xref: /linux/kernel/bpf/btf.c (revision 4c30f5ce4f7af4f639af99e0bdeada8b268b7361)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_KPROBE,
222 	BTF_KFUNC_HOOK_MAX,
223 };
224 
225 enum {
226 	BTF_KFUNC_SET_MAX_CNT = 256,
227 	BTF_DTOR_KFUNC_MAX_CNT = 256,
228 	BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230 
231 struct btf_kfunc_hook_filter {
232 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233 	u32 nr_filters;
234 };
235 
236 struct btf_kfunc_set_tab {
237 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240 
241 struct btf_id_dtor_kfunc_tab {
242 	u32 cnt;
243 	struct btf_id_dtor_kfunc dtors[];
244 };
245 
246 struct btf_struct_ops_tab {
247 	u32 cnt;
248 	u32 capacity;
249 	struct bpf_struct_ops_desc ops[];
250 };
251 
252 struct btf {
253 	void *data;
254 	struct btf_type **types;
255 	u32 *resolved_ids;
256 	u32 *resolved_sizes;
257 	const char *strings;
258 	void *nohdr_data;
259 	struct btf_header hdr;
260 	u32 nr_types; /* includes VOID for base BTF */
261 	u32 types_size;
262 	u32 data_size;
263 	refcount_t refcnt;
264 	u32 id;
265 	struct rcu_head rcu;
266 	struct btf_kfunc_set_tab *kfunc_set_tab;
267 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268 	struct btf_struct_metas *struct_meta_tab;
269 	struct btf_struct_ops_tab *struct_ops_tab;
270 
271 	/* split BTF support */
272 	struct btf *base_btf;
273 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274 	u32 start_str_off; /* first string offset (0 for base BTF) */
275 	char name[MODULE_NAME_LEN];
276 	bool kernel_btf;
277 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279 
280 enum verifier_phase {
281 	CHECK_META,
282 	CHECK_TYPE,
283 };
284 
285 struct resolve_vertex {
286 	const struct btf_type *t;
287 	u32 type_id;
288 	u16 next_member;
289 };
290 
291 enum visit_state {
292 	NOT_VISITED,
293 	VISITED,
294 	RESOLVED,
295 };
296 
297 enum resolve_mode {
298 	RESOLVE_TBD,	/* To Be Determined */
299 	RESOLVE_PTR,	/* Resolving for Pointer */
300 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
301 					 * or array
302 					 */
303 };
304 
305 #define MAX_RESOLVE_DEPTH 32
306 
307 struct btf_sec_info {
308 	u32 off;
309 	u32 len;
310 };
311 
312 struct btf_verifier_env {
313 	struct btf *btf;
314 	u8 *visit_states;
315 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316 	struct bpf_verifier_log log;
317 	u32 log_type_id;
318 	u32 top_stack;
319 	enum verifier_phase phase;
320 	enum resolve_mode resolve_mode;
321 };
322 
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324 	[BTF_KIND_UNKN]		= "UNKNOWN",
325 	[BTF_KIND_INT]		= "INT",
326 	[BTF_KIND_PTR]		= "PTR",
327 	[BTF_KIND_ARRAY]	= "ARRAY",
328 	[BTF_KIND_STRUCT]	= "STRUCT",
329 	[BTF_KIND_UNION]	= "UNION",
330 	[BTF_KIND_ENUM]		= "ENUM",
331 	[BTF_KIND_FWD]		= "FWD",
332 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
333 	[BTF_KIND_VOLATILE]	= "VOLATILE",
334 	[BTF_KIND_CONST]	= "CONST",
335 	[BTF_KIND_RESTRICT]	= "RESTRICT",
336 	[BTF_KIND_FUNC]		= "FUNC",
337 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
338 	[BTF_KIND_VAR]		= "VAR",
339 	[BTF_KIND_DATASEC]	= "DATASEC",
340 	[BTF_KIND_FLOAT]	= "FLOAT",
341 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
342 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
343 	[BTF_KIND_ENUM64]	= "ENUM64",
344 };
345 
346 const char *btf_type_str(const struct btf_type *t)
347 {
348 	return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350 
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE		32
353 
354 /*
355  * This is the maximum size of a base type value (equivalent to a
356  * 128-bit int); if we are at the end of our safe buffer and have
357  * less than 16 bytes space we can't be assured of being able
358  * to copy the next type safely, so in such cases we will initiate
359  * a new copy.
360  */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
362 
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE		80
365 
366 /*
367  * The suffix of a type that indicates it cannot alias another type when
368  * comparing BTF IDs for kfunc invocations.
369  */
370 #define NOCAST_ALIAS_SUFFIX		"___init"
371 
372 /*
373  * Common data to all BTF show operations. Private show functions can add
374  * their own data to a structure containing a struct btf_show and consult it
375  * in the show callback.  See btf_type_show() below.
376  *
377  * One challenge with showing nested data is we want to skip 0-valued
378  * data, but in order to figure out whether a nested object is all zeros
379  * we need to walk through it.  As a result, we need to make two passes
380  * when handling structs, unions and arrays; the first path simply looks
381  * for nonzero data, while the second actually does the display.  The first
382  * pass is signalled by show->state.depth_check being set, and if we
383  * encounter a non-zero value we set show->state.depth_to_show to
384  * the depth at which we encountered it.  When we have completed the
385  * first pass, we will know if anything needs to be displayed if
386  * depth_to_show > depth.  See btf_[struct,array]_show() for the
387  * implementation of this.
388  *
389  * Another problem is we want to ensure the data for display is safe to
390  * access.  To support this, the anonymous "struct {} obj" tracks the data
391  * object and our safe copy of it.  We copy portions of the data needed
392  * to the object "copy" buffer, but because its size is limited to
393  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394  * traverse larger objects for display.
395  *
396  * The various data type show functions all start with a call to
397  * btf_show_start_type() which returns a pointer to the safe copy
398  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399  * raw data itself).  btf_show_obj_safe() is responsible for
400  * using copy_from_kernel_nofault() to update the safe data if necessary
401  * as we traverse the object's data.  skbuff-like semantics are
402  * used:
403  *
404  * - obj.head points to the start of the toplevel object for display
405  * - obj.size is the size of the toplevel object
406  * - obj.data points to the current point in the original data at
407  *   which our safe data starts.  obj.data will advance as we copy
408  *   portions of the data.
409  *
410  * In most cases a single copy will suffice, but larger data structures
411  * such as "struct task_struct" will require many copies.  The logic in
412  * btf_show_obj_safe() handles the logic that determines if a new
413  * copy_from_kernel_nofault() is needed.
414  */
415 struct btf_show {
416 	u64 flags;
417 	void *target;	/* target of show operation (seq file, buffer) */
418 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419 	const struct btf *btf;
420 	/* below are used during iteration */
421 	struct {
422 		u8 depth;
423 		u8 depth_to_show;
424 		u8 depth_check;
425 		u8 array_member:1,
426 		   array_terminated:1;
427 		u16 array_encoding;
428 		u32 type_id;
429 		int status;			/* non-zero for error */
430 		const struct btf_type *type;
431 		const struct btf_member *member;
432 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
433 	} state;
434 	struct {
435 		u32 size;
436 		void *head;
437 		void *data;
438 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439 	} obj;
440 };
441 
442 struct btf_kind_operations {
443 	s32 (*check_meta)(struct btf_verifier_env *env,
444 			  const struct btf_type *t,
445 			  u32 meta_left);
446 	int (*resolve)(struct btf_verifier_env *env,
447 		       const struct resolve_vertex *v);
448 	int (*check_member)(struct btf_verifier_env *env,
449 			    const struct btf_type *struct_type,
450 			    const struct btf_member *member,
451 			    const struct btf_type *member_type);
452 	int (*check_kflag_member)(struct btf_verifier_env *env,
453 				  const struct btf_type *struct_type,
454 				  const struct btf_member *member,
455 				  const struct btf_type *member_type);
456 	void (*log_details)(struct btf_verifier_env *env,
457 			    const struct btf_type *t);
458 	void (*show)(const struct btf *btf, const struct btf_type *t,
459 			 u32 type_id, void *data, u8 bits_offsets,
460 			 struct btf_show *show);
461 };
462 
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465 
466 static int btf_resolve(struct btf_verifier_env *env,
467 		       const struct btf_type *t, u32 type_id);
468 
469 static int btf_func_check(struct btf_verifier_env *env,
470 			  const struct btf_type *t);
471 
472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474 	/* Some of them is not strictly a C modifier
475 	 * but they are grouped into the same bucket
476 	 * for BTF concern:
477 	 *   A type (t) that refers to another
478 	 *   type through t->type AND its size cannot
479 	 *   be determined without following the t->type.
480 	 *
481 	 * ptr does not fall into this bucket
482 	 * because its size is always sizeof(void *).
483 	 */
484 	switch (BTF_INFO_KIND(t->info)) {
485 	case BTF_KIND_TYPEDEF:
486 	case BTF_KIND_VOLATILE:
487 	case BTF_KIND_CONST:
488 	case BTF_KIND_RESTRICT:
489 	case BTF_KIND_TYPE_TAG:
490 		return true;
491 	}
492 
493 	return false;
494 }
495 
496 bool btf_type_is_void(const struct btf_type *t)
497 {
498 	return t == &btf_void;
499 }
500 
501 static bool btf_type_is_fwd(const struct btf_type *t)
502 {
503 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
504 }
505 
506 static bool btf_type_is_datasec(const struct btf_type *t)
507 {
508 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
509 }
510 
511 static bool btf_type_is_decl_tag(const struct btf_type *t)
512 {
513 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
514 }
515 
516 static bool btf_type_nosize(const struct btf_type *t)
517 {
518 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
519 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
520 	       btf_type_is_decl_tag(t);
521 }
522 
523 static bool btf_type_nosize_or_null(const struct btf_type *t)
524 {
525 	return !t || btf_type_nosize(t);
526 }
527 
528 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
529 {
530 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
531 	       btf_type_is_var(t) || btf_type_is_typedef(t);
532 }
533 
534 bool btf_is_vmlinux(const struct btf *btf)
535 {
536 	return btf->kernel_btf && !btf->base_btf;
537 }
538 
539 u32 btf_nr_types(const struct btf *btf)
540 {
541 	u32 total = 0;
542 
543 	while (btf) {
544 		total += btf->nr_types;
545 		btf = btf->base_btf;
546 	}
547 
548 	return total;
549 }
550 
551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
552 {
553 	const struct btf_type *t;
554 	const char *tname;
555 	u32 i, total;
556 
557 	total = btf_nr_types(btf);
558 	for (i = 1; i < total; i++) {
559 		t = btf_type_by_id(btf, i);
560 		if (BTF_INFO_KIND(t->info) != kind)
561 			continue;
562 
563 		tname = btf_name_by_offset(btf, t->name_off);
564 		if (!strcmp(tname, name))
565 			return i;
566 	}
567 
568 	return -ENOENT;
569 }
570 
571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
572 {
573 	struct btf *btf;
574 	s32 ret;
575 	int id;
576 
577 	btf = bpf_get_btf_vmlinux();
578 	if (IS_ERR(btf))
579 		return PTR_ERR(btf);
580 	if (!btf)
581 		return -EINVAL;
582 
583 	ret = btf_find_by_name_kind(btf, name, kind);
584 	/* ret is never zero, since btf_find_by_name_kind returns
585 	 * positive btf_id or negative error.
586 	 */
587 	if (ret > 0) {
588 		btf_get(btf);
589 		*btf_p = btf;
590 		return ret;
591 	}
592 
593 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
594 	spin_lock_bh(&btf_idr_lock);
595 	idr_for_each_entry(&btf_idr, btf, id) {
596 		if (!btf_is_module(btf))
597 			continue;
598 		/* linear search could be slow hence unlock/lock
599 		 * the IDR to avoiding holding it for too long
600 		 */
601 		btf_get(btf);
602 		spin_unlock_bh(&btf_idr_lock);
603 		ret = btf_find_by_name_kind(btf, name, kind);
604 		if (ret > 0) {
605 			*btf_p = btf;
606 			return ret;
607 		}
608 		btf_put(btf);
609 		spin_lock_bh(&btf_idr_lock);
610 	}
611 	spin_unlock_bh(&btf_idr_lock);
612 	return ret;
613 }
614 
615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
616 					       u32 id, u32 *res_id)
617 {
618 	const struct btf_type *t = btf_type_by_id(btf, id);
619 
620 	while (btf_type_is_modifier(t)) {
621 		id = t->type;
622 		t = btf_type_by_id(btf, t->type);
623 	}
624 
625 	if (res_id)
626 		*res_id = id;
627 
628 	return t;
629 }
630 
631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
632 					    u32 id, u32 *res_id)
633 {
634 	const struct btf_type *t;
635 
636 	t = btf_type_skip_modifiers(btf, id, NULL);
637 	if (!btf_type_is_ptr(t))
638 		return NULL;
639 
640 	return btf_type_skip_modifiers(btf, t->type, res_id);
641 }
642 
643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
644 						 u32 id, u32 *res_id)
645 {
646 	const struct btf_type *ptype;
647 
648 	ptype = btf_type_resolve_ptr(btf, id, res_id);
649 	if (ptype && btf_type_is_func_proto(ptype))
650 		return ptype;
651 
652 	return NULL;
653 }
654 
655 /* Types that act only as a source, not sink or intermediate
656  * type when resolving.
657  */
658 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
659 {
660 	return btf_type_is_var(t) ||
661 	       btf_type_is_decl_tag(t) ||
662 	       btf_type_is_datasec(t);
663 }
664 
665 /* What types need to be resolved?
666  *
667  * btf_type_is_modifier() is an obvious one.
668  *
669  * btf_type_is_struct() because its member refers to
670  * another type (through member->type).
671  *
672  * btf_type_is_var() because the variable refers to
673  * another type. btf_type_is_datasec() holds multiple
674  * btf_type_is_var() types that need resolving.
675  *
676  * btf_type_is_array() because its element (array->type)
677  * refers to another type.  Array can be thought of a
678  * special case of struct while array just has the same
679  * member-type repeated by array->nelems of times.
680  */
681 static bool btf_type_needs_resolve(const struct btf_type *t)
682 {
683 	return btf_type_is_modifier(t) ||
684 	       btf_type_is_ptr(t) ||
685 	       btf_type_is_struct(t) ||
686 	       btf_type_is_array(t) ||
687 	       btf_type_is_var(t) ||
688 	       btf_type_is_func(t) ||
689 	       btf_type_is_decl_tag(t) ||
690 	       btf_type_is_datasec(t);
691 }
692 
693 /* t->size can be used */
694 static bool btf_type_has_size(const struct btf_type *t)
695 {
696 	switch (BTF_INFO_KIND(t->info)) {
697 	case BTF_KIND_INT:
698 	case BTF_KIND_STRUCT:
699 	case BTF_KIND_UNION:
700 	case BTF_KIND_ENUM:
701 	case BTF_KIND_DATASEC:
702 	case BTF_KIND_FLOAT:
703 	case BTF_KIND_ENUM64:
704 		return true;
705 	}
706 
707 	return false;
708 }
709 
710 static const char *btf_int_encoding_str(u8 encoding)
711 {
712 	if (encoding == 0)
713 		return "(none)";
714 	else if (encoding == BTF_INT_SIGNED)
715 		return "SIGNED";
716 	else if (encoding == BTF_INT_CHAR)
717 		return "CHAR";
718 	else if (encoding == BTF_INT_BOOL)
719 		return "BOOL";
720 	else
721 		return "UNKN";
722 }
723 
724 static u32 btf_type_int(const struct btf_type *t)
725 {
726 	return *(u32 *)(t + 1);
727 }
728 
729 static const struct btf_array *btf_type_array(const struct btf_type *t)
730 {
731 	return (const struct btf_array *)(t + 1);
732 }
733 
734 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
735 {
736 	return (const struct btf_enum *)(t + 1);
737 }
738 
739 static const struct btf_var *btf_type_var(const struct btf_type *t)
740 {
741 	return (const struct btf_var *)(t + 1);
742 }
743 
744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
745 {
746 	return (const struct btf_decl_tag *)(t + 1);
747 }
748 
749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
750 {
751 	return (const struct btf_enum64 *)(t + 1);
752 }
753 
754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
755 {
756 	return kind_ops[BTF_INFO_KIND(t->info)];
757 }
758 
759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
760 {
761 	if (!BTF_STR_OFFSET_VALID(offset))
762 		return false;
763 
764 	while (offset < btf->start_str_off)
765 		btf = btf->base_btf;
766 
767 	offset -= btf->start_str_off;
768 	return offset < btf->hdr.str_len;
769 }
770 
771 static bool __btf_name_char_ok(char c, bool first)
772 {
773 	if ((first ? !isalpha(c) :
774 		     !isalnum(c)) &&
775 	    c != '_' &&
776 	    c != '.')
777 		return false;
778 	return true;
779 }
780 
781 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
782 {
783 	while (offset < btf->start_str_off)
784 		btf = btf->base_btf;
785 
786 	offset -= btf->start_str_off;
787 	if (offset < btf->hdr.str_len)
788 		return &btf->strings[offset];
789 
790 	return NULL;
791 }
792 
793 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
794 {
795 	/* offset must be valid */
796 	const char *src = btf_str_by_offset(btf, offset);
797 	const char *src_limit;
798 
799 	if (!__btf_name_char_ok(*src, true))
800 		return false;
801 
802 	/* set a limit on identifier length */
803 	src_limit = src + KSYM_NAME_LEN;
804 	src++;
805 	while (*src && src < src_limit) {
806 		if (!__btf_name_char_ok(*src, false))
807 			return false;
808 		src++;
809 	}
810 
811 	return !*src;
812 }
813 
814 /* Allow any printable character in DATASEC names */
815 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
816 {
817 	/* offset must be valid */
818 	const char *src = btf_str_by_offset(btf, offset);
819 	const char *src_limit;
820 
821 	/* set a limit on identifier length */
822 	src_limit = src + KSYM_NAME_LEN;
823 	src++;
824 	while (*src && src < src_limit) {
825 		if (!isprint(*src))
826 			return false;
827 		src++;
828 	}
829 
830 	return !*src;
831 }
832 
833 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
834 {
835 	const char *name;
836 
837 	if (!offset)
838 		return "(anon)";
839 
840 	name = btf_str_by_offset(btf, offset);
841 	return name ?: "(invalid-name-offset)";
842 }
843 
844 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
845 {
846 	return btf_str_by_offset(btf, offset);
847 }
848 
849 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
850 {
851 	while (type_id < btf->start_id)
852 		btf = btf->base_btf;
853 
854 	type_id -= btf->start_id;
855 	if (type_id >= btf->nr_types)
856 		return NULL;
857 	return btf->types[type_id];
858 }
859 EXPORT_SYMBOL_GPL(btf_type_by_id);
860 
861 /*
862  * Regular int is not a bit field and it must be either
863  * u8/u16/u32/u64 or __int128.
864  */
865 static bool btf_type_int_is_regular(const struct btf_type *t)
866 {
867 	u8 nr_bits, nr_bytes;
868 	u32 int_data;
869 
870 	int_data = btf_type_int(t);
871 	nr_bits = BTF_INT_BITS(int_data);
872 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
873 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
874 	    BTF_INT_OFFSET(int_data) ||
875 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
876 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
877 	     nr_bytes != (2 * sizeof(u64)))) {
878 		return false;
879 	}
880 
881 	return true;
882 }
883 
884 /*
885  * Check that given struct member is a regular int with expected
886  * offset and size.
887  */
888 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
889 			   const struct btf_member *m,
890 			   u32 expected_offset, u32 expected_size)
891 {
892 	const struct btf_type *t;
893 	u32 id, int_data;
894 	u8 nr_bits;
895 
896 	id = m->type;
897 	t = btf_type_id_size(btf, &id, NULL);
898 	if (!t || !btf_type_is_int(t))
899 		return false;
900 
901 	int_data = btf_type_int(t);
902 	nr_bits = BTF_INT_BITS(int_data);
903 	if (btf_type_kflag(s)) {
904 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
905 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
906 
907 		/* if kflag set, int should be a regular int and
908 		 * bit offset should be at byte boundary.
909 		 */
910 		return !bitfield_size &&
911 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
912 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
913 	}
914 
915 	if (BTF_INT_OFFSET(int_data) ||
916 	    BITS_PER_BYTE_MASKED(m->offset) ||
917 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
918 	    BITS_PER_BYTE_MASKED(nr_bits) ||
919 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
920 		return false;
921 
922 	return true;
923 }
924 
925 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
926 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
927 						       u32 id)
928 {
929 	const struct btf_type *t = btf_type_by_id(btf, id);
930 
931 	while (btf_type_is_modifier(t) &&
932 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
933 		t = btf_type_by_id(btf, t->type);
934 	}
935 
936 	return t;
937 }
938 
939 #define BTF_SHOW_MAX_ITER	10
940 
941 #define BTF_KIND_BIT(kind)	(1ULL << kind)
942 
943 /*
944  * Populate show->state.name with type name information.
945  * Format of type name is
946  *
947  * [.member_name = ] (type_name)
948  */
949 static const char *btf_show_name(struct btf_show *show)
950 {
951 	/* BTF_MAX_ITER array suffixes "[]" */
952 	const char *array_suffixes = "[][][][][][][][][][]";
953 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
954 	/* BTF_MAX_ITER pointer suffixes "*" */
955 	const char *ptr_suffixes = "**********";
956 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
957 	const char *name = NULL, *prefix = "", *parens = "";
958 	const struct btf_member *m = show->state.member;
959 	const struct btf_type *t;
960 	const struct btf_array *array;
961 	u32 id = show->state.type_id;
962 	const char *member = NULL;
963 	bool show_member = false;
964 	u64 kinds = 0;
965 	int i;
966 
967 	show->state.name[0] = '\0';
968 
969 	/*
970 	 * Don't show type name if we're showing an array member;
971 	 * in that case we show the array type so don't need to repeat
972 	 * ourselves for each member.
973 	 */
974 	if (show->state.array_member)
975 		return "";
976 
977 	/* Retrieve member name, if any. */
978 	if (m) {
979 		member = btf_name_by_offset(show->btf, m->name_off);
980 		show_member = strlen(member) > 0;
981 		id = m->type;
982 	}
983 
984 	/*
985 	 * Start with type_id, as we have resolved the struct btf_type *
986 	 * via btf_modifier_show() past the parent typedef to the child
987 	 * struct, int etc it is defined as.  In such cases, the type_id
988 	 * still represents the starting type while the struct btf_type *
989 	 * in our show->state points at the resolved type of the typedef.
990 	 */
991 	t = btf_type_by_id(show->btf, id);
992 	if (!t)
993 		return "";
994 
995 	/*
996 	 * The goal here is to build up the right number of pointer and
997 	 * array suffixes while ensuring the type name for a typedef
998 	 * is represented.  Along the way we accumulate a list of
999 	 * BTF kinds we have encountered, since these will inform later
1000 	 * display; for example, pointer types will not require an
1001 	 * opening "{" for struct, we will just display the pointer value.
1002 	 *
1003 	 * We also want to accumulate the right number of pointer or array
1004 	 * indices in the format string while iterating until we get to
1005 	 * the typedef/pointee/array member target type.
1006 	 *
1007 	 * We start by pointing at the end of pointer and array suffix
1008 	 * strings; as we accumulate pointers and arrays we move the pointer
1009 	 * or array string backwards so it will show the expected number of
1010 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1011 	 * and/or arrays and typedefs are supported as a precaution.
1012 	 *
1013 	 * We also want to get typedef name while proceeding to resolve
1014 	 * type it points to so that we can add parentheses if it is a
1015 	 * "typedef struct" etc.
1016 	 */
1017 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1018 
1019 		switch (BTF_INFO_KIND(t->info)) {
1020 		case BTF_KIND_TYPEDEF:
1021 			if (!name)
1022 				name = btf_name_by_offset(show->btf,
1023 							       t->name_off);
1024 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1025 			id = t->type;
1026 			break;
1027 		case BTF_KIND_ARRAY:
1028 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1029 			parens = "[";
1030 			if (!t)
1031 				return "";
1032 			array = btf_type_array(t);
1033 			if (array_suffix > array_suffixes)
1034 				array_suffix -= 2;
1035 			id = array->type;
1036 			break;
1037 		case BTF_KIND_PTR:
1038 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1039 			if (ptr_suffix > ptr_suffixes)
1040 				ptr_suffix -= 1;
1041 			id = t->type;
1042 			break;
1043 		default:
1044 			id = 0;
1045 			break;
1046 		}
1047 		if (!id)
1048 			break;
1049 		t = btf_type_skip_qualifiers(show->btf, id);
1050 	}
1051 	/* We may not be able to represent this type; bail to be safe */
1052 	if (i == BTF_SHOW_MAX_ITER)
1053 		return "";
1054 
1055 	if (!name)
1056 		name = btf_name_by_offset(show->btf, t->name_off);
1057 
1058 	switch (BTF_INFO_KIND(t->info)) {
1059 	case BTF_KIND_STRUCT:
1060 	case BTF_KIND_UNION:
1061 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1062 			 "struct" : "union";
1063 		/* if it's an array of struct/union, parens is already set */
1064 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1065 			parens = "{";
1066 		break;
1067 	case BTF_KIND_ENUM:
1068 	case BTF_KIND_ENUM64:
1069 		prefix = "enum";
1070 		break;
1071 	default:
1072 		break;
1073 	}
1074 
1075 	/* pointer does not require parens */
1076 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1077 		parens = "";
1078 	/* typedef does not require struct/union/enum prefix */
1079 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1080 		prefix = "";
1081 
1082 	if (!name)
1083 		name = "";
1084 
1085 	/* Even if we don't want type name info, we want parentheses etc */
1086 	if (show->flags & BTF_SHOW_NONAME)
1087 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1088 			 parens);
1089 	else
1090 		snprintf(show->state.name, sizeof(show->state.name),
1091 			 "%s%s%s(%s%s%s%s%s%s)%s",
1092 			 /* first 3 strings comprise ".member = " */
1093 			 show_member ? "." : "",
1094 			 show_member ? member : "",
1095 			 show_member ? " = " : "",
1096 			 /* ...next is our prefix (struct, enum, etc) */
1097 			 prefix,
1098 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1099 			 /* ...this is the type name itself */
1100 			 name,
1101 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1102 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1103 			 array_suffix, parens);
1104 
1105 	return show->state.name;
1106 }
1107 
1108 static const char *__btf_show_indent(struct btf_show *show)
1109 {
1110 	const char *indents = "                                ";
1111 	const char *indent = &indents[strlen(indents)];
1112 
1113 	if ((indent - show->state.depth) >= indents)
1114 		return indent - show->state.depth;
1115 	return indents;
1116 }
1117 
1118 static const char *btf_show_indent(struct btf_show *show)
1119 {
1120 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1121 }
1122 
1123 static const char *btf_show_newline(struct btf_show *show)
1124 {
1125 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1126 }
1127 
1128 static const char *btf_show_delim(struct btf_show *show)
1129 {
1130 	if (show->state.depth == 0)
1131 		return "";
1132 
1133 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1134 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1135 		return "|";
1136 
1137 	return ",";
1138 }
1139 
1140 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1141 {
1142 	va_list args;
1143 
1144 	if (!show->state.depth_check) {
1145 		va_start(args, fmt);
1146 		show->showfn(show, fmt, args);
1147 		va_end(args);
1148 	}
1149 }
1150 
1151 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1152  * format specifiers to the format specifier passed in; these do the work of
1153  * adding indentation, delimiters etc while the caller simply has to specify
1154  * the type value(s) in the format specifier + value(s).
1155  */
1156 #define btf_show_type_value(show, fmt, value)				       \
1157 	do {								       \
1158 		if ((value) != (__typeof__(value))0 ||			       \
1159 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1160 		    show->state.depth == 0) {				       \
1161 			btf_show(show, "%s%s" fmt "%s%s",		       \
1162 				 btf_show_indent(show),			       \
1163 				 btf_show_name(show),			       \
1164 				 value, btf_show_delim(show),		       \
1165 				 btf_show_newline(show));		       \
1166 			if (show->state.depth > show->state.depth_to_show)     \
1167 				show->state.depth_to_show = show->state.depth; \
1168 		}							       \
1169 	} while (0)
1170 
1171 #define btf_show_type_values(show, fmt, ...)				       \
1172 	do {								       \
1173 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1174 			 btf_show_name(show),				       \
1175 			 __VA_ARGS__, btf_show_delim(show),		       \
1176 			 btf_show_newline(show));			       \
1177 		if (show->state.depth > show->state.depth_to_show)	       \
1178 			show->state.depth_to_show = show->state.depth;	       \
1179 	} while (0)
1180 
1181 /* How much is left to copy to safe buffer after @data? */
1182 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1183 {
1184 	return show->obj.head + show->obj.size - data;
1185 }
1186 
1187 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1188 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1189 {
1190 	return data >= show->obj.data &&
1191 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1192 }
1193 
1194 /*
1195  * If object pointed to by @data of @size falls within our safe buffer, return
1196  * the equivalent pointer to the same safe data.  Assumes
1197  * copy_from_kernel_nofault() has already happened and our safe buffer is
1198  * populated.
1199  */
1200 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1201 {
1202 	if (btf_show_obj_is_safe(show, data, size))
1203 		return show->obj.safe + (data - show->obj.data);
1204 	return NULL;
1205 }
1206 
1207 /*
1208  * Return a safe-to-access version of data pointed to by @data.
1209  * We do this by copying the relevant amount of information
1210  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1211  *
1212  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1213  * safe copy is needed.
1214  *
1215  * Otherwise we need to determine if we have the required amount
1216  * of data (determined by the @data pointer and the size of the
1217  * largest base type we can encounter (represented by
1218  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1219  * that we will be able to print some of the current object,
1220  * and if more is needed a copy will be triggered.
1221  * Some objects such as structs will not fit into the buffer;
1222  * in such cases additional copies when we iterate over their
1223  * members may be needed.
1224  *
1225  * btf_show_obj_safe() is used to return a safe buffer for
1226  * btf_show_start_type(); this ensures that as we recurse into
1227  * nested types we always have safe data for the given type.
1228  * This approach is somewhat wasteful; it's possible for example
1229  * that when iterating over a large union we'll end up copying the
1230  * same data repeatedly, but the goal is safety not performance.
1231  * We use stack data as opposed to per-CPU buffers because the
1232  * iteration over a type can take some time, and preemption handling
1233  * would greatly complicate use of the safe buffer.
1234  */
1235 static void *btf_show_obj_safe(struct btf_show *show,
1236 			       const struct btf_type *t,
1237 			       void *data)
1238 {
1239 	const struct btf_type *rt;
1240 	int size_left, size;
1241 	void *safe = NULL;
1242 
1243 	if (show->flags & BTF_SHOW_UNSAFE)
1244 		return data;
1245 
1246 	rt = btf_resolve_size(show->btf, t, &size);
1247 	if (IS_ERR(rt)) {
1248 		show->state.status = PTR_ERR(rt);
1249 		return NULL;
1250 	}
1251 
1252 	/*
1253 	 * Is this toplevel object? If so, set total object size and
1254 	 * initialize pointers.  Otherwise check if we still fall within
1255 	 * our safe object data.
1256 	 */
1257 	if (show->state.depth == 0) {
1258 		show->obj.size = size;
1259 		show->obj.head = data;
1260 	} else {
1261 		/*
1262 		 * If the size of the current object is > our remaining
1263 		 * safe buffer we _may_ need to do a new copy.  However
1264 		 * consider the case of a nested struct; it's size pushes
1265 		 * us over the safe buffer limit, but showing any individual
1266 		 * struct members does not.  In such cases, we don't need
1267 		 * to initiate a fresh copy yet; however we definitely need
1268 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1269 		 * in our buffer, regardless of the current object size.
1270 		 * The logic here is that as we resolve types we will
1271 		 * hit a base type at some point, and we need to be sure
1272 		 * the next chunk of data is safely available to display
1273 		 * that type info safely.  We cannot rely on the size of
1274 		 * the current object here because it may be much larger
1275 		 * than our current buffer (e.g. task_struct is 8k).
1276 		 * All we want to do here is ensure that we can print the
1277 		 * next basic type, which we can if either
1278 		 * - the current type size is within the safe buffer; or
1279 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1280 		 *   the safe buffer.
1281 		 */
1282 		safe = __btf_show_obj_safe(show, data,
1283 					   min(size,
1284 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1285 	}
1286 
1287 	/*
1288 	 * We need a new copy to our safe object, either because we haven't
1289 	 * yet copied and are initializing safe data, or because the data
1290 	 * we want falls outside the boundaries of the safe object.
1291 	 */
1292 	if (!safe) {
1293 		size_left = btf_show_obj_size_left(show, data);
1294 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1295 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1296 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1297 							      data, size_left);
1298 		if (!show->state.status) {
1299 			show->obj.data = data;
1300 			safe = show->obj.safe;
1301 		}
1302 	}
1303 
1304 	return safe;
1305 }
1306 
1307 /*
1308  * Set the type we are starting to show and return a safe data pointer
1309  * to be used for showing the associated data.
1310  */
1311 static void *btf_show_start_type(struct btf_show *show,
1312 				 const struct btf_type *t,
1313 				 u32 type_id, void *data)
1314 {
1315 	show->state.type = t;
1316 	show->state.type_id = type_id;
1317 	show->state.name[0] = '\0';
1318 
1319 	return btf_show_obj_safe(show, t, data);
1320 }
1321 
1322 static void btf_show_end_type(struct btf_show *show)
1323 {
1324 	show->state.type = NULL;
1325 	show->state.type_id = 0;
1326 	show->state.name[0] = '\0';
1327 }
1328 
1329 static void *btf_show_start_aggr_type(struct btf_show *show,
1330 				      const struct btf_type *t,
1331 				      u32 type_id, void *data)
1332 {
1333 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1334 
1335 	if (!safe_data)
1336 		return safe_data;
1337 
1338 	btf_show(show, "%s%s%s", btf_show_indent(show),
1339 		 btf_show_name(show),
1340 		 btf_show_newline(show));
1341 	show->state.depth++;
1342 	return safe_data;
1343 }
1344 
1345 static void btf_show_end_aggr_type(struct btf_show *show,
1346 				   const char *suffix)
1347 {
1348 	show->state.depth--;
1349 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1350 		 btf_show_delim(show), btf_show_newline(show));
1351 	btf_show_end_type(show);
1352 }
1353 
1354 static void btf_show_start_member(struct btf_show *show,
1355 				  const struct btf_member *m)
1356 {
1357 	show->state.member = m;
1358 }
1359 
1360 static void btf_show_start_array_member(struct btf_show *show)
1361 {
1362 	show->state.array_member = 1;
1363 	btf_show_start_member(show, NULL);
1364 }
1365 
1366 static void btf_show_end_member(struct btf_show *show)
1367 {
1368 	show->state.member = NULL;
1369 }
1370 
1371 static void btf_show_end_array_member(struct btf_show *show)
1372 {
1373 	show->state.array_member = 0;
1374 	btf_show_end_member(show);
1375 }
1376 
1377 static void *btf_show_start_array_type(struct btf_show *show,
1378 				       const struct btf_type *t,
1379 				       u32 type_id,
1380 				       u16 array_encoding,
1381 				       void *data)
1382 {
1383 	show->state.array_encoding = array_encoding;
1384 	show->state.array_terminated = 0;
1385 	return btf_show_start_aggr_type(show, t, type_id, data);
1386 }
1387 
1388 static void btf_show_end_array_type(struct btf_show *show)
1389 {
1390 	show->state.array_encoding = 0;
1391 	show->state.array_terminated = 0;
1392 	btf_show_end_aggr_type(show, "]");
1393 }
1394 
1395 static void *btf_show_start_struct_type(struct btf_show *show,
1396 					const struct btf_type *t,
1397 					u32 type_id,
1398 					void *data)
1399 {
1400 	return btf_show_start_aggr_type(show, t, type_id, data);
1401 }
1402 
1403 static void btf_show_end_struct_type(struct btf_show *show)
1404 {
1405 	btf_show_end_aggr_type(show, "}");
1406 }
1407 
1408 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1409 					      const char *fmt, ...)
