xref: /linux/kernel/bpf/btf.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/string.h>
29 #include <linux/sysfs.h>
30 #include <linux/overflow.h>
31 
32 #include <net/netfilter/nf_bpf_link.h>
33 
34 #include <net/sock.h>
35 #include <net/xdp.h>
36 #include "../tools/lib/bpf/relo_core.h"
37 
38 /* BTF (BPF Type Format) is the meta data format which describes
39  * the data types of BPF program/map.  Hence, it basically focus
40  * on the C programming language which the modern BPF is primary
41  * using.
42  *
43  * ELF Section:
44  * ~~~~~~~~~~~
45  * The BTF data is stored under the ".BTF" ELF section
46  *
47  * struct btf_type:
48  * ~~~~~~~~~~~~~~~
49  * Each 'struct btf_type' object describes a C data type.
50  * Depending on the type it is describing, a 'struct btf_type'
51  * object may be followed by more data.  F.e.
52  * To describe an array, 'struct btf_type' is followed by
53  * 'struct btf_array'.
54  *
55  * 'struct btf_type' and any extra data following it are
56  * 4 bytes aligned.
57  *
58  * Type section:
59  * ~~~~~~~~~~~~~
60  * The BTF type section contains a list of 'struct btf_type' objects.
61  * Each one describes a C type.  Recall from the above section
62  * that a 'struct btf_type' object could be immediately followed by extra
63  * data in order to describe some particular C types.
64  *
65  * type_id:
66  * ~~~~~~~
67  * Each btf_type object is identified by a type_id.  The type_id
68  * is implicitly implied by the location of the btf_type object in
69  * the BTF type section.  The first one has type_id 1.  The second
70  * one has type_id 2...etc.  Hence, an earlier btf_type has
71  * a smaller type_id.
72  *
73  * A btf_type object may refer to another btf_type object by using
74  * type_id (i.e. the "type" in the "struct btf_type").
75  *
76  * NOTE that we cannot assume any reference-order.
77  * A btf_type object can refer to an earlier btf_type object
78  * but it can also refer to a later btf_type object.
79  *
80  * For example, to describe "const void *".  A btf_type
81  * object describing "const" may refer to another btf_type
82  * object describing "void *".  This type-reference is done
83  * by specifying type_id:
84  *
85  * [1] CONST (anon) type_id=2
86  * [2] PTR (anon) type_id=0
87  *
88  * The above is the btf_verifier debug log:
89  *   - Each line started with "[?]" is a btf_type object
90  *   - [?] is the type_id of the btf_type object.
91  *   - CONST/PTR is the BTF_KIND_XXX
92  *   - "(anon)" is the name of the type.  It just
93  *     happens that CONST and PTR has no name.
94  *   - type_id=XXX is the 'u32 type' in btf_type
95  *
96  * NOTE: "void" has type_id 0
97  *
98  * String section:
99  * ~~~~~~~~~~~~~~
100  * The BTF string section contains the names used by the type section.
101  * Each string is referred by an "offset" from the beginning of the
102  * string section.
103  *
104  * Each string is '\0' terminated.
105  *
106  * The first character in the string section must be '\0'
107  * which is used to mean 'anonymous'. Some btf_type may not
108  * have a name.
109  */
110 
111 /* BTF verification:
112  *
113  * To verify BTF data, two passes are needed.
114  *
115  * Pass #1
116  * ~~~~~~~
117  * The first pass is to collect all btf_type objects to
118  * an array: "btf->types".
119  *
120  * Depending on the C type that a btf_type is describing,
121  * a btf_type may be followed by extra data.  We don't know
122  * how many btf_type is there, and more importantly we don't
123  * know where each btf_type is located in the type section.
124  *
125  * Without knowing the location of each type_id, most verifications
126  * cannot be done.  e.g. an earlier btf_type may refer to a later
127  * btf_type (recall the "const void *" above), so we cannot
128  * check this type-reference in the first pass.
129  *
130  * In the first pass, it still does some verifications (e.g.
131  * checking the name is a valid offset to the string section).
132  *
133  * Pass #2
134  * ~~~~~~~
135  * The main focus is to resolve a btf_type that is referring
136  * to another type.
137  *
138  * We have to ensure the referring type:
139  * 1) does exist in the BTF (i.e. in btf->types[])
140  * 2) does not cause a loop:
141  *	struct A {
142  *		struct B b;
143  *	};
144  *
145  *	struct B {
146  *		struct A a;
147  *	};
148  *
149  * btf_type_needs_resolve() decides if a btf_type needs
150  * to be resolved.
151  *
152  * The needs_resolve type implements the "resolve()" ops which
153  * essentially does a DFS and detects backedge.
154  *
155  * During resolve (or DFS), different C types have different
156  * "RESOLVED" conditions.
157  *
158  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
159  * members because a member is always referring to another
160  * type.  A struct's member can be treated as "RESOLVED" if
161  * it is referring to a BTF_KIND_PTR.  Otherwise, the
162  * following valid C struct would be rejected:
163  *
164  *	struct A {
165  *		int m;
166  *		struct A *a;
167  *	};
168  *
169  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
170  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
171  * detect a pointer loop, e.g.:
172  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
173  *                        ^                                         |
174  *                        +-----------------------------------------+
175  *
176  */
177 
178 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
179 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
180 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
181 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
182 #define BITS_ROUNDUP_BYTES(bits) \
183 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
184 
185 #define BTF_INFO_MASK 0x9f00ffff
186 #define BTF_INT_MASK 0x0fffffff
187 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
188 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
189 
190 /* 16MB for 64k structs and each has 16 members and
191  * a few MB spaces for the string section.
192  * The hard limit is S32_MAX.
193  */
194 #define BTF_MAX_SIZE (16 * 1024 * 1024)
195 
196 #define for_each_member_from(i, from, struct_type, member)		\
197 	for (i = from, member = btf_type_member(struct_type) + from;	\
198 	     i < btf_type_vlen(struct_type);				\
199 	     i++, member++)
200 
201 #define for_each_vsi_from(i, from, struct_type, member)				\
202 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
203 	     i < btf_type_vlen(struct_type);					\
204 	     i++, member++)
205 
206 DEFINE_IDR(btf_idr);
207 DEFINE_SPINLOCK(btf_idr_lock);
208 
209 enum btf_kfunc_hook {
210 	BTF_KFUNC_HOOK_COMMON,
211 	BTF_KFUNC_HOOK_XDP,
212 	BTF_KFUNC_HOOK_TC,
213 	BTF_KFUNC_HOOK_STRUCT_OPS,
214 	BTF_KFUNC_HOOK_TRACING,
215 	BTF_KFUNC_HOOK_SYSCALL,
216 	BTF_KFUNC_HOOK_FMODRET,
217 	BTF_KFUNC_HOOK_CGROUP,
218 	BTF_KFUNC_HOOK_SCHED_ACT,
219 	BTF_KFUNC_HOOK_SK_SKB,
220 	BTF_KFUNC_HOOK_SOCKET_FILTER,
221 	BTF_KFUNC_HOOK_LWT,
222 	BTF_KFUNC_HOOK_NETFILTER,
223 	BTF_KFUNC_HOOK_KPROBE,
224 	BTF_KFUNC_HOOK_MAX,
225 };
226 
227 enum {
228 	BTF_KFUNC_SET_MAX_CNT = 256,
229 	BTF_DTOR_KFUNC_MAX_CNT = 256,
230 	BTF_KFUNC_FILTER_MAX_CNT = 16,
231 };
232 
233 struct btf_kfunc_hook_filter {
234 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
235 	u32 nr_filters;
236 };
237 
238 struct btf_kfunc_set_tab {
239 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
240 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
241 };
242 
243 struct btf_id_dtor_kfunc_tab {
244 	u32 cnt;
245 	struct btf_id_dtor_kfunc dtors[];
246 };
247 
248 struct btf_struct_ops_tab {
249 	u32 cnt;
250 	u32 capacity;
251 	struct bpf_struct_ops_desc ops[];
252 };
253 
254 struct btf {
255 	void *data;
256 	struct btf_type **types;
257 	u32 *resolved_ids;
258 	u32 *resolved_sizes;
259 	const char *strings;
260 	void *nohdr_data;
261 	struct btf_header hdr;
262 	u32 nr_types; /* includes VOID for base BTF */
263 	u32 named_start_id;
264 	u32 types_size;
265 	u32 data_size;
266 	refcount_t refcnt;
267 	u32 id;
268 	struct rcu_head rcu;
269 	struct btf_kfunc_set_tab *kfunc_set_tab;
270 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
271 	struct btf_struct_metas *struct_meta_tab;
272 	struct btf_struct_ops_tab *struct_ops_tab;
273 
274 	/* split BTF support */
275 	struct btf *base_btf;
276 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
277 	u32 start_str_off; /* first string offset (0 for base BTF) */
278 	char name[MODULE_NAME_LEN];
279 	bool kernel_btf;
280 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
281 };
282 
283 enum verifier_phase {
284 	CHECK_META,
285 	CHECK_TYPE,
286 };
287 
288 struct resolve_vertex {
289 	const struct btf_type *t;
290 	u32 type_id;
291 	u16 next_member;
292 };
293 
294 enum visit_state {
295 	NOT_VISITED,
296 	VISITED,
297 	RESOLVED,
298 };
299 
300 enum resolve_mode {
301 	RESOLVE_TBD,	/* To Be Determined */
302 	RESOLVE_PTR,	/* Resolving for Pointer */
303 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
304 					 * or array
305 					 */
306 };
307 
308 #define MAX_RESOLVE_DEPTH 32
309 
310 struct btf_sec_info {
311 	u32 off;
312 	u32 len;
313 };
314 
315 struct btf_verifier_env {
316 	struct btf *btf;
317 	u8 *visit_states;
318 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
319 	struct bpf_verifier_log log;
320 	u32 log_type_id;
321 	u32 top_stack;
322 	enum verifier_phase phase;
323 	enum resolve_mode resolve_mode;
324 };
325 
326 static const char * const btf_kind_str[NR_BTF_KINDS] = {
327 	[BTF_KIND_UNKN]		= "UNKNOWN",
328 	[BTF_KIND_INT]		= "INT",
329 	[BTF_KIND_PTR]		= "PTR",
330 	[BTF_KIND_ARRAY]	= "ARRAY",
331 	[BTF_KIND_STRUCT]	= "STRUCT",
332 	[BTF_KIND_UNION]	= "UNION",
333 	[BTF_KIND_ENUM]		= "ENUM",
334 	[BTF_KIND_FWD]		= "FWD",
335 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
336 	[BTF_KIND_VOLATILE]	= "VOLATILE",
337 	[BTF_KIND_CONST]	= "CONST",
338 	[BTF_KIND_RESTRICT]	= "RESTRICT",
339 	[BTF_KIND_FUNC]		= "FUNC",
340 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
341 	[BTF_KIND_VAR]		= "VAR",
342 	[BTF_KIND_DATASEC]	= "DATASEC",
343 	[BTF_KIND_FLOAT]	= "FLOAT",
344 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
345 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
346 	[BTF_KIND_ENUM64]	= "ENUM64",
347 };
348 
349 const char *btf_type_str(const struct btf_type *t)
350 {
351 	return btf_kind_str[BTF_INFO_KIND(t->info)];
352 }
353 
354 /* Chunk size we use in safe copy of data to be shown. */
355 #define BTF_SHOW_OBJ_SAFE_SIZE		32
356 
357 /*
358  * This is the maximum size of a base type value (equivalent to a
359  * 128-bit int); if we are at the end of our safe buffer and have
360  * less than 16 bytes space we can't be assured of being able
361  * to copy the next type safely, so in such cases we will initiate
362  * a new copy.
363  */
364 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
365 
366 /* Type name size */
367 #define BTF_SHOW_NAME_SIZE		80
368 
369 /*
370  * The suffix of a type that indicates it cannot alias another type when
371  * comparing BTF IDs for kfunc invocations.
372  */
373 #define NOCAST_ALIAS_SUFFIX		"___init"
374 
375 /*
376  * Common data to all BTF show operations. Private show functions can add
377  * their own data to a structure containing a struct btf_show and consult it
378  * in the show callback.  See btf_type_show() below.
379  *
380  * One challenge with showing nested data is we want to skip 0-valued
381  * data, but in order to figure out whether a nested object is all zeros
382  * we need to walk through it.  As a result, we need to make two passes
383  * when handling structs, unions and arrays; the first path simply looks
384  * for nonzero data, while the second actually does the display.  The first
385  * pass is signalled by show->state.depth_check being set, and if we
386  * encounter a non-zero value we set show->state.depth_to_show to
387  * the depth at which we encountered it.  When we have completed the
388  * first pass, we will know if anything needs to be displayed if
389  * depth_to_show > depth.  See btf_[struct,array]_show() for the
390  * implementation of this.
391  *
392  * Another problem is we want to ensure the data for display is safe to
393  * access.  To support this, the anonymous "struct {} obj" tracks the data
394  * object and our safe copy of it.  We copy portions of the data needed
395  * to the object "copy" buffer, but because its size is limited to
396  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
397  * traverse larger objects for display.
398  *
399  * The various data type show functions all start with a call to
400  * btf_show_start_type() which returns a pointer to the safe copy
401  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
402  * raw data itself).  btf_show_obj_safe() is responsible for
403  * using copy_from_kernel_nofault() to update the safe data if necessary
404  * as we traverse the object's data.  skbuff-like semantics are
405  * used:
406  *
407  * - obj.head points to the start of the toplevel object for display
408  * - obj.size is the size of the toplevel object
409  * - obj.data points to the current point in the original data at
410  *   which our safe data starts.  obj.data will advance as we copy
411  *   portions of the data.
412  *
413  * In most cases a single copy will suffice, but larger data structures
414  * such as "struct task_struct" will require many copies.  The logic in
415  * btf_show_obj_safe() handles the logic that determines if a new
416  * copy_from_kernel_nofault() is needed.
417  */
418 struct btf_show {
419 	u64 flags;
420 	void *target;	/* target of show operation (seq file, buffer) */
421 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
422 	const struct btf *btf;
423 	/* below are used during iteration */
424 	struct {
425 		u8 depth;
426 		u8 depth_to_show;
427 		u8 depth_check;
428 		u8 array_member:1,
429 		   array_terminated:1;
430 		u16 array_encoding;
431 		u32 type_id;
432 		int status;			/* non-zero for error */
433 		const struct btf_type *type;
434 		const struct btf_member *member;
435 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
436 	} state;
437 	struct {
438 		u32 size;
439 		void *head;
440 		void *data;
441 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
442 	} obj;
443 };
444 
445 struct btf_kind_operations {
446 	s32 (*check_meta)(struct btf_verifier_env *env,
447 			  const struct btf_type *t,
448 			  u32 meta_left);
449 	int (*resolve)(struct btf_verifier_env *env,
450 		       const struct resolve_vertex *v);
451 	int (*check_member)(struct btf_verifier_env *env,
452 			    const struct btf_type *struct_type,
453 			    const struct btf_member *member,
454 			    const struct btf_type *member_type);
455 	int (*check_kflag_member)(struct btf_verifier_env *env,
456 				  const struct btf_type *struct_type,
457 				  const struct btf_member *member,
458 				  const struct btf_type *member_type);
459 	void (*log_details)(struct btf_verifier_env *env,
460 			    const struct btf_type *t);
461 	void (*show)(const struct btf *btf, const struct btf_type *t,
462 			 u32 type_id, void *data, u8 bits_offsets,
463 			 struct btf_show *show);
464 };
465 
466 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
467 static struct btf_type btf_void;
468 
469 static int btf_resolve(struct btf_verifier_env *env,
470 		       const struct btf_type *t, u32 type_id);
471 
472 static int btf_func_check(struct btf_verifier_env *env,
473 			  const struct btf_type *t);
474 
475 static bool btf_type_is_modifier(const struct btf_type *t)
476 {
477 	/* Some of them is not strictly a C modifier
478 	 * but they are grouped into the same bucket
479 	 * for BTF concern:
480 	 *   A type (t) that refers to another
481 	 *   type through t->type AND its size cannot
482 	 *   be determined without following the t->type.
483 	 *
484 	 * ptr does not fall into this bucket
485 	 * because its size is always sizeof(void *).
486 	 */
487 	switch (BTF_INFO_KIND(t->info)) {
488 	case BTF_KIND_TYPEDEF:
489 	case BTF_KIND_VOLATILE:
490 	case BTF_KIND_CONST:
491 	case BTF_KIND_RESTRICT:
492 	case BTF_KIND_TYPE_TAG:
493 		return true;
494 	}
495 
496 	return false;
497 }
498 
499 static int btf_start_id(const struct btf *btf)
500 {
501 	return btf->start_id + (btf->base_btf ? 0 : 1);
502 }
503 
504 bool btf_type_is_void(const struct btf_type *t)
505 {
506 	return t == &btf_void;
507 }
508 
509 static bool btf_type_is_datasec(const struct btf_type *t)
510 {
511 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
512 }
513 
514 static bool btf_type_is_decl_tag(const struct btf_type *t)
515 {
516 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
517 }
518 
519 static bool btf_type_nosize(const struct btf_type *t)
520 {
521 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
522 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
523 	       btf_type_is_decl_tag(t);
524 }
525 
526 static bool btf_type_nosize_or_null(const struct btf_type *t)
527 {
528 	return !t || btf_type_nosize(t);
529 }
530 
531 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
532 {
533 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
534 	       btf_type_is_var(t) || btf_type_is_typedef(t);
535 }
536 
537 bool btf_is_vmlinux(const struct btf *btf)
538 {
539 	return btf->kernel_btf && !btf->base_btf;
540 }
541 
542 u32 btf_nr_types(const struct btf *btf)
543 {
544 	u32 total = 0;
545 
546 	while (btf) {
547 		total += btf->nr_types;
548 		btf = btf->base_btf;
549 	}
550 
551 	return total;
552 }
553 
554 /*
555  * Note that vmlinux and kernel module BTFs are always sorted
556  * during the building phase.
557  */
558 static void btf_check_sorted(struct btf *btf)
559 {
560 	u32 i, n, named_start_id = 0;
561 
562 	n = btf_nr_types(btf);
563 	if (btf_is_vmlinux(btf)) {
564 		for (i = btf_start_id(btf); i < n; i++) {
565 			const struct btf_type *t = btf_type_by_id(btf, i);
566 			const char *n = btf_name_by_offset(btf, t->name_off);
567 
568 			if (n[0] != '\0') {
569 				btf->named_start_id = i;
570 				return;
571 			}
572 		}
573 		return;
574 	}
575 
576 	for (i = btf_start_id(btf) + 1; i < n; i++) {
577 		const struct btf_type *ta = btf_type_by_id(btf, i - 1);
578 		const struct btf_type *tb = btf_type_by_id(btf, i);
579 		const char *na = btf_name_by_offset(btf, ta->name_off);
580 		const char *nb = btf_name_by_offset(btf, tb->name_off);
581 
582 		if (strcmp(na, nb) > 0)
583 			return;
584 
585 		if (named_start_id == 0 && na[0] != '\0')
586 			named_start_id = i - 1;
587 		if (named_start_id == 0 && nb[0] != '\0')
588 			named_start_id = i;
589 	}
590 
591 	if (named_start_id)
592 		btf->named_start_id = named_start_id;
593 }
594 
595 /*
596  * btf_named_start_id - Get the named starting ID for the BTF
597  * @btf: Pointer to the target BTF object
598  * @own: Flag indicating whether to query only the current BTF (true = current BTF only,
599  *       false = recursively traverse the base BTF chain)
600  *
601  * Return value rules:
602  * 1. For a sorted btf, return its named_start_id
603  * 2. Else for a split BTF, return its start_id
604  * 3. Else for a base BTF, return 1
605  */
606 u32 btf_named_start_id(const struct btf *btf, bool own)
607 {
608 	const struct btf *base_btf = btf;
609 
610 	while (!own && base_btf->base_btf)
611 		base_btf = base_btf->base_btf;
612 
613 	return base_btf->named_start_id ?: (base_btf->start_id ?: 1);
614 }
615 
616 static s32 btf_find_by_name_kind_bsearch(const struct btf *btf, const char *name)
617 {
618 	const struct btf_type *t;
619 	const char *tname;
620 	s32 l, r, m;
621 
622 	l = btf_named_start_id(btf, true);
623 	r = btf_nr_types(btf) - 1;
624 	while (l <= r) {
625 		m = l + (r - l) / 2;
626 		t = btf_type_by_id(btf, m);
627 		tname = btf_name_by_offset(btf, t->name_off);
628 		if (strcmp(tname, name) >= 0) {
629 			if (l == r)
630 				return r;
631 			r = m;
632 		} else {
633 			l = m + 1;
634 		}
635 	}
636 
637 	return btf_nr_types(btf);
638 }
639 
640 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
641 {
642 	const struct btf *base_btf = btf_base_btf(btf);
643 	const struct btf_type *t;
644 	const char *tname;
645 	s32 id, total;
646 
647 	if (base_btf) {
648 		id = btf_find_by_name_kind(base_btf, name, kind);
649 		if (id > 0)
650 			return id;
651 	}
652 
653 	total = btf_nr_types(btf);
654 	if (btf->named_start_id > 0 && name[0]) {
655 		id = btf_find_by_name_kind_bsearch(btf, name);
656 		for (; id < total; id++) {
657 			t = btf_type_by_id(btf, id);
658 			tname = btf_name_by_offset(btf, t->name_off);
659 			if (strcmp(tname, name) != 0)
660 				return -ENOENT;
661 			if (BTF_INFO_KIND(t->info) == kind)
662 				return id;
663 		}
664 	} else {
665 		for (id = btf_start_id(btf); id < total; id++) {
666 			t = btf_type_by_id(btf, id);
667 			if (BTF_INFO_KIND(t->info) != kind)
668 				continue;
669 			tname = btf_name_by_offset(btf, t->name_off);
670 			if (strcmp(tname, name) == 0)
671 				return id;
672 		}
673 	}
674 
675 	return -ENOENT;
676 }
677 
678 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
679 {
680 	struct btf *btf;
681 	s32 ret;
682 	int id;
683 
684 	btf = bpf_get_btf_vmlinux();
685 	if (IS_ERR(btf))
686 		return PTR_ERR(btf);
687 	if (!btf)
688 		return -EINVAL;
689 
690 	ret = btf_find_by_name_kind(btf, name, kind);
691 	/* ret is never zero, since btf_find_by_name_kind returns
692 	 * positive btf_id or negative error.
693 	 */
694 	if (ret > 0) {
695 		btf_get(btf);
696 		*btf_p = btf;
697 		return ret;
698 	}
699 
700 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
701 	spin_lock_bh(&btf_idr_lock);
702 	idr_for_each_entry(&btf_idr, btf, id) {
703 		if (!btf_is_module(btf))
704 			continue;
705 		/* linear search could be slow hence unlock/lock
706 		 * the IDR to avoiding holding it for too long
707 		 */
708 		btf_get(btf);
709 		spin_unlock_bh(&btf_idr_lock);
710 		ret = btf_find_by_name_kind(btf, name, kind);
711 		if (ret > 0) {
712 			*btf_p = btf;
713 			return ret;
714 		}
715 		btf_put(btf);
716 		spin_lock_bh(&btf_idr_lock);
717 	}
718 	spin_unlock_bh(&btf_idr_lock);
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(bpf_find_btf_id);
722 
723 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
724 					       u32 id, u32 *res_id)
725 {
726 	const struct btf_type *t = btf_type_by_id(btf, id);
727 
728 	while (btf_type_is_modifier(t)) {
729 		id = t->type;
730 		t = btf_type_by_id(btf, t->type);
731 	}
732 
733 	if (res_id)
734 		*res_id = id;
735 
736 	return t;
737 }
738 
739 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
740 					    u32 id, u32 *res_id)
741 {
742 	const struct btf_type *t;
743 
744 	t = btf_type_skip_modifiers(btf, id, NULL);
745 	if (!btf_type_is_ptr(t))
746 		return NULL;
747 
748 	return btf_type_skip_modifiers(btf, t->type, res_id);
749 }
750 
751 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
752 						 u32 id, u32 *res_id)
753 {
754 	const struct btf_type *ptype;
755 
756 	ptype = btf_type_resolve_ptr(btf, id, res_id);
757 	if (ptype && btf_type_is_func_proto(ptype))
758 		return ptype;
759 
760 	return NULL;
761 }
762 
763 /* Types that act only as a source, not sink or intermediate
764  * type when resolving.
765  */
766 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
767 {
768 	return btf_type_is_var(t) ||
769 	       btf_type_is_decl_tag(t) ||
770 	       btf_type_is_datasec(t);
771 }
772 
773 /* What types need to be resolved?
774  *
775  * btf_type_is_modifier() is an obvious one.
776  *
777  * btf_type_is_struct() because its member refers to
778  * another type (through member->type).
779  *
780  * btf_type_is_var() because the variable refers to
781  * another type. btf_type_is_datasec() holds multiple
782  * btf_type_is_var() types that need resolving.
783  *
784  * btf_type_is_array() because its element (array->type)
785  * refers to another type.  Array can be thought of a
786  * special case of struct while array just has the same
787  * member-type repeated by array->nelems of times.
788  */
789 static bool btf_type_needs_resolve(const struct btf_type *t)
790 {
791 	return btf_type_is_modifier(t) ||
792 	       btf_type_is_ptr(t) ||
793 	       btf_type_is_struct(t) ||
794 	       btf_type_is_array(t) ||
795 	       btf_type_is_var(t) ||
796 	       btf_type_is_func(t) ||
797 	       btf_type_is_decl_tag(t) ||
798 	       btf_type_is_datasec(t);
799 }
800 
801 /* t->size can be used */
802 static bool btf_type_has_size(const struct btf_type *t)
803 {
804 	switch (BTF_INFO_KIND(t->info)) {
805 	case BTF_KIND_INT:
806 	case BTF_KIND_STRUCT:
807 	case BTF_KIND_UNION:
808 	case BTF_KIND_ENUM:
809 	case BTF_KIND_DATASEC:
810 	case BTF_KIND_FLOAT:
811 	case BTF_KIND_ENUM64:
812 		return true;
813 	}
814 
815 	return false;
816 }
817 
818 static const char *btf_int_encoding_str(u8 encoding)
819 {
820 	if (encoding == 0)
821 		return "(none)";
822 	else if (encoding == BTF_INT_SIGNED)
823 		return "SIGNED";
824 	else if (encoding == BTF_INT_CHAR)
825 		return "CHAR";
826 	else if (encoding == BTF_INT_BOOL)
827 		return "BOOL";
828 	else
829 		return "UNKN";
830 }
831 
832 static u32 btf_type_int(const struct btf_type *t)
833 {
834 	return *(u32 *)(t + 1);
835 }
836 
837 static const struct btf_array *btf_type_array(const struct btf_type *t)
838 {
839 	return (const struct btf_array *)(t + 1);
840 }
841 
842 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
843 {
844 	return (const struct btf_enum *)(t + 1);
845 }
846 
847 static const struct btf_var *btf_type_var(const struct btf_type *t)
848 {
849 	return (const struct btf_var *)(t + 1);
850 }
851 
852 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
853 {
854 	return (const struct btf_decl_tag *)(t + 1);
855 }
856 
857 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
858 {
859 	return (const struct btf_enum64 *)(t + 1);
860 }
861 
862 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
863 {
864 	return kind_ops[BTF_INFO_KIND(t->info)];
865 }
866 
867 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
868 {
869 	if (!BTF_STR_OFFSET_VALID(offset))
870 		return false;
871 
872 	while (offset < btf->start_str_off)
873 		btf = btf->base_btf;
874 
875 	offset -= btf->start_str_off;
876 	return offset < btf->hdr.str_len;
877 }
878 
879 static bool __btf_name_char_ok(char c, bool first)
880 {
881 	if ((first ? !isalpha(c) :
882 		     !isalnum(c)) &&
883 	    c != '_' &&
884 	    c != '.')
885 		return false;
886 	return true;
887 }
888 
889 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
890 {
891 	while (offset < btf->start_str_off)
892 		btf = btf->base_btf;
893 
894 	offset -= btf->start_str_off;
895 	if (offset < btf->hdr.str_len)
896 		return &btf->strings[offset];
897 
898 	return NULL;
899 }
900 
901 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
902 {
903 	/* offset must be valid */
904 	const char *src = btf_str_by_offset(btf, offset);
905 	const char *src_limit;
906 
907 	if (!__btf_name_char_ok(*src, true))
908 		return false;
909 
910 	/* set a limit on identifier length */
911 	src_limit = src + KSYM_NAME_LEN;
912 	src++;
913 	while (*src && src < src_limit) {
914 		if (!__btf_name_char_ok(*src, false))
915 			return false;
916 		src++;
917 	}
918 
919 	return !*src;
920 }
921 
922 /* Allow any printable character in DATASEC names */
923 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
924 {
925 	/* offset must be valid */
926 	const char *src = btf_str_by_offset(btf, offset);
927 	const char *src_limit;
928 
929 	if (!*src)
930 		return false;
931 
932 	/* set a limit on identifier length */
933 	src_limit = src + KSYM_NAME_LEN;
934 	while (*src && src < src_limit) {
935 		if (!isprint(*src))
936 			return false;
937 		src++;
938 	}
939 
940 	return !*src;
941 }
942 
943 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
944 {
945 	const char *name;
946 
947 	if (!offset)
948 		return "(anon)";
949 
950 	name = btf_str_by_offset(btf, offset);
951 	return name ?: "(invalid-name-offset)";
952 }
953 
954 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
955 {
956 	return btf_str_by_offset(btf, offset);
957 }
958 
959 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
960 {
961 	while (type_id < btf->start_id)
962 		btf = btf->base_btf;
963 
964 	type_id -= btf->start_id;
965 	if (type_id >= btf->nr_types)
966 		return NULL;
967 	return btf->types[type_id];
968 }
969 EXPORT_SYMBOL_GPL(btf_type_by_id);
970 
971 /*
972  * Check that the type @t is a regular int. This means that @t is not
973  * a bit field and it has the same size as either of u8/u16/u32/u64
974  * or __int128. If @expected_size is not zero, then size of @t should
975  * be the same. A caller should already have checked that the type @t
976  * is an integer.
977  */
978 static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size)
979 {
980 	u32 int_data = btf_type_int(t);
981 	u8 nr_bits = BTF_INT_BITS(int_data);
982 	u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
983 
984 	return BITS_PER_BYTE_MASKED(nr_bits) == 0 &&
985 	       BTF_INT_OFFSET(int_data) == 0 &&
986 	       (nr_bytes <= 16 && is_power_of_2(nr_bytes)) &&
987 	       (expected_size == 0 || nr_bytes == expected_size);
988 }
989 
990 static bool btf_type_int_is_regular(const struct btf_type *t)
991 {
992 	return __btf_type_int_is_regular(t, 0);
993 }
994 
995 bool btf_type_is_i32(const struct btf_type *t)
996 {
997 	return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4);
998 }
999 
1000 bool btf_type_is_i64(const struct btf_type *t)
1001 {
1002 	return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8);
1003 }
1004 
1005 bool btf_type_is_primitive(const struct btf_type *t)
1006 {
1007 	return (btf_type_is_int(t) && btf_type_int_is_regular(t)) ||
1008 	       btf_is_any_enum(t);
1009 }
1010 
1011 /*
1012  * Check that given struct member is a regular int with expected
1013  * offset and size.
1014  */
1015 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
1016 			   const struct btf_member *m,
1017 			   u32 expected_offset, u32 expected_size)
1018 {
1019 	const struct btf_type *t;
1020 	u32 id, int_data;
1021 	u8 nr_bits;
1022 
1023 	id = m->type;
1024 	t = btf_type_id_size(btf, &id, NULL);
1025 	if (!t || !btf_type_is_int(t))
1026 		return false;
1027 
1028 	int_data = btf_type_int(t);
1029 	nr_bits = BTF_INT_BITS(int_data);
1030 	if (btf_type_kflag(s)) {
1031 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
1032 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
1033 
1034 		/* if kflag set, int should be a regular int and
1035 		 * bit offset should be at byte boundary.
1036 		 */
1037 		return !bitfield_size &&
1038 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
1039 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
1040 	}
1041 
1042 	if (BTF_INT_OFFSET(int_data) ||
1043 	    BITS_PER_BYTE_MASKED(m->offset) ||
1044 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
1045 	    BITS_PER_BYTE_MASKED(nr_bits) ||
1046 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
1047 		return false;
1048 
1049 	return true;
1050 }
1051 
1052 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
1053 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
1054 						       u32 id)
1055 {
1056 	const struct btf_type *t = btf_type_by_id(btf, id);
1057 
1058 	while (btf_type_is_modifier(t) &&
1059 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
1060 		t = btf_type_by_id(btf, t->type);
1061 	}
1062 
1063 	return t;
1064 }
1065 
1066 #define BTF_SHOW_MAX_ITER	10
1067 
1068 #define BTF_KIND_BIT(kind)	(1ULL << kind)
1069 
1070 /*
1071  * Populate show->state.name with type name information.
1072  * Format of type name is
1073  *
1074  * [.member_name = ] (type_name)
1075  */
1076 static const char *btf_show_name(struct btf_show *show)
1077 {
1078 	/* BTF_MAX_ITER array suffixes "[]" */
1079 	const char *array_suffixes = "[][][][][][][][][][]";
1080 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
1081 	/* BTF_MAX_ITER pointer suffixes "*" */
1082 	const char *ptr_suffixes = "**********";
1083 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
1084 	const char *name = NULL, *prefix = "", *parens = "";
1085 	const struct btf_member *m = show->state.member;
1086 	const struct btf_type *t;
1087 	const struct btf_array *array;
1088 	u32 id = show->state.type_id;
1089 	const char *member = NULL;
1090 	bool show_member = false;
1091 	u64 kinds = 0;
1092 	int i;
1093 
1094 	show->state.name[0] = '\0';
1095 
1096 	/*
1097 	 * Don't show type name if we're showing an array member;
1098 	 * in that case we show the array type so don't need to repeat
1099 	 * ourselves for each member.
1100 	 */
1101 	if (show->state.array_member)
1102 		return "";
1103 
1104 	/* Retrieve member name, if any. */
1105 	if (m) {
1106 		member = btf_name_by_offset(show->btf, m->name_off);
1107 		show_member = strlen(member) > 0;
1108 		id = m->type;
1109 	}
1110 
1111 	/*
1112 	 * Start with type_id, as we have resolved the struct btf_type *
1113 	 * via btf_modifier_show() past the parent typedef to the child
1114 	 * struct, int etc it is defined as.  In such cases, the type_id
1115 	 * still represents the starting type while the struct btf_type *
1116 	 * in our show->state points at the resolved type of the typedef.
1117 	 */
1118 	t = btf_type_by_id(show->btf, id);
1119 	if (!t)
1120 		return "";
1121 
1122 	/*
1123 	 * The goal here is to build up the right number of pointer and
1124 	 * array suffixes while ensuring the type name for a typedef
1125 	 * is represented.  Along the way we accumulate a list of
1126 	 * BTF kinds we have encountered, since these will inform later
1127 	 * display; for example, pointer types will not require an
1128 	 * opening "{" for struct, we will just display the pointer value.
1129 	 *
1130 	 * We also want to accumulate the right number of pointer or array
1131 	 * indices in the format string while iterating until we get to
1132 	 * the typedef/pointee/array member target type.
1133 	 *
1134 	 * We start by pointing at the end of pointer and array suffix
1135 	 * strings; as we accumulate pointers and arrays we move the pointer
1136 	 * or array string backwards so it will show the expected number of
1137 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1138 	 * and/or arrays and typedefs are supported as a precaution.
1139 	 *
1140 	 * We also want to get typedef name while proceeding to resolve
1141 	 * type it points to so that we can add parentheses if it is a
1142 	 * "typedef struct" etc.
1143 	 */
1144 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1145 
1146 		switch (BTF_INFO_KIND(t->info)) {
1147 		case BTF_KIND_TYPEDEF:
1148 			if (!name)
1149 				name = btf_name_by_offset(show->btf,
1150 							       t->name_off);
1151 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1152 			id = t->type;
1153 			break;
1154 		case BTF_KIND_ARRAY:
1155 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1156 			parens = "[";
1157 			if (!t)
1158 				return "";
1159 			array = btf_type_array(t);
1160 			if (array_suffix > array_suffixes)
1161 				array_suffix -= 2;
1162 			id = array->type;
1163 			break;
1164 		case BTF_KIND_PTR:
1165 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1166 			if (ptr_suffix > ptr_suffixes)
1167 				ptr_suffix -= 1;
1168 			id = t->type;
1169 			break;
1170 		default:
1171 			id = 0;
1172 			break;
1173 		}
1174 		if (!id)
1175 			break;
1176 		t = btf_type_skip_qualifiers(show->btf, id);
1177 	}
1178 	/* We may not be able to represent this type; bail to be safe */
1179 	if (i == BTF_SHOW_MAX_ITER)
1180 		return "";
1181 
1182 	if (!name)
1183 		name = btf_name_by_offset(show->btf, t->name_off);
1184 
1185 	switch (BTF_INFO_KIND(t->info)) {
1186 	case BTF_KIND_STRUCT:
1187 	case BTF_KIND_UNION:
1188 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1189 			 "struct" : "union";
1190 		/* if it's an array of struct/union, parens is already set */
1191 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1192 			parens = "{";
1193 		break;
1194 	case BTF_KIND_ENUM:
1195 	case BTF_KIND_ENUM64:
1196 		prefix = "enum";
1197 		break;
1198 	default:
1199 		break;
1200 	}
1201 
1202 	/* pointer does not require parens */
1203 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1204 		parens = "";
1205 	/* typedef does not require struct/union/enum prefix */
1206 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1207 		prefix = "";
1208 
1209 	if (!name)
1210 		name = "";
1211 
1212 	/* Even if we don't want type name info, we want parentheses etc */
1213 	if (show->flags & BTF_SHOW_NONAME)
1214 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1215 			 parens);
1216 	else
1217 		snprintf(show->state.name, sizeof(show->state.name),
1218 			 "%s%s%s(%s%s%s%s%s%s)%s",
1219 			 /* first 3 strings comprise ".member = " */
1220 			 show_member ? "." : "",
1221 			 show_member ? member : "",
1222 			 show_member ? " = " : "",
1223 			 /* ...next is our prefix (struct, enum, etc) */
1224 			 prefix,
1225 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1226 			 /* ...this is the type name itself */
1227 			 name,
1228 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1229 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1230 			 array_suffix, parens);
1231 
1232 	return show->state.name;
1233 }
1234 
1235 static const char *__btf_show_indent(struct btf_show *show)
1236 {
1237 	const char *indents = "                                ";
1238 	const char *indent = &indents[strlen(indents)];
1239 
1240 	if ((indent - show->state.depth) >= indents)
1241 		return indent - show->state.depth;
1242 	return indents;
1243 }
1244 
1245 static const char *btf_show_indent(struct btf_show *show)
1246 {
1247 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1248 }
1249 
1250 static const char *btf_show_newline(struct btf_show *show)
1251 {
1252 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1253 }
1254 
1255 static const char *btf_show_delim(struct btf_show *show)
1256 {
1257 	if (show->state.depth == 0)
1258 		return "";
1259 
1260 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1261 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1262 		return "|";
1263 
1264 	return ",";
1265 }
1266 
1267 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1268 {
1269 	va_list args;
1270 
1271 	if (!show->state.depth_check) {
1272 		va_start(args, fmt);
1273 		show->showfn(show, fmt, args);
1274 		va_end(args);
1275 	}
1276 }
1277 
1278 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1279  * format specifiers to the format specifier passed in; these do the work of
1280  * adding indentation, delimiters etc while the caller simply has to specify
1281  * the type value(s) in the format specifier + value(s).
