1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/slab.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/uaccess.h> 14 #include <linux/kernel.h> 15 #include <linux/idr.h> 16 #include <linux/sort.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/btf.h> 19 20 /* BTF (BPF Type Format) is the meta data format which describes 21 * the data types of BPF program/map. Hence, it basically focus 22 * on the C programming language which the modern BPF is primary 23 * using. 24 * 25 * ELF Section: 26 * ~~~~~~~~~~~ 27 * The BTF data is stored under the ".BTF" ELF section 28 * 29 * struct btf_type: 30 * ~~~~~~~~~~~~~~~ 31 * Each 'struct btf_type' object describes a C data type. 32 * Depending on the type it is describing, a 'struct btf_type' 33 * object may be followed by more data. F.e. 34 * To describe an array, 'struct btf_type' is followed by 35 * 'struct btf_array'. 36 * 37 * 'struct btf_type' and any extra data following it are 38 * 4 bytes aligned. 39 * 40 * Type section: 41 * ~~~~~~~~~~~~~ 42 * The BTF type section contains a list of 'struct btf_type' objects. 43 * Each one describes a C type. Recall from the above section 44 * that a 'struct btf_type' object could be immediately followed by extra 45 * data in order to desribe some particular C types. 46 * 47 * type_id: 48 * ~~~~~~~ 49 * Each btf_type object is identified by a type_id. The type_id 50 * is implicitly implied by the location of the btf_type object in 51 * the BTF type section. The first one has type_id 1. The second 52 * one has type_id 2...etc. Hence, an earlier btf_type has 53 * a smaller type_id. 54 * 55 * A btf_type object may refer to another btf_type object by using 56 * type_id (i.e. the "type" in the "struct btf_type"). 57 * 58 * NOTE that we cannot assume any reference-order. 59 * A btf_type object can refer to an earlier btf_type object 60 * but it can also refer to a later btf_type object. 61 * 62 * For example, to describe "const void *". A btf_type 63 * object describing "const" may refer to another btf_type 64 * object describing "void *". This type-reference is done 65 * by specifying type_id: 66 * 67 * [1] CONST (anon) type_id=2 68 * [2] PTR (anon) type_id=0 69 * 70 * The above is the btf_verifier debug log: 71 * - Each line started with "[?]" is a btf_type object 72 * - [?] is the type_id of the btf_type object. 73 * - CONST/PTR is the BTF_KIND_XXX 74 * - "(anon)" is the name of the type. It just 75 * happens that CONST and PTR has no name. 76 * - type_id=XXX is the 'u32 type' in btf_type 77 * 78 * NOTE: "void" has type_id 0 79 * 80 * String section: 81 * ~~~~~~~~~~~~~~ 82 * The BTF string section contains the names used by the type section. 83 * Each string is referred by an "offset" from the beginning of the 84 * string section. 85 * 86 * Each string is '\0' terminated. 87 * 88 * The first character in the string section must be '\0' 89 * which is used to mean 'anonymous'. Some btf_type may not 90 * have a name. 91 */ 92 93 /* BTF verification: 94 * 95 * To verify BTF data, two passes are needed. 96 * 97 * Pass #1 98 * ~~~~~~~ 99 * The first pass is to collect all btf_type objects to 100 * an array: "btf->types". 101 * 102 * Depending on the C type that a btf_type is describing, 103 * a btf_type may be followed by extra data. We don't know 104 * how many btf_type is there, and more importantly we don't 105 * know where each btf_type is located in the type section. 106 * 107 * Without knowing the location of each type_id, most verifications 108 * cannot be done. e.g. an earlier btf_type may refer to a later 109 * btf_type (recall the "const void *" above), so we cannot 110 * check this type-reference in the first pass. 111 * 112 * In the first pass, it still does some verifications (e.g. 113 * checking the name is a valid offset to the string section). 114 * 115 * Pass #2 116 * ~~~~~~~ 117 * The main focus is to resolve a btf_type that is referring 118 * to another type. 119 * 120 * We have to ensure the referring type: 121 * 1) does exist in the BTF (i.e. in btf->types[]) 122 * 2) does not cause a loop: 123 * struct A { 124 * struct B b; 125 * }; 126 * 127 * struct B { 128 * struct A a; 129 * }; 130 * 131 * btf_type_needs_resolve() decides if a btf_type needs 132 * to be resolved. 133 * 134 * The needs_resolve type implements the "resolve()" ops which 135 * essentially does a DFS and detects backedge. 136 * 137 * During resolve (or DFS), different C types have different 138 * "RESOLVED" conditions. 139 * 140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 141 * members because a member is always referring to another 142 * type. A struct's member can be treated as "RESOLVED" if 143 * it is referring to a BTF_KIND_PTR. Otherwise, the 144 * following valid C struct would be rejected: 145 * 146 * struct A { 147 * int m; 148 * struct A *a; 149 * }; 150 * 151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 153 * detect a pointer loop, e.g.: 154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 155 * ^ | 156 * +-----------------------------------------+ 157 * 158 */ 159 160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 164 #define BITS_ROUNDUP_BYTES(bits) \ 165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 166 167 #define BTF_INFO_MASK 0x8f00ffff 168 #define BTF_INT_MASK 0x0fffffff 169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 171 172 /* 16MB for 64k structs and each has 16 members and 173 * a few MB spaces for the string section. 174 * The hard limit is S32_MAX. 175 */ 176 #define BTF_MAX_SIZE (16 * 1024 * 1024) 177 178 #define for_each_member(i, struct_type, member) \ 179 for (i = 0, member = btf_type_member(struct_type); \ 180 i < btf_type_vlen(struct_type); \ 181 i++, member++) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 static DEFINE_IDR(btf_idr); 189 static DEFINE_SPINLOCK(btf_idr_lock); 190 191 struct btf { 192 void *data; 193 struct btf_type **types; 194 u32 *resolved_ids; 195 u32 *resolved_sizes; 196 const char *strings; 197 void *nohdr_data; 198 struct btf_header hdr; 199 u32 nr_types; 200 u32 types_size; 201 u32 data_size; 202 refcount_t refcnt; 203 u32 id; 204 struct rcu_head rcu; 205 }; 206 207 enum verifier_phase { 208 CHECK_META, 209 CHECK_TYPE, 210 }; 211 212 struct resolve_vertex { 213 const struct btf_type *t; 214 u32 type_id; 215 u16 next_member; 216 }; 217 218 enum visit_state { 219 NOT_VISITED, 220 VISITED, 221 RESOLVED, 222 }; 223 224 enum resolve_mode { 225 RESOLVE_TBD, /* To Be Determined */ 226 RESOLVE_PTR, /* Resolving for Pointer */ 227 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 228 * or array 229 */ 230 }; 231 232 #define MAX_RESOLVE_DEPTH 32 233 234 struct btf_sec_info { 235 u32 off; 236 u32 len; 237 }; 238 239 struct btf_verifier_env { 240 struct btf *btf; 241 u8 *visit_states; 242 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 243 struct bpf_verifier_log log; 244 u32 log_type_id; 245 u32 top_stack; 246 enum verifier_phase phase; 247 enum resolve_mode resolve_mode; 248 }; 249 250 static const char * const btf_kind_str[NR_BTF_KINDS] = { 251 [BTF_KIND_UNKN] = "UNKNOWN", 252 [BTF_KIND_INT] = "INT", 253 [BTF_KIND_PTR] = "PTR", 254 [BTF_KIND_ARRAY] = "ARRAY", 255 [BTF_KIND_STRUCT] = "STRUCT", 256 [BTF_KIND_UNION] = "UNION", 257 [BTF_KIND_ENUM] = "ENUM", 258 [BTF_KIND_FWD] = "FWD", 259 [BTF_KIND_TYPEDEF] = "TYPEDEF", 260 [BTF_KIND_VOLATILE] = "VOLATILE", 261 [BTF_KIND_CONST] = "CONST", 262 [BTF_KIND_RESTRICT] = "RESTRICT", 263 [BTF_KIND_FUNC] = "FUNC", 264 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 265 }; 266 267 struct btf_kind_operations { 268 s32 (*check_meta)(struct btf_verifier_env *env, 269 const struct btf_type *t, 270 u32 meta_left); 271 int (*resolve)(struct btf_verifier_env *env, 272 const struct resolve_vertex *v); 273 int (*check_member)(struct btf_verifier_env *env, 274 const struct btf_type *struct_type, 275 const struct btf_member *member, 276 const struct btf_type *member_type); 277 int (*check_kflag_member)(struct btf_verifier_env *env, 278 const struct btf_type *struct_type, 279 const struct btf_member *member, 280 const struct btf_type *member_type); 281 void (*log_details)(struct btf_verifier_env *env, 282 const struct btf_type *t); 283 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 284 u32 type_id, void *data, u8 bits_offsets, 285 struct seq_file *m); 286 }; 287 288 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 289 static struct btf_type btf_void; 290 291 static int btf_resolve(struct btf_verifier_env *env, 292 const struct btf_type *t, u32 type_id); 293 294 static bool btf_type_is_modifier(const struct btf_type *t) 295 { 296 /* Some of them is not strictly a C modifier 297 * but they are grouped into the same bucket 298 * for BTF concern: 299 * A type (t) that refers to another 300 * type through t->type AND its size cannot 301 * be determined without following the t->type. 302 * 303 * ptr does not fall into this bucket 304 * because its size is always sizeof(void *). 305 */ 306 switch (BTF_INFO_KIND(t->info)) { 307 case BTF_KIND_TYPEDEF: 308 case BTF_KIND_VOLATILE: 309 case BTF_KIND_CONST: 310 case BTF_KIND_RESTRICT: 311 return true; 312 } 313 314 return false; 315 } 316 317 static bool btf_type_is_void(const struct btf_type *t) 318 { 319 return t == &btf_void; 320 } 321 322 static bool btf_type_is_fwd(const struct btf_type *t) 323 { 324 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 325 } 326 327 static bool btf_type_is_func(const struct btf_type *t) 328 { 329 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC; 330 } 331 332 static bool btf_type_is_func_proto(const struct btf_type *t) 333 { 334 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO; 335 } 336 337 static bool btf_type_nosize(const struct btf_type *t) 338 { 339 return btf_type_is_void(t) || btf_type_is_fwd(t) || 340 btf_type_is_func(t) || btf_type_is_func_proto(t); 341 } 342 343 static bool btf_type_nosize_or_null(const struct btf_type *t) 344 { 345 return !t || btf_type_nosize(t); 346 } 347 348 /* union is only a special case of struct: 349 * all its offsetof(member) == 0 350 */ 351 static bool btf_type_is_struct(const struct btf_type *t) 352 { 353 u8 kind = BTF_INFO_KIND(t->info); 354 355 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 356 } 357 358 static bool __btf_type_is_struct(const struct btf_type *t) 359 { 360 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 361 } 362 363 static bool btf_type_is_array(const struct btf_type *t) 364 { 365 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 366 } 367 368 static bool btf_type_is_ptr(const struct btf_type *t) 369 { 370 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 371 } 372 373 static bool btf_type_is_int(const struct btf_type *t) 374 { 375 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 376 } 377 378 /* What types need to be resolved? 