1410 {
1411 	va_list args;
1412 
1413 	va_start(args, fmt);
1414 	bpf_verifier_vlog(log, fmt, args);
1415 	va_end(args);
1416 }
1417 
1418 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1419 					    const char *fmt, ...)
1420 {
1421 	struct bpf_verifier_log *log = &env->log;
1422 	va_list args;
1423 
1424 	if (!bpf_verifier_log_needed(log))
1425 		return;
1426 
1427 	va_start(args, fmt);
1428 	bpf_verifier_vlog(log, fmt, args);
1429 	va_end(args);
1430 }
1431 
1432 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1433 						   const struct btf_type *t,
1434 						   bool log_details,
1435 						   const char *fmt, ...)
1436 {
1437 	struct bpf_verifier_log *log = &env->log;
1438 	struct btf *btf = env->btf;
1439 	va_list args;
1440 
1441 	if (!bpf_verifier_log_needed(log))
1442 		return;
1443 
1444 	if (log->level == BPF_LOG_KERNEL) {
1445 		/* btf verifier prints all types it is processing via
1446 		 * btf_verifier_log_type(..., fmt = NULL).
1447 		 * Skip those prints for in-kernel BTF verification.
1448 		 */
1449 		if (!fmt)
1450 			return;
1451 
1452 		/* Skip logging when loading module BTF with mismatches permitted */
1453 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1454 			return;
1455 	}
1456 
1457 	__btf_verifier_log(log, "[%u] %s %s%s",
1458 			   env->log_type_id,
1459 			   btf_type_str(t),
1460 			   __btf_name_by_offset(btf, t->name_off),
1461 			   log_details ? " " : "");
1462 
1463 	if (log_details)
1464 		btf_type_ops(t)->log_details(env, t);
1465 
1466 	if (fmt && *fmt) {
1467 		__btf_verifier_log(log, " ");
1468 		va_start(args, fmt);
1469 		bpf_verifier_vlog(log, fmt, args);
1470 		va_end(args);
1471 	}
1472 
1473 	__btf_verifier_log(log, "\n");
1474 }
1475 
1476 #define btf_verifier_log_type(env, t, ...) \
1477 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1478 #define btf_verifier_log_basic(env, t, ...) \
1479 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1480 
1481 __printf(4, 5)
1482 static void btf_verifier_log_member(struct btf_verifier_env *env,
1483 				    const struct btf_type *struct_type,
1484 				    const struct btf_member *member,
1485 				    const char *fmt, ...)
1486 {
1487 	struct bpf_verifier_log *log = &env->log;
1488 	struct btf *btf = env->btf;
1489 	va_list args;
1490 
1491 	if (!bpf_verifier_log_needed(log))
1492 		return;
1493 
1494 	if (log->level == BPF_LOG_KERNEL) {
1495 		if (!fmt)
1496 			return;
1497 
1498 		/* Skip logging when loading module BTF with mismatches permitted */
1499 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1500 			return;
1501 	}
1502 
1503 	/* The CHECK_META phase already did a btf dump.
1504 	 *
1505 	 * If member is logged again, it must hit an error in
1506 	 * parsing this member.  It is useful to print out which
1507 	 * struct this member belongs to.
1508 	 */
1509 	if (env->phase != CHECK_META)
1510 		btf_verifier_log_type(env, struct_type, NULL);
1511 
1512 	if (btf_type_kflag(struct_type))
1513 		__btf_verifier_log(log,
1514 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1515 				   __btf_name_by_offset(btf, member->name_off),
1516 				   member->type,
1517 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1518 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1519 	else
1520 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1521 				   __btf_name_by_offset(btf, member->name_off),
1522 				   member->type, member->offset);
1523 
1524 	if (fmt && *fmt) {
1525 		__btf_verifier_log(log, " ");
1526 		va_start(args, fmt);
1527 		bpf_verifier_vlog(log, fmt, args);
1528 		va_end(args);
1529 	}
1530 
1531 	__btf_verifier_log(log, "\n");
1532 }
1533 
1534 __printf(4, 5)
1535 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1536 				 const struct btf_type *datasec_type,
1537 				 const struct btf_var_secinfo *vsi,
1538 				 const char *fmt, ...)
1539 {
1540 	struct bpf_verifier_log *log = &env->log;
1541 	va_list args;
1542 
1543 	if (!bpf_verifier_log_needed(log))
1544 		return;
1545 	if (log->level == BPF_LOG_KERNEL && !fmt)
1546 		return;
1547 	if (env->phase != CHECK_META)
1548 		btf_verifier_log_type(env, datasec_type, NULL);
1549 
1550 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1551 			   vsi->type, vsi->offset, vsi->size);
1552 	if (fmt && *fmt) {
1553 		__btf_verifier_log(log, " ");
1554 		va_start(args, fmt);
1555 		bpf_verifier_vlog(log, fmt, args);
1556 		va_end(args);
1557 	}
1558 
1559 	__btf_verifier_log(log, "\n");
1560 }
1561 
1562 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1563 				 u32 btf_data_size)
1564 {
1565 	struct bpf_verifier_log *log = &env->log;
1566 	const struct btf *btf = env->btf;
1567 	const struct btf_header *hdr;
1568 
1569 	if (!bpf_verifier_log_needed(log))
1570 		return;
1571 
1572 	if (log->level == BPF_LOG_KERNEL)
1573 		return;
1574 	hdr = &btf->hdr;
1575 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1576 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1577 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1578 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1579 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1580 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1581 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1582 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1583 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1584 }
1585 
1586 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1587 {
1588 	struct btf *btf = env->btf;
1589 
1590 	if (btf->types_size == btf->nr_types) {
1591 		/* Expand 'types' array */
1592 
1593 		struct btf_type **new_types;
1594 		u32 expand_by, new_size;
1595 
1596 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1597 			btf_verifier_log(env, "Exceeded max num of types");
1598 			return -E2BIG;
1599 		}
1600 
1601 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1602 		new_size = min_t(u32, BTF_MAX_TYPE,
1603 				 btf->types_size + expand_by);
1604 
1605 		new_types = kvcalloc(new_size, sizeof(*new_types),
1606 				     GFP_KERNEL | __GFP_NOWARN);
1607 		if (!new_types)
1608 			return -ENOMEM;
1609 
1610 		if (btf->nr_types == 0) {
1611 			if (!btf->base_btf) {
1612 				/* lazily init VOID type */
1613 				new_types[0] = &btf_void;
1614 				btf->nr_types++;
1615 			}
1616 		} else {
1617 			memcpy(new_types, btf->types,
1618 			       sizeof(*btf->types) * btf->nr_types);
1619 		}
1620 
1621 		kvfree(btf->types);
1622 		btf->types = new_types;
1623 		btf->types_size = new_size;
1624 	}
1625 
1626 	btf->types[btf->nr_types++] = t;
1627 
1628 	return 0;
1629 }
1630 
1631 static int btf_alloc_id(struct btf *btf)
1632 {
1633 	int id;
1634 
1635 	idr_preload(GFP_KERNEL);
1636 	spin_lock_bh(&btf_idr_lock);
1637 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1638 	if (id > 0)
1639 		btf->id = id;
1640 	spin_unlock_bh(&btf_idr_lock);
1641 	idr_preload_end();
1642 
1643 	if (WARN_ON_ONCE(!id))
1644 		return -ENOSPC;
1645 
1646 	return id > 0 ? 0 : id;
1647 }
1648 
1649 static void btf_free_id(struct btf *btf)
1650 {
1651 	unsigned long flags;
1652 
1653 	/*
1654 	 * In map-in-map, calling map_delete_elem() on outer
1655 	 * map will call bpf_map_put on the inner map.
1656 	 * It will then eventually call btf_free_id()
1657 	 * on the inner map.  Some of the map_delete_elem()
1658 	 * implementation may have irq disabled, so
1659 	 * we need to use the _irqsave() version instead
1660 	 * of the _bh() version.
1661 	 */
1662 	spin_lock_irqsave(&btf_idr_lock, flags);
1663 	idr_remove(&btf_idr, btf->id);
1664 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1665 }
1666 
1667 static void btf_free_kfunc_set_tab(struct btf *btf)
1668 {
1669 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1670 	int hook;
1671 
1672 	if (!tab)
1673 		return;
1674 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1675 		kfree(tab->sets[hook]);
1676 	kfree(tab);
1677 	btf->kfunc_set_tab = NULL;
1678 }
1679 
1680 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1681 {
1682 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1683 
1684 	if (!tab)
1685 		return;
1686 	kfree(tab);
1687 	btf->dtor_kfunc_tab = NULL;
1688 }
1689 
1690 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1691 {
1692 	int i;
1693 
1694 	if (!tab)
1695 		return;
1696 	for (i = 0; i < tab->cnt; i++)
1697 		btf_record_free(tab->types[i].record);
1698 	kfree(tab);
1699 }
1700 
1701 static void btf_free_struct_meta_tab(struct btf *btf)
1702 {
1703 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1704 
1705 	btf_struct_metas_free(tab);
1706 	btf->struct_meta_tab = NULL;
1707 }
1708 
1709 static void btf_free_struct_ops_tab(struct btf *btf)
1710 {
1711 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1712 	u32 i;
1713 
1714 	if (!tab)
1715 		return;
1716 
1717 	for (i = 0; i < tab->cnt; i++)
1718 		bpf_struct_ops_desc_release(&tab->ops[i]);
1719 
1720 	kfree(tab);
1721 	btf->struct_ops_tab = NULL;
1722 }
1723 
1724 static void btf_free(struct btf *btf)
1725 {
1726 	btf_free_struct_meta_tab(btf);
1727 	btf_free_dtor_kfunc_tab(btf);
1728 	btf_free_kfunc_set_tab(btf);
1729 	btf_free_struct_ops_tab(btf);
1730 	kvfree(btf->types);
1731 	kvfree(btf->resolved_sizes);
1732 	kvfree(btf->resolved_ids);
1733 	/* vmlinux does not allocate btf->data, it simply points it at
1734 	 * __start_BTF.
1735 	 */
1736 	if (!btf_is_vmlinux(btf))
1737 		kvfree(btf->data);
1738 	kvfree(btf->base_id_map);
1739 	kfree(btf);
1740 }
1741 
1742 static void btf_free_rcu(struct rcu_head *rcu)
1743 {
1744 	struct btf *btf = container_of(rcu, struct btf, rcu);
1745 
1746 	btf_free(btf);
1747 }
1748 
1749 const char *btf_get_name(const struct btf *btf)
1750 {
1751 	return btf->name;
1752 }
1753 
1754 void btf_get(struct btf *btf)
1755 {
1756 	refcount_inc(&btf->refcnt);
1757 }
1758 
1759 void btf_put(struct btf *btf)
1760 {
1761 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1762 		btf_free_id(btf);
1763 		call_rcu(&btf->rcu, btf_free_rcu);
1764 	}
1765 }
1766 
1767 struct btf *btf_base_btf(const struct btf *btf)
1768 {
1769 	return btf->base_btf;
1770 }
1771 
1772 const struct btf_header *btf_header(const struct btf *btf)
1773 {
1774 	return &btf->hdr;
1775 }
1776 
1777 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1778 {
1779 	btf->base_btf = (struct btf *)base_btf;
1780 	btf->start_id = btf_nr_types(base_btf);
1781 	btf->start_str_off = base_btf->hdr.str_len;
1782 }
1783 
1784 static int env_resolve_init(struct btf_verifier_env *env)
1785 {
1786 	struct btf *btf = env->btf;
1787 	u32 nr_types = btf->nr_types;
1788 	u32 *resolved_sizes = NULL;
1789 	u32 *resolved_ids = NULL;
1790 	u8 *visit_states = NULL;
1791 
1792 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1793 				  GFP_KERNEL | __GFP_NOWARN);
1794 	if (!resolved_sizes)
1795 		goto nomem;
1796 
1797 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1798 				GFP_KERNEL | __GFP_NOWARN);
1799 	if (!resolved_ids)
1800 		goto nomem;
1801 
1802 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1803 				GFP_KERNEL | __GFP_NOWARN);
1804 	if (!visit_states)
1805 		goto nomem;
1806 
1807 	btf->resolved_sizes = resolved_sizes;
1808 	btf->resolved_ids = resolved_ids;
1809 	env->visit_states = visit_states;
1810 
1811 	return 0;
1812 
1813 nomem:
1814 	kvfree(resolved_sizes);
1815 	kvfree(resolved_ids);
1816 	kvfree(visit_states);
1817 	return -ENOMEM;
1818 }
1819 
1820 static void btf_verifier_env_free(struct btf_verifier_env *env)
1821 {
1822 	kvfree(env->visit_states);
1823 	kfree(env);
1824 }
1825 
1826 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1827 				     const struct btf_type *next_type)
1828 {
1829 	switch (env->resolve_mode) {
1830 	case RESOLVE_TBD:
1831 		/* int, enum or void is a sink */
1832 		return !btf_type_needs_resolve(next_type);
1833 	case RESOLVE_PTR:
1834 		/* int, enum, void, struct, array, func or func_proto is a sink
1835 		 * for ptr
1836 		 */
1837 		return !btf_type_is_modifier(next_type) &&
1838 			!btf_type_is_ptr(next_type);
1839 	case RESOLVE_STRUCT_OR_ARRAY:
1840 		/* int, enum, void, ptr, func or func_proto is a sink
1841 		 * for struct and array
1842 		 */
1843 		return !btf_type_is_modifier(next_type) &&
1844 			!btf_type_is_array(next_type) &&
1845 			!btf_type_is_struct(next_type);
1846 	default:
1847 		BUG();
1848 	}
1849 }
1850 
1851 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1852 				 u32 type_id)
1853 {
1854 	/* base BTF types should be resolved by now */
1855 	if (type_id < env->btf->start_id)
1856 		return true;
1857 
1858 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1859 }
1860 
1861 static int env_stack_push(struct btf_verifier_env *env,
1862 			  const struct btf_type *t, u32 type_id)
1863 {
1864 	const struct btf *btf = env->btf;
1865 	struct resolve_vertex *v;
1866 
1867 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1868 		return -E2BIG;
1869 
1870 	if (type_id < btf->start_id
1871 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1872 		return -EEXIST;
1873 
1874 	env->visit_states[type_id - btf->start_id] = VISITED;
1875 
1876 	v = &env->stack[env->top_stack++];
1877 	v->t = t;
1878 	v->type_id = type_id;
1879 	v->next_member = 0;
1880 
1881 	if (env->resolve_mode == RESOLVE_TBD) {
1882 		if (btf_type_is_ptr(t))
1883 			env->resolve_mode = RESOLVE_PTR;
1884 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1885 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static void env_stack_set_next_member(struct btf_verifier_env *env,
1892 				      u16 next_member)
1893 {
1894 	env->stack[env->top_stack - 1].next_member = next_member;
1895 }
1896 
1897 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1898 				   u32 resolved_type_id,
1899 				   u32 resolved_size)
1900 {
1901 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1902 	struct btf *btf = env->btf;
1903 
1904 	type_id -= btf->start_id; /* adjust to local type id */
1905 	btf->resolved_sizes[type_id] = resolved_size;
1906 	btf->resolved_ids[type_id] = resolved_type_id;
1907 	env->visit_states[type_id] = RESOLVED;
1908 }
1909 
1910 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1911 {
1912 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1913 }
1914 
1915 /* Resolve the size of a passed-in "type"
1916  *
1917  * type: is an array (e.g. u32 array[x][y])
1918  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1919  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1920  *             corresponds to the return type.
1921  * *elem_type: u32
1922  * *elem_id: id of u32
1923  * *total_nelems: (x * y).  Hence, individual elem size is
1924  *                (*type_size / *total_nelems)
1925  * *type_id: id of type if it's changed within the function, 0 if not
1926  *
1927  * type: is not an array (e.g. const struct X)
1928  * return type: type "struct X"
1929  * *type_size: sizeof(struct X)
1930  * *elem_type: same as return type ("struct X")
1931  * *elem_id: 0
1932  * *total_nelems: 1
1933  * *type_id: id of type if it's changed within the function, 0 if not
1934  */
1935 static const struct btf_type *
1936 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1937 		   u32 *type_size, const struct btf_type **elem_type,
1938 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1939 {
1940 	const struct btf_type *array_type = NULL;
1941 	const struct btf_array *array = NULL;
1942 	u32 i, size, nelems = 1, id = 0;
1943 
1944 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1945 		switch (BTF_INFO_KIND(type->info)) {
1946 		/* type->size can be used */
1947 		case BTF_KIND_INT:
1948 		case BTF_KIND_STRUCT:
1949 		case BTF_KIND_UNION:
1950 		case BTF_KIND_ENUM:
1951 		case BTF_KIND_FLOAT:
1952 		case BTF_KIND_ENUM64:
1953 			size = type->size;
1954 			goto resolved;
1955 
1956 		case BTF_KIND_PTR:
1957 			size = sizeof(void *);
1958 			goto resolved;
1959 
1960 		/* Modifiers */
1961 		case BTF_KIND_TYPEDEF:
1962 		case BTF_KIND_VOLATILE:
1963 		case BTF_KIND_CONST:
1964 		case BTF_KIND_RESTRICT:
1965 		case BTF_KIND_TYPE_TAG:
1966 			id = type->type;
1967 			type = btf_type_by_id(btf, type->type);
1968 			break;
1969 
1970 		case BTF_KIND_ARRAY:
1971 			if (!array_type)
1972 				array_type = type;
1973 			array = btf_type_array(type);
1974 			if (nelems && array->nelems > U32_MAX / nelems)
1975 				return ERR_PTR(-EINVAL);
1976 			nelems *= array->nelems;
1977 			type = btf_type_by_id(btf, array->type);
1978 			break;
1979 
1980 		/* type without size */
1981 		default:
1982 			return ERR_PTR(-EINVAL);
1983 		}
1984 	}
1985 
1986 	return ERR_PTR(-EINVAL);
1987 
1988 resolved:
1989 	if (nelems && size > U32_MAX / nelems)
1990 		return ERR_PTR(-EINVAL);
1991 
1992 	*type_size = nelems * size;
1993 	if (total_nelems)
1994 		*total_nelems = nelems;
1995 	if (elem_type)
1996 		*elem_type = type;
1997 	if (elem_id)
1998 		*elem_id = array ? array->type : 0;
1999 	if (type_id && id)
2000 		*type_id = id;
2001 
2002 	return array_type ? : type;
2003 }
2004 
2005 const struct btf_type *
2006 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2007 		 u32 *type_size)
2008 {
2009 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2010 }
2011 
2012 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2013 {
2014 	while (type_id < btf->start_id)
2015 		btf = btf->base_btf;
2016 
2017 	return btf->resolved_ids[type_id - btf->start_id];
2018 }
2019 
2020 /* The input param "type_id" must point to a needs_resolve type */
2021 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2022 						  u32 *type_id)
2023 {
2024 	*type_id = btf_resolved_type_id(btf, *type_id);
2025 	return btf_type_by_id(btf, *type_id);
2026 }
2027 
2028 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2029 {
2030 	while (type_id < btf->start_id)
2031 		btf = btf->base_btf;
2032 
2033 	return btf->resolved_sizes[type_id - btf->start_id];
2034 }
2035 
2036 const struct btf_type *btf_type_id_size(const struct btf *btf,
2037 					u32 *type_id, u32 *ret_size)
2038 {
2039 	const struct btf_type *size_type;
2040 	u32 size_type_id = *type_id;
2041 	u32 size = 0;
2042 
2043 	size_type = btf_type_by_id(btf, size_type_id);
2044 	if (btf_type_nosize_or_null(size_type))
2045 		return NULL;
2046 
2047 	if (btf_type_has_size(size_type)) {
2048 		size = size_type->size;
2049 	} else if (btf_type_is_array(size_type)) {
2050 		size = btf_resolved_type_size(btf, size_type_id);
2051 	} else if (btf_type_is_ptr(size_type)) {
2052 		size = sizeof(void *);
2053 	} else {
2054 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2055 				 !btf_type_is_var(size_type)))
2056 			return NULL;
2057 
2058 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2059 		size_type = btf_type_by_id(btf, size_type_id);
2060 		if (btf_type_nosize_or_null(size_type))
2061 			return NULL;
2062 		else if (btf_type_has_size(size_type))
2063 			size = size_type->size;
2064 		else if (btf_type_is_array(size_type))
2065 			size = btf_resolved_type_size(btf, size_type_id);
2066 		else if (btf_type_is_ptr(size_type))
2067 			size = sizeof(void *);
2068 		else
2069 			return NULL;
2070 	}
2071 
2072 	*type_id = size_type_id;
2073 	if (ret_size)
2074 		*ret_size = size;
2075 
2076 	return size_type;
2077 }
2078 
2079 static int btf_df_check_member(struct btf_verifier_env *env,
2080 			       const struct btf_type *struct_type,
2081 			       const struct btf_member *member,
2082 			       const struct btf_type *member_type)
2083 {
2084 	btf_verifier_log_basic(env, struct_type,
2085 			       "Unsupported check_member");
2086 	return -EINVAL;
2087 }
2088 
2089 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2090 				     const struct btf_type *struct_type,
2091 				     const struct btf_member *member,
2092 				     const struct btf_type *member_type)
2093 {
2094 	btf_verifier_log_basic(env, struct_type,
2095 			       "Unsupported check_kflag_member");
2096 	return -EINVAL;
2097 }
2098 
2099 /* Used for ptr, array struct/union and float type members.
2100  * int, enum and modifier types have their specific callback functions.
2101  */
2102 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2103 					  const struct btf_type *struct_type,
2104 					  const struct btf_member *member,
2105 					  const struct btf_type *member_type)
2106 {
2107 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2108 		btf_verifier_log_member(env, struct_type, member,
2109 					"Invalid member bitfield_size");
2110 		return -EINVAL;
2111 	}
2112 
2113 	/* bitfield size is 0, so member->offset represents bit offset only.
2114 	 * It is safe to call non kflag check_member variants.
2115 	 */
2116 	return btf_type_ops(member_type)->check_member(env, struct_type,
2117 						       member,
2118 						       member_type);
2119 }
2120 
2121 static int btf_df_resolve(struct btf_verifier_env *env,
2122 			  const struct resolve_vertex *v)
2123 {
2124 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2125 	return -EINVAL;
2126 }
2127 
2128 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2129 			u32 type_id, void *data, u8 bits_offsets,
2130 			struct btf_show *show)
2131 {
2132 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2133 }
2134 
2135 static int btf_int_check_member(struct btf_verifier_env *env,
2136 				const struct btf_type *struct_type,
2137 				const struct btf_member *member,
2138 				const struct btf_type *member_type)
2139 {
2140 	u32 int_data = btf_type_int(member_type);
2141 	u32 struct_bits_off = member->offset;
2142 	u32 struct_size = struct_type->size;
2143 	u32 nr_copy_bits;
2144 	u32 bytes_offset;
2145 
2146 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2147 		btf_verifier_log_member(env, struct_type, member,
2148 					"bits_offset exceeds U32_MAX");
2149 		return -EINVAL;
2150 	}
2151 
2152 	struct_bits_off += BTF_INT_OFFSET(int_data);
2153 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2154 	nr_copy_bits = BTF_INT_BITS(int_data) +
2155 		BITS_PER_BYTE_MASKED(struct_bits_off);
2156 
2157 	if (nr_copy_bits > BITS_PER_U128) {
2158 		btf_verifier_log_member(env, struct_type, member,
2159 					"nr_copy_bits exceeds 128");
2160 		return -EINVAL;
2161 	}
2162 
2163 	if (struct_size < bytes_offset ||
2164 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2165 		btf_verifier_log_member(env, struct_type, member,
2166 					"Member exceeds struct_size");
2167 		return -EINVAL;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2174 				      const struct btf_type *struct_type,
2175 				      const struct btf_member *member,
2176 				      const struct btf_type *member_type)
2177 {
2178 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2179 	u32 int_data = btf_type_int(member_type);
2180 	u32 struct_size = struct_type->size;
2181 	u32 nr_copy_bits;
2182 
2183 	/* a regular int type is required for the kflag int member */
2184 	if (!btf_type_int_is_regular(member_type)) {
2185 		btf_verifier_log_member(env, struct_type, member,
2186 					"Invalid member base type");
2187 		return -EINVAL;
2188 	}
2189 
2190 	/* check sanity of bitfield size */
2191 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2192 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2193 	nr_int_data_bits = BTF_INT_BITS(int_data);
2194 	if (!nr_bits) {
2195 		/* Not a bitfield member, member offset must be at byte
2196 		 * boundary.
2197 		 */
2198 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2199 			btf_verifier_log_member(env, struct_type, member,
2200 						"Invalid member offset");
2201 			return -EINVAL;
2202 		}
2203 
2204 		nr_bits = nr_int_data_bits;
2205 	} else if (nr_bits > nr_int_data_bits) {
2206 		btf_verifier_log_member(env, struct_type, member,
2207 					"Invalid member bitfield_size");
2208 		return -EINVAL;
2209 	}
2210 
2211 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2212 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2213 	if (nr_copy_bits > BITS_PER_U128) {
2214 		btf_verifier_log_member(env, struct_type, member,
2215 					"nr_copy_bits exceeds 128");
2216 		return -EINVAL;
2217 	}
2218 
2219 	if (struct_size < bytes_offset ||
2220 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2221 		btf_verifier_log_member(env, struct_type, member,
2222 					"Member exceeds struct_size");
2223 		return -EINVAL;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2230 			      const struct btf_type *t,
2231 			      u32 meta_left)
2232 {
2233 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2234 	u16 encoding;
2235 
2236 	if (meta_left < meta_needed) {
2237 		btf_verifier_log_basic(env, t,
2238 				       "meta_left:%u meta_needed:%u",
2239 				       meta_left, meta_needed);
2240 		return -EINVAL;
2241 	}
2242 
2243 	if (btf_type_vlen(t)) {
2244 		btf_verifier_log_type(env, t, "vlen != 0");
2245 		return -EINVAL;
2246 	}
2247 
2248 	if (btf_type_kflag(t)) {
2249 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2250 		return -EINVAL;
2251 	}
2252 
2253 	int_data = btf_type_int(t);
2254 	if (int_data & ~BTF_INT_MASK) {
2255 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2256 				       int_data);
2257 		return -EINVAL;
2258 	}
2259 
2260 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2261 
2262 	if (nr_bits > BITS_PER_U128) {
2263 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2264 				      BITS_PER_U128);
2265 		return -EINVAL;
2266 	}
2267 
2268 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2269 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2270 		return -EINVAL;
2271 	}
2272 
2273 	/*
2274 	 * Only one of the encoding bits is allowed and it
2275 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2276 	 * Multiple bits can be allowed later if it is found
2277 	 * to be insufficient.
2278 	 */
2279 	encoding = BTF_INT_ENCODING(int_data);
2280 	if (encoding &&
2281 	    encoding != BTF_INT_SIGNED &&
2282 	    encoding != BTF_INT_CHAR &&
2283 	    encoding != BTF_INT_BOOL) {
2284 		btf_verifier_log_type(env, t, "Unsupported encoding");
2285 		return -ENOTSUPP;
2286 	}
2287 
2288 	btf_verifier_log_type(env, t, NULL);
2289 
2290 	return meta_needed;
2291 }
2292 
2293 static void btf_int_log(struct btf_verifier_env *env,
2294 			const struct btf_type *t)
2295 {
2296 	int int_data = btf_type_int(t);
2297 
2298 	btf_verifier_log(env,
2299 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2300 			 t->size, BTF_INT_OFFSET(int_data),
2301 			 BTF_INT_BITS(int_data),
2302 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2303 }
2304 
2305 static void btf_int128_print(struct btf_show *show, void *data)
2306 {
2307 	/* data points to a __int128 number.
2308 	 * Suppose
2309 	 *     int128_num = *(__int128 *)data;
2310 	 * The below formulas shows what upper_num and lower_num represents:
2311 	 *     upper_num = int128_num >> 64;
2312 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2313 	 */
2314 	u64 upper_num, lower_num;
2315 
2316 #ifdef __BIG_ENDIAN_BITFIELD
2317 	upper_num = *(u64 *)data;
2318 	lower_num = *(u64 *)(data + 8);
2319 #else
2320 	upper_num = *(u64 *)(data + 8);
2321 	lower_num = *(u64 *)data;
2322 #endif
2323 	if (upper_num == 0)
2324 		btf_show_type_value(show, "0x%llx", lower_num);
2325 	else
2326 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2327 				     lower_num);
2328 }
2329 
2330 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2331 			     u16 right_shift_bits)
2332 {
2333 	u64 upper_num, lower_num;
2334 
2335 #ifdef __BIG_ENDIAN_BITFIELD
2336 	upper_num = print_num[0];
2337 	lower_num = print_num[1];
2338 #else
2339 	upper_num = print_num[1];
2340 	lower_num = print_num[0];
2341 #endif
2342 
2343 	/* shake out un-needed bits by shift/or operations */
2344 	if (left_shift_bits >= 64) {
2345 		upper_num = lower_num << (left_shift_bits - 64);
2346 		lower_num = 0;
2347 	} else {
2348 		upper_num = (upper_num << left_shift_bits) |
2349 			    (lower_num >> (64 - left_shift_bits));
2350 		lower_num = lower_num << left_shift_bits;
2351 	}
2352 
2353 	if (right_shift_bits >= 64) {
2354 		lower_num = upper_num >> (right_shift_bits - 64);
2355 		upper_num = 0;
2356 	} else {
2357 		lower_num = (lower_num >> right_shift_bits) |
2358 			    (upper_num << (64 - right_shift_bits));
2359 		upper_num = upper_num >> right_shift_bits;
2360 	}
2361 
2362 #ifdef __BIG_ENDIAN_BITFIELD
2363 	print_num[0] = upper_num;
2364 	print_num[1] = lower_num;
2365 #else
2366 	print_num[0] = lower_num;
2367 	print_num[1] = upper_num;
2368 #endif
2369 }
2370 
2371 static void btf_bitfield_show(void *data, u8 bits_offset,
2372 			      u8 nr_bits, struct btf_show *show)
2373 {
2374 	u16 left_shift_bits, right_shift_bits;
2375 	u8 nr_copy_bytes;
2376 	u8 nr_copy_bits;
2377 	u64 print_num[2] = {};
2378 
2379 	nr_copy_bits = nr_bits + bits_offset;
2380 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2381 
2382 	memcpy(print_num, data, nr_copy_bytes);
2383 
2384 #ifdef __BIG_ENDIAN_BITFIELD
2385 	left_shift_bits = bits_offset;
2386 #else
2387 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2388 #endif
2389 	right_shift_bits = BITS_PER_U128 - nr_bits;
2390 
2391 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2392 	btf_int128_print(show, print_num);
2393 }
2394 
2395 
2396 static void btf_int_bits_show(const struct btf *btf,
2397 			      const struct btf_type *t,
2398 			      void *data, u8 bits_offset,
2399 			      struct btf_show *show)
2400 {
2401 	u32 int_data = btf_type_int(t);
2402 	u8 nr_bits = BTF_INT_BITS(int_data);
2403 	u8 total_bits_offset;
2404 
2405 	/*
2406 	 * bits_offset is at most 7.