1282  */
1283 #define btf_show_type_value(show, fmt, value)				       \
1284 	do {								       \
1285 		if ((value) != (__typeof__(value))0 ||			       \
1286 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1287 		    show->state.depth == 0) {				       \
1288 			btf_show(show, "%s%s" fmt "%s%s",		       \
1289 				 btf_show_indent(show),			       \
1290 				 btf_show_name(show),			       \
1291 				 value, btf_show_delim(show),		       \
1292 				 btf_show_newline(show));		       \
1293 			if (show->state.depth > show->state.depth_to_show)     \
1294 				show->state.depth_to_show = show->state.depth; \
1295 		}							       \
1296 	} while (0)
1297 
1298 #define btf_show_type_values(show, fmt, ...)				       \
1299 	do {								       \
1300 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1301 			 btf_show_name(show),				       \
1302 			 __VA_ARGS__, btf_show_delim(show),		       \
1303 			 btf_show_newline(show));			       \
1304 		if (show->state.depth > show->state.depth_to_show)	       \
1305 			show->state.depth_to_show = show->state.depth;	       \
1306 	} while (0)
1307 
1308 /* How much is left to copy to safe buffer after @data? */
1309 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1310 {
1311 	return show->obj.head + show->obj.size - data;
1312 }
1313 
1314 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1315 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1316 {
1317 	return data >= show->obj.data &&
1318 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1319 }
1320 
1321 /*
1322  * If object pointed to by @data of @size falls within our safe buffer, return
1323  * the equivalent pointer to the same safe data.  Assumes
1324  * copy_from_kernel_nofault() has already happened and our safe buffer is
1325  * populated.
1326  */
1327 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1328 {
1329 	if (btf_show_obj_is_safe(show, data, size))
1330 		return show->obj.safe + (data - show->obj.data);
1331 	return NULL;
1332 }
1333 
1334 /*
1335  * Return a safe-to-access version of data pointed to by @data.
1336  * We do this by copying the relevant amount of information
1337  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1338  *
1339  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1340  * safe copy is needed.
1341  *
1342  * Otherwise we need to determine if we have the required amount
1343  * of data (determined by the @data pointer and the size of the
1344  * largest base type we can encounter (represented by
1345  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1346  * that we will be able to print some of the current object,
1347  * and if more is needed a copy will be triggered.
1348  * Some objects such as structs will not fit into the buffer;
1349  * in such cases additional copies when we iterate over their
1350  * members may be needed.
1351  *
1352  * btf_show_obj_safe() is used to return a safe buffer for
1353  * btf_show_start_type(); this ensures that as we recurse into
1354  * nested types we always have safe data for the given type.
1355  * This approach is somewhat wasteful; it's possible for example
1356  * that when iterating over a large union we'll end up copying the
1357  * same data repeatedly, but the goal is safety not performance.
1358  * We use stack data as opposed to per-CPU buffers because the
1359  * iteration over a type can take some time, and preemption handling
1360  * would greatly complicate use of the safe buffer.
1361  */
1362 static void *btf_show_obj_safe(struct btf_show *show,
1363 			       const struct btf_type *t,
1364 			       void *data)
1365 {
1366 	const struct btf_type *rt;
1367 	int size_left, size;
1368 	void *safe = NULL;
1369 
1370 	if (show->flags & BTF_SHOW_UNSAFE)
1371 		return data;
1372 
1373 	rt = btf_resolve_size(show->btf, t, &size);
1374 	if (IS_ERR(rt)) {
1375 		show->state.status = PTR_ERR(rt);
1376 		return NULL;
1377 	}
1378 
1379 	/*
1380 	 * Is this toplevel object? If so, set total object size and
1381 	 * initialize pointers.  Otherwise check if we still fall within
1382 	 * our safe object data.
1383 	 */
1384 	if (show->state.depth == 0) {
1385 		show->obj.size = size;
1386 		show->obj.head = data;
1387 	} else {
1388 		/*
1389 		 * If the size of the current object is > our remaining
1390 		 * safe buffer we _may_ need to do a new copy.  However
1391 		 * consider the case of a nested struct; it's size pushes
1392 		 * us over the safe buffer limit, but showing any individual
1393 		 * struct members does not.  In such cases, we don't need
1394 		 * to initiate a fresh copy yet; however we definitely need
1395 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1396 		 * in our buffer, regardless of the current object size.
1397 		 * The logic here is that as we resolve types we will
1398 		 * hit a base type at some point, and we need to be sure
1399 		 * the next chunk of data is safely available to display
1400 		 * that type info safely.  We cannot rely on the size of
1401 		 * the current object here because it may be much larger
1402 		 * than our current buffer (e.g. task_struct is 8k).
1403 		 * All we want to do here is ensure that we can print the
1404 		 * next basic type, which we can if either
1405 		 * - the current type size is within the safe buffer; or
1406 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1407 		 *   the safe buffer.
1408 		 */
1409 		safe = __btf_show_obj_safe(show, data,
1410 					   min(size,
1411 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1412 	}
1413 
1414 	/*
1415 	 * We need a new copy to our safe object, either because we haven't
1416 	 * yet copied and are initializing safe data, or because the data
1417 	 * we want falls outside the boundaries of the safe object.
1418 	 */
1419 	if (!safe) {
1420 		size_left = btf_show_obj_size_left(show, data);
1421 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1422 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1423 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1424 							      data, size_left);
1425 		if (!show->state.status) {
1426 			show->obj.data = data;
1427 			safe = show->obj.safe;
1428 		}
1429 	}
1430 
1431 	return safe;
1432 }
1433 
1434 /*
1435  * Set the type we are starting to show and return a safe data pointer
1436  * to be used for showing the associated data.
1437  */
1438 static void *btf_show_start_type(struct btf_show *show,
1439 				 const struct btf_type *t,
1440 				 u32 type_id, void *data)
1441 {
1442 	show->state.type = t;
1443 	show->state.type_id = type_id;
1444 	show->state.name[0] = '\0';
1445 
1446 	return btf_show_obj_safe(show, t, data);
1447 }
1448 
1449 static void btf_show_end_type(struct btf_show *show)
1450 {
1451 	show->state.type = NULL;
1452 	show->state.type_id = 0;
1453 	show->state.name[0] = '\0';
1454 }
1455 
1456 static void *btf_show_start_aggr_type(struct btf_show *show,
1457 				      const struct btf_type *t,
1458 				      u32 type_id, void *data)
1459 {
1460 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1461 
1462 	if (!safe_data)
1463 		return safe_data;
1464 
1465 	btf_show(show, "%s%s%s", btf_show_indent(show),
1466 		 btf_show_name(show),
1467 		 btf_show_newline(show));
1468 	show->state.depth++;
1469 	return safe_data;
1470 }
1471 
1472 static void btf_show_end_aggr_type(struct btf_show *show,
1473 				   const char *suffix)
1474 {
1475 	show->state.depth--;
1476 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1477 		 btf_show_delim(show), btf_show_newline(show));
1478 	btf_show_end_type(show);
1479 }
1480 
1481 static void btf_show_start_member(struct btf_show *show,
1482 				  const struct btf_member *m)
1483 {
1484 	show->state.member = m;
1485 }
1486 
1487 static void btf_show_start_array_member(struct btf_show *show)
1488 {
1489 	show->state.array_member = 1;
1490 	btf_show_start_member(show, NULL);
1491 }
1492 
1493 static void btf_show_end_member(struct btf_show *show)
1494 {
1495 	show->state.member = NULL;
1496 }
1497 
1498 static void btf_show_end_array_member(struct btf_show *show)
1499 {
1500 	show->state.array_member = 0;
1501 	btf_show_end_member(show);
1502 }
1503 
1504 static void *btf_show_start_array_type(struct btf_show *show,
1505 				       const struct btf_type *t,
1506 				       u32 type_id,
1507 				       u16 array_encoding,
1508 				       void *data)
1509 {
1510 	show->state.array_encoding = array_encoding;
1511 	show->state.array_terminated = 0;
1512 	return btf_show_start_aggr_type(show, t, type_id, data);
1513 }
1514 
1515 static void btf_show_end_array_type(struct btf_show *show)
1516 {
1517 	show->state.array_encoding = 0;
1518 	show->state.array_terminated = 0;
1519 	btf_show_end_aggr_type(show, "]");
1520 }
1521 
1522 static void *btf_show_start_struct_type(struct btf_show *show,
1523 					const struct btf_type *t,
1524 					u32 type_id,
1525 					void *data)
1526 {
1527 	return btf_show_start_aggr_type(show, t, type_id, data);
1528 }
1529 
1530 static void btf_show_end_struct_type(struct btf_show *show)
1531 {
1532 	btf_show_end_aggr_type(show, "}");
1533 }
1534 
1535 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1536 					      const char *fmt, ...)
1537 {
1538 	va_list args;
1539 
1540 	va_start(args, fmt);
1541 	bpf_verifier_vlog(log, fmt, args);
1542 	va_end(args);
1543 }
1544 
1545 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1546 					    const char *fmt, ...)
1547 {
1548 	struct bpf_verifier_log *log = &env->log;
1549 	va_list args;
1550 
1551 	if (!bpf_verifier_log_needed(log))
1552 		return;
1553 
1554 	va_start(args, fmt);
1555 	bpf_verifier_vlog(log, fmt, args);
1556 	va_end(args);
1557 }
1558 
1559 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1560 						   const struct btf_type *t,
1561 						   bool log_details,
1562 						   const char *fmt, ...)
1563 {
1564 	struct bpf_verifier_log *log = &env->log;
1565 	struct btf *btf = env->btf;
1566 	va_list args;
1567 
1568 	if (!bpf_verifier_log_needed(log))
1569 		return;
1570 
1571 	if (log->level == BPF_LOG_KERNEL) {
1572 		/* btf verifier prints all types it is processing via
1573 		 * btf_verifier_log_type(..., fmt = NULL).
1574 		 * Skip those prints for in-kernel BTF verification.
1575 		 */
1576 		if (!fmt)
1577 			return;
1578 
1579 		/* Skip logging when loading module BTF with mismatches permitted */
1580 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1581 			return;
1582 	}
1583 
1584 	__btf_verifier_log(log, "[%u] %s %s%s",
1585 			   env->log_type_id,
1586 			   btf_type_str(t),
1587 			   __btf_name_by_offset(btf, t->name_off),
1588 			   log_details ? " " : "");
1589 
1590 	if (log_details)
1591 		btf_type_ops(t)->log_details(env, t);
1592 
1593 	if (fmt && *fmt) {
1594 		__btf_verifier_log(log, " ");
1595 		va_start(args, fmt);
1596 		bpf_verifier_vlog(log, fmt, args);
1597 		va_end(args);
1598 	}
1599 
1600 	__btf_verifier_log(log, "\n");
1601 }
1602 
1603 #define btf_verifier_log_type(env, t, ...) \
1604 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1605 #define btf_verifier_log_basic(env, t, ...) \
1606 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1607 
1608 __printf(4, 5)
1609 static void btf_verifier_log_member(struct btf_verifier_env *env,
1610 				    const struct btf_type *struct_type,
1611 				    const struct btf_member *member,
1612 				    const char *fmt, ...)
1613 {
1614 	struct bpf_verifier_log *log = &env->log;
1615 	struct btf *btf = env->btf;
1616 	va_list args;
1617 
1618 	if (!bpf_verifier_log_needed(log))
1619 		return;
1620 
1621 	if (log->level == BPF_LOG_KERNEL) {
1622 		if (!fmt)
1623 			return;
1624 
1625 		/* Skip logging when loading module BTF with mismatches permitted */
1626 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1627 			return;
1628 	}
1629 
1630 	/* The CHECK_META phase already did a btf dump.
1631 	 *
1632 	 * If member is logged again, it must hit an error in
1633 	 * parsing this member.  It is useful to print out which
1634 	 * struct this member belongs to.
1635 	 */
1636 	if (env->phase != CHECK_META)
1637 		btf_verifier_log_type(env, struct_type, NULL);
1638 
1639 	if (btf_type_kflag(struct_type))
1640 		__btf_verifier_log(log,
1641 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1642 				   __btf_name_by_offset(btf, member->name_off),
1643 				   member->type,
1644 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1645 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1646 	else
1647 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1648 				   __btf_name_by_offset(btf, member->name_off),
1649 				   member->type, member->offset);
1650 
1651 	if (fmt && *fmt) {
1652 		__btf_verifier_log(log, " ");
1653 		va_start(args, fmt);
1654 		bpf_verifier_vlog(log, fmt, args);
1655 		va_end(args);
1656 	}
1657 
1658 	__btf_verifier_log(log, "\n");
1659 }
1660 
1661 __printf(4, 5)
1662 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1663 				 const struct btf_type *datasec_type,
1664 				 const struct btf_var_secinfo *vsi,
1665 				 const char *fmt, ...)
1666 {
1667 	struct bpf_verifier_log *log = &env->log;
1668 	va_list args;
1669 
1670 	if (!bpf_verifier_log_needed(log))
1671 		return;
1672 	if (log->level == BPF_LOG_KERNEL && !fmt)
1673 		return;
1674 	if (env->phase != CHECK_META)
1675 		btf_verifier_log_type(env, datasec_type, NULL);
1676 
1677 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1678 			   vsi->type, vsi->offset, vsi->size);
1679 	if (fmt && *fmt) {
1680 		__btf_verifier_log(log, " ");
1681 		va_start(args, fmt);
1682 		bpf_verifier_vlog(log, fmt, args);
1683 		va_end(args);
1684 	}
1685 
1686 	__btf_verifier_log(log, "\n");
1687 }
1688 
1689 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1690 				 u32 btf_data_size)
1691 {
1692 	struct bpf_verifier_log *log = &env->log;
1693 	const struct btf *btf = env->btf;
1694 	const struct btf_header *hdr;
1695 
1696 	if (!bpf_verifier_log_needed(log))
1697 		return;
1698 
1699 	if (log->level == BPF_LOG_KERNEL)
1700 		return;
1701 	hdr = &btf->hdr;
1702 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1703 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1704 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1705 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1706 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1707 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1708 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1709 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1710 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1711 }
1712 
1713 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1714 {
1715 	struct btf *btf = env->btf;
1716 
1717 	if (btf->types_size == btf->nr_types) {
1718 		/* Expand 'types' array */
1719 
1720 		struct btf_type **new_types;
1721 		u32 expand_by, new_size;
1722 
1723 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1724 			btf_verifier_log(env, "Exceeded max num of types");
1725 			return -E2BIG;
1726 		}
1727 
1728 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1729 		new_size = min_t(u32, BTF_MAX_TYPE,
1730 				 btf->types_size + expand_by);
1731 
1732 		new_types = kvcalloc(new_size, sizeof(*new_types),
1733 				     GFP_KERNEL | __GFP_NOWARN);
1734 		if (!new_types)
1735 			return -ENOMEM;
1736 
1737 		if (btf->nr_types == 0) {
1738 			if (!btf->base_btf) {
1739 				/* lazily init VOID type */
1740 				new_types[0] = &btf_void;
1741 				btf->nr_types++;
1742 			}
1743 		} else {
1744 			memcpy(new_types, btf->types,
1745 			       sizeof(*btf->types) * btf->nr_types);
1746 		}
1747 
1748 		kvfree(btf->types);
1749 		btf->types = new_types;
1750 		btf->types_size = new_size;
1751 	}
1752 
1753 	btf->types[btf->nr_types++] = t;
1754 
1755 	return 0;
1756 }
1757 
1758 static int btf_alloc_id(struct btf *btf)
1759 {
1760 	int id;
1761 
1762 	idr_preload(GFP_KERNEL);
1763 	spin_lock_bh(&btf_idr_lock);
1764 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1765 	if (id > 0)
1766 		btf->id = id;
1767 	spin_unlock_bh(&btf_idr_lock);
1768 	idr_preload_end();
1769 
1770 	if (WARN_ON_ONCE(!id))
1771 		return -ENOSPC;
1772 
1773 	return id > 0 ? 0 : id;
1774 }
1775 
1776 static void btf_free_id(struct btf *btf)
1777 {
1778 	unsigned long flags;
1779 
1780 	/*
1781 	 * In map-in-map, calling map_delete_elem() on outer
1782 	 * map will call bpf_map_put on the inner map.
1783 	 * It will then eventually call btf_free_id()
1784 	 * on the inner map.  Some of the map_delete_elem()
1785 	 * implementation may have irq disabled, so
1786 	 * we need to use the _irqsave() version instead
1787 	 * of the _bh() version.
1788 	 */
1789 	spin_lock_irqsave(&btf_idr_lock, flags);
1790 	idr_remove(&btf_idr, btf->id);
1791 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1792 }
1793 
1794 static void btf_free_kfunc_set_tab(struct btf *btf)
1795 {
1796 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1797 	int hook;
1798 
1799 	if (!tab)
1800 		return;
1801 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1802 		kfree(tab->sets[hook]);
1803 	kfree(tab);
1804 	btf->kfunc_set_tab = NULL;
1805 }
1806 
1807 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1808 {
1809 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1810 
1811 	if (!tab)
1812 		return;
1813 	kfree(tab);
1814 	btf->dtor_kfunc_tab = NULL;
1815 }
1816 
1817 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1818 {
1819 	int i;
1820 
1821 	if (!tab)
1822 		return;
1823 	for (i = 0; i < tab->cnt; i++)
1824 		btf_record_free(tab->types[i].record);
1825 	kfree(tab);
1826 }
1827 
1828 static void btf_free_struct_meta_tab(struct btf *btf)
1829 {
1830 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1831 
1832 	btf_struct_metas_free(tab);
1833 	btf->struct_meta_tab = NULL;
1834 }
1835 
1836 static void btf_free_struct_ops_tab(struct btf *btf)
1837 {
1838 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1839 	u32 i;
1840 
1841 	if (!tab)
1842 		return;
1843 
1844 	for (i = 0; i < tab->cnt; i++)
1845 		bpf_struct_ops_desc_release(&tab->ops[i]);
1846 
1847 	kfree(tab);
1848 	btf->struct_ops_tab = NULL;
1849 }
1850 
1851 static void btf_free(struct btf *btf)
1852 {
1853 	btf_free_struct_meta_tab(btf);
1854 	btf_free_dtor_kfunc_tab(btf);
1855 	btf_free_kfunc_set_tab(btf);
1856 	btf_free_struct_ops_tab(btf);
1857 	kvfree(btf->types);
1858 	kvfree(btf->resolved_sizes);
1859 	kvfree(btf->resolved_ids);
1860 	/* vmlinux does not allocate btf->data, it simply points it at
1861 	 * __start_BTF.
1862 	 */
1863 	if (!btf_is_vmlinux(btf))
1864 		kvfree(btf->data);
1865 	kvfree(btf->base_id_map);
1866 	kfree(btf);
1867 }
1868 
1869 static void btf_free_rcu(struct rcu_head *rcu)
1870 {
1871 	struct btf *btf = container_of(rcu, struct btf, rcu);
1872 
1873 	btf_free(btf);
1874 }
1875 
1876 const char *btf_get_name(const struct btf *btf)
1877 {
1878 	return btf->name;
1879 }
1880 
1881 void btf_get(struct btf *btf)
1882 {
1883 	refcount_inc(&btf->refcnt);
1884 }
1885 
1886 void btf_put(struct btf *btf)
1887 {
1888 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1889 		btf_free_id(btf);
1890 		call_rcu(&btf->rcu, btf_free_rcu);
1891 	}
1892 }
1893 
1894 struct btf *btf_base_btf(const struct btf *btf)
1895 {
1896 	return btf->base_btf;
1897 }
1898 
1899 const struct btf_header *btf_header(const struct btf *btf)
1900 {
1901 	return &btf->hdr;
1902 }
1903 
1904 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1905 {
1906 	btf->base_btf = (struct btf *)base_btf;
1907 	btf->start_id = btf_nr_types(base_btf);
1908 	btf->start_str_off = base_btf->hdr.str_len;
1909 }
1910 
1911 static int env_resolve_init(struct btf_verifier_env *env)
1912 {
1913 	struct btf *btf = env->btf;
1914 	u32 nr_types = btf->nr_types;
1915 	u32 *resolved_sizes = NULL;
1916 	u32 *resolved_ids = NULL;
1917 	u8 *visit_states = NULL;
1918 
1919 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1920 				  GFP_KERNEL | __GFP_NOWARN);
1921 	if (!resolved_sizes)
1922 		goto nomem;
1923 
1924 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1925 				GFP_KERNEL | __GFP_NOWARN);
1926 	if (!resolved_ids)
1927 		goto nomem;
1928 
1929 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1930 				GFP_KERNEL | __GFP_NOWARN);
1931 	if (!visit_states)
1932 		goto nomem;
1933 
1934 	btf->resolved_sizes = resolved_sizes;
1935 	btf->resolved_ids = resolved_ids;
1936 	env->visit_states = visit_states;
1937 
1938 	return 0;
1939 
1940 nomem:
1941 	kvfree(resolved_sizes);
1942 	kvfree(resolved_ids);
1943 	kvfree(visit_states);
1944 	return -ENOMEM;
1945 }
1946 
1947 static void btf_verifier_env_free(struct btf_verifier_env *env)
1948 {
1949 	kvfree(env->visit_states);
1950 	kfree(env);
1951 }
1952 
1953 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1954 				     const struct btf_type *next_type)
1955 {
1956 	switch (env->resolve_mode) {
1957 	case RESOLVE_TBD:
1958 		/* int, enum or void is a sink */
1959 		return !btf_type_needs_resolve(next_type);
1960 	case RESOLVE_PTR:
1961 		/* int, enum, void, struct, array, func or func_proto is a sink
1962 		 * for ptr
1963 		 */
1964 		return !btf_type_is_modifier(next_type) &&
1965 			!btf_type_is_ptr(next_type);
1966 	case RESOLVE_STRUCT_OR_ARRAY:
1967 		/* int, enum, void, ptr, func or func_proto is a sink
1968 		 * for struct and array
1969 		 */
1970 		return !btf_type_is_modifier(next_type) &&
1971 			!btf_type_is_array(next_type) &&
1972 			!btf_type_is_struct(next_type);
1973 	default:
1974 		BUG();
1975 	}
1976 }
1977 
1978 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1979 				 u32 type_id)
1980 {
1981 	/* base BTF types should be resolved by now */
1982 	if (type_id < env->btf->start_id)
1983 		return true;
1984 
1985 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1986 }
1987 
1988 static int env_stack_push(struct btf_verifier_env *env,
1989 			  const struct btf_type *t, u32 type_id)
1990 {
1991 	const struct btf *btf = env->btf;
1992 	struct resolve_vertex *v;
1993 
1994 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1995 		return -E2BIG;
1996 
1997 	if (type_id < btf->start_id
1998 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1999 		return -EEXIST;
2000 
2001 	env->visit_states[type_id - btf->start_id] = VISITED;
2002 
2003 	v = &env->stack[env->top_stack++];
2004 	v->t = t;
2005 	v->type_id = type_id;
2006 	v->next_member = 0;
2007 
2008 	if (env->resolve_mode == RESOLVE_TBD) {
2009 		if (btf_type_is_ptr(t))
2010 			env->resolve_mode = RESOLVE_PTR;
2011 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
2012 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static void env_stack_set_next_member(struct btf_verifier_env *env,
2019 				      u16 next_member)
2020 {
2021 	env->stack[env->top_stack - 1].next_member = next_member;
2022 }
2023 
2024 static void env_stack_pop_resolved(struct btf_verifier_env *env,
2025 				   u32 resolved_type_id,
2026 				   u32 resolved_size)
2027 {
2028 	u32 type_id = env->stack[--(env->top_stack)].type_id;
2029 	struct btf *btf = env->btf;
2030 
2031 	type_id -= btf->start_id; /* adjust to local type id */
2032 	btf->resolved_sizes[type_id] = resolved_size;
2033 	btf->resolved_ids[type_id] = resolved_type_id;
2034 	env->visit_states[type_id] = RESOLVED;
2035 }
2036 
2037 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
2038 {
2039 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
2040 }
2041 
2042 /* Resolve the size of a passed-in "type"
2043  *
2044  * type: is an array (e.g. u32 array[x][y])
2045  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
2046  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
2047  *             corresponds to the return type.
2048  * *elem_type: u32
2049  * *elem_id: id of u32
2050  * *total_nelems: (x * y).  Hence, individual elem size is
2051  *                (*type_size / *total_nelems)
2052  * *type_id: id of type if it's changed within the function, 0 if not
2053  *
2054  * type: is not an array (e.g. const struct X)
2055  * return type: type "struct X"
2056  * *type_size: sizeof(struct X)
2057  * *elem_type: same as return type ("struct X")
2058  * *elem_id: 0
2059  * *total_nelems: 1
2060  * *type_id: id of type if it's changed within the function, 0 if not
2061  */
2062 static const struct btf_type *
2063 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2064 		   u32 *type_size, const struct btf_type **elem_type,
2065 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
2066 {
2067 	const struct btf_type *array_type = NULL;
2068 	const struct btf_array *array = NULL;
2069 	u32 i, size, nelems = 1, id = 0;
2070 
2071 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
2072 		switch (BTF_INFO_KIND(type->info)) {
2073 		/* type->size can be used */
2074 		case BTF_KIND_INT:
2075 		case BTF_KIND_STRUCT:
2076 		case BTF_KIND_UNION:
2077 		case BTF_KIND_ENUM:
2078 		case BTF_KIND_FLOAT:
2079 		case BTF_KIND_ENUM64:
2080 			size = type->size;
2081 			goto resolved;
2082 
2083 		case BTF_KIND_PTR:
2084 			size = sizeof(void *);
2085 			goto resolved;
2086 
2087 		/* Modifiers */
2088 		case BTF_KIND_TYPEDEF:
2089 		case BTF_KIND_VOLATILE:
2090 		case BTF_KIND_CONST:
2091 		case BTF_KIND_RESTRICT:
2092 		case BTF_KIND_TYPE_TAG:
2093 			id = type->type;
2094 			type = btf_type_by_id(btf, type->type);
2095 			break;
2096 
2097 		case BTF_KIND_ARRAY:
2098 			if (!array_type)
2099 				array_type = type;
2100 			array = btf_type_array(type);
2101 			if (nelems && array->nelems > U32_MAX / nelems)
2102 				return ERR_PTR(-EINVAL);
2103 			nelems *= array->nelems;
2104 			type = btf_type_by_id(btf, array->type);
2105 			break;
2106 
2107 		/* type without size */
2108 		default:
2109 			return ERR_PTR(-EINVAL);
2110 		}
2111 	}
2112 
2113 	return ERR_PTR(-EINVAL);
2114 
2115 resolved:
2116 	if (nelems && size > U32_MAX / nelems)
2117 		return ERR_PTR(-EINVAL);
2118 
2119 	*type_size = nelems * size;
2120 	if (total_nelems)
2121 		*total_nelems = nelems;
2122 	if (elem_type)
2123 		*elem_type = type;
2124 	if (elem_id)
2125 		*elem_id = array ? array->type : 0;
2126 	if (type_id && id)
2127 		*type_id = id;
2128 
2129 	return array_type ? : type;
2130 }
2131 
2132 const struct btf_type *
2133 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2134 		 u32 *type_size)
2135 {
2136 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2137 }
2138 
2139 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2140 {
2141 	while (type_id < btf->start_id)
2142 		btf = btf->base_btf;
2143 
2144 	return btf->resolved_ids[type_id - btf->start_id];
2145 }
2146 
2147 /* The input param "type_id" must point to a needs_resolve type */
2148 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2149 						  u32 *type_id)
2150 {
2151 	*type_id = btf_resolved_type_id(btf, *type_id);
2152 	return btf_type_by_id(btf, *type_id);
2153 }
2154 
2155 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2156 {
2157 	while (type_id < btf->start_id)
2158 		btf = btf->base_btf;
2159 
2160 	return btf->resolved_sizes[type_id - btf->start_id];
2161 }
2162 
2163 const struct btf_type *btf_type_id_size(const struct btf *btf,
2164 					u32 *type_id, u32 *ret_size)
2165 {
2166 	const struct btf_type *size_type;
2167 	u32 size_type_id = *type_id;
2168 	u32 size = 0;
2169 
2170 	size_type = btf_type_by_id(btf, size_type_id);
2171 	if (btf_type_nosize_or_null(size_type))
2172 		return NULL;
2173 
2174 	if (btf_type_has_size(size_type)) {
2175 		size = size_type->size;
2176 	} else if (btf_type_is_array(size_type)) {
2177 		size = btf_resolved_type_size(btf, size_type_id);
2178 	} else if (btf_type_is_ptr(size_type)) {
2179 		size = sizeof(void *);
2180 	} else {
2181 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2182 				 !btf_type_is_var(size_type)))
2183 			return NULL;
2184 
2185 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2186 		size_type = btf_type_by_id(btf, size_type_id);
2187 		if (btf_type_nosize_or_null(size_type))
2188 			return NULL;
2189 		else if (btf_type_has_size(size_type))
2190 			size = size_type->size;
2191 		else if (btf_type_is_array(size_type))
2192 			size = btf_resolved_type_size(btf, size_type_id);
2193 		else if (btf_type_is_ptr(size_type))
2194 			size = sizeof(void *);
2195 		else
2196 			return NULL;
2197 	}
2198 
2199 	*type_id = size_type_id;
2200 	if (ret_size)
2201 		*ret_size = size;
2202 
2203 	return size_type;
2204 }
2205 
2206 static int btf_df_check_member(struct btf_verifier_env *env,
2207 			       const struct btf_type *struct_type,
2208 			       const struct btf_member *member,
2209 			       const struct btf_type *member_type)
2210 {
2211 	btf_verifier_log_basic(env, struct_type,
2212 			       "Unsupported check_member");
2213 	return -EINVAL;
2214 }
2215 
2216 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2217 				     const struct btf_type *struct_type,
2218 				     const struct btf_member *member,
2219 				     const struct btf_type *member_type)
2220 {
2221 	btf_verifier_log_basic(env, struct_type,
2222 			       "Unsupported check_kflag_member");
2223 	return -EINVAL;
2224 }
2225 
2226 /* Used for ptr, array struct/union and float type members.
2227  * int, enum and modifier types have their specific callback functions.
2228  */
2229 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2230 					  const struct btf_type *struct_type,
2231 					  const struct btf_member *member,
2232 					  const struct btf_type *member_type)
2233 {
2234 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2235 		btf_verifier_log_member(env, struct_type, member,
2236 					"Invalid member bitfield_size");
2237 		return -EINVAL;
2238 	}
2239 
2240 	/* bitfield size is 0, so member->offset represents bit offset only.
2241 	 * It is safe to call non kflag check_member variants.
2242 	 */
2243 	return btf_type_ops(member_type)->check_member(env, struct_type,
2244 						       member,
2245 						       member_type);
2246 }
2247 
2248 static int btf_df_resolve(struct btf_verifier_env *env,
2249 			  const struct resolve_vertex *v)
2250 {
2251 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2252 	return -EINVAL;
2253 }
2254 
2255 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2256 			u32 type_id, void *data, u8 bits_offsets,
2257 			struct btf_show *show)
2258 {
2259 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2260 }
2261 
2262 static int btf_int_check_member(struct btf_verifier_env *env,
2263 				const struct btf_type *struct_type,
2264 				const struct btf_member *member,
2265 				const struct btf_type *member_type)
2266 {
2267 	u32 int_data = btf_type_int(member_type);
2268 	u32 struct_bits_off = member->offset;
2269 	u32 struct_size = struct_type->size;
2270 	u32 nr_copy_bits;
2271 	u32 bytes_offset;
2272 
2273 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2274 		btf_verifier_log_member(env, struct_type, member,
2275 					"bits_offset exceeds U32_MAX");
2276 		return -EINVAL;
2277 	}
2278 
2279 	struct_bits_off += BTF_INT_OFFSET(int_data);
2280 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2281 	nr_copy_bits = BTF_INT_BITS(int_data) +
2282 		BITS_PER_BYTE_MASKED(struct_bits_off);
2283 
2284 	if (nr_copy_bits > BITS_PER_U128) {
2285 		btf_verifier_log_member(env, struct_type, member,
2286 					"nr_copy_bits exceeds 128");
2287 		return -EINVAL;
2288 	}
2289 
2290 	if (struct_size < bytes_offset ||
2291 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2292 		btf_verifier_log_member(env, struct_type, member,
2293 					"Member exceeds struct_size");
2294 		return -EINVAL;
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2301 				      const struct btf_type *struct_type,
2302 				      const struct btf_member *member,
2303 				      const struct btf_type *member_type)
2304 {
2305 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2306 	u32 int_data = btf_type_int(member_type);
2307 	u32 struct_size = struct_type->size;
2308 	u32 nr_copy_bits;
2309 
2310 	/* a regular int type is required for the kflag int member */
2311 	if (!btf_type_int_is_regular(member_type)) {
2312 		btf_verifier_log_member(env, struct_type, member,
2313 					"Invalid member base type");
2314 		return -EINVAL;
2315 	}
2316 
2317 	/* check sanity of bitfield size */
2318 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2319 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2320 	nr_int_data_bits = BTF_INT_BITS(int_data);
2321 	if (!nr_bits) {
2322 		/* Not a bitfield member, member offset must be at byte
2323 		 * boundary.
2324 		 */
2325 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2326 			btf_verifier_log_member(env, struct_type, member,
2327 						"Invalid member offset");
2328 			return -EINVAL;
2329 		}
2330 
2331 		nr_bits = nr_int_data_bits;
2332 	} else if (nr_bits > nr_int_data_bits) {
2333 		btf_verifier_log_member(env, struct_type, member,
2334 					"Invalid member bitfield_size");
2335 		return -EINVAL;
2336 	}
2337 
2338 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2339 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2340 	if (nr_copy_bits > BITS_PER_U128) {
2341 		btf_verifier_log_member(env, struct_type, member,
2342 					"nr_copy_bits exceeds 128");
2343 		return -EINVAL;
2344 	}
2345 
2346 	if (struct_size < bytes_offset ||
2347 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2348 		btf_verifier_log_member(env, struct_type, member,
2349 					"Member exceeds struct_size");
2350 		return -EINVAL;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2357 			      const struct btf_type *t,
2358 			      u32 meta_left)
2359 {
2360 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2361 	u16 encoding;
2362 
2363 	if (meta_left < meta_needed) {
2364 		btf_verifier_log_basic(env, t,
2365 				       "meta_left:%u meta_needed:%u",
2366 				       meta_left, meta_needed);
2367 		return -EINVAL;
2368 	}
2369 
2370 	if (btf_type_vlen(t)) {
2371 		btf_verifier_log_type(env, t, "vlen != 0");
2372 		return -EINVAL;
2373 	}
2374 
2375 	if (btf_type_kflag(t)) {
2376 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2377 		return -EINVAL;
2378 	}
2379 
2380 	int_data = btf_type_int(t);
2381 	if (int_data & ~BTF_INT_MASK) {
2382 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2383 				       int_data);
2384 		return -EINVAL;
2385 	}
2386 
2387 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2388 
2389 	if (nr_bits > BITS_PER_U128) {
2390 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2391 				      BITS_PER_U128);
2392 		return -EINVAL;
2393 	}
2394 
2395 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2396 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2397 		return -EINVAL;
2398 	}
2399 
2400 	/*
2401 	 * Only one of the encoding bits is allowed and it
2402 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2403 	 * Multiple bits can be allowed later if it is found
2404 	 * to be insufficient.
2405 	 */
2406 	encoding = BTF_INT_ENCODING(int_data);
2407 	if (encoding &&
2408 	    encoding != BTF_INT_SIGNED &&
2409 	    encoding != BTF_INT_CHAR &&
2410 	    encoding != BTF_INT_BOOL) {
2411 		btf_verifier_log_type(env, t, "Unsupported encoding");
2412 		return -ENOTSUPP;
2413 	}
2414 
2415 	btf_verifier_log_type(env, t, NULL);
2416 
2417 	return meta_needed;
2418 }
2419 
2420 static void btf_int_log(struct btf_verifier_env *env,
2421 			const struct btf_type *t)
2422 {
2423 	int int_data = btf_type_int(t);
2424 
2425 	btf_verifier_log(env,
2426 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2427 			 t->size, BTF_INT_OFFSET(int_data),
2428 			 BTF_INT_BITS(int_data),
2429 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2430 }
2431 
2432 static void btf_int128_print(struct btf_show *show, void *data)
2433 {
2434 	/* data points to a __int128 number.