379 * 380 * btf_type_is_modifier() is an obvious one. 381 * 382 * btf_type_is_struct() because its member refers to 383 * another type (through member->type). 384 385 * btf_type_is_array() because its element (array->type) 386 * refers to another type. Array can be thought of a 387 * special case of struct while array just has the same 388 * member-type repeated by array->nelems of times. 389 */ 390 static bool btf_type_needs_resolve(const struct btf_type *t) 391 { 392 return btf_type_is_modifier(t) || 393 btf_type_is_ptr(t) || 394 btf_type_is_struct(t) || 395 btf_type_is_array(t); 396 } 397 398 /* t->size can be used */ 399 static bool btf_type_has_size(const struct btf_type *t) 400 { 401 switch (BTF_INFO_KIND(t->info)) { 402 case BTF_KIND_INT: 403 case BTF_KIND_STRUCT: 404 case BTF_KIND_UNION: 405 case BTF_KIND_ENUM: 406 return true; 407 } 408 409 return false; 410 } 411 412 static const char *btf_int_encoding_str(u8 encoding) 413 { 414 if (encoding == 0) 415 return "(none)"; 416 else if (encoding == BTF_INT_SIGNED) 417 return "SIGNED"; 418 else if (encoding == BTF_INT_CHAR) 419 return "CHAR"; 420 else if (encoding == BTF_INT_BOOL) 421 return "BOOL"; 422 else 423 return "UNKN"; 424 } 425 426 static u16 btf_type_vlen(const struct btf_type *t) 427 { 428 return BTF_INFO_VLEN(t->info); 429 } 430 431 static bool btf_type_kflag(const struct btf_type *t) 432 { 433 return BTF_INFO_KFLAG(t->info); 434 } 435 436 static u32 btf_member_bit_offset(const struct btf_type *struct_type, 437 const struct btf_member *member) 438 { 439 return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset) 440 : member->offset; 441 } 442 443 static u32 btf_member_bitfield_size(const struct btf_type *struct_type, 444 const struct btf_member *member) 445 { 446 return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset) 447 : 0; 448 } 449 450 static u32 btf_type_int(const struct btf_type *t) 451 { 452 return *(u32 *)(t + 1); 453 } 454 455 static const struct btf_array *btf_type_array(const struct btf_type *t) 456 { 457 return (const struct btf_array *)(t + 1); 458 } 459 460 static const struct btf_member *btf_type_member(const struct btf_type *t) 461 { 462 return (const struct btf_member *)(t + 1); 463 } 464 465 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 466 { 467 return (const struct btf_enum *)(t + 1); 468 } 469 470 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 471 { 472 return kind_ops[BTF_INFO_KIND(t->info)]; 473 } 474 475 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 476 { 477 return BTF_STR_OFFSET_VALID(offset) && 478 offset < btf->hdr.str_len; 479 } 480 481 /* Only C-style identifier is permitted. This can be relaxed if 482 * necessary. 483 */ 484 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 485 { 486 /* offset must be valid */ 487 const char *src = &btf->strings[offset]; 488 const char *src_limit; 489 490 if (!isalpha(*src) && *src != '_') 491 return false; 492 493 /* set a limit on identifier length */ 494 src_limit = src + KSYM_NAME_LEN; 495 src++; 496 while (*src && src < src_limit) { 497 if (!isalnum(*src) && *src != '_') 498 return false; 499 src++; 500 } 501 502 return !*src; 503 } 504 505 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 506 { 507 if (!offset) 508 return "(anon)"; 509 else if (offset < btf->hdr.str_len) 510 return &btf->strings[offset]; 511 else 512 return "(invalid-name-offset)"; 513 } 514 515 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 516 { 517 if (offset < btf->hdr.str_len) 518 return &btf->strings[offset]; 519 520 return NULL; 521 } 522 523 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 524 { 525 if (type_id > btf->nr_types) 526 return NULL; 527 528 return btf->types[type_id]; 529 } 530 531 /* 532 * Regular int is not a bit field and it must be either 533 * u8/u16/u32/u64 or __int128. 534 */ 535 static bool btf_type_int_is_regular(const struct btf_type *t) 536 { 537 u8 nr_bits, nr_bytes; 538 u32 int_data; 539 540 int_data = btf_type_int(t); 541 nr_bits = BTF_INT_BITS(int_data); 542 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 543 if (BITS_PER_BYTE_MASKED(nr_bits) || 544 BTF_INT_OFFSET(int_data) || 545 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 546 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 547 nr_bytes != (2 * sizeof(u64)))) { 548 return false; 549 } 550 551 return true; 552 } 553 554 /* 555 * Check that given struct member is a regular int with expected 556 * offset and size. 557 */ 558 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 559 const struct btf_member *m, 560 u32 expected_offset, u32 expected_size) 561 { 562 const struct btf_type *t; 563 u32 id, int_data; 564 u8 nr_bits; 565 566 id = m->type; 567 t = btf_type_id_size(btf, &id, NULL); 568 if (!t || !btf_type_is_int(t)) 569 return false; 570 571 int_data = btf_type_int(t); 572 nr_bits = BTF_INT_BITS(int_data); 573 if (btf_type_kflag(s)) { 574 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 575 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 576 577 /* if kflag set, int should be a regular int and 578 * bit offset should be at byte boundary. 579 */ 580 return !bitfield_size && 581 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 582 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 583 } 584 585 if (BTF_INT_OFFSET(int_data) || 586 BITS_PER_BYTE_MASKED(m->offset) || 587 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 588 BITS_PER_BYTE_MASKED(nr_bits) || 589 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 590 return false; 591 592 return true; 593 } 594 595 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 596 const char *fmt, ...) 597 { 598 va_list args; 599 600 va_start(args, fmt); 601 bpf_verifier_vlog(log, fmt, args); 602 va_end(args); 603 } 604 605 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 606 const char *fmt, ...) 607 { 608 struct bpf_verifier_log *log = &env->log; 609 va_list args; 610 611 if (!bpf_verifier_log_needed(log)) 612 return; 613 614 va_start(args, fmt); 615 bpf_verifier_vlog(log, fmt, args); 616 va_end(args); 617 } 618 619 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 620 const struct btf_type *t, 621 bool log_details, 622 const char *fmt, ...) 623 { 624 struct bpf_verifier_log *log = &env->log; 625 u8 kind = BTF_INFO_KIND(t->info); 626 struct btf *btf = env->btf; 627 va_list args; 628 629 if (!bpf_verifier_log_needed(log)) 630 return; 631 632 __btf_verifier_log(log, "[%u] %s %s%s", 633 env->log_type_id, 634 btf_kind_str[kind], 635 __btf_name_by_offset(btf, t->name_off), 636 log_details ? " " : ""); 637 638 if (log_details) 639 btf_type_ops(t)->log_details(env, t); 640 641 if (fmt && *fmt) { 642 __btf_verifier_log(log, " "); 643 va_start(args, fmt); 644 bpf_verifier_vlog(log, fmt, args); 645 va_end(args); 646 } 647 648 __btf_verifier_log(log, "\n"); 649 } 650 651 #define btf_verifier_log_type(env, t, ...) \ 652 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 653 #define btf_verifier_log_basic(env, t, ...) \ 654 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 655 656 __printf(4, 5) 657 static void btf_verifier_log_member(struct btf_verifier_env *env, 658 const struct btf_type *struct_type, 659 const struct btf_member *member, 660 const char *fmt, ...) 661 { 662 struct bpf_verifier_log *log = &env->log; 663 struct btf *btf = env->btf; 664 va_list args; 665 666 if (!bpf_verifier_log_needed(log)) 667 return; 668 669 /* The CHECK_META phase already did a btf dump. 670 * 671 * If member is logged again, it must hit an error in 672 * parsing this member. It is useful to print out which 673 * struct this member belongs to. 674 */ 675 if (env->phase != CHECK_META) 676 btf_verifier_log_type(env, struct_type, NULL); 677 678 if (btf_type_kflag(struct_type)) 679 __btf_verifier_log(log, 680 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 681 __btf_name_by_offset(btf, member->name_off), 682 member->type, 683 BTF_MEMBER_BITFIELD_SIZE(member->offset), 684 BTF_MEMBER_BIT_OFFSET(member->offset)); 685 else 686 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 687 __btf_name_by_offset(btf, member->name_off), 688 member->type, member->offset); 689 690 if (fmt && *fmt) { 691 __btf_verifier_log(log, " "); 692 va_start(args, fmt); 693 bpf_verifier_vlog(log, fmt, args); 694 va_end(args); 695 } 696 697 __btf_verifier_log(log, "\n"); 698 } 699 700 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 701 u32 btf_data_size) 702 { 703 struct bpf_verifier_log *log = &env->log; 704 const struct btf *btf = env->btf; 705 const struct btf_header *hdr; 706 707 if (!bpf_verifier_log_needed(log)) 708 return; 709 710 hdr = &btf->hdr; 711 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 712 __btf_verifier_log(log, "version: %u\n", hdr->version); 713 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 714 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 715 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 716 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 717 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 718 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 719 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 720 } 721 722 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 723 { 724 struct btf *btf = env->btf; 725 726 /* < 2 because +1 for btf_void which is always in btf->types[0]. 727 * btf_void is not accounted in btf->nr_types because btf_void 728 * does not come from the BTF file. 729 */ 730 if (btf->types_size - btf->nr_types < 2) { 731 /* Expand 'types' array */ 732 733 struct btf_type **new_types; 734 u32 expand_by, new_size; 735 736 if (btf->types_size == BTF_MAX_TYPE) { 737 btf_verifier_log(env, "Exceeded max num of types"); 738 return -E2BIG; 739 } 740 741 expand_by = max_t(u32, btf->types_size >> 2, 16); 742 new_size = min_t(u32, BTF_MAX_TYPE, 743 btf->types_size + expand_by); 744 745 new_types = kvcalloc(new_size, sizeof(*new_types), 746 GFP_KERNEL | __GFP_NOWARN); 747 if (!new_types) 748 return -ENOMEM; 749 750 if (btf->nr_types == 0) 751 new_types[0] = &btf_void; 752 else 753 memcpy(new_types, btf->types, 754 sizeof(*btf->types) * (btf->nr_types + 1)); 755 756 kvfree(btf->types); 757 btf->types = new_types; 758 btf->types_size = new_size; 759 } 760 761 btf->types[++(btf->nr_types)] = t; 762 763 return 0; 764 } 765 766 static int btf_alloc_id(struct btf *btf) 767 { 768 int id; 769 770 idr_preload(GFP_KERNEL); 771 spin_lock_bh(&btf_idr_lock); 772 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 773 if (id > 0) 774 btf->id = id; 775 spin_unlock_bh(&btf_idr_lock); 776 idr_preload_end(); 777 778 if (WARN_ON_ONCE(!id)) 779 return -ENOSPC; 780 781 return id > 0 ? 