, id);
6696 			off = 0;
6697 			break;
6698 		default:
6699 			/* It's either error or unknown return value..
6700 			 * scream and leave.
6701 			 */
6702 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6703 				return -EINVAL;
6704 			return err;
6705 		}
6706 	} while (t);
6707 
6708 	return -EINVAL;
6709 }
6710 
6711 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6712  * the same. Trivial ID check is not enough due to module BTFs, because we can
6713  * end up with two different module BTFs, but IDs point to the common type in
6714  * vmlinux BTF.
6715  */
6716 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6717 			const struct btf *btf2, u32 id2)
6718 {
6719 	if (id1 != id2)
6720 		return false;
6721 	if (btf1 == btf2)
6722 		return true;
6723 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6724 }
6725 
6726 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6727 			  const struct btf *btf, u32 id, int off,
6728 			  const struct btf *need_btf, u32 need_type_id,
6729 			  bool strict)
6730 {
6731 	const struct btf_type *type;
6732 	enum bpf_type_flag flag = 0;
6733 	int err;
6734 
6735 	/* Are we already done? */
6736 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6737 		return true;
6738 	/* In case of strict type match, we do not walk struct, the top level
6739 	 * type match must succeed. When strict is true, off should have already
6740 	 * been 0.
6741 	 */
6742 	if (strict)
6743 		return false;
6744 again:
6745 	type = btf_type_by_id(btf, id);
6746 	if (!type)
6747 		return false;
6748 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6749 	if (err != WALK_STRUCT)
6750 		return false;
6751 
6752 	/* We found nested struct object. If it matches
6753 	 * the requested ID, we're done. Otherwise let's
6754 	 * continue the search with offset 0 in the new
6755 	 * type.
6756 	 */
6757 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6758 		off = 0;
6759 		goto again;
6760 	}
6761 
6762 	return true;
6763 }
6764 
6765 static int __get_type_size(struct btf *btf, u32 btf_id,
6766 			   const struct btf_type **ret_type)
6767 {
6768 	const struct btf_type *t;
6769 
6770 	*ret_type = btf_type_by_id(btf, 0);
6771 	if (!btf_id)
6772 		/* void */
6773 		return 0;
6774 	t = btf_type_by_id(btf, btf_id);
6775 	while (t && btf_type_is_modifier(t))
6776 		t = btf_type_by_id(btf, t->type);
6777 	if (!t)
6778 		return -EINVAL;
6779 	*ret_type = t;
6780 	if (btf_type_is_ptr(t))
6781 		/* kernel size of pointer. Not BPF's size of pointer*/
6782 		return sizeof(void *);
6783 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6784 		return t->size;
6785 	return -EINVAL;
6786 }
6787 
6788 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6789 {
6790 	u8 flags = 0;
6791 
6792 	if (__btf_type_is_struct(t))
6793 		flags |= BTF_FMODEL_STRUCT_ARG;
6794 	if (btf_type_is_signed_int(t))
6795 		flags |= BTF_FMODEL_SIGNED_ARG;
6796 
6797 	return flags;
6798 }
6799 
6800 int btf_distill_func_proto(struct bpf_verifier_log *log,
6801 			   struct btf *btf,
6802 			   const struct btf_type *func,
6803 			   const char *tname,
6804 			   struct btf_func_model *m)
6805 {
6806 	const struct btf_param *args;
6807 	const struct btf_type *t;
6808 	u32 i, nargs;
6809 	int ret;
6810 
6811 	if (!func) {
6812 		/* BTF function prototype doesn't match the verifier types.
6813 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6814 		 */
6815 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6816 			m->arg_size[i] = 8;
6817 			m->arg_flags[i] = 0;
6818 		}
6819 		m->ret_size = 8;
6820 		m->ret_flags = 0;
6821 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6822 		return 0;
6823 	}
6824 	args = (const struct btf_param *)(func + 1);
6825 	nargs = btf_type_vlen(func);
6826 	if (nargs > MAX_BPF_FUNC_ARGS) {
6827 		bpf_log(log,
6828 			"The function %s has %d arguments. Too many.\n",
6829 			tname, nargs);
6830 		return -EINVAL;
6831 	}
6832 	ret = __get_type_size(btf, func->type, &t);
6833 	if (ret < 0 || __btf_type_is_struct(t)) {
6834 		bpf_log(log,
6835 			"The function %s return type %s is unsupported.\n",
6836 			tname, btf_type_str(t));
6837 		return -EINVAL;
6838 	}
6839 	m->ret_size = ret;
6840 	m->ret_flags = __get_type_fmodel_flags(t);
6841 
6842 	for (i = 0; i < nargs; i++) {
6843 		if (i == nargs - 1 && args[i].type == 0) {
6844 			bpf_log(log,
6845 				"The function %s with variable args is unsupported.\n",
6846 				tname);
6847 			return -EINVAL;
6848 		}
6849 		ret = __get_type_size(btf, args[i].type, &t);
6850 
6851 		/* No support of struct argument size greater than 16 bytes */
6852 		if (ret < 0 || ret > 16) {
6853 			bpf_log(log,
6854 				"The function %s arg%d type %s is unsupported.\n",
6855 				tname, i, btf_type_str(t));
6856 			return -EINVAL;
6857 		}
6858 		if (ret == 0) {
6859 			bpf_log(log,
6860 				"The function %s has malformed void argument.\n",
6861 				tname);
6862 			return -EINVAL;
6863 		}
6864 		m->arg_size[i] = ret;
6865 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6866 	}
6867 	m->nr_args = nargs;
6868 	return 0;
6869 }
6870 
6871 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6872  * t1 points to BTF_KIND_FUNC in btf1
6873  * t2 points to BTF_KIND_FUNC in btf2
6874  * Returns:
6875  * EINVAL - function prototype mismatch
6876  * EFAULT - verifier bug
6877  * 0 - 99% match. The last 1% is validated by the verifier.
6878  */
6879 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6880 				     struct btf *btf1, const struct btf_type *t1,
6881 				     struct btf *btf2, const struct btf_type *t2)
6882 {
6883 	const struct btf_param *args1, *args2;
6884 	const char *fn1, *fn2, *s1, *s2;
6885 	u32 nargs1, nargs2, i;
6886 
6887 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6888 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6889 
6890 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6891 		bpf_log(log, "%s() is not a global function\n", fn1);
6892 		return -EINVAL;
6893 	}
6894 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6895 		bpf_log(log, "%s() is not a global function\n", fn2);
6896 		return -EINVAL;
6897 	}
6898 
6899 	t1 = btf_type_by_id(btf1, t1->type);
6900 	if (!t1 || !btf_type_is_func_proto(t1))
6901 		return -EFAULT;
6902 	t2 = btf_type_by_id(btf2, t2->type);
6903 	if (!t2 || !btf_type_is_func_proto(t2))
6904 		return -EFAULT;
6905 
6906 	args1 = (const struct btf_param *)(t1 + 1);
6907 	nargs1 = btf_type_vlen(t1);
6908 	args2 = (const struct btf_param *)(t2 + 1);
6909 	nargs2 = btf_type_vlen(t2);
6910 
6911 	if (nargs1 != nargs2) {
6912 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6913 			fn1, nargs1, fn2, nargs2);
6914 		return -EINVAL;
6915 	}
6916 
6917 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6918 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6919 	if (t1->info != t2->info) {
6920 		bpf_log(log,
6921 			"Return type %s of %s() doesn't match type %s of %s()\n",
6922 			btf_type_str(t1), fn1,
6923 			btf_type_str(t2), fn2);
6924 		return -EINVAL;
6925 	}
6926 
6927 	for (i = 0; i < nargs1; i++) {
6928 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6929 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6930 
6931 		if (t1->info != t2->info) {
6932 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6933 				i, fn1, btf_type_str(t1),
6934 				fn2, btf_type_str(t2));
6935 			return -EINVAL;
6936 		}
6937 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6938 			bpf_log(log,
6939 				"arg%d in %s() has size %d while %s() has %d\n",
6940 				i, fn1, t1->size,
6941 				fn2, t2->size);
6942 			return -EINVAL;
6943 		}
6944 
6945 		/* global functions are validated with scalars and pointers
6946 		 * to context only. And only global functions can be replaced.
6947 		 * Hence type check only those types.
6948 		 */
6949 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6950 			continue;
6951 		if (!btf_type_is_ptr(t1)) {
6952 			bpf_log(log,
6953 				"arg%d in %s() has unrecognized type\n",
6954 				i, fn1);
6955 			return -EINVAL;
6956 		}
6957 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6958 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6959 		if (!btf_type_is_struct(t1)) {
6960 			bpf_log(log,
6961 				"arg%d in %s() is not a pointer to context\n",
6962 				i, fn1);
6963 			return -EINVAL;
6964 		}
6965 		if (!btf_type_is_struct(t2)) {
6966 			bpf_log(log,
6967 				"arg%d in %s() is not a pointer to context\n",
6968 				i, fn2);
6969 			return -EINVAL;
6970 		}
6971 		/* This is an optional check to make program writing easier.