2435 	 * Suppose
2436 	 *     int128_num = *(__int128 *)data;
2437 	 * The below formulas shows what upper_num and lower_num represents:
2438 	 *     upper_num = int128_num >> 64;
2439 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2440 	 */
2441 	u64 upper_num, lower_num;
2442 
2443 #ifdef __BIG_ENDIAN_BITFIELD
2444 	upper_num = *(u64 *)data;
2445 	lower_num = *(u64 *)(data + 8);
2446 #else
2447 	upper_num = *(u64 *)(data + 8);
2448 	lower_num = *(u64 *)data;
2449 #endif
2450 	if (upper_num == 0)
2451 		btf_show_type_value(show, "0x%llx", lower_num);
2452 	else
2453 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2454 				     lower_num);
2455 }
2456 
2457 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2458 			     u16 right_shift_bits)
2459 {
2460 	u64 upper_num, lower_num;
2461 
2462 #ifdef __BIG_ENDIAN_BITFIELD
2463 	upper_num = print_num[0];
2464 	lower_num = print_num[1];
2465 #else
2466 	upper_num = print_num[1];
2467 	lower_num = print_num[0];
2468 #endif
2469 
2470 	/* shake out un-needed bits by shift/or operations */
2471 	if (left_shift_bits >= 64) {
2472 		upper_num = lower_num << (left_shift_bits - 64);
2473 		lower_num = 0;
2474 	} else {
2475 		upper_num = (upper_num << left_shift_bits) |
2476 			    (lower_num >> (64 - left_shift_bits));
2477 		lower_num = lower_num << left_shift_bits;
2478 	}
2479 
2480 	if (right_shift_bits >= 64) {
2481 		lower_num = upper_num >> (right_shift_bits - 64);
2482 		upper_num = 0;
2483 	} else {
2484 		lower_num = (lower_num >> right_shift_bits) |
2485 			    (upper_num << (64 - right_shift_bits));
2486 		upper_num = upper_num >> right_shift_bits;
2487 	}
2488 
2489 #ifdef __BIG_ENDIAN_BITFIELD
2490 	print_num[0] = upper_num;
2491 	print_num[1] = lower_num;
2492 #else
2493 	print_num[0] = lower_num;
2494 	print_num[1] = upper_num;
2495 #endif
2496 }
2497 
2498 static void btf_bitfield_show(void *data, u8 bits_offset,
2499 			      u8 nr_bits, struct btf_show *show)
2500 {
2501 	u16 left_shift_bits, right_shift_bits;
2502 	u8 nr_copy_bytes;
2503 	u8 nr_copy_bits;
2504 	u64 print_num[2] = {};
2505 
2506 	nr_copy_bits = nr_bits + bits_offset;
2507 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2508 
2509 	memcpy(print_num, data, nr_copy_bytes);
2510 
2511 #ifdef __BIG_ENDIAN_BITFIELD
2512 	left_shift_bits = bits_offset;
2513 #else
2514 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2515 #endif
2516 	right_shift_bits = BITS_PER_U128 - nr_bits;
2517 
2518 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2519 	btf_int128_print(show, print_num);
2520 }
2521 
2522 
2523 static void btf_int_bits_show(const struct btf *btf,
2524 			      const struct btf_type *t,
2525 			      void *data, u8 bits_offset,
2526 			      struct btf_show *show)
2527 {
2528 	u32 int_data = btf_type_int(t);
2529 	u8 nr_bits = BTF_INT_BITS(int_data);
2530 	u8 total_bits_offset;
2531 
2532 	/*
2533 	 * bits_offset is at most 7.
2534 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2535 	 */
2536 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2537 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2538 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2539 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2540 }
2541 
2542 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2543 			 u32 type_id, void *data, u8 bits_offset,
2544 			 struct btf_show *show)
2545 {
2546 	u32 int_data = btf_type_int(t);
2547 	u8 encoding = BTF_INT_ENCODING(int_data);
2548 	bool sign = encoding & BTF_INT_SIGNED;
2549 	u8 nr_bits = BTF_INT_BITS(int_data);
2550 	void *safe_data;
2551 
2552 	safe_data = btf_show_start_type(show, t, type_id, data);
2553 	if (!safe_data)
2554 		return;
2555 
2556 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2557 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2558 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2559 		goto out;
2560 	}
2561 
2562 	switch (nr_bits) {
2563 	case 128:
2564 		btf_int128_print(show, safe_data);
2565 		break;
2566 	case 64:
2567 		if (sign)
2568 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2569 		else
2570 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2571 		break;
2572 	case 32:
2573 		if (sign)
2574 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2575 		else
2576 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2577 		break;
2578 	case 16:
2579 		if (sign)
2580 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2581 		else
2582 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2583 		break;
2584 	case 8:
2585 		if (show->state.array_encoding == BTF_INT_CHAR) {
2586 			/* check for null terminator */
2587 			if (show->state.array_terminated)
2588 				break;
2589 			if (*(char *)data == '\0') {
2590 				show->state.array_terminated = 1;
2591 				break;
2592 			}
2593 			if (isprint(*(char *)data)) {
2594 				btf_show_type_value(show, "'%c'",
2595 						    *(char *)safe_data);
2596 				break;
2597 			}
2598 		}
2599 		if (sign)
2600 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2601 		else
2602 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2603 		break;
2604 	default:
2605 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2606 		break;
2607 	}
2608 out:
2609 	btf_show_end_type(show);
2610 }
2611 
2612 static const struct btf_kind_operations int_ops = {
2613 	.check_meta = btf_int_check_meta,
2614 	.resolve = btf_df_resolve,
2615 	.check_member = btf_int_check_member,
2616 	.check_kflag_member = btf_int_check_kflag_member,
2617 	.log_details = btf_int_log,
2618 	.show = btf_int_show,
2619 };
2620 
2621 static int btf_modifier_check_member(struct btf_verifier_env *env,
2622 				     const struct btf_type *struct_type,
2623 				     const struct btf_member *member,
2624 				     const struct btf_type *member_type)
2625 {
2626 	const struct btf_type *resolved_type;
2627 	u32 resolved_type_id = member->type;
2628 	struct btf_member resolved_member;
2629 	struct btf *btf = env->btf;
2630 
2631 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2632 	if (!resolved_type) {
2633 		btf_verifier_log_member(env, struct_type, member,
2634 					"Invalid member");
2635 		return -EINVAL;
2636 	}
2637 
2638 	resolved_member = *member;
2639 	resolved_member.type = resolved_type_id;
2640 
2641 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2642 							 &resolved_member,
2643 							 resolved_type);
2644 }
2645 
2646 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2647 					   const struct btf_type *struct_type,
2648 					   const struct btf_member *member,
2649 					   const struct btf_type *member_type)
2650 {
2651 	const struct btf_type *resolved_type;
2652 	u32 resolved_type_id = member->type;
2653 	struct btf_member resolved_member;
2654 	struct btf *btf = env->btf;
2655 
2656 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2657 	if (!resolved_type) {
2658 		btf_verifier_log_member(env, struct_type, member,
2659 					"Invalid member");
2660 		return -EINVAL;
2661 	}
2662 
2663 	resolved_member = *member;
2664 	resolved_member.type = resolved_type_id;
2665 
2666 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2667 							       &resolved_member,
2668 							       resolved_type);
2669 }
2670 
2671 static int btf_ptr_check_member(struct btf_verifier_env *env,
2672 				const struct btf_type *struct_type,
2673 				const struct btf_member *member,
2674 				const struct btf_type *member_type)
2675 {
2676 	u32 struct_size, struct_bits_off, bytes_offset;
2677 
2678 	struct_size = struct_type->size;
2679 	struct_bits_off = member->offset;
2680 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2681 
2682 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2683 		btf_verifier_log_member(env, struct_type, member,
2684 					"Member is not byte aligned");
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (struct_size - bytes_offset < sizeof(void *)) {
2689 		btf_verifier_log_member(env, struct_type, member,
2690 					"Member exceeds struct_size");
2691 		return -EINVAL;
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2698 				   const struct btf_type *t,
2699 				   u32 meta_left)
2700 {
2701 	const char *value;
2702 
2703 	if (btf_type_vlen(t)) {
2704 		btf_verifier_log_type(env, t, "vlen != 0");
2705 		return -EINVAL;
2706 	}
2707 
2708 	if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) {
2709 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2710 		return -EINVAL;
2711 	}
2712 
2713 	if (!BTF_TYPE_ID_VALID(t->type)) {
2714 		btf_verifier_log_type(env, t, "Invalid type_id");
2715 		return -EINVAL;
2716 	}
2717 
2718 	/* typedef/type_tag type must have a valid name, and other ref types,
2719 	 * volatile, const, restrict, should have a null name.
2720 	 */
2721 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2722 		if (!t->name_off ||
2723 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2724 			btf_verifier_log_type(env, t, "Invalid name");
2725 			return -EINVAL;
2726 		}
2727 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2728 		value = btf_name_by_offset(env->btf, t->name_off);
2729 		if (!value || !value[0]) {
2730 			btf_verifier_log_type(env, t, "Invalid name");
2731 			return -EINVAL;
2732 		}
2733 	} else {
2734 		if (t->name_off) {
2735 			btf_verifier_log_type(env, t, "Invalid name");
2736 			return -EINVAL;
2737 		}
2738 	}
2739 
2740 	btf_verifier_log_type(env, t, NULL);
2741 
2742 	return 0;
2743 }
2744 
2745 static int btf_modifier_resolve(struct btf_verifier_env *env,
2746 				const struct resolve_vertex *v)
2747 {
2748 	const struct btf_type *t = v->t;
2749 	const struct btf_type *next_type;
2750 	u32 next_type_id = t->type;
2751 	struct btf *btf = env->btf;
2752 
2753 	next_type = btf_type_by_id(btf, next_type_id);
2754 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2755 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2756 		return -EINVAL;
2757 	}
2758 
2759 	if (!env_type_is_resolve_sink(env, next_type) &&
2760 	    !env_type_is_resolved(env, next_type_id))
2761 		return env_stack_push(env, next_type, next_type_id);
2762 
2763 	/* Figure out the resolved next_type_id with size.
2764 	 * They will be stored in the current modifier's
2765 	 * resolved_ids and resolved_sizes such that it can
2766 	 * save us a few type-following when we use it later (e.g. in
2767 	 * pretty print).
2768 	 */
2769 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2770 		if (env_type_is_resolved(env, next_type_id))
2771 			next_type = btf_type_id_resolve(btf, &next_type_id);
2772 
2773 		/* "typedef void new_void", "const void"...etc */
2774 		if (!btf_type_is_void(next_type) &&
2775 		    !btf_type_is_fwd(next_type) &&
2776 		    !btf_type_is_func_proto(next_type)) {
2777 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2778 			return -EINVAL;
2779 		}
2780 	}
2781 
2782 	env_stack_pop_resolved(env, next_type_id, 0);
2783 
2784 	return 0;
2785 }
2786 
2787 static int btf_var_resolve(struct btf_verifier_env *env,
2788 			   const struct resolve_vertex *v)
2789 {
2790 	const struct btf_type *next_type;
2791 	const struct btf_type *t = v->t;
2792 	u32 next_type_id = t->type;
2793 	struct btf *btf = env->btf;
2794 
2795 	next_type = btf_type_by_id(btf, next_type_id);
2796 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2797 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2798 		return -EINVAL;
2799 	}
2800 
2801 	if (!env_type_is_resolve_sink(env, next_type) &&
2802 	    !env_type_is_resolved(env, next_type_id))
2803 		return env_stack_push(env, next_type, next_type_id);
2804 
2805 	if (btf_type_is_modifier(next_type)) {
2806 		const struct btf_type *resolved_type;
2807 		u32 resolved_type_id;
2808 
2809 		resolved_type_id = next_type_id;
2810 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2811 
2812 		if (btf_type_is_ptr(resolved_type) &&
2813 		    !env_type_is_resolve_sink(env, resolved_type) &&
2814 		    !env_type_is_resolved(env, resolved_type_id))
2815 			return env_stack_push(env, resolved_type,
2816 					      resolved_type_id);
2817 	}
2818 
2819 	/* We must resolve to something concrete at this point, no
2820 	 * forward types or similar that would resolve to size of
2821 	 * zero is allowed.
2822 	 */
2823 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2824 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2825 		return -EINVAL;
2826 	}
2827 
2828 	env_stack_pop_resolved(env, next_type_id, 0);
2829 
2830 	return 0;
2831 }
2832 
2833 static int btf_ptr_resolve(struct btf_verifier_env *env,
2834 			   const struct resolve_vertex *v)
2835 {
2836 	const struct btf_type *next_type;
2837 	const struct btf_type *t = v->t;
2838 	u32 next_type_id = t->type;
2839 	struct btf *btf = env->btf;
2840 
2841 	next_type = btf_type_by_id(btf, next_type_id);
2842 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2843 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2844 		return -EINVAL;
2845 	}
2846 
2847 	if (!env_type_is_resolve_sink(env, next_type) &&
2848 	    !env_type_is_resolved(env, next_type_id))
2849 		return env_stack_push(env, next_type, next_type_id);
2850 
2851 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2852 	 * the modifier may have stopped resolving when it was resolved
2853 	 * to a ptr (last-resolved-ptr).
2854 	 *
2855 	 * We now need to continue from the last-resolved-ptr to
2856 	 * ensure the last-resolved-ptr will not referring back to
2857 	 * the current ptr (t).
2858 	 */
2859 	if (btf_type_is_modifier(next_type)) {
2860 		const struct btf_type *resolved_type;
2861 		u32 resolved_type_id;
2862 
2863 		resolved_type_id = next_type_id;
2864 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2865 
2866 		if (btf_type_is_ptr(resolved_type) &&
2867 		    !env_type_is_resolve_sink(env, resolved_type) &&
2868 		    !env_type_is_resolved(env, resolved_type_id))
2869 			return env_stack_push(env, resolved_type,
2870 					      resolved_type_id);
2871 	}
2872 
2873 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2874 		if (env_type_is_resolved(env, next_type_id))
2875 			next_type = btf_type_id_resolve(btf, &next_type_id);
2876 
2877 		if (!btf_type_is_void(next_type) &&
2878 		    !btf_type_is_fwd(next_type) &&
2879 		    !btf_type_is_func_proto(next_type)) {
2880 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2881 			return -EINVAL;
2882 		}
2883 	}
2884 
2885 	env_stack_pop_resolved(env, next_type_id, 0);
2886 
2887 	return 0;
2888 }
2889 
2890 static void btf_modifier_show(const struct btf *btf,
2891 			      const struct btf_type *t,
2892 			      u32 type_id, void *data,
2893 			      u8 bits_offset, struct btf_show *show)
2894 {
2895 	if (btf->resolved_ids)
2896 		t = btf_type_id_resolve(btf, &type_id);
2897 	else
2898 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2899 
2900 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2901 }
2902 
2903 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2904 			 u32 type_id, void *data, u8 bits_offset,
2905 			 struct btf_show *show)
2906 {
2907 	t = btf_type_id_resolve(btf, &type_id);
2908 
2909 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2910 }
2911 
2912 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2913 			 u32 type_id, void *data, u8 bits_offset,
2914 			 struct btf_show *show)
2915 {
2916 	void *safe_data;
2917 
2918 	safe_data = btf_show_start_type(show, t, type_id, data);
2919 	if (!safe_data)
2920 		return;
2921 
2922 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2923 	if (show->flags & BTF_SHOW_PTR_RAW)
2924 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2925 	else
2926 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2927 	btf_show_end_type(show);
2928 }
2929 
2930 static void btf_ref_type_log(struct btf_verifier_env *env,
2931 			     const struct btf_type *t)
2932 {
2933 	btf_verifier_log(env, "type_id=%u", t->type);
2934 }
2935 
2936 static const struct btf_kind_operations modifier_ops = {
2937 	.check_meta = btf_ref_type_check_meta,
2938 	.resolve = btf_modifier_resolve,
2939 	.check_member = btf_modifier_check_member,
2940 	.check_kflag_member = btf_modifier_check_kflag_member,
2941 	.log_details = btf_ref_type_log,
2942 	.show = btf_modifier_show,
2943 };
2944 
2945 static const struct btf_kind_operations ptr_ops = {
2946 	.check_meta = btf_ref_type_check_meta,
2947 	.resolve = btf_ptr_resolve,
2948 	.check_member = btf_ptr_check_member,
2949 	.check_kflag_member = btf_generic_check_kflag_member,
2950 	.log_details = btf_ref_type_log,
2951 	.show = btf_ptr_show,
2952 };
2953 
2954 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2955 			      const struct btf_type *t,
2956 			      u32 meta_left)
2957 {
2958 	if (btf_type_vlen(t)) {
2959 		btf_verifier_log_type(env, t, "vlen != 0");
2960 		return -EINVAL;
2961 	}
2962 
2963 	if (t->type) {
2964 		btf_verifier_log_type(env, t, "type != 0");
2965 		return -EINVAL;
2966 	}
2967 
2968 	/* fwd type must have a valid name */
2969 	if (!t->name_off ||
2970 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2971 		btf_verifier_log_type(env, t, "Invalid name");
2972 		return -EINVAL;
2973 	}
2974 
2975 	btf_verifier_log_type(env, t, NULL);
2976 
2977 	return 0;
2978 }
2979 
2980 static void btf_fwd_type_log(struct btf_verifier_env *env,
2981 			     const struct btf_type *t)
2982 {
2983 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2984 }
2985 
2986 static const struct btf_kind_operations fwd_ops = {
2987 	.check_meta = btf_fwd_check_meta,
2988 	.resolve = btf_df_resolve,
2989 	.check_member = btf_df_check_member,
2990 	.check_kflag_member = btf_df_check_kflag_member,
2991 	.log_details = btf_fwd_type_log,
2992 	.show = btf_df_show,
2993 };
2994 
2995 static int btf_array_check_member(struct btf_verifier_env *env,
2996 				  const struct btf_type *struct_type,
2997 				  const struct btf_member *member,
2998 				  const struct btf_type *member_type)
2999 {
3000 	u32 struct_bits_off = member->offset;
3001 	u32 struct_size, bytes_offset;
3002 	u32 array_type_id, array_size;
3003 	struct btf *btf = env->btf;
3004 
3005 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3006 		btf_verifier_log_member(env, struct_type, member,
3007 					"Member is not byte aligned");
3008 		return -EINVAL;
3009 	}
3010 
3011 	array_type_id = member->type;
3012 	btf_type_id_size(btf, &array_type_id, &array_size);
3013 	struct_size = struct_type->size;
3014 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3015 	if (struct_size - bytes_offset < array_size) {
3016 		btf_verifier_log_member(env, struct_type, member,
3017 					"Member exceeds struct_size");
3018 		return -EINVAL;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 static s32 btf_array_check_meta(struct btf_verifier_env *env,
3025 				const struct btf_type *t,
3026 				u32 meta_left)
3027 {
3028 	const struct btf_array *array = btf_type_array(t);
3029 	u32 meta_needed = sizeof(*array);
3030 
3031 	if (meta_left < meta_needed) {
3032 		btf_verifier_log_basic(env, t,
3033 				       "meta_left:%u meta_needed:%u",
3034 				       meta_left, meta_needed);
3035 		return -EINVAL;
3036 	}
3037 
3038 	/* array type should not have a name */
3039 	if (t->name_off) {
3040 		btf_verifier_log_type(env, t, "Invalid name");
3041 		return -EINVAL;
3042 	}
3043 
3044 	if (btf_type_vlen(t)) {
3045 		btf_verifier_log_type(env, t, "vlen != 0");
3046 		return -EINVAL;
3047 	}
3048 
3049 	if (btf_type_kflag(t)) {
3050 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3051 		return -EINVAL;
3052 	}
3053 
3054 	if (t->size) {
3055 		btf_verifier_log_type(env, t, "size != 0");
3056 		return -EINVAL;
3057 	}
3058 
3059 	/* Array elem type and index type cannot be in type void,
3060 	 * so !array->type and !array->index_type are not allowed.
3061 	 */
3062 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
3063 		btf_verifier_log_type(env, t, "Invalid elem");
3064 		return -EINVAL;
3065 	}
3066 
3067 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
3068 		btf_verifier_log_type(env, t, "Invalid index");
3069 		return -EINVAL;
3070 	}
3071 
3072 	btf_verifier_log_type(env, t, NULL);
3073 
3074 	return meta_needed;
3075 }
3076 
3077 static int btf_array_resolve(struct btf_verifier_env *env,
3078 			     const struct resolve_vertex *v)
3079 {
3080 	const struct btf_array *array = btf_type_array(v->t);
3081 	const struct btf_type *elem_type, *index_type;
3082 	u32 elem_type_id, index_type_id;
3083 	struct btf *btf = env->btf;
3084 	u32 elem_size;
3085 
3086 	/* Check array->index_type */
3087 	index_type_id = array->index_type;
3088 	index_type = btf_type_by_id(btf, index_type_id);
3089 	if (btf_type_nosize_or_null(index_type) ||
3090 	    btf_type_is_resolve_source_only(index_type)) {
3091 		btf_verifier_log_type(env, v->t, "Invalid index");
3092 		return -EINVAL;
3093 	}
3094 
3095 	if (!env_type_is_resolve_sink(env, index_type) &&
3096 	    !env_type_is_resolved(env, index_type_id))
3097 		return env_stack_push(env, index_type, index_type_id);
3098 
3099 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
3100 	if (!index_type || !btf_type_is_int(index_type) ||
3101 	    !btf_type_int_is_regular(index_type)) {
3102 		btf_verifier_log_type(env, v->t, "Invalid index");
3103 		return -EINVAL;
3104 	}
3105 
3106 	/* Check array->type */
3107 	elem_type_id = array->type;
3108 	elem_type = btf_type_by_id(btf, elem_type_id);
3109 	if (btf_type_nosize_or_null(elem_type) ||
3110 	    btf_type_is_resolve_source_only(elem_type)) {
3111 		btf_verifier_log_type(env, v->t,
3112 				      "Invalid elem");
3113 		return -EINVAL;
3114 	}
3115 
3116 	if (!env_type_is_resolve_sink(env, elem_type) &&
3117 	    !env_type_is_resolved(env, elem_type_id))
3118 		return env_stack_push(env, elem_type, elem_type_id);
3119 
3120 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3121 	if (!elem_type) {
3122 		btf_verifier_log_type(env, v->t, "Invalid elem");
3123 		return -EINVAL;
3124 	}
3125 
3126 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3127 		btf_verifier_log_type(env, v->t, "Invalid array of int");
3128 		return -EINVAL;
3129 	}
3130 
3131 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3132 		btf_verifier_log_type(env, v->t,
3133 				      "Array size overflows U32_MAX");
3134 		return -EINVAL;
3135 	}
3136 
3137 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3138 
3139 	return 0;
3140 }
3141 
3142 static void btf_array_log(struct btf_verifier_env *env,
3143 			  const struct btf_type *t)
3144 {
3145 	const struct btf_array *array = btf_type_array(t);
3146 
3147 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3148 			 array->type, array->index_type, array->nelems);
3149 }
3150 
3151 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3152 			     u32 type_id, void *data, u8 bits_offset,
3153 			     struct btf_show *show)
3154 {
3155 	const struct btf_array *array = btf_type_array(t);
3156 	const struct btf_kind_operations *elem_ops;
3157 	const struct btf_type *elem_type;
3158 	u32 i, elem_size = 0, elem_type_id;
3159 	u16 encoding = 0;
3160 
3161 	elem_type_id = array->type;
3162 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3163 	if (elem_type && btf_type_has_size(elem_type))
3164 		elem_size = elem_type->size;
3165 
3166 	if (elem_type && btf_type_is_int(elem_type)) {
3167 		u32 int_type = btf_type_int(elem_type);
3168 
3169 		encoding = BTF_INT_ENCODING(int_type);
3170 
3171 		/*
3172 		 * BTF_INT_CHAR encoding never seems to be set for
3173 		 * char arrays, so if size is 1 and element is
3174 		 * printable as a char, we'll do that.
3175 		 */
3176 		if (elem_size == 1)
3177 			encoding = BTF_INT_CHAR;
3178 	}
3179 
3180 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3181 		return;
3182 
3183 	if (!elem_type)
3184 		goto out;
3185 	elem_ops = btf_type_ops(elem_type);
3186 
3187 	for (i = 0; i < array->nelems; i++) {
3188 
3189 		btf_show_start_array_member(show);
3190 
3191 		elem_ops->show(btf, elem_type, elem_type_id, data,
3192 			       bits_offset, show);
3193 		data += elem_size;
3194 
3195 		btf_show_end_array_member(show);
3196 
3197 		if (show->state.array_terminated)
3198 			break;
3199 	}
3200 out:
3201 	btf_show_end_array_type(show);
3202 }
3203 
3204 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3205 			   u32 type_id, void *data, u8 bits_offset,
3206 			   struct btf_show *show)
3207 {
3208 	const struct btf_member *m = show->state.member;
3209 
3210 	/*
3211 	 * First check if any members would be shown (are non-zero).
3212 	 * See comments above "struct btf_show" definition for more
3213 	 * details on how this works at a high-level.
3214 	 */
3215 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3216 		if (!show->state.depth_check) {
3217 			show->state.depth_check = show->state.depth + 1;
3218 			show->state.depth_to_show = 0;
3219 		}
3220 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3221 		show->state.member = m;
3222 
3223 		if (show->state.depth_check != show->state.depth + 1)
3224 			return;
3225 		show->state.depth_check = 0;
3226 
3227 		if (show->state.depth_to_show <= show->state.depth)
3228 			return;
3229 		/*
3230 		 * Reaching here indicates we have recursed and found
3231 		 * non-zero array member(s).
3232 		 */
3233 	}
3234 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3235 }
3236 
3237 static const struct btf_kind_operations array_ops = {
3238 	.check_meta = btf_array_check_meta,
3239 	.resolve = btf_array_resolve,
3240 	.check_member = btf_array_check_member,
3241 	.check_kflag_member = btf_generic_check_kflag_member,
3242 	.log_details = btf_array_log,
3243 	.show = btf_array_show,
3244 };
3245 
3246 static int btf_struct_check_member(struct btf_verifier_env *env,
3247 				   const struct btf_type *struct_type,
3248 				   const struct btf_member *member,
3249 				   const struct btf_type *member_type)
3250 {
3251 	u32 struct_bits_off = member->offset;
3252 	u32 struct_size, bytes_offset;
3253 
3254 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3255 		btf_verifier_log_member(env, struct_type, member,
3256 					"Member is not byte aligned");
3257 		return -EINVAL;
3258 	}
3259 
3260 	struct_size = struct_type->size;
3261 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3262 	if (struct_size - bytes_offset < member_type->size) {
3263 		btf_verifier_log_member(env, struct_type, member,
3264 					"Member exceeds struct_size");
3265 		return -EINVAL;
3266 	}
3267 
3268 	return 0;
3269 }
3270 
3271 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3272 				 const struct btf_type *t,
3273 				 u32 meta_left)
3274 {
3275 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3276 	const struct btf_member *member;
3277 	u32 meta_needed, last_offset;
3278 	struct btf *btf = env->btf;
3279 	u32 struct_size = t->size;
3280 	u32 offset;
3281 	u16 i;
3282 
3283 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3284 	if (meta_left < meta_needed) {
3285 		btf_verifier_log_basic(env, t,
3286 				       "meta_left:%u meta_needed:%u",
3287 				       meta_left, meta_needed);
3288 		return -EINVAL;
3289 	}
3290 
3291 	/* struct type either no name or a valid one */
3292 	if (t->name_off &&
3293 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3294 		btf_verifier_log_type(env, t, "Invalid name");
3295 		return -EINVAL;
3296 	}
3297 
3298 	btf_verifier_log_type(env, t, NULL);
3299 
3300 	last_offset = 0;
3301 	for_each_member(i, t, member) {
3302 		if (!btf_name_offset_valid(btf, member->name_off)) {
3303 			btf_verifier_log_member(env, t, member,
3304 						"Invalid member name_offset:%u",
3305 						member->name_off);
3306 			return -EINVAL;
3307 		}
3308 
3309 		/* struct member either no name or a valid one */
3310 		if (member->name_off &&
3311 		    !btf_name_valid_identifier(btf, member->name_off)) {
3312 			btf_verifier_log_member(env, t, member, "Invalid name");
3313 			return -EINVAL;
3314 		}
3315 		/* A member cannot be in type void */
3316 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3317 			btf_verifier_log_member(env, t, member,
3318 						"Invalid type_id");
3319 			return -EINVAL;
3320 		}
3321 
3322 		offset = __btf_member_bit_offset(t, member);
3323 		if (is_union && offset) {
3324 			btf_verifier_log_member(env, t, member,
3325 						"Invalid member bits_offset");
3326 			return -EINVAL;
3327 		}
3328 
3329 		/*
3330 		 * ">" instead of ">=" because the last member could be
3331 		 * "char a[0];"
3332 		 */
3333 		if (last_offset > offset) {
3334 			btf_verifier_log_member(env, t, member,
3335 						"Invalid member bits_offset");
3336 			return -EINVAL;
3337 		}
3338 
3339 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3340 			btf_verifier_log_member(env, t, member,
3341 						"Member bits_offset exceeds its struct size");
3342 			return -EINVAL;
3343 		}
3344 
3345 		btf_verifier_log_member(env, t, member, NULL);
3346 		last_offset = offset;
3347 	}
3348 
3349 	return meta_needed;
3350 }
3351 
3352 static int btf_struct_resolve(struct btf_verifier_env *env,
3353 			      const struct resolve_vertex *v)
3354 {
3355 	const struct btf_member *member;
3356 	int err;
3357 	u16 i;
3358 
3359 	/* Before continue resolving the next_member,
3360 	 * ensure the last member is indeed resolved to a
3361 	 * type with size info.
3362 	 */
3363 	if (v->next_member) {
3364 		const struct btf_type *last_member_type;
3365 		const struct btf_member *last_member;
3366 		u32 last_member_type_id;
3367 
3368 		last_member = btf_type_member(v->t) + v->next_member - 1;
3369 		last_member_type_id = last_member->type;
3370 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3371 						       last_member_type_id)))
3372 			return -EINVAL;
3373 
3374 		last_member_type = btf_type_by_id(env->btf,
3375 						  last_member_type_id);
3376 		if (btf_type_kflag(v->t))
3377 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3378 								last_member,
3379 								last_member_type);
3380 		else
3381 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3382 								last_member,
3383 								last_member_type);
3384 		if (err)
3385 			return err;
3386 	}
3387 
3388 	for_each_member_from(i, v->next_member, v->t, member) {
3389 		u32 member_type_id = member->type;
3390 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3391 								member_type_id);
3392 
3393 		if (btf_type_nosize_or_null(member_type) ||
3394 		    btf_type_is_resolve_source_only(member_type)) {
3395 			btf_verifier_log_member(env, v->t, member,
3396 						"Invalid member");
3397 			return -EINVAL;
3398 		}
3399 
3400 		if (!env_type_is_resolve_sink(env, member_type) &&
3401 		    !env_type_is_resolved(env, member_type_id)) {
3402 			env_stack_set_next_member(env, i + 1);
3403 			return env_stack_push(env, member_type, member_type_id);
3404 		}
3405 
3406 		if (btf_type_kflag(v->t))
3407 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3408 									    member,
3409 									    member_type);
3410 		else
3411 			err = btf_type_ops(member_type)->check_member(env, v->t,
3412 								      member,
3413 								      member_type);
3414 		if (err)
3415 			return err;
3416 	}
3417 
3418 	env_stack_pop_resolved(env, 0, 0);
3419 
3420 	return 0;
3421 }
3422 
3423 static void btf_struct_log(struct btf_verifier_env *env,
3424 			   const struct btf_type *t)
3425 {
3426 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3427 }
3428 
3429 enum {
3430 	BTF_FIELD_IGNORE = 0,
3431 	BTF_FIELD_FOUND  = 1,
3432 };
3433 
3434 struct btf_field_info {
3435 	enum btf_field_type type;
3436 	u32 off;
3437 	union {
3438 		struct {
3439 			u32 type_id;
3440 		} kptr;
3441 		struct {
3442 			const char *node_name;
3443 			u32 value_btf_id;
3444 		} graph_root;
3445 	};
3446 };
3447 
3448 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3449 			   u32 off, int sz, enum btf_field_type field_type,
3450 			   struct btf_field_info *info)
3451 {
3452 	if (!__btf_type_is_struct(t))
3453 		return BTF_FIELD_IGNORE;
3454 	if (t->size != sz)
3455 		return BTF_FIELD_IGNORE;
3456 	info->type = field_type;
3457 	info->off = off;
3458 	return BTF_FIELD_FOUND;
3459 }
3460 
3461 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3462 			 u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3463 {
3464 	enum btf_field_type type;
3465 	const char *tag_value;
3466 	bool is_type_tag;
3467 	u32 res_id;
3468 
3469 	/* Permit modifiers on the pointer itself */
3470 	if (btf_type_is_volatile(t))
3471 		t = btf_type_by_id(btf, t->type);
3472 	/* For PTR, sz is always == 8 */
3473 	if (!btf_type_is_ptr(t))
3474 		return BTF_FIELD_IGNORE;
3475 	t = btf_type_by_id(btf, t->type);
3476 	is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t);
3477 	if (!is_type_tag)
3478 		return BTF_FIELD_IGNORE;
3479 	/* Reject extra tags */
3480 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3481 		return -EINVAL;
3482 	tag_value = __btf_name_by_offset(btf, t->name_off);
3483 	if (!strcmp("kptr_untrusted", tag_value))
3484 		type = BPF_KPTR_UNREF;
3485 	else if (!strcmp("kptr", tag_value))
3486 		type = BPF_KPTR_REF;
3487 	else if (!strcmp("percpu_kptr", tag_value))
3488 		type = BPF_KPTR_PERCPU;
3489 	else if (!strcmp("uptr", tag_value))
3490 		type = BPF_UPTR;
3491 	else
3492 		return -EINVAL;
3493 
3494 	if (!(type & field_mask))
3495 		return BTF_FIELD_IGNORE;
3496 
3497 	/* Get the base type */
3498 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3499 	/* Only pointer to struct is allowed */
3500 	if (!__btf_type_is_struct(t))
3501 		return -EINVAL;
3502 
3503 	info->type = type;
3504 	info->off = off;
3505 	info->kptr.type_id = res_id;
3506 	return BTF_FIELD_FOUND;
3507 }
3508 
3509 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3510 			   int comp_idx, const char *tag_key, int last_id)
3511 {
3512 	int len = strlen(tag_key);
3513 	int i, n;
3514 
3515 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3516 		const struct btf_type *t = btf_type_by_id(btf, i);
3517 
3518 		if (!btf_type_is_decl_tag(t))
3519 			continue;
3520 		if (pt != btf_type_by_id(btf, t->type))
3521 			continue;
3522 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3523 			continue;
3524 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3525 			continue;
3526 		return i;
3527 	}
3528 	return -ENOENT;
3529 }
3530 
3531 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3532 				    int comp_idx, const char *tag_key)
3533 {
3534 	const char *value = NULL;
3535 	const struct btf_type *t;
3536 	int len, id;
3537 
3538 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key,
3539 				    btf_named_start_id(btf, false) - 1);
3540 	if (id < 0)
3541 		return ERR_PTR(id);
3542 
3543 	t = btf_type_by_id(btf, id);
3544 	len = strlen(tag_key);
3545 	value = __btf_name_by_offset(btf, t->name_off) + len;
3546 
3547 	/* Prevent duplicate entries for same type */
3548 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3549 	if (id >= 0)
3550 		return ERR_PTR(-EEXIST);
3551 
3552 	return value;
3553 }
3554 
3555 static int
3556 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3557 		    const struct btf_type *t, int comp_idx, u32 off,
3558 		    int sz, struct btf_field_info *info,
3559 		    enum btf_field_type head_type)
3560 {
3561 	const char *node_field_name;
3562 	const char *value_type;
3563 	s32 id;
3564 
3565 	if (!__btf_type_is_struct(t))
3566 		return BTF_FIELD_IGNORE;
3567 	if (t->size != sz)
3568 		return BTF_FIELD_IGNORE;
3569 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3570 	if (IS_ERR(value_type))
3571 		return -EINVAL;
3572 	node_field_name = strstr(value_type, ":");
3573 	if (!node_field_name)
3574 		return -EINVAL;
3575 	value_type = kstrndup(value_type, node_field_name - value_type,
3576 			      GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
3577 	if (!value_type)
3578 		return -ENOMEM;
3579 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3580 	kfree(value_type);
3581 	if (id < 0)
3582 		return id;
3583 	node_field_name++;
3584 	if (str_is_empty(node_field_name))
3585 		return -EINVAL;
3586 	info->type = head_type;
3587 	info->off = off;
3588 	info->graph_root.value_btf_id = id;
3589 	info->graph_root.node_name = node_field_name;
3590 	return BTF_FIELD_FOUND;
3591 }
3592 
3593 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3594 			      u32 field_mask, u32 *seen_mask, int *align, int *sz)
3595 {
3596 	const struct {
3597 		enum btf_field_type type;
3598 		const char *const name;
3599 		const bool is_unique;
3600 	} field_types[] = {
3601 		{ BPF_SPIN_LOCK, "bpf_spin_lock", true },
3602 		{ BPF_RES_SPIN_LOCK, "bpf_res_spin_lock", true },
3603 		{ BPF_TIMER, "bpf_timer", true },
3604 		{ BPF_WORKQUEUE, "bpf_wq", true },
3605 		{ BPF_TASK_WORK, "bpf_task_work", true },
3606 		{ BPF_LIST_HEAD, "bpf_list_head", false },
3607 		{ BPF_LIST_NODE, "bpf_list_node", false },
3608 		{ BPF_RB_ROOT, "bpf_rb_root", false },
3609 		{ BPF_RB_NODE, "bpf_rb_node", false },
3610 		{ BPF_REFCOUNT, "bpf_refcount", false },
3611 	};
3612 	int type = 0, i;
3613 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3614 	const char *field_type_name;
3615 	enum btf_field_type field_type;
3616 	bool is_unique;
3617 
3618 	for (i = 0; i < ARRAY_SIZE(field_types); ++i) {
3619 		field_type = field_types[i].type;
3620 		field_type_name = field_types[i].name;
3621 		is_unique = field_types[i].is_unique;
3622 		if (!(field_mask & field_type) || strcmp(name, field_type_name))
3623 			continue;
3624 		if (is_unique) {
3625 			if (*seen_mask & field_type)
3626 				return -E2BIG;
3627 			*seen_mask |= field_type;
3628 		}
3629 		type = field_type;
3630 		goto end;
3631 	}
3632 
3633 	/* Only return BPF_KPTR when all other types with matchable names fail */
3634 	if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3635 		type = BPF_KPTR_REF;
3636 		goto end;
3637 	}
3638 	return 0;
3639 end:
3640 	*sz = btf_field_type_size(type);
3641 	*align = btf_field_type_align(type);
3642 	return type;
3643 }
3644 
3645 /* Repeat a number of fields for a specified number of times.
3646  *
3647  * Copy the fields starting from the first field and repeat them for
3648  * repeat_cnt times. The fields are repeated by adding the offset of each
3649  * field with
3650  *   (i + 1) * elem_size
3651  * where i is the repeat index and elem_size is the size of an element.
3652  */
3653 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3654 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3655 {
3656 	u32 i, j;
3657 	u32 cur;
3658 
3659 	/* Ensure not repeating fields that should not be repeated. */
3660 	for (i = 0; i < field_cnt; i++) {
3661 		switch (info[i].type) {
3662 		case BPF_KPTR_UNREF:
3663 		case BPF_KPTR_REF:
3664 		case BPF_KPTR_PERCPU:
3665 		case BPF_UPTR:
3666 		case BPF_LIST_HEAD:
3667 		case BPF_RB_ROOT:
3668 			break;
3669 		default:
3670 			return -EINVAL;
3671 		}
3672 	}
3673 
3674 	/* The type of struct size or variable size is u32,
3675 	 * so the multiplication will not overflow.
3676 	 */
3677 	if (field_cnt * (repeat_cnt + 1) > info_cnt)
3678 		return -E2BIG;
3679 
3680 	cur = field_cnt;
3681 	for (i = 0; i < repeat_cnt; i++) {
3682 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3683 		for (j = 0; j < field_cnt; j++)
3684 			info[cur++].off += (i + 1) * elem_size;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 static int btf_find_struct_field(const struct btf *btf,
3691 				 const struct btf_type *t, u32 field_mask,
3692 				 struct btf_field_info *info, int info_cnt,
3693 				 u32 level);
3694 
3695 /* Find special fields in the struct type of a field.