0 : id; 782 } 783 784 static void btf_free_id(struct btf *btf) 785 { 786 unsigned long flags; 787 788 /* 789 * In map-in-map, calling map_delete_elem() on outer 790 * map will call bpf_map_put on the inner map. 791 * It will then eventually call btf_free_id() 792 * on the inner map. Some of the map_delete_elem() 793 * implementation may have irq disabled, so 794 * we need to use the _irqsave() version instead 795 * of the _bh() version. 796 */ 797 spin_lock_irqsave(&btf_idr_lock, flags); 798 idr_remove(&btf_idr, btf->id); 799 spin_unlock_irqrestore(&btf_idr_lock, flags); 800 } 801 802 static void btf_free(struct btf *btf) 803 { 804 kvfree(btf->types); 805 kvfree(btf->resolved_sizes); 806 kvfree(btf->resolved_ids); 807 kvfree(btf->data); 808 kfree(btf); 809 } 810 811 static void btf_free_rcu(struct rcu_head *rcu) 812 { 813 struct btf *btf = container_of(rcu, struct btf, rcu); 814 815 btf_free(btf); 816 } 817 818 void btf_put(struct btf *btf) 819 { 820 if (btf && refcount_dec_and_test(&btf->refcnt)) { 821 btf_free_id(btf); 822 call_rcu(&btf->rcu, btf_free_rcu); 823 } 824 } 825 826 static int env_resolve_init(struct btf_verifier_env *env) 827 { 828 struct btf *btf = env->btf; 829 u32 nr_types = btf->nr_types; 830 u32 *resolved_sizes = NULL; 831 u32 *resolved_ids = NULL; 832 u8 *visit_states = NULL; 833 834 /* +1 for btf_void */ 835 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 836 GFP_KERNEL | __GFP_NOWARN); 837 if (!resolved_sizes) 838 goto nomem; 839 840 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 841 GFP_KERNEL | __GFP_NOWARN); 842 if (!resolved_ids) 843 goto nomem; 844 845 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 846 GFP_KERNEL | __GFP_NOWARN); 847 if (!visit_states) 848 goto nomem; 849 850 btf->resolved_sizes = resolved_sizes; 851 btf->resolved_ids = resolved_ids; 852 env->visit_states = visit_states; 853 854 return 0; 855 856 nomem: 857 kvfree(resolved_sizes); 858 kvfree(resolved_ids); 859 kvfree(visit_states); 860 return -ENOMEM; 861 } 862 863 static void btf_verifier_env_free(struct btf_verifier_env *env) 864 { 865 kvfree(env->visit_states); 866 kfree(env); 867 } 868 869 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 870 const struct btf_type *next_type) 871 { 872 switch (env->resolve_mode) { 873 case RESOLVE_TBD: 874 /* int, enum or void is a sink */ 875 return !btf_type_needs_resolve(next_type); 876 case RESOLVE_PTR: 877 /* int, enum, void, struct, array, func or func_proto is a sink 878 * for ptr 879 */ 880 return !btf_type_is_modifier(next_type) && 881 !btf_type_is_ptr(next_type); 882 case RESOLVE_STRUCT_OR_ARRAY: 883 /* int, enum, void, ptr, func or func_proto is a sink 884 * for struct and array 885 */ 886 return !btf_type_is_modifier(next_type) && 887 !btf_type_is_array(next_type) && 888 !btf_type_is_struct(next_type); 889 default: 890 BUG(); 891 } 892 } 893 894 static bool env_type_is_resolved(const struct btf_verifier_env *env, 895 u32 type_id) 896 { 897 return env->visit_states[type_id] == RESOLVED; 898 } 899 900 static int env_stack_push(struct btf_verifier_env *env, 901 const struct btf_type *t, u32 type_id) 902 { 903 struct resolve_vertex *v; 904 905 if (env->top_stack == MAX_RESOLVE_DEPTH) 906 return -E2BIG; 907 908 if (env->visit_states[type_id] != NOT_VISITED) 909 return -EEXIST; 910 911 env->visit_states[type_id] = VISITED; 912 913 v = &env->stack[env->top_stack++]; 914 v->t = t; 915 v->type_id = type_id; 916 v->next_member = 0; 917 918 if (env->resolve_mode == RESOLVE_TBD) { 919 if (btf_type_is_ptr(t)) 920 env->resolve_mode = RESOLVE_PTR; 921 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 922 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 923 } 924 925 return 0; 926 } 927 928 static void env_stack_set_next_member(struct btf_verifier_env *env, 929 u16 next_member) 930 { 931 env->stack[env->top_stack - 1].next_member = next_member; 932 } 933 934 static void env_stack_pop_resolved(struct btf_verifier_env *env, 935 u32 resolved_type_id, 936 u32 resolved_size) 937 { 938 u32 type_id = env->stack[--(env->top_stack)].type_id; 939 struct btf *btf = env->btf; 940 941 btf->resolved_sizes[type_id] = resolved_size; 942 btf->resolved_ids[type_id] = resolved_type_id; 943 env->visit_states[type_id] = RESOLVED; 944 } 945 946 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 947 { 948 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 949 } 950 951 /* The input param "type_id" must point to a needs_resolve type */ 952 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 953 u32 *type_id) 954 { 955 *type_id = btf->resolved_ids[*type_id]; 956 return btf_type_by_id(btf, *type_id); 957 } 958 959 const struct btf_type *btf_type_id_size(const struct btf *btf, 960 u32 *type_id, u32 *ret_size) 961 { 962 const struct btf_type *size_type; 963 u32 size_type_id = *type_id; 964 u32 size = 0; 965 966 size_type = btf_type_by_id(btf, size_type_id); 967 if (btf_type_nosize_or_null(size_type)) 968 return NULL; 969 970 if (btf_type_has_size(size_type)) { 971 size = size_type->size; 972 } else if (btf_type_is_array(size_type)) { 973 size = btf->resolved_sizes[size_type_id]; 974 } else if (btf_type_is_ptr(size_type)) { 975 size = sizeof(void *); 976 } else { 977 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) 978 return NULL; 979 980 size = btf->resolved_sizes[size_type_id]; 981 size_type_id = btf->resolved_ids[size_type_id]; 982 size_type = btf_type_by_id(btf, size_type_id); 983 if (btf_type_nosize_or_null(size_type)) 984 return NULL; 985 } 986 987 *type_id = size_type_id; 988 if (ret_size) 989 *ret_size = size; 990 991 return size_type; 992 } 993 994 static int btf_df_check_member(struct btf_verifier_env *env, 995 const struct btf_type *struct_type, 996 const struct btf_member *member, 997 const struct btf_type *member_type) 998 { 999 btf_verifier_log_basic(env, struct_type, 1000 "Unsupported check_member"); 1001 return -EINVAL; 1002 } 1003 1004 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1005 const struct btf_type *struct_type, 1006 const struct btf_member *member, 1007 const struct btf_type *member_type) 1008 { 1009 btf_verifier_log_basic(env, struct_type, 1010 "Unsupported check_kflag_member"); 1011 return -EINVAL; 1012 } 1013 1014 /* Used for ptr, array and struct/union type members. 1015 * int, enum and modifier types have their specific callback functions. 1016 */ 1017 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1018 const struct btf_type *struct_type, 1019 const struct btf_member *member, 1020 const struct btf_type *member_type) 1021 { 1022 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1023 btf_verifier_log_member(env, struct_type, member, 1024 "Invalid member bitfield_size"); 1025 return -EINVAL; 1026 } 1027 1028 /* bitfield size is 0, so member->offset represents bit offset only. 1029 * It is safe to call non kflag check_member variants. 1030 */ 1031 return btf_type_ops(member_type)->check_member(env, struct_type, 1032 member, 1033 member_type); 1034 } 1035 1036 static int btf_df_resolve(struct btf_verifier_env *env, 1037 const struct resolve_vertex *v) 1038 { 1039 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1040 return -EINVAL; 1041 } 1042 1043 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 1044 u32 type_id, void *data, u8 bits_offsets, 1045 struct seq_file *m) 1046 { 1047 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1048 } 1049 1050 static int btf_int_check_member(struct btf_verifier_env *env, 1051 const struct btf_type *struct_type, 1052 const struct btf_member *member, 1053 const struct btf_type *member_type) 1054 { 1055 u32 int_data = btf_type_int(member_type); 1056 u32 struct_bits_off = member->offset; 1057 u32 struct_size = struct_type->size; 1058 u32 nr_copy_bits; 1059 u32 bytes_offset; 1060 1061 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1062 btf_verifier_log_member(env, struct_type, member, 1063 "bits_offset exceeds U32_MAX"); 1064 return -EINVAL; 1065 } 1066 1067 struct_bits_off += BTF_INT_OFFSET(int_data); 1068 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1069 nr_copy_bits = BTF_INT_BITS(int_data) + 1070 BITS_PER_BYTE_MASKED(struct_bits_off); 1071 1072 if (nr_copy_bits > BITS_PER_U128) { 1073 btf_verifier_log_member(env, struct_type, member, 1074 "nr_copy_bits exceeds 128"); 1075 return -EINVAL; 1076 } 1077 1078 if (struct_size < bytes_offset || 1079 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1080 btf_verifier_log_member(env, struct_type, member, 1081 "Member exceeds struct_size"); 1082 return -EINVAL; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1089 const struct btf_type *struct_type, 1090 const struct btf_member *member, 1091 const struct btf_type *member_type) 1092 { 1093 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1094 u32 int_data = btf_type_int(member_type); 1095 u32 struct_size = struct_type->size; 1096 u32 nr_copy_bits; 1097 1098 /* a regular int type is required for the kflag int member */ 1099 if (!btf_type_int_is_regular(member_type)) { 1100 btf_verifier_log_member(env, struct_type, member, 1101 "Invalid member base type"); 1102 return -EINVAL; 1103 } 1104 1105 /* check sanity of bitfield size */ 1106 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1107 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1108 nr_int_data_bits = BTF_INT_BITS(int_data); 1109 if (!nr_bits) { 1110 /* Not a bitfield member, member offset must be at byte 1111 * boundary. 1112 */ 1113 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1114 btf_verifier_log_member(env, struct_type, member, 1115 "Invalid member offset"); 1116 return -EINVAL; 1117 } 1118 1119 nr_bits = nr_int_data_bits; 1120 } else if (nr_bits > nr_int_data_bits) { 1121 btf_verifier_log_member(env, struct_type, member, 1122 "Invalid member bitfield_size"); 1123 return -EINVAL; 1124 } 1125 1126 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1127 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1128 if (nr_copy_bits > BITS_PER_U128) { 1129 btf_verifier_log_member(env, struct_type, member, 1130 "nr_copy_bits exceeds 128"); 1131 return -EINVAL; 1132 } 1133 1134 if (struct_size < bytes_offset || 1135 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1136 btf_verifier_log_member(env, struct_type, member, 1137 "Member exceeds struct_size"); 1138 return -EINVAL; 1139 } 1140 1141 return 0; 1142 } 1143 1144 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1145 const struct btf_type *t, 1146 u32 meta_left) 1147 { 1148 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1149 u16 encoding; 1150 1151 if (meta_left < meta_needed) { 1152 btf_verifier_log_basic(env, t, 1153 "meta_left:%u meta_needed:%u", 1154 meta_left, meta_needed); 1155 return -EINVAL; 1156 } 1157 1158 if (btf_type_vlen(t)) { 1159 btf_verifier_log_type(env, t, "vlen != 0"); 1160 return -EINVAL; 1161 } 1162 1163 if (btf_type_kflag(t)) { 1164 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1165 return -EINVAL; 1166 } 1167 1168 int_data = btf_type_int(t); 1169 if (int_data & ~BTF_INT_MASK) { 1170 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 1171 int_data); 1172 return -EINVAL; 1173 } 1174 1175 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 1176 1177 if (nr_bits > BITS_PER_U128) { 1178 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1179 BITS_PER_U128); 1180 return -EINVAL; 1181 } 1182 1183 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1184 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1185 return -EINVAL; 1186 } 1187 1188 /* 1189 * Only one of the encoding bits is allowed and it 1190 * should be sufficient for the pretty print purpose (i.e. decoding). 