6972 		 * Compare names of structs and report an error to the user.
6973 		 * btf_prepare_func_args() already checked that t2 struct
6974 		 * is a context type. btf_prepare_func_args() will check
6975 		 * later that t1 struct is a context type as well.
6976 		 */
6977 		s1 = btf_name_by_offset(btf1, t1->name_off);
6978 		s2 = btf_name_by_offset(btf2, t2->name_off);
6979 		if (strcmp(s1, s2)) {
6980 			bpf_log(log,
6981 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6982 				i, fn1, s1, fn2, s2);
6983 			return -EINVAL;
6984 		}
6985 	}
6986 	return 0;
6987 }
6988 
6989 /* Compare BTFs of given program with BTF of target program */
6990 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6991 			 struct btf *btf2, const struct btf_type *t2)
6992 {
6993 	struct btf *btf1 = prog->aux->btf;
6994 	const struct btf_type *t1;
6995 	u32 btf_id = 0;
6996 
6997 	if (!prog->aux->func_info) {
6998 		bpf_log(log, "Program extension requires BTF\n");
6999 		return -EINVAL;
7000 	}
7001 
7002 	btf_id = prog->aux->func_info[0].type_id;
7003 	if (!btf_id)
7004 		return -EFAULT;
7005 
7006 	t1 = btf_type_by_id(btf1, btf_id);
7007 	if (!t1 || !btf_type_is_func(t1))
7008 		return -EFAULT;
7009 
7010 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7011 }
7012 
7013 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7014 {
7015 	const char *name;
7016 
7017 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7018 
7019 	while (btf_type_is_modifier(t))
7020 		t = btf_type_by_id(btf, t->type);
7021 
7022 	/* allow either struct or struct forward declaration */
7023 	if (btf_type_is_struct(t) ||
7024 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7025 		name = btf_str_by_offset(btf, t->name_off);
7026 		return name && strcmp(name, "bpf_dynptr") == 0;
7027 	}
7028 
7029 	return false;
7030 }
7031 
7032 struct bpf_cand_cache {
7033 	const char *name;
7034 	u32 name_len;
7035 	u16 kind;
7036 	u16 cnt;
7037 	struct {
7038 		const struct btf *btf;
7039 		u32 id;
7040 	} cands[];
7041 };
7042 
7043 static DEFINE_MUTEX(cand_cache_mutex);
7044 
7045 static struct bpf_cand_cache *
7046 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7047 
7048 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7049 				 const struct btf *btf, const struct btf_type *t)
7050 {
7051 	struct bpf_cand_cache *cc;
7052 	struct bpf_core_ctx ctx = {
7053 		.btf = btf,
7054 		.log = log,
7055 	};
7056 	u32 kern_type_id, type_id;
7057 	int err = 0;
7058 
7059 	/* skip PTR and modifiers */
7060 	type_id = t->type;
7061 	t = btf_type_by_id(btf, t->type);
7062 	while (btf_type_is_modifier(t)) {
7063 		type_id = t->type;
7064 		t = btf_type_by_id(btf, t->type);
7065 	}
7066 
7067 	mutex_lock(&cand_cache_mutex);
7068 	cc = bpf_core_find_cands(&ctx, type_id);
7069 	if (IS_ERR(cc)) {
7070 		err = PTR_ERR(cc);
7071 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7072 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7073 			err);
7074 		goto cand_cache_unlock;
7075 	}
7076 	if (cc->cnt != 1) {
7077 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7078 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7079 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7080 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7081 		goto cand_cache_unlock;
7082 	}
7083 	if (btf_is_module(cc->cands[0].btf)) {
7084 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7085 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7086 		err = -EOPNOTSUPP;
7087 		goto cand_cache_unlock;
7088 	}
7089 	kern_type_id = cc->cands[0].id;
7090 
7091 cand_cache_unlock:
7092 	mutex_unlock(&cand_cache_mutex);
7093 	if (err)
7094 		return err;
7095 
7096 	return kern_type_id;
7097 }
7098 
7099 enum btf_arg_tag {
7100 	ARG_TAG_CTX = 0x1,
7101 	ARG_TAG_NONNULL = 0x2,
7102 	ARG_TAG_TRUSTED = 0x4,
7103 	ARG_TAG_NULLABLE = 0x8,
7104 };
7105 
7106 /* Process BTF of a function to produce high-level expectation of function
7107  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7108  * is cached in subprog info for reuse.
7109  * Returns:
7110  * EFAULT - there is a verifier bug. Abort verification.
7111  * EINVAL - cannot convert BTF.
7112  * 0 - Successfully processed BTF and constructed argument expectations.
7113  */
7114 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7115 {
7116 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7117 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7118 	struct bpf_verifier_log *log = &env->log;
7119 	struct bpf_prog *prog = env->prog;
7120 	enum bpf_prog_type prog_type = prog->type;
7121 	struct btf *btf = prog->aux->btf;
7122 	const struct btf_param *args;
7123 	const struct btf_type *t, *ref_t, *fn_t;
7124 	u32 i, nargs, btf_id;
7125 	const char *tname;
7126 
7127 	if (sub->args_cached)
7128 		return 0;
7129 
7130 	if (!prog->aux->func_info) {
7131 		bpf_log(log, "Verifier bug\n");
7132 		return -EFAULT;
7133 	}
7134 
7135 	btf_id = prog->aux->func_info[subprog].type_id;
7136 	if (!btf_id) {
7137 		if (!is_global) /* not fatal for static funcs */
7138 			return -EINVAL;
7139 		bpf_log(log, "Global functions need valid BTF\n");
7140 		return -EFAULT;
7141 	}
7142 
7143 	fn_t = btf_type_by_id(btf, btf_id);
7144 	if (!fn_t || !btf_type_is_func(fn_t)) {
7145 		/* These checks were already done by the verifier while loading
7146 		 * struct bpf_func_info
7147 		 */
7148 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7149 			subprog);
7150 		return -EFAULT;
7151 	}
7152 	tname = btf_name_by_offset(btf, fn_t->name_off);
7153 
7154 	if (prog->aux->func_info_aux[subprog].unreliable) {
7155 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7156 		return -EFAULT;
7157 	}
7158 	if (prog_type == BPF_PROG_TYPE_EXT)
7159 		prog_type = prog->aux->dst_prog->type;
7160 
7161 	t = btf_type_by_id(btf, fn_t->type);
7162 	if (!t || !btf_type_is_func_proto(t)) {
7163 		bpf_log(log, "Invalid type of function %s()\n", tname);
7164 		return -EFAULT;
7165 	}
7166 	args = (const struct btf_param *)(t + 1);
7167 	nargs = btf_type_vlen(t);
7168 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7169 		if (!is_global)
7170 			return -EINVAL;
7171 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7172 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7173 		return -EINVAL;
7174 	}
7175 	/* check that function returns int, exception cb also requires this */
7176 	t = btf_type_by_id(btf, t->type);
7177 	while (btf_type_is_modifier(t))
7178 		t = btf_type_by_id(btf, t->type);
7179 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7180 		if (!is_global)
7181 			return -EINVAL;
7182 		bpf_log(log,
7183 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7184 			tname);
7185 		return -EINVAL;
7186 	}
7187 	/* Convert BTF function arguments into verifier types.