3696  *
3697  * This function is used to find fields of special types that is not a
3698  * global variable or a direct field of a struct type. It also handles the
3699  * repetition if it is the element type of an array.
3700  */
3701 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3702 				  u32 off, u32 nelems,
3703 				  u32 field_mask, struct btf_field_info *info,
3704 				  int info_cnt, u32 level)
3705 {
3706 	int ret, err, i;
3707 
3708 	level++;
3709 	if (level >= MAX_RESOLVE_DEPTH)
3710 		return -E2BIG;
3711 
3712 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3713 
3714 	if (ret <= 0)
3715 		return ret;
3716 
3717 	/* Shift the offsets of the nested struct fields to the offsets
3718 	 * related to the container.
3719 	 */
3720 	for (i = 0; i < ret; i++)
3721 		info[i].off += off;
3722 
3723 	if (nelems > 1) {
3724 		err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3725 		if (err == 0)
3726 			ret *= nelems;
3727 		else
3728 			ret = err;
3729 	}
3730 
3731 	return ret;
3732 }
3733 
3734 static int btf_find_field_one(const struct btf *btf,
3735 			      const struct btf_type *var,
3736 			      const struct btf_type *var_type,
3737 			      int var_idx,
3738 			      u32 off, u32 expected_size,
3739 			      u32 field_mask, u32 *seen_mask,
3740 			      struct btf_field_info *info, int info_cnt,
3741 			      u32 level)
3742 {
3743 	int ret, align, sz, field_type;
3744 	struct btf_field_info tmp;
3745 	const struct btf_array *array;
3746 	u32 i, nelems = 1;
3747 
3748 	/* Walk into array types to find the element type and the number of
3749 	 * elements in the (flattened) array.
3750 	 */
3751 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3752 		array = btf_array(var_type);
3753 		nelems *= array->nelems;
3754 		var_type = btf_type_by_id(btf, array->type);
3755 	}
3756 	if (i == MAX_RESOLVE_DEPTH)
3757 		return -E2BIG;
3758 	if (nelems == 0)
3759 		return 0;
3760 
3761 	field_type = btf_get_field_type(btf, var_type,
3762 					field_mask, seen_mask, &align, &sz);
3763 	/* Look into variables of struct types */
3764 	if (!field_type && __btf_type_is_struct(var_type)) {
3765 		sz = var_type->size;
3766 		if (expected_size && expected_size != sz * nelems)
3767 			return 0;
3768 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3769 					     &info[0], info_cnt, level);
3770 		return ret;
3771 	}
3772 
3773 	if (field_type == 0)
3774 		return 0;
3775 	if (field_type < 0)
3776 		return field_type;
3777 
3778 	if (expected_size && expected_size != sz * nelems)
3779 		return 0;
3780 	if (off % align)
3781 		return 0;
3782 
3783 	switch (field_type) {
3784 	case BPF_SPIN_LOCK:
3785 	case BPF_RES_SPIN_LOCK:
3786 	case BPF_TIMER:
3787 	case BPF_WORKQUEUE:
3788 	case BPF_LIST_NODE:
3789 	case BPF_RB_NODE:
3790 	case BPF_REFCOUNT:
3791 	case BPF_TASK_WORK:
3792 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3793 				      info_cnt ? &info[0] : &tmp);
3794 		if (ret < 0)
3795 			return ret;
3796 		break;
3797 	case BPF_KPTR_UNREF:
3798 	case BPF_KPTR_REF:
3799 	case BPF_KPTR_PERCPU:
3800 	case BPF_UPTR:
3801 		ret = btf_find_kptr(btf, var_type, off, sz,
3802 				    info_cnt ? &info[0] : &tmp, field_mask);
3803 		if (ret < 0)
3804 			return ret;
3805 		break;
3806 	case BPF_LIST_HEAD:
3807 	case BPF_RB_ROOT:
3808 		ret = btf_find_graph_root(btf, var, var_type,
3809 					  var_idx, off, sz,
3810 					  info_cnt ? &info[0] : &tmp,
3811 					  field_type);
3812 		if (ret < 0)
3813 			return ret;
3814 		break;
3815 	default:
3816 		return -EFAULT;
3817 	}
3818 
3819 	if (ret == BTF_FIELD_IGNORE)
3820 		return 0;
3821 	if (!info_cnt)
3822 		return -E2BIG;
3823 	if (nelems > 1) {
3824 		ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3825 		if (ret < 0)
3826 			return ret;
3827 	}
3828 	return nelems;
3829 }
3830 
3831 static int btf_find_struct_field(const struct btf *btf,
3832 				 const struct btf_type *t, u32 field_mask,
3833 				 struct btf_field_info *info, int info_cnt,
3834 				 u32 level)
3835 {
3836 	int ret, idx = 0;
3837 	const struct btf_member *member;
3838 	u32 i, off, seen_mask = 0;
3839 
3840 	for_each_member(i, t, member) {
3841 		const struct btf_type *member_type = btf_type_by_id(btf,
3842 								    member->type);
3843 
3844 		off = __btf_member_bit_offset(t, member);
3845 		if (off % 8)
3846 			/* valid C code cannot generate such BTF */
3847 			return -EINVAL;
3848 		off /= 8;
3849 
3850 		ret = btf_find_field_one(btf, t, member_type, i,
3851 					 off, 0,
3852 					 field_mask, &seen_mask,
3853 					 &info[idx], info_cnt - idx, level);
3854 		if (ret < 0)
3855 			return ret;
3856 		idx += ret;
3857 	}
3858 	return idx;
3859 }
3860 
3861 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3862 				u32 field_mask, struct btf_field_info *info,
3863 				int info_cnt, u32 level)
3864 {
3865 	int ret, idx = 0;
3866 	const struct btf_var_secinfo *vsi;
3867 	u32 i, off, seen_mask = 0;
3868 
3869 	for_each_vsi(i, t, vsi) {
3870 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3871 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3872 
3873 		off = vsi->offset;
3874 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3875 					 field_mask, &seen_mask,
3876 					 &info[idx], info_cnt - idx,
3877 					 level);
3878 		if (ret < 0)
3879 			return ret;
3880 		idx += ret;
3881 	}
3882 	return idx;
3883 }
3884 
3885 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3886 			  u32 field_mask, struct btf_field_info *info,
3887 			  int info_cnt)
3888 {
3889 	if (__btf_type_is_struct(t))
3890 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3891 	else if (btf_type_is_datasec(t))
3892 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3893 	return -EINVAL;
3894 }
3895 
3896 /* Callers have to ensure the life cycle of btf if it is program BTF */
3897 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3898 			  struct btf_field_info *info)
3899 {
3900 	struct module *mod = NULL;
3901 	const struct btf_type *t;
3902 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3903 	 * is that BTF, otherwise it's program BTF
3904 	 */
3905 	struct btf *kptr_btf;
3906 	int ret;
3907 	s32 id;
3908 
3909 	/* Find type in map BTF, and use it to look up the matching type
3910 	 * in vmlinux or module BTFs, by name and kind.
3911 	 */
3912 	t = btf_type_by_id(btf, info->kptr.type_id);
3913 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3914 			     &kptr_btf);
3915 	if (id == -ENOENT) {
3916 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3917 		WARN_ON_ONCE(btf_is_kernel(btf));
3918 
3919 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3920 		 * kptr allocated via bpf_obj_new
3921 		 */
3922 		field->kptr.dtor = NULL;
3923 		id = info->kptr.type_id;
3924 		kptr_btf = (struct btf *)btf;
3925 		goto found_dtor;
3926 	}
3927 	if (id < 0)
3928 		return id;
3929 
3930 	/* Find and stash the function pointer for the destruction function that
3931 	 * needs to be eventually invoked from the map free path.
3932 	 */
3933 	if (info->type == BPF_KPTR_REF) {
3934 		const struct btf_type *dtor_func;
3935 		const char *dtor_func_name;
3936 		unsigned long addr;
3937 		s32 dtor_btf_id;
3938 
3939 		/* This call also serves as a whitelist of allowed objects that
3940 		 * can be used as a referenced pointer and be stored in a map at
3941 		 * the same time.
3942 		 */
3943 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3944 		if (dtor_btf_id < 0) {
3945 			ret = dtor_btf_id;
3946 			goto end_btf;
3947 		}
3948 
3949 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3950 		if (!dtor_func) {
3951 			ret = -ENOENT;
3952 			goto end_btf;
3953 		}
3954 
3955 		if (btf_is_module(kptr_btf)) {
3956 			mod = btf_try_get_module(kptr_btf);
3957 			if (!mod) {
3958 				ret = -ENXIO;
3959 				goto end_btf;
3960 			}
3961 		}
3962 
3963 		/* We already verified dtor_func to be btf_type_is_func
3964 		 * in register_btf_id_dtor_kfuncs.
3965 		 */
3966 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3967 		addr = kallsyms_lookup_name(dtor_func_name);
3968 		if (!addr) {
3969 			ret = -EINVAL;
3970 			goto end_mod;
3971 		}
3972 		field->kptr.dtor = (void *)addr;
3973 	}
3974 
3975 found_dtor:
3976 	field->kptr.btf_id = id;
3977 	field->kptr.btf = kptr_btf;
3978 	field->kptr.module = mod;
3979 	return 0;
3980 end_mod:
3981 	module_put(mod);
3982 end_btf:
3983 	btf_put(kptr_btf);
3984 	return ret;
3985 }
3986 
3987 static int btf_parse_graph_root(const struct btf *btf,
3988 				struct btf_field *field,
3989 				struct btf_field_info *info,
3990 				const char *node_type_name,
3991 				size_t node_type_align)
3992 {
3993 	const struct btf_type *t, *n = NULL;
3994 	const struct btf_member *member;
3995 	u32 offset;
3996 	int i;
3997 
3998 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3999 	/* We've already checked that value_btf_id is a struct type. We
4000 	 * just need to figure out the offset of the list_node, and
4001 	 * verify its type.
4002 	 */
4003 	for_each_member(i, t, member) {
4004 		if (strcmp(info->graph_root.node_name,
4005 			   __btf_name_by_offset(btf, member->name_off)))
4006 			continue;
4007 		/* Invalid BTF, two members with same name */
4008 		if (n)
4009 			return -EINVAL;
4010 		n = btf_type_by_id(btf, member->type);
4011 		if (!__btf_type_is_struct(n))
4012 			return -EINVAL;
4013 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
4014 			return -EINVAL;
4015 		offset = __btf_member_bit_offset(n, member);
4016 		if (offset % 8)
4017 			return -EINVAL;
4018 		offset /= 8;
4019 		if (offset % node_type_align)
4020 			return -EINVAL;
4021 
4022 		field->graph_root.btf = (struct btf *)btf;
4023 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
4024 		field->graph_root.node_offset = offset;
4025 	}
4026 	if (!n)
4027 		return -ENOENT;
4028 	return 0;
4029 }
4030 
4031 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
4032 			       struct btf_field_info *info)
4033 {
4034 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
4035 					    __alignof__(struct bpf_list_node));
4036 }
4037 
4038 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
4039 			     struct btf_field_info *info)
4040 {
4041 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
4042 					    __alignof__(struct bpf_rb_node));
4043 }
4044 
4045 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
4046 {
4047 	const struct btf_field *a = (const struct btf_field *)_a;
4048 	const struct btf_field *b = (const struct btf_field *)_b;
4049 
4050 	if (a->offset < b->offset)
4051 		return -1;
4052 	else if (a->offset > b->offset)
4053 		return 1;
4054 	return 0;
4055 }
4056 
4057 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
4058 				    u32 field_mask, u32 value_size)
4059 {
4060 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
4061 	u32 next_off = 0, field_type_size;
4062 	struct btf_record *rec;
4063 	int ret, i, cnt;
4064 
4065 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
4066 	if (ret < 0)
4067 		return ERR_PTR(ret);
4068 	if (!ret)
4069 		return NULL;
4070 
4071 	cnt = ret;
4072 	/* This needs to be kzalloc to zero out padding and unused fields, see
4073 	 * comment in btf_record_equal.
4074 	 */
4075 	rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
4076 	if (!rec)
4077 		return ERR_PTR(-ENOMEM);
4078 
4079 	rec->spin_lock_off = -EINVAL;
4080 	rec->res_spin_lock_off = -EINVAL;
4081 	rec->timer_off = -EINVAL;
4082 	rec->wq_off = -EINVAL;
4083 	rec->refcount_off = -EINVAL;
4084 	rec->task_work_off = -EINVAL;
4085 	for (i = 0; i < cnt; i++) {
4086 		field_type_size = btf_field_type_size(info_arr[i].type);
4087 		if (info_arr[i].off + field_type_size > value_size) {
4088 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
4089 			ret = -EFAULT;
4090 			goto end;
4091 		}
4092 		if (info_arr[i].off < next_off) {
4093 			ret = -EEXIST;
4094 			goto end;
4095 		}
4096 		next_off = info_arr[i].off + field_type_size;
4097 
4098 		rec->field_mask |= info_arr[i].type;
4099 		rec->fields[i].offset = info_arr[i].off;
4100 		rec->fields[i].type = info_arr[i].type;
4101 		rec->fields[i].size = field_type_size;
4102 
4103 		switch (info_arr[i].type) {
4104 		case BPF_SPIN_LOCK:
4105 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
4106 			/* Cache offset for faster lookup at runtime */
4107 			rec->spin_lock_off = rec->fields[i].offset;
4108 			break;
4109 		case BPF_RES_SPIN_LOCK:
4110 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
4111 			/* Cache offset for faster lookup at runtime */
4112 			rec->res_spin_lock_off = rec->fields[i].offset;
4113 			break;
4114 		case BPF_TIMER:
4115 			WARN_ON_ONCE(rec->timer_off >= 0);
4116 			/* Cache offset for faster lookup at runtime */
4117 			rec->timer_off = rec->fields[i].offset;
4118 			break;
4119 		case BPF_WORKQUEUE:
4120 			WARN_ON_ONCE(rec->wq_off >= 0);
4121 			/* Cache offset for faster lookup at runtime */
4122 			rec->wq_off = rec->fields[i].offset;
4123 			break;
4124 		case BPF_TASK_WORK:
4125 			WARN_ON_ONCE(rec->task_work_off >= 0);
4126 			rec->task_work_off = rec->fields[i].offset;
4127 			break;
4128 		case BPF_REFCOUNT:
4129 			WARN_ON_ONCE(rec->refcount_off >= 0);
4130 			/* Cache offset for faster lookup at runtime */
4131 			rec->refcount_off = rec->fields[i].offset;
4132 			break;
4133 		case BPF_KPTR_UNREF:
4134 		case BPF_KPTR_REF:
4135 		case BPF_KPTR_PERCPU:
4136 		case BPF_UPTR:
4137 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
4138 			if (ret < 0)
4139 				goto end;
4140 			break;
4141 		case BPF_LIST_HEAD:
4142 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4143 			if (ret < 0)
4144 				goto end;
4145 			break;
4146 		case BPF_RB_ROOT:
4147 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4148 			if (ret < 0)
4149 				goto end;
4150 			break;
4151 		case BPF_LIST_NODE:
4152 		case BPF_RB_NODE:
4153 			break;
4154 		default:
4155 			ret = -EFAULT;
4156 			goto end;
4157 		}
4158 		rec->cnt++;
4159 	}
4160 
4161 	if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) {
4162 		ret = -EINVAL;
4163 		goto end;
4164 	}
4165 
4166 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4167 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4168 	     btf_record_has_field(rec, BPF_RB_ROOT)) &&
4169 		 (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) {
4170 		ret = -EINVAL;
4171 		goto end;
4172 	}
4173 
4174 	if (rec->refcount_off < 0 &&
4175 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4176 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4177 		ret = -EINVAL;
4178 		goto end;
4179 	}
4180 
4181 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4182 	       NULL, rec);
4183 
4184 	return rec;
4185 end:
4186 	btf_record_free(rec);
4187 	return ERR_PTR(ret);
4188 }
4189 
4190 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4191 {
4192 	int i;
4193 
4194 	/* There are three types that signify ownership of some other type:
4195 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4196 	 * kptr_ref only supports storing kernel types, which can't store
4197 	 * references to program allocated local types.
4198 	 *
4199 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4200 	 * does not form cycles.
4201 	 */
4202 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4203 		return 0;
4204 	for (i = 0; i < rec->cnt; i++) {
4205 		struct btf_struct_meta *meta;
4206 		const struct btf_type *t;
4207 		u32 btf_id;
4208 
4209 		if (rec->fields[i].type == BPF_UPTR) {
4210 			/* The uptr only supports pinning one page and cannot
4211 			 * point to a kernel struct
4212 			 */
4213 			if (btf_is_kernel(rec->fields[i].kptr.btf))
4214 				return -EINVAL;
4215 			t = btf_type_by_id(rec->fields[i].kptr.btf,
4216 					   rec->fields[i].kptr.btf_id);
4217 			if (!t->size)
4218 				return -EINVAL;
4219 			if (t->size > PAGE_SIZE)
4220 				return -E2BIG;
4221 			continue;
4222 		}
4223 
4224 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4225 			continue;
4226 		btf_id = rec->fields[i].graph_root.value_btf_id;
4227 		meta = btf_find_struct_meta(btf, btf_id);
4228 		if (!meta)
4229 			return -EFAULT;
4230 		rec->fields[i].graph_root.value_rec = meta->record;
4231 
4232 		/* We need to set value_rec for all root types, but no need
4233 		 * to check ownership cycle for a type unless it's also a
4234 		 * node type.
4235 		 */
4236 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4237 			continue;
4238 
4239 		/* We need to ensure ownership acyclicity among all types. The
4240 		 * proper way to do it would be to topologically sort all BTF
4241 		 * IDs based on the ownership edges, since there can be multiple
4242 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4243 		 * following resaoning:
4244 		 *
4245 		 * - A type can only be owned by another type in user BTF if it
4246 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4247 		 * - A type can only _own_ another type in user BTF if it has a
4248 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4249 		 *
4250 		 * We ensure that if a type is both a root and node, its
4251 		 * element types cannot be root types.
4252 		 *
4253 		 * To ensure acyclicity:
4254 		 *
4255 		 * When A is an root type but not a node, its ownership
4256 		 * chain can be:
4257 		 *	A -> B -> C
4258 		 * Where:
4259 		 * - A is an root, e.g. has bpf_rb_root.
4260 		 * - B is both a root and node, e.g. has bpf_rb_node and
4261 		 *   bpf_list_head.
4262 		 * - C is only an root, e.g. has bpf_list_node
4263 		 *
4264 		 * When A is both a root and node, some other type already
4265 		 * owns it in the BTF domain, hence it can not own
4266 		 * another root type through any of the ownership edges.
4267 		 *	A -> B
4268 		 * Where:
4269 		 * - A is both an root and node.
4270 		 * - B is only an node.
4271 		 */
4272 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4273 			return -ELOOP;
4274 	}
4275 	return 0;
4276 }
4277 
4278 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4279 			      u32 type_id, void *data, u8 bits_offset,
4280 			      struct btf_show *show)
4281 {
4282 	const struct btf_member *member;
4283 	void *safe_data;
4284 	u32 i;
4285 
4286 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4287 	if (!safe_data)
4288 		return;
4289 
4290 	for_each_member(i, t, member) {
4291 		const struct btf_type *member_type = btf_type_by_id(btf,
4292 								member->type);
4293 		const struct btf_kind_operations *ops;
4294 		u32 member_offset, bitfield_size;
4295 		u32 bytes_offset;
4296 		u8 bits8_offset;
4297 
4298 		btf_show_start_member(show, member);
4299 
4300 		member_offset = __btf_member_bit_offset(t, member);
4301 		bitfield_size = __btf_member_bitfield_size(t, member);
4302 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4303 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4304 		if (bitfield_size) {
4305 			safe_data = btf_show_start_type(show, member_type,
4306 							member->type,
4307 							data + bytes_offset);
4308 			if (safe_data)
4309 				btf_bitfield_show(safe_data,
4310 						  bits8_offset,
4311 						  bitfield_size, show);
4312 			btf_show_end_type(show);
4313 		} else {
4314 			ops = btf_type_ops(member_type);
4315 			ops->show(btf, member_type, member->type,
4316 				  data + bytes_offset, bits8_offset, show);
4317 		}
4318 
4319 		btf_show_end_member(show);
4320 	}
4321 
4322 	btf_show_end_struct_type(show);
4323 }
4324 
4325 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4326 			    u32 type_id, void *data, u8 bits_offset,
4327 			    struct btf_show *show)
4328 {
4329 	const struct btf_member *m = show->state.member;
4330 
4331 	/*
4332 	 * First check if any members would be shown (are non-zero).
4333 	 * See comments above "struct btf_show" definition for more
4334 	 * details on how this works at a high-level.
4335 	 */
4336 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4337 		if (!show->state.depth_check) {
4338 			show->state.depth_check = show->state.depth + 1;
4339 			show->state.depth_to_show = 0;
4340 		}
4341 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4342 		/* Restore saved member data here */
4343 		show->state.member = m;
4344 		if (show->state.depth_check != show->state.depth + 1)
4345 			return;
4346 		show->state.depth_check = 0;
4347 
4348 		if (show->state.depth_to_show <= show->state.depth)
4349 			return;
4350 		/*
4351 		 * Reaching here indicates we have recursed and found
4352 		 * non-zero child values.
4353 		 */
4354 	}
4355 
4356 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4357 }
4358 
4359 static const struct btf_kind_operations struct_ops = {
4360 	.check_meta = btf_struct_check_meta,
4361 	.resolve = btf_struct_resolve,
4362 	.check_member = btf_struct_check_member,
4363 	.check_kflag_member = btf_generic_check_kflag_member,
4364 	.log_details = btf_struct_log,
4365 	.show = btf_struct_show,
4366 };
4367 
4368 static int btf_enum_check_member(struct btf_verifier_env *env,
4369 				 const struct btf_type *struct_type,
4370 				 const struct btf_member *member,
4371 				 const struct btf_type *member_type)
4372 {
4373 	u32 struct_bits_off = member->offset;
4374 	u32 struct_size, bytes_offset;
4375 
4376 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4377 		btf_verifier_log_member(env, struct_type, member,
4378 					"Member is not byte aligned");
4379 		return -EINVAL;
4380 	}
4381 
4382 	struct_size = struct_type->size;
4383 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4384 	if (struct_size - bytes_offset < member_type->size) {
4385 		btf_verifier_log_member(env, struct_type, member,
4386 					"Member exceeds struct_size");
4387 		return -EINVAL;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4394 				       const struct btf_type *struct_type,
4395 				       const struct btf_member *member,
4396 				       const struct btf_type *member_type)
4397 {
4398 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4399 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4400 
4401 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4402 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4403 	if (!nr_bits) {
4404 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4405 			btf_verifier_log_member(env, struct_type, member,
4406 						"Member is not byte aligned");
4407 			return -EINVAL;
4408 		}
4409 
4410 		nr_bits = int_bitsize;
4411 	} else if (nr_bits > int_bitsize) {
4412 		btf_verifier_log_member(env, struct_type, member,
4413 					"Invalid member bitfield_size");
4414 		return -EINVAL;
4415 	}
4416 
4417 	struct_size = struct_type->size;
4418 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4419 	if (struct_size < bytes_end) {
4420 		btf_verifier_log_member(env, struct_type, member,
4421 					"Member exceeds struct_size");
4422 		return -EINVAL;
4423 	}
4424 
4425 	return 0;
4426 }
4427 
4428 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4429 			       const struct btf_type *t,
4430 			       u32 meta_left)
4431 {
4432 	const struct btf_enum *enums = btf_type_enum(t);
4433 	struct btf *btf = env->btf;
4434 	const char *fmt_str;
4435 	u16 i, nr_enums;
4436 	u32 meta_needed;
4437 
4438 	nr_enums = btf_type_vlen(t);
4439 	meta_needed = nr_enums * sizeof(*enums);
4440 
4441 	if (meta_left < meta_needed) {
4442 		btf_verifier_log_basic(env, t,
4443 				       "meta_left:%u meta_needed:%u",
4444 				       meta_left, meta_needed);
4445 		return -EINVAL;
4446 	}
4447 
4448 	if (t->size > 8 || !is_power_of_2(t->size)) {
4449 		btf_verifier_log_type(env, t, "Unexpected size");
4450 		return -EINVAL;
4451 	}
4452 
4453 	/* enum type either no name or a valid one */
4454 	if (t->name_off &&
4455 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4456 		btf_verifier_log_type(env, t, "Invalid name");
4457 		return -EINVAL;
4458 	}
4459 
4460 	btf_verifier_log_type(env, t, NULL);
4461 
4462 	for (i = 0; i < nr_enums; i++) {
4463 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4464 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4465 					 enums[i].name_off);
4466 			return -EINVAL;
4467 		}
4468 
4469 		/* enum member must have a valid name */
4470 		if (!enums[i].name_off ||
4471 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4472 			btf_verifier_log_type(env, t, "Invalid name");
4473 			return -EINVAL;
4474 		}
4475 
4476 		if (env->log.level == BPF_LOG_KERNEL)
4477 			continue;
4478 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4479 		btf_verifier_log(env, fmt_str,
4480 				 __btf_name_by_offset(btf, enums[i].name_off),
4481 				 enums[i].val);
4482 	}
4483 
4484 	return meta_needed;
4485 }
4486 
4487 static void btf_enum_log(struct btf_verifier_env *env,
4488 			 const struct btf_type *t)
4489 {
4490 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4491 }
4492 
4493 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4494 			  u32 type_id, void *data, u8 bits_offset,
4495 			  struct btf_show *show)
4496 {
4497 	const struct btf_enum *enums = btf_type_enum(t);
4498 	u32 i, nr_enums = btf_type_vlen(t);
4499 	void *safe_data;
4500 	int v;
4501 
4502 	safe_data = btf_show_start_type(show, t, type_id, data);
4503 	if (!safe_data)
4504 		return;
4505 
4506 	v = *(int *)safe_data;
4507 
4508 	for (i = 0; i < nr_enums; i++) {
4509 		if (v != enums[i].val)
4510 			continue;
4511 
4512 		btf_show_type_value(show, "%s",
4513 				    __btf_name_by_offset(btf,
4514 							 enums[i].name_off));
4515 
4516 		btf_show_end_type(show);
4517 		return;
4518 	}
4519 
4520 	if (btf_type_kflag(t))
4521 		btf_show_type_value(show, "%d", v);
4522 	else
4523 		btf_show_type_value(show, "%u", v);
4524 	btf_show_end_type(show);
4525 }
4526 
4527 static const struct btf_kind_operations enum_ops = {
4528 	.check_meta = btf_enum_check_meta,
4529 	.resolve = btf_df_resolve,
4530 	.check_member = btf_enum_check_member,
4531 	.check_kflag_member = btf_enum_check_kflag_member,
4532 	.log_details = btf_enum_log,
4533 	.show = btf_enum_show,
4534 };
4535 
4536 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4537 				 const struct btf_type *t,
4538 				 u32 meta_left)
4539 {
4540 	const struct btf_enum64 *enums = btf_type_enum64(t);
4541 	struct btf *btf = env->btf;
4542 	const char *fmt_str;
4543 	u16 i, nr_enums;
4544 	u32 meta_needed;
4545 
4546 	nr_enums = btf_type_vlen(t);
4547 	meta_needed = nr_enums * sizeof(*enums);
4548 
4549 	if (meta_left < meta_needed) {
4550 		btf_verifier_log_basic(env, t,
4551 				       "meta_left:%u meta_needed:%u",
4552 				       meta_left, meta_needed);
4553 		return -EINVAL;
4554 	}
4555 
4556 	if (t->size > 8 || !is_power_of_2(t->size)) {
4557 		btf_verifier_log_type(env, t, "Unexpected size");
4558 		return -EINVAL;
4559 	}
4560 
4561 	/* enum type either no name or a valid one */
4562 	if (t->name_off &&
4563 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4564 		btf_verifier_log_type(env, t, "Invalid name");
4565 		return -EINVAL;
4566 	}
4567 
4568 	btf_verifier_log_type(env, t, NULL);
4569 
4570 	for (i = 0; i < nr_enums; i++) {
4571 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4572 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4573 					 enums[i].name_off);
4574 			return -EINVAL;
4575 		}
4576 
4577 		/* enum member must have a valid name */
4578 		if (!enums[i].name_off ||
4579 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4580 			btf_verifier_log_type(env, t, "Invalid name");
4581 			return -EINVAL;
4582 		}
4583 
4584 		if (env->log.level == BPF_LOG_KERNEL)
4585 			continue;
4586 
4587 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4588 		btf_verifier_log(env, fmt_str,
4589 				 __btf_name_by_offset(btf, enums[i].name_off),
4590 				 btf_enum64_value(enums + i));
4591 	}
4592 
4593 	return meta_needed;
4594 }
4595 
4596 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4597 			    u32 type_id, void *data, u8 bits_offset,
4598 			    struct btf_show *show)
4599 {
4600 	const struct btf_enum64 *enums = btf_type_enum64(t);
4601 	u32 i, nr_enums = btf_type_vlen(t);
4602 	void *safe_data;
4603 	s64 v;
4604 
4605 	safe_data = btf_show_start_type(show, t, type_id, data);
4606 	if (!safe_data)
4607 		return;
4608 
4609 	v = *(u64 *)safe_data;
4610 
4611 	for (i = 0; i < nr_enums; i++) {
4612 		if (v != btf_enum64_value(enums + i))
4613 			continue;
4614 
4615 		btf_show_type_value(show, "%s",
4616 				    __btf_name_by_offset(btf,
4617 							 enums[i].name_off));
4618 
4619 		btf_show_end_type(show);
4620 		return;
4621 	}
4622 
4623 	if (btf_type_kflag(t))
4624 		btf_show_type_value(show, "%lld", v);
4625 	else
4626 		btf_show_type_value(show, "%llu", v);
4627 	btf_show_end_type(show);
4628 }
4629 
4630 static const struct btf_kind_operations enum64_ops = {
4631 	.check_meta = btf_enum64_check_meta,
4632 	.resolve = btf_df_resolve,
4633 	.check_member = btf_enum_check_member,
4634 	.check_kflag_member = btf_enum_check_kflag_member,
4635 	.log_details = btf_enum_log,
4636 	.show = btf_enum64_show,
4637 };
4638 
4639 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4640 				     const struct btf_type *t,
4641 				     u32 meta_left)
4642 {
4643 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4644 
4645 	if (meta_left < meta_needed) {
4646 		btf_verifier_log_basic(env, t,
4647 				       "meta_left:%u meta_needed:%u",
4648 				       meta_left, meta_needed);
4649 		return -EINVAL;
4650 	}
4651 
4652 	if (t->name_off) {
4653 		btf_verifier_log_type(env, t, "Invalid name");
4654 		return -EINVAL;
4655 	}
4656 
4657 	if (btf_type_kflag(t)) {
4658 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4659 		return -EINVAL;
4660 	}
4661 
4662 	btf_verifier_log_type(env, t, NULL);
4663 
4664 	return meta_needed;
4665 }
4666 
4667 static void btf_func_proto_log(struct btf_verifier_env *env,
4668 			       const struct btf_type *t)
4669 {
4670 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4671 	u16 nr_args = btf_type_vlen(t), i;
4672 
4673 	btf_verifier_log(env, "return=%u args=(", t->type);
4674 	if (!nr_args) {
4675 		btf_verifier_log(env, "void");
4676 		goto done;
4677 	}
4678 
4679 	if (nr_args == 1 && !args[0].type) {
4680 		/* Only one vararg */
4681 		btf_verifier_log(env, "vararg");
4682 		goto done;
4683 	}
4684 
4685 	btf_verifier_log(env, "%u %s", args[0].type,
4686 			 __btf_name_by_offset(env->btf,
4687 					      args[0].name_off));
4688 	for (i = 1; i < nr_args - 1; i++)
4689 		btf_verifier_log(env, ", %u %s", args[i].type,
4690 				 __btf_name_by_offset(env->btf,
4691 						      args[i].name_off));
4692 
4693 	if (nr_args > 1) {
4694 		const struct btf_param *last_arg = &args[nr_args - 1];
4695 
4696 		if (last_arg->type)
4697 			btf_verifier_log(env, ", %u %s", last_arg->type,
4698 					 __btf_name_by_offset(env->btf,
4699 							      last_arg->name_off));
4700 		else
4701 			btf_verifier_log(env, ", vararg");
4702 	}
4703 
4704 done:
4705 	btf_verifier_log(env, ")");
4706 }
4707 
4708 static const struct btf_kind_operations func_proto_ops = {
4709 	.check_meta = btf_func_proto_check_meta,
4710 	.resolve = btf_df_resolve,
4711 	/*
4712 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4713 	 * a struct's member.
4714 	 *
4715 	 * It should be a function pointer instead.
4716 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4717 	 *
4718 	 * Hence, there is no btf_func_check_member().
4719 	 */
4720 	.check_member = btf_df_check_member,
4721 	.check_kflag_member = btf_df_check_kflag_member,
4722 	.log_details = btf_func_proto_log,
4723 	.show = btf_df_show,
4724 };
4725 
4726 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4727 			       const struct btf_type *t,
4728 			       u32 meta_left)
4729 {
4730 	if (!t->name_off ||
4731 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4732 		btf_verifier_log_type(env, t, "Invalid name");
4733 		return -EINVAL;
4734 	}
4735 
4736 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4737 		btf_verifier_log_type(env, t, "Invalid func linkage");
4738 		return -EINVAL;
4739 	}
4740 
4741 	if (btf_type_kflag(t)) {
4742 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4743 		return -EINVAL;
4744 	}
4745 
4746 	btf_verifier_log_type(env, t, NULL);
4747 
4748 	return 0;
4749 }
4750 
4751 static int btf_func_resolve(struct btf_verifier_env *env,
4752 			    const struct resolve_vertex *v)
4753 {
4754 	const struct btf_type *t = v->t;
4755 	u32 next_type_id = t->type;
4756 	int err;
4757 
4758 	err = btf_func_check(env, t);
4759 	if (err)
4760 		return err;
4761 
4762 	env_stack_pop_resolved(env, next_type_id, 0);
4763 	return 0;
4764 }
4765 
4766 static const struct btf_kind_operations func_ops = {
4767 	.check_meta = btf_func_check_meta,
4768 	.resolve = btf_func_resolve,
4769 	.check_member = btf_df_check_member,
4770 	.check_kflag_member = btf_df_check_kflag_member,
4771 	.log_details = btf_ref_type_log,
4772 	.show = btf_df_show,
4773 };
4774 
4775 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4776 			      const struct btf_type *t,
4777 			      u32 meta_left)
4778 {
4779 	const struct btf_var *var;
4780 	u32 meta_needed = sizeof(*var);
4781 
4782 	if (meta_left < meta_needed) {
4783 		btf_verifier_log_basic(env, t,
4784 				       "meta_left:%u meta_needed:%u",
4785 				       meta_left, meta_needed);
4786 		return -EINVAL;
4787 	}
4788 
4789 	if (btf_type_vlen(t)) {
4790 		btf_verifier_log_type(env, t, "vlen != 0");
4791 		return -EINVAL;
4792 	}
4793 
4794 	if (btf_type_kflag(t)) {
4795 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4796 		return -EINVAL;
4797 	}
4798 
4799 	if (!t->name_off ||
4800 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4801 		btf_verifier_log_type(env, t, "Invalid name");
4802 		return -EINVAL;
4803 	}
4804 
4805 	/* A var cannot be in type void */
4806 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4807 		btf_verifier_log_type(env, t, "Invalid type_id");
4808 		return -EINVAL;
4809 	}
4810 
4811 	var = btf_type_var(t);
4812 	if (var->linkage != BTF_VAR_STATIC &&
4813 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4814 		btf_verifier_log_type(env, t, "Linkage not supported");
4815 		return -EINVAL;
4816 	}
4817 
4818 	btf_verifier_log_type(env, t, NULL);
4819 
4820 	return meta_needed;
4821 }
4822 
4823 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4824 {
4825 	const struct btf_var *var = btf_type_var(t);
4826 
4827 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4828 }
4829 
4830 static const struct btf_kind_operations var_ops = {
4831 	.check_meta		= btf_var_check_meta,
4832 	.resolve		= btf_var_resolve,
4833 	.check_member		= btf_df_check_member,
4834 	.check_kflag_member	= btf_df_check_kflag_member,
4835 	.log_details		= btf_var_log,
4836 	.show			= btf_var_show,
4837 };
4838 
4839 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4840 				  const struct btf_type *t,
4841 				  u32 meta_left)
4842 {
4843 	const struct btf_var_secinfo *vsi;
4844 	u64 last_vsi_end_off = 0, sum = 0;
4845 	u32 i, meta_needed;
4846 
4847 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4848 	if (meta_left < meta_needed) {
4849 		btf_verifier_log_basic(env, t,
4850 				       "meta_left:%u meta_needed:%u",
4851 				       meta_left, meta_needed);
4852 		return -EINVAL;
4853 	}
4854 
4855 	if (!t->size) {
4856 		btf_verifier_log_type(env, t, "size == 0");
4857 		return -EINVAL;
4858 	}
4859 
4860 	if (btf_type_kflag(t)) {
4861 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4862 		return -EINVAL;
4863 	}
4864 
4865 	if (!t->name_off ||
4866 	    !btf_name_valid_section(env->btf, t->name_off)) {
4867 		btf_verifier_log_type(env, t, "Invalid name");
4868 		return -EINVAL;
4869 	}
4870 
4871 	btf_verifier_log_type(env, t, NULL);
4872 
4873 	for_each_vsi(i, t, vsi) {
4874 		/* A var cannot be in type void */
4875 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4876 			btf_verifier_log_vsi(env, t, vsi,
4877 					     "Invalid type_id");
4878 			return -EINVAL;
4879 		}
4880 
4881 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4882 			btf_verifier_log_vsi(env, t, vsi,
4883 					     "Invalid offset");
4884 			return -EINVAL;
4885 		}
4886 
4887 		if (!vsi->size || vsi->size > t->size) {
4888 			btf_verifier_log_vsi(env, t, vsi,
4889 					     "Invalid size");
4890 			return -EINVAL;
4891 		}
4892 
4893 		last_vsi_end_off = vsi->offset + vsi->size;
4894 		if (last_vsi_end_off > t->size) {
4895 			btf_verifier_log_vsi(env, t, vsi,
4896 					     "Invalid offset+size");
4897 			return -EINVAL;
4898 		}
4899 
4900 		btf_verifier_log_vsi(env, t, vsi, NULL);
4901 		sum += vsi->size;
4902 	}
4903 
4904 	if (t->size < sum) {
4905 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4906 		return -EINVAL;
4907 	}
4908 
4909 	return meta_needed;
4910 }
4911 
4912 static int btf_datasec_resolve(struct btf_verifier_env *env,
4913 			       const struct resolve_vertex *v)
4914 {
4915 	const struct btf_var_secinfo *vsi;
4916 	struct btf *btf = env->btf;
4917 	u16 i;
4918 
4919 	env->resolve_mode = RESOLVE_TBD;
4920 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4921 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4922 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4923 								 var_type_id);
4924 		if (!var_type || !btf_type_is_var(var_type)) {
4925 			btf_verifier_log_vsi(env, v->t, vsi,
4926 					     "Not a VAR kind member");
4927 			return -EINVAL;
4928 		}
4929 
4930 		if (!env_type_is_resolve_sink(env, var_type) &&
4931 		    !env_type_is_resolved(env, var_type_id)) {
4932 			env_stack_set_next_member(env, i + 1);
4933 			return env_stack_push(env, var_type, var_type_id);
4934 		}
4935 
4936 		type_id = var_type->type;
4937 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4938 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4939 			return -EINVAL;
4940 		}
4941 
4942 		if (vsi->size < type_size) {
4943 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4944 			return -EINVAL;
4945 		}
4946 	}
4947 
4948 	env_stack_pop_resolved(env, 0, 0);
4949 	return 0;
4950 }
4951 
4952 static void btf_datasec_log(struct btf_verifier_env *env,
4953 			    const struct btf_type *t)
4954 {
4955 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4956 }
4957 
4958 static void btf_datasec_show(const struct btf *btf,
4959 			     const struct btf_type *t, u32 type_id,
4960 			     void *data, u8 bits_offset,
4961 			     struct btf_show *show)
4962 {
4963 	const struct btf_var_secinfo *vsi;
4964 	const struct btf_type *var;
4965 	u32 i;
4966 
4967 	if (!btf_show_start_type(show, t, type_id, data))
4968 		return;
4969 
4970 	btf_show_type_value(show, "section (\"%s\") = {",
4971 			    __btf_name_by_offset(btf, t->name_off));
4972 	for_each_vsi(i, t, vsi) {
4973 		var = btf_type_by_id(btf, vsi->type);
4974 		if (i)
4975 			btf_show(show, ",");
4976 		btf_type_ops(var)->show(btf, var, vsi->type,
4977 					data + vsi->offset, bits_offset, show);
4978 	}
4979 	btf_show_end_type(show);
4980 }
4981 
4982 static const struct btf_kind_operations datasec_ops = {
4983 	.check_meta		= btf_datasec_check_meta,
4984 	.resolve		= btf_datasec_resolve,
4985 	.check_member		= btf_df_check_member,
4986 	.check_kflag_member	= btf_df_check_kflag_member,
4987 	.log_details		= btf_datasec_log,
4988 	.show			= btf_datasec_show,
4989 };
4990 
4991 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4992 				const struct btf_type *t,
4993 				u32 meta_left)
4994 {
4995 	if (btf_type_vlen(t)) {
4996 		btf_verifier_log_type(env, t, "vlen != 0");
4997 		return -EINVAL;
4998 	}
4999 
5000 	if (btf_type_kflag(t)) {
5001 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
5002 		return -EINVAL;
5003 	}
5004 
5005 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
5006 	    t->size != 16) {
5007 		btf_verifier_log_type(env, t, "Invalid type_size");
5008 		return -EINVAL;
5009 	}
5010 
5011 	btf_verifier_log_type(env, t, NULL);
5012 
5013 	return 0;
5014 }
5015 
5016 static int btf_float_check_member(struct btf_verifier_env *env,
5017 				  const struct btf_type *struct_type,
5018 				  const struct btf_member *member,
5019 				  const struct btf_type *member_type)
5020 {
5021 	u64 start_offset_bytes;
5022 	u64 end_offset_bytes;
5023 	u64 misalign_bits;
5024 	u64 align_bytes;
5025 	u64 align_bits;
5026 
5027 	/* Different architectures have different alignment requirements, so
5028 	 * here we check only for the reasonable minimum. This way we ensure
5029 	 * that types after CO-RE can pass the kernel BTF verifier.
