1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/slab.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/uaccess.h> 14 #include <linux/kernel.h> 15 #include <linux/idr.h> 16 #include <linux/sort.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/btf.h> 19 20 /* BTF (BPF Type Format) is the meta data format which describes 21 * the data types of BPF program/map. Hence, it basically focus 22 * on the C programming language which the modern BPF is primary 23 * using. 24 * 25 * ELF Section: 26 * ~~~~~~~~~~~ 27 * The BTF data is stored under the ".BTF" ELF section 28 * 29 * struct btf_type: 30 * ~~~~~~~~~~~~~~~ 31 * Each 'struct btf_type' object describes a C data type. 32 * Depending on the type it is describing, a 'struct btf_type' 33 * object may be followed by more data. F.e. 34 * To describe an array, 'struct btf_type' is followed by 35 * 'struct btf_array'. 36 * 37 * 'struct btf_type' and any extra data following it are 38 * 4 bytes aligned. 39 * 40 * Type section: 41 * ~~~~~~~~~~~~~ 42 * The BTF type section contains a list of 'struct btf_type' objects. 43 * Each one describes a C type. Recall from the above section 44 * that a 'struct btf_type' object could be immediately followed by extra 45 * data in order to desribe some particular C types. 46 * 47 * type_id: 48 * ~~~~~~~ 49 * Each btf_type object is identified by a type_id. The type_id 50 * is implicitly implied by the location of the btf_type object in 51 * the BTF type section. The first one has type_id 1. The second 52 * one has type_id 2...etc. Hence, an earlier btf_type has 53 * a smaller type_id. 54 * 55 * A btf_type object may refer to another btf_type object by using 56 * type_id (i.e. the "type" in the "struct btf_type"). 57 * 58 * NOTE that we cannot assume any reference-order. 59 * A btf_type object can refer to an earlier btf_type object 60 * but it can also refer to a later btf_type object. 61 * 62 * For example, to describe "const void *". A btf_type 63 * object describing "const" may refer to another btf_type 64 * object describing "void *". This type-reference is done 65 * by specifying type_id: 66 * 67 * [1] CONST (anon) type_id=2 68 * [2] PTR (anon) type_id=0 69 * 70 * The above is the btf_verifier debug log: 71 * - Each line started with "[?]" is a btf_type object 72 * - [?] is the type_id of the btf_type object. 73 * - CONST/PTR is the BTF_KIND_XXX 74 * - "(anon)" is the name of the type. It just 75 * happens that CONST and PTR has no name. 76 * - type_id=XXX is the 'u32 type' in btf_type 77 * 78 * NOTE: "void" has type_id 0 79 * 80 * String section: 81 * ~~~~~~~~~~~~~~ 82 * The BTF string section contains the names used by the type section. 83 * Each string is referred by an "offset" from the beginning of the 84 * string section. 85 * 86 * Each string is '\0' terminated. 87 * 88 * The first character in the string section must be '\0' 89 * which is used to mean 'anonymous'. Some btf_type may not 90 * have a name. 91 */ 92 93 /* BTF verification: 94 * 95 * To verify BTF data, two passes are needed. 96 * 97 * Pass #1 98 * ~~~~~~~ 99 * The first pass is to collect all btf_type objects to 100 * an array: "btf->types". 101 * 102 * Depending on the C type that a btf_type is describing, 103 * a btf_type may be followed by extra data. We don't know 104 * how many btf_type is there, and more importantly we don't 105 * know where each btf_type is located in the type section. 106 * 107 * Without knowing the location of each type_id, most verifications 108 * cannot be done. e.g. an earlier btf_type may refer to a later 109 * btf_type (recall the "const void *" above), so we cannot 110 * check this type-reference in the first pass. 111 * 112 * In the first pass, it still does some verifications (e.g. 113 * checking the name is a valid offset to the string section). 114 * 115 * Pass #2 116 * ~~~~~~~ 117 * The main focus is to resolve a btf_type that is referring 118 * to another type. 119 * 120 * We have to ensure the referring type: 121 * 1) does exist in the BTF (i.e. in btf->types[]) 122 * 2) does not cause a loop: 123 * struct A { 124 * struct B b; 125 * }; 126 * 127 * struct B { 128 * struct A a; 129 * }; 130 * 131 * btf_type_needs_resolve() decides if a btf_type needs 132 * to be resolved. 133 * 134 * The needs_resolve type implements the "resolve()" ops which 135 * essentially does a DFS and detects backedge. 136 * 137 * During resolve (or DFS), different C types have different 138 * "RESOLVED" conditions. 139 * 140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 141 * members because a member is always referring to another 142 * type. A struct's member can be treated as "RESOLVED" if 143 * it is referring to a BTF_KIND_PTR. Otherwise, the 144 * following valid C struct would be rejected: 145 * 146 * struct A { 147 * int m; 148 * struct A *a; 149 * }; 150 * 151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 153 * detect a pointer loop, e.g.: 154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 155 * ^ | 156 * +-----------------------------------------+ 157 * 158 */ 159 160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 164 #define BITS_ROUNDUP_BYTES(bits) \ 165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 166 167 #define BTF_INFO_MASK 0x8f00ffff 168 #define BTF_INT_MASK 0x0fffffff 169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 171 172 /* 16MB for 64k structs and each has 16 members and 173 * a few MB spaces for the string section. 174 * The hard limit is S32_MAX. 175 */ 176 #define BTF_MAX_SIZE (16 * 1024 * 1024) 177 178 #define for_each_member(i, struct_type, member) \ 179 for (i = 0, member = btf_type_member(struct_type); \ 180 i < btf_type_vlen(struct_type); \ 181 i++, member++) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 #define for_each_vsi(i, struct_type, member) \ 189 for (i = 0, member = btf_type_var_secinfo(struct_type); \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 DEFINE_IDR(btf_idr); 199 DEFINE_SPINLOCK(btf_idr_lock); 200 201 struct btf { 202 void *data; 203 struct btf_type **types; 204 u32 *resolved_ids; 205 u32 *resolved_sizes; 206 const char *strings; 207 void *nohdr_data; 208 struct btf_header hdr; 209 u32 nr_types; 210 u32 types_size; 211 u32 data_size; 212 refcount_t refcnt; 213 u32 id; 214 struct rcu_head rcu; 215 }; 216 217 enum verifier_phase { 218 CHECK_META, 219 CHECK_TYPE, 220 }; 221 222 struct resolve_vertex { 223 const struct btf_type *t; 224 u32 type_id; 225 u16 next_member; 226 }; 227 228 enum visit_state { 229 NOT_VISITED, 230 VISITED, 231 RESOLVED, 232 }; 233 234 enum resolve_mode { 235 RESOLVE_TBD, /* To Be Determined */ 236 RESOLVE_PTR, /* Resolving for Pointer */ 237 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 238 * or array 239 */ 240 }; 241 242 #define MAX_RESOLVE_DEPTH 32 243 244 struct btf_sec_info { 245 u32 off; 246 u32 len; 247 }; 248 249 struct btf_verifier_env { 250 struct btf *btf; 251 u8 *visit_states; 252 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 253 struct bpf_verifier_log log; 254 u32 log_type_id; 255 u32 top_stack; 256 enum verifier_phase phase; 257 enum resolve_mode resolve_mode; 258 }; 259 260 static const char * const btf_kind_str[NR_BTF_KINDS] = { 261 [BTF_KIND_UNKN] = "UNKNOWN", 262 [BTF_KIND_INT] = "INT", 263 [BTF_KIND_PTR] = "PTR", 264 [BTF_KIND_ARRAY] = "ARRAY", 265 [BTF_KIND_STRUCT] = "STRUCT", 266 [BTF_KIND_UNION] = "UNION", 267 [BTF_KIND_ENUM] = "ENUM", 268 [BTF_KIND_FWD] = "FWD", 269 [BTF_KIND_TYPEDEF] = "TYPEDEF", 270 [BTF_KIND_VOLATILE] = "VOLATILE", 271 [BTF_KIND_CONST] = "CONST", 272 [BTF_KIND_RESTRICT] = "RESTRICT", 273 [BTF_KIND_FUNC] = "FUNC", 274 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 275 [BTF_KIND_VAR] = "VAR", 276 [BTF_KIND_DATASEC] = "DATASEC", 277 }; 278 279 struct btf_kind_operations { 280 s32 (*check_meta)(struct btf_verifier_env *env, 281 const struct btf_type *t, 282 u32 meta_left); 283 int (*resolve)(struct btf_verifier_env *env, 284 const struct resolve_vertex *v); 285 int (*check_member)(struct btf_verifier_env *env, 286 const struct btf_type *struct_type, 287 const struct btf_member *member, 288 const struct btf_type *member_type); 289 int (*check_kflag_member)(struct btf_verifier_env *env, 290 const struct btf_type *struct_type, 291 const struct btf_member *member, 292 const struct btf_type *member_type); 293 void (*log_details)(struct btf_verifier_env *env, 294 const struct btf_type *t); 295 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 296 u32 type_id, void *data, u8 bits_offsets, 297 struct seq_file *m); 298 }; 299 300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 301 static struct btf_type btf_void; 302 303 static int btf_resolve(struct btf_verifier_env *env, 304 const struct btf_type *t, u32 type_id); 305 306 static bool btf_type_is_modifier(const struct btf_type *t) 307 { 308 /* Some of them is not strictly a C modifier 309 * but they are grouped into the same bucket 310 * for BTF concern: 311 * A type (t) that refers to another 312 * type through t->type AND its size cannot 313 * be determined without following the t->type. 314 * 315 * ptr does not fall into this bucket 316 * because its size is always sizeof(void *). 317 */ 318 switch (BTF_INFO_KIND(t->info)) { 319 case BTF_KIND_TYPEDEF: 320 case BTF_KIND_VOLATILE: 321 case BTF_KIND_CONST: 322 case BTF_KIND_RESTRICT: 323 return true; 324 } 325 326 return false; 327 } 328 329 bool btf_type_is_void(const struct btf_type *t) 330 { 331 return t == &btf_void; 332 } 333 334 static bool btf_type_is_fwd(const struct btf_type *t) 335 { 336 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 337 } 338 339 static bool btf_type_nosize(const struct btf_type *t) 340 { 341 return btf_type_is_void(t) || btf_type_is_fwd(t) || 342 btf_type_is_func(t) || btf_type_is_func_proto(t); 343 } 344 345 static bool btf_type_nosize_or_null(const struct btf_type *t) 346 { 347 return !t || btf_type_nosize(t); 348 } 349 350 /* union is only a special case of struct: 351 * all its offsetof(member) == 0 352 */ 353 static bool btf_type_is_struct(const struct btf_type *t) 354 { 355 u8 kind = BTF_INFO_KIND(t->info); 356 357 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 358 } 359 360 static bool __btf_type_is_struct(const struct btf_type *t) 361 { 362 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 363 } 364 365 static bool btf_type_is_array(const struct btf_type *t) 366 { 367 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 368 } 369 370 static bool btf_type_is_var(const struct btf_type *t) 371 { 372 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR; 373 } 374 375 static bool btf_type_is_datasec(const struct btf_type *t) 376 { 377 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 378 } 379 380 /* Types that act only as a source, not sink or intermediate 381 * type when resolving. 382 */ 383 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 384 { 385 return btf_type_is_var(t) || 386 btf_type_is_datasec(t); 387 } 388 389 /* What types need to be resolved? 390 * 391 * btf_type_is_modifier() is an obvious one. 392 * 393 * btf_type_is_struct() because its member refers to 394 * another type (through member->type). 395 * 396 * btf_type_is_var() because the variable refers to 397 * another type. btf_type_is_datasec() holds multiple 398 * btf_type_is_var() types that need resolving. 399 * 400 * btf_type_is_array() because its element (array->type) 401 * refers to another type. Array can be thought of a 402 * special case of struct while array just has the same 403 * member-type repeated by array->nelems of times. 404 */ 405 static bool btf_type_needs_resolve(const struct btf_type *t) 406 { 407 return btf_type_is_modifier(t) || 408 btf_type_is_ptr(t) || 409 btf_type_is_struct(t) || 410 btf_type_is_array(t) || 411 btf_type_is_var(t) || 412 btf_type_is_datasec(t); 413 } 414 415 /* t->size can be used */ 416 static bool btf_type_has_size(const struct btf_type *t) 417 { 418 switch (BTF_INFO_KIND(t->info)) { 419 case BTF_KIND_INT: 420 case BTF_KIND_STRUCT: 421 case BTF_KIND_UNION: 422 case BTF_KIND_ENUM: 423 case BTF_KIND_DATASEC: 424 return true; 425 } 426 427 return false; 428 } 429 430 static const char *btf_int_encoding_str(u8 encoding) 431 { 432 if (encoding == 0) 433 return "(none)"; 434 else if (encoding == BTF_INT_SIGNED) 435 return "SIGNED"; 436 else if (encoding == BTF_INT_CHAR) 437 return "CHAR"; 438 else if (encoding == BTF_INT_BOOL) 439 return "BOOL"; 440 else 441 return "UNKN"; 442 } 443 444 static u16 btf_type_vlen(const struct btf_type *t) 445 { 446 return BTF_INFO_VLEN(t->info); 447 } 448 449 static bool btf_type_kflag(const struct btf_type *t) 450 { 451 return BTF_INFO_KFLAG(t->info); 452 } 453 454 static u32 btf_member_bit_offset(const struct btf_type *struct_type, 455 const struct btf_member *member) 456 { 457 return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset) 458 : member->offset; 459 } 460 461 static u32 btf_member_bitfield_size(const struct btf_type *struct_type, 462 const struct btf_member *member) 463 { 464 return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset) 465 : 0; 466 } 467 468 static u32 btf_type_int(const struct btf_type *t) 469 { 470 return *(u32 *)(t + 1); 471 } 472 473 static const struct btf_array *btf_type_array(const struct btf_type *t) 474 { 475 return (const struct btf_array *)(t + 1); 476 } 477 478 static const struct btf_member *btf_type_member(const struct btf_type *t) 479 { 480 return (const struct btf_member *)(t + 1); 481 } 482 483 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 484 { 485 return (const struct btf_enum *)(t + 1); 486 } 487 488 static const struct btf_var *btf_type_var(const struct btf_type *t) 489 { 490 return (const struct btf_var *)(t + 1); 491 } 492 493 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t) 494 { 495 return (const struct btf_var_secinfo *)(t + 1); 496 } 497 498 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 499 { 500 return kind_ops[BTF_INFO_KIND(t->info)]; 501 } 502 503 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 504 { 505 return BTF_STR_OFFSET_VALID(offset) && 506 offset < btf->hdr.str_len; 507 } 508 509 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 510 { 511 if ((first ? !isalpha(c) : 512 !isalnum(c)) && 513 c != '_' && 514 ((c == '.' && !dot_ok) || 515 c != '.')) 