xref: /linux/kernel/bpf/btf.c (revision 38c6104e0bc7c8af20ab4897cb0504e3339e4fe4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_KPROBE,
222 	BTF_KFUNC_HOOK_MAX,
223 };
224 
225 enum {
226 	BTF_KFUNC_SET_MAX_CNT = 256,
227 	BTF_DTOR_KFUNC_MAX_CNT = 256,
228 	BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230 
231 struct btf_kfunc_hook_filter {
232 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233 	u32 nr_filters;
234 };
235 
236 struct btf_kfunc_set_tab {
237 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240 
241 struct btf_id_dtor_kfunc_tab {
242 	u32 cnt;
243 	struct btf_id_dtor_kfunc dtors[];
244 };
245 
246 struct btf_struct_ops_tab {
247 	u32 cnt;
248 	u32 capacity;
249 	struct bpf_struct_ops_desc ops[];
250 };
251 
252 struct btf {
253 	void *data;
254 	struct btf_type **types;
255 	u32 *resolved_ids;
256 	u32 *resolved_sizes;
257 	const char *strings;
258 	void *nohdr_data;
259 	struct btf_header hdr;
260 	u32 nr_types; /* includes VOID for base BTF */
261 	u32 types_size;
262 	u32 data_size;
263 	refcount_t refcnt;
264 	u32 id;
265 	struct rcu_head rcu;
266 	struct btf_kfunc_set_tab *kfunc_set_tab;
267 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268 	struct btf_struct_metas *struct_meta_tab;
269 	struct btf_struct_ops_tab *struct_ops_tab;
270 
271 	/* split BTF support */
272 	struct btf *base_btf;
273 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274 	u32 start_str_off; /* first string offset (0 for base BTF) */
275 	char name[MODULE_NAME_LEN];
276 	bool kernel_btf;
277 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279 
280 enum verifier_phase {
281 	CHECK_META,
282 	CHECK_TYPE,
283 };
284 
285 struct resolve_vertex {
286 	const struct btf_type *t;
287 	u32 type_id;
288 	u16 next_member;
289 };
290 
291 enum visit_state {
292 	NOT_VISITED,
293 	VISITED,
294 	RESOLVED,
295 };
296 
297 enum resolve_mode {
298 	RESOLVE_TBD,	/* To Be Determined */
299 	RESOLVE_PTR,	/* Resolving for Pointer */
300 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
301 					 * or array
302 					 */
303 };
304 
305 #define MAX_RESOLVE_DEPTH 32
306 
307 struct btf_sec_info {
308 	u32 off;
309 	u32 len;
310 };
311 
312 struct btf_verifier_env {
313 	struct btf *btf;
314 	u8 *visit_states;
315 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316 	struct bpf_verifier_log log;
317 	u32 log_type_id;
318 	u32 top_stack;
319 	enum verifier_phase phase;
320 	enum resolve_mode resolve_mode;
321 };
322 
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324 	[BTF_KIND_UNKN]		= "UNKNOWN",
325 	[BTF_KIND_INT]		= "INT",
326 	[BTF_KIND_PTR]		= "PTR",
327 	[BTF_KIND_ARRAY]	= "ARRAY",
328 	[BTF_KIND_STRUCT]	= "STRUCT",
329 	[BTF_KIND_UNION]	= "UNION",
330 	[BTF_KIND_ENUM]		= "ENUM",
331 	[BTF_KIND_FWD]		= "FWD",
332 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
333 	[BTF_KIND_VOLATILE]	= "VOLATILE",
334 	[BTF_KIND_CONST]	= "CONST",
335 	[BTF_KIND_RESTRICT]	= "RESTRICT",
336 	[BTF_KIND_FUNC]		= "FUNC",
337 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
338 	[BTF_KIND_VAR]		= "VAR",
339 	[BTF_KIND_DATASEC]	= "DATASEC",
340 	[BTF_KIND_FLOAT]	= "FLOAT",
341 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
342 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
343 	[BTF_KIND_ENUM64]	= "ENUM64",
344 };
345 
346 const char *btf_type_str(const struct btf_type *t)
347 {
348 	return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350 
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE		32
353 
354 /*
355  * This is the maximum size of a base type value (equivalent to a
356  * 128-bit int); if we are at the end of our safe buffer and have
357  * less than 16 bytes space we can't be assured of being able
358  * to copy the next type safely, so in such cases we will initiate
359  * a new copy.
360  */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
362 
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE		80
365 
366 /*
367  * The suffix of a type that indicates it cannot alias another type when
368  * comparing BTF IDs for kfunc invocations.
369  */
370 #define NOCAST_ALIAS_SUFFIX		"___init"
371 
372 /*
373  * Common data to all BTF show operations. Private show functions can add
374  * their own data to a structure containing a struct btf_show and consult it
375  * in the show callback.  See btf_type_show() below.
376  *
377  * One challenge with showing nested data is we want to skip 0-valued
378  * data, but in order to figure out whether a nested object is all zeros
379  * we need to walk through it.  As a result, we need to make two passes
380  * when handling structs, unions and arrays; the first path simply looks
381  * for nonzero data, while the second actually does the display.  The first
382  * pass is signalled by show->state.depth_check being set, and if we
383  * encounter a non-zero value we set show->state.depth_to_show to
384  * the depth at which we encountered it.  When we have completed the
385  * first pass, we will know if anything needs to be displayed if
386  * depth_to_show > depth.  See btf_[struct,array]_show() for the
387  * implementation of this.
388  *
389  * Another problem is we want to ensure the data for display is safe to
390  * access.  To support this, the anonymous "struct {} obj" tracks the data
391  * object and our safe copy of it.  We copy portions of the data needed
392  * to the object "copy" buffer, but because its size is limited to
393  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394  * traverse larger objects for display.
395  *
396  * The various data type show functions all start with a call to
397  * btf_show_start_type() which returns a pointer to the safe copy
398  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399  * raw data itself).  btf_show_obj_safe() is responsible for
400  * using copy_from_kernel_nofault() to update the safe data if necessary
401  * as we traverse the object's data.  skbuff-like semantics are
402  * used:
403  *
404  * - obj.head points to the start of the toplevel object for display
405  * - obj.size is the size of the toplevel object
406  * - obj.data points to the current point in the original data at
407  *   which our safe data starts.  obj.data will advance as we copy
408  *   portions of the data.
409  *
410  * In most cases a single copy will suffice, but larger data structures
411  * such as "struct task_struct" will require many copies.  The logic in
412  * btf_show_obj_safe() handles the logic that determines if a new
413  * copy_from_kernel_nofault() is needed.
414  */
415 struct btf_show {
416 	u64 flags;
417 	void *target;	/* target of show operation (seq file, buffer) */
418 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419 	const struct btf *btf;
420 	/* below are used during iteration */
421 	struct {
422 		u8 depth;
423 		u8 depth_to_show;
424 		u8 depth_check;
425 		u8 array_member:1,
426 		   array_terminated:1;
427 		u16 array_encoding;
428 		u32 type_id;
429 		int status;			/* non-zero for error */
430 		const struct btf_type *type;
431 		const struct btf_member *member;
432 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
433 	} state;
434 	struct {
435 		u32 size;
436 		void *head;
437 		void *data;
438 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439 	} obj;
440 };
441 
442 struct btf_kind_operations {
443 	s32 (*check_meta)(struct btf_verifier_env *env,
444 			  const struct btf_type *t,
445 			  u32 meta_left);
446 	int (*resolve)(struct btf_verifier_env *env,
447 		       const struct resolve_vertex *v);
448 	int (*check_member)(struct btf_verifier_env *env,
449 			    const struct btf_type *struct_type,
450 			    const struct btf_member *member,
451 			    const struct btf_type *member_type);
452 	int (*check_kflag_member)(struct btf_verifier_env *env,
453 				  const struct btf_type *struct_type,
454 				  const struct btf_member *member,
455 				  const struct btf_type *member_type);
456 	void (*log_details)(struct btf_verifier_env *env,
457 			    const struct btf_type *t);
458 	void (*show)(const struct btf *btf, const struct btf_type *t,
459 			 u32 type_id, void *data, u8 bits_offsets,
460 			 struct btf_show *show);
461 };
462 
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465 
466 static int btf_resolve(struct btf_verifier_env *env,
467 		       const struct btf_type *t, u32 type_id);
468 
469 static int btf_func_check(struct btf_verifier_env *env,
470 			  const struct btf_type *t);
471 
472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474 	/* Some of them is not strictly a C modifier
475 	 * but they are grouped into the same bucket
476 	 * for BTF concern:
477 	 *   A type (t) that refers to another
478 	 *   type through t->type AND its size cannot
479 	 *   be determined without following the t->type.
480 	 *
481 	 * ptr does not fall into this bucket
482 	 * because its size is always sizeof(void *).
483 	 */
484 	switch (BTF_INFO_KIND(t->info)) {
485 	case BTF_KIND_TYPEDEF:
486 	case BTF_KIND_VOLATILE:
487 	case BTF_KIND_CONST:
488 	case BTF_KIND_RESTRICT:
489 	case BTF_KIND_TYPE_TAG:
490 		return true;
491 	}
492 
493 	return false;
494 }
495 
496 bool btf_type_is_void(const struct btf_type *t)
497 {
498 	return t == &btf_void;
499 }
500 
501 static bool btf_type_is_datasec(const struct btf_type *t)
502 {
503 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
504 }
505 
506 static bool btf_type_is_decl_tag(const struct btf_type *t)
507 {
508 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
509 }
510 
511 static bool btf_type_nosize(const struct btf_type *t)
512 {
513 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
514 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
515 	       btf_type_is_decl_tag(t);
516 }
517 
518 static bool btf_type_nosize_or_null(const struct btf_type *t)
519 {
520 	return !t || btf_type_nosize(t);
521 }
522 
523 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
524 {
525 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
526 	       btf_type_is_var(t) || btf_type_is_typedef(t);
527 }
528 
529 bool btf_is_vmlinux(const struct btf *btf)
530 {
531 	return btf->kernel_btf && !btf->base_btf;
532 }
533 
534 u32 btf_nr_types(const struct btf *btf)
535 {
536 	u32 total = 0;
537 
538 	while (btf) {
539 		total += btf->nr_types;
540 		btf = btf->base_btf;
541 	}
542 
543 	return total;
544 }
545 
546 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
547 {
548 	const struct btf_type *t;
549 	const char *tname;
550 	u32 i, total;
551 
552 	total = btf_nr_types(btf);
553 	for (i = 1; i < total; i++) {
554 		t = btf_type_by_id(btf, i);
555 		if (BTF_INFO_KIND(t->info) != kind)
556 			continue;
557 
558 		tname = btf_name_by_offset(btf, t->name_off);
559 		if (!strcmp(tname, name))
560 			return i;
561 	}
562 
563 	return -ENOENT;
564 }
565 
566 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
567 {
568 	struct btf *btf;
569 	s32 ret;
570 	int id;
571 
572 	btf = bpf_get_btf_vmlinux();
573 	if (IS_ERR(btf))
574 		return PTR_ERR(btf);
575 	if (!btf)
576 		return -EINVAL;
577 
578 	ret = btf_find_by_name_kind(btf, name, kind);
579 	/* ret is never zero, since btf_find_by_name_kind returns
580 	 * positive btf_id or negative error.
581 	 */
582 	if (ret > 0) {
583 		btf_get(btf);
584 		*btf_p = btf;
585 		return ret;
586 	}
587 
588 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
589 	spin_lock_bh(&btf_idr_lock);
590 	idr_for_each_entry(&btf_idr, btf, id) {
591 		if (!btf_is_module(btf))
592 			continue;
593 		/* linear search could be slow hence unlock/lock
594 		 * the IDR to avoiding holding it for too long
595 		 */
596 		btf_get(btf);
597 		spin_unlock_bh(&btf_idr_lock);
598 		ret = btf_find_by_name_kind(btf, name, kind);
599 		if (ret > 0) {
600 			*btf_p = btf;
601 			return ret;
602 		}
603 		btf_put(btf);
604 		spin_lock_bh(&btf_idr_lock);
605 	}
606 	spin_unlock_bh(&btf_idr_lock);
607 	return ret;
608 }
609 EXPORT_SYMBOL_GPL(bpf_find_btf_id);
610 
611 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
612 					       u32 id, u32 *res_id)
613 {
614 	const struct btf_type *t = btf_type_by_id(btf, id);
615 
616 	while (btf_type_is_modifier(t)) {
617 		id = t->type;
618 		t = btf_type_by_id(btf, t->type);
619 	}
620 
621 	if (res_id)
622 		*res_id = id;
623 
624 	return t;
625 }
626 
627 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
628 					    u32 id, u32 *res_id)
629 {
630 	const struct btf_type *t;
631 
632 	t = btf_type_skip_modifiers(btf, id, NULL);
633 	if (!btf_type_is_ptr(t))
634 		return NULL;
635 
636 	return btf_type_skip_modifiers(btf, t->type, res_id);
637 }
638 
639 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
640 						 u32 id, u32 *res_id)
641 {
642 	const struct btf_type *ptype;
643 
644 	ptype = btf_type_resolve_ptr(btf, id, res_id);
645 	if (ptype && btf_type_is_func_proto(ptype))
646 		return ptype;
647 
648 	return NULL;
649 }
650 
651 /* Types that act only as a source, not sink or intermediate
652  * type when resolving.
653  */
654 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
655 {
656 	return btf_type_is_var(t) ||
657 	       btf_type_is_decl_tag(t) ||
658 	       btf_type_is_datasec(t);
659 }
660 
661 /* What types need to be resolved?
662  *
663  * btf_type_is_modifier() is an obvious one.
664  *
665  * btf_type_is_struct() because its member refers to
666  * another type (through member->type).
667  *
668  * btf_type_is_var() because the variable refers to
669  * another type. btf_type_is_datasec() holds multiple
670  * btf_type_is_var() types that need resolving.
671  *
672  * btf_type_is_array() because its element (array->type)
673  * refers to another type.  Array can be thought of a
674  * special case of struct while array just has the same
675  * member-type repeated by array->nelems of times.
676  */
677 static bool btf_type_needs_resolve(const struct btf_type *t)
678 {
679 	return btf_type_is_modifier(t) ||
680 	       btf_type_is_ptr(t) ||
681 	       btf_type_is_struct(t) ||
682 	       btf_type_is_array(t) ||
683 	       btf_type_is_var(t) ||
684 	       btf_type_is_func(t) ||
685 	       btf_type_is_decl_tag(t) ||
686 	       btf_type_is_datasec(t);
687 }
688 
689 /* t->size can be used */
690 static bool btf_type_has_size(const struct btf_type *t)
691 {
692 	switch (BTF_INFO_KIND(t->info)) {
693 	case BTF_KIND_INT:
694 	case BTF_KIND_STRUCT:
695 	case BTF_KIND_UNION:
696 	case BTF_KIND_ENUM:
697 	case BTF_KIND_DATASEC:
698 	case BTF_KIND_FLOAT:
699 	case BTF_KIND_ENUM64:
700 		return true;
701 	}
702 
703 	return false;
704 }
705 
706 static const char *btf_int_encoding_str(u8 encoding)
707 {
708 	if (encoding == 0)
709 		return "(none)";
710 	else if (encoding == BTF_INT_SIGNED)
711 		return "SIGNED";
712 	else if (encoding == BTF_INT_CHAR)
713 		return "CHAR";
714 	else if (encoding == BTF_INT_BOOL)
715 		return "BOOL";
716 	else
717 		return "UNKN";
718 }
719 
720 static u32 btf_type_int(const struct btf_type *t)
721 {
722 	return *(u32 *)(t + 1);
723 }
724 
725 static const struct btf_array *btf_type_array(const struct btf_type *t)
726 {
727 	return (const struct btf_array *)(t + 1);
728 }
729 
730 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
731 {
732 	return (const struct btf_enum *)(t + 1);
733 }
734 
735 static const struct btf_var *btf_type_var(const struct btf_type *t)
736 {
737 	return (const struct btf_var *)(t + 1);
738 }
739 
740 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
741 {
742 	return (const struct btf_decl_tag *)(t + 1);
743 }
744 
745 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
746 {
747 	return (const struct btf_enum64 *)(t + 1);
748 }
749 
750 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
751 {
752 	return kind_ops[BTF_INFO_KIND(t->info)];
753 }
754 
755 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
756 {
757 	if (!BTF_STR_OFFSET_VALID(offset))
758 		return false;
759 
760 	while (offset < btf->start_str_off)
761 		btf = btf->base_btf;
762 
763 	offset -= btf->start_str_off;
764 	return offset < btf->hdr.str_len;
765 }
766 
767 static bool __btf_name_char_ok(char c, bool first)
768 {
769 	if ((first ? !isalpha(c) :
770 		     !isalnum(c)) &&
771 	    c != '_' &&
772 	    c != '.')
773 		return false;
774 	return true;
775 }
776 
777 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
778 {
779 	while (offset < btf->start_str_off)
780 		btf = btf->base_btf;
781 
782 	offset -= btf->start_str_off;
783 	if (offset < btf->hdr.str_len)
784 		return &btf->strings[offset];
785 
786 	return NULL;
787 }
788 
789 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
790 {
791 	/* offset must be valid */
792 	const char *src = btf_str_by_offset(btf, offset);
793 	const char *src_limit;
794 
795 	if (!__btf_name_char_ok(*src, true))
796 		return false;
797 
798 	/* set a limit on identifier length */
799 	src_limit = src + KSYM_NAME_LEN;
800 	src++;
801 	while (*src && src < src_limit) {
802 		if (!__btf_name_char_ok(*src, false))
803 			return false;
804 		src++;
805 	}
806 
807 	return !*src;
808 }
809 
810 /* Allow any printable character in DATASEC names */
811 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
812 {
813 	/* offset must be valid */
814 	const char *src = btf_str_by_offset(btf, offset);
815 	const char *src_limit;
816 
817 	if (!*src)
818 		return false;
819 
820 	/* set a limit on identifier length */
821 	src_limit = src + KSYM_NAME_LEN;
822 	while (*src && src < src_limit) {
823 		if (!isprint(*src))
824 			return false;
825 		src++;
826 	}
827 
828 	return !*src;
829 }
830 
831 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
832 {
833 	const char *name;
834 
835 	if (!offset)
836 		return "(anon)";
837 
838 	name = btf_str_by_offset(btf, offset);
839 	return name ?: "(invalid-name-offset)";
840 }
841 
842 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
843 {
844 	return btf_str_by_offset(btf, offset);
845 }
846 
847 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
848 {
849 	while (type_id < btf->start_id)
850 		btf = btf->base_btf;
851 
852 	type_id -= btf->start_id;
853 	if (type_id >= btf->nr_types)
854 		return NULL;
855 	return btf->types[type_id];
856 }
857 EXPORT_SYMBOL_GPL(btf_type_by_id);
858 
859 /*
860  * Regular int is not a bit field and it must be either
861  * u8/u16/u32/u64 or __int128.
862  */
863 static bool btf_type_int_is_regular(const struct btf_type *t)
864 {
865 	u8 nr_bits, nr_bytes;
866 	u32 int_data;
867 
868 	int_data = btf_type_int(t);
869 	nr_bits = BTF_INT_BITS(int_data);
870 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
871 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
872 	    BTF_INT_OFFSET(int_data) ||
873 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
874 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
875 	     nr_bytes != (2 * sizeof(u64)))) {
876 		return false;
877 	}
878 
879 	return true;
880 }
881 
882 /*
883  * Check that given struct member is a regular int with expected
884  * offset and size.
885  */
886 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
887 			   const struct btf_member *m,
888 			   u32 expected_offset, u32 expected_size)
889 {
890 	const struct btf_type *t;
891 	u32 id, int_data;
892 	u8 nr_bits;
893 
894 	id = m->type;
895 	t = btf_type_id_size(btf, &id, NULL);
896 	if (!t || !btf_type_is_int(t))
897 		return false;
898 
899 	int_data = btf_type_int(t);
900 	nr_bits = BTF_INT_BITS(int_data);
901 	if (btf_type_kflag(s)) {
902 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
903 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
904 
905 		/* if kflag set, int should be a regular int and
906 		 * bit offset should be at byte boundary.
907 		 */
908 		return !bitfield_size &&
909 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
910 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
911 	}
912 
913 	if (BTF_INT_OFFSET(int_data) ||
914 	    BITS_PER_BYTE_MASKED(m->offset) ||
915 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
916 	    BITS_PER_BYTE_MASKED(nr_bits) ||
917 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
918 		return false;
919 
920 	return true;
921 }
922 
923 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
924 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
925 						       u32 id)
926 {
927 	const struct btf_type *t = btf_type_by_id(btf, id);
928 
929 	while (btf_type_is_modifier(t) &&
930 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
931 		t = btf_type_by_id(btf, t->type);
932 	}
933 
934 	return t;
935 }
936 
937 #define BTF_SHOW_MAX_ITER	10
938 
939 #define BTF_KIND_BIT(kind)	(1ULL << kind)
940 
941 /*
942  * Populate show->state.name with type name information.
943  * Format of type name is
944  *
945  * [.member_name = ] (type_name)
946  */
947 static const char *btf_show_name(struct btf_show *show)
948 {
949 	/* BTF_MAX_ITER array suffixes "[]" */
950 	const char *array_suffixes = "[][][][][][][][][][]";
951 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
952 	/* BTF_MAX_ITER pointer suffixes "*" */
953 	const char *ptr_suffixes = "**********";
954 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
955 	const char *name = NULL, *prefix = "", *parens = "";
956 	const struct btf_member *m = show->state.member;
957 	const struct btf_type *t;
958 	const struct btf_array *array;
959 	u32 id = show->state.type_id;
960 	const char *member = NULL;
961 	bool show_member = false;
962 	u64 kinds = 0;
963 	int i;
964 
965 	show->state.name[0] = '\0';
966 
967 	/*
968 	 * Don't show type name if we're showing an array member;
969 	 * in that case we show the array type so don't need to repeat
970 	 * ourselves for each member.
971 	 */
972 	if (show->state.array_member)
973 		return "";
974 
975 	/* Retrieve member name, if any. */
976 	if (m) {
977 		member = btf_name_by_offset(show->btf, m->name_off);
978 		show_member = strlen(member) > 0;
979 		id = m->type;
980 	}
981 
982 	/*
983 	 * Start with type_id, as we have resolved the struct btf_type *
984 	 * via btf_modifier_show() past the parent typedef to the child
985 	 * struct, int etc it is defined as.  In such cases, the type_id
986 	 * still represents the starting type while the struct btf_type *
987 	 * in our show->state points at the resolved type of the typedef.
988 	 */
989 	t = btf_type_by_id(show->btf, id);
990 	if (!t)
991 		return "";
992 
993 	/*
994 	 * The goal here is to build up the right number of pointer and
995 	 * array suffixes while ensuring the type name for a typedef
996 	 * is represented.  Along the way we accumulate a list of
997 	 * BTF kinds we have encountered, since these will inform later
998 	 * display; for example, pointer types will not require an
999 	 * opening "{" for struct, we will just display the pointer value.
1000 	 *
1001 	 * We also want to accumulate the right number of pointer or array
1002 	 * indices in the format string while iterating until we get to
1003 	 * the typedef/pointee/array member target type.
1004 	 *
1005 	 * We start by pointing at the end of pointer and array suffix
1006 	 * strings; as we accumulate pointers and arrays we move the pointer
1007 	 * or array string backwards so it will show the expected number of
1008 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1009 	 * and/or arrays and typedefs are supported as a precaution.
1010 	 *
1011 	 * We also want to get typedef name while proceeding to resolve
1012 	 * type it points to so that we can add parentheses if it is a
1013 	 * "typedef struct" etc.
1014 	 */
1015 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1016 
1017 		switch (BTF_INFO_KIND(t->info)) {
1018 		case BTF_KIND_TYPEDEF:
1019 			if (!name)
1020 				name = btf_name_by_offset(show->btf,
1021 							       t->name_off);
1022 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1023 			id = t->type;
1024 			break;
1025 		case BTF_KIND_ARRAY:
1026 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1027 			parens = "[";
1028 			if (!t)
1029 				return "";
1030 			array = btf_type_array(t);
1031 			if (array_suffix > array_suffixes)
1032 				array_suffix -= 2;
1033 			id = array->type;
1034 			break;
1035 		case BTF_KIND_PTR:
1036 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1037 			if (ptr_suffix > ptr_suffixes)
1038 				ptr_suffix -= 1;
1039 			id = t->type;
1040 			break;
1041 		default:
1042 			id = 0;
1043 			break;
1044 		}
1045 		if (!id)
1046 			break;
1047 		t = btf_type_skip_qualifiers(show->btf, id);
1048 	}
1049 	/* We may not be able to represent this type; bail to be safe */
1050 	if (i == BTF_SHOW_MAX_ITER)
1051 		return "";
1052 
1053 	if (!name)
1054 		name = btf_name_by_offset(show->btf, t->name_off);
1055 
1056 	switch (BTF_INFO_KIND(t->info)) {
1057 	case BTF_KIND_STRUCT:
1058 	case BTF_KIND_UNION:
1059 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1060 			 "struct" : "union";
1061 		/* if it's an array of struct/union, parens is already set */
1062 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1063 			parens = "{";
1064 		break;
1065 	case BTF_KIND_ENUM:
1066 	case BTF_KIND_ENUM64:
1067 		prefix = "enum";
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	/* pointer does not require parens */
1074 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1075 		parens = "";
1076 	/* typedef does not require struct/union/enum prefix */
1077 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1078 		prefix = "";
1079 
1080 	if (!name)
1081 		name = "";
1082 
1083 	/* Even if we don't want type name info, we want parentheses etc */
1084 	if (show->flags & BTF_SHOW_NONAME)
1085 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1086 			 parens);
1087 	else
1088 		snprintf(show->state.name, sizeof(show->state.name),
1089 			 "%s%s%s(%s%s%s%s%s%s)%s",
1090 			 /* first 3 strings comprise ".member = " */
1091 			 show_member ? "." : "",
1092 			 show_member ? member : "",
1093 			 show_member ? " = " : "",
1094 			 /* ...next is our prefix (struct, enum, etc) */
1095 			 prefix,
1096 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1097 			 /* ...this is the type name itself */
1098 			 name,
1099 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1100 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1101 			 array_suffix, parens);
1102 
1103 	return show->state.name;
1104 }
1105 
1106 static const char *__btf_show_indent(struct btf_show *show)
1107 {
1108 	const char *indents = "                                ";
1109 	const char *indent = &indents[strlen(indents)];
1110 
1111 	if ((indent - show->state.depth) >= indents)
1112 		return indent - show->state.depth;
1113 	return indents;
1114 }
1115 
1116 static const char *btf_show_indent(struct btf_show *show)
1117 {
1118 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1119 }
1120 
1121 static const char *btf_show_newline(struct btf_show *show)
1122 {
1123 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1124 }
1125 
1126 static const char *btf_show_delim(struct btf_show *show)
1127 {
1128 	if (show->state.depth == 0)
1129 		return "";
1130 
1131 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1132 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1133 		return "|";
1134 
1135 	return ",";
1136 }
1137 
1138 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1139 {
1140 	va_list args;
1141 
1142 	if (!show->state.depth_check) {
1143 		va_start(args, fmt);
1144 		show->showfn(show, fmt, args);
1145 		va_end(args);
1146 	}
1147 }
1148 
1149 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1150  * format specifiers to the format specifier passed in; these do the work of
1151  * adding indentation, delimiters etc while the caller simply has to specify
1152  * the type value(s) in the format specifier + value(s).
1153  */
1154 #define btf_show_type_value(show, fmt, value)				       \
1155 	do {								       \
1156 		if ((value) != (__typeof__(value))0 ||			       \
1157 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1158 		    show->state.depth == 0) {				       \
1159 			btf_show(show, "%s%s" fmt "%s%s",		       \
1160 				 btf_show_indent(show),			       \
1161 				 btf_show_name(show),			       \
1162 				 value, btf_show_delim(show),		       \
1163 				 btf_show_newline(show));		       \
1164 			if (show->state.depth > show->state.depth_to_show)     \
1165 				show->state.depth_to_show = show->state.depth; \
1166 		}							       \
1167 	} while (0)
1168 
1169 #define btf_show_type_values(show, fmt, ...)				       \
1170 	do {								       \
1171 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1172 			 btf_show_name(show),				       \
1173 			 __VA_ARGS__, btf_show_delim(show),		       \
1174 			 btf_show_newline(show));			       \
1175 		if (show->state.depth > show->state.depth_to_show)	       \
1176 			show->state.depth_to_show = show->state.depth;	       \
1177 	} while (0)
1178 
1179 /* How much is left to copy to safe buffer after @data? */
1180 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1181 {
1182 	return show->obj.head + show->obj.size - data;
1183 }
1184 
1185 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1186 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1187 {
1188 	return data >= show->obj.data &&
1189 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1190 }
1191 
1192 /*
1193  * If object pointed to by @data of @size falls within our safe buffer, return
1194  * the equivalent pointer to the same safe data.  Assumes
1195  * copy_from_kernel_nofault() has already happened and our safe buffer is
1196  * populated.
1197  */
1198 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1199 {
1200 	if (btf_show_obj_is_safe(show, data, size))
1201 		return show->obj.safe + (data - show->obj.data);
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * Return a safe-to-access version of data pointed to by @data.
1207  * We do this by copying the relevant amount of information
1208  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1209  *
1210  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1211  * safe copy is needed.
1212  *
1213  * Otherwise we need to determine if we have the required amount
1214  * of data (determined by the @data pointer and the size of the
1215  * largest base type we can encounter (represented by
1216  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1217  * that we will be able to print some of the current object,
1218  * and if more is needed a copy will be triggered.
1219  * Some objects such as structs will not fit into the buffer;
1220  * in such cases additional copies when we iterate over their
1221  * members may be needed.
1222  *
1223  * btf_show_obj_safe() is used to return a safe buffer for
1224  * btf_show_start_type(); this ensures that as we recurse into
1225  * nested types we always have safe data for the given type.
1226  * This approach is somewhat wasteful; it's possible for example
1227  * that when iterating over a large union we'll end up copying the
1228  * same data repeatedly, but the goal is safety not performance.
1229  * We use stack data as opposed to per-CPU buffers because the
1230  * iteration over a type can take some time, and preemption handling
1231  * would greatly complicate use of the safe buffer.
1232  */
1233 static void *btf_show_obj_safe(struct btf_show *show,
1234 			       const struct btf_type *t,
1235 			       void *data)
1236 {
1237 	const struct btf_type *rt;
1238 	int size_left, size;
1239 	void *safe = NULL;
1240 
1241 	if (show->flags & BTF_SHOW_UNSAFE)
1242 		return data;
1243 
1244 	rt = btf_resolve_size(show->btf, t, &size);
1245 	if (IS_ERR(rt)) {
1246 		show->state.status = PTR_ERR(rt);
1247 		return NULL;
1248 	}
1249 
1250 	/*
1251 	 * Is this toplevel object? If so, set total object size and
1252 	 * initialize pointers.  Otherwise check if we still fall within
1253 	 * our safe object data.
1254 	 */
1255 	if (show->state.depth == 0) {
1256 		show->obj.size = size;
1257 		show->obj.head = data;
1258 	} else {
1259 		/*
1260 		 * If the size of the current object is > our remaining
1261 		 * safe buffer we _may_ need to do a new copy.  However
1262 		 * consider the case of a nested struct; it's size pushes
1263 		 * us over the safe buffer limit, but showing any individual
1264 		 * struct members does not.  In such cases, we don't need
1265 		 * to initiate a fresh copy yet; however we definitely need
1266 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1267 		 * in our buffer, regardless of the current object size.
1268 		 * The logic here is that as we resolve types we will
1269 		 * hit a base type at some point, and we need to be sure
1270 		 * the next chunk of data is safely available to display
1271 		 * that type info safely.  We cannot rely on the size of
1272 		 * the current object here because it may be much larger
1273 		 * than our current buffer (e.g. task_struct is 8k).
1274 		 * All we want to do here is ensure that we can print the
1275 		 * next basic type, which we can if either
1276 		 * - the current type size is within the safe buffer; or
1277 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1278 		 *   the safe buffer.
1279 		 */
1280 		safe = __btf_show_obj_safe(show, data,
1281 					   min(size,
1282 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1283 	}
1284 
1285 	/*
1286 	 * We need a new copy to our safe object, either because we haven't
1287 	 * yet copied and are initializing safe data, or because the data
1288 	 * we want falls outside the boundaries of the safe object.
1289 	 */
1290 	if (!safe) {
1291 		size_left = btf_show_obj_size_left(show, data);
1292 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1293 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1294 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1295 							      data, size_left);
1296 		if (!show->state.status) {
1297 			show->obj.data = data;
1298 			safe = show->obj.safe;
1299 		}
1300 	}
1301 
1302 	return safe;
1303 }
1304 
1305 /*
1306  * Set the type we are starting to show and return a safe data pointer
1307  * to be used for showing the associated data.
1308  */
1309 static void *btf_show_start_type(struct btf_show *show,
1310 				 const struct btf_type *t,
1311 				 u32 type_id, void *data)
1312 {
1313 	show->state.type = t;
1314 	show->state.type_id = type_id;
1315 	show->state.name[0] = '\0';
1316 
1317 	return btf_show_obj_safe(show, t, data);
1318 }
1319 
1320 static void btf_show_end_type(struct btf_show *show)
1321 {
1322 	show->state.type = NULL;
1323 	show->state.type_id = 0;
1324 	show->state.name[0] = '\0';
1325 }
1326 
1327 static void *btf_show_start_aggr_type(struct btf_show *show,
1328 				      const struct btf_type *t,
1329 				      u32 type_id, void *data)
1330 {
1331 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1332 
1333 	if (!safe_data)
1334 		return safe_data;
1335 
1336 	btf_show(show, "%s%s%s", btf_show_indent(show),
1337 		 btf_show_name(show),
1338 		 btf_show_newline(show));
1339 	show->state.depth++;
1340 	return safe_data;
1341 }
1342 
1343 static void btf_show_end_aggr_type(struct btf_show *show,
1344 				   const char *suffix)
1345 {
1346 	show->state.depth--;
1347 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1348 		 btf_show_delim(show), btf_show_newline(show));
1349 	btf_show_end_type(show);
1350 }
1351 
1352 static void btf_show_start_member(struct btf_show *show,
1353 				  const struct btf_member *m)
1354 {
1355 	show->state.member = m;
1356 }
1357 
1358 static void btf_show_start_array_member(struct btf_show *show)
1359 {
1360 	show->state.array_member = 1;
1361 	btf_show_start_member(show, NULL);
1362 }
1363 
1364 static void btf_show_end_member(struct btf_show *show)
1365 {
1366 	show->state.member = NULL;
1367 }
1368 
1369 static void btf_show_end_array_member(struct btf_show *show)
1370 {
1371 	show->state.array_member = 0;
1372 	btf_show_end_member(show);
1373 }
1374 
1375 static void *btf_show_start_array_type(struct btf_show *show,
1376 				       const struct btf_type *t,
1377 				       u32 type_id,
1378 				       u16 array_encoding,
1379 				       void *data)
1380 {
1381 	show->state.array_encoding = array_encoding;
1382 	show->state.array_terminated = 0;
1383 	return btf_show_start_aggr_type(show, t, type_id, data);
1384 }
1385 
1386 static void btf_show_end_array_type(struct btf_show *show)
1387 {
1388 	show->state.array_encoding = 0;
1389 	show->state.array_terminated = 0;
1390 	btf_show_end_aggr_type(show, "]");
1391 }
1392 
1393 static void *btf_show_start_struct_type(struct btf_show *show,
1394 					const struct btf_type *t,
1395 					u32 type_id,
1396 					void *data)
1397 {
1398 	return btf_show_start_aggr_type(show, t, type_id, data);
1399 }
1400 
1401 static void btf_show_end_struct_type(struct btf_show *show)
1402 {
1403 	btf_show_end_aggr_type(show, "}");
1404 }
1405 
1406 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1407 					      const char *fmt, ...)
1408 {
1409 	va_list args;
1410 
1411 	va_start(args, fmt);
1412 	bpf_verifier_vlog(log, fmt, args);
1413 	va_end(args);
1414 }
1415 
1416 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1417 					    const char *fmt, ...)
1418 {
1419 	struct bpf_verifier_log *log = &env->log;
1420 	va_list args;
1421 
1422 	if (!bpf_verifier_log_needed(log))
1423 		return;
1424 
1425 	va_start(args, fmt);
1426 	bpf_verifier_vlog(log, fmt, args);
1427 	va_end(args);
1428 }
1429 
1430 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1431 						   const struct btf_type *t,
1432 						   bool log_details,
1433 						   const char *fmt, ...)
