xref: /linux/kernel/bpf/btf.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to describe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101 
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *	struct A {
133  *		struct B b;
134  *	};
135  *
136  *	struct B {
137  *		struct A a;
138  *	};
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *	struct A {
156  *		int m;
157  *		struct A *a;
158  *	};
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168 
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175 
176 #define BTF_INFO_MASK 0x9f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180 
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186 
187 #define for_each_member_from(i, from, struct_type, member)		\
188 	for (i = from, member = btf_type_member(struct_type) + from;	\
189 	     i < btf_type_vlen(struct_type);				\
190 	     i++, member++)
191 
192 #define for_each_vsi_from(i, from, struct_type, member)				\
193 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);					\
195 	     i++, member++)
196 
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199 
200 struct btf {
201 	void *data;
202 	struct btf_type **types;
203 	u32 *resolved_ids;
204 	u32 *resolved_sizes;
205 	const char *strings;
206 	void *nohdr_data;
207 	struct btf_header hdr;
208 	u32 nr_types; /* includes VOID for base BTF */
209 	u32 types_size;
210 	u32 data_size;
211 	refcount_t refcnt;
212 	u32 id;
213 	struct rcu_head rcu;
214 
215 	/* split BTF support */
216 	struct btf *base_btf;
217 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 	u32 start_str_off; /* first string offset (0 for base BTF) */
219 	char name[MODULE_NAME_LEN];
220 	bool kernel_btf;
221 };
222 
223 enum verifier_phase {
224 	CHECK_META,
225 	CHECK_TYPE,
226 };
227 
228 struct resolve_vertex {
229 	const struct btf_type *t;
230 	u32 type_id;
231 	u16 next_member;
232 };
233 
234 enum visit_state {
235 	NOT_VISITED,
236 	VISITED,
237 	RESOLVED,
238 };
239 
240 enum resolve_mode {
241 	RESOLVE_TBD,	/* To Be Determined */
242 	RESOLVE_PTR,	/* Resolving for Pointer */
243 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
244 					 * or array
245 					 */
246 };
247 
248 #define MAX_RESOLVE_DEPTH 32
249 
250 struct btf_sec_info {
251 	u32 off;
252 	u32 len;
253 };
254 
255 struct btf_verifier_env {
256 	struct btf *btf;
257 	u8 *visit_states;
258 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259 	struct bpf_verifier_log log;
260 	u32 log_type_id;
261 	u32 top_stack;
262 	enum verifier_phase phase;
263 	enum resolve_mode resolve_mode;
264 };
265 
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 	[BTF_KIND_UNKN]		= "UNKNOWN",
268 	[BTF_KIND_INT]		= "INT",
269 	[BTF_KIND_PTR]		= "PTR",
270 	[BTF_KIND_ARRAY]	= "ARRAY",
271 	[BTF_KIND_STRUCT]	= "STRUCT",
272 	[BTF_KIND_UNION]	= "UNION",
273 	[BTF_KIND_ENUM]		= "ENUM",
274 	[BTF_KIND_FWD]		= "FWD",
275 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
276 	[BTF_KIND_VOLATILE]	= "VOLATILE",
277 	[BTF_KIND_CONST]	= "CONST",
278 	[BTF_KIND_RESTRICT]	= "RESTRICT",
279 	[BTF_KIND_FUNC]		= "FUNC",
280 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
281 	[BTF_KIND_VAR]		= "VAR",
282 	[BTF_KIND_DATASEC]	= "DATASEC",
283 	[BTF_KIND_FLOAT]	= "FLOAT",
284 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
285 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
286 };
287 
288 const char *btf_type_str(const struct btf_type *t)
289 {
290 	return btf_kind_str[BTF_INFO_KIND(t->info)];
291 }
292 
293 /* Chunk size we use in safe copy of data to be shown. */
294 #define BTF_SHOW_OBJ_SAFE_SIZE		32
295 
296 /*
297  * This is the maximum size of a base type value (equivalent to a
298  * 128-bit int); if we are at the end of our safe buffer and have
299  * less than 16 bytes space we can't be assured of being able
300  * to copy the next type safely, so in such cases we will initiate
301  * a new copy.
302  */
303 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
304 
305 /* Type name size */
306 #define BTF_SHOW_NAME_SIZE		80
307 
308 /*
309  * Common data to all BTF show operations. Private show functions can add
310  * their own data to a structure containing a struct btf_show and consult it
311  * in the show callback.  See btf_type_show() below.
312  *
313  * One challenge with showing nested data is we want to skip 0-valued
314  * data, but in order to figure out whether a nested object is all zeros
315  * we need to walk through it.  As a result, we need to make two passes
316  * when handling structs, unions and arrays; the first path simply looks
317  * for nonzero data, while the second actually does the display.  The first
318  * pass is signalled by show->state.depth_check being set, and if we
319  * encounter a non-zero value we set show->state.depth_to_show to
320  * the depth at which we encountered it.  When we have completed the
321  * first pass, we will know if anything needs to be displayed if
322  * depth_to_show > depth.  See btf_[struct,array]_show() for the
323  * implementation of this.
324  *
325  * Another problem is we want to ensure the data for display is safe to
326  * access.  To support this, the anonymous "struct {} obj" tracks the data
327  * object and our safe copy of it.  We copy portions of the data needed
328  * to the object "copy" buffer, but because its size is limited to
329  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
330  * traverse larger objects for display.
331  *
332  * The various data type show functions all start with a call to
333  * btf_show_start_type() which returns a pointer to the safe copy
334  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
335  * raw data itself).  btf_show_obj_safe() is responsible for
336  * using copy_from_kernel_nofault() to update the safe data if necessary
337  * as we traverse the object's data.  skbuff-like semantics are
338  * used:
339  *
340  * - obj.head points to the start of the toplevel object for display
341  * - obj.size is the size of the toplevel object
342  * - obj.data points to the current point in the original data at
343  *   which our safe data starts.  obj.data will advance as we copy
344  *   portions of the data.
345  *
346  * In most cases a single copy will suffice, but larger data structures
347  * such as "struct task_struct" will require many copies.  The logic in
348  * btf_show_obj_safe() handles the logic that determines if a new
349  * copy_from_kernel_nofault() is needed.
350  */
351 struct btf_show {
352 	u64 flags;
353 	void *target;	/* target of show operation (seq file, buffer) */
354 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
355 	const struct btf *btf;
356 	/* below are used during iteration */
357 	struct {
358 		u8 depth;
359 		u8 depth_to_show;
360 		u8 depth_check;
361 		u8 array_member:1,
362 		   array_terminated:1;
363 		u16 array_encoding;
364 		u32 type_id;
365 		int status;			/* non-zero for error */
366 		const struct btf_type *type;
367 		const struct btf_member *member;
368 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
369 	} state;
370 	struct {
371 		u32 size;
372 		void *head;
373 		void *data;
374 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
375 	} obj;
376 };
377 
378 struct btf_kind_operations {
379 	s32 (*check_meta)(struct btf_verifier_env *env,
380 			  const struct btf_type *t,
381 			  u32 meta_left);
382 	int (*resolve)(struct btf_verifier_env *env,
383 		       const struct resolve_vertex *v);
384 	int (*check_member)(struct btf_verifier_env *env,
385 			    const struct btf_type *struct_type,
386 			    const struct btf_member *member,
387 			    const struct btf_type *member_type);
388 	int (*check_kflag_member)(struct btf_verifier_env *env,
389 				  const struct btf_type *struct_type,
390 				  const struct btf_member *member,
391 				  const struct btf_type *member_type);
392 	void (*log_details)(struct btf_verifier_env *env,
393 			    const struct btf_type *t);
394 	void (*show)(const struct btf *btf, const struct btf_type *t,
395 			 u32 type_id, void *data, u8 bits_offsets,
396 			 struct btf_show *show);
397 };
398 
399 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
400 static struct btf_type btf_void;
401 
402 static int btf_resolve(struct btf_verifier_env *env,
403 		       const struct btf_type *t, u32 type_id);
404 
405 static bool btf_type_is_modifier(const struct btf_type *t)
406 {
407 	/* Some of them is not strictly a C modifier
408 	 * but they are grouped into the same bucket
409 	 * for BTF concern:
410 	 *   A type (t) that refers to another
411 	 *   type through t->type AND its size cannot
412 	 *   be determined without following the t->type.
413 	 *
414 	 * ptr does not fall into this bucket
415 	 * because its size is always sizeof(void *).
416 	 */
417 	switch (BTF_INFO_KIND(t->info)) {
418 	case BTF_KIND_TYPEDEF:
419 	case BTF_KIND_VOLATILE:
420 	case BTF_KIND_CONST:
421 	case BTF_KIND_RESTRICT:
422 	case BTF_KIND_TYPE_TAG:
423 		return true;
424 	}
425 
426 	return false;
427 }
428 
429 bool btf_type_is_void(const struct btf_type *t)
430 {
431 	return t == &btf_void;
432 }
433 
434 static bool btf_type_is_fwd(const struct btf_type *t)
435 {
436 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
437 }
438 
439 static bool btf_type_nosize(const struct btf_type *t)
440 {
441 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
442 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
443 }
444 
445 static bool btf_type_nosize_or_null(const struct btf_type *t)
446 {
447 	return !t || btf_type_nosize(t);
448 }
449 
450 static bool __btf_type_is_struct(const struct btf_type *t)
451 {
452 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
453 }
454 
455 static bool btf_type_is_array(const struct btf_type *t)
456 {
457 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
458 }
459 
460 static bool btf_type_is_datasec(const struct btf_type *t)
461 {
462 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
463 }
464 
465 static bool btf_type_is_decl_tag(const struct btf_type *t)
466 {
467 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
468 }
469 
470 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
471 {
472 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
473 	       btf_type_is_var(t) || btf_type_is_typedef(t);
474 }
475 
476 u32 btf_nr_types(const struct btf *btf)
477 {
478 	u32 total = 0;
479 
480 	while (btf) {
481 		total += btf->nr_types;
482 		btf = btf->base_btf;
483 	}
484 
485 	return total;
486 }
487 
488 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
489 {
490 	const struct btf_type *t;
491 	const char *tname;
492 	u32 i, total;
493 
494 	total = btf_nr_types(btf);
495 	for (i = 1; i < total; i++) {
496 		t = btf_type_by_id(btf, i);
497 		if (BTF_INFO_KIND(t->info) != kind)
498 			continue;
499 
500 		tname = btf_name_by_offset(btf, t->name_off);
501 		if (!strcmp(tname, name))
502 			return i;
503 	}
504 
505 	return -ENOENT;
506 }
507 
508 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
509 					       u32 id, u32 *res_id)
510 {
511 	const struct btf_type *t = btf_type_by_id(btf, id);
512 
513 	while (btf_type_is_modifier(t)) {
514 		id = t->type;
515 		t = btf_type_by_id(btf, t->type);
516 	}
517 
518 	if (res_id)
519 		*res_id = id;
520 
521 	return t;
522 }
523 
524 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
525 					    u32 id, u32 *res_id)
526 {
527 	const struct btf_type *t;
528 
529 	t = btf_type_skip_modifiers(btf, id, NULL);
530 	if (!btf_type_is_ptr(t))
531 		return NULL;
532 
533 	return btf_type_skip_modifiers(btf, t->type, res_id);
534 }
535 
536 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
537 						 u32 id, u32 *res_id)
538 {
539 	const struct btf_type *ptype;
540 
541 	ptype = btf_type_resolve_ptr(btf, id, res_id);
542 	if (ptype && btf_type_is_func_proto(ptype))
543 		return ptype;
544 
545 	return NULL;
546 }
547 
548 /* Types that act only as a source, not sink or intermediate
549  * type when resolving.
550  */
551 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
552 {
553 	return btf_type_is_var(t) ||
554 	       btf_type_is_decl_tag(t) ||
555 	       btf_type_is_datasec(t);
556 }
557 
558 /* What types need to be resolved?
559  *
560  * btf_type_is_modifier() is an obvious one.
561  *
562  * btf_type_is_struct() because its member refers to
563  * another type (through member->type).
564  *
565  * btf_type_is_var() because the variable refers to
566  * another type. btf_type_is_datasec() holds multiple
567  * btf_type_is_var() types that need resolving.
568  *
569  * btf_type_is_array() because its element (array->type)
570  * refers to another type.  Array can be thought of a
571  * special case of struct while array just has the same
572  * member-type repeated by array->nelems of times.
573  */
574 static bool btf_type_needs_resolve(const struct btf_type *t)
575 {
576 	return btf_type_is_modifier(t) ||
577 	       btf_type_is_ptr(t) ||
578 	       btf_type_is_struct(t) ||
579 	       btf_type_is_array(t) ||
580 	       btf_type_is_var(t) ||
581 	       btf_type_is_decl_tag(t) ||
582 	       btf_type_is_datasec(t);
583 }
584 
585 /* t->size can be used */
586 static bool btf_type_has_size(const struct btf_type *t)
587 {
588 	switch (BTF_INFO_KIND(t->info)) {
589 	case BTF_KIND_INT:
590 	case BTF_KIND_STRUCT:
591 	case BTF_KIND_UNION:
592 	case BTF_KIND_ENUM:
593 	case BTF_KIND_DATASEC:
594 	case BTF_KIND_FLOAT:
595 		return true;
596 	}
597 
598 	return false;
599 }
600 
601 static const char *btf_int_encoding_str(u8 encoding)
602 {
603 	if (encoding == 0)
604 		return "(none)";
605 	else if (encoding == BTF_INT_SIGNED)
606 		return "SIGNED";
607 	else if (encoding == BTF_INT_CHAR)
608 		return "CHAR";
609 	else if (encoding == BTF_INT_BOOL)
610 		return "BOOL";
611 	else
612 		return "UNKN";
613 }
614 
615 static u32 btf_type_int(const struct btf_type *t)
616 {
617 	return *(u32 *)(t + 1);
618 }
619 
620 static const struct btf_array *btf_type_array(const struct btf_type *t)
621 {
622 	return (const struct btf_array *)(t + 1);
623 }
624 
625 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
626 {
627 	return (const struct btf_enum *)(t + 1);
628 }
629 
630 static const struct btf_var *btf_type_var(const struct btf_type *t)
631 {
632 	return (const struct btf_var *)(t + 1);
633 }
634 
635 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
636 {
637 	return (const struct btf_decl_tag *)(t + 1);
638 }
639 
640 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
641 {
642 	return kind_ops[BTF_INFO_KIND(t->info)];
643 }
644 
645 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
646 {
647 	if (!BTF_STR_OFFSET_VALID(offset))
648 		return false;
649 
650 	while (offset < btf->start_str_off)
651 		btf = btf->base_btf;
652 
653 	offset -= btf->start_str_off;
654 	return offset < btf->hdr.str_len;
655 }
656 
657 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
658 {
659 	if ((first ? !isalpha(c) :
660 		     !isalnum(c)) &&
661 	    c != '_' &&
662 	    ((c == '.' && !dot_ok) ||
663 	      c != '.'))
664 		return false;
665 	return true;
666 }
667 
668 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
669 {
670 	while (offset < btf->start_str_off)
671 		btf = btf->base_btf;
672 
673 	offset -= btf->start_str_off;
674 	if (offset < btf->hdr.str_len)
675 		return &btf->strings[offset];
676 
677 	return NULL;
678 }
679 
680 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
681 {
682 	/* offset must be valid */
683 	const char *src = btf_str_by_offset(btf, offset);
684 	const char *src_limit;
685 
686 	if (!__btf_name_char_ok(*src, true, dot_ok))
687 		return false;
688 
689 	/* set a limit on identifier length */
690 	src_limit = src + KSYM_NAME_LEN;
691 	src++;
692 	while (*src && src < src_limit) {
693 		if (!__btf_name_char_ok(*src, false, dot_ok))
694 			return false;
695 		src++;
696 	}
697 
698 	return !*src;
699 }
700 
701 /* Only C-style identifier is permitted. This can be relaxed if
702  * necessary.
703  */
704 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
705 {
706 	return __btf_name_valid(btf, offset, false);
707 }
708 
709 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
710 {
711 	return __btf_name_valid(btf, offset, true);
712 }
713 
714 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
715 {
716 	const char *name;
717 
718 	if (!offset)
719 		return "(anon)";
720 
721 	name = btf_str_by_offset(btf, offset);
722 	return name ?: "(invalid-name-offset)";
723 }
724 
725 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
726 {
727 	return btf_str_by_offset(btf, offset);
728 }
729 
730 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
731 {
732 	while (type_id < btf->start_id)
733 		btf = btf->base_btf;
734 
735 	type_id -= btf->start_id;
736 	if (type_id >= btf->nr_types)
737 		return NULL;
738 	return btf->types[type_id];
739 }
740 
741 /*
742  * Regular int is not a bit field and it must be either
743  * u8/u16/u32/u64 or __int128.
744  */
745 static bool btf_type_int_is_regular(const struct btf_type *t)
746 {
747 	u8 nr_bits, nr_bytes;
748 	u32 int_data;
749 
750 	int_data = btf_type_int(t);
751 	nr_bits = BTF_INT_BITS(int_data);
752 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
753 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
754 	    BTF_INT_OFFSET(int_data) ||
755 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
756 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
757 	     nr_bytes != (2 * sizeof(u64)))) {
758 		return false;
759 	}
760 
761 	return true;
762 }
763 
764 /*
765  * Check that given struct member is a regular int with expected
766  * offset and size.
767  */
768 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
769 			   const struct btf_member *m,
770 			   u32 expected_offset, u32 expected_size)
771 {
772 	const struct btf_type *t;
773 	u32 id, int_data;
774 	u8 nr_bits;
775 
776 	id = m->type;
777 	t = btf_type_id_size(btf, &id, NULL);
778 	if (!t || !btf_type_is_int(t))
779 		return false;
780 
781 	int_data = btf_type_int(t);
782 	nr_bits = BTF_INT_BITS(int_data);
783 	if (btf_type_kflag(s)) {
784 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
785 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
786 
787 		/* if kflag set, int should be a regular int and
788 		 * bit offset should be at byte boundary.
789 		 */
790 		return !bitfield_size &&
791 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
792 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
793 	}
794 
795 	if (BTF_INT_OFFSET(int_data) ||
796 	    BITS_PER_BYTE_MASKED(m->offset) ||
797 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
798 	    BITS_PER_BYTE_MASKED(nr_bits) ||
799 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
800 		return false;
801 
802 	return true;
803 }
804 
805 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
806 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
807 						       u32 id)
808 {
809 	const struct btf_type *t = btf_type_by_id(btf, id);
810 
811 	while (btf_type_is_modifier(t) &&
812 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
813 		t = btf_type_by_id(btf, t->type);
814 	}
815 
816 	return t;
817 }
818 
819 #define BTF_SHOW_MAX_ITER	10
820 
821 #define BTF_KIND_BIT(kind)	(1ULL << kind)
822 
823 /*
824  * Populate show->state.name with type name information.
825  * Format of type name is
826  *
827  * [.member_name = ] (type_name)
828  */
829 static const char *btf_show_name(struct btf_show *show)
830 {
831 	/* BTF_MAX_ITER array suffixes "[]" */
832 	const char *array_suffixes = "[][][][][][][][][][]";
833 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
834 	/* BTF_MAX_ITER pointer suffixes "*" */
835 	const char *ptr_suffixes = "**********";
836 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
837 	const char *name = NULL, *prefix = "", *parens = "";
838 	const struct btf_member *m = show->state.member;
839 	const struct btf_type *t = show->state.type;
840 	const struct btf_array *array;
841 	u32 id = show->state.type_id;
842 	const char *member = NULL;
843 	bool show_member = false;
844 	u64 kinds = 0;
845 	int i;
846 
847 	show->state.name[0] = '\0';
848 
849 	/*
850 	 * Don't show type name if we're showing an array member;
851 	 * in that case we show the array type so don't need to repeat
852 	 * ourselves for each member.
853 	 */
854 	if (show->state.array_member)
855 		return "";
856 
857 	/* Retrieve member name, if any. */
858 	if (m) {
859 		member = btf_name_by_offset(show->btf, m->name_off);
860 		show_member = strlen(member) > 0;
861 		id = m->type;
862 	}
863 
864 	/*
865 	 * Start with type_id, as we have resolved the struct btf_type *
866 	 * via btf_modifier_show() past the parent typedef to the child
867 	 * struct, int etc it is defined as.  In such cases, the type_id
868 	 * still represents the starting type while the struct btf_type *
869 	 * in our show->state points at the resolved type of the typedef.
870 	 */
871 	t = btf_type_by_id(show->btf, id);
872 	if (!t)
873 		return "";
874 
875 	/*
876 	 * The goal here is to build up the right number of pointer and
877 	 * array suffixes while ensuring the type name for a typedef
878 	 * is represented.  Along the way we accumulate a list of
879 	 * BTF kinds we have encountered, since these will inform later
880 	 * display; for example, pointer types will not require an
881 	 * opening "{" for struct, we will just display the pointer value.
882 	 *
883 	 * We also want to accumulate the right number of pointer or array
884 	 * indices in the format string while iterating until we get to
885 	 * the typedef/pointee/array member target type.
886 	 *
887 	 * We start by pointing at the end of pointer and array suffix
888 	 * strings; as we accumulate pointers and arrays we move the pointer
889 	 * or array string backwards so it will show the expected number of
890 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
891 	 * and/or arrays and typedefs are supported as a precaution.
892 	 *
893 	 * We also want to get typedef name while proceeding to resolve
894 	 * type it points to so that we can add parentheses if it is a
895 	 * "typedef struct" etc.
896 	 */
897 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
898 
899 		switch (BTF_INFO_KIND(t->info)) {
900 		case BTF_KIND_TYPEDEF:
901 			if (!name)
902 				name = btf_name_by_offset(show->btf,
903 							       t->name_off);
904 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
905 			id = t->type;
906 			break;
907 		case BTF_KIND_ARRAY:
908 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
909 			parens = "[";
910 			if (!t)
911 				return "";
912 			array = btf_type_array(t);
913 			if (array_suffix > array_suffixes)
914 				array_suffix -= 2;
915 			id = array->type;
916 			break;
917 		case BTF_KIND_PTR:
918 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
919 			if (ptr_suffix > ptr_suffixes)
920 				ptr_suffix -= 1;
921 			id = t->type;
922 			break;
923 		default:
924 			id = 0;
925 			break;
926 		}
927 		if (!id)
928 			break;
929 		t = btf_type_skip_qualifiers(show->btf, id);
930 	}
931 	/* We may not be able to represent this type; bail to be safe */
932 	if (i == BTF_SHOW_MAX_ITER)
933 		return "";
934 
935 	if (!name)
936 		name = btf_name_by_offset(show->btf, t->name_off);
937 
938 	switch (BTF_INFO_KIND(t->info)) {
939 	case BTF_KIND_STRUCT:
940 	case BTF_KIND_UNION:
941 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
942 			 "struct" : "union";
943 		/* if it's an array of struct/union, parens is already set */
944 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
945 			parens = "{";
946 		break;
947 	case BTF_KIND_ENUM:
948 		prefix = "enum";
949 		break;
950 	default:
951 		break;
952 	}
953 
954 	/* pointer does not require parens */
955 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
956 		parens = "";
957 	/* typedef does not require struct/union/enum prefix */
958 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
959 		prefix = "";
960 
961 	if (!name)
962 		name = "";
963 
964 	/* Even if we don't want type name info, we want parentheses etc */
965 	if (show->flags & BTF_SHOW_NONAME)
966 		snprintf(show->state.name, sizeof(show->state.name), "%s",
967 			 parens);
968 	else
969 		snprintf(show->state.name, sizeof(show->state.name),
970 			 "%s%s%s(%s%s%s%s%s%s)%s",
971 			 /* first 3 strings comprise ".member = " */
972 			 show_member ? "." : "",
973 			 show_member ? member : "",
974 			 show_member ? " = " : "",
975 			 /* ...next is our prefix (struct, enum, etc) */
976 			 prefix,
977 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
978 			 /* ...this is the type name itself */
979 			 name,
980 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
981 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
982 			 array_suffix, parens);
983 
984 	return show->state.name;
985 }
986 
987 static const char *__btf_show_indent(struct btf_show *show)
988 {
989 	const char *indents = "                                ";
990 	const char *indent = &indents[strlen(indents)];
991 
992 	if ((indent - show->state.depth) >= indents)
993 		return indent - show->state.depth;
994 	return indents;
995 }
996 
997 static const char *btf_show_indent(struct btf_show *show)
998 {
999 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1000 }
1001 
1002 static const char *btf_show_newline(struct btf_show *show)
1003 {
1004 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1005 }
1006 
1007 static const char *btf_show_delim(struct btf_show *show)
1008 {
1009 	if (show->state.depth == 0)
1010 		return "";
1011 
1012 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1013 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1014 		return "|";
1015 
1016 	return ",";
1017 }
1018 
1019 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1020 {
1021 	va_list args;
1022 
1023 	if (!show->state.depth_check) {
1024 		va_start(args, fmt);
1025 		show->showfn(show, fmt, args);
1026 		va_end(args);
1027 	}
1028 }
1029 
1030 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1031  * format specifiers to the format specifier passed in; these do the work of
1032  * adding indentation, delimiters etc while the caller simply has to specify
1033  * the type value(s) in the format specifier + value(s).
