xref: /linux/kernel/bpf/btf.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 #define for_each_vsi(i, struct_type, member)			\
189 	for (i = 0, member = btf_type_var_secinfo(struct_type);	\
190 	     i < btf_type_vlen(struct_type);			\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 static DEFINE_IDR(btf_idr);
199 static DEFINE_SPINLOCK(btf_idr_lock);
200 
201 struct btf {
202 	void *data;
203 	struct btf_type **types;
204 	u32 *resolved_ids;
205 	u32 *resolved_sizes;
206 	const char *strings;
207 	void *nohdr_data;
208 	struct btf_header hdr;
209 	u32 nr_types;
210 	u32 types_size;
211 	u32 data_size;
212 	refcount_t refcnt;
213 	u32 id;
214 	struct rcu_head rcu;
215 };
216 
217 enum verifier_phase {
218 	CHECK_META,
219 	CHECK_TYPE,
220 };
221 
222 struct resolve_vertex {
223 	const struct btf_type *t;
224 	u32 type_id;
225 	u16 next_member;
226 };
227 
228 enum visit_state {
229 	NOT_VISITED,
230 	VISITED,
231 	RESOLVED,
232 };
233 
234 enum resolve_mode {
235 	RESOLVE_TBD,	/* To Be Determined */
236 	RESOLVE_PTR,	/* Resolving for Pointer */
237 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
238 					 * or array
239 					 */
240 };
241 
242 #define MAX_RESOLVE_DEPTH 32
243 
244 struct btf_sec_info {
245 	u32 off;
246 	u32 len;
247 };
248 
249 struct btf_verifier_env {
250 	struct btf *btf;
251 	u8 *visit_states;
252 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253 	struct bpf_verifier_log log;
254 	u32 log_type_id;
255 	u32 top_stack;
256 	enum verifier_phase phase;
257 	enum resolve_mode resolve_mode;
258 };
259 
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261 	[BTF_KIND_UNKN]		= "UNKNOWN",
262 	[BTF_KIND_INT]		= "INT",
263 	[BTF_KIND_PTR]		= "PTR",
264 	[BTF_KIND_ARRAY]	= "ARRAY",
265 	[BTF_KIND_STRUCT]	= "STRUCT",
266 	[BTF_KIND_UNION]	= "UNION",
267 	[BTF_KIND_ENUM]		= "ENUM",
268 	[BTF_KIND_FWD]		= "FWD",
269 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
270 	[BTF_KIND_VOLATILE]	= "VOLATILE",
271 	[BTF_KIND_CONST]	= "CONST",
272 	[BTF_KIND_RESTRICT]	= "RESTRICT",
273 	[BTF_KIND_FUNC]		= "FUNC",
274 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
275 	[BTF_KIND_VAR]		= "VAR",
276 	[BTF_KIND_DATASEC]	= "DATASEC",
277 };
278 
279 struct btf_kind_operations {
280 	s32 (*check_meta)(struct btf_verifier_env *env,
281 			  const struct btf_type *t,
282 			  u32 meta_left);
283 	int (*resolve)(struct btf_verifier_env *env,
284 		       const struct resolve_vertex *v);
285 	int (*check_member)(struct btf_verifier_env *env,
286 			    const struct btf_type *struct_type,
287 			    const struct btf_member *member,
288 			    const struct btf_type *member_type);
289 	int (*check_kflag_member)(struct btf_verifier_env *env,
290 				  const struct btf_type *struct_type,
291 				  const struct btf_member *member,
292 				  const struct btf_type *member_type);
293 	void (*log_details)(struct btf_verifier_env *env,
294 			    const struct btf_type *t);
295 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
296 			 u32 type_id, void *data, u8 bits_offsets,
297 			 struct seq_file *m);
298 };
299 
300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
301 static struct btf_type btf_void;
302 
303 static int btf_resolve(struct btf_verifier_env *env,
304 		       const struct btf_type *t, u32 type_id);
305 
306 static bool btf_type_is_modifier(const struct btf_type *t)
307 {
308 	/* Some of them is not strictly a C modifier
309 	 * but they are grouped into the same bucket
310 	 * for BTF concern:
311 	 *   A type (t) that refers to another
312 	 *   type through t->type AND its size cannot
313 	 *   be determined without following the t->type.
314 	 *
315 	 * ptr does not fall into this bucket
316 	 * because its size is always sizeof(void *).
317 	 */
318 	switch (BTF_INFO_KIND(t->info)) {
319 	case BTF_KIND_TYPEDEF:
320 	case BTF_KIND_VOLATILE:
321 	case BTF_KIND_CONST:
322 	case BTF_KIND_RESTRICT:
323 		return true;
324 	}
325 
326 	return false;
327 }
328 
329 bool btf_type_is_void(const struct btf_type *t)
330 {
331 	return t == &btf_void;
332 }
333 
334 static bool btf_type_is_fwd(const struct btf_type *t)
335 {
336 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
337 }
338 
339 static bool btf_type_is_func(const struct btf_type *t)
340 {
341 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
342 }
343 
344 static bool btf_type_is_func_proto(const struct btf_type *t)
345 {
346 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
347 }
348 
349 static bool btf_type_nosize(const struct btf_type *t)
350 {
351 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
352 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
353 }
354 
355 static bool btf_type_nosize_or_null(const struct btf_type *t)
356 {
357 	return !t || btf_type_nosize(t);
358 }
359 
360 /* union is only a special case of struct:
361  * all its offsetof(member) == 0
362  */
363 static bool btf_type_is_struct(const struct btf_type *t)
364 {
365 	u8 kind = BTF_INFO_KIND(t->info);
366 
367 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
368 }
369 
370 static bool __btf_type_is_struct(const struct btf_type *t)
371 {
372 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
373 }
374 
375 static bool btf_type_is_array(const struct btf_type *t)
376 {
377 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
378 }
379 
380 static bool btf_type_is_ptr(const struct btf_type *t)
381 {
382 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
383 }
384 
385 static bool btf_type_is_int(const struct btf_type *t)
386 {
387 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
388 }
389 
390 static bool btf_type_is_var(const struct btf_type *t)
391 {
392 	return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
393 }
394 
395 static bool btf_type_is_datasec(const struct btf_type *t)
396 {
397 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
398 }
399 
400 /* Types that act only as a source, not sink or intermediate
401  * type when resolving.
402  */
403 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
404 {
405 	return btf_type_is_var(t) ||
406 	       btf_type_is_datasec(t);
407 }
408 
409 /* What types need to be resolved?
410  *
411  * btf_type_is_modifier() is an obvious one.
412  *
413  * btf_type_is_struct() because its member refers to
414  * another type (through member->type).
415  *
416  * btf_type_is_var() because the variable refers to
417  * another type. btf_type_is_datasec() holds multiple
418  * btf_type_is_var() types that need resolving.
419  *
420  * btf_type_is_array() because its element (array->type)
421  * refers to another type.  Array can be thought of a
422  * special case of struct while array just has the same
423  * member-type repeated by array->nelems of times.
424  */
425 static bool btf_type_needs_resolve(const struct btf_type *t)
426 {
427 	return btf_type_is_modifier(t) ||
428 	       btf_type_is_ptr(t) ||
429 	       btf_type_is_struct(t) ||
430 	       btf_type_is_array(t) ||
431 	       btf_type_is_var(t) ||
432 	       btf_type_is_datasec(t);
433 }
434 
435 /* t->size can be used */
436 static bool btf_type_has_size(const struct btf_type *t)
437 {
438 	switch (BTF_INFO_KIND(t->info)) {
439 	case BTF_KIND_INT:
440 	case BTF_KIND_STRUCT:
441 	case BTF_KIND_UNION:
442 	case BTF_KIND_ENUM:
443 	case BTF_KIND_DATASEC:
444 		return true;
445 	}
446 
447 	return false;
448 }
449 
450 static const char *btf_int_encoding_str(u8 encoding)
451 {
452 	if (encoding == 0)
453 		return "(none)";
454 	else if (encoding == BTF_INT_SIGNED)
455 		return "SIGNED";
456 	else if (encoding == BTF_INT_CHAR)
457 		return "CHAR";
458 	else if (encoding == BTF_INT_BOOL)
459 		return "BOOL";
460 	else
461 		return "UNKN";
462 }
463 
464 static u16 btf_type_vlen(const struct btf_type *t)
465 {
466 	return BTF_INFO_VLEN(t->info);
467 }
468 
469 static bool btf_type_kflag(const struct btf_type *t)
470 {
471 	return BTF_INFO_KFLAG(t->info);
472 }
473 
474 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
475 			     const struct btf_member *member)
476 {
477 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
478 					   : member->offset;
479 }
480 
481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
482 				    const struct btf_member *member)
483 {
484 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
485 					   : 0;
486 }
487 
488 static u32 btf_type_int(const struct btf_type *t)
489 {
490 	return *(u32 *)(t + 1);
491 }
492 
493 static const struct btf_array *btf_type_array(const struct btf_type *t)
494 {
495 	return (const struct btf_array *)(t + 1);
496 }
497 
498 static const struct btf_member *btf_type_member(const struct btf_type *t)
499 {
500 	return (const struct btf_member *)(t + 1);
501 }
502 
503 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
504 {
505 	return (const struct btf_enum *)(t + 1);
506 }
507 
508 static const struct btf_var *btf_type_var(const struct btf_type *t)
509 {
510 	return (const struct btf_var *)(t + 1);
511 }
512 
513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
514 {
515 	return (const struct btf_var_secinfo *)(t + 1);
516 }
517 
518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
519 {
520 	return kind_ops[BTF_INFO_KIND(t->info)];
521 }
522 
523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
524 {
525 	return BTF_STR_OFFSET_VALID(offset) &&
526 		offset < btf->hdr.str_len;
527 }
528 
529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
530 {
531 	if ((first ? !isalpha(c) :
532 		     !isalnum(c)) &&
533 	    c != '_' &&
534 	    ((c == '.' && !dot_ok) ||
535 	      c != '.'))
536 		return false;
537 	return true;
538 }
539 
540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
541 {
542 	/* offset must be valid */
543 	const char *src = &btf->strings[offset];
544 	const char *src_limit;
545 
546 	if (!__btf_name_char_ok(*src, true, dot_ok))
547 		return false;
548 
549 	/* set a limit on identifier length */
550 	src_limit = src + KSYM_NAME_LEN;
551 	src++;
552 	while (*src && src < src_limit) {
553 		if (!__btf_name_char_ok(*src, false, dot_ok))
554 			return false;
555 		src++;
556 	}
557 
558 	return !*src;
559 }
560 
561 /* Only C-style identifier is permitted. This can be relaxed if
562  * necessary.
563  */
564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
565 {
566 	return __btf_name_valid(btf, offset, false);
567 }
568 
569 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
570 {
571 	return __btf_name_valid(btf, offset, true);
572 }
573 
574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
575 {
576 	if (!offset)
577 		return "(anon)";
578 	else if (offset < btf->hdr.str_len)
579 		return &btf->strings[offset];
580 	else
581 		return "(invalid-name-offset)";
582 }
583 
584 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
585 {
586 	if (offset < btf->hdr.str_len)
587 		return &btf->strings[offset];
588 
589 	return NULL;
590 }
591 
592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
593 {
594 	if (type_id > btf->nr_types)
595 		return NULL;
596 
597 	return btf->types[type_id];
598 }
599 
600 /*
601  * Regular int is not a bit field and it must be either
602  * u8/u16/u32/u64 or __int128.
603  */
604 static bool btf_type_int_is_regular(const struct btf_type *t)
605 {
606 	u8 nr_bits, nr_bytes;
607 	u32 int_data;
608 
609 	int_data = btf_type_int(t);
610 	nr_bits = BTF_INT_BITS(int_data);
611 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
612 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
613 	    BTF_INT_OFFSET(int_data) ||
614 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
615 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
616 	     nr_bytes != (2 * sizeof(u64)))) {
617 		return false;
618 	}
619 
620 	return true;
621 }
622 
623 /*
624  * Check that given struct member is a regular int with expected
625  * offset and size.
626  */
627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
628 			   const struct btf_member *m,
629 			   u32 expected_offset, u32 expected_size)
630 {
631 	const struct btf_type *t;
632 	u32 id, int_data;
633 	u8 nr_bits;
634 
635 	id = m->type;
636 	t = btf_type_id_size(btf, &id, NULL);
637 	if (!t || !btf_type_is_int(t))
638 		return false;
639 
640 	int_data = btf_type_int(t);
641 	nr_bits = BTF_INT_BITS(int_data);
642 	if (btf_type_kflag(s)) {
643 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
644 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
645 
646 		/* if kflag set, int should be a regular int and
647 		 * bit offset should be at byte boundary.
648 		 */
649 		return !bitfield_size &&
650 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
651 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
652 	}
653 
654 	if (BTF_INT_OFFSET(int_data) ||
655 	    BITS_PER_BYTE_MASKED(m->offset) ||
656 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
657 	    BITS_PER_BYTE_MASKED(nr_bits) ||
658 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
659 		return false;
660 
661 	return true;
662 }
663 
664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
665 					      const char *fmt, ...)