1434 {
1435 	struct bpf_verifier_log *log = &env->log;
1436 	struct btf *btf = env->btf;
1437 	va_list args;
1438 
1439 	if (!bpf_verifier_log_needed(log))
1440 		return;
1441 
1442 	if (log->level == BPF_LOG_KERNEL) {
1443 		/* btf verifier prints all types it is processing via
1444 		 * btf_verifier_log_type(..., fmt = NULL).
1445 		 * Skip those prints for in-kernel BTF verification.
1446 		 */
1447 		if (!fmt)
1448 			return;
1449 
1450 		/* Skip logging when loading module BTF with mismatches permitted */
1451 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1452 			return;
1453 	}
1454 
1455 	__btf_verifier_log(log, "[%u] %s %s%s",
1456 			   env->log_type_id,
1457 			   btf_type_str(t),
1458 			   __btf_name_by_offset(btf, t->name_off),
1459 			   log_details ? " " : "");
1460 
1461 	if (log_details)
1462 		btf_type_ops(t)->log_details(env, t);
1463 
1464 	if (fmt && *fmt) {
1465 		__btf_verifier_log(log, " ");
1466 		va_start(args, fmt);
1467 		bpf_verifier_vlog(log, fmt, args);
1468 		va_end(args);
1469 	}
1470 
1471 	__btf_verifier_log(log, "\n");
1472 }
1473 
1474 #define btf_verifier_log_type(env, t, ...) \
1475 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1476 #define btf_verifier_log_basic(env, t, ...) \
1477 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1478 
1479 __printf(4, 5)
1480 static void btf_verifier_log_member(struct btf_verifier_env *env,
1481 				    const struct btf_type *struct_type,
1482 				    const struct btf_member *member,
1483 				    const char *fmt, ...)
1484 {
1485 	struct bpf_verifier_log *log = &env->log;
1486 	struct btf *btf = env->btf;
1487 	va_list args;
1488 
1489 	if (!bpf_verifier_log_needed(log))
1490 		return;
1491 
1492 	if (log->level == BPF_LOG_KERNEL) {
1493 		if (!fmt)
1494 			return;
1495 
1496 		/* Skip logging when loading module BTF with mismatches permitted */
1497 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1498 			return;
1499 	}
1500 
1501 	/* The CHECK_META phase already did a btf dump.
1502 	 *
1503 	 * If member is logged again, it must hit an error in
1504 	 * parsing this member.  It is useful to print out which
1505 	 * struct this member belongs to.
1506 	 */
1507 	if (env->phase != CHECK_META)
1508 		btf_verifier_log_type(env, struct_type, NULL);
1509 
1510 	if (btf_type_kflag(struct_type))
1511 		__btf_verifier_log(log,
1512 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1513 				   __btf_name_by_offset(btf, member->name_off),
1514 				   member->type,
1515 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1516 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1517 	else
1518 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1519 				   __btf_name_by_offset(btf, member->name_off),
1520 				   member->type, member->offset);
1521 
1522 	if (fmt && *fmt) {
1523 		__btf_verifier_log(log, " ");
1524 		va_start(args, fmt);
1525 		bpf_verifier_vlog(log, fmt, args);
1526 		va_end(args);
1527 	}
1528 
1529 	__btf_verifier_log(log, "\n");
1530 }
1531 
1532 __printf(4, 5)
1533 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1534 				 const struct btf_type *datasec_type,
1535 				 const struct btf_var_secinfo *vsi,
1536 				 const char *fmt, ...)
1537 {
1538 	struct bpf_verifier_log *log = &env->log;
1539 	va_list args;
1540 
1541 	if (!bpf_verifier_log_needed(log))
1542 		return;
1543 	if (log->level == BPF_LOG_KERNEL && !fmt)
1544 		return;
1545 	if (env->phase != CHECK_META)
1546 		btf_verifier_log_type(env, datasec_type, NULL);
1547 
1548 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1549 			   vsi->type, vsi->offset, vsi->size);
1550 	if (fmt && *fmt) {
1551 		__btf_verifier_log(log, " ");
1552 		va_start(args, fmt);
1553 		bpf_verifier_vlog(log, fmt, args);
1554 		va_end(args);
1555 	}
1556 
1557 	__btf_verifier_log(log, "\n");
1558 }
1559 
1560 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1561 				 u32 btf_data_size)
1562 {
1563 	struct bpf_verifier_log *log = &env->log;
1564 	const struct btf *btf = env->btf;
1565 	const struct btf_header *hdr;
1566 
1567 	if (!bpf_verifier_log_needed(log))
1568 		return;
1569 
1570 	if (log->level == BPF_LOG_KERNEL)
1571 		return;
1572 	hdr = &btf->hdr;
1573 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1574 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1575 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1576 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1577 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1578 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1579 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1580 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1581 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1582 }
1583 
1584 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1585 {
1586 	struct btf *btf = env->btf;
1587 
1588 	if (btf->types_size == btf->nr_types) {
1589 		/* Expand 'types' array */
1590 
1591 		struct btf_type **new_types;
1592 		u32 expand_by, new_size;
1593 
1594 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1595 			btf_verifier_log(env, "Exceeded max num of types");
1596 			return -E2BIG;
1597 		}
1598 
1599 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1600 		new_size = min_t(u32, BTF_MAX_TYPE,
1601 				 btf->types_size + expand_by);
1602 
1603 		new_types = kvcalloc(new_size, sizeof(*new_types),
1604 				     GFP_KERNEL | __GFP_NOWARN);
1605 		if (!new_types)
1606 			return -ENOMEM;
1607 
1608 		if (btf->nr_types == 0) {
1609 			if (!btf->base_btf) {
1610 				/* lazily init VOID type */
1611 				new_types[0] = &btf_void;
1612 				btf->nr_types++;
1613 			}
1614 		} else {
1615 			memcpy(new_types, btf->types,
1616 			       sizeof(*btf->types) * btf->nr_types);
1617 		}
1618 
1619 		kvfree(btf->types);
1620 		btf->types = new_types;
1621 		btf->types_size = new_size;
1622 	}
1623 
1624 	btf->types[btf->nr_types++] = t;
1625 
1626 	return 0;
1627 }
1628 
1629 static int btf_alloc_id(struct btf *btf)
1630 {
1631 	int id;
1632 
1633 	idr_preload(GFP_KERNEL);
1634 	spin_lock_bh(&btf_idr_lock);
1635 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1636 	if (id > 0)
1637 		btf->id = id;
1638 	spin_unlock_bh(&btf_idr_lock);
1639 	idr_preload_end();
1640 
1641 	if (WARN_ON_ONCE(!id))
1642 		return -ENOSPC;
1643 
1644 	return id > 0 ? 0 : id;
1645 }
1646 
1647 static void btf_free_id(struct btf *btf)
1648 {
1649 	unsigned long flags;
1650 
1651 	/*
1652 	 * In map-in-map, calling map_delete_elem() on outer
1653 	 * map will call bpf_map_put on the inner map.
1654 	 * It will then eventually call btf_free_id()
1655 	 * on the inner map.  Some of the map_delete_elem()
1656 	 * implementation may have irq disabled, so
1657 	 * we need to use the _irqsave() version instead
1658 	 * of the _bh() version.
1659 	 */
1660 	spin_lock_irqsave(&btf_idr_lock, flags);
1661 	idr_remove(&btf_idr, btf->id);
1662 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1663 }
1664 
1665 static void btf_free_kfunc_set_tab(struct btf *btf)
1666 {
1667 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1668 	int hook;
1669 
1670 	if (!tab)
1671 		return;
1672 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1673 		kfree(tab->sets[hook]);
1674 	kfree(tab);
1675 	btf->kfunc_set_tab = NULL;
1676 }
1677 
1678 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1679 {
1680 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1681 
1682 	if (!tab)
1683 		return;
1684 	kfree(tab);
1685 	btf->dtor_kfunc_tab = NULL;
1686 }
1687 
1688 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1689 {
1690 	int i;
1691 
1692 	if (!tab)
1693 		return;
1694 	for (i = 0; i < tab->cnt; i++)
1695 		btf_record_free(tab->types[i].record);
1696 	kfree(tab);
1697 }
1698 
1699 static void btf_free_struct_meta_tab(struct btf *btf)
1700 {
1701 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1702 
1703 	btf_struct_metas_free(tab);
1704 	btf->struct_meta_tab = NULL;
1705 }
1706 
1707 static void btf_free_struct_ops_tab(struct btf *btf)
1708 {
1709 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1710 	u32 i;
1711 
1712 	if (!tab)
1713 		return;
1714 
1715 	for (i = 0; i < tab->cnt; i++)
1716 		bpf_struct_ops_desc_release(&tab->ops[i]);
1717 
1718 	kfree(tab);
1719 	btf->struct_ops_tab = NULL;
1720 }
1721 
1722 static void btf_free(struct btf *btf)
1723 {
1724 	btf_free_struct_meta_tab(btf);
1725 	btf_free_dtor_kfunc_tab(btf);
1726 	btf_free_kfunc_set_tab(btf);
1727 	btf_free_struct_ops_tab(btf);
1728 	kvfree(btf->types);
1729 	kvfree(btf->resolved_sizes);
1730 	kvfree(btf->resolved_ids);
1731 	/* vmlinux does not allocate btf->data, it simply points it at
1732 	 * __start_BTF.
1733 	 */
1734 	if (!btf_is_vmlinux(btf))
1735 		kvfree(btf->data);
1736 	kvfree(btf->base_id_map);
1737 	kfree(btf);
1738 }
1739 
1740 static void btf_free_rcu(struct rcu_head *rcu)
1741 {
1742 	struct btf *btf = container_of(rcu, struct btf, rcu);
1743 
1744 	btf_free(btf);
1745 }
1746 
1747 const char *btf_get_name(const struct btf *btf)
1748 {
1749 	return btf->name;
1750 }
1751 
1752 void btf_get(struct btf *btf)
1753 {
1754 	refcount_inc(&btf->refcnt);
1755 }
1756 
1757 void btf_put(struct btf *btf)
1758 {
1759 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1760 		btf_free_id(btf);
1761 		call_rcu(&btf->rcu, btf_free_rcu);
1762 	}
1763 }
1764 
1765 struct btf *btf_base_btf(const struct btf *btf)
1766 {
1767 	return btf->base_btf;
1768 }
1769 
1770 const struct btf_header *btf_header(const struct btf *btf)
1771 {
1772 	return &btf->hdr;
1773 }
1774 
1775 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1776 {
1777 	btf->base_btf = (struct btf *)base_btf;
1778 	btf->start_id = btf_nr_types(base_btf);
1779 	btf->start_str_off = base_btf->hdr.str_len;
1780 }
1781 
1782 static int env_resolve_init(struct btf_verifier_env *env)
1783 {
1784 	struct btf *btf = env->btf;
1785 	u32 nr_types = btf->nr_types;
1786 	u32 *resolved_sizes = NULL;
1787 	u32 *resolved_ids = NULL;
1788 	u8 *visit_states = NULL;
1789 
1790 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1791 				  GFP_KERNEL | __GFP_NOWARN);
1792 	if (!resolved_sizes)
1793 		goto nomem;
1794 
1795 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1796 				GFP_KERNEL | __GFP_NOWARN);
1797 	if (!resolved_ids)
1798 		goto nomem;
1799 
1800 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1801 				GFP_KERNEL | __GFP_NOWARN);
1802 	if (!visit_states)
1803 		goto nomem;
1804 
1805 	btf->resolved_sizes = resolved_sizes;
1806 	btf->resolved_ids = resolved_ids;
1807 	env->visit_states = visit_states;
1808 
1809 	return 0;
1810 
1811 nomem:
1812 	kvfree(resolved_sizes);
1813 	kvfree(resolved_ids);
1814 	kvfree(visit_states);
1815 	return -ENOMEM;
1816 }
1817 
1818 static void btf_verifier_env_free(struct btf_verifier_env *env)
1819 {
1820 	kvfree(env->visit_states);
1821 	kfree(env);
1822 }
1823 
1824 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1825 				     const struct btf_type *next_type)
1826 {
1827 	switch (env->resolve_mode) {
1828 	case RESOLVE_TBD:
1829 		/* int, enum or void is a sink */
1830 		return !btf_type_needs_resolve(next_type);
1831 	case RESOLVE_PTR:
1832 		/* int, enum, void, struct, array, func or func_proto is a sink
1833 		 * for ptr
1834 		 */
1835 		return !btf_type_is_modifier(next_type) &&
1836 			!btf_type_is_ptr(next_type);
1837 	case RESOLVE_STRUCT_OR_ARRAY:
1838 		/* int, enum, void, ptr, func or func_proto is a sink
1839 		 * for struct and array
1840 		 */
1841 		return !btf_type_is_modifier(next_type) &&
1842 			!btf_type_is_array(next_type) &&
1843 			!btf_type_is_struct(next_type);
1844 	default:
1845 		BUG();
1846 	}
1847 }
1848 
1849 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1850 				 u32 type_id)
1851 {
1852 	/* base BTF types should be resolved by now */
1853 	if (type_id < env->btf->start_id)
1854 		return true;
1855 
1856 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1857 }
1858 
1859 static int env_stack_push(struct btf_verifier_env *env,
1860 			  const struct btf_type *t, u32 type_id)
1861 {
1862 	const struct btf *btf = env->btf;
1863 	struct resolve_vertex *v;
1864 
1865 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1866 		return -E2BIG;
1867 
1868 	if (type_id < btf->start_id
1869 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1870 		return -EEXIST;
1871 
1872 	env->visit_states[type_id - btf->start_id] = VISITED;
1873 
1874 	v = &env->stack[env->top_stack++];
1875 	v->t = t;
1876 	v->type_id = type_id;
1877 	v->next_member = 0;
1878 
1879 	if (env->resolve_mode == RESOLVE_TBD) {
1880 		if (btf_type_is_ptr(t))
1881 			env->resolve_mode = RESOLVE_PTR;
1882 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1883 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 static void env_stack_set_next_member(struct btf_verifier_env *env,
1890 				      u16 next_member)
1891 {
1892 	env->stack[env->top_stack - 1].next_member = next_member;
1893 }
1894 
1895 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1896 				   u32 resolved_type_id,
1897 				   u32 resolved_size)
1898 {
1899 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1900 	struct btf *btf = env->btf;
1901 
1902 	type_id -= btf->start_id; /* adjust to local type id */
1903 	btf->resolved_sizes[type_id] = resolved_size;
1904 	btf->resolved_ids[type_id] = resolved_type_id;
1905 	env->visit_states[type_id] = RESOLVED;
1906 }
1907 
1908 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1909 {
1910 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1911 }
1912 
1913 /* Resolve the size of a passed-in "type"
1914  *
1915  * type: is an array (e.g. u32 array[x][y])
1916  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1917  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1918  *             corresponds to the return type.
1919  * *elem_type: u32
1920  * *elem_id: id of u32
1921  * *total_nelems: (x * y).  Hence, individual elem size is
1922  *                (*type_size / *total_nelems)
1923  * *type_id: id of type if it's changed within the function, 0 if not
1924  *
1925  * type: is not an array (e.g. const struct X)
1926  * return type: type "struct X"
1927  * *type_size: sizeof(struct X)
1928  * *elem_type: same as return type ("struct X")
1929  * *elem_id: 0
1930  * *total_nelems: 1
1931  * *type_id: id of type if it's changed within the function, 0 if not
1932  */
1933 static const struct btf_type *
1934 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1935 		   u32 *type_size, const struct btf_type **elem_type,
1936 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1937 {
1938 	const struct btf_type *array_type = NULL;
1939 	const struct btf_array *array = NULL;
1940 	u32 i, size, nelems = 1, id = 0;
1941 
1942 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1943 		switch (BTF_INFO_KIND(type->info)) {
1944 		/* type->size can be used */
1945 		case BTF_KIND_INT:
1946 		case BTF_KIND_STRUCT:
1947 		case BTF_KIND_UNION:
1948 		case BTF_KIND_ENUM:
1949 		case BTF_KIND_FLOAT:
1950 		case BTF_KIND_ENUM64:
1951 			size = type->size;
1952 			goto resolved;
1953 
1954 		case BTF_KIND_PTR:
1955 			size = sizeof(void *);
1956 			goto resolved;
1957 
1958 		/* Modifiers */
1959 		case BTF_KIND_TYPEDEF:
1960 		case BTF_KIND_VOLATILE:
1961 		case BTF_KIND_CONST:
1962 		case BTF_KIND_RESTRICT:
1963 		case BTF_KIND_TYPE_TAG:
1964 			id = type->type;
1965 			type = btf_type_by_id(btf, type->type);
1966 			break;
1967 
1968 		case BTF_KIND_ARRAY:
1969 			if (!array_type)
1970 				array_type = type;
1971 			array = btf_type_array(type);
1972 			if (nelems && array->nelems > U32_MAX / nelems)
1973 				return ERR_PTR(-EINVAL);
1974 			nelems *= array->nelems;
1975 			type = btf_type_by_id(btf, array->type);
1976 			break;
1977 
1978 		/* type without size */
1979 		default:
1980 			return ERR_PTR(-EINVAL);
1981 		}
1982 	}
1983 
1984 	return ERR_PTR(-EINVAL);
1985 
1986 resolved:
1987 	if (nelems && size > U32_MAX / nelems)
1988 		return ERR_PTR(-EINVAL);
1989 
1990 	*type_size = nelems * size;
1991 	if (total_nelems)
1992 		*total_nelems = nelems;
1993 	if (elem_type)
1994 		*elem_type = type;
1995 	if (elem_id)
1996 		*elem_id = array ? array->type : 0;
1997 	if (type_id && id)
1998 		*type_id = id;
1999 
2000 	return array_type ? : type;
2001 }
2002 
2003 const struct btf_type *
2004 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2005 		 u32 *type_size)
2006 {
2007 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2008 }
2009 
2010 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2011 {
2012 	while (type_id < btf->start_id)
2013 		btf = btf->base_btf;
2014 
2015 	return btf->resolved_ids[type_id - btf->start_id];
2016 }
2017 
2018 /* The input param "type_id" must point to a needs_resolve type */
2019 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2020 						  u32 *type_id)
2021 {
2022 	*type_id = btf_resolved_type_id(btf, *type_id);
2023 	return btf_type_by_id(btf, *type_id);
2024 }
2025 
2026 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2027 {
2028 	while (type_id < btf->start_id)
2029 		btf = btf->base_btf;
2030 
2031 	return btf->resolved_sizes[type_id - btf->start_id];
2032 }
2033 
2034 const struct btf_type *btf_type_id_size(const struct btf *btf,
2035 					u32 *type_id, u32 *ret_size)
2036 {
2037 	const struct btf_type *size_type;
2038 	u32 size_type_id = *type_id;
2039 	u32 size = 0;
2040 
2041 	size_type = btf_type_by_id(btf, size_type_id);
2042 	if (btf_type_nosize_or_null(size_type))
2043 		return NULL;
2044 
2045 	if (btf_type_has_size(size_type)) {
2046 		size = size_type->size;
2047 	} else if (btf_type_is_array(size_type)) {
2048 		size = btf_resolved_type_size(btf, size_type_id);
2049 	} else if (btf_type_is_ptr(size_type)) {
2050 		size = sizeof(void *);
2051 	} else {
2052 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2053 				 !btf_type_is_var(size_type)))
2054 			return NULL;
2055 
2056 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2057 		size_type = btf_type_by_id(btf, size_type_id);
2058 		if (btf_type_nosize_or_null(size_type))
2059 			return NULL;
2060 		else if (btf_type_has_size(size_type))
2061 			size = size_type->size;
2062 		else if (btf_type_is_array(size_type))
2063 			size = btf_resolved_type_size(btf, size_type_id);
2064 		else if (btf_type_is_ptr(size_type))
2065 			size = sizeof(void *);
2066 		else
2067 			return NULL;
2068 	}
2069 
2070 	*type_id = size_type_id;
2071 	if (ret_size)
2072 		*ret_size = size;
2073 
2074 	return size_type;
2075 }
2076 
2077 static int btf_df_check_member(struct btf_verifier_env *env,
2078 			       const struct btf_type *struct_type,
2079 			       const struct btf_member *member,
2080 			       const struct btf_type *member_type)
2081 {
2082 	btf_verifier_log_basic(env, struct_type,
2083 			       "Unsupported check_member");
2084 	return -EINVAL;
2085 }
2086 
2087 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2088 				     const struct btf_type *struct_type,
2089 				     const struct btf_member *member,
2090 				     const struct btf_type *member_type)
2091 {
2092 	btf_verifier_log_basic(env, struct_type,
2093 			       "Unsupported check_kflag_member");
2094 	return -EINVAL;
2095 }
2096 
2097 /* Used for ptr, array struct/union and float type members.
2098  * int, enum and modifier types have their specific callback functions.
2099  */
2100 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2101 					  const struct btf_type *struct_type,
2102 					  const struct btf_member *member,
2103 					  const struct btf_type *member_type)
2104 {
2105 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2106 		btf_verifier_log_member(env, struct_type, member,
2107 					"Invalid member bitfield_size");
2108 		return -EINVAL;
2109 	}
2110 
2111 	/* bitfield size is 0, so member->offset represents bit offset only.
2112 	 * It is safe to call non kflag check_member variants.
2113 	 */
2114 	return btf_type_ops(member_type)->check_member(env, struct_type,
2115 						       member,
2116 						       member_type);
2117 }
2118 
2119 static int btf_df_resolve(struct btf_verifier_env *env,
2120 			  const struct resolve_vertex *v)
2121 {
2122 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2123 	return -EINVAL;
2124 }
2125 
2126 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2127 			u32 type_id, void *data, u8 bits_offsets,
2128 			struct btf_show *show)
2129 {
2130 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2131 }
2132 
2133 static int btf_int_check_member(struct btf_verifier_env *env,
2134 				const struct btf_type *struct_type,
2135 				const struct btf_member *member,
2136 				const struct btf_type *member_type)
2137 {
2138 	u32 int_data = btf_type_int(member_type);
2139 	u32 struct_bits_off = member->offset;
2140 	u32 struct_size = struct_type->size;
2141 	u32 nr_copy_bits;
2142 	u32 bytes_offset;
2143 
2144 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2145 		btf_verifier_log_member(env, struct_type, member,
2146 					"bits_offset exceeds U32_MAX");
2147 		return -EINVAL;
2148 	}
2149 
2150 	struct_bits_off += BTF_INT_OFFSET(int_data);
2151 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2152 	nr_copy_bits = BTF_INT_BITS(int_data) +
2153 		BITS_PER_BYTE_MASKED(struct_bits_off);
2154 
2155 	if (nr_copy_bits > BITS_PER_U128) {
2156 		btf_verifier_log_member(env, struct_type, member,
2157 					"nr_copy_bits exceeds 128");
2158 		return -EINVAL;
2159 	}
2160 
2161 	if (struct_size < bytes_offset ||
2162 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2163 		btf_verifier_log_member(env, struct_type, member,
2164 					"Member exceeds struct_size");
2165 		return -EINVAL;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2172 				      const struct btf_type *struct_type,
2173 				      const struct btf_member *member,
2174 				      const struct btf_type *member_type)
2175 {
2176 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2177 	u32 int_data = btf_type_int(member_type);
2178 	u32 struct_size = struct_type->size;
2179 	u32 nr_copy_bits;
2180 
2181 	/* a regular int type is required for the kflag int member */
2182 	if (!btf_type_int_is_regular(member_type)) {
2183 		btf_verifier_log_member(env, struct_type, member,
2184 					"Invalid member base type");
2185 		return -EINVAL;
2186 	}
2187 
2188 	/* check sanity of bitfield size */
2189 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2190 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2191 	nr_int_data_bits = BTF_INT_BITS(int_data);
2192 	if (!nr_bits) {
2193 		/* Not a bitfield member, member offset must be at byte
2194 		 * boundary.
2195 		 */
2196 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2197 			btf_verifier_log_member(env, struct_type, member,
2198 						"Invalid member offset");
2199 			return -EINVAL;
2200 		}
2201 
2202 		nr_bits = nr_int_data_bits;
2203 	} else if (nr_bits > nr_int_data_bits) {
2204 		btf_verifier_log_member(env, struct_type, member,
2205 					"Invalid member bitfield_size");
2206 		return -EINVAL;
2207 	}
2208 
2209 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2210 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2211 	if (nr_copy_bits > BITS_PER_U128) {
2212 		btf_verifier_log_member(env, struct_type, member,
2213 					"nr_copy_bits exceeds 128");
2214 		return -EINVAL;
2215 	}
2216 
2217 	if (struct_size < bytes_offset ||
2218 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2219 		btf_verifier_log_member(env, struct_type, member,
2220 					"Member exceeds struct_size");
2221 		return -EINVAL;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2228 			      const struct btf_type *t,
2229 			      u32 meta_left)
2230 {
2231 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2232 	u16 encoding;
2233 
2234 	if (meta_left < meta_needed) {
2235 		btf_verifier_log_basic(env, t,
2236 				       "meta_left:%u meta_needed:%u",
2237 				       meta_left, meta_needed);
2238 		return -EINVAL;
2239 	}
2240 
2241 	if (btf_type_vlen(t)) {
2242 		btf_verifier_log_type(env, t, "vlen != 0");
2243 		return -EINVAL;
2244 	}
2245 
2246 	if (btf_type_kflag(t)) {
2247 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2248 		return -EINVAL;
2249 	}
2250 
2251 	int_data = btf_type_int(t);
2252 	if (int_data & ~BTF_INT_MASK) {
2253 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2254 				       int_data);
2255 		return -EINVAL;
2256 	}
2257 
2258 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2259 
2260 	if (nr_bits > BITS_PER_U128) {
2261 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2262 				      BITS_PER_U128);
2263 		return -EINVAL;
2264 	}
2265 
2266 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2267 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2268 		return -EINVAL;
2269 	}
2270 
2271 	/*
2272 	 * Only one of the encoding bits is allowed and it
2273 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2274 	 * Multiple bits can be allowed later if it is found
2275 	 * to be insufficient.
2276 	 */
2277 	encoding = BTF_INT_ENCODING(int_data);
2278 	if (encoding &&
2279 	    encoding != BTF_INT_SIGNED &&
2280 	    encoding != BTF_INT_CHAR &&
2281 	    encoding != BTF_INT_BOOL) {
2282 		btf_verifier_log_type(env, t, "Unsupported encoding");
2283 		return -ENOTSUPP;
2284 	}
2285 
2286 	btf_verifier_log_type(env, t, NULL);
2287 
2288 	return meta_needed;
2289 }
2290 
2291 static void btf_int_log(struct btf_verifier_env *env,
2292 			const struct btf_type *t)
2293 {
2294 	int int_data = btf_type_int(t);
2295 
2296 	btf_verifier_log(env,
2297 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2298 			 t->size, BTF_INT_OFFSET(int_data),
2299 			 BTF_INT_BITS(int_data),
2300 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2301 }
2302 
2303 static void btf_int128_print(struct btf_show *show, void *data)
2304 {
2305 	/* data points to a __int128 number.
2306 	 * Suppose
2307 	 *     int128_num = *(__int128 *)data;
2308 	 * The below formulas shows what upper_num and lower_num represents:
2309 	 *     upper_num = int128_num >> 64;
2310 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2311 	 */
2312 	u64 upper_num, lower_num;
2313 
2314 #ifdef __BIG_ENDIAN_BITFIELD
2315 	upper_num = *(u64 *)data;
2316 	lower_num = *(u64 *)(data + 8);
2317 #else
2318 	upper_num = *(u64 *)(data + 8);
2319 	lower_num = *(u64 *)data;
2320 #endif
2321 	if (upper_num == 0)
2322 		btf_show_type_value(show, "0x%llx", lower_num);
2323 	else
2324 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2325 				     lower_num);
2326 }
2327 
2328 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2329 			     u16 right_shift_bits)
2330 {
2331 	u64 upper_num, lower_num;
2332 
2333 #ifdef __BIG_ENDIAN_BITFIELD
2334 	upper_num = print_num[0];
2335 	lower_num = print_num[1];
2336 #else
2337 	upper_num = print_num[1];
2338 	lower_num = print_num[0];
2339 #endif
2340 
2341 	/* shake out un-needed bits by shift/or operations */
2342 	if (left_shift_bits >= 64) {
2343 		upper_num = lower_num << (left_shift_bits - 64);
2344 		lower_num = 0;
2345 	} else {
2346 		upper_num = (upper_num << left_shift_bits) |
2347 			    (lower_num >> (64 - left_shift_bits));
2348 		lower_num = lower_num << left_shift_bits;
2349 	}
2350 
2351 	if (right_shift_bits >= 64) {
2352 		lower_num = upper_num >> (right_shift_bits - 64);
2353 		upper_num = 0;
2354 	} else {
2355 		lower_num = (lower_num >> right_shift_bits) |
2356 			    (upper_num << (64 - right_shift_bits));
2357 		upper_num = upper_num >> right_shift_bits;
2358 	}
2359 
2360 #ifdef __BIG_ENDIAN_BITFIELD
2361 	print_num[0] = upper_num;
2362 	print_num[1] = lower_num;
2363 #else
2364 	print_num[0] = lower_num;
2365 	print_num[1] = upper_num;
2366 #endif
2367 }
2368 
2369 static void btf_bitfield_show(void *data, u8 bits_offset,
2370 			      u8 nr_bits, struct btf_show *show)
2371 {
2372 	u16 left_shift_bits, right_shift_bits;
2373 	u8 nr_copy_bytes;
2374 	u8 nr_copy_bits;
2375 	u64 print_num[2] = {};
2376 
2377 	nr_copy_bits = nr_bits + bits_offset;
2378 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2379 
2380 	memcpy(print_num, data, nr_copy_bytes);
2381 
2382 #ifdef __BIG_ENDIAN_BITFIELD
2383 	left_shift_bits = bits_offset;
2384 #else
2385 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2386 #endif
2387 	right_shift_bits = BITS_PER_U128 - nr_bits;
2388 
2389 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2390 	btf_int128_print(show, print_num);
2391 }
2392 
2393 
2394 static void btf_int_bits_show(const struct btf *btf,
2395 			      const struct btf_type *t,
2396 			      void *data, u8 bits_offset,
2397 			      struct btf_show *show)
2398 {
2399 	u32 int_data = btf_type_int(t);
2400 	u8 nr_bits = BTF_INT_BITS(int_data);
2401 	u8 total_bits_offset;
2402 
2403 	/*
2404 	 * bits_offset is at most 7.
2405 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2406 	 */
2407 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2408 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2409 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2410 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2411 }
2412 
2413 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2414 			 u32 type_id, void *data, u8 bits_offset,
2415 			 struct btf_show *show)
2416 {
2417 	u32 int_data = btf_type_int(t);
2418 	u8 encoding = BTF_INT_ENCODING(int_data);
2419 	bool sign = encoding & BTF_INT_SIGNED;
2420 	u8 nr_bits = BTF_INT_BITS(int_data);
2421 	void *safe_data;
2422 
2423 	safe_data = btf_show_start_type(show, t, type_id, data);
2424 	if (!safe_data)
2425 		return;
2426 
2427 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2428 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2429 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2430 		goto out;
2431 	}
2432 
2433 	switch (nr_bits) {
2434 	case 128:
2435 		btf_int128_print(show, safe_data);
2436 		break;
2437 	case 64:
2438 		if (sign)
2439 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2440 		else
2441 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2442 		break;
2443 	case 32:
2444 		if (sign)
2445 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2446 		else
2447 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2448 		break;
2449 	case 16:
2450 		if (sign)
2451 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2452 		else
2453 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2454 		break;
2455 	case 8:
2456 		if (show->state.array_encoding == BTF_INT_CHAR) {
2457 			/* check for null terminator */
2458 			if (show->state.array_terminated)
2459 				break;
2460 			if (*(char *)data == '\0') {
2461 				show->state.array_terminated = 1;
2462 				break;
2463 			}
2464 			if (isprint(*(char *)data)) {
2465 				btf_show_type_value(show, "'%c'",
2466 						    *(char *)safe_data);
2467 				break;
2468 			}
2469 		}
2470 		if (sign)
2471 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2472 		else
2473 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2474 		break;
2475 	default:
2476 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2477 		break;
2478 	}
2479 out:
2480 	btf_show_end_type(show);
2481 }
2482 
2483 static const struct btf_kind_operations int_ops = {
2484 	.check_meta = btf_int_check_meta,
2485 	.resolve = btf_df_resolve,
2486 	.check_member = btf_int_check_member,
2487 	.check_kflag_member = btf_int_check_kflag_member,
2488 	.log_details = btf_int_log,
2489 	.show = btf_int_show,
2490 };
2491 
2492 static int btf_modifier_check_member(struct btf_verifier_env *env,
2493 				     const struct btf_type *struct_type,
2494 				     const struct btf_member *member,
2495 				     const struct btf_type *member_type)
2496 {
2497 	const struct btf_type *resolved_type;
2498 	u32 resolved_type_id = member->type;
2499 	struct btf_member resolved_member;
2500 	struct btf *btf = env->btf;
2501 
2502 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2503 	if (!resolved_type) {
2504 		btf_verifier_log_member(env, struct_type, member,
2505 					"Invalid member");
2506 		return -EINVAL;
2507 	}
2508 
2509 	resolved_member = *member;
2510 	resolved_member.type = resolved_type_id;
2511 
2512 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2513 							 &resolved_member,
2514 							 resolved_type);
2515 }
2516 
2517 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2518 					   const struct btf_type *struct_type,
2519 					   const struct btf_member *member,
2520 					   const struct btf_type *member_type)
2521 {
2522 	const struct btf_type *resolved_type;
2523 	u32 resolved_type_id = member->type;
2524 	struct btf_member resolved_member;
2525 	struct btf *btf = env->btf;
2526 
2527 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2528 	if (!resolved_type) {
2529 		btf_verifier_log_member(env, struct_type, member,
2530 					"Invalid member");
2531 		return -EINVAL;
2532 	}
2533 
2534 	resolved_member = *member;
2535 	resolved_member.type = resolved_type_id;
2536 
2537 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2538 							       &resolved_member,
2539 							       resolved_type);
2540 }
2541 
2542 static int btf_ptr_check_member(struct btf_verifier_env *env,
2543 				const struct btf_type *struct_type,
2544 				const struct btf_member *member,
2545 				const struct btf_type *member_type)
2546 {
2547 	u32 struct_size, struct_bits_off, bytes_offset;
2548 
2549 	struct_size = struct_type->size;
2550 	struct_bits_off = member->offset;
2551 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2552 
2553 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2554 		btf_verifier_log_member(env, struct_type, member,
2555 					"Member is not byte aligned");
2556 		return -EINVAL;
2557 	}
2558 
2559 	if (struct_size - bytes_offset < sizeof(void *)) {
2560 		btf_verifier_log_member(env, struct_type, member,
2561 					"Member exceeds struct_size");
2562 		return -EINVAL;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2569 				   const struct btf_type *t,
2570 				   u32 meta_left)
2571 {
2572 	const char *value;
2573 
2574 	if (btf_type_vlen(t)) {
2575 		btf_verifier_log_type(env, t, "vlen != 0");
2576 		return -EINVAL;
2577 	}
2578 
2579 	if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) {
2580 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (!BTF_TYPE_ID_VALID(t->type)) {
2585 		btf_verifier_log_type(env, t, "Invalid type_id");
2586 		return -EINVAL;
2587 	}
2588 
2589 	/* typedef/type_tag type must have a valid name, and other ref types,
2590 	 * volatile, const, restrict, should have a null name.
2591 	 */
2592 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2593 		if (!t->name_off ||
2594 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2595 			btf_verifier_log_type(env, t, "Invalid name");
2596 			return -EINVAL;
2597 		}
2598 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2599 		value = btf_name_by_offset(env->btf, t->name_off);
2600 		if (!value || !value[0]) {
2601 			btf_verifier_log_type(env, t, "Invalid name");
2602 			return -EINVAL;
2603 		}
2604 	} else {
2605 		if (t->name_off) {
2606 			btf_verifier_log_type(env, t, "Invalid name");
2607 			return -EINVAL;
2608 		}
2609 	}
2610 
2611 	btf_verifier_log_type(env, t, NULL);
2612 
2613 	return 0;
2614 }
2615 
2616 static int btf_modifier_resolve(struct btf_verifier_env *env,
2617 				const struct resolve_vertex *v)
2618 {
2619 	const struct btf_type *t = v->t;
2620 	const struct btf_type *next_type;
2621 	u32 next_type_id = t->type;
2622 	struct btf *btf = env->btf;
2623 
2624 	next_type = btf_type_by_id(btf, next_type_id);
2625 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2626 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2627 		return -EINVAL;
2628 	}
2629 
2630 	if (!env_type_is_resolve_sink(env, next_type) &&
2631 	    !env_type_is_resolved(env, next_type_id))
2632 		return env_stack_push(env, next_type, next_type_id);
2633 
2634 	/* Figure out the resolved next_type_id with size.