2407 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2408 	 */
2409 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2410 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2411 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2412 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2413 }
2414 
2415 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2416 			 u32 type_id, void *data, u8 bits_offset,
2417 			 struct btf_show *show)
2418 {
2419 	u32 int_data = btf_type_int(t);
2420 	u8 encoding = BTF_INT_ENCODING(int_data);
2421 	bool sign = encoding & BTF_INT_SIGNED;
2422 	u8 nr_bits = BTF_INT_BITS(int_data);
2423 	void *safe_data;
2424 
2425 	safe_data = btf_show_start_type(show, t, type_id, data);
2426 	if (!safe_data)
2427 		return;
2428 
2429 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2430 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2431 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2432 		goto out;
2433 	}
2434 
2435 	switch (nr_bits) {
2436 	case 128:
2437 		btf_int128_print(show, safe_data);
2438 		break;
2439 	case 64:
2440 		if (sign)
2441 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2442 		else
2443 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2444 		break;
2445 	case 32:
2446 		if (sign)
2447 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2448 		else
2449 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2450 		break;
2451 	case 16:
2452 		if (sign)
2453 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2454 		else
2455 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2456 		break;
2457 	case 8:
2458 		if (show->state.array_encoding == BTF_INT_CHAR) {
2459 			/* check for null terminator */
2460 			if (show->state.array_terminated)
2461 				break;
2462 			if (*(char *)data == '\0') {
2463 				show->state.array_terminated = 1;
2464 				break;
2465 			}
2466 			if (isprint(*(char *)data)) {
2467 				btf_show_type_value(show, "'%c'",
2468 						    *(char *)safe_data);
2469 				break;
2470 			}
2471 		}
2472 		if (sign)
2473 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2474 		else
2475 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2476 		break;
2477 	default:
2478 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2479 		break;
2480 	}
2481 out:
2482 	btf_show_end_type(show);
2483 }
2484 
2485 static const struct btf_kind_operations int_ops = {
2486 	.check_meta = btf_int_check_meta,
2487 	.resolve = btf_df_resolve,
2488 	.check_member = btf_int_check_member,
2489 	.check_kflag_member = btf_int_check_kflag_member,
2490 	.log_details = btf_int_log,
2491 	.show = btf_int_show,
2492 };
2493 
2494 static int btf_modifier_check_member(struct btf_verifier_env *env,
2495 				     const struct btf_type *struct_type,
2496 				     const struct btf_member *member,
2497 				     const struct btf_type *member_type)
2498 {
2499 	const struct btf_type *resolved_type;
2500 	u32 resolved_type_id = member->type;
2501 	struct btf_member resolved_member;
2502 	struct btf *btf = env->btf;
2503 
2504 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2505 	if (!resolved_type) {
2506 		btf_verifier_log_member(env, struct_type, member,
2507 					"Invalid member");
2508 		return -EINVAL;
2509 	}
2510 
2511 	resolved_member = *member;
2512 	resolved_member.type = resolved_type_id;
2513 
2514 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2515 							 &resolved_member,
2516 							 resolved_type);
2517 }
2518 
2519 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2520 					   const struct btf_type *struct_type,
2521 					   const struct btf_member *member,
2522 					   const struct btf_type *member_type)
2523 {
2524 	const struct btf_type *resolved_type;
2525 	u32 resolved_type_id = member->type;
2526 	struct btf_member resolved_member;
2527 	struct btf *btf = env->btf;
2528 
2529 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2530 	if (!resolved_type) {
2531 		btf_verifier_log_member(env, struct_type, member,
2532 					"Invalid member");
2533 		return -EINVAL;
2534 	}
2535 
2536 	resolved_member = *member;
2537 	resolved_member.type = resolved_type_id;
2538 
2539 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2540 							       &resolved_member,
2541 							       resolved_type);
2542 }
2543 
2544 static int btf_ptr_check_member(struct btf_verifier_env *env,
2545 				const struct btf_type *struct_type,
2546 				const struct btf_member *member,
2547 				const struct btf_type *member_type)
2548 {
2549 	u32 struct_size, struct_bits_off, bytes_offset;
2550 
2551 	struct_size = struct_type->size;
2552 	struct_bits_off = member->offset;
2553 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2554 
2555 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2556 		btf_verifier_log_member(env, struct_type, member,
2557 					"Member is not byte aligned");
2558 		return -EINVAL;
2559 	}
2560 
2561 	if (struct_size - bytes_offset < sizeof(void *)) {
2562 		btf_verifier_log_member(env, struct_type, member,
2563 					"Member exceeds struct_size");
2564 		return -EINVAL;
2565 	}
2566 
2567 	return 0;
2568 }
2569 
2570 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2571 				   const struct btf_type *t,
2572 				   u32 meta_left)
2573 {
2574 	const char *value;
2575 
2576 	if (btf_type_vlen(t)) {
2577 		btf_verifier_log_type(env, t, "vlen != 0");
2578 		return -EINVAL;
2579 	}
2580 
2581 	if (btf_type_kflag(t)) {
2582 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2583 		return -EINVAL;
2584 	}
2585 
2586 	if (!BTF_TYPE_ID_VALID(t->type)) {
2587 		btf_verifier_log_type(env, t, "Invalid type_id");
2588 		return -EINVAL;
2589 	}
2590 
2591 	/* typedef/type_tag type must have a valid name, and other ref types,
2592 	 * volatile, const, restrict, should have a null name.
2593 	 */
2594 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2595 		if (!t->name_off ||
2596 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2597 			btf_verifier_log_type(env, t, "Invalid name");
2598 			return -EINVAL;
2599 		}
2600 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2601 		value = btf_name_by_offset(env->btf, t->name_off);
2602 		if (!value || !value[0]) {
2603 			btf_verifier_log_type(env, t, "Invalid name");
2604 			return -EINVAL;
2605 		}
2606 	} else {
2607 		if (t->name_off) {
2608 			btf_verifier_log_type(env, t, "Invalid name");
2609 			return -EINVAL;
2610 		}
2611 	}
2612 
2613 	btf_verifier_log_type(env, t, NULL);
2614 
2615 	return 0;
2616 }
2617 
2618 static int btf_modifier_resolve(struct btf_verifier_env *env,
2619 				const struct resolve_vertex *v)
2620 {
2621 	const struct btf_type *t = v->t;
2622 	const struct btf_type *next_type;
2623 	u32 next_type_id = t->type;
2624 	struct btf *btf = env->btf;
2625 
2626 	next_type = btf_type_by_id(btf, next_type_id);
2627 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2628 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2629 		return -EINVAL;
2630 	}
2631 
2632 	if (!env_type_is_resolve_sink(env, next_type) &&
2633 	    !env_type_is_resolved(env, next_type_id))
2634 		return env_stack_push(env, next_type, next_type_id);
2635 
2636 	/* Figure out the resolved next_type_id with size.
2637 	 * They will be stored in the current modifier's
2638 	 * resolved_ids and resolved_sizes such that it can
2639 	 * save us a few type-following when we use it later (e.g. in
2640 	 * pretty print).
2641 	 */
2642 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2643 		if (env_type_is_resolved(env, next_type_id))
2644 			next_type = btf_type_id_resolve(btf, &next_type_id);
2645 
2646 		/* "typedef void new_void", "const void"...etc */
2647 		if (!btf_type_is_void(next_type) &&
2648 		    !btf_type_is_fwd(next_type) &&
2649 		    !btf_type_is_func_proto(next_type)) {
2650 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2651 			return -EINVAL;
2652 		}
2653 	}
2654 
2655 	env_stack_pop_resolved(env, next_type_id, 0);
2656 
2657 	return 0;
2658 }
2659 
2660 static int btf_var_resolve(struct btf_verifier_env *env,
2661 			   const struct resolve_vertex *v)
2662 {
2663 	const struct btf_type *next_type;
2664 	const struct btf_type *t = v->t;
2665 	u32 next_type_id = t->type;
2666 	struct btf *btf = env->btf;
2667 
2668 	next_type = btf_type_by_id(btf, next_type_id);
2669 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2670 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2671 		return -EINVAL;
2672 	}
2673 
2674 	if (!env_type_is_resolve_sink(env, next_type) &&
2675 	    !env_type_is_resolved(env, next_type_id))
2676 		return env_stack_push(env, next_type, next_type_id);
2677 
2678 	if (btf_type_is_modifier(next_type)) {
2679 		const struct btf_type *resolved_type;
2680 		u32 resolved_type_id;
2681 
2682 		resolved_type_id = next_type_id;
2683 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2684 
2685 		if (btf_type_is_ptr(resolved_type) &&
2686 		    !env_type_is_resolve_sink(env, resolved_type) &&
2687 		    !env_type_is_resolved(env, resolved_type_id))
2688 			return env_stack_push(env, resolved_type,
2689 					      resolved_type_id);
2690 	}
2691 
2692 	/* We must resolve to something concrete at this point, no
2693 	 * forward types or similar that would resolve to size of
2694 	 * zero is allowed.
2695 	 */
2696 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2697 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2698 		return -EINVAL;
2699 	}
2700 
2701 	env_stack_pop_resolved(env, next_type_id, 0);
2702 
2703 	return 0;
2704 }
2705 
2706 static int btf_ptr_resolve(struct btf_verifier_env *env,
2707 			   const struct resolve_vertex *v)
2708 {
2709 	const struct btf_type *next_type;
2710 	const struct btf_type *t = v->t;
2711 	u32 next_type_id = t->type;
2712 	struct btf *btf = env->btf;
2713 
2714 	next_type = btf_type_by_id(btf, next_type_id);
2715 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2716 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2717 		return -EINVAL;
2718 	}
2719 
2720 	if (!env_type_is_resolve_sink(env, next_type) &&
2721 	    !env_type_is_resolved(env, next_type_id))
2722 		return env_stack_push(env, next_type, next_type_id);
2723 
2724 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2725 	 * the modifier may have stopped resolving when it was resolved
2726 	 * to a ptr (last-resolved-ptr).
2727 	 *
2728 	 * We now need to continue from the last-resolved-ptr to
2729 	 * ensure the last-resolved-ptr will not referring back to
2730 	 * the current ptr (t).
2731 	 */
2732 	if (btf_type_is_modifier(next_type)) {
2733 		const struct btf_type *resolved_type;
2734 		u32 resolved_type_id;
2735 
2736 		resolved_type_id = next_type_id;
2737 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2738 
2739 		if (btf_type_is_ptr(resolved_type) &&
2740 		    !env_type_is_resolve_sink(env, resolved_type) &&
2741 		    !env_type_is_resolved(env, resolved_type_id))
2742 			return env_stack_push(env, resolved_type,
2743 					      resolved_type_id);
2744 	}
2745 
2746 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2747 		if (env_type_is_resolved(env, next_type_id))
2748 			next_type = btf_type_id_resolve(btf, &next_type_id);
2749 
2750 		if (!btf_type_is_void(next_type) &&
2751 		    !btf_type_is_fwd(next_type) &&
2752 		    !btf_type_is_func_proto(next_type)) {
2753 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2754 			return -EINVAL;
2755 		}
2756 	}
2757 
2758 	env_stack_pop_resolved(env, next_type_id, 0);
2759 
2760 	return 0;
2761 }
2762 
2763 static void btf_modifier_show(const struct btf *btf,
2764 			      const struct btf_type *t,
2765 			      u32 type_id, void *data,
2766 			      u8 bits_offset, struct btf_show *show)
2767 {
2768 	if (btf->resolved_ids)
2769 		t = btf_type_id_resolve(btf, &type_id);
2770 	else
2771 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2772 
2773 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2774 }
2775 
2776 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2777 			 u32 type_id, void *data, u8 bits_offset,
2778 			 struct btf_show *show)
2779 {
2780 	t = btf_type_id_resolve(btf, &type_id);
2781 
2782 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2783 }
2784 
2785 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2786 			 u32 type_id, void *data, u8 bits_offset,
2787 			 struct btf_show *show)
2788 {
2789 	void *safe_data;
2790 
2791 	safe_data = btf_show_start_type(show, t, type_id, data);
2792 	if (!safe_data)
2793 		return;
2794 
2795 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2796 	if (show->flags & BTF_SHOW_PTR_RAW)
2797 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2798 	else
2799 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2800 	btf_show_end_type(show);
2801 }
2802 
2803 static void btf_ref_type_log(struct btf_verifier_env *env,
2804 			     const struct btf_type *t)
2805 {
2806 	btf_verifier_log(env, "type_id=%u", t->type);
2807 }
2808 
2809 static struct btf_kind_operations modifier_ops = {
2810 	.check_meta = btf_ref_type_check_meta,
2811 	.resolve = btf_modifier_resolve,
2812 	.check_member = btf_modifier_check_member,
2813 	.check_kflag_member = btf_modifier_check_kflag_member,
2814 	.log_details = btf_ref_type_log,
2815 	.show = btf_modifier_show,
2816 };
2817 
2818 static struct btf_kind_operations ptr_ops = {
2819 	.check_meta = btf_ref_type_check_meta,
2820 	.resolve = btf_ptr_resolve,
2821 	.check_member = btf_ptr_check_member,
2822 	.check_kflag_member = btf_generic_check_kflag_member,
2823 	.log_details = btf_ref_type_log,
2824 	.show = btf_ptr_show,
2825 };
2826 
2827 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2828 			      const struct btf_type *t,
2829 			      u32 meta_left)
2830 {
2831 	if (btf_type_vlen(t)) {
2832 		btf_verifier_log_type(env, t, "vlen != 0");
2833 		return -EINVAL;
2834 	}
2835 
2836 	if (t->type) {
2837 		btf_verifier_log_type(env, t, "type != 0");
2838 		return -EINVAL;
2839 	}
2840 
2841 	/* fwd type must have a valid name */
2842 	if (!t->name_off ||
2843 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2844 		btf_verifier_log_type(env, t, "Invalid name");
2845 		return -EINVAL;
2846 	}
2847 
2848 	btf_verifier_log_type(env, t, NULL);
2849 
2850 	return 0;
2851 }
2852 
2853 static void btf_fwd_type_log(struct btf_verifier_env *env,
2854 			     const struct btf_type *t)
2855 {
2856 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2857 }
2858 
2859 static struct btf_kind_operations fwd_ops = {
2860 	.check_meta = btf_fwd_check_meta,
2861 	.resolve = btf_df_resolve,
2862 	.check_member = btf_df_check_member,
2863 	.check_kflag_member = btf_df_check_kflag_member,
2864 	.log_details = btf_fwd_type_log,
2865 	.show = btf_df_show,
2866 };
2867 
2868 static int btf_array_check_member(struct btf_verifier_env *env,
2869 				  const struct btf_type *struct_type,
2870 				  const struct btf_member *member,
2871 				  const struct btf_type *member_type)
2872 {
2873 	u32 struct_bits_off = member->offset;
2874 	u32 struct_size, bytes_offset;
2875 	u32 array_type_id, array_size;
2876 	struct btf *btf = env->btf;
2877 
2878 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2879 		btf_verifier_log_member(env, struct_type, member,
2880 					"Member is not byte aligned");
2881 		return -EINVAL;
2882 	}
2883 
2884 	array_type_id = member->type;
2885 	btf_type_id_size(btf, &array_type_id, &array_size);
2886 	struct_size = struct_type->size;
2887 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2888 	if (struct_size - bytes_offset < array_size) {
2889 		btf_verifier_log_member(env, struct_type, member,
2890 					"Member exceeds struct_size");
2891 		return -EINVAL;
2892 	}
2893 
2894 	return 0;
2895 }
2896 
2897 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2898 				const struct btf_type *t,
2899 				u32 meta_left)
2900 {
2901 	const struct btf_array *array = btf_type_array(t);
2902 	u32 meta_needed = sizeof(*array);
2903 
2904 	if (meta_left < meta_needed) {
2905 		btf_verifier_log_basic(env, t,
2906 				       "meta_left:%u meta_needed:%u",
2907 				       meta_left, meta_needed);
2908 		return -EINVAL;
2909 	}
2910 
2911 	/* array type should not have a name */
2912 	if (t->name_off) {
2913 		btf_verifier_log_type(env, t, "Invalid name");
2914 		return -EINVAL;
2915 	}
2916 
2917 	if (btf_type_vlen(t)) {
2918 		btf_verifier_log_type(env, t, "vlen != 0");
2919 		return -EINVAL;
2920 	}
2921 
2922 	if (btf_type_kflag(t)) {
2923 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2924 		return -EINVAL;
2925 	}
2926 
2927 	if (t->size) {
2928 		btf_verifier_log_type(env, t, "size != 0");
2929 		return -EINVAL;
2930 	}
2931 
2932 	/* Array elem type and index type cannot be in type void,
2933 	 * so !array->type and !array->index_type are not allowed.
2934 	 */
2935 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2936 		btf_verifier_log_type(env, t, "Invalid elem");
2937 		return -EINVAL;
2938 	}
2939 
2940 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2941 		btf_verifier_log_type(env, t, "Invalid index");
2942 		return -EINVAL;
2943 	}
2944 
2945 	btf_verifier_log_type(env, t, NULL);
2946 
2947 	return meta_needed;
2948 }
2949 
2950 static int btf_array_resolve(struct btf_verifier_env *env,
2951 			     const struct resolve_vertex *v)
2952 {
2953 	const struct btf_array *array = btf_type_array(v->t);
2954 	const struct btf_type *elem_type, *index_type;
2955 	u32 elem_type_id, index_type_id;
2956 	struct btf *btf = env->btf;
2957 	u32 elem_size;
2958 
2959 	/* Check array->index_type */
2960 	index_type_id = array->index_type;
2961 	index_type = btf_type_by_id(btf, index_type_id);
2962 	if (btf_type_nosize_or_null(index_type) ||
2963 	    btf_type_is_resolve_source_only(index_type)) {
2964 		btf_verifier_log_type(env, v->t, "Invalid index");
2965 		return -EINVAL;
2966 	}
2967 
2968 	if (!env_type_is_resolve_sink(env, index_type) &&
2969 	    !env_type_is_resolved(env, index_type_id))
2970 		return env_stack_push(env, index_type, index_type_id);
2971 
2972 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2973 	if (!index_type || !btf_type_is_int(index_type) ||
2974 	    !btf_type_int_is_regular(index_type)) {
2975 		btf_verifier_log_type(env, v->t, "Invalid index");
2976 		return -EINVAL;
2977 	}
2978 
2979 	/* Check array->type */
2980 	elem_type_id = array->type;
2981 	elem_type = btf_type_by_id(btf, elem_type_id);
2982 	if (btf_type_nosize_or_null(elem_type) ||
2983 	    btf_type_is_resolve_source_only(elem_type)) {
2984 		btf_verifier_log_type(env, v->t,
2985 				      "Invalid elem");
2986 		return -EINVAL;
2987 	}
2988 
2989 	if (!env_type_is_resolve_sink(env, elem_type) &&
2990 	    !env_type_is_resolved(env, elem_type_id))
2991 		return env_stack_push(env, elem_type, elem_type_id);
2992 
2993 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2994 	if (!elem_type) {
2995 		btf_verifier_log_type(env, v->t, "Invalid elem");
2996 		return -EINVAL;
2997 	}
2998 
2999 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3000 		btf_verifier_log_type(env, v->t, "Invalid array of int");
3001 		return -EINVAL;
3002 	}
3003 
3004 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3005 		btf_verifier_log_type(env, v->t,
3006 				      "Array size overflows U32_MAX");
3007 		return -EINVAL;
3008 	}
3009 
3010 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3011 
3012 	return 0;
3013 }
3014 
3015 static void btf_array_log(struct btf_verifier_env *env,
3016 			  const struct btf_type *t)
3017 {
3018 	const struct btf_array *array = btf_type_array(t);
3019 
3020 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3021 			 array->type, array->index_type, array->nelems);
3022 }
3023 
3024 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3025 			     u32 type_id, void *data, u8 bits_offset,
3026 			     struct btf_show *show)
3027 {
3028 	const struct btf_array *array = btf_type_array(t);
3029 	const struct btf_kind_operations *elem_ops;
3030 	const struct btf_type *elem_type;
3031 	u32 i, elem_size = 0, elem_type_id;
3032 	u16 encoding = 0;
3033 
3034 	elem_type_id = array->type;
3035 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3036 	if (elem_type && btf_type_has_size(elem_type))
3037 		elem_size = elem_type->size;
3038 
3039 	if (elem_type && btf_type_is_int(elem_type)) {
3040 		u32 int_type = btf_type_int(elem_type);
3041 
3042 		encoding = BTF_INT_ENCODING(int_type);
3043 
3044 		/*
3045 		 * BTF_INT_CHAR encoding never seems to be set for
3046 		 * char arrays, so if size is 1 and element is
3047 		 * printable as a char, we'll do that.
3048 		 */
3049 		if (elem_size == 1)
3050 			encoding = BTF_INT_CHAR;
3051 	}
3052 
3053 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3054 		return;
3055 
3056 	if (!elem_type)
3057 		goto out;
3058 	elem_ops = btf_type_ops(elem_type);
3059 
3060 	for (i = 0; i < array->nelems; i++) {
3061 
3062 		btf_show_start_array_member(show);
3063 
3064 		elem_ops->show(btf, elem_type, elem_type_id, data,
3065 			       bits_offset, show);
3066 		data += elem_size;
3067 
3068 		btf_show_end_array_member(show);
3069 
3070 		if (show->state.array_terminated)
3071 			break;
3072 	}
3073 out:
3074 	btf_show_end_array_type(show);
3075 }
3076 
3077 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3078 			   u32 type_id, void *data, u8 bits_offset,
3079 			   struct btf_show *show)
3080 {
3081 	const struct btf_member *m = show->state.member;
3082 
3083 	/*
3084 	 * First check if any members would be shown (are non-zero).
3085 	 * See comments above "struct btf_show" definition for more
3086 	 * details on how this works at a high-level.
3087 	 */
3088 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3089 		if (!show->state.depth_check) {
3090 			show->state.depth_check = show->state.depth + 1;
3091 			show->state.depth_to_show = 0;
3092 		}
3093 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3094 		show->state.member = m;
3095 
3096 		if (show->state.depth_check != show->state.depth + 1)
3097 			return;
3098 		show->state.depth_check = 0;
3099 
3100 		if (show->state.depth_to_show <= show->state.depth)
3101 			return;
3102 		/*
3103 		 * Reaching here indicates we have recursed and found
3104 		 * non-zero array member(s).
3105 		 */
3106 	}
3107 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3108 }
3109 
3110 static struct btf_kind_operations array_ops = {
3111 	.check_meta = btf_array_check_meta,
3112 	.resolve = btf_array_resolve,
3113 	.check_member = btf_array_check_member,
3114 	.check_kflag_member = btf_generic_check_kflag_member,
3115 	.log_details = btf_array_log,
3116 	.show = btf_array_show,
3117 };
3118 
3119 static int btf_struct_check_member(struct btf_verifier_env *env,
3120 				   const struct btf_type *struct_type,
3121 				   const struct btf_member *member,
3122 				   const struct btf_type *member_type)
3123 {
3124 	u32 struct_bits_off = member->offset;
3125 	u32 struct_size, bytes_offset;
3126 
3127 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3128 		btf_verifier_log_member(env, struct_type, member,
3129 					"Member is not byte aligned");
3130 		return -EINVAL;
3131 	}
3132 
3133 	struct_size = struct_type->size;
3134 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3135 	if (struct_size - bytes_offset < member_type->size) {
3136 		btf_verifier_log_member(env, struct_type, member,
3137 					"Member exceeds struct_size");
3138 		return -EINVAL;
3139 	}
3140 
3141 	return 0;
3142 }
3143 
3144 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3145 				 const struct btf_type *t,
3146 				 u32 meta_left)
3147 {
3148 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3149 	const struct btf_member *member;
3150 	u32 meta_needed, last_offset;
3151 	struct btf *btf = env->btf;
3152 	u32 struct_size = t->size;
3153 	u32 offset;
3154 	u16 i;
3155 
3156 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3157 	if (meta_left < meta_needed) {
3158 		btf_verifier_log_basic(env, t,
3159 				       "meta_left:%u meta_needed:%u",
3160 				       meta_left, meta_needed);
3161 		return -EINVAL;
3162 	}
3163 
3164 	/* struct type either no name or a valid one */
3165 	if (t->name_off &&
3166 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3167 		btf_verifier_log_type(env, t, "Invalid name");
3168 		return -EINVAL;
3169 	}
3170 
3171 	btf_verifier_log_type(env, t, NULL);
3172 
3173 	last_offset = 0;
3174 	for_each_member(i, t, member) {
3175 		if (!btf_name_offset_valid(btf, member->name_off)) {
3176 			btf_verifier_log_member(env, t, member,
3177 						"Invalid member name_offset:%u",
3178 						member->name_off);
3179 			return -EINVAL;
3180 		}
3181 
3182 		/* struct member either no name or a valid one */
3183 		if (member->name_off &&
3184 		    !btf_name_valid_identifier(btf, member->name_off)) {
3185 			btf_verifier_log_member(env, t, member, "Invalid name");
3186 			return -EINVAL;
3187 		}
3188 		/* A member cannot be in type void */
3189 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3190 			btf_verifier_log_member(env, t, member,
3191 						"Invalid type_id");
3192 			return -EINVAL;
3193 		}
3194 
3195 		offset = __btf_member_bit_offset(t, member);
3196 		if (is_union && offset) {
3197 			btf_verifier_log_member(env, t, member,
3198 						"Invalid member bits_offset");
3199 			return -EINVAL;
3200 		}
3201 
3202 		/*
3203 		 * ">" instead of ">=" because the last member could be
3204 		 * "char a[0];"
3205 		 */
3206 		if (last_offset > offset) {
3207 			btf_verifier_log_member(env, t, member,
3208 						"Invalid member bits_offset");
3209 			return -EINVAL;
3210 		}
3211 
3212 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3213 			btf_verifier_log_member(env, t, member,
3214 						"Member bits_offset exceeds its struct size");
3215 			return -EINVAL;
3216 		}
3217 
3218 		btf_verifier_log_member(env, t, member, NULL);
3219 		last_offset = offset;
3220 	}
3221 
3222 	return meta_needed;
3223 }
3224 
3225 static int btf_struct_resolve(struct btf_verifier_env *env,
3226 			      const struct resolve_vertex *v)
3227 {
3228 	const struct btf_member *member;
3229 	int err;
3230 	u16 i;
3231 
3232 	/* Before continue resolving the next_member,
3233 	 * ensure the last member is indeed resolved to a
3234 	 * type with size info.
3235 	 */
3236 	if (v->next_member) {
3237 		const struct btf_type *last_member_type;
3238 		const struct btf_member *last_member;
3239 		u32 last_member_type_id;
3240 
3241 		last_member = btf_type_member(v->t) + v->next_member - 1;
3242 		last_member_type_id = last_member->type;
3243 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3244 						       last_member_type_id)))
3245 			return -EINVAL;
3246 
3247 		last_member_type = btf_type_by_id(env->btf,
3248 						  last_member_type_id);
3249 		if (btf_type_kflag(v->t))
3250 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3251 								last_member,
3252 								last_member_type);
3253 		else
3254 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3255 								last_member,
3256 								last_member_type);
3257 		if (err)
3258 			return err;
3259 	}
3260 
3261 	for_each_member_from(i, v->next_member, v->t, member) {
3262 		u32 member_type_id = member->type;
3263 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3264 								member_type_id);
3265 
3266 		if (btf_type_nosize_or_null(member_type) ||
3267 		    btf_type_is_resolve_source_only(member_type)) {
3268 			btf_verifier_log_member(env, v->t, member,
3269 						"Invalid member");
3270 			return -EINVAL;
3271 		}
3272 
3273 		if (!env_type_is_resolve_sink(env, member_type) &&
3274 		    !env_type_is_resolved(env, member_type_id)) {
3275 			env_stack_set_next_member(env, i + 1);
3276 			return env_stack_push(env, member_type, member_type_id);
3277 		}
3278 
3279 		if (btf_type_kflag(v->t))
3280 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3281 									    member,
3282 									    member_type);
3283 		else
3284 			err = btf_type_ops(member_type)->check_member(env, v->t,
3285 								      member,
3286 								      member_type);
3287 		if (err)
3288 			return err;
3289 	}
3290 
3291 	env_stack_pop_resolved(env, 0, 0);
3292 
3293 	return 0;
3294 }
3295 
3296 static void btf_struct_log(struct btf_verifier_env *env,
3297 			   const struct btf_type *t)
3298 {
3299 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3300 }
3301 
3302 enum {
3303 	BTF_FIELD_IGNORE = 0,
3304 	BTF_FIELD_FOUND  = 1,
3305 };
3306 
3307 struct btf_field_info {
3308 	enum btf_field_type type;
3309 	u32 off;
3310 	union {
3311 		struct {
3312 			u32 type_id;
3313 		} kptr;
3314 		struct {
3315 			const char *node_name;
3316 			u32 value_btf_id;
3317 		} graph_root;
3318 	};
3319 };
3320 
3321 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3322 			   u32 off, int sz, enum btf_field_type field_type,
3323 			   struct btf_field_info *info)
3324 {
3325 	if (!__btf_type_is_struct(t))
3326 		return BTF_FIELD_IGNORE;
3327 	if (t->size != sz)
3328 		return BTF_FIELD_IGNORE;
3329 	info->type = field_type;
3330 	info->off = off;
3331 	return BTF_FIELD_FOUND;
3332 }
3333 
3334 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3335 			 u32 off, int sz, struct btf_field_info *info)
3336 {
3337 	enum btf_field_type type;
3338 	u32 res_id;
3339 
3340 	/* Permit modifiers on the pointer itself */
3341 	if (btf_type_is_volatile(t))
3342 		t = btf_type_by_id(btf, t->type);
3343 	/* For PTR, sz is always == 8 */
3344 	if (!btf_type_is_ptr(t))
3345 		return BTF_FIELD_IGNORE;
3346 	t = btf_type_by_id(btf, t->type);
3347 
3348 	if (!btf_type_is_type_tag(t))
3349 		return BTF_FIELD_IGNORE;
3350 	/* Reject extra tags */
3351 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3352 		return -EINVAL;
3353 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3354 		type = BPF_KPTR_UNREF;
3355 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3356 		type = BPF_KPTR_REF;
3357 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3358 		type = BPF_KPTR_PERCPU;
3359 	else
3360 		return -EINVAL;
3361 
3362 	/* Get the base type */
3363 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3364 	/* Only pointer to struct is allowed */
3365 	if (!__btf_type_is_struct(t))
3366 		return -EINVAL;
3367 
3368 	info->type = type;
3369 	info->off = off;
3370 	info->kptr.type_id = res_id;
3371 	return BTF_FIELD_FOUND;
3372 }
3373 
3374 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3375 			   int comp_idx, const char *tag_key, int last_id)
3376 {
3377 	int len = strlen(tag_key);
3378 	int i, n;
3379 
3380 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3381 		const struct btf_type *t = btf_type_by_id(btf, i);
3382 
3383 		if (!btf_type_is_decl_tag(t))
3384 			continue;
3385 		if (pt != btf_type_by_id(btf, t->type))
3386 			continue;
3387 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3388 			continue;
3389 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3390 			continue;
3391 		return i;
3392 	}
3393 	return -ENOENT;
3394 }
3395 
3396 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3397 				    int comp_idx, const char *tag_key)
3398 {
3399 	const char *value = NULL;
3400 	const struct btf_type *t;
3401 	int len, id;
3402 
3403 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3404 	if (id < 0)
3405 		return ERR_PTR(id);
3406 
3407 	t = btf_type_by_id(btf, id);
3408 	len = strlen(tag_key);
3409 	value = __btf_name_by_offset(btf, t->name_off) + len;
3410 
3411 	/* Prevent duplicate entries for same type */
3412 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3413 	if (id >= 0)
3414 		return ERR_PTR(-EEXIST);
3415 
3416 	return value;
3417 }
3418 
3419 static int
3420 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3421 		    const struct btf_type *t, int comp_idx, u32 off,
3422 		    int sz, struct btf_field_info *info,
3423 		    enum btf_field_type head_type)
3424 {
3425 	const char *node_field_name;
3426 	const char *value_type;
3427 	s32 id;
3428 
3429 	if (!__btf_type_is_struct(t))
3430 		return BTF_FIELD_IGNORE;
3431 	if (t->size != sz)
3432 		return BTF_FIELD_IGNORE;
3433 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3434 	if (IS_ERR(value_type))
3435 		return -EINVAL;
3436 	node_field_name = strstr(value_type, ":");
3437 	if (!node_field_name)
3438 		return -EINVAL;
3439 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3440 	if (!value_type)
3441 		return -ENOMEM;
3442 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3443 	kfree(value_type);
3444 	if (id < 0)
3445 		return id;
3446 	node_field_name++;
3447 	if (str_is_empty(node_field_name))
3448 		return -EINVAL;
3449 	info->type = head_type;
3450 	info->off = off;
3451 	info->graph_root.value_btf_id = id;
3452 	info->graph_root.node_name = node_field_name;
3453 	return BTF_FIELD_FOUND;
3454 }
3455 
3456 #define field_mask_test_name(field_type, field_type_str) \
3457 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3458 		type = field_type;					\
3459 		goto end;						\
3460 	}
3461 
3462 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3463 			      u32 field_mask, u32 *seen_mask,
3464 			      int *align, int *sz)
3465 {
3466 	int type = 0;
3467 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3468 
3469 	if (field_mask & BPF_SPIN_LOCK) {
3470 		if (!strcmp(name, "bpf_spin_lock")) {
3471 			if (*seen_mask & BPF_SPIN_LOCK)
3472 				return -E2BIG;
3473 			*seen_mask |= BPF_SPIN_LOCK;
3474 			type = BPF_SPIN_LOCK;
3475 			goto end;
3476 		}
3477 	}
3478 	if (field_mask & BPF_TIMER) {
3479 		if (!strcmp(name, "bpf_timer")) {
3480 			if (*seen_mask & BPF_TIMER)
3481 				return -E2BIG;
3482 			*seen_mask |= BPF_TIMER;
3483 			type = BPF_TIMER;
3484 			goto end;
3485 		}
3486 	}
3487 	if (field_mask & BPF_WORKQUEUE) {
3488 		if (!strcmp(name, "bpf_wq")) {
3489 			if (*seen_mask & BPF_WORKQUEUE)
3490 				return -E2BIG;
3491 			*seen_mask |= BPF_WORKQUEUE;
3492 			type = BPF_WORKQUEUE;
3493 			goto end;
3494 		}
3495 	}
3496 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3497 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3498 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3499 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3500 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3501 
3502 	/* Only return BPF_KPTR when all other types with matchable names fail */
3503 	if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) {
3504 		type = BPF_KPTR_REF;
3505 		goto end;
3506 	}
3507 	return 0;
3508 end:
3509 	*sz = btf_field_type_size(type);
3510 	*align = btf_field_type_align(type);
3511 	return type;
3512 }
3513 
3514 #undef field_mask_test_name
3515 
3516 /* Repeat a number of fields for a specified number of times.
3517  *
3518  * Copy the fields starting from the first field and repeat them for
3519  * repeat_cnt times. The fields are repeated by adding the offset of each
3520  * field with
3521  *   (i + 1) * elem_size
3522  * where i is the repeat index and elem_size is the size of an element.
3523  */
3524 static int btf_repeat_fields(struct btf_field_info *info,
3525 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3526 {
3527 	u32 i, j;
3528 	u32 cur;
3529 
3530 	/* Ensure not repeating fields that should not be repeated. */
3531 	for (i = 0; i < field_cnt; i++) {
3532 		switch (info[i].type) {
3533 		case BPF_KPTR_UNREF:
3534 		case BPF_KPTR_REF:
3535 		case BPF_KPTR_PERCPU:
3536 		case BPF_LIST_HEAD:
3537 		case BPF_RB_ROOT:
3538 			break;
3539 		default:
3540 			return -EINVAL;
3541 		}
3542 	}
3543 
3544 	cur = field_cnt;
3545 	for (i = 0; i < repeat_cnt; i++) {
3546 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3547 		for (j = 0; j < field_cnt; j++)
3548 			info[cur++].off += (i + 1) * elem_size;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 static int btf_find_struct_field(const struct btf *btf,
3555 				 const struct btf_type *t, u32 field_mask,
3556 				 struct btf_field_info *info, int info_cnt,
3557 				 u32 level);
3558 
3559 /* Find special fields in the struct type of a field.
3560  *
3561  * This function is used to find fields of special types that is not a
3562  * global variable or a direct field of a struct type. It also handles the
3563  * repetition if it is the element type of an array.
3564  */
3565 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3566 				  u32 off, u32 nelems,
3567 				  u32 field_mask, struct btf_field_info *info,
3568 				  int info_cnt, u32 level)
3569 {
3570 	int ret, err, i;
3571 
3572 	level++;
3573 	if (level >= MAX_RESOLVE_DEPTH)
3574 		return -E2BIG;
3575 
3576 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3577 
3578 	if (ret <= 0)
3579 		return ret;
3580 
3581 	/* Shift the offsets of the nested struct fields to the offsets
3582 	 * related to the container.