666 {
667 	va_list args;
668 
669 	va_start(args, fmt);
670 	bpf_verifier_vlog(log, fmt, args);
671 	va_end(args);
672 }
673 
674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
675 					    const char *fmt, ...)
676 {
677 	struct bpf_verifier_log *log = &env->log;
678 	va_list args;
679 
680 	if (!bpf_verifier_log_needed(log))
681 		return;
682 
683 	va_start(args, fmt);
684 	bpf_verifier_vlog(log, fmt, args);
685 	va_end(args);
686 }
687 
688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
689 						   const struct btf_type *t,
690 						   bool log_details,
691 						   const char *fmt, ...)
692 {
693 	struct bpf_verifier_log *log = &env->log;
694 	u8 kind = BTF_INFO_KIND(t->info);
695 	struct btf *btf = env->btf;
696 	va_list args;
697 
698 	if (!bpf_verifier_log_needed(log))
699 		return;
700 
701 	__btf_verifier_log(log, "[%u] %s %s%s",
702 			   env->log_type_id,
703 			   btf_kind_str[kind],
704 			   __btf_name_by_offset(btf, t->name_off),
705 			   log_details ? " " : "");
706 
707 	if (log_details)
708 		btf_type_ops(t)->log_details(env, t);
709 
710 	if (fmt && *fmt) {
711 		__btf_verifier_log(log, " ");
712 		va_start(args, fmt);
713 		bpf_verifier_vlog(log, fmt, args);
714 		va_end(args);
715 	}
716 
717 	__btf_verifier_log(log, "\n");
718 }
719 
720 #define btf_verifier_log_type(env, t, ...) \
721 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
722 #define btf_verifier_log_basic(env, t, ...) \
723 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
724 
725 __printf(4, 5)
726 static void btf_verifier_log_member(struct btf_verifier_env *env,
727 				    const struct btf_type *struct_type,
728 				    const struct btf_member *member,
729 				    const char *fmt, ...)
730 {
731 	struct bpf_verifier_log *log = &env->log;
732 	struct btf *btf = env->btf;
733 	va_list args;
734 
735 	if (!bpf_verifier_log_needed(log))
736 		return;
737 
738 	/* The CHECK_META phase already did a btf dump.
739 	 *
740 	 * If member is logged again, it must hit an error in
741 	 * parsing this member.  It is useful to print out which
742 	 * struct this member belongs to.
743 	 */
744 	if (env->phase != CHECK_META)
745 		btf_verifier_log_type(env, struct_type, NULL);
746 
747 	if (btf_type_kflag(struct_type))
748 		__btf_verifier_log(log,
749 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
750 				   __btf_name_by_offset(btf, member->name_off),
751 				   member->type,
752 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
753 				   BTF_MEMBER_BIT_OFFSET(member->offset));
754 	else
755 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
756 				   __btf_name_by_offset(btf, member->name_off),
757 				   member->type, member->offset);
758 
759 	if (fmt && *fmt) {
760 		__btf_verifier_log(log, " ");
761 		va_start(args, fmt);
762 		bpf_verifier_vlog(log, fmt, args);
763 		va_end(args);
764 	}
765 
766 	__btf_verifier_log(log, "\n");
767 }
768 
769 __printf(4, 5)
770 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
771 				 const struct btf_type *datasec_type,
772 				 const struct btf_var_secinfo *vsi,
773 				 const char *fmt, ...)
774 {
775 	struct bpf_verifier_log *log = &env->log;
776 	va_list args;
777 
778 	if (!bpf_verifier_log_needed(log))
779 		return;
780 	if (env->phase != CHECK_META)
781 		btf_verifier_log_type(env, datasec_type, NULL);
782 
783 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
784 			   vsi->type, vsi->offset, vsi->size);
785 	if (fmt && *fmt) {
786 		__btf_verifier_log(log, " ");
787 		va_start(args, fmt);
788 		bpf_verifier_vlog(log, fmt, args);
789 		va_end(args);
790 	}
791 
792 	__btf_verifier_log(log, "\n");
793 }
794 
795 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
796 				 u32 btf_data_size)
797 {
798 	struct bpf_verifier_log *log = &env->log;
799 	const struct btf *btf = env->btf;
800 	const struct btf_header *hdr;
801 
802 	if (!bpf_verifier_log_needed(log))
803 		return;
804 
805 	hdr = &btf->hdr;
806 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
807 	__btf_verifier_log(log, "version: %u\n", hdr->version);
808 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
809 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
810 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
811 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
812 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
813 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
814 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
815 }
816 
817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
818 {
819 	struct btf *btf = env->btf;
820 
821 	/* < 2 because +1 for btf_void which is always in btf->types[0].
822 	 * btf_void is not accounted in btf->nr_types because btf_void
823 	 * does not come from the BTF file.
824 	 */
825 	if (btf->types_size - btf->nr_types < 2) {
826 		/* Expand 'types' array */
827 
828 		struct btf_type **new_types;
829 		u32 expand_by, new_size;
830 
831 		if (btf->types_size == BTF_MAX_TYPE) {
832 			btf_verifier_log(env, "Exceeded max num of types");
833 			return -E2BIG;
834 		}
835 
836 		expand_by = max_t(u32, btf->types_size >> 2, 16);
837 		new_size = min_t(u32, BTF_MAX_TYPE,
838 				 btf->types_size + expand_by);
839 
840 		new_types = kvcalloc(new_size, sizeof(*new_types),
841 				     GFP_KERNEL | __GFP_NOWARN);
842 		if (!new_types)
843 			return -ENOMEM;
844 
845 		if (btf->nr_types == 0)
846 			new_types[0] = &btf_void;
847 		else
848 			memcpy(new_types, btf->types,
849 			       sizeof(*btf->types) * (btf->nr_types + 1));
850 
851 		kvfree(btf->types);
852 		btf->types = new_types;
853 		btf->types_size = new_size;
854 	}
855 
856 	btf->types[++(btf->nr_types)] = t;
857 
858 	return 0;
859 }
860 
861 static int btf_alloc_id(struct btf *btf)
862 {
863 	int id;
864 
865 	idr_preload(GFP_KERNEL);
866 	spin_lock_bh(&btf_idr_lock);
867 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
868 	if (id > 0)
869 		btf->id = id;
870 	spin_unlock_bh(&btf_idr_lock);
871 	idr_preload_end();
872 
873 	if (WARN_ON_ONCE(!id))
874 		return -ENOSPC;
875 
876 	return id > 0 ? 0 : id;
877 }
878 
879 static void btf_free_id(struct btf *btf)
880 {
881 	unsigned long flags;
882 
883 	/*
884 	 * In map-in-map, calling map_delete_elem() on outer
885 	 * map will call bpf_map_put on the inner map.
886 	 * It will then eventually call btf_free_id()
887 	 * on the inner map.  Some of the map_delete_elem()
888 	 * implementation may have irq disabled, so
889 	 * we need to use the _irqsave() version instead
890 	 * of the _bh() version.
891 	 */
892 	spin_lock_irqsave(&btf_idr_lock, flags);
893 	idr_remove(&btf_idr, btf->id);
894 	spin_unlock_irqrestore(&btf_idr_lock, flags);
895 }
896 
897 static void btf_free(struct btf *btf)
898 {
899 	kvfree(btf->types);
900 	kvfree(btf->resolved_sizes);
901 	kvfree(btf->resolved_ids);
902 	kvfree(btf->data);
903 	kfree(btf);
904 }
905 
906 static void btf_free_rcu(struct rcu_head *rcu)
907 {
908 	struct btf *btf = container_of(rcu, struct btf, rcu);
909 
910 	btf_free(btf);
911 }
912 
913 void btf_put(struct btf *btf)
914 {
915 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
916 		btf_free_id(btf);
917 		call_rcu(&btf->rcu, btf_free_rcu);
918 	}
919 }
920 
921 static int env_resolve_init(struct btf_verifier_env *env)
922 {
923 	struct btf *btf = env->btf;
924 	u32 nr_types = btf->nr_types;
925 	u32 *resolved_sizes = NULL;
926 	u32 *resolved_ids = NULL;
927 	u8 *visit_states = NULL;
928 
929 	/* +1 for btf_void */
930 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
931 				  GFP_KERNEL | __GFP_NOWARN);
932 	if (!resolved_sizes)
933 		goto nomem;
934 
935 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
936 				GFP_KERNEL | __GFP_NOWARN);
937 	if (!resolved_ids)
938 		goto nomem;
939 
940 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
941 				GFP_KERNEL | __GFP_NOWARN);
942 	if (!visit_states)
943 		goto nomem;
944 
945 	btf->resolved_sizes = resolved_sizes;
946 	btf->resolved_ids = resolved_ids;
947 	env->visit_states = visit_states;
948 
949 	return 0;
950 
951 nomem:
952 	kvfree(resolved_sizes);
953 	kvfree(resolved_ids);
954 	kvfree(visit_states);
955 	return -ENOMEM;
956 }
957 
958 static void btf_verifier_env_free(struct btf_verifier_env *env)
959 {
960 	kvfree(env->visit_states);
961 	kfree(env);
962 }
963 
964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
965 				     const struct btf_type *next_type)
966 {
967 	switch (env->resolve_mode) {
968 	case RESOLVE_TBD:
969 		/* int, enum or void is a sink */
970 		return !btf_type_needs_resolve(next_type);
971 	case RESOLVE_PTR:
972 		/* int, enum, void, struct, array, func or func_proto is a sink
973 		 * for ptr
974 		 */
975 		return !btf_type_is_modifier(next_type) &&
976 			!btf_type_is_ptr(next_type);
977 	case RESOLVE_STRUCT_OR_ARRAY:
978 		/* int, enum, void, ptr, func or func_proto is a sink
979 		 * for struct and array
980 		 */
981 		return !btf_type_is_modifier(next_type) &&
982 			!btf_type_is_array(next_type) &&
983 			!btf_type_is_struct(next_type);
984 	default:
985 		BUG();
986 	}
987 }
988 
989 static bool env_type_is_resolved(const struct btf_verifier_env *env,
990 				 u32 type_id)
991 {
992 	return env->visit_states[type_id] == RESOLVED;
993 }
994 
995 static int env_stack_push(struct btf_verifier_env *env,
996 			  const struct btf_type *t, u32 type_id)
997 {
998 	struct resolve_vertex *v;
999 
1000 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1001 		return -E2BIG;
1002 
1003 	if (env->visit_states[type_id] != NOT_VISITED)
1004 		return -EEXIST;
1005 
1006 	env->visit_states[type_id] = VISITED;
1007 
1008 	v = &env->stack[env->top_stack++];
1009 	v->t = t;
1010 	v->type_id = type_id;
1011 	v->next_member = 0;
1012 
1013 	if (env->resolve_mode == RESOLVE_TBD) {
1014 		if (btf_type_is_ptr(t))
1015 			env->resolve_mode = RESOLVE_PTR;
1016 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1017 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static void env_stack_set_next_member(struct btf_verifier_env *env,
1024 				      u16 next_member)
1025 {
1026 	env->stack[env->top_stack - 1].next_member = next_member;
1027 }
1028 
1029 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1030 				   u32 resolved_type_id,
1031 				   u32 resolved_size)
1032 {
1033 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1034 	struct btf *btf = env->btf;
1035 
1036 	btf->resolved_sizes[type_id] = resolved_size;
1037 	btf->resolved_ids[type_id] = resolved_type_id;
1038 	env->visit_states[type_id] = RESOLVED;
1039 }
1040 
1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1042 {
1043 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1044 }
1045 
1046 /* The input param "type_id" must point to a needs_resolve type */
1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1048 						  u32 *type_id)
1049 {
1050 	*type_id = btf->resolved_ids[*type_id];
1051 	return btf_type_by_id(btf, *type_id);
1052 }
1053 
1054 const struct btf_type *btf_type_id_size(const struct btf *btf,
1055 					u32 *type_id, u32 *ret_size)
1056 {
1057 	const struct btf_type *size_type;
1058 	u32 size_type_id = *type_id;
1059 	u32 size = 0;
1060 
1061 	size_type = btf_type_by_id(btf, size_type_id);
1062 	if (btf_type_nosize_or_null(size_type))
1063 		return NULL;
1064 
1065 	if (btf_type_has_size(size_type)) {
1066 		size = size_type->size;
1067 	} else if (btf_type_is_array(size_type)) {
1068 		size = btf->resolved_sizes[size_type_id];
1069 	} else if (btf_type_is_ptr(size_type)) {
1070 		size = sizeof(void *);
1071 	} else {
1072 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1073 				 !btf_type_is_var(size_type)))
1074 			return NULL;
1075 
1076 		size = btf->resolved_sizes[size_type_id];
1077 		size_type_id = btf->resolved_ids[size_type_id];
1078 		size_type = btf_type_by_id(btf, size_type_id);
1079 		if (btf_type_nosize_or_null(size_type))
1080 			return NULL;
1081 	}
1082 
1083 	*type_id = size_type_id;
1084 	if (ret_size)
1085 		*ret_size = size;
1086 
1087 	return size_type;
1088 }
1089 
1090 static int btf_df_check_member(struct btf_verifier_env *env,
1091 			       const struct btf_type *struct_type,
1092 			       const struct btf_member *member,
1093 			       const struct btf_type *member_type)
1094 {
1095 	btf_verifier_log_basic(env, struct_type,
1096 			       "Unsupported check_member");
1097 	return -EINVAL;
1098 }
1099 
1100 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1101 				     const struct btf_type *struct_type,
1102 				     const struct btf_member *member,
1103 				     const struct btf_type *member_type)
1104 {
1105 	btf_verifier_log_basic(env, struct_type,
1106 			       "Unsupported check_kflag_member");
1107 	return -EINVAL;
1108 }
1109 
1110 /* Used for ptr, array and struct/union type members.