1191 * Multiple bits can be allowed later if it is found 1192 * to be insufficient. 1193 */ 1194 encoding = BTF_INT_ENCODING(int_data); 1195 if (encoding && 1196 encoding != BTF_INT_SIGNED && 1197 encoding != BTF_INT_CHAR && 1198 encoding != BTF_INT_BOOL) { 1199 btf_verifier_log_type(env, t, "Unsupported encoding"); 1200 return -ENOTSUPP; 1201 } 1202 1203 btf_verifier_log_type(env, t, NULL); 1204 1205 return meta_needed; 1206 } 1207 1208 static void btf_int_log(struct btf_verifier_env *env, 1209 const struct btf_type *t) 1210 { 1211 int int_data = btf_type_int(t); 1212 1213 btf_verifier_log(env, 1214 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1215 t->size, BTF_INT_OFFSET(int_data), 1216 BTF_INT_BITS(int_data), 1217 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1218 } 1219 1220 static void btf_int128_print(struct seq_file *m, void *data) 1221 { 1222 /* data points to a __int128 number. 1223 * Suppose 1224 * int128_num = *(__int128 *)data; 1225 * The below formulas shows what upper_num and lower_num represents: 1226 * upper_num = int128_num >> 64; 1227 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 1228 */ 1229 u64 upper_num, lower_num; 1230 1231 #ifdef __BIG_ENDIAN_BITFIELD 1232 upper_num = *(u64 *)data; 1233 lower_num = *(u64 *)(data + 8); 1234 #else 1235 upper_num = *(u64 *)(data + 8); 1236 lower_num = *(u64 *)data; 1237 #endif 1238 if (upper_num == 0) 1239 seq_printf(m, "0x%llx", lower_num); 1240 else 1241 seq_printf(m, "0x%llx%016llx", upper_num, lower_num); 1242 } 1243 1244 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 1245 u16 right_shift_bits) 1246 { 1247 u64 upper_num, lower_num; 1248 1249 #ifdef __BIG_ENDIAN_BITFIELD 1250 upper_num = print_num[0]; 1251 lower_num = print_num[1]; 1252 #else 1253 upper_num = print_num[1]; 1254 lower_num = print_num[0]; 1255 #endif 1256 1257 /* shake out un-needed bits by shift/or operations */ 1258 if (left_shift_bits >= 64) { 1259 upper_num = lower_num << (left_shift_bits - 64); 1260 lower_num = 0; 1261 } else { 1262 upper_num = (upper_num << left_shift_bits) | 1263 (lower_num >> (64 - left_shift_bits)); 1264 lower_num = lower_num << left_shift_bits; 1265 } 1266 1267 if (right_shift_bits >= 64) { 1268 lower_num = upper_num >> (right_shift_bits - 64); 1269 upper_num = 0; 1270 } else { 1271 lower_num = (lower_num >> right_shift_bits) | 1272 (upper_num << (64 - right_shift_bits)); 1273 upper_num = upper_num >> right_shift_bits; 1274 } 1275 1276 #ifdef __BIG_ENDIAN_BITFIELD 1277 print_num[0] = upper_num; 1278 print_num[1] = lower_num; 1279 #else 1280 print_num[0] = lower_num; 1281 print_num[1] = upper_num; 1282 #endif 1283 } 1284 1285 static void btf_bitfield_seq_show(void *data, u8 bits_offset, 1286 u8 nr_bits, struct seq_file *m) 1287 { 1288 u16 left_shift_bits, right_shift_bits; 1289 u8 nr_copy_bytes; 1290 u8 nr_copy_bits; 1291 u64 print_num[2] = {}; 1292 1293 nr_copy_bits = nr_bits + bits_offset; 1294 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1295 1296 memcpy(print_num, data, nr_copy_bytes); 1297 1298 #ifdef __BIG_ENDIAN_BITFIELD 1299 left_shift_bits = bits_offset; 1300 #else 1301 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 1302 #endif 1303 right_shift_bits = BITS_PER_U128 - nr_bits; 1304 1305 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 1306 btf_int128_print(m, print_num); 1307 } 1308 1309 1310 static void btf_int_bits_seq_show(const struct btf *btf, 1311 const struct btf_type *t, 1312 void *data, u8 bits_offset, 1313 struct seq_file *m) 1314 { 1315 u32 int_data = btf_type_int(t); 1316 u8 nr_bits = BTF_INT_BITS(int_data); 1317 u8 total_bits_offset; 1318 1319 /* 1320 * bits_offset is at most 7. 1321 * BTF_INT_OFFSET() cannot exceed 128 bits. 1322 */ 1323 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1324 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1325 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1326 btf_bitfield_seq_show(data, bits_offset, nr_bits, m); 1327 } 1328 1329 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1330 u32 type_id, void *data, u8 bits_offset, 1331 struct seq_file *m) 1332 { 1333 u32 int_data = btf_type_int(t); 1334 u8 encoding = BTF_INT_ENCODING(int_data); 1335 bool sign = encoding & BTF_INT_SIGNED; 1336 u8 nr_bits = BTF_INT_BITS(int_data); 1337 1338 if (bits_offset || BTF_INT_OFFSET(int_data) || 1339 BITS_PER_BYTE_MASKED(nr_bits)) { 1340 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1341 return; 1342 } 1343 1344 switch (nr_bits) { 1345 case 128: 1346 btf_int128_print(m, data); 1347 break; 1348 case 64: 1349 if (sign) 1350 seq_printf(m, "%lld", *(s64 *)data); 1351 else 1352 seq_printf(m, "%llu", *(u64 *)data); 1353 break; 1354 case 32: 1355 if (sign) 1356 seq_printf(m, "%d", *(s32 *)data); 1357 else 1358 seq_printf(m, "%u", *(u32 *)data); 1359 break; 1360 case 16: 1361 if (sign) 1362 seq_printf(m, "%d", *(s16 *)data); 1363 else 1364 seq_printf(m, "%u", *(u16 *)data); 1365 break; 1366 case 8: 1367 if (sign) 1368 seq_printf(m, "%d", *(s8 *)data); 1369 else 1370 seq_printf(m, "%u", *(u8 *)data); 1371 break; 1372 default: 1373 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1374 } 1375 } 1376 1377 static const struct btf_kind_operations int_ops = { 1378 .check_meta = btf_int_check_meta, 1379 .resolve = btf_df_resolve, 1380 .check_member = btf_int_check_member, 1381 .check_kflag_member = btf_int_check_kflag_member, 1382 .log_details = btf_int_log, 1383 .seq_show = btf_int_seq_show, 1384 }; 1385 1386 static int btf_modifier_check_member(struct btf_verifier_env *env, 1387 const struct btf_type *struct_type, 1388 const struct btf_member *member, 1389 const struct btf_type *member_type) 1390 { 1391 const struct btf_type *resolved_type; 1392 u32 resolved_type_id = member->type; 1393 struct btf_member resolved_member; 1394 struct btf *btf = env->btf; 1395 1396 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1397 if (!resolved_type) { 1398 btf_verifier_log_member(env, struct_type, member, 1399 "Invalid member"); 1400 return -EINVAL; 1401 } 1402 1403 resolved_member = *member; 1404 resolved_member.type = resolved_type_id; 1405 1406 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1407 &resolved_member, 1408 resolved_type); 1409 } 1410 1411 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 1412 const struct btf_type *struct_type, 1413 const struct btf_member *member, 1414 const struct btf_type *member_type) 1415 { 1416 const struct btf_type *resolved_type; 1417 u32 resolved_type_id = member->type; 1418 struct btf_member resolved_member; 1419 struct btf *btf = env->btf; 1420 1421 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1422 if (!resolved_type) { 1423 btf_verifier_log_member(env, struct_type, member, 1424 "Invalid member"); 1425 return -EINVAL; 1426 } 1427 1428 resolved_member = *member; 1429 resolved_member.type = resolved_type_id; 1430 1431 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 1432 &resolved_member, 1433 resolved_type); 1434 } 1435 1436 static int btf_ptr_check_member(struct btf_verifier_env *env, 1437 const struct btf_type *struct_type, 1438 const struct btf_member *member, 1439 const struct btf_type *member_type) 1440 { 1441 u32 struct_size, struct_bits_off, bytes_offset; 1442 1443 struct_size = struct_type->size; 1444 struct_bits_off = member->offset; 1445 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1446 1447 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1448 btf_verifier_log_member(env, struct_type, member, 1449 "Member is not byte aligned"); 1450 return -EINVAL; 1451 } 1452 1453 if (struct_size - bytes_offset < sizeof(void *)) { 1454 btf_verifier_log_member(env, struct_type, member, 1455 "Member exceeds struct_size"); 1456 return -EINVAL; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1463 const struct btf_type *t, 1464 u32 meta_left) 1465 { 1466 if (btf_type_vlen(t)) { 1467 btf_verifier_log_type(env, t, "vlen != 0"); 1468 return -EINVAL; 1469 } 1470 1471 if (btf_type_kflag(t)) { 1472 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1473 return -EINVAL; 1474 } 1475 1476 if (!BTF_TYPE_ID_VALID(t->type)) { 1477 btf_verifier_log_type(env, t, "Invalid type_id"); 1478 return -EINVAL; 1479 } 1480 1481 /* typedef type must have a valid name, and other ref types, 1482 * volatile, const, restrict, should have a null name. 1483 */ 1484 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 1485 if (!t->name_off || 1486 !btf_name_valid_identifier(env->btf, t->name_off)) { 1487 btf_verifier_log_type(env, t, "Invalid name"); 1488 return -EINVAL; 1489 } 1490 } else { 1491 if (t->name_off) { 1492 btf_verifier_log_type(env, t, "Invalid name"); 1493 return -EINVAL; 1494 } 1495 } 1496 1497 btf_verifier_log_type(env, t, NULL); 1498 1499 return 0; 1500 } 1501 1502 static int btf_modifier_resolve(struct btf_verifier_env *env, 1503 const struct resolve_vertex *v) 1504 { 1505 const struct btf_type *t = v->t; 1506 const struct btf_type *next_type; 1507 u32 next_type_id = t->type; 1508 struct btf *btf = env->btf; 1509 u32 next_type_size = 0; 1510 1511 next_type = btf_type_by_id(btf, next_type_id); 1512 if (!next_type) { 1513 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1514 return -EINVAL; 1515 } 1516 1517 if (!env_type_is_resolve_sink(env, next_type) && 1518 !env_type_is_resolved(env, next_type_id)) 1519 return env_stack_push(env, next_type, next_type_id); 1520 1521 /* Figure out the resolved next_type_id with size. 1522 * They will be stored in the current modifier's 1523 * resolved_ids and resolved_sizes such that it can 1524 * save us a few type-following when we use it later (e.g. in 1525 * pretty print). 