xref: /linux/kernel/bpf/btf.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP_SKB,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_MAX,
222 };
223 
224 enum {
225 	BTF_KFUNC_SET_MAX_CNT = 256,
226 	BTF_DTOR_KFUNC_MAX_CNT = 256,
227 	BTF_KFUNC_FILTER_MAX_CNT = 16,
228 };
229 
230 struct btf_kfunc_hook_filter {
231 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
232 	u32 nr_filters;
233 };
234 
235 struct btf_kfunc_set_tab {
236 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
237 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
238 };
239 
240 struct btf_id_dtor_kfunc_tab {
241 	u32 cnt;
242 	struct btf_id_dtor_kfunc dtors[];
243 };
244 
245 struct btf_struct_ops_tab {
246 	u32 cnt;
247 	u32 capacity;
248 	struct bpf_struct_ops_desc ops[];
249 };
250 
251 struct btf {
252 	void *data;
253 	struct btf_type **types;
254 	u32 *resolved_ids;
255 	u32 *resolved_sizes;
256 	const char *strings;
257 	void *nohdr_data;
258 	struct btf_header hdr;
259 	u32 nr_types; /* includes VOID for base BTF */
260 	u32 types_size;
261 	u32 data_size;
262 	refcount_t refcnt;
263 	u32 id;
264 	struct rcu_head rcu;
265 	struct btf_kfunc_set_tab *kfunc_set_tab;
266 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
267 	struct btf_struct_metas *struct_meta_tab;
268 	struct btf_struct_ops_tab *struct_ops_tab;
269 
270 	/* split BTF support */
271 	struct btf *base_btf;
272 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
273 	u32 start_str_off; /* first string offset (0 for base BTF) */
274 	char name[MODULE_NAME_LEN];
275 	bool kernel_btf;
276 };
277 
278 enum verifier_phase {
279 	CHECK_META,
280 	CHECK_TYPE,
281 };
282 
283 struct resolve_vertex {
284 	const struct btf_type *t;
285 	u32 type_id;
286 	u16 next_member;
287 };
288 
289 enum visit_state {
290 	NOT_VISITED,
291 	VISITED,
292 	RESOLVED,
293 };
294 
295 enum resolve_mode {
296 	RESOLVE_TBD,	/* To Be Determined */
297 	RESOLVE_PTR,	/* Resolving for Pointer */
298 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
299 					 * or array
300 					 */
301 };
302 
303 #define MAX_RESOLVE_DEPTH 32
304 
305 struct btf_sec_info {
306 	u32 off;
307 	u32 len;
308 };
309 
310 struct btf_verifier_env {
311 	struct btf *btf;
312 	u8 *visit_states;
313 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
314 	struct bpf_verifier_log log;
315 	u32 log_type_id;
316 	u32 top_stack;
317 	enum verifier_phase phase;
318 	enum resolve_mode resolve_mode;
319 };
320 
321 static const char * const btf_kind_str[NR_BTF_KINDS] = {
322 	[BTF_KIND_UNKN]		= "UNKNOWN",
323 	[BTF_KIND_INT]		= "INT",
324 	[BTF_KIND_PTR]		= "PTR",
325 	[BTF_KIND_ARRAY]	= "ARRAY",
326 	[BTF_KIND_STRUCT]	= "STRUCT",
327 	[BTF_KIND_UNION]	= "UNION",
328 	[BTF_KIND_ENUM]		= "ENUM",
329 	[BTF_KIND_FWD]		= "FWD",
330 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
331 	[BTF_KIND_VOLATILE]	= "VOLATILE",
332 	[BTF_KIND_CONST]	= "CONST",
333 	[BTF_KIND_RESTRICT]	= "RESTRICT",
334 	[BTF_KIND_FUNC]		= "FUNC",
335 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
336 	[BTF_KIND_VAR]		= "VAR",
337 	[BTF_KIND_DATASEC]	= "DATASEC",
338 	[BTF_KIND_FLOAT]	= "FLOAT",
339 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
340 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
341 	[BTF_KIND_ENUM64]	= "ENUM64",
342 };
343 
344 const char *btf_type_str(const struct btf_type *t)
345 {
346 	return btf_kind_str[BTF_INFO_KIND(t->info)];
347 }
348 
349 /* Chunk size we use in safe copy of data to be shown. */
350 #define BTF_SHOW_OBJ_SAFE_SIZE		32
351 
352 /*
353  * This is the maximum size of a base type value (equivalent to a
354  * 128-bit int); if we are at the end of our safe buffer and have
355  * less than 16 bytes space we can't be assured of being able
356  * to copy the next type safely, so in such cases we will initiate
357  * a new copy.