1111  * int, enum and modifier types have their specific callback functions.
1112  */
1113 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1114 					  const struct btf_type *struct_type,
1115 					  const struct btf_member *member,
1116 					  const struct btf_type *member_type)
1117 {
1118 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1119 		btf_verifier_log_member(env, struct_type, member,
1120 					"Invalid member bitfield_size");
1121 		return -EINVAL;
1122 	}
1123 
1124 	/* bitfield size is 0, so member->offset represents bit offset only.
1125 	 * It is safe to call non kflag check_member variants.
1126 	 */
1127 	return btf_type_ops(member_type)->check_member(env, struct_type,
1128 						       member,
1129 						       member_type);
1130 }
1131 
1132 static int btf_df_resolve(struct btf_verifier_env *env,
1133 			  const struct resolve_vertex *v)
1134 {
1135 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1136 	return -EINVAL;
1137 }
1138 
1139 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1140 			    u32 type_id, void *data, u8 bits_offsets,
1141 			    struct seq_file *m)
1142 {
1143 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1144 }
1145 
1146 static int btf_int_check_member(struct btf_verifier_env *env,
1147 				const struct btf_type *struct_type,
1148 				const struct btf_member *member,
1149 				const struct btf_type *member_type)
1150 {
1151 	u32 int_data = btf_type_int(member_type);
1152 	u32 struct_bits_off = member->offset;
1153 	u32 struct_size = struct_type->size;
1154 	u32 nr_copy_bits;
1155 	u32 bytes_offset;
1156 
1157 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1158 		btf_verifier_log_member(env, struct_type, member,
1159 					"bits_offset exceeds U32_MAX");
1160 		return -EINVAL;
1161 	}
1162 
1163 	struct_bits_off += BTF_INT_OFFSET(int_data);
1164 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1165 	nr_copy_bits = BTF_INT_BITS(int_data) +
1166 		BITS_PER_BYTE_MASKED(struct_bits_off);
1167 
1168 	if (nr_copy_bits > BITS_PER_U128) {
1169 		btf_verifier_log_member(env, struct_type, member,
1170 					"nr_copy_bits exceeds 128");
1171 		return -EINVAL;
1172 	}
1173 
1174 	if (struct_size < bytes_offset ||
1175 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1176 		btf_verifier_log_member(env, struct_type, member,
1177 					"Member exceeds struct_size");
1178 		return -EINVAL;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1185 				      const struct btf_type *struct_type,
1186 				      const struct btf_member *member,
1187 				      const struct btf_type *member_type)
1188 {
1189 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1190 	u32 int_data = btf_type_int(member_type);
1191 	u32 struct_size = struct_type->size;
1192 	u32 nr_copy_bits;
1193 
1194 	/* a regular int type is required for the kflag int member */
1195 	if (!btf_type_int_is_regular(member_type)) {
1196 		btf_verifier_log_member(env, struct_type, member,
1197 					"Invalid member base type");
1198 		return -EINVAL;
1199 	}
1200 
1201 	/* check sanity of bitfield size */
1202 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1203 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1204 	nr_int_data_bits = BTF_INT_BITS(int_data);
1205 	if (!nr_bits) {
1206 		/* Not a bitfield member, member offset must be at byte
1207 		 * boundary.
1208 		 */
1209 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1210 			btf_verifier_log_member(env, struct_type, member,
1211 						"Invalid member offset");
1212 			return -EINVAL;
1213 		}
1214 
1215 		nr_bits = nr_int_data_bits;
1216 	} else if (nr_bits > nr_int_data_bits) {
1217 		btf_verifier_log_member(env, struct_type, member,
1218 					"Invalid member bitfield_size");
1219 		return -EINVAL;
1220 	}
1221 
1222 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1223 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1224 	if (nr_copy_bits > BITS_PER_U128) {
1225 		btf_verifier_log_member(env, struct_type, member,
1226 					"nr_copy_bits exceeds 128");
1227 		return -EINVAL;
1228 	}
1229 
1230 	if (struct_size < bytes_offset ||
1231 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1232 		btf_verifier_log_member(env, struct_type, member,
1233 					"Member exceeds struct_size");
1234 		return -EINVAL;
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1241 			      const struct btf_type *t,
1242 			      u32 meta_left)
1243 {
1244 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1245 	u16 encoding;
1246 
1247 	if (meta_left < meta_needed) {
1248 		btf_verifier_log_basic(env, t,
1249 				       "meta_left:%u meta_needed:%u",
1250 				       meta_left, meta_needed);
1251 		return -EINVAL;
1252 	}
1253 
1254 	if (btf_type_vlen(t)) {
1255 		btf_verifier_log_type(env, t, "vlen != 0");
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (btf_type_kflag(t)) {
1260 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1261 		return -EINVAL;
1262 	}
1263 
1264 	int_data = btf_type_int(t);
1265 	if (int_data & ~BTF_INT_MASK) {
1266 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1267 				       int_data);
1268 		return -EINVAL;
1269 	}
1270 
1271 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1272 
1273 	if (nr_bits > BITS_PER_U128) {
1274 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1275 				      BITS_PER_U128);
1276 		return -EINVAL;
1277 	}
1278 
1279 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1280 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1281 		return -EINVAL;
1282 	}
1283 
1284 	/*
1285 	 * Only one of the encoding bits is allowed and it
1286 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1287 	 * Multiple bits can be allowed later if it is found
1288 	 * to be insufficient.
1289 	 */
1290 	encoding = BTF_INT_ENCODING(int_data);
1291 	if (encoding &&
1292 	    encoding != BTF_INT_SIGNED &&
1293 	    encoding != BTF_INT_CHAR &&
1294 	    encoding != BTF_INT_BOOL) {
1295 		btf_verifier_log_type(env, t, "Unsupported encoding");
1296 		return -ENOTSUPP;
1297 	}
1298 
1299 	btf_verifier_log_type(env, t, NULL);
1300 
1301 	return meta_needed;
1302 }
1303 
1304 static void btf_int_log(struct btf_verifier_env *env,
1305 			const struct btf_type *t)
1306 {
1307 	int int_data = btf_type_int(t);
1308 
1309 	btf_verifier_log(env,
1310 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1311 			 t->size, BTF_INT_OFFSET(int_data),
1312 			 BTF_INT_BITS(int_data),
1313 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1314 }
1315 
1316 static void btf_int128_print(struct seq_file *m, void *data)
1317 {
1318 	/* data points to a __int128 number.
1319 	 * Suppose
1320 	 *     int128_num = *(__int128 *)data;
1321 	 * The below formulas shows what upper_num and lower_num represents:
1322 	 *     upper_num = int128_num >> 64;
1323 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1324 	 */
1325 	u64 upper_num, lower_num;
1326 
1327 #ifdef __BIG_ENDIAN_BITFIELD
1328 	upper_num = *(u64 *)data;
1329 	lower_num = *(u64 *)(data + 8);
1330 #else
1331 	upper_num = *(u64 *)(data + 8);
1332 	lower_num = *(u64 *)data;
1333 #endif
1334 	if (upper_num == 0)
1335 		seq_printf(m, "0x%llx", lower_num);
1336 	else
1337 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1338 }
1339 
1340 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1341 			     u16 right_shift_bits)
1342 {
1343 	u64 upper_num, lower_num;
1344 
1345 #ifdef __BIG_ENDIAN_BITFIELD
1346 	upper_num = print_num[0];
1347 	lower_num = print_num[1];
1348 #else
1349 	upper_num = print_num[1];
1350 	lower_num = print_num[0];
1351 #endif
1352 
1353 	/* shake out un-needed bits by shift/or operations */
1354 	if (left_shift_bits >= 64) {
1355 		upper_num = lower_num << (left_shift_bits - 64);
1356 		lower_num = 0;
1357 	} else {
1358 		upper_num = (upper_num << left_shift_bits) |
1359 			    (lower_num >> (64 - left_shift_bits));
1360 		lower_num = lower_num << left_shift_bits;
1361 	}
1362 
1363 	if (right_shift_bits >= 64) {
1364 		lower_num = upper_num >> (right_shift_bits - 64);
1365 		upper_num = 0;
1366 	} else {
1367 		lower_num = (lower_num >> right_shift_bits) |
1368 			    (upper_num << (64 - right_shift_bits));
1369 		upper_num = upper_num >> right_shift_bits;
1370 	}
1371 
1372 #ifdef __BIG_ENDIAN_BITFIELD
1373 	print_num[0] = upper_num;
1374 	print_num[1] = lower_num;
1375 #else
1376 	print_num[0] = lower_num;
1377 	print_num[1] = upper_num;
1378 #endif
1379 }
1380 
1381 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1382 				  u8 nr_bits, struct seq_file *m)
1383 {
1384 	u16 left_shift_bits, right_shift_bits;
1385 	u8 nr_copy_bytes;
1386 	u8 nr_copy_bits;
1387 	u64 print_num[2] = {};
1388 
1389 	nr_copy_bits = nr_bits + bits_offset;
1390 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1391 
1392 	memcpy(print_num, data, nr_copy_bytes);
1393 
1394 #ifdef __BIG_ENDIAN_BITFIELD
1395 	left_shift_bits = bits_offset;
1396 #else
1397 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1398 #endif
1399 	right_shift_bits = BITS_PER_U128 - nr_bits;
1400 
1401 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1402 	btf_int128_print(m, print_num);
1403 }
1404 
1405 
1406 static void btf_int_bits_seq_show(const struct btf *btf,
1407 				  const struct btf_type *t,
1408 				  void *data, u8 bits_offset,
1409 				  struct seq_file *m)
1410 {
1411 	u32 int_data = btf_type_int(t);
1412 	u8 nr_bits = BTF_INT_BITS(int_data);
1413 	u8 total_bits_offset;
1414 
1415 	/*
1416 	 * bits_offset is at most 7.