7188 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7189 	 */
7190 	for (i = 0; i < nargs; i++) {
7191 		u32 tags = 0;
7192 		int id = 0;
7193 
7194 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7195 		 * register type from BTF type itself
7196 		 */
7197 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7198 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7199 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7200 
7201 			/* disallow arg tags in static subprogs */
7202 			if (!is_global) {
7203 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7204 				return -EOPNOTSUPP;
7205 			}
7206 
7207 			if (strcmp(tag, "ctx") == 0) {
7208 				tags |= ARG_TAG_CTX;
7209 			} else if (strcmp(tag, "trusted") == 0) {
7210 				tags |= ARG_TAG_TRUSTED;
7211 			} else if (strcmp(tag, "nonnull") == 0) {
7212 				tags |= ARG_TAG_NONNULL;
7213 			} else if (strcmp(tag, "nullable") == 0) {
7214 				tags |= ARG_TAG_NULLABLE;
7215 			} else {
7216 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7217 				return -EOPNOTSUPP;
7218 			}
7219 		}
7220 		if (id != -ENOENT) {
7221 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7222 			return id;
7223 		}
7224 
7225 		t = btf_type_by_id(btf, args[i].type);
7226 		while (btf_type_is_modifier(t))
7227 			t = btf_type_by_id(btf, t->type);
7228 		if (!btf_type_is_ptr(t))
7229 			goto skip_pointer;
7230 
7231 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7232 			if (tags & ~ARG_TAG_CTX) {
7233 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7234 				return -EINVAL;
7235 			}
7236 			if ((tags & ARG_TAG_CTX) &&
7237 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7238 						       prog->expected_attach_type))
7239 				return -EINVAL;
7240 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7241 			continue;
7242 		}
7243 		if (btf_is_dynptr_ptr(btf, t)) {
7244 			if (tags) {
7245 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7246 				return -EINVAL;
7247 			}
7248 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7249 			continue;
7250 		}
7251 		if (tags & ARG_TAG_TRUSTED) {
7252 			int kern_type_id;
7253 
7254 			if (tags & ARG_TAG_NONNULL) {
7255 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7256 				return -EINVAL;
7257 			}
7258 
7259 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7260 			if (kern_type_id < 0)
7261 				return kern_type_id;
7262 
7263 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7264 			if (tags & ARG_TAG_NULLABLE)
7265 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7266 			sub->args[i].btf_id = kern_type_id;
7267 			continue;
7268 		}
7269 		if (is_global) { /* generic user data pointer */
7270 			u32 mem_size;
7271 
7272 			if (tags & ARG_TAG_NULLABLE) {
7273 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7274 				return -EINVAL;
7275 			}
7276 
7277 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7278 			ref_t = btf_resolve_size(btf, t, &mem_size);
7279 			if (IS_ERR(ref_t)) {
7280 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7281 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7282 					PTR_ERR(ref_t));
7283 				return -EINVAL;
7284 			}
7285 
7286 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7287 			if (tags & ARG_TAG_NONNULL)
7288 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7289 			sub->args[i].mem_size = mem_size;
7290 			continue;
7291 		}
7292 
7293 skip_pointer:
7294 		if (tags) {
7295 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7296 			return -EINVAL;
7297 		}
7298 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7299 			sub->args[i].arg_type = ARG_ANYTHING;
7300 			continue;
7301 		}
7302 		if (!is_global)
7303 			return -EINVAL;
7304 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7305 			i, btf_type_str(t), tname);
7306 		return -EINVAL;
7307 	}
7308 
7309 	sub->arg_cnt = nargs;
7310 	sub->args_cached = true;
7311 
7312 	return 0;
7313 }
7314 
7315 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7316 			  struct btf_show *show)
7317 {
7318 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7319 
7320 	show->btf = btf;
7321 	memset(&show->state, 0, sizeof(show->state));
7322 	memset(&show->obj, 0, sizeof(show->obj));
7323 
7324 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7325 }
7326 
7327 static void btf_seq_show(struct btf_show *show, const char *fmt,
7328 			 va_list args)
7329 {
7330 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7331 }
7332 
7333 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7334 			    void *obj, struct seq_file *m, u64 flags)
7335 {
7336 	struct btf_show sseq;
7337 
7338 	sseq.target = m;
7339 	sseq.showfn = btf_seq_show;
7340 	sseq.flags = flags;
7341 
7342 	btf_type_show(btf, type_id, obj, &sseq);
7343 
7344 	return sseq.state.status;
7345 }
7346 
7347 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7348 		       struct seq_file *m)
7349 {
7350 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7351 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7352 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7353 }
7354 
7355 struct btf_show_snprintf {
7356 	struct btf_show show;
7357 	int len_left;		/* space left in string */
7358 	int len;		/* length we would have written */
7359 };
7360 
7361 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7362 			      va_list args)
7363 {
7364 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7365 	int len;
7366 
7367 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7368 
7369 	if (len < 0) {
7370 		ssnprintf->len_left = 0;
7371 		ssnprintf->len = len;
7372 	} else if (len >= ssnprintf->len_left) {
7373 		/* no space, drive on to get length we would have written */
7374 		ssnprintf->len_left = 0;
7375 		ssnprintf->len += len;
7376 	} else {
7377 		ssnprintf->len_left -= len;
7378 		ssnprintf->len += len;
7379 		show->target += len;
7380 	}
7381 }
7382 
7383 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7384 			   char *buf, int len, u64 flags)
7385 {
7386 	struct btf_show_snprintf ssnprintf;
7387 
7388 	ssnprintf.show.target = buf;
7389 	ssnprintf.show.flags = flags;
7390 	ssnprintf.show.showfn = btf_snprintf_show;
7391 	ssnprintf.len_left = len;
7392 	ssnprintf.len = 0;
7393 
7394 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7395 
7396 	/* If we encountered an error, return it. */
7397 	if (ssnprintf.show.state.status)
7398 		return ssnprintf.show.state.status;
7399 
7400 	/* Otherwise return length we would have written */
7401 	return ssnprintf.len;
7402 }
7403 
7404 #ifdef CONFIG_PROC_FS
7405 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7406 {
7407 	const struct btf *btf = filp->private_data;
7408 
7409 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7410 }
7411 #endif
7412 
7413 static int btf_release(struct inode *inode, struct file *filp)
7414 {
7415 	btf_put(filp->private_data);
7416 	return 0;
7417 }
7418 
7419 const struct file_operations btf_fops = {
7420 #ifdef CONFIG_PROC_FS
7421 	.show_fdinfo	= bpf_btf_show_fdinfo,
7422 #endif
7423 	.release	= btf_release,
7424 };
7425 
7426 static int __btf_new_fd(struct btf *btf)
7427 {
7428 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7429 }
7430 
7431 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7432 {
7433 	struct btf *btf;
7434 	int ret;
7435 
7436 	btf = btf_parse(attr, uattr, uattr_size);
7437 	if (IS_ERR(btf))
7438 		return PTR_ERR(btf);
7439 
7440 	ret = btf_alloc_id(btf);
7441 	if (ret) {
7442 		btf_free(btf);
7443 		return ret;
7444 	}
7445 
7446 	/*
7447 	 * The BTF ID is published to the userspace.
7448 	 * All BTF free must go through call_rcu() from
7449 	 * now on (i.e. free by calling btf_put()).
7450 	 */
7451 
7452 	ret = __btf_new_fd(btf);
7453 	if (ret < 0)
7454 		btf_put(btf);
7455 
7456 	return ret;
7457 }
7458 
7459 struct btf *btf_get_by_fd(int fd)
7460 {
7461 	struct btf *btf;
7462 	struct fd f;
7463 
7464 	f = fdget(fd);
7465 
7466 	if (!f.file)
7467 		return ERR_PTR(-EBADF);
7468 
7469 	if (f.file->f_op != &btf_fops) {
7470 		fdput(f);
7471 		return ERR_PTR(-EINVAL);
7472 	}
7473 
7474 	btf = f.file->private_data;
7475 	refcount_inc(&btf->refcnt);
7476 	fdput(f);
7477 
7478 	return btf;
7479 }
7480 
7481 int btf_get_info_by_fd(const struct btf *btf,
7482 		       const union bpf_attr *attr,
7483 		       union bpf_attr __user *uattr)
7484 {
7485 	struct bpf_btf_info __user *uinfo;
7486 	struct bpf_btf_info info;
7487 	u32 info_copy, btf_copy;
7488 	void __user *ubtf;
7489 	char __user *uname;
7490 	u32 uinfo_len, uname_len, name_len;
7491 	int ret = 0;
7492 
7493 	uinfo = u64_to_user_ptr(attr->info.info);
7494 	uinfo_len = attr->info.info_len;
7495 
7496 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7497 	memset(&info, 0, sizeof(info));
7498 	if (copy_from_user(&info, uinfo, info_copy))
7499 		return -EFAULT;
7500 
7501 	info.id = btf->id;
7502 	ubtf = u64_to_user_ptr(info.btf);