1034  */
1035 #define btf_show_type_value(show, fmt, value)				       \
1036 	do {								       \
1037 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1038 		    show->state.depth == 0) {				       \
1039 			btf_show(show, "%s%s" fmt "%s%s",		       \
1040 				 btf_show_indent(show),			       \
1041 				 btf_show_name(show),			       \
1042 				 value, btf_show_delim(show),		       \
1043 				 btf_show_newline(show));		       \
1044 			if (show->state.depth > show->state.depth_to_show)     \
1045 				show->state.depth_to_show = show->state.depth; \
1046 		}							       \
1047 	} while (0)
1048 
1049 #define btf_show_type_values(show, fmt, ...)				       \
1050 	do {								       \
1051 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1052 			 btf_show_name(show),				       \
1053 			 __VA_ARGS__, btf_show_delim(show),		       \
1054 			 btf_show_newline(show));			       \
1055 		if (show->state.depth > show->state.depth_to_show)	       \
1056 			show->state.depth_to_show = show->state.depth;	       \
1057 	} while (0)
1058 
1059 /* How much is left to copy to safe buffer after @data? */
1060 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1061 {
1062 	return show->obj.head + show->obj.size - data;
1063 }
1064 
1065 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1066 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1067 {
1068 	return data >= show->obj.data &&
1069 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1070 }
1071 
1072 /*
1073  * If object pointed to by @data of @size falls within our safe buffer, return
1074  * the equivalent pointer to the same safe data.  Assumes
1075  * copy_from_kernel_nofault() has already happened and our safe buffer is
1076  * populated.
1077  */
1078 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1079 {
1080 	if (btf_show_obj_is_safe(show, data, size))
1081 		return show->obj.safe + (data - show->obj.data);
1082 	return NULL;
1083 }
1084 
1085 /*
1086  * Return a safe-to-access version of data pointed to by @data.
1087  * We do this by copying the relevant amount of information
1088  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1089  *
1090  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1091  * safe copy is needed.
1092  *
1093  * Otherwise we need to determine if we have the required amount
1094  * of data (determined by the @data pointer and the size of the
1095  * largest base type we can encounter (represented by
1096  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1097  * that we will be able to print some of the current object,
1098  * and if more is needed a copy will be triggered.
1099  * Some objects such as structs will not fit into the buffer;
1100  * in such cases additional copies when we iterate over their
1101  * members may be needed.
1102  *
1103  * btf_show_obj_safe() is used to return a safe buffer for
1104  * btf_show_start_type(); this ensures that as we recurse into
1105  * nested types we always have safe data for the given type.
1106  * This approach is somewhat wasteful; it's possible for example
1107  * that when iterating over a large union we'll end up copying the
1108  * same data repeatedly, but the goal is safety not performance.
1109  * We use stack data as opposed to per-CPU buffers because the
1110  * iteration over a type can take some time, and preemption handling
1111  * would greatly complicate use of the safe buffer.
1112  */
1113 static void *btf_show_obj_safe(struct btf_show *show,
1114 			       const struct btf_type *t,
1115 			       void *data)
1116 {
1117 	const struct btf_type *rt;
1118 	int size_left, size;
1119 	void *safe = NULL;
1120 
1121 	if (show->flags & BTF_SHOW_UNSAFE)
1122 		return data;
1123 
1124 	rt = btf_resolve_size(show->btf, t, &size);
1125 	if (IS_ERR(rt)) {
1126 		show->state.status = PTR_ERR(rt);
1127 		return NULL;
1128 	}
1129 
1130 	/*
1131 	 * Is this toplevel object? If so, set total object size and
1132 	 * initialize pointers.  Otherwise check if we still fall within
1133 	 * our safe object data.
1134 	 */
1135 	if (show->state.depth == 0) {
1136 		show->obj.size = size;
1137 		show->obj.head = data;
1138 	} else {
1139 		/*
1140 		 * If the size of the current object is > our remaining
1141 		 * safe buffer we _may_ need to do a new copy.  However
1142 		 * consider the case of a nested struct; it's size pushes
1143 		 * us over the safe buffer limit, but showing any individual
1144 		 * struct members does not.  In such cases, we don't need
1145 		 * to initiate a fresh copy yet; however we definitely need
1146 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1147 		 * in our buffer, regardless of the current object size.
1148 		 * The logic here is that as we resolve types we will
1149 		 * hit a base type at some point, and we need to be sure
1150 		 * the next chunk of data is safely available to display
1151 		 * that type info safely.  We cannot rely on the size of
1152 		 * the current object here because it may be much larger
1153 		 * than our current buffer (e.g. task_struct is 8k).
1154 		 * All we want to do here is ensure that we can print the
1155 		 * next basic type, which we can if either
1156 		 * - the current type size is within the safe buffer; or
1157 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1158 		 *   the safe buffer.
1159 		 */
1160 		safe = __btf_show_obj_safe(show, data,
1161 					   min(size,
1162 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1163 	}
1164 
1165 	/*
1166 	 * We need a new copy to our safe object, either because we haven't
1167 	 * yet copied and are initializing safe data, or because the data
1168 	 * we want falls outside the boundaries of the safe object.
1169 	 */
1170 	if (!safe) {
1171 		size_left = btf_show_obj_size_left(show, data);
1172 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1173 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1174 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1175 							      data, size_left);
1176 		if (!show->state.status) {
1177 			show->obj.data = data;
1178 			safe = show->obj.safe;
1179 		}
1180 	}
1181 
1182 	return safe;
1183 }
1184 
1185 /*
1186  * Set the type we are starting to show and return a safe data pointer
1187  * to be used for showing the associated data.
1188  */
1189 static void *btf_show_start_type(struct btf_show *show,
1190 				 const struct btf_type *t,
1191 				 u32 type_id, void *data)
1192 {
1193 	show->state.type = t;
1194 	show->state.type_id = type_id;
1195 	show->state.name[0] = '\0';
1196 
1197 	return btf_show_obj_safe(show, t, data);
1198 }
1199 
1200 static void btf_show_end_type(struct btf_show *show)
1201 {
1202 	show->state.type = NULL;
1203 	show->state.type_id = 0;
1204 	show->state.name[0] = '\0';
1205 }
1206 
1207 static void *btf_show_start_aggr_type(struct btf_show *show,
1208 				      const struct btf_type *t,
1209 				      u32 type_id, void *data)
1210 {
1211 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1212 
1213 	if (!safe_data)
1214 		return safe_data;
1215 
1216 	btf_show(show, "%s%s%s", btf_show_indent(show),
1217 		 btf_show_name(show),
1218 		 btf_show_newline(show));
1219 	show->state.depth++;
1220 	return safe_data;
1221 }
1222 
1223 static void btf_show_end_aggr_type(struct btf_show *show,
1224 				   const char *suffix)
1225 {
1226 	show->state.depth--;
1227 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1228 		 btf_show_delim(show), btf_show_newline(show));
1229 	btf_show_end_type(show);
1230 }
1231 
1232 static void btf_show_start_member(struct btf_show *show,
1233 				  const struct btf_member *m)
1234 {
1235 	show->state.member = m;
1236 }
1237 
1238 static void btf_show_start_array_member(struct btf_show *show)
1239 {
1240 	show->state.array_member = 1;
1241 	btf_show_start_member(show, NULL);
1242 }
1243 
1244 static void btf_show_end_member(struct btf_show *show)
1245 {
1246 	show->state.member = NULL;
1247 }
1248 
1249 static void btf_show_end_array_member(struct btf_show *show)
1250 {
1251 	show->state.array_member = 0;
1252 	btf_show_end_member(show);
1253 }
1254 
1255 static void *btf_show_start_array_type(struct btf_show *show,
1256 				       const struct btf_type *t,
1257 				       u32 type_id,
1258 				       u16 array_encoding,
1259 				       void *data)
1260 {
1261 	show->state.array_encoding = array_encoding;
1262 	show->state.array_terminated = 0;
1263 	return btf_show_start_aggr_type(show, t, type_id, data);
1264 }
1265 
1266 static void btf_show_end_array_type(struct btf_show *show)
1267 {
1268 	show->state.array_encoding = 0;
1269 	show->state.array_terminated = 0;
1270 	btf_show_end_aggr_type(show, "]");
1271 }
1272 
1273 static void *btf_show_start_struct_type(struct btf_show *show,
1274 					const struct btf_type *t,
1275 					u32 type_id,
1276 					void *data)
1277 {
1278 	return btf_show_start_aggr_type(show, t, type_id, data);
1279 }
1280 
1281 static void btf_show_end_struct_type(struct btf_show *show)
1282 {
1283 	btf_show_end_aggr_type(show, "}");
1284 }
1285 
1286 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1287 					      const char *fmt, ...)
1288 {
1289 	va_list args;
1290 
1291 	va_start(args, fmt);
1292 	bpf_verifier_vlog(log, fmt, args);
1293 	va_end(args);
1294 }
1295 
1296 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1297 					    const char *fmt, ...)
1298 {
1299 	struct bpf_verifier_log *log = &env->log;
1300 	va_list args;
1301 
1302 	if (!bpf_verifier_log_needed(log))
1303 		return;
1304 
1305 	va_start(args, fmt);
1306 	bpf_verifier_vlog(log, fmt, args);
1307 	va_end(args);
1308 }
1309 
1310 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1311 						   const struct btf_type *t,
1312 						   bool log_details,
1313 						   const char *fmt, ...)
1314 {
1315 	struct bpf_verifier_log *log = &env->log;
1316 	u8 kind = BTF_INFO_KIND(t->info);
1317 	struct btf *btf = env->btf;
1318 	va_list args;
1319 
1320 	if (!bpf_verifier_log_needed(log))
1321 		return;
1322 
1323 	/* btf verifier prints all types it is processing via
1324 	 * btf_verifier_log_type(..., fmt = NULL).
1325 	 * Skip those prints for in-kernel BTF verification.
1326 	 */
1327 	if (log->level == BPF_LOG_KERNEL && !fmt)
1328 		return;
1329 
1330 	__btf_verifier_log(log, "[%u] %s %s%s",
1331 			   env->log_type_id,
1332 			   btf_kind_str[kind],
1333 			   __btf_name_by_offset(btf, t->name_off),
1334 			   log_details ? " " : "");
1335 
1336 	if (log_details)
1337 		btf_type_ops(t)->log_details(env, t);
1338 
1339 	if (fmt && *fmt) {
1340 		__btf_verifier_log(log, " ");
1341 		va_start(args, fmt);
1342 		bpf_verifier_vlog(log, fmt, args);
1343 		va_end(args);
1344 	}
1345 
1346 	__btf_verifier_log(log, "\n");
1347 }
1348 
1349 #define btf_verifier_log_type(env, t, ...) \
1350 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1351 #define btf_verifier_log_basic(env, t, ...) \
1352 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1353 
1354 __printf(4, 5)
1355 static void btf_verifier_log_member(struct btf_verifier_env *env,
1356 				    const struct btf_type *struct_type,
1357 				    const struct btf_member *member,
1358 				    const char *fmt, ...)
1359 {
1360 	struct bpf_verifier_log *log = &env->log;
1361 	struct btf *btf = env->btf;
1362 	va_list args;
1363 
1364 	if (!bpf_verifier_log_needed(log))
1365 		return;
1366 
1367 	if (log->level == BPF_LOG_KERNEL && !fmt)
1368 		return;
1369 	/* The CHECK_META phase already did a btf dump.
1370 	 *
1371 	 * If member is logged again, it must hit an error in
1372 	 * parsing this member.  It is useful to print out which
1373 	 * struct this member belongs to.
1374 	 */
1375 	if (env->phase != CHECK_META)
1376 		btf_verifier_log_type(env, struct_type, NULL);
1377 
1378 	if (btf_type_kflag(struct_type))
1379 		__btf_verifier_log(log,
1380 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1381 				   __btf_name_by_offset(btf, member->name_off),
1382 				   member->type,
1383 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1384 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1385 	else
1386 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1387 				   __btf_name_by_offset(btf, member->name_off),
1388 				   member->type, member->offset);
1389 
1390 	if (fmt && *fmt) {
1391 		__btf_verifier_log(log, " ");
1392 		va_start(args, fmt);
1393 		bpf_verifier_vlog(log, fmt, args);
1394 		va_end(args);
1395 	}
1396 
1397 	__btf_verifier_log(log, "\n");
1398 }
1399 
1400 __printf(4, 5)
1401 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1402 				 const struct btf_type *datasec_type,
1403 				 const struct btf_var_secinfo *vsi,
1404 				 const char *fmt, ...)
1405 {
1406 	struct bpf_verifier_log *log = &env->log;
1407 	va_list args;
1408 
1409 	if (!bpf_verifier_log_needed(log))
1410 		return;
1411 	if (log->level == BPF_LOG_KERNEL && !fmt)
1412 		return;
1413 	if (env->phase != CHECK_META)
1414 		btf_verifier_log_type(env, datasec_type, NULL);
1415 
1416 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1417 			   vsi->type, vsi->offset, vsi->size);
1418 	if (fmt && *fmt) {
1419 		__btf_verifier_log(log, " ");
1420 		va_start(args, fmt);
1421 		bpf_verifier_vlog(log, fmt, args);
1422 		va_end(args);
1423 	}
1424 
1425 	__btf_verifier_log(log, "\n");
1426 }
1427 
1428 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1429 				 u32 btf_data_size)
1430 {
1431 	struct bpf_verifier_log *log = &env->log;
1432 	const struct btf *btf = env->btf;
1433 	const struct btf_header *hdr;
1434 
1435 	if (!bpf_verifier_log_needed(log))
1436 		return;
1437 
1438 	if (log->level == BPF_LOG_KERNEL)
1439 		return;
1440 	hdr = &btf->hdr;
1441 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1442 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1443 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1444 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1445 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1446 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1447 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1448 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1449 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1450 }
1451 
1452 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1453 {
1454 	struct btf *btf = env->btf;
1455 
1456 	if (btf->types_size == btf->nr_types) {
1457 		/* Expand 'types' array */
1458 
1459 		struct btf_type **new_types;
1460 		u32 expand_by, new_size;
1461 
1462 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1463 			btf_verifier_log(env, "Exceeded max num of types");
1464 			return -E2BIG;
1465 		}
1466 
1467 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1468 		new_size = min_t(u32, BTF_MAX_TYPE,
1469 				 btf->types_size + expand_by);
1470 
1471 		new_types = kvcalloc(new_size, sizeof(*new_types),
1472 				     GFP_KERNEL | __GFP_NOWARN);
1473 		if (!new_types)
1474 			return -ENOMEM;
1475 
1476 		if (btf->nr_types == 0) {
1477 			if (!btf->base_btf) {
1478 				/* lazily init VOID type */
1479 				new_types[0] = &btf_void;
1480 				btf->nr_types++;
1481 			}
1482 		} else {
1483 			memcpy(new_types, btf->types,
1484 			       sizeof(*btf->types) * btf->nr_types);
1485 		}
1486 
1487 		kvfree(btf->types);
1488 		btf->types = new_types;
1489 		btf->types_size = new_size;
1490 	}
1491 
1492 	btf->types[btf->nr_types++] = t;
1493 
1494 	return 0;
1495 }
1496 
1497 static int btf_alloc_id(struct btf *btf)
1498 {
1499 	int id;
1500 
1501 	idr_preload(GFP_KERNEL);
1502 	spin_lock_bh(&btf_idr_lock);
1503 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1504 	if (id > 0)
1505 		btf->id = id;
1506 	spin_unlock_bh(&btf_idr_lock);
1507 	idr_preload_end();
1508 
1509 	if (WARN_ON_ONCE(!id))
1510 		return -ENOSPC;
1511 
1512 	return id > 0 ? 0 : id;
1513 }
1514 
1515 static void btf_free_id(struct btf *btf)
1516 {
1517 	unsigned long flags;
1518 
1519 	/*
1520 	 * In map-in-map, calling map_delete_elem() on outer
1521 	 * map will call bpf_map_put on the inner map.
1522 	 * It will then eventually call btf_free_id()
1523 	 * on the inner map.  Some of the map_delete_elem()
1524 	 * implementation may have irq disabled, so
1525 	 * we need to use the _irqsave() version instead
1526 	 * of the _bh() version.
1527 	 */
1528 	spin_lock_irqsave(&btf_idr_lock, flags);
1529 	idr_remove(&btf_idr, btf->id);
1530 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1531 }
1532 
1533 static void btf_free(struct btf *btf)
1534 {
1535 	kvfree(btf->types);
1536 	kvfree(btf->resolved_sizes);
1537 	kvfree(btf->resolved_ids);
1538 	kvfree(btf->data);
1539 	kfree(btf);
1540 }
1541 
1542 static void btf_free_rcu(struct rcu_head *rcu)
1543 {
1544 	struct btf *btf = container_of(rcu, struct btf, rcu);
1545 
1546 	btf_free(btf);
1547 }
1548 
1549 void btf_get(struct btf *btf)
1550 {
1551 	refcount_inc(&btf->refcnt);
1552 }
1553 
1554 void btf_put(struct btf *btf)
1555 {
1556 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1557 		btf_free_id(btf);
1558 		call_rcu(&btf->rcu, btf_free_rcu);
1559 	}
1560 }
1561 
1562 static int env_resolve_init(struct btf_verifier_env *env)
1563 {
1564 	struct btf *btf = env->btf;
1565 	u32 nr_types = btf->nr_types;
1566 	u32 *resolved_sizes = NULL;
1567 	u32 *resolved_ids = NULL;
1568 	u8 *visit_states = NULL;
1569 
1570 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1571 				  GFP_KERNEL | __GFP_NOWARN);
1572 	if (!resolved_sizes)
1573 		goto nomem;
1574 
1575 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1576 				GFP_KERNEL | __GFP_NOWARN);
1577 	if (!resolved_ids)
1578 		goto nomem;
1579 
1580 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1581 				GFP_KERNEL | __GFP_NOWARN);
1582 	if (!visit_states)
1583 		goto nomem;
1584 
1585 	btf->resolved_sizes = resolved_sizes;
1586 	btf->resolved_ids = resolved_ids;
1587 	env->visit_states = visit_states;
1588 
1589 	return 0;
1590 
1591 nomem:
1592 	kvfree(resolved_sizes);
1593 	kvfree(resolved_ids);
1594 	kvfree(visit_states);
1595 	return -ENOMEM;
1596 }
1597 
1598 static void btf_verifier_env_free(struct btf_verifier_env *env)
1599 {
1600 	kvfree(env->visit_states);
1601 	kfree(env);
1602 }
1603 
1604 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1605 				     const struct btf_type *next_type)
1606 {
1607 	switch (env->resolve_mode) {
1608 	case RESOLVE_TBD:
1609 		/* int, enum or void is a sink */
1610 		return !btf_type_needs_resolve(next_type);
1611 	case RESOLVE_PTR:
1612 		/* int, enum, void, struct, array, func or func_proto is a sink
1613 		 * for ptr
1614 		 */
1615 		return !btf_type_is_modifier(next_type) &&
1616 			!btf_type_is_ptr(next_type);
1617 	case RESOLVE_STRUCT_OR_ARRAY:
1618 		/* int, enum, void, ptr, func or func_proto is a sink
1619 		 * for struct and array
1620 		 */
1621 		return !btf_type_is_modifier(next_type) &&
1622 			!btf_type_is_array(next_type) &&
1623 			!btf_type_is_struct(next_type);
1624 	default:
1625 		BUG();
1626 	}
1627 }
1628 
1629 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1630 				 u32 type_id)
1631 {
1632 	/* base BTF types should be resolved by now */
1633 	if (type_id < env->btf->start_id)
1634 		return true;
1635 
1636 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1637 }
1638 
1639 static int env_stack_push(struct btf_verifier_env *env,
1640 			  const struct btf_type *t, u32 type_id)
1641 {
1642 	const struct btf *btf = env->btf;
1643 	struct resolve_vertex *v;
1644 
1645 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1646 		return -E2BIG;
1647 
1648 	if (type_id < btf->start_id
1649 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1650 		return -EEXIST;
1651 
1652 	env->visit_states[type_id - btf->start_id] = VISITED;
1653 
1654 	v = &env->stack[env->top_stack++];
1655 	v->t = t;
1656 	v->type_id = type_id;
1657 	v->next_member = 0;
1658 
1659 	if (env->resolve_mode == RESOLVE_TBD) {
1660 		if (btf_type_is_ptr(t))
1661 			env->resolve_mode = RESOLVE_PTR;
1662 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1663 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static void env_stack_set_next_member(struct btf_verifier_env *env,
1670 				      u16 next_member)
1671 {
1672 	env->stack[env->top_stack - 1].next_member = next_member;
1673 }
1674 
1675 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1676 				   u32 resolved_type_id,
1677 				   u32 resolved_size)
1678 {
1679 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1680 	struct btf *btf = env->btf;
1681 
1682 	type_id -= btf->start_id; /* adjust to local type id */
1683 	btf->resolved_sizes[type_id] = resolved_size;
1684 	btf->resolved_ids[type_id] = resolved_type_id;
1685 	env->visit_states[type_id] = RESOLVED;
1686 }
1687 
1688 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1689 {
1690 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1691 }
1692 
1693 /* Resolve the size of a passed-in "type"
1694  *
1695  * type: is an array (e.g. u32 array[x][y])
1696  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1697  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1698  *             corresponds to the return type.