516 return false; 517 return true; 518 } 519 520 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 521 { 522 /* offset must be valid */ 523 const char *src = &btf->strings[offset]; 524 const char *src_limit; 525 526 if (!__btf_name_char_ok(*src, true, dot_ok)) 527 return false; 528 529 /* set a limit on identifier length */ 530 src_limit = src + KSYM_NAME_LEN; 531 src++; 532 while (*src && src < src_limit) { 533 if (!__btf_name_char_ok(*src, false, dot_ok)) 534 return false; 535 src++; 536 } 537 538 return !*src; 539 } 540 541 /* Only C-style identifier is permitted. This can be relaxed if 542 * necessary. 543 */ 544 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 545 { 546 return __btf_name_valid(btf, offset, false); 547 } 548 549 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 550 { 551 return __btf_name_valid(btf, offset, true); 552 } 553 554 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 555 { 556 if (!offset) 557 return "(anon)"; 558 else if (offset < btf->hdr.str_len) 559 return &btf->strings[offset]; 560 else 561 return "(invalid-name-offset)"; 562 } 563 564 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 565 { 566 if (offset < btf->hdr.str_len) 567 return &btf->strings[offset]; 568 569 return NULL; 570 } 571 572 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 573 { 574 if (type_id > btf->nr_types) 575 return NULL; 576 577 return btf->types[type_id]; 578 } 579 580 /* 581 * Regular int is not a bit field and it must be either 582 * u8/u16/u32/u64 or __int128. 583 */ 584 static bool btf_type_int_is_regular(const struct btf_type *t) 585 { 586 u8 nr_bits, nr_bytes; 587 u32 int_data; 588 589 int_data = btf_type_int(t); 590 nr_bits = BTF_INT_BITS(int_data); 591 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 592 if (BITS_PER_BYTE_MASKED(nr_bits) || 593 BTF_INT_OFFSET(int_data) || 594 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 595 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 596 nr_bytes != (2 * sizeof(u64)))) { 597 return false; 598 } 599 600 return true; 601 } 602 603 /* 604 * Check that given struct member is a regular int with expected 605 * offset and size. 606 */ 607 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 608 const struct btf_member *m, 609 u32 expected_offset, u32 expected_size) 610 { 611 const struct btf_type *t; 612 u32 id, int_data; 613 u8 nr_bits; 614 615 id = m->type; 616 t = btf_type_id_size(btf, &id, NULL); 617 if (!t || !btf_type_is_int(t)) 618 return false; 619 620 int_data = btf_type_int(t); 621 nr_bits = BTF_INT_BITS(int_data); 622 if (btf_type_kflag(s)) { 623 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 624 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 625 626 /* if kflag set, int should be a regular int and 627 * bit offset should be at byte boundary. 628 */ 629 return !bitfield_size && 630 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 631 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 632 } 633 634 if (BTF_INT_OFFSET(int_data) || 635 BITS_PER_BYTE_MASKED(m->offset) || 636 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 637 BITS_PER_BYTE_MASKED(nr_bits) || 638 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 639 return false; 640 641 return true; 642 } 643 644 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 645 const char *fmt, ...) 646 { 647 va_list args; 648 649 va_start(args, fmt); 650 bpf_verifier_vlog(log, fmt, args); 651 va_end(args); 652 } 653 654 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 655 const char *fmt, ...) 656 { 657 struct bpf_verifier_log *log = &env->log; 658 va_list args; 659 660 if (!bpf_verifier_log_needed(log)) 661 return; 662 663 va_start(args, fmt); 664 bpf_verifier_vlog(log, fmt, args); 665 va_end(args); 666 } 667 668 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 669 const struct btf_type *t, 670 bool log_details, 671 const char *fmt, ...) 672 { 673 struct bpf_verifier_log *log = &env->log; 674 u8 kind = BTF_INFO_KIND(t->info); 675 struct btf *btf = env->btf; 676 va_list args; 677 678 if (!bpf_verifier_log_needed(log)) 679 return; 680 681 /* btf verifier prints all types it is processing via 682 * btf_verifier_log_type(..., fmt = NULL). 683 * Skip those prints for in-kernel BTF verification. 684 */ 685 if (log->level == BPF_LOG_KERNEL && !fmt) 686 return; 687 688 __btf_verifier_log(log, "[%u] %s %s%s", 689 env->log_type_id, 690 btf_kind_str[kind], 691 __btf_name_by_offset(btf, t->name_off), 692 log_details ? " " : ""); 693 694 if (log_details) 695 btf_type_ops(t)->log_details(env, t); 696 697 if (fmt && *fmt) { 698 __btf_verifier_log(log, " "); 699 va_start(args, fmt); 700 bpf_verifier_vlog(log, fmt, args); 701 va_end(args); 702 } 703 704 __btf_verifier_log(log, "\n"); 705 } 706 707 #define btf_verifier_log_type(env, t, ...) \ 708 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 709 #define btf_verifier_log_basic(env, t, ...) \ 710 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 711 712 __printf(4, 5) 713 static void btf_verifier_log_member(struct btf_verifier_env *env, 714 const struct btf_type *struct_type, 715 const struct btf_member *member, 716 const char *fmt, ...) 717 { 718 struct bpf_verifier_log *log = &env->log; 719 struct btf *btf = env->btf; 720 va_list args; 721 722 if (!bpf_verifier_log_needed(log)) 723 return; 724 725 if (log->level == BPF_LOG_KERNEL && !fmt) 726 return; 727 /* The CHECK_META phase already did a btf dump. 728 * 729 * If member is logged again, it must hit an error in 730 * parsing this member. It is useful to print out which 731 * struct this member belongs to. 732 */ 733 if (env->phase != CHECK_META) 734 btf_verifier_log_type(env, struct_type, NULL); 735 736 if (btf_type_kflag(struct_type)) 737 __btf_verifier_log(log, 738 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 739 __btf_name_by_offset(btf, member->name_off), 740 member->type, 741 BTF_MEMBER_BITFIELD_SIZE(member->offset), 742 BTF_MEMBER_BIT_OFFSET(member->offset)); 743 else 744 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 745 __btf_name_by_offset(btf, member->name_off), 746 member->type, member->offset); 747 748 if (fmt && *fmt) { 749 __btf_verifier_log(log, " "); 750 va_start(args, fmt); 751 bpf_verifier_vlog(log, fmt, args); 752 va_end(args); 753 } 754 755 __btf_verifier_log(log, "\n"); 756 } 757 758 __printf(4, 5) 759 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 760 const struct btf_type *datasec_type, 761 const struct btf_var_secinfo *vsi, 762 const char *fmt, ...) 763 { 764 struct bpf_verifier_log *log = &env->log; 765 va_list args; 766 767 if (!bpf_verifier_log_needed(log)) 768 return; 769 if (log->level == BPF_LOG_KERNEL && !fmt) 770 return; 771 if (env->phase != CHECK_META) 772 btf_verifier_log_type(env, datasec_type, NULL); 773 774 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 775 vsi->type, vsi->offset, vsi->size); 776 if (fmt && *fmt) { 777 __btf_verifier_log(log, " "); 778 va_start(args, fmt); 779 bpf_verifier_vlog(log, fmt, args); 780 va_end(args); 781 } 782 783 __btf_verifier_log(log, "\n"); 784 } 785 786 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 787 u32 btf_data_size) 788 { 789 struct bpf_verifier_log *log = &env->log; 790 const struct btf *btf = env->btf; 791 const struct btf_header *hdr; 792 793 if (!bpf_verifier_log_needed(log)) 794 return; 795 796 if (log->level == BPF_LOG_KERNEL) 797 return; 798 hdr = &btf->hdr; 799 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 800 __btf_verifier_log(log, "version: %u\n", hdr->version); 801 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 802 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 803 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 804 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 805 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 806 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 807 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 808 } 809 810 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 811 { 812 struct btf *btf = env->btf; 813 814 /* < 2 because +1 for btf_void which is always in btf->types[0]. 815 * btf_void is not accounted in btf->nr_types because btf_void 816 * does not come from the BTF file. 817 */ 818 if (btf->types_size - btf->nr_types < 2) { 819 /* Expand 'types' array */ 820 821 struct btf_type **new_types; 822 u32 expand_by, new_size; 823 824 if (btf->types_size == BTF_MAX_TYPE) { 825 btf_verifier_log(env, "Exceeded max num of types"); 826 return -E2BIG; 827 } 828 829 expand_by = max_t(u32, btf->types_size >> 2, 16); 830 new_size = min_t(u32, BTF_MAX_TYPE, 831 btf->types_size + expand_by); 832 833 new_types = kvcalloc(new_size, sizeof(*new_types), 834 GFP_KERNEL | __GFP_NOWARN); 835 if (!new_types) 836 return -ENOMEM; 837 838 if (btf->nr_types == 0) 839 new_types[0] = &btf_void; 840 else 841 memcpy(new_types, btf->types, 842 sizeof(*btf->types) * (btf->nr_types + 1)); 843 844 kvfree(btf->types); 845 btf->types = new_types; 846 btf->types_size = new_size; 847 } 848 849 btf->types[++(btf->nr_types)] = t; 850 851 return 0; 852 } 853 854 static int btf_alloc_id(struct btf *btf) 855 { 856 int id; 857 858 idr_preload(GFP_KERNEL); 859 spin_lock_bh(&btf_idr_lock); 860 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 861 if (id > 0) 862 btf->id = id; 863 spin_unlock_bh(&btf_idr_lock); 864 idr_preload_end(); 865 866 if (WARN_ON_ONCE(!id)) 867 return -ENOSPC; 868 869 return id > 0 ? 0 : id; 870 } 871 872 static void btf_free_id(struct btf *btf) 873 { 874 unsigned long flags; 875 876 /* 877 * In map-in-map, calling map_delete_elem() on outer 878 * map will call bpf_map_put on the inner map. 879 * It will then eventually call btf_free_id() 880 * on the inner map. Some of the map_delete_elem() 881 * implementation may have irq disabled, so 882 * we need to use the _irqsave() version instead 883 * of the _bh() version. 884 */ 885 spin_lock_irqsave(&btf_idr_lock, flags); 886 idr_remove(&btf_idr, btf->id); 887 spin_unlock_irqrestore(&btf_idr_lock, flags); 888 } 889 890 static void btf_free(struct btf *btf) 891 { 892 kvfree(btf->types); 893 kvfree(btf->resolved_sizes); 894 kvfree(btf->resolved_ids); 895 kvfree(btf->data); 896 kfree(btf); 897 } 898 899 static void btf_free_rcu(struct rcu_head *rcu) 900 { 901 struct btf *btf = container_of(rcu, struct btf, rcu); 902 903 btf_free(btf); 904 } 905 906 void btf_put(struct btf *btf) 907 { 908 if (btf && refcount_dec_and_test(&btf->refcnt)) { 909 btf_free_id(btf); 910 call_rcu(&btf->rcu, btf_free_rcu); 911 } 912 } 913 914 static int env_resolve_init(struct btf_verifier_env *env) 915 { 916 struct btf *btf = env->btf; 917 u32 nr_types = btf->nr_types; 918 u32 *resolved_sizes = NULL; 919 u32 *resolved_ids = NULL; 920 u8 *visit_states = NULL; 921 922 /* +1 for btf_void */ 923 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 924 GFP_KERNEL | __GFP_NOWARN); 925 if (!resolved_sizes) 926 goto nomem; 927 928 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 929 GFP_KERNEL | __GFP_NOWARN); 930 if (!resolved_ids) 931 goto nomem; 932 933 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 934 GFP_KERNEL | __GFP_NOWARN); 935 if (!visit_states) 936 goto nomem; 937 938 btf->resolved_sizes = resolved_sizes; 939 btf->resolved_ids = resolved_ids; 940 env->visit_states = visit_states; 941 942 return 0; 943 944 nomem: 945 kvfree(resolved_sizes); 946 kvfree(resolved_ids); 947 kvfree(visit_states); 948 return -ENOMEM; 949 } 950 951 static void btf_verifier_env_free(struct btf_verifier_env *env) 952 { 953 kvfree(env->visit_states); 954 kfree(env); 955 } 956 957 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 958 const struct btf_type *next_type) 959 { 960 switch (env->resolve_mode) { 961 case RESOLVE_TBD: 962 /* int, enum or void is a sink */ 963 return !btf_type_needs_resolve(next_type); 964 case RESOLVE_PTR: 965 /* int, enum, void, struct, array, func or func_proto is a sink 966 * for ptr 967 */ 968 return !btf_type_is_modifier(next_type) && 969 !btf_type_is_ptr(next_type); 970 case RESOLVE_STRUCT_OR_ARRAY: 971 /* int, enum, void, ptr, func or func_proto is a sink 972 * for struct and array 973 */ 974 return !btf_type_is_modifier(next_type) && 975 !btf_type_is_array(next_type) && 976 !btf_type_is_struct(next_type); 977 default: 978 BUG(); 979 } 980 } 981 982 static bool env_type_is_resolved(const struct btf_verifier_env *env, 983 u32 type_id) 984 { 985 return env->visit_states[type_id] == RESOLVED; 986 } 987 988 static int env_stack_push(struct btf_verifier_env *env, 989 const struct btf_type *t, u32 type_id) 990 { 991 struct resolve_vertex *v; 992 993 if (env->top_stack == MAX_RESOLVE_DEPTH) 994 return -E2BIG; 995 996 if (env->visit_states[type_id] != NOT_VISITED) 997 return -EEXIST; 998 999 env->visit_states[type_id] = VISITED; 1000 1001 v = &env->stack[env->top_stack++]; 1002 v->t = t; 1003 v->type_id = type_id; 1004 v->next_member = 0; 1005 1006 if (env->resolve_mode == RESOLVE_TBD) { 1007 if (btf_type_is_ptr(t)) 1008 env->resolve_mode = RESOLVE_PTR; 1009 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1010 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1011 } 1012 1013 return 0; 1014 } 1015 1016 static void env_stack_set_next_member(struct btf_verifier_env *env, 1017 u16 next_member) 1018 { 1019 env->stack[env->top_stack - 1].next_member = next_member; 1020 } 1021 1022 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1023 u32 resolved_type_id, 1024 u32 resolved_size) 1025 { 1026 u32 type_id = env->stack[--(env->top_stack)].type_id; 1027 struct btf *btf = env->btf; 1028 1029 btf->resolved_sizes[type_id] = resolved_size; 1030 btf->resolved_ids[type_id] = resolved_type_id; 1031 env->visit_states[type_id] = RESOLVED; 1032 } 1033 1034 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1035 { 1036 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1037 } 1038 1039 /* The input param "type_id" must point to a needs_resolve type */ 1040 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1041 u32 *type_id) 1042 { 1043 *type_id = btf->resolved_ids[*type_id]; 1044 return btf_type_by_id(btf, *type_id); 1045 } 1046 1047 const struct btf_type *btf_type_id_size(const struct btf *btf, 1048 u32 *type_id, u32 *ret_size) 1049 { 1050 const struct btf_type *size_type; 1051 u32 size_type_id = *type_id; 1052 u32 size = 0; 1053 1054 size_type = btf_type_by_id(btf, size_type_id); 1055 if (btf_type_nosize_or_null(size_type)) 1056 return NULL; 1057 1058 if (btf_type_has_size(size_type)) { 1059 size = size_type->size; 1060 } else if (btf_type_is_array(size_type)) { 1061 size = btf->resolved_sizes[size_type_id]; 1062 } else if (btf_type_is_ptr(size_type)) { 1063 size = sizeof(void *); 1064 } else { 1065 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1066 !btf_type_is_var(size_type))) 1067 return NULL; 1068 1069 size_type_id = btf->resolved_ids[size_type_id]; 1070 size_type = btf_type_by_id(btf, size_type_id); 1071 if (btf_type_nosize_or_null(size_type)) 1072 return NULL; 1073 else if (btf_type_has_size(size_type)) 1074 size = size_type->size; 1075 else if (btf_type_is_array(size_type)) 1076 size = btf->resolved_sizes[size_type_id]; 1077 else if (btf_type_is_ptr(size_type)) 1078 size = sizeof(void *); 1079 else 1080 return NULL; 1081 } 1082 1083 *type_id = size_type_id; 1084 if (ret_size) 1085 *ret_size = size; 1086 1087 return size_type; 1088 } 1089 1090 static int btf_df_check_member(struct btf_verifier_env *env, 1091 const struct btf_type *struct_type, 1092 const struct btf_member *member, 1093 const struct btf_type *member_type) 1094 { 1095 btf_verifier_log_basic(env, struct_type, 1096 "Unsupported check_member"); 1097 return -EINVAL; 1098 } 1099 1100 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1101 const struct btf_type *struct_type, 1102 const struct btf_member *member, 1103 const struct btf_type *member_type) 1104 { 1105 btf_verifier_log_basic(env, struct_type, 1106 "Unsupported check_kflag_member"); 1107 return -EINVAL; 1108 } 1109 1110 /* Used for ptr, array and struct/union type members. 1111 * int, enum and modifier types have their specific callback functions. 1112 */ 1113 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1114 const struct btf_type *struct_type, 1115 const struct btf_member *member, 1116 const struct btf_type *member_type) 1117 { 1118 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1119 btf_verifier_log_member(env, struct_type, member, 1120 "Invalid member bitfield_size"); 1121 return -EINVAL; 1122 } 1123 1124 /* bitfield size is 0, so member->offset represents bit offset only. 1125 * It is safe to call non kflag check_member variants. 1126 */ 1127 return btf_type_ops(member_type)->check_member(env, struct_type, 1128 member, 1129 member_type); 1130 } 1131 1132 static int btf_df_resolve(struct btf_verifier_env *env, 1133 const struct resolve_vertex *v) 1134 { 1135 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1136 return -EINVAL; 1137 } 1138 1139 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 1140 u32 type_id, void *data, u8 bits_offsets, 1141 struct seq_file *m) 1142 { 1143 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1144 } 1145 1146 static int btf_int_check_member(struct btf_verifier_env *env, 1147 const struct btf_type *struct_type, 1148 const struct btf_member *member, 1149 const struct btf_type *member_type) 1150 { 1151 u32 int_data = btf_type_int(member_type); 1152 u32 struct_bits_off = member->offset; 1153 u32 struct_size = struct_type->size; 1154 u32 nr_copy_bits; 1155 u32 bytes_offset; 1156 1157 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1158 btf_verifier_log_member(env, struct_type, member, 1159 "bits_offset exceeds U32_MAX"); 1160 return -EINVAL; 1161 } 1162 1163 struct_bits_off += BTF_INT_OFFSET(int_data); 1164 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1165 nr_copy_bits = BTF_INT_BITS(int_data) + 1166 BITS_PER_BYTE_MASKED(struct_bits_off); 1167 1168 if (nr_copy_bits > BITS_PER_U128) { 1169 btf_verifier_log_member(env, struct_type, member, 1170 "nr_copy_bits exceeds 128"); 1171 return -EINVAL; 1172 } 1173 1174 if (struct_size < bytes_offset || 1175 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1176 btf_verifier_log_member(env, struct_type, member, 1177 "Member exceeds struct_size"); 1178 return -EINVAL; 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1185 const struct btf_type *struct_type, 1186 const struct btf_member *member, 1187 const struct btf_type *member_type) 1188 { 1189 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1190 u32 int_data = btf_type_int(member_type); 1191 u32 struct_size = struct_type->size; 1192 u32 nr_copy_bits; 1193 1194 /* a regular int type is required for the kflag int member */ 1195 if (!btf_type_int_is_regular(member_type)) { 1196 btf_verifier_log_member(env, struct_type, member, 1197 "Invalid member base type"); 1198 return -EINVAL; 1199 } 1200 1201 /* check sanity of bitfield size */ 1202 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1203 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1204 nr_int_data_bits = BTF_INT_BITS(int_data); 1205 if (!nr_bits) { 1206 /* Not a bitfield member, member offset must be at byte 1207 * boundary. 1208 */ 1209 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1210 btf_verifier_log_member(env, struct_type, member, 1211 "Invalid member offset"); 1212 return -EINVAL; 1213 } 1214 1215 nr_bits = nr_int_data_bits; 1216 } else if (nr_bits > nr_int_data_bits) { 1217 btf_verifier_log_member(env, struct_type, member, 1218 "Invalid member bitfield_size"); 1219 return -EINVAL; 1220 } 1221 1222 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1223 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1224 if (nr_copy_bits > BITS_PER_U128) { 1225 btf_verifier_log_member(env, struct_type, member, 1226 "nr_copy_bits exceeds 128"); 1227 return -EINVAL; 1228 } 1229 1230 if (struct_size < bytes_offset || 1231 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1232 btf_verifier_log_member(env, struct_type, member, 1233 "Member exceeds struct_size"); 1234 return -EINVAL; 1235 } 1236 1237 return 0; 1238 } 1239 1240 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1241 const struct btf_type *t, 1242 u32 meta_left) 1243 { 1244 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1245 u16 encoding; 1246 1247 if (meta_left < meta_needed) { 1248 btf_verifier_log_basic(env, t, 1249 "meta_left:%u meta_needed:%u", 1250 meta_left, meta_needed); 1251 return -EINVAL; 1252 } 1253 1254 if (btf_type_vlen(t)) { 1255 btf_verifier_log_type(env, t, "vlen != 0"); 1256 return -EINVAL; 1257 } 1258 1259 if (btf_type_kflag(t)) { 1260 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1261 return -EINVAL; 1262 } 1263 1264 int_data = btf_type_int(t); 1265 if (int_data & ~BTF_INT_MASK) { 1266 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 1267 int_data); 1268 return -EINVAL; 1269 } 1270 1271 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 1272 1273 if (nr_bits > BITS_PER_U128) { 1274 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1275 BITS_PER_U128); 1276 return -EINVAL; 1277 } 1278 1279 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1280 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1281 return -EINVAL; 1282 } 1283 1284 /* 1285 * Only one of the encoding bits is allowed and it 1286 * should be sufficient for the pretty print purpose (i.e. decoding). 1287 * Multiple bits can be allowed later if it is found 1288 * to be insufficient. 1289 */ 1290 encoding = BTF_INT_ENCODING(int_data); 1291 if (encoding && 1292 encoding != BTF_INT_SIGNED && 1293 encoding != BTF_INT_CHAR && 1294 encoding != BTF_INT_BOOL) { 1295 btf_verifier_log_type(env, t, "Unsupported encoding"); 1296 return -ENOTSUPP; 1297 } 1298 1299 btf_verifier_log_type(env, t, NULL); 1300 1301 return meta_needed; 1302 } 1303 1304 static void btf_int_log(struct btf_verifier_env *env, 1305 const struct btf_type *t) 1306 { 1307 int int_data = btf_type_int(t); 1308 1309 btf_verifier_log(env, 1310 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1311 t->size, BTF_INT_OFFSET(int_data), 1312 BTF_INT_BITS(int_data), 1313 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1314 } 1315 1316 static void btf_int128_print(struct seq_file *m, void *data) 1317 { 1318 /* data points to a __int128 number. 1319 * Suppose 1320 * int128_num = *(__int128 *)data; 1321 * The below formulas shows what upper_num and lower_num represents: 1322 * upper_num = int128_num >> 64; 1323 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 1324 */ 1325 u64 upper_num, lower_num; 1326 1327 #ifdef __BIG_ENDIAN_BITFIELD 1328 upper_num = *(u64 *)data; 1329 lower_num = *(u64 *)(data + 8); 1330 #else 1331 upper_num = *(u64 *)(data + 8); 1332 lower_num = *(u64 *)data; 1333 #endif 1334 if (upper_num == 0) 1335 seq_printf(m, "0x%llx", lower_num); 1336 else 1337 seq_printf(m, "0x%llx%016llx", upper_num, lower_num); 1338 } 1339 1340 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 1341 u16 right_shift_bits) 1342 { 1343 u64 upper_num, lower_num; 1344 1345 #ifdef __BIG_ENDIAN_BITFIELD 1346 upper_num = print_num[0]; 1347 lower_num = print_num[1]; 1348 #else 1349 upper_num = print_num[1]; 1350 lower_num = print_num[0]; 1351 #endif 1352 1353 /* shake out un-needed bits by shift/or operations */ 1354 if (left_shift_bits >= 64) { 1355 upper_num = lower_num << (left_shift_bits - 64); 1356 lower_num = 0; 1357 } else { 1358 upper_num = (upper_num << left_shift_bits) | 1359 (lower_num >> (64 - left_shift_bits)); 1360 lower_num = lower_num << left_shift_bits; 1361 } 1362 1363 if (right_shift_bits >= 64) { 1364 lower_num = upper_num >> (right_shift_bits - 64); 1365 upper_num = 0; 1366 } else { 1367 lower_num = (lower_num >> right_shift_bits) | 1368 (upper_num << (64 - right_shift_bits)); 1369 upper_num = upper_num >> right_shift_bits; 1370 } 1371 1372 #ifdef __BIG_ENDIAN_BITFIELD 1373 print_num[0] = upper_num; 1374 print_num[1] = lower_num; 1375 #else 1376 print_num[0] = lower_num; 1377 print_num[1] = upper_num; 1378 #endif 1379 } 1380 1381 static void btf_bitfield_seq_show(void *data, u8 bits_offset, 1382 u8 nr_bits, struct seq_file *m) 1383 { 1384 u16 left_shift_bits, right_shift_bits; 1385 u8 nr_copy_bytes; 1386 u8 nr_copy_bits; 1387 u64 print_num[2] = {}; 1388 1389 nr_copy_bits = nr_bits + bits_offset; 1390 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1391 1392 memcpy(print_num, data, nr_copy_bytes); 1393 1394 #ifdef __BIG_ENDIAN_BITFIELD 1395 left_shift_bits = bits_offset; 1396 #else 1397 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 1398 #endif 1399 right_shift_bits = BITS_PER_U128 - nr_bits; 1400 1401 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 1402 btf_int128_print(m, print_num); 1403 } 1404 1405 1406 static void btf_int_bits_seq_show(const struct btf *btf, 1407 const struct btf_type *t, 1408 void *data, u8 bits_offset, 1409 struct seq_file *m) 1410 { 1411 u32 int_data = btf_type_int(t); 1412 u8 nr_bits = BTF_INT_BITS(int_data); 1413 u8 total_bits_offset; 1414 1415 /* 1416 * bits_offset is at most 7. 