7503 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7504 	if (copy_to_user(ubtf, btf->data, btf_copy))
7505 		return -EFAULT;
7506 	info.btf_size = btf->data_size;
7507 
7508 	info.kernel_btf = btf->kernel_btf;
7509 
7510 	uname = u64_to_user_ptr(info.name);
7511 	uname_len = info.name_len;
7512 	if (!uname ^ !uname_len)
7513 		return -EINVAL;
7514 
7515 	name_len = strlen(btf->name);
7516 	info.name_len = name_len;
7517 
7518 	if (uname) {
7519 		if (uname_len >= name_len + 1) {
7520 			if (copy_to_user(uname, btf->name, name_len + 1))
7521 				return -EFAULT;
7522 		} else {
7523 			char zero = '\0';
7524 
7525 			if (copy_to_user(uname, btf->name, uname_len - 1))
7526 				return -EFAULT;
7527 			if (put_user(zero, uname + uname_len - 1))
7528 				return -EFAULT;
7529 			/* let user-space know about too short buffer */
7530 			ret = -ENOSPC;
7531 		}
7532 	}
7533 
7534 	if (copy_to_user(uinfo, &info, info_copy) ||
7535 	    put_user(info_copy, &uattr->info.info_len))
7536 		return -EFAULT;
7537 
7538 	return ret;
7539 }
7540 
7541 int btf_get_fd_by_id(u32 id)
7542 {
7543 	struct btf *btf;
7544 	int fd;
7545 
7546 	rcu_read_lock();
7547 	btf = idr_find(&btf_idr, id);
7548 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7549 		btf = ERR_PTR(-ENOENT);
7550 	rcu_read_unlock();
7551 
7552 	if (IS_ERR(btf))
7553 		return PTR_ERR(btf);
7554 
7555 	fd = __btf_new_fd(btf);
7556 	if (fd < 0)
7557 		btf_put(btf);
7558 
7559 	return fd;
7560 }
7561 
7562 u32 btf_obj_id(const struct btf *btf)
7563 {
7564 	return btf->id;
7565 }
7566 
7567 bool btf_is_kernel(const struct btf *btf)
7568 {
7569 	return btf->kernel_btf;
7570 }
7571 
7572 bool btf_is_module(const struct btf *btf)
7573 {
7574 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7575 }
7576 
7577 enum {
7578 	BTF_MODULE_F_LIVE = (1 << 0),
7579 };
7580 
7581 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7582 struct btf_module {
7583 	struct list_head list;
7584 	struct module *module;
7585 	struct btf *btf;
7586 	struct bin_attribute *sysfs_attr;
7587 	int flags;
7588 };
7589 
7590 static LIST_HEAD(btf_modules);
7591 static DEFINE_MUTEX(btf_module_mutex);
7592 
7593 static ssize_t
7594 btf_module_read(struct file *file, struct kobject *kobj,
7595 		struct bin_attribute *bin_attr,
7596 		char *buf, loff_t off, size_t len)
7597 {
7598 	const struct btf *btf = bin_attr->private;
7599 
7600 	memcpy(buf, btf->data + off, len);
7601 	return len;
7602 }
7603 
7604 static void purge_cand_cache(struct btf *btf);
7605 
7606 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7607 			     void *module)
7608 {
7609 	struct btf_module *btf_mod, *tmp;
7610 	struct module *mod = module;
7611 	struct btf *btf;
7612 	int err = 0;
7613 
7614 	if (mod->btf_data_size == 0 ||
7615 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7616 	     op != MODULE_STATE_GOING))
7617 		goto out;
7618 
7619 	switch (op) {
7620 	case MODULE_STATE_COMING:
7621 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7622 		if (!btf_mod) {
7623 			err = -ENOMEM;
7624 			goto out;
7625 		}
7626 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7627 		if (IS_ERR(btf)) {
7628 			kfree(btf_mod);
7629 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7630 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7631 					mod->name, PTR_ERR(btf));
7632 				err = PTR_ERR(btf);
7633 			} else {
7634 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7635 			}
7636 			goto out;
7637 		}
7638 		err = btf_alloc_id(btf);
7639 		if (err) {
7640 			btf_free(btf);
7641 			kfree(btf_mod);
7642 			goto out;
7643 		}
7644 
7645 		purge_cand_cache(NULL);
7646 		mutex_lock(&btf_module_mutex);
7647 		btf_mod->module = module;
7648 		btf_mod->btf = btf;
7649 		list_add(&btf_mod->list, &btf_modules);
7650 		mutex_unlock(&btf_module_mutex);
7651 
7652 		if (IS_ENABLED(CONFIG_SYSFS)) {
7653 			struct bin_attribute *attr;
7654 
7655 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7656 			if (!attr)
7657 				goto out;
7658 
7659 			sysfs_bin_attr_init(attr);
7660 			attr->attr.name = btf->name;
7661 			attr->attr.mode = 0444;
7662 			attr->size = btf->data_size;
7663 			attr->private = btf;
7664 			attr->read = btf_module_read;
7665 
7666 			err = sysfs_create_bin_file(btf_kobj, attr);
7667 			if (err) {
7668 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7669 					mod->name, err);
7670 				kfree(attr);
7671 				err = 0;
7672 				goto out;
7673 			}
7674 
7675 			btf_mod->sysfs_attr = attr;
7676 		}
7677 
7678 		break;
7679 	case MODULE_STATE_LIVE:
7680 		mutex_lock(&btf_module_mutex);
7681 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7682 			if (btf_mod->module != module)
7683 				continue;
7684 
7685 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7686 			break;
7687 		}
7688 		mutex_unlock(&btf_module_mutex);
7689 		break;
7690 	case MODULE_STATE_GOING:
7691 		mutex_lock(&btf_module_mutex);
7692 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7693 			if (btf_mod->module != module)
7694 				continue;
7695 
7696 			list_del(&btf_mod->list);
7697 			if (btf_mod->sysfs_attr)
7698 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7699 			purge_cand_cache(btf_mod->btf);
7700 			btf_put(btf_mod->btf);
7701 			kfree(btf_mod->sysfs_attr);
7702 			kfree(btf_mod);
7703 			break;
7704 		}
7705 		mutex_unlock(&btf_module_mutex);
7706 		break;
7707 	}
7708 out:
7709 	return notifier_from_errno(err);
7710 }
7711 
7712 static struct notifier_block btf_module_nb = {
7713 	.notifier_call = btf_module_notify,
7714 };
7715 
7716 static int __init btf_module_init(void)
7717 {
7718 	register_module_notifier(&btf_module_nb);
7719 	return 0;
7720 }
7721 
7722 fs_initcall(btf_module_init);
7723 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7724 
7725 struct module *btf_try_get_module(const struct btf *btf)
7726 {
7727 	struct module *res = NULL;
7728 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7729 	struct btf_module *btf_mod, *tmp;
7730 
7731 	mutex_lock(&btf_module_mutex);
7732 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7733 		if (btf_mod->btf != btf)
7734 			continue;
7735 
7736 		/* We must only consider module whose __init routine has
7737 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7738 		 * which is set from the notifier callback for
7739 		 * MODULE_STATE_LIVE.
7740 		 */
7741 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7742 			res = btf_mod->module;
7743 
7744 		break;
7745 	}
7746 	mutex_unlock(&btf_module_mutex);
7747 #endif
7748 
7749 	return res;
7750 }
7751 
7752 /* Returns struct btf corresponding to the struct module.
7753  * This function can return NULL or ERR_PTR.
7754  */
7755 static struct btf *btf_get_module_btf(const struct module *module)
7756 {
7757 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7758 	struct btf_module *btf_mod, *tmp;
7759 #endif
7760 	struct btf *btf = NULL;
7761 
7762 	if (!module) {
7763 		btf = bpf_get_btf_vmlinux();
7764 		if (!IS_ERR_OR_NULL(btf))
7765 			btf_get(btf);
7766 		return btf;
7767 	}
7768 
7769 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7770 	mutex_lock(&btf_module_mutex);
7771 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7772 		if (btf_mod->module != module)
7773 			continue;
7774 
7775 		btf_get(btf_mod->btf);
7776 		btf = btf_mod->btf;
7777 		break;
7778 	}
7779 	mutex_unlock(&btf_module_mutex);
7780 #endif
7781 
7782 	return btf;
7783 }
7784 
7785 static int check_btf_kconfigs(const struct module *module, const char *feature)
7786 {
7787 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7788 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
7789 		return -ENOENT;
7790 	}
7791 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7792 		pr_warn("missing module BTF, cannot register %s\n", feature);
7793 	return 0;
7794 }
7795 
7796 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7797 {
7798 	struct btf *btf = NULL;
7799 	int btf_obj_fd = 0;
7800 	long ret;
7801 
7802 	if (flags)
7803 		return -EINVAL;
7804 
7805 	if (name_sz <= 1 || name[name_sz - 1])
7806 		return -EINVAL;
7807 
7808 	ret = bpf_find_btf_id(name, kind, &btf);
7809 	if (ret > 0 && btf_is_module(btf)) {
7810 		btf_obj_fd = __btf_new_fd(btf);
7811 		if (btf_obj_fd < 0) {
7812 			btf_put(btf);
7813 			return btf_obj_fd;
7814 		}
7815 		return ret | (((u64)btf_obj_fd) << 32);
7816 	}
7817 	if (ret > 0)
7818 		btf_put(btf);
7819 	return ret;
7820 }
7821 
7822 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7823 	.func		= bpf_btf_find_by_name_kind,
7824 	.gpl_only	= false,
7825 	.ret_type	= RET_INTEGER,
7826 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7827 	.arg2_type	= ARG_CONST_SIZE,
7828 	.arg3_type	= ARG_ANYTHING,
7829 	.arg4_type	= ARG_ANYTHING,
7830 };
7831 
7832 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7833 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7834 BTF_TRACING_TYPE_xxx
7835 #undef BTF_TRACING_TYPE