2635 	 * They will be stored in the current modifier's
2636 	 * resolved_ids and resolved_sizes such that it can
2637 	 * save us a few type-following when we use it later (e.g. in
2638 	 * pretty print).
2639 	 */
2640 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2641 		if (env_type_is_resolved(env, next_type_id))
2642 			next_type = btf_type_id_resolve(btf, &next_type_id);
2643 
2644 		/* "typedef void new_void", "const void"...etc */
2645 		if (!btf_type_is_void(next_type) &&
2646 		    !btf_type_is_fwd(next_type) &&
2647 		    !btf_type_is_func_proto(next_type)) {
2648 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2649 			return -EINVAL;
2650 		}
2651 	}
2652 
2653 	env_stack_pop_resolved(env, next_type_id, 0);
2654 
2655 	return 0;
2656 }
2657 
2658 static int btf_var_resolve(struct btf_verifier_env *env,
2659 			   const struct resolve_vertex *v)
2660 {
2661 	const struct btf_type *next_type;
2662 	const struct btf_type *t = v->t;
2663 	u32 next_type_id = t->type;
2664 	struct btf *btf = env->btf;
2665 
2666 	next_type = btf_type_by_id(btf, next_type_id);
2667 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2668 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2669 		return -EINVAL;
2670 	}
2671 
2672 	if (!env_type_is_resolve_sink(env, next_type) &&
2673 	    !env_type_is_resolved(env, next_type_id))
2674 		return env_stack_push(env, next_type, next_type_id);
2675 
2676 	if (btf_type_is_modifier(next_type)) {
2677 		const struct btf_type *resolved_type;
2678 		u32 resolved_type_id;
2679 
2680 		resolved_type_id = next_type_id;
2681 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2682 
2683 		if (btf_type_is_ptr(resolved_type) &&
2684 		    !env_type_is_resolve_sink(env, resolved_type) &&
2685 		    !env_type_is_resolved(env, resolved_type_id))
2686 			return env_stack_push(env, resolved_type,
2687 					      resolved_type_id);
2688 	}
2689 
2690 	/* We must resolve to something concrete at this point, no
2691 	 * forward types or similar that would resolve to size of
2692 	 * zero is allowed.
2693 	 */
2694 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2695 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2696 		return -EINVAL;
2697 	}
2698 
2699 	env_stack_pop_resolved(env, next_type_id, 0);
2700 
2701 	return 0;
2702 }
2703 
2704 static int btf_ptr_resolve(struct btf_verifier_env *env,
2705 			   const struct resolve_vertex *v)
2706 {
2707 	const struct btf_type *next_type;
2708 	const struct btf_type *t = v->t;
2709 	u32 next_type_id = t->type;
2710 	struct btf *btf = env->btf;
2711 
2712 	next_type = btf_type_by_id(btf, next_type_id);
2713 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2714 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2715 		return -EINVAL;
2716 	}
2717 
2718 	if (!env_type_is_resolve_sink(env, next_type) &&
2719 	    !env_type_is_resolved(env, next_type_id))
2720 		return env_stack_push(env, next_type, next_type_id);
2721 
2722 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2723 	 * the modifier may have stopped resolving when it was resolved
2724 	 * to a ptr (last-resolved-ptr).
2725 	 *
2726 	 * We now need to continue from the last-resolved-ptr to
2727 	 * ensure the last-resolved-ptr will not referring back to
2728 	 * the current ptr (t).
2729 	 */
2730 	if (btf_type_is_modifier(next_type)) {
2731 		const struct btf_type *resolved_type;
2732 		u32 resolved_type_id;
2733 
2734 		resolved_type_id = next_type_id;
2735 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2736 
2737 		if (btf_type_is_ptr(resolved_type) &&
2738 		    !env_type_is_resolve_sink(env, resolved_type) &&
2739 		    !env_type_is_resolved(env, resolved_type_id))
2740 			return env_stack_push(env, resolved_type,
2741 					      resolved_type_id);
2742 	}
2743 
2744 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2745 		if (env_type_is_resolved(env, next_type_id))
2746 			next_type = btf_type_id_resolve(btf, &next_type_id);
2747 
2748 		if (!btf_type_is_void(next_type) &&
2749 		    !btf_type_is_fwd(next_type) &&
2750 		    !btf_type_is_func_proto(next_type)) {
2751 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2752 			return -EINVAL;
2753 		}
2754 	}
2755 
2756 	env_stack_pop_resolved(env, next_type_id, 0);
2757 
2758 	return 0;
2759 }
2760 
2761 static void btf_modifier_show(const struct btf *btf,
2762 			      const struct btf_type *t,
2763 			      u32 type_id, void *data,
2764 			      u8 bits_offset, struct btf_show *show)
2765 {
2766 	if (btf->resolved_ids)
2767 		t = btf_type_id_resolve(btf, &type_id);
2768 	else
2769 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2770 
2771 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2772 }
2773 
2774 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2775 			 u32 type_id, void *data, u8 bits_offset,
2776 			 struct btf_show *show)
2777 {
2778 	t = btf_type_id_resolve(btf, &type_id);
2779 
2780 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2781 }
2782 
2783 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2784 			 u32 type_id, void *data, u8 bits_offset,
2785 			 struct btf_show *show)
2786 {
2787 	void *safe_data;
2788 
2789 	safe_data = btf_show_start_type(show, t, type_id, data);
2790 	if (!safe_data)
2791 		return;
2792 
2793 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2794 	if (show->flags & BTF_SHOW_PTR_RAW)
2795 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2796 	else
2797 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2798 	btf_show_end_type(show);
2799 }
2800 
2801 static void btf_ref_type_log(struct btf_verifier_env *env,
2802 			     const struct btf_type *t)
2803 {
2804 	btf_verifier_log(env, "type_id=%u", t->type);
2805 }
2806 
2807 static const struct btf_kind_operations modifier_ops = {
2808 	.check_meta = btf_ref_type_check_meta,
2809 	.resolve = btf_modifier_resolve,
2810 	.check_member = btf_modifier_check_member,
2811 	.check_kflag_member = btf_modifier_check_kflag_member,
2812 	.log_details = btf_ref_type_log,
2813 	.show = btf_modifier_show,
2814 };
2815 
2816 static const struct btf_kind_operations ptr_ops = {
2817 	.check_meta = btf_ref_type_check_meta,
2818 	.resolve = btf_ptr_resolve,
2819 	.check_member = btf_ptr_check_member,
2820 	.check_kflag_member = btf_generic_check_kflag_member,
2821 	.log_details = btf_ref_type_log,
2822 	.show = btf_ptr_show,
2823 };
2824 
2825 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2826 			      const struct btf_type *t,
2827 			      u32 meta_left)
2828 {
2829 	if (btf_type_vlen(t)) {
2830 		btf_verifier_log_type(env, t, "vlen != 0");
2831 		return -EINVAL;
2832 	}
2833 
2834 	if (t->type) {
2835 		btf_verifier_log_type(env, t, "type != 0");
2836 		return -EINVAL;
2837 	}
2838 
2839 	/* fwd type must have a valid name */
2840 	if (!t->name_off ||
2841 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2842 		btf_verifier_log_type(env, t, "Invalid name");
2843 		return -EINVAL;
2844 	}
2845 
2846 	btf_verifier_log_type(env, t, NULL);
2847 
2848 	return 0;
2849 }
2850 
2851 static void btf_fwd_type_log(struct btf_verifier_env *env,
2852 			     const struct btf_type *t)
2853 {
2854 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2855 }
2856 
2857 static const struct btf_kind_operations fwd_ops = {
2858 	.check_meta = btf_fwd_check_meta,
2859 	.resolve = btf_df_resolve,
2860 	.check_member = btf_df_check_member,
2861 	.check_kflag_member = btf_df_check_kflag_member,
2862 	.log_details = btf_fwd_type_log,
2863 	.show = btf_df_show,
2864 };
2865 
2866 static int btf_array_check_member(struct btf_verifier_env *env,
2867 				  const struct btf_type *struct_type,
2868 				  const struct btf_member *member,
2869 				  const struct btf_type *member_type)
2870 {
2871 	u32 struct_bits_off = member->offset;
2872 	u32 struct_size, bytes_offset;
2873 	u32 array_type_id, array_size;
2874 	struct btf *btf = env->btf;
2875 
2876 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2877 		btf_verifier_log_member(env, struct_type, member,
2878 					"Member is not byte aligned");
2879 		return -EINVAL;
2880 	}
2881 
2882 	array_type_id = member->type;
2883 	btf_type_id_size(btf, &array_type_id, &array_size);
2884 	struct_size = struct_type->size;
2885 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2886 	if (struct_size - bytes_offset < array_size) {
2887 		btf_verifier_log_member(env, struct_type, member,
2888 					"Member exceeds struct_size");
2889 		return -EINVAL;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2896 				const struct btf_type *t,
2897 				u32 meta_left)
2898 {
2899 	const struct btf_array *array = btf_type_array(t);
2900 	u32 meta_needed = sizeof(*array);
2901 
2902 	if (meta_left < meta_needed) {
2903 		btf_verifier_log_basic(env, t,
2904 				       "meta_left:%u meta_needed:%u",
2905 				       meta_left, meta_needed);
2906 		return -EINVAL;
2907 	}
2908 
2909 	/* array type should not have a name */
2910 	if (t->name_off) {
2911 		btf_verifier_log_type(env, t, "Invalid name");
2912 		return -EINVAL;
2913 	}
2914 
2915 	if (btf_type_vlen(t)) {
2916 		btf_verifier_log_type(env, t, "vlen != 0");
2917 		return -EINVAL;
2918 	}
2919 
2920 	if (btf_type_kflag(t)) {
2921 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2922 		return -EINVAL;
2923 	}
2924 
2925 	if (t->size) {
2926 		btf_verifier_log_type(env, t, "size != 0");
2927 		return -EINVAL;
2928 	}
2929 
2930 	/* Array elem type and index type cannot be in type void,
2931 	 * so !array->type and !array->index_type are not allowed.
2932 	 */
2933 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2934 		btf_verifier_log_type(env, t, "Invalid elem");
2935 		return -EINVAL;
2936 	}
2937 
2938 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2939 		btf_verifier_log_type(env, t, "Invalid index");
2940 		return -EINVAL;
2941 	}
2942 
2943 	btf_verifier_log_type(env, t, NULL);
2944 
2945 	return meta_needed;
2946 }
2947 
2948 static int btf_array_resolve(struct btf_verifier_env *env,
2949 			     const struct resolve_vertex *v)
2950 {
2951 	const struct btf_array *array = btf_type_array(v->t);
2952 	const struct btf_type *elem_type, *index_type;
2953 	u32 elem_type_id, index_type_id;
2954 	struct btf *btf = env->btf;
2955 	u32 elem_size;
2956 
2957 	/* Check array->index_type */
2958 	index_type_id = array->index_type;
2959 	index_type = btf_type_by_id(btf, index_type_id);
2960 	if (btf_type_nosize_or_null(index_type) ||
2961 	    btf_type_is_resolve_source_only(index_type)) {
2962 		btf_verifier_log_type(env, v->t, "Invalid index");
2963 		return -EINVAL;
2964 	}
2965 
2966 	if (!env_type_is_resolve_sink(env, index_type) &&
2967 	    !env_type_is_resolved(env, index_type_id))
2968 		return env_stack_push(env, index_type, index_type_id);
2969 
2970 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2971 	if (!index_type || !btf_type_is_int(index_type) ||
2972 	    !btf_type_int_is_regular(index_type)) {
2973 		btf_verifier_log_type(env, v->t, "Invalid index");
2974 		return -EINVAL;
2975 	}
2976 
2977 	/* Check array->type */
2978 	elem_type_id = array->type;
2979 	elem_type = btf_type_by_id(btf, elem_type_id);
2980 	if (btf_type_nosize_or_null(elem_type) ||
2981 	    btf_type_is_resolve_source_only(elem_type)) {
2982 		btf_verifier_log_type(env, v->t,
2983 				      "Invalid elem");
2984 		return -EINVAL;
2985 	}
2986 
2987 	if (!env_type_is_resolve_sink(env, elem_type) &&
2988 	    !env_type_is_resolved(env, elem_type_id))
2989 		return env_stack_push(env, elem_type, elem_type_id);
2990 
2991 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2992 	if (!elem_type) {
2993 		btf_verifier_log_type(env, v->t, "Invalid elem");
2994 		return -EINVAL;
2995 	}
2996 
2997 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2998 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2999 		return -EINVAL;
3000 	}
3001 
3002 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3003 		btf_verifier_log_type(env, v->t,
3004 				      "Array size overflows U32_MAX");
3005 		return -EINVAL;
3006 	}
3007 
3008 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3009 
3010 	return 0;
3011 }
3012 
3013 static void btf_array_log(struct btf_verifier_env *env,
3014 			  const struct btf_type *t)
3015 {
3016 	const struct btf_array *array = btf_type_array(t);
3017 
3018 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3019 			 array->type, array->index_type, array->nelems);
3020 }
3021 
3022 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3023 			     u32 type_id, void *data, u8 bits_offset,
3024 			     struct btf_show *show)
3025 {
3026 	const struct btf_array *array = btf_type_array(t);
3027 	const struct btf_kind_operations *elem_ops;
3028 	const struct btf_type *elem_type;
3029 	u32 i, elem_size = 0, elem_type_id;
3030 	u16 encoding = 0;
3031 
3032 	elem_type_id = array->type;
3033 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3034 	if (elem_type && btf_type_has_size(elem_type))
3035 		elem_size = elem_type->size;
3036 
3037 	if (elem_type && btf_type_is_int(elem_type)) {
3038 		u32 int_type = btf_type_int(elem_type);
3039 
3040 		encoding = BTF_INT_ENCODING(int_type);
3041 
3042 		/*
3043 		 * BTF_INT_CHAR encoding never seems to be set for
3044 		 * char arrays, so if size is 1 and element is
3045 		 * printable as a char, we'll do that.
3046 		 */
3047 		if (elem_size == 1)
3048 			encoding = BTF_INT_CHAR;
3049 	}
3050 
3051 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3052 		return;
3053 
3054 	if (!elem_type)
3055 		goto out;
3056 	elem_ops = btf_type_ops(elem_type);
3057 
3058 	for (i = 0; i < array->nelems; i++) {
3059 
3060 		btf_show_start_array_member(show);
3061 
3062 		elem_ops->show(btf, elem_type, elem_type_id, data,
3063 			       bits_offset, show);
3064 		data += elem_size;
3065 
3066 		btf_show_end_array_member(show);
3067 
3068 		if (show->state.array_terminated)
3069 			break;
3070 	}
3071 out:
3072 	btf_show_end_array_type(show);
3073 }
3074 
3075 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3076 			   u32 type_id, void *data, u8 bits_offset,
3077 			   struct btf_show *show)
3078 {
3079 	const struct btf_member *m = show->state.member;
3080 
3081 	/*
3082 	 * First check if any members would be shown (are non-zero).
3083 	 * See comments above "struct btf_show" definition for more
3084 	 * details on how this works at a high-level.
3085 	 */
3086 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3087 		if (!show->state.depth_check) {
3088 			show->state.depth_check = show->state.depth + 1;
3089 			show->state.depth_to_show = 0;
3090 		}
3091 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3092 		show->state.member = m;
3093 
3094 		if (show->state.depth_check != show->state.depth + 1)
3095 			return;
3096 		show->state.depth_check = 0;
3097 
3098 		if (show->state.depth_to_show <= show->state.depth)
3099 			return;
3100 		/*
3101 		 * Reaching here indicates we have recursed and found
3102 		 * non-zero array member(s).
3103 		 */
3104 	}
3105 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3106 }
3107 
3108 static const struct btf_kind_operations array_ops = {
3109 	.check_meta = btf_array_check_meta,
3110 	.resolve = btf_array_resolve,
3111 	.check_member = btf_array_check_member,
3112 	.check_kflag_member = btf_generic_check_kflag_member,
3113 	.log_details = btf_array_log,
3114 	.show = btf_array_show,
3115 };
3116 
3117 static int btf_struct_check_member(struct btf_verifier_env *env,
3118 				   const struct btf_type *struct_type,
3119 				   const struct btf_member *member,
3120 				   const struct btf_type *member_type)
3121 {
3122 	u32 struct_bits_off = member->offset;
3123 	u32 struct_size, bytes_offset;
3124 
3125 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3126 		btf_verifier_log_member(env, struct_type, member,
3127 					"Member is not byte aligned");
3128 		return -EINVAL;
3129 	}
3130 
3131 	struct_size = struct_type->size;
3132 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3133 	if (struct_size - bytes_offset < member_type->size) {
3134 		btf_verifier_log_member(env, struct_type, member,
3135 					"Member exceeds struct_size");
3136 		return -EINVAL;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3143 				 const struct btf_type *t,
3144 				 u32 meta_left)
3145 {
3146 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3147 	const struct btf_member *member;
3148 	u32 meta_needed, last_offset;
3149 	struct btf *btf = env->btf;
3150 	u32 struct_size = t->size;
3151 	u32 offset;
3152 	u16 i;
3153 
3154 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3155 	if (meta_left < meta_needed) {
3156 		btf_verifier_log_basic(env, t,
3157 				       "meta_left:%u meta_needed:%u",
3158 				       meta_left, meta_needed);
3159 		return -EINVAL;
3160 	}
3161 
3162 	/* struct type either no name or a valid one */
3163 	if (t->name_off &&
3164 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3165 		btf_verifier_log_type(env, t, "Invalid name");
3166 		return -EINVAL;
3167 	}
3168 
3169 	btf_verifier_log_type(env, t, NULL);
3170 
3171 	last_offset = 0;
3172 	for_each_member(i, t, member) {
3173 		if (!btf_name_offset_valid(btf, member->name_off)) {
3174 			btf_verifier_log_member(env, t, member,
3175 						"Invalid member name_offset:%u",
3176 						member->name_off);
3177 			return -EINVAL;
3178 		}
3179 
3180 		/* struct member either no name or a valid one */
3181 		if (member->name_off &&
3182 		    !btf_name_valid_identifier(btf, member->name_off)) {
3183 			btf_verifier_log_member(env, t, member, "Invalid name");
3184 			return -EINVAL;
3185 		}
3186 		/* A member cannot be in type void */
3187 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3188 			btf_verifier_log_member(env, t, member,
3189 						"Invalid type_id");
3190 			return -EINVAL;
3191 		}
3192 
3193 		offset = __btf_member_bit_offset(t, member);
3194 		if (is_union && offset) {
3195 			btf_verifier_log_member(env, t, member,
3196 						"Invalid member bits_offset");
3197 			return -EINVAL;
3198 		}
3199 
3200 		/*
3201 		 * ">" instead of ">=" because the last member could be
3202 		 * "char a[0];"
3203 		 */
3204 		if (last_offset > offset) {
3205 			btf_verifier_log_member(env, t, member,
3206 						"Invalid member bits_offset");
3207 			return -EINVAL;
3208 		}
3209 
3210 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3211 			btf_verifier_log_member(env, t, member,
3212 						"Member bits_offset exceeds its struct size");
3213 			return -EINVAL;
3214 		}
3215 
3216 		btf_verifier_log_member(env, t, member, NULL);
3217 		last_offset = offset;
3218 	}
3219 
3220 	return meta_needed;
3221 }
3222 
3223 static int btf_struct_resolve(struct btf_verifier_env *env,
3224 			      const struct resolve_vertex *v)
3225 {
3226 	const struct btf_member *member;
3227 	int err;
3228 	u16 i;
3229 
3230 	/* Before continue resolving the next_member,
3231 	 * ensure the last member is indeed resolved to a
3232 	 * type with size info.
3233 	 */
3234 	if (v->next_member) {
3235 		const struct btf_type *last_member_type;
3236 		const struct btf_member *last_member;
3237 		u32 last_member_type_id;
3238 
3239 		last_member = btf_type_member(v->t) + v->next_member - 1;
3240 		last_member_type_id = last_member->type;
3241 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3242 						       last_member_type_id)))
3243 			return -EINVAL;
3244 
3245 		last_member_type = btf_type_by_id(env->btf,
3246 						  last_member_type_id);
3247 		if (btf_type_kflag(v->t))
3248 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3249 								last_member,
3250 								last_member_type);
3251 		else
3252 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3253 								last_member,
3254 								last_member_type);
3255 		if (err)
3256 			return err;
3257 	}
3258 
3259 	for_each_member_from(i, v->next_member, v->t, member) {
3260 		u32 member_type_id = member->type;
3261 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3262 								member_type_id);
3263 
3264 		if (btf_type_nosize_or_null(member_type) ||
3265 		    btf_type_is_resolve_source_only(member_type)) {
3266 			btf_verifier_log_member(env, v->t, member,
3267 						"Invalid member");
3268 			return -EINVAL;
3269 		}
3270 
3271 		if (!env_type_is_resolve_sink(env, member_type) &&
3272 		    !env_type_is_resolved(env, member_type_id)) {
3273 			env_stack_set_next_member(env, i + 1);
3274 			return env_stack_push(env, member_type, member_type_id);
3275 		}
3276 
3277 		if (btf_type_kflag(v->t))
3278 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3279 									    member,
3280 									    member_type);
3281 		else
3282 			err = btf_type_ops(member_type)->check_member(env, v->t,
3283 								      member,
3284 								      member_type);
3285 		if (err)
3286 			return err;
3287 	}
3288 
3289 	env_stack_pop_resolved(env, 0, 0);
3290 
3291 	return 0;
3292 }
3293 
3294 static void btf_struct_log(struct btf_verifier_env *env,
3295 			   const struct btf_type *t)
3296 {
3297 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3298 }
3299 
3300 enum {
3301 	BTF_FIELD_IGNORE = 0,
3302 	BTF_FIELD_FOUND  = 1,
3303 };
3304 
3305 struct btf_field_info {
3306 	enum btf_field_type type;
3307 	u32 off;
3308 	union {
3309 		struct {
3310 			u32 type_id;
3311 		} kptr;
3312 		struct {
3313 			const char *node_name;
3314 			u32 value_btf_id;
3315 		} graph_root;
3316 	};
3317 };
3318 
3319 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3320 			   u32 off, int sz, enum btf_field_type field_type,
3321 			   struct btf_field_info *info)
3322 {
3323 	if (!__btf_type_is_struct(t))
3324 		return BTF_FIELD_IGNORE;
3325 	if (t->size != sz)
3326 		return BTF_FIELD_IGNORE;
3327 	info->type = field_type;
3328 	info->off = off;
3329 	return BTF_FIELD_FOUND;
3330 }
3331 
3332 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3333 			 u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3334 {
3335 	enum btf_field_type type;
3336 	const char *tag_value;
3337 	bool is_type_tag;
3338 	u32 res_id;
3339 
3340 	/* Permit modifiers on the pointer itself */
3341 	if (btf_type_is_volatile(t))
3342 		t = btf_type_by_id(btf, t->type);
3343 	/* For PTR, sz is always == 8 */
3344 	if (!btf_type_is_ptr(t))
3345 		return BTF_FIELD_IGNORE;
3346 	t = btf_type_by_id(btf, t->type);
3347 	is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t);
3348 	if (!is_type_tag)
3349 		return BTF_FIELD_IGNORE;
3350 	/* Reject extra tags */
3351 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3352 		return -EINVAL;
3353 	tag_value = __btf_name_by_offset(btf, t->name_off);
3354 	if (!strcmp("kptr_untrusted", tag_value))
3355 		type = BPF_KPTR_UNREF;
3356 	else if (!strcmp("kptr", tag_value))
3357 		type = BPF_KPTR_REF;
3358 	else if (!strcmp("percpu_kptr", tag_value))
3359 		type = BPF_KPTR_PERCPU;
3360 	else if (!strcmp("uptr", tag_value))
3361 		type = BPF_UPTR;
3362 	else
3363 		return -EINVAL;
3364 
3365 	if (!(type & field_mask))
3366 		return BTF_FIELD_IGNORE;
3367 
3368 	/* Get the base type */
3369 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3370 	/* Only pointer to struct is allowed */
3371 	if (!__btf_type_is_struct(t))
3372 		return -EINVAL;
3373 
3374 	info->type = type;
3375 	info->off = off;
3376 	info->kptr.type_id = res_id;
3377 	return BTF_FIELD_FOUND;
3378 }
3379 
3380 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3381 			   int comp_idx, const char *tag_key, int last_id)
3382 {
3383 	int len = strlen(tag_key);
3384 	int i, n;
3385 
3386 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3387 		const struct btf_type *t = btf_type_by_id(btf, i);
3388 
3389 		if (!btf_type_is_decl_tag(t))
3390 			continue;
3391 		if (pt != btf_type_by_id(btf, t->type))
3392 			continue;
3393 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3394 			continue;
3395 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3396 			continue;
3397 		return i;
3398 	}
3399 	return -ENOENT;
3400 }
3401 
3402 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3403 				    int comp_idx, const char *tag_key)
3404 {
3405 	const char *value = NULL;
3406 	const struct btf_type *t;
3407 	int len, id;
3408 
3409 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3410 	if (id < 0)
3411 		return ERR_PTR(id);
3412 
3413 	t = btf_type_by_id(btf, id);
3414 	len = strlen(tag_key);
3415 	value = __btf_name_by_offset(btf, t->name_off) + len;
3416 
3417 	/* Prevent duplicate entries for same type */
3418 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3419 	if (id >= 0)
3420 		return ERR_PTR(-EEXIST);
3421 
3422 	return value;
3423 }
3424 
3425 static int
3426 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3427 		    const struct btf_type *t, int comp_idx, u32 off,
3428 		    int sz, struct btf_field_info *info,
3429 		    enum btf_field_type head_type)
3430 {
3431 	const char *node_field_name;
3432 	const char *value_type;
3433 	s32 id;
3434 
3435 	if (!__btf_type_is_struct(t))
3436 		return BTF_FIELD_IGNORE;
3437 	if (t->size != sz)
3438 		return BTF_FIELD_IGNORE;
3439 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3440 	if (IS_ERR(value_type))
3441 		return -EINVAL;
3442 	node_field_name = strstr(value_type, ":");
3443 	if (!node_field_name)
3444 		return -EINVAL;
3445 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3446 	if (!value_type)
3447 		return -ENOMEM;
3448 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3449 	kfree(value_type);
3450 	if (id < 0)
3451 		return id;
3452 	node_field_name++;
3453 	if (str_is_empty(node_field_name))
3454 		return -EINVAL;
3455 	info->type = head_type;
3456 	info->off = off;
3457 	info->graph_root.value_btf_id = id;
3458 	info->graph_root.node_name = node_field_name;
3459 	return BTF_FIELD_FOUND;
3460 }
3461 
3462 #define field_mask_test_name(field_type, field_type_str) \
3463 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3464 		type = field_type;					\
3465 		goto end;						\
3466 	}
3467 
3468 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3469 			      u32 field_mask, u32 *seen_mask,
3470 			      int *align, int *sz)
3471 {
3472 	int type = 0;
3473 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3474 
3475 	if (field_mask & BPF_SPIN_LOCK) {
3476 		if (!strcmp(name, "bpf_spin_lock")) {
3477 			if (*seen_mask & BPF_SPIN_LOCK)
3478 				return -E2BIG;
3479 			*seen_mask |= BPF_SPIN_LOCK;
3480 			type = BPF_SPIN_LOCK;
3481 			goto end;
3482 		}
3483 	}
3484 	if (field_mask & BPF_TIMER) {
3485 		if (!strcmp(name, "bpf_timer")) {
3486 			if (*seen_mask & BPF_TIMER)
3487 				return -E2BIG;
3488 			*seen_mask |= BPF_TIMER;
3489 			type = BPF_TIMER;
3490 			goto end;
3491 		}
3492 	}
3493 	if (field_mask & BPF_WORKQUEUE) {
3494 		if (!strcmp(name, "bpf_wq")) {
3495 			if (*seen_mask & BPF_WORKQUEUE)
3496 				return -E2BIG;
3497 			*seen_mask |= BPF_WORKQUEUE;
3498 			type = BPF_WORKQUEUE;
3499 			goto end;
3500 		}
3501 	}
3502 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3503 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3504 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3505 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3506 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3507 
3508 	/* Only return BPF_KPTR when all other types with matchable names fail */
3509 	if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3510 		type = BPF_KPTR_REF;
3511 		goto end;
3512 	}
3513 	return 0;
3514 end:
3515 	*sz = btf_field_type_size(type);
3516 	*align = btf_field_type_align(type);
3517 	return type;
3518 }
3519 
3520 #undef field_mask_test_name
3521 
3522 /* Repeat a number of fields for a specified number of times.
3523  *
3524  * Copy the fields starting from the first field and repeat them for
3525  * repeat_cnt times. The fields are repeated by adding the offset of each
3526  * field with
3527  *   (i + 1) * elem_size
3528  * where i is the repeat index and elem_size is the size of an element.
3529  */
3530 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3531 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3532 {
3533 	u32 i, j;
3534 	u32 cur;
3535 
3536 	/* Ensure not repeating fields that should not be repeated. */
3537 	for (i = 0; i < field_cnt; i++) {
3538 		switch (info[i].type) {
3539 		case BPF_KPTR_UNREF:
3540 		case BPF_KPTR_REF:
3541 		case BPF_KPTR_PERCPU:
3542 		case BPF_UPTR:
3543 		case BPF_LIST_HEAD:
3544 		case BPF_RB_ROOT:
3545 			break;
3546 		default:
3547 			return -EINVAL;
3548 		}
3549 	}
3550 
3551 	/* The type of struct size or variable size is u32,
3552 	 * so the multiplication will not overflow.
3553 	 */
3554 	if (field_cnt * (repeat_cnt + 1) > info_cnt)
3555 		return -E2BIG;
3556 
3557 	cur = field_cnt;
3558 	for (i = 0; i < repeat_cnt; i++) {
3559 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3560 		for (j = 0; j < field_cnt; j++)
3561 			info[cur++].off += (i + 1) * elem_size;
3562 	}
3563 
3564 	return 0;
3565 }
3566 
3567 static int btf_find_struct_field(const struct btf *btf,
3568 				 const struct btf_type *t, u32 field_mask,
3569 				 struct btf_field_info *info, int info_cnt,
3570 				 u32 level);
3571 
3572 /* Find special fields in the struct type of a field.
3573  *
3574  * This function is used to find fields of special types that is not a
3575  * global variable or a direct field of a struct type. It also handles the
3576  * repetition if it is the element type of an array.
3577  */
3578 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3579 				  u32 off, u32 nelems,
3580 				  u32 field_mask, struct btf_field_info *info,
3581 				  int info_cnt, u32 level)
3582 {
3583 	int ret, err, i;
3584 
3585 	level++;
3586 	if (level >= MAX_RESOLVE_DEPTH)
3587 		return -E2BIG;
3588 
3589 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3590 
3591 	if (ret <= 0)
3592 		return ret;
3593 
3594 	/* Shift the offsets of the nested struct fields to the offsets
3595 	 * related to the container.
3596 	 */
3597 	for (i = 0; i < ret; i++)
3598 		info[i].off += off;
3599 
3600 	if (nelems > 1) {
3601 		err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3602 		if (err == 0)
3603 			ret *= nelems;
3604 		else
3605 			ret = err;
3606 	}
3607 
3608 	return ret;
3609 }
3610 
3611 static int btf_find_field_one(const struct btf *btf,
3612 			      const struct btf_type *var,
3613 			      const struct btf_type *var_type,
3614 			      int var_idx,
3615 			      u32 off, u32 expected_size,
3616 			      u32 field_mask, u32 *seen_mask,
3617 			      struct btf_field_info *info, int info_cnt,
3618 			      u32 level)
3619 {
3620 	int ret, align, sz, field_type;
3621 	struct btf_field_info tmp;
3622 	const struct btf_array *array;
3623 	u32 i, nelems = 1;
3624 
3625 	/* Walk into array types to find the element type and the number of
3626 	 * elements in the (flattened) array.
3627 	 */
3628 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3629 		array = btf_array(var_type);
3630 		nelems *= array->nelems;
3631 		var_type = btf_type_by_id(btf, array->type);
3632 	}
3633 	if (i == MAX_RESOLVE_DEPTH)
3634 		return -E2BIG;
3635 	if (nelems == 0)
3636 		return 0;
3637 
3638 	field_type = btf_get_field_type(btf, var_type,
3639 					field_mask, seen_mask, &align, &sz);
3640 	/* Look into variables of struct types */
3641 	if (!field_type && __btf_type_is_struct(var_type)) {
3642 		sz = var_type->size;
3643 		if (expected_size && expected_size != sz * nelems)
3644 			return 0;
3645 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3646 					     &info[0], info_cnt, level);
3647 		return ret;
3648 	}
3649 
3650 	if (field_type == 0)
3651 		return 0;
3652 	if (field_type < 0)
3653 		return field_type;
3654 
3655 	if (expected_size && expected_size != sz * nelems)
3656 		return 0;
3657 	if (off % align)
3658 		return 0;
3659 
3660 	switch (field_type) {
3661 	case BPF_SPIN_LOCK:
3662 	case BPF_TIMER:
3663 	case BPF_WORKQUEUE:
3664 	case BPF_LIST_NODE:
3665 	case BPF_RB_NODE:
3666 	case BPF_REFCOUNT:
3667 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3668 				      info_cnt ? &info[0] : &tmp);
3669 		if (ret < 0)
3670 			return ret;
3671 		break;
3672 	case BPF_KPTR_UNREF:
3673 	case BPF_KPTR_REF:
3674 	case BPF_KPTR_PERCPU:
3675 	case BPF_UPTR:
3676 		ret = btf_find_kptr(btf, var_type, off, sz,
3677 				    info_cnt ? &info[0] : &tmp, field_mask);
3678 		if (ret < 0)
3679 			return ret;
3680 		break;
3681 	case BPF_LIST_HEAD:
3682 	case BPF_RB_ROOT:
3683 		ret = btf_find_graph_root(btf, var, var_type,
3684 					  var_idx, off, sz,
3685 					  info_cnt ? &info[0] : &tmp,
3686 					  field_type);
3687 		if (ret < 0)
3688 			return ret;
3689 		break;
3690 	default:
3691 		return -EFAULT;
3692 	}
3693 
3694 	if (ret == BTF_FIELD_IGNORE)
3695 		return 0;
3696 	if (!info_cnt)
3697 		return -E2BIG;
3698 	if (nelems > 1) {
3699 		ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3700 		if (ret < 0)
3701 			return ret;
3702 	}
3703 	return nelems;
3704 }
3705 
3706 static int btf_find_struct_field(const struct btf *btf,
3707 				 const struct btf_type *t, u32 field_mask,
3708 				 struct btf_field_info *info, int info_cnt,
3709 				 u32 level)
3710 {
3711 	int ret, idx = 0;
3712 	const struct btf_member *member;
3713 	u32 i, off, seen_mask = 0;
3714 
3715 	for_each_member(i, t, member) {
3716 		const struct btf_type *member_type = btf_type_by_id(btf,
3717 								    member->type);
3718 
3719 		off = __btf_member_bit_offset(t, member);
3720 		if (off % 8)
3721 			/* valid C code cannot generate such BTF */
3722 			return -EINVAL;
3723 		off /= 8;
3724 
3725 		ret = btf_find_field_one(btf, t, member_type, i,
3726 					 off, 0,
3727 					 field_mask, &seen_mask,
3728 					 &info[idx], info_cnt - idx, level);
3729 		if (ret < 0)
3730 			return ret;
3731 		idx += ret;
3732 	}
3733 	return idx;
3734 }
3735 
3736 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3737 				u32 field_mask, struct btf_field_info *info,
3738 				int info_cnt, u32 level)
3739 {
3740 	int ret, idx = 0;
3741 	const struct btf_var_secinfo *vsi;
3742 	u32 i, off, seen_mask = 0;
3743 
3744 	for_each_vsi(i, t, vsi) {
3745 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3746 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3747 
3748 		off = vsi->offset;
3749 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3750 					 field_mask, &seen_mask,
3751 					 &info[idx], info_cnt - idx,
3752 					 level);
3753 		if (ret < 0)
3754 			return ret;
3755 		idx += ret;
3756 	}
3757 	return idx;
3758 }
3759 
3760 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3761 			  u32 field_mask, struct btf_field_info *info,
3762 			  int info_cnt)
3763 {
3764 	if (__btf_type_is_struct(t))
3765 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3766 	else if (btf_type_is_datasec(t))
3767 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3768 	return -EINVAL;
3769 }
3770 
3771 /* Callers have to ensure the life cycle of btf if it is program BTF */
3772 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3773 			  struct btf_field_info *info)
3774 {
3775 	struct module *mod = NULL;
3776 	const struct btf_type *t;
3777 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3778 	 * is that BTF, otherwise it's program BTF
3779 	 */
3780 	struct btf *kptr_btf;
3781 	int ret;
3782 	s32 id;
3783 
3784 	/* Find type in map BTF, and use it to look up the matching type
3785 	 * in vmlinux or module BTFs, by name and kind.