5030 	 */
5031 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
5032 	align_bits = align_bytes * BITS_PER_BYTE;
5033 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
5034 	if (misalign_bits) {
5035 		btf_verifier_log_member(env, struct_type, member,
5036 					"Member is not properly aligned");
5037 		return -EINVAL;
5038 	}
5039 
5040 	start_offset_bytes = member->offset / BITS_PER_BYTE;
5041 	end_offset_bytes = start_offset_bytes + member_type->size;
5042 	if (end_offset_bytes > struct_type->size) {
5043 		btf_verifier_log_member(env, struct_type, member,
5044 					"Member exceeds struct_size");
5045 		return -EINVAL;
5046 	}
5047 
5048 	return 0;
5049 }
5050 
5051 static void btf_float_log(struct btf_verifier_env *env,
5052 			  const struct btf_type *t)
5053 {
5054 	btf_verifier_log(env, "size=%u", t->size);
5055 }
5056 
5057 static const struct btf_kind_operations float_ops = {
5058 	.check_meta = btf_float_check_meta,
5059 	.resolve = btf_df_resolve,
5060 	.check_member = btf_float_check_member,
5061 	.check_kflag_member = btf_generic_check_kflag_member,
5062 	.log_details = btf_float_log,
5063 	.show = btf_df_show,
5064 };
5065 
5066 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
5067 			      const struct btf_type *t,
5068 			      u32 meta_left)
5069 {
5070 	const struct btf_decl_tag *tag;
5071 	u32 meta_needed = sizeof(*tag);
5072 	s32 component_idx;
5073 	const char *value;
5074 
5075 	if (meta_left < meta_needed) {
5076 		btf_verifier_log_basic(env, t,
5077 				       "meta_left:%u meta_needed:%u",
5078 				       meta_left, meta_needed);
5079 		return -EINVAL;
5080 	}
5081 
5082 	value = btf_name_by_offset(env->btf, t->name_off);
5083 	if (!value || !value[0]) {
5084 		btf_verifier_log_type(env, t, "Invalid value");
5085 		return -EINVAL;
5086 	}
5087 
5088 	if (btf_type_vlen(t)) {
5089 		btf_verifier_log_type(env, t, "vlen != 0");
5090 		return -EINVAL;
5091 	}
5092 
5093 	component_idx = btf_type_decl_tag(t)->component_idx;
5094 	if (component_idx < -1) {
5095 		btf_verifier_log_type(env, t, "Invalid component_idx");
5096 		return -EINVAL;
5097 	}
5098 
5099 	btf_verifier_log_type(env, t, NULL);
5100 
5101 	return meta_needed;
5102 }
5103 
5104 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
5105 			   const struct resolve_vertex *v)
5106 {
5107 	const struct btf_type *next_type;
5108 	const struct btf_type *t = v->t;
5109 	u32 next_type_id = t->type;
5110 	struct btf *btf = env->btf;
5111 	s32 component_idx;
5112 	u32 vlen;
5113 
5114 	next_type = btf_type_by_id(btf, next_type_id);
5115 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
5116 		btf_verifier_log_type(env, v->t, "Invalid type_id");
5117 		return -EINVAL;
5118 	}
5119 
5120 	if (!env_type_is_resolve_sink(env, next_type) &&
5121 	    !env_type_is_resolved(env, next_type_id))
5122 		return env_stack_push(env, next_type, next_type_id);
5123 
5124 	component_idx = btf_type_decl_tag(t)->component_idx;
5125 	if (component_idx != -1) {
5126 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
5127 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
5128 			return -EINVAL;
5129 		}
5130 
5131 		if (btf_type_is_struct(next_type)) {
5132 			vlen = btf_type_vlen(next_type);
5133 		} else {
5134 			/* next_type should be a function */
5135 			next_type = btf_type_by_id(btf, next_type->type);
5136 			vlen = btf_type_vlen(next_type);
5137 		}
5138 
5139 		if ((u32)component_idx >= vlen) {
5140 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
5141 			return -EINVAL;
5142 		}
5143 	}
5144 
5145 	env_stack_pop_resolved(env, next_type_id, 0);
5146 
5147 	return 0;
5148 }
5149 
5150 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5151 {
5152 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5153 			 btf_type_decl_tag(t)->component_idx);
5154 }
5155 
5156 static const struct btf_kind_operations decl_tag_ops = {
5157 	.check_meta = btf_decl_tag_check_meta,
5158 	.resolve = btf_decl_tag_resolve,
5159 	.check_member = btf_df_check_member,
5160 	.check_kflag_member = btf_df_check_kflag_member,
5161 	.log_details = btf_decl_tag_log,
5162 	.show = btf_df_show,
5163 };
5164 
5165 static int btf_func_proto_check(struct btf_verifier_env *env,
5166 				const struct btf_type *t)
5167 {
5168 	const struct btf_type *ret_type;
5169 	const struct btf_param *args;
5170 	const struct btf *btf;
5171 	u16 nr_args, i;
5172 	int err;
5173 
5174 	btf = env->btf;
5175 	args = (const struct btf_param *)(t + 1);
5176 	nr_args = btf_type_vlen(t);
5177 
5178 	/* Check func return type which could be "void" (t->type == 0) */
5179 	if (t->type) {
5180 		u32 ret_type_id = t->type;
5181 
5182 		ret_type = btf_type_by_id(btf, ret_type_id);
5183 		if (!ret_type) {
5184 			btf_verifier_log_type(env, t, "Invalid return type");
5185 			return -EINVAL;
5186 		}
5187 
5188 		if (btf_type_is_resolve_source_only(ret_type)) {
5189 			btf_verifier_log_type(env, t, "Invalid return type");
5190 			return -EINVAL;
5191 		}
5192 
5193 		if (btf_type_needs_resolve(ret_type) &&
5194 		    !env_type_is_resolved(env, ret_type_id)) {
5195 			err = btf_resolve(env, ret_type, ret_type_id);
5196 			if (err)
5197 				return err;
5198 		}
5199 
5200 		/* Ensure the return type is a type that has a size */
5201 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5202 			btf_verifier_log_type(env, t, "Invalid return type");
5203 			return -EINVAL;
5204 		}
5205 	}
5206 
5207 	if (!nr_args)
5208 		return 0;
5209 
5210 	/* Last func arg type_id could be 0 if it is a vararg */
5211 	if (!args[nr_args - 1].type) {
5212 		if (args[nr_args - 1].name_off) {
5213 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5214 					      nr_args);
5215 			return -EINVAL;
5216 		}
5217 		nr_args--;
5218 	}
5219 
5220 	for (i = 0; i < nr_args; i++) {
5221 		const struct btf_type *arg_type;
5222 		u32 arg_type_id;
5223 
5224 		arg_type_id = args[i].type;
5225 		arg_type = btf_type_by_id(btf, arg_type_id);
5226 		if (!arg_type) {
5227 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5228 			return -EINVAL;
5229 		}
5230 
5231 		if (btf_type_is_resolve_source_only(arg_type)) {
5232 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5233 			return -EINVAL;
5234 		}
5235 
5236 		if (args[i].name_off &&
5237 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5238 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5239 			btf_verifier_log_type(env, t,
5240 					      "Invalid arg#%u", i + 1);
5241 			return -EINVAL;
5242 		}
5243 
5244 		if (btf_type_needs_resolve(arg_type) &&
5245 		    !env_type_is_resolved(env, arg_type_id)) {
5246 			err = btf_resolve(env, arg_type, arg_type_id);
5247 			if (err)
5248 				return err;
5249 		}
5250 
5251 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5252 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5253 			return -EINVAL;
5254 		}
5255 	}
5256 
5257 	return 0;
5258 }
5259 
5260 static int btf_func_check(struct btf_verifier_env *env,
5261 			  const struct btf_type *t)
5262 {
5263 	const struct btf_type *proto_type;
5264 	const struct btf_param *args;
5265 	const struct btf *btf;
5266 	u16 nr_args, i;
5267 
5268 	btf = env->btf;
5269 	proto_type = btf_type_by_id(btf, t->type);
5270 
5271 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5272 		btf_verifier_log_type(env, t, "Invalid type_id");
5273 		return -EINVAL;
5274 	}
5275 
5276 	args = (const struct btf_param *)(proto_type + 1);
5277 	nr_args = btf_type_vlen(proto_type);
5278 	for (i = 0; i < nr_args; i++) {
5279 		if (!args[i].name_off && args[i].type) {
5280 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5281 			return -EINVAL;
5282 		}
5283 	}
5284 
5285 	return 0;
5286 }
5287 
5288 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5289 	[BTF_KIND_INT] = &int_ops,
5290 	[BTF_KIND_PTR] = &ptr_ops,
5291 	[BTF_KIND_ARRAY] = &array_ops,
5292 	[BTF_KIND_STRUCT] = &struct_ops,
5293 	[BTF_KIND_UNION] = &struct_ops,
5294 	[BTF_KIND_ENUM] = &enum_ops,
5295 	[BTF_KIND_FWD] = &fwd_ops,
5296 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5297 	[BTF_KIND_VOLATILE] = &modifier_ops,
5298 	[BTF_KIND_CONST] = &modifier_ops,
5299 	[BTF_KIND_RESTRICT] = &modifier_ops,
5300 	[BTF_KIND_FUNC] = &func_ops,
5301 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5302 	[BTF_KIND_VAR] = &var_ops,
5303 	[BTF_KIND_DATASEC] = &datasec_ops,
5304 	[BTF_KIND_FLOAT] = &float_ops,
5305 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5306 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5307 	[BTF_KIND_ENUM64] = &enum64_ops,
5308 };
5309 
5310 static s32 btf_check_meta(struct btf_verifier_env *env,
5311 			  const struct btf_type *t,
5312 			  u32 meta_left)
5313 {
5314 	u32 saved_meta_left = meta_left;
5315 	s32 var_meta_size;
5316 
5317 	if (meta_left < sizeof(*t)) {
5318 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5319 				 env->log_type_id, meta_left, sizeof(*t));
5320 		return -EINVAL;
5321 	}
5322 	meta_left -= sizeof(*t);
5323 
5324 	if (t->info & ~BTF_INFO_MASK) {
5325 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5326 				 env->log_type_id, t->info);
5327 		return -EINVAL;
5328 	}
5329 
5330 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5331 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5332 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5333 				 env->log_type_id, BTF_INFO_KIND(t->info));
5334 		return -EINVAL;
5335 	}
5336 
5337 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5338 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5339 				 env->log_type_id, t->name_off);
5340 		return -EINVAL;
5341 	}
5342 
5343 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5344 	if (var_meta_size < 0)
5345 		return var_meta_size;
5346 
5347 	meta_left -= var_meta_size;
5348 
5349 	return saved_meta_left - meta_left;
5350 }
5351 
5352 static int btf_check_all_metas(struct btf_verifier_env *env)
5353 {
5354 	struct btf *btf = env->btf;
5355 	struct btf_header *hdr;
5356 	void *cur, *end;
5357 
5358 	hdr = &btf->hdr;
5359 	cur = btf->nohdr_data + hdr->type_off;
5360 	end = cur + hdr->type_len;
5361 
5362 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5363 	while (cur < end) {
5364 		struct btf_type *t = cur;
5365 		s32 meta_size;
5366 
5367 		meta_size = btf_check_meta(env, t, end - cur);
5368 		if (meta_size < 0)
5369 			return meta_size;
5370 
5371 		btf_add_type(env, t);
5372 		cur += meta_size;
5373 		env->log_type_id++;
5374 	}
5375 
5376 	return 0;
5377 }
5378 
5379 static bool btf_resolve_valid(struct btf_verifier_env *env,
5380 			      const struct btf_type *t,
5381 			      u32 type_id)
5382 {
5383 	struct btf *btf = env->btf;
5384 
5385 	if (!env_type_is_resolved(env, type_id))
5386 		return false;
5387 
5388 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5389 		return !btf_resolved_type_id(btf, type_id) &&
5390 		       !btf_resolved_type_size(btf, type_id);
5391 
5392 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5393 		return btf_resolved_type_id(btf, type_id) &&
5394 		       !btf_resolved_type_size(btf, type_id);
5395 
5396 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5397 	    btf_type_is_var(t)) {
5398 		t = btf_type_id_resolve(btf, &type_id);
5399 		return t &&
5400 		       !btf_type_is_modifier(t) &&
5401 		       !btf_type_is_var(t) &&
5402 		       !btf_type_is_datasec(t);
5403 	}
5404 
5405 	if (btf_type_is_array(t)) {
5406 		const struct btf_array *array = btf_type_array(t);
5407 		const struct btf_type *elem_type;
5408 		u32 elem_type_id = array->type;
5409 		u32 elem_size;
5410 
5411 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5412 		return elem_type && !btf_type_is_modifier(elem_type) &&
5413 			(array->nelems * elem_size ==
5414 			 btf_resolved_type_size(btf, type_id));
5415 	}
5416 
5417 	return false;
5418 }
5419 
5420 static int btf_resolve(struct btf_verifier_env *env,
5421 		       const struct btf_type *t, u32 type_id)
5422 {
5423 	u32 save_log_type_id = env->log_type_id;
5424 	const struct resolve_vertex *v;
5425 	int err = 0;
5426 
5427 	env->resolve_mode = RESOLVE_TBD;
5428 	env_stack_push(env, t, type_id);
5429 	while (!err && (v = env_stack_peak(env))) {
5430 		env->log_type_id = v->type_id;
5431 		err = btf_type_ops(v->t)->resolve(env, v);
5432 	}
5433 
5434 	env->log_type_id = type_id;
5435 	if (err == -E2BIG) {
5436 		btf_verifier_log_type(env, t,
5437 				      "Exceeded max resolving depth:%u",
5438 				      MAX_RESOLVE_DEPTH);
5439 	} else if (err == -EEXIST) {
5440 		btf_verifier_log_type(env, t, "Loop detected");
5441 	}
5442 
5443 	/* Final sanity check */
5444 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5445 		btf_verifier_log_type(env, t, "Invalid resolve state");
5446 		err = -EINVAL;
5447 	}
5448 
5449 	env->log_type_id = save_log_type_id;
5450 	return err;
5451 }
5452 
5453 static int btf_check_all_types(struct btf_verifier_env *env)
5454 {
5455 	struct btf *btf = env->btf;
5456 	const struct btf_type *t;
5457 	u32 type_id, i;
5458 	int err;
5459 
5460 	err = env_resolve_init(env);
5461 	if (err)
5462 		return err;
5463 
5464 	env->phase++;
5465 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5466 		type_id = btf->start_id + i;
5467 		t = btf_type_by_id(btf, type_id);
5468 
5469 		env->log_type_id = type_id;
5470 		if (btf_type_needs_resolve(t) &&
5471 		    !env_type_is_resolved(env, type_id)) {
5472 			err = btf_resolve(env, t, type_id);
5473 			if (err)
5474 				return err;
5475 		}
5476 
5477 		if (btf_type_is_func_proto(t)) {
5478 			err = btf_func_proto_check(env, t);
5479 			if (err)
5480 				return err;
5481 		}
5482 	}
5483 
5484 	return 0;
5485 }
5486 
5487 static int btf_parse_type_sec(struct btf_verifier_env *env)
5488 {
5489 	const struct btf_header *hdr = &env->btf->hdr;
5490 	int err;
5491 
5492 	/* Type section must align to 4 bytes */
5493 	if (hdr->type_off & (sizeof(u32) - 1)) {
5494 		btf_verifier_log(env, "Unaligned type_off");
5495 		return -EINVAL;
5496 	}
5497 
5498 	if (!env->btf->base_btf && !hdr->type_len) {
5499 		btf_verifier_log(env, "No type found");
5500 		return -EINVAL;
5501 	}
5502 
5503 	err = btf_check_all_metas(env);
5504 	if (err)
5505 		return err;
5506 
5507 	return btf_check_all_types(env);
5508 }
5509 
5510 static int btf_parse_str_sec(struct btf_verifier_env *env)
5511 {
5512 	const struct btf_header *hdr;
5513 	struct btf *btf = env->btf;
5514 	const char *start, *end;
5515 
5516 	hdr = &btf->hdr;
5517 	start = btf->nohdr_data + hdr->str_off;
5518 	end = start + hdr->str_len;
5519 
5520 	if (end != btf->data + btf->data_size) {
5521 		btf_verifier_log(env, "String section is not at the end");
5522 		return -EINVAL;
5523 	}
5524 
5525 	btf->strings = start;
5526 
5527 	if (btf->base_btf && !hdr->str_len)
5528 		return 0;
5529 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5530 		btf_verifier_log(env, "Invalid string section");
5531 		return -EINVAL;
5532 	}
5533 	if (!btf->base_btf && start[0]) {
5534 		btf_verifier_log(env, "Invalid string section");
5535 		return -EINVAL;
5536 	}
5537 
5538 	return 0;
5539 }
5540 
5541 static const size_t btf_sec_info_offset[] = {
5542 	offsetof(struct btf_header, type_off),
5543 	offsetof(struct btf_header, str_off),
5544 };
5545 
5546 static int btf_sec_info_cmp(const void *a, const void *b)
5547 {
5548 	const struct btf_sec_info *x = a;
5549 	const struct btf_sec_info *y = b;
5550 
5551 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5552 }
5553 
5554 static int btf_check_sec_info(struct btf_verifier_env *env,
5555 			      u32 btf_data_size)
5556 {
5557 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5558 	u32 total, expected_total, i;
5559 	const struct btf_header *hdr;
5560 	const struct btf *btf;
5561 
5562 	btf = env->btf;
5563 	hdr = &btf->hdr;
5564 
5565 	/* Populate the secs from hdr */
5566 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5567 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5568 						   btf_sec_info_offset[i]);
5569 
5570 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5571 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5572 
5573 	/* Check for gaps and overlap among sections */
5574 	total = 0;
5575 	expected_total = btf_data_size - hdr->hdr_len;
5576 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5577 		if (expected_total < secs[i].off) {
5578 			btf_verifier_log(env, "Invalid section offset");
5579 			return -EINVAL;
5580 		}
5581 		if (total < secs[i].off) {
5582 			/* gap */
5583 			btf_verifier_log(env, "Unsupported section found");
5584 			return -EINVAL;
5585 		}
5586 		if (total > secs[i].off) {
5587 			btf_verifier_log(env, "Section overlap found");
5588 			return -EINVAL;
5589 		}
5590 		if (expected_total - total < secs[i].len) {
5591 			btf_verifier_log(env,
5592 					 "Total section length too long");
5593 			return -EINVAL;
5594 		}
5595 		total += secs[i].len;
5596 	}
5597 
5598 	/* There is data other than hdr and known sections */
5599 	if (expected_total != total) {
5600 		btf_verifier_log(env, "Unsupported section found");
5601 		return -EINVAL;
5602 	}
5603 
5604 	return 0;
5605 }
5606 
5607 static int btf_parse_hdr(struct btf_verifier_env *env)
5608 {
5609 	u32 hdr_len, hdr_copy, btf_data_size;
5610 	const struct btf_header *hdr;
5611 	struct btf *btf;
5612 
5613 	btf = env->btf;
5614 	btf_data_size = btf->data_size;
5615 
5616 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5617 		btf_verifier_log(env, "hdr_len not found");
5618 		return -EINVAL;
5619 	}
5620 
5621 	hdr = btf->data;
5622 	hdr_len = hdr->hdr_len;
5623 	if (btf_data_size < hdr_len) {
5624 		btf_verifier_log(env, "btf_header not found");
5625 		return -EINVAL;
5626 	}
5627 
5628 	/* Ensure the unsupported header fields are zero */
5629 	if (hdr_len > sizeof(btf->hdr)) {
5630 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5631 		u8 *end = btf->data + hdr_len;
5632 
5633 		for (; expected_zero < end; expected_zero++) {
5634 			if (*expected_zero) {
5635 				btf_verifier_log(env, "Unsupported btf_header");
5636 				return -E2BIG;
5637 			}
5638 		}
5639 	}
5640 
5641 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5642 	memcpy(&btf->hdr, btf->data, hdr_copy);
5643 
5644 	hdr = &btf->hdr;
5645 
5646 	btf_verifier_log_hdr(env, btf_data_size);
5647 
5648 	if (hdr->magic != BTF_MAGIC) {
5649 		btf_verifier_log(env, "Invalid magic");
5650 		return -EINVAL;
5651 	}
5652 
5653 	if (hdr->version != BTF_VERSION) {
5654 		btf_verifier_log(env, "Unsupported version");
5655 		return -ENOTSUPP;
5656 	}
5657 
5658 	if (hdr->flags) {
5659 		btf_verifier_log(env, "Unsupported flags");
5660 		return -ENOTSUPP;
5661 	}
5662 
5663 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5664 		btf_verifier_log(env, "No data");
5665 		return -EINVAL;
5666 	}
5667 
5668 	return btf_check_sec_info(env, btf_data_size);
5669 }
5670 
5671 static const char *alloc_obj_fields[] = {
5672 	"bpf_spin_lock",
5673 	"bpf_list_head",
5674 	"bpf_list_node",
5675 	"bpf_rb_root",
5676 	"bpf_rb_node",
5677 	"bpf_refcount",
5678 };
5679 
5680 static struct btf_struct_metas *
5681 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5682 {
5683 	struct btf_struct_metas *tab = NULL;
5684 	struct btf_id_set *aof;
5685 	int i, n, id, ret;
5686 
5687 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5688 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5689 
5690 	aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5691 	if (!aof)
5692 		return ERR_PTR(-ENOMEM);
5693 	aof->cnt = 0;
5694 
5695 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5696 		/* Try to find whether this special type exists in user BTF, and
5697 		 * if so remember its ID so we can easily find it among members
5698 		 * of structs that we iterate in the next loop.
5699 		 */
5700 		struct btf_id_set *new_aof;
5701 
5702 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5703 		if (id < 0)
5704 			continue;
5705 
5706 		new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1),
5707 				   GFP_KERNEL | __GFP_NOWARN);
5708 		if (!new_aof) {
5709 			ret = -ENOMEM;
5710 			goto free_aof;
5711 		}
5712 		aof = new_aof;
5713 		aof->ids[aof->cnt++] = id;
5714 	}
5715 
5716 	n = btf_nr_types(btf);
5717 	for (i = 1; i < n; i++) {
5718 		/* Try to find if there are kptrs in user BTF and remember their ID */
5719 		struct btf_id_set *new_aof;
5720 		struct btf_field_info tmp;
5721 		const struct btf_type *t;
5722 
5723 		t = btf_type_by_id(btf, i);
5724 		if (!t) {
5725 			ret = -EINVAL;
5726 			goto free_aof;
5727 		}
5728 
5729 		ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5730 		if (ret != BTF_FIELD_FOUND)
5731 			continue;
5732 
5733 		new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1),
5734 				   GFP_KERNEL | __GFP_NOWARN);
5735 		if (!new_aof) {
5736 			ret = -ENOMEM;
5737 			goto free_aof;
5738 		}
5739 		aof = new_aof;
5740 		aof->ids[aof->cnt++] = i;
5741 	}
5742 
5743 	if (!aof->cnt) {
5744 		kfree(aof);
5745 		return NULL;
5746 	}
5747 	sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5748 
5749 	for (i = 1; i < n; i++) {
5750 		struct btf_struct_metas *new_tab;
5751 		const struct btf_member *member;
5752 		struct btf_struct_meta *type;
5753 		struct btf_record *record;
5754 		const struct btf_type *t;
5755 		int j, tab_cnt;
5756 
5757 		t = btf_type_by_id(btf, i);
5758 		if (!__btf_type_is_struct(t))
5759 			continue;
5760 
5761 		cond_resched();
5762 
5763 		for_each_member(j, t, member) {
5764 			if (btf_id_set_contains(aof, member->type))
5765 				goto parse;
5766 		}
5767 		continue;
5768 	parse:
5769 		tab_cnt = tab ? tab->cnt : 0;
5770 		new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1),
5771 				   GFP_KERNEL | __GFP_NOWARN);
5772 		if (!new_tab) {
5773 			ret = -ENOMEM;
5774 			goto free;
5775 		}
5776 		if (!tab)
5777 			new_tab->cnt = 0;
5778 		tab = new_tab;
5779 
5780 		type = &tab->types[tab->cnt];
5781 		type->btf_id = i;
5782 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5783 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5784 						  BPF_KPTR, t->size);
5785 		/* The record cannot be unset, treat it as an error if so */
5786 		if (IS_ERR_OR_NULL(record)) {
5787 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5788 			goto free;
5789 		}
5790 		type->record = record;
5791 		tab->cnt++;
5792 	}
5793 	kfree(aof);
5794 	return tab;
5795 free:
5796 	btf_struct_metas_free(tab);
5797 free_aof:
5798 	kfree(aof);
5799 	return ERR_PTR(ret);
5800 }
5801 
5802 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5803 {
5804 	struct btf_struct_metas *tab;
5805 
5806 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5807 	tab = btf->struct_meta_tab;
5808 	if (!tab)
5809 		return NULL;
5810 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5811 }
5812 
5813 static int btf_check_type_tags(struct btf_verifier_env *env,
5814 			       struct btf *btf, int start_id)
5815 {
5816 	int i, n, good_id = start_id - 1;
5817 	bool in_tags;
5818 
5819 	n = btf_nr_types(btf);
5820 	for (i = start_id; i < n; i++) {
5821 		const struct btf_type *t;
5822 		int chain_limit = 32;
5823 		u32 cur_id = i;
5824 
5825 		t = btf_type_by_id(btf, i);
5826 		if (!t)
5827 			return -EINVAL;
5828 		if (!btf_type_is_modifier(t))
5829 			continue;
5830 
5831 		cond_resched();
5832 
5833 		in_tags = btf_type_is_type_tag(t);
5834 		while (btf_type_is_modifier(t)) {
5835 			if (!chain_limit--) {
5836 				btf_verifier_log(env, "Max chain length or cycle detected");
5837 				return -ELOOP;
5838 			}
5839 			if (btf_type_is_type_tag(t)) {
5840 				if (!in_tags) {
5841 					btf_verifier_log(env, "Type tags don't precede modifiers");
5842 					return -EINVAL;
5843 				}
5844 			} else if (in_tags) {
5845 				in_tags = false;
5846 			}
5847 			if (cur_id <= good_id)
5848 				break;
5849 			/* Move to next type */
5850 			cur_id = t->type;
5851 			t = btf_type_by_id(btf, cur_id);
5852 			if (!t)
5853 				return -EINVAL;
5854 		}
5855 		good_id = i;
5856 	}
5857 	return 0;
5858 }
5859 
5860 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5861 {
5862 	u32 log_true_size;
5863 	int err;
5864 
5865 	err = bpf_vlog_finalize(log, &log_true_size);
5866 
5867 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5868 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5869 				  &log_true_size, sizeof(log_true_size)))
5870 		err = -EFAULT;
5871 
5872 	return err;
5873 }
5874 
5875 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5876 {
5877 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5878 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5879 	struct btf_struct_metas *struct_meta_tab;
5880 	struct btf_verifier_env *env = NULL;
5881 	struct btf *btf = NULL;
5882 	u8 *data;
5883 	int err, ret;
5884 
5885 	if (attr->btf_size > BTF_MAX_SIZE)
5886 		return ERR_PTR(-E2BIG);
5887 
5888 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5889 	if (!env)
5890 		return ERR_PTR(-ENOMEM);
5891 
5892 	/* user could have requested verbose verifier output
5893 	 * and supplied buffer to store the verification trace
5894 	 */
5895 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5896 			    log_ubuf, attr->btf_log_size);
5897 	if (err)
5898 		goto errout_free;
5899 
5900 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5901 	if (!btf) {
5902 		err = -ENOMEM;
5903 		goto errout;
5904 	}
5905 	env->btf = btf;
5906 	btf->named_start_id = 0;
5907 
5908 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5909 	if (!data) {
5910 		err = -ENOMEM;
5911 		goto errout;
5912 	}
5913 
5914 	btf->data = data;
5915 	btf->data_size = attr->btf_size;
5916 
5917 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5918 		err = -EFAULT;
5919 		goto errout;
5920 	}
5921 
5922 	err = btf_parse_hdr(env);
5923 	if (err)
5924 		goto errout;
5925 
5926 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5927 
5928 	err = btf_parse_str_sec(env);
5929 	if (err)
5930 		goto errout;
5931 
5932 	err = btf_parse_type_sec(env);
5933 	if (err)
5934 		goto errout;
5935 
5936 	err = btf_check_type_tags(env, btf, 1);
5937 	if (err)
5938 		goto errout;
5939 
5940 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5941 	if (IS_ERR(struct_meta_tab)) {
5942 		err = PTR_ERR(struct_meta_tab);
5943 		goto errout;
5944 	}
5945 	btf->struct_meta_tab = struct_meta_tab;
5946 
5947 	if (struct_meta_tab) {
5948 		int i;
5949 
5950 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5951 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5952 			if (err < 0)
5953 				goto errout_meta;
5954 		}
5955 	}
5956 
5957 	err = finalize_log(&env->log, uattr, uattr_size);
5958 	if (err)
5959 		goto errout_free;
5960 
5961 	btf_verifier_env_free(env);
5962 	refcount_set(&btf->refcnt, 1);
5963 	return btf;
5964 
5965 errout_meta:
5966 	btf_free_struct_meta_tab(btf);
5967 errout:
5968 	/* overwrite err with -ENOSPC or -EFAULT */
5969 	ret = finalize_log(&env->log, uattr, uattr_size);
5970 	if (ret)
5971 		err = ret;
5972 errout_free:
5973 	btf_verifier_env_free(env);
5974 	if (btf)
5975 		btf_free(btf);
5976 	return ERR_PTR(err);
5977 }
5978 
5979 extern char __start_BTF[];
5980 extern char __stop_BTF[];
5981 extern struct btf *btf_vmlinux;
5982 
5983 #define BPF_MAP_TYPE(_id, _ops)
5984 #define BPF_LINK_TYPE(_id, _name)
5985 static union {
5986 	struct bpf_ctx_convert {
5987 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5988 	prog_ctx_type _id##_prog; \
5989 	kern_ctx_type _id##_kern;
5990 #include <linux/bpf_types.h>
5991 #undef BPF_PROG_TYPE
5992 	} *__t;
5993 	/* 't' is written once under lock. Read many times. */
5994 	const struct btf_type *t;
5995 } bpf_ctx_convert;
5996 enum {
5997 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5998 	__ctx_convert##_id,
5999 #include <linux/bpf_types.h>
6000 #undef BPF_PROG_TYPE
6001 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
6002 };
6003 static u8 bpf_ctx_convert_map[] = {
6004 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
6005 	[_id] = __ctx_convert##_id,
6006 #include <linux/bpf_types.h>
6007 #undef BPF_PROG_TYPE
6008 	0, /* avoid empty array */
6009 };
6010 #undef BPF_MAP_TYPE
6011 #undef BPF_LINK_TYPE
6012 
6013 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
6014 {
6015 	const struct btf_type *conv_struct;
6016 	const struct btf_member *ctx_type;
6017 
6018 	conv_struct = bpf_ctx_convert.t;
6019 	if (!conv_struct)
6020 		return NULL;
6021 	/* prog_type is valid bpf program type. No need for bounds check. */
6022 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
6023 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
6024 	 * Like 'struct __sk_buff'
6025 	 */
6026 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
6027 }
6028 
6029 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
6030 {
6031 	const struct btf_type *conv_struct;
6032 	const struct btf_member *ctx_type;
6033 
6034 	conv_struct = bpf_ctx_convert.t;
6035 	if (!conv_struct)
6036 		return -EFAULT;
6037 	/* prog_type is valid bpf program type. No need for bounds check. */
6038 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6039 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
6040 	 * Like 'struct sk_buff'
6041 	 */
6042 	return ctx_type->type;
6043 }
6044 
6045 bool btf_is_projection_of(const char *pname, const char *tname)
6046 {
6047 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
6048 		return true;
6049 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
6050 		return true;
6051 	return false;
6052 }
6053 
6054 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6055 			  const struct btf_type *t, enum bpf_prog_type prog_type,
6056 			  int arg)
6057 {
6058 	const struct btf_type *ctx_type;
6059 	const char *tname, *ctx_tname;
6060 
6061 	t = btf_type_by_id(btf, t->type);
6062 
6063 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
6064 	 * check before we skip all the typedef below.
6065 	 */
6066 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
6067 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6068 			t = btf_type_by_id(btf, t->type);
6069 
6070 		if (btf_type_is_typedef(t)) {
6071 			tname = btf_name_by_offset(btf, t->name_off);
6072 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6073 				return true;
6074 		}
6075 	}
6076 
6077 	while (btf_type_is_modifier(t))
6078 		t = btf_type_by_id(btf, t->type);
6079 	if (!btf_type_is_struct(t)) {
6080 		/* Only pointer to struct is supported for now.
6081 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
6082 		 * is not supported yet.
6083 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
6084 		 */
6085 		return false;
6086 	}
6087 	tname = btf_name_by_offset(btf, t->name_off);
6088 	if (!tname) {
6089 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
6090 		return false;
6091 	}
6092 
6093 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6094 	if (!ctx_type) {
6095 		bpf_log(log, "btf_vmlinux is malformed\n");
6096 		/* should not happen */
6097 		return false;
6098 	}
6099 again:
6100 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6101 	if (!ctx_tname) {
6102 		/* should not happen */
6103 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
6104 		return false;
6105 	}
6106 	/* program types without named context types work only with arg:ctx tag */
6107 	if (ctx_tname[0] == '\0')
6108 		return false;
6109 	/* only compare that prog's ctx type name is the same as
6110 	 * kernel expects. No need to compare field by field.