1417 * BTF_INT_OFFSET() cannot exceed 128 bits. 1418 */ 1419 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1420 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1421 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1422 btf_bitfield_seq_show(data, bits_offset, nr_bits, m); 1423 } 1424 1425 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1426 u32 type_id, void *data, u8 bits_offset, 1427 struct seq_file *m) 1428 { 1429 u32 int_data = btf_type_int(t); 1430 u8 encoding = BTF_INT_ENCODING(int_data); 1431 bool sign = encoding & BTF_INT_SIGNED; 1432 u8 nr_bits = BTF_INT_BITS(int_data); 1433 1434 if (bits_offset || BTF_INT_OFFSET(int_data) || 1435 BITS_PER_BYTE_MASKED(nr_bits)) { 1436 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1437 return; 1438 } 1439 1440 switch (nr_bits) { 1441 case 128: 1442 btf_int128_print(m, data); 1443 break; 1444 case 64: 1445 if (sign) 1446 seq_printf(m, "%lld", *(s64 *)data); 1447 else 1448 seq_printf(m, "%llu", *(u64 *)data); 1449 break; 1450 case 32: 1451 if (sign) 1452 seq_printf(m, "%d", *(s32 *)data); 1453 else 1454 seq_printf(m, "%u", *(u32 *)data); 1455 break; 1456 case 16: 1457 if (sign) 1458 seq_printf(m, "%d", *(s16 *)data); 1459 else 1460 seq_printf(m, "%u", *(u16 *)data); 1461 break; 1462 case 8: 1463 if (sign) 1464 seq_printf(m, "%d", *(s8 *)data); 1465 else 1466 seq_printf(m, "%u", *(u8 *)data); 1467 break; 1468 default: 1469 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1470 } 1471 } 1472 1473 static const struct btf_kind_operations int_ops = { 1474 .check_meta = btf_int_check_meta, 1475 .resolve = btf_df_resolve, 1476 .check_member = btf_int_check_member, 1477 .check_kflag_member = btf_int_check_kflag_member, 1478 .log_details = btf_int_log, 1479 .seq_show = btf_int_seq_show, 1480 }; 1481 1482 static int btf_modifier_check_member(struct btf_verifier_env *env, 1483 const struct btf_type *struct_type, 1484 const struct btf_member *member, 1485 const struct btf_type *member_type) 1486 { 1487 const struct btf_type *resolved_type; 1488 u32 resolved_type_id = member->type; 1489 struct btf_member resolved_member; 1490 struct btf *btf = env->btf; 1491 1492 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1493 if (!resolved_type) { 1494 btf_verifier_log_member(env, struct_type, member, 1495 "Invalid member"); 1496 return -EINVAL; 1497 } 1498 1499 resolved_member = *member; 1500 resolved_member.type = resolved_type_id; 1501 1502 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1503 &resolved_member, 1504 resolved_type); 1505 } 1506 1507 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 1508 const struct btf_type *struct_type, 1509 const struct btf_member *member, 1510 const struct btf_type *member_type) 1511 { 1512 const struct btf_type *resolved_type; 1513 u32 resolved_type_id = member->type; 1514 struct btf_member resolved_member; 1515 struct btf *btf = env->btf; 1516 1517 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1518 if (!resolved_type) { 1519 btf_verifier_log_member(env, struct_type, member, 1520 "Invalid member"); 1521 return -EINVAL; 1522 } 1523 1524 resolved_member = *member; 1525 resolved_member.type = resolved_type_id; 1526 1527 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 1528 &resolved_member, 1529 resolved_type); 1530 } 1531 1532 static int btf_ptr_check_member(struct btf_verifier_env *env, 1533 const struct btf_type *struct_type, 1534 const struct btf_member *member, 1535 const struct btf_type *member_type) 1536 { 1537 u32 struct_size, struct_bits_off, bytes_offset; 1538 1539 struct_size = struct_type->size; 1540 struct_bits_off = member->offset; 1541 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1542 1543 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1544 btf_verifier_log_member(env, struct_type, member, 1545 "Member is not byte aligned"); 1546 return -EINVAL; 1547 } 1548 1549 if (struct_size - bytes_offset < sizeof(void *)) { 1550 btf_verifier_log_member(env, struct_type, member, 1551 "Member exceeds struct_size"); 1552 return -EINVAL; 1553 } 1554 1555 return 0; 1556 } 1557 1558 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1559 const struct btf_type *t, 1560 u32 meta_left) 1561 { 1562 if (btf_type_vlen(t)) { 1563 btf_verifier_log_type(env, t, "vlen != 0"); 1564 return -EINVAL; 1565 } 1566 1567 if (btf_type_kflag(t)) { 1568 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1569 return -EINVAL; 1570 } 1571 1572 if (!BTF_TYPE_ID_VALID(t->type)) { 1573 btf_verifier_log_type(env, t, "Invalid type_id"); 1574 return -EINVAL; 1575 } 1576 1577 /* typedef type must have a valid name, and other ref types, 1578 * volatile, const, restrict, should have a null name. 1579 */ 1580 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 1581 if (!t->name_off || 1582 !btf_name_valid_identifier(env->btf, t->name_off)) { 1583 btf_verifier_log_type(env, t, "Invalid name"); 1584 return -EINVAL; 1585 } 1586 } else { 1587 if (t->name_off) { 1588 btf_verifier_log_type(env, t, "Invalid name"); 1589 return -EINVAL; 1590 } 1591 } 1592 1593 btf_verifier_log_type(env, t, NULL); 1594 1595 return 0; 1596 } 1597 1598 static int btf_modifier_resolve(struct btf_verifier_env *env, 1599 const struct resolve_vertex *v) 1600 { 1601 const struct btf_type *t = v->t; 1602 const struct btf_type *next_type; 1603 u32 next_type_id = t->type; 1604 struct btf *btf = env->btf; 1605 1606 next_type = btf_type_by_id(btf, next_type_id); 1607 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1608 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1609 return -EINVAL; 1610 } 1611 1612 if (!env_type_is_resolve_sink(env, next_type) && 1613 !env_type_is_resolved(env, next_type_id)) 1614 return env_stack_push(env, next_type, next_type_id); 1615 1616 /* Figure out the resolved next_type_id with size. 1617 * They will be stored in the current modifier's 1618 * resolved_ids and resolved_sizes such that it can 1619 * save us a few type-following when we use it later (e.g. in 1620 * pretty print). 1621 */ 1622 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1623 if (env_type_is_resolved(env, next_type_id)) 1624 next_type = btf_type_id_resolve(btf, &next_type_id); 1625 1626 /* "typedef void new_void", "const void"...etc */ 1627 if (!btf_type_is_void(next_type) && 1628 !btf_type_is_fwd(next_type) && 1629 !btf_type_is_func_proto(next_type)) { 1630 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1631 return -EINVAL; 1632 } 1633 } 1634 1635 env_stack_pop_resolved(env, next_type_id, 0); 1636 1637 return 0; 1638 } 1639 1640 static int btf_var_resolve(struct btf_verifier_env *env, 1641 const struct resolve_vertex *v) 1642 { 1643 const struct btf_type *next_type; 1644 const struct btf_type *t = v->t; 1645 u32 next_type_id = t->type; 1646 struct btf *btf = env->btf; 1647 1648 next_type = btf_type_by_id(btf, next_type_id); 1649 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1650 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1651 return -EINVAL; 1652 } 1653 1654 if (!env_type_is_resolve_sink(env, next_type) && 1655 !env_type_is_resolved(env, next_type_id)) 1656 return env_stack_push(env, next_type, next_type_id); 1657 1658 if (btf_type_is_modifier(next_type)) { 1659 const struct btf_type *resolved_type; 1660 u32 resolved_type_id; 1661 1662 resolved_type_id = next_type_id; 1663 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1664 1665 if (btf_type_is_ptr(resolved_type) && 1666 !env_type_is_resolve_sink(env, resolved_type) && 1667 !env_type_is_resolved(env, resolved_type_id)) 1668 return env_stack_push(env, resolved_type, 1669 resolved_type_id); 1670 } 1671 1672 /* We must resolve to something concrete at this point, no 1673 * forward types or similar that would resolve to size of 1674 * zero is allowed. 1675 */ 1676 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1677 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1678 return -EINVAL; 1679 } 1680 1681 env_stack_pop_resolved(env, next_type_id, 0); 1682 1683 return 0; 1684 } 1685 1686 static int btf_ptr_resolve(struct btf_verifier_env *env, 1687 const struct resolve_vertex *v) 1688 { 1689 const struct btf_type *next_type; 1690 const struct btf_type *t = v->t; 1691 u32 next_type_id = t->type; 1692 struct btf *btf = env->btf; 1693 1694 next_type = btf_type_by_id(btf, next_type_id); 1695 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1696 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1697 return -EINVAL; 1698 } 1699 1700 if (!env_type_is_resolve_sink(env, next_type) && 1701 !env_type_is_resolved(env, next_type_id)) 1702 return env_stack_push(env, next_type, next_type_id); 1703 1704 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1705 * the modifier may have stopped resolving when it was resolved 1706 * to a ptr (last-resolved-ptr). 1707 * 1708 * We now need to continue from the last-resolved-ptr to 1709 * ensure the last-resolved-ptr will not referring back to 1710 * the currenct ptr (t). 1711 */ 1712 if (btf_type_is_modifier(next_type)) { 1713 const struct btf_type *resolved_type; 1714 u32 resolved_type_id; 1715 1716 resolved_type_id = next_type_id; 1717 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1718 1719 if (btf_type_is_ptr(resolved_type) && 1720 !env_type_is_resolve_sink(env, resolved_type) && 1721 !env_type_is_resolved(env, resolved_type_id)) 1722 return env_stack_push(env, resolved_type, 1723 resolved_type_id); 1724 } 1725 1726 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1727 if (env_type_is_resolved(env, next_type_id)) 1728 next_type = btf_type_id_resolve(btf, &next_type_id); 1729 1730 if (!btf_type_is_void(next_type) && 1731 !btf_type_is_fwd(next_type) && 1732 !btf_type_is_func_proto(next_type)) { 1733 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1734 return -EINVAL; 1735 } 1736 } 1737 1738 env_stack_pop_resolved(env, next_type_id, 0); 1739 1740 return 0; 1741 } 1742 1743 static void btf_modifier_seq_show(const struct btf *btf, 1744 const struct btf_type *t, 1745 u32 type_id, void *data, 1746 u8 bits_offset, struct seq_file *m) 1747 { 1748 t = btf_type_id_resolve(btf, &type_id); 1749 1750 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1751 } 1752 1753 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t, 1754 u32 type_id, void *data, u8 bits_offset, 1755 struct seq_file *m) 1756 { 1757 t = btf_type_id_resolve(btf, &type_id); 1758 1759 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1760 } 1761 1762 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1763 u32 type_id, void *data, u8 bits_offset, 1764 struct seq_file *m) 1765 { 1766 /* It is a hashed value */ 1767 seq_printf(m, "%p", *(void **)data); 1768 } 1769 1770 static void btf_ref_type_log(struct btf_verifier_env *env, 1771 const struct btf_type *t) 1772 { 1773 btf_verifier_log(env, "type_id=%u", t->type); 1774 } 1775 1776 static struct btf_kind_operations modifier_ops = { 1777 .check_meta = btf_ref_type_check_meta, 1778 .resolve = btf_modifier_resolve, 1779 .check_member = btf_modifier_check_member, 1780 .check_kflag_member = btf_modifier_check_kflag_member, 1781 .log_details = btf_ref_type_log, 1782 .seq_show = btf_modifier_seq_show, 1783 }; 1784 1785 static struct btf_kind_operations ptr_ops = { 1786 .check_meta = btf_ref_type_check_meta, 1787 .resolve = btf_ptr_resolve, 1788 .check_member = btf_ptr_check_member, 1789 .check_kflag_member = btf_generic_check_kflag_member, 1790 .log_details = btf_ref_type_log, 1791 .seq_show = btf_ptr_seq_show, 1792 }; 1793 1794 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1795 const struct btf_type *t, 1796 u32 meta_left) 1797 { 1798 if (btf_type_vlen(t)) { 1799 btf_verifier_log_type(env, t, "vlen != 0"); 1800 return -EINVAL; 1801 } 1802 1803 if (t->type) { 1804 btf_verifier_log_type(env, t, "type != 0"); 1805 return -EINVAL; 1806 } 1807 1808 /* fwd type must have a valid name */ 1809 if (!t->name_off || 1810 !btf_name_valid_identifier(env->btf, t->name_off)) { 1811 btf_verifier_log_type(env, t, "Invalid name"); 1812 return -EINVAL; 1813 } 1814 1815 btf_verifier_log_type(env, t, NULL); 1816 1817 return 0; 1818 } 1819 1820 static void btf_fwd_type_log(struct btf_verifier_env *env, 1821 const struct btf_type *t) 1822 { 1823 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 1824 } 1825 1826 static struct btf_kind_operations fwd_ops = { 1827 .check_meta = btf_fwd_check_meta, 1828 .resolve = btf_df_resolve, 1829 .check_member = btf_df_check_member, 1830 .check_kflag_member = btf_df_check_kflag_member, 1831 .log_details = btf_fwd_type_log, 1832 .seq_show = btf_df_seq_show, 1833 }; 1834 1835 static int btf_array_check_member(struct btf_verifier_env *env, 1836 const struct btf_type *struct_type, 1837 const struct btf_member *member, 1838 const struct btf_type *member_type) 1839 { 1840 u32 struct_bits_off = member->offset; 1841 u32 struct_size, bytes_offset; 1842 u32 array_type_id, array_size; 1843 struct btf *btf = env->btf; 1844 1845 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1846 btf_verifier_log_member(env, struct_type, member, 1847 "Member is not byte aligned"); 1848 return -EINVAL; 1849 } 1850 1851 array_type_id = member->type; 1852 btf_type_id_size(btf, &array_type_id, &array_size); 1853 struct_size = struct_type->size; 1854 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1855 if (struct_size - bytes_offset < array_size) { 1856 btf_verifier_log_member(env, struct_type, member, 1857 "Member exceeds struct_size"); 1858 return -EINVAL; 1859 } 1860 1861 return 0; 1862 } 1863 1864 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1865 const struct btf_type *t, 1866 u32 meta_left) 1867 { 1868 const struct btf_array *array = btf_type_array(t); 1869 u32 meta_needed = sizeof(*array); 1870 1871 if (meta_left < meta_needed) { 1872 btf_verifier_log_basic(env, t, 1873 "meta_left:%u meta_needed:%u", 1874 meta_left, meta_needed); 1875 return -EINVAL; 1876 } 1877 1878 /* array type should not have a name */ 1879 if (t->name_off) { 1880 btf_verifier_log_type(env, t, "Invalid name"); 1881 return -EINVAL; 1882 } 1883 1884 if (btf_type_vlen(t)) { 1885 btf_verifier_log_type(env, t, "vlen != 0"); 1886 return -EINVAL; 1887 } 1888 1889 if (btf_type_kflag(t)) { 1890 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1891 return -EINVAL; 1892 } 1893 1894 if (t->size) { 1895 btf_verifier_log_type(env, t, "size != 0"); 1896 return -EINVAL; 1897 } 1898 1899 /* Array elem type and index type cannot be in type void, 1900 * so !array->type and !array->index_type are not allowed. 