1699  * *elem_type: u32
1700  * *elem_id: id of u32
1701  * *total_nelems: (x * y).  Hence, individual elem size is
1702  *                (*type_size / *total_nelems)
1703  * *type_id: id of type if it's changed within the function, 0 if not
1704  *
1705  * type: is not an array (e.g. const struct X)
1706  * return type: type "struct X"
1707  * *type_size: sizeof(struct X)
1708  * *elem_type: same as return type ("struct X")
1709  * *elem_id: 0
1710  * *total_nelems: 1
1711  * *type_id: id of type if it's changed within the function, 0 if not
1712  */
1713 static const struct btf_type *
1714 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1715 		   u32 *type_size, const struct btf_type **elem_type,
1716 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1717 {
1718 	const struct btf_type *array_type = NULL;
1719 	const struct btf_array *array = NULL;
1720 	u32 i, size, nelems = 1, id = 0;
1721 
1722 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1723 		switch (BTF_INFO_KIND(type->info)) {
1724 		/* type->size can be used */
1725 		case BTF_KIND_INT:
1726 		case BTF_KIND_STRUCT:
1727 		case BTF_KIND_UNION:
1728 		case BTF_KIND_ENUM:
1729 		case BTF_KIND_FLOAT:
1730 			size = type->size;
1731 			goto resolved;
1732 
1733 		case BTF_KIND_PTR:
1734 			size = sizeof(void *);
1735 			goto resolved;
1736 
1737 		/* Modifiers */
1738 		case BTF_KIND_TYPEDEF:
1739 		case BTF_KIND_VOLATILE:
1740 		case BTF_KIND_CONST:
1741 		case BTF_KIND_RESTRICT:
1742 		case BTF_KIND_TYPE_TAG:
1743 			id = type->type;
1744 			type = btf_type_by_id(btf, type->type);
1745 			break;
1746 
1747 		case BTF_KIND_ARRAY:
1748 			if (!array_type)
1749 				array_type = type;
1750 			array = btf_type_array(type);
1751 			if (nelems && array->nelems > U32_MAX / nelems)
1752 				return ERR_PTR(-EINVAL);
1753 			nelems *= array->nelems;
1754 			type = btf_type_by_id(btf, array->type);
1755 			break;
1756 
1757 		/* type without size */
1758 		default:
1759 			return ERR_PTR(-EINVAL);
1760 		}
1761 	}
1762 
1763 	return ERR_PTR(-EINVAL);
1764 
1765 resolved:
1766 	if (nelems && size > U32_MAX / nelems)
1767 		return ERR_PTR(-EINVAL);
1768 
1769 	*type_size = nelems * size;
1770 	if (total_nelems)
1771 		*total_nelems = nelems;
1772 	if (elem_type)
1773 		*elem_type = type;
1774 	if (elem_id)
1775 		*elem_id = array ? array->type : 0;
1776 	if (type_id && id)
1777 		*type_id = id;
1778 
1779 	return array_type ? : type;
1780 }
1781 
1782 const struct btf_type *
1783 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1784 		 u32 *type_size)
1785 {
1786 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1787 }
1788 
1789 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1790 {
1791 	while (type_id < btf->start_id)
1792 		btf = btf->base_btf;
1793 
1794 	return btf->resolved_ids[type_id - btf->start_id];
1795 }
1796 
1797 /* The input param "type_id" must point to a needs_resolve type */
1798 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1799 						  u32 *type_id)
1800 {
1801 	*type_id = btf_resolved_type_id(btf, *type_id);
1802 	return btf_type_by_id(btf, *type_id);
1803 }
1804 
1805 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1806 {
1807 	while (type_id < btf->start_id)
1808 		btf = btf->base_btf;
1809 
1810 	return btf->resolved_sizes[type_id - btf->start_id];
1811 }
1812 
1813 const struct btf_type *btf_type_id_size(const struct btf *btf,
1814 					u32 *type_id, u32 *ret_size)
1815 {
1816 	const struct btf_type *size_type;
1817 	u32 size_type_id = *type_id;
1818 	u32 size = 0;
1819 
1820 	size_type = btf_type_by_id(btf, size_type_id);
1821 	if (btf_type_nosize_or_null(size_type))
1822 		return NULL;
1823 
1824 	if (btf_type_has_size(size_type)) {
1825 		size = size_type->size;
1826 	} else if (btf_type_is_array(size_type)) {
1827 		size = btf_resolved_type_size(btf, size_type_id);
1828 	} else if (btf_type_is_ptr(size_type)) {
1829 		size = sizeof(void *);
1830 	} else {
1831 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1832 				 !btf_type_is_var(size_type)))
1833 			return NULL;
1834 
1835 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1836 		size_type = btf_type_by_id(btf, size_type_id);
1837 		if (btf_type_nosize_or_null(size_type))
1838 			return NULL;
1839 		else if (btf_type_has_size(size_type))
1840 			size = size_type->size;
1841 		else if (btf_type_is_array(size_type))
1842 			size = btf_resolved_type_size(btf, size_type_id);
1843 		else if (btf_type_is_ptr(size_type))
1844 			size = sizeof(void *);
1845 		else
1846 			return NULL;
1847 	}
1848 
1849 	*type_id = size_type_id;
1850 	if (ret_size)
1851 		*ret_size = size;
1852 
1853 	return size_type;
1854 }
1855 
1856 static int btf_df_check_member(struct btf_verifier_env *env,
1857 			       const struct btf_type *struct_type,
1858 			       const struct btf_member *member,
1859 			       const struct btf_type *member_type)
1860 {
1861 	btf_verifier_log_basic(env, struct_type,
1862 			       "Unsupported check_member");
1863 	return -EINVAL;
1864 }
1865 
1866 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1867 				     const struct btf_type *struct_type,
1868 				     const struct btf_member *member,
1869 				     const struct btf_type *member_type)
1870 {
1871 	btf_verifier_log_basic(env, struct_type,
1872 			       "Unsupported check_kflag_member");
1873 	return -EINVAL;
1874 }
1875 
1876 /* Used for ptr, array struct/union and float type members.
1877  * int, enum and modifier types have their specific callback functions.
1878  */
1879 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1880 					  const struct btf_type *struct_type,
1881 					  const struct btf_member *member,
1882 					  const struct btf_type *member_type)
1883 {
1884 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1885 		btf_verifier_log_member(env, struct_type, member,
1886 					"Invalid member bitfield_size");
1887 		return -EINVAL;
1888 	}
1889 
1890 	/* bitfield size is 0, so member->offset represents bit offset only.
1891 	 * It is safe to call non kflag check_member variants.
1892 	 */
1893 	return btf_type_ops(member_type)->check_member(env, struct_type,
1894 						       member,
1895 						       member_type);
1896 }
1897 
1898 static int btf_df_resolve(struct btf_verifier_env *env,
1899 			  const struct resolve_vertex *v)
1900 {
1901 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1902 	return -EINVAL;
1903 }
1904 
1905 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1906 			u32 type_id, void *data, u8 bits_offsets,
1907 			struct btf_show *show)
1908 {
1909 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1910 }
1911 
1912 static int btf_int_check_member(struct btf_verifier_env *env,
1913 				const struct btf_type *struct_type,
1914 				const struct btf_member *member,
1915 				const struct btf_type *member_type)
1916 {
1917 	u32 int_data = btf_type_int(member_type);
1918 	u32 struct_bits_off = member->offset;
1919 	u32 struct_size = struct_type->size;
1920 	u32 nr_copy_bits;
1921 	u32 bytes_offset;
1922 
1923 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1924 		btf_verifier_log_member(env, struct_type, member,
1925 					"bits_offset exceeds U32_MAX");
1926 		return -EINVAL;
1927 	}
1928 
1929 	struct_bits_off += BTF_INT_OFFSET(int_data);
1930 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1931 	nr_copy_bits = BTF_INT_BITS(int_data) +
1932 		BITS_PER_BYTE_MASKED(struct_bits_off);
1933 
1934 	if (nr_copy_bits > BITS_PER_U128) {
1935 		btf_verifier_log_member(env, struct_type, member,
1936 					"nr_copy_bits exceeds 128");
1937 		return -EINVAL;
1938 	}
1939 
1940 	if (struct_size < bytes_offset ||
1941 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1942 		btf_verifier_log_member(env, struct_type, member,
1943 					"Member exceeds struct_size");
1944 		return -EINVAL;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1951 				      const struct btf_type *struct_type,
1952 				      const struct btf_member *member,
1953 				      const struct btf_type *member_type)
1954 {
1955 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1956 	u32 int_data = btf_type_int(member_type);
1957 	u32 struct_size = struct_type->size;
1958 	u32 nr_copy_bits;
1959 
1960 	/* a regular int type is required for the kflag int member */
1961 	if (!btf_type_int_is_regular(member_type)) {
1962 		btf_verifier_log_member(env, struct_type, member,
1963 					"Invalid member base type");
1964 		return -EINVAL;
1965 	}
1966 
1967 	/* check sanity of bitfield size */
1968 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1969 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1970 	nr_int_data_bits = BTF_INT_BITS(int_data);
1971 	if (!nr_bits) {
1972 		/* Not a bitfield member, member offset must be at byte
1973 		 * boundary.
1974 		 */
1975 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1976 			btf_verifier_log_member(env, struct_type, member,
1977 						"Invalid member offset");
1978 			return -EINVAL;
1979 		}
1980 
1981 		nr_bits = nr_int_data_bits;
1982 	} else if (nr_bits > nr_int_data_bits) {
1983 		btf_verifier_log_member(env, struct_type, member,
1984 					"Invalid member bitfield_size");
1985 		return -EINVAL;
1986 	}
1987 
1988 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1989 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1990 	if (nr_copy_bits > BITS_PER_U128) {
1991 		btf_verifier_log_member(env, struct_type, member,
1992 					"nr_copy_bits exceeds 128");
1993 		return -EINVAL;
1994 	}
1995 
1996 	if (struct_size < bytes_offset ||
1997 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1998 		btf_verifier_log_member(env, struct_type, member,
1999 					"Member exceeds struct_size");
2000 		return -EINVAL;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2007 			      const struct btf_type *t,
2008 			      u32 meta_left)
2009 {
2010 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2011 	u16 encoding;
2012 
2013 	if (meta_left < meta_needed) {
2014 		btf_verifier_log_basic(env, t,
2015 				       "meta_left:%u meta_needed:%u",
2016 				       meta_left, meta_needed);
2017 		return -EINVAL;
2018 	}
2019 
2020 	if (btf_type_vlen(t)) {
2021 		btf_verifier_log_type(env, t, "vlen != 0");
2022 		return -EINVAL;
2023 	}
2024 
2025 	if (btf_type_kflag(t)) {
2026 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2027 		return -EINVAL;
2028 	}
2029 
2030 	int_data = btf_type_int(t);
2031 	if (int_data & ~BTF_INT_MASK) {
2032 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2033 				       int_data);
2034 		return -EINVAL;
2035 	}
2036 
2037 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2038 
2039 	if (nr_bits > BITS_PER_U128) {
2040 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2041 				      BITS_PER_U128);
2042 		return -EINVAL;
2043 	}
2044 
2045 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2046 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2047 		return -EINVAL;
2048 	}
2049 
2050 	/*
2051 	 * Only one of the encoding bits is allowed and it
2052 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2053 	 * Multiple bits can be allowed later if it is found
2054 	 * to be insufficient.
2055 	 */
2056 	encoding = BTF_INT_ENCODING(int_data);
2057 	if (encoding &&
2058 	    encoding != BTF_INT_SIGNED &&
2059 	    encoding != BTF_INT_CHAR &&
2060 	    encoding != BTF_INT_BOOL) {
2061 		btf_verifier_log_type(env, t, "Unsupported encoding");
2062 		return -ENOTSUPP;
2063 	}
2064 
2065 	btf_verifier_log_type(env, t, NULL);
2066 
2067 	return meta_needed;
2068 }
2069 
2070 static void btf_int_log(struct btf_verifier_env *env,
2071 			const struct btf_type *t)
2072 {
2073 	int int_data = btf_type_int(t);
2074 
2075 	btf_verifier_log(env,
2076 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2077 			 t->size, BTF_INT_OFFSET(int_data),
2078 			 BTF_INT_BITS(int_data),
2079 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2080 }
2081 
2082 static void btf_int128_print(struct btf_show *show, void *data)
2083 {
2084 	/* data points to a __int128 number.
2085 	 * Suppose
2086 	 *     int128_num = *(__int128 *)data;
2087 	 * The below formulas shows what upper_num and lower_num represents:
2088 	 *     upper_num = int128_num >> 64;
2089 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2090 	 */
2091 	u64 upper_num, lower_num;
2092 
2093 #ifdef __BIG_ENDIAN_BITFIELD
2094 	upper_num = *(u64 *)data;
2095 	lower_num = *(u64 *)(data + 8);
2096 #else
2097 	upper_num = *(u64 *)(data + 8);
2098 	lower_num = *(u64 *)data;
2099 #endif
2100 	if (upper_num == 0)
2101 		btf_show_type_value(show, "0x%llx", lower_num);
2102 	else
2103 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2104 				     lower_num);
2105 }
2106 
2107 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2108 			     u16 right_shift_bits)
2109 {
2110 	u64 upper_num, lower_num;
2111 
2112 #ifdef __BIG_ENDIAN_BITFIELD
2113 	upper_num = print_num[0];
2114 	lower_num = print_num[1];
2115 #else
2116 	upper_num = print_num[1];
2117 	lower_num = print_num[0];
2118 #endif
2119 
2120 	/* shake out un-needed bits by shift/or operations */
2121 	if (left_shift_bits >= 64) {
2122 		upper_num = lower_num << (left_shift_bits - 64);
2123 		lower_num = 0;
2124 	} else {
2125 		upper_num = (upper_num << left_shift_bits) |
2126 			    (lower_num >> (64 - left_shift_bits));
2127 		lower_num = lower_num << left_shift_bits;
2128 	}
2129 
2130 	if (right_shift_bits >= 64) {
2131 		lower_num = upper_num >> (right_shift_bits - 64);
2132 		upper_num = 0;
2133 	} else {
2134 		lower_num = (lower_num >> right_shift_bits) |
2135 			    (upper_num << (64 - right_shift_bits));
2136 		upper_num = upper_num >> right_shift_bits;
2137 	}
2138 
2139 #ifdef __BIG_ENDIAN_BITFIELD
2140 	print_num[0] = upper_num;
2141 	print_num[1] = lower_num;
2142 #else
2143 	print_num[0] = lower_num;
2144 	print_num[1] = upper_num;
2145 #endif
2146 }
2147 
2148 static void btf_bitfield_show(void *data, u8 bits_offset,
2149 			      u8 nr_bits, struct btf_show *show)
2150 {
2151 	u16 left_shift_bits, right_shift_bits;
2152 	u8 nr_copy_bytes;
2153 	u8 nr_copy_bits;
2154 	u64 print_num[2] = {};
2155 
2156 	nr_copy_bits = nr_bits + bits_offset;
2157 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2158 
2159 	memcpy(print_num, data, nr_copy_bytes);
2160 
2161 #ifdef __BIG_ENDIAN_BITFIELD
2162 	left_shift_bits = bits_offset;
2163 #else
2164 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2165 #endif
2166 	right_shift_bits = BITS_PER_U128 - nr_bits;
2167 
2168 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2169 	btf_int128_print(show, print_num);
2170 }
2171 
2172 
2173 static void btf_int_bits_show(const struct btf *btf,
2174 			      const struct btf_type *t,
2175 			      void *data, u8 bits_offset,
2176 			      struct btf_show *show)
2177 {
2178 	u32 int_data = btf_type_int(t);
2179 	u8 nr_bits = BTF_INT_BITS(int_data);
2180 	u8 total_bits_offset;
2181 
2182 	/*
2183 	 * bits_offset is at most 7.
2184 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2185 	 */
2186 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2187 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2188 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2189 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2190 }
2191 
2192 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2193 			 u32 type_id, void *data, u8 bits_offset,
2194 			 struct btf_show *show)
2195 {
2196 	u32 int_data = btf_type_int(t);
2197 	u8 encoding = BTF_INT_ENCODING(int_data);
2198 	bool sign = encoding & BTF_INT_SIGNED;
2199 	u8 nr_bits = BTF_INT_BITS(int_data);
2200 	void *safe_data;
2201 
2202 	safe_data = btf_show_start_type(show, t, type_id, data);
2203 	if (!safe_data)
2204 		return;
2205 
2206 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2207 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2208 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2209 		goto out;
2210 	}
2211 
2212 	switch (nr_bits) {
2213 	case 128:
2214 		btf_int128_print(show, safe_data);
2215 		break;
2216 	case 64:
2217 		if (sign)
2218 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2219 		else
2220 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2221 		break;
2222 	case 32:
2223 		if (sign)
2224 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2225 		else
2226 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2227 		break;
2228 	case 16:
2229 		if (sign)
2230 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2231 		else
2232 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2233 		break;
2234 	case 8:
2235 		if (show->state.array_encoding == BTF_INT_CHAR) {
2236 			/* check for null terminator */
2237 			if (show->state.array_terminated)
2238 				break;
2239 			if (*(char *)data == '\0') {
2240 				show->state.array_terminated = 1;
2241 				break;
2242 			}
2243 			if (isprint(*(char *)data)) {
2244 				btf_show_type_value(show, "'%c'",
2245 						    *(char *)safe_data);
2246 				break;
2247 			}
2248 		}
2249 		if (sign)
2250 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2251 		else
2252 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2253 		break;
2254 	default:
2255 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2256 		break;
2257 	}
2258 out:
2259 	btf_show_end_type(show);
2260 }
2261 
2262 static const struct btf_kind_operations int_ops = {
2263 	.check_meta = btf_int_check_meta,
2264 	.resolve = btf_df_resolve,
2265 	.check_member = btf_int_check_member,
2266 	.check_kflag_member = btf_int_check_kflag_member,
2267 	.log_details = btf_int_log,
2268 	.show = btf_int_show,
2269 };
2270 
2271 static int btf_modifier_check_member(struct btf_verifier_env *env,
2272 				     const struct btf_type *struct_type,
2273 				     const struct btf_member *member,
2274 				     const struct btf_type *member_type)
2275 {
2276 	const struct btf_type *resolved_type;
2277 	u32 resolved_type_id = member->type;
2278 	struct btf_member resolved_member;
2279 	struct btf *btf = env->btf;
2280 
2281 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2282 	if (!resolved_type) {
2283 		btf_verifier_log_member(env, struct_type, member,
2284 					"Invalid member");
2285 		return -EINVAL;
2286 	}
2287 
2288 	resolved_member = *member;
2289 	resolved_member.type = resolved_type_id;
2290 
2291 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2292 							 &resolved_member,
2293 							 resolved_type);
2294 }
2295 
2296 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2297 					   const struct btf_type *struct_type,
2298 					   const struct btf_member *member,
2299 					   const struct btf_type *member_type)
2300 {
2301 	const struct btf_type *resolved_type;
2302 	u32 resolved_type_id = member->type;
2303 	struct btf_member resolved_member;
2304 	struct btf *btf = env->btf;
2305 
2306 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2307 	if (!resolved_type) {
2308 		btf_verifier_log_member(env, struct_type, member,
2309 					"Invalid member");
2310 		return -EINVAL;
2311 	}
2312 
2313 	resolved_member = *member;
2314 	resolved_member.type = resolved_type_id;
2315 
2316 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2317 							       &resolved_member,
2318 							       resolved_type);
2319 }
2320 
2321 static int btf_ptr_check_member(struct btf_verifier_env *env,
2322 				const struct btf_type *struct_type,
2323 				const struct btf_member *member,
2324 				const struct btf_type *member_type)
2325 {
2326 	u32 struct_size, struct_bits_off, bytes_offset;
2327 
2328 	struct_size = struct_type->size;
2329 	struct_bits_off = member->offset;
2330 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2331 
2332 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2333 		btf_verifier_log_member(env, struct_type, member,
2334 					"Member is not byte aligned");
2335 		return -EINVAL;
2336 	}
2337 
2338 	if (struct_size - bytes_offset < sizeof(void *)) {
2339 		btf_verifier_log_member(env, struct_type, member,
2340 					"Member exceeds struct_size");
2341 		return -EINVAL;
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2348 				   const struct btf_type *t,
2349 				   u32 meta_left)
2350 {
2351 	const char *value;
2352 
2353 	if (btf_type_vlen(t)) {
2354 		btf_verifier_log_type(env, t, "vlen != 0");
2355 		return -EINVAL;
2356 	}
2357 
2358 	if (btf_type_kflag(t)) {
2359 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2360 		return -EINVAL;
2361 	}
2362 
2363 	if (!BTF_TYPE_ID_VALID(t->type)) {
2364 		btf_verifier_log_type(env, t, "Invalid type_id");
2365 		return -EINVAL;
2366 	}
2367 
2368 	/* typedef/type_tag type must have a valid name, and other ref types,
2369 	 * volatile, const, restrict, should have a null name.
2370 	 */
2371 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2372 		if (!t->name_off ||
2373 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2374 			btf_verifier_log_type(env, t, "Invalid name");
2375 			return -EINVAL;
2376 		}
2377 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2378 		value = btf_name_by_offset(env->btf, t->name_off);
2379 		if (!value || !value[0]) {
2380 			btf_verifier_log_type(env, t, "Invalid name");
2381 			return -EINVAL;
2382 		}
2383 	} else {
2384 		if (t->name_off) {
2385 			btf_verifier_log_type(env, t, "Invalid name");
2386 			return -EINVAL;
2387 		}
2388 	}
2389 
2390 	btf_verifier_log_type(env, t, NULL);
2391 
2392 	return 0;
2393 }
2394 
2395 static int btf_modifier_resolve(struct btf_verifier_env *env,
2396 				const struct resolve_vertex *v)
2397 {
2398 	const struct btf_type *t = v->t;
2399 	const struct btf_type *next_type;
2400 	u32 next_type_id = t->type;
2401 	struct btf *btf = env->btf;
2402 
2403 	next_type = btf_type_by_id(btf, next_type_id);
2404 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2405 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2406 		return -EINVAL;
2407 	}
2408 
2409 	if (!env_type_is_resolve_sink(env, next_type) &&
2410 	    !env_type_is_resolved(env, next_type_id))
2411 		return env_stack_push(env, next_type, next_type_id);
2412 
2413 	/* Figure out the resolved next_type_id with size.
2414 	 * They will be stored in the current modifier's
2415 	 * resolved_ids and resolved_sizes such that it can
2416 	 * save us a few type-following when we use it later (e.g. in
2417 	 * pretty print).
2418 	 */
2419 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2420 		if (env_type_is_resolved(env, next_type_id))
2421 			next_type = btf_type_id_resolve(btf, &next_type_id);
2422 
2423 		/* "typedef void new_void", "const void"...etc */
2424 		if (!btf_type_is_void(next_type) &&
2425 		    !btf_type_is_fwd(next_type) &&
2426 		    !btf_type_is_func_proto(next_type)) {
2427 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2428 			return -EINVAL;
2429 		}
2430 	}
2431 
2432 	env_stack_pop_resolved(env, next_type_id, 0);
2433 
2434 	return 0;
2435 }
2436 
2437 static int btf_var_resolve(struct btf_verifier_env *env,
2438 			   const struct resolve_vertex *v)
2439 {
2440 	const struct btf_type *next_type;
2441 	const struct btf_type *t = v->t;
2442 	u32 next_type_id = t->type;
2443 	struct btf *btf = env->btf;
2444 
2445 	next_type = btf_type_by_id(btf, next_type_id);
2446 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2447 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2448 		return -EINVAL;
2449 	}
2450 
2451 	if (!env_type_is_resolve_sink(env, next_type) &&
2452 	    !env_type_is_resolved(env, next_type_id))
2453 		return env_stack_push(env, next_type, next_type_id);
2454 
2455 	if (btf_type_is_modifier(next_type)) {
2456 		const struct btf_type *resolved_type;
2457 		u32 resolved_type_id;
2458 
2459 		resolved_type_id = next_type_id;
2460 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2461 
2462 		if (btf_type_is_ptr(resolved_type) &&
2463 		    !env_type_is_resolve_sink(env, resolved_type) &&
2464 		    !env_type_is_resolved(env, resolved_type_id))
2465 			return env_stack_push(env, resolved_type,
2466 					      resolved_type_id);
2467 	}
2468 
2469 	/* We must resolve to something concrete at this point, no
2470 	 * forward types or similar that would resolve to size of
2471 	 * zero is allowed.
2472 	 */
2473 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2474 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2475 		return -EINVAL;
2476 	}
2477 
2478 	env_stack_pop_resolved(env, next_type_id, 0);
2479 
2480 	return 0;
2481 }
2482 
2483 static int btf_ptr_resolve(struct btf_verifier_env *env,
2484 			   const struct resolve_vertex *v)
2485 {
2486 	const struct btf_type *next_type;
2487 	const struct btf_type *t = v->t;
2488 	u32 next_type_id = t->type;
2489 	struct btf *btf = env->btf;
2490 
2491 	next_type = btf_type_by_id(btf, next_type_id);
2492 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2493 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2494 		return -EINVAL;
2495 	}
2496 
2497 	if (!env_type_is_resolve_sink(env, next_type) &&
2498 	    !env_type_is_resolved(env, next_type_id))
2499 		return env_stack_push(env, next_type, next_type_id);
2500 
2501 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2502 	 * the modifier may have stopped resolving when it was resolved
2503 	 * to a ptr (last-resolved-ptr).
2504 	 *
2505 	 * We now need to continue from the last-resolved-ptr to
2506 	 * ensure the last-resolved-ptr will not referring back to
2507 	 * the currenct ptr (t).