7836 
7837 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7838 				 const struct btf_type *func, u32 func_flags)
7839 {
7840 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7841 	const char *name, *sfx, *iter_name;
7842 	const struct btf_param *arg;
7843 	const struct btf_type *t;
7844 	char exp_name[128];
7845 	u32 nr_args;
7846 
7847 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7848 	if (!flags || (flags & (flags - 1)))
7849 		return -EINVAL;
7850 
7851 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7852 	nr_args = btf_type_vlen(func);
7853 	if (nr_args < 1)
7854 		return -EINVAL;
7855 
7856 	arg = &btf_params(func)[0];
7857 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7858 	if (!t || !btf_type_is_ptr(t))
7859 		return -EINVAL;
7860 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7861 	if (!t || !__btf_type_is_struct(t))
7862 		return -EINVAL;
7863 
7864 	name = btf_name_by_offset(btf, t->name_off);
7865 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7866 		return -EINVAL;
7867 
7868 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7869 	 * fit nicely in stack slots
7870 	 */
7871 	if (t->size == 0 || (t->size % 8))
7872 		return -EINVAL;
7873 
7874 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7875 	 * naming pattern
7876 	 */
7877 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7878 	if (flags & KF_ITER_NEW)
7879 		sfx = "new";
7880 	else if (flags & KF_ITER_NEXT)
7881 		sfx = "next";
7882 	else /* (flags & KF_ITER_DESTROY) */
7883 		sfx = "destroy";
7884 
7885 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7886 	if (strcmp(func_name, exp_name))
7887 		return -EINVAL;
7888 
7889 	/* only iter constructor should have extra arguments */
7890 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7891 		return -EINVAL;
7892 
7893 	if (flags & KF_ITER_NEXT) {
7894 		/* bpf_iter_<type>_next() should return pointer */
7895 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7896 		if (!t || !btf_type_is_ptr(t))
7897 			return -EINVAL;
7898 	}
7899 
7900 	if (flags & KF_ITER_DESTROY) {
7901 		/* bpf_iter_<type>_destroy() should return void */
7902 		t = btf_type_by_id(btf, func->type);
7903 		if (!t || !btf_type_is_void(t))
7904 			return -EINVAL;
7905 	}
7906 
7907 	return 0;
7908 }
7909 
7910 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7911 {
7912 	const struct btf_type *func;
7913 	const char *func_name;
7914 	int err;
7915 
7916 	/* any kfunc should be FUNC -> FUNC_PROTO */
7917 	func = btf_type_by_id(btf, func_id);
7918 	if (!func || !btf_type_is_func(func))
7919 		return -EINVAL;
7920 
7921 	/* sanity check kfunc name */
7922 	func_name = btf_name_by_offset(btf, func->name_off);
7923 	if (!func_name || !func_name[0])
7924 		return -EINVAL;
7925 
7926 	func = btf_type_by_id(btf, func->type);
7927 	if (!func || !btf_type_is_func_proto(func))
7928 		return -EINVAL;
7929 
7930 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7931 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7932 		if (err)
7933 			return err;
7934 	}
7935 
7936 	return 0;
7937 }
7938 
7939 /* Kernel Function (kfunc) BTF ID set registration API */
7940 
7941 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7942 				  const struct btf_kfunc_id_set *kset)
7943 {
7944 	struct btf_kfunc_hook_filter *hook_filter;
7945 	struct btf_id_set8 *add_set = kset->set;
7946 	bool vmlinux_set = !btf_is_module(btf);
7947 	bool add_filter = !!kset->filter;
7948 	struct btf_kfunc_set_tab *tab;
7949 	struct btf_id_set8 *set;
7950 	u32 set_cnt;
7951 	int ret;
7952 
7953 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7954 		ret = -EINVAL;
7955 		goto end;
7956 	}
7957 
7958 	if (!add_set->cnt)
7959 		return 0;
7960 
7961 	tab = btf->kfunc_set_tab;
7962 
7963 	if (tab && add_filter) {
7964 		u32 i;
7965 
7966 		hook_filter = &tab->hook_filters[hook];
7967 		for (i = 0; i < hook_filter->nr_filters; i++) {
7968 			if (hook_filter->filters[i] == kset->filter) {
7969 				add_filter = false;
7970 				break;
7971 			}
7972 		}
7973 
7974 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7975 			ret = -E2BIG;
7976 			goto end;
7977 		}
7978 	}
7979 
7980 	if (!tab) {
7981 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7982 		if (!tab)
7983 			return -ENOMEM;
7984 		btf->kfunc_set_tab = tab;
7985 	}
7986 
7987 	set = tab->sets[hook];
7988 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7989 	 * for module sets.
7990 	 */
7991 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7992 		ret = -EINVAL;
7993 		goto end;
7994 	}
7995 
7996 	/* We don't need to allocate, concatenate, and sort module sets, because
7997 	 * only one is allowed per hook. Hence, we can directly assign the
7998 	 * pointer and return.
7999 	 */
8000 	if (!vmlinux_set) {
8001 		tab->sets[hook] = add_set;
8002 		goto do_add_filter;
8003 	}
8004 
8005 	/* In case of vmlinux sets, there may be more than one set being
8006 	 * registered per hook. To create a unified set, we allocate a new set
8007 	 * and concatenate all individual sets being registered. While each set
8008 	 * is individually sorted, they may become unsorted when concatenated,
8009 	 * hence re-sorting the final set again is required to make binary
8010 	 * searching the set using btf_id_set8_contains function work.
8011 	 */
8012 	set_cnt = set ? set->cnt : 0;
8013 
8014 	if (set_cnt > U32_MAX - add_set->cnt) {
8015 		ret = -EOVERFLOW;
8016 		goto end;
8017 	}
8018 
8019 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8020 		ret = -E2BIG;
8021 		goto end;
8022 	}
8023 
8024 	/* Grow set */
8025 	set = krealloc(tab->sets[hook],
8026 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8027 		       GFP_KERNEL | __GFP_NOWARN);
8028 	if (!set) {
8029 		ret = -ENOMEM;
8030 		goto end;
8031 	}
8032 
8033 	/* For newly allocated set, initialize set->cnt to 0 */
8034 	if (!tab->sets[hook])
8035 		set->cnt = 0;
8036 	tab->sets[hook] = set;
8037 
8038 	/* Concatenate the two sets */
8039 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8040 	set->cnt += add_set->cnt;
8041 
8042 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8043 
8044 do_add_filter:
8045 	if (add_filter) {
8046 		hook_filter = &tab->hook_filters[hook];
8047 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8048 	}
8049 	return 0;
8050 end:
8051 	btf_free_kfunc_set_tab(btf);
8052 	return ret;
8053 }
8054 
8055 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8056 					enum btf_kfunc_hook hook,
8057 					u32 kfunc_btf_id,
8058 					const struct bpf_prog *prog)
8059 {
8060 	struct btf_kfunc_hook_filter *hook_filter;
8061 	struct btf_id_set8 *set;
8062 	u32 *id, i;
8063 
8064 	if (hook >= BTF_KFUNC_HOOK_MAX)
8065 		return NULL;
8066 	if (!btf->kfunc_set_tab)
8067 		return NULL;
8068 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8069 	for (i = 0; i < hook_filter->nr_filters; i++) {
8070 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8071 			return NULL;
8072 	}
8073 	set = btf->kfunc_set_tab->sets[hook];
8074 	if (!set)
8075 		return NULL;
8076 	id = btf_id_set8_contains(set, kfunc_btf_id);
8077 	if (!id)
8078 		return NULL;
8079 	/* The flags for BTF ID are located next to it */
8080 	return id + 1;
8081 }
8082 
8083 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8084 {
8085 	switch (prog_type) {
8086 	case BPF_PROG_TYPE_UNSPEC:
8087 		return BTF_KFUNC_HOOK_COMMON;
8088 	case BPF_PROG_TYPE_XDP:
8089 		return BTF_KFUNC_HOOK_XDP;
8090 	case BPF_PROG_TYPE_SCHED_CLS:
8091 		return BTF_KFUNC_HOOK_TC;
8092 	case BPF_PROG_TYPE_STRUCT_OPS:
8093 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8094 	case BPF_PROG_TYPE_TRACING:
8095 	case BPF_PROG_TYPE_LSM:
8096 		return BTF_KFUNC_HOOK_TRACING;
8097 	case BPF_PROG_TYPE_SYSCALL:
8098 		return BTF_KFUNC_HOOK_SYSCALL;
8099 	case BPF_PROG_TYPE_CGROUP_SKB:
8100 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8101 		return BTF_KFUNC_HOOK_CGROUP_SKB;
8102 	case BPF_PROG_TYPE_SCHED_ACT:
8103 		return BTF_KFUNC_HOOK_SCHED_ACT;
8104 	case BPF_PROG_TYPE_SK_SKB:
8105 		return BTF_KFUNC_HOOK_SK_SKB;
8106 	case BPF_PROG_TYPE_SOCKET_FILTER:
8107 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8108 	case BPF_PROG_TYPE_LWT_OUT:
8109 	case BPF_PROG_TYPE_LWT_IN:
8110 	case BPF_PROG_TYPE_LWT_XMIT:
8111 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8112 		return BTF_KFUNC_HOOK_LWT;
8113 	case BPF_PROG_TYPE_NETFILTER:
8114 		return BTF_KFUNC_HOOK_NETFILTER;
8115 	default:
8116 		return BTF_KFUNC_HOOK_MAX;
8117 	}
8118 }
8119 
8120 /* Caution:
8121  * Reference to the module (obtained using btf_try_get_module) corresponding to
8122  * the struct btf *MUST* be held when calling this function from verifier
8123  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8124  * keeping the reference for the duration of the call provides the necessary
8125  * protection for looking up a well-formed btf->kfunc_set_tab.