1901 */ 1902 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1903 btf_verifier_log_type(env, t, "Invalid elem"); 1904 return -EINVAL; 1905 } 1906 1907 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1908 btf_verifier_log_type(env, t, "Invalid index"); 1909 return -EINVAL; 1910 } 1911 1912 btf_verifier_log_type(env, t, NULL); 1913 1914 return meta_needed; 1915 } 1916 1917 static int btf_array_resolve(struct btf_verifier_env *env, 1918 const struct resolve_vertex *v) 1919 { 1920 const struct btf_array *array = btf_type_array(v->t); 1921 const struct btf_type *elem_type, *index_type; 1922 u32 elem_type_id, index_type_id; 1923 struct btf *btf = env->btf; 1924 u32 elem_size; 1925 1926 /* Check array->index_type */ 1927 index_type_id = array->index_type; 1928 index_type = btf_type_by_id(btf, index_type_id); 1929 if (btf_type_nosize_or_null(index_type) || 1930 btf_type_is_resolve_source_only(index_type)) { 1931 btf_verifier_log_type(env, v->t, "Invalid index"); 1932 return -EINVAL; 1933 } 1934 1935 if (!env_type_is_resolve_sink(env, index_type) && 1936 !env_type_is_resolved(env, index_type_id)) 1937 return env_stack_push(env, index_type, index_type_id); 1938 1939 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1940 if (!index_type || !btf_type_is_int(index_type) || 1941 !btf_type_int_is_regular(index_type)) { 1942 btf_verifier_log_type(env, v->t, "Invalid index"); 1943 return -EINVAL; 1944 } 1945 1946 /* Check array->type */ 1947 elem_type_id = array->type; 1948 elem_type = btf_type_by_id(btf, elem_type_id); 1949 if (btf_type_nosize_or_null(elem_type) || 1950 btf_type_is_resolve_source_only(elem_type)) { 1951 btf_verifier_log_type(env, v->t, 1952 "Invalid elem"); 1953 return -EINVAL; 1954 } 1955 1956 if (!env_type_is_resolve_sink(env, elem_type) && 1957 !env_type_is_resolved(env, elem_type_id)) 1958 return env_stack_push(env, elem_type, elem_type_id); 1959 1960 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1961 if (!elem_type) { 1962 btf_verifier_log_type(env, v->t, "Invalid elem"); 1963 return -EINVAL; 1964 } 1965 1966 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1967 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1968 return -EINVAL; 1969 } 1970 1971 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1972 btf_verifier_log_type(env, v->t, 1973 "Array size overflows U32_MAX"); 1974 return -EINVAL; 1975 } 1976 1977 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1978 1979 return 0; 1980 } 1981 1982 static void btf_array_log(struct btf_verifier_env *env, 1983 const struct btf_type *t) 1984 { 1985 const struct btf_array *array = btf_type_array(t); 1986 1987 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1988 array->type, array->index_type, array->nelems); 1989 } 1990 1991 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1992 u32 type_id, void *data, u8 bits_offset, 1993 struct seq_file *m) 1994 { 1995 const struct btf_array *array = btf_type_array(t); 1996 const struct btf_kind_operations *elem_ops; 1997 const struct btf_type *elem_type; 1998 u32 i, elem_size, elem_type_id; 1999 2000 elem_type_id = array->type; 2001 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2002 elem_ops = btf_type_ops(elem_type); 2003 seq_puts(m, "["); 2004 for (i = 0; i < array->nelems; i++) { 2005 if (i) 2006 seq_puts(m, ","); 2007 2008 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 2009 bits_offset, m); 2010 data += elem_size; 2011 } 2012 seq_puts(m, "]"); 2013 } 2014 2015 static struct btf_kind_operations array_ops = { 2016 .check_meta = btf_array_check_meta, 2017 .resolve = btf_array_resolve, 2018 .check_member = btf_array_check_member, 2019 .check_kflag_member = btf_generic_check_kflag_member, 2020 .log_details = btf_array_log, 2021 .seq_show = btf_array_seq_show, 2022 }; 2023 2024 static int btf_struct_check_member(struct btf_verifier_env *env, 2025 const struct btf_type *struct_type, 2026 const struct btf_member *member, 2027 const struct btf_type *member_type) 2028 { 2029 u32 struct_bits_off = member->offset; 2030 u32 struct_size, bytes_offset; 2031 2032 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2033 btf_verifier_log_member(env, struct_type, member, 2034 "Member is not byte aligned"); 2035 return -EINVAL; 2036 } 2037 2038 struct_size = struct_type->size; 2039 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2040 if (struct_size - bytes_offset < member_type->size) { 2041 btf_verifier_log_member(env, struct_type, member, 2042 "Member exceeds struct_size"); 2043 return -EINVAL; 2044 } 2045 2046 return 0; 2047 } 2048 2049 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2050 const struct btf_type *t, 2051 u32 meta_left) 2052 { 2053 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2054 const struct btf_member *member; 2055 u32 meta_needed, last_offset; 2056 struct btf *btf = env->btf; 2057 u32 struct_size = t->size; 2058 u32 offset; 2059 u16 i; 2060 2061 meta_needed = btf_type_vlen(t) * sizeof(*member); 2062 if (meta_left < meta_needed) { 2063 btf_verifier_log_basic(env, t, 2064 "meta_left:%u meta_needed:%u", 2065 meta_left, meta_needed); 2066 return -EINVAL; 2067 } 2068 2069 /* struct type either no name or a valid one */ 2070 if (t->name_off && 2071 !btf_name_valid_identifier(env->btf, t->name_off)) { 2072 btf_verifier_log_type(env, t, "Invalid name"); 2073 return -EINVAL; 2074 } 2075 2076 btf_verifier_log_type(env, t, NULL); 2077 2078 last_offset = 0; 2079 for_each_member(i, t, member) { 2080 if (!btf_name_offset_valid(btf, member->name_off)) { 2081 btf_verifier_log_member(env, t, member, 2082 "Invalid member name_offset:%u", 2083 member->name_off); 2084 return -EINVAL; 2085 } 2086 2087 /* struct member either no name or a valid one */ 2088 if (member->name_off && 2089 !btf_name_valid_identifier(btf, member->name_off)) { 2090 btf_verifier_log_member(env, t, member, "Invalid name"); 2091 return -EINVAL; 2092 } 2093 /* A member cannot be in type void */ 2094 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2095 btf_verifier_log_member(env, t, member, 2096 "Invalid type_id"); 2097 return -EINVAL; 2098 } 2099 2100 offset = btf_member_bit_offset(t, member); 2101 if (is_union && offset) { 2102 btf_verifier_log_member(env, t, member, 2103 "Invalid member bits_offset"); 2104 return -EINVAL; 2105 } 2106 2107 /* 2108 * ">" instead of ">=" because the last member could be 2109 * "char a[0];" 2110 */ 2111 if (last_offset > offset) { 2112 btf_verifier_log_member(env, t, member, 2113 "Invalid member bits_offset"); 2114 return -EINVAL; 2115 } 2116 2117 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2118 btf_verifier_log_member(env, t, member, 2119 "Member bits_offset exceeds its struct size"); 2120 return -EINVAL; 2121 } 2122 2123 btf_verifier_log_member(env, t, member, NULL); 2124 last_offset = offset; 2125 } 2126 2127 return meta_needed; 2128 } 2129 2130 static int btf_struct_resolve(struct btf_verifier_env *env, 2131 const struct resolve_vertex *v) 2132 { 2133 const struct btf_member *member; 2134 int err; 2135 u16 i; 2136 2137 /* Before continue resolving the next_member, 2138 * ensure the last member is indeed resolved to a 2139 * type with size info. 2140 */ 2141 if (v->next_member) { 2142 const struct btf_type *last_member_type; 2143 const struct btf_member *last_member; 2144 u16 last_member_type_id; 2145 2146 last_member = btf_type_member(v->t) + v->next_member - 1; 2147 last_member_type_id = last_member->type; 2148 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2149 last_member_type_id))) 2150 return -EINVAL; 2151 2152 last_member_type = btf_type_by_id(env->btf, 2153 last_member_type_id); 2154 if (btf_type_kflag(v->t)) 2155 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2156 last_member, 2157 last_member_type); 2158 else 2159 err = btf_type_ops(last_member_type)->check_member(env, v->t, 2160 last_member, 2161 last_member_type); 2162 if (err) 2163 return err; 2164 } 2165 2166 for_each_member_from(i, v->next_member, v->t, member) { 2167 u32 member_type_id = member->type; 2168 const struct btf_type *member_type = btf_type_by_id(env->btf, 2169 member_type_id); 2170 2171 if (btf_type_nosize_or_null(member_type) || 2172 btf_type_is_resolve_source_only(member_type)) { 2173 btf_verifier_log_member(env, v->t, member, 2174 "Invalid member"); 2175 return -EINVAL; 2176 } 2177 2178 if (!env_type_is_resolve_sink(env, member_type) && 2179 !env_type_is_resolved(env, member_type_id)) { 2180 env_stack_set_next_member(env, i + 1); 2181 return env_stack_push(env, member_type, member_type_id); 2182 } 2183 2184 if (btf_type_kflag(v->t)) 2185 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 2186 member, 2187 member_type); 2188 else 2189 err = btf_type_ops(member_type)->check_member(env, v->t, 2190 member, 2191 member_type); 2192 if (err) 2193 return err; 2194 } 2195 2196 env_stack_pop_resolved(env, 0, 0); 2197 2198 return 0; 2199 } 2200 2201 static void btf_struct_log(struct btf_verifier_env *env, 2202 const struct btf_type *t) 2203 { 2204 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2205 } 2206 2207 /* find 'struct bpf_spin_lock' in map value. 2208 * return >= 0 offset if found 2209 * and < 0 in case of error 2210 */ 2211 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 2212 { 2213 const struct btf_member *member; 2214 u32 i, off = -ENOENT; 2215 2216 if (!__btf_type_is_struct(t)) 2217 return -EINVAL; 2218 2219 for_each_member(i, t, member) { 2220 const struct btf_type *member_type = btf_type_by_id(btf, 2221 member->type); 2222 if (!__btf_type_is_struct(member_type)) 2223 continue; 2224 if (member_type->size != sizeof(struct bpf_spin_lock)) 2225 continue; 2226 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 2227 "bpf_spin_lock")) 2228 continue; 2229 if (off != -ENOENT) 2230 /* only one 'struct bpf_spin_lock' is allowed */ 2231 return -E2BIG; 2232 off = btf_member_bit_offset(t, member); 2233 if (off % 8) 2234 /* valid C code cannot generate such BTF */ 2235 return -EINVAL; 2236 off /= 8; 2237 if (off % __alignof__(struct bpf_spin_lock)) 2238 /* valid struct bpf_spin_lock will be 4 byte aligned */ 2239 return -EINVAL; 2240 } 2241 return off; 2242 } 2243 2244 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 2245 u32 type_id, void *data, u8 bits_offset, 2246 struct seq_file *m) 2247 { 2248 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 2249 const struct btf_member *member; 2250 u32 i; 2251 2252 seq_puts(m, "{"); 2253 for_each_member(i, t, member) { 2254 const struct btf_type *member_type = btf_type_by_id(btf, 2255 member->type); 2256 const struct btf_kind_operations *ops; 2257 u32 member_offset, bitfield_size; 2258 u32 bytes_offset; 2259 u8 bits8_offset; 2260 2261 if (i) 2262 seq_puts(m, seq); 2263 2264 member_offset = btf_member_bit_offset(t, member); 2265 bitfield_size = btf_member_bitfield_size(t, member); 2266 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 2267 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 2268 if (bitfield_size) { 2269 btf_bitfield_seq_show(data + bytes_offset, bits8_offset, 2270 bitfield_size, m); 2271 } else { 2272 ops = btf_type_ops(member_type); 2273 ops->seq_show(btf, member_type, member->type, 2274 data + bytes_offset, bits8_offset, m); 2275 } 2276 } 2277 seq_puts(m, "}"); 2278 } 2279 2280 static struct btf_kind_operations struct_ops = { 2281 .check_meta = btf_struct_check_meta, 2282 .resolve = btf_struct_resolve, 2283 .check_member = btf_struct_check_member, 2284 .check_kflag_member = btf_generic_check_kflag_member, 2285 .log_details = btf_struct_log, 2286 .seq_show = btf_struct_seq_show, 2287 }; 2288 2289 static int btf_enum_check_member(struct btf_verifier_env *env, 2290 const struct btf_type *struct_type, 2291 const struct btf_member *member, 2292 const struct btf_type *member_type) 2293 { 2294 u32 struct_bits_off = member->offset; 2295 u32 struct_size, bytes_offset; 2296 2297 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2298 btf_verifier_log_member(env, struct_type, member, 2299 "Member is not byte aligned"); 2300 return -EINVAL; 2301 } 2302 2303 struct_size = struct_type->size; 2304 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2305 if (struct_size - bytes_offset < sizeof(int)) { 2306 btf_verifier_log_member(env, struct_type, member, 2307 "Member exceeds struct_size"); 2308 return -EINVAL; 2309 } 2310 2311 return 0; 2312 } 2313 2314 