3583 	 */
3584 	for (i = 0; i < ret; i++)
3585 		info[i].off += off;
3586 
3587 	if (nelems > 1) {
3588 		err = btf_repeat_fields(info, ret, nelems - 1, t->size);
3589 		if (err == 0)
3590 			ret *= nelems;
3591 		else
3592 			ret = err;
3593 	}
3594 
3595 	return ret;
3596 }
3597 
3598 static int btf_find_field_one(const struct btf *btf,
3599 			      const struct btf_type *var,
3600 			      const struct btf_type *var_type,
3601 			      int var_idx,
3602 			      u32 off, u32 expected_size,
3603 			      u32 field_mask, u32 *seen_mask,
3604 			      struct btf_field_info *info, int info_cnt,
3605 			      u32 level)
3606 {
3607 	int ret, align, sz, field_type;
3608 	struct btf_field_info tmp;
3609 	const struct btf_array *array;
3610 	u32 i, nelems = 1;
3611 
3612 	/* Walk into array types to find the element type and the number of
3613 	 * elements in the (flattened) array.
3614 	 */
3615 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3616 		array = btf_array(var_type);
3617 		nelems *= array->nelems;
3618 		var_type = btf_type_by_id(btf, array->type);
3619 	}
3620 	if (i == MAX_RESOLVE_DEPTH)
3621 		return -E2BIG;
3622 	if (nelems == 0)
3623 		return 0;
3624 
3625 	field_type = btf_get_field_type(btf, var_type,
3626 					field_mask, seen_mask, &align, &sz);
3627 	/* Look into variables of struct types */
3628 	if (!field_type && __btf_type_is_struct(var_type)) {
3629 		sz = var_type->size;
3630 		if (expected_size && expected_size != sz * nelems)
3631 			return 0;
3632 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3633 					     &info[0], info_cnt, level);
3634 		return ret;
3635 	}
3636 
3637 	if (field_type == 0)
3638 		return 0;
3639 	if (field_type < 0)
3640 		return field_type;
3641 
3642 	if (expected_size && expected_size != sz * nelems)
3643 		return 0;
3644 	if (off % align)
3645 		return 0;
3646 
3647 	switch (field_type) {
3648 	case BPF_SPIN_LOCK:
3649 	case BPF_TIMER:
3650 	case BPF_WORKQUEUE:
3651 	case BPF_LIST_NODE:
3652 	case BPF_RB_NODE:
3653 	case BPF_REFCOUNT:
3654 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3655 				      info_cnt ? &info[0] : &tmp);
3656 		if (ret < 0)
3657 			return ret;
3658 		break;
3659 	case BPF_KPTR_UNREF:
3660 	case BPF_KPTR_REF:
3661 	case BPF_KPTR_PERCPU:
3662 		ret = btf_find_kptr(btf, var_type, off, sz,
3663 				    info_cnt ? &info[0] : &tmp);
3664 		if (ret < 0)
3665 			return ret;
3666 		break;
3667 	case BPF_LIST_HEAD:
3668 	case BPF_RB_ROOT:
3669 		ret = btf_find_graph_root(btf, var, var_type,
3670 					  var_idx, off, sz,
3671 					  info_cnt ? &info[0] : &tmp,
3672 					  field_type);
3673 		if (ret < 0)
3674 			return ret;
3675 		break;
3676 	default:
3677 		return -EFAULT;
3678 	}
3679 
3680 	if (ret == BTF_FIELD_IGNORE)
3681 		return 0;
3682 	if (nelems > info_cnt)
3683 		return -E2BIG;
3684 	if (nelems > 1) {
3685 		ret = btf_repeat_fields(info, 1, nelems - 1, sz);
3686 		if (ret < 0)
3687 			return ret;
3688 	}
3689 	return nelems;
3690 }
3691 
3692 static int btf_find_struct_field(const struct btf *btf,
3693 				 const struct btf_type *t, u32 field_mask,
3694 				 struct btf_field_info *info, int info_cnt,
3695 				 u32 level)
3696 {
3697 	int ret, idx = 0;
3698 	const struct btf_member *member;
3699 	u32 i, off, seen_mask = 0;
3700 
3701 	for_each_member(i, t, member) {
3702 		const struct btf_type *member_type = btf_type_by_id(btf,
3703 								    member->type);
3704 
3705 		off = __btf_member_bit_offset(t, member);
3706 		if (off % 8)
3707 			/* valid C code cannot generate such BTF */
3708 			return -EINVAL;
3709 		off /= 8;
3710 
3711 		ret = btf_find_field_one(btf, t, member_type, i,
3712 					 off, 0,
3713 					 field_mask, &seen_mask,
3714 					 &info[idx], info_cnt - idx, level);
3715 		if (ret < 0)
3716 			return ret;
3717 		idx += ret;
3718 	}
3719 	return idx;
3720 }
3721 
3722 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3723 				u32 field_mask, struct btf_field_info *info,
3724 				int info_cnt, u32 level)
3725 {
3726 	int ret, idx = 0;
3727 	const struct btf_var_secinfo *vsi;
3728 	u32 i, off, seen_mask = 0;
3729 
3730 	for_each_vsi(i, t, vsi) {
3731 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3732 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3733 
3734 		off = vsi->offset;
3735 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3736 					 field_mask, &seen_mask,
3737 					 &info[idx], info_cnt - idx,
3738 					 level);
3739 		if (ret < 0)
3740 			return ret;
3741 		idx += ret;
3742 	}
3743 	return idx;
3744 }
3745 
3746 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3747 			  u32 field_mask, struct btf_field_info *info,
3748 			  int info_cnt)
3749 {
3750 	if (__btf_type_is_struct(t))
3751 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3752 	else if (btf_type_is_datasec(t))
3753 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3754 	return -EINVAL;
3755 }
3756 
3757 /* Callers have to ensure the life cycle of btf if it is program BTF */
3758 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3759 			  struct btf_field_info *info)
3760 {
3761 	struct module *mod = NULL;
3762 	const struct btf_type *t;
3763 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3764 	 * is that BTF, otherwise it's program BTF
3765 	 */
3766 	struct btf *kptr_btf;
3767 	int ret;
3768 	s32 id;
3769 
3770 	/* Find type in map BTF, and use it to look up the matching type
3771 	 * in vmlinux or module BTFs, by name and kind.
3772 	 */
3773 	t = btf_type_by_id(btf, info->kptr.type_id);
3774 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3775 			     &kptr_btf);
3776 	if (id == -ENOENT) {
3777 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3778 		WARN_ON_ONCE(btf_is_kernel(btf));
3779 
3780 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3781 		 * kptr allocated via bpf_obj_new
3782 		 */
3783 		field->kptr.dtor = NULL;
3784 		id = info->kptr.type_id;
3785 		kptr_btf = (struct btf *)btf;
3786 		goto found_dtor;
3787 	}
3788 	if (id < 0)
3789 		return id;
3790 
3791 	/* Find and stash the function pointer for the destruction function that
3792 	 * needs to be eventually invoked from the map free path.
3793 	 */
3794 	if (info->type == BPF_KPTR_REF) {
3795 		const struct btf_type *dtor_func;
3796 		const char *dtor_func_name;
3797 		unsigned long addr;
3798 		s32 dtor_btf_id;
3799 
3800 		/* This call also serves as a whitelist of allowed objects that
3801 		 * can be used as a referenced pointer and be stored in a map at
3802 		 * the same time.
3803 		 */
3804 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3805 		if (dtor_btf_id < 0) {
3806 			ret = dtor_btf_id;
3807 			goto end_btf;
3808 		}
3809 
3810 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3811 		if (!dtor_func) {
3812 			ret = -ENOENT;
3813 			goto end_btf;
3814 		}
3815 
3816 		if (btf_is_module(kptr_btf)) {
3817 			mod = btf_try_get_module(kptr_btf);
3818 			if (!mod) {
3819 				ret = -ENXIO;
3820 				goto end_btf;
3821 			}
3822 		}
3823 
3824 		/* We already verified dtor_func to be btf_type_is_func
3825 		 * in register_btf_id_dtor_kfuncs.
3826 		 */
3827 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3828 		addr = kallsyms_lookup_name(dtor_func_name);
3829 		if (!addr) {
3830 			ret = -EINVAL;
3831 			goto end_mod;
3832 		}
3833 		field->kptr.dtor = (void *)addr;
3834 	}
3835 
3836 found_dtor:
3837 	field->kptr.btf_id = id;
3838 	field->kptr.btf = kptr_btf;
3839 	field->kptr.module = mod;
3840 	return 0;
3841 end_mod:
3842 	module_put(mod);
3843 end_btf:
3844 	btf_put(kptr_btf);
3845 	return ret;
3846 }
3847 
3848 static int btf_parse_graph_root(const struct btf *btf,
3849 				struct btf_field *field,
3850 				struct btf_field_info *info,
3851 				const char *node_type_name,
3852 				size_t node_type_align)
3853 {
3854 	const struct btf_type *t, *n = NULL;
3855 	const struct btf_member *member;
3856 	u32 offset;
3857 	int i;
3858 
3859 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3860 	/* We've already checked that value_btf_id is a struct type. We
3861 	 * just need to figure out the offset of the list_node, and
3862 	 * verify its type.
3863 	 */
3864 	for_each_member(i, t, member) {
3865 		if (strcmp(info->graph_root.node_name,
3866 			   __btf_name_by_offset(btf, member->name_off)))
3867 			continue;
3868 		/* Invalid BTF, two members with same name */
3869 		if (n)
3870 			return -EINVAL;
3871 		n = btf_type_by_id(btf, member->type);
3872 		if (!__btf_type_is_struct(n))
3873 			return -EINVAL;
3874 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3875 			return -EINVAL;
3876 		offset = __btf_member_bit_offset(n, member);
3877 		if (offset % 8)
3878 			return -EINVAL;
3879 		offset /= 8;
3880 		if (offset % node_type_align)
3881 			return -EINVAL;
3882 
3883 		field->graph_root.btf = (struct btf *)btf;
3884 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3885 		field->graph_root.node_offset = offset;
3886 	}
3887 	if (!n)
3888 		return -ENOENT;
3889 	return 0;
3890 }
3891 
3892 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3893 			       struct btf_field_info *info)
3894 {
3895 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3896 					    __alignof__(struct bpf_list_node));
3897 }
3898 
3899 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3900 			     struct btf_field_info *info)
3901 {
3902 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3903 					    __alignof__(struct bpf_rb_node));
3904 }
3905 
3906 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3907 {
3908 	const struct btf_field *a = (const struct btf_field *)_a;
3909 	const struct btf_field *b = (const struct btf_field *)_b;
3910 
3911 	if (a->offset < b->offset)
3912 		return -1;
3913 	else if (a->offset > b->offset)
3914 		return 1;
3915 	return 0;
3916 }
3917 
3918 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3919 				    u32 field_mask, u32 value_size)
3920 {
3921 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3922 	u32 next_off = 0, field_type_size;
3923 	struct btf_record *rec;
3924 	int ret, i, cnt;
3925 
3926 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3927 	if (ret < 0)
3928 		return ERR_PTR(ret);
3929 	if (!ret)
3930 		return NULL;
3931 
3932 	cnt = ret;
3933 	/* This needs to be kzalloc to zero out padding and unused fields, see
3934 	 * comment in btf_record_equal.
3935 	 */
3936 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3937 	if (!rec)
3938 		return ERR_PTR(-ENOMEM);
3939 
3940 	rec->spin_lock_off = -EINVAL;
3941 	rec->timer_off = -EINVAL;
3942 	rec->wq_off = -EINVAL;
3943 	rec->refcount_off = -EINVAL;
3944 	for (i = 0; i < cnt; i++) {
3945 		field_type_size = btf_field_type_size(info_arr[i].type);
3946 		if (info_arr[i].off + field_type_size > value_size) {
3947 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3948 			ret = -EFAULT;
3949 			goto end;
3950 		}
3951 		if (info_arr[i].off < next_off) {
3952 			ret = -EEXIST;
3953 			goto end;
3954 		}
3955 		next_off = info_arr[i].off + field_type_size;
3956 
3957 		rec->field_mask |= info_arr[i].type;
3958 		rec->fields[i].offset = info_arr[i].off;
3959 		rec->fields[i].type = info_arr[i].type;
3960 		rec->fields[i].size = field_type_size;
3961 
3962 		switch (info_arr[i].type) {
3963 		case BPF_SPIN_LOCK:
3964 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3965 			/* Cache offset for faster lookup at runtime */
3966 			rec->spin_lock_off = rec->fields[i].offset;
3967 			break;
3968 		case BPF_TIMER:
3969 			WARN_ON_ONCE(rec->timer_off >= 0);
3970 			/* Cache offset for faster lookup at runtime */
3971 			rec->timer_off = rec->fields[i].offset;
3972 			break;
3973 		case BPF_WORKQUEUE:
3974 			WARN_ON_ONCE(rec->wq_off >= 0);
3975 			/* Cache offset for faster lookup at runtime */
3976 			rec->wq_off = rec->fields[i].offset;
3977 			break;
3978 		case BPF_REFCOUNT:
3979 			WARN_ON_ONCE(rec->refcount_off >= 0);
3980 			/* Cache offset for faster lookup at runtime */
3981 			rec->refcount_off = rec->fields[i].offset;
3982 			break;
3983 		case BPF_KPTR_UNREF:
3984 		case BPF_KPTR_REF:
3985 		case BPF_KPTR_PERCPU:
3986 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3987 			if (ret < 0)
3988 				goto end;
3989 			break;
3990 		case BPF_LIST_HEAD:
3991 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3992 			if (ret < 0)
3993 				goto end;
3994 			break;
3995 		case BPF_RB_ROOT:
3996 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3997 			if (ret < 0)
3998 				goto end;
3999 			break;
4000 		case BPF_LIST_NODE:
4001 		case BPF_RB_NODE:
4002 			break;
4003 		default:
4004 			ret = -EFAULT;
4005 			goto end;
4006 		}
4007 		rec->cnt++;
4008 	}
4009 
4010 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4011 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4012 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4013 		ret = -EINVAL;
4014 		goto end;
4015 	}
4016 
4017 	if (rec->refcount_off < 0 &&
4018 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4019 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4020 		ret = -EINVAL;
4021 		goto end;
4022 	}
4023 
4024 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4025 	       NULL, rec);
4026 
4027 	return rec;
4028 end:
4029 	btf_record_free(rec);
4030 	return ERR_PTR(ret);
4031 }
4032 
4033 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4034 {
4035 	int i;
4036 
4037 	/* There are three types that signify ownership of some other type:
4038 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4039 	 * kptr_ref only supports storing kernel types, which can't store
4040 	 * references to program allocated local types.
4041 	 *
4042 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4043 	 * does not form cycles.
4044 	 */
4045 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
4046 		return 0;
4047 	for (i = 0; i < rec->cnt; i++) {
4048 		struct btf_struct_meta *meta;
4049 		u32 btf_id;
4050 
4051 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4052 			continue;
4053 		btf_id = rec->fields[i].graph_root.value_btf_id;
4054 		meta = btf_find_struct_meta(btf, btf_id);
4055 		if (!meta)
4056 			return -EFAULT;
4057 		rec->fields[i].graph_root.value_rec = meta->record;
4058 
4059 		/* We need to set value_rec for all root types, but no need
4060 		 * to check ownership cycle for a type unless it's also a
4061 		 * node type.
4062 		 */
4063 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4064 			continue;
4065 
4066 		/* We need to ensure ownership acyclicity among all types. The
4067 		 * proper way to do it would be to topologically sort all BTF
4068 		 * IDs based on the ownership edges, since there can be multiple
4069 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4070 		 * following resaoning:
4071 		 *
4072 		 * - A type can only be owned by another type in user BTF if it
4073 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4074 		 * - A type can only _own_ another type in user BTF if it has a
4075 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4076 		 *
4077 		 * We ensure that if a type is both a root and node, its
4078 		 * element types cannot be root types.
4079 		 *
4080 		 * To ensure acyclicity:
4081 		 *
4082 		 * When A is an root type but not a node, its ownership
4083 		 * chain can be:
4084 		 *	A -> B -> C
4085 		 * Where:
4086 		 * - A is an root, e.g. has bpf_rb_root.
4087 		 * - B is both a root and node, e.g. has bpf_rb_node and
4088 		 *   bpf_list_head.
4089 		 * - C is only an root, e.g. has bpf_list_node
4090 		 *
4091 		 * When A is both a root and node, some other type already
4092 		 * owns it in the BTF domain, hence it can not own
4093 		 * another root type through any of the ownership edges.
4094 		 *	A -> B
4095 		 * Where:
4096 		 * - A is both an root and node.
4097 		 * - B is only an node.
4098 		 */
4099 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4100 			return -ELOOP;
4101 	}
4102 	return 0;
4103 }
4104 
4105 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4106 			      u32 type_id, void *data, u8 bits_offset,
4107 			      struct btf_show *show)
4108 {
4109 	const struct btf_member *member;
4110 	void *safe_data;
4111 	u32 i;
4112 
4113 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4114 	if (!safe_data)
4115 		return;
4116 
4117 	for_each_member(i, t, member) {
4118 		const struct btf_type *member_type = btf_type_by_id(btf,
4119 								member->type);
4120 		const struct btf_kind_operations *ops;
4121 		u32 member_offset, bitfield_size;
4122 		u32 bytes_offset;
4123 		u8 bits8_offset;
4124 
4125 		btf_show_start_member(show, member);
4126 
4127 		member_offset = __btf_member_bit_offset(t, member);
4128 		bitfield_size = __btf_member_bitfield_size(t, member);
4129 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4130 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4131 		if (bitfield_size) {
4132 			safe_data = btf_show_start_type(show, member_type,
4133 							member->type,
4134 							data + bytes_offset);
4135 			if (safe_data)
4136 				btf_bitfield_show(safe_data,
4137 						  bits8_offset,
4138 						  bitfield_size, show);
4139 			btf_show_end_type(show);
4140 		} else {
4141 			ops = btf_type_ops(member_type);
4142 			ops->show(btf, member_type, member->type,
4143 				  data + bytes_offset, bits8_offset, show);
4144 		}
4145 
4146 		btf_show_end_member(show);
4147 	}
4148 
4149 	btf_show_end_struct_type(show);
4150 }
4151 
4152 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4153 			    u32 type_id, void *data, u8 bits_offset,
4154 			    struct btf_show *show)
4155 {
4156 	const struct btf_member *m = show->state.member;
4157 
4158 	/*
4159 	 * First check if any members would be shown (are non-zero).
4160 	 * See comments above "struct btf_show" definition for more
4161 	 * details on how this works at a high-level.
4162 	 */
4163 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4164 		if (!show->state.depth_check) {
4165 			show->state.depth_check = show->state.depth + 1;
4166 			show->state.depth_to_show = 0;
4167 		}
4168 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4169 		/* Restore saved member data here */
4170 		show->state.member = m;
4171 		if (show->state.depth_check != show->state.depth + 1)
4172 			return;
4173 		show->state.depth_check = 0;
4174 
4175 		if (show->state.depth_to_show <= show->state.depth)
4176 			return;
4177 		/*
4178 		 * Reaching here indicates we have recursed and found
4179 		 * non-zero child values.
4180 		 */
4181 	}
4182 
4183 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4184 }
4185 
4186 static struct btf_kind_operations struct_ops = {
4187 	.check_meta = btf_struct_check_meta,
4188 	.resolve = btf_struct_resolve,
4189 	.check_member = btf_struct_check_member,
4190 	.check_kflag_member = btf_generic_check_kflag_member,
4191 	.log_details = btf_struct_log,
4192 	.show = btf_struct_show,
4193 };
4194 
4195 static int btf_enum_check_member(struct btf_verifier_env *env,
4196 				 const struct btf_type *struct_type,
4197 				 const struct btf_member *member,
4198 				 const struct btf_type *member_type)
4199 {
4200 	u32 struct_bits_off = member->offset;
4201 	u32 struct_size, bytes_offset;
4202 
4203 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4204 		btf_verifier_log_member(env, struct_type, member,
4205 					"Member is not byte aligned");
4206 		return -EINVAL;
4207 	}
4208 
4209 	struct_size = struct_type->size;
4210 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4211 	if (struct_size - bytes_offset < member_type->size) {
4212 		btf_verifier_log_member(env, struct_type, member,
4213 					"Member exceeds struct_size");
4214 		return -EINVAL;
4215 	}
4216 
4217 	return 0;
4218 }
4219 
4220 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4221 				       const struct btf_type *struct_type,
4222 				       const struct btf_member *member,
4223 				       const struct btf_type *member_type)
4224 {
4225 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4226 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4227 
4228 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4229 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4230 	if (!nr_bits) {
4231 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4232 			btf_verifier_log_member(env, struct_type, member,
4233 						"Member is not byte aligned");
4234 			return -EINVAL;
4235 		}
4236 
4237 		nr_bits = int_bitsize;
4238 	} else if (nr_bits > int_bitsize) {
4239 		btf_verifier_log_member(env, struct_type, member,
4240 					"Invalid member bitfield_size");
4241 		return -EINVAL;
4242 	}
4243 
4244 	struct_size = struct_type->size;
4245 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4246 	if (struct_size < bytes_end) {
4247 		btf_verifier_log_member(env, struct_type, member,
4248 					"Member exceeds struct_size");
4249 		return -EINVAL;
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4256 			       const struct btf_type *t,
4257 			       u32 meta_left)
4258 {
4259 	const struct btf_enum *enums = btf_type_enum(t);
4260 	struct btf *btf = env->btf;
4261 	const char *fmt_str;
4262 	u16 i, nr_enums;
4263 	u32 meta_needed;
4264 
4265 	nr_enums = btf_type_vlen(t);
4266 	meta_needed = nr_enums * sizeof(*enums);
4267 
4268 	if (meta_left < meta_needed) {
4269 		btf_verifier_log_basic(env, t,
4270 				       "meta_left:%u meta_needed:%u",
4271 				       meta_left, meta_needed);
4272 		return -EINVAL;
4273 	}
4274 
4275 	if (t->size > 8 || !is_power_of_2(t->size)) {
4276 		btf_verifier_log_type(env, t, "Unexpected size");
4277 		return -EINVAL;
4278 	}
4279 
4280 	/* enum type either no name or a valid one */
4281 	if (t->name_off &&
4282 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4283 		btf_verifier_log_type(env, t, "Invalid name");
4284 		return -EINVAL;
4285 	}
4286 
4287 	btf_verifier_log_type(env, t, NULL);
4288 
4289 	for (i = 0; i < nr_enums; i++) {
4290 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4291 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4292 					 enums[i].name_off);
4293 			return -EINVAL;
4294 		}
4295 
4296 		/* enum member must have a valid name */
4297 		if (!enums[i].name_off ||
4298 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4299 			btf_verifier_log_type(env, t, "Invalid name");
4300 			return -EINVAL;
4301 		}
4302 
4303 		if (env->log.level == BPF_LOG_KERNEL)
4304 			continue;
4305 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4306 		btf_verifier_log(env, fmt_str,
4307 				 __btf_name_by_offset(btf, enums[i].name_off),
4308 				 enums[i].val);
4309 	}
4310 
4311 	return meta_needed;
4312 }
4313 
4314 static void btf_enum_log(struct btf_verifier_env *env,
4315 			 const struct btf_type *t)
4316 {
4317 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4318 }
4319 
4320 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4321 			  u32 type_id, void *data, u8 bits_offset,
4322 			  struct btf_show *show)
4323 {
4324 	const struct btf_enum *enums = btf_type_enum(t);
4325 	u32 i, nr_enums = btf_type_vlen(t);
4326 	void *safe_data;
4327 	int v;
4328 
4329 	safe_data = btf_show_start_type(show, t, type_id, data);
4330 	if (!safe_data)
4331 		return;
4332 
4333 	v = *(int *)safe_data;
4334 
4335 	for (i = 0; i < nr_enums; i++) {
4336 		if (v != enums[i].val)
4337 			continue;
4338 
4339 		btf_show_type_value(show, "%s",
4340 				    __btf_name_by_offset(btf,
4341 							 enums[i].name_off));
4342 
4343 		btf_show_end_type(show);
4344 		return;
4345 	}
4346 
4347 	if (btf_type_kflag(t))
4348 		btf_show_type_value(show, "%d", v);
4349 	else
4350 		btf_show_type_value(show, "%u", v);
4351 	btf_show_end_type(show);
4352 }
4353 
4354 static struct btf_kind_operations enum_ops = {
4355 	.check_meta = btf_enum_check_meta,
4356 	.resolve = btf_df_resolve,
4357 	.check_member = btf_enum_check_member,
4358 	.check_kflag_member = btf_enum_check_kflag_member,
4359 	.log_details = btf_enum_log,
4360 	.show = btf_enum_show,
4361 };
4362 
4363 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4364 				 const struct btf_type *t,
4365 				 u32 meta_left)
4366 {
4367 	const struct btf_enum64 *enums = btf_type_enum64(t);
4368 	struct btf *btf = env->btf;
4369 	const char *fmt_str;
4370 	u16 i, nr_enums;
4371 	u32 meta_needed;
4372 
4373 	nr_enums = btf_type_vlen(t);
4374 	meta_needed = nr_enums * sizeof(*enums);
4375 
4376 	if (meta_left < meta_needed) {
4377 		btf_verifier_log_basic(env, t,
4378 				       "meta_left:%u meta_needed:%u",
4379 				       meta_left, meta_needed);
4380 		return -EINVAL;
4381 	}
4382 
4383 	if (t->size > 8 || !is_power_of_2(t->size)) {
4384 		btf_verifier_log_type(env, t, "Unexpected size");
4385 		return -EINVAL;
4386 	}
4387 
4388 	/* enum type either no name or a valid one */
4389 	if (t->name_off &&
4390 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4391 		btf_verifier_log_type(env, t, "Invalid name");
4392 		return -EINVAL;
4393 	}
4394 
4395 	btf_verifier_log_type(env, t, NULL);
4396 
4397 	for (i = 0; i < nr_enums; i++) {
4398 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4399 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4400 					 enums[i].name_off);
4401 			return -EINVAL;
4402 		}
4403 
4404 		/* enum member must have a valid name */
4405 		if (!enums[i].name_off ||
4406 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4407 			btf_verifier_log_type(env, t, "Invalid name");
4408 			return -EINVAL;
4409 		}
4410 
4411 		if (env->log.level == BPF_LOG_KERNEL)
4412 			continue;
4413 
4414 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4415 		btf_verifier_log(env, fmt_str,
4416 				 __btf_name_by_offset(btf, enums[i].name_off),
4417 				 btf_enum64_value(enums + i));
4418 	}
4419 
4420 	return meta_needed;
4421 }
4422 
4423 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4424 			    u32 type_id, void *data, u8 bits_offset,
4425 			    struct btf_show *show)
4426 {
4427 	const struct btf_enum64 *enums = btf_type_enum64(t);
4428 	u32 i, nr_enums = btf_type_vlen(t);
4429 	void *safe_data;
4430 	s64 v;
4431 
4432 	safe_data = btf_show_start_type(show, t, type_id, data);
4433 	if (!safe_data)
4434 		return;
4435 
4436 	v = *(u64 *)safe_data;
4437 
4438 	for (i = 0; i < nr_enums; i++) {
4439 		if (v != btf_enum64_value(enums + i))
4440 			continue;
4441 
4442 		btf_show_type_value(show, "%s",
4443 				    __btf_name_by_offset(btf,
4444 							 enums[i].name_off));
4445 
4446 		btf_show_end_type(show);
4447 		return;
4448 	}
4449 
4450 	if (btf_type_kflag(t))
4451 		btf_show_type_value(show, "%lld", v);
4452 	else
4453 		btf_show_type_value(show, "%llu", v);
4454 	btf_show_end_type(show);
4455 }
4456 
4457 static struct btf_kind_operations enum64_ops = {
4458 	.check_meta = btf_enum64_check_meta,
4459 	.resolve = btf_df_resolve,
4460 	.check_member = btf_enum_check_member,
4461 	.check_kflag_member = btf_enum_check_kflag_member,
4462 	.log_details = btf_enum_log,
4463 	.show = btf_enum64_show,
4464 };
4465 
4466 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4467 				     const struct btf_type *t,
4468 				     u32 meta_left)
4469 {
4470 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4471 
4472 	if (meta_left < meta_needed) {
4473 		btf_verifier_log_basic(env, t,
4474 				       "meta_left:%u meta_needed:%u",
4475 				       meta_left, meta_needed);
4476 		return -EINVAL;
4477 	}
4478 
4479 	if (t->name_off) {
4480 		btf_verifier_log_type(env, t, "Invalid name");
4481 		return -EINVAL;
4482 	}
4483 
4484 	if (btf_type_kflag(t)) {
4485 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4486 		return -EINVAL;
4487 	}
4488 
4489 	btf_verifier_log_type(env, t, NULL);
4490 
4491 	return meta_needed;
4492 }
4493 
4494 static void btf_func_proto_log(struct btf_verifier_env *env,
4495 			       const struct btf_type *t)
4496 {
4497 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4498 	u16 nr_args = btf_type_vlen(t), i;
4499 
4500 	btf_verifier_log(env, "return=%u args=(", t->type);
4501 	if (!nr_args) {
4502 		btf_verifier_log(env, "void");
4503 		goto done;
4504 	}
4505 
4506 	if (nr_args == 1 && !args[0].type) {
4507 		/* Only one vararg */
4508 		btf_verifier_log(env, "vararg");
4509 		goto done;
4510 	}
4511 
4512 	btf_verifier_log(env, "%u %s", args[0].type,
4513 			 __btf_name_by_offset(env->btf,
4514 					      args[0].name_off));
4515 	for (i = 1; i < nr_args - 1; i++)
4516 		btf_verifier_log(env, ", %u %s", args[i].type,
4517 				 __btf_name_by_offset(env->btf,
4518 						      args[i].name_off));
4519 
4520 	if (nr_args > 1) {
4521 		const struct btf_param *last_arg = &args[nr_args - 1];
4522 
4523 		if (last_arg->type)
4524 			btf_verifier_log(env, ", %u %s", last_arg->type,
4525 					 __btf_name_by_offset(env->btf,
4526 							      last_arg->name_off));
4527 		else
4528 			btf_verifier_log(env, ", vararg");
4529 	}
4530 
4531 done:
4532 	btf_verifier_log(env, ")");
4533 }
4534 
4535 static struct btf_kind_operations func_proto_ops = {
4536 	.check_meta = btf_func_proto_check_meta,
4537 	.resolve = btf_df_resolve,
4538 	/*
4539 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4540 	 * a struct's member.
4541 	 *
4542 	 * It should be a function pointer instead.
4543 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4544 	 *
4545 	 * Hence, there is no btf_func_check_member().