8126  */
8127 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8128 			       u32 kfunc_btf_id,
8129 			       const struct bpf_prog *prog)
8130 {
8131 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8132 	enum btf_kfunc_hook hook;
8133 	u32 *kfunc_flags;
8134 
8135 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8136 	if (kfunc_flags)
8137 		return kfunc_flags;
8138 
8139 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8140 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8141 }
8142 
8143 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8144 				const struct bpf_prog *prog)
8145 {
8146 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8147 }
8148 
8149 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8150 				       const struct btf_kfunc_id_set *kset)
8151 {
8152 	struct btf *btf;
8153 	int ret, i;
8154 
8155 	btf = btf_get_module_btf(kset->owner);
8156 	if (!btf)
8157 		return check_btf_kconfigs(kset->owner, "kfunc");
8158 	if (IS_ERR(btf))
8159 		return PTR_ERR(btf);
8160 
8161 	for (i = 0; i < kset->set->cnt; i++) {
8162 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
8163 					     kset->set->pairs[i].flags);
8164 		if (ret)
8165 			goto err_out;
8166 	}
8167 
8168 	ret = btf_populate_kfunc_set(btf, hook, kset);
8169 
8170 err_out:
8171 	btf_put(btf);
8172 	return ret;
8173 }
8174 
8175 /* This function must be invoked only from initcalls/module init functions */
8176 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8177 			      const struct btf_kfunc_id_set *kset)
8178 {
8179 	enum btf_kfunc_hook hook;
8180 
8181 	/* All kfuncs need to be tagged as such in BTF.
8182 	 * WARN() for initcall registrations that do not check errors.
8183 	 */
8184 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8185 		WARN_ON(!kset->owner);
8186 		return -EINVAL;
8187 	}
8188 
8189 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8190 	return __register_btf_kfunc_id_set(hook, kset);
8191 }
8192 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8193 
8194 /* This function must be invoked only from initcalls/module init functions */
8195 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8196 {
8197 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8198 }
8199 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8200 
8201 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8202 {
8203 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8204 	struct btf_id_dtor_kfunc *dtor;
8205 
8206 	if (!tab)
8207 		return -ENOENT;
8208 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8209 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8210 	 */
8211 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8212 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8213 	if (!dtor)
8214 		return -ENOENT;
8215 	return dtor->kfunc_btf_id;
8216 }
8217 
8218 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8219 {
8220 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8221 	const struct btf_param *args;
8222 	s32 dtor_btf_id;
8223 	u32 nr_args, i;
8224 
8225 	for (i = 0; i < cnt; i++) {
8226 		dtor_btf_id = dtors[i].kfunc_btf_id;
8227 
8228 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8229 		if (!dtor_func || !btf_type_is_func(dtor_func))
8230 			return -EINVAL;
8231 
8232 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8233 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8234 			return -EINVAL;
8235 
8236 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8237 		t = btf_type_by_id(btf, dtor_func_proto->type);
8238 		if (!t || !btf_type_is_void(t))
8239 			return -EINVAL;
8240 
8241 		nr_args = btf_type_vlen(dtor_func_proto);
8242 		if (nr_args != 1)
8243 			return -EINVAL;
8244 		args = btf_params(dtor_func_proto);
8245 		t = btf_type_by_id(btf, args[0].type);
8246 		/* Allow any pointer type, as width on targets Linux supports
8247 		 * will be same for all pointer types (i.e. sizeof(void *))
8248 		 */
8249 		if (!t || !btf_type_is_ptr(t))
8250 			return -EINVAL;
8251 	}
8252 	return 0;
8253 }
8254 
8255 /* This function must be invoked only from initcalls/module init functions */
8256 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8257 				struct module *owner)
8258 {
8259 	struct btf_id_dtor_kfunc_tab *tab;
8260 	struct btf *btf;
8261 	u32 tab_cnt;
8262 	int ret;
8263 
8264 	btf = btf_get_module_btf(owner);
8265 	if (!btf)
8266 		return check_btf_kconfigs(owner, "dtor kfuncs");
8267 	if (IS_ERR(btf))
8268 		return PTR_ERR(btf);
8269 
8270 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8271 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8272 		ret = -E2BIG;
8273 		goto end;
8274 	}
8275 
8276 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8277 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8278 	if (ret < 0)
8279 		goto end;
8280 
8281 	tab = btf->dtor_kfunc_tab;
8282 	/* Only one call allowed for modules */
8283 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8284 		ret = -EINVAL;
8285 		goto end;
8286 	}
8287 
8288 	tab_cnt = tab ? tab->cnt : 0;
8289 	if (tab_cnt > U32_MAX - add_cnt) {
8290 		ret = -EOVERFLOW;
8291 		goto end;
8292 	}
8293 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8294 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8295 		ret = -E2BIG;
8296 		goto end;
8297 	}
8298 
8299 	tab = krealloc(btf->dtor_kfunc_tab,
8300 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8301 		       GFP_KERNEL | __GFP_NOWARN);
8302 	if (!tab) {
8303 		ret = -ENOMEM;
8304 		goto end;
8305 	}
8306 
8307 	if (!btf->dtor_kfunc_tab)
8308 		tab->cnt = 0;
8309 	btf->dtor_kfunc_tab = tab;
8310 
8311 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8312 	tab->cnt += add_cnt;
8313 
8314 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8315 
8316 end:
8317 	if (ret)
8318 		btf_free_dtor_kfunc_tab(btf);
8319 	btf_put(btf);
8320 	return ret;
8321 }
8322 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8323 
8324 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8325 
8326 /* Check local and target types for compatibility. This check is used for
8327  * type-based CO-RE relocations and follow slightly different rules than
8328  * field-based relocations. This function assumes that root types were already
8329  * checked for name match. Beyond that initial root-level name check, names
8330  * are completely ignored. Compatibility rules are as follows:
8331  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8332  *     kind should match for local and target types (i.e., STRUCT is not
8333  *     compatible with UNION);
8334  *   - for ENUMs/ENUM64s, the size is ignored;
8335  *   - for INT, size and signedness are ignored;
8336  *   - for ARRAY, dimensionality is ignored, element types are checked for
8337  *     compatibility recursively;
8338  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8339  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8340  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8341  *     number of input args and compatible return and argument types.
8342  * These rules are not set in stone and probably will be adjusted as we get
8343  * more experience with using BPF CO-RE relocations.