1526 */ 1527 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) { 1528 if (env_type_is_resolved(env, next_type_id)) 1529 next_type = btf_type_id_resolve(btf, &next_type_id); 1530 1531 /* "typedef void new_void", "const void"...etc */ 1532 if (!btf_type_is_void(next_type) && 1533 !btf_type_is_fwd(next_type) && 1534 !btf_type_is_func_proto(next_type)) { 1535 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1536 return -EINVAL; 1537 } 1538 } 1539 1540 env_stack_pop_resolved(env, next_type_id, next_type_size); 1541 1542 return 0; 1543 } 1544 1545 static int btf_ptr_resolve(struct btf_verifier_env *env, 1546 const struct resolve_vertex *v) 1547 { 1548 const struct btf_type *next_type; 1549 const struct btf_type *t = v->t; 1550 u32 next_type_id = t->type; 1551 struct btf *btf = env->btf; 1552 1553 next_type = btf_type_by_id(btf, next_type_id); 1554 if (!next_type) { 1555 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1556 return -EINVAL; 1557 } 1558 1559 if (!env_type_is_resolve_sink(env, next_type) && 1560 !env_type_is_resolved(env, next_type_id)) 1561 return env_stack_push(env, next_type, next_type_id); 1562 1563 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1564 * the modifier may have stopped resolving when it was resolved 1565 * to a ptr (last-resolved-ptr). 1566 * 1567 * We now need to continue from the last-resolved-ptr to 1568 * ensure the last-resolved-ptr will not referring back to 1569 * the currenct ptr (t). 1570 */ 1571 if (btf_type_is_modifier(next_type)) { 1572 const struct btf_type *resolved_type; 1573 u32 resolved_type_id; 1574 1575 resolved_type_id = next_type_id; 1576 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1577 1578 if (btf_type_is_ptr(resolved_type) && 1579 !env_type_is_resolve_sink(env, resolved_type) && 1580 !env_type_is_resolved(env, resolved_type_id)) 1581 return env_stack_push(env, resolved_type, 1582 resolved_type_id); 1583 } 1584 1585 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1586 if (env_type_is_resolved(env, next_type_id)) 1587 next_type = btf_type_id_resolve(btf, &next_type_id); 1588 1589 if (!btf_type_is_void(next_type) && 1590 !btf_type_is_fwd(next_type) && 1591 !btf_type_is_func_proto(next_type)) { 1592 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1593 return -EINVAL; 1594 } 1595 } 1596 1597 env_stack_pop_resolved(env, next_type_id, 0); 1598 1599 return 0; 1600 } 1601 1602 static void btf_modifier_seq_show(const struct btf *btf, 1603 const struct btf_type *t, 1604 u32 type_id, void *data, 1605 u8 bits_offset, struct seq_file *m) 1606 { 1607 t = btf_type_id_resolve(btf, &type_id); 1608 1609 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1610 } 1611 1612 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1613 u32 type_id, void *data, u8 bits_offset, 1614 struct seq_file *m) 1615 { 1616 /* It is a hashed value */ 1617 seq_printf(m, "%p", *(void **)data); 1618 } 1619 1620 static void btf_ref_type_log(struct btf_verifier_env *env, 1621 const struct btf_type *t) 1622 { 1623 btf_verifier_log(env, "type_id=%u", t->type); 1624 } 1625 1626 static struct btf_kind_operations modifier_ops = { 1627 .check_meta = btf_ref_type_check_meta, 1628 .resolve = btf_modifier_resolve, 1629 .check_member = btf_modifier_check_member, 1630 .check_kflag_member = btf_modifier_check_kflag_member, 1631 .log_details = btf_ref_type_log, 1632 .seq_show = btf_modifier_seq_show, 1633 }; 1634 1635 static struct btf_kind_operations ptr_ops = { 1636 .check_meta = btf_ref_type_check_meta, 1637 .resolve = btf_ptr_resolve, 1638 .check_member = btf_ptr_check_member, 1639 .check_kflag_member = btf_generic_check_kflag_member, 1640 .log_details = btf_ref_type_log, 1641 .seq_show = btf_ptr_seq_show, 1642 }; 1643 1644 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1645 const struct btf_type *t, 1646 u32 meta_left) 1647 { 1648 if (btf_type_vlen(t)) { 1649 btf_verifier_log_type(env, t, "vlen != 0"); 1650 return -EINVAL; 1651 } 1652 1653 if (t->type) { 1654 btf_verifier_log_type(env, t, "type != 0"); 1655 return -EINVAL; 1656 } 1657 1658 /* fwd type must have a valid name */ 1659 if (!t->name_off || 1660 !btf_name_valid_identifier(env->btf, t->name_off)) { 1661 btf_verifier_log_type(env, t, "Invalid name"); 1662 return -EINVAL; 1663 } 1664 1665 btf_verifier_log_type(env, t, NULL); 1666 1667 return 0; 1668 } 1669 1670 static void btf_fwd_type_log(struct btf_verifier_env *env, 1671 const struct btf_type *t) 1672 { 1673 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 1674 } 1675 1676 static struct btf_kind_operations fwd_ops = { 1677 .check_meta = btf_fwd_check_meta, 1678 .resolve = btf_df_resolve, 1679 .check_member = btf_df_check_member, 1680 .check_kflag_member = btf_df_check_kflag_member, 1681 .log_details = btf_fwd_type_log, 1682 .seq_show = btf_df_seq_show, 1683 }; 1684 1685 static int btf_array_check_member(struct btf_verifier_env *env, 1686 const struct btf_type *struct_type, 1687 const struct btf_member *member, 1688 const struct btf_type *member_type) 1689 { 1690 u32 struct_bits_off = member->offset; 1691 u32 struct_size, bytes_offset; 1692 u32 array_type_id, array_size; 1693 struct btf *btf = env->btf; 1694 1695 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1696 btf_verifier_log_member(env, struct_type, member, 1697 "Member is not byte aligned"); 1698 return -EINVAL; 1699 } 1700 1701 array_type_id = member->type; 1702 btf_type_id_size(btf, &array_type_id, &array_size); 1703 struct_size = struct_type->size; 1704 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1705 if (struct_size - bytes_offset < array_size) { 1706 btf_verifier_log_member(env, struct_type, member, 1707 "Member exceeds struct_size"); 1708 return -EINVAL; 1709 } 1710 1711 return 0; 1712 } 1713 1714 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1715 const struct btf_type *t, 1716 u32 meta_left) 1717 { 1718 const struct btf_array *array = btf_type_array(t); 1719 u32 meta_needed = sizeof(*array); 1720 1721 if (meta_left < meta_needed) { 1722 btf_verifier_log_basic(env, t, 1723 "meta_left:%u meta_needed:%u", 1724 meta_left, meta_needed); 1725 return -EINVAL; 1726 } 1727 1728 /* array type should not have a name */ 1729 if (t->name_off) { 1730 btf_verifier_log_type(env, t, "Invalid name"); 1731 return -EINVAL; 1732 } 1733 1734 if (btf_type_vlen(t)) { 1735 btf_verifier_log_type(env, t, "vlen != 0"); 1736 return -EINVAL; 1737 } 1738 1739 if (btf_type_kflag(t)) { 1740 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1741 return -EINVAL; 1742 } 1743 1744 if (t->size) { 1745 btf_verifier_log_type(env, t, "size != 0"); 1746 return -EINVAL; 1747 } 1748 1749 /* Array elem type and index type cannot be in type void, 1750 * so !array->type and !array->index_type are not allowed. 1751 */ 1752 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1753 btf_verifier_log_type(env, t, "Invalid elem"); 1754 return -EINVAL; 1755 } 1756 1757 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1758 btf_verifier_log_type(env, t, "Invalid index"); 1759 return -EINVAL; 1760 } 1761 1762 btf_verifier_log_type(env, t, NULL); 1763 1764 return meta_needed; 1765 } 1766 1767 static int btf_array_resolve(struct btf_verifier_env *env, 1768 const struct resolve_vertex *v) 1769 { 1770 const struct btf_array *array = btf_type_array(v->t); 1771 const struct btf_type *elem_type, *index_type; 1772 u32 elem_type_id, index_type_id; 1773 struct btf *btf = env->btf; 1774 u32 elem_size; 1775 1776 /* Check array->index_type */ 1777 index_type_id = array->index_type; 1778 index_type = btf_type_by_id(btf, index_type_id); 1779 if (btf_type_nosize_or_null(index_type)) { 1780 btf_verifier_log_type(env, v->t, "Invalid index"); 1781 return -EINVAL; 1782 } 1783 1784 if (!env_type_is_resolve_sink(env, index_type) && 1785 !env_type_is_resolved(env, index_type_id)) 1786 return env_stack_push(env, index_type, index_type_id); 1787 1788 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1789 if (!index_type || !btf_type_is_int(index_type) || 1790 !btf_type_int_is_regular(index_type)) { 1791 btf_verifier_log_type(env, v->t, "Invalid index"); 1792 return -EINVAL; 1793 } 1794 1795 /* Check array->type */ 1796 elem_type_id = array->type; 1797 elem_type = btf_type_by_id(btf, elem_type_id); 1798 if (btf_type_nosize_or_null(elem_type)) { 1799 btf_verifier_log_type(env, v->t, 1800 "Invalid elem"); 1801 return -EINVAL; 1802 } 1803 1804 if (!env_type_is_resolve_sink(env, elem_type) && 1805 !env_type_is_resolved(env, elem_type_id)) 1806 return env_stack_push(env, elem_type, elem_type_id); 1807 1808 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1809 if (!elem_type) { 1810 btf_verifier_log_type(env, v->t, "Invalid elem"); 1811 return -EINVAL; 1812 } 1813 1814 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1815 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1816 return -EINVAL; 1817 } 1818 1819 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1820 btf_verifier_log_type(env, v->t, 1821 "Array size overflows U32_MAX"); 1822 return -EINVAL; 1823 } 1824 1825 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1826 1827 return 0; 1828 } 1829 1830 static void btf_array_log(struct btf_verifier_env *env, 1831 const struct btf_type *t) 1832 { 1833 const struct btf_array *array = btf_type_array(t); 1834 1835 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1836 array->type, array->index_type, array->nelems); 1837 } 1838 1839 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1840 u32 type_id, void *data, u8 bits_offset, 1841 struct seq_file *m) 1842 { 1843 const struct btf_array *array = btf_type_array(t); 1844 const struct btf_kind_operations *elem_ops; 1845 const struct btf_type *elem_type; 1846 u32 i, elem_size, elem_type_id; 1847 1848 elem_type_id = array->type; 1849 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1850 elem_ops = btf_type_ops(elem_type); 1851 seq_puts(m, "["); 1852 for (i = 0; i < array->nelems; i++) { 1853 if (i) 1854 seq_puts(m, ","); 1855 1856 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 1857 bits_offset, m); 1858 data += elem_size; 1859 } 1860 seq_puts(m, "]"); 1861 } 1862 1863 static struct btf_kind_operations array_ops = { 1864 .check_meta = btf_array_check_meta, 1865 .resolve = btf_array_resolve, 1866 .check_member = btf_array_check_member, 1867 .check_kflag_member = btf_generic_check_kflag_member, 1868 .log_details = btf_array_log, 1869 .seq_show = btf_array_seq_show, 1870 }; 1871 1872 static int btf_struct_check_member(struct btf_verifier_env *env, 1873 const struct btf_type *struct_type, 1874 const struct btf_member *member, 1875 const struct btf_type *member_type) 1876 { 1877 u32 struct_bits_off = member->offset; 1878 u32 struct_size, bytes_offset; 1879 1880 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1881 btf_verifier_log_member(env, struct_type, member, 1882 "Member is not byte aligned"); 1883 return -EINVAL; 1884 } 1885 1886 struct_size = struct_type->size; 1887 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1888 if (struct_size - bytes_offset < member_type->size) { 1889 btf_verifier_log_member(env, struct_type, member, 1890 "Member exceeds struct_size"); 1891 return -EINVAL; 1892 } 1893 1894 return 0; 1895 } 1896 1897 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 1898 const struct btf_type *t, 1899 u32 meta_left) 1900 { 1901 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 1902 const