2508 	 */
2509 	if (btf_type_is_modifier(next_type)) {
2510 		const struct btf_type *resolved_type;
2511 		u32 resolved_type_id;
2512 
2513 		resolved_type_id = next_type_id;
2514 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2515 
2516 		if (btf_type_is_ptr(resolved_type) &&
2517 		    !env_type_is_resolve_sink(env, resolved_type) &&
2518 		    !env_type_is_resolved(env, resolved_type_id))
2519 			return env_stack_push(env, resolved_type,
2520 					      resolved_type_id);
2521 	}
2522 
2523 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2524 		if (env_type_is_resolved(env, next_type_id))
2525 			next_type = btf_type_id_resolve(btf, &next_type_id);
2526 
2527 		if (!btf_type_is_void(next_type) &&
2528 		    !btf_type_is_fwd(next_type) &&
2529 		    !btf_type_is_func_proto(next_type)) {
2530 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2531 			return -EINVAL;
2532 		}
2533 	}
2534 
2535 	env_stack_pop_resolved(env, next_type_id, 0);
2536 
2537 	return 0;
2538 }
2539 
2540 static void btf_modifier_show(const struct btf *btf,
2541 			      const struct btf_type *t,
2542 			      u32 type_id, void *data,
2543 			      u8 bits_offset, struct btf_show *show)
2544 {
2545 	if (btf->resolved_ids)
2546 		t = btf_type_id_resolve(btf, &type_id);
2547 	else
2548 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2549 
2550 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2551 }
2552 
2553 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2554 			 u32 type_id, void *data, u8 bits_offset,
2555 			 struct btf_show *show)
2556 {
2557 	t = btf_type_id_resolve(btf, &type_id);
2558 
2559 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2560 }
2561 
2562 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2563 			 u32 type_id, void *data, u8 bits_offset,
2564 			 struct btf_show *show)
2565 {
2566 	void *safe_data;
2567 
2568 	safe_data = btf_show_start_type(show, t, type_id, data);
2569 	if (!safe_data)
2570 		return;
2571 
2572 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2573 	if (show->flags & BTF_SHOW_PTR_RAW)
2574 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2575 	else
2576 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2577 	btf_show_end_type(show);
2578 }
2579 
2580 static void btf_ref_type_log(struct btf_verifier_env *env,
2581 			     const struct btf_type *t)
2582 {
2583 	btf_verifier_log(env, "type_id=%u", t->type);
2584 }
2585 
2586 static struct btf_kind_operations modifier_ops = {
2587 	.check_meta = btf_ref_type_check_meta,
2588 	.resolve = btf_modifier_resolve,
2589 	.check_member = btf_modifier_check_member,
2590 	.check_kflag_member = btf_modifier_check_kflag_member,
2591 	.log_details = btf_ref_type_log,
2592 	.show = btf_modifier_show,
2593 };
2594 
2595 static struct btf_kind_operations ptr_ops = {
2596 	.check_meta = btf_ref_type_check_meta,
2597 	.resolve = btf_ptr_resolve,
2598 	.check_member = btf_ptr_check_member,
2599 	.check_kflag_member = btf_generic_check_kflag_member,
2600 	.log_details = btf_ref_type_log,
2601 	.show = btf_ptr_show,
2602 };
2603 
2604 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2605 			      const struct btf_type *t,
2606 			      u32 meta_left)
2607 {
2608 	if (btf_type_vlen(t)) {
2609 		btf_verifier_log_type(env, t, "vlen != 0");
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (t->type) {
2614 		btf_verifier_log_type(env, t, "type != 0");
2615 		return -EINVAL;
2616 	}
2617 
2618 	/* fwd type must have a valid name */
2619 	if (!t->name_off ||
2620 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2621 		btf_verifier_log_type(env, t, "Invalid name");
2622 		return -EINVAL;
2623 	}
2624 
2625 	btf_verifier_log_type(env, t, NULL);
2626 
2627 	return 0;
2628 }
2629 
2630 static void btf_fwd_type_log(struct btf_verifier_env *env,
2631 			     const struct btf_type *t)
2632 {
2633 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2634 }
2635 
2636 static struct btf_kind_operations fwd_ops = {
2637 	.check_meta = btf_fwd_check_meta,
2638 	.resolve = btf_df_resolve,
2639 	.check_member = btf_df_check_member,
2640 	.check_kflag_member = btf_df_check_kflag_member,
2641 	.log_details = btf_fwd_type_log,
2642 	.show = btf_df_show,
2643 };
2644 
2645 static int btf_array_check_member(struct btf_verifier_env *env,
2646 				  const struct btf_type *struct_type,
2647 				  const struct btf_member *member,
2648 				  const struct btf_type *member_type)
2649 {
2650 	u32 struct_bits_off = member->offset;
2651 	u32 struct_size, bytes_offset;
2652 	u32 array_type_id, array_size;
2653 	struct btf *btf = env->btf;
2654 
2655 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2656 		btf_verifier_log_member(env, struct_type, member,
2657 					"Member is not byte aligned");
2658 		return -EINVAL;
2659 	}
2660 
2661 	array_type_id = member->type;
2662 	btf_type_id_size(btf, &array_type_id, &array_size);
2663 	struct_size = struct_type->size;
2664 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2665 	if (struct_size - bytes_offset < array_size) {
2666 		btf_verifier_log_member(env, struct_type, member,
2667 					"Member exceeds struct_size");
2668 		return -EINVAL;
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2675 				const struct btf_type *t,
2676 				u32 meta_left)
2677 {
2678 	const struct btf_array *array = btf_type_array(t);
2679 	u32 meta_needed = sizeof(*array);
2680 
2681 	if (meta_left < meta_needed) {
2682 		btf_verifier_log_basic(env, t,
2683 				       "meta_left:%u meta_needed:%u",
2684 				       meta_left, meta_needed);
2685 		return -EINVAL;
2686 	}
2687 
2688 	/* array type should not have a name */
2689 	if (t->name_off) {
2690 		btf_verifier_log_type(env, t, "Invalid name");
2691 		return -EINVAL;
2692 	}
2693 
2694 	if (btf_type_vlen(t)) {
2695 		btf_verifier_log_type(env, t, "vlen != 0");
2696 		return -EINVAL;
2697 	}
2698 
2699 	if (btf_type_kflag(t)) {
2700 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2701 		return -EINVAL;
2702 	}
2703 
2704 	if (t->size) {
2705 		btf_verifier_log_type(env, t, "size != 0");
2706 		return -EINVAL;
2707 	}
2708 
2709 	/* Array elem type and index type cannot be in type void,
2710 	 * so !array->type and !array->index_type are not allowed.
2711 	 */
2712 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2713 		btf_verifier_log_type(env, t, "Invalid elem");
2714 		return -EINVAL;
2715 	}
2716 
2717 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2718 		btf_verifier_log_type(env, t, "Invalid index");
2719 		return -EINVAL;
2720 	}
2721 
2722 	btf_verifier_log_type(env, t, NULL);
2723 
2724 	return meta_needed;
2725 }
2726 
2727 static int btf_array_resolve(struct btf_verifier_env *env,
2728 			     const struct resolve_vertex *v)
2729 {
2730 	const struct btf_array *array = btf_type_array(v->t);
2731 	const struct btf_type *elem_type, *index_type;
2732 	u32 elem_type_id, index_type_id;
2733 	struct btf *btf = env->btf;
2734 	u32 elem_size;
2735 
2736 	/* Check array->index_type */
2737 	index_type_id = array->index_type;
2738 	index_type = btf_type_by_id(btf, index_type_id);
2739 	if (btf_type_nosize_or_null(index_type) ||
2740 	    btf_type_is_resolve_source_only(index_type)) {
2741 		btf_verifier_log_type(env, v->t, "Invalid index");
2742 		return -EINVAL;
2743 	}
2744 
2745 	if (!env_type_is_resolve_sink(env, index_type) &&
2746 	    !env_type_is_resolved(env, index_type_id))
2747 		return env_stack_push(env, index_type, index_type_id);
2748 
2749 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2750 	if (!index_type || !btf_type_is_int(index_type) ||
2751 	    !btf_type_int_is_regular(index_type)) {
2752 		btf_verifier_log_type(env, v->t, "Invalid index");
2753 		return -EINVAL;
2754 	}
2755 
2756 	/* Check array->type */
2757 	elem_type_id = array->type;
2758 	elem_type = btf_type_by_id(btf, elem_type_id);
2759 	if (btf_type_nosize_or_null(elem_type) ||
2760 	    btf_type_is_resolve_source_only(elem_type)) {
2761 		btf_verifier_log_type(env, v->t,
2762 				      "Invalid elem");
2763 		return -EINVAL;
2764 	}
2765 
2766 	if (!env_type_is_resolve_sink(env, elem_type) &&
2767 	    !env_type_is_resolved(env, elem_type_id))
2768 		return env_stack_push(env, elem_type, elem_type_id);
2769 
2770 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2771 	if (!elem_type) {
2772 		btf_verifier_log_type(env, v->t, "Invalid elem");
2773 		return -EINVAL;
2774 	}
2775 
2776 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2777 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2782 		btf_verifier_log_type(env, v->t,
2783 				      "Array size overflows U32_MAX");
2784 		return -EINVAL;
2785 	}
2786 
2787 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2788 
2789 	return 0;
2790 }
2791 
2792 static void btf_array_log(struct btf_verifier_env *env,
2793 			  const struct btf_type *t)
2794 {
2795 	const struct btf_array *array = btf_type_array(t);
2796 
2797 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2798 			 array->type, array->index_type, array->nelems);
2799 }
2800 
2801 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2802 			     u32 type_id, void *data, u8 bits_offset,
2803 			     struct btf_show *show)
2804 {
2805 	const struct btf_array *array = btf_type_array(t);
2806 	const struct btf_kind_operations *elem_ops;
2807 	const struct btf_type *elem_type;
2808 	u32 i, elem_size = 0, elem_type_id;
2809 	u16 encoding = 0;
2810 
2811 	elem_type_id = array->type;
2812 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2813 	if (elem_type && btf_type_has_size(elem_type))
2814 		elem_size = elem_type->size;
2815 
2816 	if (elem_type && btf_type_is_int(elem_type)) {
2817 		u32 int_type = btf_type_int(elem_type);
2818 
2819 		encoding = BTF_INT_ENCODING(int_type);
2820 
2821 		/*
2822 		 * BTF_INT_CHAR encoding never seems to be set for
2823 		 * char arrays, so if size is 1 and element is
2824 		 * printable as a char, we'll do that.
2825 		 */
2826 		if (elem_size == 1)
2827 			encoding = BTF_INT_CHAR;
2828 	}
2829 
2830 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2831 		return;
2832 
2833 	if (!elem_type)
2834 		goto out;
2835 	elem_ops = btf_type_ops(elem_type);
2836 
2837 	for (i = 0; i < array->nelems; i++) {
2838 
2839 		btf_show_start_array_member(show);
2840 
2841 		elem_ops->show(btf, elem_type, elem_type_id, data,
2842 			       bits_offset, show);
2843 		data += elem_size;
2844 
2845 		btf_show_end_array_member(show);
2846 
2847 		if (show->state.array_terminated)
2848 			break;
2849 	}
2850 out:
2851 	btf_show_end_array_type(show);
2852 }
2853 
2854 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2855 			   u32 type_id, void *data, u8 bits_offset,
2856 			   struct btf_show *show)
2857 {
2858 	const struct btf_member *m = show->state.member;
2859 
2860 	/*
2861 	 * First check if any members would be shown (are non-zero).
2862 	 * See comments above "struct btf_show" definition for more
2863 	 * details on how this works at a high-level.
2864 	 */
2865 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2866 		if (!show->state.depth_check) {
2867 			show->state.depth_check = show->state.depth + 1;
2868 			show->state.depth_to_show = 0;
2869 		}
2870 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2871 		show->state.member = m;
2872 
2873 		if (show->state.depth_check != show->state.depth + 1)
2874 			return;
2875 		show->state.depth_check = 0;
2876 
2877 		if (show->state.depth_to_show <= show->state.depth)
2878 			return;
2879 		/*
2880 		 * Reaching here indicates we have recursed and found
2881 		 * non-zero array member(s).
2882 		 */
2883 	}
2884 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2885 }
2886 
2887 static struct btf_kind_operations array_ops = {
2888 	.check_meta = btf_array_check_meta,
2889 	.resolve = btf_array_resolve,
2890 	.check_member = btf_array_check_member,
2891 	.check_kflag_member = btf_generic_check_kflag_member,
2892 	.log_details = btf_array_log,
2893 	.show = btf_array_show,
2894 };
2895 
2896 static int btf_struct_check_member(struct btf_verifier_env *env,
2897 				   const struct btf_type *struct_type,
2898 				   const struct btf_member *member,
2899 				   const struct btf_type *member_type)
2900 {
2901 	u32 struct_bits_off = member->offset;
2902 	u32 struct_size, bytes_offset;
2903 
2904 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2905 		btf_verifier_log_member(env, struct_type, member,
2906 					"Member is not byte aligned");
2907 		return -EINVAL;
2908 	}
2909 
2910 	struct_size = struct_type->size;
2911 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2912 	if (struct_size - bytes_offset < member_type->size) {
2913 		btf_verifier_log_member(env, struct_type, member,
2914 					"Member exceeds struct_size");
2915 		return -EINVAL;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2922 				 const struct btf_type *t,
2923 				 u32 meta_left)
2924 {
2925 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2926 	const struct btf_member *member;
2927 	u32 meta_needed, last_offset;
2928 	struct btf *btf = env->btf;
2929 	u32 struct_size = t->size;
2930 	u32 offset;
2931 	u16 i;
2932 
2933 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2934 	if (meta_left < meta_needed) {
2935 		btf_verifier_log_basic(env, t,
2936 				       "meta_left:%u meta_needed:%u",
2937 				       meta_left, meta_needed);
2938 		return -EINVAL;
2939 	}
2940 
2941 	/* struct type either no name or a valid one */
2942 	if (t->name_off &&
2943 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2944 		btf_verifier_log_type(env, t, "Invalid name");
2945 		return -EINVAL;
2946 	}
2947 
2948 	btf_verifier_log_type(env, t, NULL);
2949 
2950 	last_offset = 0;
2951 	for_each_member(i, t, member) {
2952 		if (!btf_name_offset_valid(btf, member->name_off)) {
2953 			btf_verifier_log_member(env, t, member,
2954 						"Invalid member name_offset:%u",
2955 						member->name_off);
2956 			return -EINVAL;
2957 		}
2958 
2959 		/* struct member either no name or a valid one */
2960 		if (member->name_off &&
2961 		    !btf_name_valid_identifier(btf, member->name_off)) {
2962 			btf_verifier_log_member(env, t, member, "Invalid name");
2963 			return -EINVAL;
2964 		}
2965 		/* A member cannot be in type void */
2966 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2967 			btf_verifier_log_member(env, t, member,
2968 						"Invalid type_id");
2969 			return -EINVAL;
2970 		}
2971 
2972 		offset = btf_member_bit_offset(t, member);
2973 		if (is_union && offset) {
2974 			btf_verifier_log_member(env, t, member,
2975 						"Invalid member bits_offset");
2976 			return -EINVAL;
2977 		}
2978 
2979 		/*
2980 		 * ">" instead of ">=" because the last member could be
2981 		 * "char a[0];"
2982 		 */
2983 		if (last_offset > offset) {
2984 			btf_verifier_log_member(env, t, member,
2985 						"Invalid member bits_offset");
2986 			return -EINVAL;
2987 		}
2988 
2989 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2990 			btf_verifier_log_member(env, t, member,
2991 						"Member bits_offset exceeds its struct size");
2992 			return -EINVAL;
2993 		}
2994 
2995 		btf_verifier_log_member(env, t, member, NULL);
2996 		last_offset = offset;
2997 	}
2998 
2999 	return meta_needed;
3000 }
3001 
3002 static int btf_struct_resolve(struct btf_verifier_env *env,
3003 			      const struct resolve_vertex *v)
3004 {
3005 	const struct btf_member *member;
3006 	int err;
3007 	u16 i;
3008 
3009 	/* Before continue resolving the next_member,
3010 	 * ensure the last member is indeed resolved to a
3011 	 * type with size info.
3012 	 */
3013 	if (v->next_member) {
3014 		const struct btf_type *last_member_type;
3015 		const struct btf_member *last_member;
3016 		u16 last_member_type_id;
3017 
3018 		last_member = btf_type_member(v->t) + v->next_member - 1;
3019 		last_member_type_id = last_member->type;
3020 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3021 						       last_member_type_id)))
3022 			return -EINVAL;
3023 
3024 		last_member_type = btf_type_by_id(env->btf,
3025 						  last_member_type_id);
3026 		if (btf_type_kflag(v->t))
3027 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3028 								last_member,
3029 								last_member_type);
3030 		else
3031 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3032 								last_member,
3033 								last_member_type);
3034 		if (err)
3035 			return err;
3036 	}
3037 
3038 	for_each_member_from(i, v->next_member, v->t, member) {
3039 		u32 member_type_id = member->type;
3040 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3041 								member_type_id);
3042 
3043 		if (btf_type_nosize_or_null(member_type) ||
3044 		    btf_type_is_resolve_source_only(member_type)) {
3045 			btf_verifier_log_member(env, v->t, member,
3046 						"Invalid member");
3047 			return -EINVAL;
3048 		}
3049 
3050 		if (!env_type_is_resolve_sink(env, member_type) &&
3051 		    !env_type_is_resolved(env, member_type_id)) {
3052 			env_stack_set_next_member(env, i + 1);
3053 			return env_stack_push(env, member_type, member_type_id);
3054 		}
3055 
3056 		if (btf_type_kflag(v->t))
3057 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3058 									    member,
3059 									    member_type);
3060 		else
3061 			err = btf_type_ops(member_type)->check_member(env, v->t,
3062 								      member,
3063 								      member_type);
3064 		if (err)
3065 			return err;
3066 	}
3067 
3068 	env_stack_pop_resolved(env, 0, 0);
3069 
3070 	return 0;
3071 }
3072 
3073 static void btf_struct_log(struct btf_verifier_env *env,
3074 			   const struct btf_type *t)
3075 {
3076 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3077 }
3078 
3079 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3080 				 const char *name, int sz, int align)
3081 {
3082 	const struct btf_member *member;
3083 	u32 i, off = -ENOENT;
3084 
3085 	for_each_member(i, t, member) {
3086 		const struct btf_type *member_type = btf_type_by_id(btf,
3087 								    member->type);
3088 		if (!__btf_type_is_struct(member_type))
3089 			continue;
3090 		if (member_type->size != sz)
3091 			continue;
3092 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3093 			continue;
3094 		if (off != -ENOENT)
3095 			/* only one such field is allowed */
3096 			return -E2BIG;
3097 		off = btf_member_bit_offset(t, member);
3098 		if (off % 8)
3099 			/* valid C code cannot generate such BTF */
3100 			return -EINVAL;
3101 		off /= 8;
3102 		if (off % align)
3103 			return -EINVAL;
3104 	}
3105 	return off;
3106 }
3107 
3108 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3109 				const char *name, int sz, int align)
3110 {
3111 	const struct btf_var_secinfo *vsi;
3112 	u32 i, off = -ENOENT;
3113 
3114 	for_each_vsi(i, t, vsi) {
3115 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3116 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3117 
3118 		if (!__btf_type_is_struct(var_type))
3119 			continue;
3120 		if (var_type->size != sz)
3121 			continue;
3122 		if (vsi->size != sz)
3123 			continue;
3124 		if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3125 			continue;
3126 		if (off != -ENOENT)
3127 			/* only one such field is allowed */
3128 			return -E2BIG;
3129 		off = vsi->offset;
3130 		if (off % align)
3131 			return -EINVAL;
3132 	}
3133 	return off;
3134 }
3135 
3136 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3137 			  const char *name, int sz, int align)
3138 {
3139 
3140 	if (__btf_type_is_struct(t))
3141 		return btf_find_struct_field(btf, t, name, sz, align);
3142 	else if (btf_type_is_datasec(t))
3143 		return btf_find_datasec_var(btf, t, name, sz, align);
3144 	return -EINVAL;
3145 }
3146 
3147 /* find 'struct bpf_spin_lock' in map value.
3148  * return >= 0 offset if found
3149  * and < 0 in case of error
3150  */
3151 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3152 {
3153 	return btf_find_field(btf, t, "bpf_spin_lock",
3154 			      sizeof(struct bpf_spin_lock),
3155 			      __alignof__(struct bpf_spin_lock));
3156 }
3157 
3158 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3159 {
3160 	return btf_find_field(btf, t, "bpf_timer",
3161 			      sizeof(struct bpf_timer),
3162 			      __alignof__(struct bpf_timer));
3163 }
3164 
3165 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3166 			      u32 type_id, void *data, u8 bits_offset,
3167 			      struct btf_show *show)
3168 {
3169 	const struct btf_member *member;
3170 	void *safe_data;
3171 	u32 i;
3172 
3173 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3174 	if (!safe_data)
3175 		return;
3176 
3177 	for_each_member(i, t, member) {
3178 		const struct btf_type *member_type = btf_type_by_id(btf,
3179 								member->type);
3180 		const struct btf_kind_operations *ops;
3181 		u32 member_offset, bitfield_size;
3182 		u32 bytes_offset;
3183 		u8 bits8_offset;
3184 
3185 		btf_show_start_member(show, member);
3186 
3187 		member_offset = btf_member_bit_offset(t, member);
3188 		bitfield_size = btf_member_bitfield_size(t, member);
3189 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3190 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3191 		if (bitfield_size) {
3192 			safe_data = btf_show_start_type(show, member_type,
3193 							member->type,
3194 							data + bytes_offset);
3195 			if (safe_data)
3196 				btf_bitfield_show(safe_data,
3197 						  bits8_offset,
3198 						  bitfield_size, show);
3199 			btf_show_end_type(show);
3200 		} else {
3201 			ops = btf_type_ops(member_type);
3202 			ops->show(btf, member_type, member->type,
3203 				  data + bytes_offset, bits8_offset, show);
3204 		}
3205 
3206 		btf_show_end_member(show);
3207 	}
3208 
3209 	btf_show_end_struct_type(show);
3210 }
3211 
3212 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3213 			    u32 type_id, void *data, u8 bits_offset,
3214 			    struct btf_show *show)
3215 {
3216 	const struct btf_member *m = show->state.member;
3217 
3218 	/*
3219 	 * First check if any members would be shown (are non-zero).
3220 	 * See comments above "struct btf_show" definition for more
3221 	 * details on how this works at a high-level.
3222 	 */
3223 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3224 		if (!show->state.depth_check) {
3225 			show->state.depth_check = show->state.depth + 1;
3226 			show->state.depth_to_show = 0;
3227 		}
3228 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3229 		/* Restore saved member data here */
3230 		show->state.member = m;
3231 		if (show->state.depth_check != show->state.depth + 1)
3232 			return;
3233 		show->state.depth_check = 0;
3234 
3235 		if (show->state.depth_to_show <= show->state.depth)
3236 			return;
3237 		/*
3238 		 * Reaching here indicates we have recursed and found
3239 		 * non-zero child values.