3786 	 */
3787 	t = btf_type_by_id(btf, info->kptr.type_id);
3788 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3789 			     &kptr_btf);
3790 	if (id == -ENOENT) {
3791 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3792 		WARN_ON_ONCE(btf_is_kernel(btf));
3793 
3794 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3795 		 * kptr allocated via bpf_obj_new
3796 		 */
3797 		field->kptr.dtor = NULL;
3798 		id = info->kptr.type_id;
3799 		kptr_btf = (struct btf *)btf;
3800 		goto found_dtor;
3801 	}
3802 	if (id < 0)
3803 		return id;
3804 
3805 	/* Find and stash the function pointer for the destruction function that
3806 	 * needs to be eventually invoked from the map free path.
3807 	 */
3808 	if (info->type == BPF_KPTR_REF) {
3809 		const struct btf_type *dtor_func;
3810 		const char *dtor_func_name;
3811 		unsigned long addr;
3812 		s32 dtor_btf_id;
3813 
3814 		/* This call also serves as a whitelist of allowed objects that
3815 		 * can be used as a referenced pointer and be stored in a map at
3816 		 * the same time.
3817 		 */
3818 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3819 		if (dtor_btf_id < 0) {
3820 			ret = dtor_btf_id;
3821 			goto end_btf;
3822 		}
3823 
3824 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3825 		if (!dtor_func) {
3826 			ret = -ENOENT;
3827 			goto end_btf;
3828 		}
3829 
3830 		if (btf_is_module(kptr_btf)) {
3831 			mod = btf_try_get_module(kptr_btf);
3832 			if (!mod) {
3833 				ret = -ENXIO;
3834 				goto end_btf;
3835 			}
3836 		}
3837 
3838 		/* We already verified dtor_func to be btf_type_is_func
3839 		 * in register_btf_id_dtor_kfuncs.
3840 		 */
3841 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3842 		addr = kallsyms_lookup_name(dtor_func_name);
3843 		if (!addr) {
3844 			ret = -EINVAL;
3845 			goto end_mod;
3846 		}
3847 		field->kptr.dtor = (void *)addr;
3848 	}
3849 
3850 found_dtor:
3851 	field->kptr.btf_id = id;
3852 	field->kptr.btf = kptr_btf;
3853 	field->kptr.module = mod;
3854 	return 0;
3855 end_mod:
3856 	module_put(mod);
3857 end_btf:
3858 	btf_put(kptr_btf);
3859 	return ret;
3860 }
3861 
3862 static int btf_parse_graph_root(const struct btf *btf,
3863 				struct btf_field *field,
3864 				struct btf_field_info *info,
3865 				const char *node_type_name,
3866 				size_t node_type_align)
3867 {
3868 	const struct btf_type *t, *n = NULL;
3869 	const struct btf_member *member;
3870 	u32 offset;
3871 	int i;
3872 
3873 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3874 	/* We've already checked that value_btf_id is a struct type. We
3875 	 * just need to figure out the offset of the list_node, and
3876 	 * verify its type.
3877 	 */
3878 	for_each_member(i, t, member) {
3879 		if (strcmp(info->graph_root.node_name,
3880 			   __btf_name_by_offset(btf, member->name_off)))
3881 			continue;
3882 		/* Invalid BTF, two members with same name */
3883 		if (n)
3884 			return -EINVAL;
3885 		n = btf_type_by_id(btf, member->type);
3886 		if (!__btf_type_is_struct(n))
3887 			return -EINVAL;
3888 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3889 			return -EINVAL;
3890 		offset = __btf_member_bit_offset(n, member);
3891 		if (offset % 8)
3892 			return -EINVAL;
3893 		offset /= 8;
3894 		if (offset % node_type_align)
3895 			return -EINVAL;
3896 
3897 		field->graph_root.btf = (struct btf *)btf;
3898 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3899 		field->graph_root.node_offset = offset;
3900 	}
3901 	if (!n)
3902 		return -ENOENT;
3903 	return 0;
3904 }
3905 
3906 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3907 			       struct btf_field_info *info)
3908 {
3909 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3910 					    __alignof__(struct bpf_list_node));
3911 }
3912 
3913 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3914 			     struct btf_field_info *info)
3915 {
3916 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3917 					    __alignof__(struct bpf_rb_node));
3918 }
3919 
3920 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3921 {
3922 	const struct btf_field *a = (const struct btf_field *)_a;
3923 	const struct btf_field *b = (const struct btf_field *)_b;
3924 
3925 	if (a->offset < b->offset)
3926 		return -1;
3927 	else if (a->offset > b->offset)
3928 		return 1;
3929 	return 0;
3930 }
3931 
3932 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3933 				    u32 field_mask, u32 value_size)
3934 {
3935 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3936 	u32 next_off = 0, field_type_size;
3937 	struct btf_record *rec;
3938 	int ret, i, cnt;
3939 
3940 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3941 	if (ret < 0)
3942 		return ERR_PTR(ret);
3943 	if (!ret)
3944 		return NULL;
3945 
3946 	cnt = ret;
3947 	/* This needs to be kzalloc to zero out padding and unused fields, see
3948 	 * comment in btf_record_equal.
3949 	 */
3950 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3951 	if (!rec)
3952 		return ERR_PTR(-ENOMEM);
3953 
3954 	rec->spin_lock_off = -EINVAL;
3955 	rec->timer_off = -EINVAL;
3956 	rec->wq_off = -EINVAL;
3957 	rec->refcount_off = -EINVAL;
3958 	for (i = 0; i < cnt; i++) {
3959 		field_type_size = btf_field_type_size(info_arr[i].type);
3960 		if (info_arr[i].off + field_type_size > value_size) {
3961 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3962 			ret = -EFAULT;
3963 			goto end;
3964 		}
3965 		if (info_arr[i].off < next_off) {
3966 			ret = -EEXIST;
3967 			goto end;
3968 		}
3969 		next_off = info_arr[i].off + field_type_size;
3970 
3971 		rec->field_mask |= info_arr[i].type;
3972 		rec->fields[i].offset = info_arr[i].off;
3973 		rec->fields[i].type = info_arr[i].type;
3974 		rec->fields[i].size = field_type_size;
3975 
3976 		switch (info_arr[i].type) {
3977 		case BPF_SPIN_LOCK:
3978 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3979 			/* Cache offset for faster lookup at runtime */
3980 			rec->spin_lock_off = rec->fields[i].offset;
3981 			break;
3982 		case BPF_TIMER:
3983 			WARN_ON_ONCE(rec->timer_off >= 0);
3984 			/* Cache offset for faster lookup at runtime */
3985 			rec->timer_off = rec->fields[i].offset;
3986 			break;
3987 		case BPF_WORKQUEUE:
3988 			WARN_ON_ONCE(rec->wq_off >= 0);
3989 			/* Cache offset for faster lookup at runtime */
3990 			rec->wq_off = rec->fields[i].offset;
3991 			break;
3992 		case BPF_REFCOUNT:
3993 			WARN_ON_ONCE(rec->refcount_off >= 0);
3994 			/* Cache offset for faster lookup at runtime */
3995 			rec->refcount_off = rec->fields[i].offset;
3996 			break;
3997 		case BPF_KPTR_UNREF:
3998 		case BPF_KPTR_REF:
3999 		case BPF_KPTR_PERCPU:
4000 		case BPF_UPTR:
4001 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
4002 			if (ret < 0)
4003 				goto end;
4004 			break;
4005 		case BPF_LIST_HEAD:
4006 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4007 			if (ret < 0)
4008 				goto end;
4009 			break;
4010 		case BPF_RB_ROOT:
4011 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4012 			if (ret < 0)
4013 				goto end;
4014 			break;
4015 		case BPF_LIST_NODE:
4016 		case BPF_RB_NODE:
4017 			break;
4018 		default:
4019 			ret = -EFAULT;
4020 			goto end;
4021 		}
4022 		rec->cnt++;
4023 	}
4024 
4025 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4026 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4027 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4028 		ret = -EINVAL;
4029 		goto end;
4030 	}
4031 
4032 	if (rec->refcount_off < 0 &&
4033 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4034 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4035 		ret = -EINVAL;
4036 		goto end;
4037 	}
4038 
4039 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4040 	       NULL, rec);
4041 
4042 	return rec;
4043 end:
4044 	btf_record_free(rec);
4045 	return ERR_PTR(ret);
4046 }
4047 
4048 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4049 {
4050 	int i;
4051 
4052 	/* There are three types that signify ownership of some other type:
4053 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4054 	 * kptr_ref only supports storing kernel types, which can't store
4055 	 * references to program allocated local types.
4056 	 *
4057 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4058 	 * does not form cycles.
4059 	 */
4060 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4061 		return 0;
4062 	for (i = 0; i < rec->cnt; i++) {
4063 		struct btf_struct_meta *meta;
4064 		const struct btf_type *t;
4065 		u32 btf_id;
4066 
4067 		if (rec->fields[i].type == BPF_UPTR) {
4068 			/* The uptr only supports pinning one page and cannot
4069 			 * point to a kernel struct
4070 			 */
4071 			if (btf_is_kernel(rec->fields[i].kptr.btf))
4072 				return -EINVAL;
4073 			t = btf_type_by_id(rec->fields[i].kptr.btf,
4074 					   rec->fields[i].kptr.btf_id);
4075 			if (!t->size)
4076 				return -EINVAL;
4077 			if (t->size > PAGE_SIZE)
4078 				return -E2BIG;
4079 			continue;
4080 		}
4081 
4082 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4083 			continue;
4084 		btf_id = rec->fields[i].graph_root.value_btf_id;
4085 		meta = btf_find_struct_meta(btf, btf_id);
4086 		if (!meta)
4087 			return -EFAULT;
4088 		rec->fields[i].graph_root.value_rec = meta->record;
4089 
4090 		/* We need to set value_rec for all root types, but no need
4091 		 * to check ownership cycle for a type unless it's also a
4092 		 * node type.
4093 		 */
4094 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4095 			continue;
4096 
4097 		/* We need to ensure ownership acyclicity among all types. The
4098 		 * proper way to do it would be to topologically sort all BTF
4099 		 * IDs based on the ownership edges, since there can be multiple
4100 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4101 		 * following resaoning:
4102 		 *
4103 		 * - A type can only be owned by another type in user BTF if it
4104 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4105 		 * - A type can only _own_ another type in user BTF if it has a
4106 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4107 		 *
4108 		 * We ensure that if a type is both a root and node, its
4109 		 * element types cannot be root types.
4110 		 *
4111 		 * To ensure acyclicity:
4112 		 *
4113 		 * When A is an root type but not a node, its ownership
4114 		 * chain can be:
4115 		 *	A -> B -> C
4116 		 * Where:
4117 		 * - A is an root, e.g. has bpf_rb_root.
4118 		 * - B is both a root and node, e.g. has bpf_rb_node and
4119 		 *   bpf_list_head.
4120 		 * - C is only an root, e.g. has bpf_list_node
4121 		 *
4122 		 * When A is both a root and node, some other type already
4123 		 * owns it in the BTF domain, hence it can not own
4124 		 * another root type through any of the ownership edges.
4125 		 *	A -> B
4126 		 * Where:
4127 		 * - A is both an root and node.
4128 		 * - B is only an node.
4129 		 */
4130 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4131 			return -ELOOP;
4132 	}
4133 	return 0;
4134 }
4135 
4136 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4137 			      u32 type_id, void *data, u8 bits_offset,
4138 			      struct btf_show *show)
4139 {
4140 	const struct btf_member *member;
4141 	void *safe_data;
4142 	u32 i;
4143 
4144 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4145 	if (!safe_data)
4146 		return;
4147 
4148 	for_each_member(i, t, member) {
4149 		const struct btf_type *member_type = btf_type_by_id(btf,
4150 								member->type);
4151 		const struct btf_kind_operations *ops;
4152 		u32 member_offset, bitfield_size;
4153 		u32 bytes_offset;
4154 		u8 bits8_offset;
4155 
4156 		btf_show_start_member(show, member);
4157 
4158 		member_offset = __btf_member_bit_offset(t, member);
4159 		bitfield_size = __btf_member_bitfield_size(t, member);
4160 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4161 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4162 		if (bitfield_size) {
4163 			safe_data = btf_show_start_type(show, member_type,
4164 							member->type,
4165 							data + bytes_offset);
4166 			if (safe_data)
4167 				btf_bitfield_show(safe_data,
4168 						  bits8_offset,
4169 						  bitfield_size, show);
4170 			btf_show_end_type(show);
4171 		} else {
4172 			ops = btf_type_ops(member_type);
4173 			ops->show(btf, member_type, member->type,
4174 				  data + bytes_offset, bits8_offset, show);
4175 		}
4176 
4177 		btf_show_end_member(show);
4178 	}
4179 
4180 	btf_show_end_struct_type(show);
4181 }
4182 
4183 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4184 			    u32 type_id, void *data, u8 bits_offset,
4185 			    struct btf_show *show)
4186 {
4187 	const struct btf_member *m = show->state.member;
4188 
4189 	/*
4190 	 * First check if any members would be shown (are non-zero).
4191 	 * See comments above "struct btf_show" definition for more
4192 	 * details on how this works at a high-level.
4193 	 */
4194 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4195 		if (!show->state.depth_check) {
4196 			show->state.depth_check = show->state.depth + 1;
4197 			show->state.depth_to_show = 0;
4198 		}
4199 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4200 		/* Restore saved member data here */
4201 		show->state.member = m;
4202 		if (show->state.depth_check != show->state.depth + 1)
4203 			return;
4204 		show->state.depth_check = 0;
4205 
4206 		if (show->state.depth_to_show <= show->state.depth)
4207 			return;
4208 		/*
4209 		 * Reaching here indicates we have recursed and found
4210 		 * non-zero child values.
4211 		 */
4212 	}
4213 
4214 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4215 }
4216 
4217 static const struct btf_kind_operations struct_ops = {
4218 	.check_meta = btf_struct_check_meta,
4219 	.resolve = btf_struct_resolve,
4220 	.check_member = btf_struct_check_member,
4221 	.check_kflag_member = btf_generic_check_kflag_member,
4222 	.log_details = btf_struct_log,
4223 	.show = btf_struct_show,
4224 };
4225 
4226 static int btf_enum_check_member(struct btf_verifier_env *env,
4227 				 const struct btf_type *struct_type,
4228 				 const struct btf_member *member,
4229 				 const struct btf_type *member_type)
4230 {
4231 	u32 struct_bits_off = member->offset;
4232 	u32 struct_size, bytes_offset;
4233 
4234 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4235 		btf_verifier_log_member(env, struct_type, member,
4236 					"Member is not byte aligned");
4237 		return -EINVAL;
4238 	}
4239 
4240 	struct_size = struct_type->size;
4241 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4242 	if (struct_size - bytes_offset < member_type->size) {
4243 		btf_verifier_log_member(env, struct_type, member,
4244 					"Member exceeds struct_size");
4245 		return -EINVAL;
4246 	}
4247 
4248 	return 0;
4249 }
4250 
4251 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4252 				       const struct btf_type *struct_type,
4253 				       const struct btf_member *member,
4254 				       const struct btf_type *member_type)
4255 {
4256 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4257 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4258 
4259 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4260 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4261 	if (!nr_bits) {
4262 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4263 			btf_verifier_log_member(env, struct_type, member,
4264 						"Member is not byte aligned");
4265 			return -EINVAL;
4266 		}
4267 
4268 		nr_bits = int_bitsize;
4269 	} else if (nr_bits > int_bitsize) {
4270 		btf_verifier_log_member(env, struct_type, member,
4271 					"Invalid member bitfield_size");
4272 		return -EINVAL;
4273 	}
4274 
4275 	struct_size = struct_type->size;
4276 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4277 	if (struct_size < bytes_end) {
4278 		btf_verifier_log_member(env, struct_type, member,
4279 					"Member exceeds struct_size");
4280 		return -EINVAL;
4281 	}
4282 
4283 	return 0;
4284 }
4285 
4286 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4287 			       const struct btf_type *t,
4288 			       u32 meta_left)
4289 {
4290 	const struct btf_enum *enums = btf_type_enum(t);
4291 	struct btf *btf = env->btf;
4292 	const char *fmt_str;
4293 	u16 i, nr_enums;
4294 	u32 meta_needed;
4295 
4296 	nr_enums = btf_type_vlen(t);
4297 	meta_needed = nr_enums * sizeof(*enums);
4298 
4299 	if (meta_left < meta_needed) {
4300 		btf_verifier_log_basic(env, t,
4301 				       "meta_left:%u meta_needed:%u",
4302 				       meta_left, meta_needed);
4303 		return -EINVAL;
4304 	}
4305 
4306 	if (t->size > 8 || !is_power_of_2(t->size)) {
4307 		btf_verifier_log_type(env, t, "Unexpected size");
4308 		return -EINVAL;
4309 	}
4310 
4311 	/* enum type either no name or a valid one */
4312 	if (t->name_off &&
4313 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4314 		btf_verifier_log_type(env, t, "Invalid name");
4315 		return -EINVAL;
4316 	}
4317 
4318 	btf_verifier_log_type(env, t, NULL);
4319 
4320 	for (i = 0; i < nr_enums; i++) {
4321 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4322 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4323 					 enums[i].name_off);
4324 			return -EINVAL;
4325 		}
4326 
4327 		/* enum member must have a valid name */
4328 		if (!enums[i].name_off ||
4329 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4330 			btf_verifier_log_type(env, t, "Invalid name");
4331 			return -EINVAL;
4332 		}
4333 
4334 		if (env->log.level == BPF_LOG_KERNEL)
4335 			continue;
4336 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4337 		btf_verifier_log(env, fmt_str,
4338 				 __btf_name_by_offset(btf, enums[i].name_off),
4339 				 enums[i].val);
4340 	}
4341 
4342 	return meta_needed;
4343 }
4344 
4345 static void btf_enum_log(struct btf_verifier_env *env,
4346 			 const struct btf_type *t)
4347 {
4348 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4349 }
4350 
4351 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4352 			  u32 type_id, void *data, u8 bits_offset,
4353 			  struct btf_show *show)
4354 {
4355 	const struct btf_enum *enums = btf_type_enum(t);
4356 	u32 i, nr_enums = btf_type_vlen(t);
4357 	void *safe_data;
4358 	int v;
4359 
4360 	safe_data = btf_show_start_type(show, t, type_id, data);
4361 	if (!safe_data)
4362 		return;
4363 
4364 	v = *(int *)safe_data;
4365 
4366 	for (i = 0; i < nr_enums; i++) {
4367 		if (v != enums[i].val)
4368 			continue;
4369 
4370 		btf_show_type_value(show, "%s",
4371 				    __btf_name_by_offset(btf,
4372 							 enums[i].name_off));
4373 
4374 		btf_show_end_type(show);
4375 		return;
4376 	}
4377 
4378 	if (btf_type_kflag(t))
4379 		btf_show_type_value(show, "%d", v);
4380 	else
4381 		btf_show_type_value(show, "%u", v);
4382 	btf_show_end_type(show);
4383 }
4384 
4385 static const struct btf_kind_operations enum_ops = {
4386 	.check_meta = btf_enum_check_meta,
4387 	.resolve = btf_df_resolve,
4388 	.check_member = btf_enum_check_member,
4389 	.check_kflag_member = btf_enum_check_kflag_member,
4390 	.log_details = btf_enum_log,
4391 	.show = btf_enum_show,
4392 };
4393 
4394 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4395 				 const struct btf_type *t,
4396 				 u32 meta_left)
4397 {
4398 	const struct btf_enum64 *enums = btf_type_enum64(t);
4399 	struct btf *btf = env->btf;
4400 	const char *fmt_str;
4401 	u16 i, nr_enums;
4402 	u32 meta_needed;
4403 
4404 	nr_enums = btf_type_vlen(t);
4405 	meta_needed = nr_enums * sizeof(*enums);
4406 
4407 	if (meta_left < meta_needed) {
4408 		btf_verifier_log_basic(env, t,
4409 				       "meta_left:%u meta_needed:%u",
4410 				       meta_left, meta_needed);
4411 		return -EINVAL;
4412 	}
4413 
4414 	if (t->size > 8 || !is_power_of_2(t->size)) {
4415 		btf_verifier_log_type(env, t, "Unexpected size");
4416 		return -EINVAL;
4417 	}
4418 
4419 	/* enum type either no name or a valid one */
4420 	if (t->name_off &&
4421 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4422 		btf_verifier_log_type(env, t, "Invalid name");
4423 		return -EINVAL;
4424 	}
4425 
4426 	btf_verifier_log_type(env, t, NULL);
4427 
4428 	for (i = 0; i < nr_enums; i++) {
4429 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4430 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4431 					 enums[i].name_off);
4432 			return -EINVAL;
4433 		}
4434 
4435 		/* enum member must have a valid name */
4436 		if (!enums[i].name_off ||
4437 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4438 			btf_verifier_log_type(env, t, "Invalid name");
4439 			return -EINVAL;
4440 		}
4441 
4442 		if (env->log.level == BPF_LOG_KERNEL)
4443 			continue;
4444 
4445 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4446 		btf_verifier_log(env, fmt_str,
4447 				 __btf_name_by_offset(btf, enums[i].name_off),
4448 				 btf_enum64_value(enums + i));
4449 	}
4450 
4451 	return meta_needed;
4452 }
4453 
4454 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4455 			    u32 type_id, void *data, u8 bits_offset,
4456 			    struct btf_show *show)
4457 {
4458 	const struct btf_enum64 *enums = btf_type_enum64(t);
4459 	u32 i, nr_enums = btf_type_vlen(t);
4460 	void *safe_data;
4461 	s64 v;
4462 
4463 	safe_data = btf_show_start_type(show, t, type_id, data);
4464 	if (!safe_data)
4465 		return;
4466 
4467 	v = *(u64 *)safe_data;
4468 
4469 	for (i = 0; i < nr_enums; i++) {
4470 		if (v != btf_enum64_value(enums + i))
4471 			continue;
4472 
4473 		btf_show_type_value(show, "%s",
4474 				    __btf_name_by_offset(btf,
4475 							 enums[i].name_off));
4476 
4477 		btf_show_end_type(show);
4478 		return;
4479 	}
4480 
4481 	if (btf_type_kflag(t))
4482 		btf_show_type_value(show, "%lld", v);
4483 	else
4484 		btf_show_type_value(show, "%llu", v);
4485 	btf_show_end_type(show);
4486 }
4487 
4488 static const struct btf_kind_operations enum64_ops = {
4489 	.check_meta = btf_enum64_check_meta,
4490 	.resolve = btf_df_resolve,
4491 	.check_member = btf_enum_check_member,
4492 	.check_kflag_member = btf_enum_check_kflag_member,
4493 	.log_details = btf_enum_log,
4494 	.show = btf_enum64_show,
4495 };
4496 
4497 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4498 				     const struct btf_type *t,
4499 				     u32 meta_left)
4500 {
4501 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4502 
4503 	if (meta_left < meta_needed) {
4504 		btf_verifier_log_basic(env, t,
4505 				       "meta_left:%u meta_needed:%u",
4506 				       meta_left, meta_needed);
4507 		return -EINVAL;
4508 	}
4509 
4510 	if (t->name_off) {
4511 		btf_verifier_log_type(env, t, "Invalid name");
4512 		return -EINVAL;
4513 	}
4514 
4515 	if (btf_type_kflag(t)) {
4516 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4517 		return -EINVAL;
4518 	}
4519 
4520 	btf_verifier_log_type(env, t, NULL);
4521 
4522 	return meta_needed;
4523 }
4524 
4525 static void btf_func_proto_log(struct btf_verifier_env *env,
4526 			       const struct btf_type *t)
4527 {
4528 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4529 	u16 nr_args = btf_type_vlen(t), i;
4530 
4531 	btf_verifier_log(env, "return=%u args=(", t->type);
4532 	if (!nr_args) {
4533 		btf_verifier_log(env, "void");
4534 		goto done;
4535 	}
4536 
4537 	if (nr_args == 1 && !args[0].type) {
4538 		/* Only one vararg */
4539 		btf_verifier_log(env, "vararg");
4540 		goto done;
4541 	}
4542 
4543 	btf_verifier_log(env, "%u %s", args[0].type,
4544 			 __btf_name_by_offset(env->btf,
4545 					      args[0].name_off));
4546 	for (i = 1; i < nr_args - 1; i++)
4547 		btf_verifier_log(env, ", %u %s", args[i].type,
4548 				 __btf_name_by_offset(env->btf,
4549 						      args[i].name_off));
4550 
4551 	if (nr_args > 1) {
4552 		const struct btf_param *last_arg = &args[nr_args - 1];
4553 
4554 		if (last_arg->type)
4555 			btf_verifier_log(env, ", %u %s", last_arg->type,
4556 					 __btf_name_by_offset(env->btf,
4557 							      last_arg->name_off));
4558 		else
4559 			btf_verifier_log(env, ", vararg");
4560 	}
4561 
4562 done:
4563 	btf_verifier_log(env, ")");
4564 }
4565 
4566 static const struct btf_kind_operations func_proto_ops = {
4567 	.check_meta = btf_func_proto_check_meta,
4568 	.resolve = btf_df_resolve,
4569 	/*
4570 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4571 	 * a struct's member.
4572 	 *
4573 	 * It should be a function pointer instead.
4574 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4575 	 *
4576 	 * Hence, there is no btf_func_check_member().
4577 	 */
4578 	.check_member = btf_df_check_member,
4579 	.check_kflag_member = btf_df_check_kflag_member,
4580 	.log_details = btf_func_proto_log,
4581 	.show = btf_df_show,
4582 };
4583 
4584 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4585 			       const struct btf_type *t,
4586 			       u32 meta_left)
4587 {
4588 	if (!t->name_off ||
4589 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4590 		btf_verifier_log_type(env, t, "Invalid name");
4591 		return -EINVAL;
4592 	}
4593 
4594 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4595 		btf_verifier_log_type(env, t, "Invalid func linkage");
4596 		return -EINVAL;
4597 	}
4598 
4599 	if (btf_type_kflag(t)) {
4600 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4601 		return -EINVAL;
4602 	}
4603 
4604 	btf_verifier_log_type(env, t, NULL);
4605 
4606 	return 0;
4607 }
4608 
4609 static int btf_func_resolve(struct btf_verifier_env *env,
4610 			    const struct resolve_vertex *v)
4611 {
4612 	const struct btf_type *t = v->t;
4613 	u32 next_type_id = t->type;
4614 	int err;
4615 
4616 	err = btf_func_check(env, t);
4617 	if (err)
4618 		return err;
4619 
4620 	env_stack_pop_resolved(env, next_type_id, 0);
4621 	return 0;
4622 }
4623 
4624 static const struct btf_kind_operations func_ops = {
4625 	.check_meta = btf_func_check_meta,
4626 	.resolve = btf_func_resolve,
4627 	.check_member = btf_df_check_member,
4628 	.check_kflag_member = btf_df_check_kflag_member,
4629 	.log_details = btf_ref_type_log,
4630 	.show = btf_df_show,
4631 };
4632 
4633 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4634 			      const struct btf_type *t,
4635 			      u32 meta_left)
4636 {
4637 	const struct btf_var *var;
4638 	u32 meta_needed = sizeof(*var);
4639 
4640 	if (meta_left < meta_needed) {
4641 		btf_verifier_log_basic(env, t,
4642 				       "meta_left:%u meta_needed:%u",
4643 				       meta_left, meta_needed);
4644 		return -EINVAL;
4645 	}
4646 
4647 	if (btf_type_vlen(t)) {
4648 		btf_verifier_log_type(env, t, "vlen != 0");
4649 		return -EINVAL;
4650 	}
4651 
4652 	if (btf_type_kflag(t)) {
4653 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4654 		return -EINVAL;
4655 	}
4656 
4657 	if (!t->name_off ||
4658 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4659 		btf_verifier_log_type(env, t, "Invalid name");
4660 		return -EINVAL;
4661 	}
4662 
4663 	/* A var cannot be in type void */
4664 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4665 		btf_verifier_log_type(env, t, "Invalid type_id");
4666 		return -EINVAL;
4667 	}
4668 
4669 	var = btf_type_var(t);
4670 	if (var->linkage != BTF_VAR_STATIC &&
4671 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4672 		btf_verifier_log_type(env, t, "Linkage not supported");
4673 		return -EINVAL;
4674 	}
4675 
4676 	btf_verifier_log_type(env, t, NULL);
4677 
4678 	return meta_needed;
4679 }
4680 
4681 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4682 {
4683 	const struct btf_var *var = btf_type_var(t);
4684 
4685 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4686 }
4687 
4688 static const struct btf_kind_operations var_ops = {
4689 	.check_meta		= btf_var_check_meta,
4690 	.resolve		= btf_var_resolve,
4691 	.check_member		= btf_df_check_member,
4692 	.check_kflag_member	= btf_df_check_kflag_member,
4693 	.log_details		= btf_var_log,
4694 	.show			= btf_var_show,
4695 };
4696 
4697 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4698 				  const struct btf_type *t,
4699 				  u32 meta_left)
4700 {
4701 	const struct btf_var_secinfo *vsi;
4702 	u64 last_vsi_end_off = 0, sum = 0;
4703 	u32 i, meta_needed;
4704 
4705 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4706 	if (meta_left < meta_needed) {
4707 		btf_verifier_log_basic(env, t,
4708 				       "meta_left:%u meta_needed:%u",
4709 				       meta_left, meta_needed);
4710 		return -EINVAL;
4711 	}
4712 
4713 	if (!t->size) {
4714 		btf_verifier_log_type(env, t, "size == 0");
4715 		return -EINVAL;
4716 	}
4717 
4718 	if (btf_type_kflag(t)) {
4719 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4720 		return -EINVAL;
4721 	}
4722 
4723 	if (!t->name_off ||
4724 	    !btf_name_valid_section(env->btf, t->name_off)) {
4725 		btf_verifier_log_type(env, t, "Invalid name");
4726 		return -EINVAL;
4727 	}
4728 
4729 	btf_verifier_log_type(env, t, NULL);
4730 
4731 	for_each_vsi(i, t, vsi) {
4732 		/* A var cannot be in type void */
4733 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4734 			btf_verifier_log_vsi(env, t, vsi,
4735 					     "Invalid type_id");
4736 			return -EINVAL;
4737 		}
4738 
4739 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4740 			btf_verifier_log_vsi(env, t, vsi,
4741 					     "Invalid offset");
4742 			return -EINVAL;
4743 		}
4744 
4745 		if (!vsi->size || vsi->size > t->size) {
4746 			btf_verifier_log_vsi(env, t, vsi,
4747 					     "Invalid size");
4748 			return -EINVAL;
4749 		}
4750 
4751 		last_vsi_end_off = vsi->offset + vsi->size;
4752 		if (last_vsi_end_off > t->size) {
4753 			btf_verifier_log_vsi(env, t, vsi,
4754 					     "Invalid offset+size");
4755 			return -EINVAL;
4756 		}
4757 
4758 		btf_verifier_log_vsi(env, t, vsi, NULL);
4759 		sum += vsi->size;
4760 	}
4761 
4762 	if (t->size < sum) {
4763 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4764 		return -EINVAL;
4765 	}
4766 
4767 	return meta_needed;
4768 }
4769 
4770 static int btf_datasec_resolve(struct btf_verifier_env *env,
4771 			       const struct resolve_vertex *v)
4772 {
4773 	const struct btf_var_secinfo *vsi;
4774 	struct btf *btf = env->btf;
4775 	u16 i;
4776 
4777 	env->resolve_mode = RESOLVE_TBD;
4778 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4779 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4780 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4781 								 var_type_id);
4782 		if (!var_type || !btf_type_is_var(var_type)) {
4783 			btf_verifier_log_vsi(env, v->t, vsi,
4784 					     "Not a VAR kind member");
4785 			return -EINVAL;
4786 		}
4787 
4788 		if (!env_type_is_resolve_sink(env, var_type) &&
4789 		    !env_type_is_resolved(env, var_type_id)) {
4790 			env_stack_set_next_member(env, i + 1);
4791 			return env_stack_push(env, var_type, var_type_id);
4792 		}
4793 
4794 		type_id = var_type->type;
4795 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4796 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4797 			return -EINVAL;
4798 		}
4799 
4800 		if (vsi->size < type_size) {
4801 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4802 			return -EINVAL;
4803 		}
4804 	}
4805 
4806 	env_stack_pop_resolved(env, 0, 0);
4807 	return 0;
4808 }
4809 
4810 static void btf_datasec_log(struct btf_verifier_env *env,
4811 			    const struct btf_type *t)
4812 {
4813 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4814 }
4815 
4816 static void btf_datasec_show(const struct btf *btf,
4817 			     const struct btf_type *t, u32 type_id,
4818 			     void *data, u8 bits_offset,
4819 			     struct btf_show *show)
4820 {
4821 	const struct btf_var_secinfo *vsi;
4822 	const struct btf_type *var;
4823 	u32 i;
4824 
4825 	if (!btf_show_start_type(show, t, type_id, data))
4826 		return;
4827 
4828 	btf_show_type_value(show, "section (\"%s\") = {",
4829 			    __btf_name_by_offset(btf, t->name_off));
4830 	for_each_vsi(i, t, vsi) {
4831 		var = btf_type_by_id(btf, vsi->type);
4832 		if (i)
4833 			btf_show(show, ",");
4834 		btf_type_ops(var)->show(btf, var, vsi->type,
4835 					data + vsi->offset, bits_offset, show);
4836 	}
4837 	btf_show_end_type(show);
4838 }
4839 
4840 static const struct btf_kind_operations datasec_ops = {
4841 	.check_meta		= btf_datasec_check_meta,
4842 	.resolve		= btf_datasec_resolve,
4843 	.check_member		= btf_df_check_member,
4844 	.check_kflag_member	= btf_df_check_kflag_member,
4845 	.log_details		= btf_datasec_log,
4846 	.show			= btf_datasec_show,
4847 };
4848 
4849 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4850 				const struct btf_type *t,
4851 				u32 meta_left)
4852 {
4853 	if (btf_type_vlen(t)) {
4854 		btf_verifier_log_type(env, t, "vlen != 0");
4855 		return -EINVAL;
4856 	}
4857 
4858 	if (btf_type_kflag(t)) {
4859 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4860 		return -EINVAL;
4861 	}
4862 
4863 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4864 	    t->size != 16) {
4865 		btf_verifier_log_type(env, t, "Invalid type_size");
4866 		return -EINVAL;
4867 	}
4868 
4869 	btf_verifier_log_type(env, t, NULL);
4870 
4871 	return 0;
4872 }
4873 
4874 static int btf_float_check_member(struct btf_verifier_env *env,
4875 				  const struct btf_type *struct_type,
4876 				  const struct btf_member *member,
4877 				  const struct btf_type *member_type)
4878 {
4879 	u64 start_offset_bytes;
4880 	u64 end_offset_bytes;
4881 	u64 misalign_bits;
4882 	u64 align_bytes;
4883 	u64 align_bits;
4884 
4885 	/* Different architectures have different alignment requirements, so
4886 	 * here we check only for the reasonable minimum. This way we ensure
4887 	 * that types after CO-RE can pass the kernel BTF verifier.