struct btf_member *member; 1903 u32 meta_needed, last_offset; 1904 struct btf *btf = env->btf; 1905 u32 struct_size = t->size; 1906 u32 offset; 1907 u16 i; 1908 1909 meta_needed = btf_type_vlen(t) * sizeof(*member); 1910 if (meta_left < meta_needed) { 1911 btf_verifier_log_basic(env, t, 1912 "meta_left:%u meta_needed:%u", 1913 meta_left, meta_needed); 1914 return -EINVAL; 1915 } 1916 1917 /* struct type either no name or a valid one */ 1918 if (t->name_off && 1919 !btf_name_valid_identifier(env->btf, t->name_off)) { 1920 btf_verifier_log_type(env, t, "Invalid name"); 1921 return -EINVAL; 1922 } 1923 1924 btf_verifier_log_type(env, t, NULL); 1925 1926 last_offset = 0; 1927 for_each_member(i, t, member) { 1928 if (!btf_name_offset_valid(btf, member->name_off)) { 1929 btf_verifier_log_member(env, t, member, 1930 "Invalid member name_offset:%u", 1931 member->name_off); 1932 return -EINVAL; 1933 } 1934 1935 /* struct member either no name or a valid one */ 1936 if (member->name_off && 1937 !btf_name_valid_identifier(btf, member->name_off)) { 1938 btf_verifier_log_member(env, t, member, "Invalid name"); 1939 return -EINVAL; 1940 } 1941 /* A member cannot be in type void */ 1942 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 1943 btf_verifier_log_member(env, t, member, 1944 "Invalid type_id"); 1945 return -EINVAL; 1946 } 1947 1948 offset = btf_member_bit_offset(t, member); 1949 if (is_union && offset) { 1950 btf_verifier_log_member(env, t, member, 1951 "Invalid member bits_offset"); 1952 return -EINVAL; 1953 } 1954 1955 /* 1956 * ">" instead of ">=" because the last member could be 1957 * "char a[0];" 1958 */ 1959 if (last_offset > offset) { 1960 btf_verifier_log_member(env, t, member, 1961 "Invalid member bits_offset"); 1962 return -EINVAL; 1963 } 1964 1965 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 1966 btf_verifier_log_member(env, t, member, 1967 "Member bits_offset exceeds its struct size"); 1968 return -EINVAL; 1969 } 1970 1971 btf_verifier_log_member(env, t, member, NULL); 1972 last_offset = offset; 1973 } 1974 1975 return meta_needed; 1976 } 1977 1978 static int btf_struct_resolve(struct btf_verifier_env *env, 1979 const struct resolve_vertex *v) 1980 { 1981 const struct btf_member *member; 1982 int err; 1983 u16 i; 1984 1985 /* Before continue resolving the next_member, 1986 * ensure the last member is indeed resolved to a 1987 * type with size info. 1988 */ 1989 if (v->next_member) { 1990 const struct btf_type *last_member_type; 1991 const struct btf_member *last_member; 1992 u16 last_member_type_id; 1993 1994 last_member = btf_type_member(v->t) + v->next_member - 1; 1995 last_member_type_id = last_member->type; 1996 if (WARN_ON_ONCE(!env_type_is_resolved(env, 1997 last_member_type_id))) 1998 return -EINVAL; 1999 2000 last_member_type = btf_type_by_id(env->btf, 2001 last_member_type_id); 2002 if (btf_type_kflag(v->t)) 2003 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2004 last_member, 2005 last_member_type); 2006 else 2007 err = btf_type_ops(last_member_type)->check_member(env, v->t, 2008 last_member, 2009 last_member_type); 2010 if (err) 2011 return err; 2012 } 2013 2014 for_each_member_from(i, v->next_member, v->t, member) { 2015 u32 member_type_id = member->type; 2016 const struct btf_type *member_type = btf_type_by_id(env->btf, 2017 member_type_id); 2018 2019 if (btf_type_nosize_or_null(member_type)) { 2020 btf_verifier_log_member(env, v->t, member, 2021 "Invalid member"); 2022 return -EINVAL; 2023 } 2024 2025 if (!env_type_is_resolve_sink(env, member_type) && 2026 !env_type_is_resolved(env, member_type_id)) { 2027 env_stack_set_next_member(env, i + 1); 2028 return env_stack_push(env, member_type, member_type_id); 2029 } 2030 2031 if (btf_type_kflag(v->t)) 2032 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 2033 member, 2034 member_type); 2035 else 2036 err = btf_type_ops(member_type)->check_member(env, v->t, 2037 member, 2038 member_type); 2039 if (err) 2040 return err; 2041 } 2042 2043 env_stack_pop_resolved(env, 0, 0); 2044 2045 return 0; 2046 } 2047 2048 static void btf_struct_log(struct btf_verifier_env *env, 2049 const struct btf_type *t) 2050 { 2051 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2052 } 2053 2054 /* find 'struct bpf_spin_lock' in map value. 2055 * return >= 0 offset if found 2056 * and < 0 in case of error 2057 */ 2058 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 2059 { 2060 const struct btf_member *member; 2061 u32 i, off = -ENOENT; 2062 2063 if (!__btf_type_is_struct(t)) 2064 return -EINVAL; 2065 2066 for_each_member(i, t, member) { 2067 const struct btf_type *member_type = btf_type_by_id(btf, 2068 member->type); 2069 if (!__btf_type_is_struct(member_type)) 2070 continue; 2071 if (member_type->size != sizeof(struct bpf_spin_lock)) 2072 continue; 2073 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 2074 "bpf_spin_lock")) 2075 continue; 2076 if (off != -ENOENT) 2077 /* only one 'struct bpf_spin_lock' is allowed */ 2078 return -E2BIG; 2079 off = btf_member_bit_offset(t, member); 2080 if (off % 8) 2081 /* valid C code cannot generate such BTF */ 2082 return -EINVAL; 2083 off /= 8; 2084 if (off % __alignof__(struct bpf_spin_lock)) 2085 /* valid struct bpf_spin_lock will be 4 byte aligned */ 2086 return -EINVAL; 2087 } 2088 return off; 2089 } 2090 2091 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 2092 u32 type_id, void *data, u8 bits_offset, 2093 struct seq_file *m) 2094 { 2095 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 2096 const struct btf_member *member; 2097 u32 i; 2098 2099 seq_puts(m, "{"); 2100 for_each_member(i, t, member) { 2101 const struct btf_type *member_type = btf_type_by_id(btf, 2102 member->type); 2103 const struct btf_kind_operations *ops; 2104 u32 member_offset, bitfield_size; 2105 u32 bytes_offset; 2106 u8 bits8_offset; 2107 2108 if (i) 2109 seq_puts(m, seq); 2110 2111 member_offset = btf_member_bit_offset(t, member); 2112 bitfield_size = btf_member_bitfield_size(t, member); 2113 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 2114 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 2115 if (bitfield_size) { 2116 btf_bitfield_seq_show(data + bytes_offset, bits8_offset, 2117 bitfield_size, m); 2118 } else { 2119 ops = btf_type_ops(member_type); 2120 ops->seq_show(btf, member_type, member->type, 2121 data + bytes_offset, bits8_offset, m); 2122 } 2123 } 2124 seq_puts(m, "}"); 2125 } 2126 2127 static struct btf_kind_operations struct_ops = { 2128 .check_meta = btf_struct_check_meta, 2129 .resolve = btf_struct_resolve, 2130 .check_member = btf_struct_check_member, 2131 .check_kflag_member = btf_generic_check_kflag_member, 2132 .log_details = btf_struct_log, 2133 .seq_show = btf_struct_seq_show, 2134 }; 2135 2136 static int btf_enum_check_member(struct btf_verifier_env *env, 2137 const struct btf_type *struct_type, 2138 const struct btf_member *member, 2139 const struct btf_type *member_type) 2140 { 2141 u32 struct_bits_off = member->offset; 2142 u32 struct_size, bytes_offset; 2143 2144 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2145 btf_verifier_log_member(env, struct_type, member, 2146 "Member is not byte aligned"); 2147 return -EINVAL; 2148 } 2149 2150 struct_size = struct_type->size; 2151 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2152 if (struct_size - bytes_offset < sizeof(int)) { 2153 btf_verifier_log_member(env, struct_type, member, 2154 "Member exceeds struct_size"); 2155 return -EINVAL; 2156 } 2157 2158 return 0; 2159 } 2160 2161 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 2162 const struct btf_type *struct_type, 2163 const struct btf_member *member, 2164 const struct btf_type *member_type) 2165 { 2166 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 2167 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 2168 2169 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2170 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2171 if (!nr_bits) { 2172 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2173 btf_verifier_log_member(env, struct_type, member, 2174 "Member is not byte aligned"); 2175 return -EINVAL; 2176 } 2177 2178 nr_bits = int_bitsize; 2179 } else if (nr_bits > int_bitsize) { 2180 btf_verifier_log_member(env, struct_type, member, 2181 "Invalid member bitfield_size"); 2182 return -EINVAL; 2183 } 2184 2185 struct_size = struct_type->size; 2186 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 2187 if (struct_size < bytes_end) { 2188 btf_verifier_log_member(env, struct_type, member, 2189 "Member exceeds struct_size"); 2190 return -EINVAL; 2191 } 2192 2193 return 0; 2194 } 2195 2196 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 2197 const struct btf_type *t, 2198 u32 meta_left) 2199 { 2200 const struct btf_enum *enums = btf_type_enum(t); 2201 struct btf *btf = env->btf; 2202 u16 i, nr_enums; 2203 u32 meta_needed; 2204 2205 nr_enums = btf_type_vlen(t); 2206 meta_needed = nr_enums * sizeof(*enums); 2207 2208 if (meta_left < meta_needed) { 2209 btf_verifier_log_basic(env, t, 2210 "meta_left:%u meta_needed:%u", 2211 meta_left, meta_needed); 2212 return -EINVAL; 2213 } 2214 2215 if (btf_type_kflag(t)) { 2216 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2217 return -EINVAL; 2218 } 2219 2220 if (t->size != sizeof(int)) { 2221 btf_verifier_log_type(env, t, "Expected size:%zu", 2222 sizeof(int)); 2223 return -EINVAL; 2224 } 2225 2226 /* enum type either no name or a valid one */ 2227 if (t->name_off && 2228 !btf_name_valid_identifier(env->btf, t->name_off)) { 2229 btf_verifier_log_type(env, t, "Invalid name"); 2230 return -EINVAL; 2231 } 2232 2233 btf_verifier_log_type(env, t, NULL); 2234 2235 for (i = 0; i < nr_enums; i++) { 2236 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 2237 btf_verifier_log(env, "\tInvalid name_offset:%u", 2238 enums[i].name_off); 2239 return -EINVAL; 2240 } 2241 2242 /* enum member must have a valid name */ 2243 if (!enums[i].name_off || 2244 !btf_name_valid_identifier(btf, enums[i].name_off)) { 2245 btf_verifier_log_type(env, t, "Invalid name"); 2246 return -EINVAL; 2247 } 2248 2249 2250 btf_verifier_log(env, "\t%s val=%d\n", 2251 __btf_name_by_offset(btf, enums[i].name_off), 2252 enums[i].val); 2253 } 2254 2255 return meta_needed; 2256 } 2257 2258 static void btf_enum_log(struct btf_verifier_env *env, 2259 const struct btf_type *t) 2260 { 2261 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2262 } 2263 2264 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 2265 u32 type_id, void *data, u8 bits_offset, 2266 struct seq_file *m) 2267 { 2268 const struct btf_enum *enums = btf_type_enum(t); 2269 u32 i, nr_enums = btf_type_vlen(t); 2270 int v = *(int *)data; 2271 2272 for (i = 0; i < nr_enums; i++) { 2273 if (v == enums[i].val) { 2274 seq_printf(m, "%s", 2275 __btf_name_by_offset(btf, 