6111 	 * It's ok for bpf prog to do:
6112 	 * struct __sk_buff {};
6113 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
6114 	 * { // no fields of skb are ever used }
6115 	 */
6116 	if (btf_is_projection_of(ctx_tname, tname))
6117 		return true;
6118 	if (strcmp(ctx_tname, tname)) {
6119 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
6120 		 * underlying struct and check name again
6121 		 */
6122 		if (!btf_type_is_modifier(ctx_type))
6123 			return false;
6124 		while (btf_type_is_modifier(ctx_type))
6125 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6126 		goto again;
6127 	}
6128 	return true;
6129 }
6130 
6131 /* forward declarations for arch-specific underlying types of
6132  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
6133  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
6134  * works correctly with __builtin_types_compatible_p() on respective
6135  * architectures
6136  */
6137 struct user_regs_struct;
6138 struct user_pt_regs;
6139 
6140 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6141 				      const struct btf_type *t, int arg,
6142 				      enum bpf_prog_type prog_type,
6143 				      enum bpf_attach_type attach_type)
6144 {
6145 	const struct btf_type *ctx_type;
6146 	const char *tname, *ctx_tname;
6147 
6148 	if (!btf_is_ptr(t)) {
6149 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6150 		return -EINVAL;
6151 	}
6152 	t = btf_type_by_id(btf, t->type);
6153 
6154 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6155 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6156 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6157 			t = btf_type_by_id(btf, t->type);
6158 
6159 		if (btf_type_is_typedef(t)) {
6160 			tname = btf_name_by_offset(btf, t->name_off);
6161 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6162 				return 0;
6163 		}
6164 	}
6165 
6166 	/* all other program types don't use typedefs for context type */
6167 	while (btf_type_is_modifier(t))
6168 		t = btf_type_by_id(btf, t->type);
6169 
6170 	/* `void *ctx __arg_ctx` is always valid */
6171 	if (btf_type_is_void(t))
6172 		return 0;
6173 
6174 	tname = btf_name_by_offset(btf, t->name_off);
6175 	if (str_is_empty(tname)) {
6176 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6177 		return -EINVAL;
6178 	}
6179 
6180 	/* special cases */
6181 	switch (prog_type) {
6182 	case BPF_PROG_TYPE_KPROBE:
6183 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6184 			return 0;
6185 		break;
6186 	case BPF_PROG_TYPE_PERF_EVENT:
6187 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6188 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6189 			return 0;
6190 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6191 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6192 			return 0;
6193 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6194 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6195 			return 0;
6196 		break;
6197 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6198 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6199 		/* allow u64* as ctx */
6200 		if (btf_is_int(t) && t->size == 8)
6201 			return 0;
6202 		break;
6203 	case BPF_PROG_TYPE_TRACING:
6204 		switch (attach_type) {
6205 		case BPF_TRACE_RAW_TP:
6206 			/* tp_btf program is TRACING, so need special case here */
6207 			if (__btf_type_is_struct(t) &&
6208 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6209 				return 0;
6210 			/* allow u64* as ctx */
6211 			if (btf_is_int(t) && t->size == 8)
6212 				return 0;
6213 			break;
6214 		case BPF_TRACE_ITER:
6215 			/* allow struct bpf_iter__xxx types only */
6216 			if (__btf_type_is_struct(t) &&
6217 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6218 				return 0;
6219 			break;
6220 		case BPF_TRACE_FENTRY:
6221 		case BPF_TRACE_FEXIT:
6222 		case BPF_MODIFY_RETURN:
6223 		case BPF_TRACE_FSESSION:
6224 			/* allow u64* as ctx */
6225 			if (btf_is_int(t) && t->size == 8)
6226 				return 0;
6227 			break;
6228 		default:
6229 			break;
6230 		}
6231 		break;
6232 	case BPF_PROG_TYPE_LSM:
6233 	case BPF_PROG_TYPE_STRUCT_OPS:
6234 		/* allow u64* as ctx */
6235 		if (btf_is_int(t) && t->size == 8)
6236 			return 0;
6237 		break;
6238 	case BPF_PROG_TYPE_TRACEPOINT:
6239 	case BPF_PROG_TYPE_SYSCALL:
6240 	case BPF_PROG_TYPE_EXT:
6241 		return 0; /* anything goes */
6242 	default:
6243 		break;
6244 	}
6245 
6246 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6247 	if (!ctx_type) {
6248 		/* should not happen */
6249 		bpf_log(log, "btf_vmlinux is malformed\n");
6250 		return -EINVAL;
6251 	}
6252 
6253 	/* resolve typedefs and check that underlying structs are matching as well */
6254 	while (btf_type_is_modifier(ctx_type))
6255 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6256 
6257 	/* if program type doesn't have distinctly named struct type for
6258 	 * context, then __arg_ctx argument can only be `void *`, which we
6259 	 * already checked above
6260 	 */
6261 	if (!__btf_type_is_struct(ctx_type)) {
6262 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6263 		return -EINVAL;
6264 	}
6265 
6266 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6267 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6268 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6269 		return -EINVAL;
6270 	}
6271 
6272 	return 0;
6273 }
6274 
6275 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6276 				     struct btf *btf,
6277 				     const struct btf_type *t,
6278 				     enum bpf_prog_type prog_type,
6279 				     int arg)
6280 {
6281 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6282 		return -ENOENT;
6283 	return find_kern_ctx_type_id(prog_type);
6284 }
6285 
6286 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6287 {
6288 	const struct btf_member *kctx_member;
6289 	const struct btf_type *conv_struct;
6290 	const struct btf_type *kctx_type;
6291 	u32 kctx_type_id;
6292 
6293 	conv_struct = bpf_ctx_convert.t;
6294 	/* get member for kernel ctx type */
6295 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6296 	kctx_type_id = kctx_member->type;
6297 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6298 	if (!btf_type_is_struct(kctx_type)) {
6299 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6300 		return -EINVAL;
6301 	}
6302 
6303 	return kctx_type_id;
6304 }
6305 
6306 BTF_ID_LIST_SINGLE(bpf_ctx_convert_btf_id, struct, bpf_ctx_convert)
6307 
6308 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6309 				  void *data, unsigned int data_size)
6310 {
6311 	struct btf *btf = NULL;
6312 	int err;
6313 
6314 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6315 		return ERR_PTR(-ENOENT);
6316 
6317 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6318 	if (!btf) {
6319 		err = -ENOMEM;
6320 		goto errout;
6321 	}
6322 	env->btf = btf;
6323 
6324 	btf->data = data;
6325 	btf->data_size = data_size;
6326 	btf->kernel_btf = true;
6327 	btf->named_start_id = 0;
6328 	strscpy(btf->name, name);
6329 
6330 	err = btf_parse_hdr(env);
6331 	if (err)
6332 		goto errout;
6333 
6334 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6335 
6336 	err = btf_parse_str_sec(env);
6337 	if (err)
6338 		goto errout;
6339 
6340 	err = btf_check_all_metas(env);
6341 	if (err)
6342 		goto errout;
6343 
6344 	err = btf_check_type_tags(env, btf, 1);
6345 	if (err)
6346 		goto errout;
6347 
6348 	btf_check_sorted(btf);
6349 	refcount_set(&btf->refcnt, 1);
6350 
6351 	return btf;
6352 
6353 errout:
6354 	if (btf) {
6355 		kvfree(btf->types);
6356 		kfree(btf);
6357 	}
6358 	return ERR_PTR(err);
6359 }
6360 
6361 struct btf *btf_parse_vmlinux(void)
6362 {
6363 	struct btf_verifier_env *env = NULL;
6364 	struct bpf_verifier_log *log;
6365 	struct btf *btf;
6366 	int err;
6367 
6368 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6369 	if (!env)
6370 		return ERR_PTR(-ENOMEM);
6371 
6372 	log = &env->log;
6373 	log->level = BPF_LOG_KERNEL;
6374 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6375 	if (IS_ERR(btf))
6376 		goto err_out;
6377 
6378 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6379 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6380 	err = btf_alloc_id(btf);
6381 	if (err) {
6382 		btf_free(btf);
6383 		btf = ERR_PTR(err);
6384 	}
6385 err_out:
6386 	btf_verifier_env_free(env);
6387 	return btf;
6388 }
6389 
6390 /* If .BTF_ids section was created with distilled base BTF, both base and
6391  * split BTF ids will need to be mapped to actual base/split ids for
6392  * BTF now that it has been relocated.
6393  */
6394 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6395 {
6396 	if (!btf->base_btf || !btf->base_id_map)
6397 		return id;
6398 	return btf->base_id_map[id];
6399 }
6400 
6401 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6402 
6403 static struct btf *btf_parse_module(const char *module_name, const void *data,
6404 				    unsigned int data_size, void *base_data,
6405 				    unsigned int base_data_size)
6406 {
6407 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6408 	struct btf_verifier_env *env = NULL;
6409 	struct bpf_verifier_log *log;
6410 	int err = 0;
6411 
6412 	vmlinux_btf = bpf_get_btf_vmlinux();
6413 	if (IS_ERR(vmlinux_btf))
6414 		return vmlinux_btf;
6415 	if (!vmlinux_btf)
6416 		return ERR_PTR(-EINVAL);
6417 
6418 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6419 	if (!env)
6420 		return ERR_PTR(-ENOMEM);
6421 
6422 	log = &env->log;
6423 	log->level = BPF_LOG_KERNEL;
6424 
6425 	if (base_data) {
6426 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6427 		if (IS_ERR(base_btf)) {
6428 			err = PTR_ERR(base_btf);
6429 			goto errout;
6430 		}
6431 	} else {
6432 		base_btf = vmlinux_btf;
6433 	}
6434 
6435 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6436 	if (!btf) {
6437 		err = -ENOMEM;
6438 		goto errout;
6439 	}
6440 	env->btf = btf;
6441 
6442 	btf->base_btf = base_btf;
6443 	btf->start_id = base_btf->nr_types;
6444 	btf->start_str_off = base_btf->hdr.str_len;
6445 	btf->kernel_btf = true;
6446 	btf->named_start_id = 0;
6447 	strscpy(btf->name, module_name);
6448 
6449 	btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6450 	if (!btf->data) {
6451 		err = -ENOMEM;
6452 		goto errout;
6453 	}
6454 	btf->data_size = data_size;
6455 
6456 	err = btf_parse_hdr(env);
6457 	if (err)
6458 		goto errout;
6459 
6460 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6461 
6462 	err = btf_parse_str_sec(env);
6463 	if (err)
6464 		goto errout;
6465 
6466 	err = btf_check_all_metas(env);
6467 	if (err)
6468 		goto errout;
6469 
6470 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6471 	if (err)
6472 		goto errout;
6473 
6474 	if (base_btf != vmlinux_btf) {
6475 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6476 		if (err)
6477 			goto errout;
6478 		btf_free(base_btf);
6479 		base_btf = vmlinux_btf;
6480 	}
6481 
6482 	btf_verifier_env_free(env);
6483 	btf_check_sorted(btf);
6484 	refcount_set(&btf->refcnt, 1);
6485 	return btf;
6486 
6487 errout:
6488 	btf_verifier_env_free(env);
6489 	if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6490 		btf_free(base_btf);
6491 	if (btf) {
6492 		kvfree(btf->data);
6493 		kvfree(btf->types);
6494 		kfree(btf);
6495 	}
6496 	return ERR_PTR(err);
6497 }
6498 
6499 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6500 
6501 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6502 {
6503 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6504 
6505 	if (tgt_prog)
6506 		return tgt_prog->aux->btf;
6507 	else
6508 		return prog->aux->attach_btf;
6509 }
6510 
6511 static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t)
6512 {
6513 	/* skip modifiers */
6514 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6515 	return btf_type_is_void(t) || btf_type_is_int(t);
6516 }
6517 
6518 u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6519 		    int off)
6520 {
6521 	const struct btf_param *args;
6522 	const struct btf_type *t;
6523 	u32 offset = 0, nr_args;
6524 	int i;
6525 
6526 	if (!func_proto)
6527 		return off / 8;
6528 
6529 	nr_args = btf_type_vlen(func_proto);
6530 	args = (const struct btf_param *)(func_proto + 1);
6531 	for (i = 0; i < nr_args; i++) {
6532 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6533 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6534 		if (off < offset)
6535 			return i;
6536 	}
6537 
6538 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6539 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6540 	if (off < offset)
6541 		return nr_args;
6542 
6543 	return nr_args + 1;
6544 }
6545 
6546 static bool prog_args_trusted(const struct bpf_prog *prog)
6547 {
6548 	enum bpf_attach_type atype = prog->expected_attach_type;
6549 
6550 	switch (prog->type) {
6551 	case BPF_PROG_TYPE_TRACING:
6552 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6553 	case BPF_PROG_TYPE_LSM:
6554 		return bpf_lsm_is_trusted(prog);
6555 	case BPF_PROG_TYPE_STRUCT_OPS:
6556 		return true;
6557 	default:
6558 		return false;
6559 	}
6560 }
6561 
6562 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6563 		       u32 arg_no)
6564 {
6565 	const struct btf_param *args;
6566 	const struct btf_type *t;
6567 	int off = 0, i;
6568 	u32 sz;
6569 
6570 	args = btf_params(func_proto);
6571 	for (i = 0; i < arg_no; i++) {
6572 		t = btf_type_by_id(btf, args[i].type);
6573 		t = btf_resolve_size(btf, t, &sz);
6574 		if (IS_ERR(t))
6575 			return PTR_ERR(t);
6576 		off += roundup(sz, 8);
6577 	}
6578 
6579 	return off;
6580 }
6581 
6582 struct bpf_raw_tp_null_args {
6583 	const char *func;
6584 	u64 mask;
6585 };
6586 
6587 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6588 	/* sched */
6589 	{ "sched_pi_setprio", 0x10 },
6590 	/* ... from sched_numa_pair_template event class */
6591 	{ "sched_stick_numa", 0x100 },
6592 	{ "sched_swap_numa", 0x100 },
6593 	/* afs */
6594 	{ "afs_make_fs_call", 0x10 },
6595 	{ "afs_make_fs_calli", 0x10 },
6596 	{ "afs_make_fs_call1", 0x10 },
6597 	{ "afs_make_fs_call2", 0x10 },
6598 	{ "afs_protocol_error", 0x1 },
6599 	{ "afs_flock_ev", 0x10 },
6600 	/* cachefiles */
6601 	{ "cachefiles_lookup", 0x1 | 0x200 },
6602 	{ "cachefiles_unlink", 0x1 },
6603 	{ "cachefiles_rename", 0x1 },
6604 	{ "cachefiles_prep_read", 0x1 },
6605 	{ "cachefiles_mark_active", 0x1 },
6606 	{ "cachefiles_mark_failed", 0x1 },
6607 	{ "cachefiles_mark_inactive", 0x1 },
6608 	{ "cachefiles_vfs_error", 0x1 },
6609 	{ "cachefiles_io_error", 0x1 },
6610 	{ "cachefiles_ondemand_open", 0x1 },
6611 	{ "cachefiles_ondemand_copen", 0x1 },
6612 	{ "cachefiles_ondemand_close", 0x1 },
6613 	{ "cachefiles_ondemand_read", 0x1 },
6614 	{ "cachefiles_ondemand_cread", 0x1 },
6615 	{ "cachefiles_ondemand_fd_write", 0x1 },
6616 	{ "cachefiles_ondemand_fd_release", 0x1 },
6617 	/* ext4, from ext4__mballoc event class */
6618 	{ "ext4_mballoc_discard", 0x10 },
6619 	{ "ext4_mballoc_free", 0x10 },
6620 	/* fib */
6621 	{ "fib_table_lookup", 0x100 },
6622 	/* filelock */
6623 	/* ... from filelock_lock event class */
6624 	{ "posix_lock_inode", 0x10 },
6625 	{ "fcntl_setlk", 0x10 },
6626 	{ "locks_remove_posix", 0x10 },
6627 	{ "flock_lock_inode", 0x10 },
6628 	/* ... from filelock_lease event class */
6629 	{ "break_lease_noblock", 0x10 },
6630 	{ "break_lease_block", 0x10 },
6631 	{ "break_lease_unblock", 0x10 },
6632 	{ "generic_delete_lease", 0x10 },
6633 	{ "time_out_leases", 0x10 },
6634 	/* host1x */
6635 	{ "host1x_cdma_push_gather", 0x10000 },
6636 	/* huge_memory */
6637 	{ "mm_khugepaged_scan_pmd", 0x10 },
6638 	{ "mm_collapse_huge_page_isolate", 0x1 },
6639 	{ "mm_khugepaged_scan_file", 0x10 },
6640 	{ "mm_khugepaged_collapse_file", 0x10 },
6641 	/* kmem */
6642 	{ "mm_page_alloc", 0x1 },
6643 	{ "mm_page_pcpu_drain", 0x1 },
6644 	/* .. from mm_page event class */
6645 	{ "mm_page_alloc_zone_locked", 0x1 },
6646 	/* netfs */
6647 	{ "netfs_failure", 0x10 },
6648 	/* power */
6649 	{ "device_pm_callback_start", 0x10 },
6650 	/* qdisc */
6651 	{ "qdisc_dequeue", 0x1000 },
6652 	/* rxrpc */
6653 	{ "rxrpc_recvdata", 0x1 },
6654 	{ "rxrpc_resend", 0x10 },
6655 	{ "rxrpc_tq", 0x10 },
6656 	{ "rxrpc_client", 0x1 },
6657 	/* skb */
6658 	{"kfree_skb", 0x1000},
6659 	/* sunrpc */
6660 	{ "xs_stream_read_data", 0x1 },
6661 	/* ... from xprt_cong_event event class */
6662 	{ "xprt_reserve_cong", 0x10 },
6663 	{ "xprt_release_cong", 0x10 },
6664 	{ "xprt_get_cong", 0x10 },
6665 	{ "xprt_put_cong", 0x10 },
6666 	/* tcp */
6667 	{ "tcp_send_reset", 0x11 },
6668 	{ "tcp_sendmsg_locked", 0x100 },
6669 	/* tegra_apb_dma */
6670 	{ "tegra_dma_tx_status", 0x100 },
6671 	/* timer_migration */
6672 	{ "tmigr_update_events", 0x1 },
6673 	/* writeback, from writeback_folio_template event class */
6674 	{ "writeback_dirty_folio", 0x10 },
6675 	{ "folio_wait_writeback", 0x10 },
6676 	/* rdma */
6677 	{ "mr_integ_alloc", 0x2000 },
6678 	/* bpf_testmod */
6679 	{ "bpf_testmod_test_read", 0x0 },
6680 	/* amdgpu */
6681 	{ "amdgpu_vm_bo_map", 0x1 },
6682 	{ "amdgpu_vm_bo_unmap", 0x1 },
6683 	/* netfs */
6684 	{ "netfs_folioq", 0x1 },
6685 	/* xfs from xfs_defer_pending_class */
6686 	{ "xfs_defer_create_intent", 0x1 },
6687 	{ "xfs_defer_cancel_list", 0x1 },
6688 	{ "xfs_defer_pending_finish", 0x1 },
6689 	{ "xfs_defer_pending_abort", 0x1 },
6690 	{ "xfs_defer_relog_intent", 0x1 },
6691 	{ "xfs_defer_isolate_paused", 0x1 },
6692 	{ "xfs_defer_item_pause", 0x1 },
6693 	{ "xfs_defer_item_unpause", 0x1 },
6694 	/* xfs from xfs_defer_pending_item_class */
6695 	{ "xfs_defer_add_item", 0x1 },
6696 	{ "xfs_defer_cancel_item", 0x1 },
6697 	{ "xfs_defer_finish_item", 0x1 },
6698 	/* xfs from xfs_icwalk_class */
6699 	{ "xfs_ioc_free_eofblocks", 0x10 },
6700 	{ "xfs_blockgc_free_space", 0x10 },
6701 	/* xfs from xfs_btree_cur_class */
6702 	{ "xfs_btree_updkeys", 0x100 },
6703 	{ "xfs_btree_overlapped_query_range", 0x100 },
6704 	/* xfs from xfs_imap_class*/
6705 	{ "xfs_map_blocks_found", 0x10000 },
6706 	{ "xfs_map_blocks_alloc", 0x10000 },
6707 	{ "xfs_iomap_alloc", 0x1000 },
6708 	{ "xfs_iomap_found", 0x1000 },
6709 	/* xfs from xfs_fs_class */
6710 	{ "xfs_inodegc_flush", 0x1 },
6711 	{ "xfs_inodegc_push", 0x1 },
6712 	{ "xfs_inodegc_start", 0x1 },
6713 	{ "xfs_inodegc_stop", 0x1 },
6714 	{ "xfs_inodegc_queue", 0x1 },
6715 	{ "xfs_inodegc_throttle", 0x1 },
6716 	{ "xfs_fs_sync_fs", 0x1 },
6717 	{ "xfs_blockgc_start", 0x1 },
6718 	{ "xfs_blockgc_stop", 0x1 },
6719 	{ "xfs_blockgc_worker", 0x1 },
6720 	{ "xfs_blockgc_flush_all", 0x1 },
6721 	/* xfs_scrub */
6722 	{ "xchk_nlinks_live_update", 0x10 },
6723 	/* xfs_scrub from xchk_metapath_class */
6724 	{ "xchk_metapath_lookup", 0x100 },
6725 	/* nfsd */
6726 	{ "nfsd_dirent", 0x1 },
6727 	{ "nfsd_file_acquire", 0x1001 },
6728 	{ "nfsd_file_insert_err", 0x1 },
6729 	{ "nfsd_file_cons_err", 0x1 },
6730 	/* nfs4 */
6731 	{ "nfs4_setup_sequence", 0x1 },
6732 	{ "pnfs_update_layout", 0x10000 },
6733 	{ "nfs4_inode_callback_event", 0x200 },
6734 	{ "nfs4_inode_stateid_callback_event", 0x200 },
6735 	/* nfs from pnfs_layout_event */
6736 	{ "pnfs_mds_fallback_pg_init_read", 0x10000 },
6737 	{ "pnfs_mds_fallback_pg_init_write", 0x10000 },
6738 	{ "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 },
6739 	{ "pnfs_mds_fallback_read_done", 0x10000 },
6740 	{ "pnfs_mds_fallback_write_done", 0x10000 },
6741 	{ "pnfs_mds_fallback_read_pagelist", 0x10000 },
6742 	{ "pnfs_mds_fallback_write_pagelist", 0x10000 },
6743 	/* coda */
6744 	{ "coda_dec_pic_run", 0x10 },
6745 	{ "coda_dec_pic_done", 0x10 },
6746 	/* cfg80211 */
6747 	{ "cfg80211_scan_done", 0x11 },
6748 	{ "rdev_set_coalesce", 0x10 },
6749 	{ "cfg80211_report_wowlan_wakeup", 0x100 },
6750 	{ "cfg80211_inform_bss_frame", 0x100 },
6751 	{ "cfg80211_michael_mic_failure", 0x10000 },
6752 	/* cfg80211 from wiphy_work_event */
6753 	{ "wiphy_work_queue", 0x10 },
6754 	{ "wiphy_work_run", 0x10 },
6755 	{ "wiphy_work_cancel", 0x10 },
6756 	{ "wiphy_work_flush", 0x10 },
6757 	/* hugetlbfs */
6758 	{ "hugetlbfs_alloc_inode", 0x10 },
6759 	/* spufs */
6760 	{ "spufs_context", 0x10 },
6761 	/* kvm_hv */
6762 	{ "kvm_page_fault_enter", 0x100 },
6763 	/* dpu */
6764 	{ "dpu_crtc_setup_mixer", 0x100 },
6765 	/* binder */
6766 	{ "binder_transaction", 0x100 },
6767 	/* bcachefs */
6768 	{ "btree_path_free", 0x100 },
6769 	/* hfi1_tx */
6770 	{ "hfi1_sdma_progress", 0x1000 },
6771 	/* iptfs */
6772 	{ "iptfs_ingress_postq_event", 0x1000 },
6773 	/* neigh */
6774 	{ "neigh_update", 0x10 },
6775 	/* snd_firewire_lib */
6776 	{ "amdtp_packet", 0x100 },
6777 };
6778 
6779 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6780 		    const struct bpf_prog *prog,
6781 		    struct bpf_insn_access_aux *info)
6782 {
6783 	const struct btf_type *t = prog->aux->attach_func_proto;
6784 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6785 	struct btf *btf = bpf_prog_get_target_btf(prog);
6786 	const char *tname = prog->aux->attach_func_name;
6787 	struct bpf_verifier_log *log = info->log;
6788 	const struct btf_param *args;
6789 	bool ptr_err_raw_tp = false;
6790 	const char *tag_value;
6791 	u32 nr_args, arg;
6792 	int i, ret;
6793 
6794 	if (off % 8) {
6795 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6796 			tname, off);
6797 		return false;
6798 	}
6799 	arg = btf_ctx_arg_idx(btf, t, off);
6800 	args = (const struct btf_param *)(t + 1);
6801 	/* if (t == NULL) Fall back to default BPF prog with
6802 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6803 	 */
6804 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6805 	if (prog->aux->attach_btf_trace) {
6806 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6807 		args++;
6808 		nr_args--;
6809 	}
6810 
6811 	if (arg > nr_args) {
6812 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6813 			tname, arg + 1);
6814 		return false;
6815 	}
6816 
6817 	if (arg == nr_args) {
6818 		switch (prog->expected_attach_type) {
6819 		case BPF_LSM_MAC:
6820 			/* mark we are accessing the return value */
6821 			info->is_retval = true;
6822 			fallthrough;
6823 		case BPF_LSM_CGROUP:
6824 		case BPF_TRACE_FEXIT:
6825 		case BPF_TRACE_FSESSION:
6826 			/* When LSM programs are attached to void LSM hooks
6827 			 * they use FEXIT trampolines and when attached to
6828 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6829 			 *
6830 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6831 			 * the check:
6832 			 *
6833 			 *	if (ret_type != 'int')
6834 			 *		return -EINVAL;
6835 			 *
6836 			 * is _not_ done here. This is still safe as LSM hooks
6837 			 * have only void and int return types.
6838 			 */
6839 			if (!t)
6840 				return true;
6841 			t = btf_type_by_id(btf, t->type);
6842 			break;
6843 		case BPF_MODIFY_RETURN:
6844 			/* For now the BPF_MODIFY_RETURN can only be attached to
6845 			 * functions that return an int.
6846 			 */
6847 			if (!t)
6848 				return false;
6849 
6850 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6851 			if (!btf_type_is_small_int(t)) {
6852 				bpf_log(log,
6853 					"ret type %s not allowed for fmod_ret\n",
6854 					btf_type_str(t));
6855 				return false;
6856 			}
6857 			break;
6858 		default:
6859 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6860 				tname, arg + 1);
6861 			return false;
6862 		}
6863 	} else {
6864 		if (!t)
6865 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6866 			return true;
6867 		t = btf_type_by_id(btf, args[arg].type);
6868 	}
6869 
6870 	/* skip modifiers */
6871 	while (btf_type_is_modifier(t))
6872 		t = btf_type_by_id(btf, t->type);
6873 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t))
6874 		/* accessing a scalar */
6875 		return true;
6876 	if (!btf_type_is_ptr(t)) {
6877 		bpf_log(log,
6878 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6879 			tname, arg,
6880 			__btf_name_by_offset(btf, t->name_off),
6881 			btf_type_str(t));
6882 		return false;
6883 	}
6884 
6885 	if (size != sizeof(u64)) {
6886 		bpf_log(log, "func '%s' size %d must be 8\n",
6887 			tname, size);
6888 		return false;
6889 	}
6890 
6891 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6892 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6893 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6894 		u32 type, flag;
6895 
6896 		type = base_type(ctx_arg_info->reg_type);
6897 		flag = type_flag(ctx_arg_info->reg_type);
6898 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6899 		    (flag & PTR_MAYBE_NULL)) {
6900 			info->reg_type = ctx_arg_info->reg_type;
6901 			return true;
6902 		}
6903 	}
6904 
6905 	/*
6906 	 * If it's a pointer to void, it's the same as scalar from the verifier
6907 	 * safety POV. Either way, no futher pointer walking is allowed.
6908 	 */
6909 	if (is_void_or_int_ptr(btf, t))
6910 		return true;
6911 
6912 	/* this is a pointer to another type */
6913 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6914 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6915 
6916 		if (ctx_arg_info->offset == off) {
6917 			if (!ctx_arg_info->btf_id) {
6918 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6919 				return false;
6920 			}
6921 
6922 			info->reg_type = ctx_arg_info->reg_type;
6923 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6924 			info->btf_id = ctx_arg_info->btf_id;
6925 			info->ref_obj_id = ctx_arg_info->ref_obj_id;
6926 			return true;
6927 		}
6928 	}
6929 
6930 	info->reg_type = PTR_TO_BTF_ID;
6931 	if (prog_args_trusted(prog))
6932 		info->reg_type |= PTR_TRUSTED;
6933 
6934 	if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6935 		info->reg_type |= PTR_MAYBE_NULL;
6936 
6937 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6938 		struct btf *btf = prog->aux->attach_btf;
6939 		const struct btf_type *t;
6940 		const char *tname;
6941 
6942 		/* BTF lookups cannot fail, return false on error */
6943 		t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6944 		if (!t)
6945 			return false;
6946 		tname = btf_name_by_offset(btf, t->name_off);
6947 		if (!tname)
6948 			return false;
6949 		/* Checked by bpf_check_attach_target */
6950 		tname += sizeof("btf_trace_") - 1;
6951 		for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6952 			/* Is this a func with potential NULL args? */
6953 			if (strcmp(tname, raw_tp_null_args[i].func))
6954 				continue;
6955 			if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4)))
6956 				info->reg_type |= PTR_MAYBE_NULL;
6957 			/* Is the current arg IS_ERR? */
6958 			if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4)))
6959 				ptr_err_raw_tp = true;
6960 			break;
6961 		}
6962 		/* If we don't know NULL-ness specification and the tracepoint
6963 		 * is coming from a loadable module, be conservative and mark
6964 		 * argument as PTR_MAYBE_NULL.
6965 		 */
6966 		if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6967 			info->reg_type |= PTR_MAYBE_NULL;
6968 	}
6969 
6970 	if (tgt_prog) {
6971 		enum bpf_prog_type tgt_type;
6972 
6973 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6974 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6975 		else
6976 			tgt_type = tgt_prog->type;
6977 
6978 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6979 		if (ret > 0) {
6980 			info->btf = btf_vmlinux;
6981 			info->btf_id = ret;
6982 			return true;
6983 		} else {
6984 			return false;
6985 		}
6986 	}
6987 
6988 	info->btf = btf;
6989 	info->btf_id = t->type;
6990 	t = btf_type_by_id(btf, t->type);
6991 
6992 	if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
6993 		tag_value = __btf_name_by_offset(btf, t->name_off);
6994 		if (strcmp(tag_value, "user") == 0)
6995 			info->reg_type |= MEM_USER;
6996 		if (strcmp(tag_value, "percpu") == 0)
6997 			info->reg_type |= MEM_PERCPU;
6998 	}
6999 
7000 	/* skip modifiers */
7001 	while (btf_type_is_modifier(t)) {
7002 		info->btf_id = t->type;
7003 		t = btf_type_by_id(btf, t->type);
7004 	}
7005 	if (!btf_type_is_struct(t)) {
7006 		bpf_log(log,
7007 			"func '%s' arg%d type %s is not a struct\n",
7008 			tname, arg, btf_type_str(t));
7009 		return false;
7010 	}
7011 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
7012 		tname, arg, info->btf_id, btf_type_str(t),
7013 		__btf_name_by_offset(btf, t->name_off));
7014 
7015 	/* Perform all checks on the validity of type for this argument, but if
7016 	 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
7017 	 * scalar.
7018 	 */
7019 	if (ptr_err_raw_tp) {
7020 		bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
7021 		info->reg_type = SCALAR_VALUE;
7022 	}
7023 	return true;
7024 }
7025 EXPORT_SYMBOL_GPL(btf_ctx_access);
7026 
7027 enum bpf_struct_walk_result {
7028 	/* < 0 error */
7029 	WALK_SCALAR = 0,
7030 	WALK_PTR,
7031 	WALK_PTR_UNTRUSTED,
7032 	WALK_STRUCT,
7033 };
7034 
7035 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
7036 			   const struct btf_type *t, int off, int size,
7037 			   u32 *next_btf_id, enum bpf_type_flag *flag,
7038 			   const char **field_name)
7039 {
7040 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
7041 	const struct btf_type *mtype, *elem_type = NULL;
7042 	const struct btf_member *member;
7043 	const char *tname, *mname, *tag_value;
7044 	u32 vlen, elem_id, mid;
7045 
7046 again:
7047 	if (btf_type_is_modifier(t))
7048 		t = btf_type_skip_modifiers(btf, t->type, NULL);
7049 	tname = __btf_name_by_offset(btf, t->name_off);
7050 	if (!btf_type_is_struct(t)) {
7051 		bpf_log(log, "Type '%s' is not a struct\n", tname);
7052 		return -EINVAL;
7053 	}
7054 
7055 	vlen = btf_type_vlen(t);
7056 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
7057 		/*
7058 		 * walking unions yields untrusted pointers
7059 		 * with exception of __bpf_md_ptr and other
7060 		 * unions with a single member
7061 		 */
7062 		*flag |= PTR_UNTRUSTED;
7063 
7064 	if (off + size > t->size) {
7065 		/* If the last element is a variable size array, we may
7066 		 * need to relax the rule.
7067 		 */
7068 		struct btf_array *array_elem;
7069 
7070 		if (vlen == 0)
7071 			goto error;
7072 
7073 		member = btf_type_member(t) + vlen - 1;
7074 		mtype = btf_type_skip_modifiers(btf, member->type,
7075 						NULL);
7076 		if (!btf_type_is_array(mtype))
7077 			goto error;
7078 
7079 		array_elem = (struct btf_array *)(mtype + 1);
7080 		if (array_elem->nelems != 0)
7081 			goto error;
7082 
7083 		moff = __btf_member_bit_offset(t, member) / 8;
7084 		if (off < moff)
7085 			goto error;
7086 
7087 		/* allow structure and integer */
7088 		t = btf_type_skip_modifiers(btf, array_elem->type,
7089 					    NULL);
7090 
7091 		if (btf_type_is_int(t))
7092 			return WALK_SCALAR;
7093 
7094 		if (!btf_type_is_struct(t))
7095 			goto error;
7096 
7097 		off = (off - moff) % t->size;
7098 		goto again;
7099 
7100 error:
7101 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
7102 			tname, off, size);
7103 		return -EACCES;
7104 	}
7105 
7106 	for_each_member(i, t, member) {
7107 		/* offset of the field in bytes */
7108 		moff = __btf_member_bit_offset(t, member) / 8;
7109 		if (off + size <= moff)
7110 			/* won't find anything, field is already too far */
7111 			break;
7112 
7113 		if (__btf_member_bitfield_size(t, member)) {
7114 			u32 end_bit = __btf_member_bit_offset(t, member) +
7115 				__btf_member_bitfield_size(t, member);
7116 
7117 			/* off <= moff instead of off == moff because clang
7118 			 * does not generate a BTF member for anonymous
7119 			 * bitfield like the ":16" here:
7120 			 * struct {
7121 			 *	int :16;
7122 			 *	int x:8;
7123 			 * };
7124 			 */
7125 			if (off <= moff &&
7126 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
7127 				return WALK_SCALAR;
7128 
7129 			/* off may be accessing a following member
7130 			 *
7131 			 * or
7132 			 *
7133 			 * Doing partial access at either end of this
7134 			 * bitfield.  Continue on this case also to
7135 			 * treat it as not accessing this bitfield
7136 			 * and eventually error out as field not
7137 			 * found to keep it simple.
7138 			 * It could be relaxed if there was a legit
7139 			 * partial access case later.
7140 			 */
7141 			continue;
7142 		}
7143 
7144 		/* In case of "off" is pointing to holes of a struct */
7145 		if (off < moff)
7146 			break;
7147 
7148 		/* type of the field */
7149 		mid = member->type;
7150 		mtype = btf_type_by_id(btf, member->type);
7151 		mname = __btf_name_by_offset(btf, member->name_off);
7152 
7153 		mtype = __btf_resolve_size(btf, mtype, &msize,
7154 					   &elem_type, &elem_id, &total_nelems,
7155 					   &mid);
7156 		if (IS_ERR(mtype)) {
7157 			bpf_log(log, "field %s doesn't have size\n", mname);
7158 			return -EFAULT;
7159 		}
7160 
7161 		mtrue_end = moff + msize;
7162 		if (off >= mtrue_end)
7163 			/* no overlap with member, keep iterating */
7164 			continue;
7165 
7166 		if (btf_type_is_array(mtype)) {
7167 			u32 elem_idx;
7168 
7169 			/* __btf_resolve_size() above helps to
7170 			 * linearize a multi-dimensional array.
7171 			 *
7172 			 * The logic here is treating an array
7173 			 * in a struct as the following way:
7174 			 *
7175 			 * struct outer {
7176 			 *	struct inner array[2][2];
7177 			 * };
7178 			 *
7179 			 * looks like:
7180 			 *
7181 			 * struct outer {
7182 			 *	struct inner array_elem0;
7183 			 *	struct inner array_elem1;
7184 			 *	struct inner array_elem2;
7185 			 *	struct inner array_elem3;
7186 			 * };
7187 			 *
7188 			 * When accessing outer->array[1][0], it moves
7189 			 * moff to "array_elem2", set mtype to
7190 			 * "struct inner", and msize also becomes
7191 			 * sizeof(struct inner).  Then most of the
7192 			 * remaining logic will fall through without
7193 			 * caring the current member is an array or
7194 			 * not.
7195 			 *
7196 			 * Unlike mtype/msize/moff, mtrue_end does not
7197 			 * change.  The naming difference ("_true") tells
7198 			 * that it is not always corresponding to
7199 			 * the current mtype/msize/moff.
7200 			 * It is the true end of the current
7201 			 * member (i.e. array in this case).  That
7202 			 * will allow an int array to be accessed like
7203 			 * a scratch space,
7204 			 * i.e. allow access beyond the size of
7205 			 *      the array's element as long as it is
7206 			 *      within the mtrue_end boundary.
7207 			 */
7208 
7209 			/* skip empty array */
7210 			if (moff == mtrue_end)
7211 				continue;
7212 
7213 			msize /= total_nelems;
7214 			elem_idx = (off - moff) / msize;
7215 			moff += elem_idx * msize;
7216 			mtype = elem_type;
7217 			mid = elem_id;
7218 		}
7219 
7220 		/* the 'off' we're looking for is either equal to start
7221 		 * of this field or inside of this struct
7222 		 */
7223 		if (btf_type_is_struct(mtype)) {
7224 			/* our field must be inside that union or struct */
7225 			t = mtype;
7226 
7227 			/* return if the offset matches the member offset */
7228 			if (off == moff) {
7229 				*next_btf_id = mid;
7230 				return WALK_STRUCT;
7231 			}
7232 
7233 			/* adjust offset we're looking for */
7234 			off -= moff;
7235 			goto again;
7236 		}
7237 
7238 		if (btf_type_is_ptr(mtype)) {
7239 			const struct btf_type *stype, *t;
7240 			enum bpf_type_flag tmp_flag = 0;
7241 			u32 id;
7242 
7243 			if (msize != size || off != moff) {
7244 				bpf_log(log,
7245 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7246 					mname, moff, tname, off, size);
7247 				return -EACCES;
7248 			}
7249 
7250 			/* check type tag */
7251 			t = btf_type_by_id(btf, mtype->type);
7252 			if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
7253 				tag_value = __btf_name_by_offset(btf, t->name_off);
7254 				/* check __user tag */
7255 				if (strcmp(tag_value, "user") == 0)
7256 					tmp_flag = MEM_USER;
7257 				/* check __percpu tag */
7258 				if (strcmp(tag_value, "percpu") == 0)
7259 					tmp_flag = MEM_PERCPU;
7260 				/* check __rcu tag */
7261 				if (strcmp(tag_value, "rcu") == 0)
7262 					tmp_flag = MEM_RCU;
7263 			}
7264 
7265 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7266 			if (btf_type_is_struct(stype)) {
7267 				*next_btf_id = id;
7268 				*flag |= tmp_flag;
7269 				if (field_name)
7270 					*field_name = mname;
7271 				return WALK_PTR;
7272 			}
7273 
7274 			return WALK_PTR_UNTRUSTED;
7275 		}
7276 
7277 		/* Allow more flexible access within an int as long as
7278 		 * it is within mtrue_end.