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 2315 const struct btf_type *struct_type, 2316 const struct btf_member *member, 2317 const struct btf_type *member_type) 2318 { 2319 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 2320 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 2321 2322 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2323 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2324 if (!nr_bits) { 2325 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2326 btf_verifier_log_member(env, struct_type, member, 2327 "Member is not byte aligned"); 2328 return -EINVAL; 2329 } 2330 2331 nr_bits = int_bitsize; 2332 } else if (nr_bits > int_bitsize) { 2333 btf_verifier_log_member(env, struct_type, member, 2334 "Invalid member bitfield_size"); 2335 return -EINVAL; 2336 } 2337 2338 struct_size = struct_type->size; 2339 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 2340 if (struct_size < bytes_end) { 2341 btf_verifier_log_member(env, struct_type, member, 2342 "Member exceeds struct_size"); 2343 return -EINVAL; 2344 } 2345 2346 return 0; 2347 } 2348 2349 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 2350 const struct btf_type *t, 2351 u32 meta_left) 2352 { 2353 const struct btf_enum *enums = btf_type_enum(t); 2354 struct btf *btf = env->btf; 2355 u16 i, nr_enums; 2356 u32 meta_needed; 2357 2358 nr_enums = btf_type_vlen(t); 2359 meta_needed = nr_enums * sizeof(*enums); 2360 2361 if (meta_left < meta_needed) { 2362 btf_verifier_log_basic(env, t, 2363 "meta_left:%u meta_needed:%u", 2364 meta_left, meta_needed); 2365 return -EINVAL; 2366 } 2367 2368 if (btf_type_kflag(t)) { 2369 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2370 return -EINVAL; 2371 } 2372 2373 if (t->size > 8 || !is_power_of_2(t->size)) { 2374 btf_verifier_log_type(env, t, "Unexpected size"); 2375 return -EINVAL; 2376 } 2377 2378 /* enum type either no name or a valid one */ 2379 if (t->name_off && 2380 !btf_name_valid_identifier(env->btf, t->name_off)) { 2381 btf_verifier_log_type(env, t, "Invalid name"); 2382 return -EINVAL; 2383 } 2384 2385 btf_verifier_log_type(env, t, NULL); 2386 2387 for (i = 0; i < nr_enums; i++) { 2388 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 2389 btf_verifier_log(env, "\tInvalid name_offset:%u", 2390 enums[i].name_off); 2391 return -EINVAL; 2392 } 2393 2394 /* enum member must have a valid name */ 2395 if (!enums[i].name_off || 2396 !btf_name_valid_identifier(btf, enums[i].name_off)) { 2397 btf_verifier_log_type(env, t, "Invalid name"); 2398 return -EINVAL; 2399 } 2400 2401 if (env->log.level == BPF_LOG_KERNEL) 2402 continue; 2403 btf_verifier_log(env, "\t%s val=%d\n", 2404 __btf_name_by_offset(btf, enums[i].name_off), 2405 enums[i].val); 2406 } 2407 2408 return meta_needed; 2409 } 2410 2411 static void btf_enum_log(struct btf_verifier_env *env, 2412 const struct btf_type *t) 2413 { 2414 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2415 } 2416 2417 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 2418 u32 type_id, void *data, u8 bits_offset, 2419 struct seq_file *m) 2420 { 2421 const struct btf_enum *enums = btf_type_enum(t); 2422 u32 i, nr_enums = btf_type_vlen(t); 2423 int v = *(int *)data; 2424 2425 for (i = 0; i < nr_enums; i++) { 2426 if (v == enums[i].val) { 2427 seq_printf(m, "%s", 2428 __btf_name_by_offset(btf, 2429 enums[i].name_off)); 2430 return; 2431 } 2432 } 2433 2434 seq_printf(m, "%d", v); 2435 } 2436 2437 static struct btf_kind_operations enum_ops = { 2438 .check_meta = btf_enum_check_meta, 2439 .resolve = btf_df_resolve, 2440 .check_member = btf_enum_check_member, 2441 .check_kflag_member = btf_enum_check_kflag_member, 2442 .log_details = btf_enum_log, 2443 .seq_show = btf_enum_seq_show, 2444 }; 2445 2446 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 2447 const struct btf_type *t, 2448 u32 meta_left) 2449 { 2450 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 2451 2452 if (meta_left < meta_needed) { 2453 btf_verifier_log_basic(env, t, 2454 "meta_left:%u meta_needed:%u", 2455 meta_left, meta_needed); 2456 return -EINVAL; 2457 } 2458 2459 if (t->name_off) { 2460 btf_verifier_log_type(env, t, "Invalid name"); 2461 return -EINVAL; 2462 } 2463 2464 if (btf_type_kflag(t)) { 2465 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2466 return -EINVAL; 2467 } 2468 2469 btf_verifier_log_type(env, t, NULL); 2470 2471 return meta_needed; 2472 } 2473 2474 static void btf_func_proto_log(struct btf_verifier_env *env, 2475 const struct btf_type *t) 2476 { 2477 const struct btf_param *args = (const struct btf_param *)(t + 1); 2478 u16 nr_args = btf_type_vlen(t), i; 2479 2480 btf_verifier_log(env, "return=%u args=(", t->type); 2481 if (!nr_args) { 2482 btf_verifier_log(env, "void"); 2483 goto done; 2484 } 2485 2486 if (nr_args == 1 && !args[0].type) { 2487 /* Only one vararg */ 2488 btf_verifier_log(env, "vararg"); 2489 goto done; 2490 } 2491 2492 btf_verifier_log(env, "%u %s", args[0].type, 2493 __btf_name_by_offset(env->btf, 2494 args[0].name_off)); 2495 for (i = 1; i < nr_args - 1; i++) 2496 btf_verifier_log(env, ", %u %s", args[i].type, 2497 __btf_name_by_offset(env->btf, 2498 args[i].name_off)); 2499 2500 if (nr_args > 1) { 2501 const struct btf_param *last_arg = &args[nr_args - 1]; 2502 2503 if (last_arg->type) 2504 btf_verifier_log(env, ", %u %s", last_arg->type, 2505 __btf_name_by_offset(env->btf, 2506 last_arg->name_off)); 2507 else 2508 btf_verifier_log(env, ", vararg"); 2509 } 2510 2511 done: 2512 btf_verifier_log(env, ")"); 2513 } 2514 2515 static struct btf_kind_operations func_proto_ops = { 2516 .check_meta = btf_func_proto_check_meta, 2517 .resolve = btf_df_resolve, 2518 /* 2519 * BTF_KIND_FUNC_PROTO cannot be directly referred by 2520 * a struct's member. 2521 * 2522 * It should be a funciton pointer instead. 2523 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 2524 * 2525 * Hence, there is no btf_func_check_member(). 2526 */ 2527 .check_member = btf_df_check_member, 2528 .check_kflag_member = btf_df_check_kflag_member, 2529 .log_details = btf_func_proto_log, 2530 .seq_show = btf_df_seq_show, 2531 }; 2532 2533 static s32 btf_func_check_meta(struct btf_verifier_env *env, 2534 const struct btf_type *t, 2535 u32 meta_left) 2536 { 2537 if (!t->name_off || 2538 !btf_name_valid_identifier(env->btf, t->name_off)) { 2539 btf_verifier_log_type(env, t, "Invalid name"); 2540 return -EINVAL; 2541 } 2542 2543 if (btf_type_vlen(t)) { 2544 btf_verifier_log_type(env, t, "vlen != 0"); 2545 return -EINVAL; 2546 } 2547 2548 if (btf_type_kflag(t)) { 2549 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2550 return -EINVAL; 2551 } 2552 2553 btf_verifier_log_type(env, t, NULL); 2554 2555 return 0; 2556 } 2557 2558 static struct btf_kind_operations func_ops = { 2559 .check_meta = btf_func_check_meta, 2560 .resolve = btf_df_resolve, 2561 .check_member = btf_df_check_member, 2562 .check_kflag_member = btf_df_check_kflag_member, 2563 .log_details = btf_ref_type_log, 2564 .seq_show = btf_df_seq_show, 2565 }; 2566 2567 static s32 btf_var_check_meta(struct btf_verifier_env *env, 2568 const struct btf_type *t, 2569 u32 meta_left) 2570 { 2571 const struct btf_var *var; 2572 u32 meta_needed = sizeof(*var); 2573 2574 if (meta_left < meta_needed) { 2575 btf_verifier_log_basic(env, t, 2576 "meta_left:%u meta_needed:%u", 2577 meta_left, meta_needed); 2578 return -EINVAL; 2579 } 2580 2581 if (btf_type_vlen(t)) { 2582 btf_verifier_log_type(env, t, "vlen != 0"); 2583 return -EINVAL; 2584 } 2585 2586 if (btf_type_kflag(t)) { 2587 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2588 return -EINVAL; 2589 } 2590 2591 if (!t->name_off || 2592 !__btf_name_valid(env->btf, t->name_off, true)) { 2593 btf_verifier_log_type(env, t, "Invalid name"); 2594 return -EINVAL; 2595 } 2596 2597 /* A var cannot be in type void */ 2598 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 2599 btf_verifier_log_type(env, t, "Invalid type_id"); 2600 return -EINVAL; 2601 } 2602 2603 var = btf_type_var(t); 2604 if (var->linkage != BTF_VAR_STATIC && 2605 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2606 btf_verifier_log_type(env, t, "Linkage not supported"); 2607 return -EINVAL; 2608 } 2609 2610 btf_verifier_log_type(env, t, NULL); 2611 2612 return meta_needed; 2613 } 2614 2615 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 2616 { 2617 const struct btf_var *var = btf_type_var(t); 2618 2619 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 2620 } 2621 2622 static const struct btf_kind_operations var_ops = { 2623 .check_meta = btf_var_check_meta, 2624 .resolve = btf_var_resolve, 2625 .check_member = btf_df_check_member, 2626 .check_kflag_member = btf_df_check_kflag_member, 2627 .log_details = btf_var_log, 2628 .seq_show = btf_var_seq_show, 2629 }; 2630 2631 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 2632 const struct btf_type *t, 2633 u32 meta_left) 2634 { 2635 const struct btf_var_secinfo *vsi; 2636 u64 last_vsi_end_off = 0, sum = 0; 2637 u32 i, meta_needed; 2638 2639 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 2640 if (meta_left < meta_needed) { 2641 btf_verifier_log_basic(env, t, 2642 "meta_left:%u meta_needed:%u", 2643 meta_left, meta_needed); 2644 return -EINVAL; 2645 } 2646 2647 if (!btf_type_vlen(t)) { 2648 btf_verifier_log_type(env, t, "vlen == 0"); 2649 return -EINVAL; 2650 } 2651 2652 if (!t->size) { 2653 btf_verifier_log_type(env, t, "size == 0"); 2654 return -EINVAL; 2655 } 2656 2657 if (btf_type_kflag(t)) { 2658 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2659 return -EINVAL; 2660 } 2661 2662 if (!t->name_off || 2663 !btf_name_valid_section(env->btf, t->name_off)) { 2664 btf_verifier_log_type(env, t, "Invalid name"); 2665 return -EINVAL; 2666 } 2667 2668 btf_verifier_log_type(env, t, NULL); 2669 2670 for_each_vsi(i, t, vsi) { 2671 /* A var cannot be in type void */ 2672 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 2673 btf_verifier_log_vsi(env, t, vsi, 2674 "Invalid type_id"); 2675 return -EINVAL; 2676 } 2677 2678 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 2679 btf_verifier_log_vsi(env, t, vsi, 2680 "Invalid offset"); 2681 return -EINVAL; 2682 } 2683 2684 if (!vsi->size || vsi->size > t->size) { 2685 btf_verifier_log_vsi(env, t, vsi, 2686 "Invalid size"); 2687 return -EINVAL; 2688 } 2689 2690 last_vsi_end_off = vsi->offset + vsi->size; 2691 if (last_vsi_end_off > t->size) { 2692 btf_verifier_log_vsi(env, t, vsi, 2693 "Invalid offset+size"); 2694 return -EINVAL; 2695 } 2696 2697 btf_verifier_log_vsi(env, t, vsi, NULL); 2698 sum += vsi->size; 2699 } 2700 2701 if (t->size < sum) { 2702 btf_verifier_log_type(env, t, "Invalid btf_info size"); 2703 return -EINVAL; 2704 } 2705 2706 return meta_needed; 2707 } 2708 2709 static int btf_datasec_resolve(struct btf_verifier_env *env, 2710 const struct resolve_vertex *v) 2711 { 2712 const struct btf_var_secinfo *vsi; 2713 struct btf *btf = env->btf; 2714 u16 i; 2715 2716 for_each_vsi_from(i, v->next_member, v->t, vsi) { 2717 u32 var_type_id = vsi->type, type_id, type_size = 0; 2718 const struct btf_type *var_type = btf_type_by_id(env->btf, 2719 var_type_id); 2720 if (!var_type || !btf_type_is_var(var_type)) { 2721 btf_verifier_log_vsi(env, v->t, vsi, 2722 "Not a VAR kind member"); 2723 return -EINVAL; 2724 } 2725 2726 if (!env_type_is_resolve_sink(env, var_type) && 2727 !env_type_is_resolved(env, var_type_id)) { 2728 env_stack_set_next_member(env, i + 1); 2729 return env_stack_push(env, var_type, var_type_id); 2730 } 2731 2732 type_id = var_type->type; 2733 if (!btf_type_id_size(btf, &type_id, &type_size)) { 2734 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 2735 return -EINVAL; 2736 } 2737 2738 if (vsi->size < type_size) { 2739 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 2740 return -EINVAL; 2741 } 2742 } 2743 2744 env_stack_pop_resolved(env, 0, 0); 2745 return 0; 2746 } 2747 2748 static void btf_datasec_log(struct btf_verifier_env *env, 2749 const struct btf_type *t) 2750 { 2751 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2752 } 2753 2754 static void btf_datasec_seq_show(const struct btf *btf, 2755 const struct btf_type *t, u32 type_id, 2756 void *data, u8 bits_offset, 2757 struct seq_file *m) 2758 { 2759 const struct btf_var_secinfo *vsi; 2760 const struct btf_type *var; 2761 u32 i; 2762 2763 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); 2764 for_each_vsi(i, t, vsi) { 2765 var = btf_type_by_id(btf, vsi->type); 2766 if (i) 2767 seq_puts(m, ","); 2768 btf_type_ops(var)->seq_show(btf, var, vsi->type, 2769 data + vsi->offset, bits_offset, m); 2770 } 2771 seq_puts(m, "}"); 2772 } 2773 2774 static const struct btf_kind_operations datasec_ops = { 2775 .check_meta = btf_datasec_check_meta, 2776 .resolve = btf_datasec_resolve, 2777 .check_member = btf_df_check_member, 2778 .check_kflag_member = btf_df_check_kflag_member, 2779 .log_details = btf_datasec_log, 2780 .seq_show = btf_datasec_seq_show, 2781 }; 2782 2783 static int btf_func_proto_check(struct btf_verifier_env *env, 2784 const struct btf_type *t) 2785 { 2786 const struct btf_type *ret_type; 2787 const struct btf_param *args; 2788 const struct btf *btf; 2789 u16 nr_args, i; 2790 int err; 2791 2792 btf = env->btf; 