2276 enums[i].name_off)); 2277 return; 2278 } 2279 } 2280 2281 seq_printf(m, "%d", v); 2282 } 2283 2284 static struct btf_kind_operations enum_ops = { 2285 .check_meta = btf_enum_check_meta, 2286 .resolve = btf_df_resolve, 2287 .check_member = btf_enum_check_member, 2288 .check_kflag_member = btf_enum_check_kflag_member, 2289 .log_details = btf_enum_log, 2290 .seq_show = btf_enum_seq_show, 2291 }; 2292 2293 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 2294 const struct btf_type *t, 2295 u32 meta_left) 2296 { 2297 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 2298 2299 if (meta_left < meta_needed) { 2300 btf_verifier_log_basic(env, t, 2301 "meta_left:%u meta_needed:%u", 2302 meta_left, meta_needed); 2303 return -EINVAL; 2304 } 2305 2306 if (t->name_off) { 2307 btf_verifier_log_type(env, t, "Invalid name"); 2308 return -EINVAL; 2309 } 2310 2311 if (btf_type_kflag(t)) { 2312 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2313 return -EINVAL; 2314 } 2315 2316 btf_verifier_log_type(env, t, NULL); 2317 2318 return meta_needed; 2319 } 2320 2321 static void btf_func_proto_log(struct btf_verifier_env *env, 2322 const struct btf_type *t) 2323 { 2324 const struct btf_param *args = (const struct btf_param *)(t + 1); 2325 u16 nr_args = btf_type_vlen(t), i; 2326 2327 btf_verifier_log(env, "return=%u args=(", t->type); 2328 if (!nr_args) { 2329 btf_verifier_log(env, "void"); 2330 goto done; 2331 } 2332 2333 if (nr_args == 1 && !args[0].type) { 2334 /* Only one vararg */ 2335 btf_verifier_log(env, "vararg"); 2336 goto done; 2337 } 2338 2339 btf_verifier_log(env, "%u %s", args[0].type, 2340 __btf_name_by_offset(env->btf, 2341 args[0].name_off)); 2342 for (i = 1; i < nr_args - 1; i++) 2343 btf_verifier_log(env, ", %u %s", args[i].type, 2344 __btf_name_by_offset(env->btf, 2345 args[i].name_off)); 2346 2347 if (nr_args > 1) { 2348 const struct btf_param *last_arg = &args[nr_args - 1]; 2349 2350 if (last_arg->type) 2351 btf_verifier_log(env, ", %u %s", last_arg->type, 2352 __btf_name_by_offset(env->btf, 2353 last_arg->name_off)); 2354 else 2355 btf_verifier_log(env, ", vararg"); 2356 } 2357 2358 done: 2359 btf_verifier_log(env, ")"); 2360 } 2361 2362 static struct btf_kind_operations func_proto_ops = { 2363 .check_meta = btf_func_proto_check_meta, 2364 .resolve = btf_df_resolve, 2365 /* 2366 * BTF_KIND_FUNC_PROTO cannot be directly referred by 2367 * a struct's member. 2368 * 2369 * It should be a funciton pointer instead. 2370 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 2371 * 2372 * Hence, there is no btf_func_check_member(). 2373 */ 2374 .check_member = btf_df_check_member, 2375 .check_kflag_member = btf_df_check_kflag_member, 2376 .log_details = btf_func_proto_log, 2377 .seq_show = btf_df_seq_show, 2378 }; 2379 2380 static s32 btf_func_check_meta(struct btf_verifier_env *env, 2381 const struct btf_type *t, 2382 u32 meta_left) 2383 { 2384 if (!t->name_off || 2385 !btf_name_valid_identifier(env->btf, t->name_off)) { 2386 btf_verifier_log_type(env, t, "Invalid name"); 2387 return -EINVAL; 2388 } 2389 2390 if (btf_type_vlen(t)) { 2391 btf_verifier_log_type(env, t, "vlen != 0"); 2392 return -EINVAL; 2393 } 2394 2395 if (btf_type_kflag(t)) { 2396 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2397 return -EINVAL; 2398 } 2399 2400 btf_verifier_log_type(env, t, NULL); 2401 2402 return 0; 2403 } 2404 2405 static struct btf_kind_operations func_ops = { 2406 .check_meta = btf_func_check_meta, 2407 .resolve = btf_df_resolve, 2408 .check_member = btf_df_check_member, 2409 .check_kflag_member = btf_df_check_kflag_member, 2410 .log_details = btf_ref_type_log, 2411 .seq_show = btf_df_seq_show, 2412 }; 2413 2414 static int btf_func_proto_check(struct btf_verifier_env *env, 2415 const struct btf_type *t) 2416 { 2417 const struct btf_type *ret_type; 2418 const struct btf_param *args; 2419 const struct btf *btf; 2420 u16 nr_args, i; 2421 int err; 2422 2423 btf = env->btf; 2424 args = (const struct btf_param *)(t + 1); 2425 nr_args = btf_type_vlen(t); 2426 2427 /* Check func return type which could be "void" (t->type == 0) */ 2428 if (t->type) { 2429 u32 ret_type_id = t->type; 2430 2431 ret_type = btf_type_by_id(btf, ret_type_id); 2432 if (!ret_type) { 2433 btf_verifier_log_type(env, t, "Invalid return type"); 2434 return -EINVAL; 2435 } 2436 2437 if (btf_type_needs_resolve(ret_type) && 2438 !env_type_is_resolved(env, ret_type_id)) { 2439 err = btf_resolve(env, ret_type, ret_type_id); 2440 if (err) 2441 return err; 2442 } 2443 2444 /* Ensure the return type is a type that has a size */ 2445 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 2446 btf_verifier_log_type(env, t, "Invalid return type"); 2447 return -EINVAL; 2448 } 2449 } 2450 2451 if (!nr_args) 2452 return 0; 2453 2454 /* Last func arg type_id could be 0 if it is a vararg */ 2455 if (!args[nr_args - 1].type) { 2456 if (args[nr_args - 1].name_off) { 2457 btf_verifier_log_type(env, t, "Invalid arg#%u", 2458 nr_args); 2459 return -EINVAL; 2460 } 2461 nr_args--; 2462 } 2463 2464 err = 0; 2465 for (i = 0; i < nr_args; i++) { 2466 const struct btf_type *arg_type; 2467 u32 arg_type_id; 2468 2469 arg_type_id = args[i].type; 2470 arg_type = btf_type_by_id(btf, arg_type_id); 2471 if (!arg_type) { 2472 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2473 err = -EINVAL; 2474 break; 2475 } 2476 2477 if (args[i].name_off && 2478 (!btf_name_offset_valid(btf, args[i].name_off) || 2479 !btf_name_valid_identifier(btf, args[i].name_off))) { 2480 btf_verifier_log_type(env, t, 2481 "Invalid arg#%u", i + 1); 2482 err = -EINVAL; 2483 break; 2484 } 2485 2486 if (btf_type_needs_resolve(arg_type) && 2487 !env_type_is_resolved(env, arg_type_id)) { 2488 err = btf_resolve(env, arg_type, arg_type_id); 2489 if (err) 2490 break; 2491 } 2492 2493 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2494 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2495 err = -EINVAL; 2496 break; 2497 } 2498 } 2499 2500 return err; 2501 } 2502 2503 static int btf_func_check(struct btf_verifier_env *env, 2504 const struct btf_type *t) 2505 { 2506 const struct btf_type *proto_type; 2507 const struct btf_param *args; 2508 const struct btf *btf; 2509 u16 nr_args, i; 2510 2511 btf = env->btf; 2512 proto_type = btf_type_by_id(btf, t->type); 2513 2514 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 2515 btf_verifier_log_type(env, t, "Invalid type_id"); 2516 return -EINVAL; 2517 } 2518 2519 args = (const struct btf_param *)(proto_type + 1); 2520 nr_args = btf_type_vlen(proto_type); 2521 for (i = 0; i < nr_args; i++) { 2522 if (!args[i].name_off && args[i].type) { 2523 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2524 return -EINVAL; 2525 } 2526 } 2527 2528 return 0; 2529 } 2530 2531 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 2532 [BTF_KIND_INT] = &int_ops, 2533 [BTF_KIND_PTR] = &ptr_ops, 2534 [BTF_KIND_ARRAY] = &array_ops, 2535 [BTF_KIND_STRUCT] = &struct_ops, 2536 [BTF_KIND_UNION] = &struct_ops, 2537 [BTF_KIND_ENUM] = &enum_ops, 2538 [BTF_KIND_FWD] = &fwd_ops, 2539 [BTF_KIND_TYPEDEF] = &modifier_ops, 2540 [BTF_KIND_VOLATILE] = &modifier_ops, 2541 [BTF_KIND_CONST] = &modifier_ops, 2542 [BTF_KIND_RESTRICT] = &modifier_ops, 2543 [BTF_KIND_FUNC] = &func_ops, 2544 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 2545 }; 2546 2547 static s32 btf_check_meta(struct btf_verifier_env *env, 2548 const struct btf_type *t, 2549 u32 meta_left) 2550 { 2551 u32 saved_meta_left = meta_left; 2552 s32 var_meta_size; 2553 2554 if (meta_left < sizeof(*t)) { 2555 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 2556 env->log_type_id, meta_left, sizeof(*t)); 2557 return -EINVAL; 2558 } 2559 meta_left -= sizeof(*t); 2560 2561 if (t->info & ~BTF_INFO_MASK) { 2562 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 2563 env->log_type_id, t->info); 2564 return -EINVAL; 2565 } 2566 2567 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 2568 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 2569 btf_verifier_log(env, "[%u] Invalid kind:%u", 2570 env->log_type_id, BTF_INFO_KIND(t->info)); 2571 return -EINVAL; 2572 } 2573 2574 if (!btf_name_offset_valid(env->btf, t->name_off)) { 2575 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 2576 env->log_type_id, t->name_off); 2577 return -EINVAL; 2578 } 2579 2580 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 2581 if (var_meta_size < 0) 2582 return var_meta_size; 2583 2584 meta_left -= var_meta_size; 2585 2586 return saved_meta_left - meta_left; 2587 } 2588 2589 static int btf_check_all_metas(struct btf_verifier_env *env) 2590 { 2591 struct btf *btf = env->btf; 2592 struct btf_header *hdr; 2593 void *cur, *end; 2594 2595 hdr = &btf->hdr; 2596 cur = btf->nohdr_data + hdr->type_off; 2597 end = cur + hdr->type_len; 2598 2599 env->log_type_id = 1; 2600 while (cur < end) { 2601 struct btf_type *t = cur; 2602 s32 meta_size; 2603 2604 meta_size = btf_check_meta(env, t, end - cur); 2605 if (meta_size < 0) 2606 return meta_size; 2607 2608 btf_add_type(env, t); 2609 cur += meta_size; 2610 env->log_type_id++; 2611 } 2612 2613 return 0; 2614 } 2615 2616 static bool btf_resolve_valid(struct btf_verifier_env *env, 2617 const struct btf_type *t, 2618 u32 type_id) 2619 { 2620 struct btf *btf = env->btf; 2621 2622 if (!env_type_is_resolved(env, type_id)) 2623 return false; 2624 2625 if (btf_type_is_struct(t)) 2626 return !btf->resolved_ids[type_id] && 2627 !btf->resolved_sizes[type_id]; 2628 2629 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { 2630 t = btf_type_id_resolve(btf, &type_id); 2631 return t && !btf_type_is_modifier(t); 2632 } 2633 2634 if (btf_type_is_array(t)) { 2635 const struct btf_array *array = btf_type_array(t); 2636 const struct btf_type *elem_type; 2637 u32 elem_type_id = array->type; 2638 u32 elem_size; 2639 2640 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2641 return elem_type && !btf_type_is_modifier(elem_type) && 2642 (array->nelems * elem_size == 2643 btf->resolved_sizes[type_id]); 2644 } 2645 2646 return false; 2647 } 2648 2649 static int btf_resolve(struct btf_verifier_env *env, 2650 const struct btf_type *t, u32 type_id) 2651 { 2652 u32 save_log_type_id = env->log_type_id; 2653 const struct resolve_vertex *v; 2654 int err = 0; 2655 2656 env->resolve_mode = RESOLVE_TBD; 2657 env_stack_push(env, t, type_id); 2658 while (!err && (v = env_stack_peak(env))) { 2659 env->log_type_id = v->type_id; 2660 err = btf_type_ops(v->t)->resolve(env, v); 2661 } 2662 2663 env->log_type_id = type_id; 2664 if (err == -E2BIG) { 2665 btf_verifier_log_type(env, t, 2666 "Exceeded max resolving depth:%u", 2667 MAX_RESOLVE_DEPTH); 2668 } else if (err == -EEXIST) { 2669 btf_verifier_log_type(env, t, "Loop detected"); 2670 } 2671 2672 /* Final sanity check */ 2673 if (!err && !btf_resolve_valid(env, t, type_id)) { 