3240 		 */
3241 	}
3242 
3243 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3244 }
3245 
3246 static struct btf_kind_operations struct_ops = {
3247 	.check_meta = btf_struct_check_meta,
3248 	.resolve = btf_struct_resolve,
3249 	.check_member = btf_struct_check_member,
3250 	.check_kflag_member = btf_generic_check_kflag_member,
3251 	.log_details = btf_struct_log,
3252 	.show = btf_struct_show,
3253 };
3254 
3255 static int btf_enum_check_member(struct btf_verifier_env *env,
3256 				 const struct btf_type *struct_type,
3257 				 const struct btf_member *member,
3258 				 const struct btf_type *member_type)
3259 {
3260 	u32 struct_bits_off = member->offset;
3261 	u32 struct_size, bytes_offset;
3262 
3263 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3264 		btf_verifier_log_member(env, struct_type, member,
3265 					"Member is not byte aligned");
3266 		return -EINVAL;
3267 	}
3268 
3269 	struct_size = struct_type->size;
3270 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3271 	if (struct_size - bytes_offset < member_type->size) {
3272 		btf_verifier_log_member(env, struct_type, member,
3273 					"Member exceeds struct_size");
3274 		return -EINVAL;
3275 	}
3276 
3277 	return 0;
3278 }
3279 
3280 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3281 				       const struct btf_type *struct_type,
3282 				       const struct btf_member *member,
3283 				       const struct btf_type *member_type)
3284 {
3285 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3286 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3287 
3288 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3289 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3290 	if (!nr_bits) {
3291 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3292 			btf_verifier_log_member(env, struct_type, member,
3293 						"Member is not byte aligned");
3294 			return -EINVAL;
3295 		}
3296 
3297 		nr_bits = int_bitsize;
3298 	} else if (nr_bits > int_bitsize) {
3299 		btf_verifier_log_member(env, struct_type, member,
3300 					"Invalid member bitfield_size");
3301 		return -EINVAL;
3302 	}
3303 
3304 	struct_size = struct_type->size;
3305 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3306 	if (struct_size < bytes_end) {
3307 		btf_verifier_log_member(env, struct_type, member,
3308 					"Member exceeds struct_size");
3309 		return -EINVAL;
3310 	}
3311 
3312 	return 0;
3313 }
3314 
3315 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3316 			       const struct btf_type *t,
3317 			       u32 meta_left)
3318 {
3319 	const struct btf_enum *enums = btf_type_enum(t);
3320 	struct btf *btf = env->btf;
3321 	u16 i, nr_enums;
3322 	u32 meta_needed;
3323 
3324 	nr_enums = btf_type_vlen(t);
3325 	meta_needed = nr_enums * sizeof(*enums);
3326 
3327 	if (meta_left < meta_needed) {
3328 		btf_verifier_log_basic(env, t,
3329 				       "meta_left:%u meta_needed:%u",
3330 				       meta_left, meta_needed);
3331 		return -EINVAL;
3332 	}
3333 
3334 	if (btf_type_kflag(t)) {
3335 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3336 		return -EINVAL;
3337 	}
3338 
3339 	if (t->size > 8 || !is_power_of_2(t->size)) {
3340 		btf_verifier_log_type(env, t, "Unexpected size");
3341 		return -EINVAL;
3342 	}
3343 
3344 	/* enum type either no name or a valid one */
3345 	if (t->name_off &&
3346 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3347 		btf_verifier_log_type(env, t, "Invalid name");
3348 		return -EINVAL;
3349 	}
3350 
3351 	btf_verifier_log_type(env, t, NULL);
3352 
3353 	for (i = 0; i < nr_enums; i++) {
3354 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3355 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3356 					 enums[i].name_off);
3357 			return -EINVAL;
3358 		}
3359 
3360 		/* enum member must have a valid name */
3361 		if (!enums[i].name_off ||
3362 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3363 			btf_verifier_log_type(env, t, "Invalid name");
3364 			return -EINVAL;
3365 		}
3366 
3367 		if (env->log.level == BPF_LOG_KERNEL)
3368 			continue;
3369 		btf_verifier_log(env, "\t%s val=%d\n",
3370 				 __btf_name_by_offset(btf, enums[i].name_off),
3371 				 enums[i].val);
3372 	}
3373 
3374 	return meta_needed;
3375 }
3376 
3377 static void btf_enum_log(struct btf_verifier_env *env,
3378 			 const struct btf_type *t)
3379 {
3380 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3381 }
3382 
3383 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3384 			  u32 type_id, void *data, u8 bits_offset,
3385 			  struct btf_show *show)
3386 {
3387 	const struct btf_enum *enums = btf_type_enum(t);
3388 	u32 i, nr_enums = btf_type_vlen(t);
3389 	void *safe_data;
3390 	int v;
3391 
3392 	safe_data = btf_show_start_type(show, t, type_id, data);
3393 	if (!safe_data)
3394 		return;
3395 
3396 	v = *(int *)safe_data;
3397 
3398 	for (i = 0; i < nr_enums; i++) {
3399 		if (v != enums[i].val)
3400 			continue;
3401 
3402 		btf_show_type_value(show, "%s",
3403 				    __btf_name_by_offset(btf,
3404 							 enums[i].name_off));
3405 
3406 		btf_show_end_type(show);
3407 		return;
3408 	}
3409 
3410 	btf_show_type_value(show, "%d", v);
3411 	btf_show_end_type(show);
3412 }
3413 
3414 static struct btf_kind_operations enum_ops = {
3415 	.check_meta = btf_enum_check_meta,
3416 	.resolve = btf_df_resolve,
3417 	.check_member = btf_enum_check_member,
3418 	.check_kflag_member = btf_enum_check_kflag_member,
3419 	.log_details = btf_enum_log,
3420 	.show = btf_enum_show,
3421 };
3422 
3423 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3424 				     const struct btf_type *t,
3425 				     u32 meta_left)
3426 {
3427 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3428 
3429 	if (meta_left < meta_needed) {
3430 		btf_verifier_log_basic(env, t,
3431 				       "meta_left:%u meta_needed:%u",
3432 				       meta_left, meta_needed);
3433 		return -EINVAL;
3434 	}
3435 
3436 	if (t->name_off) {
3437 		btf_verifier_log_type(env, t, "Invalid name");
3438 		return -EINVAL;
3439 	}
3440 
3441 	if (btf_type_kflag(t)) {
3442 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3443 		return -EINVAL;
3444 	}
3445 
3446 	btf_verifier_log_type(env, t, NULL);
3447 
3448 	return meta_needed;
3449 }
3450 
3451 static void btf_func_proto_log(struct btf_verifier_env *env,
3452 			       const struct btf_type *t)
3453 {
3454 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3455 	u16 nr_args = btf_type_vlen(t), i;
3456 
3457 	btf_verifier_log(env, "return=%u args=(", t->type);
3458 	if (!nr_args) {
3459 		btf_verifier_log(env, "void");
3460 		goto done;
3461 	}
3462 
3463 	if (nr_args == 1 && !args[0].type) {
3464 		/* Only one vararg */
3465 		btf_verifier_log(env, "vararg");
3466 		goto done;
3467 	}
3468 
3469 	btf_verifier_log(env, "%u %s", args[0].type,
3470 			 __btf_name_by_offset(env->btf,
3471 					      args[0].name_off));
3472 	for (i = 1; i < nr_args - 1; i++)
3473 		btf_verifier_log(env, ", %u %s", args[i].type,
3474 				 __btf_name_by_offset(env->btf,
3475 						      args[i].name_off));
3476 
3477 	if (nr_args > 1) {
3478 		const struct btf_param *last_arg = &args[nr_args - 1];
3479 
3480 		if (last_arg->type)
3481 			btf_verifier_log(env, ", %u %s", last_arg->type,
3482 					 __btf_name_by_offset(env->btf,
3483 							      last_arg->name_off));
3484 		else
3485 			btf_verifier_log(env, ", vararg");
3486 	}
3487 
3488 done:
3489 	btf_verifier_log(env, ")");
3490 }
3491 
3492 static struct btf_kind_operations func_proto_ops = {
3493 	.check_meta = btf_func_proto_check_meta,
3494 	.resolve = btf_df_resolve,
3495 	/*
3496 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3497 	 * a struct's member.
3498 	 *
3499 	 * It should be a function pointer instead.
3500 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3501 	 *
3502 	 * Hence, there is no btf_func_check_member().
3503 	 */
3504 	.check_member = btf_df_check_member,
3505 	.check_kflag_member = btf_df_check_kflag_member,
3506 	.log_details = btf_func_proto_log,
3507 	.show = btf_df_show,
3508 };
3509 
3510 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3511 			       const struct btf_type *t,
3512 			       u32 meta_left)
3513 {
3514 	if (!t->name_off ||
3515 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3516 		btf_verifier_log_type(env, t, "Invalid name");
3517 		return -EINVAL;
3518 	}
3519 
3520 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3521 		btf_verifier_log_type(env, t, "Invalid func linkage");
3522 		return -EINVAL;
3523 	}
3524 
3525 	if (btf_type_kflag(t)) {
3526 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3527 		return -EINVAL;
3528 	}
3529 
3530 	btf_verifier_log_type(env, t, NULL);
3531 
3532 	return 0;
3533 }
3534 
3535 static struct btf_kind_operations func_ops = {
3536 	.check_meta = btf_func_check_meta,
3537 	.resolve = btf_df_resolve,
3538 	.check_member = btf_df_check_member,
3539 	.check_kflag_member = btf_df_check_kflag_member,
3540 	.log_details = btf_ref_type_log,
3541 	.show = btf_df_show,
3542 };
3543 
3544 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3545 			      const struct btf_type *t,
3546 			      u32 meta_left)
3547 {
3548 	const struct btf_var *var;
3549 	u32 meta_needed = sizeof(*var);
3550 
3551 	if (meta_left < meta_needed) {
3552 		btf_verifier_log_basic(env, t,
3553 				       "meta_left:%u meta_needed:%u",
3554 				       meta_left, meta_needed);
3555 		return -EINVAL;
3556 	}
3557 
3558 	if (btf_type_vlen(t)) {
3559 		btf_verifier_log_type(env, t, "vlen != 0");
3560 		return -EINVAL;
3561 	}
3562 
3563 	if (btf_type_kflag(t)) {
3564 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3565 		return -EINVAL;
3566 	}
3567 
3568 	if (!t->name_off ||
3569 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3570 		btf_verifier_log_type(env, t, "Invalid name");
3571 		return -EINVAL;
3572 	}
3573 
3574 	/* A var cannot be in type void */
3575 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3576 		btf_verifier_log_type(env, t, "Invalid type_id");
3577 		return -EINVAL;
3578 	}
3579 
3580 	var = btf_type_var(t);
3581 	if (var->linkage != BTF_VAR_STATIC &&
3582 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3583 		btf_verifier_log_type(env, t, "Linkage not supported");
3584 		return -EINVAL;
3585 	}
3586 
3587 	btf_verifier_log_type(env, t, NULL);
3588 
3589 	return meta_needed;
3590 }
3591 
3592 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3593 {
3594 	const struct btf_var *var = btf_type_var(t);
3595 
3596 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3597 }
3598 
3599 static const struct btf_kind_operations var_ops = {
3600 	.check_meta		= btf_var_check_meta,
3601 	.resolve		= btf_var_resolve,
3602 	.check_member		= btf_df_check_member,
3603 	.check_kflag_member	= btf_df_check_kflag_member,
3604 	.log_details		= btf_var_log,
3605 	.show			= btf_var_show,
3606 };
3607 
3608 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3609 				  const struct btf_type *t,
3610 				  u32 meta_left)
3611 {
3612 	const struct btf_var_secinfo *vsi;
3613 	u64 last_vsi_end_off = 0, sum = 0;
3614 	u32 i, meta_needed;
3615 
3616 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3617 	if (meta_left < meta_needed) {
3618 		btf_verifier_log_basic(env, t,
3619 				       "meta_left:%u meta_needed:%u",
3620 				       meta_left, meta_needed);
3621 		return -EINVAL;
3622 	}
3623 
3624 	if (!t->size) {
3625 		btf_verifier_log_type(env, t, "size == 0");
3626 		return -EINVAL;
3627 	}
3628 
3629 	if (btf_type_kflag(t)) {
3630 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3631 		return -EINVAL;
3632 	}
3633 
3634 	if (!t->name_off ||
3635 	    !btf_name_valid_section(env->btf, t->name_off)) {
3636 		btf_verifier_log_type(env, t, "Invalid name");
3637 		return -EINVAL;
3638 	}
3639 
3640 	btf_verifier_log_type(env, t, NULL);
3641 
3642 	for_each_vsi(i, t, vsi) {
3643 		/* A var cannot be in type void */
3644 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3645 			btf_verifier_log_vsi(env, t, vsi,
3646 					     "Invalid type_id");
3647 			return -EINVAL;
3648 		}
3649 
3650 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3651 			btf_verifier_log_vsi(env, t, vsi,
3652 					     "Invalid offset");
3653 			return -EINVAL;
3654 		}
3655 
3656 		if (!vsi->size || vsi->size > t->size) {
3657 			btf_verifier_log_vsi(env, t, vsi,
3658 					     "Invalid size");
3659 			return -EINVAL;
3660 		}
3661 
3662 		last_vsi_end_off = vsi->offset + vsi->size;
3663 		if (last_vsi_end_off > t->size) {
3664 			btf_verifier_log_vsi(env, t, vsi,
3665 					     "Invalid offset+size");
3666 			return -EINVAL;
3667 		}
3668 
3669 		btf_verifier_log_vsi(env, t, vsi, NULL);
3670 		sum += vsi->size;
3671 	}
3672 
3673 	if (t->size < sum) {
3674 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3675 		return -EINVAL;
3676 	}
3677 
3678 	return meta_needed;
3679 }
3680 
3681 static int btf_datasec_resolve(struct btf_verifier_env *env,
3682 			       const struct resolve_vertex *v)
3683 {
3684 	const struct btf_var_secinfo *vsi;
3685 	struct btf *btf = env->btf;
3686 	u16 i;
3687 
3688 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3689 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3690 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3691 								 var_type_id);
3692 		if (!var_type || !btf_type_is_var(var_type)) {
3693 			btf_verifier_log_vsi(env, v->t, vsi,
3694 					     "Not a VAR kind member");
3695 			return -EINVAL;
3696 		}
3697 
3698 		if (!env_type_is_resolve_sink(env, var_type) &&
3699 		    !env_type_is_resolved(env, var_type_id)) {
3700 			env_stack_set_next_member(env, i + 1);
3701 			return env_stack_push(env, var_type, var_type_id);
3702 		}
3703 
3704 		type_id = var_type->type;
3705 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3706 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3707 			return -EINVAL;
3708 		}
3709 
3710 		if (vsi->size < type_size) {
3711 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3712 			return -EINVAL;
3713 		}
3714 	}
3715 
3716 	env_stack_pop_resolved(env, 0, 0);
3717 	return 0;
3718 }
3719 
3720 static void btf_datasec_log(struct btf_verifier_env *env,
3721 			    const struct btf_type *t)
3722 {
3723 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3724 }
3725 
3726 static void btf_datasec_show(const struct btf *btf,
3727 			     const struct btf_type *t, u32 type_id,
3728 			     void *data, u8 bits_offset,
3729 			     struct btf_show *show)
3730 {
3731 	const struct btf_var_secinfo *vsi;
3732 	const struct btf_type *var;
3733 	u32 i;
3734 
3735 	if (!btf_show_start_type(show, t, type_id, data))
3736 		return;
3737 
3738 	btf_show_type_value(show, "section (\"%s\") = {",
3739 			    __btf_name_by_offset(btf, t->name_off));
3740 	for_each_vsi(i, t, vsi) {
3741 		var = btf_type_by_id(btf, vsi->type);
3742 		if (i)
3743 			btf_show(show, ",");
3744 		btf_type_ops(var)->show(btf, var, vsi->type,
3745 					data + vsi->offset, bits_offset, show);
3746 	}
3747 	btf_show_end_type(show);
3748 }
3749 
3750 static const struct btf_kind_operations datasec_ops = {
3751 	.check_meta		= btf_datasec_check_meta,
3752 	.resolve		= btf_datasec_resolve,
3753 	.check_member		= btf_df_check_member,
3754 	.check_kflag_member	= btf_df_check_kflag_member,
3755 	.log_details		= btf_datasec_log,
3756 	.show			= btf_datasec_show,
3757 };
3758 
3759 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3760 				const struct btf_type *t,
3761 				u32 meta_left)
3762 {
3763 	if (btf_type_vlen(t)) {
3764 		btf_verifier_log_type(env, t, "vlen != 0");
3765 		return -EINVAL;
3766 	}
3767 
3768 	if (btf_type_kflag(t)) {
3769 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3770 		return -EINVAL;
3771 	}
3772 
3773 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3774 	    t->size != 16) {
3775 		btf_verifier_log_type(env, t, "Invalid type_size");
3776 		return -EINVAL;
3777 	}
3778 
3779 	btf_verifier_log_type(env, t, NULL);
3780 
3781 	return 0;
3782 }
3783 
3784 static int btf_float_check_member(struct btf_verifier_env *env,
3785 				  const struct btf_type *struct_type,
3786 				  const struct btf_member *member,
3787 				  const struct btf_type *member_type)
3788 {
3789 	u64 start_offset_bytes;
3790 	u64 end_offset_bytes;
3791 	u64 misalign_bits;
3792 	u64 align_bytes;
3793 	u64 align_bits;
3794 
3795 	/* Different architectures have different alignment requirements, so
3796 	 * here we check only for the reasonable minimum. This way we ensure
3797 	 * that types after CO-RE can pass the kernel BTF verifier.
3798 	 */
3799 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3800 	align_bits = align_bytes * BITS_PER_BYTE;
3801 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3802 	if (misalign_bits) {
3803 		btf_verifier_log_member(env, struct_type, member,
3804 					"Member is not properly aligned");
3805 		return -EINVAL;
3806 	}
3807 
3808 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3809 	end_offset_bytes = start_offset_bytes + member_type->size;
3810 	if (end_offset_bytes > struct_type->size) {
3811 		btf_verifier_log_member(env, struct_type, member,
3812 					"Member exceeds struct_size");
3813 		return -EINVAL;
3814 	}
3815 
3816 	return 0;
3817 }
3818 
3819 static void btf_float_log(struct btf_verifier_env *env,
3820 			  const struct btf_type *t)
3821 {
3822 	btf_verifier_log(env, "size=%u", t->size);
3823 }
3824 
3825 static const struct btf_kind_operations float_ops = {
3826 	.check_meta = btf_float_check_meta,
3827 	.resolve = btf_df_resolve,
3828 	.check_member = btf_float_check_member,
3829 	.check_kflag_member = btf_generic_check_kflag_member,
3830 	.log_details = btf_float_log,
3831 	.show = btf_df_show,
3832 };
3833 
3834 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
3835 			      const struct btf_type *t,
3836 			      u32 meta_left)
3837 {
3838 	const struct btf_decl_tag *tag;
3839 	u32 meta_needed = sizeof(*tag);
3840 	s32 component_idx;
3841 	const char *value;
3842 
3843 	if (meta_left < meta_needed) {
3844 		btf_verifier_log_basic(env, t,
3845 				       "meta_left:%u meta_needed:%u",
3846 				       meta_left, meta_needed);
3847 		return -EINVAL;
3848 	}
3849 
3850 	value = btf_name_by_offset(env->btf, t->name_off);
3851 	if (!value || !value[0]) {
3852 		btf_verifier_log_type(env, t, "Invalid value");
3853 		return -EINVAL;
3854 	}
3855 
3856 	if (btf_type_vlen(t)) {
3857 		btf_verifier_log_type(env, t, "vlen != 0");
3858 		return -EINVAL;
3859 	}
3860 
3861 	if (btf_type_kflag(t)) {
3862 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3863 		return -EINVAL;
3864 	}
3865 
3866 	component_idx = btf_type_decl_tag(t)->component_idx;
3867 	if (component_idx < -1) {
3868 		btf_verifier_log_type(env, t, "Invalid component_idx");
3869 		return -EINVAL;
3870 	}
3871 
3872 	btf_verifier_log_type(env, t, NULL);
3873 
3874 	return meta_needed;
3875 }
3876 
3877 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
3878 			   const struct resolve_vertex *v)
3879 {
3880 	const struct btf_type *next_type;
3881 	const struct btf_type *t = v->t;
3882 	u32 next_type_id = t->type;
3883 	struct btf *btf = env->btf;
3884 	s32 component_idx;
3885 	u32 vlen;
3886 
3887 	next_type = btf_type_by_id(btf, next_type_id);
3888 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
3889 		btf_verifier_log_type(env, v->t, "Invalid type_id");
3890 		return -EINVAL;
3891 	}
3892 
3893 	if (!env_type_is_resolve_sink(env, next_type) &&
3894 	    !env_type_is_resolved(env, next_type_id))
3895 		return env_stack_push(env, next_type, next_type_id);
3896 
3897 	component_idx = btf_type_decl_tag(t)->component_idx;
3898 	if (component_idx != -1) {
3899 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
3900 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
3901 			return -EINVAL;
3902 		}
3903 
3904 		if (btf_type_is_struct(next_type)) {
3905 			vlen = btf_type_vlen(next_type);
3906 		} else {
3907 			/* next_type should be a function */
3908 			next_type = btf_type_by_id(btf, next_type->type);
3909 			vlen = btf_type_vlen(next_type);
3910 		}
3911 
3912 		if ((u32)component_idx >= vlen) {
3913 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
3914 			return -EINVAL;
3915 		}
3916 	}
3917 
3918 	env_stack_pop_resolved(env, next_type_id, 0);
3919 
3920 	return 0;
3921 }
3922 
3923 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
3924 {
3925 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
3926 			 btf_type_decl_tag(t)->component_idx);
3927 }
3928 
3929 static const struct btf_kind_operations decl_tag_ops = {
3930 	.check_meta = btf_decl_tag_check_meta,
3931 	.resolve = btf_decl_tag_resolve,
3932 	.check_member = btf_df_check_member,
3933 	.check_kflag_member = btf_df_check_kflag_member,
3934 	.log_details = btf_decl_tag_log,
3935 	.show = btf_df_show,
3936 };
3937 
3938 static int btf_func_proto_check(struct btf_verifier_env *env,
3939 				const struct btf_type *t)
3940 {
3941 	const struct btf_type *ret_type;
3942 	const struct btf_param *args;
3943 	const struct btf *btf;
3944 	u16 nr_args, i;
3945 	int err;
3946 
3947 	btf = env->btf;
3948 	args = (const struct btf_param *)(t + 1);
3949 	nr_args = btf_type_vlen(t);
3950 
3951 	/* Check func return type which could be "void" (t->type == 0) */
3952 	if (t->type) {
3953 		u32 ret_type_id = t->type;
3954 
3955 		ret_type = btf_type_by_id(btf, ret_type_id);
3956 		if (!ret_type) {
3957 			btf_verifier_log_type(env, t, "Invalid return type");
3958 			return -EINVAL;
3959 		}
3960 
3961 		if (btf_type_needs_resolve(ret_type) &&
3962 		    !env_type_is_resolved(env, ret_type_id)) {
3963 			err = btf_resolve(env, ret_type, ret_type_id);
3964 			if (err)
3965 				return err;
3966 		}
3967 
3968 		/* Ensure the return type is a type that has a size */
3969 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3970 			btf_verifier_log_type(env, t, "Invalid return type");
3971 			return -EINVAL;
3972 		}
3973 	}
3974 
3975 	if (!nr_args)
3976 		return 0;
3977 
3978 	/* Last func arg type_id could be 0 if it is a vararg */
3979 	if (!args[nr_args - 1].type) {
3980 		if (args[nr_args - 1].name_off) {
3981 			btf_verifier_log_type(env, t, "Invalid arg#%u",
3982 					      nr_args);
3983 			return -EINVAL;
3984 		}
3985 		nr_args--;
3986 	}
3987 
3988 	err = 0;
3989 	for (i = 0; i < nr_args; i++) {
3990 		const struct btf_type *arg_type;
3991 		u32 arg_type_id;
3992 
3993 		arg_type_id = args[i].type;
3994 		arg_type = btf_type_by_id(btf, arg_type_id);
3995 		if (!arg_type) {
3996 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3997 			err = -EINVAL;
3998 			break;
3999 		}
4000 
4001 		if (args[i].name_off &&
4002 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4003 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4004 			btf_verifier_log_type(env, t,
4005 					      "Invalid arg#%u", i + 1);
4006 			err = -EINVAL;
4007 			break;
4008 		}
4009 
4010 		if (btf_type_needs_resolve(arg_type) &&
4011 		    !env_type_is_resolved(env, arg_type_id)) {
4012 			err = btf_resolve(env, arg_type, arg_type_id);
4013 			if (err)
4014 				break;
4015 		}
4016 
4017 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4018 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4019 			err = -EINVAL;
4020 			break;
4021 		}
4022 	}
4023 
4024 	return err;
4025 }
4026 
4027 static int btf_func_check(struct btf_verifier_env *env,
4028 			  const struct btf_type *t)
4029 {
4030 	const struct btf_type *proto_type;
4031 	const struct btf_param *args;
4032 	const struct btf *btf;
4033 	u16 nr_args, i;
4034 
4035 	btf = env->btf;
4036 	proto_type = btf_type_by_id(btf, t->type);
4037 
4038 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4039 		btf_verifier_log_type(env, t, "Invalid type_id");
4040 		return -EINVAL;
4041 	}
4042 
4043 	args = (const struct btf_param *)(proto_type + 1);
4044 	nr_args = btf_type_vlen(proto_type);
4045 	for (i = 0; i < nr_args; i++) {
4046 		if (!args[i].name_off && args[i].type) {
4047 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4048 			return -EINVAL;