4546 	 */
4547 	.check_member = btf_df_check_member,
4548 	.check_kflag_member = btf_df_check_kflag_member,
4549 	.log_details = btf_func_proto_log,
4550 	.show = btf_df_show,
4551 };
4552 
4553 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4554 			       const struct btf_type *t,
4555 			       u32 meta_left)
4556 {
4557 	if (!t->name_off ||
4558 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4559 		btf_verifier_log_type(env, t, "Invalid name");
4560 		return -EINVAL;
4561 	}
4562 
4563 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4564 		btf_verifier_log_type(env, t, "Invalid func linkage");
4565 		return -EINVAL;
4566 	}
4567 
4568 	if (btf_type_kflag(t)) {
4569 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4570 		return -EINVAL;
4571 	}
4572 
4573 	btf_verifier_log_type(env, t, NULL);
4574 
4575 	return 0;
4576 }
4577 
4578 static int btf_func_resolve(struct btf_verifier_env *env,
4579 			    const struct resolve_vertex *v)
4580 {
4581 	const struct btf_type *t = v->t;
4582 	u32 next_type_id = t->type;
4583 	int err;
4584 
4585 	err = btf_func_check(env, t);
4586 	if (err)
4587 		return err;
4588 
4589 	env_stack_pop_resolved(env, next_type_id, 0);
4590 	return 0;
4591 }
4592 
4593 static struct btf_kind_operations func_ops = {
4594 	.check_meta = btf_func_check_meta,
4595 	.resolve = btf_func_resolve,
4596 	.check_member = btf_df_check_member,
4597 	.check_kflag_member = btf_df_check_kflag_member,
4598 	.log_details = btf_ref_type_log,
4599 	.show = btf_df_show,
4600 };
4601 
4602 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4603 			      const struct btf_type *t,
4604 			      u32 meta_left)
4605 {
4606 	const struct btf_var *var;
4607 	u32 meta_needed = sizeof(*var);
4608 
4609 	if (meta_left < meta_needed) {
4610 		btf_verifier_log_basic(env, t,
4611 				       "meta_left:%u meta_needed:%u",
4612 				       meta_left, meta_needed);
4613 		return -EINVAL;
4614 	}
4615 
4616 	if (btf_type_vlen(t)) {
4617 		btf_verifier_log_type(env, t, "vlen != 0");
4618 		return -EINVAL;
4619 	}
4620 
4621 	if (btf_type_kflag(t)) {
4622 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4623 		return -EINVAL;
4624 	}
4625 
4626 	if (!t->name_off ||
4627 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4628 		btf_verifier_log_type(env, t, "Invalid name");
4629 		return -EINVAL;
4630 	}
4631 
4632 	/* A var cannot be in type void */
4633 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4634 		btf_verifier_log_type(env, t, "Invalid type_id");
4635 		return -EINVAL;
4636 	}
4637 
4638 	var = btf_type_var(t);
4639 	if (var->linkage != BTF_VAR_STATIC &&
4640 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4641 		btf_verifier_log_type(env, t, "Linkage not supported");
4642 		return -EINVAL;
4643 	}
4644 
4645 	btf_verifier_log_type(env, t, NULL);
4646 
4647 	return meta_needed;
4648 }
4649 
4650 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4651 {
4652 	const struct btf_var *var = btf_type_var(t);
4653 
4654 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4655 }
4656 
4657 static const struct btf_kind_operations var_ops = {
4658 	.check_meta		= btf_var_check_meta,
4659 	.resolve		= btf_var_resolve,
4660 	.check_member		= btf_df_check_member,
4661 	.check_kflag_member	= btf_df_check_kflag_member,
4662 	.log_details		= btf_var_log,
4663 	.show			= btf_var_show,
4664 };
4665 
4666 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4667 				  const struct btf_type *t,
4668 				  u32 meta_left)
4669 {
4670 	const struct btf_var_secinfo *vsi;
4671 	u64 last_vsi_end_off = 0, sum = 0;
4672 	u32 i, meta_needed;
4673 
4674 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4675 	if (meta_left < meta_needed) {
4676 		btf_verifier_log_basic(env, t,
4677 				       "meta_left:%u meta_needed:%u",
4678 				       meta_left, meta_needed);
4679 		return -EINVAL;
4680 	}
4681 
4682 	if (!t->size) {
4683 		btf_verifier_log_type(env, t, "size == 0");
4684 		return -EINVAL;
4685 	}
4686 
4687 	if (btf_type_kflag(t)) {
4688 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4689 		return -EINVAL;
4690 	}
4691 
4692 	if (!t->name_off ||
4693 	    !btf_name_valid_section(env->btf, t->name_off)) {
4694 		btf_verifier_log_type(env, t, "Invalid name");
4695 		return -EINVAL;
4696 	}
4697 
4698 	btf_verifier_log_type(env, t, NULL);
4699 
4700 	for_each_vsi(i, t, vsi) {
4701 		/* A var cannot be in type void */
4702 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4703 			btf_verifier_log_vsi(env, t, vsi,
4704 					     "Invalid type_id");
4705 			return -EINVAL;
4706 		}
4707 
4708 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4709 			btf_verifier_log_vsi(env, t, vsi,
4710 					     "Invalid offset");
4711 			return -EINVAL;
4712 		}
4713 
4714 		if (!vsi->size || vsi->size > t->size) {
4715 			btf_verifier_log_vsi(env, t, vsi,
4716 					     "Invalid size");
4717 			return -EINVAL;
4718 		}
4719 
4720 		last_vsi_end_off = vsi->offset + vsi->size;
4721 		if (last_vsi_end_off > t->size) {
4722 			btf_verifier_log_vsi(env, t, vsi,
4723 					     "Invalid offset+size");
4724 			return -EINVAL;
4725 		}
4726 
4727 		btf_verifier_log_vsi(env, t, vsi, NULL);
4728 		sum += vsi->size;
4729 	}
4730 
4731 	if (t->size < sum) {
4732 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4733 		return -EINVAL;
4734 	}
4735 
4736 	return meta_needed;
4737 }
4738 
4739 static int btf_datasec_resolve(struct btf_verifier_env *env,
4740 			       const struct resolve_vertex *v)
4741 {
4742 	const struct btf_var_secinfo *vsi;
4743 	struct btf *btf = env->btf;
4744 	u16 i;
4745 
4746 	env->resolve_mode = RESOLVE_TBD;
4747 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4748 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4749 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4750 								 var_type_id);
4751 		if (!var_type || !btf_type_is_var(var_type)) {
4752 			btf_verifier_log_vsi(env, v->t, vsi,
4753 					     "Not a VAR kind member");
4754 			return -EINVAL;
4755 		}
4756 
4757 		if (!env_type_is_resolve_sink(env, var_type) &&
4758 		    !env_type_is_resolved(env, var_type_id)) {
4759 			env_stack_set_next_member(env, i + 1);
4760 			return env_stack_push(env, var_type, var_type_id);
4761 		}
4762 
4763 		type_id = var_type->type;
4764 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4765 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4766 			return -EINVAL;
4767 		}
4768 
4769 		if (vsi->size < type_size) {
4770 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4771 			return -EINVAL;
4772 		}
4773 	}
4774 
4775 	env_stack_pop_resolved(env, 0, 0);
4776 	return 0;
4777 }
4778 
4779 static void btf_datasec_log(struct btf_verifier_env *env,
4780 			    const struct btf_type *t)
4781 {
4782 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4783 }
4784 
4785 static void btf_datasec_show(const struct btf *btf,
4786 			     const struct btf_type *t, u32 type_id,
4787 			     void *data, u8 bits_offset,
4788 			     struct btf_show *show)
4789 {
4790 	const struct btf_var_secinfo *vsi;
4791 	const struct btf_type *var;
4792 	u32 i;
4793 
4794 	if (!btf_show_start_type(show, t, type_id, data))
4795 		return;
4796 
4797 	btf_show_type_value(show, "section (\"%s\") = {",
4798 			    __btf_name_by_offset(btf, t->name_off));
4799 	for_each_vsi(i, t, vsi) {
4800 		var = btf_type_by_id(btf, vsi->type);
4801 		if (i)
4802 			btf_show(show, ",");
4803 		btf_type_ops(var)->show(btf, var, vsi->type,
4804 					data + vsi->offset, bits_offset, show);
4805 	}
4806 	btf_show_end_type(show);
4807 }
4808 
4809 static const struct btf_kind_operations datasec_ops = {
4810 	.check_meta		= btf_datasec_check_meta,
4811 	.resolve		= btf_datasec_resolve,
4812 	.check_member		= btf_df_check_member,
4813 	.check_kflag_member	= btf_df_check_kflag_member,
4814 	.log_details		= btf_datasec_log,
4815 	.show			= btf_datasec_show,
4816 };
4817 
4818 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4819 				const struct btf_type *t,
4820 				u32 meta_left)
4821 {
4822 	if (btf_type_vlen(t)) {
4823 		btf_verifier_log_type(env, t, "vlen != 0");
4824 		return -EINVAL;
4825 	}
4826 
4827 	if (btf_type_kflag(t)) {
4828 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4829 		return -EINVAL;
4830 	}
4831 
4832 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4833 	    t->size != 16) {
4834 		btf_verifier_log_type(env, t, "Invalid type_size");
4835 		return -EINVAL;
4836 	}
4837 
4838 	btf_verifier_log_type(env, t, NULL);
4839 
4840 	return 0;
4841 }
4842 
4843 static int btf_float_check_member(struct btf_verifier_env *env,
4844 				  const struct btf_type *struct_type,
4845 				  const struct btf_member *member,
4846 				  const struct btf_type *member_type)
4847 {
4848 	u64 start_offset_bytes;
4849 	u64 end_offset_bytes;
4850 	u64 misalign_bits;
4851 	u64 align_bytes;
4852 	u64 align_bits;
4853 
4854 	/* Different architectures have different alignment requirements, so
4855 	 * here we check only for the reasonable minimum. This way we ensure
4856 	 * that types after CO-RE can pass the kernel BTF verifier.
4857 	 */
4858 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4859 	align_bits = align_bytes * BITS_PER_BYTE;
4860 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4861 	if (misalign_bits) {
4862 		btf_verifier_log_member(env, struct_type, member,
4863 					"Member is not properly aligned");
4864 		return -EINVAL;
4865 	}
4866 
4867 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4868 	end_offset_bytes = start_offset_bytes + member_type->size;
4869 	if (end_offset_bytes > struct_type->size) {
4870 		btf_verifier_log_member(env, struct_type, member,
4871 					"Member exceeds struct_size");
4872 		return -EINVAL;
4873 	}
4874 
4875 	return 0;
4876 }
4877 
4878 static void btf_float_log(struct btf_verifier_env *env,
4879 			  const struct btf_type *t)
4880 {
4881 	btf_verifier_log(env, "size=%u", t->size);
4882 }
4883 
4884 static const struct btf_kind_operations float_ops = {
4885 	.check_meta = btf_float_check_meta,
4886 	.resolve = btf_df_resolve,
4887 	.check_member = btf_float_check_member,
4888 	.check_kflag_member = btf_generic_check_kflag_member,
4889 	.log_details = btf_float_log,
4890 	.show = btf_df_show,
4891 };
4892 
4893 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4894 			      const struct btf_type *t,
4895 			      u32 meta_left)
4896 {
4897 	const struct btf_decl_tag *tag;
4898 	u32 meta_needed = sizeof(*tag);
4899 	s32 component_idx;
4900 	const char *value;
4901 
4902 	if (meta_left < meta_needed) {
4903 		btf_verifier_log_basic(env, t,
4904 				       "meta_left:%u meta_needed:%u",
4905 				       meta_left, meta_needed);
4906 		return -EINVAL;
4907 	}
4908 
4909 	value = btf_name_by_offset(env->btf, t->name_off);
4910 	if (!value || !value[0]) {
4911 		btf_verifier_log_type(env, t, "Invalid value");
4912 		return -EINVAL;
4913 	}
4914 
4915 	if (btf_type_vlen(t)) {
4916 		btf_verifier_log_type(env, t, "vlen != 0");
4917 		return -EINVAL;
4918 	}
4919 
4920 	if (btf_type_kflag(t)) {
4921 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4922 		return -EINVAL;
4923 	}
4924 
4925 	component_idx = btf_type_decl_tag(t)->component_idx;
4926 	if (component_idx < -1) {
4927 		btf_verifier_log_type(env, t, "Invalid component_idx");
4928 		return -EINVAL;
4929 	}
4930 
4931 	btf_verifier_log_type(env, t, NULL);
4932 
4933 	return meta_needed;
4934 }
4935 
4936 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4937 			   const struct resolve_vertex *v)
4938 {
4939 	const struct btf_type *next_type;
4940 	const struct btf_type *t = v->t;
4941 	u32 next_type_id = t->type;
4942 	struct btf *btf = env->btf;
4943 	s32 component_idx;
4944 	u32 vlen;
4945 
4946 	next_type = btf_type_by_id(btf, next_type_id);
4947 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4948 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4949 		return -EINVAL;
4950 	}
4951 
4952 	if (!env_type_is_resolve_sink(env, next_type) &&
4953 	    !env_type_is_resolved(env, next_type_id))
4954 		return env_stack_push(env, next_type, next_type_id);
4955 
4956 	component_idx = btf_type_decl_tag(t)->component_idx;
4957 	if (component_idx != -1) {
4958 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4959 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4960 			return -EINVAL;
4961 		}
4962 
4963 		if (btf_type_is_struct(next_type)) {
4964 			vlen = btf_type_vlen(next_type);
4965 		} else {
4966 			/* next_type should be a function */
4967 			next_type = btf_type_by_id(btf, next_type->type);
4968 			vlen = btf_type_vlen(next_type);
4969 		}
4970 
4971 		if ((u32)component_idx >= vlen) {
4972 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4973 			return -EINVAL;
4974 		}
4975 	}
4976 
4977 	env_stack_pop_resolved(env, next_type_id, 0);
4978 
4979 	return 0;
4980 }
4981 
4982 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4983 {
4984 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4985 			 btf_type_decl_tag(t)->component_idx);
4986 }
4987 
4988 static const struct btf_kind_operations decl_tag_ops = {
4989 	.check_meta = btf_decl_tag_check_meta,
4990 	.resolve = btf_decl_tag_resolve,
4991 	.check_member = btf_df_check_member,
4992 	.check_kflag_member = btf_df_check_kflag_member,
4993 	.log_details = btf_decl_tag_log,
4994 	.show = btf_df_show,
4995 };
4996 
4997 static int btf_func_proto_check(struct btf_verifier_env *env,
4998 				const struct btf_type *t)
4999 {
5000 	const struct btf_type *ret_type;
5001 	const struct btf_param *args;
5002 	const struct btf *btf;
5003 	u16 nr_args, i;
5004 	int err;
5005 
5006 	btf = env->btf;
5007 	args = (const struct btf_param *)(t + 1);
5008 	nr_args = btf_type_vlen(t);
5009 
5010 	/* Check func return type which could be "void" (t->type == 0) */
5011 	if (t->type) {
5012 		u32 ret_type_id = t->type;
5013 
5014 		ret_type = btf_type_by_id(btf, ret_type_id);
5015 		if (!ret_type) {
5016 			btf_verifier_log_type(env, t, "Invalid return type");
5017 			return -EINVAL;
5018 		}
5019 
5020 		if (btf_type_is_resolve_source_only(ret_type)) {
5021 			btf_verifier_log_type(env, t, "Invalid return type");
5022 			return -EINVAL;
5023 		}
5024 
5025 		if (btf_type_needs_resolve(ret_type) &&
5026 		    !env_type_is_resolved(env, ret_type_id)) {
5027 			err = btf_resolve(env, ret_type, ret_type_id);
5028 			if (err)
5029 				return err;
5030 		}
5031 
5032 		/* Ensure the return type is a type that has a size */
5033 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5034 			btf_verifier_log_type(env, t, "Invalid return type");
5035 			return -EINVAL;
5036 		}
5037 	}
5038 
5039 	if (!nr_args)
5040 		return 0;
5041 
5042 	/* Last func arg type_id could be 0 if it is a vararg */
5043 	if (!args[nr_args - 1].type) {
5044 		if (args[nr_args - 1].name_off) {
5045 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5046 					      nr_args);
5047 			return -EINVAL;
5048 		}
5049 		nr_args--;
5050 	}
5051 
5052 	for (i = 0; i < nr_args; i++) {
5053 		const struct btf_type *arg_type;
5054 		u32 arg_type_id;
5055 
5056 		arg_type_id = args[i].type;
5057 		arg_type = btf_type_by_id(btf, arg_type_id);
5058 		if (!arg_type) {
5059 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5060 			return -EINVAL;
5061 		}
5062 
5063 		if (btf_type_is_resolve_source_only(arg_type)) {
5064 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5065 			return -EINVAL;
5066 		}
5067 
5068 		if (args[i].name_off &&
5069 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5070 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5071 			btf_verifier_log_type(env, t,
5072 					      "Invalid arg#%u", i + 1);
5073 			return -EINVAL;
5074 		}
5075 
5076 		if (btf_type_needs_resolve(arg_type) &&
5077 		    !env_type_is_resolved(env, arg_type_id)) {
5078 			err = btf_resolve(env, arg_type, arg_type_id);
5079 			if (err)
5080 				return err;
5081 		}
5082 
5083 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5084 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5085 			return -EINVAL;
5086 		}
5087 	}
5088 
5089 	return 0;
5090 }
5091 
5092 static int btf_func_check(struct btf_verifier_env *env,
5093 			  const struct btf_type *t)
5094 {
5095 	const struct btf_type *proto_type;
5096 	const struct btf_param *args;
5097 	const struct btf *btf;
5098 	u16 nr_args, i;
5099 
5100 	btf = env->btf;
5101 	proto_type = btf_type_by_id(btf, t->type);
5102 
5103 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5104 		btf_verifier_log_type(env, t, "Invalid type_id");
5105 		return -EINVAL;
5106 	}
5107 
5108 	args = (const struct btf_param *)(proto_type + 1);
5109 	nr_args = btf_type_vlen(proto_type);
5110 	for (i = 0; i < nr_args; i++) {
5111 		if (!args[i].name_off && args[i].type) {
5112 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5113 			return -EINVAL;
5114 		}
5115 	}
5116 
5117 	return 0;
5118 }
5119 
5120 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5121 	[BTF_KIND_INT] = &int_ops,
5122 	[BTF_KIND_PTR] = &ptr_ops,
5123 	[BTF_KIND_ARRAY] = &array_ops,
5124 	[BTF_KIND_STRUCT] = &struct_ops,
5125 	[BTF_KIND_UNION] = &struct_ops,
5126 	[BTF_KIND_ENUM] = &enum_ops,
5127 	[BTF_KIND_FWD] = &fwd_ops,
5128 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5129 	[BTF_KIND_VOLATILE] = &modifier_ops,
5130 	[BTF_KIND_CONST] = &modifier_ops,
5131 	[BTF_KIND_RESTRICT] = &modifier_ops,
5132 	[BTF_KIND_FUNC] = &func_ops,
5133 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5134 	[BTF_KIND_VAR] = &var_ops,
5135 	[BTF_KIND_DATASEC] = &datasec_ops,
5136 	[BTF_KIND_FLOAT] = &float_ops,
5137 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5138 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5139 	[BTF_KIND_ENUM64] = &enum64_ops,
5140 };
5141 
5142 static s32 btf_check_meta(struct btf_verifier_env *env,
5143 			  const struct btf_type *t,
5144 			  u32 meta_left)
5145 {
5146 	u32 saved_meta_left = meta_left;
5147 	s32 var_meta_size;
5148 
5149 	if (meta_left < sizeof(*t)) {
5150 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5151 				 env->log_type_id, meta_left, sizeof(*t));
5152 		return -EINVAL;
5153 	}
5154 	meta_left -= sizeof(*t);
5155 
5156 	if (t->info & ~BTF_INFO_MASK) {
5157 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5158 				 env->log_type_id, t->info);
5159 		return -EINVAL;
5160 	}
5161 
5162 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5163 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5164 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5165 				 env->log_type_id, BTF_INFO_KIND(t->info));
5166 		return -EINVAL;
5167 	}
5168 
5169 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5170 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5171 				 env->log_type_id, t->name_off);
5172 		return -EINVAL;
5173 	}
5174 
5175 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5176 	if (var_meta_size < 0)
5177 		return var_meta_size;
5178 
5179 	meta_left -= var_meta_size;
5180 
5181 	return saved_meta_left - meta_left;
5182 }
5183 
5184 static int btf_check_all_metas(struct btf_verifier_env *env)
5185 {
5186 	struct btf *btf = env->btf;
5187 	struct btf_header *hdr;
5188 	void *cur, *end;
5189 
5190 	hdr = &btf->hdr;
5191 	cur = btf->nohdr_data + hdr->type_off;
5192 	end = cur + hdr->type_len;
5193 
5194 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5195 	while (cur < end) {
5196 		struct btf_type *t = cur;
5197 		s32 meta_size;
5198 
5199 		meta_size = btf_check_meta(env, t, end - cur);
5200 		if (meta_size < 0)
5201 			return meta_size;
5202 
5203 		btf_add_type(env, t);
5204 		cur += meta_size;
5205 		env->log_type_id++;
5206 	}
5207 
5208 	return 0;
5209 }
5210 
5211 static bool btf_resolve_valid(struct btf_verifier_env *env,
5212 			      const struct btf_type *t,
5213 			      u32 type_id)
5214 {
5215 	struct btf *btf = env->btf;
5216 
5217 	if (!env_type_is_resolved(env, type_id))
5218 		return false;
5219 
5220 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5221 		return !btf_resolved_type_id(btf, type_id) &&
5222 		       !btf_resolved_type_size(btf, type_id);
5223 
5224 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5225 		return btf_resolved_type_id(btf, type_id) &&
5226 		       !btf_resolved_type_size(btf, type_id);
5227 
5228 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5229 	    btf_type_is_var(t)) {
5230 		t = btf_type_id_resolve(btf, &type_id);
5231 		return t &&
5232 		       !btf_type_is_modifier(t) &&
5233 		       !btf_type_is_var(t) &&
5234 		       !btf_type_is_datasec(t);
5235 	}
5236 
5237 	if (btf_type_is_array(t)) {
5238 		const struct btf_array *array = btf_type_array(t);
5239 		const struct btf_type *elem_type;
5240 		u32 elem_type_id = array->type;
5241 		u32 elem_size;
5242 
5243 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5244 		return elem_type && !btf_type_is_modifier(elem_type) &&
5245 			(array->nelems * elem_size ==
5246 			 btf_resolved_type_size(btf, type_id));
5247 	}
5248 
5249 	return false;
5250 }
5251 
5252 static int btf_resolve(struct btf_verifier_env *env,
5253 		       const struct btf_type *t, u32 type_id)
5254 {
5255 	u32 save_log_type_id = env->log_type_id;
5256 	const struct resolve_vertex *v;
5257 	int err = 0;
5258 
5259 	env->resolve_mode = RESOLVE_TBD;
5260 	env_stack_push(env, t, type_id);
5261 	while (!err && (v = env_stack_peak(env))) {
5262 		env->log_type_id = v->type_id;
5263 		err = btf_type_ops(v->t)->resolve(env, v);
5264 	}
5265 
5266 	env->log_type_id = type_id;
5267 	if (err == -E2BIG) {
5268 		btf_verifier_log_type(env, t,
5269 				      "Exceeded max resolving depth:%u",
5270 				      MAX_RESOLVE_DEPTH);
5271 	} else if (err == -EEXIST) {
5272 		btf_verifier_log_type(env, t, "Loop detected");
5273 	}
5274 
5275 	/* Final sanity check */
5276 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5277 		btf_verifier_log_type(env, t, "Invalid resolve state");
5278 		err = -EINVAL;
5279 	}
5280 
5281 	env->log_type_id = save_log_type_id;
5282 	return err;
5283 }
5284 
5285 static int btf_check_all_types(struct btf_verifier_env *env)
5286 {
5287 	struct btf *btf = env->btf;
5288 	const struct btf_type *t;
5289 	u32 type_id, i;
5290 	int err;
5291 
5292 	err = env_resolve_init(env);
5293 	if (err)
5294 		return err;
5295 
5296 	env->phase++;
5297 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5298 		type_id = btf->start_id + i;
5299 		t = btf_type_by_id(btf, type_id);
5300 
5301 		env->log_type_id = type_id;
5302 		if (btf_type_needs_resolve(t) &&
5303 		    !env_type_is_resolved(env, type_id)) {
5304 			err = btf_resolve(env, t, type_id);
5305 			if (err)
5306 				return err;
5307 		}
5308 
5309 		if (btf_type_is_func_proto(t)) {
5310 			err = btf_func_proto_check(env, t);
5311 			if (err)
5312 				return err;
5313 		}
5314 	}
5315 
5316 	return 0;
5317 }
5318 
5319 static int btf_parse_type_sec(struct btf_verifier_env *env)
5320 {
5321 	const struct btf_header *hdr = &env->btf->hdr;
5322 	int err;
5323 
5324 	/* Type section must align to 4 bytes */
5325 	if (hdr->type_off & (sizeof(u32) - 1)) {
5326 		btf_verifier_log(env, "Unaligned type_off");
5327 		return -EINVAL;
5328 	}
5329 
5330 	if (!env->btf->base_btf && !hdr->type_len) {
5331 		btf_verifier_log(env, "No type found");
5332 		return -EINVAL;
5333 	}
5334 
5335 	err = btf_check_all_metas(env);
5336 	if (err)
5337 		return err;
5338 
5339 	return btf_check_all_types(env);
5340 }
5341 
5342 static int btf_parse_str_sec(struct btf_verifier_env *env)
5343 {
5344 	const struct btf_header *hdr;
5345 	struct btf *btf = env->btf;
5346 	const char *start, *end;
5347 
5348 	hdr = &btf->hdr;
5349 	start = btf->nohdr_data + hdr->str_off;
5350 	end = start + hdr->str_len;
5351 
5352 	if (end != btf->data + btf->data_size) {
5353 		btf_verifier_log(env, "String section is not at the end");
5354 		return -EINVAL;
5355 	}
5356 
5357 	btf->strings = start;
5358 
5359 	if (btf->base_btf && !hdr->str_len)
5360 		return 0;
5361 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5362 		btf_verifier_log(env, "Invalid string section");
5363 		return -EINVAL;
5364 	}
5365 	if (!btf->base_btf && start[0]) {
5366 		btf_verifier_log(env, "Invalid string section");
5367 		return -EINVAL;
5368 	}
5369 
5370 	return 0;
5371 }
5372 
5373 static const size_t btf_sec_info_offset[] = {
5374 	offsetof(struct btf_header, type_off),
5375 	offsetof(struct btf_header, str_off),
5376 };
5377 
5378 static int btf_sec_info_cmp(const void *a, const void *b)
5379 {
5380 	const struct btf_sec_info *x = a;
5381 	const struct btf_sec_info *y = b;
5382 
5383 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5384 }
5385 
5386 static int btf_check_sec_info(struct btf_verifier_env *env,
5387 			      u32 btf_data_size)
5388 {
5389 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5390 	u32 total, expected_total, i;
5391 	const struct btf_header *hdr;
5392 	const struct btf *btf;
5393 
5394 	btf = env->btf;
5395 	hdr = &btf->hdr;
5396 
5397 	/* Populate the secs from hdr */
5398 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5399 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5400 						   btf_sec_info_offset[i]);
5401 
5402 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5403 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5404 
5405 	/* Check for gaps and overlap among sections */
5406 	total = 0;
5407 	expected_total = btf_data_size - hdr->hdr_len;
5408 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5409 		if (expected_total < secs[i].off) {
5410 			btf_verifier_log(env, "Invalid section offset");
5411 			return -EINVAL;
5412 		}
5413 		if (total < secs[i].off) {
5414 			/* gap */
5415 			btf_verifier_log(env, "Unsupported section found");
5416 			return -EINVAL;
5417 		}
5418 		if (total > secs[i].off) {
5419 			btf_verifier_log(env, "Section overlap found");
5420 			return -EINVAL;
5421 		}
5422 		if (expected_total - total < secs[i].len) {
5423 			btf_verifier_log(env,
5424 					 "Total section length too long");
5425 			return -EINVAL;
5426 		}
5427 		total += secs[i].len;
5428 	}
5429 
5430 	/* There is data other than hdr and known sections */
5431 	if (expected_total != total) {
5432 		btf_verifier_log(env, "Unsupported section found");
5433 		return -EINVAL;
5434 	}
5435 
5436 	return 0;
5437 }
5438 
5439 static int btf_parse_hdr(struct btf_verifier_env *env)
5440 {
5441 	u32 hdr_len, hdr_copy, btf_data_size;
5442 	const struct btf_header *hdr;
5443 	struct btf *btf;
5444 
5445 	btf = env->btf;
5446 	btf_data_size = btf->data_size;
5447 
5448 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5449 		btf_verifier_log(env, "hdr_len not found");
5450 		return -EINVAL;
5451 	}
5452 
5453 	hdr = btf->data;
5454 	hdr_len = hdr->hdr_len;
5455 	if (btf_data_size < hdr_len) {
5456 		btf_verifier_log(env, "btf_header not found");
5457 		return -EINVAL;
5458 	}
5459 
5460 	/* Ensure the unsupported header fields are zero */
5461 	if (hdr_len > sizeof(btf->hdr)) {
5462 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5463 		u8 *end = btf->data + hdr_len;
5464 
5465 		for (; expected_zero < end; expected_zero++) {
5466 			if (*expected_zero) {
5467 				btf_verifier_log(env, "Unsupported btf_header");
5468 				return -E2BIG;
5469 			}
5470 		}
5471 	}
5472 
5473 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5474 	memcpy(&btf->hdr, btf->data, hdr_copy);
5475 
5476 	hdr = &btf->hdr;
5477 
5478 	btf_verifier_log_hdr(env, btf_data_size);
5479 
5480 	if (hdr->magic != BTF_MAGIC) {
5481 		btf_verifier_log(env, "Invalid magic");
5482 		return -EINVAL;
5483 	}
5484 
5485 	if (hdr->version != BTF_VERSION) {
5486 		btf_verifier_log(env, "Unsupported version");
5487 		return -ENOTSUPP;
5488 	}
5489 
5490 	if (hdr->flags) {
5491 		btf_verifier_log(env, "Unsupported flags");
5492 		return -ENOTSUPP;
5493 	}
5494 
5495 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5496 		btf_verifier_log(env, "No data");
5497 		return -EINVAL;
5498 	}
5499 
5500 	return btf_check_sec_info(env, btf_data_size);
5501 }
5502 
5503 static const char *alloc_obj_fields[] = {
5504 	"bpf_spin_lock",
5505 	"bpf_list_head",
5506 	"bpf_list_node",
5507 	"bpf_rb_root",
5508 	"bpf_rb_node",
5509 	"bpf_refcount",
5510 };
5511 
5512 static struct btf_struct_metas *
5513 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5514 {
5515 	struct btf_struct_metas *tab = NULL;
5516 	struct btf_id_set *aof;
5517 	int i, n, id, ret;
5518 
5519 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5520 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5521 
5522 	aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5523 	if (!aof)
5524 		return ERR_PTR(-ENOMEM);
5525 	aof->cnt = 0;
5526 
5527 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5528 		/* Try to find whether this special type exists in user BTF, and
5529 		 * if so remember its ID so we can easily find it among members
5530 		 * of structs that we iterate in the next loop.
5531 		 */
5532 		struct btf_id_set *new_aof;
5533 
5534 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5535 		if (id < 0)
5536 			continue;
5537 
5538 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5539 				   GFP_KERNEL | __GFP_NOWARN);
5540 		if (!new_aof) {
5541 			ret = -ENOMEM;
5542 			goto free_aof;
5543 		}
5544 		aof = new_aof;
5545 		aof->ids[aof->cnt++] = id;
5546 	}
5547 
5548 	n = btf_nr_types(btf);
5549 	for (i = 1; i < n; i++) {
5550 		/* Try to find if there are kptrs in user BTF and remember their ID */
5551 		struct btf_id_set *new_aof;
5552 		struct btf_field_info tmp;
5553 		const struct btf_type *t;
5554 
5555 		t = btf_type_by_id(btf, i);
5556 		if (!t) {
5557 			ret = -EINVAL;
5558 			goto free_aof;
5559 		}
5560 
5561 		ret = btf_find_kptr(btf, t, 0, 0, &tmp);
5562 		if (ret != BTF_FIELD_FOUND)
5563 			continue;
5564 
5565 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5566 				   GFP_KERNEL | __GFP_NOWARN);
5567 		if (!new_aof) {
5568 			ret = -ENOMEM;
5569 			goto free_aof;
5570 		}
5571 		aof = new_aof;
5572 		aof->ids[aof->cnt++] = i;
5573 	}
5574 
5575 	if (!aof->cnt)
5576 		return NULL;
5577 	sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5578 
5579 	for (i = 1; i < n; i++) {
5580 		struct btf_struct_metas *new_tab;
5581 		const struct btf_member *member;
5582 		struct btf_struct_meta *type;
5583 		struct btf_record *record;
5584 		const struct btf_type *t;
5585 		int j, tab_cnt;
5586 
5587 		t = btf_type_by_id(btf, i);
5588 		if (!__btf_type_is_struct(t))
5589 			continue;
5590 
5591 		cond_resched();
5592 
5593 		for_each_member(j, t, member) {
5594 			if (btf_id_set_contains(aof, member->type))
5595 				goto parse;
5596 		}
5597 		continue;
5598 	parse:
5599 		tab_cnt = tab ? tab->cnt : 0;
5600 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5601 				   GFP_KERNEL | __GFP_NOWARN);
5602 		if (!new_tab) {
5603 			ret = -ENOMEM;
5604 			goto free;
5605 		}
5606 		if (!tab)
5607 			new_tab->cnt = 0;
5608 		tab = new_tab;
5609 
5610 		type = &tab->types[tab->cnt];
5611 		type->btf_id = i;
5612 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5613 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5614 						  BPF_KPTR, t->size);
5615 		/* The record cannot be unset, treat it as an error if so */
5616 		if (IS_ERR_OR_NULL(record)) {
5617 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5618 			goto free;
5619 		}
5620 		type->record = record;
5621 		tab->cnt++;
5622 	}
5623 	kfree(aof);
5624 	return tab;
5625 free:
5626 	btf_struct_metas_free(tab);
5627 free_aof:
5628 	kfree(aof);
5629 	return ERR_PTR(ret);
5630 }
5631 
5632 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5633 {
5634 	struct btf_struct_metas *tab;
5635 
5636 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5637 	tab = btf->struct_meta_tab;
5638 	if (!tab)
5639 		return NULL;
5640 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5641 }
5642 
5643 static int btf_check_type_tags(struct btf_verifier_env *env,
5644 			       struct btf *btf, int start_id)
5645 {
5646 	int i, n, good_id = start_id - 1;
5647 	bool in_tags;
5648 
5649 	n = btf_nr_types(btf);
5650 	for (i = start_id; i < n; i++) {
5651 		const struct btf_type *t;
5652 		int chain_limit = 32;
5653 		u32 cur_id = i;
5654 
5655 		t = btf_type_by_id(btf, i);
5656 		if (!t)
5657 			return -EINVAL;
5658 		if (!btf_type_is_modifier(t))
5659 			continue;
5660 
5661 		cond_resched();
5662 
5663 		in_tags = btf_type_is_type_tag(t);
5664 		while (btf_type_is_modifier(t)) {
5665 			if (!chain_limit--) {
5666 				btf_verifier_log(env, "Max chain length or cycle detected");
5667 				return -ELOOP;
5668 			}
5669 			if (btf_type_is_type_tag(t)) {
5670 				if (!in_tags) {
5671 					btf_verifier_log(env, "Type tags don't precede modifiers");
5672 					return -EINVAL;
5673 				}
5674 			} else if (in_tags) {
5675 				in_tags = false;
5676 			}
5677 			if (cur_id <= good_id)
5678 				break;
5679 			/* Move to next type */
5680 			cur_id = t->type;
5681 			t = btf_type_by_id(btf, cur_id);
5682 			if (!t)
5683 				return -EINVAL;
5684 		}
5685 		good_id = i;
5686 	}
5687 	return 0;
5688 }
5689 
5690 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5691 {
5692 	u32 log_true_size;
5693 	int err;
5694 
5695 	err = bpf_vlog_finalize(log, &log_true_size);
5696 
5697 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5698 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5699 				  &log_true_size, sizeof(log_true_size)))
5700 		err = -EFAULT;
5701 
5702 	return err;
5703 }
5704 
5705 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5706 {
5707 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5708 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5709 	struct btf_struct_metas *struct_meta_tab;
5710 	struct btf_verifier_env *env = NULL;
5711 	struct btf *btf = NULL;
5712 	u8 *data;
5713 	int err, ret;
5714 
5715 	if (attr->btf_size > BTF_MAX_SIZE)
5716 		return ERR_PTR(-E2BIG);
5717 
5718 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5719 	if (!env)
5720 		return ERR_PTR(-ENOMEM);
5721 
5722 	/* user could have requested verbose verifier output
5723 	 * and supplied buffer to store the verification trace
5724 	 */
5725 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5726 			    log_ubuf, attr->btf_log_size);
5727 	if (err)
5728 		goto errout_free;
5729 
5730 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5731 	if (!btf) {
5732 		err = -ENOMEM;
5733 		goto errout;
5734 	}
5735 	env->btf = btf;
5736 
5737 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5738 	if (!data) {
5739 		err = -ENOMEM;
5740 		goto errout;
5741 	}
5742 
5743 	btf->data = data;
5744 	btf->data_size = attr->btf_size;
5745 
5746 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5747 		err = -EFAULT;
5748 		goto errout;
5749 	}
5750 
5751 	err = btf_parse_hdr(env);
5752 	if (err)
5753 		goto errout;
5754 
5755 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5756 
5757 	err = btf_parse_str_sec(env);
5758 	if (err)
5759 		goto errout;
5760 
5761 	err = btf_parse_type_sec(env);
5762 	if (err)
5763 		goto errout;
5764 
5765 	err = btf_check_type_tags(env, btf, 1);
5766 	if (err)
5767 		goto errout;
5768 
5769 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5770 	if (IS_ERR(struct_meta_tab)) {
5771 		err = PTR_ERR(struct_meta_tab);
5772 		goto errout;
5773 	}
5774 	btf->struct_meta_tab = struct_meta_tab;
5775 
5776 	if (struct_meta_tab) {
5777 		int i;
5778 
5779 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5780 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5781 			if (err < 0)
5782 				goto errout_meta;
5783 		}
5784 	}
5785 
5786 	err = finalize_log(&env->log, uattr, uattr_size);
5787 	if (err)
5788 		goto errout_free;
5789 
5790 	btf_verifier_env_free(env);
5791 	refcount_set(&btf->refcnt, 1);
5792 	return btf;
5793 
5794 errout_meta:
5795 	btf_free_struct_meta_tab(btf);
5796 errout:
5797 	/* overwrite err with -ENOSPC or -EFAULT */
5798 	ret = finalize_log(&env->log, uattr, uattr_size);
5799 	if (ret)
5800 		err = ret;
5801 errout_free:
5802 	btf_verifier_env_free(env);
5803 	if (btf)
5804 		btf_free(btf);
5805 	return ERR_PTR(err);
5806 }
5807 
5808 extern char __start_BTF[];
5809 extern char __stop_BTF[];
5810 extern struct btf *btf_vmlinux;
5811 
5812 #define BPF_MAP_TYPE(_id, _ops)
5813 #define BPF_LINK_TYPE(_id, _name)
5814 static union {
5815 	struct bpf_ctx_convert {
5816 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5817 	prog_ctx_type _id##_prog; \
5818 	kern_ctx_type _id##_kern;
5819 #include <linux/bpf_types.h>
5820 #undef BPF_PROG_TYPE
5821 	} *__t;
5822 	/* 't' is written once under lock. Read many times. */
5823 	const struct btf_type *t;
5824 } bpf_ctx_convert;
5825 enum {
5826 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5827 	__ctx_convert##_id,
5828 #include <linux/bpf_types.h>
5829 #undef BPF_PROG_TYPE
5830 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5831 };
5832 static u8 bpf_ctx_convert_map[] = {
5833 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5834 	[_id] = __ctx_convert##_id,
5835 #include <linux/bpf_types.h>
5836 #undef BPF_PROG_TYPE
5837 	0, /* avoid empty array */
5838 };
5839 #undef BPF_MAP_TYPE
5840 #undef BPF_LINK_TYPE
5841 
5842 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5843 {
5844 	const struct btf_type *conv_struct;
5845 	const struct btf_member *ctx_type;
5846 
5847 	conv_struct = bpf_ctx_convert.t;
5848 	if (!conv_struct)
5849 		return NULL;
5850 	/* prog_type is valid bpf program type. No need for bounds check. */
5851 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5852 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5853 	 * Like 'struct __sk_buff'
5854 	 */
5855 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5856 }
5857 
5858 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5859 {
5860 	const struct btf_type *conv_struct;
5861 	const struct btf_member *ctx_type;
5862 
5863 	conv_struct = bpf_ctx_convert.t;
5864 	if (!conv_struct)
5865 		return -EFAULT;
5866 	/* prog_type is valid bpf program type. No need for bounds check. */
5867 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5868 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5869 	 * Like 'struct sk_buff'
5870 	 */
5871 	return ctx_type->type;
5872 }
5873 
5874 bool btf_is_projection_of(const char *pname, const char *tname)
5875 {
5876 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5877 		return true;
5878 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5879 		return true;
5880 	return false;
5881 }
5882 
5883 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5884 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5885 			  int arg)
5886 {
5887 	const struct btf_type *ctx_type;
5888 	const char *tname, *ctx_tname;
5889 
5890 	t = btf_type_by_id(btf, t->type);
5891 
5892 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5893 	 * check before we skip all the typedef below.