1417 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1418 	 */
1419 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1420 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1421 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1422 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1423 }
1424 
1425 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1426 			     u32 type_id, void *data, u8 bits_offset,
1427 			     struct seq_file *m)
1428 {
1429 	u32 int_data = btf_type_int(t);
1430 	u8 encoding = BTF_INT_ENCODING(int_data);
1431 	bool sign = encoding & BTF_INT_SIGNED;
1432 	u8 nr_bits = BTF_INT_BITS(int_data);
1433 
1434 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1435 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1436 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1437 		return;
1438 	}
1439 
1440 	switch (nr_bits) {
1441 	case 128:
1442 		btf_int128_print(m, data);
1443 		break;
1444 	case 64:
1445 		if (sign)
1446 			seq_printf(m, "%lld", *(s64 *)data);
1447 		else
1448 			seq_printf(m, "%llu", *(u64 *)data);
1449 		break;
1450 	case 32:
1451 		if (sign)
1452 			seq_printf(m, "%d", *(s32 *)data);
1453 		else
1454 			seq_printf(m, "%u", *(u32 *)data);
1455 		break;
1456 	case 16:
1457 		if (sign)
1458 			seq_printf(m, "%d", *(s16 *)data);
1459 		else
1460 			seq_printf(m, "%u", *(u16 *)data);
1461 		break;
1462 	case 8:
1463 		if (sign)
1464 			seq_printf(m, "%d", *(s8 *)data);
1465 		else
1466 			seq_printf(m, "%u", *(u8 *)data);
1467 		break;
1468 	default:
1469 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1470 	}
1471 }
1472 
1473 static const struct btf_kind_operations int_ops = {
1474 	.check_meta = btf_int_check_meta,
1475 	.resolve = btf_df_resolve,
1476 	.check_member = btf_int_check_member,
1477 	.check_kflag_member = btf_int_check_kflag_member,
1478 	.log_details = btf_int_log,
1479 	.seq_show = btf_int_seq_show,
1480 };
1481 
1482 static int btf_modifier_check_member(struct btf_verifier_env *env,
1483 				     const struct btf_type *struct_type,
1484 				     const struct btf_member *member,
1485 				     const struct btf_type *member_type)
1486 {
1487 	const struct btf_type *resolved_type;
1488 	u32 resolved_type_id = member->type;
1489 	struct btf_member resolved_member;
1490 	struct btf *btf = env->btf;
1491 
1492 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1493 	if (!resolved_type) {
1494 		btf_verifier_log_member(env, struct_type, member,
1495 					"Invalid member");
1496 		return -EINVAL;
1497 	}
1498 
1499 	resolved_member = *member;
1500 	resolved_member.type = resolved_type_id;
1501 
1502 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1503 							 &resolved_member,
1504 							 resolved_type);
1505 }
1506 
1507 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1508 					   const struct btf_type *struct_type,
1509 					   const struct btf_member *member,
1510 					   const struct btf_type *member_type)
1511 {
1512 	const struct btf_type *resolved_type;
1513 	u32 resolved_type_id = member->type;
1514 	struct btf_member resolved_member;
1515 	struct btf *btf = env->btf;
1516 
1517 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1518 	if (!resolved_type) {
1519 		btf_verifier_log_member(env, struct_type, member,
1520 					"Invalid member");
1521 		return -EINVAL;
1522 	}
1523 
1524 	resolved_member = *member;
1525 	resolved_member.type = resolved_type_id;
1526 
1527 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1528 							       &resolved_member,
1529 							       resolved_type);
1530 }
1531 
1532 static int btf_ptr_check_member(struct btf_verifier_env *env,
1533 				const struct btf_type *struct_type,
1534 				const struct btf_member *member,
1535 				const struct btf_type *member_type)
1536 {
1537 	u32 struct_size, struct_bits_off, bytes_offset;
1538 
1539 	struct_size = struct_type->size;
1540 	struct_bits_off = member->offset;
1541 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1542 
1543 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1544 		btf_verifier_log_member(env, struct_type, member,
1545 					"Member is not byte aligned");
1546 		return -EINVAL;
1547 	}
1548 
1549 	if (struct_size - bytes_offset < sizeof(void *)) {
1550 		btf_verifier_log_member(env, struct_type, member,
1551 					"Member exceeds struct_size");
1552 		return -EINVAL;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1559 				   const struct btf_type *t,
1560 				   u32 meta_left)
1561 {
1562 	if (btf_type_vlen(t)) {
1563 		btf_verifier_log_type(env, t, "vlen != 0");
1564 		return -EINVAL;
1565 	}
1566 
1567 	if (btf_type_kflag(t)) {
1568 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1569 		return -EINVAL;
1570 	}
1571 
1572 	if (!BTF_TYPE_ID_VALID(t->type)) {
1573 		btf_verifier_log_type(env, t, "Invalid type_id");
1574 		return -EINVAL;
1575 	}
1576 
1577 	/* typedef type must have a valid name, and other ref types,
1578 	 * volatile, const, restrict, should have a null name.
1579 	 */
1580 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1581 		if (!t->name_off ||
1582 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1583 			btf_verifier_log_type(env, t, "Invalid name");
1584 			return -EINVAL;
1585 		}
1586 	} else {
1587 		if (t->name_off) {
1588 			btf_verifier_log_type(env, t, "Invalid name");
1589 			return -EINVAL;
1590 		}
1591 	}
1592 
1593 	btf_verifier_log_type(env, t, NULL);
1594 
1595 	return 0;
1596 }
1597 
1598 static int btf_modifier_resolve(struct btf_verifier_env *env,
1599 				const struct resolve_vertex *v)
1600 {
1601 	const struct btf_type *t = v->t;
1602 	const struct btf_type *next_type;
1603 	u32 next_type_id = t->type;
1604 	struct btf *btf = env->btf;
1605 	u32 next_type_size = 0;
1606 
1607 	next_type = btf_type_by_id(btf, next_type_id);
1608 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1609 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1610 		return -EINVAL;
1611 	}
1612 
1613 	if (!env_type_is_resolve_sink(env, next_type) &&
1614 	    !env_type_is_resolved(env, next_type_id))
1615 		return env_stack_push(env, next_type, next_type_id);
1616 
1617 	/* Figure out the resolved next_type_id with size.
1618 	 * They will be stored in the current modifier's
1619 	 * resolved_ids and resolved_sizes such that it can
1620 	 * save us a few type-following when we use it later (e.g. in
1621 	 * pretty print).
1622 	 */
1623 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1624 		if (env_type_is_resolved(env, next_type_id))
1625 			next_type = btf_type_id_resolve(btf, &next_type_id);
1626 
1627 		/* "typedef void new_void", "const void"...etc */
1628 		if (!btf_type_is_void(next_type) &&
1629 		    !btf_type_is_fwd(next_type) &&
1630 		    !btf_type_is_func_proto(next_type)) {
1631 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1632 			return -EINVAL;
1633 		}
1634 	}
1635 
1636 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1637 
1638 	return 0;
1639 }
1640 
1641 static int btf_var_resolve(struct btf_verifier_env *env,
1642 			   const struct resolve_vertex *v)
1643 {
1644 	const struct btf_type *next_type;
1645 	const struct btf_type *t = v->t;
1646 	u32 next_type_id = t->type;
1647 	struct btf *btf = env->btf;
1648 	u32 next_type_size;
1649 
1650 	next_type = btf_type_by_id(btf, next_type_id);
1651 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1652 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1653 		return -EINVAL;
1654 	}
1655 
1656 	if (!env_type_is_resolve_sink(env, next_type) &&
1657 	    !env_type_is_resolved(env, next_type_id))
1658 		return env_stack_push(env, next_type, next_type_id);
1659 
1660 	if (btf_type_is_modifier(next_type)) {
1661 		const struct btf_type *resolved_type;
1662 		u32 resolved_type_id;
1663 
1664 		resolved_type_id = next_type_id;
1665 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1666 
1667 		if (btf_type_is_ptr(resolved_type) &&
1668 		    !env_type_is_resolve_sink(env, resolved_type) &&
1669 		    !env_type_is_resolved(env, resolved_type_id))
1670 			return env_stack_push(env, resolved_type,
1671 					      resolved_type_id);
1672 	}
1673 
1674 	/* We must resolve to something concrete at this point, no
1675 	 * forward types or similar that would resolve to size of
1676 	 * zero is allowed.
1677 	 */
1678 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1679 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1680 		return -EINVAL;
1681 	}
1682 
1683 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1684 
1685 	return 0;
1686 }
1687 
1688 static int btf_ptr_resolve(struct btf_verifier_env *env,
1689 			   const struct resolve_vertex *v)
1690 {
1691 	const struct btf_type *next_type;
1692 	const struct btf_type *t = v->t;
1693 	u32 next_type_id = t->type;
1694 	struct btf *btf = env->btf;
1695 
1696 	next_type = btf_type_by_id(btf, next_type_id);
1697 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1698 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1699 		return -EINVAL;
1700 	}
1701 
1702 	if (!env_type_is_resolve_sink(env, next_type) &&
1703 	    !env_type_is_resolved(env, next_type_id))
1704 		return env_stack_push(env, next_type, next_type_id);
1705 
1706 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1707 	 * the modifier may have stopped resolving when it was resolved
1708 	 * to a ptr (last-resolved-ptr).
1709 	 *
1710 	 * We now need to continue from the last-resolved-ptr to
1711 	 * ensure the last-resolved-ptr will not referring back to
1712 	 * the currenct ptr (t).
1713 	 */
1714 	if (btf_type_is_modifier(next_type)) {
1715 		const struct btf_type *resolved_type;
1716 		u32 resolved_type_id;
1717 
1718 		resolved_type_id = next_type_id;
1719 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1720 
1721 		if (btf_type_is_ptr(resolved_type) &&
1722 		    !env_type_is_resolve_sink(env, resolved_type) &&
1723 		    !env_type_is_resolved(env, resolved_type_id))
1724 			return env_stack_push(env, resolved_type,
1725 					      resolved_type_id);
1726 	}
1727 
1728 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1729 		if (env_type_is_resolved(env, next_type_id))
1730 			next_type = btf_type_id_resolve(btf, &next_type_id);
1731 
1732 		if (!btf_type_is_void(next_type) &&
1733 		    !btf_type_is_fwd(next_type) &&
1734 		    !btf_type_is_func_proto(next_type)) {
1735 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1736 			return -EINVAL;
1737 		}
1738 	}
1739 
1740 	env_stack_pop_resolved(env, next_type_id, 0);
1741 
1742 	return 0;
1743 }
1744 
1745 static void btf_modifier_seq_show(const struct btf *btf,
1746 				  const struct btf_type *t,
1747 				  u32 type_id, void *data,
1748 				  u8 bits_offset, struct seq_file *m)
1749 {
1750 	t = btf_type_id_resolve(btf, &type_id);
1751 
1752 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1753 }
1754 
1755 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1756 			     u32 type_id, void *data, u8 bits_offset,
1757 			     struct seq_file *m)
1758 {
1759 	t = btf_type_id_resolve(btf, &type_id);
1760 
1761 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1762 }
1763 
1764 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1765 			     u32 type_id, void *data, u8 bits_offset,
1766 			     struct seq_file *m)
1767 {
1768 	/* It is a hashed value */
1769 	seq_printf(m, "%p", *(void **)data);
1770 }
1771 
1772 static void btf_ref_type_log(struct btf_verifier_env *env,
1773 			     const struct btf_type *t)
1774 {
1775 	btf_verifier_log(env, "type_id=%u", t->type);
1776 }
1777 
1778 static struct btf_kind_operations modifier_ops = {
1779 	.check_meta = btf_ref_type_check_meta,
1780 	.resolve = btf_modifier_resolve,
1781 	.check_member = btf_modifier_check_member,
1782 	.check_kflag_member = btf_modifier_check_kflag_member,
1783 	.log_details = btf_ref_type_log,
1784 	.seq_show = btf_modifier_seq_show,
1785 };
1786 
1787 static struct btf_kind_operations ptr_ops = {
1788 	.check_meta = btf_ref_type_check_meta,
1789 	.resolve = btf_ptr_resolve,
1790 	.check_member = btf_ptr_check_member,
1791 	.check_kflag_member = btf_generic_check_kflag_member,
1792 	.log_details = btf_ref_type_log,
1793 	.seq_show = btf_ptr_seq_show,
1794 };
1795 
1796 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1797 			      const struct btf_type *t,
1798 			      u32 meta_left)
1799 {
1800 	if (btf_type_vlen(t)) {
1801 		btf_verifier_log_type(env, t, "vlen != 0");
1802 		return -EINVAL;
1803 	}
1804 
1805 	if (t->type) {
1806 		btf_verifier_log_type(env, t, "type != 0");
1807 		return -EINVAL;
1808 	}
1809 
1810 	/* fwd type must have a valid name */
1811 	if (!t->name_off ||
1812 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1813 		btf_verifier_log_type(env, t, "Invalid name");
1814 		return -EINVAL;
1815 	}
1816 
1817 	btf_verifier_log_type(env, t, NULL);
1818 
1819 	return 0;
1820 }
1821 
1822 static void btf_fwd_type_log(struct btf_verifier_env *env,
1823 			     const struct btf_type *t)
1824 {
1825 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1826 }
1827 
1828 static struct btf_kind_operations fwd_ops = {
1829 	.check_meta = btf_fwd_check_meta,
1830 	.resolve = btf_df_resolve,
1831 	.check_member = btf_df_check_member,
1832 	.check_kflag_member = btf_df_check_kflag_member,
1833 	.log_details = btf_fwd_type_log,
1834 	.seq_show = btf_df_seq_show,
1835 };
1836 
1837 static int btf_array_check_member(struct btf_verifier_env *env,
1838 				  const struct btf_type *struct_type,
1839 				  const struct btf_member *member,
1840 				  const struct btf_type *member_type)
1841 {
1842 	u32 struct_bits_off = member->offset;
1843 	u32 struct_size, bytes_offset;
1844 	u32 array_type_id, array_size;
1845 	struct btf *btf = env->btf;
1846 
1847 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1848 		btf_verifier_log_member(env, struct_type, member,
1849 					"Member is not byte aligned");
1850 		return -EINVAL;
1851 	}
1852 
1853 	array_type_id = member->type;
1854 	btf_type_id_size(btf, &array_type_id, &array_size);
1855 	struct_size = struct_type->size;
1856 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1857 	if (struct_size - bytes_offset < array_size) {
1858 		btf_verifier_log_member(env, struct_type, member,
1859 					"Member exceeds struct_size");
1860 		return -EINVAL;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1867 				const struct btf_type *t,
1868 				u32 meta_left)
1869 {
1870 	const struct btf_array *array = btf_type_array(t);
1871 	u32 meta_needed = sizeof(*array);
1872 
1873 	if (meta_left < meta_needed) {
1874 		btf_verifier_log_basic(env, t,
1875 				       "meta_left:%u meta_needed:%u",
1876 				       meta_left, meta_needed);
1877 		return -EINVAL;
1878 	}
1879 
1880 	/* array type should not have a name */
1881 	if (t->name_off) {
1882 		btf_verifier_log_type(env, t, "Invalid name");
1883 		return -EINVAL;
1884 	}
1885 
1886 	if (btf_type_vlen(t)) {
1887 		btf_verifier_log_type(env, t, "vlen != 0");
1888 		return -EINVAL;
1889 	}
1890 
1891 	if (btf_type_kflag(t)) {
1892 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1893 		return -EINVAL;
1894 	}
1895 
1896 	if (t->size) {
1897 		btf_verifier_log_type(env, t, "size != 0");
1898 		return -EINVAL;
1899 	}
1900 
1901 	/* Array elem type and index type cannot be in type void,
1902 	 * so !array->type and !array->index_type are not allowed.