4049 		}
4050 	}
4051 
4052 	return 0;
4053 }
4054 
4055 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4056 	[BTF_KIND_INT] = &int_ops,
4057 	[BTF_KIND_PTR] = &ptr_ops,
4058 	[BTF_KIND_ARRAY] = &array_ops,
4059 	[BTF_KIND_STRUCT] = &struct_ops,
4060 	[BTF_KIND_UNION] = &struct_ops,
4061 	[BTF_KIND_ENUM] = &enum_ops,
4062 	[BTF_KIND_FWD] = &fwd_ops,
4063 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4064 	[BTF_KIND_VOLATILE] = &modifier_ops,
4065 	[BTF_KIND_CONST] = &modifier_ops,
4066 	[BTF_KIND_RESTRICT] = &modifier_ops,
4067 	[BTF_KIND_FUNC] = &func_ops,
4068 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4069 	[BTF_KIND_VAR] = &var_ops,
4070 	[BTF_KIND_DATASEC] = &datasec_ops,
4071 	[BTF_KIND_FLOAT] = &float_ops,
4072 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4073 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4074 };
4075 
4076 static s32 btf_check_meta(struct btf_verifier_env *env,
4077 			  const struct btf_type *t,
4078 			  u32 meta_left)
4079 {
4080 	u32 saved_meta_left = meta_left;
4081 	s32 var_meta_size;
4082 
4083 	if (meta_left < sizeof(*t)) {
4084 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4085 				 env->log_type_id, meta_left, sizeof(*t));
4086 		return -EINVAL;
4087 	}
4088 	meta_left -= sizeof(*t);
4089 
4090 	if (t->info & ~BTF_INFO_MASK) {
4091 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4092 				 env->log_type_id, t->info);
4093 		return -EINVAL;
4094 	}
4095 
4096 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4097 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4098 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4099 				 env->log_type_id, BTF_INFO_KIND(t->info));
4100 		return -EINVAL;
4101 	}
4102 
4103 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4104 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4105 				 env->log_type_id, t->name_off);
4106 		return -EINVAL;
4107 	}
4108 
4109 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4110 	if (var_meta_size < 0)
4111 		return var_meta_size;
4112 
4113 	meta_left -= var_meta_size;
4114 
4115 	return saved_meta_left - meta_left;
4116 }
4117 
4118 static int btf_check_all_metas(struct btf_verifier_env *env)
4119 {
4120 	struct btf *btf = env->btf;
4121 	struct btf_header *hdr;
4122 	void *cur, *end;
4123 
4124 	hdr = &btf->hdr;
4125 	cur = btf->nohdr_data + hdr->type_off;
4126 	end = cur + hdr->type_len;
4127 
4128 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4129 	while (cur < end) {
4130 		struct btf_type *t = cur;
4131 		s32 meta_size;
4132 
4133 		meta_size = btf_check_meta(env, t, end - cur);
4134 		if (meta_size < 0)
4135 			return meta_size;
4136 
4137 		btf_add_type(env, t);
4138 		cur += meta_size;
4139 		env->log_type_id++;
4140 	}
4141 
4142 	return 0;
4143 }
4144 
4145 static bool btf_resolve_valid(struct btf_verifier_env *env,
4146 			      const struct btf_type *t,
4147 			      u32 type_id)
4148 {
4149 	struct btf *btf = env->btf;
4150 
4151 	if (!env_type_is_resolved(env, type_id))
4152 		return false;
4153 
4154 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4155 		return !btf_resolved_type_id(btf, type_id) &&
4156 		       !btf_resolved_type_size(btf, type_id);
4157 
4158 	if (btf_type_is_decl_tag(t))
4159 		return btf_resolved_type_id(btf, type_id) &&
4160 		       !btf_resolved_type_size(btf, type_id);
4161 
4162 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4163 	    btf_type_is_var(t)) {
4164 		t = btf_type_id_resolve(btf, &type_id);
4165 		return t &&
4166 		       !btf_type_is_modifier(t) &&
4167 		       !btf_type_is_var(t) &&
4168 		       !btf_type_is_datasec(t);
4169 	}
4170 
4171 	if (btf_type_is_array(t)) {
4172 		const struct btf_array *array = btf_type_array(t);
4173 		const struct btf_type *elem_type;
4174 		u32 elem_type_id = array->type;
4175 		u32 elem_size;
4176 
4177 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4178 		return elem_type && !btf_type_is_modifier(elem_type) &&
4179 			(array->nelems * elem_size ==
4180 			 btf_resolved_type_size(btf, type_id));
4181 	}
4182 
4183 	return false;
4184 }
4185 
4186 static int btf_resolve(struct btf_verifier_env *env,
4187 		       const struct btf_type *t, u32 type_id)
4188 {
4189 	u32 save_log_type_id = env->log_type_id;
4190 	const struct resolve_vertex *v;
4191 	int err = 0;
4192 
4193 	env->resolve_mode = RESOLVE_TBD;
4194 	env_stack_push(env, t, type_id);
4195 	while (!err && (v = env_stack_peak(env))) {
4196 		env->log_type_id = v->type_id;
4197 		err = btf_type_ops(v->t)->resolve(env, v);
4198 	}
4199 
4200 	env->log_type_id = type_id;
4201 	if (err == -E2BIG) {
4202 		btf_verifier_log_type(env, t,
4203 				      "Exceeded max resolving depth:%u",
4204 				      MAX_RESOLVE_DEPTH);
4205 	} else if (err == -EEXIST) {
4206 		btf_verifier_log_type(env, t, "Loop detected");
4207 	}
4208 
4209 	/* Final sanity check */
4210 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4211 		btf_verifier_log_type(env, t, "Invalid resolve state");
4212 		err = -EINVAL;
4213 	}
4214 
4215 	env->log_type_id = save_log_type_id;
4216 	return err;
4217 }
4218 
4219 static int btf_check_all_types(struct btf_verifier_env *env)
4220 {
4221 	struct btf *btf = env->btf;
4222 	const struct btf_type *t;
4223 	u32 type_id, i;
4224 	int err;
4225 
4226 	err = env_resolve_init(env);
4227 	if (err)
4228 		return err;
4229 
4230 	env->phase++;
4231 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4232 		type_id = btf->start_id + i;
4233 		t = btf_type_by_id(btf, type_id);
4234 
4235 		env->log_type_id = type_id;
4236 		if (btf_type_needs_resolve(t) &&
4237 		    !env_type_is_resolved(env, type_id)) {
4238 			err = btf_resolve(env, t, type_id);
4239 			if (err)
4240 				return err;
4241 		}
4242 
4243 		if (btf_type_is_func_proto(t)) {
4244 			err = btf_func_proto_check(env, t);
4245 			if (err)
4246 				return err;
4247 		}
4248 
4249 		if (btf_type_is_func(t)) {
4250 			err = btf_func_check(env, t);
4251 			if (err)
4252 				return err;
4253 		}
4254 	}
4255 
4256 	return 0;
4257 }
4258 
4259 static int btf_parse_type_sec(struct btf_verifier_env *env)
4260 {
4261 	const struct btf_header *hdr = &env->btf->hdr;
4262 	int err;
4263 
4264 	/* Type section must align to 4 bytes */
4265 	if (hdr->type_off & (sizeof(u32) - 1)) {
4266 		btf_verifier_log(env, "Unaligned type_off");
4267 		return -EINVAL;
4268 	}
4269 
4270 	if (!env->btf->base_btf && !hdr->type_len) {
4271 		btf_verifier_log(env, "No type found");
4272 		return -EINVAL;
4273 	}
4274 
4275 	err = btf_check_all_metas(env);
4276 	if (err)
4277 		return err;
4278 
4279 	return btf_check_all_types(env);
4280 }
4281 
4282 static int btf_parse_str_sec(struct btf_verifier_env *env)
4283 {
4284 	const struct btf_header *hdr;
4285 	struct btf *btf = env->btf;
4286 	const char *start, *end;
4287 
4288 	hdr = &btf->hdr;
4289 	start = btf->nohdr_data + hdr->str_off;
4290 	end = start + hdr->str_len;
4291 
4292 	if (end != btf->data + btf->data_size) {
4293 		btf_verifier_log(env, "String section is not at the end");
4294 		return -EINVAL;
4295 	}
4296 
4297 	btf->strings = start;
4298 
4299 	if (btf->base_btf && !hdr->str_len)
4300 		return 0;
4301 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4302 		btf_verifier_log(env, "Invalid string section");
4303 		return -EINVAL;
4304 	}
4305 	if (!btf->base_btf && start[0]) {
4306 		btf_verifier_log(env, "Invalid string section");
4307 		return -EINVAL;
4308 	}
4309 
4310 	return 0;
4311 }
4312 
4313 static const size_t btf_sec_info_offset[] = {
4314 	offsetof(struct btf_header, type_off),
4315 	offsetof(struct btf_header, str_off),
4316 };
4317 
4318 static int btf_sec_info_cmp(const void *a, const void *b)
4319 {
4320 	const struct btf_sec_info *x = a;
4321 	const struct btf_sec_info *y = b;
4322 
4323 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4324 }
4325 
4326 static int btf_check_sec_info(struct btf_verifier_env *env,
4327 			      u32 btf_data_size)
4328 {
4329 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4330 	u32 total, expected_total, i;
4331 	const struct btf_header *hdr;
4332 	const struct btf *btf;
4333 
4334 	btf = env->btf;
4335 	hdr = &btf->hdr;
4336 
4337 	/* Populate the secs from hdr */
4338 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4339 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4340 						   btf_sec_info_offset[i]);
4341 
4342 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4343 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4344 
4345 	/* Check for gaps and overlap among sections */
4346 	total = 0;
4347 	expected_total = btf_data_size - hdr->hdr_len;
4348 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4349 		if (expected_total < secs[i].off) {
4350 			btf_verifier_log(env, "Invalid section offset");
4351 			return -EINVAL;
4352 		}
4353 		if (total < secs[i].off) {
4354 			/* gap */
4355 			btf_verifier_log(env, "Unsupported section found");
4356 			return -EINVAL;
4357 		}
4358 		if (total > secs[i].off) {
4359 			btf_verifier_log(env, "Section overlap found");
4360 			return -EINVAL;
4361 		}
4362 		if (expected_total - total < secs[i].len) {
4363 			btf_verifier_log(env,
4364 					 "Total section length too long");
4365 			return -EINVAL;
4366 		}
4367 		total += secs[i].len;
4368 	}
4369 
4370 	/* There is data other than hdr and known sections */
4371 	if (expected_total != total) {
4372 		btf_verifier_log(env, "Unsupported section found");
4373 		return -EINVAL;
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 static int btf_parse_hdr(struct btf_verifier_env *env)
4380 {
4381 	u32 hdr_len, hdr_copy, btf_data_size;
4382 	const struct btf_header *hdr;
4383 	struct btf *btf;
4384 	int err;
4385 
4386 	btf = env->btf;
4387 	btf_data_size = btf->data_size;
4388 
4389 	if (btf_data_size <
4390 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4391 		btf_verifier_log(env, "hdr_len not found");
4392 		return -EINVAL;
4393 	}
4394 
4395 	hdr = btf->data;
4396 	hdr_len = hdr->hdr_len;
4397 	if (btf_data_size < hdr_len) {
4398 		btf_verifier_log(env, "btf_header not found");
4399 		return -EINVAL;
4400 	}
4401 
4402 	/* Ensure the unsupported header fields are zero */
4403 	if (hdr_len > sizeof(btf->hdr)) {
4404 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4405 		u8 *end = btf->data + hdr_len;
4406 
4407 		for (; expected_zero < end; expected_zero++) {
4408 			if (*expected_zero) {
4409 				btf_verifier_log(env, "Unsupported btf_header");
4410 				return -E2BIG;
4411 			}
4412 		}
4413 	}
4414 
4415 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4416 	memcpy(&btf->hdr, btf->data, hdr_copy);
4417 
4418 	hdr = &btf->hdr;
4419 
4420 	btf_verifier_log_hdr(env, btf_data_size);
4421 
4422 	if (hdr->magic != BTF_MAGIC) {
4423 		btf_verifier_log(env, "Invalid magic");
4424 		return -EINVAL;
4425 	}
4426 
4427 	if (hdr->version != BTF_VERSION) {
4428 		btf_verifier_log(env, "Unsupported version");
4429 		return -ENOTSUPP;
4430 	}
4431 
4432 	if (hdr->flags) {
4433 		btf_verifier_log(env, "Unsupported flags");
4434 		return -ENOTSUPP;
4435 	}
4436 
4437 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4438 		btf_verifier_log(env, "No data");
4439 		return -EINVAL;
4440 	}
4441 
4442 	err = btf_check_sec_info(env, btf_data_size);
4443 	if (err)
4444 		return err;
4445 
4446 	return 0;
4447 }
4448 
4449 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4450 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4451 {
4452 	struct btf_verifier_env *env = NULL;
4453 	struct bpf_verifier_log *log;
4454 	struct btf *btf = NULL;
4455 	u8 *data;
4456 	int err;
4457 
4458 	if (btf_data_size > BTF_MAX_SIZE)
4459 		return ERR_PTR(-E2BIG);
4460 
4461 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4462 	if (!env)
4463 		return ERR_PTR(-ENOMEM);
4464 
4465 	log = &env->log;
4466 	if (log_level || log_ubuf || log_size) {
4467 		/* user requested verbose verifier output
4468 		 * and supplied buffer to store the verification trace
4469 		 */
4470 		log->level = log_level;
4471 		log->ubuf = log_ubuf;
4472 		log->len_total = log_size;
4473 
4474 		/* log attributes have to be sane */
4475 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4476 		    !log->level || !log->ubuf) {
4477 			err = -EINVAL;
4478 			goto errout;
4479 		}
4480 	}
4481 
4482 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4483 	if (!btf) {
4484 		err = -ENOMEM;
4485 		goto errout;
4486 	}
4487 	env->btf = btf;
4488 
4489 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4490 	if (!data) {
4491 		err = -ENOMEM;
4492 		goto errout;
4493 	}
4494 
4495 	btf->data = data;
4496 	btf->data_size = btf_data_size;
4497 
4498 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4499 		err = -EFAULT;
4500 		goto errout;
4501 	}
4502 
4503 	err = btf_parse_hdr(env);
4504 	if (err)
4505 		goto errout;
4506 
4507 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4508 
4509 	err = btf_parse_str_sec(env);
4510 	if (err)
4511 		goto errout;
4512 
4513 	err = btf_parse_type_sec(env);
4514 	if (err)
4515 		goto errout;
4516 
4517 	if (log->level && bpf_verifier_log_full(log)) {
4518 		err = -ENOSPC;
4519 		goto errout;
4520 	}
4521 
4522 	btf_verifier_env_free(env);
4523 	refcount_set(&btf->refcnt, 1);
4524 	return btf;
4525 
4526 errout:
4527 	btf_verifier_env_free(env);
4528 	if (btf)
4529 		btf_free(btf);
4530 	return ERR_PTR(err);
4531 }
4532 
4533 extern char __weak __start_BTF[];
4534 extern char __weak __stop_BTF[];
4535 extern struct btf *btf_vmlinux;
4536 
4537 #define BPF_MAP_TYPE(_id, _ops)
4538 #define BPF_LINK_TYPE(_id, _name)
4539 static union {
4540 	struct bpf_ctx_convert {
4541 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4542 	prog_ctx_type _id##_prog; \
4543 	kern_ctx_type _id##_kern;
4544 #include <linux/bpf_types.h>
4545 #undef BPF_PROG_TYPE
4546 	} *__t;
4547 	/* 't' is written once under lock. Read many times. */
4548 	const struct btf_type *t;
4549 } bpf_ctx_convert;
4550 enum {
4551 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4552 	__ctx_convert##_id,
4553 #include <linux/bpf_types.h>
4554 #undef BPF_PROG_TYPE
4555 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4556 };
4557 static u8 bpf_ctx_convert_map[] = {
4558 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4559 	[_id] = __ctx_convert##_id,
4560 #include <linux/bpf_types.h>
4561 #undef BPF_PROG_TYPE
4562 	0, /* avoid empty array */
4563 };
4564 #undef BPF_MAP_TYPE
4565 #undef BPF_LINK_TYPE
4566 
4567 static const struct btf_member *
4568 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4569 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4570 		      int arg)
4571 {
4572 	const struct btf_type *conv_struct;
4573 	const struct btf_type *ctx_struct;
4574 	const struct btf_member *ctx_type;
4575 	const char *tname, *ctx_tname;
4576 
4577 	conv_struct = bpf_ctx_convert.t;
4578 	if (!conv_struct) {
4579 		bpf_log(log, "btf_vmlinux is malformed\n");
4580 		return NULL;
4581 	}
4582 	t = btf_type_by_id(btf, t->type);
4583 	while (btf_type_is_modifier(t))
4584 		t = btf_type_by_id(btf, t->type);
4585 	if (!btf_type_is_struct(t)) {
4586 		/* Only pointer to struct is supported for now.
4587 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4588 		 * is not supported yet.
4589 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4590 		 */
4591 		return NULL;
4592 	}
4593 	tname = btf_name_by_offset(btf, t->name_off);
4594 	if (!tname) {
4595 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4596 		return NULL;
4597 	}
4598 	/* prog_type is valid bpf program type. No need for bounds check. */
4599 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4600 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4601 	 * Like 'struct __sk_buff'
4602 	 */
4603 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4604 	if (!ctx_struct)
4605 		/* should not happen */
4606 		return NULL;
4607 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4608 	if (!ctx_tname) {
4609 		/* should not happen */
4610 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4611 		return NULL;
4612 	}
4613 	/* only compare that prog's ctx type name is the same as
4614 	 * kernel expects. No need to compare field by field.
4615 	 * It's ok for bpf prog to do:
4616 	 * struct __sk_buff {};
4617 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4618 	 * { // no fields of skb are ever used }
4619 	 */
4620 	if (strcmp(ctx_tname, tname))
4621 		return NULL;
4622 	return ctx_type;
4623 }
4624 
4625 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4626 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4627 #define BPF_LINK_TYPE(_id, _name)
4628 #define BPF_MAP_TYPE(_id, _ops) \
4629 	[_id] = &_ops,
4630 #include <linux/bpf_types.h>
4631 #undef BPF_PROG_TYPE
4632 #undef BPF_LINK_TYPE
4633 #undef BPF_MAP_TYPE
4634 };
4635 
4636 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4637 				    struct bpf_verifier_log *log)
4638 {
4639 	const struct bpf_map_ops *ops;
4640 	int i, btf_id;
4641 
4642 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4643 		ops = btf_vmlinux_map_ops[i];
4644 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4645 			continue;
4646 		if (!ops->map_btf_name || !ops->map_btf_id) {
4647 			bpf_log(log, "map type %d is misconfigured\n", i);
4648 			return -EINVAL;
4649 		}
4650 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4651 					       BTF_KIND_STRUCT);
4652 		if (btf_id < 0)
4653 			return btf_id;
4654 		*ops->map_btf_id = btf_id;
4655 	}
4656 
4657 	return 0;
4658 }
4659 
4660 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4661 				     struct btf *btf,
4662 				     const struct btf_type *t,
4663 				     enum bpf_prog_type prog_type,
4664 				     int arg)
4665 {
4666 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4667 
4668 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4669 	if (!prog_ctx_type)
4670 		return -ENOENT;
4671 	kern_ctx_type = prog_ctx_type + 1;
4672 	return kern_ctx_type->type;
4673 }
4674 
4675 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4676 BTF_ID(struct, bpf_ctx_convert)
4677 
4678 struct btf *btf_parse_vmlinux(void)
4679 {
4680 	struct btf_verifier_env *env = NULL;
4681 	struct bpf_verifier_log *log;
4682 	struct btf *btf = NULL;
4683 	int err;
4684 
4685 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4686 	if (!env)
4687 		return ERR_PTR(-ENOMEM);
4688 
4689 	log = &env->log;
4690 	log->level = BPF_LOG_KERNEL;
4691 
4692 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4693 	if (!btf) {
4694 		err = -ENOMEM;
4695 		goto errout;
4696 	}
4697 	env->btf = btf;
4698 
4699 	btf->data = __start_BTF;
4700 	btf->data_size = __stop_BTF - __start_BTF;
4701 	btf->kernel_btf = true;
4702 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4703 
4704 	err = btf_parse_hdr(env);
4705 	if (err)
4706 		goto errout;
4707 
4708 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4709 
4710 	err = btf_parse_str_sec(env);
4711 	if (err)
4712 		goto errout;
4713 
4714 	err = btf_check_all_metas(env);
4715 	if (err)
4716 		goto errout;
4717 
4718 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4719 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4720 
4721 	/* find bpf map structs for map_ptr access checking */
4722 	err = btf_vmlinux_map_ids_init(btf, log);
4723 	if (err < 0)
4724 		goto errout;
4725 
4726 	bpf_struct_ops_init(btf, log);
4727 
4728 	refcount_set(&btf->refcnt, 1);
4729 
4730 	err = btf_alloc_id(btf);
4731 	if (err)
4732 		goto errout;
4733 
4734 	btf_verifier_env_free(env);
4735 	return btf;
4736 
4737 errout:
4738 	btf_verifier_env_free(env);
4739 	if (btf) {
4740 		kvfree(btf->types);
4741 		kfree(btf);
4742 	}
4743 	return ERR_PTR(err);
4744 }
4745 
4746 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4747 
4748 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4749 {
4750 	struct btf_verifier_env *env = NULL;
4751 	struct bpf_verifier_log *log;
4752 	struct btf *btf = NULL, *base_btf;
4753 	int err;
4754 
4755 	base_btf = bpf_get_btf_vmlinux();
4756 	if (IS_ERR(base_btf))
4757 		return base_btf;
4758 	if (!base_btf)
4759 		return ERR_PTR(-EINVAL);
4760 
4761 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4762 	if (!env)
4763 		return ERR_PTR(-ENOMEM);
4764 
4765 	log = &env->log;
4766 	log->level = BPF_LOG_KERNEL;
4767 
4768 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4769 	if (!btf) {
4770 		err = -ENOMEM;
4771 		goto errout;
4772 	}
4773 	env->btf = btf;
4774 
4775 	btf->base_btf = base_btf;
4776 	btf->start_id = base_btf->nr_types;
4777 	btf->start_str_off = base_btf->hdr.str_len;
4778 	btf->kernel_btf = true;
4779 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4780 
4781 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4782 	if (!btf->data) {
4783 		err = -ENOMEM;
4784 		goto errout;
4785 	}
4786 	memcpy(btf->data, data, data_size);
4787 	btf->data_size = data_size;
4788 
4789 	err = btf_parse_hdr(env);
4790 	if (err)
4791 		goto errout;
4792 
4793 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4794 
4795 	err = btf_parse_str_sec(env);
4796 	if (err)
4797 		goto errout;
4798 
4799 	err = btf_check_all_metas(env);
4800 	if (err)
4801 		goto errout;
4802 
4803 	btf_verifier_env_free(env);
4804 	refcount_set(&btf->refcnt, 1);
4805 	return btf;
4806 
4807 errout:
4808 	btf_verifier_env_free(env);
4809 	if (btf) {
4810 		kvfree(btf->data);
4811 		kvfree(btf->types);
4812 		kfree(btf);
4813 	}
4814 	return ERR_PTR(err);
4815 }
4816 
4817 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4818 
4819 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4820 {
4821 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4822 
4823 	if (tgt_prog)
4824 		return tgt_prog->aux->btf;
4825 	else
4826 		return prog->aux->attach_btf;
4827 }
4828 
4829 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4830 {
4831 	/* t comes in already as a pointer */
4832 	t = btf_type_by_id(btf, t->type);
4833 
4834 	/* allow const */
4835 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4836 		t = btf_type_by_id(btf, t->type);
4837 
4838 	/* char, signed char, unsigned char */
4839 	return btf_type_is_int(t) && t->size == 1;
4840 }
4841 
4842 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4843 		    const struct bpf_prog *prog,
4844 		    struct bpf_insn_access_aux *info)
4845 {
4846 	const struct btf_type *t = prog->aux->attach_func_proto;
4847 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4848 	struct btf *btf = bpf_prog_get_target_btf(prog);
4849 	const char *tname = prog->aux->attach_func_name;
4850 	struct bpf_verifier_log *log = info->log;
4851 	const struct btf_param *args;
4852 	u32 nr_args, arg;
4853 	int i, ret;
4854 
4855 	if (off % 8) {
4856 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4857 			tname, off);
4858 		return false;
4859 	}
4860 	arg = off / 8;
4861 	args = (const struct btf_param *)(t + 1);
4862 	/* if (t == NULL) Fall back to default BPF prog with
4863 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4864 	 */
4865 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4866 	if (prog->aux->attach_btf_trace) {
4867 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4868 		args++;
4869 		nr_args--;
4870 	}
4871 
4872 	if (arg > nr_args) {
4873 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4874 			tname, arg + 1);
4875 		return false;
4876 	}
4877 
4878 	if (arg == nr_args) {
4879 		switch (prog->expected_attach_type) {
4880 		case BPF_LSM_MAC:
4881 		case BPF_TRACE_FEXIT:
4882 			/* When LSM programs are attached to void LSM hooks
4883 			 * they use FEXIT trampolines and when attached to
4884 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4885 			 *
4886 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4887 			 * the check:
4888 			 *
4889 			 *	if (ret_type != 'int')
4890 			 *		return -EINVAL;
4891 			 *
4892 			 * is _not_ done here. This is still safe as LSM hooks
4893 			 * have only void and int return types.