5894 	 */
5895 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5896 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5897 			t = btf_type_by_id(btf, t->type);
5898 
5899 		if (btf_type_is_typedef(t)) {
5900 			tname = btf_name_by_offset(btf, t->name_off);
5901 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5902 				return true;
5903 		}
5904 	}
5905 
5906 	while (btf_type_is_modifier(t))
5907 		t = btf_type_by_id(btf, t->type);
5908 	if (!btf_type_is_struct(t)) {
5909 		/* Only pointer to struct is supported for now.
5910 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5911 		 * is not supported yet.
5912 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5913 		 */
5914 		return false;
5915 	}
5916 	tname = btf_name_by_offset(btf, t->name_off);
5917 	if (!tname) {
5918 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5919 		return false;
5920 	}
5921 
5922 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5923 	if (!ctx_type) {
5924 		bpf_log(log, "btf_vmlinux is malformed\n");
5925 		/* should not happen */
5926 		return false;
5927 	}
5928 again:
5929 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5930 	if (!ctx_tname) {
5931 		/* should not happen */
5932 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5933 		return false;
5934 	}
5935 	/* program types without named context types work only with arg:ctx tag */
5936 	if (ctx_tname[0] == '\0')
5937 		return false;
5938 	/* only compare that prog's ctx type name is the same as
5939 	 * kernel expects. No need to compare field by field.
5940 	 * It's ok for bpf prog to do:
5941 	 * struct __sk_buff {};
5942 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5943 	 * { // no fields of skb are ever used }
5944 	 */
5945 	if (btf_is_projection_of(ctx_tname, tname))
5946 		return true;
5947 	if (strcmp(ctx_tname, tname)) {
5948 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5949 		 * underlying struct and check name again
5950 		 */
5951 		if (!btf_type_is_modifier(ctx_type))
5952 			return false;
5953 		while (btf_type_is_modifier(ctx_type))
5954 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5955 		goto again;
5956 	}
5957 	return true;
5958 }
5959 
5960 /* forward declarations for arch-specific underlying types of
5961  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5962  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5963  * works correctly with __builtin_types_compatible_p() on respective
5964  * architectures
5965  */
5966 struct user_regs_struct;
5967 struct user_pt_regs;
5968 
5969 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5970 				      const struct btf_type *t, int arg,
5971 				      enum bpf_prog_type prog_type,
5972 				      enum bpf_attach_type attach_type)
5973 {
5974 	const struct btf_type *ctx_type;
5975 	const char *tname, *ctx_tname;
5976 
5977 	if (!btf_is_ptr(t)) {
5978 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5979 		return -EINVAL;
5980 	}
5981 	t = btf_type_by_id(btf, t->type);
5982 
5983 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5984 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5985 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5986 			t = btf_type_by_id(btf, t->type);
5987 
5988 		if (btf_type_is_typedef(t)) {
5989 			tname = btf_name_by_offset(btf, t->name_off);
5990 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5991 				return 0;
5992 		}
5993 	}
5994 
5995 	/* all other program types don't use typedefs for context type */
5996 	while (btf_type_is_modifier(t))
5997 		t = btf_type_by_id(btf, t->type);
5998 
5999 	/* `void *ctx __arg_ctx` is always valid */
6000 	if (btf_type_is_void(t))
6001 		return 0;
6002 
6003 	tname = btf_name_by_offset(btf, t->name_off);
6004 	if (str_is_empty(tname)) {
6005 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6006 		return -EINVAL;
6007 	}
6008 
6009 	/* special cases */
6010 	switch (prog_type) {
6011 	case BPF_PROG_TYPE_KPROBE:
6012 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6013 			return 0;
6014 		break;
6015 	case BPF_PROG_TYPE_PERF_EVENT:
6016 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6017 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6018 			return 0;
6019 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6020 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6021 			return 0;
6022 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6023 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6024 			return 0;
6025 		break;
6026 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6027 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6028 		/* allow u64* as ctx */
6029 		if (btf_is_int(t) && t->size == 8)
6030 			return 0;
6031 		break;
6032 	case BPF_PROG_TYPE_TRACING:
6033 		switch (attach_type) {
6034 		case BPF_TRACE_RAW_TP:
6035 			/* tp_btf program is TRACING, so need special case here */
6036 			if (__btf_type_is_struct(t) &&
6037 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6038 				return 0;
6039 			/* allow u64* as ctx */
6040 			if (btf_is_int(t) && t->size == 8)
6041 				return 0;
6042 			break;
6043 		case BPF_TRACE_ITER:
6044 			/* allow struct bpf_iter__xxx types only */
6045 			if (__btf_type_is_struct(t) &&
6046 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6047 				return 0;
6048 			break;
6049 		case BPF_TRACE_FENTRY:
6050 		case BPF_TRACE_FEXIT:
6051 		case BPF_MODIFY_RETURN:
6052 			/* allow u64* as ctx */
6053 			if (btf_is_int(t) && t->size == 8)
6054 				return 0;
6055 			break;
6056 		default:
6057 			break;
6058 		}
6059 		break;
6060 	case BPF_PROG_TYPE_LSM:
6061 	case BPF_PROG_TYPE_STRUCT_OPS:
6062 		/* allow u64* as ctx */
6063 		if (btf_is_int(t) && t->size == 8)
6064 			return 0;
6065 		break;
6066 	case BPF_PROG_TYPE_TRACEPOINT:
6067 	case BPF_PROG_TYPE_SYSCALL:
6068 	case BPF_PROG_TYPE_EXT:
6069 		return 0; /* anything goes */
6070 	default:
6071 		break;
6072 	}
6073 
6074 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6075 	if (!ctx_type) {
6076 		/* should not happen */
6077 		bpf_log(log, "btf_vmlinux is malformed\n");
6078 		return -EINVAL;
6079 	}
6080 
6081 	/* resolve typedefs and check that underlying structs are matching as well */
6082 	while (btf_type_is_modifier(ctx_type))
6083 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6084 
6085 	/* if program type doesn't have distinctly named struct type for
6086 	 * context, then __arg_ctx argument can only be `void *`, which we
6087 	 * already checked above
6088 	 */
6089 	if (!__btf_type_is_struct(ctx_type)) {
6090 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6091 		return -EINVAL;
6092 	}
6093 
6094 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6095 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6096 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6097 		return -EINVAL;
6098 	}
6099 
6100 	return 0;
6101 }
6102 
6103 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6104 				     struct btf *btf,
6105 				     const struct btf_type *t,
6106 				     enum bpf_prog_type prog_type,
6107 				     int arg)
6108 {
6109 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6110 		return -ENOENT;
6111 	return find_kern_ctx_type_id(prog_type);
6112 }
6113 
6114 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6115 {
6116 	const struct btf_member *kctx_member;
6117 	const struct btf_type *conv_struct;
6118 	const struct btf_type *kctx_type;
6119 	u32 kctx_type_id;
6120 
6121 	conv_struct = bpf_ctx_convert.t;
6122 	/* get member for kernel ctx type */
6123 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6124 	kctx_type_id = kctx_member->type;
6125 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6126 	if (!btf_type_is_struct(kctx_type)) {
6127 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6128 		return -EINVAL;
6129 	}
6130 
6131 	return kctx_type_id;
6132 }
6133 
6134 BTF_ID_LIST(bpf_ctx_convert_btf_id)
6135 BTF_ID(struct, bpf_ctx_convert)
6136 
6137 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6138 				  void *data, unsigned int data_size)
6139 {
6140 	struct btf *btf = NULL;
6141 	int err;
6142 
6143 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6144 		return ERR_PTR(-ENOENT);
6145 
6146 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6147 	if (!btf) {
6148 		err = -ENOMEM;
6149 		goto errout;
6150 	}
6151 	env->btf = btf;
6152 
6153 	btf->data = data;
6154 	btf->data_size = data_size;
6155 	btf->kernel_btf = true;
6156 	snprintf(btf->name, sizeof(btf->name), "%s", name);
6157 
6158 	err = btf_parse_hdr(env);
6159 	if (err)
6160 		goto errout;
6161 
6162 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6163 
6164 	err = btf_parse_str_sec(env);
6165 	if (err)
6166 		goto errout;
6167 
6168 	err = btf_check_all_metas(env);
6169 	if (err)
6170 		goto errout;
6171 
6172 	err = btf_check_type_tags(env, btf, 1);
6173 	if (err)
6174 		goto errout;
6175 
6176 	refcount_set(&btf->refcnt, 1);
6177 
6178 	return btf;
6179 
6180 errout:
6181 	if (btf) {
6182 		kvfree(btf->types);
6183 		kfree(btf);
6184 	}
6185 	return ERR_PTR(err);
6186 }
6187 
6188 struct btf *btf_parse_vmlinux(void)
6189 {
6190 	struct btf_verifier_env *env = NULL;
6191 	struct bpf_verifier_log *log;
6192 	struct btf *btf;
6193 	int err;
6194 
6195 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6196 	if (!env)
6197 		return ERR_PTR(-ENOMEM);
6198 
6199 	log = &env->log;
6200 	log->level = BPF_LOG_KERNEL;
6201 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6202 	if (IS_ERR(btf))
6203 		goto err_out;
6204 
6205 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6206 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6207 	err = btf_alloc_id(btf);
6208 	if (err) {
6209 		btf_free(btf);
6210 		btf = ERR_PTR(err);
6211 	}
6212 err_out:
6213 	btf_verifier_env_free(env);
6214 	return btf;
6215 }
6216 
6217 /* If .BTF_ids section was created with distilled base BTF, both base and
6218  * split BTF ids will need to be mapped to actual base/split ids for
6219  * BTF now that it has been relocated.
6220  */
6221 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6222 {
6223 	if (!btf->base_btf || !btf->base_id_map)
6224 		return id;
6225 	return btf->base_id_map[id];
6226 }
6227 
6228 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6229 
6230 static struct btf *btf_parse_module(const char *module_name, const void *data,
6231 				    unsigned int data_size, void *base_data,
6232 				    unsigned int base_data_size)
6233 {
6234 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6235 	struct btf_verifier_env *env = NULL;
6236 	struct bpf_verifier_log *log;
6237 	int err = 0;
6238 
6239 	vmlinux_btf = bpf_get_btf_vmlinux();
6240 	if (IS_ERR(vmlinux_btf))
6241 		return vmlinux_btf;
6242 	if (!vmlinux_btf)
6243 		return ERR_PTR(-EINVAL);
6244 
6245 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6246 	if (!env)
6247 		return ERR_PTR(-ENOMEM);
6248 
6249 	log = &env->log;
6250 	log->level = BPF_LOG_KERNEL;
6251 
6252 	if (base_data) {
6253 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6254 		if (IS_ERR(base_btf)) {
6255 			err = PTR_ERR(base_btf);
6256 			goto errout;
6257 		}
6258 	} else {
6259 		base_btf = vmlinux_btf;
6260 	}
6261 
6262 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6263 	if (!btf) {
6264 		err = -ENOMEM;
6265 		goto errout;
6266 	}
6267 	env->btf = btf;
6268 
6269 	btf->base_btf = base_btf;
6270 	btf->start_id = base_btf->nr_types;
6271 	btf->start_str_off = base_btf->hdr.str_len;
6272 	btf->kernel_btf = true;
6273 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6274 
6275 	btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6276 	if (!btf->data) {
6277 		err = -ENOMEM;
6278 		goto errout;
6279 	}
6280 	btf->data_size = data_size;
6281 
6282 	err = btf_parse_hdr(env);
6283 	if (err)
6284 		goto errout;
6285 
6286 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6287 
6288 	err = btf_parse_str_sec(env);
6289 	if (err)
6290 		goto errout;
6291 
6292 	err = btf_check_all_metas(env);
6293 	if (err)
6294 		goto errout;
6295 
6296 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6297 	if (err)
6298 		goto errout;
6299 
6300 	if (base_btf != vmlinux_btf) {
6301 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6302 		if (err)
6303 			goto errout;
6304 		btf_free(base_btf);
6305 		base_btf = vmlinux_btf;
6306 	}
6307 
6308 	btf_verifier_env_free(env);
6309 	refcount_set(&btf->refcnt, 1);
6310 	return btf;
6311 
6312 errout:
6313 	btf_verifier_env_free(env);
6314 	if (base_btf != vmlinux_btf)
6315 		btf_free(base_btf);
6316 	if (btf) {
6317 		kvfree(btf->data);
6318 		kvfree(btf->types);
6319 		kfree(btf);
6320 	}
6321 	return ERR_PTR(err);
6322 }
6323 
6324 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6325 
6326 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6327 {
6328 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6329 
6330 	if (tgt_prog)
6331 		return tgt_prog->aux->btf;
6332 	else
6333 		return prog->aux->attach_btf;
6334 }
6335 
6336 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6337 {
6338 	/* skip modifiers */
6339 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6340 
6341 	return btf_type_is_int(t);
6342 }
6343 
6344 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6345 			   int off)
6346 {
6347 	const struct btf_param *args;
6348 	const struct btf_type *t;
6349 	u32 offset = 0, nr_args;
6350 	int i;
6351 
6352 	if (!func_proto)
6353 		return off / 8;
6354 
6355 	nr_args = btf_type_vlen(func_proto);
6356 	args = (const struct btf_param *)(func_proto + 1);
6357 	for (i = 0; i < nr_args; i++) {
6358 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6359 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6360 		if (off < offset)
6361 			return i;
6362 	}
6363 
6364 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6365 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6366 	if (off < offset)
6367 		return nr_args;
6368 
6369 	return nr_args + 1;
6370 }
6371 
6372 static bool prog_args_trusted(const struct bpf_prog *prog)
6373 {
6374 	enum bpf_attach_type atype = prog->expected_attach_type;
6375 
6376 	switch (prog->type) {
6377 	case BPF_PROG_TYPE_TRACING:
6378 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6379 	case BPF_PROG_TYPE_LSM:
6380 		return bpf_lsm_is_trusted(prog);
6381 	case BPF_PROG_TYPE_STRUCT_OPS:
6382 		return true;
6383 	default:
6384 		return false;
6385 	}
6386 }
6387 
6388 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6389 		       u32 arg_no)
6390 {
6391 	const struct btf_param *args;
6392 	const struct btf_type *t;
6393 	int off = 0, i;
6394 	u32 sz;
6395 
6396 	args = btf_params(func_proto);
6397 	for (i = 0; i < arg_no; i++) {
6398 		t = btf_type_by_id(btf, args[i].type);
6399 		t = btf_resolve_size(btf, t, &sz);
6400 		if (IS_ERR(t))
6401 			return PTR_ERR(t);
6402 		off += roundup(sz, 8);
6403 	}
6404 
6405 	return off;
6406 }
6407 
6408 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6409 		    const struct bpf_prog *prog,
6410 		    struct bpf_insn_access_aux *info)
6411 {
6412 	const struct btf_type *t = prog->aux->attach_func_proto;
6413 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6414 	struct btf *btf = bpf_prog_get_target_btf(prog);
6415 	const char *tname = prog->aux->attach_func_name;
6416 	struct bpf_verifier_log *log = info->log;
6417 	const struct btf_param *args;
6418 	const char *tag_value;
6419 	u32 nr_args, arg;
6420 	int i, ret;
6421 
6422 	if (off % 8) {
6423 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6424 			tname, off);
6425 		return false;
6426 	}
6427 	arg = get_ctx_arg_idx(btf, t, off);
6428 	args = (const struct btf_param *)(t + 1);
6429 	/* if (t == NULL) Fall back to default BPF prog with
6430 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6431 	 */
6432 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6433 	if (prog->aux->attach_btf_trace) {
6434 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6435 		args++;
6436 		nr_args--;
6437 	}
6438 
6439 	if (arg > nr_args) {
6440 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6441 			tname, arg + 1);
6442 		return false;
6443 	}
6444 
6445 	if (arg == nr_args) {
6446 		switch (prog->expected_attach_type) {
6447 		case BPF_LSM_MAC:
6448 			/* mark we are accessing the return value */
6449 			info->is_retval = true;
6450 			fallthrough;
6451 		case BPF_LSM_CGROUP:
6452 		case BPF_TRACE_FEXIT:
6453 			/* When LSM programs are attached to void LSM hooks
6454 			 * they use FEXIT trampolines and when attached to
6455 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6456 			 *
6457 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6458 			 * the check:
6459 			 *
6460 			 *	if (ret_type != 'int')
6461 			 *		return -EINVAL;
6462 			 *
6463 			 * is _not_ done here. This is still safe as LSM hooks
6464 			 * have only void and int return types.
6465 			 */
6466 			if (!t)
6467 				return true;
6468 			t = btf_type_by_id(btf, t->type);
6469 			break;
6470 		case BPF_MODIFY_RETURN:
6471 			/* For now the BPF_MODIFY_RETURN can only be attached to
6472 			 * functions that return an int.
6473 			 */
6474 			if (!t)
6475 				return false;
6476 
6477 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6478 			if (!btf_type_is_small_int(t)) {
6479 				bpf_log(log,
6480 					"ret type %s not allowed for fmod_ret\n",
6481 					btf_type_str(t));
6482 				return false;
6483 			}
6484 			break;
6485 		default:
6486 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6487 				tname, arg + 1);
6488 			return false;
6489 		}
6490 	} else {
6491 		if (!t)
6492 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6493 			return true;
6494 		t = btf_type_by_id(btf, args[arg].type);
6495 	}
6496 
6497 	/* skip modifiers */
6498 	while (btf_type_is_modifier(t))
6499 		t = btf_type_by_id(btf, t->type);
6500 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6501 		/* accessing a scalar */
6502 		return true;
6503 	if (!btf_type_is_ptr(t)) {
6504 		bpf_log(log,
6505 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6506 			tname, arg,
6507 			__btf_name_by_offset(btf, t->name_off),
6508 			btf_type_str(t));
6509 		return false;
6510 	}
6511 
6512 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6513 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6514 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6515 		u32 type, flag;
6516 
6517 		type = base_type(ctx_arg_info->reg_type);
6518 		flag = type_flag(ctx_arg_info->reg_type);
6519 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6520 		    (flag & PTR_MAYBE_NULL)) {
6521 			info->reg_type = ctx_arg_info->reg_type;
6522 			return true;
6523 		}
6524 	}
6525 
6526 	if (t->type == 0)
6527 		/* This is a pointer to void.
6528 		 * It is the same as scalar from the verifier safety pov.
6529 		 * No further pointer walking is allowed.
6530 		 */
6531 		return true;
6532 
6533 	if (is_int_ptr(btf, t))
6534 		return true;
6535 
6536 	/* this is a pointer to another type */
6537 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6538 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6539 
6540 		if (ctx_arg_info->offset == off) {
6541 			if (!ctx_arg_info->btf_id) {
6542 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6543 				return false;
6544 			}
6545 
6546 			info->reg_type = ctx_arg_info->reg_type;
6547 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6548 			info->btf_id = ctx_arg_info->btf_id;
6549 			return true;
6550 		}
6551 	}
6552 
6553 	info->reg_type = PTR_TO_BTF_ID;
6554 	if (prog_args_trusted(prog))
6555 		info->reg_type |= PTR_TRUSTED;
6556 
6557 	if (tgt_prog) {
6558 		enum bpf_prog_type tgt_type;
6559 
6560 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6561 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6562 		else
6563 			tgt_type = tgt_prog->type;
6564 
6565 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6566 		if (ret > 0) {
6567 			info->btf = btf_vmlinux;
6568 			info->btf_id = ret;
6569 			return true;
6570 		} else {
6571 			return false;
6572 		}
6573 	}
6574 
6575 	info->btf = btf;
6576 	info->btf_id = t->type;
6577 	t = btf_type_by_id(btf, t->type);
6578 
6579 	if (btf_type_is_type_tag(t)) {
6580 		tag_value = __btf_name_by_offset(btf, t->name_off);
6581 		if (strcmp(tag_value, "user") == 0)
6582 			info->reg_type |= MEM_USER;
6583 		if (strcmp(tag_value, "percpu") == 0)
6584 			info->reg_type |= MEM_PERCPU;
6585 	}
6586 
6587 	/* skip modifiers */
6588 	while (btf_type_is_modifier(t)) {
6589 		info->btf_id = t->type;
6590 		t = btf_type_by_id(btf, t->type);
6591 	}
6592 	if (!btf_type_is_struct(t)) {
6593 		bpf_log(log,
6594 			"func '%s' arg%d type %s is not a struct\n",
6595 			tname, arg, btf_type_str(t));
6596 		return false;
6597 	}
6598 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6599 		tname, arg, info->btf_id, btf_type_str(t),
6600 		__btf_name_by_offset(btf, t->name_off));
6601 	return true;
6602 }
6603 EXPORT_SYMBOL_GPL(btf_ctx_access);
6604 
6605 enum bpf_struct_walk_result {
6606 	/* < 0 error */
6607 	WALK_SCALAR = 0,
6608 	WALK_PTR,
6609 	WALK_STRUCT,
6610 };
6611 
6612 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6613 			   const struct btf_type *t, int off, int size,
6614 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6615 			   const char **field_name)
6616 {
6617 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6618 	const struct btf_type *mtype, *elem_type = NULL;
6619 	const struct btf_member *member;
6620 	const char *tname, *mname, *tag_value;
6621 	u32 vlen, elem_id, mid;
6622 
6623 again:
6624 	if (btf_type_is_modifier(t))
6625 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6626 	tname = __btf_name_by_offset(btf, t->name_off);
6627 	if (!btf_type_is_struct(t)) {
6628 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6629 		return -EINVAL;
6630 	}
6631 
6632 	vlen = btf_type_vlen(t);
6633 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6634 		/*
6635 		 * walking unions yields untrusted pointers
6636 		 * with exception of __bpf_md_ptr and other
6637 		 * unions with a single member
6638 		 */
6639 		*flag |= PTR_UNTRUSTED;
6640 
6641 	if (off + size > t->size) {
6642 		/* If the last element is a variable size array, we may
6643 		 * need to relax the rule.
6644 		 */
6645 		struct btf_array *array_elem;
6646 
6647 		if (vlen == 0)
6648 			goto error;
6649 
6650 		member = btf_type_member(t) + vlen - 1;
6651 		mtype = btf_type_skip_modifiers(btf, member->type,
6652 						NULL);
6653 		if (!btf_type_is_array(mtype))
6654 			goto error;
6655 
6656 		array_elem = (struct btf_array *)(mtype + 1);
6657 		if (array_elem->nelems != 0)
6658 			goto error;
6659 
6660 		moff = __btf_member_bit_offset(t, member) / 8;
6661 		if (off < moff)
6662 			goto error;
6663 
6664 		/* allow structure and integer */
6665 		t = btf_type_skip_modifiers(btf, array_elem->type,
6666 					    NULL);
6667 
6668 		if (btf_type_is_int(t))
6669 			return WALK_SCALAR;
6670 
6671 		if (!btf_type_is_struct(t))
6672 			goto error;
6673 
6674 		off = (off - moff) % t->size;
6675 		goto again;
6676 
6677 error:
6678 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6679 			tname, off, size);
6680 		return -EACCES;
6681 	}
6682 
6683 	for_each_member(i, t, member) {
6684 		/* offset of the field in bytes */
6685 		moff = __btf_member_bit_offset(t, member) / 8;
6686 		if (off + size <= moff)
6687 			/* won't find anything, field is already too far */
6688 			break;
6689 
6690 		if (__btf_member_bitfield_size(t, member)) {
6691 			u32 end_bit = __btf_member_bit_offset(t, member) +
6692 				__btf_member_bitfield_size(t, member);
6693 
6694 			/* off <= moff instead of off == moff because clang
6695 			 * does not generate a BTF member for anonymous
6696 			 * bitfield like the ":16" here:
6697 			 * struct {
6698 			 *	int :16;
6699 			 *	int x:8;
6700 			 * };
6701 			 */
6702 			if (off <= moff &&
6703 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6704 				return WALK_SCALAR;
6705 
6706 			/* off may be accessing a following member
6707 			 *
6708 			 * or
6709 			 *
6710 			 * Doing partial access at either end of this
6711 			 * bitfield.  Continue on this case also to
6712 			 * treat it as not accessing this bitfield
6713 			 * and eventually error out as field not
6714 			 * found to keep it simple.
6715 			 * It could be relaxed if there was a legit
6716 			 * partial access case later.
6717 			 */
6718 			continue;
6719 		}
6720 
6721 		/* In case of "off" is pointing to holes of a struct */
6722 		if (off < moff)
6723 			break;
6724 
6725 		/* type of the field */
6726 		mid = member->type;
6727 		mtype = btf_type_by_id(btf, member->type);
6728 		mname = __btf_name_by_offset(btf, member->name_off);
6729 
6730 		mtype = __btf_resolve_size(btf, mtype, &msize,
6731 					   &elem_type, &elem_id, &total_nelems,
6732 					   &mid);
6733 		if (IS_ERR(mtype)) {
6734 			bpf_log(log, "field %s doesn't have size\n", mname);
6735 			return -EFAULT;
6736 		}
6737 
6738 		mtrue_end = moff + msize;
6739 		if (off >= mtrue_end)
6740 			/* no overlap with member, keep iterating */
6741 			continue;
6742 
6743 		if (btf_type_is_array(mtype)) {
6744 			u32 elem_idx;
6745 
6746 			/* __btf_resolve_size() above helps to
6747 			 * linearize a multi-dimensional array.
6748 			 *
6749 			 * The logic here is treating an array
6750 			 * in a struct as the following way:
6751 			 *
6752 			 * struct outer {
6753 			 *	struct inner array[2][2];
6754 			 * };
6755 			 *
6756 			 * looks like:
6757 			 *
6758 			 * struct outer {
6759 			 *	struct inner array_elem0;
6760 			 *	struct inner array_elem1;
6761 			 *	struct inner array_elem2;
6762 			 *	struct inner array_elem3;
6763 			 * };
6764 			 *
6765 			 * When accessing outer->array[1][0], it moves
6766 			 * moff to "array_elem2", set mtype to
6767 			 * "struct inner", and msize also becomes
6768 			 * sizeof(struct inner).  Then most of the
6769 			 * remaining logic will fall through without
6770 			 * caring the current member is an array or
6771 			 * not.
6772 			 *
6773 			 * Unlike mtype/msize/moff, mtrue_end does not
6774 			 * change.  The naming difference ("_true") tells
6775 			 * that it is not always corresponding to
6776 			 * the current mtype/msize/moff.
6777 			 * It is the true end of the current
6778 			 * member (i.e. array in this case).  That
6779 			 * will allow an int array to be accessed like
6780 			 * a scratch space,
6781 			 * i.e. allow access beyond the size of
6782 			 *      the array's element as long as it is
6783 			 *      within the mtrue_end boundary.
6784 			 */
6785 
6786 			/* skip empty array */
6787 			if (moff == mtrue_end)
6788 				continue;
6789 
6790 			msize /= total_nelems;
6791 			elem_idx = (off - moff) / msize;
6792 			moff += elem_idx * msize;
6793 			mtype = elem_type;
6794 			mid = elem_id;
6795 		}
6796 
6797 		/* the 'off' we're looking for is either equal to start
6798 		 * of this field or inside of this struct
6799 		 */
6800 		if (btf_type_is_struct(mtype)) {
6801 			/* our field must be inside that union or struct */
6802 			t = mtype;
6803 
6804 			/* return if the offset matches the member offset */
6805 			if (off == moff) {
6806 				*next_btf_id = mid;
6807 				return WALK_STRUCT;
6808 			}
6809 
6810 			/* adjust offset we're looking for */
6811 			off -= moff;
6812 			goto again;
6813 		}
6814 
6815 		if (btf_type_is_ptr(mtype)) {
6816 			const struct btf_type *stype, *t;
6817 			enum bpf_type_flag tmp_flag = 0;
6818 			u32 id;
6819 
6820 			if (msize != size || off != moff) {
6821 				bpf_log(log,
6822 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6823 					mname, moff, tname, off, size);
6824 				return -EACCES;
6825 			}
6826 
6827 			/* check type tag */
6828 			t = btf_type_by_id(btf, mtype->type);
6829 			if (btf_type_is_type_tag(t)) {
6830 				tag_value = __btf_name_by_offset(btf, t->name_off);
6831 				/* check __user tag */
6832 				if (strcmp(tag_value, "user") == 0)
6833 					tmp_flag = MEM_USER;
6834 				/* check __percpu tag */
6835 				if (strcmp(tag_value, "percpu") == 0)
6836 					tmp_flag = MEM_PERCPU;
6837 				/* check __rcu tag */
6838 				if (strcmp(tag_value, "rcu") == 0)
6839 					tmp_flag = MEM_RCU;
6840 			}
6841 
6842 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6843 			if (btf_type_is_struct(stype)) {
6844 				*next_btf_id = id;
6845 				*flag |= tmp_flag;
6846 				if (field_name)
6847 					*field_name = mname;
6848 				return WALK_PTR;
6849 			}
6850 		}
6851 
6852 		/* Allow more flexible access within an int as long as
6853 		 * it is within mtrue_end.
6854 		 * Since mtrue_end could be the end of an array,
6855 		 * that also allows using an array of int as a scratch
6856 		 * space. e.g. skb->cb[].
6857 		 */
6858 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6859 			bpf_log(log,
6860 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6861 				mname, mtrue_end, tname, off, size);
6862 			return -EACCES;
6863 		}
6864 
6865 		return WALK_SCALAR;
6866 	}
6867 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6868 	return -EINVAL;
6869 }
6870 
6871 int btf_struct_access(struct bpf_verifier_log *log,
6872 		      const struct bpf_reg_state *reg,
6873 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6874 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6875 		      const char **field_name)
6876 {
6877 	const struct btf *btf = reg->btf;
6878 	enum bpf_type_flag tmp_flag = 0;
6879 	const struct btf_type *t;
6880 	u32 id = reg->btf_id;
6881 	int err;
6882 
6883 	while (type_is_alloc(reg->type)) {
6884 		struct btf_struct_meta *meta;
6885 		struct btf_record *rec;
6886 		int i;
6887 
6888 		meta = btf_find_struct_meta(btf, id);
6889 		if (!meta)
6890 			break;
6891 		rec = meta->record;
6892 		for (i = 0; i < rec->cnt; i++) {
6893 			struct btf_field *field = &rec->fields[i];
6894 			u32 offset = field->offset;
6895 			if (off < offset + field->size && offset < off + size) {
6896 				bpf_log(log,
6897 					"direct access to %s is disallowed\n",
6898 					btf_field_type_name(field->type));
6899 				return -EACCES;
6900 			}
6901 		}
6902 		break;
6903 	}
6904 
6905 	t = btf_type_by_id(btf, id);
6906 	do {
6907 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6908 
6909 		switch (err) {
6910 		case WALK_PTR:
6911 			/* For local types, the destination register cannot
6912 			 * become a pointer again.
6913 			 */
6914 			if (type_is_alloc(reg->type))
6915 				return SCALAR_VALUE;
6916 			/* If we found the pointer or scalar on t+off,
6917 			 * we're done.
6918 			 */
6919 			*next_btf_id = id;
6920 			*flag = tmp_flag;
6921 			return PTR_TO_BTF_ID;
6922 		case WALK_SCALAR:
6923 			return SCALAR_VALUE;
6924 		case WALK_STRUCT:
6925 			/* We found nested struct, so continue the search
6926 			 * by diving in it. At this point the offset is
6927 			 * aligned with the new type, so set it to 0.
6928 			 */
6929 			t = btf_type_by_id(btf, id);
6930 			off = 0;
6931 			break;
6932 		default:
6933 			/* It's either error or unknown return value..
6934 			 * scream and leave.
6935 			 */
6936 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6937 				return -EINVAL;
6938 			return err;
6939 		}
6940 	} while (t);
6941 
6942 	return -EINVAL;
6943 }
6944 
6945 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6946  * the same. Trivial ID check is not enough due to module BTFs, because we can
6947  * end up with two different module BTFs, but IDs point to the common type in
6948  * vmlinux BTF.
6949  */
6950 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6951 			const struct btf *btf2, u32 id2)
6952 {
6953 	if (id1 != id2)
6954 		return false;
6955 	if (btf1 == btf2)
6956 		return true;
6957 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6958 }
6959 
6960 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6961 			  const struct btf *btf, u32 id, int off,
6962 			  const struct btf *need_btf, u32 need_type_id,
6963 			  bool strict)
6964 {
6965 	const struct btf_type *type;
6966 	enum bpf_type_flag flag = 0;
6967 	int err;
6968 
6969 	/* Are we already done? */
6970 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6971 		return true;
6972 	/* In case of strict type match, we do not walk struct, the top level
6973 	 * type match must succeed. When strict is true, off should have already
6974 	 * been 0.