7279 		 * Since mtrue_end could be the end of an array,
7280 		 * that also allows using an array of int as a scratch
7281 		 * space. e.g. skb->cb[].
7282 		 */
7283 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7284 			bpf_log(log,
7285 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7286 				mname, mtrue_end, tname, off, size);
7287 			return -EACCES;
7288 		}
7289 
7290 		return WALK_SCALAR;
7291 	}
7292 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7293 	return -EINVAL;
7294 }
7295 
7296 int btf_struct_access(struct bpf_verifier_log *log,
7297 		      const struct bpf_reg_state *reg,
7298 		      int off, int size, enum bpf_access_type atype __maybe_unused,
7299 		      u32 *next_btf_id, enum bpf_type_flag *flag,
7300 		      const char **field_name)
7301 {
7302 	const struct btf *btf = reg->btf;
7303 	enum bpf_type_flag tmp_flag = 0;
7304 	const struct btf_type *t;
7305 	u32 id = reg->btf_id;
7306 	int err;
7307 
7308 	while (type_is_alloc(reg->type)) {
7309 		struct btf_struct_meta *meta;
7310 		struct btf_record *rec;
7311 		int i;
7312 
7313 		meta = btf_find_struct_meta(btf, id);
7314 		if (!meta)
7315 			break;
7316 		rec = meta->record;
7317 		for (i = 0; i < rec->cnt; i++) {
7318 			struct btf_field *field = &rec->fields[i];
7319 			u32 offset = field->offset;
7320 			if (off < offset + field->size && offset < off + size) {
7321 				bpf_log(log,
7322 					"direct access to %s is disallowed\n",
7323 					btf_field_type_name(field->type));
7324 				return -EACCES;
7325 			}
7326 		}
7327 		break;
7328 	}
7329 
7330 	t = btf_type_by_id(btf, id);
7331 	do {
7332 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7333 
7334 		switch (err) {
7335 		case WALK_PTR:
7336 			/* For local types, the destination register cannot
7337 			 * become a pointer again.
7338 			 */
7339 			if (type_is_alloc(reg->type))
7340 				return SCALAR_VALUE;
7341 			/* If we found the pointer or scalar on t+off,
7342 			 * we're done.
7343 			 */
7344 			*next_btf_id = id;
7345 			*flag = tmp_flag;
7346 			return PTR_TO_BTF_ID;
7347 		case WALK_PTR_UNTRUSTED:
7348 			*flag = MEM_RDONLY | PTR_UNTRUSTED;
7349 			return PTR_TO_MEM;
7350 		case WALK_SCALAR:
7351 			return SCALAR_VALUE;
7352 		case WALK_STRUCT:
7353 			/* We found nested struct, so continue the search
7354 			 * by diving in it. At this point the offset is
7355 			 * aligned with the new type, so set it to 0.
7356 			 */
7357 			t = btf_type_by_id(btf, id);
7358 			off = 0;
7359 			break;
7360 		default:
7361 			/* It's either error or unknown return value..
7362 			 * scream and leave.
7363 			 */
7364 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7365 				return -EINVAL;
7366 			return err;
7367 		}
7368 	} while (t);
7369 
7370 	return -EINVAL;
7371 }
7372 
7373 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7374  * the same. Trivial ID check is not enough due to module BTFs, because we can
7375  * end up with two different module BTFs, but IDs point to the common type in
7376  * vmlinux BTF.
7377  */
7378 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7379 			const struct btf *btf2, u32 id2)
7380 {
7381 	if (id1 != id2)
7382 		return false;
7383 	if (btf1 == btf2)
7384 		return true;
7385 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7386 }
7387 
7388 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7389 			  const struct btf *btf, u32 id, int off,
7390 			  const struct btf *need_btf, u32 need_type_id,
7391 			  bool strict)
7392 {
7393 	const struct btf_type *type;
7394 	enum bpf_type_flag flag = 0;
7395 	int err;
7396 
7397 	/* Are we already done? */
7398 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7399 		return true;
7400 	/* In case of strict type match, we do not walk struct, the top level
7401 	 * type match must succeed. When strict is true, off should have already
7402 	 * been 0.
7403 	 */
7404 	if (strict)
7405 		return false;
7406 again:
7407 	type = btf_type_by_id(btf, id);
7408 	if (!type)
7409 		return false;
7410 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7411 	if (err != WALK_STRUCT)
7412 		return false;
7413 
7414 	/* We found nested struct object. If it matches
7415 	 * the requested ID, we're done. Otherwise let's
7416 	 * continue the search with offset 0 in the new
7417 	 * type.
7418 	 */
7419 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7420 		off = 0;
7421 		goto again;
7422 	}
7423 
7424 	return true;
7425 }
7426 
7427 static int __get_type_size(struct btf *btf, u32 btf_id,
7428 			   const struct btf_type **ret_type)
7429 {
7430 	const struct btf_type *t;
7431 
7432 	*ret_type = btf_type_by_id(btf, 0);
7433 	if (!btf_id)
7434 		/* void */
7435 		return 0;
7436 	t = btf_type_by_id(btf, btf_id);
7437 	while (t && btf_type_is_modifier(t))
7438 		t = btf_type_by_id(btf, t->type);
7439 	if (!t)
7440 		return -EINVAL;
7441 	*ret_type = t;
7442 	if (btf_type_is_ptr(t))
7443 		/* kernel size of pointer. Not BPF's size of pointer*/
7444 		return sizeof(void *);
7445 	if (btf_type_is_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t))
7446 		return t->size;
7447 	return -EINVAL;
7448 }
7449 
7450 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7451 {
7452 	u8 flags = 0;
7453 
7454 	if (btf_type_is_struct(t))
7455 		flags |= BTF_FMODEL_STRUCT_ARG;
7456 	if (btf_type_is_signed_int(t))
7457 		flags |= BTF_FMODEL_SIGNED_ARG;
7458 
7459 	return flags;
7460 }
7461 
7462 int btf_distill_func_proto(struct bpf_verifier_log *log,
7463 			   struct btf *btf,
7464 			   const struct btf_type *func,
7465 			   const char *tname,
7466 			   struct btf_func_model *m)
7467 {
7468 	const struct btf_param *args;
7469 	const struct btf_type *t;
7470 	u32 i, nargs;
7471 	int ret;
7472 
7473 	if (!func) {
7474 		/* BTF function prototype doesn't match the verifier types.
7475 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7476 		 */
7477 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7478 			m->arg_size[i] = 8;
7479 			m->arg_flags[i] = 0;
7480 		}
7481 		m->ret_size = 8;
7482 		m->ret_flags = 0;
7483 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7484 		return 0;
7485 	}
7486 	args = (const struct btf_param *)(func + 1);
7487 	nargs = btf_type_vlen(func);
7488 	if (nargs > MAX_BPF_FUNC_ARGS) {
7489 		bpf_log(log,
7490 			"The function %s has %d arguments. Too many.\n",
7491 			tname, nargs);
7492 		return -EINVAL;
7493 	}
7494 	ret = __get_type_size(btf, func->type, &t);
7495 	if (ret < 0 || btf_type_is_struct(t)) {
7496 		bpf_log(log,
7497 			"The function %s return type %s is unsupported.\n",
7498 			tname, btf_type_str(t));
7499 		return -EINVAL;
7500 	}
7501 	m->ret_size = ret;
7502 	m->ret_flags = __get_type_fmodel_flags(t);
7503 
7504 	for (i = 0; i < nargs; i++) {
7505 		if (i == nargs - 1 && args[i].type == 0) {
7506 			bpf_log(log,
7507 				"The function %s with variable args is unsupported.\n",
7508 				tname);
7509 			return -EINVAL;
7510 		}
7511 		ret = __get_type_size(btf, args[i].type, &t);
7512 
7513 		/* No support of struct argument size greater than 16 bytes */
7514 		if (ret < 0 || ret > 16) {
7515 			bpf_log(log,
7516 				"The function %s arg%d type %s is unsupported.\n",
7517 				tname, i, btf_type_str(t));
7518 			return -EINVAL;
7519 		}
7520 		if (ret == 0) {
7521 			bpf_log(log,
7522 				"The function %s has malformed void argument.\n",
7523 				tname);
7524 			return -EINVAL;
7525 		}
7526 		m->arg_size[i] = ret;
7527 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7528 	}
7529 	m->nr_args = nargs;
7530 	return 0;
7531 }
7532 
7533 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7534  * t1 points to BTF_KIND_FUNC in btf1
7535  * t2 points to BTF_KIND_FUNC in btf2
7536  * Returns:
7537  * EINVAL - function prototype mismatch
7538  * EFAULT - verifier bug
7539  * 0 - 99% match. The last 1% is validated by the verifier.
7540  */
7541 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7542 				     struct btf *btf1, const struct btf_type *t1,
7543 				     struct btf *btf2, const struct btf_type *t2)
7544 {
7545 	const struct btf_param *args1, *args2;
7546 	const char *fn1, *fn2, *s1, *s2;
7547 	u32 nargs1, nargs2, i;
7548 
7549 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7550 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7551 
7552 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7553 		bpf_log(log, "%s() is not a global function\n", fn1);
7554 		return -EINVAL;
7555 	}
7556 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7557 		bpf_log(log, "%s() is not a global function\n", fn2);
7558 		return -EINVAL;
7559 	}
7560 
7561 	t1 = btf_type_by_id(btf1, t1->type);
7562 	if (!t1 || !btf_type_is_func_proto(t1))
7563 		return -EFAULT;
7564 	t2 = btf_type_by_id(btf2, t2->type);
7565 	if (!t2 || !btf_type_is_func_proto(t2))
7566 		return -EFAULT;
7567 
7568 	args1 = (const struct btf_param *)(t1 + 1);
7569 	nargs1 = btf_type_vlen(t1);
7570 	args2 = (const struct btf_param *)(t2 + 1);
7571 	nargs2 = btf_type_vlen(t2);
7572 
7573 	if (nargs1 != nargs2) {
7574 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7575 			fn1, nargs1, fn2, nargs2);
7576 		return -EINVAL;
7577 	}
7578 
7579 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7580 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7581 	if (t1->info != t2->info) {
7582 		bpf_log(log,
7583 			"Return type %s of %s() doesn't match type %s of %s()\n",
7584 			btf_type_str(t1), fn1,
7585 			btf_type_str(t2), fn2);
7586 		return -EINVAL;
7587 	}
7588 
7589 	for (i = 0; i < nargs1; i++) {
7590 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7591 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7592 
7593 		if (t1->info != t2->info) {
7594 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7595 				i, fn1, btf_type_str(t1),
7596 				fn2, btf_type_str(t2));
7597 			return -EINVAL;
7598 		}
7599 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7600 			bpf_log(log,
7601 				"arg%d in %s() has size %d while %s() has %d\n",
7602 				i, fn1, t1->size,
7603 				fn2, t2->size);
7604 			return -EINVAL;
7605 		}
7606 
7607 		/* global functions are validated with scalars and pointers
7608 		 * to context only. And only global functions can be replaced.
7609 		 * Hence type check only those types.
7610 		 */
7611 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7612 			continue;
7613 		if (!btf_type_is_ptr(t1)) {
7614 			bpf_log(log,
7615 				"arg%d in %s() has unrecognized type\n",
7616 				i, fn1);
7617 			return -EINVAL;
7618 		}
7619 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7620 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7621 		if (!btf_type_is_struct(t1)) {
7622 			bpf_log(log,
7623 				"arg%d in %s() is not a pointer to context\n",
7624 				i, fn1);
7625 			return -EINVAL;
7626 		}
7627 		if (!btf_type_is_struct(t2)) {
7628 			bpf_log(log,
7629 				"arg%d in %s() is not a pointer to context\n",
7630 				i, fn2);
7631 			return -EINVAL;
7632 		}
7633 		/* This is an optional check to make program writing easier.
7634 		 * Compare names of structs and report an error to the user.
7635 		 * btf_prepare_func_args() already checked that t2 struct
7636 		 * is a context type. btf_prepare_func_args() will check
7637 		 * later that t1 struct is a context type as well.
7638 		 */
7639 		s1 = btf_name_by_offset(btf1, t1->name_off);
7640 		s2 = btf_name_by_offset(btf2, t2->name_off);
7641 		if (strcmp(s1, s2)) {
7642 			bpf_log(log,
7643 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7644 				i, fn1, s1, fn2, s2);
7645 			return -EINVAL;
7646 		}
7647 	}
7648 	return 0;
7649 }
7650 
7651 /* Compare BTFs of given program with BTF of target program */
7652 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7653 			 struct btf *btf2, const struct btf_type *t2)
7654 {
7655 	struct btf *btf1 = prog->aux->btf;
7656 	const struct btf_type *t1;
7657 	u32 btf_id = 0;
7658 
7659 	if (!prog->aux->func_info) {
7660 		bpf_log(log, "Program extension requires BTF\n");
7661 		return -EINVAL;
7662 	}
7663 
7664 	btf_id = prog->aux->func_info[0].type_id;
7665 	if (!btf_id)
7666 		return -EFAULT;
7667 
7668 	t1 = btf_type_by_id(btf1, btf_id);
7669 	if (!t1 || !btf_type_is_func(t1))
7670 		return -EFAULT;
7671 
7672 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7673 }
7674 
7675 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7676 {
7677 	const char *name;
7678 
7679 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7680 
7681 	while (btf_type_is_modifier(t))
7682 		t = btf_type_by_id(btf, t->type);
7683 
7684 	/* allow either struct or struct forward declaration */
7685 	if (btf_type_is_struct(t) ||
7686 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7687 		name = btf_str_by_offset(btf, t->name_off);
7688 		return name && strcmp(name, "bpf_dynptr") == 0;
7689 	}
7690 
7691 	return false;
7692 }
7693 
7694 struct bpf_cand_cache {
7695 	const char *name;
7696 	u32 name_len;
7697 	u16 kind;
7698 	u16 cnt;
7699 	struct {
7700 		const struct btf *btf;
7701 		u32 id;
7702 	} cands[];
7703 };
7704 
7705 static DEFINE_MUTEX(cand_cache_mutex);
7706 
7707 static struct bpf_cand_cache *
7708 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7709 
7710 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7711 				 const struct btf *btf, const struct btf_type *t)
7712 {
7713 	struct bpf_cand_cache *cc;
7714 	struct bpf_core_ctx ctx = {
7715 		.btf = btf,
7716 		.log = log,
7717 	};
7718 	u32 kern_type_id, type_id;
7719 	int err = 0;
7720 
7721 	/* skip PTR and modifiers */
7722 	type_id = t->type;
7723 	t = btf_type_by_id(btf, t->type);
7724 	while (btf_type_is_modifier(t)) {
7725 		type_id = t->type;
7726 		t = btf_type_by_id(btf, t->type);
7727 	}
7728 
7729 	mutex_lock(&cand_cache_mutex);
7730 	cc = bpf_core_find_cands(&ctx, type_id);
7731 	if (IS_ERR(cc)) {
7732 		err = PTR_ERR(cc);
7733 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7734 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7735 			err);
7736 		goto cand_cache_unlock;
7737 	}
7738 	if (cc->cnt != 1) {
7739 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7740 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7741 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7742 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7743 		goto cand_cache_unlock;
7744 	}
7745 	if (btf_is_module(cc->cands[0].btf)) {
7746 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7747 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7748 		err = -EOPNOTSUPP;
7749 		goto cand_cache_unlock;
7750 	}
7751 	kern_type_id = cc->cands[0].id;
7752 
7753 cand_cache_unlock:
7754 	mutex_unlock(&cand_cache_mutex);
7755 	if (err)
7756 		return err;
7757 
7758 	return kern_type_id;
7759 }
7760 
7761 enum btf_arg_tag {
7762 	ARG_TAG_CTX	  = BIT_ULL(0),
7763 	ARG_TAG_NONNULL   = BIT_ULL(1),
7764 	ARG_TAG_TRUSTED   = BIT_ULL(2),
7765 	ARG_TAG_UNTRUSTED = BIT_ULL(3),
7766 	ARG_TAG_NULLABLE  = BIT_ULL(4),
7767 	ARG_TAG_ARENA	  = BIT_ULL(5),
7768 };
7769 
7770 /* Process BTF of a function to produce high-level expectation of function
7771  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7772  * is cached in subprog info for reuse.
7773  * Returns:
7774  * EFAULT - there is a verifier bug. Abort verification.
7775  * EINVAL - cannot convert BTF.
7776  * 0 - Successfully processed BTF and constructed argument expectations.
7777  */
7778 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7779 {
7780 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7781 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7782 	struct bpf_verifier_log *log = &env->log;
7783 	struct bpf_prog *prog = env->prog;
7784 	enum bpf_prog_type prog_type = prog->type;
7785 	struct btf *btf = prog->aux->btf;
7786 	const struct btf_param *args;
7787 	const struct btf_type *t, *ref_t, *fn_t;
7788 	u32 i, nargs, btf_id;
7789 	const char *tname;
7790 
7791 	if (sub->args_cached)
7792 		return 0;
7793 
7794 	if (!prog->aux->func_info) {
7795 		verifier_bug(env, "func_info undefined");
7796 		return -EFAULT;
7797 	}
7798 
7799 	btf_id = prog->aux->func_info[subprog].type_id;
7800 	if (!btf_id) {
7801 		if (!is_global) /* not fatal for static funcs */
7802 			return -EINVAL;
7803 		bpf_log(log, "Global functions need valid BTF\n");
7804 		return -EFAULT;
7805 	}
7806 
7807 	fn_t = btf_type_by_id(btf, btf_id);
7808 	if (!fn_t || !btf_type_is_func(fn_t)) {
7809 		/* These checks were already done by the verifier while loading
7810 		 * struct bpf_func_info
7811 		 */
7812 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7813 			subprog);
7814 		return -EFAULT;
7815 	}
7816 	tname = btf_name_by_offset(btf, fn_t->name_off);
7817 
7818 	if (prog->aux->func_info_aux[subprog].unreliable) {
7819 		verifier_bug(env, "unreliable BTF for function %s()", tname);
7820 		return -EFAULT;
7821 	}
7822 	if (prog_type == BPF_PROG_TYPE_EXT)
7823 		prog_type = prog->aux->dst_prog->type;
7824 
7825 	t = btf_type_by_id(btf, fn_t->type);
7826 	if (!t || !btf_type_is_func_proto(t)) {
7827 		bpf_log(log, "Invalid type of function %s()\n", tname);
7828 		return -EFAULT;
7829 	}
7830 	args = (const struct btf_param *)(t + 1);
7831 	nargs = btf_type_vlen(t);
7832 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7833 		if (!is_global)
7834 			return -EINVAL;
7835 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7836 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7837 		return -EINVAL;
7838 	}
7839 	/* check that function returns int, exception cb also requires this */
7840 	t = btf_type_by_id(btf, t->type);
7841 	while (btf_type_is_modifier(t))
7842 		t = btf_type_by_id(btf, t->type);
7843 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7844 		if (!is_global)
7845 			return -EINVAL;
7846 		bpf_log(log,
7847 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7848 			tname);
7849 		return -EINVAL;
7850 	}
7851 
7852 	/* Convert BTF function arguments into verifier types.
7853 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7854 	 */
7855 	for (i = 0; i < nargs; i++) {
7856 		u32 tags = 0;
7857 		int id = btf_named_start_id(btf, false) - 1;
7858 
7859 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7860 		 * register type from BTF type itself
7861 		 */
7862 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7863 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7864 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7865 
7866 			/* disallow arg tags in static subprogs */
7867 			if (!is_global) {
7868 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7869 				return -EOPNOTSUPP;
7870 			}
7871 
7872 			if (strcmp(tag, "ctx") == 0) {
7873 				tags |= ARG_TAG_CTX;
7874 			} else if (strcmp(tag, "trusted") == 0) {
7875 				tags |= ARG_TAG_TRUSTED;
7876 			} else if (strcmp(tag, "untrusted") == 0) {
7877 				tags |= ARG_TAG_UNTRUSTED;
7878 			} else if (strcmp(tag, "nonnull") == 0) {
7879 				tags |= ARG_TAG_NONNULL;
7880 			} else if (strcmp(tag, "nullable") == 0) {
7881 				tags |= ARG_TAG_NULLABLE;
7882 			} else if (strcmp(tag, "arena") == 0) {
7883 				tags |= ARG_TAG_ARENA;
7884 			} else {
7885 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7886 				return -EOPNOTSUPP;
7887 			}
7888 		}
7889 		if (id != -ENOENT) {
7890 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7891 			return id;
7892 		}
7893 
7894 		t = btf_type_by_id(btf, args[i].type);
7895 		while (btf_type_is_modifier(t))
7896 			t = btf_type_by_id(btf, t->type);
7897 		if (!btf_type_is_ptr(t))
7898 			goto skip_pointer;
7899 
7900 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7901 			if (tags & ~ARG_TAG_CTX) {
7902 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7903 				return -EINVAL;
7904 			}
7905 			if ((tags & ARG_TAG_CTX) &&
7906 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7907 						       prog->expected_attach_type))
7908 				return -EINVAL;
7909 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7910 			continue;
7911 		}
7912 		if (btf_is_dynptr_ptr(btf, t)) {
7913 			if (tags) {
7914 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7915 				return -EINVAL;
7916 			}
7917 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7918 			continue;
7919 		}
7920 		if (tags & ARG_TAG_TRUSTED) {
7921 			int kern_type_id;
7922 
7923 			if (tags & ARG_TAG_NONNULL) {
7924 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7925 				return -EINVAL;
7926 			}
7927 
7928 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7929 			if (kern_type_id < 0)
7930 				return kern_type_id;
7931 
7932 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7933 			if (tags & ARG_TAG_NULLABLE)
7934 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7935 			sub->args[i].btf_id = kern_type_id;
7936 			continue;
7937 		}
7938 		if (tags & ARG_TAG_UNTRUSTED) {
7939 			struct btf *vmlinux_btf;
7940 			int kern_type_id;
7941 
7942 			if (tags & ~ARG_TAG_UNTRUSTED) {
7943 				bpf_log(log, "arg#%d untrusted cannot be combined with any other tags\n", i);
7944 				return -EINVAL;
7945 			}
7946 
7947 			ref_t = btf_type_skip_modifiers(btf, t->type, NULL);
7948 			if (btf_type_is_void(ref_t) || btf_type_is_primitive(ref_t)) {
7949 				sub->args[i].arg_type = ARG_PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
7950 				sub->args[i].mem_size = 0;
7951 				continue;
7952 			}
7953 
7954 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7955 			if (kern_type_id < 0)
7956 				return kern_type_id;
7957 
7958 			vmlinux_btf = bpf_get_btf_vmlinux();
7959 			ref_t = btf_type_by_id(vmlinux_btf, kern_type_id);
7960 			if (!btf_type_is_struct(ref_t)) {
7961 				tname = __btf_name_by_offset(vmlinux_btf, t->name_off);
7962 				bpf_log(log, "arg#%d has type %s '%s', but only struct or primitive types are allowed\n",
7963 					i, btf_type_str(ref_t), tname);
7964 				return -EINVAL;
7965 			}
7966 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_UNTRUSTED;
7967 			sub->args[i].btf_id = kern_type_id;
7968 			continue;
7969 		}
7970 		if (tags & ARG_TAG_ARENA) {
7971 			if (tags & ~ARG_TAG_ARENA) {
7972 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7973 				return -EINVAL;
7974 			}
7975 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7976 			continue;
7977 		}
7978 		if (is_global) { /* generic user data pointer */
7979 			u32 mem_size;
7980 
7981 			if (tags & ARG_TAG_NULLABLE) {
7982 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7983 				return -EINVAL;
7984 			}
7985 
7986 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7987 			ref_t = btf_resolve_size(btf, t, &mem_size);
7988 			if (IS_ERR(ref_t)) {
7989 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7990 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7991 					PTR_ERR(ref_t));
7992 				return -EINVAL;
7993 			}
7994 
7995 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7996 			if (tags & ARG_TAG_NONNULL)
7997 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7998 			sub->args[i].mem_size = mem_size;
7999 			continue;
8000 		}
8001 
8002 skip_pointer:
8003 		if (tags) {
8004 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
8005 			return -EINVAL;
8006 		}
8007 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
8008 			sub->args[i].arg_type = ARG_ANYTHING;
8009 			continue;
8010 		}
8011 		if (!is_global)
8012 			return -EINVAL;
8013 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
8014 			i, btf_type_str(t), tname);
8015 		return -EINVAL;
8016 	}
8017 
8018 	sub->arg_cnt = nargs;
8019 	sub->args_cached = true;
8020 
8021 	return 0;
8022 }
8023 
8024 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
8025 			  struct btf_show *show)
8026 {
8027 	const struct btf_type *t = btf_type_by_id(btf, type_id);
8028 
8029 	show->btf = btf;
8030 	memset(&show->state, 0, sizeof(show->state));
8031 	memset(&show->obj, 0, sizeof(show->obj));
8032 
8033 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
8034 }
8035 
8036 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
8037 					va_list args)
8038 {
8039 	seq_vprintf((struct seq_file *)show->target, fmt, args);
8040 }
8041 
8042 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
8043 			    void *obj, struct seq_file *m, u64 flags)
8044 {
8045 	struct btf_show sseq;
8046 
8047 	sseq.target = m;
8048 	sseq.showfn = btf_seq_show;
8049 	sseq.flags = flags;
8050 
8051 	btf_type_show(btf, type_id, obj, &sseq);
8052 
8053 	return sseq.state.status;
8054 }
8055 
8056 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
8057 		       struct seq_file *m)
8058 {
8059 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
8060 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
8061 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
8062 }
8063 
8064 struct btf_show_snprintf {
8065 	struct btf_show show;
8066 	int len_left;		/* space left in string */
8067 	int len;		/* length we would have written */
8068 };
8069 
8070 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
8071 					     va_list args)
8072 {
8073 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
8074 	int len;
8075 
8076 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
8077 
8078 	if (len < 0) {
8079 		ssnprintf->len_left = 0;
8080 		ssnprintf->len = len;
8081 	} else if (len >= ssnprintf->len_left) {
8082 		/* no space, drive on to get length we would have written */
8083 		ssnprintf->len_left = 0;
8084 		ssnprintf->len += len;
8085 	} else {
8086 		ssnprintf->len_left -= len;
8087 		ssnprintf->len += len;
8088 		show->target += len;
8089 	}
8090 }
8091 
8092 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
8093 			   char *buf, int len, u64 flags)
8094 {
8095 	struct btf_show_snprintf ssnprintf;
8096 
8097 	ssnprintf.show.target = buf;
8098 	ssnprintf.show.flags = flags;
8099 	ssnprintf.show.showfn = btf_snprintf_show;
8100 	ssnprintf.len_left = len;
8101 	ssnprintf.len = 0;
8102 
8103 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
8104 
8105 	/* If we encountered an error, return it. */
8106 	if (ssnprintf.show.state.status)
8107 		return ssnprintf.show.state.status;
8108 
8109 	/* Otherwise return length we would have written */
8110 	return ssnprintf.len;
8111 }
8112 
8113 #ifdef CONFIG_PROC_FS
8114 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
8115 {
8116 	const struct btf *btf = filp->private_data;
8117 
8118 	seq_printf(m, "btf_id:\t%u\n", btf->id);
8119 }
8120 #endif
8121 
8122 static int btf_release(struct inode *inode, struct file *filp)
8123 {
8124 	btf_put(filp->private_data);
8125 	return 0;
8126 }
8127 
8128 const struct file_operations btf_fops = {
8129 #ifdef CONFIG_PROC_FS
8130 	.show_fdinfo	= bpf_btf_show_fdinfo,
8131 #endif
8132 	.release	= btf_release,
8133 };
8134 
8135 static int __btf_new_fd(struct btf *btf)
8136 {
8137 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
8138 }
8139 
8140 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
8141 {
8142 	struct btf *btf;
8143 	int ret;
8144 
8145 	btf = btf_parse(attr, uattr, uattr_size);
8146 	if (IS_ERR(btf))
8147 		return PTR_ERR(btf);
8148 
8149 	ret = btf_alloc_id(btf);
8150 	if (ret) {
8151 		btf_free(btf);
8152 		return ret;
8153 	}
8154 
8155 	/*
8156 	 * The BTF ID is published to the userspace.
8157 	 * All BTF free must go through call_rcu() from
8158 	 * now on (i.e. free by calling btf_put()).
8159 	 */
8160 
8161 	ret = __btf_new_fd(btf);
8162 	if (ret < 0)
8163 		btf_put(btf);
8164 
8165 	return ret;
8166 }
8167 
8168 struct btf *btf_get_by_fd(int fd)
8169 {
8170 	struct btf *btf;
8171 	CLASS(fd, f)(fd);
8172 
8173 	btf = __btf_get_by_fd(f);
8174 	if (!IS_ERR(btf))
8175 		refcount_inc(&btf->refcnt);
8176 
8177 	return btf;
8178 }
8179 
8180 int btf_get_info_by_fd(const struct btf *btf,
8181 		       const union bpf_attr *attr,
8182 		       union bpf_attr __user *uattr)
8183 {
8184 	struct bpf_btf_info __user *uinfo;
8185 	struct bpf_btf_info info;
8186 	u32 info_copy, btf_copy;
8187 	void __user *ubtf;
8188 	char __user *uname;
8189 	u32 uinfo_len, uname_len, name_len;
8190 	int ret = 0;
8191 
8192 	uinfo = u64_to_user_ptr(attr->info.info);
8193 	uinfo_len = attr->info.info_len;
8194 
8195 	info_copy = min_t(u32, uinfo_len, sizeof(info));
8196 	memset(&info, 0, sizeof(info));
8197 	if (copy_from_user(&info, uinfo, info_copy))
8198 		return -EFAULT;
8199 
8200 	info.id = btf->id;
8201 	ubtf = u64_to_user_ptr(info.btf);
8202 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
8203 	if (copy_to_user(ubtf, btf->data, btf_copy))
8204 		return -EFAULT;
8205 	info.btf_size = btf->data_size;
8206 
8207 	info.kernel_btf = btf->kernel_btf;
8208 
8209 	uname = u64_to_user_ptr(info.name);
8210 	uname_len = info.name_len;
8211 	if (!uname ^ !uname_len)
8212 		return -EINVAL;
8213 
8214 	name_len = strlen(btf->name);
8215 	info.name_len = name_len;
8216 
8217 	if (uname) {
8218 		if (uname_len >= name_len + 1) {
8219 			if (copy_to_user(uname, btf->name, name_len + 1))
8220 				return -EFAULT;
8221 		} else {
8222 			char zero = '\0';
8223 
8224 			if (copy_to_user(uname, btf->name, uname_len - 1))
8225 				return -EFAULT;
8226 			if (put_user(zero, uname + uname_len - 1))
8227 				return -EFAULT;
8228 			/* let user-space know about too short buffer */
8229 			ret = -ENOSPC;
8230 		}
8231 	}
8232 
8233 	if (copy_to_user(uinfo, &info, info_copy) ||
8234 	    put_user(info_copy, &uattr->info.info_len))
8235 		return -EFAULT;
8236 
8237 	return ret;
8238 }
8239 
8240 int btf_get_fd_by_id(u32 id)
8241 {
8242 	struct btf *btf;
8243 	int fd;
8244 
8245 	rcu_read_lock();
8246 	btf = idr_find(&btf_idr, id);
8247 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
8248 		btf = ERR_PTR(-ENOENT);
8249 	rcu_read_unlock();
8250 
8251 	if (IS_ERR(btf))
8252 		return PTR_ERR(btf);
8253 
8254 	fd = __btf_new_fd(btf);
8255 	if (fd < 0)
8256 		btf_put(btf);
8257 
8258 	return fd;
8259 }
8260 
8261 u32 btf_obj_id(const struct btf *btf)
8262 {
8263 	return btf->id;
8264 }
8265 
8266 bool btf_is_kernel(const struct btf *btf)
8267 {
8268 	return btf->kernel_btf;
8269 }
8270 
8271 bool btf_is_module(const struct btf *btf)
8272 {
8273 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
8274 }
8275 
8276 enum {
8277 	BTF_MODULE_F_LIVE = (1 << 0),
8278 };
8279 
8280 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8281 struct btf_module {
8282 	struct list_head list;
8283 	struct module *module;
8284 	struct btf *btf;
8285 	struct bin_attribute *sysfs_attr;
8286 	int flags;
8287 };
8288 
8289 static LIST_HEAD(btf_modules);
8290 static DEFINE_MUTEX(btf_module_mutex);
8291 
8292 static void purge_cand_cache(struct btf *btf);
8293 
8294 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8295 			     void *module)
8296 {
8297 	struct btf_module *btf_mod, *tmp;
8298 	struct module *mod = module;
8299 	struct btf *btf;
8300 	int err = 0;
8301 
8302 	if (mod->btf_data_size == 0 ||
8303 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8304 	     op != MODULE_STATE_GOING))
8305 		goto out;
8306 
8307 	switch (op) {
8308 	case MODULE_STATE_COMING:
8309 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8310 		if (!btf_mod) {
8311 			err = -ENOMEM;
8312 			goto out;
8313 		}
8314 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8315 				       mod->btf_base_data, mod->btf_base_data_size);
8316 		if (IS_ERR(btf)) {
8317 			kfree(btf_mod);
8318 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8319 				pr_warn("failed to validate module [%s] BTF: %ld\n",
8320 					mod->name, PTR_ERR(btf));
8321 				err = PTR_ERR(btf);
8322 			} else {
8323 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8324 			}
8325 			goto out;
8326 		}
8327 		err = btf_alloc_id(btf);
8328 		if (err) {
8329 			btf_free(btf);
8330 			kfree(btf_mod);
8331 			goto out;
8332 		}
8333 
8334 		purge_cand_cache(NULL);
8335 		mutex_lock(&btf_module_mutex);
8336 		btf_mod->module = module;
8337 		btf_mod->btf = btf;
8338 		list_add(&btf_mod->list, &btf_modules);
8339 		mutex_unlock(&btf_module_mutex);
8340 
8341 		if (IS_ENABLED(CONFIG_SYSFS)) {
8342 			struct bin_attribute *attr;
8343 
8344 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8345 			if (!attr)
8346 				goto out;
8347 
8348 			sysfs_bin_attr_init(attr);
8349 			attr->attr.name = btf->name;
8350 			attr->attr.mode = 0444;
8351 			attr->size = btf->data_size;
8352 			attr->private = btf->data;
8353 			attr->read = sysfs_bin_attr_simple_read;
8354 
8355 			err = sysfs_create_bin_file(btf_kobj, attr);
8356 			if (err) {
8357 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8358 					mod->name, err);
8359 				kfree(attr);
8360 				err = 0;
8361 				goto out;
8362 			}
8363 
8364 			btf_mod->sysfs_attr = attr;
8365 		}
8366 
8367 		break;
8368 	case MODULE_STATE_LIVE:
8369 		mutex_lock(&btf_module_mutex);
8370 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8371 			if (btf_mod->module != module)
8372 				continue;
8373 
8374 			btf_mod->flags |= BTF_MODULE_F_LIVE;
8375 			break;
8376 		}
8377 		mutex_unlock(&btf_module_mutex);
8378 		break;
8379 	case MODULE_STATE_GOING:
8380 		mutex_lock(&btf_module_mutex);
8381 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8382 			if (btf_mod->module != module)
8383 				continue;
8384 
8385 			list_del(&btf_mod->list);
8386 			if (btf_mod->sysfs_attr)
8387 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8388 			purge_cand_cache(btf_mod->btf);
8389 			btf_put(btf_mod->btf);
8390 			kfree(btf_mod->sysfs_attr);
8391 			kfree(btf_mod);
8392 			break;
8393 		}
8394 		mutex_unlock(&btf_module_mutex);
8395 		break;
8396 	}
8397 out:
8398 	return notifier_from_errno(err);
8399 }
8400 
8401 static struct notifier_block btf_module_nb = {
8402 	.notifier_call = btf_module_notify,
8403 };
8404 
8405 static int __init btf_module_init(void)
8406 {
8407 	register_module_notifier(&btf_module_nb);
8408 	return 0;
8409 }
8410 
8411 fs_initcall(btf_module_init);
8412 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8413 
8414 struct module *btf_try_get_module(const struct btf *btf)
8415 {
8416 	struct module *res = NULL;
8417 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8418 	struct btf_module *btf_mod, *tmp;
8419 
8420 	mutex_lock(&btf_module_mutex);
8421 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8422 		if (btf_mod->btf != btf)
8423 			continue;
8424 
8425 		/* We must only consider module whose __init routine has
8426 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8427 		 * which is set from the notifier callback for
8428 		 * MODULE_STATE_LIVE.
8429 		 */
8430 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8431 			res = btf_mod->module;
8432 
8433 		break;
8434 	}
8435 	mutex_unlock(&btf_module_mutex);
8436 #endif
8437 
8438 	return res;
8439 }
8440 
8441 /* Returns struct btf corresponding to the struct module.
8442  * This function can return NULL or ERR_PTR.
8443  */
8444 static struct btf *btf_get_module_btf(const struct module *module)
8445 {
8446 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8447 	struct btf_module *btf_mod, *tmp;
8448 #endif
8449 	struct btf *btf = NULL;
8450 
8451 	if (!module) {
8452 		btf = bpf_get_btf_vmlinux();
8453 		if (!IS_ERR_OR_NULL(btf))
8454 			btf_get(btf);
8455 		return btf;
8456 	}
8457 
8458 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8459 	mutex_lock(&btf_module_mutex);
8460 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8461 		if (btf_mod->module != module)
8462 			continue;
8463 
8464 		btf_get(btf_mod->btf);
8465 		btf = btf_mod->btf;
8466 		break;
8467 	}
8468 	mutex_unlock(&btf_module_mutex);
8469 #endif
8470 
8471 	return btf;
8472 }
8473 
8474 static int check_btf_kconfigs(const struct module *module, const char *feature)
8475 {
8476 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8477 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8478 		return -ENOENT;
8479 	}
8480 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8481 		pr_warn("missing module BTF, cannot register %s\n", feature);
8482 	return 0;
8483 }
8484 
8485 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8486 {
8487 	struct btf *btf = NULL;
8488 	int btf_obj_fd = 0;
8489 	long ret;
8490 
8491 	if (flags)
8492 		return -EINVAL;
8493 
8494 	if (name_sz <= 1 || name[name_sz - 1])
8495 		return -EINVAL;
8496 
8497 	ret = bpf_find_btf_id(name, kind, &btf);
8498 	if (ret > 0 && btf_is_module(btf)) {
8499 		btf_obj_fd = __btf_new_fd(btf);
8500 		if (btf_obj_fd < 0) {
8501 			btf_put(btf);
8502 			return btf_obj_fd;
8503 		}
8504 		return ret | (((u64)btf_obj_fd) << 32);
8505 	}
8506 	if (ret > 0)
8507 		btf_put(btf);
8508 	return ret;
8509 }
8510 
8511 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8512 	.func		= bpf_btf_find_by_name_kind,
8513 	.gpl_only	= false,
8514 	.ret_type	= RET_INTEGER,
8515 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8516 	.arg2_type	= ARG_CONST_SIZE,
8517 	.arg3_type	= ARG_ANYTHING,
8518 	.arg4_type	= ARG_ANYTHING,
8519 };
8520 
8521 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8522 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8523 BTF_TRACING_TYPE_xxx
8524 #undef BTF_TRACING_TYPE
8525 
8526 /* Validate well-formedness of iter argument type.