1903 	 */
1904 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1905 		btf_verifier_log_type(env, t, "Invalid elem");
1906 		return -EINVAL;
1907 	}
1908 
1909 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1910 		btf_verifier_log_type(env, t, "Invalid index");
1911 		return -EINVAL;
1912 	}
1913 
1914 	btf_verifier_log_type(env, t, NULL);
1915 
1916 	return meta_needed;
1917 }
1918 
1919 static int btf_array_resolve(struct btf_verifier_env *env,
1920 			     const struct resolve_vertex *v)
1921 {
1922 	const struct btf_array *array = btf_type_array(v->t);
1923 	const struct btf_type *elem_type, *index_type;
1924 	u32 elem_type_id, index_type_id;
1925 	struct btf *btf = env->btf;
1926 	u32 elem_size;
1927 
1928 	/* Check array->index_type */
1929 	index_type_id = array->index_type;
1930 	index_type = btf_type_by_id(btf, index_type_id);
1931 	if (btf_type_nosize_or_null(index_type) ||
1932 	    btf_type_is_resolve_source_only(index_type)) {
1933 		btf_verifier_log_type(env, v->t, "Invalid index");
1934 		return -EINVAL;
1935 	}
1936 
1937 	if (!env_type_is_resolve_sink(env, index_type) &&
1938 	    !env_type_is_resolved(env, index_type_id))
1939 		return env_stack_push(env, index_type, index_type_id);
1940 
1941 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1942 	if (!index_type || !btf_type_is_int(index_type) ||
1943 	    !btf_type_int_is_regular(index_type)) {
1944 		btf_verifier_log_type(env, v->t, "Invalid index");
1945 		return -EINVAL;
1946 	}
1947 
1948 	/* Check array->type */
1949 	elem_type_id = array->type;
1950 	elem_type = btf_type_by_id(btf, elem_type_id);
1951 	if (btf_type_nosize_or_null(elem_type) ||
1952 	    btf_type_is_resolve_source_only(elem_type)) {
1953 		btf_verifier_log_type(env, v->t,
1954 				      "Invalid elem");
1955 		return -EINVAL;
1956 	}
1957 
1958 	if (!env_type_is_resolve_sink(env, elem_type) &&
1959 	    !env_type_is_resolved(env, elem_type_id))
1960 		return env_stack_push(env, elem_type, elem_type_id);
1961 
1962 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1963 	if (!elem_type) {
1964 		btf_verifier_log_type(env, v->t, "Invalid elem");
1965 		return -EINVAL;
1966 	}
1967 
1968 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1969 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1970 		return -EINVAL;
1971 	}
1972 
1973 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1974 		btf_verifier_log_type(env, v->t,
1975 				      "Array size overflows U32_MAX");
1976 		return -EINVAL;
1977 	}
1978 
1979 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1980 
1981 	return 0;
1982 }
1983 
1984 static void btf_array_log(struct btf_verifier_env *env,
1985 			  const struct btf_type *t)
1986 {
1987 	const struct btf_array *array = btf_type_array(t);
1988 
1989 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1990 			 array->type, array->index_type, array->nelems);
1991 }
1992 
1993 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1994 			       u32 type_id, void *data, u8 bits_offset,
1995 			       struct seq_file *m)
1996 {
1997 	const struct btf_array *array = btf_type_array(t);
1998 	const struct btf_kind_operations *elem_ops;
1999 	const struct btf_type *elem_type;
2000 	u32 i, elem_size, elem_type_id;
2001 
2002 	elem_type_id = array->type;
2003 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2004 	elem_ops = btf_type_ops(elem_type);
2005 	seq_puts(m, "[");
2006 	for (i = 0; i < array->nelems; i++) {
2007 		if (i)
2008 			seq_puts(m, ",");
2009 
2010 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2011 				   bits_offset, m);
2012 		data += elem_size;
2013 	}
2014 	seq_puts(m, "]");
2015 }
2016 
2017 static struct btf_kind_operations array_ops = {
2018 	.check_meta = btf_array_check_meta,
2019 	.resolve = btf_array_resolve,
2020 	.check_member = btf_array_check_member,
2021 	.check_kflag_member = btf_generic_check_kflag_member,
2022 	.log_details = btf_array_log,
2023 	.seq_show = btf_array_seq_show,
2024 };
2025 
2026 static int btf_struct_check_member(struct btf_verifier_env *env,
2027 				   const struct btf_type *struct_type,
2028 				   const struct btf_member *member,
2029 				   const struct btf_type *member_type)
2030 {
2031 	u32 struct_bits_off = member->offset;
2032 	u32 struct_size, bytes_offset;
2033 
2034 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2035 		btf_verifier_log_member(env, struct_type, member,
2036 					"Member is not byte aligned");
2037 		return -EINVAL;
2038 	}
2039 
2040 	struct_size = struct_type->size;
2041 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2042 	if (struct_size - bytes_offset < member_type->size) {
2043 		btf_verifier_log_member(env, struct_type, member,
2044 					"Member exceeds struct_size");
2045 		return -EINVAL;
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2052 				 const struct btf_type *t,
2053 				 u32 meta_left)
2054 {
2055 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2056 	const struct btf_member *member;
2057 	u32 meta_needed, last_offset;
2058 	struct btf *btf = env->btf;
2059 	u32 struct_size = t->size;
2060 	u32 offset;
2061 	u16 i;
2062 
2063 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2064 	if (meta_left < meta_needed) {
2065 		btf_verifier_log_basic(env, t,
2066 				       "meta_left:%u meta_needed:%u",
2067 				       meta_left, meta_needed);
2068 		return -EINVAL;
2069 	}
2070 
2071 	/* struct type either no name or a valid one */
2072 	if (t->name_off &&
2073 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2074 		btf_verifier_log_type(env, t, "Invalid name");
2075 		return -EINVAL;
2076 	}
2077 
2078 	btf_verifier_log_type(env, t, NULL);
2079 
2080 	last_offset = 0;
2081 	for_each_member(i, t, member) {
2082 		if (!btf_name_offset_valid(btf, member->name_off)) {
2083 			btf_verifier_log_member(env, t, member,
2084 						"Invalid member name_offset:%u",
2085 						member->name_off);
2086 			return -EINVAL;
2087 		}
2088 
2089 		/* struct member either no name or a valid one */
2090 		if (member->name_off &&
2091 		    !btf_name_valid_identifier(btf, member->name_off)) {
2092 			btf_verifier_log_member(env, t, member, "Invalid name");
2093 			return -EINVAL;
2094 		}
2095 		/* A member cannot be in type void */
2096 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2097 			btf_verifier_log_member(env, t, member,
2098 						"Invalid type_id");
2099 			return -EINVAL;
2100 		}
2101 
2102 		offset = btf_member_bit_offset(t, member);
2103 		if (is_union && offset) {
2104 			btf_verifier_log_member(env, t, member,
2105 						"Invalid member bits_offset");
2106 			return -EINVAL;
2107 		}
2108 
2109 		/*
2110 		 * ">" instead of ">=" because the last member could be
2111 		 * "char a[0];"
2112 		 */
2113 		if (last_offset > offset) {
2114 			btf_verifier_log_member(env, t, member,
2115 						"Invalid member bits_offset");
2116 			return -EINVAL;
2117 		}
2118 
2119 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2120 			btf_verifier_log_member(env, t, member,
2121 						"Member bits_offset exceeds its struct size");
2122 			return -EINVAL;
2123 		}
2124 
2125 		btf_verifier_log_member(env, t, member, NULL);
2126 		last_offset = offset;
2127 	}
2128 
2129 	return meta_needed;
2130 }
2131 
2132 static int btf_struct_resolve(struct btf_verifier_env *env,
2133 			      const struct resolve_vertex *v)
2134 {
2135 	const struct btf_member *member;
2136 	int err;
2137 	u16 i;
2138 
2139 	/* Before continue resolving the next_member,
2140 	 * ensure the last member is indeed resolved to a
2141 	 * type with size info.
2142 	 */
2143 	if (v->next_member) {
2144 		const struct btf_type *last_member_type;
2145 		const struct btf_member *last_member;
2146 		u16 last_member_type_id;
2147 
2148 		last_member = btf_type_member(v->t) + v->next_member - 1;
2149 		last_member_type_id = last_member->type;
2150 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2151 						       last_member_type_id)))
2152 			return -EINVAL;
2153 
2154 		last_member_type = btf_type_by_id(env->btf,
2155 						  last_member_type_id);
2156 		if (btf_type_kflag(v->t))
2157 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2158 								last_member,
2159 								last_member_type);
2160 		else
2161 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2162 								last_member,
2163 								last_member_type);
2164 		if (err)
2165 			return err;
2166 	}
2167 
2168 	for_each_member_from(i, v->next_member, v->t, member) {
2169 		u32 member_type_id = member->type;
2170 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2171 								member_type_id);
2172 
2173 		if (btf_type_nosize_or_null(member_type) ||
2174 		    btf_type_is_resolve_source_only(member_type)) {
2175 			btf_verifier_log_member(env, v->t, member,
2176 						"Invalid member");
2177 			return -EINVAL;
2178 		}
2179 
2180 		if (!env_type_is_resolve_sink(env, member_type) &&
2181 		    !env_type_is_resolved(env, member_type_id)) {
2182 			env_stack_set_next_member(env, i + 1);
2183 			return env_stack_push(env, member_type, member_type_id);
2184 		}
2185 
2186 		if (btf_type_kflag(v->t))
2187 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2188 									    member,
2189 									    member_type);
2190 		else
2191 			err = btf_type_ops(member_type)->check_member(env, v->t,
2192 								      member,
2193 								      member_type);
2194 		if (err)
2195 			return err;
2196 	}
2197 
2198 	env_stack_pop_resolved(env, 0, 0);
2199 
2200 	return 0;
2201 }
2202 
2203 static void btf_struct_log(struct btf_verifier_env *env,
2204 			   const struct btf_type *t)
2205 {
2206 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2207 }
2208 
2209 /* find 'struct bpf_spin_lock' in map value.