6975 	 */
6976 	if (strict)
6977 		return false;
6978 again:
6979 	type = btf_type_by_id(btf, id);
6980 	if (!type)
6981 		return false;
6982 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6983 	if (err != WALK_STRUCT)
6984 		return false;
6985 
6986 	/* We found nested struct object. If it matches
6987 	 * the requested ID, we're done. Otherwise let's
6988 	 * continue the search with offset 0 in the new
6989 	 * type.
6990 	 */
6991 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6992 		off = 0;
6993 		goto again;
6994 	}
6995 
6996 	return true;
6997 }
6998 
6999 static int __get_type_size(struct btf *btf, u32 btf_id,
7000 			   const struct btf_type **ret_type)
7001 {
7002 	const struct btf_type *t;
7003 
7004 	*ret_type = btf_type_by_id(btf, 0);
7005 	if (!btf_id)
7006 		/* void */
7007 		return 0;
7008 	t = btf_type_by_id(btf, btf_id);
7009 	while (t && btf_type_is_modifier(t))
7010 		t = btf_type_by_id(btf, t->type);
7011 	if (!t)
7012 		return -EINVAL;
7013 	*ret_type = t;
7014 	if (btf_type_is_ptr(t))
7015 		/* kernel size of pointer. Not BPF's size of pointer*/
7016 		return sizeof(void *);
7017 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
7018 		return t->size;
7019 	return -EINVAL;
7020 }
7021 
7022 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7023 {
7024 	u8 flags = 0;
7025 
7026 	if (__btf_type_is_struct(t))
7027 		flags |= BTF_FMODEL_STRUCT_ARG;
7028 	if (btf_type_is_signed_int(t))
7029 		flags |= BTF_FMODEL_SIGNED_ARG;
7030 
7031 	return flags;
7032 }
7033 
7034 int btf_distill_func_proto(struct bpf_verifier_log *log,
7035 			   struct btf *btf,
7036 			   const struct btf_type *func,
7037 			   const char *tname,
7038 			   struct btf_func_model *m)
7039 {
7040 	const struct btf_param *args;
7041 	const struct btf_type *t;
7042 	u32 i, nargs;
7043 	int ret;
7044 
7045 	if (!func) {
7046 		/* BTF function prototype doesn't match the verifier types.
7047 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7048 		 */
7049 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7050 			m->arg_size[i] = 8;
7051 			m->arg_flags[i] = 0;
7052 		}
7053 		m->ret_size = 8;
7054 		m->ret_flags = 0;
7055 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7056 		return 0;
7057 	}
7058 	args = (const struct btf_param *)(func + 1);
7059 	nargs = btf_type_vlen(func);
7060 	if (nargs > MAX_BPF_FUNC_ARGS) {
7061 		bpf_log(log,
7062 			"The function %s has %d arguments. Too many.\n",
7063 			tname, nargs);
7064 		return -EINVAL;
7065 	}
7066 	ret = __get_type_size(btf, func->type, &t);
7067 	if (ret < 0 || __btf_type_is_struct(t)) {
7068 		bpf_log(log,
7069 			"The function %s return type %s is unsupported.\n",
7070 			tname, btf_type_str(t));
7071 		return -EINVAL;
7072 	}
7073 	m->ret_size = ret;
7074 	m->ret_flags = __get_type_fmodel_flags(t);
7075 
7076 	for (i = 0; i < nargs; i++) {
7077 		if (i == nargs - 1 && args[i].type == 0) {
7078 			bpf_log(log,
7079 				"The function %s with variable args is unsupported.\n",
7080 				tname);
7081 			return -EINVAL;
7082 		}
7083 		ret = __get_type_size(btf, args[i].type, &t);
7084 
7085 		/* No support of struct argument size greater than 16 bytes */
7086 		if (ret < 0 || ret > 16) {
7087 			bpf_log(log,
7088 				"The function %s arg%d type %s is unsupported.\n",
7089 				tname, i, btf_type_str(t));
7090 			return -EINVAL;
7091 		}
7092 		if (ret == 0) {
7093 			bpf_log(log,
7094 				"The function %s has malformed void argument.\n",
7095 				tname);
7096 			return -EINVAL;
7097 		}
7098 		m->arg_size[i] = ret;
7099 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7100 	}
7101 	m->nr_args = nargs;
7102 	return 0;
7103 }
7104 
7105 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7106  * t1 points to BTF_KIND_FUNC in btf1
7107  * t2 points to BTF_KIND_FUNC in btf2
7108  * Returns:
7109  * EINVAL - function prototype mismatch
7110  * EFAULT - verifier bug
7111  * 0 - 99% match. The last 1% is validated by the verifier.
7112  */
7113 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7114 				     struct btf *btf1, const struct btf_type *t1,
7115 				     struct btf *btf2, const struct btf_type *t2)
7116 {
7117 	const struct btf_param *args1, *args2;
7118 	const char *fn1, *fn2, *s1, *s2;
7119 	u32 nargs1, nargs2, i;
7120 
7121 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7122 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7123 
7124 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7125 		bpf_log(log, "%s() is not a global function\n", fn1);
7126 		return -EINVAL;
7127 	}
7128 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7129 		bpf_log(log, "%s() is not a global function\n", fn2);
7130 		return -EINVAL;
7131 	}
7132 
7133 	t1 = btf_type_by_id(btf1, t1->type);
7134 	if (!t1 || !btf_type_is_func_proto(t1))
7135 		return -EFAULT;
7136 	t2 = btf_type_by_id(btf2, t2->type);
7137 	if (!t2 || !btf_type_is_func_proto(t2))
7138 		return -EFAULT;
7139 
7140 	args1 = (const struct btf_param *)(t1 + 1);
7141 	nargs1 = btf_type_vlen(t1);
7142 	args2 = (const struct btf_param *)(t2 + 1);
7143 	nargs2 = btf_type_vlen(t2);
7144 
7145 	if (nargs1 != nargs2) {
7146 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7147 			fn1, nargs1, fn2, nargs2);
7148 		return -EINVAL;
7149 	}
7150 
7151 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7152 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7153 	if (t1->info != t2->info) {
7154 		bpf_log(log,
7155 			"Return type %s of %s() doesn't match type %s of %s()\n",
7156 			btf_type_str(t1), fn1,
7157 			btf_type_str(t2), fn2);
7158 		return -EINVAL;
7159 	}
7160 
7161 	for (i = 0; i < nargs1; i++) {
7162 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7163 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7164 
7165 		if (t1->info != t2->info) {
7166 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7167 				i, fn1, btf_type_str(t1),
7168 				fn2, btf_type_str(t2));
7169 			return -EINVAL;
7170 		}
7171 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7172 			bpf_log(log,
7173 				"arg%d in %s() has size %d while %s() has %d\n",
7174 				i, fn1, t1->size,
7175 				fn2, t2->size);
7176 			return -EINVAL;
7177 		}
7178 
7179 		/* global functions are validated with scalars and pointers
7180 		 * to context only. And only global functions can be replaced.
7181 		 * Hence type check only those types.
7182 		 */
7183 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7184 			continue;
7185 		if (!btf_type_is_ptr(t1)) {
7186 			bpf_log(log,
7187 				"arg%d in %s() has unrecognized type\n",
7188 				i, fn1);
7189 			return -EINVAL;
7190 		}
7191 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7192 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7193 		if (!btf_type_is_struct(t1)) {
7194 			bpf_log(log,
7195 				"arg%d in %s() is not a pointer to context\n",
7196 				i, fn1);
7197 			return -EINVAL;
7198 		}
7199 		if (!btf_type_is_struct(t2)) {
7200 			bpf_log(log,
7201 				"arg%d in %s() is not a pointer to context\n",
7202 				i, fn2);
7203 			return -EINVAL;
7204 		}
7205 		/* This is an optional check to make program writing easier.
7206 		 * Compare names of structs and report an error to the user.
7207 		 * btf_prepare_func_args() already checked that t2 struct
7208 		 * is a context type. btf_prepare_func_args() will check
7209 		 * later that t1 struct is a context type as well.
7210 		 */
7211 		s1 = btf_name_by_offset(btf1, t1->name_off);
7212 		s2 = btf_name_by_offset(btf2, t2->name_off);
7213 		if (strcmp(s1, s2)) {
7214 			bpf_log(log,
7215 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7216 				i, fn1, s1, fn2, s2);
7217 			return -EINVAL;
7218 		}
7219 	}
7220 	return 0;
7221 }
7222 
7223 /* Compare BTFs of given program with BTF of target program */
7224 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7225 			 struct btf *btf2, const struct btf_type *t2)
7226 {
7227 	struct btf *btf1 = prog->aux->btf;
7228 	const struct btf_type *t1;
7229 	u32 btf_id = 0;
7230 
7231 	if (!prog->aux->func_info) {
7232 		bpf_log(log, "Program extension requires BTF\n");
7233 		return -EINVAL;
7234 	}
7235 
7236 	btf_id = prog->aux->func_info[0].type_id;
7237 	if (!btf_id)
7238 		return -EFAULT;
7239 
7240 	t1 = btf_type_by_id(btf1, btf_id);
7241 	if (!t1 || !btf_type_is_func(t1))
7242 		return -EFAULT;
7243 
7244 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7245 }
7246 
7247 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7248 {
7249 	const char *name;
7250 
7251 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7252 
7253 	while (btf_type_is_modifier(t))
7254 		t = btf_type_by_id(btf, t->type);
7255 
7256 	/* allow either struct or struct forward declaration */
7257 	if (btf_type_is_struct(t) ||
7258 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7259 		name = btf_str_by_offset(btf, t->name_off);
7260 		return name && strcmp(name, "bpf_dynptr") == 0;
7261 	}
7262 
7263 	return false;
7264 }
7265 
7266 struct bpf_cand_cache {
7267 	const char *name;
7268 	u32 name_len;
7269 	u16 kind;
7270 	u16 cnt;
7271 	struct {
7272 		const struct btf *btf;
7273 		u32 id;
7274 	} cands[];
7275 };
7276 
7277 static DEFINE_MUTEX(cand_cache_mutex);
7278 
7279 static struct bpf_cand_cache *
7280 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7281 
7282 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7283 				 const struct btf *btf, const struct btf_type *t)
7284 {
7285 	struct bpf_cand_cache *cc;
7286 	struct bpf_core_ctx ctx = {
7287 		.btf = btf,
7288 		.log = log,
7289 	};
7290 	u32 kern_type_id, type_id;
7291 	int err = 0;
7292 
7293 	/* skip PTR and modifiers */
7294 	type_id = t->type;
7295 	t = btf_type_by_id(btf, t->type);
7296 	while (btf_type_is_modifier(t)) {
7297 		type_id = t->type;
7298 		t = btf_type_by_id(btf, t->type);
7299 	}
7300 
7301 	mutex_lock(&cand_cache_mutex);
7302 	cc = bpf_core_find_cands(&ctx, type_id);
7303 	if (IS_ERR(cc)) {
7304 		err = PTR_ERR(cc);
7305 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7306 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7307 			err);
7308 		goto cand_cache_unlock;
7309 	}
7310 	if (cc->cnt != 1) {
7311 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7312 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7313 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7314 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7315 		goto cand_cache_unlock;
7316 	}
7317 	if (btf_is_module(cc->cands[0].btf)) {
7318 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7319 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7320 		err = -EOPNOTSUPP;
7321 		goto cand_cache_unlock;
7322 	}
7323 	kern_type_id = cc->cands[0].id;
7324 
7325 cand_cache_unlock:
7326 	mutex_unlock(&cand_cache_mutex);
7327 	if (err)
7328 		return err;
7329 
7330 	return kern_type_id;
7331 }
7332 
7333 enum btf_arg_tag {
7334 	ARG_TAG_CTX	 = BIT_ULL(0),
7335 	ARG_TAG_NONNULL  = BIT_ULL(1),
7336 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7337 	ARG_TAG_NULLABLE = BIT_ULL(3),
7338 	ARG_TAG_ARENA	 = BIT_ULL(4),
7339 };
7340 
7341 /* Process BTF of a function to produce high-level expectation of function
7342  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7343  * is cached in subprog info for reuse.
7344  * Returns:
7345  * EFAULT - there is a verifier bug. Abort verification.
7346  * EINVAL - cannot convert BTF.
7347  * 0 - Successfully processed BTF and constructed argument expectations.
7348  */
7349 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7350 {
7351 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7352 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7353 	struct bpf_verifier_log *log = &env->log;
7354 	struct bpf_prog *prog = env->prog;
7355 	enum bpf_prog_type prog_type = prog->type;
7356 	struct btf *btf = prog->aux->btf;
7357 	const struct btf_param *args;
7358 	const struct btf_type *t, *ref_t, *fn_t;
7359 	u32 i, nargs, btf_id;
7360 	const char *tname;
7361 
7362 	if (sub->args_cached)
7363 		return 0;
7364 
7365 	if (!prog->aux->func_info) {
7366 		bpf_log(log, "Verifier bug\n");
7367 		return -EFAULT;
7368 	}
7369 
7370 	btf_id = prog->aux->func_info[subprog].type_id;
7371 	if (!btf_id) {
7372 		if (!is_global) /* not fatal for static funcs */
7373 			return -EINVAL;
7374 		bpf_log(log, "Global functions need valid BTF\n");
7375 		return -EFAULT;
7376 	}
7377 
7378 	fn_t = btf_type_by_id(btf, btf_id);
7379 	if (!fn_t || !btf_type_is_func(fn_t)) {
7380 		/* These checks were already done by the verifier while loading
7381 		 * struct bpf_func_info
7382 		 */
7383 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7384 			subprog);
7385 		return -EFAULT;
7386 	}
7387 	tname = btf_name_by_offset(btf, fn_t->name_off);
7388 
7389 	if (prog->aux->func_info_aux[subprog].unreliable) {
7390 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7391 		return -EFAULT;
7392 	}
7393 	if (prog_type == BPF_PROG_TYPE_EXT)
7394 		prog_type = prog->aux->dst_prog->type;
7395 
7396 	t = btf_type_by_id(btf, fn_t->type);
7397 	if (!t || !btf_type_is_func_proto(t)) {
7398 		bpf_log(log, "Invalid type of function %s()\n", tname);
7399 		return -EFAULT;
7400 	}
7401 	args = (const struct btf_param *)(t + 1);
7402 	nargs = btf_type_vlen(t);
7403 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7404 		if (!is_global)
7405 			return -EINVAL;
7406 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7407 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7408 		return -EINVAL;
7409 	}
7410 	/* check that function returns int, exception cb also requires this */
7411 	t = btf_type_by_id(btf, t->type);
7412 	while (btf_type_is_modifier(t))
7413 		t = btf_type_by_id(btf, t->type);
7414 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7415 		if (!is_global)
7416 			return -EINVAL;
7417 		bpf_log(log,
7418 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7419 			tname);
7420 		return -EINVAL;
7421 	}
7422 	/* Convert BTF function arguments into verifier types.
7423 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7424 	 */
7425 	for (i = 0; i < nargs; i++) {
7426 		u32 tags = 0;
7427 		int id = 0;
7428 
7429 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7430 		 * register type from BTF type itself
7431 		 */
7432 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7433 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7434 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7435 
7436 			/* disallow arg tags in static subprogs */
7437 			if (!is_global) {
7438 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7439 				return -EOPNOTSUPP;
7440 			}
7441 
7442 			if (strcmp(tag, "ctx") == 0) {
7443 				tags |= ARG_TAG_CTX;
7444 			} else if (strcmp(tag, "trusted") == 0) {
7445 				tags |= ARG_TAG_TRUSTED;
7446 			} else if (strcmp(tag, "nonnull") == 0) {
7447 				tags |= ARG_TAG_NONNULL;
7448 			} else if (strcmp(tag, "nullable") == 0) {
7449 				tags |= ARG_TAG_NULLABLE;
7450 			} else if (strcmp(tag, "arena") == 0) {
7451 				tags |= ARG_TAG_ARENA;
7452 			} else {
7453 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7454 				return -EOPNOTSUPP;
7455 			}
7456 		}
7457 		if (id != -ENOENT) {
7458 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7459 			return id;
7460 		}
7461 
7462 		t = btf_type_by_id(btf, args[i].type);
7463 		while (btf_type_is_modifier(t))
7464 			t = btf_type_by_id(btf, t->type);
7465 		if (!btf_type_is_ptr(t))
7466 			goto skip_pointer;
7467 
7468 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7469 			if (tags & ~ARG_TAG_CTX) {
7470 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7471 				return -EINVAL;
7472 			}
7473 			if ((tags & ARG_TAG_CTX) &&
7474 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7475 						       prog->expected_attach_type))
7476 				return -EINVAL;
7477 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7478 			continue;
7479 		}
7480 		if (btf_is_dynptr_ptr(btf, t)) {
7481 			if (tags) {
7482 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7483 				return -EINVAL;
7484 			}
7485 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7486 			continue;
7487 		}
7488 		if (tags & ARG_TAG_TRUSTED) {
7489 			int kern_type_id;
7490 
7491 			if (tags & ARG_TAG_NONNULL) {
7492 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7493 				return -EINVAL;
7494 			}
7495 
7496 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7497 			if (kern_type_id < 0)
7498 				return kern_type_id;
7499 
7500 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7501 			if (tags & ARG_TAG_NULLABLE)
7502 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7503 			sub->args[i].btf_id = kern_type_id;
7504 			continue;
7505 		}
7506 		if (tags & ARG_TAG_ARENA) {
7507 			if (tags & ~ARG_TAG_ARENA) {
7508 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7509 				return -EINVAL;
7510 			}
7511 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7512 			continue;
7513 		}
7514 		if (is_global) { /* generic user data pointer */
7515 			u32 mem_size;
7516 
7517 			if (tags & ARG_TAG_NULLABLE) {
7518 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7519 				return -EINVAL;
7520 			}
7521 
7522 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7523 			ref_t = btf_resolve_size(btf, t, &mem_size);
7524 			if (IS_ERR(ref_t)) {
7525 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7526 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7527 					PTR_ERR(ref_t));
7528 				return -EINVAL;
7529 			}
7530 
7531 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7532 			if (tags & ARG_TAG_NONNULL)
7533 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7534 			sub->args[i].mem_size = mem_size;
7535 			continue;
7536 		}
7537 
7538 skip_pointer:
7539 		if (tags) {
7540 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7541 			return -EINVAL;
7542 		}
7543 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7544 			sub->args[i].arg_type = ARG_ANYTHING;
7545 			continue;
7546 		}
7547 		if (!is_global)
7548 			return -EINVAL;
7549 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7550 			i, btf_type_str(t), tname);
7551 		return -EINVAL;
7552 	}
7553 
7554 	sub->arg_cnt = nargs;
7555 	sub->args_cached = true;
7556 
7557 	return 0;
7558 }
7559 
7560 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7561 			  struct btf_show *show)
7562 {
7563 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7564 
7565 	show->btf = btf;
7566 	memset(&show->state, 0, sizeof(show->state));
7567 	memset(&show->obj, 0, sizeof(show->obj));
7568 
7569 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7570 }
7571 
7572 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7573 					va_list args)
7574 {
7575 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7576 }
7577 
7578 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7579 			    void *obj, struct seq_file *m, u64 flags)
7580 {
7581 	struct btf_show sseq;
7582 
7583 	sseq.target = m;
7584 	sseq.showfn = btf_seq_show;
7585 	sseq.flags = flags;
7586 
7587 	btf_type_show(btf, type_id, obj, &sseq);
7588 
7589 	return sseq.state.status;
7590 }
7591 
7592 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7593 		       struct seq_file *m)
7594 {
7595 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7596 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7597 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7598 }
7599 
7600 struct btf_show_snprintf {
7601 	struct btf_show show;
7602 	int len_left;		/* space left in string */
7603 	int len;		/* length we would have written */
7604 };
7605 
7606 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7607 					     va_list args)
7608 {
7609 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7610 	int len;
7611 
7612 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7613 
7614 	if (len < 0) {
7615 		ssnprintf->len_left = 0;
7616 		ssnprintf->len = len;
7617 	} else if (len >= ssnprintf->len_left) {
7618 		/* no space, drive on to get length we would have written */
7619 		ssnprintf->len_left = 0;
7620 		ssnprintf->len += len;
7621 	} else {
7622 		ssnprintf->len_left -= len;
7623 		ssnprintf->len += len;
7624 		show->target += len;
7625 	}
7626 }
7627 
7628 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7629 			   char *buf, int len, u64 flags)
7630 {
7631 	struct btf_show_snprintf ssnprintf;
7632 
7633 	ssnprintf.show.target = buf;
7634 	ssnprintf.show.flags = flags;
7635 	ssnprintf.show.showfn = btf_snprintf_show;
7636 	ssnprintf.len_left = len;
7637 	ssnprintf.len = 0;
7638 
7639 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7640 
7641 	/* If we encountered an error, return it. */
7642 	if (ssnprintf.show.state.status)
7643 		return ssnprintf.show.state.status;
7644 
7645 	/* Otherwise return length we would have written */
7646 	return ssnprintf.len;
7647 }
7648 
7649 #ifdef CONFIG_PROC_FS
7650 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7651 {
7652 	const struct btf *btf = filp->private_data;
7653 
7654 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7655 }
7656 #endif
7657 
7658 static int btf_release(struct inode *inode, struct file *filp)
7659 {
7660 	btf_put(filp->private_data);
7661 	return 0;
7662 }
7663 
7664 const struct file_operations btf_fops = {
7665 #ifdef CONFIG_PROC_FS
7666 	.show_fdinfo	= bpf_btf_show_fdinfo,
7667 #endif
7668 	.release	= btf_release,
7669 };
7670 
7671 static int __btf_new_fd(struct btf *btf)
7672 {
7673 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7674 }
7675 
7676 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7677 {
7678 	struct btf *btf;
7679 	int ret;
7680 
7681 	btf = btf_parse(attr, uattr, uattr_size);
7682 	if (IS_ERR(btf))
7683 		return PTR_ERR(btf);
7684 
7685 	ret = btf_alloc_id(btf);
7686 	if (ret) {
7687 		btf_free(btf);
7688 		return ret;
7689 	}
7690 
7691 	/*
7692 	 * The BTF ID is published to the userspace.
7693 	 * All BTF free must go through call_rcu() from
7694 	 * now on (i.e. free by calling btf_put()).
7695 	 */
7696 
7697 	ret = __btf_new_fd(btf);
7698 	if (ret < 0)
7699 		btf_put(btf);
7700 
7701 	return ret;
7702 }
7703 
7704 struct btf *btf_get_by_fd(int fd)
7705 {
7706 	struct btf *btf;
7707 	struct fd f;
7708 
7709 	f = fdget(fd);
7710 
7711 	if (!f.file)
7712 		return ERR_PTR(-EBADF);
7713 
7714 	if (f.file->f_op != &btf_fops) {
7715 		fdput(f);
7716 		return ERR_PTR(-EINVAL);
7717 	}
7718 
7719 	btf = f.file->private_data;
7720 	refcount_inc(&btf->refcnt);
7721 	fdput(f);
7722 
7723 	return btf;
7724 }
7725 
7726 int btf_get_info_by_fd(const struct btf *btf,
7727 		       const union bpf_attr *attr,
7728 		       union bpf_attr __user *uattr)
7729 {
7730 	struct bpf_btf_info __user *uinfo;
7731 	struct bpf_btf_info info;
7732 	u32 info_copy, btf_copy;
7733 	void __user *ubtf;
7734 	char __user *uname;
7735 	u32 uinfo_len, uname_len, name_len;
7736 	int ret = 0;
7737 
7738 	uinfo = u64_to_user_ptr(attr->info.info);
7739 	uinfo_len = attr->info.info_len;
7740 
7741 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7742 	memset(&info, 0, sizeof(info));
7743 	if (copy_from_user(&info, uinfo, info_copy))
7744 		return -EFAULT;
7745 
7746 	info.id = btf->id;
7747 	ubtf = u64_to_user_ptr(info.btf);
7748 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7749 	if (copy_to_user(ubtf, btf->data, btf_copy))
7750 		return -EFAULT;
7751 	info.btf_size = btf->data_size;
7752 
7753 	info.kernel_btf = btf->kernel_btf;
7754 
7755 	uname = u64_to_user_ptr(info.name);
7756 	uname_len = info.name_len;
7757 	if (!uname ^ !uname_len)
7758 		return -EINVAL;
7759 
7760 	name_len = strlen(btf->name);
7761 	info.name_len = name_len;
7762 
7763 	if (uname) {
7764 		if (uname_len >= name_len + 1) {
7765 			if (copy_to_user(uname, btf->name, name_len + 1))
7766 				return -EFAULT;
7767 		} else {
7768 			char zero = '\0';
7769 
7770 			if (copy_to_user(uname, btf->name, uname_len - 1))
7771 				return -EFAULT;
7772 			if (put_user(zero, uname + uname_len - 1))
7773 				return -EFAULT;
7774 			/* let user-space know about too short buffer */
7775 			ret = -ENOSPC;
7776 		}
7777 	}
7778 
7779 	if (copy_to_user(uinfo, &info, info_copy) ||
7780 	    put_user(info_copy, &uattr->info.info_len))
7781 		return -EFAULT;
7782 
7783 	return ret;
7784 }
7785 
7786 int btf_get_fd_by_id(u32 id)
7787 {
7788 	struct btf *btf;
7789 	int fd;
7790 
7791 	rcu_read_lock();
7792 	btf = idr_find(&btf_idr, id);
7793 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7794 		btf = ERR_PTR(-ENOENT);
7795 	rcu_read_unlock();
7796 
7797 	if (IS_ERR(btf))
7798 		return PTR_ERR(btf);
7799 
7800 	fd = __btf_new_fd(btf);
7801 	if (fd < 0)
7802 		btf_put(btf);
7803 
7804 	return fd;
7805 }
7806 
7807 u32 btf_obj_id(const struct btf *btf)
7808 {
7809 	return btf->id;
7810 }
7811 
7812 bool btf_is_kernel(const struct btf *btf)
7813 {
7814 	return btf->kernel_btf;
7815 }
7816 
7817 bool btf_is_module(const struct btf *btf)
7818 {
7819 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7820 }
7821 
7822 enum {
7823 	BTF_MODULE_F_LIVE = (1 << 0),
7824 };
7825 
7826 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7827 struct btf_module {
7828 	struct list_head list;
7829 	struct module *module;
7830 	struct btf *btf;
7831 	struct bin_attribute *sysfs_attr;
7832 	int flags;
7833 };
7834 
7835 static LIST_HEAD(btf_modules);
7836 static DEFINE_MUTEX(btf_module_mutex);
7837 
7838 static ssize_t
7839 btf_module_read(struct file *file, struct kobject *kobj,
7840 		struct bin_attribute *bin_attr,
7841 		char *buf, loff_t off, size_t len)
7842 {
7843 	const struct btf *btf = bin_attr->private;
7844 
7845 	memcpy(buf, btf->data + off, len);
7846 	return len;
7847 }
7848 
7849 static void purge_cand_cache(struct btf *btf);
7850 
7851 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7852 			     void *module)
7853 {
7854 	struct btf_module *btf_mod, *tmp;
7855 	struct module *mod = module;
7856 	struct btf *btf;
7857 	int err = 0;
7858 
7859 	if (mod->btf_data_size == 0 ||
7860 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7861 	     op != MODULE_STATE_GOING))
7862 		goto out;
7863 
7864 	switch (op) {
7865 	case MODULE_STATE_COMING:
7866 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7867 		if (!btf_mod) {
7868 			err = -ENOMEM;
7869 			goto out;
7870 		}
7871 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
7872 				       mod->btf_base_data, mod->btf_base_data_size);
7873 		if (IS_ERR(btf)) {
7874 			kfree(btf_mod);
7875 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7876 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7877 					mod->name, PTR_ERR(btf));
7878 				err = PTR_ERR(btf);
7879 			} else {
7880 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7881 			}
7882 			goto out;
7883 		}
7884 		err = btf_alloc_id(btf);
7885 		if (err) {
7886 			btf_free(btf);
7887 			kfree(btf_mod);
7888 			goto out;
7889 		}
7890 
7891 		purge_cand_cache(NULL);
7892 		mutex_lock(&btf_module_mutex);
7893 		btf_mod->module = module;
7894 		btf_mod->btf = btf;
7895 		list_add(&btf_mod->list, &btf_modules);
7896 		mutex_unlock(&btf_module_mutex);
7897 
7898 		if (IS_ENABLED(CONFIG_SYSFS)) {
7899 			struct bin_attribute *attr;
7900 
7901 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7902 			if (!attr)
7903 				goto out;
7904 
7905 			sysfs_bin_attr_init(attr);
7906 			attr->attr.name = btf->name;
7907 			attr->attr.mode = 0444;
7908 			attr->size = btf->data_size;
7909 			attr->private = btf;
7910 			attr->read = btf_module_read;
7911 
7912 			err = sysfs_create_bin_file(btf_kobj, attr);
7913 			if (err) {
7914 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7915 					mod->name, err);
7916 				kfree(attr);
7917 				err = 0;
7918 				goto out;
7919 			}
7920 
7921 			btf_mod->sysfs_attr = attr;
7922 		}
7923 
7924 		break;
7925 	case MODULE_STATE_LIVE:
7926 		mutex_lock(&btf_module_mutex);
7927 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7928 			if (btf_mod->module != module)
7929 				continue;
7930 
7931 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7932 			break;
7933 		}
7934 		mutex_unlock(&btf_module_mutex);
7935 		break;
7936 	case MODULE_STATE_GOING:
7937 		mutex_lock(&btf_module_mutex);
7938 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7939 			if (btf_mod->module != module)
7940 				continue;
7941 
7942 			list_del(&btf_mod->list);
7943 			if (btf_mod->sysfs_attr)
7944 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7945 			purge_cand_cache(btf_mod->btf);
7946 			btf_put(btf_mod->btf);
7947 			kfree(btf_mod->sysfs_attr);
7948 			kfree(btf_mod);
7949 			break;
7950 		}
7951 		mutex_unlock(&btf_module_mutex);
7952 		break;
7953 	}
7954 out:
7955 	return notifier_from_errno(err);
7956 }
7957 
7958 static struct notifier_block btf_module_nb = {
7959 	.notifier_call = btf_module_notify,
7960 };
7961 
7962 static int __init btf_module_init(void)
7963 {
7964 	register_module_notifier(&btf_module_nb);
7965 	return 0;
7966 }
7967 
7968 fs_initcall(btf_module_init);
7969 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7970 
7971 struct module *btf_try_get_module(const struct btf *btf)
7972 {
7973 	struct module *res = NULL;
7974 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7975 	struct btf_module *btf_mod, *tmp;
7976 
7977 	mutex_lock(&btf_module_mutex);
7978 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7979 		if (btf_mod->btf != btf)
7980 			continue;
7981 
7982 		/* We must only consider module whose __init routine has
7983 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7984 		 * which is set from the notifier callback for
7985 		 * MODULE_STATE_LIVE.
7986 		 */
7987 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7988 			res = btf_mod->module;
7989 
7990 		break;
7991 	}
7992 	mutex_unlock(&btf_module_mutex);
7993 #endif
7994 
7995 	return res;
7996 }
7997 
7998 /* Returns struct btf corresponding to the struct module.
7999  * This function can return NULL or ERR_PTR.
8000  */
8001 static struct btf *btf_get_module_btf(const struct module *module)
8002 {
8003 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8004 	struct btf_module *btf_mod, *tmp;
8005 #endif
8006 	struct btf *btf = NULL;
8007 
8008 	if (!module) {
8009 		btf = bpf_get_btf_vmlinux();
8010 		if (!IS_ERR_OR_NULL(btf))
8011 			btf_get(btf);
8012 		return btf;
8013 	}
8014 
8015 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8016 	mutex_lock(&btf_module_mutex);
8017 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8018 		if (btf_mod->module != module)
8019 			continue;
8020 
8021 		btf_get(btf_mod->btf);
8022 		btf = btf_mod->btf;
8023 		break;
8024 	}
8025 	mutex_unlock(&btf_module_mutex);
8026 #endif
8027 
8028 	return btf;
8029 }
8030 
8031 static int check_btf_kconfigs(const struct module *module, const char *feature)
8032 {
8033 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8034 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8035 		return -ENOENT;
8036 	}
8037 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8038 		pr_warn("missing module BTF, cannot register %s\n", feature);
8039 	return 0;
8040 }
8041 
8042 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8043 {
8044 	struct btf *btf = NULL;
8045 	int btf_obj_fd = 0;
8046 	long ret;
8047 
8048 	if (flags)
8049 		return -EINVAL;
8050 
8051 	if (name_sz <= 1 || name[name_sz - 1])
8052 		return -EINVAL;
8053 
8054 	ret = bpf_find_btf_id(name, kind, &btf);
8055 	if (ret > 0 && btf_is_module(btf)) {
8056 		btf_obj_fd = __btf_new_fd(btf);
8057 		if (btf_obj_fd < 0) {
8058 			btf_put(btf);
8059 			return btf_obj_fd;
8060 		}
8061 		return ret | (((u64)btf_obj_fd) << 32);
8062 	}
8063 	if (ret > 0)
8064 		btf_put(btf);
8065 	return ret;
8066 }
8067 
8068 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8069 	.func		= bpf_btf_find_by_name_kind,
8070 	.gpl_only	= false,
8071 	.ret_type	= RET_INTEGER,
8072 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8073 	.arg2_type	= ARG_CONST_SIZE,
8074 	.arg3_type	= ARG_ANYTHING,
8075 	.arg4_type	= ARG_ANYTHING,
8076 };
8077 
8078 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8079 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8080 BTF_TRACING_TYPE_xxx
8081 #undef BTF_TRACING_TYPE
8082 
8083 /* Validate well-formedness of iter argument type.
8084  * On success, return positive BTF ID of iter state's STRUCT type.
8085  * On error, negative error is returned.