4888 	 */
4889 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4890 	align_bits = align_bytes * BITS_PER_BYTE;
4891 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4892 	if (misalign_bits) {
4893 		btf_verifier_log_member(env, struct_type, member,
4894 					"Member is not properly aligned");
4895 		return -EINVAL;
4896 	}
4897 
4898 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4899 	end_offset_bytes = start_offset_bytes + member_type->size;
4900 	if (end_offset_bytes > struct_type->size) {
4901 		btf_verifier_log_member(env, struct_type, member,
4902 					"Member exceeds struct_size");
4903 		return -EINVAL;
4904 	}
4905 
4906 	return 0;
4907 }
4908 
4909 static void btf_float_log(struct btf_verifier_env *env,
4910 			  const struct btf_type *t)
4911 {
4912 	btf_verifier_log(env, "size=%u", t->size);
4913 }
4914 
4915 static const struct btf_kind_operations float_ops = {
4916 	.check_meta = btf_float_check_meta,
4917 	.resolve = btf_df_resolve,
4918 	.check_member = btf_float_check_member,
4919 	.check_kflag_member = btf_generic_check_kflag_member,
4920 	.log_details = btf_float_log,
4921 	.show = btf_df_show,
4922 };
4923 
4924 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4925 			      const struct btf_type *t,
4926 			      u32 meta_left)
4927 {
4928 	const struct btf_decl_tag *tag;
4929 	u32 meta_needed = sizeof(*tag);
4930 	s32 component_idx;
4931 	const char *value;
4932 
4933 	if (meta_left < meta_needed) {
4934 		btf_verifier_log_basic(env, t,
4935 				       "meta_left:%u meta_needed:%u",
4936 				       meta_left, meta_needed);
4937 		return -EINVAL;
4938 	}
4939 
4940 	value = btf_name_by_offset(env->btf, t->name_off);
4941 	if (!value || !value[0]) {
4942 		btf_verifier_log_type(env, t, "Invalid value");
4943 		return -EINVAL;
4944 	}
4945 
4946 	if (btf_type_vlen(t)) {
4947 		btf_verifier_log_type(env, t, "vlen != 0");
4948 		return -EINVAL;
4949 	}
4950 
4951 	component_idx = btf_type_decl_tag(t)->component_idx;
4952 	if (component_idx < -1) {
4953 		btf_verifier_log_type(env, t, "Invalid component_idx");
4954 		return -EINVAL;
4955 	}
4956 
4957 	btf_verifier_log_type(env, t, NULL);
4958 
4959 	return meta_needed;
4960 }
4961 
4962 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4963 			   const struct resolve_vertex *v)
4964 {
4965 	const struct btf_type *next_type;
4966 	const struct btf_type *t = v->t;
4967 	u32 next_type_id = t->type;
4968 	struct btf *btf = env->btf;
4969 	s32 component_idx;
4970 	u32 vlen;
4971 
4972 	next_type = btf_type_by_id(btf, next_type_id);
4973 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4974 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4975 		return -EINVAL;
4976 	}
4977 
4978 	if (!env_type_is_resolve_sink(env, next_type) &&
4979 	    !env_type_is_resolved(env, next_type_id))
4980 		return env_stack_push(env, next_type, next_type_id);
4981 
4982 	component_idx = btf_type_decl_tag(t)->component_idx;
4983 	if (component_idx != -1) {
4984 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4985 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4986 			return -EINVAL;
4987 		}
4988 
4989 		if (btf_type_is_struct(next_type)) {
4990 			vlen = btf_type_vlen(next_type);
4991 		} else {
4992 			/* next_type should be a function */
4993 			next_type = btf_type_by_id(btf, next_type->type);
4994 			vlen = btf_type_vlen(next_type);
4995 		}
4996 
4997 		if ((u32)component_idx >= vlen) {
4998 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4999 			return -EINVAL;
5000 		}
5001 	}
5002 
5003 	env_stack_pop_resolved(env, next_type_id, 0);
5004 
5005 	return 0;
5006 }
5007 
5008 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5009 {
5010 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5011 			 btf_type_decl_tag(t)->component_idx);
5012 }
5013 
5014 static const struct btf_kind_operations decl_tag_ops = {
5015 	.check_meta = btf_decl_tag_check_meta,
5016 	.resolve = btf_decl_tag_resolve,
5017 	.check_member = btf_df_check_member,
5018 	.check_kflag_member = btf_df_check_kflag_member,
5019 	.log_details = btf_decl_tag_log,
5020 	.show = btf_df_show,
5021 };
5022 
5023 static int btf_func_proto_check(struct btf_verifier_env *env,
5024 				const struct btf_type *t)
5025 {
5026 	const struct btf_type *ret_type;
5027 	const struct btf_param *args;
5028 	const struct btf *btf;
5029 	u16 nr_args, i;
5030 	int err;
5031 
5032 	btf = env->btf;
5033 	args = (const struct btf_param *)(t + 1);
5034 	nr_args = btf_type_vlen(t);
5035 
5036 	/* Check func return type which could be "void" (t->type == 0) */
5037 	if (t->type) {
5038 		u32 ret_type_id = t->type;
5039 
5040 		ret_type = btf_type_by_id(btf, ret_type_id);
5041 		if (!ret_type) {
5042 			btf_verifier_log_type(env, t, "Invalid return type");
5043 			return -EINVAL;
5044 		}
5045 
5046 		if (btf_type_is_resolve_source_only(ret_type)) {
5047 			btf_verifier_log_type(env, t, "Invalid return type");
5048 			return -EINVAL;
5049 		}
5050 
5051 		if (btf_type_needs_resolve(ret_type) &&
5052 		    !env_type_is_resolved(env, ret_type_id)) {
5053 			err = btf_resolve(env, ret_type, ret_type_id);
5054 			if (err)
5055 				return err;
5056 		}
5057 
5058 		/* Ensure the return type is a type that has a size */
5059 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5060 			btf_verifier_log_type(env, t, "Invalid return type");
5061 			return -EINVAL;
5062 		}
5063 	}
5064 
5065 	if (!nr_args)
5066 		return 0;
5067 
5068 	/* Last func arg type_id could be 0 if it is a vararg */
5069 	if (!args[nr_args - 1].type) {
5070 		if (args[nr_args - 1].name_off) {
5071 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5072 					      nr_args);
5073 			return -EINVAL;
5074 		}
5075 		nr_args--;
5076 	}
5077 
5078 	for (i = 0; i < nr_args; i++) {
5079 		const struct btf_type *arg_type;
5080 		u32 arg_type_id;
5081 
5082 		arg_type_id = args[i].type;
5083 		arg_type = btf_type_by_id(btf, arg_type_id);
5084 		if (!arg_type) {
5085 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5086 			return -EINVAL;
5087 		}
5088 
5089 		if (btf_type_is_resolve_source_only(arg_type)) {
5090 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5091 			return -EINVAL;
5092 		}
5093 
5094 		if (args[i].name_off &&
5095 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5096 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5097 			btf_verifier_log_type(env, t,
5098 					      "Invalid arg#%u", i + 1);
5099 			return -EINVAL;
5100 		}
5101 
5102 		if (btf_type_needs_resolve(arg_type) &&
5103 		    !env_type_is_resolved(env, arg_type_id)) {
5104 			err = btf_resolve(env, arg_type, arg_type_id);
5105 			if (err)
5106 				return err;
5107 		}
5108 
5109 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5110 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5111 			return -EINVAL;
5112 		}
5113 	}
5114 
5115 	return 0;
5116 }
5117 
5118 static int btf_func_check(struct btf_verifier_env *env,
5119 			  const struct btf_type *t)
5120 {
5121 	const struct btf_type *proto_type;
5122 	const struct btf_param *args;
5123 	const struct btf *btf;
5124 	u16 nr_args, i;
5125 
5126 	btf = env->btf;
5127 	proto_type = btf_type_by_id(btf, t->type);
5128 
5129 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5130 		btf_verifier_log_type(env, t, "Invalid type_id");
5131 		return -EINVAL;
5132 	}
5133 
5134 	args = (const struct btf_param *)(proto_type + 1);
5135 	nr_args = btf_type_vlen(proto_type);
5136 	for (i = 0; i < nr_args; i++) {
5137 		if (!args[i].name_off && args[i].type) {
5138 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5139 			return -EINVAL;
5140 		}
5141 	}
5142 
5143 	return 0;
5144 }
5145 
5146 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5147 	[BTF_KIND_INT] = &int_ops,
5148 	[BTF_KIND_PTR] = &ptr_ops,
5149 	[BTF_KIND_ARRAY] = &array_ops,
5150 	[BTF_KIND_STRUCT] = &struct_ops,
5151 	[BTF_KIND_UNION] = &struct_ops,
5152 	[BTF_KIND_ENUM] = &enum_ops,
5153 	[BTF_KIND_FWD] = &fwd_ops,
5154 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5155 	[BTF_KIND_VOLATILE] = &modifier_ops,
5156 	[BTF_KIND_CONST] = &modifier_ops,
5157 	[BTF_KIND_RESTRICT] = &modifier_ops,
5158 	[BTF_KIND_FUNC] = &func_ops,
5159 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5160 	[BTF_KIND_VAR] = &var_ops,
5161 	[BTF_KIND_DATASEC] = &datasec_ops,
5162 	[BTF_KIND_FLOAT] = &float_ops,
5163 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5164 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5165 	[BTF_KIND_ENUM64] = &enum64_ops,
5166 };
5167 
5168 static s32 btf_check_meta(struct btf_verifier_env *env,
5169 			  const struct btf_type *t,
5170 			  u32 meta_left)
5171 {
5172 	u32 saved_meta_left = meta_left;
5173 	s32 var_meta_size;
5174 
5175 	if (meta_left < sizeof(*t)) {
5176 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5177 				 env->log_type_id, meta_left, sizeof(*t));
5178 		return -EINVAL;
5179 	}
5180 	meta_left -= sizeof(*t);
5181 
5182 	if (t->info & ~BTF_INFO_MASK) {
5183 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5184 				 env->log_type_id, t->info);
5185 		return -EINVAL;
5186 	}
5187 
5188 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5189 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5190 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5191 				 env->log_type_id, BTF_INFO_KIND(t->info));
5192 		return -EINVAL;
5193 	}
5194 
5195 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5196 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5197 				 env->log_type_id, t->name_off);
5198 		return -EINVAL;
5199 	}
5200 
5201 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5202 	if (var_meta_size < 0)
5203 		return var_meta_size;
5204 
5205 	meta_left -= var_meta_size;
5206 
5207 	return saved_meta_left - meta_left;
5208 }
5209 
5210 static int btf_check_all_metas(struct btf_verifier_env *env)
5211 {
5212 	struct btf *btf = env->btf;
5213 	struct btf_header *hdr;
5214 	void *cur, *end;
5215 
5216 	hdr = &btf->hdr;
5217 	cur = btf->nohdr_data + hdr->type_off;
5218 	end = cur + hdr->type_len;
5219 
5220 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5221 	while (cur < end) {
5222 		struct btf_type *t = cur;
5223 		s32 meta_size;
5224 
5225 		meta_size = btf_check_meta(env, t, end - cur);
5226 		if (meta_size < 0)
5227 			return meta_size;
5228 
5229 		btf_add_type(env, t);
5230 		cur += meta_size;
5231 		env->log_type_id++;
5232 	}
5233 
5234 	return 0;
5235 }
5236 
5237 static bool btf_resolve_valid(struct btf_verifier_env *env,
5238 			      const struct btf_type *t,
5239 			      u32 type_id)
5240 {
5241 	struct btf *btf = env->btf;
5242 
5243 	if (!env_type_is_resolved(env, type_id))
5244 		return false;
5245 
5246 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5247 		return !btf_resolved_type_id(btf, type_id) &&
5248 		       !btf_resolved_type_size(btf, type_id);
5249 
5250 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5251 		return btf_resolved_type_id(btf, type_id) &&
5252 		       !btf_resolved_type_size(btf, type_id);
5253 
5254 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5255 	    btf_type_is_var(t)) {
5256 		t = btf_type_id_resolve(btf, &type_id);
5257 		return t &&
5258 		       !btf_type_is_modifier(t) &&
5259 		       !btf_type_is_var(t) &&
5260 		       !btf_type_is_datasec(t);
5261 	}
5262 
5263 	if (btf_type_is_array(t)) {
5264 		const struct btf_array *array = btf_type_array(t);
5265 		const struct btf_type *elem_type;
5266 		u32 elem_type_id = array->type;
5267 		u32 elem_size;
5268 
5269 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5270 		return elem_type && !btf_type_is_modifier(elem_type) &&
5271 			(array->nelems * elem_size ==
5272 			 btf_resolved_type_size(btf, type_id));
5273 	}
5274 
5275 	return false;
5276 }
5277 
5278 static int btf_resolve(struct btf_verifier_env *env,
5279 		       const struct btf_type *t, u32 type_id)
5280 {
5281 	u32 save_log_type_id = env->log_type_id;
5282 	const struct resolve_vertex *v;
5283 	int err = 0;
5284 
5285 	env->resolve_mode = RESOLVE_TBD;
5286 	env_stack_push(env, t, type_id);
5287 	while (!err && (v = env_stack_peak(env))) {
5288 		env->log_type_id = v->type_id;
5289 		err = btf_type_ops(v->t)->resolve(env, v);
5290 	}
5291 
5292 	env->log_type_id = type_id;
5293 	if (err == -E2BIG) {
5294 		btf_verifier_log_type(env, t,
5295 				      "Exceeded max resolving depth:%u",
5296 				      MAX_RESOLVE_DEPTH);
5297 	} else if (err == -EEXIST) {
5298 		btf_verifier_log_type(env, t, "Loop detected");
5299 	}
5300 
5301 	/* Final sanity check */
5302 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5303 		btf_verifier_log_type(env, t, "Invalid resolve state");
5304 		err = -EINVAL;
5305 	}
5306 
5307 	env->log_type_id = save_log_type_id;
5308 	return err;
5309 }
5310 
5311 static int btf_check_all_types(struct btf_verifier_env *env)
5312 {
5313 	struct btf *btf = env->btf;
5314 	const struct btf_type *t;
5315 	u32 type_id, i;
5316 	int err;
5317 
5318 	err = env_resolve_init(env);
5319 	if (err)
5320 		return err;
5321 
5322 	env->phase++;
5323 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5324 		type_id = btf->start_id + i;
5325 		t = btf_type_by_id(btf, type_id);
5326 
5327 		env->log_type_id = type_id;
5328 		if (btf_type_needs_resolve(t) &&
5329 		    !env_type_is_resolved(env, type_id)) {
5330 			err = btf_resolve(env, t, type_id);
5331 			if (err)
5332 				return err;
5333 		}
5334 
5335 		if (btf_type_is_func_proto(t)) {
5336 			err = btf_func_proto_check(env, t);
5337 			if (err)
5338 				return err;
5339 		}
5340 	}
5341 
5342 	return 0;
5343 }
5344 
5345 static int btf_parse_type_sec(struct btf_verifier_env *env)
5346 {
5347 	const struct btf_header *hdr = &env->btf->hdr;
5348 	int err;
5349 
5350 	/* Type section must align to 4 bytes */
5351 	if (hdr->type_off & (sizeof(u32) - 1)) {
5352 		btf_verifier_log(env, "Unaligned type_off");
5353 		return -EINVAL;
5354 	}
5355 
5356 	if (!env->btf->base_btf && !hdr->type_len) {
5357 		btf_verifier_log(env, "No type found");
5358 		return -EINVAL;
5359 	}
5360 
5361 	err = btf_check_all_metas(env);
5362 	if (err)
5363 		return err;
5364 
5365 	return btf_check_all_types(env);
5366 }
5367 
5368 static int btf_parse_str_sec(struct btf_verifier_env *env)
5369 {
5370 	const struct btf_header *hdr;
5371 	struct btf *btf = env->btf;
5372 	const char *start, *end;
5373 
5374 	hdr = &btf->hdr;
5375 	start = btf->nohdr_data + hdr->str_off;
5376 	end = start + hdr->str_len;
5377 
5378 	if (end != btf->data + btf->data_size) {
5379 		btf_verifier_log(env, "String section is not at the end");
5380 		return -EINVAL;
5381 	}
5382 
5383 	btf->strings = start;
5384 
5385 	if (btf->base_btf && !hdr->str_len)
5386 		return 0;
5387 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5388 		btf_verifier_log(env, "Invalid string section");
5389 		return -EINVAL;
5390 	}
5391 	if (!btf->base_btf && start[0]) {
5392 		btf_verifier_log(env, "Invalid string section");
5393 		return -EINVAL;
5394 	}
5395 
5396 	return 0;
5397 }
5398 
5399 static const size_t btf_sec_info_offset[] = {
5400 	offsetof(struct btf_header, type_off),
5401 	offsetof(struct btf_header, str_off),
5402 };
5403 
5404 static int btf_sec_info_cmp(const void *a, const void *b)
5405 {
5406 	const struct btf_sec_info *x = a;
5407 	const struct btf_sec_info *y = b;
5408 
5409 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5410 }
5411 
5412 static int btf_check_sec_info(struct btf_verifier_env *env,
5413 			      u32 btf_data_size)
5414 {
5415 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5416 	u32 total, expected_total, i;
5417 	const struct btf_header *hdr;
5418 	const struct btf *btf;
5419 
5420 	btf = env->btf;
5421 	hdr = &btf->hdr;
5422 
5423 	/* Populate the secs from hdr */
5424 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5425 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5426 						   btf_sec_info_offset[i]);
5427 
5428 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5429 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5430 
5431 	/* Check for gaps and overlap among sections */
5432 	total = 0;
5433 	expected_total = btf_data_size - hdr->hdr_len;
5434 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5435 		if (expected_total < secs[i].off) {
5436 			btf_verifier_log(env, "Invalid section offset");
5437 			return -EINVAL;
5438 		}
5439 		if (total < secs[i].off) {
5440 			/* gap */
5441 			btf_verifier_log(env, "Unsupported section found");
5442 			return -EINVAL;
5443 		}
5444 		if (total > secs[i].off) {
5445 			btf_verifier_log(env, "Section overlap found");
5446 			return -EINVAL;
5447 		}
5448 		if (expected_total - total < secs[i].len) {
5449 			btf_verifier_log(env,
5450 					 "Total section length too long");
5451 			return -EINVAL;
5452 		}
5453 		total += secs[i].len;
5454 	}
5455 
5456 	/* There is data other than hdr and known sections */
5457 	if (expected_total != total) {
5458 		btf_verifier_log(env, "Unsupported section found");
5459 		return -EINVAL;
5460 	}
5461 
5462 	return 0;
5463 }
5464 
5465 static int btf_parse_hdr(struct btf_verifier_env *env)
5466 {
5467 	u32 hdr_len, hdr_copy, btf_data_size;
5468 	const struct btf_header *hdr;
5469 	struct btf *btf;
5470 
5471 	btf = env->btf;
5472 	btf_data_size = btf->data_size;
5473 
5474 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5475 		btf_verifier_log(env, "hdr_len not found");
5476 		return -EINVAL;
5477 	}
5478 
5479 	hdr = btf->data;
5480 	hdr_len = hdr->hdr_len;
5481 	if (btf_data_size < hdr_len) {
5482 		btf_verifier_log(env, "btf_header not found");
5483 		return -EINVAL;
5484 	}
5485 
5486 	/* Ensure the unsupported header fields are zero */
5487 	if (hdr_len > sizeof(btf->hdr)) {
5488 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5489 		u8 *end = btf->data + hdr_len;
5490 
5491 		for (; expected_zero < end; expected_zero++) {
5492 			if (*expected_zero) {
5493 				btf_verifier_log(env, "Unsupported btf_header");
5494 				return -E2BIG;
5495 			}
5496 		}
5497 	}
5498 
5499 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5500 	memcpy(&btf->hdr, btf->data, hdr_copy);
5501 
5502 	hdr = &btf->hdr;
5503 
5504 	btf_verifier_log_hdr(env, btf_data_size);
5505 
5506 	if (hdr->magic != BTF_MAGIC) {
5507 		btf_verifier_log(env, "Invalid magic");
5508 		return -EINVAL;
5509 	}
5510 
5511 	if (hdr->version != BTF_VERSION) {
5512 		btf_verifier_log(env, "Unsupported version");
5513 		return -ENOTSUPP;
5514 	}
5515 
5516 	if (hdr->flags) {
5517 		btf_verifier_log(env, "Unsupported flags");
5518 		return -ENOTSUPP;
5519 	}
5520 
5521 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5522 		btf_verifier_log(env, "No data");
5523 		return -EINVAL;
5524 	}
5525 
5526 	return btf_check_sec_info(env, btf_data_size);
5527 }
5528 
5529 static const char *alloc_obj_fields[] = {
5530 	"bpf_spin_lock",
5531 	"bpf_list_head",
5532 	"bpf_list_node",
5533 	"bpf_rb_root",
5534 	"bpf_rb_node",
5535 	"bpf_refcount",
5536 };
5537 
5538 static struct btf_struct_metas *
5539 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5540 {
5541 	struct btf_struct_metas *tab = NULL;
5542 	struct btf_id_set *aof;
5543 	int i, n, id, ret;
5544 
5545 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5546 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5547 
5548 	aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5549 	if (!aof)
5550 		return ERR_PTR(-ENOMEM);
5551 	aof->cnt = 0;
5552 
5553 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5554 		/* Try to find whether this special type exists in user BTF, and
5555 		 * if so remember its ID so we can easily find it among members
5556 		 * of structs that we iterate in the next loop.
5557 		 */
5558 		struct btf_id_set *new_aof;
5559 
5560 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5561 		if (id < 0)
5562 			continue;
5563 
5564 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5565 				   GFP_KERNEL | __GFP_NOWARN);
5566 		if (!new_aof) {
5567 			ret = -ENOMEM;
5568 			goto free_aof;
5569 		}
5570 		aof = new_aof;
5571 		aof->ids[aof->cnt++] = id;
5572 	}
5573 
5574 	n = btf_nr_types(btf);
5575 	for (i = 1; i < n; i++) {
5576 		/* Try to find if there are kptrs in user BTF and remember their ID */
5577 		struct btf_id_set *new_aof;
5578 		struct btf_field_info tmp;
5579 		const struct btf_type *t;
5580 
5581 		t = btf_type_by_id(btf, i);
5582 		if (!t) {
5583 			ret = -EINVAL;
5584 			goto free_aof;
5585 		}
5586 
5587 		ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5588 		if (ret != BTF_FIELD_FOUND)
5589 			continue;
5590 
5591 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5592 				   GFP_KERNEL | __GFP_NOWARN);
5593 		if (!new_aof) {
5594 			ret = -ENOMEM;
5595 			goto free_aof;
5596 		}
5597 		aof = new_aof;
5598 		aof->ids[aof->cnt++] = i;
5599 	}
5600 
5601 	if (!aof->cnt) {
5602 		kfree(aof);
5603 		return NULL;
5604 	}
5605 	sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5606 
5607 	for (i = 1; i < n; i++) {
5608 		struct btf_struct_metas *new_tab;
5609 		const struct btf_member *member;
5610 		struct btf_struct_meta *type;
5611 		struct btf_record *record;
5612 		const struct btf_type *t;
5613 		int j, tab_cnt;
5614 
5615 		t = btf_type_by_id(btf, i);
5616 		if (!__btf_type_is_struct(t))
5617 			continue;
5618 
5619 		cond_resched();
5620 
5621 		for_each_member(j, t, member) {
5622 			if (btf_id_set_contains(aof, member->type))
5623 				goto parse;
5624 		}
5625 		continue;
5626 	parse:
5627 		tab_cnt = tab ? tab->cnt : 0;
5628 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5629 				   GFP_KERNEL | __GFP_NOWARN);
5630 		if (!new_tab) {
5631 			ret = -ENOMEM;
5632 			goto free;
5633 		}
5634 		if (!tab)
5635 			new_tab->cnt = 0;
5636 		tab = new_tab;
5637 
5638 		type = &tab->types[tab->cnt];
5639 		type->btf_id = i;
5640 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5641 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5642 						  BPF_KPTR, t->size);
5643 		/* The record cannot be unset, treat it as an error if so */
5644 		if (IS_ERR_OR_NULL(record)) {
5645 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5646 			goto free;
5647 		}
5648 		type->record = record;
5649 		tab->cnt++;
5650 	}
5651 	kfree(aof);
5652 	return tab;
5653 free:
5654 	btf_struct_metas_free(tab);
5655 free_aof:
5656 	kfree(aof);
5657 	return ERR_PTR(ret);
5658 }
5659 
5660 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5661 {
5662 	struct btf_struct_metas *tab;
5663 
5664 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5665 	tab = btf->struct_meta_tab;
5666 	if (!tab)
5667 		return NULL;
5668 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5669 }
5670 
5671 static int btf_check_type_tags(struct btf_verifier_env *env,
5672 			       struct btf *btf, int start_id)
5673 {
5674 	int i, n, good_id = start_id - 1;
5675 	bool in_tags;
5676 
5677 	n = btf_nr_types(btf);
5678 	for (i = start_id; i < n; i++) {
5679 		const struct btf_type *t;
5680 		int chain_limit = 32;
5681 		u32 cur_id = i;
5682 
5683 		t = btf_type_by_id(btf, i);
5684 		if (!t)
5685 			return -EINVAL;
5686 		if (!btf_type_is_modifier(t))
5687 			continue;
5688 
5689 		cond_resched();
5690 
5691 		in_tags = btf_type_is_type_tag(t);
5692 		while (btf_type_is_modifier(t)) {
5693 			if (!chain_limit--) {
5694 				btf_verifier_log(env, "Max chain length or cycle detected");
5695 				return -ELOOP;
5696 			}
5697 			if (btf_type_is_type_tag(t)) {
5698 				if (!in_tags) {
5699 					btf_verifier_log(env, "Type tags don't precede modifiers");
5700 					return -EINVAL;
5701 				}
5702 			} else if (in_tags) {
5703 				in_tags = false;
5704 			}
5705 			if (cur_id <= good_id)
5706 				break;
5707 			/* Move to next type */
5708 			cur_id = t->type;
5709 			t = btf_type_by_id(btf, cur_id);
5710 			if (!t)
5711 				return -EINVAL;
5712 		}
5713 		good_id = i;
5714 	}
5715 	return 0;
5716 }
5717 
5718 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5719 {
5720 	u32 log_true_size;
5721 	int err;
5722 
5723 	err = bpf_vlog_finalize(log, &log_true_size);
5724 
5725 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5726 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5727 				  &log_true_size, sizeof(log_true_size)))
5728 		err = -EFAULT;
5729 
5730 	return err;
5731 }
5732 
5733 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5734 {
5735 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5736 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5737 	struct btf_struct_metas *struct_meta_tab;
5738 	struct btf_verifier_env *env = NULL;
5739 	struct btf *btf = NULL;
5740 	u8 *data;
5741 	int err, ret;
5742 
5743 	if (attr->btf_size > BTF_MAX_SIZE)
5744 		return ERR_PTR(-E2BIG);
5745 
5746 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5747 	if (!env)
5748 		return ERR_PTR(-ENOMEM);
5749 
5750 	/* user could have requested verbose verifier output
5751 	 * and supplied buffer to store the verification trace
5752 	 */
5753 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5754 			    log_ubuf, attr->btf_log_size);
5755 	if (err)
5756 		goto errout_free;
5757 
5758 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5759 	if (!btf) {
5760 		err = -ENOMEM;
5761 		goto errout;
5762 	}
5763 	env->btf = btf;
5764 
5765 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5766 	if (!data) {
5767 		err = -ENOMEM;
5768 		goto errout;
5769 	}
5770 
5771 	btf->data = data;
5772 	btf->data_size = attr->btf_size;
5773 
5774 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5775 		err = -EFAULT;
5776 		goto errout;
5777 	}
5778 
5779 	err = btf_parse_hdr(env);
5780 	if (err)
5781 		goto errout;
5782 
5783 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5784 
5785 	err = btf_parse_str_sec(env);
5786 	if (err)
5787 		goto errout;
5788 
5789 	err = btf_parse_type_sec(env);
5790 	if (err)
5791 		goto errout;
5792 
5793 	err = btf_check_type_tags(env, btf, 1);
5794 	if (err)
5795 		goto errout;
5796 
5797 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5798 	if (IS_ERR(struct_meta_tab)) {
5799 		err = PTR_ERR(struct_meta_tab);
5800 		goto errout;
5801 	}
5802 	btf->struct_meta_tab = struct_meta_tab;
5803 
5804 	if (struct_meta_tab) {
5805 		int i;
5806 
5807 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5808 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5809 			if (err < 0)
5810 				goto errout_meta;
5811 		}
5812 	}
5813 
5814 	err = finalize_log(&env->log, uattr, uattr_size);
5815 	if (err)
5816 		goto errout_free;
5817 
5818 	btf_verifier_env_free(env);
5819 	refcount_set(&btf->refcnt, 1);
5820 	return btf;
5821 
5822 errout_meta:
5823 	btf_free_struct_meta_tab(btf);
5824 errout:
5825 	/* overwrite err with -ENOSPC or -EFAULT */
5826 	ret = finalize_log(&env->log, uattr, uattr_size);
5827 	if (ret)
5828 		err = ret;
5829 errout_free:
5830 	btf_verifier_env_free(env);
5831 	if (btf)
5832 		btf_free(btf);
5833 	return ERR_PTR(err);
5834 }
5835 
5836 extern char __start_BTF[];
5837 extern char __stop_BTF[];
5838 extern struct btf *btf_vmlinux;
5839 
5840 #define BPF_MAP_TYPE(_id, _ops)
5841 #define BPF_LINK_TYPE(_id, _name)
5842 static union {
5843 	struct bpf_ctx_convert {
5844 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5845 	prog_ctx_type _id##_prog; \
5846 	kern_ctx_type _id##_kern;
5847 #include <linux/bpf_types.h>
5848 #undef BPF_PROG_TYPE
5849 	} *__t;
5850 	/* 't' is written once under lock. Read many times. */
5851 	const struct btf_type *t;
5852 } bpf_ctx_convert;
5853 enum {
5854 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5855 	__ctx_convert##_id,
5856 #include <linux/bpf_types.h>
5857 #undef BPF_PROG_TYPE
5858 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5859 };
5860 static u8 bpf_ctx_convert_map[] = {
5861 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5862 	[_id] = __ctx_convert##_id,
5863 #include <linux/bpf_types.h>
5864 #undef BPF_PROG_TYPE
5865 	0, /* avoid empty array */
5866 };
5867 #undef BPF_MAP_TYPE
5868 #undef BPF_LINK_TYPE
5869 
5870 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5871 {
5872 	const struct btf_type *conv_struct;
5873 	const struct btf_member *ctx_type;
5874 
5875 	conv_struct = bpf_ctx_convert.t;
5876 	if (!conv_struct)
5877 		return NULL;
5878 	/* prog_type is valid bpf program type. No need for bounds check. */
5879 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5880 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5881 	 * Like 'struct __sk_buff'
5882 	 */
5883 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5884 }
5885 
5886 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5887 {
5888 	const struct btf_type *conv_struct;
5889 	const struct btf_member *ctx_type;
5890 
5891 	conv_struct = bpf_ctx_convert.t;
5892 	if (!conv_struct)
5893 		return -EFAULT;
5894 	/* prog_type is valid bpf program type. No need for bounds check. */
5895 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5896 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5897 	 * Like 'struct sk_buff'
5898 	 */
5899 	return ctx_type->type;
5900 }
5901 
5902 bool btf_is_projection_of(const char *pname, const char *tname)
5903 {
5904 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5905 		return true;
5906 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5907 		return true;
5908 	return false;
5909 }
5910 
5911 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5912 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5913 			  int arg)
5914 {
5915 	const struct btf_type *ctx_type;
5916 	const char *tname, *ctx_tname;
5917 
5918 	t = btf_type_by_id(btf, t->type);
5919 
5920 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5921 	 * check before we skip all the typedef below.
5922 	 */
5923 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5924 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5925 			t = btf_type_by_id(btf, t->type);
5926 
5927 		if (btf_type_is_typedef(t)) {
5928 			tname = btf_name_by_offset(btf, t->name_off);
5929 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5930 				return true;
5931 		}
5932 	}
5933 
5934 	while (btf_type_is_modifier(t))
5935 		t = btf_type_by_id(btf, t->type);
5936 	if (!btf_type_is_struct(t)) {
5937 		/* Only pointer to struct is supported for now.
5938 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5939 		 * is not supported yet.
5940 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5941 		 */
5942 		return false;
5943 	}
5944 	tname = btf_name_by_offset(btf, t->name_off);
5945 	if (!tname) {
5946 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5947 		return false;
5948 	}
5949 
5950 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5951 	if (!ctx_type) {
5952 		bpf_log(log, "btf_vmlinux is malformed\n");
5953 		/* should not happen */
5954 		return false;
5955 	}
5956 again:
5957 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5958 	if (!ctx_tname) {
5959 		/* should not happen */
5960 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5961 		return false;
5962 	}
5963 	/* program types without named context types work only with arg:ctx tag */
5964 	if (ctx_tname[0] == '\0')
5965 		return false;
5966 	/* only compare that prog's ctx type name is the same as
5967 	 * kernel expects. No need to compare field by field.