8344  */
8345 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8346 			      const struct btf *targ_btf, __u32 targ_id)
8347 {
8348 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8349 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8350 }
8351 
8352 #define MAX_TYPES_MATCH_DEPTH 2
8353 
8354 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8355 			 const struct btf *targ_btf, u32 targ_id)
8356 {
8357 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8358 				      MAX_TYPES_MATCH_DEPTH);
8359 }
8360 
8361 static bool bpf_core_is_flavor_sep(const char *s)
8362 {
8363 	/* check X___Y name pattern, where X and Y are not underscores */
8364 	return s[0] != '_' &&				      /* X */
8365 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8366 	       s[4] != '_';				      /* Y */
8367 }
8368 
8369 size_t bpf_core_essential_name_len(const char *name)
8370 {
8371 	size_t n = strlen(name);
8372 	int i;
8373 
8374 	for (i = n - 5; i >= 0; i--) {
8375 		if (bpf_core_is_flavor_sep(name + i))
8376 			return i + 1;
8377 	}
8378 	return n;
8379 }
8380 
8381 static void bpf_free_cands(struct bpf_cand_cache *cands)
8382 {
8383 	if (!cands->cnt)
8384 		/* empty candidate array was allocated on stack */
8385 		return;
8386 	kfree(cands);
8387 }
8388 
8389 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8390 {
8391 	kfree(cands->name);
8392 	kfree(cands);
8393 }
8394 
8395 #define VMLINUX_CAND_CACHE_SIZE 31
8396 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8397 
8398 #define MODULE_CAND_CACHE_SIZE 31
8399 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8400 
8401 static void __print_cand_cache(struct bpf_verifier_log *log,
8402 			       struct bpf_cand_cache **cache,
8403 			       int cache_size)
8404 {
8405 	struct bpf_cand_cache *cc;
8406 	int i, j;
8407 
8408 	for (i = 0; i < cache_size; i++) {
8409 		cc = cache[i];
8410 		if (!cc)
8411 			continue;
8412 		bpf_log(log, "[%d]%s(", i, cc->name);
8413 		for (j = 0; j < cc->cnt; j++) {
8414 			bpf_log(log, "%d", cc->cands[j].id);
8415 			if (j < cc->cnt - 1)
8416 				bpf_log(log, " ");
8417 		}
8418 		bpf_log(log, "), ");
8419 	}
8420 }
8421 
8422 static void print_cand_cache(struct bpf_verifier_log *log)
8423 {
8424 	mutex_lock(&cand_cache_mutex);
8425 	bpf_log(log, "vmlinux_cand_cache:");
8426 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8427 	bpf_log(log, "\nmodule_cand_cache:");
8428 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8429 	bpf_log(log, "\n");
8430 	mutex_unlock(&cand_cache_mutex);
8431 }
8432 
8433 static u32 hash_cands(struct bpf_cand_cache *cands)
8434 {
8435 	return jhash(cands->name, cands->name_len, 0);
8436 }
8437 
8438 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8439 					       struct bpf_cand_cache **cache,
8440 					       int cache_size)
8441 {
8442 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8443 
8444 	if (cc && cc->name_len == cands->name_len &&
8445 	    !strncmp(cc->name, cands->name, cands->name_len))
8446 		return cc;
8447 	return NULL;
8448 }
8449 
8450 static size_t sizeof_cands(int cnt)
8451 {
8452 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8453 }
8454 
8455 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8456 						  struct bpf_cand_cache **cache,
8457 						  int cache_size)
8458 {
8459 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8460 
8461 	if (*cc) {
8462 		bpf_free_cands_from_cache(*cc);
8463 		*cc = NULL;
8464 	}
8465 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8466 	if (!new_cands) {
8467 		bpf_free_cands(cands);
8468 		return ERR_PTR(-ENOMEM);
8469 	}
8470 	/* strdup the name, since it will stay in cache.
8471 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8472 	 */
8473 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8474 	bpf_free_cands(cands);
8475 	if (!new_cands->name) {
8476 		kfree(new_cands);
8477 		return ERR_PTR(-ENOMEM);
8478 	}
8479 	*cc = new_cands;
8480 	return new_cands;
8481 }
8482 
8483 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8484 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8485 			       int cache_size)
8486 {
8487 	struct bpf_cand_cache *cc;
8488 	int i, j;
8489 
8490 	for (i = 0; i < cache_size; i++) {
8491 		cc = cache[i];
8492 		if (!cc)
8493 			continue;
8494 		if (!btf) {
8495 			/* when new module is loaded purge all of module_cand_cache,
8496 			 * since new module might have candidates with the name
8497 			 * that matches cached cands.
8498 			 */
8499 			bpf_free_cands_from_cache(cc);
8500 			cache[i] = NULL;
8501 			continue;
8502 		}
8503 		/* when module is unloaded purge cache entries
8504 		 * that match module's btf
8505 		 */
8506 		for (j = 0; j < cc->cnt; j++)
8507 			if (cc->cands[j].btf == btf) {
8508 				bpf_free_cands_from_cache(cc);
8509 				cache[i] = NULL;
8510 				break;
8511 			}
8512 	}
8513 
8514 }
8515 
8516 static void purge_cand_cache(struct btf *btf)
8517 {
8518 	mutex_lock(&cand_cache_mutex);
8519 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8520 	mutex_unlock(&cand_cache_mutex);
8521 }
8522 #endif
8523 
8524 static struct bpf_cand_cache *
8525 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8526 		   int targ_start_id)
8527 {
8528 	struct bpf_cand_cache *new_cands;
8529 	const struct btf_type *t;
8530 	const char *targ_name;
8531 	size_t targ_essent_len;
8532 	int n, i;
8533 
8534 	n = btf_nr_types(targ_btf);
8535 	for (i = targ_start_id; i < n; i++) {
8536 		t = btf_type_by_id(targ_btf, i);
8537 		if (btf_kind(t) != cands->kind)
8538 			continue;
8539 
8540 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8541 		if (!targ_name)
8542 			continue;
8543 
8544 		/* the resched point is before strncmp to make sure that search
8545 		 * for non-existing name will have a chance to schedule().
8546 		 */
8547 		cond_resched();
8548 
8549 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8550 			continue;
8551 
8552 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8553 		if (targ_essent_len != cands->name_len)
8554 			continue;
8555 
8556 		/* most of the time there is only one candidate for a given kind+name pair */
8557 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8558 		if (!new_cands) {
8559 			bpf_free_cands(cands);
8560 			return ERR_PTR(-ENOMEM);
8561 		}
8562 
8563 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8564 		bpf_free_cands(cands);
8565 		cands = new_cands;
8566 		cands->cands[cands->cnt].btf = targ_btf;
8567 		cands->cands[cands->cnt].id = i;
8568 		cands->cnt++;
8569 	}
8570 	return cands;
8571 }
8572 
8573 static struct bpf_cand_cache *
8574 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8575 {
8576 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8577 	const struct btf *local_btf = ctx->btf;
8578 	const struct btf_type *local_type;
8579 	const struct btf *main_btf;
8580 	size_t local_essent_len;
8581 	struct btf *mod_btf;
8582 	const char *name;
8583 	int id;
8584 
8585 	main_btf = bpf_get_btf_vmlinux();
8586 	if (IS_ERR(main_btf))
8587 		return ERR_CAST(main_btf);
8588 	if (!main_btf)
8589 		return ERR_PTR(-EINVAL);
8590 
8591 	local_type = btf_type_by_id(local_btf, local_type_id);
8592 	if (!local_type)
8593 		return ERR_PTR(-EINVAL);
8594 
8595 	name = btf_name_by_offset(local_btf, local_type->name_off);
8596 	if (str_is_empty(name))
8597 		return ERR_PTR(-EINVAL);
8598 	local_essent_len = bpf_core_essential_name_len(name);
8599 
8600 	cands = &local_cand;
8601 	cands->name = name;
8602 	cands->kind = btf_kind(local_type);
8603 	cands->name_len = local_essent_len;
8604 
8605 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8606 	/* cands is a pointer to stack here */
8607 	if (cc) {
8608 		if (cc->cnt)
8609 			return cc;
8610 		goto check_modules;
8611 	}
8612 
8613 	/* Attempt to find target candidates in vmlinux BTF first */
8614 	cands = bpf_core_add_cands(cands, main_btf, 1);
8615 	if (IS_ERR(cands))
8616 		return ERR_CAST(cands);
8617 
8618 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8619 
8620 	/* populate cache even when cands->cnt == 0 */
8621 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8622 	if (IS_ERR(cc))
8623 		return ERR_CAST(cc);
8624 
8625 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8626 	if (cc->cnt)
8627 		return cc;
8628 
8629 check_modules:
8630 	/* cands is a pointer to stack here and cands->cnt == 0 */
8631 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8632 	if (cc)
8633 		/* if cache has it return it even if cc->cnt == 0 */
8634 		return cc;
8635 
8636 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8637 	spin_lock_bh(&btf_idr_lock);
8638 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8639 		if (!btf_is_module(mod_btf))
8640 			continue;
8641 		/* linear search could be slow hence unlock/lock
8642 		 * the IDR to avoiding holding it for too long
8643 		 */
8644 		btf_get(mod_btf);
8645 		spin_unlock_bh(&btf_idr_lock);
8646 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8647 		btf_put(mod_btf);
8648 		if (IS_ERR(cands))
8649 			return ERR_CAST(cands);
8650 		spin_lock_bh(&btf_idr_lock);
8651 	}
8652 	spin_unlock_bh(&btf_idr_lock);
8653 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8654 	 * or pointer to stack if cands->cnd == 0.
8655 	 * Copy it into the cache even when cands->cnt == 0 and
8656 	 * return the result.
8657 	 */
8658 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8659 }
8660 
8661 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8662 		   int relo_idx, void *insn)
8663 {
8664 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8665 	struct bpf_core_cand_list cands = {};
8666 	struct bpf_core_relo_res targ_res;
8667 	struct bpf_core_spec *specs;
8668 	int err;
8669 
8670 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8671 	 * into arrays of btf_ids of struct fields and array indices.