2210  * return >= 0 offset if found
2211  * and < 0 in case of error
2212  */
2213 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2214 {
2215 	const struct btf_member *member;
2216 	u32 i, off = -ENOENT;
2217 
2218 	if (!__btf_type_is_struct(t))
2219 		return -EINVAL;
2220 
2221 	for_each_member(i, t, member) {
2222 		const struct btf_type *member_type = btf_type_by_id(btf,
2223 								    member->type);
2224 		if (!__btf_type_is_struct(member_type))
2225 			continue;
2226 		if (member_type->size != sizeof(struct bpf_spin_lock))
2227 			continue;
2228 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2229 			   "bpf_spin_lock"))
2230 			continue;
2231 		if (off != -ENOENT)
2232 			/* only one 'struct bpf_spin_lock' is allowed */
2233 			return -E2BIG;
2234 		off = btf_member_bit_offset(t, member);
2235 		if (off % 8)
2236 			/* valid C code cannot generate such BTF */
2237 			return -EINVAL;
2238 		off /= 8;
2239 		if (off % __alignof__(struct bpf_spin_lock))
2240 			/* valid struct bpf_spin_lock will be 4 byte aligned */
2241 			return -EINVAL;
2242 	}
2243 	return off;
2244 }
2245 
2246 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2247 				u32 type_id, void *data, u8 bits_offset,
2248 				struct seq_file *m)
2249 {
2250 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2251 	const struct btf_member *member;
2252 	u32 i;
2253 
2254 	seq_puts(m, "{");
2255 	for_each_member(i, t, member) {
2256 		const struct btf_type *member_type = btf_type_by_id(btf,
2257 								member->type);
2258 		const struct btf_kind_operations *ops;
2259 		u32 member_offset, bitfield_size;
2260 		u32 bytes_offset;
2261 		u8 bits8_offset;
2262 
2263 		if (i)
2264 			seq_puts(m, seq);
2265 
2266 		member_offset = btf_member_bit_offset(t, member);
2267 		bitfield_size = btf_member_bitfield_size(t, member);
2268 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2269 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2270 		if (bitfield_size) {
2271 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2272 					      bitfield_size, m);
2273 		} else {
2274 			ops = btf_type_ops(member_type);
2275 			ops->seq_show(btf, member_type, member->type,
2276 				      data + bytes_offset, bits8_offset, m);
2277 		}
2278 	}
2279 	seq_puts(m, "}");
2280 }
2281 
2282 static struct btf_kind_operations struct_ops = {
2283 	.check_meta = btf_struct_check_meta,
2284 	.resolve = btf_struct_resolve,
2285 	.check_member = btf_struct_check_member,
2286 	.check_kflag_member = btf_generic_check_kflag_member,
2287 	.log_details = btf_struct_log,
2288 	.seq_show = btf_struct_seq_show,
2289 };
2290 
2291 static int btf_enum_check_member(struct btf_verifier_env *env,
2292 				 const struct btf_type *struct_type,
2293 				 const struct btf_member *member,
2294 				 const struct btf_type *member_type)
2295 {
2296 	u32 struct_bits_off = member->offset;
2297 	u32 struct_size, bytes_offset;
2298 
2299 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2300 		btf_verifier_log_member(env, struct_type, member,
2301 					"Member is not byte aligned");
2302 		return -EINVAL;
2303 	}
2304 
2305 	struct_size = struct_type->size;
2306 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307 	if (struct_size - bytes_offset < sizeof(int)) {
2308 		btf_verifier_log_member(env, struct_type, member,
2309 					"Member exceeds struct_size");
2310 		return -EINVAL;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2317 				       const struct btf_type *struct_type,
2318 				       const struct btf_member *member,
2319 				       const struct btf_type *member_type)
2320 {
2321 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2322 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2323 
2324 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2325 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2326 	if (!nr_bits) {
2327 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2328 			btf_verifier_log_member(env, struct_type, member,
2329 						"Member is not byte aligned");
2330 				return -EINVAL;
2331 		}
2332 
2333 		nr_bits = int_bitsize;
2334 	} else if (nr_bits > int_bitsize) {
2335 		btf_verifier_log_member(env, struct_type, member,
2336 					"Invalid member bitfield_size");
2337 		return -EINVAL;
2338 	}
2339 
2340 	struct_size = struct_type->size;
2341 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2342 	if (struct_size < bytes_end) {
2343 		btf_verifier_log_member(env, struct_type, member,
2344 					"Member exceeds struct_size");
2345 		return -EINVAL;
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2352 			       const struct btf_type *t,
2353 			       u32 meta_left)
2354 {
2355 	const struct btf_enum *enums = btf_type_enum(t);
2356 	struct btf *btf = env->btf;
2357 	u16 i, nr_enums;
2358 	u32 meta_needed;
2359 
2360 	nr_enums = btf_type_vlen(t);
2361 	meta_needed = nr_enums * sizeof(*enums);
2362 
2363 	if (meta_left < meta_needed) {
2364 		btf_verifier_log_basic(env, t,
2365 				       "meta_left:%u meta_needed:%u",
2366 				       meta_left, meta_needed);
2367 		return -EINVAL;
2368 	}
2369 
2370 	if (btf_type_kflag(t)) {
2371 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2372 		return -EINVAL;
2373 	}
2374 
2375 	if (t->size != sizeof(int)) {
2376 		btf_verifier_log_type(env, t, "Expected size:%zu",
2377 				      sizeof(int));
2378 		return -EINVAL;
2379 	}
2380 
2381 	/* enum type either no name or a valid one */
2382 	if (t->name_off &&
2383 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2384 		btf_verifier_log_type(env, t, "Invalid name");
2385 		return -EINVAL;
2386 	}
2387 
2388 	btf_verifier_log_type(env, t, NULL);
2389 
2390 	for (i = 0; i < nr_enums; i++) {
2391 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2392 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2393 					 enums[i].name_off);
2394 			return -EINVAL;
2395 		}
2396 
2397 		/* enum member must have a valid name */
2398 		if (!enums[i].name_off ||
2399 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2400 			btf_verifier_log_type(env, t, "Invalid name");
2401 			return -EINVAL;
2402 		}
2403 
2404 
2405 		btf_verifier_log(env, "\t%s val=%d\n",
2406 				 __btf_name_by_offset(btf, enums[i].name_off),
2407 				 enums[i].val);
2408 	}
2409 
2410 	return meta_needed;
2411 }
2412 
2413 static void btf_enum_log(struct btf_verifier_env *env,
2414 			 const struct btf_type *t)
2415 {
2416 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2417 }
2418 
2419 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2420 			      u32 type_id, void *data, u8 bits_offset,
2421 			      struct seq_file *m)
2422 {
2423 	const struct btf_enum *enums = btf_type_enum(t);
2424 	u32 i, nr_enums = btf_type_vlen(t);
2425 	int v = *(int *)data;
2426 
2427 	for (i = 0; i < nr_enums; i++) {
2428 		if (v == enums[i].val) {
2429 			seq_printf(m, "%s",
2430 				   __btf_name_by_offset(btf,
2431 							enums[i].name_off));
2432 			return;
2433 		}
2434 	}
2435 
2436 	seq_printf(m, "%d", v);
2437 }
2438 
2439 static struct btf_kind_operations enum_ops = {
2440 	.check_meta = btf_enum_check_meta,
2441 	.resolve = btf_df_resolve,
2442 	.check_member = btf_enum_check_member,
2443 	.check_kflag_member = btf_enum_check_kflag_member,
2444 	.log_details = btf_enum_log,
2445 	.seq_show = btf_enum_seq_show,
2446 };
2447 
2448 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2449 				     const struct btf_type *t,
2450 				     u32 meta_left)
2451 {
2452 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2453 
2454 	if (meta_left < meta_needed) {
2455 		btf_verifier_log_basic(env, t,
2456 				       "meta_left:%u meta_needed:%u",
2457 				       meta_left, meta_needed);
2458 		return -EINVAL;
2459 	}
2460 
2461 	if (t->name_off) {
2462 		btf_verifier_log_type(env, t, "Invalid name");
2463 		return -EINVAL;
2464 	}
2465 
2466 	if (btf_type_kflag(t)) {
2467 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2468 		return -EINVAL;
2469 	}
2470 
2471 	btf_verifier_log_type(env, t, NULL);
2472 
2473 	return meta_needed;
2474 }
2475 
2476 static void btf_func_proto_log(struct btf_verifier_env *env,
2477 			       const struct btf_type *t)
2478 {
2479 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2480 	u16 nr_args = btf_type_vlen(t), i;
2481 
2482 	btf_verifier_log(env, "return=%u args=(", t->type);
2483 	if (!nr_args) {
2484 		btf_verifier_log(env, "void");
2485 		goto done;
2486 	}
2487 
2488 	if (nr_args == 1 && !args[0].type) {
2489 		/* Only one vararg */
2490 		btf_verifier_log(env, "vararg");
2491 		goto done;
2492 	}
2493 
2494 	btf_verifier_log(env, "%u %s", args[0].type,
2495 			 __btf_name_by_offset(env->btf,
2496 					      args[0].name_off));
2497 	for (i = 1; i < nr_args - 1; i++)
2498 		btf_verifier_log(env, ", %u %s", args[i].type,
2499 				 __btf_name_by_offset(env->btf,
2500 						      args[i].name_off));
2501 
2502 	if (nr_args > 1) {
2503 		const struct btf_param *last_arg = &args[nr_args - 1];
2504 
2505 		if (last_arg->type)
2506 			btf_verifier_log(env, ", %u %s", last_arg->type,
2507 					 __btf_name_by_offset(env->btf,
2508 							      last_arg->name_off));
2509 		else
2510 			btf_verifier_log(env, ", vararg");
2511 	}
2512 
2513 done:
2514 	btf_verifier_log(env, ")");
2515 }
2516 
2517 static struct btf_kind_operations func_proto_ops = {
2518 	.check_meta = btf_func_proto_check_meta,
2519 	.resolve = btf_df_resolve,
2520 	/*
2521 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2522 	 * a struct's member.
2523 	 *
2524 	 * It should be a funciton pointer instead.
2525 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2526 	 *
2527 	 * Hence, there is no btf_func_check_member().
2528 	 */
2529 	.check_member = btf_df_check_member,
2530 	.check_kflag_member = btf_df_check_kflag_member,
2531 	.log_details = btf_func_proto_log,
2532 	.seq_show = btf_df_seq_show,
2533 };
2534 
2535 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2536 			       const struct btf_type *t,
2537 			       u32 meta_left)
2538 {
2539 	if (!t->name_off ||
2540 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2541 		btf_verifier_log_type(env, t, "Invalid name");
2542 		return -EINVAL;
2543 	}
2544 
2545 	if (btf_type_vlen(t)) {
2546 		btf_verifier_log_type(env, t, "vlen != 0");
2547 		return -EINVAL;
2548 	}
2549 
2550 	if (btf_type_kflag(t)) {
2551 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2552 		return -EINVAL;
2553 	}
2554 
2555 	btf_verifier_log_type(env, t, NULL);
2556 
2557 	return 0;
2558 }
2559 
2560 static struct btf_kind_operations func_ops = {
2561 	.check_meta = btf_func_check_meta,
2562 	.resolve = btf_df_resolve,
2563 	.check_member = btf_df_check_member,
2564 	.check_kflag_member = btf_df_check_kflag_member,
2565 	.log_details = btf_ref_type_log,
2566 	.seq_show = btf_df_seq_show,
2567 };
2568 
2569 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2570 			      const struct btf_type *t,
2571 			      u32 meta_left)
2572 {
2573 	const struct btf_var *var;
2574 	u32 meta_needed = sizeof(*var);
2575 
2576 	if (meta_left < meta_needed) {
2577 		btf_verifier_log_basic(env, t,
2578 				       "meta_left:%u meta_needed:%u",
2579 				       meta_left, meta_needed);
2580 		return -EINVAL;
2581 	}
2582 
2583 	if (btf_type_vlen(t)) {
2584 		btf_verifier_log_type(env, t, "vlen != 0");
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (btf_type_kflag(t)) {
2589 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2590 		return -EINVAL;
2591 	}
2592 
2593 	if (!t->name_off ||
2594 	    !__btf_name_valid(env->btf, t->name_off, true)) {
2595 		btf_verifier_log_type(env, t, "Invalid name");
2596 		return -EINVAL;
2597 	}
2598 
2599 	/* A var cannot be in type void */
2600 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2601 		btf_verifier_log_type(env, t, "Invalid type_id");
2602 		return -EINVAL;
2603 	}
2604 
2605 	var = btf_type_var(t);
2606 	if (var->linkage != BTF_VAR_STATIC &&
2607 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2608 		btf_verifier_log_type(env, t, "Linkage not supported");
2609 		return -EINVAL;
2610 	}
2611 
2612 	btf_verifier_log_type(env, t, NULL);
2613 