5968 	 * It's ok for bpf prog to do:
5969 	 * struct __sk_buff {};
5970 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5971 	 * { // no fields of skb are ever used }
5972 	 */
5973 	if (btf_is_projection_of(ctx_tname, tname))
5974 		return true;
5975 	if (strcmp(ctx_tname, tname)) {
5976 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5977 		 * underlying struct and check name again
5978 		 */
5979 		if (!btf_type_is_modifier(ctx_type))
5980 			return false;
5981 		while (btf_type_is_modifier(ctx_type))
5982 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5983 		goto again;
5984 	}
5985 	return true;
5986 }
5987 
5988 /* forward declarations for arch-specific underlying types of
5989  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5990  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5991  * works correctly with __builtin_types_compatible_p() on respective
5992  * architectures
5993  */
5994 struct user_regs_struct;
5995 struct user_pt_regs;
5996 
5997 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5998 				      const struct btf_type *t, int arg,
5999 				      enum bpf_prog_type prog_type,
6000 				      enum bpf_attach_type attach_type)
6001 {
6002 	const struct btf_type *ctx_type;
6003 	const char *tname, *ctx_tname;
6004 
6005 	if (!btf_is_ptr(t)) {
6006 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6007 		return -EINVAL;
6008 	}
6009 	t = btf_type_by_id(btf, t->type);
6010 
6011 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6012 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6013 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6014 			t = btf_type_by_id(btf, t->type);
6015 
6016 		if (btf_type_is_typedef(t)) {
6017 			tname = btf_name_by_offset(btf, t->name_off);
6018 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6019 				return 0;
6020 		}
6021 	}
6022 
6023 	/* all other program types don't use typedefs for context type */
6024 	while (btf_type_is_modifier(t))
6025 		t = btf_type_by_id(btf, t->type);
6026 
6027 	/* `void *ctx __arg_ctx` is always valid */
6028 	if (btf_type_is_void(t))
6029 		return 0;
6030 
6031 	tname = btf_name_by_offset(btf, t->name_off);
6032 	if (str_is_empty(tname)) {
6033 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6034 		return -EINVAL;
6035 	}
6036 
6037 	/* special cases */
6038 	switch (prog_type) {
6039 	case BPF_PROG_TYPE_KPROBE:
6040 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6041 			return 0;
6042 		break;
6043 	case BPF_PROG_TYPE_PERF_EVENT:
6044 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6045 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6046 			return 0;
6047 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6048 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6049 			return 0;
6050 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6051 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6052 			return 0;
6053 		break;
6054 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6055 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6056 		/* allow u64* as ctx */
6057 		if (btf_is_int(t) && t->size == 8)
6058 			return 0;
6059 		break;
6060 	case BPF_PROG_TYPE_TRACING:
6061 		switch (attach_type) {
6062 		case BPF_TRACE_RAW_TP:
6063 			/* tp_btf program is TRACING, so need special case here */
6064 			if (__btf_type_is_struct(t) &&
6065 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6066 				return 0;
6067 			/* allow u64* as ctx */
6068 			if (btf_is_int(t) && t->size == 8)
6069 				return 0;
6070 			break;
6071 		case BPF_TRACE_ITER:
6072 			/* allow struct bpf_iter__xxx types only */
6073 			if (__btf_type_is_struct(t) &&
6074 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6075 				return 0;
6076 			break;
6077 		case BPF_TRACE_FENTRY:
6078 		case BPF_TRACE_FEXIT:
6079 		case BPF_MODIFY_RETURN:
6080 			/* allow u64* as ctx */
6081 			if (btf_is_int(t) && t->size == 8)
6082 				return 0;
6083 			break;
6084 		default:
6085 			break;
6086 		}
6087 		break;
6088 	case BPF_PROG_TYPE_LSM:
6089 	case BPF_PROG_TYPE_STRUCT_OPS:
6090 		/* allow u64* as ctx */
6091 		if (btf_is_int(t) && t->size == 8)
6092 			return 0;
6093 		break;
6094 	case BPF_PROG_TYPE_TRACEPOINT:
6095 	case BPF_PROG_TYPE_SYSCALL:
6096 	case BPF_PROG_TYPE_EXT:
6097 		return 0; /* anything goes */
6098 	default:
6099 		break;
6100 	}
6101 
6102 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6103 	if (!ctx_type) {
6104 		/* should not happen */
6105 		bpf_log(log, "btf_vmlinux is malformed\n");
6106 		return -EINVAL;
6107 	}
6108 
6109 	/* resolve typedefs and check that underlying structs are matching as well */
6110 	while (btf_type_is_modifier(ctx_type))
6111 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6112 
6113 	/* if program type doesn't have distinctly named struct type for
6114 	 * context, then __arg_ctx argument can only be `void *`, which we
6115 	 * already checked above
6116 	 */
6117 	if (!__btf_type_is_struct(ctx_type)) {
6118 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6119 		return -EINVAL;
6120 	}
6121 
6122 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6123 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6124 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6125 		return -EINVAL;
6126 	}
6127 
6128 	return 0;
6129 }
6130 
6131 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6132 				     struct btf *btf,
6133 				     const struct btf_type *t,
6134 				     enum bpf_prog_type prog_type,
6135 				     int arg)
6136 {
6137 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6138 		return -ENOENT;
6139 	return find_kern_ctx_type_id(prog_type);
6140 }
6141 
6142 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6143 {
6144 	const struct btf_member *kctx_member;
6145 	const struct btf_type *conv_struct;
6146 	const struct btf_type *kctx_type;
6147 	u32 kctx_type_id;
6148 
6149 	conv_struct = bpf_ctx_convert.t;
6150 	/* get member for kernel ctx type */
6151 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6152 	kctx_type_id = kctx_member->type;
6153 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6154 	if (!btf_type_is_struct(kctx_type)) {
6155 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6156 		return -EINVAL;
6157 	}
6158 
6159 	return kctx_type_id;
6160 }
6161 
6162 BTF_ID_LIST(bpf_ctx_convert_btf_id)
6163 BTF_ID(struct, bpf_ctx_convert)
6164 
6165 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6166 				  void *data, unsigned int data_size)
6167 {
6168 	struct btf *btf = NULL;
6169 	int err;
6170 
6171 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6172 		return ERR_PTR(-ENOENT);
6173 
6174 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6175 	if (!btf) {
6176 		err = -ENOMEM;
6177 		goto errout;
6178 	}
6179 	env->btf = btf;
6180 
6181 	btf->data = data;
6182 	btf->data_size = data_size;
6183 	btf->kernel_btf = true;
6184 	snprintf(btf->name, sizeof(btf->name), "%s", name);
6185 
6186 	err = btf_parse_hdr(env);
6187 	if (err)
6188 		goto errout;
6189 
6190 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6191 
6192 	err = btf_parse_str_sec(env);
6193 	if (err)
6194 		goto errout;
6195 
6196 	err = btf_check_all_metas(env);
6197 	if (err)
6198 		goto errout;
6199 
6200 	err = btf_check_type_tags(env, btf, 1);
6201 	if (err)
6202 		goto errout;
6203 
6204 	refcount_set(&btf->refcnt, 1);
6205 
6206 	return btf;
6207 
6208 errout:
6209 	if (btf) {
6210 		kvfree(btf->types);
6211 		kfree(btf);
6212 	}
6213 	return ERR_PTR(err);
6214 }
6215 
6216 struct btf *btf_parse_vmlinux(void)
6217 {
6218 	struct btf_verifier_env *env = NULL;
6219 	struct bpf_verifier_log *log;
6220 	struct btf *btf;
6221 	int err;
6222 
6223 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6224 	if (!env)
6225 		return ERR_PTR(-ENOMEM);
6226 
6227 	log = &env->log;
6228 	log->level = BPF_LOG_KERNEL;
6229 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6230 	if (IS_ERR(btf))
6231 		goto err_out;
6232 
6233 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6234 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6235 	err = btf_alloc_id(btf);
6236 	if (err) {
6237 		btf_free(btf);
6238 		btf = ERR_PTR(err);
6239 	}
6240 err_out:
6241 	btf_verifier_env_free(env);
6242 	return btf;
6243 }
6244 
6245 /* If .BTF_ids section was created with distilled base BTF, both base and
6246  * split BTF ids will need to be mapped to actual base/split ids for
6247  * BTF now that it has been relocated.
6248  */
6249 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6250 {
6251 	if (!btf->base_btf || !btf->base_id_map)
6252 		return id;
6253 	return btf->base_id_map[id];
6254 }
6255 
6256 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6257 
6258 static struct btf *btf_parse_module(const char *module_name, const void *data,
6259 				    unsigned int data_size, void *base_data,
6260 				    unsigned int base_data_size)
6261 {
6262 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6263 	struct btf_verifier_env *env = NULL;
6264 	struct bpf_verifier_log *log;
6265 	int err = 0;
6266 
6267 	vmlinux_btf = bpf_get_btf_vmlinux();
6268 	if (IS_ERR(vmlinux_btf))
6269 		return vmlinux_btf;
6270 	if (!vmlinux_btf)
6271 		return ERR_PTR(-EINVAL);
6272 
6273 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6274 	if (!env)
6275 		return ERR_PTR(-ENOMEM);
6276 
6277 	log = &env->log;
6278 	log->level = BPF_LOG_KERNEL;
6279 
6280 	if (base_data) {
6281 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6282 		if (IS_ERR(base_btf)) {
6283 			err = PTR_ERR(base_btf);
6284 			goto errout;
6285 		}
6286 	} else {
6287 		base_btf = vmlinux_btf;
6288 	}
6289 
6290 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6291 	if (!btf) {
6292 		err = -ENOMEM;
6293 		goto errout;
6294 	}
6295 	env->btf = btf;
6296 
6297 	btf->base_btf = base_btf;
6298 	btf->start_id = base_btf->nr_types;
6299 	btf->start_str_off = base_btf->hdr.str_len;
6300 	btf->kernel_btf = true;
6301 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6302 
6303 	btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6304 	if (!btf->data) {
6305 		err = -ENOMEM;
6306 		goto errout;
6307 	}
6308 	btf->data_size = data_size;
6309 
6310 	err = btf_parse_hdr(env);
6311 	if (err)
6312 		goto errout;
6313 
6314 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6315 
6316 	err = btf_parse_str_sec(env);
6317 	if (err)
6318 		goto errout;
6319 
6320 	err = btf_check_all_metas(env);
6321 	if (err)
6322 		goto errout;
6323 
6324 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6325 	if (err)
6326 		goto errout;
6327 
6328 	if (base_btf != vmlinux_btf) {
6329 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6330 		if (err)
6331 			goto errout;
6332 		btf_free(base_btf);
6333 		base_btf = vmlinux_btf;
6334 	}
6335 
6336 	btf_verifier_env_free(env);
6337 	refcount_set(&btf->refcnt, 1);
6338 	return btf;
6339 
6340 errout:
6341 	btf_verifier_env_free(env);
6342 	if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6343 		btf_free(base_btf);
6344 	if (btf) {
6345 		kvfree(btf->data);
6346 		kvfree(btf->types);
6347 		kfree(btf);
6348 	}
6349 	return ERR_PTR(err);
6350 }
6351 
6352 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6353 
6354 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6355 {
6356 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6357 
6358 	if (tgt_prog)
6359 		return tgt_prog->aux->btf;
6360 	else
6361 		return prog->aux->attach_btf;
6362 }
6363 
6364 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6365 {
6366 	/* skip modifiers */
6367 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6368 
6369 	return btf_type_is_int(t);
6370 }
6371 
6372 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6373 			   int off)
6374 {
6375 	const struct btf_param *args;
6376 	const struct btf_type *t;
6377 	u32 offset = 0, nr_args;
6378 	int i;
6379 
6380 	if (!func_proto)
6381 		return off / 8;
6382 
6383 	nr_args = btf_type_vlen(func_proto);
6384 	args = (const struct btf_param *)(func_proto + 1);
6385 	for (i = 0; i < nr_args; i++) {
6386 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6387 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6388 		if (off < offset)
6389 			return i;
6390 	}
6391 
6392 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6393 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6394 	if (off < offset)
6395 		return nr_args;
6396 
6397 	return nr_args + 1;
6398 }
6399 
6400 static bool prog_args_trusted(const struct bpf_prog *prog)
6401 {
6402 	enum bpf_attach_type atype = prog->expected_attach_type;
6403 
6404 	switch (prog->type) {
6405 	case BPF_PROG_TYPE_TRACING:
6406 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6407 	case BPF_PROG_TYPE_LSM:
6408 		return bpf_lsm_is_trusted(prog);
6409 	case BPF_PROG_TYPE_STRUCT_OPS:
6410 		return true;
6411 	default:
6412 		return false;
6413 	}
6414 }
6415 
6416 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6417 		       u32 arg_no)
6418 {
6419 	const struct btf_param *args;
6420 	const struct btf_type *t;
6421 	int off = 0, i;
6422 	u32 sz;
6423 
6424 	args = btf_params(func_proto);
6425 	for (i = 0; i < arg_no; i++) {
6426 		t = btf_type_by_id(btf, args[i].type);
6427 		t = btf_resolve_size(btf, t, &sz);
6428 		if (IS_ERR(t))
6429 			return PTR_ERR(t);
6430 		off += roundup(sz, 8);
6431 	}
6432 
6433 	return off;
6434 }
6435 
6436 struct bpf_raw_tp_null_args {
6437 	const char *func;
6438 	u64 mask;
6439 };
6440 
6441 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6442 	/* sched */
6443 	{ "sched_pi_setprio", 0x10 },
6444 	/* ... from sched_numa_pair_template event class */
6445 	{ "sched_stick_numa", 0x100 },
6446 	{ "sched_swap_numa", 0x100 },
6447 	/* afs */
6448 	{ "afs_make_fs_call", 0x10 },
6449 	{ "afs_make_fs_calli", 0x10 },
6450 	{ "afs_make_fs_call1", 0x10 },
6451 	{ "afs_make_fs_call2", 0x10 },
6452 	{ "afs_protocol_error", 0x1 },
6453 	{ "afs_flock_ev", 0x10 },
6454 	/* cachefiles */
6455 	{ "cachefiles_lookup", 0x1 | 0x200 },
6456 	{ "cachefiles_unlink", 0x1 },
6457 	{ "cachefiles_rename", 0x1 },
6458 	{ "cachefiles_prep_read", 0x1 },
6459 	{ "cachefiles_mark_active", 0x1 },
6460 	{ "cachefiles_mark_failed", 0x1 },
6461 	{ "cachefiles_mark_inactive", 0x1 },
6462 	{ "cachefiles_vfs_error", 0x1 },
6463 	{ "cachefiles_io_error", 0x1 },
6464 	{ "cachefiles_ondemand_open", 0x1 },
6465 	{ "cachefiles_ondemand_copen", 0x1 },
6466 	{ "cachefiles_ondemand_close", 0x1 },
6467 	{ "cachefiles_ondemand_read", 0x1 },
6468 	{ "cachefiles_ondemand_cread", 0x1 },
6469 	{ "cachefiles_ondemand_fd_write", 0x1 },
6470 	{ "cachefiles_ondemand_fd_release", 0x1 },
6471 	/* ext4, from ext4__mballoc event class */
6472 	{ "ext4_mballoc_discard", 0x10 },
6473 	{ "ext4_mballoc_free", 0x10 },
6474 	/* fib */
6475 	{ "fib_table_lookup", 0x100 },
6476 	/* filelock */
6477 	/* ... from filelock_lock event class */
6478 	{ "posix_lock_inode", 0x10 },
6479 	{ "fcntl_setlk", 0x10 },
6480 	{ "locks_remove_posix", 0x10 },
6481 	{ "flock_lock_inode", 0x10 },
6482 	/* ... from filelock_lease event class */
6483 	{ "break_lease_noblock", 0x10 },
6484 	{ "break_lease_block", 0x10 },
6485 	{ "break_lease_unblock", 0x10 },
6486 	{ "generic_delete_lease", 0x10 },
6487 	{ "time_out_leases", 0x10 },
6488 	/* host1x */
6489 	{ "host1x_cdma_push_gather", 0x10000 },
6490 	/* huge_memory */
6491 	{ "mm_khugepaged_scan_pmd", 0x10 },
6492 	{ "mm_collapse_huge_page_isolate", 0x1 },
6493 	{ "mm_khugepaged_scan_file", 0x10 },
6494 	{ "mm_khugepaged_collapse_file", 0x10 },
6495 	/* kmem */
6496 	{ "mm_page_alloc", 0x1 },
6497 	{ "mm_page_pcpu_drain", 0x1 },
6498 	/* .. from mm_page event class */
6499 	{ "mm_page_alloc_zone_locked", 0x1 },
6500 	/* netfs */
6501 	{ "netfs_failure", 0x10 },
6502 	/* power */
6503 	{ "device_pm_callback_start", 0x10 },
6504 	/* qdisc */
6505 	{ "qdisc_dequeue", 0x1000 },
6506 	/* rxrpc */
6507 	{ "rxrpc_recvdata", 0x1 },
6508 	{ "rxrpc_resend", 0x10 },
6509 	{ "rxrpc_tq", 0x10 },
6510 	{ "rxrpc_client", 0x1 },
6511 	/* skb */
6512 	{"kfree_skb", 0x1000},
6513 	/* sunrpc */
6514 	{ "xs_stream_read_data", 0x1 },
6515 	/* ... from xprt_cong_event event class */
6516 	{ "xprt_reserve_cong", 0x10 },
6517 	{ "xprt_release_cong", 0x10 },
6518 	{ "xprt_get_cong", 0x10 },
6519 	{ "xprt_put_cong", 0x10 },
6520 	/* tcp */
6521 	{ "tcp_send_reset", 0x11 },
6522 	/* tegra_apb_dma */
6523 	{ "tegra_dma_tx_status", 0x100 },
6524 	/* timer_migration */
6525 	{ "tmigr_update_events", 0x1 },
6526 	/* writeback, from writeback_folio_template event class */
6527 	{ "writeback_dirty_folio", 0x10 },
6528 	{ "folio_wait_writeback", 0x10 },
6529 	/* rdma */
6530 	{ "mr_integ_alloc", 0x2000 },
6531 	/* bpf_testmod */
6532 	{ "bpf_testmod_test_read", 0x0 },
6533 	/* amdgpu */
6534 	{ "amdgpu_vm_bo_map", 0x1 },
6535 	{ "amdgpu_vm_bo_unmap", 0x1 },
6536 	/* netfs */
6537 	{ "netfs_folioq", 0x1 },
6538 	/* xfs from xfs_defer_pending_class */
6539 	{ "xfs_defer_create_intent", 0x1 },
6540 	{ "xfs_defer_cancel_list", 0x1 },
6541 	{ "xfs_defer_pending_finish", 0x1 },
6542 	{ "xfs_defer_pending_abort", 0x1 },
6543 	{ "xfs_defer_relog_intent", 0x1 },
6544 	{ "xfs_defer_isolate_paused", 0x1 },
6545 	{ "xfs_defer_item_pause", 0x1 },
6546 	{ "xfs_defer_item_unpause", 0x1 },
6547 	/* xfs from xfs_defer_pending_item_class */
6548 	{ "xfs_defer_add_item", 0x1 },
6549 	{ "xfs_defer_cancel_item", 0x1 },
6550 	{ "xfs_defer_finish_item", 0x1 },
6551 	/* xfs from xfs_icwalk_class */
6552 	{ "xfs_ioc_free_eofblocks", 0x10 },
6553 	{ "xfs_blockgc_free_space", 0x10 },
6554 	/* xfs from xfs_btree_cur_class */
6555 	{ "xfs_btree_updkeys", 0x100 },
6556 	{ "xfs_btree_overlapped_query_range", 0x100 },
6557 	/* xfs from xfs_imap_class*/
6558 	{ "xfs_map_blocks_found", 0x10000 },
6559 	{ "xfs_map_blocks_alloc", 0x10000 },
6560 	{ "xfs_iomap_alloc", 0x1000 },
6561 	{ "xfs_iomap_found", 0x1000 },
6562 	/* xfs from xfs_fs_class */
6563 	{ "xfs_inodegc_flush", 0x1 },
6564 	{ "xfs_inodegc_push", 0x1 },
6565 	{ "xfs_inodegc_start", 0x1 },
6566 	{ "xfs_inodegc_stop", 0x1 },
6567 	{ "xfs_inodegc_queue", 0x1 },
6568 	{ "xfs_inodegc_throttle", 0x1 },
6569 	{ "xfs_fs_sync_fs", 0x1 },
6570 	{ "xfs_blockgc_start", 0x1 },
6571 	{ "xfs_blockgc_stop", 0x1 },
6572 	{ "xfs_blockgc_worker", 0x1 },
6573 	{ "xfs_blockgc_flush_all", 0x1 },
6574 	/* xfs_scrub */
6575 	{ "xchk_nlinks_live_update", 0x10 },
6576 	/* xfs_scrub from xchk_metapath_class */
6577 	{ "xchk_metapath_lookup", 0x100 },
6578 	/* nfsd */
6579 	{ "nfsd_dirent", 0x1 },
6580 	{ "nfsd_file_acquire", 0x1001 },
6581 	{ "nfsd_file_insert_err", 0x1 },
6582 	{ "nfsd_file_cons_err", 0x1 },
6583 	/* nfs4 */
6584 	{ "nfs4_setup_sequence", 0x1 },
6585 	{ "pnfs_update_layout", 0x10000 },
6586 	{ "nfs4_inode_callback_event", 0x200 },
6587 	{ "nfs4_inode_stateid_callback_event", 0x200 },
6588 	/* nfs from pnfs_layout_event */
6589 	{ "pnfs_mds_fallback_pg_init_read", 0x10000 },
6590 	{ "pnfs_mds_fallback_pg_init_write", 0x10000 },
6591 	{ "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 },
6592 	{ "pnfs_mds_fallback_read_done", 0x10000 },
6593 	{ "pnfs_mds_fallback_write_done", 0x10000 },
6594 	{ "pnfs_mds_fallback_read_pagelist", 0x10000 },
6595 	{ "pnfs_mds_fallback_write_pagelist", 0x10000 },
6596 	/* coda */
6597 	{ "coda_dec_pic_run", 0x10 },
6598 	{ "coda_dec_pic_done", 0x10 },
6599 	/* cfg80211 */
6600 	{ "cfg80211_scan_done", 0x11 },
6601 	{ "rdev_set_coalesce", 0x10 },
6602 	{ "cfg80211_report_wowlan_wakeup", 0x100 },
6603 	{ "cfg80211_inform_bss_frame", 0x100 },
6604 	{ "cfg80211_michael_mic_failure", 0x10000 },
6605 	/* cfg80211 from wiphy_work_event */
6606 	{ "wiphy_work_queue", 0x10 },
6607 	{ "wiphy_work_run", 0x10 },
6608 	{ "wiphy_work_cancel", 0x10 },
6609 	{ "wiphy_work_flush", 0x10 },
6610 	/* hugetlbfs */
6611 	{ "hugetlbfs_alloc_inode", 0x10 },
6612 	/* spufs */
6613 	{ "spufs_context", 0x10 },
6614 	/* kvm_hv */
6615 	{ "kvm_page_fault_enter", 0x100 },
6616 	/* dpu */
6617 	{ "dpu_crtc_setup_mixer", 0x100 },
6618 	/* binder */
6619 	{ "binder_transaction", 0x100 },
6620 	/* bcachefs */
6621 	{ "btree_path_free", 0x100 },
6622 	/* hfi1_tx */
6623 	{ "hfi1_sdma_progress", 0x1000 },
6624 	/* iptfs */
6625 	{ "iptfs_ingress_postq_event", 0x1000 },
6626 	/* neigh */
6627 	{ "neigh_update", 0x10 },
6628 	/* snd_firewire_lib */
6629 	{ "amdtp_packet", 0x100 },
6630 };
6631 
6632 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6633 		    const struct bpf_prog *prog,
6634 		    struct bpf_insn_access_aux *info)
6635 {
6636 	const struct btf_type *t = prog->aux->attach_func_proto;
6637 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6638 	struct btf *btf = bpf_prog_get_target_btf(prog);
6639 	const char *tname = prog->aux->attach_func_name;
6640 	struct bpf_verifier_log *log = info->log;
6641 	const struct btf_param *args;
6642 	bool ptr_err_raw_tp = false;
6643 	const char *tag_value;
6644 	u32 nr_args, arg;
6645 	int i, ret;
6646 
6647 	if (off % 8) {
6648 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6649 			tname, off);
6650 		return false;
6651 	}
6652 	arg = get_ctx_arg_idx(btf, t, off);
6653 	args = (const struct btf_param *)(t + 1);
6654 	/* if (t == NULL) Fall back to default BPF prog with
6655 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6656 	 */
6657 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6658 	if (prog->aux->attach_btf_trace) {
6659 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6660 		args++;
6661 		nr_args--;
6662 	}
6663 
6664 	if (arg > nr_args) {
6665 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6666 			tname, arg + 1);
6667 		return false;
6668 	}
6669 
6670 	if (arg == nr_args) {
6671 		switch (prog->expected_attach_type) {
6672 		case BPF_LSM_MAC:
6673 			/* mark we are accessing the return value */
6674 			info->is_retval = true;
6675 			fallthrough;
6676 		case BPF_LSM_CGROUP:
6677 		case BPF_TRACE_FEXIT:
6678 			/* When LSM programs are attached to void LSM hooks
6679 			 * they use FEXIT trampolines and when attached to
6680 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6681 			 *
6682 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6683 			 * the check:
6684 			 *
6685 			 *	if (ret_type != 'int')
6686 			 *		return -EINVAL;
6687 			 *
6688 			 * is _not_ done here. This is still safe as LSM hooks
6689 			 * have only void and int return types.
6690 			 */
6691 			if (!t)
6692 				return true;
6693 			t = btf_type_by_id(btf, t->type);
6694 			break;
6695 		case BPF_MODIFY_RETURN:
6696 			/* For now the BPF_MODIFY_RETURN can only be attached to
6697 			 * functions that return an int.
6698 			 */
6699 			if (!t)
6700 				return false;
6701 
6702 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6703 			if (!btf_type_is_small_int(t)) {
6704 				bpf_log(log,
6705 					"ret type %s not allowed for fmod_ret\n",
6706 					btf_type_str(t));
6707 				return false;
6708 			}
6709 			break;
6710 		default:
6711 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6712 				tname, arg + 1);
6713 			return false;
6714 		}
6715 	} else {
6716 		if (!t)
6717 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6718 			return true;
6719 		t = btf_type_by_id(btf, args[arg].type);
6720 	}
6721 
6722 	/* skip modifiers */
6723 	while (btf_type_is_modifier(t))
6724 		t = btf_type_by_id(btf, t->type);
6725 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6726 		/* accessing a scalar */
6727 		return true;
6728 	if (!btf_type_is_ptr(t)) {
6729 		bpf_log(log,
6730 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6731 			tname, arg,
6732 			__btf_name_by_offset(btf, t->name_off),
6733 			btf_type_str(t));
6734 		return false;
6735 	}
6736 
6737 	if (size != sizeof(u64)) {
6738 		bpf_log(log, "func '%s' size %d must be 8\n",
6739 			tname, size);
6740 		return false;
6741 	}
6742 
6743 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6744 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6745 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6746 		u32 type, flag;
6747 
6748 		type = base_type(ctx_arg_info->reg_type);
6749 		flag = type_flag(ctx_arg_info->reg_type);
6750 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6751 		    (flag & PTR_MAYBE_NULL)) {
6752 			info->reg_type = ctx_arg_info->reg_type;
6753 			return true;
6754 		}
6755 	}
6756 
6757 	if (t->type == 0)
6758 		/* This is a pointer to void.
6759 		 * It is the same as scalar from the verifier safety pov.
6760 		 * No further pointer walking is allowed.
6761 		 */
6762 		return true;
6763 
6764 	if (is_int_ptr(btf, t))
6765 		return true;
6766 
6767 	/* this is a pointer to another type */
6768 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6769 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6770 
6771 		if (ctx_arg_info->offset == off) {
6772 			if (!ctx_arg_info->btf_id) {
6773 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6774 				return false;
6775 			}
6776 
6777 			info->reg_type = ctx_arg_info->reg_type;
6778 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6779 			info->btf_id = ctx_arg_info->btf_id;
6780 			info->ref_obj_id = ctx_arg_info->ref_obj_id;
6781 			return true;
6782 		}
6783 	}
6784 
6785 	info->reg_type = PTR_TO_BTF_ID;
6786 	if (prog_args_trusted(prog))
6787 		info->reg_type |= PTR_TRUSTED;
6788 
6789 	if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6790 		info->reg_type |= PTR_MAYBE_NULL;
6791 
6792 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6793 		struct btf *btf = prog->aux->attach_btf;
6794 		const struct btf_type *t;
6795 		const char *tname;
6796 
6797 		/* BTF lookups cannot fail, return false on error */
6798 		t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6799 		if (!t)
6800 			return false;
6801 		tname = btf_name_by_offset(btf, t->name_off);
6802 		if (!tname)
6803 			return false;
6804 		/* Checked by bpf_check_attach_target */
6805 		tname += sizeof("btf_trace_") - 1;
6806 		for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6807 			/* Is this a func with potential NULL args? */
6808 			if (strcmp(tname, raw_tp_null_args[i].func))
6809 				continue;
6810 			if (raw_tp_null_args[i].mask & (0x1 << (arg * 4)))
6811 				info->reg_type |= PTR_MAYBE_NULL;
6812 			/* Is the current arg IS_ERR? */
6813 			if (raw_tp_null_args[i].mask & (0x2 << (arg * 4)))
6814 				ptr_err_raw_tp = true;
6815 			break;
6816 		}
6817 		/* If we don't know NULL-ness specification and the tracepoint
6818 		 * is coming from a loadable module, be conservative and mark
6819 		 * argument as PTR_MAYBE_NULL.
6820 		 */
6821 		if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6822 			info->reg_type |= PTR_MAYBE_NULL;
6823 	}
6824 
6825 	if (tgt_prog) {
6826 		enum bpf_prog_type tgt_type;
6827 
6828 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6829 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6830 		else
6831 			tgt_type = tgt_prog->type;
6832 
6833 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6834 		if (ret > 0) {
6835 			info->btf = btf_vmlinux;
6836 			info->btf_id = ret;
6837 			return true;
6838 		} else {
6839 			return false;
6840 		}
6841 	}
6842 
6843 	info->btf = btf;
6844 	info->btf_id = t->type;
6845 	t = btf_type_by_id(btf, t->type);
6846 
6847 	if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
6848 		tag_value = __btf_name_by_offset(btf, t->name_off);
6849 		if (strcmp(tag_value, "user") == 0)
6850 			info->reg_type |= MEM_USER;
6851 		if (strcmp(tag_value, "percpu") == 0)
6852 			info->reg_type |= MEM_PERCPU;
6853 	}
6854 
6855 	/* skip modifiers */
6856 	while (btf_type_is_modifier(t)) {
6857 		info->btf_id = t->type;
6858 		t = btf_type_by_id(btf, t->type);
6859 	}
6860 	if (!btf_type_is_struct(t)) {
6861 		bpf_log(log,
6862 			"func '%s' arg%d type %s is not a struct\n",
6863 			tname, arg, btf_type_str(t));
6864 		return false;
6865 	}
6866 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6867 		tname, arg, info->btf_id, btf_type_str(t),
6868 		__btf_name_by_offset(btf, t->name_off));
6869 
6870 	/* Perform all checks on the validity of type for this argument, but if
6871 	 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
6872 	 * scalar.
6873 	 */
6874 	if (ptr_err_raw_tp) {
6875 		bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
6876 		info->reg_type = SCALAR_VALUE;
6877 	}
6878 	return true;
6879 }
6880 EXPORT_SYMBOL_GPL(btf_ctx_access);
6881 
6882 enum bpf_struct_walk_result {
6883 	/* < 0 error */
6884 	WALK_SCALAR = 0,
6885 	WALK_PTR,
6886 	WALK_STRUCT,
6887 };
6888 
6889 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6890 			   const struct btf_type *t, int off, int size,
6891 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6892 			   const char **field_name)
6893 {
6894 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6895 	const struct btf_type *mtype, *elem_type = NULL;
6896 	const struct btf_member *member;
6897 	const char *tname, *mname, *tag_value;
6898 	u32 vlen, elem_id, mid;
6899 
6900 again:
6901 	if (btf_type_is_modifier(t))
6902 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6903 	tname = __btf_name_by_offset(btf, t->name_off);
6904 	if (!btf_type_is_struct(t)) {
6905 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6906 		return -EINVAL;
6907 	}
6908 
6909 	vlen = btf_type_vlen(t);
6910 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6911 		/*
6912 		 * walking unions yields untrusted pointers
6913 		 * with exception of __bpf_md_ptr and other
6914 		 * unions with a single member
6915 		 */
6916 		*flag |= PTR_UNTRUSTED;
6917 
6918 	if (off + size > t->size) {
6919 		/* If the last element is a variable size array, we may
6920 		 * need to relax the rule.
6921 		 */
6922 		struct btf_array *array_elem;
6923 
6924 		if (vlen == 0)
6925 			goto error;
6926 
6927 		member = btf_type_member(t) + vlen - 1;
6928 		mtype = btf_type_skip_modifiers(btf, member->type,
6929 						NULL);
6930 		if (!btf_type_is_array(mtype))
6931 			goto error;
6932 
6933 		array_elem = (struct btf_array *)(mtype + 1);
6934 		if (array_elem->nelems != 0)
6935 			goto error;
6936 
6937 		moff = __btf_member_bit_offset(t, member) / 8;
6938 		if (off < moff)
6939 			goto error;
6940 
6941 		/* allow structure and integer */
6942 		t = btf_type_skip_modifiers(btf, array_elem->type,
6943 					    NULL);
6944 
6945 		if (btf_type_is_int(t))
6946 			return WALK_SCALAR;
6947 
6948 		if (!btf_type_is_struct(t))
6949 			goto error;
6950 
6951 		off = (off - moff) % t->size;
6952 		goto again;
6953 
6954 error:
6955 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6956 			tname, off, size);
6957 		return -EACCES;
6958 	}
6959 
6960 	for_each_member(i, t, member) {
6961 		/* offset of the field in bytes */
6962 		moff = __btf_member_bit_offset(t, member) / 8;
6963 		if (off + size <= moff)
6964 			/* won't find anything, field is already too far */
6965 			break;
6966 
6967 		if (__btf_member_bitfield_size(t, member)) {
6968 			u32 end_bit = __btf_member_bit_offset(t, member) +
6969 				__btf_member_bitfield_size(t, member);
6970 
6971 			/* off <= moff instead of off == moff because clang
6972 			 * does not generate a BTF member for anonymous
6973 			 * bitfield like the ":16" here:
6974 			 * struct {
6975 			 *	int :16;
6976 			 *	int x:8;
6977 			 * };
6978 			 */
6979 			if (off <= moff &&
6980 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6981 				return WALK_SCALAR;
6982 
6983 			/* off may be accessing a following member
6984 			 *
6985 			 * or
6986 			 *
6987 			 * Doing partial access at either end of this
6988 			 * bitfield.  Continue on this case also to
6989 			 * treat it as not accessing this bitfield
6990 			 * and eventually error out as field not
6991 			 * found to keep it simple.
6992 			 * It could be relaxed if there was a legit
6993 			 * partial access case later.
6994 			 */
6995 			continue;
6996 		}
6997 
6998 		/* In case of "off" is pointing to holes of a struct */
6999 		if (off < moff)
7000 			break;
7001 
7002 		/* type of the field */
7003 		mid = member->type;
7004 		mtype = btf_type_by_id(btf, member->type);
7005 		mname = __btf_name_by_offset(btf, member->name_off);
7006 
7007 		mtype = __btf_resolve_size(btf, mtype, &msize,
7008 					   &elem_type, &elem_id, &total_nelems,
7009 					   &mid);
7010 		if (IS_ERR(mtype)) {
7011 			bpf_log(log, "field %s doesn't have size\n", mname);
7012 			return -EFAULT;
7013 		}
7014 
7015 		mtrue_end = moff + msize;
7016 		if (off >= mtrue_end)
7017 			/* no overlap with member, keep iterating */
7018 			continue;
7019 
7020 		if (btf_type_is_array(mtype)) {
7021 			u32 elem_idx;
7022 
7023 			/* __btf_resolve_size() above helps to
7024 			 * linearize a multi-dimensional array.
7025 			 *
7026 			 * The logic here is treating an array
7027 			 * in a struct as the following way:
7028 			 *
7029 			 * struct outer {
7030 			 *	struct inner array[2][2];
7031 			 * };
7032 			 *
7033 			 * looks like:
7034 			 *
7035 			 * struct outer {
7036 			 *	struct inner array_elem0;
7037 			 *	struct inner array_elem1;
7038 			 *	struct inner array_elem2;
7039 			 *	struct inner array_elem3;
7040 			 * };
7041 			 *
7042 			 * When accessing outer->array[1][0], it moves
7043 			 * moff to "array_elem2", set mtype to
7044 			 * "struct inner", and msize also becomes
7045 			 * sizeof(struct inner).  Then most of the
7046 			 * remaining logic will fall through without
7047 			 * caring the current member is an array or
7048 			 * not.
7049 			 *
7050 			 * Unlike mtype/msize/moff, mtrue_end does not
7051 			 * change.  The naming difference ("_true") tells
7052 			 * that it is not always corresponding to
7053 			 * the current mtype/msize/moff.
7054 			 * It is the true end of the current
7055 			 * member (i.e. array in this case).  That
7056 			 * will allow an int array to be accessed like
7057 			 * a scratch space,
7058 			 * i.e. allow access beyond the size of
7059 			 *      the array's element as long as it is
7060 			 *      within the mtrue_end boundary.
7061 			 */
7062 
7063 			/* skip empty array */
7064 			if (moff == mtrue_end)
7065 				continue;
7066 
7067 			msize /= total_nelems;
7068 			elem_idx = (off - moff) / msize;
7069 			moff += elem_idx * msize;
7070 			mtype = elem_type;
7071 			mid = elem_id;
7072 		}
7073 
7074 		/* the 'off' we're looking for is either equal to start
7075 		 * of this field or inside of this struct
7076 		 */
7077 		if (btf_type_is_struct(mtype)) {
7078 			/* our field must be inside that union or struct */
7079 			t = mtype;
7080 
7081 			/* return if the offset matches the member offset */
7082 			if (off == moff) {
7083 				*next_btf_id = mid;
7084 				return WALK_STRUCT;
7085 			}
7086 
7087 			/* adjust offset we're looking for */
7088 			off -= moff;
7089 			goto again;
7090 		}
7091 
7092 		if (btf_type_is_ptr(mtype)) {
7093 			const struct btf_type *stype, *t;
7094 			enum bpf_type_flag tmp_flag = 0;
7095 			u32 id;
7096 
7097 			if (msize != size || off != moff) {
7098 				bpf_log(log,
7099 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7100 					mname, moff, tname, off, size);
7101 				return -EACCES;
7102 			}
7103 
7104 			/* check type tag */
7105 			t = btf_type_by_id(btf, mtype->type);
7106 			if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
7107 				tag_value = __btf_name_by_offset(btf, t->name_off);
7108 				/* check __user tag */
7109 				if (strcmp(tag_value, "user") == 0)
7110 					tmp_flag = MEM_USER;
7111 				/* check __percpu tag */
7112 				if (strcmp(tag_value, "percpu") == 0)
7113 					tmp_flag = MEM_PERCPU;
7114 				/* check __rcu tag */
7115 				if (strcmp(tag_value, "rcu") == 0)
7116 					tmp_flag = MEM_RCU;
7117 			}
7118 
7119 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7120 			if (btf_type_is_struct(stype)) {
7121 				*next_btf_id = id;
7122 				*flag |= tmp_flag;
7123 				if (field_name)
7124 					*field_name = mname;
7125 				return WALK_PTR;
7126 			}
7127 		}
7128 
7129 		/* Allow more flexible access within an int as long as
7130 		 * it is within mtrue_end.
7131 		 * Since mtrue_end could be the end of an array,
7132 		 * that also allows using an array of int as a scratch
7133 		 * space. e.g. skb->cb[].