8086  */
8087 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8088 {
8089 	const struct btf_param *arg;
8090 	const struct btf_type *t;
8091 	const char *name;
8092 	int btf_id;
8093 
8094 	if (btf_type_vlen(func) <= arg_idx)
8095 		return -EINVAL;
8096 
8097 	arg = &btf_params(func)[arg_idx];
8098 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8099 	if (!t || !btf_type_is_ptr(t))
8100 		return -EINVAL;
8101 	t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8102 	if (!t || !__btf_type_is_struct(t))
8103 		return -EINVAL;
8104 
8105 	name = btf_name_by_offset(btf, t->name_off);
8106 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8107 		return -EINVAL;
8108 
8109 	return btf_id;
8110 }
8111 
8112 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8113 				 const struct btf_type *func, u32 func_flags)
8114 {
8115 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8116 	const char *sfx, *iter_name;
8117 	const struct btf_type *t;
8118 	char exp_name[128];
8119 	u32 nr_args;
8120 	int btf_id;
8121 
8122 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8123 	if (!flags || (flags & (flags - 1)))
8124 		return -EINVAL;
8125 
8126 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8127 	nr_args = btf_type_vlen(func);
8128 	if (nr_args < 1)
8129 		return -EINVAL;
8130 
8131 	btf_id = btf_check_iter_arg(btf, func, 0);
8132 	if (btf_id < 0)
8133 		return btf_id;
8134 
8135 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8136 	 * fit nicely in stack slots
8137 	 */
8138 	t = btf_type_by_id(btf, btf_id);
8139 	if (t->size == 0 || (t->size % 8))
8140 		return -EINVAL;
8141 
8142 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8143 	 * naming pattern
8144 	 */
8145 	iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8146 	if (flags & KF_ITER_NEW)
8147 		sfx = "new";
8148 	else if (flags & KF_ITER_NEXT)
8149 		sfx = "next";
8150 	else /* (flags & KF_ITER_DESTROY) */
8151 		sfx = "destroy";
8152 
8153 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8154 	if (strcmp(func_name, exp_name))
8155 		return -EINVAL;
8156 
8157 	/* only iter constructor should have extra arguments */
8158 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8159 		return -EINVAL;
8160 
8161 	if (flags & KF_ITER_NEXT) {
8162 		/* bpf_iter_<type>_next() should return pointer */
8163 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8164 		if (!t || !btf_type_is_ptr(t))
8165 			return -EINVAL;
8166 	}
8167 
8168 	if (flags & KF_ITER_DESTROY) {
8169 		/* bpf_iter_<type>_destroy() should return void */
8170 		t = btf_type_by_id(btf, func->type);
8171 		if (!t || !btf_type_is_void(t))
8172 			return -EINVAL;
8173 	}
8174 
8175 	return 0;
8176 }
8177 
8178 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8179 {
8180 	const struct btf_type *func;
8181 	const char *func_name;
8182 	int err;
8183 
8184 	/* any kfunc should be FUNC -> FUNC_PROTO */
8185 	func = btf_type_by_id(btf, func_id);
8186 	if (!func || !btf_type_is_func(func))
8187 		return -EINVAL;
8188 
8189 	/* sanity check kfunc name */
8190 	func_name = btf_name_by_offset(btf, func->name_off);
8191 	if (!func_name || !func_name[0])
8192 		return -EINVAL;
8193 
8194 	func = btf_type_by_id(btf, func->type);
8195 	if (!func || !btf_type_is_func_proto(func))
8196 		return -EINVAL;
8197 
8198 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8199 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8200 		if (err)
8201 			return err;
8202 	}
8203 
8204 	return 0;
8205 }
8206 
8207 /* Kernel Function (kfunc) BTF ID set registration API */
8208 
8209 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8210 				  const struct btf_kfunc_id_set *kset)
8211 {
8212 	struct btf_kfunc_hook_filter *hook_filter;
8213 	struct btf_id_set8 *add_set = kset->set;
8214 	bool vmlinux_set = !btf_is_module(btf);
8215 	bool add_filter = !!kset->filter;
8216 	struct btf_kfunc_set_tab *tab;
8217 	struct btf_id_set8 *set;
8218 	u32 set_cnt, i;
8219 	int ret;
8220 
8221 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8222 		ret = -EINVAL;
8223 		goto end;
8224 	}
8225 
8226 	if (!add_set->cnt)
8227 		return 0;
8228 
8229 	tab = btf->kfunc_set_tab;
8230 
8231 	if (tab && add_filter) {
8232 		u32 i;
8233 
8234 		hook_filter = &tab->hook_filters[hook];
8235 		for (i = 0; i < hook_filter->nr_filters; i++) {
8236 			if (hook_filter->filters[i] == kset->filter) {
8237 				add_filter = false;
8238 				break;
8239 			}
8240 		}
8241 
8242 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8243 			ret = -E2BIG;
8244 			goto end;
8245 		}
8246 	}
8247 
8248 	if (!tab) {
8249 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8250 		if (!tab)
8251 			return -ENOMEM;
8252 		btf->kfunc_set_tab = tab;
8253 	}
8254 
8255 	set = tab->sets[hook];
8256 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8257 	 * for module sets.
8258 	 */
8259 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8260 		ret = -EINVAL;
8261 		goto end;
8262 	}
8263 
8264 	/* In case of vmlinux sets, there may be more than one set being
8265 	 * registered per hook. To create a unified set, we allocate a new set
8266 	 * and concatenate all individual sets being registered. While each set
8267 	 * is individually sorted, they may become unsorted when concatenated,
8268 	 * hence re-sorting the final set again is required to make binary
8269 	 * searching the set using btf_id_set8_contains function work.
8270 	 *
8271 	 * For module sets, we need to allocate as we may need to relocate
8272 	 * BTF ids.
8273 	 */
8274 	set_cnt = set ? set->cnt : 0;
8275 
8276 	if (set_cnt > U32_MAX - add_set->cnt) {
8277 		ret = -EOVERFLOW;
8278 		goto end;
8279 	}
8280 
8281 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8282 		ret = -E2BIG;
8283 		goto end;
8284 	}
8285 
8286 	/* Grow set */
8287 	set = krealloc(tab->sets[hook],
8288 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8289 		       GFP_KERNEL | __GFP_NOWARN);
8290 	if (!set) {
8291 		ret = -ENOMEM;
8292 		goto end;
8293 	}
8294 
8295 	/* For newly allocated set, initialize set->cnt to 0 */
8296 	if (!tab->sets[hook])
8297 		set->cnt = 0;
8298 	tab->sets[hook] = set;
8299 
8300 	/* Concatenate the two sets */
8301 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8302 	/* Now that the set is copied, update with relocated BTF ids */
8303 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8304 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8305 
8306 	set->cnt += add_set->cnt;
8307 
8308 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8309 
8310 	if (add_filter) {
8311 		hook_filter = &tab->hook_filters[hook];
8312 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8313 	}
8314 	return 0;
8315 end:
8316 	btf_free_kfunc_set_tab(btf);
8317 	return ret;
8318 }
8319 
8320 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8321 					enum btf_kfunc_hook hook,
8322 					u32 kfunc_btf_id,
8323 					const struct bpf_prog *prog)
8324 {
8325 	struct btf_kfunc_hook_filter *hook_filter;
8326 	struct btf_id_set8 *set;
8327 	u32 *id, i;
8328 
8329 	if (hook >= BTF_KFUNC_HOOK_MAX)
8330 		return NULL;
8331 	if (!btf->kfunc_set_tab)
8332 		return NULL;
8333 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8334 	for (i = 0; i < hook_filter->nr_filters; i++) {
8335 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8336 			return NULL;
8337 	}
8338 	set = btf->kfunc_set_tab->sets[hook];
8339 	if (!set)
8340 		return NULL;
8341 	id = btf_id_set8_contains(set, kfunc_btf_id);
8342 	if (!id)
8343 		return NULL;
8344 	/* The flags for BTF ID are located next to it */
8345 	return id + 1;
8346 }
8347 
8348 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8349 {
8350 	switch (prog_type) {
8351 	case BPF_PROG_TYPE_UNSPEC:
8352 		return BTF_KFUNC_HOOK_COMMON;
8353 	case BPF_PROG_TYPE_XDP:
8354 		return BTF_KFUNC_HOOK_XDP;
8355 	case BPF_PROG_TYPE_SCHED_CLS:
8356 		return BTF_KFUNC_HOOK_TC;
8357 	case BPF_PROG_TYPE_STRUCT_OPS:
8358 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8359 	case BPF_PROG_TYPE_TRACING:
8360 	case BPF_PROG_TYPE_LSM:
8361 		return BTF_KFUNC_HOOK_TRACING;
8362 	case BPF_PROG_TYPE_SYSCALL:
8363 		return BTF_KFUNC_HOOK_SYSCALL;
8364 	case BPF_PROG_TYPE_CGROUP_SKB:
8365 	case BPF_PROG_TYPE_CGROUP_SOCK:
8366 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8367 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8368 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8369 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8370 		return BTF_KFUNC_HOOK_CGROUP;
8371 	case BPF_PROG_TYPE_SCHED_ACT:
8372 		return BTF_KFUNC_HOOK_SCHED_ACT;
8373 	case BPF_PROG_TYPE_SK_SKB:
8374 		return BTF_KFUNC_HOOK_SK_SKB;
8375 	case BPF_PROG_TYPE_SOCKET_FILTER:
8376 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8377 	case BPF_PROG_TYPE_LWT_OUT:
8378 	case BPF_PROG_TYPE_LWT_IN:
8379 	case BPF_PROG_TYPE_LWT_XMIT:
8380 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8381 		return BTF_KFUNC_HOOK_LWT;
8382 	case BPF_PROG_TYPE_NETFILTER:
8383 		return BTF_KFUNC_HOOK_NETFILTER;
8384 	case BPF_PROG_TYPE_KPROBE:
8385 		return BTF_KFUNC_HOOK_KPROBE;
8386 	default:
8387 		return BTF_KFUNC_HOOK_MAX;
8388 	}
8389 }
8390 
8391 /* Caution:
8392  * Reference to the module (obtained using btf_try_get_module) corresponding to
8393  * the struct btf *MUST* be held when calling this function from verifier
8394  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8395  * keeping the reference for the duration of the call provides the necessary
8396  * protection for looking up a well-formed btf->kfunc_set_tab.
8397  */
8398 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8399 			       u32 kfunc_btf_id,
8400 			       const struct bpf_prog *prog)
8401 {
8402 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8403 	enum btf_kfunc_hook hook;
8404 	u32 *kfunc_flags;
8405 
8406 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8407 	if (kfunc_flags)
8408 		return kfunc_flags;
8409 
8410 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8411 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8412 }
8413 
8414 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8415 				const struct bpf_prog *prog)
8416 {
8417 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8418 }
8419 
8420 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8421 				       const struct btf_kfunc_id_set *kset)
8422 {
8423 	struct btf *btf;
8424 	int ret, i;
8425 
8426 	btf = btf_get_module_btf(kset->owner);
8427 	if (!btf)
8428 		return check_btf_kconfigs(kset->owner, "kfunc");
8429 	if (IS_ERR(btf))
8430 		return PTR_ERR(btf);
8431 
8432 	for (i = 0; i < kset->set->cnt; i++) {
8433 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8434 					     kset->set->pairs[i].flags);
8435 		if (ret)
8436 			goto err_out;
8437 	}
8438 
8439 	ret = btf_populate_kfunc_set(btf, hook, kset);
8440 
8441 err_out:
8442 	btf_put(btf);
8443 	return ret;
8444 }
8445 
8446 /* This function must be invoked only from initcalls/module init functions */
8447 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8448 			      const struct btf_kfunc_id_set *kset)
8449 {
8450 	enum btf_kfunc_hook hook;
8451 
8452 	/* All kfuncs need to be tagged as such in BTF.
8453 	 * WARN() for initcall registrations that do not check errors.
8454 	 */
8455 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8456 		WARN_ON(!kset->owner);
8457 		return -EINVAL;
8458 	}
8459 
8460 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8461 	return __register_btf_kfunc_id_set(hook, kset);
8462 }
8463 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8464 
8465 /* This function must be invoked only from initcalls/module init functions */
8466 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8467 {
8468 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8469 }
8470 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8471 
8472 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8473 {
8474 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8475 	struct btf_id_dtor_kfunc *dtor;
8476 
8477 	if (!tab)
8478 		return -ENOENT;
8479 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8480 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8481 	 */
8482 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8483 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8484 	if (!dtor)
8485 		return -ENOENT;
8486 	return dtor->kfunc_btf_id;
8487 }
8488 
8489 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8490 {
8491 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8492 	const struct btf_param *args;
8493 	s32 dtor_btf_id;
8494 	u32 nr_args, i;
8495 
8496 	for (i = 0; i < cnt; i++) {
8497 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8498 
8499 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8500 		if (!dtor_func || !btf_type_is_func(dtor_func))
8501 			return -EINVAL;
8502 
8503 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8504 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8505 			return -EINVAL;
8506 
8507 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8508 		t = btf_type_by_id(btf, dtor_func_proto->type);
8509 		if (!t || !btf_type_is_void(t))
8510 			return -EINVAL;
8511 
8512 		nr_args = btf_type_vlen(dtor_func_proto);
8513 		if (nr_args != 1)
8514 			return -EINVAL;
8515 		args = btf_params(dtor_func_proto);
8516 		t = btf_type_by_id(btf, args[0].type);
8517 		/* Allow any pointer type, as width on targets Linux supports
8518 		 * will be same for all pointer types (i.e. sizeof(void *))
8519 		 */
8520 		if (!t || !btf_type_is_ptr(t))
8521 			return -EINVAL;
8522 	}
8523 	return 0;
8524 }
8525 
8526 /* This function must be invoked only from initcalls/module init functions */
8527 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8528 				struct module *owner)
8529 {
8530 	struct btf_id_dtor_kfunc_tab *tab;
8531 	struct btf *btf;
8532 	u32 tab_cnt, i;
8533 	int ret;
8534 
8535 	btf = btf_get_module_btf(owner);
8536 	if (!btf)
8537 		return check_btf_kconfigs(owner, "dtor kfuncs");
8538 	if (IS_ERR(btf))
8539 		return PTR_ERR(btf);
8540 
8541 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8542 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8543 		ret = -E2BIG;
8544 		goto end;
8545 	}
8546 
8547 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8548 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8549 	if (ret < 0)
8550 		goto end;
8551 
8552 	tab = btf->dtor_kfunc_tab;
8553 	/* Only one call allowed for modules */
8554 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8555 		ret = -EINVAL;
8556 		goto end;
8557 	}
8558 
8559 	tab_cnt = tab ? tab->cnt : 0;
8560 	if (tab_cnt > U32_MAX - add_cnt) {
8561 		ret = -EOVERFLOW;
8562 		goto end;
8563 	}
8564 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8565 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8566 		ret = -E2BIG;
8567 		goto end;
8568 	}
8569 
8570 	tab = krealloc(btf->dtor_kfunc_tab,
8571 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8572 		       GFP_KERNEL | __GFP_NOWARN);
8573 	if (!tab) {
8574 		ret = -ENOMEM;
8575 		goto end;
8576 	}
8577 
8578 	if (!btf->dtor_kfunc_tab)
8579 		tab->cnt = 0;
8580 	btf->dtor_kfunc_tab = tab;
8581 
8582 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8583 
8584 	/* remap BTF ids based on BTF relocation (if any) */
8585 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8586 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8587 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8588 	}
8589 
8590 	tab->cnt += add_cnt;
8591 
8592 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8593 
8594 end:
8595 	if (ret)
8596 		btf_free_dtor_kfunc_tab(btf);
8597 	btf_put(btf);
8598 	return ret;
8599 }
8600 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8601 
8602 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8603 
8604 /* Check local and target types for compatibility. This check is used for
8605  * type-based CO-RE relocations and follow slightly different rules than
8606  * field-based relocations. This function assumes that root types were already
8607  * checked for name match. Beyond that initial root-level name check, names
8608  * are completely ignored. Compatibility rules are as follows:
8609  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8610  *     kind should match for local and target types (i.e., STRUCT is not
8611  *     compatible with UNION);
8612  *   - for ENUMs/ENUM64s, the size is ignored;
8613  *   - for INT, size and signedness are ignored;
8614  *   - for ARRAY, dimensionality is ignored, element types are checked for
8615  *     compatibility recursively;
8616  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8617  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8618  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8619  *     number of input args and compatible return and argument types.
8620  * These rules are not set in stone and probably will be adjusted as we get
8621  * more experience with using BPF CO-RE relocations.
8622  */
8623 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8624 			      const struct btf *targ_btf, __u32 targ_id)
8625 {
8626 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8627 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8628 }
8629 
8630 #define MAX_TYPES_MATCH_DEPTH 2
8631 
8632 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8633 			 const struct btf *targ_btf, u32 targ_id)
8634 {
8635 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8636 				      MAX_TYPES_MATCH_DEPTH);
8637 }
8638 
8639 static bool bpf_core_is_flavor_sep(const char *s)
8640 {
8641 	/* check X___Y name pattern, where X and Y are not underscores */
8642 	return s[0] != '_' &&				      /* X */
8643 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8644 	       s[4] != '_';				      /* Y */
8645 }
8646 
8647 size_t bpf_core_essential_name_len(const char *name)
8648 {
8649 	size_t n = strlen(name);
8650 	int i;
8651 
8652 	for (i = n - 5; i >= 0; i--) {
8653 		if (bpf_core_is_flavor_sep(name + i))
8654 			return i + 1;
8655 	}
8656 	return n;
8657 }
8658 
8659 static void bpf_free_cands(struct bpf_cand_cache *cands)
8660 {
8661 	if (!cands->cnt)
8662 		/* empty candidate array was allocated on stack */
8663 		return;
8664 	kfree(cands);
8665 }
8666 
8667 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8668 {
8669 	kfree(cands->name);
8670 	kfree(cands);
8671 }
8672 
8673 #define VMLINUX_CAND_CACHE_SIZE 31
8674 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8675 
8676 #define MODULE_CAND_CACHE_SIZE 31
8677 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8678 
8679 static void __print_cand_cache(struct bpf_verifier_log *log,
8680 			       struct bpf_cand_cache **cache,
8681 			       int cache_size)
8682 {
8683 	struct bpf_cand_cache *cc;
8684 	int i, j;
8685 
8686 	for (i = 0; i < cache_size; i++) {
8687 		cc = cache[i];
8688 		if (!cc)
8689 			continue;
8690 		bpf_log(log, "[%d]%s(", i, cc->name);
8691 		for (j = 0; j < cc->cnt; j++) {
8692 			bpf_log(log, "%d", cc->cands[j].id);
8693 			if (j < cc->cnt - 1)
8694 				bpf_log(log, " ");
8695 		}
8696 		bpf_log(log, "), ");
8697 	}
8698 }
8699 
8700 static void print_cand_cache(struct bpf_verifier_log *log)
8701 {
8702 	mutex_lock(&cand_cache_mutex);
8703 	bpf_log(log, "vmlinux_cand_cache:");
8704 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8705 	bpf_log(log, "\nmodule_cand_cache:");
8706 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8707 	bpf_log(log, "\n");
8708 	mutex_unlock(&cand_cache_mutex);
8709 }
8710 
8711 static u32 hash_cands(struct bpf_cand_cache *cands)
8712 {
8713 	return jhash(cands->name, cands->name_len, 0);
8714 }
8715 
8716 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8717 					       struct bpf_cand_cache **cache,
8718 					       int cache_size)
8719 {
8720 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8721 
8722 	if (cc && cc->name_len == cands->name_len &&
8723 	    !strncmp(cc->name, cands->name, cands->name_len))
8724 		return cc;
8725 	return NULL;
8726 }
8727 
8728 static size_t sizeof_cands(int cnt)
8729 {
8730 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8731 }
8732 
8733 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8734 						  struct bpf_cand_cache **cache,
8735 						  int cache_size)
8736 {
8737 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8738 
8739 	if (*cc) {
8740 		bpf_free_cands_from_cache(*cc);
8741 		*cc = NULL;
8742 	}
8743 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8744 	if (!new_cands) {
8745 		bpf_free_cands(cands);
8746 		return ERR_PTR(-ENOMEM);
8747 	}
8748 	/* strdup the name, since it will stay in cache.
8749 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8750 	 */
8751 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8752 	bpf_free_cands(cands);
8753 	if (!new_cands->name) {
8754 		kfree(new_cands);
8755 		return ERR_PTR(-ENOMEM);
8756 	}
8757 	*cc = new_cands;
8758 	return new_cands;
8759 }
8760 
8761 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8762 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8763 			       int cache_size)
8764 {
8765 	struct bpf_cand_cache *cc;
8766 	int i, j;
8767 
8768 	for (i = 0; i < cache_size; i++) {
8769 		cc = cache[i];
8770 		if (!cc)
8771 			continue;
8772 		if (!btf) {
8773 			/* when new module is loaded purge all of module_cand_cache,
8774 			 * since new module might have candidates with the name
8775 			 * that matches cached cands.
8776 			 */
8777 			bpf_free_cands_from_cache(cc);
8778 			cache[i] = NULL;
8779 			continue;
8780 		}
8781 		/* when module is unloaded purge cache entries
8782 		 * that match module's btf
8783 		 */
8784 		for (j = 0; j < cc->cnt; j++)
8785 			if (cc->cands[j].btf == btf) {
8786 				bpf_free_cands_from_cache(cc);
8787 				cache[i] = NULL;
8788 				break;
8789 			}
8790 	}
8791 
8792 }
8793 
8794 static void purge_cand_cache(struct btf *btf)
8795 {
8796 	mutex_lock(&cand_cache_mutex);
8797 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8798 	mutex_unlock(&cand_cache_mutex);
8799 }
8800 #endif
8801 
8802 static struct bpf_cand_cache *
8803 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8804 		   int targ_start_id)
8805 {
8806 	struct bpf_cand_cache *new_cands;
8807 	const struct btf_type *t;
8808 	const char *targ_name;
8809 	size_t targ_essent_len;
8810 	int n, i;
8811 
8812 	n = btf_nr_types(targ_btf);
8813 	for (i = targ_start_id; i < n; i++) {
8814 		t = btf_type_by_id(targ_btf, i);
8815 		if (btf_kind(t) != cands->kind)
8816 			continue;
8817 
8818 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8819 		if (!targ_name)
8820 			continue;
8821 
8822 		/* the resched point is before strncmp to make sure that search
8823 		 * for non-existing name will have a chance to schedule().
8824 		 */
8825 		cond_resched();
8826 
8827 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8828 			continue;
8829 
8830 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8831 		if (targ_essent_len != cands->name_len)
8832 			continue;
8833 
8834 		/* most of the time there is only one candidate for a given kind+name pair */
8835 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8836 		if (!new_cands) {
8837 			bpf_free_cands(cands);
8838 			return ERR_PTR(-ENOMEM);
8839 		}
8840 
8841 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8842 		bpf_free_cands(cands);
8843 		cands = new_cands;
8844 		cands->cands[cands->cnt].btf = targ_btf;
8845 		cands->cands[cands->cnt].id = i;
8846 		cands->cnt++;
8847 	}
8848 	return cands;
8849 }
8850 
8851 static struct bpf_cand_cache *
8852 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8853 {
8854 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8855 	const struct btf *local_btf = ctx->btf;
8856 	const struct btf_type *local_type;
8857 	const struct btf *main_btf;
8858 	size_t local_essent_len;
8859 	struct btf *mod_btf;
8860 	const char *name;
8861 	int id;
8862 
8863 	main_btf = bpf_get_btf_vmlinux();
8864 	if (IS_ERR(main_btf))
8865 		return ERR_CAST(main_btf);
8866 	if (!main_btf)
8867 		return ERR_PTR(-EINVAL);
8868 
8869 	local_type = btf_type_by_id(local_btf, local_type_id);
8870 	if (!local_type)
8871 		return ERR_PTR(-EINVAL);
8872 
8873 	name = btf_name_by_offset(local_btf, local_type->name_off);
8874 	if (str_is_empty(name))
8875 		return ERR_PTR(-EINVAL);
8876 	local_essent_len = bpf_core_essential_name_len(name);
8877 
8878 	cands = &local_cand;
8879 	cands->name = name;
8880 	cands->kind = btf_kind(local_type);
8881 	cands->name_len = local_essent_len;
8882 
8883 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8884 	/* cands is a pointer to stack here */
8885 	if (cc) {
8886 		if (cc->cnt)
8887 			return cc;
8888 		goto check_modules;
8889 	}
8890 
8891 	/* Attempt to find target candidates in vmlinux BTF first */
8892 	cands = bpf_core_add_cands(cands, main_btf, 1);
8893 	if (IS_ERR(cands))
8894 		return ERR_CAST(cands);
8895 
8896 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8897 
8898 	/* populate cache even when cands->cnt == 0 */
8899 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8900 	if (IS_ERR(cc))
8901 		return ERR_CAST(cc);
8902 
8903 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8904 	if (cc->cnt)
8905 		return cc;
8906 
8907 check_modules:
8908 	/* cands is a pointer to stack here and cands->cnt == 0 */
8909 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8910 	if (cc)
8911 		/* if cache has it return it even if cc->cnt == 0 */
8912 		return cc;
8913 
8914 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8915 	spin_lock_bh(&btf_idr_lock);
8916 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8917 		if (!btf_is_module(mod_btf))
8918 			continue;
8919 		/* linear search could be slow hence unlock/lock
8920 		 * the IDR to avoiding holding it for too long
8921 		 */
8922 		btf_get(mod_btf);
8923 		spin_unlock_bh(&btf_idr_lock);
8924 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8925 		btf_put(mod_btf);
8926 		if (IS_ERR(cands))
8927 			return ERR_CAST(cands);
8928 		spin_lock_bh(&btf_idr_lock);
8929 	}
8930 	spin_unlock_bh(&btf_idr_lock);
8931 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8932 	 * or pointer to stack if cands->cnd == 0.
8933 	 * Copy it into the cache even when cands->cnt == 0 and
8934 	 * return the result.
8935 	 */
8936 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8937 }
8938 
8939 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8940 		   int relo_idx, void *insn)
8941 {
8942 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8943 	struct bpf_core_cand_list cands = {};
8944 	struct bpf_core_relo_res targ_res;
8945 	struct bpf_core_spec *specs;
8946 	const struct btf_type *type;
8947 	int err;
8948 
8949 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8950 	 * into arrays of btf_ids of struct fields and array indices.
8951 	 */
8952 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8953 	if (!specs)
8954 		return -ENOMEM;
8955 
8956 	type = btf_type_by_id(ctx->btf, relo->type_id);
8957 	if (!type) {
8958 		bpf_log(ctx->log, "relo #%u: bad type id %u\n",
8959 			relo_idx, relo->type_id);
8960 		return -EINVAL;
8961 	}
8962 
8963 	if (need_cands) {
8964 		struct bpf_cand_cache *cc;
8965 		int i;
8966 
8967 		mutex_lock(&cand_cache_mutex);
8968 		cc = bpf_core_find_cands(ctx, relo->type_id);
8969 		if (IS_ERR(cc)) {
8970 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8971 				relo->type_id);
8972 			err = PTR_ERR(cc);
8973 			goto out;
8974 		}
8975 		if (cc->cnt) {
8976 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8977 			if (!cands.cands) {
8978 				err = -ENOMEM;
8979 				goto out;
8980 			}
8981 		}
8982 		for (i = 0; i < cc->cnt; i++) {
8983 			bpf_log(ctx->log,
8984 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8985 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8986 			cands.cands[i].btf = cc->cands[i].btf;
8987 			cands.cands[i].id = cc->cands[i].id;
8988 		}
8989 		cands.len = cc->cnt;
8990 		/* cand_cache_mutex needs to span the cache lookup and
8991 		 * copy of btf pointer into bpf_core_cand_list,
8992 		 * since module can be unloaded while bpf_core_calc_relo_insn
8993 		 * is working with module's btf.
8994 		 */
8995 	}
8996 
8997 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8998 				      &targ_res);
8999 	if (err)
9000 		goto out;
9001 
9002 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9003 				  &targ_res);
9004 
9005 out:
9006 	kfree(specs);
9007 	if (need_cands) {
9008 		kfree(cands.cands);
9009 		mutex_unlock(&cand_cache_mutex);
9010 		if (ctx->log->level & BPF_LOG_LEVEL2)
9011 			print_cand_cache(ctx->log);
9012 	}
9013 	return err;
9014 }
9015 
9016 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9017 				const struct bpf_reg_state *reg,
9018 				const char *field_name, u32 btf_id, const char *suffix)
9019 {
9020 	struct btf *btf = reg->btf;
9021 	const struct btf_type *walk_type, *safe_type;
9022 	const char *tname;
9023 	char safe_tname[64];
9024 	long ret, safe_id;
9025 	const struct btf_member *member;
9026 	u32 i;
9027 
9028 	walk_type = btf_type_by_id(btf, reg->btf_id);
9029 	if (!walk_type)
9030 		return false;
9031 
9032 	tname = btf_name_by_offset(btf, walk_type->name_off);
9033 
9034 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9035 	if (ret >= sizeof(safe_tname))
9036 		return false;
9037 
9038 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9039 	if (safe_id < 0)
9040 		return false;
9041 
9042 	safe_type = btf_type_by_id(btf, safe_id);
9043 	if (!safe_type)
9044 		return false;
9045 
9046 	for_each_member(i, safe_type, member) {
9047 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
9048 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9049 		u32 id;
9050 
9051 		if (!btf_type_is_ptr(mtype))
9052 			continue;
9053 
9054 		btf_type_skip_modifiers(btf, mtype->type, &id);
9055 		/* If we match on both type and name, the field is considered trusted. */
9056 		if (btf_id == id && !strcmp(field_name, m_name))
9057 			return true;
9058 	}
9059 
9060 	return false;
9061 }
9062 
9063 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9064 			       const struct btf *reg_btf, u32 reg_id,
9065 			       const struct btf *arg_btf, u32 arg_id)
9066 {
9067 	const char *reg_name, *arg_name, *search_needle;
9068 	const struct btf_type *reg_type, *arg_type;
9069 	int reg_len, arg_len, cmp_len;
9070 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9071 
9072 	reg_type = btf_type_by_id(reg_btf, reg_id);
9073 	if (!reg_type)
9074 		return false;
9075 
9076 	arg_type = btf_type_by_id(arg_btf, arg_id);
9077 	if (!arg_type)
9078 		return false;
9079 
9080 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9081 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9082 
9083 	reg_len = strlen(reg_name);
9084 	arg_len = strlen(arg_name);
9085 
9086 	/* Exactly one of the two type names may be suffixed with ___init, so
9087 	 * if the strings are the same size, they can't possibly be no-cast
9088 	 * aliases of one another. If you have two of the same type names, e.g.
9089 	 * they're both nf_conn___init, it would be improper to return true
9090 	 * because they are _not_ no-cast aliases, they are the same type.
9091 	 */
9092 	if (reg_len == arg_len)
9093 		return false;
9094 
9095 	/* Either of the two names must be the other name, suffixed with ___init. */
9096 	if ((reg_len != arg_len + pattern_len) &&
9097 	    (arg_len != reg_len + pattern_len))
9098 		return false;
9099 
9100 	if (reg_len < arg_len) {
9101 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9102 		cmp_len = reg_len;
9103 	} else {
9104 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9105 		cmp_len = arg_len;
9106 	}
9107 
9108 	if (!search_needle)
9109 		return false;
9110 
9111 	/* ___init suffix must come at the end of the name */
9112 	if (*(search_needle + pattern_len) != '\0')
9113 		return false;
9114 
9115 	return !strncmp(reg_name, arg_name, cmp_len);
9116 }
9117 
9118 #ifdef CONFIG_BPF_JIT
9119 static int
9120 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9121 		   struct bpf_verifier_log *log)
9122 {
9123 	struct btf_struct_ops_tab *tab, *new_tab;
9124 	int i, err;
9125 
9126 	tab = btf->struct_ops_tab;
9127 	if (!tab) {
9128 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9129 			      GFP_KERNEL);
9130 		if (!tab)
9131 			return -ENOMEM;
9132 		tab->capacity = 4;
9133 		btf->struct_ops_tab = tab;
9134 	}
9135 
9136 	for (i = 0; i < tab->cnt; i++)
9137 		if (tab->ops[i].st_ops == st_ops)
9138 			return -EEXIST;
9139 
9140 	if (tab->cnt == tab->capacity) {
9141 		new_tab = krealloc(tab,
9142 				   offsetof(struct btf_struct_ops_tab,
9143 					    ops[tab->capacity * 2]),
9144 				   GFP_KERNEL);
9145 		if (!new_tab)
9146 			return -ENOMEM;
9147 		tab = new_tab;
9148 		tab->capacity *= 2;
9149 		btf->struct_ops_tab = tab;
9150 	}
9151 
9152 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9153 
9154 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9155 	if (err)
9156 		return err;
9157 
9158 	btf->struct_ops_tab->cnt++;
9159 
9160 	return 0;
9161 }
9162 
9163 const struct bpf_struct_ops_desc *
9164 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9165 {
9166 	const struct bpf_struct_ops_desc *st_ops_list;
9167 	unsigned int i;
9168 	u32 cnt;
9169 
9170 	if (!value_id)
9171 		return NULL;
9172 	if (!btf->struct_ops_tab)
9173 		return NULL;
9174 
9175 	cnt = btf->struct_ops_tab->cnt;
9176 	st_ops_list = btf->struct_ops_tab->ops;
9177 	for (i = 0; i < cnt; i++) {
9178 		if (st_ops_list[i].value_id == value_id)
9179 			return &st_ops_list[i];
9180 	}
9181 
9182 	return NULL;
9183 }
9184 
9185 const struct bpf_struct_ops_desc *
9186 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9187 {
9188 	const struct bpf_struct_ops_desc *st_ops_list;
9189 	unsigned int i;
9190 	u32 cnt;
9191 
9192 	if (!type_id)
9193 		return NULL;
9194 	if (!btf->struct_ops_tab)
9195 		return NULL;
9196 
9197 	cnt = btf->struct_ops_tab->cnt;
9198 	st_ops_list = btf->struct_ops_tab->ops;
9199 	for (i = 0; i < cnt; i++) {
9200 		if (st_ops_list[i].type_id == type_id)
9201 			return &st_ops_list[i];
9202 	}
9203 
9204 	return NULL;
9205 }
9206 
9207 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9208 {
9209 	struct bpf_verifier_log *log;
9210 	struct btf *btf;
9211 	int err = 0;
9212 
9213 	btf = btf_get_module_btf(st_ops->owner);
9214 	if (!btf)
9215 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9216 	if (IS_ERR(btf))
9217 		return PTR_ERR(btf);
9218 
9219 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9220 	if (!log) {
9221 		err = -ENOMEM;
9222 		goto errout;
9223 	}
9224 
9225 	log->level = BPF_LOG_KERNEL;
9226 
9227 	err = btf_add_struct_ops(btf, st_ops, log);
9228 
9229 errout:
9230 	kfree(log);
9231 	btf_put(btf);
9232 
9233 	return err;
9234 }
9235 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9236 #endif
9237 
9238 bool btf_param_match_suffix(const struct btf *btf,
9239 			    const struct btf_param *arg,
9240 			    const char *suffix)
9241 {
9242 	int suffix_len = strlen(suffix), len;
9243 	const char *param_name;
9244 
9245 	/* In the future, this can be ported to use BTF tagging */
9246 	param_name = btf_name_by_offset(btf, arg->name_off);
9247 	if (str_is_empty(param_name))
9248 		return false;
9249 	len = strlen(param_name);
9250 	if (len <= suffix_len)
9251 		return false;
9252 	param_name += len - suffix_len;
9253 	return !strncmp(param_name, suffix, suffix_len);
9254 }
9255