2614 	return meta_needed;
2615 }
2616 
2617 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2618 {
2619 	const struct btf_var *var = btf_type_var(t);
2620 
2621 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2622 }
2623 
2624 static const struct btf_kind_operations var_ops = {
2625 	.check_meta		= btf_var_check_meta,
2626 	.resolve		= btf_var_resolve,
2627 	.check_member		= btf_df_check_member,
2628 	.check_kflag_member	= btf_df_check_kflag_member,
2629 	.log_details		= btf_var_log,
2630 	.seq_show		= btf_var_seq_show,
2631 };
2632 
2633 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2634 				  const struct btf_type *t,
2635 				  u32 meta_left)
2636 {
2637 	const struct btf_var_secinfo *vsi;
2638 	u64 last_vsi_end_off = 0, sum = 0;
2639 	u32 i, meta_needed;
2640 
2641 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2642 	if (meta_left < meta_needed) {
2643 		btf_verifier_log_basic(env, t,
2644 				       "meta_left:%u meta_needed:%u",
2645 				       meta_left, meta_needed);
2646 		return -EINVAL;
2647 	}
2648 
2649 	if (!btf_type_vlen(t)) {
2650 		btf_verifier_log_type(env, t, "vlen == 0");
2651 		return -EINVAL;
2652 	}
2653 
2654 	if (!t->size) {
2655 		btf_verifier_log_type(env, t, "size == 0");
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (btf_type_kflag(t)) {
2660 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2661 		return -EINVAL;
2662 	}
2663 
2664 	if (!t->name_off ||
2665 	    !btf_name_valid_section(env->btf, t->name_off)) {
2666 		btf_verifier_log_type(env, t, "Invalid name");
2667 		return -EINVAL;
2668 	}
2669 
2670 	btf_verifier_log_type(env, t, NULL);
2671 
2672 	for_each_vsi(i, t, vsi) {
2673 		/* A var cannot be in type void */
2674 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2675 			btf_verifier_log_vsi(env, t, vsi,
2676 					     "Invalid type_id");
2677 			return -EINVAL;
2678 		}
2679 
2680 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2681 			btf_verifier_log_vsi(env, t, vsi,
2682 					     "Invalid offset");
2683 			return -EINVAL;
2684 		}
2685 
2686 		if (!vsi->size || vsi->size > t->size) {
2687 			btf_verifier_log_vsi(env, t, vsi,
2688 					     "Invalid size");
2689 			return -EINVAL;
2690 		}
2691 
2692 		last_vsi_end_off = vsi->offset + vsi->size;
2693 		if (last_vsi_end_off > t->size) {
2694 			btf_verifier_log_vsi(env, t, vsi,
2695 					     "Invalid offset+size");
2696 			return -EINVAL;
2697 		}
2698 
2699 		btf_verifier_log_vsi(env, t, vsi, NULL);
2700 		sum += vsi->size;
2701 	}
2702 
2703 	if (t->size < sum) {
2704 		btf_verifier_log_type(env, t, "Invalid btf_info size");
2705 		return -EINVAL;
2706 	}
2707 
2708 	return meta_needed;
2709 }
2710 
2711 static int btf_datasec_resolve(struct btf_verifier_env *env,
2712 			       const struct resolve_vertex *v)
2713 {
2714 	const struct btf_var_secinfo *vsi;
2715 	struct btf *btf = env->btf;
2716 	u16 i;
2717 
2718 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
2719 		u32 var_type_id = vsi->type, type_id, type_size = 0;
2720 		const struct btf_type *var_type = btf_type_by_id(env->btf,
2721 								 var_type_id);
2722 		if (!var_type || !btf_type_is_var(var_type)) {
2723 			btf_verifier_log_vsi(env, v->t, vsi,
2724 					     "Not a VAR kind member");
2725 			return -EINVAL;
2726 		}
2727 
2728 		if (!env_type_is_resolve_sink(env, var_type) &&
2729 		    !env_type_is_resolved(env, var_type_id)) {
2730 			env_stack_set_next_member(env, i + 1);
2731 			return env_stack_push(env, var_type, var_type_id);
2732 		}
2733 
2734 		type_id = var_type->type;
2735 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
2736 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2737 			return -EINVAL;
2738 		}
2739 
2740 		if (vsi->size < type_size) {
2741 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2742 			return -EINVAL;
2743 		}
2744 	}
2745 
2746 	env_stack_pop_resolved(env, 0, 0);
2747 	return 0;
2748 }
2749 
2750 static void btf_datasec_log(struct btf_verifier_env *env,
2751 			    const struct btf_type *t)
2752 {
2753 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2754 }
2755 
2756 static void btf_datasec_seq_show(const struct btf *btf,
2757 				 const struct btf_type *t, u32 type_id,
2758 				 void *data, u8 bits_offset,
2759 				 struct seq_file *m)
2760 {
2761 	const struct btf_var_secinfo *vsi;
2762 	const struct btf_type *var;
2763 	u32 i;
2764 
2765 	seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2766 	for_each_vsi(i, t, vsi) {
2767 		var = btf_type_by_id(btf, vsi->type);
2768 		if (i)
2769 			seq_puts(m, ",");
2770 		btf_type_ops(var)->seq_show(btf, var, vsi->type,
2771 					    data + vsi->offset, bits_offset, m);
2772 	}
2773 	seq_puts(m, "}");
2774 }
2775 
2776 static const struct btf_kind_operations datasec_ops = {
2777 	.check_meta		= btf_datasec_check_meta,
2778 	.resolve		= btf_datasec_resolve,
2779 	.check_member		= btf_df_check_member,
2780 	.check_kflag_member	= btf_df_check_kflag_member,
2781 	.log_details		= btf_datasec_log,
2782 	.seq_show		= btf_datasec_seq_show,
2783 };
2784 
2785 static int btf_func_proto_check(struct btf_verifier_env *env,
2786 				const struct btf_type *t)
2787 {
2788 	const struct btf_type *ret_type;
2789 	const struct btf_param *args;
2790 	const struct btf *btf;
2791 	u16 nr_args, i;
2792 	int err;
2793 
2794 	btf = env->btf;
2795 	args = (const struct btf_param *)(t + 1);
2796 	nr_args = btf_type_vlen(t);
2797 
2798 	/* Check func return type which could be "void" (t->type == 0) */
2799 	if (t->type) {
2800 		u32 ret_type_id = t->type;
2801 
2802 		ret_type = btf_type_by_id(btf, ret_type_id);
2803 		if (!ret_type) {
2804 			btf_verifier_log_type(env, t, "Invalid return type");
2805 			return -EINVAL;
2806 		}
2807 
2808 		if (btf_type_needs_resolve(ret_type) &&
2809 		    !env_type_is_resolved(env, ret_type_id)) {
2810 			err = btf_resolve(env, ret_type, ret_type_id);
2811 			if (err)
2812 				return err;
2813 		}
2814 
2815 		/* Ensure the return type is a type that has a size */
2816 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2817 			btf_verifier_log_type(env, t, "Invalid return type");
2818 			return -EINVAL;
2819 		}
2820 	}
2821 
2822 	if (!nr_args)
2823 		return 0;
2824 
2825 	/* Last func arg type_id could be 0 if it is a vararg */
2826 	if (!args[nr_args - 1].type) {
2827 		if (args[nr_args - 1].name_off) {
2828 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2829 					      nr_args);
2830 			return -EINVAL;
2831 		}
2832 		nr_args--;
2833 	}
2834 
2835 	err = 0;
2836 	for (i = 0; i < nr_args; i++) {
2837 		const struct btf_type *arg_type;
2838 		u32 arg_type_id;
2839 
2840 		arg_type_id = args[i].type;
2841 		arg_type = btf_type_by_id(btf, arg_type_id);
2842 		if (!arg_type) {
2843 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2844 			err = -EINVAL;
2845 			break;
2846 		}
2847 
2848 		if (args[i].name_off &&
2849 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2850 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2851 			btf_verifier_log_type(env, t,
2852 					      "Invalid arg#%u", i + 1);
2853 			err = -EINVAL;
2854 			break;
2855 		}
2856 
2857 		if (btf_type_needs_resolve(arg_type) &&
2858 		    !env_type_is_resolved(env, arg_type_id)) {
2859 			err = btf_resolve(env, arg_type, arg_type_id);
2860 			if (err)
2861 				break;
2862 		}
2863 
2864 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2865 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2866 			err = -EINVAL;
2867 			break;
2868 		}
2869 	}
2870 
2871 	return err;
2872 }
2873 
2874 static int btf_func_check(struct btf_verifier_env *env,
2875 			  const struct btf_type *t)
2876 {
2877 	const struct btf_type *proto_type;
2878 	const struct btf_param *args;
2879 	const struct btf *btf;
2880 	u16 nr_args, i;
2881 
2882 	btf = env->btf;
2883 	proto_type = btf_type_by_id(btf, t->type);
2884 
2885 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2886 		btf_verifier_log_type(env, t, "Invalid type_id");
2887 		return -EINVAL;
2888 	}
2889 
2890 	args = (const struct btf_param *)(proto_type + 1);
2891 	nr_args = btf_type_vlen(proto_type);
2892 	for (i = 0; i < nr_args; i++) {
2893 		if (!args[i].name_off && args[i].type) {
2894 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2895 			return -EINVAL;
2896 		}
2897 	}
2898 
2899 	return 0;
2900 }
2901 
2902 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2903 	[BTF_KIND_INT] = &int_ops,
2904 	[BTF_KIND_PTR] = &ptr_ops,
2905 	[BTF_KIND_ARRAY] = &array_ops,
2906 	[BTF_KIND_STRUCT] = &struct_ops,
2907 	[BTF_KIND_UNION] = &struct_ops,
2908 	[BTF_KIND_ENUM] = &enum_ops,
2909 	[BTF_KIND_FWD] = &fwd_ops,
2910 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2911 	[BTF_KIND_VOLATILE] = &modifier_ops,
2912 	[BTF_KIND_CONST] = &modifier_ops,
2913 	[BTF_KIND_RESTRICT] = &modifier_ops,
2914 	[BTF_KIND_FUNC] = &func_ops,
2915 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2916 	[BTF_KIND_VAR] = &var_ops,
2917 	[BTF_KIND_DATASEC] = &datasec_ops,
2918 };
2919 
2920 static s32 btf_check_meta(struct btf_verifier_env *env,
2921 			  const struct btf_type *t,
2922 			  u32 meta_left)
2923 {
2924 	u32 saved_meta_left = meta_left;
2925 	s32 var_meta_size;
2926 
2927 	if (meta_left < sizeof(*t)) {
2928 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2929 				 env->log_type_id, meta_left, sizeof(*t));
2930 		return -EINVAL;
2931 	}
2932 	meta_left -= sizeof(*t);
2933 
2934 	if (t->info & ~BTF_INFO_MASK) {
2935 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2936 				 env->log_type_id, t->info);
2937 		return -EINVAL;
2938 	}
2939 
2940 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2941 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2942 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2943 				 env->log_type_id, BTF_INFO_KIND(t->info));
2944 		return -EINVAL;
2945 	}
2946 
2947 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2948 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2949 				 env->log_type_id, t->name_off);
2950 		return -EINVAL;
2951 	}
2952 
2953 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2954 	if (var_meta_size < 0)
2955 		return var_meta_size;
2956 
2957 	meta_left -= var_meta_size;
2958 
2959 	return saved_meta_left - meta_left;
2960 }
2961 
2962 static int btf_check_all_metas(struct btf_verifier_env *env)
2963 {
2964 	struct btf *btf = env->btf;
2965 	struct btf_header *hdr;
2966 	void *cur, *end;
2967 
2968 	hdr = &btf->hdr;
2969 	cur = btf->nohdr_data + hdr->type_off;
2970 	end = cur + hdr->type_len;
2971 
2972 	env->log_type_id = 1;
2973 	while (cur < end) {
2974 		struct btf_type *t = cur;
2975 		s32 meta_size;
2976 
2977 		meta_size = btf_check_meta(env, t, end - cur);
2978 		if (meta_size < 0)
2979 			return meta_size;
2980 
2981 		btf_add_type(env, t);
2982 		cur += meta_size;
2983 		env->log_type_id++;
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static bool btf_resolve_valid(struct btf_verifier_env *env,
2990 			      const struct btf_type *t,
2991 			      u32 type_id)
2992 {
2993 	struct btf *btf = env->btf;
2994 
2995 	if (!env_type_is_resolved(env, type_id))
2996 		return false;
2997 
2998 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
2999 		return !btf->resolved_ids[type_id] &&
3000 		       !btf->resolved_sizes[type_id];
3001 
3002 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3003 	    btf_type_is_var(t)) {
3004 		t = btf_type_id_resolve(btf, &type_id);
3005 		return t &&
3006 		       !btf_type_is_modifier(t) &&
3007 		       !btf_type_is_var(t) &&
3008 		       !btf_type_is_datasec(t);
3009 	}
3010 
3011 	if (btf_type_is_array(t)) {
3012 		const struct btf_array *array = btf_type_array(t);
3013 		const struct btf_type *elem_type;
3014 		u32 elem_type_id = array->type;
3015 		u32 elem_size;
3016 
3017 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3018 		return elem_type && !btf_type_is_modifier(elem_type) &&
3019 			(array->nelems * elem_size ==
3020 			 btf->resolved_sizes[type_id]);
3021 	}
3022 
3023 	return false;
3024 }
3025 
3026 static int btf_resolve(struct btf_verifier_env *env,
3027 		       const struct btf_type *t, u32 type_id)