4894 			 */
4895 			if (!t)
4896 				return true;
4897 			t = btf_type_by_id(btf, t->type);
4898 			break;
4899 		case BPF_MODIFY_RETURN:
4900 			/* For now the BPF_MODIFY_RETURN can only be attached to
4901 			 * functions that return an int.
4902 			 */
4903 			if (!t)
4904 				return false;
4905 
4906 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4907 			if (!btf_type_is_small_int(t)) {
4908 				bpf_log(log,
4909 					"ret type %s not allowed for fmod_ret\n",
4910 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4911 				return false;
4912 			}
4913 			break;
4914 		default:
4915 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4916 				tname, arg + 1);
4917 			return false;
4918 		}
4919 	} else {
4920 		if (!t)
4921 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4922 			return true;
4923 		t = btf_type_by_id(btf, args[arg].type);
4924 	}
4925 
4926 	/* skip modifiers */
4927 	while (btf_type_is_modifier(t))
4928 		t = btf_type_by_id(btf, t->type);
4929 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4930 		/* accessing a scalar */
4931 		return true;
4932 	if (!btf_type_is_ptr(t)) {
4933 		bpf_log(log,
4934 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4935 			tname, arg,
4936 			__btf_name_by_offset(btf, t->name_off),
4937 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4938 		return false;
4939 	}
4940 
4941 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4942 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4943 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4944 
4945 		if (ctx_arg_info->offset == off &&
4946 		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4947 		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4948 			info->reg_type = ctx_arg_info->reg_type;
4949 			return true;
4950 		}
4951 	}
4952 
4953 	if (t->type == 0)
4954 		/* This is a pointer to void.
4955 		 * It is the same as scalar from the verifier safety pov.
4956 		 * No further pointer walking is allowed.
4957 		 */
4958 		return true;
4959 
4960 	if (is_string_ptr(btf, t))
4961 		return true;
4962 
4963 	/* this is a pointer to another type */
4964 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4965 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4966 
4967 		if (ctx_arg_info->offset == off) {
4968 			if (!ctx_arg_info->btf_id) {
4969 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
4970 				return false;
4971 			}
4972 
4973 			info->reg_type = ctx_arg_info->reg_type;
4974 			info->btf = btf_vmlinux;
4975 			info->btf_id = ctx_arg_info->btf_id;
4976 			return true;
4977 		}
4978 	}
4979 
4980 	info->reg_type = PTR_TO_BTF_ID;
4981 	if (tgt_prog) {
4982 		enum bpf_prog_type tgt_type;
4983 
4984 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4985 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
4986 		else
4987 			tgt_type = tgt_prog->type;
4988 
4989 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4990 		if (ret > 0) {
4991 			info->btf = btf_vmlinux;
4992 			info->btf_id = ret;
4993 			return true;
4994 		} else {
4995 			return false;
4996 		}
4997 	}
4998 
4999 	info->btf = btf;
5000 	info->btf_id = t->type;
5001 	t = btf_type_by_id(btf, t->type);
5002 	/* skip modifiers */
5003 	while (btf_type_is_modifier(t)) {
5004 		info->btf_id = t->type;
5005 		t = btf_type_by_id(btf, t->type);
5006 	}
5007 	if (!btf_type_is_struct(t)) {
5008 		bpf_log(log,
5009 			"func '%s' arg%d type %s is not a struct\n",
5010 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5011 		return false;
5012 	}
5013 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5014 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5015 		__btf_name_by_offset(btf, t->name_off));
5016 	return true;
5017 }
5018 
5019 enum bpf_struct_walk_result {
5020 	/* < 0 error */
5021 	WALK_SCALAR = 0,
5022 	WALK_PTR,
5023 	WALK_STRUCT,
5024 };
5025 
5026 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5027 			   const struct btf_type *t, int off, int size,
5028 			   u32 *next_btf_id)
5029 {
5030 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5031 	const struct btf_type *mtype, *elem_type = NULL;
5032 	const struct btf_member *member;
5033 	const char *tname, *mname;
5034 	u32 vlen, elem_id, mid;
5035 
5036 again:
5037 	tname = __btf_name_by_offset(btf, t->name_off);
5038 	if (!btf_type_is_struct(t)) {
5039 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5040 		return -EINVAL;
5041 	}
5042 
5043 	vlen = btf_type_vlen(t);
5044 	if (off + size > t->size) {
5045 		/* If the last element is a variable size array, we may
5046 		 * need to relax the rule.
5047 		 */
5048 		struct btf_array *array_elem;
5049 
5050 		if (vlen == 0)
5051 			goto error;
5052 
5053 		member = btf_type_member(t) + vlen - 1;
5054 		mtype = btf_type_skip_modifiers(btf, member->type,
5055 						NULL);
5056 		if (!btf_type_is_array(mtype))
5057 			goto error;
5058 
5059 		array_elem = (struct btf_array *)(mtype + 1);
5060 		if (array_elem->nelems != 0)
5061 			goto error;
5062 
5063 		moff = btf_member_bit_offset(t, member) / 8;
5064 		if (off < moff)
5065 			goto error;
5066 
5067 		/* Only allow structure for now, can be relaxed for
5068 		 * other types later.
5069 		 */
5070 		t = btf_type_skip_modifiers(btf, array_elem->type,
5071 					    NULL);
5072 		if (!btf_type_is_struct(t))
5073 			goto error;
5074 
5075 		off = (off - moff) % t->size;
5076 		goto again;
5077 
5078 error:
5079 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5080 			tname, off, size);
5081 		return -EACCES;
5082 	}
5083 
5084 	for_each_member(i, t, member) {
5085 		/* offset of the field in bytes */
5086 		moff = btf_member_bit_offset(t, member) / 8;
5087 		if (off + size <= moff)
5088 			/* won't find anything, field is already too far */
5089 			break;
5090 
5091 		if (btf_member_bitfield_size(t, member)) {
5092 			u32 end_bit = btf_member_bit_offset(t, member) +
5093 				btf_member_bitfield_size(t, member);
5094 
5095 			/* off <= moff instead of off == moff because clang
5096 			 * does not generate a BTF member for anonymous
5097 			 * bitfield like the ":16" here:
5098 			 * struct {
5099 			 *	int :16;
5100 			 *	int x:8;
5101 			 * };
5102 			 */
5103 			if (off <= moff &&
5104 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5105 				return WALK_SCALAR;
5106 
5107 			/* off may be accessing a following member
5108 			 *
5109 			 * or
5110 			 *
5111 			 * Doing partial access at either end of this
5112 			 * bitfield.  Continue on this case also to
5113 			 * treat it as not accessing this bitfield
5114 			 * and eventually error out as field not
5115 			 * found to keep it simple.
5116 			 * It could be relaxed if there was a legit
5117 			 * partial access case later.
5118 			 */
5119 			continue;
5120 		}
5121 
5122 		/* In case of "off" is pointing to holes of a struct */
5123 		if (off < moff)
5124 			break;
5125 
5126 		/* type of the field */
5127 		mid = member->type;
5128 		mtype = btf_type_by_id(btf, member->type);
5129 		mname = __btf_name_by_offset(btf, member->name_off);
5130 
5131 		mtype = __btf_resolve_size(btf, mtype, &msize,
5132 					   &elem_type, &elem_id, &total_nelems,
5133 					   &mid);
5134 		if (IS_ERR(mtype)) {
5135 			bpf_log(log, "field %s doesn't have size\n", mname);
5136 			return -EFAULT;
5137 		}
5138 
5139 		mtrue_end = moff + msize;
5140 		if (off >= mtrue_end)
5141 			/* no overlap with member, keep iterating */
5142 			continue;
5143 
5144 		if (btf_type_is_array(mtype)) {
5145 			u32 elem_idx;
5146 
5147 			/* __btf_resolve_size() above helps to
5148 			 * linearize a multi-dimensional array.
5149 			 *
5150 			 * The logic here is treating an array
5151 			 * in a struct as the following way:
5152 			 *
5153 			 * struct outer {
5154 			 *	struct inner array[2][2];
5155 			 * };
5156 			 *
5157 			 * looks like:
5158 			 *
5159 			 * struct outer {
5160 			 *	struct inner array_elem0;
5161 			 *	struct inner array_elem1;
5162 			 *	struct inner array_elem2;
5163 			 *	struct inner array_elem3;
5164 			 * };
5165 			 *
5166 			 * When accessing outer->array[1][0], it moves
5167 			 * moff to "array_elem2", set mtype to
5168 			 * "struct inner", and msize also becomes
5169 			 * sizeof(struct inner).  Then most of the
5170 			 * remaining logic will fall through without
5171 			 * caring the current member is an array or
5172 			 * not.
5173 			 *
5174 			 * Unlike mtype/msize/moff, mtrue_end does not
5175 			 * change.  The naming difference ("_true") tells
5176 			 * that it is not always corresponding to
5177 			 * the current mtype/msize/moff.
5178 			 * It is the true end of the current
5179 			 * member (i.e. array in this case).  That
5180 			 * will allow an int array to be accessed like
5181 			 * a scratch space,
5182 			 * i.e. allow access beyond the size of
5183 			 *      the array's element as long as it is
5184 			 *      within the mtrue_end boundary.
5185 			 */
5186 
5187 			/* skip empty array */
5188 			if (moff == mtrue_end)
5189 				continue;
5190 
5191 			msize /= total_nelems;
5192 			elem_idx = (off - moff) / msize;
5193 			moff += elem_idx * msize;
5194 			mtype = elem_type;
5195 			mid = elem_id;
5196 		}
5197 
5198 		/* the 'off' we're looking for is either equal to start
5199 		 * of this field or inside of this struct
5200 		 */
5201 		if (btf_type_is_struct(mtype)) {
5202 			/* our field must be inside that union or struct */
5203 			t = mtype;
5204 
5205 			/* return if the offset matches the member offset */
5206 			if (off == moff) {
5207 				*next_btf_id = mid;
5208 				return WALK_STRUCT;
5209 			}
5210 
5211 			/* adjust offset we're looking for */
5212 			off -= moff;
5213 			goto again;
5214 		}
5215 
5216 		if (btf_type_is_ptr(mtype)) {
5217 			const struct btf_type *stype;
5218 			u32 id;
5219 
5220 			if (msize != size || off != moff) {
5221 				bpf_log(log,
5222 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5223 					mname, moff, tname, off, size);
5224 				return -EACCES;
5225 			}
5226 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5227 			if (btf_type_is_struct(stype)) {
5228 				*next_btf_id = id;
5229 				return WALK_PTR;
5230 			}
5231 		}
5232 
5233 		/* Allow more flexible access within an int as long as
5234 		 * it is within mtrue_end.
5235 		 * Since mtrue_end could be the end of an array,
5236 		 * that also allows using an array of int as a scratch
5237 		 * space. e.g. skb->cb[].
5238 		 */
5239 		if (off + size > mtrue_end) {
5240 			bpf_log(log,
5241 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5242 				mname, mtrue_end, tname, off, size);
5243 			return -EACCES;
5244 		}
5245 
5246 		return WALK_SCALAR;
5247 	}
5248 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5249 	return -EINVAL;
5250 }
5251 
5252 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5253 		      const struct btf_type *t, int off, int size,
5254 		      enum bpf_access_type atype __maybe_unused,
5255 		      u32 *next_btf_id)
5256 {
5257 	int err;
5258 	u32 id;
5259 
5260 	do {
5261 		err = btf_struct_walk(log, btf, t, off, size, &id);
5262 
5263 		switch (err) {
5264 		case WALK_PTR:
5265 			/* If we found the pointer or scalar on t+off,
5266 			 * we're done.
5267 			 */
5268 			*next_btf_id = id;
5269 			return PTR_TO_BTF_ID;
5270 		case WALK_SCALAR:
5271 			return SCALAR_VALUE;
5272 		case WALK_STRUCT:
5273 			/* We found nested struct, so continue the search
5274 			 * by diving in it. At this point the offset is
5275 			 * aligned with the new type, so set it to 0.
5276 			 */
5277 			t = btf_type_by_id(btf, id);
5278 			off = 0;
5279 			break;
5280 		default:
5281 			/* It's either error or unknown return value..
5282 			 * scream and leave.
5283 			 */
5284 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5285 				return -EINVAL;
5286 			return err;
5287 		}
5288 	} while (t);
5289 
5290 	return -EINVAL;
5291 }
5292 
5293 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5294  * the same. Trivial ID check is not enough due to module BTFs, because we can
5295  * end up with two different module BTFs, but IDs point to the common type in
5296  * vmlinux BTF.
5297  */
5298 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5299 			       const struct btf *btf2, u32 id2)
5300 {
5301 	if (id1 != id2)
5302 		return false;
5303 	if (btf1 == btf2)
5304 		return true;
5305 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5306 }
5307 
5308 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5309 			  const struct btf *btf, u32 id, int off,
5310 			  const struct btf *need_btf, u32 need_type_id)
5311 {
5312 	const struct btf_type *type;
5313 	int err;
5314 
5315 	/* Are we already done? */
5316 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5317 		return true;
5318 
5319 again:
5320 	type = btf_type_by_id(btf, id);
5321 	if (!type)
5322 		return false;
5323 	err = btf_struct_walk(log, btf, type, off, 1, &id);
5324 	if (err != WALK_STRUCT)
5325 		return false;
5326 
5327 	/* We found nested struct object. If it matches
5328 	 * the requested ID, we're done. Otherwise let's
5329 	 * continue the search with offset 0 in the new
5330 	 * type.
5331 	 */
5332 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5333 		off = 0;
5334 		goto again;
5335 	}
5336 
5337 	return true;
5338 }
5339 
5340 static int __get_type_size(struct btf *btf, u32 btf_id,
5341 			   const struct btf_type **bad_type)
5342 {
5343 	const struct btf_type *t;
5344 
5345 	if (!btf_id)
5346 		/* void */
5347 		return 0;
5348 	t = btf_type_by_id(btf, btf_id);
5349 	while (t && btf_type_is_modifier(t))
5350 		t = btf_type_by_id(btf, t->type);
5351 	if (!t) {
5352 		*bad_type = btf_type_by_id(btf, 0);
5353 		return -EINVAL;
5354 	}
5355 	if (btf_type_is_ptr(t))
5356 		/* kernel size of pointer. Not BPF's size of pointer*/
5357 		return sizeof(void *);
5358 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5359 		return t->size;
5360 	*bad_type = t;
5361 	return -EINVAL;
5362 }
5363 
5364 int btf_distill_func_proto(struct bpf_verifier_log *log,
5365 			   struct btf *btf,
5366 			   const struct btf_type *func,
5367 			   const char *tname,
5368 			   struct btf_func_model *m)
5369 {
5370 	const struct btf_param *args;
5371 	const struct btf_type *t;
5372 	u32 i, nargs;
5373 	int ret;
5374 
5375 	if (!func) {
5376 		/* BTF function prototype doesn't match the verifier types.
5377 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5378 		 */
5379 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5380 			m->arg_size[i] = 8;
5381 		m->ret_size = 8;
5382 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5383 		return 0;
5384 	}
5385 	args = (const struct btf_param *)(func + 1);
5386 	nargs = btf_type_vlen(func);
5387 	if (nargs >= MAX_BPF_FUNC_ARGS) {
5388 		bpf_log(log,
5389 			"The function %s has %d arguments. Too many.\n",
5390 			tname, nargs);
5391 		return -EINVAL;
5392 	}
5393 	ret = __get_type_size(btf, func->type, &t);
5394 	if (ret < 0) {
5395 		bpf_log(log,
5396 			"The function %s return type %s is unsupported.\n",
5397 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5398 		return -EINVAL;
5399 	}
5400 	m->ret_size = ret;
5401 
5402 	for (i = 0; i < nargs; i++) {
5403 		if (i == nargs - 1 && args[i].type == 0) {
5404 			bpf_log(log,
5405 				"The function %s with variable args is unsupported.\n",
5406 				tname);
5407 			return -EINVAL;
5408 		}
5409 		ret = __get_type_size(btf, args[i].type, &t);
5410 		if (ret < 0) {
5411 			bpf_log(log,
5412 				"The function %s arg%d type %s is unsupported.\n",
5413 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5414 			return -EINVAL;
5415 		}
5416 		if (ret == 0) {
5417 			bpf_log(log,
5418 				"The function %s has malformed void argument.\n",
5419 				tname);
5420 			return -EINVAL;
5421 		}
5422 		m->arg_size[i] = ret;
5423 	}
5424 	m->nr_args = nargs;
5425 	return 0;
5426 }
5427 
5428 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5429  * t1 points to BTF_KIND_FUNC in btf1
5430  * t2 points to BTF_KIND_FUNC in btf2
5431  * Returns:
5432  * EINVAL - function prototype mismatch
5433  * EFAULT - verifier bug
5434  * 0 - 99% match. The last 1% is validated by the verifier.
5435  */
5436 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5437 				     struct btf *btf1, const struct btf_type *t1,
5438 				     struct btf *btf2, const struct btf_type *t2)
5439 {
5440 	const struct btf_param *args1, *args2;
5441 	const char *fn1, *fn2, *s1, *s2;
5442 	u32 nargs1, nargs2, i;
5443 
5444 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5445 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5446 
5447 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5448 		bpf_log(log, "%s() is not a global function\n", fn1);
5449 		return -EINVAL;
5450 	}
5451 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5452 		bpf_log(log, "%s() is not a global function\n", fn2);
5453 		return -EINVAL;
5454 	}
5455 
5456 	t1 = btf_type_by_id(btf1, t1->type);
5457 	if (!t1 || !btf_type_is_func_proto(t1))
5458 		return -EFAULT;
5459 	t2 = btf_type_by_id(btf2, t2->type);
5460 	if (!t2 || !btf_type_is_func_proto(t2))
5461 		return -EFAULT;
5462 
5463 	args1 = (const struct btf_param *)(t1 + 1);
5464 	nargs1 = btf_type_vlen(t1);
5465 	args2 = (const struct btf_param *)(t2 + 1);
5466 	nargs2 = btf_type_vlen(t2);
5467 
5468 	if (nargs1 != nargs2) {
5469 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5470 			fn1, nargs1, fn2, nargs2);
5471 		return -EINVAL;
5472 	}
5473 
5474 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5475 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5476 	if (t1->info != t2->info) {
5477 		bpf_log(log,
5478 			"Return type %s of %s() doesn't match type %s of %s()\n",
5479 			btf_type_str(t1), fn1,
5480 			btf_type_str(t2), fn2);
5481 		return -EINVAL;
5482 	}
5483 
5484 	for (i = 0; i < nargs1; i++) {
5485 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5486 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5487 
5488 		if (t1->info != t2->info) {
5489 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5490 				i, fn1, btf_type_str(t1),
5491 				fn2, btf_type_str(t2));
5492 			return -EINVAL;
5493 		}
5494 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5495 			bpf_log(log,
5496 				"arg%d in %s() has size %d while %s() has %d\n",
5497 				i, fn1, t1->size,
5498 				fn2, t2->size);
5499 			return -EINVAL;
5500 		}
5501 
5502 		/* global functions are validated with scalars and pointers
5503 		 * to context only. And only global functions can be replaced.
5504 		 * Hence type check only those types.
5505 		 */
5506 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5507 			continue;
5508 		if (!btf_type_is_ptr(t1)) {
5509 			bpf_log(log,
5510 				"arg%d in %s() has unrecognized type\n",
5511 				i, fn1);
5512 			return -EINVAL;
5513 		}
5514 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5515 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5516 		if (!btf_type_is_struct(t1)) {
5517 			bpf_log(log,
5518 				"arg%d in %s() is not a pointer to context\n",
5519 				i, fn1);
5520 			return -EINVAL;
5521 		}
5522 		if (!btf_type_is_struct(t2)) {
5523 			bpf_log(log,
5524 				"arg%d in %s() is not a pointer to context\n",
5525 				i, fn2);
5526 			return -EINVAL;
5527 		}
5528 		/* This is an optional check to make program writing easier.
5529 		 * Compare names of structs and report an error to the user.
5530 		 * btf_prepare_func_args() already checked that t2 struct
5531 		 * is a context type. btf_prepare_func_args() will check
5532 		 * later that t1 struct is a context type as well.
5533 		 */
5534 		s1 = btf_name_by_offset(btf1, t1->name_off);
5535 		s2 = btf_name_by_offset(btf2, t2->name_off);
5536 		if (strcmp(s1, s2)) {
5537 			bpf_log(log,
5538 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5539 				i, fn1, s1, fn2, s2);
5540 			return -EINVAL;
5541 		}
5542 	}
5543 	return 0;
5544 }
5545 
5546 /* Compare BTFs of given program with BTF of target program */
5547 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5548 			 struct btf *btf2, const struct btf_type *t2)
5549 {
5550 	struct btf *btf1 = prog->aux->btf;
5551 	const struct btf_type *t1;
5552 	u32 btf_id = 0;
5553 
5554 	if (!prog->aux->func_info) {
5555 		bpf_log(log, "Program extension requires BTF\n");
5556 		return -EINVAL;
5557 	}
5558 
5559 	btf_id = prog->aux->func_info[0].type_id;
5560 	if (!btf_id)
5561 		return -EFAULT;
5562 
5563 	t1 = btf_type_by_id(btf1, btf_id);
5564 	if (!t1 || !btf_type_is_func(t1))
5565 		return -EFAULT;
5566 
5567 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5568 }
5569 
5570 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5571 #ifdef CONFIG_NET
5572 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5573 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5574 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5575 #endif
5576 };
5577 
5578 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5579 				    const struct btf *btf, u32 func_id,
5580 				    struct bpf_reg_state *regs,
5581 				    bool ptr_to_mem_ok)
5582 {
5583 	struct bpf_verifier_log *log = &env->log;
5584 	const char *func_name, *ref_tname;
5585 	const struct btf_type *t, *ref_t;
5586 	const struct btf_param *args;
5587 	u32 i, nargs, ref_id;
5588 
5589 	t = btf_type_by_id(btf, func_id);
5590 	if (!t || !btf_type_is_func(t)) {
5591 		/* These checks were already done by the verifier while loading
5592 		 * struct bpf_func_info or in add_kfunc_call().
5593 		 */
5594 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5595 			func_id);
5596 		return -EFAULT;
5597 	}
5598 	func_name = btf_name_by_offset(btf, t->name_off);
5599 
5600 	t = btf_type_by_id(btf, t->type);
5601 	if (!t || !btf_type_is_func_proto(t)) {
5602 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
5603 		return -EFAULT;
5604 	}
5605 	args = (const struct btf_param *)(t + 1);
5606 	nargs = btf_type_vlen(t);
5607 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5608 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5609 			MAX_BPF_FUNC_REG_ARGS);
5610 		return -EINVAL;
5611 	}
5612 
5613 	/* check that BTF function arguments match actual types that the
5614 	 * verifier sees.
5615 	 */
5616 	for (i = 0; i < nargs; i++) {
5617 		u32 regno = i + 1;
5618 		struct bpf_reg_state *reg = &regs[regno];
5619 
5620 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5621 		if (btf_type_is_scalar(t)) {
5622 			if (reg->type == SCALAR_VALUE)
5623 				continue;
5624 			bpf_log(log, "R%d is not a scalar\n", regno);
5625 			return -EINVAL;
5626 		}
5627 
5628 		if (!btf_type_is_ptr(t)) {
5629 			bpf_log(log, "Unrecognized arg#%d type %s\n",
5630 				i, btf_type_str(t));
5631 			return -EINVAL;
5632 		}
5633 
5634 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5635 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5636 		if (btf_is_kernel(btf)) {
5637 			const struct btf_type *reg_ref_t;
5638 			const struct btf *reg_btf;
5639 			const char *reg_ref_tname;
5640 			u32 reg_ref_id;
5641 
5642 			if (!btf_type_is_struct(ref_t)) {
5643 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5644 					func_name, i, btf_type_str(ref_t),
5645 					ref_tname);
5646 				return -EINVAL;
5647 			}
5648 
5649 			if (reg->type == PTR_TO_BTF_ID) {
5650 				reg_btf = reg->btf;
5651 				reg_ref_id = reg->btf_id;
5652 			} else if (reg2btf_ids[reg->type]) {
5653 				reg_btf = btf_vmlinux;
5654 				reg_ref_id = *reg2btf_ids[reg->type];
5655 			} else {
5656 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5657 					func_name, i,
5658 					btf_type_str(ref_t), ref_tname, regno);
5659 				return -EINVAL;
5660 			}
5661 
5662 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5663 							    &reg_ref_id);
5664 			reg_ref_tname = btf_name_by_offset(reg_btf,
5665 							   reg_ref_t->name_off);
5666 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5667 						  reg->off, btf, ref_id)) {
5668 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5669 					func_name, i,
5670 					btf_type_str(ref_t), ref_tname,
5671 					regno, btf_type_str(reg_ref_t),
5672 					reg_ref_tname);
5673 				return -EINVAL;
5674 			}
5675 		} else if (btf_get_prog_ctx_type(log, btf, t,
5676 						 env->prog->type, i)) {
5677 			/* If function expects ctx type in BTF check that caller
5678 			 * is passing PTR_TO_CTX.