8672 	 */
8673 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8674 	if (!specs)
8675 		return -ENOMEM;
8676 
8677 	if (need_cands) {
8678 		struct bpf_cand_cache *cc;
8679 		int i;
8680 
8681 		mutex_lock(&cand_cache_mutex);
8682 		cc = bpf_core_find_cands(ctx, relo->type_id);
8683 		if (IS_ERR(cc)) {
8684 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8685 				relo->type_id);
8686 			err = PTR_ERR(cc);
8687 			goto out;
8688 		}
8689 		if (cc->cnt) {
8690 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8691 			if (!cands.cands) {
8692 				err = -ENOMEM;
8693 				goto out;
8694 			}
8695 		}
8696 		for (i = 0; i < cc->cnt; i++) {
8697 			bpf_log(ctx->log,
8698 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8699 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8700 			cands.cands[i].btf = cc->cands[i].btf;
8701 			cands.cands[i].id = cc->cands[i].id;
8702 		}
8703 		cands.len = cc->cnt;
8704 		/* cand_cache_mutex needs to span the cache lookup and
8705 		 * copy of btf pointer into bpf_core_cand_list,
8706 		 * since module can be unloaded while bpf_core_calc_relo_insn
8707 		 * is working with module's btf.
8708 		 */
8709 	}
8710 
8711 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8712 				      &targ_res);
8713 	if (err)
8714 		goto out;
8715 
8716 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8717 				  &targ_res);
8718 
8719 out:
8720 	kfree(specs);
8721 	if (need_cands) {
8722 		kfree(cands.cands);
8723 		mutex_unlock(&cand_cache_mutex);
8724 		if (ctx->log->level & BPF_LOG_LEVEL2)
8725 			print_cand_cache(ctx->log);
8726 	}
8727 	return err;
8728 }
8729 
8730 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8731 				const struct bpf_reg_state *reg,
8732 				const char *field_name, u32 btf_id, const char *suffix)
8733 {
8734 	struct btf *btf = reg->btf;
8735 	const struct btf_type *walk_type, *safe_type;
8736 	const char *tname;
8737 	char safe_tname[64];
8738 	long ret, safe_id;
8739 	const struct btf_member *member;
8740 	u32 i;
8741 
8742 	walk_type = btf_type_by_id(btf, reg->btf_id);
8743 	if (!walk_type)
8744 		return false;
8745 
8746 	tname = btf_name_by_offset(btf, walk_type->name_off);
8747 
8748 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8749 	if (ret >= sizeof(safe_tname))
8750 		return false;
8751 
8752 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8753 	if (safe_id < 0)
8754 		return false;
8755 
8756 	safe_type = btf_type_by_id(btf, safe_id);
8757 	if (!safe_type)
8758 		return false;
8759 
8760 	for_each_member(i, safe_type, member) {
8761 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8762 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8763 		u32 id;
8764 
8765 		if (!btf_type_is_ptr(mtype))
8766 			continue;
8767 
8768 		btf_type_skip_modifiers(btf, mtype->type, &id);
8769 		/* If we match on both type and name, the field is considered trusted. */
8770 		if (btf_id == id && !strcmp(field_name, m_name))
8771 			return true;
8772 	}
8773 
8774 	return false;
8775 }
8776 
8777 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8778 			       const struct btf *reg_btf, u32 reg_id,
8779 			       const struct btf *arg_btf, u32 arg_id)
8780 {
8781 	const char *reg_name, *arg_name, *search_needle;
8782 	const struct btf_type *reg_type, *arg_type;
8783 	int reg_len, arg_len, cmp_len;
8784 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8785 
8786 	reg_type = btf_type_by_id(reg_btf, reg_id);
8787 	if (!reg_type)
8788 		return false;
8789 
8790 	arg_type = btf_type_by_id(arg_btf, arg_id);
8791 	if (!arg_type)
8792 		return false;
8793 
8794 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8795 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8796 
8797 	reg_len = strlen(reg_name);
8798 	arg_len = strlen(arg_name);
8799 
8800 	/* Exactly one of the two type names may be suffixed with ___init, so
8801 	 * if the strings are the same size, they can't possibly be no-cast
8802 	 * aliases of one another. If you have two of the same type names, e.g.
8803 	 * they're both nf_conn___init, it would be improper to return true
8804 	 * because they are _not_ no-cast aliases, they are the same type.
8805 	 */
8806 	if (reg_len == arg_len)
8807 		return false;
8808 
8809 	/* Either of the two names must be the other name, suffixed with ___init. */
8810 	if ((reg_len != arg_len + pattern_len) &&
8811 	    (arg_len != reg_len + pattern_len))
8812 		return false;
8813 
8814 	if (reg_len < arg_len) {
8815 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8816 		cmp_len = reg_len;
8817 	} else {
8818 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8819 		cmp_len = arg_len;
8820 	}
8821 
8822 	if (!search_needle)
8823 		return false;
8824 
8825 	/* ___init suffix must come at the end of the name */
8826 	if (*(search_needle + pattern_len) != '\0')
8827 		return false;
8828 
8829 	return !strncmp(reg_name, arg_name, cmp_len);
8830 }
8831 
8832 #ifdef CONFIG_BPF_JIT
8833 static int
8834 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
8835 		   struct bpf_verifier_log *log)
8836 {
8837 	struct btf_struct_ops_tab *tab, *new_tab;
8838 	int i, err;
8839 
8840 	tab = btf->struct_ops_tab;
8841 	if (!tab) {
8842 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
8843 			      GFP_KERNEL);
8844 		if (!tab)
8845 			return -ENOMEM;
8846 		tab->capacity = 4;
8847 		btf->struct_ops_tab = tab;
8848 	}
8849 
8850 	for (i = 0; i < tab->cnt; i++)
8851 		if (tab->ops[i].st_ops == st_ops)
8852 			return -EEXIST;
8853 
8854 	if (tab->cnt == tab->capacity) {
8855 		new_tab = krealloc(tab,
8856 				   offsetof(struct btf_struct_ops_tab,
8857 					    ops[tab->capacity * 2]),
8858 				   GFP_KERNEL);
8859 		if (!new_tab)
8860 			return -ENOMEM;
8861 		tab = new_tab;
8862 		tab->capacity *= 2;
8863 		btf->struct_ops_tab = tab;
8864 	}
8865 
8866 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
8867 
8868 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
8869 	if (err)
8870 		return err;
8871 
8872 	btf->struct_ops_tab->cnt++;
8873 
8874 	return 0;
8875 }
8876 
8877 const struct bpf_struct_ops_desc *
8878 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
8879 {
8880 	const struct bpf_struct_ops_desc *st_ops_list;
8881 	unsigned int i;
8882 	u32 cnt;
8883 
8884 	if (!value_id)
8885 		return NULL;
8886 	if (!btf->struct_ops_tab)
8887 		return NULL;
8888 
8889 	cnt = btf->struct_ops_tab->cnt;
8890 	st_ops_list = btf->struct_ops_tab->ops;
8891 	for (i = 0; i < cnt; i++) {
8892 		if (st_ops_list[i].value_id == value_id)
8893 			return &st_ops_list[i];
8894 	}
8895 
8896 	return NULL;
8897 }
8898 
8899 const struct bpf_struct_ops_desc *
8900 bpf_struct_ops_find(struct btf *btf, u32 type_id)
8901 {
8902 	const struct bpf_struct_ops_desc *st_ops_list;
8903 	unsigned int i;
8904 	u32 cnt;
8905 
8906 	if (!type_id)
8907 		return NULL;
8908 	if (!btf->struct_ops_tab)
8909 		return NULL;
8910 
8911 	cnt = btf->struct_ops_tab->cnt;
8912 	st_ops_list = btf->struct_ops_tab->ops;
8913 	for (i = 0; i < cnt; i++) {
8914 		if (st_ops_list[i].type_id == type_id)
8915 			return &st_ops_list[i];
8916 	}
8917 
8918 	return NULL;
8919 }
8920 
8921 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
8922 {
8923 	struct bpf_verifier_log *log;
8924 	struct btf *btf;
8925 	int err = 0;
8926 
8927 	btf = btf_get_module_btf(st_ops->owner);
8928 	if (!btf)
8929 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
8930 	if (IS_ERR(btf))
8931 		return PTR_ERR(btf);
8932 
8933 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
8934 	if (!log) {
8935 		err = -ENOMEM;
8936 		goto errout;
8937 	}
8938 
8939 	log->level = BPF_LOG_KERNEL;
8940 
8941 	err = btf_add_struct_ops(btf, st_ops, log);
8942 
8943 errout:
8944 	kfree(log);
8945 	btf_put(btf);
8946 
8947 	return err;
8948 }
8949 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
8950 #endif
8951 
8952 bool btf_param_match_suffix(const struct btf *btf,
8953 			    const struct btf_param *arg,
8954 			    const char *suffix)
8955 {
8956 	int suffix_len = strlen(suffix), len;
8957 	const char *param_name;
8958 
8959 	/* In the future, this can be ported to use BTF tagging */
8960 	param_name = btf_name_by_offset(btf, arg->name_off);
8961 	if (str_is_empty(param_name))
8962 		return false;
8963 	len = strlen(param_name);
8964 	if (len <= suffix_len)
8965 		return false;
8966 	param_name += len - suffix_len;
8967 	return !strncmp(param_name, suffix, suffix_len);
8968 }
8969