2674 btf_verifier_log_type(env, t, "Invalid resolve state"); 2675 err = -EINVAL; 2676 } 2677 2678 env->log_type_id = save_log_type_id; 2679 return err; 2680 } 2681 2682 static int btf_check_all_types(struct btf_verifier_env *env) 2683 { 2684 struct btf *btf = env->btf; 2685 u32 type_id; 2686 int err; 2687 2688 err = env_resolve_init(env); 2689 if (err) 2690 return err; 2691 2692 env->phase++; 2693 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 2694 const struct btf_type *t = btf_type_by_id(btf, type_id); 2695 2696 env->log_type_id = type_id; 2697 if (btf_type_needs_resolve(t) && 2698 !env_type_is_resolved(env, type_id)) { 2699 err = btf_resolve(env, t, type_id); 2700 if (err) 2701 return err; 2702 } 2703 2704 if (btf_type_is_func_proto(t)) { 2705 err = btf_func_proto_check(env, t); 2706 if (err) 2707 return err; 2708 } 2709 2710 if (btf_type_is_func(t)) { 2711 err = btf_func_check(env, t); 2712 if (err) 2713 return err; 2714 } 2715 } 2716 2717 return 0; 2718 } 2719 2720 static int btf_parse_type_sec(struct btf_verifier_env *env) 2721 { 2722 const struct btf_header *hdr = &env->btf->hdr; 2723 int err; 2724 2725 /* Type section must align to 4 bytes */ 2726 if (hdr->type_off & (sizeof(u32) - 1)) { 2727 btf_verifier_log(env, "Unaligned type_off"); 2728 return -EINVAL; 2729 } 2730 2731 if (!hdr->type_len) { 2732 btf_verifier_log(env, "No type found"); 2733 return -EINVAL; 2734 } 2735 2736 err = btf_check_all_metas(env); 2737 if (err) 2738 return err; 2739 2740 return btf_check_all_types(env); 2741 } 2742 2743 static int btf_parse_str_sec(struct btf_verifier_env *env) 2744 { 2745 const struct btf_header *hdr; 2746 struct btf *btf = env->btf; 2747 const char *start, *end; 2748 2749 hdr = &btf->hdr; 2750 start = btf->nohdr_data + hdr->str_off; 2751 end = start + hdr->str_len; 2752 2753 if (end != btf->data + btf->data_size) { 2754 btf_verifier_log(env, "String section is not at the end"); 2755 return -EINVAL; 2756 } 2757 2758 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 2759 start[0] || end[-1]) { 2760 btf_verifier_log(env, "Invalid string section"); 2761 return -EINVAL; 2762 } 2763 2764 btf->strings = start; 2765 2766 return 0; 2767 } 2768 2769 static const size_t btf_sec_info_offset[] = { 2770 offsetof(struct btf_header, type_off), 2771 offsetof(struct btf_header, str_off), 2772 }; 2773 2774 static int btf_sec_info_cmp(const void *a, const void *b) 2775 { 2776 const struct btf_sec_info *x = a; 2777 const struct btf_sec_info *y = b; 2778 2779 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 2780 } 2781 2782 static int btf_check_sec_info(struct btf_verifier_env *env, 2783 u32 btf_data_size) 2784 { 2785 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 2786 u32 total, expected_total, i; 2787 const struct btf_header *hdr; 2788 const struct btf *btf; 2789 2790 btf = env->btf; 2791 hdr = &btf->hdr; 2792 2793 /* Populate the secs from hdr */ 2794 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 2795 secs[i] = *(struct btf_sec_info *)((void *)hdr + 2796 btf_sec_info_offset[i]); 2797 2798 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 2799 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 2800 2801 /* Check for gaps and overlap among sections */ 2802 total = 0; 2803 expected_total = btf_data_size - hdr->hdr_len; 2804 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 2805 if (expected_total < secs[i].off) { 2806 btf_verifier_log(env, "Invalid section offset"); 2807 return -EINVAL; 2808 } 2809 if (total < secs[i].off) { 2810 /* gap */ 2811 btf_verifier_log(env, "Unsupported section found"); 2812 return -EINVAL; 2813 } 2814 if (total > secs[i].off) { 2815 btf_verifier_log(env, "Section overlap found"); 2816 return -EINVAL; 2817 } 2818 if (expected_total - total < secs[i].len) { 2819 btf_verifier_log(env, 2820 "Total section length too long"); 2821 return -EINVAL; 2822 } 2823 total += secs[i].len; 2824 } 2825 2826 /* There is data other than hdr and known sections */ 2827 if (expected_total != total) { 2828 btf_verifier_log(env, "Unsupported section found"); 2829 return -EINVAL; 2830 } 2831 2832 return 0; 2833 } 2834 2835 static int btf_parse_hdr(struct btf_verifier_env *env) 2836 { 2837 u32 hdr_len, hdr_copy, btf_data_size; 2838 const struct btf_header *hdr; 2839 struct btf *btf; 2840 int err; 2841 2842 btf = env->btf; 2843 btf_data_size = btf->data_size; 2844 2845 if (btf_data_size < 2846 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 2847 btf_verifier_log(env, "hdr_len not found"); 2848 return -EINVAL; 2849 } 2850 2851 hdr = btf->data; 2852 hdr_len = hdr->hdr_len; 2853 if (btf_data_size < hdr_len) { 2854 btf_verifier_log(env, "btf_header not found"); 2855 return -EINVAL; 2856 } 2857 2858 /* Ensure the unsupported header fields are zero */ 2859 if (hdr_len > sizeof(btf->hdr)) { 2860 u8 *expected_zero = btf->data + sizeof(btf->hdr); 2861 u8 *end = btf->data + hdr_len; 2862 2863 for (; expected_zero < end; expected_zero++) { 2864 if (*expected_zero) { 2865 btf_verifier_log(env, "Unsupported btf_header"); 2866 return -E2BIG; 2867 } 2868 } 2869 } 2870 2871 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 2872 memcpy(&btf->hdr, btf->data, hdr_copy); 2873 2874 hdr = &btf->hdr; 2875 2876 btf_verifier_log_hdr(env, btf_data_size); 2877 2878 if (hdr->magic != BTF_MAGIC) { 2879 btf_verifier_log(env, "Invalid magic"); 2880 return -EINVAL; 2881 } 2882 2883 if (hdr->version != BTF_VERSION) { 2884 btf_verifier_log(env, "Unsupported version"); 2885 return -ENOTSUPP; 2886 } 2887 2888 if (hdr->flags) { 2889 btf_verifier_log(env, "Unsupported flags"); 2890 return -ENOTSUPP; 2891 } 2892 2893 if (btf_data_size == hdr->hdr_len) { 2894 btf_verifier_log(env, "No data"); 2895 return -EINVAL; 2896 } 2897 2898 err = btf_check_sec_info(env, btf_data_size); 2899 if (err) 2900 return err; 2901 2902 return 0; 2903 } 2904 2905 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 2906 u32 log_level, char __user *log_ubuf, u32 log_size) 2907 { 2908 struct btf_verifier_env *env = NULL; 2909 struct bpf_verifier_log *log; 2910 struct btf *btf = NULL; 2911 u8 *data; 2912 int err; 2913 2914 if (btf_data_size > BTF_MAX_SIZE) 2915 return ERR_PTR(-E2BIG); 2916 2917 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 2918 if (!env) 2919 return ERR_PTR(-ENOMEM); 2920 2921 log = &env->log; 2922 if (log_level || log_ubuf || log_size) { 2923 /* user requested verbose verifier output 2924 * and supplied buffer to store the verification trace 2925 */ 2926 log->level = log_level; 2927 log->ubuf = log_ubuf; 2928 log->len_total = log_size; 2929 2930 /* log attributes have to be sane */ 2931 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 2932 !log->level || !log->ubuf) { 2933 err = -EINVAL; 2934 goto errout; 2935 } 2936 } 2937 2938 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 2939 if (!btf) { 2940 err = -ENOMEM; 2941 goto errout; 2942 } 2943 env->btf = btf; 2944 2945 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 2946 if (!data) { 2947 err = -ENOMEM; 2948 goto errout; 2949 } 2950 2951 btf->data = data; 2952 btf->data_size = btf_data_size; 2953 2954 if (copy_from_user(data, btf_data, btf_data_size)) { 2955 err = -EFAULT; 2956 goto errout; 2957 } 2958 2959 err = btf_parse_hdr(env); 2960 if (err) 2961 goto errout; 2962 2963 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 2964 2965 err = btf_parse_str_sec(env); 2966 if (err) 2967 goto errout; 2968 2969 err = btf_parse_type_sec(env); 2970 if (err) 2971 goto errout; 2972 2973 if (log->level && bpf_verifier_log_full(log)) { 2974 err = -ENOSPC; 2975 goto errout; 2976 } 2977 2978 btf_verifier_env_free(env); 2979 refcount_set(&btf->refcnt, 1); 2980 return btf; 2981 2982 errout: 2983 btf_verifier_env_free(env); 2984 if (btf) 2985 btf_free(btf); 2986 return ERR_PTR(err); 2987 } 2988 2989 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 2990 struct seq_file *m) 2991 { 2992 const struct btf_type *t = btf_type_by_id(btf, type_id); 2993 2994 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 2995 } 2996 2997 static int btf_release(struct inode *inode, struct file *filp) 2998 { 2999 btf_put(filp->private_data); 3000 return 0; 3001 } 3002 3003 const struct file_operations btf_fops = { 3004 .release = btf_release, 3005 }; 3006 3007 static int __btf_new_fd(struct btf *btf) 3008 { 3009 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 3010 } 3011 3012 int btf_new_fd(const union bpf_attr *attr) 3013 { 3014 struct btf *btf; 3015 int ret; 3016 3017 btf = btf_parse(u64_to_user_ptr(attr->btf), 3018 attr->btf_size, attr->btf_log_level, 3019 u64_to_user_ptr(attr->btf_log_buf), 3020 attr->btf_log_size); 3021 if (IS_ERR(btf)) 3022 return PTR_ERR(btf); 3023 3024 ret = btf_alloc_id(btf); 3025 if (ret) { 3026 btf_free(btf); 3027 return ret; 3028 } 3029 3030 /* 3031 * The BTF ID is published to the userspace. 3032 * All BTF free must go through call_rcu() from 3033 * now on (i.e. free by calling btf_put()). 3034 */ 3035 3036 ret = __btf_new_fd(btf); 3037 if (ret < 0) 3038 btf_put(btf); 3039 3040 return ret; 3041 } 3042 3043 struct btf *btf_get_by_fd(int fd) 3044 { 3045 struct btf *btf; 3046 struct fd f; 3047 3048 f = fdget(fd); 3049 3050 if (!f.file) 3051 return ERR_PTR(-EBADF); 3052 3053 if (f.file->f_op != &btf_fops) { 3054 fdput(f); 3055 return ERR_PTR(-EINVAL); 3056 } 3057 3058 btf = f.file->private_data; 3059 refcount_inc(&btf->refcnt); 3060 fdput(f); 3061 3062 return btf; 3063 } 3064 3065 int btf_get_info_by_fd(const struct btf *btf, 3066 const union bpf_attr *attr, 3067 union bpf_attr __user *uattr) 3068 { 3069 struct bpf_btf_info __user *uinfo; 3070 struct bpf_btf_info info = {}; 3071 u32 info_copy, btf_copy; 3072 void __user *ubtf; 3073 u32 uinfo_len; 3074 3075 uinfo = u64_to_user_ptr(attr->info.info); 3076 uinfo_len = attr->info.info_len; 3077 3078 info_copy = min_t(u32, uinfo_len, sizeof(info)); 3079 if (copy_from_user(&info, uinfo, info_copy)) 3080 return -EFAULT; 3081 3082 info.id = btf->id; 3083 ubtf = u64_to_user_ptr(info.btf); 3084 btf_copy = min_t(u32, btf->data_size, info.btf_size); 3085 if (copy_to_user(ubtf, btf->data, btf_copy)) 3086 return -EFAULT; 3087 info.btf_size = btf->data_size; 3088 3089 if (copy_to_user(uinfo, &info, info_copy) || 3090 put_user(info_copy, &uattr->info.info_len)) 3091 return -EFAULT; 3092 3093 return 0; 3094 } 3095 3096 int btf_get_fd_by_id(u32 id) 3097 { 3098 struct btf *btf; 3099 int fd; 3100 3101 rcu_read_lock(); 3102 btf = idr_find(&btf_idr, id); 3103 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 3104 btf = ERR_PTR(-ENOENT); 3105 rcu_read_unlock(); 3106 3107 if (IS_ERR(btf)) 3108 return PTR_ERR(btf); 3109 3110 fd = __btf_new_fd(btf); 3111 if (fd < 0) 3112 btf_put(btf); 3113 3114 return fd; 3115 } 3116 3117 u32 btf_id(const struct btf *btf) 3118 { 3119 return btf->id; 3120 } 3121