3028 {
3029 	u32 save_log_type_id = env->log_type_id;
3030 	const struct resolve_vertex *v;
3031 	int err = 0;
3032 
3033 	env->resolve_mode = RESOLVE_TBD;
3034 	env_stack_push(env, t, type_id);
3035 	while (!err && (v = env_stack_peak(env))) {
3036 		env->log_type_id = v->type_id;
3037 		err = btf_type_ops(v->t)->resolve(env, v);
3038 	}
3039 
3040 	env->log_type_id = type_id;
3041 	if (err == -E2BIG) {
3042 		btf_verifier_log_type(env, t,
3043 				      "Exceeded max resolving depth:%u",
3044 				      MAX_RESOLVE_DEPTH);
3045 	} else if (err == -EEXIST) {
3046 		btf_verifier_log_type(env, t, "Loop detected");
3047 	}
3048 
3049 	/* Final sanity check */
3050 	if (!err && !btf_resolve_valid(env, t, type_id)) {
3051 		btf_verifier_log_type(env, t, "Invalid resolve state");
3052 		err = -EINVAL;
3053 	}
3054 
3055 	env->log_type_id = save_log_type_id;
3056 	return err;
3057 }
3058 
3059 static int btf_check_all_types(struct btf_verifier_env *env)
3060 {
3061 	struct btf *btf = env->btf;
3062 	u32 type_id;
3063 	int err;
3064 
3065 	err = env_resolve_init(env);
3066 	if (err)
3067 		return err;
3068 
3069 	env->phase++;
3070 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3071 		const struct btf_type *t = btf_type_by_id(btf, type_id);
3072 
3073 		env->log_type_id = type_id;
3074 		if (btf_type_needs_resolve(t) &&
3075 		    !env_type_is_resolved(env, type_id)) {
3076 			err = btf_resolve(env, t, type_id);
3077 			if (err)
3078 				return err;
3079 		}
3080 
3081 		if (btf_type_is_func_proto(t)) {
3082 			err = btf_func_proto_check(env, t);
3083 			if (err)
3084 				return err;
3085 		}
3086 
3087 		if (btf_type_is_func(t)) {
3088 			err = btf_func_check(env, t);
3089 			if (err)
3090 				return err;
3091 		}
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 static int btf_parse_type_sec(struct btf_verifier_env *env)
3098 {
3099 	const struct btf_header *hdr = &env->btf->hdr;
3100 	int err;
3101 
3102 	/* Type section must align to 4 bytes */
3103 	if (hdr->type_off & (sizeof(u32) - 1)) {
3104 		btf_verifier_log(env, "Unaligned type_off");
3105 		return -EINVAL;
3106 	}
3107 
3108 	if (!hdr->type_len) {
3109 		btf_verifier_log(env, "No type found");
3110 		return -EINVAL;
3111 	}
3112 
3113 	err = btf_check_all_metas(env);
3114 	if (err)
3115 		return err;
3116 
3117 	return btf_check_all_types(env);
3118 }
3119 
3120 static int btf_parse_str_sec(struct btf_verifier_env *env)
3121 {
3122 	const struct btf_header *hdr;
3123 	struct btf *btf = env->btf;
3124 	const char *start, *end;
3125 
3126 	hdr = &btf->hdr;
3127 	start = btf->nohdr_data + hdr->str_off;
3128 	end = start + hdr->str_len;
3129 
3130 	if (end != btf->data + btf->data_size) {
3131 		btf_verifier_log(env, "String section is not at the end");
3132 		return -EINVAL;
3133 	}
3134 
3135 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3136 	    start[0] || end[-1]) {
3137 		btf_verifier_log(env, "Invalid string section");
3138 		return -EINVAL;
3139 	}
3140 
3141 	btf->strings = start;
3142 
3143 	return 0;
3144 }
3145 
3146 static const size_t btf_sec_info_offset[] = {
3147 	offsetof(struct btf_header, type_off),
3148 	offsetof(struct btf_header, str_off),
3149 };
3150 
3151 static int btf_sec_info_cmp(const void *a, const void *b)
3152 {
3153 	const struct btf_sec_info *x = a;
3154 	const struct btf_sec_info *y = b;
3155 
3156 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3157 }
3158 
3159 static int btf_check_sec_info(struct btf_verifier_env *env,
3160 			      u32 btf_data_size)
3161 {
3162 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3163 	u32 total, expected_total, i;
3164 	const struct btf_header *hdr;
3165 	const struct btf *btf;
3166 
3167 	btf = env->btf;
3168 	hdr = &btf->hdr;
3169 
3170 	/* Populate the secs from hdr */
3171 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3172 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
3173 						   btf_sec_info_offset[i]);
3174 
3175 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3176 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3177 
3178 	/* Check for gaps and overlap among sections */
3179 	total = 0;
3180 	expected_total = btf_data_size - hdr->hdr_len;
3181 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3182 		if (expected_total < secs[i].off) {
3183 			btf_verifier_log(env, "Invalid section offset");
3184 			return -EINVAL;
3185 		}
3186 		if (total < secs[i].off) {
3187 			/* gap */
3188 			btf_verifier_log(env, "Unsupported section found");
3189 			return -EINVAL;
3190 		}
3191 		if (total > secs[i].off) {
3192 			btf_verifier_log(env, "Section overlap found");
3193 			return -EINVAL;
3194 		}
3195 		if (expected_total - total < secs[i].len) {
3196 			btf_verifier_log(env,
3197 					 "Total section length too long");
3198 			return -EINVAL;
3199 		}
3200 		total += secs[i].len;
3201 	}
3202 
3203 	/* There is data other than hdr and known sections */
3204 	if (expected_total != total) {
3205 		btf_verifier_log(env, "Unsupported section found");
3206 		return -EINVAL;
3207 	}
3208 
3209 	return 0;
3210 }
3211 
3212 static int btf_parse_hdr(struct btf_verifier_env *env)
3213 {
3214 	u32 hdr_len, hdr_copy, btf_data_size;
3215 	const struct btf_header *hdr;
3216 	struct btf *btf;
3217 	int err;
3218 
3219 	btf = env->btf;
3220 	btf_data_size = btf->data_size;
3221 
3222 	if (btf_data_size <
3223 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3224 		btf_verifier_log(env, "hdr_len not found");
3225 		return -EINVAL;
3226 	}
3227 
3228 	hdr = btf->data;
3229 	hdr_len = hdr->hdr_len;
3230 	if (btf_data_size < hdr_len) {
3231 		btf_verifier_log(env, "btf_header not found");
3232 		return -EINVAL;
3233 	}
3234 
3235 	/* Ensure the unsupported header fields are zero */
3236 	if (hdr_len > sizeof(btf->hdr)) {
3237 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
3238 		u8 *end = btf->data + hdr_len;
3239 
3240 		for (; expected_zero < end; expected_zero++) {
3241 			if (*expected_zero) {
3242 				btf_verifier_log(env, "Unsupported btf_header");
3243 				return -E2BIG;
3244 			}
3245 		}
3246 	}
3247 
3248 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3249 	memcpy(&btf->hdr, btf->data, hdr_copy);
3250 
3251 	hdr = &btf->hdr;
3252 
3253 	btf_verifier_log_hdr(env, btf_data_size);
3254 
3255 	if (hdr->magic != BTF_MAGIC) {
3256 		btf_verifier_log(env, "Invalid magic");
3257 		return -EINVAL;
3258 	}
3259 
3260 	if (hdr->version != BTF_VERSION) {
3261 		btf_verifier_log(env, "Unsupported version");
3262 		return -ENOTSUPP;
3263 	}
3264 
3265 	if (hdr->flags) {
3266 		btf_verifier_log(env, "Unsupported flags");
3267 		return -ENOTSUPP;
3268 	}
3269 
3270 	if (btf_data_size == hdr->hdr_len) {
3271 		btf_verifier_log(env, "No data");
3272 		return -EINVAL;
3273 	}
3274 
3275 	err = btf_check_sec_info(env, btf_data_size);
3276 	if (err)
3277 		return err;
3278 
3279 	return 0;
3280 }
3281 
3282 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3283 			     u32 log_level, char __user *log_ubuf, u32 log_size)
3284 {
3285 	struct btf_verifier_env *env = NULL;
3286 	struct bpf_verifier_log *log;
3287 	struct btf *btf = NULL;
3288 	u8 *data;
3289 	int err;
3290 
3291 	if (btf_data_size > BTF_MAX_SIZE)
3292 		return ERR_PTR(-E2BIG);
3293 
3294 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3295 	if (!env)
3296 		return ERR_PTR(-ENOMEM);
3297 
3298 	log = &env->log;
3299 	if (log_level || log_ubuf || log_size) {
3300 		/* user requested verbose verifier output
3301 		 * and supplied buffer to store the verification trace
3302 		 */
3303 		log->level = log_level;
3304 		log->ubuf = log_ubuf;
3305 		log->len_total = log_size;
3306 
3307 		/* log attributes have to be sane */
3308 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3309 		    !log->level || !log->ubuf) {
3310 			err = -EINVAL;
3311 			goto errout;
3312 		}
3313 	}
3314 
3315 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3316 	if (!btf) {
3317 		err = -ENOMEM;
3318 		goto errout;
3319 	}
3320 	env->btf = btf;
3321 
3322 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3323 	if (!data) {
3324 		err = -ENOMEM;
3325 		goto errout;
3326 	}
3327 
3328 	btf->data = data;
3329 	btf->data_size = btf_data_size;
3330 
3331 	if (copy_from_user(data, btf_data, btf_data_size)) {
3332 		err = -EFAULT;
3333 		goto errout;
3334 	}
3335 
3336 	err = btf_parse_hdr(env);
3337 	if (err)
3338 		goto errout;
3339 
3340 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3341 
3342 	err = btf_parse_str_sec(env);
3343 	if (err)
3344 		goto errout;
3345 
3346 	err = btf_parse_type_sec(env);
3347 	if (err)
3348 		goto errout;
3349 
3350 	if (log->level && bpf_verifier_log_full(log)) {
3351 		err = -ENOSPC;
3352 		goto errout;
3353 	}
3354 
3355 	btf_verifier_env_free(env);
3356 	refcount_set(&btf->refcnt, 1);
3357 	return btf;
3358 
3359 errout:
3360 	btf_verifier_env_free(env);
3361 	if (btf)
3362 		btf_free(btf);
3363 	return ERR_PTR(err);
3364 }
3365 
3366 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
3367 		       struct seq_file *m)
3368 {
3369 	const struct btf_type *t = btf_type_by_id(btf, type_id);
3370 
3371 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
3372 }
3373 
3374 static int btf_release(struct inode *inode, struct file *filp)
3375 {
3376 	btf_put(filp->private_data);
3377 	return 0;
3378 }
3379 
3380 const struct file_operations btf_fops = {
3381 	.release	= btf_release,
3382 };
3383 
3384 static int __btf_new_fd(struct btf *btf)
3385 {
3386 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
3387 }
3388 
3389 int btf_new_fd(const union bpf_attr *attr)
3390 {
3391 	struct btf *btf;
3392 	int ret;
3393 
3394 	btf = btf_parse(u64_to_user_ptr(attr->btf),
3395 			attr->btf_size, attr->btf_log_level,
3396 			u64_to_user_ptr(attr->btf_log_buf),
3397 			attr->btf_log_size);
3398 	if (IS_ERR(btf))
3399 		return PTR_ERR(btf);
3400 
3401 	ret = btf_alloc_id(btf);
3402 	if (ret) {
3403 		btf_free(btf);
3404 		return ret;
3405 	}
3406 
3407 	/*
3408 	 * The BTF ID is published to the userspace.
3409 	 * All BTF free must go through call_rcu() from
3410 	 * now on (i.e. free by calling btf_put()).
3411 	 */
3412 
3413 	ret = __btf_new_fd(btf);
3414 	if (ret < 0)
3415 		btf_put(btf);
3416 
3417 	return ret;
3418 }
3419 
3420 struct btf *btf_get_by_fd(int fd)
3421 {
3422 	struct btf *btf;
3423 	struct fd f;
3424 
3425 	f = fdget(fd);
3426 
3427 	if (!f.file)
3428 		return ERR_PTR(-EBADF);
3429 
3430 	if (f.file->f_op != &btf_fops) {
3431 		fdput(f);
3432 		return ERR_PTR(-EINVAL);
3433 	}
3434 
3435 	btf = f.file->private_data;
3436 	refcount_inc(&btf->refcnt);
3437 	fdput(f);
3438 
3439 	return btf;
3440 }
3441 
3442 int btf_get_info_by_fd(const struct btf *btf,
3443 		       const union bpf_attr *attr,
3444 		       union bpf_attr __user *uattr)
3445 {
3446 	struct bpf_btf_info __user *uinfo;
3447 	struct bpf_btf_info info = {};
3448 	u32 info_copy, btf_copy;
3449 	void __user *ubtf;
3450 	u32 uinfo_len;
3451 
3452 	uinfo = u64_to_user_ptr(attr->info.info);
3453 	uinfo_len = attr->info.info_len;
3454 
3455 	info_copy = min_t(u32, uinfo_len, sizeof(info));
3456 	if (copy_from_user(&info, uinfo, info_copy))
3457 		return -EFAULT;
3458 
3459 	info.id = btf->id;
3460 	ubtf = u64_to_user_ptr(info.btf);
3461 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
3462 	if (copy_to_user(ubtf, btf->data, btf_copy))
3463 		return -EFAULT;
3464 	info.btf_size = btf->data_size;
3465 
3466 	if (copy_to_user(uinfo, &info, info_copy) ||
3467 	    put_user(info_copy, &uattr->info.info_len))
3468 		return -EFAULT;
3469 
3470 	return 0;
3471 }
3472 
3473 int btf_get_fd_by_id(u32 id)
3474 {
3475 	struct btf *btf;
3476 	int fd;
3477 
3478 	rcu_read_lock();
3479 	btf = idr_find(&btf_idr, id);
3480 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3481 		btf = ERR_PTR(-ENOENT);
3482 	rcu_read_unlock();
3483 
3484 	if (IS_ERR(btf))
3485 		return PTR_ERR(btf);
3486 
3487 	fd = __btf_new_fd(btf);
3488 	if (fd < 0)
3489 		btf_put(btf);
3490 
3491 	return fd;
3492 }
3493 
3494 u32 btf_id(const struct btf *btf)
3495 {
3496 	return btf->id;
3497 }
3498