7134 		 */
7135 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7136 			bpf_log(log,
7137 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7138 				mname, mtrue_end, tname, off, size);
7139 			return -EACCES;
7140 		}
7141 
7142 		return WALK_SCALAR;
7143 	}
7144 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7145 	return -EINVAL;
7146 }
7147 
7148 int btf_struct_access(struct bpf_verifier_log *log,
7149 		      const struct bpf_reg_state *reg,
7150 		      int off, int size, enum bpf_access_type atype __maybe_unused,
7151 		      u32 *next_btf_id, enum bpf_type_flag *flag,
7152 		      const char **field_name)
7153 {
7154 	const struct btf *btf = reg->btf;
7155 	enum bpf_type_flag tmp_flag = 0;
7156 	const struct btf_type *t;
7157 	u32 id = reg->btf_id;
7158 	int err;
7159 
7160 	while (type_is_alloc(reg->type)) {
7161 		struct btf_struct_meta *meta;
7162 		struct btf_record *rec;
7163 		int i;
7164 
7165 		meta = btf_find_struct_meta(btf, id);
7166 		if (!meta)
7167 			break;
7168 		rec = meta->record;
7169 		for (i = 0; i < rec->cnt; i++) {
7170 			struct btf_field *field = &rec->fields[i];
7171 			u32 offset = field->offset;
7172 			if (off < offset + field->size && offset < off + size) {
7173 				bpf_log(log,
7174 					"direct access to %s is disallowed\n",
7175 					btf_field_type_name(field->type));
7176 				return -EACCES;
7177 			}
7178 		}
7179 		break;
7180 	}
7181 
7182 	t = btf_type_by_id(btf, id);
7183 	do {
7184 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7185 
7186 		switch (err) {
7187 		case WALK_PTR:
7188 			/* For local types, the destination register cannot
7189 			 * become a pointer again.
7190 			 */
7191 			if (type_is_alloc(reg->type))
7192 				return SCALAR_VALUE;
7193 			/* If we found the pointer or scalar on t+off,
7194 			 * we're done.
7195 			 */
7196 			*next_btf_id = id;
7197 			*flag = tmp_flag;
7198 			return PTR_TO_BTF_ID;
7199 		case WALK_SCALAR:
7200 			return SCALAR_VALUE;
7201 		case WALK_STRUCT:
7202 			/* We found nested struct, so continue the search
7203 			 * by diving in it. At this point the offset is
7204 			 * aligned with the new type, so set it to 0.
7205 			 */
7206 			t = btf_type_by_id(btf, id);
7207 			off = 0;
7208 			break;
7209 		default:
7210 			/* It's either error or unknown return value..
7211 			 * scream and leave.
7212 			 */
7213 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7214 				return -EINVAL;
7215 			return err;
7216 		}
7217 	} while (t);
7218 
7219 	return -EINVAL;
7220 }
7221 
7222 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7223  * the same. Trivial ID check is not enough due to module BTFs, because we can
7224  * end up with two different module BTFs, but IDs point to the common type in
7225  * vmlinux BTF.
7226  */
7227 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7228 			const struct btf *btf2, u32 id2)
7229 {
7230 	if (id1 != id2)
7231 		return false;
7232 	if (btf1 == btf2)
7233 		return true;
7234 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7235 }
7236 
7237 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7238 			  const struct btf *btf, u32 id, int off,
7239 			  const struct btf *need_btf, u32 need_type_id,
7240 			  bool strict)
7241 {
7242 	const struct btf_type *type;
7243 	enum bpf_type_flag flag = 0;
7244 	int err;
7245 
7246 	/* Are we already done? */
7247 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7248 		return true;
7249 	/* In case of strict type match, we do not walk struct, the top level
7250 	 * type match must succeed. When strict is true, off should have already
7251 	 * been 0.
7252 	 */
7253 	if (strict)
7254 		return false;
7255 again:
7256 	type = btf_type_by_id(btf, id);
7257 	if (!type)
7258 		return false;
7259 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7260 	if (err != WALK_STRUCT)
7261 		return false;
7262 
7263 	/* We found nested struct object. If it matches
7264 	 * the requested ID, we're done. Otherwise let's
7265 	 * continue the search with offset 0 in the new
7266 	 * type.
7267 	 */
7268 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7269 		off = 0;
7270 		goto again;
7271 	}
7272 
7273 	return true;
7274 }
7275 
7276 static int __get_type_size(struct btf *btf, u32 btf_id,
7277 			   const struct btf_type **ret_type)
7278 {
7279 	const struct btf_type *t;
7280 
7281 	*ret_type = btf_type_by_id(btf, 0);
7282 	if (!btf_id)
7283 		/* void */
7284 		return 0;
7285 	t = btf_type_by_id(btf, btf_id);
7286 	while (t && btf_type_is_modifier(t))
7287 		t = btf_type_by_id(btf, t->type);
7288 	if (!t)
7289 		return -EINVAL;
7290 	*ret_type = t;
7291 	if (btf_type_is_ptr(t))
7292 		/* kernel size of pointer. Not BPF's size of pointer*/
7293 		return sizeof(void *);
7294 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
7295 		return t->size;
7296 	return -EINVAL;
7297 }
7298 
7299 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7300 {
7301 	u8 flags = 0;
7302 
7303 	if (__btf_type_is_struct(t))
7304 		flags |= BTF_FMODEL_STRUCT_ARG;
7305 	if (btf_type_is_signed_int(t))
7306 		flags |= BTF_FMODEL_SIGNED_ARG;
7307 
7308 	return flags;
7309 }
7310 
7311 int btf_distill_func_proto(struct bpf_verifier_log *log,
7312 			   struct btf *btf,
7313 			   const struct btf_type *func,
7314 			   const char *tname,
7315 			   struct btf_func_model *m)
7316 {
7317 	const struct btf_param *args;
7318 	const struct btf_type *t;
7319 	u32 i, nargs;
7320 	int ret;
7321 
7322 	if (!func) {
7323 		/* BTF function prototype doesn't match the verifier types.
7324 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7325 		 */
7326 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7327 			m->arg_size[i] = 8;
7328 			m->arg_flags[i] = 0;
7329 		}
7330 		m->ret_size = 8;
7331 		m->ret_flags = 0;
7332 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7333 		return 0;
7334 	}
7335 	args = (const struct btf_param *)(func + 1);
7336 	nargs = btf_type_vlen(func);
7337 	if (nargs > MAX_BPF_FUNC_ARGS) {
7338 		bpf_log(log,
7339 			"The function %s has %d arguments. Too many.\n",
7340 			tname, nargs);
7341 		return -EINVAL;
7342 	}
7343 	ret = __get_type_size(btf, func->type, &t);
7344 	if (ret < 0 || __btf_type_is_struct(t)) {
7345 		bpf_log(log,
7346 			"The function %s return type %s is unsupported.\n",
7347 			tname, btf_type_str(t));
7348 		return -EINVAL;
7349 	}
7350 	m->ret_size = ret;
7351 	m->ret_flags = __get_type_fmodel_flags(t);
7352 
7353 	for (i = 0; i < nargs; i++) {
7354 		if (i == nargs - 1 && args[i].type == 0) {
7355 			bpf_log(log,
7356 				"The function %s with variable args is unsupported.\n",
7357 				tname);
7358 			return -EINVAL;
7359 		}
7360 		ret = __get_type_size(btf, args[i].type, &t);
7361 
7362 		/* No support of struct argument size greater than 16 bytes */
7363 		if (ret < 0 || ret > 16) {
7364 			bpf_log(log,
7365 				"The function %s arg%d type %s is unsupported.\n",
7366 				tname, i, btf_type_str(t));
7367 			return -EINVAL;
7368 		}
7369 		if (ret == 0) {
7370 			bpf_log(log,
7371 				"The function %s has malformed void argument.\n",
7372 				tname);
7373 			return -EINVAL;
7374 		}
7375 		m->arg_size[i] = ret;
7376 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7377 	}
7378 	m->nr_args = nargs;
7379 	return 0;
7380 }
7381 
7382 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7383  * t1 points to BTF_KIND_FUNC in btf1
7384  * t2 points to BTF_KIND_FUNC in btf2
7385  * Returns:
7386  * EINVAL - function prototype mismatch
7387  * EFAULT - verifier bug
7388  * 0 - 99% match. The last 1% is validated by the verifier.
7389  */
7390 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7391 				     struct btf *btf1, const struct btf_type *t1,
7392 				     struct btf *btf2, const struct btf_type *t2)
7393 {
7394 	const struct btf_param *args1, *args2;
7395 	const char *fn1, *fn2, *s1, *s2;
7396 	u32 nargs1, nargs2, i;
7397 
7398 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7399 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7400 
7401 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7402 		bpf_log(log, "%s() is not a global function\n", fn1);
7403 		return -EINVAL;
7404 	}
7405 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7406 		bpf_log(log, "%s() is not a global function\n", fn2);
7407 		return -EINVAL;
7408 	}
7409 
7410 	t1 = btf_type_by_id(btf1, t1->type);
7411 	if (!t1 || !btf_type_is_func_proto(t1))
7412 		return -EFAULT;
7413 	t2 = btf_type_by_id(btf2, t2->type);
7414 	if (!t2 || !btf_type_is_func_proto(t2))
7415 		return -EFAULT;
7416 
7417 	args1 = (const struct btf_param *)(t1 + 1);
7418 	nargs1 = btf_type_vlen(t1);
7419 	args2 = (const struct btf_param *)(t2 + 1);
7420 	nargs2 = btf_type_vlen(t2);
7421 
7422 	if (nargs1 != nargs2) {
7423 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7424 			fn1, nargs1, fn2, nargs2);
7425 		return -EINVAL;
7426 	}
7427 
7428 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7429 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7430 	if (t1->info != t2->info) {
7431 		bpf_log(log,
7432 			"Return type %s of %s() doesn't match type %s of %s()\n",
7433 			btf_type_str(t1), fn1,
7434 			btf_type_str(t2), fn2);
7435 		return -EINVAL;
7436 	}
7437 
7438 	for (i = 0; i < nargs1; i++) {
7439 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7440 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7441 
7442 		if (t1->info != t2->info) {
7443 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7444 				i, fn1, btf_type_str(t1),
7445 				fn2, btf_type_str(t2));
7446 			return -EINVAL;
7447 		}
7448 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7449 			bpf_log(log,
7450 				"arg%d in %s() has size %d while %s() has %d\n",
7451 				i, fn1, t1->size,
7452 				fn2, t2->size);
7453 			return -EINVAL;
7454 		}
7455 
7456 		/* global functions are validated with scalars and pointers
7457 		 * to context only. And only global functions can be replaced.
7458 		 * Hence type check only those types.
7459 		 */
7460 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7461 			continue;
7462 		if (!btf_type_is_ptr(t1)) {
7463 			bpf_log(log,
7464 				"arg%d in %s() has unrecognized type\n",
7465 				i, fn1);
7466 			return -EINVAL;
7467 		}
7468 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7469 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7470 		if (!btf_type_is_struct(t1)) {
7471 			bpf_log(log,
7472 				"arg%d in %s() is not a pointer to context\n",
7473 				i, fn1);
7474 			return -EINVAL;
7475 		}
7476 		if (!btf_type_is_struct(t2)) {
7477 			bpf_log(log,
7478 				"arg%d in %s() is not a pointer to context\n",
7479 				i, fn2);
7480 			return -EINVAL;
7481 		}
7482 		/* This is an optional check to make program writing easier.
7483 		 * Compare names of structs and report an error to the user.
7484 		 * btf_prepare_func_args() already checked that t2 struct
7485 		 * is a context type. btf_prepare_func_args() will check
7486 		 * later that t1 struct is a context type as well.
7487 		 */
7488 		s1 = btf_name_by_offset(btf1, t1->name_off);
7489 		s2 = btf_name_by_offset(btf2, t2->name_off);
7490 		if (strcmp(s1, s2)) {
7491 			bpf_log(log,
7492 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7493 				i, fn1, s1, fn2, s2);
7494 			return -EINVAL;
7495 		}
7496 	}
7497 	return 0;
7498 }
7499 
7500 /* Compare BTFs of given program with BTF of target program */
7501 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7502 			 struct btf *btf2, const struct btf_type *t2)
7503 {
7504 	struct btf *btf1 = prog->aux->btf;
7505 	const struct btf_type *t1;
7506 	u32 btf_id = 0;
7507 
7508 	if (!prog->aux->func_info) {
7509 		bpf_log(log, "Program extension requires BTF\n");
7510 		return -EINVAL;
7511 	}
7512 
7513 	btf_id = prog->aux->func_info[0].type_id;
7514 	if (!btf_id)
7515 		return -EFAULT;
7516 
7517 	t1 = btf_type_by_id(btf1, btf_id);
7518 	if (!t1 || !btf_type_is_func(t1))
7519 		return -EFAULT;
7520 
7521 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7522 }
7523 
7524 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7525 {
7526 	const char *name;
7527 
7528 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7529 
7530 	while (btf_type_is_modifier(t))
7531 		t = btf_type_by_id(btf, t->type);
7532 
7533 	/* allow either struct or struct forward declaration */
7534 	if (btf_type_is_struct(t) ||
7535 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7536 		name = btf_str_by_offset(btf, t->name_off);
7537 		return name && strcmp(name, "bpf_dynptr") == 0;
7538 	}
7539 
7540 	return false;
7541 }
7542 
7543 struct bpf_cand_cache {
7544 	const char *name;
7545 	u32 name_len;
7546 	u16 kind;
7547 	u16 cnt;
7548 	struct {
7549 		const struct btf *btf;
7550 		u32 id;
7551 	} cands[];
7552 };
7553 
7554 static DEFINE_MUTEX(cand_cache_mutex);
7555 
7556 static struct bpf_cand_cache *
7557 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7558 
7559 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7560 				 const struct btf *btf, const struct btf_type *t)
7561 {
7562 	struct bpf_cand_cache *cc;
7563 	struct bpf_core_ctx ctx = {
7564 		.btf = btf,
7565 		.log = log,
7566 	};
7567 	u32 kern_type_id, type_id;
7568 	int err = 0;
7569 
7570 	/* skip PTR and modifiers */
7571 	type_id = t->type;
7572 	t = btf_type_by_id(btf, t->type);
7573 	while (btf_type_is_modifier(t)) {
7574 		type_id = t->type;
7575 		t = btf_type_by_id(btf, t->type);
7576 	}
7577 
7578 	mutex_lock(&cand_cache_mutex);
7579 	cc = bpf_core_find_cands(&ctx, type_id);
7580 	if (IS_ERR(cc)) {
7581 		err = PTR_ERR(cc);
7582 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7583 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7584 			err);
7585 		goto cand_cache_unlock;
7586 	}
7587 	if (cc->cnt != 1) {
7588 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7589 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7590 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7591 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7592 		goto cand_cache_unlock;
7593 	}
7594 	if (btf_is_module(cc->cands[0].btf)) {
7595 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7596 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7597 		err = -EOPNOTSUPP;
7598 		goto cand_cache_unlock;
7599 	}
7600 	kern_type_id = cc->cands[0].id;
7601 
7602 cand_cache_unlock:
7603 	mutex_unlock(&cand_cache_mutex);
7604 	if (err)
7605 		return err;
7606 
7607 	return kern_type_id;
7608 }
7609 
7610 enum btf_arg_tag {
7611 	ARG_TAG_CTX	 = BIT_ULL(0),
7612 	ARG_TAG_NONNULL  = BIT_ULL(1),
7613 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7614 	ARG_TAG_NULLABLE = BIT_ULL(3),
7615 	ARG_TAG_ARENA	 = BIT_ULL(4),
7616 };
7617 
7618 /* Process BTF of a function to produce high-level expectation of function
7619  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7620  * is cached in subprog info for reuse.
7621  * Returns:
7622  * EFAULT - there is a verifier bug. Abort verification.
7623  * EINVAL - cannot convert BTF.
7624  * 0 - Successfully processed BTF and constructed argument expectations.
7625  */
7626 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7627 {
7628 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7629 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7630 	struct bpf_verifier_log *log = &env->log;
7631 	struct bpf_prog *prog = env->prog;
7632 	enum bpf_prog_type prog_type = prog->type;
7633 	struct btf *btf = prog->aux->btf;
7634 	const struct btf_param *args;
7635 	const struct btf_type *t, *ref_t, *fn_t;
7636 	u32 i, nargs, btf_id;
7637 	const char *tname;
7638 
7639 	if (sub->args_cached)
7640 		return 0;
7641 
7642 	if (!prog->aux->func_info) {
7643 		bpf_log(log, "Verifier bug\n");
7644 		return -EFAULT;
7645 	}
7646 
7647 	btf_id = prog->aux->func_info[subprog].type_id;
7648 	if (!btf_id) {
7649 		if (!is_global) /* not fatal for static funcs */
7650 			return -EINVAL;
7651 		bpf_log(log, "Global functions need valid BTF\n");
7652 		return -EFAULT;
7653 	}
7654 
7655 	fn_t = btf_type_by_id(btf, btf_id);
7656 	if (!fn_t || !btf_type_is_func(fn_t)) {
7657 		/* These checks were already done by the verifier while loading
7658 		 * struct bpf_func_info
7659 		 */
7660 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7661 			subprog);
7662 		return -EFAULT;
7663 	}
7664 	tname = btf_name_by_offset(btf, fn_t->name_off);
7665 
7666 	if (prog->aux->func_info_aux[subprog].unreliable) {
7667 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7668 		return -EFAULT;
7669 	}
7670 	if (prog_type == BPF_PROG_TYPE_EXT)
7671 		prog_type = prog->aux->dst_prog->type;
7672 
7673 	t = btf_type_by_id(btf, fn_t->type);
7674 	if (!t || !btf_type_is_func_proto(t)) {
7675 		bpf_log(log, "Invalid type of function %s()\n", tname);
7676 		return -EFAULT;
7677 	}
7678 	args = (const struct btf_param *)(t + 1);
7679 	nargs = btf_type_vlen(t);
7680 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7681 		if (!is_global)
7682 			return -EINVAL;
7683 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7684 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7685 		return -EINVAL;
7686 	}
7687 	/* check that function returns int, exception cb also requires this */
7688 	t = btf_type_by_id(btf, t->type);
7689 	while (btf_type_is_modifier(t))
7690 		t = btf_type_by_id(btf, t->type);
7691 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7692 		if (!is_global)
7693 			return -EINVAL;
7694 		bpf_log(log,
7695 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7696 			tname);
7697 		return -EINVAL;
7698 	}
7699 	/* Convert BTF function arguments into verifier types.
7700 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7701 	 */
7702 	for (i = 0; i < nargs; i++) {
7703 		u32 tags = 0;
7704 		int id = 0;
7705 
7706 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7707 		 * register type from BTF type itself
7708 		 */
7709 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7710 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7711 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7712 
7713 			/* disallow arg tags in static subprogs */
7714 			if (!is_global) {
7715 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7716 				return -EOPNOTSUPP;
7717 			}
7718 
7719 			if (strcmp(tag, "ctx") == 0) {
7720 				tags |= ARG_TAG_CTX;
7721 			} else if (strcmp(tag, "trusted") == 0) {
7722 				tags |= ARG_TAG_TRUSTED;
7723 			} else if (strcmp(tag, "nonnull") == 0) {
7724 				tags |= ARG_TAG_NONNULL;
7725 			} else if (strcmp(tag, "nullable") == 0) {
7726 				tags |= ARG_TAG_NULLABLE;
7727 			} else if (strcmp(tag, "arena") == 0) {
7728 				tags |= ARG_TAG_ARENA;
7729 			} else {
7730 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7731 				return -EOPNOTSUPP;
7732 			}
7733 		}
7734 		if (id != -ENOENT) {
7735 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7736 			return id;
7737 		}
7738 
7739 		t = btf_type_by_id(btf, args[i].type);
7740 		while (btf_type_is_modifier(t))
7741 			t = btf_type_by_id(btf, t->type);
7742 		if (!btf_type_is_ptr(t))
7743 			goto skip_pointer;
7744 
7745 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7746 			if (tags & ~ARG_TAG_CTX) {
7747 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7748 				return -EINVAL;
7749 			}
7750 			if ((tags & ARG_TAG_CTX) &&
7751 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7752 						       prog->expected_attach_type))
7753 				return -EINVAL;
7754 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7755 			continue;
7756 		}
7757 		if (btf_is_dynptr_ptr(btf, t)) {
7758 			if (tags) {
7759 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7760 				return -EINVAL;
7761 			}
7762 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7763 			continue;
7764 		}
7765 		if (tags & ARG_TAG_TRUSTED) {
7766 			int kern_type_id;
7767 
7768 			if (tags & ARG_TAG_NONNULL) {
7769 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7770 				return -EINVAL;
7771 			}
7772 
7773 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7774 			if (kern_type_id < 0)
7775 				return kern_type_id;
7776 
7777 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7778 			if (tags & ARG_TAG_NULLABLE)
7779 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7780 			sub->args[i].btf_id = kern_type_id;
7781 			continue;
7782 		}
7783 		if (tags & ARG_TAG_ARENA) {
7784 			if (tags & ~ARG_TAG_ARENA) {
7785 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7786 				return -EINVAL;
7787 			}
7788 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7789 			continue;
7790 		}
7791 		if (is_global) { /* generic user data pointer */
7792 			u32 mem_size;
7793 
7794 			if (tags & ARG_TAG_NULLABLE) {
7795 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7796 				return -EINVAL;
7797 			}
7798 
7799 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7800 			ref_t = btf_resolve_size(btf, t, &mem_size);
7801 			if (IS_ERR(ref_t)) {
7802 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7803 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7804 					PTR_ERR(ref_t));
7805 				return -EINVAL;
7806 			}
7807 
7808 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7809 			if (tags & ARG_TAG_NONNULL)
7810 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7811 			sub->args[i].mem_size = mem_size;
7812 			continue;
7813 		}
7814 
7815 skip_pointer:
7816 		if (tags) {
7817 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7818 			return -EINVAL;
7819 		}
7820 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7821 			sub->args[i].arg_type = ARG_ANYTHING;
7822 			continue;
7823 		}
7824 		if (!is_global)
7825 			return -EINVAL;
7826 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7827 			i, btf_type_str(t), tname);
7828 		return -EINVAL;
7829 	}
7830 
7831 	sub->arg_cnt = nargs;
7832 	sub->args_cached = true;
7833 
7834 	return 0;
7835 }
7836 
7837 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7838 			  struct btf_show *show)
7839 {
7840 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7841 
7842 	show->btf = btf;
7843 	memset(&show->state, 0, sizeof(show->state));
7844 	memset(&show->obj, 0, sizeof(show->obj));
7845 
7846 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7847 }
7848 
7849 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7850 					va_list args)
7851 {
7852 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7853 }
7854 
7855 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7856 			    void *obj, struct seq_file *m, u64 flags)
7857 {
7858 	struct btf_show sseq;
7859 
7860 	sseq.target = m;
7861 	sseq.showfn = btf_seq_show;
7862 	sseq.flags = flags;
7863 
7864 	btf_type_show(btf, type_id, obj, &sseq);
7865 
7866 	return sseq.state.status;
7867 }
7868 
7869 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7870 		       struct seq_file *m)
7871 {
7872 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7873 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7874 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7875 }
7876 
7877 struct btf_show_snprintf {
7878 	struct btf_show show;
7879 	int len_left;		/* space left in string */
7880 	int len;		/* length we would have written */
7881 };
7882 
7883 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7884 					     va_list args)
7885 {
7886 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7887 	int len;
7888 
7889 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7890 
7891 	if (len < 0) {
7892 		ssnprintf->len_left = 0;
7893 		ssnprintf->len = len;
7894 	} else if (len >= ssnprintf->len_left) {
7895 		/* no space, drive on to get length we would have written */
7896 		ssnprintf->len_left = 0;
7897 		ssnprintf->len += len;
7898 	} else {
7899 		ssnprintf->len_left -= len;
7900 		ssnprintf->len += len;
7901 		show->target += len;
7902 	}
7903 }
7904 
7905 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7906 			   char *buf, int len, u64 flags)
7907 {
7908 	struct btf_show_snprintf ssnprintf;
7909 
7910 	ssnprintf.show.target = buf;
7911 	ssnprintf.show.flags = flags;
7912 	ssnprintf.show.showfn = btf_snprintf_show;
7913 	ssnprintf.len_left = len;
7914 	ssnprintf.len = 0;
7915 
7916 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7917 
7918 	/* If we encountered an error, return it. */
7919 	if (ssnprintf.show.state.status)
7920 		return ssnprintf.show.state.status;
7921 
7922 	/* Otherwise return length we would have written */
7923 	return ssnprintf.len;
7924 }
7925 
7926 #ifdef CONFIG_PROC_FS
7927 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7928 {
7929 	const struct btf *btf = filp->private_data;
7930 
7931 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7932 }
7933 #endif
7934 
7935 static int btf_release(struct inode *inode, struct file *filp)
7936 {
7937 	btf_put(filp->private_data);
7938 	return 0;
7939 }
7940 
7941 const struct file_operations btf_fops = {
7942 #ifdef CONFIG_PROC_FS
7943 	.show_fdinfo	= bpf_btf_show_fdinfo,
7944 #endif
7945 	.release	= btf_release,
7946 };
7947 
7948 static int __btf_new_fd(struct btf *btf)
7949 {
7950 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7951 }
7952 
7953 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7954 {
7955 	struct btf *btf;
7956 	int ret;
7957 
7958 	btf = btf_parse(attr, uattr, uattr_size);
7959 	if (IS_ERR(btf))
7960 		return PTR_ERR(btf);
7961 
7962 	ret = btf_alloc_id(btf);
7963 	if (ret) {
7964 		btf_free(btf);
7965 		return ret;
7966 	}
7967 
7968 	/*
7969 	 * The BTF ID is published to the userspace.
7970 	 * All BTF free must go through call_rcu() from
7971 	 * now on (i.e. free by calling btf_put()).
7972 	 */
7973 
7974 	ret = __btf_new_fd(btf);
7975 	if (ret < 0)
7976 		btf_put(btf);
7977 
7978 	return ret;
7979 }
7980 
7981 struct btf *btf_get_by_fd(int fd)
7982 {
7983 	struct btf *btf;
7984 	CLASS(fd, f)(fd);
7985 
7986 	btf = __btf_get_by_fd(f);
7987 	if (!IS_ERR(btf))
7988 		refcount_inc(&btf->refcnt);
7989 
7990 	return btf;
7991 }
7992 
7993 int btf_get_info_by_fd(const struct btf *btf,
7994 		       const union bpf_attr *attr,
7995 		       union bpf_attr __user *uattr)
7996 {
7997 	struct bpf_btf_info __user *uinfo;
7998 	struct bpf_btf_info info;
7999 	u32 info_copy, btf_copy;
8000 	void __user *ubtf;
8001 	char __user *uname;
8002 	u32 uinfo_len, uname_len, name_len;
8003 	int ret = 0;
8004 
8005 	uinfo = u64_to_user_ptr(attr->info.info);
8006 	uinfo_len = attr->info.info_len;
8007 
8008 	info_copy = min_t(u32, uinfo_len, sizeof(info));
8009 	memset(&info, 0, sizeof(info));
8010 	if (copy_from_user(&info, uinfo, info_copy))
8011 		return -EFAULT;
8012 
8013 	info.id = btf->id;
8014 	ubtf = u64_to_user_ptr(info.btf);
8015 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
8016 	if (copy_to_user(ubtf, btf->data, btf_copy))
8017 		return -EFAULT;
8018 	info.btf_size = btf->data_size;
8019 
8020 	info.kernel_btf = btf->kernel_btf;
8021 
8022 	uname = u64_to_user_ptr(info.name);
8023 	uname_len = info.name_len;
8024 	if (!uname ^ !uname_len)
8025 		return -EINVAL;
8026 
8027 	name_len = strlen(btf->name);
8028 	info.name_len = name_len;
8029 
8030 	if (uname) {
8031 		if (uname_len >= name_len + 1) {
8032 			if (copy_to_user(uname, btf->name, name_len + 1))
8033 				return -EFAULT;
8034 		} else {
8035 			char zero = '\0';
8036 
8037 			if (copy_to_user(uname, btf->name, uname_len - 1))
8038 				return -EFAULT;
8039 			if (put_user(zero, uname + uname_len - 1))
8040 				return -EFAULT;
8041 			/* let user-space know about too short buffer */
8042 			ret = -ENOSPC;
8043 		}
8044 	}
8045 
8046 	if (copy_to_user(uinfo, &info, info_copy) ||
8047 	    put_user(info_copy, &uattr->info.info_len))
8048 		return -EFAULT;
8049 
8050 	return ret;
8051 }
8052 
8053 int btf_get_fd_by_id(u32 id)
8054 {
8055 	struct btf *btf;
8056 	int fd;
8057 
8058 	rcu_read_lock();
8059 	btf = idr_find(&btf_idr, id);
8060 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
8061 		btf = ERR_PTR(-ENOENT);
8062 	rcu_read_unlock();
8063 
8064 	if (IS_ERR(btf))
8065 		return PTR_ERR(btf);
8066 
8067 	fd = __btf_new_fd(btf);
8068 	if (fd < 0)
8069 		btf_put(btf);
8070 
8071 	return fd;
8072 }
8073 
8074 u32 btf_obj_id(const struct btf *btf)
8075 {
8076 	return btf->id;
8077 }
8078 
8079 bool btf_is_kernel(const struct btf *btf)
8080 {
8081 	return btf->kernel_btf;
8082 }
8083 
8084 bool btf_is_module(const struct btf *btf)
8085 {
8086 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
8087 }
8088 
8089 enum {
8090 	BTF_MODULE_F_LIVE = (1 << 0),
8091 };
8092 
8093 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8094 struct btf_module {
8095 	struct list_head list;
8096 	struct module *module;
8097 	struct btf *btf;
8098 	struct bin_attribute *sysfs_attr;
8099 	int flags;
8100 };
8101 
8102 static LIST_HEAD(btf_modules);
8103 static DEFINE_MUTEX(btf_module_mutex);
8104 
8105 static void purge_cand_cache(struct btf *btf);
8106 
8107 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8108 			     void *module)
8109 {
8110 	struct btf_module *btf_mod, *tmp;
8111 	struct module *mod = module;
8112 	struct btf *btf;
8113 	int err = 0;
8114 
8115 	if (mod->btf_data_size == 0 ||
8116 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8117 	     op != MODULE_STATE_GOING))
8118 		goto out;
8119 
8120 	switch (op) {
8121 	case MODULE_STATE_COMING:
8122 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8123 		if (!btf_mod) {
8124 			err = -ENOMEM;
8125 			goto out;
8126 		}
8127 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8128 				       mod->btf_base_data, mod->btf_base_data_size);
8129 		if (IS_ERR(btf)) {
8130 			kfree(btf_mod);
8131 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8132 				pr_warn("failed to validate module [%s] BTF: %ld\n",
8133 					mod->name, PTR_ERR(btf));
8134 				err = PTR_ERR(btf);
8135 			} else {
8136 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8137 			}
8138 			goto out;
8139 		}
8140 		err = btf_alloc_id(btf);
8141 		if (err) {
8142 			btf_free(btf);
8143 			kfree(btf_mod);
8144 			goto out;
8145 		}
8146 
8147 		purge_cand_cache(NULL);
8148 		mutex_lock(&btf_module_mutex);
8149 		btf_mod->module = module;
8150 		btf_mod->btf = btf;
8151 		list_add(&btf_mod->list, &btf_modules);
8152 		mutex_unlock(&btf_module_mutex);
8153 
8154 		if (IS_ENABLED(CONFIG_SYSFS)) {
8155 			struct bin_attribute *attr;
8156 
8157 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8158 			if (!attr)
8159 				goto out;
8160 
8161 			sysfs_bin_attr_init(attr);
8162 			attr->attr.name = btf->name;
8163 			attr->attr.mode = 0444;
8164 			attr->size = btf->data_size;
8165 			attr->private = btf->data;
8166 			attr->read_new = sysfs_bin_attr_simple_read;
8167 
8168 			err = sysfs_create_bin_file(btf_kobj, attr);
8169 			if (err) {
8170 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8171 					mod->name, err);
8172 				kfree(attr);
8173 				err = 0;
8174 				goto out;
8175 			}
8176 
8177 			btf_mod->sysfs_attr = attr;
8178 		}
8179 
8180 		break;
8181 	case MODULE_STATE_LIVE:
8182 		mutex_lock(&btf_module_mutex);
8183 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8184 			if (btf_mod->module != module)
8185 				continue;
8186 
8187 			btf_mod->flags |= BTF_MODULE_F_LIVE;
8188 			break;
8189 		}
8190 		mutex_unlock(&btf_module_mutex);
8191 		break;
8192 	case MODULE_STATE_GOING:
8193 		mutex_lock(&btf_module_mutex);
8194 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8195 			if (btf_mod->module != module)
8196 				continue;
8197 
8198 			list_del(&btf_mod->list);
8199 			if (btf_mod->sysfs_attr)
8200 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8201 			purge_cand_cache(btf_mod->btf);
8202 			btf_put(btf_mod->btf);
8203 			kfree(btf_mod->sysfs_attr);
8204 			kfree(btf_mod);
8205 			break;
8206 		}
8207 		mutex_unlock(&btf_module_mutex);
8208 		break;
8209 	}
8210 out:
8211 	return notifier_from_errno(err);
8212 }
8213 
8214 static struct notifier_block btf_module_nb = {
8215 	.notifier_call = btf_module_notify,
8216 };
8217 
8218 static int __init btf_module_init(void)
8219 {
8220 	register_module_notifier(&btf_module_nb);
8221 	return 0;
8222 }
8223 
8224 fs_initcall(btf_module_init);
8225 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8226 
8227 struct module *btf_try_get_module(const struct btf *btf)
8228 {
8229 	struct module *res = NULL;
8230 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8231 	struct btf_module *btf_mod, *tmp;
8232 
8233 	mutex_lock(&btf_module_mutex);
8234 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8235 		if (btf_mod->btf != btf)
8236 			continue;
8237 
8238 		/* We must only consider module whose __init routine has
8239 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8240 		 * which is set from the notifier callback for
8241 		 * MODULE_STATE_LIVE.
8242 		 */
8243 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8244 			res = btf_mod->module;
8245 
8246 		break;
8247 	}
8248 	mutex_unlock(&btf_module_mutex);
8249 #endif
8250 
8251 	return res;
8252 }
8253 
8254 /* Returns struct btf corresponding to the struct module.
8255  * This function can return NULL or ERR_PTR.
8256  */
8257 static struct btf *btf_get_module_btf(const struct module *module)
8258 {
8259 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8260 	struct btf_module *btf_mod, *tmp;
8261 #endif
8262 	struct btf *btf = NULL;
8263 
8264 	if (!module) {
8265 		btf = bpf_get_btf_vmlinux();
8266 		if (!IS_ERR_OR_NULL(btf))
8267 			btf_get(btf);
8268 		return btf;
8269 	}
8270 
8271 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8272 	mutex_lock(&btf_module_mutex);
8273 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8274 		if (btf_mod->module != module)
8275 			continue;
8276 
8277 		btf_get(btf_mod->btf);
8278 		btf = btf_mod->btf;
8279 		break;
8280 	}
8281 	mutex_unlock(&btf_module_mutex);
8282 #endif
8283 
8284 	return btf;
8285 }
8286 
8287 static int check_btf_kconfigs(const struct module *module, const char *feature)
8288 {
8289 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8290 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8291 		return -ENOENT;
8292 	}
8293 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8294 		pr_warn("missing module BTF, cannot register %s\n", feature);
8295 	return 0;
8296 }
8297 
8298 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8299 {
8300 	struct btf *btf = NULL;
8301 	int btf_obj_fd = 0;
8302 	long ret;
8303 
8304 	if (flags)
8305 		return -EINVAL;
8306 
8307 	if (name_sz <= 1 || name[name_sz - 1])
8308 		return -EINVAL;
8309 
8310 	ret = bpf_find_btf_id(name, kind, &btf);
8311 	if (ret > 0 && btf_is_module(btf)) {
8312 		btf_obj_fd = __btf_new_fd(btf);
8313 		if (btf_obj_fd < 0) {
8314 			btf_put(btf);
8315 			return btf_obj_fd;
8316 		}
8317 		return ret | (((u64)btf_obj_fd) << 32);
8318 	}
8319 	if (ret > 0)
8320 		btf_put(btf);
8321 	return ret;
8322 }
8323 
8324 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8325 	.func		= bpf_btf_find_by_name_kind,
8326 	.gpl_only	= false,
8327 	.ret_type	= RET_INTEGER,
8328 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8329 	.arg2_type	= ARG_CONST_SIZE,
8330 	.arg3_type	= ARG_ANYTHING,
8331 	.arg4_type	= ARG_ANYTHING,
8332 };
8333 
8334 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8335 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8336 BTF_TRACING_TYPE_xxx
8337 #undef BTF_TRACING_TYPE
8338 
8339 /* Validate well-formedness of iter argument type.