8527  * On success, return positive BTF ID of iter state's STRUCT type.
8528  * On error, negative error is returned.
8529  */
8530 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8531 {
8532 	const struct btf_param *arg;
8533 	const struct btf_type *t;
8534 	const char *name;
8535 	int btf_id;
8536 
8537 	if (btf_type_vlen(func) <= arg_idx)
8538 		return -EINVAL;
8539 
8540 	arg = &btf_params(func)[arg_idx];
8541 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8542 	if (!t || !btf_type_is_ptr(t))
8543 		return -EINVAL;
8544 	t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8545 	if (!t || !__btf_type_is_struct(t))
8546 		return -EINVAL;
8547 
8548 	name = btf_name_by_offset(btf, t->name_off);
8549 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8550 		return -EINVAL;
8551 
8552 	return btf_id;
8553 }
8554 
8555 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8556 				 const struct btf_type *func, u32 func_flags)
8557 {
8558 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8559 	const char *sfx, *iter_name;
8560 	const struct btf_type *t;
8561 	char exp_name[128];
8562 	u32 nr_args;
8563 	int btf_id;
8564 
8565 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8566 	if (!flags || (flags & (flags - 1)))
8567 		return -EINVAL;
8568 
8569 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8570 	nr_args = btf_type_vlen(func);
8571 	if (nr_args < 1)
8572 		return -EINVAL;
8573 
8574 	btf_id = btf_check_iter_arg(btf, func, 0);
8575 	if (btf_id < 0)
8576 		return btf_id;
8577 
8578 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8579 	 * fit nicely in stack slots
8580 	 */
8581 	t = btf_type_by_id(btf, btf_id);
8582 	if (t->size == 0 || (t->size % 8))
8583 		return -EINVAL;
8584 
8585 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8586 	 * naming pattern
8587 	 */
8588 	iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8589 	if (flags & KF_ITER_NEW)
8590 		sfx = "new";
8591 	else if (flags & KF_ITER_NEXT)
8592 		sfx = "next";
8593 	else /* (flags & KF_ITER_DESTROY) */
8594 		sfx = "destroy";
8595 
8596 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8597 	if (strcmp(func_name, exp_name))
8598 		return -EINVAL;
8599 
8600 	/* only iter constructor should have extra arguments */
8601 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8602 		return -EINVAL;
8603 
8604 	if (flags & KF_ITER_NEXT) {
8605 		/* bpf_iter_<type>_next() should return pointer */
8606 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8607 		if (!t || !btf_type_is_ptr(t))
8608 			return -EINVAL;
8609 	}
8610 
8611 	if (flags & KF_ITER_DESTROY) {
8612 		/* bpf_iter_<type>_destroy() should return void */
8613 		t = btf_type_by_id(btf, func->type);
8614 		if (!t || !btf_type_is_void(t))
8615 			return -EINVAL;
8616 	}
8617 
8618 	return 0;
8619 }
8620 
8621 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8622 {
8623 	const struct btf_type *func;
8624 	const char *func_name;
8625 	int err;
8626 
8627 	/* any kfunc should be FUNC -> FUNC_PROTO */
8628 	func = btf_type_by_id(btf, func_id);
8629 	if (!func || !btf_type_is_func(func))
8630 		return -EINVAL;
8631 
8632 	/* sanity check kfunc name */
8633 	func_name = btf_name_by_offset(btf, func->name_off);
8634 	if (!func_name || !func_name[0])
8635 		return -EINVAL;
8636 
8637 	func = btf_type_by_id(btf, func->type);
8638 	if (!func || !btf_type_is_func_proto(func))
8639 		return -EINVAL;
8640 
8641 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8642 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8643 		if (err)
8644 			return err;
8645 	}
8646 
8647 	return 0;
8648 }
8649 
8650 /* Kernel Function (kfunc) BTF ID set registration API */
8651 
8652 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8653 				  const struct btf_kfunc_id_set *kset)
8654 {
8655 	struct btf_kfunc_hook_filter *hook_filter;
8656 	struct btf_id_set8 *add_set = kset->set;
8657 	bool vmlinux_set = !btf_is_module(btf);
8658 	bool add_filter = !!kset->filter;
8659 	struct btf_kfunc_set_tab *tab;
8660 	struct btf_id_set8 *set;
8661 	u32 set_cnt, i;
8662 	int ret;
8663 
8664 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8665 		ret = -EINVAL;
8666 		goto end;
8667 	}
8668 
8669 	if (!add_set->cnt)
8670 		return 0;
8671 
8672 	tab = btf->kfunc_set_tab;
8673 
8674 	if (tab && add_filter) {
8675 		u32 i;
8676 
8677 		hook_filter = &tab->hook_filters[hook];
8678 		for (i = 0; i < hook_filter->nr_filters; i++) {
8679 			if (hook_filter->filters[i] == kset->filter) {
8680 				add_filter = false;
8681 				break;
8682 			}
8683 		}
8684 
8685 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8686 			ret = -E2BIG;
8687 			goto end;
8688 		}
8689 	}
8690 
8691 	if (!tab) {
8692 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8693 		if (!tab)
8694 			return -ENOMEM;
8695 		btf->kfunc_set_tab = tab;
8696 	}
8697 
8698 	set = tab->sets[hook];
8699 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8700 	 * for module sets.
8701 	 */
8702 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8703 		ret = -EINVAL;
8704 		goto end;
8705 	}
8706 
8707 	/* In case of vmlinux sets, there may be more than one set being
8708 	 * registered per hook. To create a unified set, we allocate a new set
8709 	 * and concatenate all individual sets being registered. While each set
8710 	 * is individually sorted, they may become unsorted when concatenated,
8711 	 * hence re-sorting the final set again is required to make binary
8712 	 * searching the set using btf_id_set8_contains function work.
8713 	 *
8714 	 * For module sets, we need to allocate as we may need to relocate
8715 	 * BTF ids.
8716 	 */
8717 	set_cnt = set ? set->cnt : 0;
8718 
8719 	if (set_cnt > U32_MAX - add_set->cnt) {
8720 		ret = -EOVERFLOW;
8721 		goto end;
8722 	}
8723 
8724 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8725 		ret = -E2BIG;
8726 		goto end;
8727 	}
8728 
8729 	/* Grow set */
8730 	set = krealloc(tab->sets[hook],
8731 		       struct_size(set, pairs, set_cnt + add_set->cnt),
8732 		       GFP_KERNEL | __GFP_NOWARN);
8733 	if (!set) {
8734 		ret = -ENOMEM;
8735 		goto end;
8736 	}
8737 
8738 	/* For newly allocated set, initialize set->cnt to 0 */
8739 	if (!tab->sets[hook])
8740 		set->cnt = 0;
8741 	tab->sets[hook] = set;
8742 
8743 	/* Concatenate the two sets */
8744 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8745 	/* Now that the set is copied, update with relocated BTF ids */
8746 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8747 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8748 
8749 	set->cnt += add_set->cnt;
8750 
8751 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8752 
8753 	if (add_filter) {
8754 		hook_filter = &tab->hook_filters[hook];
8755 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8756 	}
8757 	return 0;
8758 end:
8759 	btf_free_kfunc_set_tab(btf);
8760 	return ret;
8761 }
8762 
8763 static u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8764 				      enum btf_kfunc_hook hook,
8765 				      u32 kfunc_btf_id)
8766 {
8767 	struct btf_id_set8 *set;
8768 	u32 *id;
8769 
8770 	if (hook >= BTF_KFUNC_HOOK_MAX)
8771 		return NULL;
8772 	if (!btf->kfunc_set_tab)
8773 		return NULL;
8774 	set = btf->kfunc_set_tab->sets[hook];
8775 	if (!set)
8776 		return NULL;
8777 	id = btf_id_set8_contains(set, kfunc_btf_id);
8778 	if (!id)
8779 		return NULL;
8780 	/* The flags for BTF ID are located next to it */
8781 	return id + 1;
8782 }
8783 
8784 static bool __btf_kfunc_is_allowed(const struct btf *btf,
8785 				   enum btf_kfunc_hook hook,
8786 				   u32 kfunc_btf_id,
8787 				   const struct bpf_prog *prog)
8788 {
8789 	struct btf_kfunc_hook_filter *hook_filter;
8790 	int i;
8791 
8792 	if (hook >= BTF_KFUNC_HOOK_MAX)
8793 		return false;
8794 	if (!btf->kfunc_set_tab)
8795 		return false;
8796 
8797 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8798 	for (i = 0; i < hook_filter->nr_filters; i++) {
8799 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8800 			return false;
8801 	}
8802 
8803 	return true;
8804 }
8805 
8806 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8807 {
8808 	switch (prog_type) {
8809 	case BPF_PROG_TYPE_UNSPEC:
8810 		return BTF_KFUNC_HOOK_COMMON;
8811 	case BPF_PROG_TYPE_XDP:
8812 		return BTF_KFUNC_HOOK_XDP;
8813 	case BPF_PROG_TYPE_SCHED_CLS:
8814 		return BTF_KFUNC_HOOK_TC;
8815 	case BPF_PROG_TYPE_STRUCT_OPS:
8816 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8817 	case BPF_PROG_TYPE_TRACING:
8818 	case BPF_PROG_TYPE_TRACEPOINT:
8819 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8820 	case BPF_PROG_TYPE_PERF_EVENT:
8821 	case BPF_PROG_TYPE_LSM:
8822 		return BTF_KFUNC_HOOK_TRACING;
8823 	case BPF_PROG_TYPE_SYSCALL:
8824 		return BTF_KFUNC_HOOK_SYSCALL;
8825 	case BPF_PROG_TYPE_CGROUP_SKB:
8826 	case BPF_PROG_TYPE_CGROUP_SOCK:
8827 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8828 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8829 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8830 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8831 	case BPF_PROG_TYPE_SOCK_OPS:
8832 		return BTF_KFUNC_HOOK_CGROUP;
8833 	case BPF_PROG_TYPE_SCHED_ACT:
8834 		return BTF_KFUNC_HOOK_SCHED_ACT;
8835 	case BPF_PROG_TYPE_SK_SKB:
8836 		return BTF_KFUNC_HOOK_SK_SKB;
8837 	case BPF_PROG_TYPE_SOCKET_FILTER:
8838 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8839 	case BPF_PROG_TYPE_LWT_OUT:
8840 	case BPF_PROG_TYPE_LWT_IN:
8841 	case BPF_PROG_TYPE_LWT_XMIT:
8842 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8843 		return BTF_KFUNC_HOOK_LWT;
8844 	case BPF_PROG_TYPE_NETFILTER:
8845 		return BTF_KFUNC_HOOK_NETFILTER;
8846 	case BPF_PROG_TYPE_KPROBE:
8847 		return BTF_KFUNC_HOOK_KPROBE;
8848 	default:
8849 		return BTF_KFUNC_HOOK_MAX;
8850 	}
8851 }
8852 
8853 bool btf_kfunc_is_allowed(const struct btf *btf,
8854 			  u32 kfunc_btf_id,
8855 			  const struct bpf_prog *prog)
8856 {
8857 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8858 	enum btf_kfunc_hook hook;
8859 	u32 *kfunc_flags;
8860 
8861 	kfunc_flags = btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
8862 	if (kfunc_flags && __btf_kfunc_is_allowed(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog))
8863 		return true;
8864 
8865 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8866 	kfunc_flags = btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
8867 	if (kfunc_flags && __btf_kfunc_is_allowed(btf, hook, kfunc_btf_id, prog))
8868 		return true;
8869 
8870 	return false;
8871 }
8872 
8873 /* Caution:
8874  * Reference to the module (obtained using btf_try_get_module) corresponding to
8875  * the struct btf *MUST* be held when calling this function from verifier
8876  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8877  * keeping the reference for the duration of the call provides the necessary
8878  * protection for looking up a well-formed btf->kfunc_set_tab.
8879  */
8880 u32 *btf_kfunc_flags(const struct btf *btf, u32 kfunc_btf_id, const struct bpf_prog *prog)
8881 {
8882 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8883 	enum btf_kfunc_hook hook;
8884 	u32 *kfunc_flags;
8885 
8886 	kfunc_flags = btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
8887 	if (kfunc_flags)
8888 		return kfunc_flags;
8889 
8890 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8891 	return btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
8892 }
8893 
8894 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8895 				const struct bpf_prog *prog)
8896 {
8897 	if (!__btf_kfunc_is_allowed(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog))
8898 		return NULL;
8899 
8900 	return btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
8901 }
8902 
8903 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8904 				       const struct btf_kfunc_id_set *kset)
8905 {
8906 	struct btf *btf;
8907 	int ret, i;
8908 
8909 	btf = btf_get_module_btf(kset->owner);
8910 	if (!btf)
8911 		return check_btf_kconfigs(kset->owner, "kfunc");
8912 	if (IS_ERR(btf))
8913 		return PTR_ERR(btf);
8914 
8915 	for (i = 0; i < kset->set->cnt; i++) {
8916 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8917 					     kset->set->pairs[i].flags);
8918 		if (ret)
8919 			goto err_out;
8920 	}
8921 
8922 	ret = btf_populate_kfunc_set(btf, hook, kset);
8923 
8924 err_out:
8925 	btf_put(btf);
8926 	return ret;
8927 }
8928 
8929 /* This function must be invoked only from initcalls/module init functions */
8930 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8931 			      const struct btf_kfunc_id_set *kset)
8932 {
8933 	enum btf_kfunc_hook hook;
8934 
8935 	/* All kfuncs need to be tagged as such in BTF.
8936 	 * WARN() for initcall registrations that do not check errors.
8937 	 */
8938 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8939 		WARN_ON(!kset->owner);
8940 		return -EINVAL;
8941 	}
8942 
8943 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8944 	return __register_btf_kfunc_id_set(hook, kset);
8945 }
8946 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8947 
8948 /* This function must be invoked only from initcalls/module init functions */
8949 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8950 {
8951 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8952 }
8953 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8954 
8955 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8956 {
8957 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8958 	struct btf_id_dtor_kfunc *dtor;
8959 
8960 	if (!tab)
8961 		return -ENOENT;
8962 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8963 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8964 	 */
8965 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8966 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8967 	if (!dtor)
8968 		return -ENOENT;
8969 	return dtor->kfunc_btf_id;
8970 }
8971 
8972 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8973 {
8974 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8975 	const struct btf_param *args;
8976 	s32 dtor_btf_id;
8977 	u32 nr_args, i;
8978 
8979 	for (i = 0; i < cnt; i++) {
8980 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8981 
8982 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8983 		if (!dtor_func || !btf_type_is_func(dtor_func))
8984 			return -EINVAL;
8985 
8986 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8987 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8988 			return -EINVAL;
8989 
8990 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8991 		t = btf_type_by_id(btf, dtor_func_proto->type);
8992 		if (!t || !btf_type_is_void(t))
8993 			return -EINVAL;
8994 
8995 		nr_args = btf_type_vlen(dtor_func_proto);
8996 		if (nr_args != 1)
8997 			return -EINVAL;
8998 		args = btf_params(dtor_func_proto);
8999 		t = btf_type_by_id(btf, args[0].type);
9000 		/* Allow any pointer type, as width on targets Linux supports
9001 		 * will be same for all pointer types (i.e. sizeof(void *))
9002 		 */
9003 		if (!t || !btf_type_is_ptr(t))
9004 			return -EINVAL;
9005 
9006 		if (IS_ENABLED(CONFIG_CFI_CLANG)) {
9007 			/* Ensure the destructor kfunc type matches btf_dtor_kfunc_t */
9008 			t = btf_type_by_id(btf, t->type);
9009 			if (!btf_type_is_void(t))
9010 				return -EINVAL;
9011 		}
9012 	}
9013 	return 0;
9014 }
9015 
9016 /* This function must be invoked only from initcalls/module init functions */
9017 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
9018 				struct module *owner)
9019 {
9020 	struct btf_id_dtor_kfunc_tab *tab;
9021 	struct btf *btf;
9022 	u32 tab_cnt, i;
9023 	int ret;
9024 
9025 	btf = btf_get_module_btf(owner);
9026 	if (!btf)
9027 		return check_btf_kconfigs(owner, "dtor kfuncs");
9028 	if (IS_ERR(btf))
9029 		return PTR_ERR(btf);
9030 
9031 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
9032 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
9033 		ret = -E2BIG;
9034 		goto end;
9035 	}
9036 
9037 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
9038 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
9039 	if (ret < 0)
9040 		goto end;
9041 
9042 	tab = btf->dtor_kfunc_tab;
9043 	/* Only one call allowed for modules */
9044 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
9045 		ret = -EINVAL;
9046 		goto end;
9047 	}
9048 
9049 	tab_cnt = tab ? tab->cnt : 0;
9050 	if (tab_cnt > U32_MAX - add_cnt) {
9051 		ret = -EOVERFLOW;
9052 		goto end;
9053 	}
9054 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
9055 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
9056 		ret = -E2BIG;
9057 		goto end;
9058 	}
9059 
9060 	tab = krealloc(btf->dtor_kfunc_tab,
9061 		       struct_size(tab, dtors, tab_cnt + add_cnt),
9062 		       GFP_KERNEL | __GFP_NOWARN);
9063 	if (!tab) {
9064 		ret = -ENOMEM;
9065 		goto end;
9066 	}
9067 
9068 	if (!btf->dtor_kfunc_tab)
9069 		tab->cnt = 0;
9070 	btf->dtor_kfunc_tab = tab;
9071 
9072 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
9073 
9074 	/* remap BTF ids based on BTF relocation (if any) */
9075 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
9076 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
9077 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
9078 	}
9079 
9080 	tab->cnt += add_cnt;
9081 
9082 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
9083 
9084 end:
9085 	if (ret)
9086 		btf_free_dtor_kfunc_tab(btf);
9087 	btf_put(btf);
9088 	return ret;
9089 }
9090 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
9091 
9092 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
9093 
9094 /* Check local and target types for compatibility. This check is used for
9095  * type-based CO-RE relocations and follow slightly different rules than
9096  * field-based relocations. This function assumes that root types were already
9097  * checked for name match. Beyond that initial root-level name check, names
9098  * are completely ignored. Compatibility rules are as follows:
9099  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
9100  *     kind should match for local and target types (i.e., STRUCT is not
9101  *     compatible with UNION);
9102  *   - for ENUMs/ENUM64s, the size is ignored;
9103  *   - for INT, size and signedness are ignored;
9104  *   - for ARRAY, dimensionality is ignored, element types are checked for
9105  *     compatibility recursively;
9106  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
9107  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
9108  *   - FUNC_PROTOs are compatible if they have compatible signature: same
9109  *     number of input args and compatible return and argument types.
9110  * These rules are not set in stone and probably will be adjusted as we get
9111  * more experience with using BPF CO-RE relocations.
9112  */
9113 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
9114 			      const struct btf *targ_btf, __u32 targ_id)
9115 {
9116 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
9117 					   MAX_TYPES_ARE_COMPAT_DEPTH);
9118 }
9119 
9120 #define MAX_TYPES_MATCH_DEPTH 2
9121 
9122 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
9123 			 const struct btf *targ_btf, u32 targ_id)
9124 {
9125 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
9126 				      MAX_TYPES_MATCH_DEPTH);
9127 }
9128 
9129 static bool bpf_core_is_flavor_sep(const char *s)
9130 {
9131 	/* check X___Y name pattern, where X and Y are not underscores */
9132 	return s[0] != '_' &&				      /* X */
9133 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
9134 	       s[4] != '_';				      /* Y */
9135 }
9136 
9137 size_t bpf_core_essential_name_len(const char *name)
9138 {
9139 	size_t n = strlen(name);
9140 	int i;
9141 
9142 	for (i = n - 5; i >= 0; i--) {
9143 		if (bpf_core_is_flavor_sep(name + i))
9144 			return i + 1;
9145 	}
9146 	return n;
9147 }
9148 
9149 static void bpf_free_cands(struct bpf_cand_cache *cands)
9150 {
9151 	if (!cands->cnt)
9152 		/* empty candidate array was allocated on stack */
9153 		return;
9154 	kfree(cands);
9155 }
9156 
9157 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
9158 {
9159 	kfree(cands->name);
9160 	kfree(cands);
9161 }
9162 
9163 #define VMLINUX_CAND_CACHE_SIZE 31
9164 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
9165 
9166 #define MODULE_CAND_CACHE_SIZE 31
9167 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
9168 
9169 static void __print_cand_cache(struct bpf_verifier_log *log,
9170 			       struct bpf_cand_cache **cache,
9171 			       int cache_size)
9172 {
9173 	struct bpf_cand_cache *cc;
9174 	int i, j;
9175 
9176 	for (i = 0; i < cache_size; i++) {
9177 		cc = cache[i];
9178 		if (!cc)
9179 			continue;
9180 		bpf_log(log, "[%d]%s(", i, cc->name);
9181 		for (j = 0; j < cc->cnt; j++) {
9182 			bpf_log(log, "%d", cc->cands[j].id);
9183 			if (j < cc->cnt - 1)
9184 				bpf_log(log, " ");
9185 		}
9186 		bpf_log(log, "), ");
9187 	}
9188 }
9189 
9190 static void print_cand_cache(struct bpf_verifier_log *log)
9191 {
9192 	mutex_lock(&cand_cache_mutex);
9193 	bpf_log(log, "vmlinux_cand_cache:");
9194 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9195 	bpf_log(log, "\nmodule_cand_cache:");
9196 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9197 	bpf_log(log, "\n");
9198 	mutex_unlock(&cand_cache_mutex);
9199 }
9200 
9201 static u32 hash_cands(struct bpf_cand_cache *cands)
9202 {
9203 	return jhash(cands->name, cands->name_len, 0);
9204 }
9205 
9206 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
9207 					       struct bpf_cand_cache **cache,
9208 					       int cache_size)
9209 {
9210 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
9211 
9212 	if (cc && cc->name_len == cands->name_len &&
9213 	    !strncmp(cc->name, cands->name, cands->name_len))
9214 		return cc;
9215 	return NULL;
9216 }
9217 
9218 static size_t sizeof_cands(int cnt)
9219 {
9220 	return offsetof(struct bpf_cand_cache, cands[cnt]);
9221 }
9222 
9223 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
9224 						  struct bpf_cand_cache **cache,
9225 						  int cache_size)
9226 {
9227 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
9228 
9229 	if (*cc) {
9230 		bpf_free_cands_from_cache(*cc);
9231 		*cc = NULL;
9232 	}
9233 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT);
9234 	if (!new_cands) {
9235 		bpf_free_cands(cands);
9236 		return ERR_PTR(-ENOMEM);
9237 	}
9238 	/* strdup the name, since it will stay in cache.
9239 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
9240 	 */
9241 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT);
9242 	bpf_free_cands(cands);
9243 	if (!new_cands->name) {
9244 		kfree(new_cands);
9245 		return ERR_PTR(-ENOMEM);
9246 	}
9247 	*cc = new_cands;
9248 	return new_cands;
9249 }
9250 
9251 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
9252 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
9253 			       int cache_size)
9254 {
9255 	struct bpf_cand_cache *cc;
9256 	int i, j;
9257 
9258 	for (i = 0; i < cache_size; i++) {
9259 		cc = cache[i];
9260 		if (!cc)
9261 			continue;
9262 		if (!btf) {
9263 			/* when new module is loaded purge all of module_cand_cache,
9264 			 * since new module might have candidates with the name
9265 			 * that matches cached cands.
9266 			 */
9267 			bpf_free_cands_from_cache(cc);
9268 			cache[i] = NULL;
9269 			continue;
9270 		}
9271 		/* when module is unloaded purge cache entries
9272 		 * that match module's btf
9273 		 */
9274 		for (j = 0; j < cc->cnt; j++)
9275 			if (cc->cands[j].btf == btf) {
9276 				bpf_free_cands_from_cache(cc);
9277 				cache[i] = NULL;
9278 				break;
9279 			}
9280 	}
9281 
9282 }
9283 
9284 static void purge_cand_cache(struct btf *btf)
9285 {
9286 	mutex_lock(&cand_cache_mutex);
9287 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9288 	mutex_unlock(&cand_cache_mutex);
9289 }
9290 #endif
9291 
9292 static struct bpf_cand_cache *
9293 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
9294 		   int targ_start_id)
9295 {
9296 	struct bpf_cand_cache *new_cands;
9297 	const struct btf_type *t;
9298 	const char *targ_name;
9299 	size_t targ_essent_len;
9300 	int n, i;
9301 
9302 	n = btf_nr_types(targ_btf);
9303 	for (i = targ_start_id; i < n; i++) {
9304 		t = btf_type_by_id(targ_btf, i);
9305 		if (btf_kind(t) != cands->kind)
9306 			continue;
9307 
9308 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
9309 		if (!targ_name)
9310 			continue;
9311 
9312 		/* the resched point is before strncmp to make sure that search
9313 		 * for non-existing name will have a chance to schedule().
9314 		 */
9315 		cond_resched();
9316 
9317 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
9318 			continue;
9319 
9320 		targ_essent_len = bpf_core_essential_name_len(targ_name);
9321 		if (targ_essent_len != cands->name_len)
9322 			continue;
9323 
9324 		/* most of the time there is only one candidate for a given kind+name pair */
9325 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT);
9326 		if (!new_cands) {
9327 			bpf_free_cands(cands);
9328 			return ERR_PTR(-ENOMEM);
9329 		}
9330 
9331 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9332 		bpf_free_cands(cands);
9333 		cands = new_cands;
9334 		cands->cands[cands->cnt].btf = targ_btf;
9335 		cands->cands[cands->cnt].id = i;
9336 		cands->cnt++;
9337 	}
9338 	return cands;
9339 }
9340 
9341 static struct bpf_cand_cache *
9342 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9343 {
9344 	struct bpf_cand_cache *cands, *cc, local_cand = {};
9345 	const struct btf *local_btf = ctx->btf;
9346 	const struct btf_type *local_type;
9347 	const struct btf *main_btf;
9348 	size_t local_essent_len;
9349 	struct btf *mod_btf;
9350 	const char *name;
9351 	int id;
9352 
9353 	main_btf = bpf_get_btf_vmlinux();
9354 	if (IS_ERR(main_btf))
9355 		return ERR_CAST(main_btf);
9356 	if (!main_btf)
9357 		return ERR_PTR(-EINVAL);
9358 
9359 	local_type = btf_type_by_id(local_btf, local_type_id);
9360 	if (!local_type)
9361 		return ERR_PTR(-EINVAL);
9362 
9363 	name = btf_name_by_offset(local_btf, local_type->name_off);
9364 	if (str_is_empty(name))
9365 		return ERR_PTR(-EINVAL);
9366 	local_essent_len = bpf_core_essential_name_len(name);
9367 
9368 	cands = &local_cand;
9369 	cands->name = name;
9370 	cands->kind = btf_kind(local_type);
9371 	cands->name_len = local_essent_len;
9372 
9373 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9374 	/* cands is a pointer to stack here */
9375 	if (cc) {
9376 		if (cc->cnt)
9377 			return cc;
9378 		goto check_modules;
9379 	}
9380 
9381 	/* Attempt to find target candidates in vmlinux BTF first */
9382 	cands = bpf_core_add_cands(cands, main_btf, btf_named_start_id(main_btf, true));
9383 	if (IS_ERR(cands))
9384 		return ERR_CAST(cands);
9385 
9386 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9387 
9388 	/* populate cache even when cands->cnt == 0 */
9389 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9390 	if (IS_ERR(cc))
9391 		return ERR_CAST(cc);
9392 
9393 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
9394 	if (cc->cnt)
9395 		return cc;
9396 
9397 check_modules:
9398 	/* cands is a pointer to stack here and cands->cnt == 0 */
9399 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9400 	if (cc)
9401 		/* if cache has it return it even if cc->cnt == 0 */
9402 		return cc;
9403 
9404 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9405 	spin_lock_bh(&btf_idr_lock);
9406 	idr_for_each_entry(&btf_idr, mod_btf, id) {
9407 		if (!btf_is_module(mod_btf))
9408 			continue;
9409 		/* linear search could be slow hence unlock/lock
9410 		 * the IDR to avoiding holding it for too long
9411 		 */
9412 		btf_get(mod_btf);
9413 		spin_unlock_bh(&btf_idr_lock);
9414 		cands = bpf_core_add_cands(cands, mod_btf, btf_named_start_id(mod_btf, true));
9415 		btf_put(mod_btf);
9416 		if (IS_ERR(cands))
9417 			return ERR_CAST(cands);
9418 		spin_lock_bh(&btf_idr_lock);
9419 	}
9420 	spin_unlock_bh(&btf_idr_lock);
9421 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
9422 	 * or pointer to stack if cands->cnd == 0.
9423 	 * Copy it into the cache even when cands->cnt == 0 and
9424 	 * return the result.
9425 	 */
9426 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9427 }
9428 
9429 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9430 		   int relo_idx, void *insn)
9431 {
9432 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9433 	struct bpf_core_cand_list cands = {};
9434 	struct bpf_core_relo_res targ_res;
9435 	struct bpf_core_spec *specs;
9436 	const struct btf_type *type;
9437 	int err;
9438 
9439 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9440 	 * into arrays of btf_ids of struct fields and array indices.
9441 	 */
9442 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL_ACCOUNT);
9443 	if (!specs)
9444 		return -ENOMEM;
9445 
9446 	type = btf_type_by_id(ctx->btf, relo->type_id);
9447 	if (!type) {
9448 		bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9449 			relo_idx, relo->type_id);
9450 		kfree(specs);
9451 		return -EINVAL;
9452 	}
9453 
9454 	if (need_cands) {
9455 		struct bpf_cand_cache *cc;
9456 		int i;
9457 
9458 		mutex_lock(&cand_cache_mutex);
9459 		cc = bpf_core_find_cands(ctx, relo->type_id);
9460 		if (IS_ERR(cc)) {
9461 			bpf_log(ctx->log, "target candidate search failed for %d\n",
9462 				relo->type_id);
9463 			err = PTR_ERR(cc);
9464 			goto out;
9465 		}
9466 		if (cc->cnt) {
9467 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL_ACCOUNT);
9468 			if (!cands.cands) {
9469 				err = -ENOMEM;
9470 				goto out;
9471 			}
9472 		}
9473 		for (i = 0; i < cc->cnt; i++) {
9474 			bpf_log(ctx->log,
9475 				"CO-RE relocating %s %s: found target candidate [%d]\n",
9476 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9477 			cands.cands[i].btf = cc->cands[i].btf;
9478 			cands.cands[i].id = cc->cands[i].id;
9479 		}
9480 		cands.len = cc->cnt;
9481 		/* cand_cache_mutex needs to span the cache lookup and
9482 		 * copy of btf pointer into bpf_core_cand_list,
9483 		 * since module can be unloaded while bpf_core_calc_relo_insn
9484 		 * is working with module's btf.
9485 		 */
9486 	}
9487 
9488 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9489 				      &targ_res);
9490 	if (err)
9491 		goto out;
9492 
9493 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9494 				  &targ_res);
9495 
9496 out:
9497 	kfree(specs);
9498 	if (need_cands) {
9499 		kfree(cands.cands);
9500 		mutex_unlock(&cand_cache_mutex);
9501 		if (ctx->log->level & BPF_LOG_LEVEL2)
9502 			print_cand_cache(ctx->log);
9503 	}
9504 	return err;
9505 }
9506 
9507 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9508 				const struct bpf_reg_state *reg,
9509 				const char *field_name, u32 btf_id, const char *suffix)
9510 {
9511 	struct btf *btf = reg->btf;
9512 	const struct btf_type *walk_type, *safe_type;
9513 	const char *tname;
9514 	char safe_tname[64];
9515 	long ret, safe_id;
9516 	const struct btf_member *member;
9517 	u32 i;
9518 
9519 	walk_type = btf_type_by_id(btf, reg->btf_id);
9520 	if (!walk_type)
9521 		return false;
9522 
9523 	tname = btf_name_by_offset(btf, walk_type->name_off);
9524 
9525 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9526 	if (ret >= sizeof(safe_tname))
9527 		return false;
9528 
9529 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9530 	if (safe_id < 0)
9531 		return false;
9532 
9533 	safe_type = btf_type_by_id(btf, safe_id);
9534 	if (!safe_type)
9535 		return false;
9536 
9537 	for_each_member(i, safe_type, member) {
9538 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
9539 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9540 		u32 id;
9541 
9542 		if (!btf_type_is_ptr(mtype))
9543 			continue;
9544 
9545 		btf_type_skip_modifiers(btf, mtype->type, &id);
9546 		/* If we match on both type and name, the field is considered trusted. */
9547 		if (btf_id == id && !strcmp(field_name, m_name))
9548 			return true;
9549 	}
9550 
9551 	return false;
9552 }
9553 
9554 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9555 			       const struct btf *reg_btf, u32 reg_id,
9556 			       const struct btf *arg_btf, u32 arg_id)
9557 {
9558 	const char *reg_name, *arg_name, *search_needle;
9559 	const struct btf_type *reg_type, *arg_type;
9560 	int reg_len, arg_len, cmp_len;
9561 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9562 
9563 	reg_type = btf_type_by_id(reg_btf, reg_id);
9564 	if (!reg_type)
9565 		return false;
9566 
9567 	arg_type = btf_type_by_id(arg_btf, arg_id);
9568 	if (!arg_type)
9569 		return false;
9570 
9571 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9572 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9573 
9574 	reg_len = strlen(reg_name);
9575 	arg_len = strlen(arg_name);
9576 
9577 	/* Exactly one of the two type names may be suffixed with ___init, so
9578 	 * if the strings are the same size, they can't possibly be no-cast
9579 	 * aliases of one another. If you have two of the same type names, e.g.
9580 	 * they're both nf_conn___init, it would be improper to return true
9581 	 * because they are _not_ no-cast aliases, they are the same type.
9582 	 */
9583 	if (reg_len == arg_len)
9584 		return false;
9585 
9586 	/* Either of the two names must be the other name, suffixed with ___init. */
9587 	if ((reg_len != arg_len + pattern_len) &&
9588 	    (arg_len != reg_len + pattern_len))
9589 		return false;
9590 
9591 	if (reg_len < arg_len) {
9592 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9593 		cmp_len = reg_len;
9594 	} else {
9595 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9596 		cmp_len = arg_len;
9597 	}
9598 
9599 	if (!search_needle)
9600 		return false;
9601 
9602 	/* ___init suffix must come at the end of the name */
9603 	if (*(search_needle + pattern_len) != '\0')
9604 		return false;
9605 
9606 	return !strncmp(reg_name, arg_name, cmp_len);
9607 }
9608 
9609 #ifdef CONFIG_BPF_JIT
9610 static int
9611 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9612 		   struct bpf_verifier_log *log)
9613 {
9614 	struct btf_struct_ops_tab *tab, *new_tab;
9615 	int i, err;
9616 
9617 	tab = btf->struct_ops_tab;
9618 	if (!tab) {
9619 		tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL);
9620 		if (!tab)
9621 			return -ENOMEM;
9622 		tab->capacity = 4;
9623 		btf->struct_ops_tab = tab;
9624 	}
9625 
9626 	for (i = 0; i < tab->cnt; i++)
9627 		if (tab->ops[i].st_ops == st_ops)
9628 			return -EEXIST;
9629 
9630 	if (tab->cnt == tab->capacity) {
9631 		new_tab = krealloc(tab,
9632 				   struct_size(tab, ops, tab->capacity * 2),
9633 				   GFP_KERNEL);
9634 		if (!new_tab)
9635 			return -ENOMEM;
9636 		tab = new_tab;
9637 		tab->capacity *= 2;
9638 		btf->struct_ops_tab = tab;
9639 	}
9640 
9641 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9642 
9643 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9644 	if (err)
9645 		return err;
9646 
9647 	btf->struct_ops_tab->cnt++;
9648 
9649 	return 0;
9650 }
9651 
9652 const struct bpf_struct_ops_desc *
9653 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9654 {
9655 	const struct bpf_struct_ops_desc *st_ops_list;
9656 	unsigned int i;
9657 	u32 cnt;
9658 
9659 	if (!value_id)
9660 		return NULL;
9661 	if (!btf->struct_ops_tab)
9662 		return NULL;
9663 
9664 	cnt = btf->struct_ops_tab->cnt;
9665 	st_ops_list = btf->struct_ops_tab->ops;
9666 	for (i = 0; i < cnt; i++) {
9667 		if (st_ops_list[i].value_id == value_id)
9668 			return &st_ops_list[i];
9669 	}
9670 
9671 	return NULL;
9672 }
9673 
9674 const struct bpf_struct_ops_desc *
9675 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9676 {
9677 	const struct bpf_struct_ops_desc *st_ops_list;
9678 	unsigned int i;
9679 	u32 cnt;
9680 
9681 	if (!type_id)
9682 		return NULL;
9683 	if (!btf->struct_ops_tab)
9684 		return NULL;
9685 
9686 	cnt = btf->struct_ops_tab->cnt;
9687 	st_ops_list = btf->struct_ops_tab->ops;
9688 	for (i = 0; i < cnt; i++) {
9689 		if (st_ops_list[i].type_id == type_id)
9690 			return &st_ops_list[i];
9691 	}
9692 
9693 	return NULL;
9694 }
9695 
9696 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9697 {
9698 	struct bpf_verifier_log *log;
9699 	struct btf *btf;
9700 	int err = 0;
9701 
9702 	btf = btf_get_module_btf(st_ops->owner);
9703 	if (!btf)
9704 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9705 	if (IS_ERR(btf))
9706 		return PTR_ERR(btf);
9707 
9708 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9709 	if (!log) {
9710 		err = -ENOMEM;
9711 		goto errout;
9712 	}
9713 
9714 	log->level = BPF_LOG_KERNEL;
9715 
9716 	err = btf_add_struct_ops(btf, st_ops, log);
9717 
9718 errout:
9719 	kfree(log);
9720 	btf_put(btf);
9721 
9722 	return err;
9723 }
9724 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9725 #endif
9726 
9727 bool btf_param_match_suffix(const struct btf *btf,
9728 			    const struct btf_param *arg,
9729 			    const char *suffix)
9730 {
9731 	int suffix_len = strlen(suffix), len;
9732 	const char *param_name;
9733 
9734 	/* In the future, this can be ported to use BTF tagging */
9735 	param_name = btf_name_by_offset(btf, arg->name_off);
9736 	if (str_is_empty(param_name))
9737 		return false;
9738 	len = strlen(param_name);
9739 	if (len <= suffix_len)
9740 		return false;
9741 	param_name += len - suffix_len;
9742 	return !strncmp(param_name, suffix, suffix_len);
9743 }
9744