5679 			 */
5680 			if (reg->type != PTR_TO_CTX) {
5681 				bpf_log(log,
5682 					"arg#%d expected pointer to ctx, but got %s\n",
5683 					i, btf_type_str(t));
5684 				return -EINVAL;
5685 			}
5686 			if (check_ctx_reg(env, reg, regno))
5687 				return -EINVAL;
5688 		} else if (ptr_to_mem_ok) {
5689 			const struct btf_type *resolve_ret;
5690 			u32 type_size;
5691 
5692 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5693 			if (IS_ERR(resolve_ret)) {
5694 				bpf_log(log,
5695 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5696 					i, btf_type_str(ref_t), ref_tname,
5697 					PTR_ERR(resolve_ret));
5698 				return -EINVAL;
5699 			}
5700 
5701 			if (check_mem_reg(env, reg, regno, type_size))
5702 				return -EINVAL;
5703 		} else {
5704 			return -EINVAL;
5705 		}
5706 	}
5707 
5708 	return 0;
5709 }
5710 
5711 /* Compare BTF of a function with given bpf_reg_state.
5712  * Returns:
5713  * EFAULT - there is a verifier bug. Abort verification.
5714  * EINVAL - there is a type mismatch or BTF is not available.
5715  * 0 - BTF matches with what bpf_reg_state expects.
5716  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5717  */
5718 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5719 				struct bpf_reg_state *regs)
5720 {
5721 	struct bpf_prog *prog = env->prog;
5722 	struct btf *btf = prog->aux->btf;
5723 	bool is_global;
5724 	u32 btf_id;
5725 	int err;
5726 
5727 	if (!prog->aux->func_info)
5728 		return -EINVAL;
5729 
5730 	btf_id = prog->aux->func_info[subprog].type_id;
5731 	if (!btf_id)
5732 		return -EFAULT;
5733 
5734 	if (prog->aux->func_info_aux[subprog].unreliable)
5735 		return -EINVAL;
5736 
5737 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5738 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5739 
5740 	/* Compiler optimizations can remove arguments from static functions
5741 	 * or mismatched type can be passed into a global function.
5742 	 * In such cases mark the function as unreliable from BTF point of view.
5743 	 */
5744 	if (err)
5745 		prog->aux->func_info_aux[subprog].unreliable = true;
5746 	return err;
5747 }
5748 
5749 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5750 			      const struct btf *btf, u32 func_id,
5751 			      struct bpf_reg_state *regs)
5752 {
5753 	return btf_check_func_arg_match(env, btf, func_id, regs, false);
5754 }
5755 
5756 /* Convert BTF of a function into bpf_reg_state if possible
5757  * Returns:
5758  * EFAULT - there is a verifier bug. Abort verification.
5759  * EINVAL - cannot convert BTF.
5760  * 0 - Successfully converted BTF into bpf_reg_state
5761  * (either PTR_TO_CTX or SCALAR_VALUE).
5762  */
5763 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5764 			  struct bpf_reg_state *regs)
5765 {
5766 	struct bpf_verifier_log *log = &env->log;
5767 	struct bpf_prog *prog = env->prog;
5768 	enum bpf_prog_type prog_type = prog->type;
5769 	struct btf *btf = prog->aux->btf;
5770 	const struct btf_param *args;
5771 	const struct btf_type *t, *ref_t;
5772 	u32 i, nargs, btf_id;
5773 	const char *tname;
5774 
5775 	if (!prog->aux->func_info ||
5776 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5777 		bpf_log(log, "Verifier bug\n");
5778 		return -EFAULT;
5779 	}
5780 
5781 	btf_id = prog->aux->func_info[subprog].type_id;
5782 	if (!btf_id) {
5783 		bpf_log(log, "Global functions need valid BTF\n");
5784 		return -EFAULT;
5785 	}
5786 
5787 	t = btf_type_by_id(btf, btf_id);
5788 	if (!t || !btf_type_is_func(t)) {
5789 		/* These checks were already done by the verifier while loading
5790 		 * struct bpf_func_info
5791 		 */
5792 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5793 			subprog);
5794 		return -EFAULT;
5795 	}
5796 	tname = btf_name_by_offset(btf, t->name_off);
5797 
5798 	if (log->level & BPF_LOG_LEVEL)
5799 		bpf_log(log, "Validating %s() func#%d...\n",
5800 			tname, subprog);
5801 
5802 	if (prog->aux->func_info_aux[subprog].unreliable) {
5803 		bpf_log(log, "Verifier bug in function %s()\n", tname);
5804 		return -EFAULT;
5805 	}
5806 	if (prog_type == BPF_PROG_TYPE_EXT)
5807 		prog_type = prog->aux->dst_prog->type;
5808 
5809 	t = btf_type_by_id(btf, t->type);
5810 	if (!t || !btf_type_is_func_proto(t)) {
5811 		bpf_log(log, "Invalid type of function %s()\n", tname);
5812 		return -EFAULT;
5813 	}
5814 	args = (const struct btf_param *)(t + 1);
5815 	nargs = btf_type_vlen(t);
5816 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5817 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5818 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5819 		return -EINVAL;
5820 	}
5821 	/* check that function returns int */
5822 	t = btf_type_by_id(btf, t->type);
5823 	while (btf_type_is_modifier(t))
5824 		t = btf_type_by_id(btf, t->type);
5825 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5826 		bpf_log(log,
5827 			"Global function %s() doesn't return scalar. Only those are supported.\n",
5828 			tname);
5829 		return -EINVAL;
5830 	}
5831 	/* Convert BTF function arguments into verifier types.
5832 	 * Only PTR_TO_CTX and SCALAR are supported atm.
5833 	 */
5834 	for (i = 0; i < nargs; i++) {
5835 		struct bpf_reg_state *reg = &regs[i + 1];
5836 
5837 		t = btf_type_by_id(btf, args[i].type);
5838 		while (btf_type_is_modifier(t))
5839 			t = btf_type_by_id(btf, t->type);
5840 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5841 			reg->type = SCALAR_VALUE;
5842 			continue;
5843 		}
5844 		if (btf_type_is_ptr(t)) {
5845 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5846 				reg->type = PTR_TO_CTX;
5847 				continue;
5848 			}
5849 
5850 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5851 
5852 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5853 			if (IS_ERR(ref_t)) {
5854 				bpf_log(log,
5855 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5856 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5857 					PTR_ERR(ref_t));
5858 				return -EINVAL;
5859 			}
5860 
5861 			reg->type = PTR_TO_MEM_OR_NULL;
5862 			reg->id = ++env->id_gen;
5863 
5864 			continue;
5865 		}
5866 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5867 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5868 		return -EINVAL;
5869 	}
5870 	return 0;
5871 }
5872 
5873 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5874 			  struct btf_show *show)
5875 {
5876 	const struct btf_type *t = btf_type_by_id(btf, type_id);
5877 
5878 	show->btf = btf;
5879 	memset(&show->state, 0, sizeof(show->state));
5880 	memset(&show->obj, 0, sizeof(show->obj));
5881 
5882 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5883 }
5884 
5885 static void btf_seq_show(struct btf_show *show, const char *fmt,
5886 			 va_list args)
5887 {
5888 	seq_vprintf((struct seq_file *)show->target, fmt, args);
5889 }
5890 
5891 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5892 			    void *obj, struct seq_file *m, u64 flags)
5893 {
5894 	struct btf_show sseq;
5895 
5896 	sseq.target = m;
5897 	sseq.showfn = btf_seq_show;
5898 	sseq.flags = flags;
5899 
5900 	btf_type_show(btf, type_id, obj, &sseq);
5901 
5902 	return sseq.state.status;
5903 }
5904 
5905 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5906 		       struct seq_file *m)
5907 {
5908 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
5909 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5910 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5911 }
5912 
5913 struct btf_show_snprintf {
5914 	struct btf_show show;
5915 	int len_left;		/* space left in string */
5916 	int len;		/* length we would have written */
5917 };
5918 
5919 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5920 			      va_list args)
5921 {
5922 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5923 	int len;
5924 
5925 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5926 
5927 	if (len < 0) {
5928 		ssnprintf->len_left = 0;
5929 		ssnprintf->len = len;
5930 	} else if (len > ssnprintf->len_left) {
5931 		/* no space, drive on to get length we would have written */
5932 		ssnprintf->len_left = 0;
5933 		ssnprintf->len += len;
5934 	} else {
5935 		ssnprintf->len_left -= len;
5936 		ssnprintf->len += len;
5937 		show->target += len;
5938 	}
5939 }
5940 
5941 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5942 			   char *buf, int len, u64 flags)
5943 {
5944 	struct btf_show_snprintf ssnprintf;
5945 
5946 	ssnprintf.show.target = buf;
5947 	ssnprintf.show.flags = flags;
5948 	ssnprintf.show.showfn = btf_snprintf_show;
5949 	ssnprintf.len_left = len;
5950 	ssnprintf.len = 0;
5951 
5952 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5953 
5954 	/* If we encontered an error, return it. */
5955 	if (ssnprintf.show.state.status)
5956 		return ssnprintf.show.state.status;
5957 
5958 	/* Otherwise return length we would have written */
5959 	return ssnprintf.len;
5960 }
5961 
5962 #ifdef CONFIG_PROC_FS
5963 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5964 {
5965 	const struct btf *btf = filp->private_data;
5966 
5967 	seq_printf(m, "btf_id:\t%u\n", btf->id);
5968 }
5969 #endif
5970 
5971 static int btf_release(struct inode *inode, struct file *filp)
5972 {
5973 	btf_put(filp->private_data);
5974 	return 0;
5975 }
5976 
5977 const struct file_operations btf_fops = {
5978 #ifdef CONFIG_PROC_FS
5979 	.show_fdinfo	= bpf_btf_show_fdinfo,
5980 #endif
5981 	.release	= btf_release,
5982 };
5983 
5984 static int __btf_new_fd(struct btf *btf)
5985 {
5986 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5987 }
5988 
5989 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
5990 {
5991 	struct btf *btf;
5992 	int ret;
5993 
5994 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
5995 			attr->btf_size, attr->btf_log_level,
5996 			u64_to_user_ptr(attr->btf_log_buf),
5997 			attr->btf_log_size);
5998 	if (IS_ERR(btf))
5999 		return PTR_ERR(btf);
6000 
6001 	ret = btf_alloc_id(btf);
6002 	if (ret) {
6003 		btf_free(btf);
6004 		return ret;
6005 	}
6006 
6007 	/*
6008 	 * The BTF ID is published to the userspace.
6009 	 * All BTF free must go through call_rcu() from
6010 	 * now on (i.e. free by calling btf_put()).
6011 	 */
6012 
6013 	ret = __btf_new_fd(btf);
6014 	if (ret < 0)
6015 		btf_put(btf);
6016 
6017 	return ret;
6018 }
6019 
6020 struct btf *btf_get_by_fd(int fd)
6021 {
6022 	struct btf *btf;
6023 	struct fd f;
6024 
6025 	f = fdget(fd);
6026 
6027 	if (!f.file)
6028 		return ERR_PTR(-EBADF);
6029 
6030 	if (f.file->f_op != &btf_fops) {
6031 		fdput(f);
6032 		return ERR_PTR(-EINVAL);
6033 	}
6034 
6035 	btf = f.file->private_data;
6036 	refcount_inc(&btf->refcnt);
6037 	fdput(f);
6038 
6039 	return btf;
6040 }
6041 
6042 int btf_get_info_by_fd(const struct btf *btf,
6043 		       const union bpf_attr *attr,
6044 		       union bpf_attr __user *uattr)
6045 {
6046 	struct bpf_btf_info __user *uinfo;
6047 	struct bpf_btf_info info;
6048 	u32 info_copy, btf_copy;
6049 	void __user *ubtf;
6050 	char __user *uname;
6051 	u32 uinfo_len, uname_len, name_len;
6052 	int ret = 0;
6053 
6054 	uinfo = u64_to_user_ptr(attr->info.info);
6055 	uinfo_len = attr->info.info_len;
6056 
6057 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6058 	memset(&info, 0, sizeof(info));
6059 	if (copy_from_user(&info, uinfo, info_copy))
6060 		return -EFAULT;
6061 
6062 	info.id = btf->id;
6063 	ubtf = u64_to_user_ptr(info.btf);
6064 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6065 	if (copy_to_user(ubtf, btf->data, btf_copy))
6066 		return -EFAULT;
6067 	info.btf_size = btf->data_size;
6068 
6069 	info.kernel_btf = btf->kernel_btf;
6070 
6071 	uname = u64_to_user_ptr(info.name);
6072 	uname_len = info.name_len;
6073 	if (!uname ^ !uname_len)
6074 		return -EINVAL;
6075 
6076 	name_len = strlen(btf->name);
6077 	info.name_len = name_len;
6078 
6079 	if (uname) {
6080 		if (uname_len >= name_len + 1) {
6081 			if (copy_to_user(uname, btf->name, name_len + 1))
6082 				return -EFAULT;
6083 		} else {
6084 			char zero = '\0';
6085 
6086 			if (copy_to_user(uname, btf->name, uname_len - 1))
6087 				return -EFAULT;
6088 			if (put_user(zero, uname + uname_len - 1))
6089 				return -EFAULT;
6090 			/* let user-space know about too short buffer */
6091 			ret = -ENOSPC;
6092 		}
6093 	}
6094 
6095 	if (copy_to_user(uinfo, &info, info_copy) ||
6096 	    put_user(info_copy, &uattr->info.info_len))
6097 		return -EFAULT;
6098 
6099 	return ret;
6100 }
6101 
6102 int btf_get_fd_by_id(u32 id)
6103 {
6104 	struct btf *btf;
6105 	int fd;
6106 
6107 	rcu_read_lock();
6108 	btf = idr_find(&btf_idr, id);
6109 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6110 		btf = ERR_PTR(-ENOENT);
6111 	rcu_read_unlock();
6112 
6113 	if (IS_ERR(btf))
6114 		return PTR_ERR(btf);
6115 
6116 	fd = __btf_new_fd(btf);
6117 	if (fd < 0)
6118 		btf_put(btf);
6119 
6120 	return fd;
6121 }
6122 
6123 u32 btf_obj_id(const struct btf *btf)
6124 {
6125 	return btf->id;
6126 }
6127 
6128 bool btf_is_kernel(const struct btf *btf)
6129 {
6130 	return btf->kernel_btf;
6131 }
6132 
6133 bool btf_is_module(const struct btf *btf)
6134 {
6135 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6136 }
6137 
6138 static int btf_id_cmp_func(const void *a, const void *b)
6139 {
6140 	const int *pa = a, *pb = b;
6141 
6142 	return *pa - *pb;
6143 }
6144 
6145 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6146 {
6147 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6148 }
6149 
6150 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6151 struct btf_module {
6152 	struct list_head list;
6153 	struct module *module;
6154 	struct btf *btf;
6155 	struct bin_attribute *sysfs_attr;
6156 };
6157 
6158 static LIST_HEAD(btf_modules);
6159 static DEFINE_MUTEX(btf_module_mutex);
6160 
6161 static ssize_t
6162 btf_module_read(struct file *file, struct kobject *kobj,
6163 		struct bin_attribute *bin_attr,
6164 		char *buf, loff_t off, size_t len)
6165 {
6166 	const struct btf *btf = bin_attr->private;
6167 
6168 	memcpy(buf, btf->data + off, len);
6169 	return len;
6170 }
6171 
6172 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6173 			     void *module)
6174 {
6175 	struct btf_module *btf_mod, *tmp;
6176 	struct module *mod = module;
6177 	struct btf *btf;
6178 	int err = 0;
6179 
6180 	if (mod->btf_data_size == 0 ||
6181 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
6182 		goto out;
6183 
6184 	switch (op) {
6185 	case MODULE_STATE_COMING:
6186 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6187 		if (!btf_mod) {
6188 			err = -ENOMEM;
6189 			goto out;
6190 		}
6191 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6192 		if (IS_ERR(btf)) {
6193 			pr_warn("failed to validate module [%s] BTF: %ld\n",
6194 				mod->name, PTR_ERR(btf));
6195 			kfree(btf_mod);
6196 			err = PTR_ERR(btf);
6197 			goto out;
6198 		}
6199 		err = btf_alloc_id(btf);
6200 		if (err) {
6201 			btf_free(btf);
6202 			kfree(btf_mod);
6203 			goto out;
6204 		}
6205 
6206 		mutex_lock(&btf_module_mutex);
6207 		btf_mod->module = module;
6208 		btf_mod->btf = btf;
6209 		list_add(&btf_mod->list, &btf_modules);
6210 		mutex_unlock(&btf_module_mutex);
6211 
6212 		if (IS_ENABLED(CONFIG_SYSFS)) {
6213 			struct bin_attribute *attr;
6214 
6215 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6216 			if (!attr)
6217 				goto out;
6218 
6219 			sysfs_bin_attr_init(attr);
6220 			attr->attr.name = btf->name;
6221 			attr->attr.mode = 0444;
6222 			attr->size = btf->data_size;
6223 			attr->private = btf;
6224 			attr->read = btf_module_read;
6225 
6226 			err = sysfs_create_bin_file(btf_kobj, attr);
6227 			if (err) {
6228 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6229 					mod->name, err);
6230 				kfree(attr);
6231 				err = 0;
6232 				goto out;
6233 			}
6234 
6235 			btf_mod->sysfs_attr = attr;
6236 		}
6237 
6238 		break;
6239 	case MODULE_STATE_GOING:
6240 		mutex_lock(&btf_module_mutex);
6241 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6242 			if (btf_mod->module != module)
6243 				continue;
6244 
6245 			list_del(&btf_mod->list);
6246 			if (btf_mod->sysfs_attr)
6247 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6248 			btf_put(btf_mod->btf);
6249 			kfree(btf_mod->sysfs_attr);
6250 			kfree(btf_mod);
6251 			break;
6252 		}
6253 		mutex_unlock(&btf_module_mutex);
6254 		break;
6255 	}
6256 out:
6257 	return notifier_from_errno(err);
6258 }
6259 
6260 static struct notifier_block btf_module_nb = {
6261 	.notifier_call = btf_module_notify,
6262 };
6263 
6264 static int __init btf_module_init(void)
6265 {
6266 	register_module_notifier(&btf_module_nb);
6267 	return 0;
6268 }
6269 
6270 fs_initcall(btf_module_init);
6271 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6272 
6273 struct module *btf_try_get_module(const struct btf *btf)
6274 {
6275 	struct module *res = NULL;
6276 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6277 	struct btf_module *btf_mod, *tmp;
6278 
6279 	mutex_lock(&btf_module_mutex);
6280 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6281 		if (btf_mod->btf != btf)
6282 			continue;
6283 
6284 		if (try_module_get(btf_mod->module))
6285 			res = btf_mod->module;
6286 
6287 		break;
6288 	}
6289 	mutex_unlock(&btf_module_mutex);
6290 #endif
6291 
6292 	return res;
6293 }
6294 
6295 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6296 {
6297 	struct btf *btf;
6298 	long ret;
6299 
6300 	if (flags)
6301 		return -EINVAL;
6302 
6303 	if (name_sz <= 1 || name[name_sz - 1])
6304 		return -EINVAL;
6305 
6306 	btf = bpf_get_btf_vmlinux();
6307 	if (IS_ERR(btf))
6308 		return PTR_ERR(btf);
6309 
6310 	ret = btf_find_by_name_kind(btf, name, kind);
6311 	/* ret is never zero, since btf_find_by_name_kind returns
6312 	 * positive btf_id or negative error.
6313 	 */
6314 	if (ret < 0) {
6315 		struct btf *mod_btf;
6316 		int id;
6317 
6318 		/* If name is not found in vmlinux's BTF then search in module's BTFs */
6319 		spin_lock_bh(&btf_idr_lock);
6320 		idr_for_each_entry(&btf_idr, mod_btf, id) {
6321 			if (!btf_is_module(mod_btf))
6322 				continue;
6323 			/* linear search could be slow hence unlock/lock
6324 			 * the IDR to avoiding holding it for too long
6325 			 */
6326 			btf_get(mod_btf);
6327 			spin_unlock_bh(&btf_idr_lock);
6328 			ret = btf_find_by_name_kind(mod_btf, name, kind);
6329 			if (ret > 0) {
6330 				int btf_obj_fd;
6331 
6332 				btf_obj_fd = __btf_new_fd(mod_btf);
6333 				if (btf_obj_fd < 0) {
6334 					btf_put(mod_btf);
6335 					return btf_obj_fd;
6336 				}
6337 				return ret | (((u64)btf_obj_fd) << 32);
6338 			}
6339 			spin_lock_bh(&btf_idr_lock);
6340 			btf_put(mod_btf);
6341 		}
6342 		spin_unlock_bh(&btf_idr_lock);
6343 	}
6344 	return ret;
6345 }
6346 
6347 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6348 	.func		= bpf_btf_find_by_name_kind,
6349 	.gpl_only	= false,
6350 	.ret_type	= RET_INTEGER,
6351 	.arg1_type	= ARG_PTR_TO_MEM,
6352 	.arg2_type	= ARG_CONST_SIZE,
6353 	.arg3_type	= ARG_ANYTHING,
6354 	.arg4_type	= ARG_ANYTHING,
6355 };
6356 
6357 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
6358 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
6359 BTF_TRACING_TYPE_xxx
6360 #undef BTF_TRACING_TYPE
6361 
6362 /* BTF ID set registration API for modules */
6363 
6364 struct kfunc_btf_id_list {
6365 	struct list_head list;
6366 	struct mutex mutex;
6367 };
6368 
6369 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6370 
6371 void register_kfunc_btf_id_set(struct kfunc_btf_id_list *l,
6372 			       struct kfunc_btf_id_set *s)
6373 {
6374 	mutex_lock(&l->mutex);
6375 	list_add(&s->list, &l->list);
6376 	mutex_unlock(&l->mutex);
6377 }
6378 EXPORT_SYMBOL_GPL(register_kfunc_btf_id_set);
6379 
6380 void unregister_kfunc_btf_id_set(struct kfunc_btf_id_list *l,
6381 				 struct kfunc_btf_id_set *s)
6382 {
6383 	mutex_lock(&l->mutex);
6384 	list_del_init(&s->list);
6385 	mutex_unlock(&l->mutex);
6386 }
6387 EXPORT_SYMBOL_GPL(unregister_kfunc_btf_id_set);
6388 
6389 bool bpf_check_mod_kfunc_call(struct kfunc_btf_id_list *klist, u32 kfunc_id,
6390 			      struct module *owner)
6391 {
6392 	struct kfunc_btf_id_set *s;
6393 
6394 	if (!owner)
6395 		return false;
6396 	mutex_lock(&klist->mutex);
6397 	list_for_each_entry(s, &klist->list, list) {
6398 		if (s->owner == owner && btf_id_set_contains(s->set, kfunc_id)) {
6399 			mutex_unlock(&klist->mutex);
6400 			return true;
6401 		}
6402 	}
6403 	mutex_unlock(&klist->mutex);
6404 	return false;
6405 }
6406 
6407 #endif
6408 
6409 #define DEFINE_KFUNC_BTF_ID_LIST(name)                                         \
6410 	struct kfunc_btf_id_list name = { LIST_HEAD_INIT(name.list),           \
6411 					  __MUTEX_INITIALIZER(name.mutex) };   \
6412 	EXPORT_SYMBOL_GPL(name)
6413 
6414 DEFINE_KFUNC_BTF_ID_LIST(bpf_tcp_ca_kfunc_list);
6415 DEFINE_KFUNC_BTF_ID_LIST(prog_test_kfunc_list);
6416