8340  * On success, return positive BTF ID of iter state's STRUCT type.
8341  * On error, negative error is returned.
8342  */
8343 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8344 {
8345 	const struct btf_param *arg;
8346 	const struct btf_type *t;
8347 	const char *name;
8348 	int btf_id;
8349 
8350 	if (btf_type_vlen(func) <= arg_idx)
8351 		return -EINVAL;
8352 
8353 	arg = &btf_params(func)[arg_idx];
8354 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8355 	if (!t || !btf_type_is_ptr(t))
8356 		return -EINVAL;
8357 	t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8358 	if (!t || !__btf_type_is_struct(t))
8359 		return -EINVAL;
8360 
8361 	name = btf_name_by_offset(btf, t->name_off);
8362 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8363 		return -EINVAL;
8364 
8365 	return btf_id;
8366 }
8367 
8368 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8369 				 const struct btf_type *func, u32 func_flags)
8370 {
8371 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8372 	const char *sfx, *iter_name;
8373 	const struct btf_type *t;
8374 	char exp_name[128];
8375 	u32 nr_args;
8376 	int btf_id;
8377 
8378 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8379 	if (!flags || (flags & (flags - 1)))
8380 		return -EINVAL;
8381 
8382 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8383 	nr_args = btf_type_vlen(func);
8384 	if (nr_args < 1)
8385 		return -EINVAL;
8386 
8387 	btf_id = btf_check_iter_arg(btf, func, 0);
8388 	if (btf_id < 0)
8389 		return btf_id;
8390 
8391 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8392 	 * fit nicely in stack slots
8393 	 */
8394 	t = btf_type_by_id(btf, btf_id);
8395 	if (t->size == 0 || (t->size % 8))
8396 		return -EINVAL;
8397 
8398 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8399 	 * naming pattern
8400 	 */
8401 	iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8402 	if (flags & KF_ITER_NEW)
8403 		sfx = "new";
8404 	else if (flags & KF_ITER_NEXT)
8405 		sfx = "next";
8406 	else /* (flags & KF_ITER_DESTROY) */
8407 		sfx = "destroy";
8408 
8409 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8410 	if (strcmp(func_name, exp_name))
8411 		return -EINVAL;
8412 
8413 	/* only iter constructor should have extra arguments */
8414 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8415 		return -EINVAL;
8416 
8417 	if (flags & KF_ITER_NEXT) {
8418 		/* bpf_iter_<type>_next() should return pointer */
8419 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8420 		if (!t || !btf_type_is_ptr(t))
8421 			return -EINVAL;
8422 	}
8423 
8424 	if (flags & KF_ITER_DESTROY) {
8425 		/* bpf_iter_<type>_destroy() should return void */
8426 		t = btf_type_by_id(btf, func->type);
8427 		if (!t || !btf_type_is_void(t))
8428 			return -EINVAL;
8429 	}
8430 
8431 	return 0;
8432 }
8433 
8434 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8435 {
8436 	const struct btf_type *func;
8437 	const char *func_name;
8438 	int err;
8439 
8440 	/* any kfunc should be FUNC -> FUNC_PROTO */
8441 	func = btf_type_by_id(btf, func_id);
8442 	if (!func || !btf_type_is_func(func))
8443 		return -EINVAL;
8444 
8445 	/* sanity check kfunc name */
8446 	func_name = btf_name_by_offset(btf, func->name_off);
8447 	if (!func_name || !func_name[0])
8448 		return -EINVAL;
8449 
8450 	func = btf_type_by_id(btf, func->type);
8451 	if (!func || !btf_type_is_func_proto(func))
8452 		return -EINVAL;
8453 
8454 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8455 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8456 		if (err)
8457 			return err;
8458 	}
8459 
8460 	return 0;
8461 }
8462 
8463 /* Kernel Function (kfunc) BTF ID set registration API */
8464 
8465 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8466 				  const struct btf_kfunc_id_set *kset)
8467 {
8468 	struct btf_kfunc_hook_filter *hook_filter;
8469 	struct btf_id_set8 *add_set = kset->set;
8470 	bool vmlinux_set = !btf_is_module(btf);
8471 	bool add_filter = !!kset->filter;
8472 	struct btf_kfunc_set_tab *tab;
8473 	struct btf_id_set8 *set;
8474 	u32 set_cnt, i;
8475 	int ret;
8476 
8477 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8478 		ret = -EINVAL;
8479 		goto end;
8480 	}
8481 
8482 	if (!add_set->cnt)
8483 		return 0;
8484 
8485 	tab = btf->kfunc_set_tab;
8486 
8487 	if (tab && add_filter) {
8488 		u32 i;
8489 
8490 		hook_filter = &tab->hook_filters[hook];
8491 		for (i = 0; i < hook_filter->nr_filters; i++) {
8492 			if (hook_filter->filters[i] == kset->filter) {
8493 				add_filter = false;
8494 				break;
8495 			}
8496 		}
8497 
8498 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8499 			ret = -E2BIG;
8500 			goto end;
8501 		}
8502 	}
8503 
8504 	if (!tab) {
8505 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8506 		if (!tab)
8507 			return -ENOMEM;
8508 		btf->kfunc_set_tab = tab;
8509 	}
8510 
8511 	set = tab->sets[hook];
8512 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8513 	 * for module sets.
8514 	 */
8515 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8516 		ret = -EINVAL;
8517 		goto end;
8518 	}
8519 
8520 	/* In case of vmlinux sets, there may be more than one set being
8521 	 * registered per hook. To create a unified set, we allocate a new set
8522 	 * and concatenate all individual sets being registered. While each set
8523 	 * is individually sorted, they may become unsorted when concatenated,
8524 	 * hence re-sorting the final set again is required to make binary
8525 	 * searching the set using btf_id_set8_contains function work.
8526 	 *
8527 	 * For module sets, we need to allocate as we may need to relocate
8528 	 * BTF ids.
8529 	 */
8530 	set_cnt = set ? set->cnt : 0;
8531 
8532 	if (set_cnt > U32_MAX - add_set->cnt) {
8533 		ret = -EOVERFLOW;
8534 		goto end;
8535 	}
8536 
8537 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8538 		ret = -E2BIG;
8539 		goto end;
8540 	}
8541 
8542 	/* Grow set */
8543 	set = krealloc(tab->sets[hook],
8544 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8545 		       GFP_KERNEL | __GFP_NOWARN);
8546 	if (!set) {
8547 		ret = -ENOMEM;
8548 		goto end;
8549 	}
8550 
8551 	/* For newly allocated set, initialize set->cnt to 0 */
8552 	if (!tab->sets[hook])
8553 		set->cnt = 0;
8554 	tab->sets[hook] = set;
8555 
8556 	/* Concatenate the two sets */
8557 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8558 	/* Now that the set is copied, update with relocated BTF ids */
8559 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8560 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8561 
8562 	set->cnt += add_set->cnt;
8563 
8564 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8565 
8566 	if (add_filter) {
8567 		hook_filter = &tab->hook_filters[hook];
8568 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8569 	}
8570 	return 0;
8571 end:
8572 	btf_free_kfunc_set_tab(btf);
8573 	return ret;
8574 }
8575 
8576 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8577 					enum btf_kfunc_hook hook,
8578 					u32 kfunc_btf_id,
8579 					const struct bpf_prog *prog)
8580 {
8581 	struct btf_kfunc_hook_filter *hook_filter;
8582 	struct btf_id_set8 *set;
8583 	u32 *id, i;
8584 
8585 	if (hook >= BTF_KFUNC_HOOK_MAX)
8586 		return NULL;
8587 	if (!btf->kfunc_set_tab)
8588 		return NULL;
8589 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8590 	for (i = 0; i < hook_filter->nr_filters; i++) {
8591 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8592 			return NULL;
8593 	}
8594 	set = btf->kfunc_set_tab->sets[hook];
8595 	if (!set)
8596 		return NULL;
8597 	id = btf_id_set8_contains(set, kfunc_btf_id);
8598 	if (!id)
8599 		return NULL;
8600 	/* The flags for BTF ID are located next to it */
8601 	return id + 1;
8602 }
8603 
8604 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8605 {
8606 	switch (prog_type) {
8607 	case BPF_PROG_TYPE_UNSPEC:
8608 		return BTF_KFUNC_HOOK_COMMON;
8609 	case BPF_PROG_TYPE_XDP:
8610 		return BTF_KFUNC_HOOK_XDP;
8611 	case BPF_PROG_TYPE_SCHED_CLS:
8612 		return BTF_KFUNC_HOOK_TC;
8613 	case BPF_PROG_TYPE_STRUCT_OPS:
8614 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8615 	case BPF_PROG_TYPE_TRACING:
8616 	case BPF_PROG_TYPE_TRACEPOINT:
8617 	case BPF_PROG_TYPE_PERF_EVENT:
8618 	case BPF_PROG_TYPE_LSM:
8619 		return BTF_KFUNC_HOOK_TRACING;
8620 	case BPF_PROG_TYPE_SYSCALL:
8621 		return BTF_KFUNC_HOOK_SYSCALL;
8622 	case BPF_PROG_TYPE_CGROUP_SKB:
8623 	case BPF_PROG_TYPE_CGROUP_SOCK:
8624 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8625 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8626 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8627 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8628 		return BTF_KFUNC_HOOK_CGROUP;
8629 	case BPF_PROG_TYPE_SCHED_ACT:
8630 		return BTF_KFUNC_HOOK_SCHED_ACT;
8631 	case BPF_PROG_TYPE_SK_SKB:
8632 		return BTF_KFUNC_HOOK_SK_SKB;
8633 	case BPF_PROG_TYPE_SOCKET_FILTER:
8634 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8635 	case BPF_PROG_TYPE_LWT_OUT:
8636 	case BPF_PROG_TYPE_LWT_IN:
8637 	case BPF_PROG_TYPE_LWT_XMIT:
8638 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8639 		return BTF_KFUNC_HOOK_LWT;
8640 	case BPF_PROG_TYPE_NETFILTER:
8641 		return BTF_KFUNC_HOOK_NETFILTER;
8642 	case BPF_PROG_TYPE_KPROBE:
8643 		return BTF_KFUNC_HOOK_KPROBE;
8644 	default:
8645 		return BTF_KFUNC_HOOK_MAX;
8646 	}
8647 }
8648 
8649 /* Caution:
8650  * Reference to the module (obtained using btf_try_get_module) corresponding to
8651  * the struct btf *MUST* be held when calling this function from verifier
8652  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8653  * keeping the reference for the duration of the call provides the necessary
8654  * protection for looking up a well-formed btf->kfunc_set_tab.
8655  */
8656 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8657 			       u32 kfunc_btf_id,
8658 			       const struct bpf_prog *prog)
8659 {
8660 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8661 	enum btf_kfunc_hook hook;
8662 	u32 *kfunc_flags;
8663 
8664 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8665 	if (kfunc_flags)
8666 		return kfunc_flags;
8667 
8668 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8669 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8670 }
8671 
8672 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8673 				const struct bpf_prog *prog)
8674 {
8675 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8676 }
8677 
8678 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8679 				       const struct btf_kfunc_id_set *kset)
8680 {
8681 	struct btf *btf;
8682 	int ret, i;
8683 
8684 	btf = btf_get_module_btf(kset->owner);
8685 	if (!btf)
8686 		return check_btf_kconfigs(kset->owner, "kfunc");
8687 	if (IS_ERR(btf))
8688 		return PTR_ERR(btf);
8689 
8690 	for (i = 0; i < kset->set->cnt; i++) {
8691 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8692 					     kset->set->pairs[i].flags);
8693 		if (ret)
8694 			goto err_out;
8695 	}
8696 
8697 	ret = btf_populate_kfunc_set(btf, hook, kset);
8698 
8699 err_out:
8700 	btf_put(btf);
8701 	return ret;
8702 }
8703 
8704 /* This function must be invoked only from initcalls/module init functions */
8705 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8706 			      const struct btf_kfunc_id_set *kset)
8707 {
8708 	enum btf_kfunc_hook hook;
8709 
8710 	/* All kfuncs need to be tagged as such in BTF.
8711 	 * WARN() for initcall registrations that do not check errors.
8712 	 */
8713 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8714 		WARN_ON(!kset->owner);
8715 		return -EINVAL;
8716 	}
8717 
8718 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8719 	return __register_btf_kfunc_id_set(hook, kset);
8720 }
8721 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8722 
8723 /* This function must be invoked only from initcalls/module init functions */
8724 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8725 {
8726 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8727 }
8728 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8729 
8730 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8731 {
8732 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8733 	struct btf_id_dtor_kfunc *dtor;
8734 
8735 	if (!tab)
8736 		return -ENOENT;
8737 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8738 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8739 	 */
8740 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8741 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8742 	if (!dtor)
8743 		return -ENOENT;
8744 	return dtor->kfunc_btf_id;
8745 }
8746 
8747 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8748 {
8749 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8750 	const struct btf_param *args;
8751 	s32 dtor_btf_id;
8752 	u32 nr_args, i;
8753 
8754 	for (i = 0; i < cnt; i++) {
8755 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8756 
8757 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8758 		if (!dtor_func || !btf_type_is_func(dtor_func))
8759 			return -EINVAL;
8760 
8761 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8762 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8763 			return -EINVAL;
8764 
8765 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8766 		t = btf_type_by_id(btf, dtor_func_proto->type);
8767 		if (!t || !btf_type_is_void(t))
8768 			return -EINVAL;
8769 
8770 		nr_args = btf_type_vlen(dtor_func_proto);
8771 		if (nr_args != 1)
8772 			return -EINVAL;
8773 		args = btf_params(dtor_func_proto);
8774 		t = btf_type_by_id(btf, args[0].type);
8775 		/* Allow any pointer type, as width on targets Linux supports
8776 		 * will be same for all pointer types (i.e. sizeof(void *))
8777 		 */
8778 		if (!t || !btf_type_is_ptr(t))
8779 			return -EINVAL;
8780 	}
8781 	return 0;
8782 }
8783 
8784 /* This function must be invoked only from initcalls/module init functions */
8785 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8786 				struct module *owner)
8787 {
8788 	struct btf_id_dtor_kfunc_tab *tab;
8789 	struct btf *btf;
8790 	u32 tab_cnt, i;
8791 	int ret;
8792 
8793 	btf = btf_get_module_btf(owner);
8794 	if (!btf)
8795 		return check_btf_kconfigs(owner, "dtor kfuncs");
8796 	if (IS_ERR(btf))
8797 		return PTR_ERR(btf);
8798 
8799 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8800 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8801 		ret = -E2BIG;
8802 		goto end;
8803 	}
8804 
8805 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8806 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8807 	if (ret < 0)
8808 		goto end;
8809 
8810 	tab = btf->dtor_kfunc_tab;
8811 	/* Only one call allowed for modules */
8812 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8813 		ret = -EINVAL;
8814 		goto end;
8815 	}
8816 
8817 	tab_cnt = tab ? tab->cnt : 0;
8818 	if (tab_cnt > U32_MAX - add_cnt) {
8819 		ret = -EOVERFLOW;
8820 		goto end;
8821 	}
8822 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8823 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8824 		ret = -E2BIG;
8825 		goto end;
8826 	}
8827 
8828 	tab = krealloc(btf->dtor_kfunc_tab,
8829 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8830 		       GFP_KERNEL | __GFP_NOWARN);
8831 	if (!tab) {
8832 		ret = -ENOMEM;
8833 		goto end;
8834 	}
8835 
8836 	if (!btf->dtor_kfunc_tab)
8837 		tab->cnt = 0;
8838 	btf->dtor_kfunc_tab = tab;
8839 
8840 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8841 
8842 	/* remap BTF ids based on BTF relocation (if any) */
8843 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8844 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8845 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8846 	}
8847 
8848 	tab->cnt += add_cnt;
8849 
8850 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8851 
8852 end:
8853 	if (ret)
8854 		btf_free_dtor_kfunc_tab(btf);
8855 	btf_put(btf);
8856 	return ret;
8857 }
8858 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8859 
8860 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8861 
8862 /* Check local and target types for compatibility. This check is used for
8863  * type-based CO-RE relocations and follow slightly different rules than
8864  * field-based relocations. This function assumes that root types were already
8865  * checked for name match. Beyond that initial root-level name check, names
8866  * are completely ignored. Compatibility rules are as follows:
8867  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8868  *     kind should match for local and target types (i.e., STRUCT is not
8869  *     compatible with UNION);
8870  *   - for ENUMs/ENUM64s, the size is ignored;
8871  *   - for INT, size and signedness are ignored;
8872  *   - for ARRAY, dimensionality is ignored, element types are checked for
8873  *     compatibility recursively;
8874  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8875  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8876  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8877  *     number of input args and compatible return and argument types.
8878  * These rules are not set in stone and probably will be adjusted as we get
8879  * more experience with using BPF CO-RE relocations.
8880  */
8881 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8882 			      const struct btf *targ_btf, __u32 targ_id)
8883 {
8884 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8885 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8886 }
8887 
8888 #define MAX_TYPES_MATCH_DEPTH 2
8889 
8890 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8891 			 const struct btf *targ_btf, u32 targ_id)
8892 {
8893 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8894 				      MAX_TYPES_MATCH_DEPTH);
8895 }
8896 
8897 static bool bpf_core_is_flavor_sep(const char *s)
8898 {
8899 	/* check X___Y name pattern, where X and Y are not underscores */
8900 	return s[0] != '_' &&				      /* X */
8901 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8902 	       s[4] != '_';				      /* Y */
8903 }
8904 
8905 size_t bpf_core_essential_name_len(const char *name)
8906 {
8907 	size_t n = strlen(name);
8908 	int i;
8909 
8910 	for (i = n - 5; i >= 0; i--) {
8911 		if (bpf_core_is_flavor_sep(name + i))
8912 			return i + 1;
8913 	}
8914 	return n;
8915 }
8916 
8917 static void bpf_free_cands(struct bpf_cand_cache *cands)
8918 {
8919 	if (!cands->cnt)
8920 		/* empty candidate array was allocated on stack */
8921 		return;
8922 	kfree(cands);
8923 }
8924 
8925 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8926 {
8927 	kfree(cands->name);
8928 	kfree(cands);
8929 }
8930 
8931 #define VMLINUX_CAND_CACHE_SIZE 31
8932 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8933 
8934 #define MODULE_CAND_CACHE_SIZE 31
8935 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8936 
8937 static void __print_cand_cache(struct bpf_verifier_log *log,
8938 			       struct bpf_cand_cache **cache,
8939 			       int cache_size)
8940 {
8941 	struct bpf_cand_cache *cc;
8942 	int i, j;
8943 
8944 	for (i = 0; i < cache_size; i++) {
8945 		cc = cache[i];
8946 		if (!cc)
8947 			continue;
8948 		bpf_log(log, "[%d]%s(", i, cc->name);
8949 		for (j = 0; j < cc->cnt; j++) {
8950 			bpf_log(log, "%d", cc->cands[j].id);
8951 			if (j < cc->cnt - 1)
8952 				bpf_log(log, " ");
8953 		}
8954 		bpf_log(log, "), ");
8955 	}
8956 }
8957 
8958 static void print_cand_cache(struct bpf_verifier_log *log)
8959 {
8960 	mutex_lock(&cand_cache_mutex);
8961 	bpf_log(log, "vmlinux_cand_cache:");
8962 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8963 	bpf_log(log, "\nmodule_cand_cache:");
8964 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8965 	bpf_log(log, "\n");
8966 	mutex_unlock(&cand_cache_mutex);
8967 }
8968 
8969 static u32 hash_cands(struct bpf_cand_cache *cands)
8970 {
8971 	return jhash(cands->name, cands->name_len, 0);
8972 }
8973 
8974 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8975 					       struct bpf_cand_cache **cache,
8976 					       int cache_size)
8977 {
8978 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8979 
8980 	if (cc && cc->name_len == cands->name_len &&
8981 	    !strncmp(cc->name, cands->name, cands->name_len))
8982 		return cc;
8983 	return NULL;
8984 }
8985 
8986 static size_t sizeof_cands(int cnt)
8987 {
8988 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8989 }
8990 
8991 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8992 						  struct bpf_cand_cache **cache,
8993 						  int cache_size)
8994 {
8995 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8996 
8997 	if (*cc) {
8998 		bpf_free_cands_from_cache(*cc);
8999 		*cc = NULL;
9000 	}
9001 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
9002 	if (!new_cands) {
9003 		bpf_free_cands(cands);
9004 		return ERR_PTR(-ENOMEM);
9005 	}
9006 	/* strdup the name, since it will stay in cache.
9007 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
9008 	 */
9009 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
9010 	bpf_free_cands(cands);
9011 	if (!new_cands->name) {
9012 		kfree(new_cands);
9013 		return ERR_PTR(-ENOMEM);
9014 	}
9015 	*cc = new_cands;
9016 	return new_cands;
9017 }
9018 
9019 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
9020 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
9021 			       int cache_size)
9022 {
9023 	struct bpf_cand_cache *cc;
9024 	int i, j;
9025 
9026 	for (i = 0; i < cache_size; i++) {
9027 		cc = cache[i];
9028 		if (!cc)
9029 			continue;
9030 		if (!btf) {
9031 			/* when new module is loaded purge all of module_cand_cache,
9032 			 * since new module might have candidates with the name
9033 			 * that matches cached cands.
9034 			 */
9035 			bpf_free_cands_from_cache(cc);
9036 			cache[i] = NULL;
9037 			continue;
9038 		}
9039 		/* when module is unloaded purge cache entries
9040 		 * that match module's btf
9041 		 */
9042 		for (j = 0; j < cc->cnt; j++)
9043 			if (cc->cands[j].btf == btf) {
9044 				bpf_free_cands_from_cache(cc);
9045 				cache[i] = NULL;
9046 				break;
9047 			}
9048 	}
9049 
9050 }
9051 
9052 static void purge_cand_cache(struct btf *btf)
9053 {
9054 	mutex_lock(&cand_cache_mutex);
9055 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9056 	mutex_unlock(&cand_cache_mutex);
9057 }
9058 #endif
9059 
9060 static struct bpf_cand_cache *
9061 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
9062 		   int targ_start_id)
9063 {
9064 	struct bpf_cand_cache *new_cands;
9065 	const struct btf_type *t;
9066 	const char *targ_name;
9067 	size_t targ_essent_len;
9068 	int n, i;
9069 
9070 	n = btf_nr_types(targ_btf);
9071 	for (i = targ_start_id; i < n; i++) {
9072 		t = btf_type_by_id(targ_btf, i);
9073 		if (btf_kind(t) != cands->kind)
9074 			continue;
9075 
9076 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
9077 		if (!targ_name)
9078 			continue;
9079 
9080 		/* the resched point is before strncmp to make sure that search
9081 		 * for non-existing name will have a chance to schedule().
9082 		 */
9083 		cond_resched();
9084 
9085 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
9086 			continue;
9087 
9088 		targ_essent_len = bpf_core_essential_name_len(targ_name);
9089 		if (targ_essent_len != cands->name_len)
9090 			continue;
9091 
9092 		/* most of the time there is only one candidate for a given kind+name pair */
9093 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
9094 		if (!new_cands) {
9095 			bpf_free_cands(cands);
9096 			return ERR_PTR(-ENOMEM);
9097 		}
9098 
9099 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9100 		bpf_free_cands(cands);
9101 		cands = new_cands;
9102 		cands->cands[cands->cnt].btf = targ_btf;
9103 		cands->cands[cands->cnt].id = i;
9104 		cands->cnt++;
9105 	}
9106 	return cands;
9107 }
9108 
9109 static struct bpf_cand_cache *
9110 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9111 {
9112 	struct bpf_cand_cache *cands, *cc, local_cand = {};
9113 	const struct btf *local_btf = ctx->btf;
9114 	const struct btf_type *local_type;
9115 	const struct btf *main_btf;
9116 	size_t local_essent_len;
9117 	struct btf *mod_btf;
9118 	const char *name;
9119 	int id;
9120 
9121 	main_btf = bpf_get_btf_vmlinux();
9122 	if (IS_ERR(main_btf))
9123 		return ERR_CAST(main_btf);
9124 	if (!main_btf)
9125 		return ERR_PTR(-EINVAL);
9126 
9127 	local_type = btf_type_by_id(local_btf, local_type_id);
9128 	if (!local_type)
9129 		return ERR_PTR(-EINVAL);
9130 
9131 	name = btf_name_by_offset(local_btf, local_type->name_off);
9132 	if (str_is_empty(name))
9133 		return ERR_PTR(-EINVAL);
9134 	local_essent_len = bpf_core_essential_name_len(name);
9135 
9136 	cands = &local_cand;
9137 	cands->name = name;
9138 	cands->kind = btf_kind(local_type);
9139 	cands->name_len = local_essent_len;
9140 
9141 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9142 	/* cands is a pointer to stack here */
9143 	if (cc) {
9144 		if (cc->cnt)
9145 			return cc;
9146 		goto check_modules;
9147 	}
9148 
9149 	/* Attempt to find target candidates in vmlinux BTF first */
9150 	cands = bpf_core_add_cands(cands, main_btf, 1);
9151 	if (IS_ERR(cands))
9152 		return ERR_CAST(cands);
9153 
9154 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9155 
9156 	/* populate cache even when cands->cnt == 0 */
9157 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9158 	if (IS_ERR(cc))
9159 		return ERR_CAST(cc);
9160 
9161 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
9162 	if (cc->cnt)
9163 		return cc;
9164 
9165 check_modules:
9166 	/* cands is a pointer to stack here and cands->cnt == 0 */
9167 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9168 	if (cc)
9169 		/* if cache has it return it even if cc->cnt == 0 */
9170 		return cc;
9171 
9172 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9173 	spin_lock_bh(&btf_idr_lock);
9174 	idr_for_each_entry(&btf_idr, mod_btf, id) {
9175 		if (!btf_is_module(mod_btf))
9176 			continue;
9177 		/* linear search could be slow hence unlock/lock
9178 		 * the IDR to avoiding holding it for too long
9179 		 */
9180 		btf_get(mod_btf);
9181 		spin_unlock_bh(&btf_idr_lock);
9182 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
9183 		btf_put(mod_btf);
9184 		if (IS_ERR(cands))
9185 			return ERR_CAST(cands);
9186 		spin_lock_bh(&btf_idr_lock);
9187 	}
9188 	spin_unlock_bh(&btf_idr_lock);
9189 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
9190 	 * or pointer to stack if cands->cnd == 0.
9191 	 * Copy it into the cache even when cands->cnt == 0 and
9192 	 * return the result.
9193 	 */
9194 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9195 }
9196 
9197 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9198 		   int relo_idx, void *insn)
9199 {
9200 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9201 	struct bpf_core_cand_list cands = {};
9202 	struct bpf_core_relo_res targ_res;
9203 	struct bpf_core_spec *specs;
9204 	const struct btf_type *type;
9205 	int err;
9206 
9207 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9208 	 * into arrays of btf_ids of struct fields and array indices.
9209 	 */
9210 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
9211 	if (!specs)
9212 		return -ENOMEM;
9213 
9214 	type = btf_type_by_id(ctx->btf, relo->type_id);
9215 	if (!type) {
9216 		bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9217 			relo_idx, relo->type_id);
9218 		kfree(specs);
9219 		return -EINVAL;
9220 	}
9221 
9222 	if (need_cands) {
9223 		struct bpf_cand_cache *cc;
9224 		int i;
9225 
9226 		mutex_lock(&cand_cache_mutex);
9227 		cc = bpf_core_find_cands(ctx, relo->type_id);
9228 		if (IS_ERR(cc)) {
9229 			bpf_log(ctx->log, "target candidate search failed for %d\n",
9230 				relo->type_id);
9231 			err = PTR_ERR(cc);
9232 			goto out;
9233 		}
9234 		if (cc->cnt) {
9235 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
9236 			if (!cands.cands) {
9237 				err = -ENOMEM;
9238 				goto out;
9239 			}
9240 		}
9241 		for (i = 0; i < cc->cnt; i++) {
9242 			bpf_log(ctx->log,
9243 				"CO-RE relocating %s %s: found target candidate [%d]\n",
9244 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9245 			cands.cands[i].btf = cc->cands[i].btf;
9246 			cands.cands[i].id = cc->cands[i].id;
9247 		}
9248 		cands.len = cc->cnt;
9249 		/* cand_cache_mutex needs to span the cache lookup and
9250 		 * copy of btf pointer into bpf_core_cand_list,
9251 		 * since module can be unloaded while bpf_core_calc_relo_insn
9252 		 * is working with module's btf.
9253 		 */
9254 	}
9255 
9256 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9257 				      &targ_res);
9258 	if (err)
9259 		goto out;
9260 
9261 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9262 				  &targ_res);
9263 
9264 out:
9265 	kfree(specs);
9266 	if (need_cands) {
9267 		kfree(cands.cands);
9268 		mutex_unlock(&cand_cache_mutex);
9269 		if (ctx->log->level & BPF_LOG_LEVEL2)
9270 			print_cand_cache(ctx->log);
9271 	}
9272 	return err;
9273 }
9274 
9275 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9276 				const struct bpf_reg_state *reg,
9277 				const char *field_name, u32 btf_id, const char *suffix)
9278 {
9279 	struct btf *btf = reg->btf;
9280 	const struct btf_type *walk_type, *safe_type;
9281 	const char *tname;
9282 	char safe_tname[64];
9283 	long ret, safe_id;
9284 	const struct btf_member *member;
9285 	u32 i;
9286 
9287 	walk_type = btf_type_by_id(btf, reg->btf_id);
9288 	if (!walk_type)
9289 		return false;
9290 
9291 	tname = btf_name_by_offset(btf, walk_type->name_off);
9292 
9293 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9294 	if (ret >= sizeof(safe_tname))
9295 		return false;
9296 
9297 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9298 	if (safe_id < 0)
9299 		return false;
9300 
9301 	safe_type = btf_type_by_id(btf, safe_id);
9302 	if (!safe_type)
9303 		return false;
9304 
9305 	for_each_member(i, safe_type, member) {
9306 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
9307 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9308 		u32 id;
9309 
9310 		if (!btf_type_is_ptr(mtype))
9311 			continue;
9312 
9313 		btf_type_skip_modifiers(btf, mtype->type, &id);
9314 		/* If we match on both type and name, the field is considered trusted. */
9315 		if (btf_id == id && !strcmp(field_name, m_name))
9316 			return true;
9317 	}
9318 
9319 	return false;
9320 }
9321 
9322 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9323 			       const struct btf *reg_btf, u32 reg_id,
9324 			       const struct btf *arg_btf, u32 arg_id)
9325 {
9326 	const char *reg_name, *arg_name, *search_needle;
9327 	const struct btf_type *reg_type, *arg_type;
9328 	int reg_len, arg_len, cmp_len;
9329 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9330 
9331 	reg_type = btf_type_by_id(reg_btf, reg_id);
9332 	if (!reg_type)
9333 		return false;
9334 
9335 	arg_type = btf_type_by_id(arg_btf, arg_id);
9336 	if (!arg_type)
9337 		return false;
9338 
9339 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9340 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9341 
9342 	reg_len = strlen(reg_name);
9343 	arg_len = strlen(arg_name);
9344 
9345 	/* Exactly one of the two type names may be suffixed with ___init, so
9346 	 * if the strings are the same size, they can't possibly be no-cast
9347 	 * aliases of one another. If you have two of the same type names, e.g.
9348 	 * they're both nf_conn___init, it would be improper to return true
9349 	 * because they are _not_ no-cast aliases, they are the same type.
9350 	 */
9351 	if (reg_len == arg_len)
9352 		return false;
9353 
9354 	/* Either of the two names must be the other name, suffixed with ___init. */
9355 	if ((reg_len != arg_len + pattern_len) &&
9356 	    (arg_len != reg_len + pattern_len))
9357 		return false;
9358 
9359 	if (reg_len < arg_len) {
9360 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9361 		cmp_len = reg_len;
9362 	} else {
9363 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9364 		cmp_len = arg_len;
9365 	}
9366 
9367 	if (!search_needle)
9368 		return false;
9369 
9370 	/* ___init suffix must come at the end of the name */
9371 	if (*(search_needle + pattern_len) != '\0')
9372 		return false;
9373 
9374 	return !strncmp(reg_name, arg_name, cmp_len);
9375 }
9376 
9377 #ifdef CONFIG_BPF_JIT
9378 static int
9379 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9380 		   struct bpf_verifier_log *log)
9381 {
9382 	struct btf_struct_ops_tab *tab, *new_tab;
9383 	int i, err;
9384 
9385 	tab = btf->struct_ops_tab;
9386 	if (!tab) {
9387 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9388 			      GFP_KERNEL);
9389 		if (!tab)
9390 			return -ENOMEM;
9391 		tab->capacity = 4;
9392 		btf->struct_ops_tab = tab;
9393 	}
9394 
9395 	for (i = 0; i < tab->cnt; i++)
9396 		if (tab->ops[i].st_ops == st_ops)
9397 			return -EEXIST;
9398 
9399 	if (tab->cnt == tab->capacity) {
9400 		new_tab = krealloc(tab,
9401 				   offsetof(struct btf_struct_ops_tab,
9402 					    ops[tab->capacity * 2]),
9403 				   GFP_KERNEL);
9404 		if (!new_tab)
9405 			return -ENOMEM;
9406 		tab = new_tab;
9407 		tab->capacity *= 2;
9408 		btf->struct_ops_tab = tab;
9409 	}
9410 
9411 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9412 
9413 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9414 	if (err)
9415 		return err;
9416 
9417 	btf->struct_ops_tab->cnt++;
9418 
9419 	return 0;
9420 }
9421 
9422 const struct bpf_struct_ops_desc *
9423 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9424 {
9425 	const struct bpf_struct_ops_desc *st_ops_list;
9426 	unsigned int i;
9427 	u32 cnt;
9428 
9429 	if (!value_id)
9430 		return NULL;
9431 	if (!btf->struct_ops_tab)
9432 		return NULL;
9433 
9434 	cnt = btf->struct_ops_tab->cnt;
9435 	st_ops_list = btf->struct_ops_tab->ops;
9436 	for (i = 0; i < cnt; i++) {
9437 		if (st_ops_list[i].value_id == value_id)
9438 			return &st_ops_list[i];
9439 	}
9440 
9441 	return NULL;
9442 }
9443 
9444 const struct bpf_struct_ops_desc *
9445 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9446 {
9447 	const struct bpf_struct_ops_desc *st_ops_list;
9448 	unsigned int i;
9449 	u32 cnt;
9450 
9451 	if (!type_id)
9452 		return NULL;
9453 	if (!btf->struct_ops_tab)
9454 		return NULL;
9455 
9456 	cnt = btf->struct_ops_tab->cnt;
9457 	st_ops_list = btf->struct_ops_tab->ops;
9458 	for (i = 0; i < cnt; i++) {
9459 		if (st_ops_list[i].type_id == type_id)
9460 			return &st_ops_list[i];
9461 	}
9462 
9463 	return NULL;
9464 }
9465 
9466 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9467 {
9468 	struct bpf_verifier_log *log;
9469 	struct btf *btf;
9470 	int err = 0;
9471 
9472 	btf = btf_get_module_btf(st_ops->owner);
9473 	if (!btf)
9474 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9475 	if (IS_ERR(btf))
9476 		return PTR_ERR(btf);
9477 
9478 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9479 	if (!log) {
9480 		err = -ENOMEM;
9481 		goto errout;
9482 	}
9483 
9484 	log->level = BPF_LOG_KERNEL;
9485 
9486 	err = btf_add_struct_ops(btf, st_ops, log);
9487 
9488 errout:
9489 	kfree(log);
9490 	btf_put(btf);
9491 
9492 	return err;
9493 }
9494 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9495 #endif
9496 
9497 bool btf_param_match_suffix(const struct btf *btf,
9498 			    const struct btf_param *arg,
9499 			    const char *suffix)
9500 {
9501 	int suffix_len = strlen(suffix), len;
9502 	const char *param_name;
9503 
9504 	/* In the future, this can be ported to use BTF tagging */
9505 	param_name = btf_name_by_offset(btf, arg->name_off);
9506 	if (str_is_empty(param_name))
9507 		return false;
9508 	len = strlen(param_name);
9509 	if (len <= suffix_len)
9510 		return false;
9511 	param_name += len - suffix_len;
9512 	return !strncmp(param_name, suffix, suffix_len);
9513 }
9514