2793 args = (const struct btf_param *)(t + 1); 2794 nr_args = btf_type_vlen(t); 2795 2796 /* Check func return type which could be "void" (t->type == 0) */ 2797 if (t->type) { 2798 u32 ret_type_id = t->type; 2799 2800 ret_type = btf_type_by_id(btf, ret_type_id); 2801 if (!ret_type) { 2802 btf_verifier_log_type(env, t, "Invalid return type"); 2803 return -EINVAL; 2804 } 2805 2806 if (btf_type_needs_resolve(ret_type) && 2807 !env_type_is_resolved(env, ret_type_id)) { 2808 err = btf_resolve(env, ret_type, ret_type_id); 2809 if (err) 2810 return err; 2811 } 2812 2813 /* Ensure the return type is a type that has a size */ 2814 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 2815 btf_verifier_log_type(env, t, "Invalid return type"); 2816 return -EINVAL; 2817 } 2818 } 2819 2820 if (!nr_args) 2821 return 0; 2822 2823 /* Last func arg type_id could be 0 if it is a vararg */ 2824 if (!args[nr_args - 1].type) { 2825 if (args[nr_args - 1].name_off) { 2826 btf_verifier_log_type(env, t, "Invalid arg#%u", 2827 nr_args); 2828 return -EINVAL; 2829 } 2830 nr_args--; 2831 } 2832 2833 err = 0; 2834 for (i = 0; i < nr_args; i++) { 2835 const struct btf_type *arg_type; 2836 u32 arg_type_id; 2837 2838 arg_type_id = args[i].type; 2839 arg_type = btf_type_by_id(btf, arg_type_id); 2840 if (!arg_type) { 2841 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2842 err = -EINVAL; 2843 break; 2844 } 2845 2846 if (args[i].name_off && 2847 (!btf_name_offset_valid(btf, args[i].name_off) || 2848 !btf_name_valid_identifier(btf, args[i].name_off))) { 2849 btf_verifier_log_type(env, t, 2850 "Invalid arg#%u", i + 1); 2851 err = -EINVAL; 2852 break; 2853 } 2854 2855 if (btf_type_needs_resolve(arg_type) && 2856 !env_type_is_resolved(env, arg_type_id)) { 2857 err = btf_resolve(env, arg_type, arg_type_id); 2858 if (err) 2859 break; 2860 } 2861 2862 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2863 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2864 err = -EINVAL; 2865 break; 2866 } 2867 } 2868 2869 return err; 2870 } 2871 2872 static int btf_func_check(struct btf_verifier_env *env, 2873 const struct btf_type *t) 2874 { 2875 const struct btf_type *proto_type; 2876 const struct btf_param *args; 2877 const struct btf *btf; 2878 u16 nr_args, i; 2879 2880 btf = env->btf; 2881 proto_type = btf_type_by_id(btf, t->type); 2882 2883 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 2884 btf_verifier_log_type(env, t, "Invalid type_id"); 2885 return -EINVAL; 2886 } 2887 2888 args = (const struct btf_param *)(proto_type + 1); 2889 nr_args = btf_type_vlen(proto_type); 2890 for (i = 0; i < nr_args; i++) { 2891 if (!args[i].name_off && args[i].type) { 2892 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2893 return -EINVAL; 2894 } 2895 } 2896 2897 return 0; 2898 } 2899 2900 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 2901 [BTF_KIND_INT] = &int_ops, 2902 [BTF_KIND_PTR] = &ptr_ops, 2903 [BTF_KIND_ARRAY] = &array_ops, 2904 [BTF_KIND_STRUCT] = &struct_ops, 2905 [BTF_KIND_UNION] = &struct_ops, 2906 [BTF_KIND_ENUM] = &enum_ops, 2907 [BTF_KIND_FWD] = &fwd_ops, 2908 [BTF_KIND_TYPEDEF] = &modifier_ops, 2909 [BTF_KIND_VOLATILE] = &modifier_ops, 2910 [BTF_KIND_CONST] = &modifier_ops, 2911 [BTF_KIND_RESTRICT] = &modifier_ops, 2912 [BTF_KIND_FUNC] = &func_ops, 2913 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 2914 [BTF_KIND_VAR] = &var_ops, 2915 [BTF_KIND_DATASEC] = &datasec_ops, 2916 }; 2917 2918 static s32 btf_check_meta(struct btf_verifier_env *env, 2919 const struct btf_type *t, 2920 u32 meta_left) 2921 { 2922 u32 saved_meta_left = meta_left; 2923 s32 var_meta_size; 2924 2925 if (meta_left < sizeof(*t)) { 2926 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 2927 env->log_type_id, meta_left, sizeof(*t)); 2928 return -EINVAL; 2929 } 2930 meta_left -= sizeof(*t); 2931 2932 if (t->info & ~BTF_INFO_MASK) { 2933 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 2934 env->log_type_id, t->info); 2935 return -EINVAL; 2936 } 2937 2938 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 2939 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 2940 btf_verifier_log(env, "[%u] Invalid kind:%u", 2941 env->log_type_id, BTF_INFO_KIND(t->info)); 2942 return -EINVAL; 2943 } 2944 2945 if (!btf_name_offset_valid(env->btf, t->name_off)) { 2946 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 2947 env->log_type_id, t->name_off); 2948 return -EINVAL; 2949 } 2950 2951 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 2952 if (var_meta_size < 0) 2953 return var_meta_size; 2954 2955 meta_left -= var_meta_size; 2956 2957 return saved_meta_left - meta_left; 2958 } 2959 2960 static int btf_check_all_metas(struct btf_verifier_env *env) 2961 { 2962 struct btf *btf = env->btf; 2963 struct btf_header *hdr; 2964 void *cur, *end; 2965 2966 hdr = &btf->hdr; 2967 cur = btf->nohdr_data + hdr->type_off; 2968 end = cur + hdr->type_len; 2969 2970 env->log_type_id = 1; 2971 while (cur < end) { 2972 struct btf_type *t = cur; 2973 s32 meta_size; 2974 2975 meta_size = btf_check_meta(env, t, end - cur); 2976 if (meta_size < 0) 2977 return meta_size; 2978 2979 btf_add_type(env, t); 2980 cur += meta_size; 2981 env->log_type_id++; 2982 } 2983 2984 return 0; 2985 } 2986 2987 static bool btf_resolve_valid(struct btf_verifier_env *env, 2988 const struct btf_type *t, 2989 u32 type_id) 2990 { 2991 struct btf *btf = env->btf; 2992 2993 if (!env_type_is_resolved(env, type_id)) 2994 return false; 2995 2996 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 2997 return !btf->resolved_ids[type_id] && 2998 !btf->resolved_sizes[type_id]; 2999 3000 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3001 btf_type_is_var(t)) { 3002 t = btf_type_id_resolve(btf, &type_id); 3003 return t && 3004 !btf_type_is_modifier(t) && 3005 !btf_type_is_var(t) && 3006 !btf_type_is_datasec(t); 3007 } 3008 3009 if (btf_type_is_array(t)) { 3010 const struct btf_array *array = btf_type_array(t); 3011 const struct btf_type *elem_type; 3012 u32 elem_type_id = array->type; 3013 u32 elem_size; 3014 3015 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3016 return elem_type && !btf_type_is_modifier(elem_type) && 3017 (array->nelems * elem_size == 3018 btf->resolved_sizes[type_id]); 3019 } 3020 3021 return false; 3022 } 3023 3024 static int btf_resolve(struct btf_verifier_env *env, 3025 const struct btf_type *t, u32 type_id) 3026 { 3027 u32 save_log_type_id = env->log_type_id; 3028 const struct resolve_vertex *v; 3029 int err = 0; 3030 3031 env->resolve_mode = RESOLVE_TBD; 3032 env_stack_push(env, t, type_id); 3033 while (!err && (v = env_stack_peak(env))) { 3034 env->log_type_id = v->type_id; 3035 err = btf_type_ops(v->t)->resolve(env, v); 3036 } 3037 3038 env->log_type_id = type_id; 3039 if (err == -E2BIG) { 3040 btf_verifier_log_type(env, t, 3041 "Exceeded max resolving depth:%u", 3042 MAX_RESOLVE_DEPTH); 3043 } else if (err == -EEXIST) { 3044 btf_verifier_log_type(env, t, "Loop detected"); 3045 } 3046 3047 /* Final sanity check */ 3048 if (!err && !btf_resolve_valid(env, t, type_id)) { 3049 btf_verifier_log_type(env, t, "Invalid resolve state"); 3050 err = -EINVAL; 3051 } 3052 3053 env->log_type_id = save_log_type_id; 3054 return err; 3055 } 3056 3057 static int btf_check_all_types(struct btf_verifier_env *env) 3058 { 3059 struct btf *btf = env->btf; 3060 u32 type_id; 3061 int err; 3062 3063 err = env_resolve_init(env); 3064 if (err) 3065 return err; 3066 3067 env->phase++; 3068 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 3069 const struct btf_type *t = btf_type_by_id(btf, type_id); 3070 3071 env->log_type_id = type_id; 3072 if (btf_type_needs_resolve(t) && 3073 !env_type_is_resolved(env, type_id)) { 3074 err = btf_resolve(env, t, type_id); 3075 if (err) 3076 return err; 3077 } 3078 3079 if (btf_type_is_func_proto(t)) { 3080 err = btf_func_proto_check(env, t); 3081 if (err) 3082 return err; 3083 } 3084 3085 if (btf_type_is_func(t)) { 3086 err = btf_func_check(env, t); 3087 if (err) 3088 return err; 3089 } 3090 } 3091 3092 return 0; 3093 } 3094 3095 static int btf_parse_type_sec(struct btf_verifier_env *env) 3096 { 3097 const struct btf_header *hdr = &env->btf->hdr; 3098 int err; 3099 3100 /* Type section must align to 4 bytes */ 3101 if (hdr->type_off & (sizeof(u32) - 1)) { 3102 btf_verifier_log(env, "Unaligned type_off"); 3103 return -EINVAL; 3104 } 3105 3106 if (!hdr->type_len) { 3107 btf_verifier_log(env, "No type found"); 3108 return -EINVAL; 3109 } 3110 3111 err = btf_check_all_metas(env); 3112 if (err) 3113 return err; 3114 3115 return btf_check_all_types(env); 3116 } 3117 3118 static int btf_parse_str_sec(struct btf_verifier_env *env) 3119 { 3120 const struct btf_header *hdr; 3121 struct btf *btf = env->btf; 3122 const char *start, *end; 3123 3124 hdr = &btf->hdr; 3125 start = btf->nohdr_data + hdr->str_off; 3126 end = start + hdr->str_len; 3127 3128 if (end != btf->data + btf->data_size) { 3129 btf_verifier_log(env, "String section is not at the end"); 3130 return -EINVAL; 3131 } 3132 3133 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 3134 start[0] || end[-1]) { 3135 btf_verifier_log(env, "Invalid string section"); 3136 return -EINVAL; 3137 } 3138 3139 btf->strings = start; 3140 3141 return 0; 3142 } 3143 3144 static const size_t btf_sec_info_offset[] = { 3145 offsetof(struct btf_header, type_off), 3146 offsetof(struct btf_header, str_off), 3147 }; 3148 3149 static int btf_sec_info_cmp(const void *a, const void *b) 3150 { 3151 const struct btf_sec_info *x = a; 3152 const struct btf_sec_info *y = b; 3153 3154 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 3155 } 3156 3157 static int btf_check_sec_info(struct btf_verifier_env *env, 3158 u32 btf_data_size) 3159 { 3160 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 3161 u32 total, expected_total, i; 3162 const struct btf_header *hdr; 3163 const struct btf *btf; 3164 3165 btf = env->btf; 3166 hdr = &btf->hdr; 3167 3168 /* Populate the secs from hdr */ 3169 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 3170 secs[i] = *(struct btf_sec_info *)((void *)hdr + 3171 btf_sec_info_offset[i]); 3172 3173 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 3174 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 3175 3176 /* Check for gaps and overlap among sections */ 3177 total = 0; 3178 expected_total = btf_data_size - hdr->hdr_len; 3179 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 3180 if (expected_total < secs[i].off) { 3181 btf_verifier_log(env, "Invalid section offset"); 3182 return -EINVAL; 3183 } 3184 if (total < secs[i].off) { 3185 /* gap */ 3186 btf_verifier_log(env, "Unsupported section found"); 3187 return -EINVAL; 3188 } 3189 if (total > secs[i].off) { 3190 btf_verifier_log(env, "Section overlap found"); 3191 return -EINVAL; 3192 } 3193 if (expected_total - total < secs[i].len) { 3194 btf_verifier_log(env, 3195 "Total section length too long"); 3196 return -EINVAL; 3197 } 3198 total += secs[i].len; 3199 } 3200 3201 /* There is data other than hdr and known sections */ 3202 if (expected_total != total) { 3203 btf_verifier_log(env, "Unsupported section found"); 3204 return -EINVAL; 3205 } 3206 3207 return 0; 3208 } 3209 3210 static int btf_parse_hdr(struct btf_verifier_env *env) 3211 { 3212 u32 hdr_len, hdr_copy, btf_data_size; 3213 const struct btf_header *hdr; 3214 struct btf *btf; 3215 int err; 3216 3217 btf = env->btf; 3218 btf_data_size = btf->data_size; 3219 3220 if (btf_data_size < 3221 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 3222 btf_verifier_log(env, "hdr_len not found"); 3223 return -EINVAL; 3224 } 3225 3226 hdr = btf->data; 3227 hdr_len = hdr->hdr_len; 3228 if (btf_data_size < hdr_len) { 3229 btf_verifier_log(env, "btf_header not found"); 3230 return -EINVAL; 3231 } 3232 3233 /* Ensure the unsupported header fields are zero */ 3234 if (hdr_len > sizeof(btf->hdr)) { 3235 u8 *expected_zero = btf->data + sizeof(btf->hdr); 3236 u8 *end = btf->data + hdr_len; 3237 3238 for (; expected_zero < end; expected_zero++) { 3239 if (*expected_zero) { 3240 btf_verifier_log(env, "Unsupported btf_header"); 3241 return -E2BIG; 3242 } 3243 } 3244 } 3245 3246 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 3247 memcpy(&btf->hdr, btf->data, hdr_copy); 3248 3249 hdr = &btf->hdr; 3250 3251 btf_verifier_log_hdr(env, btf_data_size); 3252 3253 if (hdr->magic != BTF_MAGIC) { 3254 btf_verifier_log(env, "Invalid magic"); 3255 return -EINVAL; 3256 } 3257 3258 if (hdr->version != BTF_VERSION) { 3259 btf_verifier_log(env, "Unsupported version"); 3260 return -ENOTSUPP; 3261 } 3262 3263 if (hdr->flags) { 3264 btf_verifier_log(env, "Unsupported flags"); 3265 return -ENOTSUPP; 3266 } 3267 3268 if (btf_data_size == hdr->hdr_len) { 3269 btf_verifier_log(env, "No data"); 3270 return -EINVAL; 3271 } 3272 3273 err = btf_check_sec_info(env, btf_data_size); 3274 if (err) 3275 return err; 3276 3277 return 0; 3278 } 3279 3280 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 3281 u32 log_level, char __user *log_ubuf, u32 log_size) 3282 { 3283 struct btf_verifier_env *env = NULL; 3284 struct bpf_verifier_log *log; 3285 struct btf *btf = NULL; 3286 u8 *data; 3287 int err; 3288 3289 if (btf_data_size > BTF_MAX_SIZE) 3290 return ERR_PTR(-E2BIG); 3291 3292 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 3293 if (!env) 3294 return ERR_PTR(-ENOMEM); 3295 3296 log = &env->log; 3297 if (log_level || log_ubuf || log_size) { 3298 /* user requested verbose verifier output 3299 * and supplied buffer to store the verification trace 3300 */ 3301 log->level = log_level; 3302 log->ubuf = log_ubuf; 3303 log->len_total = log_size; 3304 3305 /* log attributes have to be sane */ 3306 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 3307 !log->level || !log->ubuf) { 3308 err = -EINVAL; 3309 goto errout; 3310 } 3311 } 3312 3313 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 3314 if (!btf) { 3315 err = -ENOMEM; 3316 goto errout; 3317 } 3318 env->btf = btf; 3319 3320 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 3321 if (!data) { 3322 err = -ENOMEM; 3323 goto errout; 3324 } 3325 3326 btf->data = data; 3327 btf->data_size = btf_data_size; 3328 3329 if (copy_from_user(data, btf_data, btf_data_size)) { 3330 err = -EFAULT; 3331 goto errout; 3332 } 3333 3334 err = btf_parse_hdr(env); 3335 if (err) 3336 goto errout; 3337 3338 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 3339 3340 err = btf_parse_str_sec(env); 3341 if (err) 3342 goto errout; 3343 3344 err = btf_parse_type_sec(env); 3345 if (err) 3346 goto errout; 3347 3348 if (log->level && bpf_verifier_log_full(log)) { 3349 err = -ENOSPC; 3350 goto errout; 3351 } 3352 3353 btf_verifier_env_free(env); 3354 refcount_set(&btf->refcnt, 1); 3355 return btf; 3356 3357 errout: 3358 btf_verifier_env_free(env); 3359 if (btf) 3360 btf_free(btf); 3361 return ERR_PTR(err); 3362 } 3363 3364 extern char __weak _binary__btf_vmlinux_bin_start[]; 3365 extern char __weak _binary__btf_vmlinux_bin_end[]; 3366 3367 struct btf *btf_parse_vmlinux(void) 3368 { 3369 struct btf_verifier_env *env = NULL; 3370 struct bpf_verifier_log *log; 3371 struct btf *btf = NULL; 3372 int err; 3373 3374 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 3375 if (!env) 3376 return ERR_PTR(-ENOMEM); 3377 3378 log = &env->log; 3379 log->level = BPF_LOG_KERNEL; 3380 3381 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 3382 if (!btf) { 3383 err = -ENOMEM; 3384 goto errout; 3385 } 3386 env->btf = btf; 3387 3388 btf->data = _binary__btf_vmlinux_bin_start; 3389 btf->data_size = _binary__btf_vmlinux_bin_end - 3390 _binary__btf_vmlinux_bin_start; 3391 3392 err = btf_parse_hdr(env); 3393 if (err) 3394 goto errout; 3395 3396 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 3397 3398 err = btf_parse_str_sec(env); 3399 if (err) 3400 goto errout; 3401 3402 err = btf_check_all_metas(env); 3403 if (err) 3404 goto errout; 3405 3406 btf_verifier_env_free(env); 3407 refcount_set(&btf->refcnt, 1); 3408 return btf; 3409 3410 errout: 3411 btf_verifier_env_free(env); 3412 if (btf) { 3413 kvfree(btf->types); 3414 kfree(btf); 3415 } 3416 return ERR_PTR(err); 3417 } 3418 3419 extern struct btf *btf_vmlinux; 3420 3421 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 3422 const struct bpf_prog *prog, 3423 struct bpf_insn_access_aux *info) 3424 { 3425 const struct btf_type *t = prog->aux->attach_func_proto; 3426 const char *tname = prog->aux->attach_func_name; 3427 struct bpf_verifier_log *log = info->log; 3428 const struct btf_param *args; 3429 u32 nr_args, arg; 3430 3431 if (off % 8) { 3432 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 3433 tname, off); 3434 return false; 3435 } 3436 arg = off / 8; 3437 args = (const struct btf_param *)(t + 1); 3438 nr_args = btf_type_vlen(t); 3439 if (prog->aux->attach_btf_trace) { 3440 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 3441 args++; 3442 nr_args--; 3443 } 3444 if (arg >= nr_args) { 3445 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 3446 tname, arg); 3447 return false; 3448 } 3449 3450 t = btf_type_by_id(btf_vmlinux, args[arg].type); 3451 /* skip modifiers */ 3452 while (btf_type_is_modifier(t)) 3453 t = btf_type_by_id(btf_vmlinux, t->type); 3454 if (btf_type_is_int(t)) 3455 /* accessing a scalar */ 3456 return true; 3457 if (!btf_type_is_ptr(t)) { 3458 bpf_log(log, 3459 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 3460 tname, arg, 3461 __btf_name_by_offset(btf_vmlinux, t->name_off), 3462 btf_kind_str[BTF_INFO_KIND(t->info)]); 3463 return false; 3464 } 3465 if (t->type == 0) 3466 /* This is a pointer to void. 3467 * It is the same as scalar from the verifier safety pov. 3468 * No further pointer walking is allowed. 3469 */ 3470 return true; 3471 3472 /* this is a pointer to another type */ 3473 info->reg_type = PTR_TO_BTF_ID; 3474 info->btf_id = t->type; 3475 3476 t = btf_type_by_id(btf_vmlinux, t->type); 3477 /* skip modifiers */ 3478 while (btf_type_is_modifier(t)) 3479 t = btf_type_by_id(btf_vmlinux, t->type); 3480 if (!btf_type_is_struct(t)) { 3481 bpf_log(log, 3482 "func '%s' arg%d type %s is not a struct\n", 3483 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 3484 return false; 3485 } 3486 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 3487 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 3488 __btf_name_by_offset(btf_vmlinux, t->name_off)); 3489 return true; 3490 } 3491 3492 int btf_struct_access(struct bpf_verifier_log *log, 3493 const struct btf_type *t, int off, int size, 3494 enum bpf_access_type atype, 3495 u32 *next_btf_id) 3496 { 3497 const struct btf_member *member; 3498 const struct btf_type *mtype; 3499 const char *tname, *mname; 3500 int i, moff = 0, msize; 3501 3502 again: 3503 tname = __btf_name_by_offset(btf_vmlinux, t->name_off); 3504 if (!btf_type_is_struct(t)) { 3505 bpf_log(log, "Type '%s' is not a struct", tname); 3506 return -EINVAL; 3507 } 3508 3509 for_each_member(i, t, member) { 3510 /* offset of the field in bits */ 3511 moff = btf_member_bit_offset(t, member); 3512 3513 if (btf_member_bitfield_size(t, member)) 3514 /* bitfields are not supported yet */ 3515 continue; 3516 3517 if (off + size <= moff / 8) 3518 /* won't find anything, field is already too far */ 3519 break; 3520 3521 /* type of the field */ 3522 mtype = btf_type_by_id(btf_vmlinux, member->type); 3523 mname = __btf_name_by_offset(btf_vmlinux, member->name_off); 3524 3525 /* skip modifiers */ 3526 while (btf_type_is_modifier(mtype)) 3527 mtype = btf_type_by_id(btf_vmlinux, mtype->type); 3528 3529 if (btf_type_is_array(mtype)) 3530 /* array deref is not supported yet */ 3531 continue; 3532 3533 if (!btf_type_has_size(mtype) && !btf_type_is_ptr(mtype)) { 3534 bpf_log(log, "field %s doesn't have size\n", mname); 3535 return -EFAULT; 3536 } 3537 if (btf_type_is_ptr(mtype)) 3538 msize = 8; 3539 else 3540 msize = mtype->size; 3541 if (off >= moff / 8 + msize) 3542 /* no overlap with member, keep iterating */ 3543 continue; 3544 /* the 'off' we're looking for is either equal to start 3545 * of this field or inside of this struct 3546 */ 3547 if (btf_type_is_struct(mtype)) { 3548 /* our field must be inside that union or struct */ 3549 t = mtype; 3550 3551 /* adjust offset we're looking for */ 3552 off -= moff / 8; 3553 goto again; 3554 } 3555 if (msize != size) { 3556 /* field access size doesn't match */ 3557 bpf_log(log, 3558 "cannot access %d bytes in struct %s field %s that has size %d\n", 3559 size, tname, mname, msize); 3560 return -EACCES; 3561 } 3562 3563 if (btf_type_is_ptr(mtype)) { 3564 const struct btf_type *stype; 3565 3566 stype = btf_type_by_id(btf_vmlinux, mtype->type); 3567 /* skip modifiers */ 3568 while (btf_type_is_modifier(stype)) 3569 stype = btf_type_by_id(btf_vmlinux, stype->type); 3570 if (btf_type_is_struct(stype)) { 3571 *next_btf_id = mtype->type; 3572 return PTR_TO_BTF_ID; 3573 } 3574 } 3575 /* all other fields are treated as scalars */ 3576 return SCALAR_VALUE; 3577 } 3578 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 3579 return -EINVAL; 3580 } 3581 3582 u32 btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn, int arg) 3583 { 3584 char fnname[KSYM_SYMBOL_LEN + 4] = "btf_"; 3585 const struct btf_param *args; 3586 const struct btf_type *t; 3587 const char *tname, *sym; 3588 u32 btf_id, i; 3589 3590 if (IS_ERR(btf_vmlinux)) { 3591 bpf_log(log, "btf_vmlinux is malformed\n"); 3592 return -EINVAL; 3593 } 3594 3595 sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4); 3596 if (!sym) { 3597 bpf_log(log, "kernel doesn't have kallsyms\n"); 3598 return -EFAULT; 3599 } 3600 3601 for (i = 1; i <= btf_vmlinux->nr_types; i++) { 3602 t = btf_type_by_id(btf_vmlinux, i); 3603 if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) 3604 continue; 3605 tname = __btf_name_by_offset(btf_vmlinux, t->name_off); 3606 if (!strcmp(tname, fnname)) 3607 break; 3608 } 3609 if (i > btf_vmlinux->nr_types) { 3610 bpf_log(log, "helper %s type is not found\n", fnname); 3611 return -ENOENT; 3612 } 3613 3614 t = btf_type_by_id(btf_vmlinux, t->type); 3615 if (!btf_type_is_ptr(t)) 3616 return -EFAULT; 3617 t = btf_type_by_id(btf_vmlinux, t->type); 3618 if (!btf_type_is_func_proto(t)) 3619 return -EFAULT; 3620 3621 args = (const struct btf_param *)(t + 1); 3622 if (arg >= btf_type_vlen(t)) { 3623 bpf_log(log, "bpf helper %s doesn't have %d-th argument\n", 3624 fnname, arg); 3625 return -EINVAL; 3626 } 3627 3628 t = btf_type_by_id(btf_vmlinux, args[arg].type); 3629 if (!btf_type_is_ptr(t) || !t->type) { 3630 /* anything but the pointer to struct is a helper config bug */ 3631 bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n"); 3632 return -EFAULT; 3633 } 3634 btf_id = t->type; 3635 t = btf_type_by_id(btf_vmlinux, t->type); 3636 /* skip modifiers */ 3637 while (btf_type_is_modifier(t)) { 3638 btf_id = t->type; 3639 t = btf_type_by_id(btf_vmlinux, t->type); 3640 } 3641 if (!btf_type_is_struct(t)) { 3642 bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n"); 3643 return -EFAULT; 3644 } 3645 bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4, 3646 arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off)); 3647 return btf_id; 3648 } 3649 3650 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 3651 struct seq_file *m) 3652 { 3653 const struct btf_type *t = btf_type_by_id(btf, type_id); 3654 3655 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 3656 } 3657 3658 #ifdef CONFIG_PROC_FS 3659 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 3660 { 3661 const struct btf *btf = filp->private_data; 3662 3663 seq_printf(m, "btf_id:\t%u\n", btf->id); 3664 } 3665 #endif 3666 3667 static int btf_release(struct inode *inode, struct file *filp) 3668 { 3669 btf_put(filp->private_data); 3670 return 0; 3671 } 3672 3673 const struct file_operations btf_fops = { 3674 #ifdef CONFIG_PROC_FS 3675 .show_fdinfo = bpf_btf_show_fdinfo, 3676 #endif 3677 .release = btf_release, 3678 }; 3679 3680 static int __btf_new_fd(struct btf *btf) 3681 { 3682 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 3683 } 3684 3685 int btf_new_fd(const union bpf_attr *attr) 3686 { 3687 struct btf *btf; 3688 int ret; 3689 3690 btf = btf_parse(u64_to_user_ptr(attr->btf), 3691 attr->btf_size, attr->btf_log_level, 3692 u64_to_user_ptr(attr->btf_log_buf), 3693 attr->btf_log_size); 3694 if (IS_ERR(btf)) 3695 return PTR_ERR(btf); 3696 3697 ret = btf_alloc_id(btf); 3698 if (ret) { 3699 btf_free(btf); 3700 return ret; 3701 } 3702 3703 /* 3704 * The BTF ID is published to the userspace. 3705 * All BTF free must go through call_rcu() from 3706 * now on (i.e. free by calling btf_put()). 3707 */ 3708 3709 ret = __btf_new_fd(btf); 3710 if (ret < 0) 3711 btf_put(btf); 3712 3713 return ret; 3714 } 3715 3716 struct btf *btf_get_by_fd(int fd) 3717 { 3718 struct btf *btf; 3719 struct fd f; 3720 3721 f = fdget(fd); 3722 3723 if (!f.file) 3724 return ERR_PTR(-EBADF); 3725 3726 if (f.file->f_op != &btf_fops) { 3727 fdput(f); 3728 return ERR_PTR(-EINVAL); 3729 } 3730 3731 btf = f.file->private_data; 3732 refcount_inc(&btf->refcnt); 3733 fdput(f); 3734 3735 return btf; 3736 } 3737 3738 int btf_get_info_by_fd(const struct btf *btf, 3739 const union bpf_attr *attr, 3740 union bpf_attr __user *uattr) 3741 { 3742 struct bpf_btf_info __user *uinfo; 3743 struct bpf_btf_info info = {}; 3744 u32 info_copy, btf_copy; 3745 void __user *ubtf; 3746 u32 uinfo_len; 3747 3748 uinfo = u64_to_user_ptr(attr->info.info); 3749 uinfo_len = attr->info.info_len; 3750 3751 info_copy = min_t(u32, uinfo_len, sizeof(info)); 3752 if (copy_from_user(&info, uinfo, info_copy)) 3753 return -EFAULT; 3754 3755 info.id = btf->id; 3756 ubtf = u64_to_user_ptr(info.btf); 3757 btf_copy = min_t(u32, btf->data_size, info.btf_size); 3758 if (copy_to_user(ubtf, btf->data, btf_copy)) 3759 return -EFAULT; 3760 info.btf_size = btf->data_size; 3761 3762 if (copy_to_user(uinfo, &info, info_copy) || 3763 put_user(info_copy, &uattr->info.info_len)) 3764 return -EFAULT; 3765 3766 return 0; 3767 } 3768 3769 int btf_get_fd_by_id(u32 id) 3770 { 3771 struct btf *btf; 3772 int fd; 3773 3774 rcu_read_lock(); 3775 btf = idr_find(&btf_idr, id); 3776 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 3777 btf = ERR_PTR(-ENOENT); 3778 rcu_read_unlock(); 3779 3780 if (IS_ERR(btf)) 3781 return PTR_ERR(btf); 3782 3783 fd = __btf_new_fd(btf); 3784 if (fd < 0) 3785 btf_put(btf); 3786 3787 return fd; 3788 } 3789 3790 u32 btf_id(const struct btf *btf) 3791 { 3792 return btf->id; 3793 } 3794