358  */
359 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
360 
361 /* Type name size */
362 #define BTF_SHOW_NAME_SIZE		80
363 
364 /*
365  * The suffix of a type that indicates it cannot alias another type when
366  * comparing BTF IDs for kfunc invocations.
367  */
368 #define NOCAST_ALIAS_SUFFIX		"___init"
369 
370 /*
371  * Common data to all BTF show operations. Private show functions can add
372  * their own data to a structure containing a struct btf_show and consult it
373  * in the show callback.  See btf_type_show() below.
374  *
375  * One challenge with showing nested data is we want to skip 0-valued
376  * data, but in order to figure out whether a nested object is all zeros
377  * we need to walk through it.  As a result, we need to make two passes
378  * when handling structs, unions and arrays; the first path simply looks
379  * for nonzero data, while the second actually does the display.  The first
380  * pass is signalled by show->state.depth_check being set, and if we
381  * encounter a non-zero value we set show->state.depth_to_show to
382  * the depth at which we encountered it.  When we have completed the
383  * first pass, we will know if anything needs to be displayed if
384  * depth_to_show > depth.  See btf_[struct,array]_show() for the
385  * implementation of this.
386  *
387  * Another problem is we want to ensure the data for display is safe to
388  * access.  To support this, the anonymous "struct {} obj" tracks the data
389  * object and our safe copy of it.  We copy portions of the data needed
390  * to the object "copy" buffer, but because its size is limited to
391  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
392  * traverse larger objects for display.
393  *
394  * The various data type show functions all start with a call to
395  * btf_show_start_type() which returns a pointer to the safe copy
396  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
397  * raw data itself).  btf_show_obj_safe() is responsible for
398  * using copy_from_kernel_nofault() to update the safe data if necessary
399  * as we traverse the object's data.  skbuff-like semantics are
400  * used:
401  *
402  * - obj.head points to the start of the toplevel object for display
403  * - obj.size is the size of the toplevel object
404  * - obj.data points to the current point in the original data at
405  *   which our safe data starts.  obj.data will advance as we copy
406  *   portions of the data.
407  *
408  * In most cases a single copy will suffice, but larger data structures
409  * such as "struct task_struct" will require many copies.  The logic in
410  * btf_show_obj_safe() handles the logic that determines if a new
411  * copy_from_kernel_nofault() is needed.
412  */
413 struct btf_show {
414 	u64 flags;
415 	void *target;	/* target of show operation (seq file, buffer) */
416 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
417 	const struct btf *btf;
418 	/* below are used during iteration */
419 	struct {
420 		u8 depth;
421 		u8 depth_to_show;
422 		u8 depth_check;
423 		u8 array_member:1,
424 		   array_terminated:1;
425 		u16 array_encoding;
426 		u32 type_id;
427 		int status;			/* non-zero for error */
428 		const struct btf_type *type;
429 		const struct btf_member *member;
430 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
431 	} state;
432 	struct {
433 		u32 size;
434 		void *head;
435 		void *data;
436 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
437 	} obj;
438 };
439 
440 struct btf_kind_operations {
441 	s32 (*check_meta)(struct btf_verifier_env *env,
442 			  const struct btf_type *t,
443 			  u32 meta_left);
444 	int (*resolve)(struct btf_verifier_env *env,
445 		       const struct resolve_vertex *v);
446 	int (*check_member)(struct btf_verifier_env *env,
447 			    const struct btf_type *struct_type,
448 			    const struct btf_member *member,
449 			    const struct btf_type *member_type);
450 	int (*check_kflag_member)(struct btf_verifier_env *env,
451 				  const struct btf_type *struct_type,
452 				  const struct btf_member *member,
453 				  const struct btf_type *member_type);
454 	void (*log_details)(struct btf_verifier_env *env,
455 			    const struct btf_type *t);
456 	void (*show)(const struct btf *btf, const struct btf_type *t,
457 			 u32 type_id, void *data, u8 bits_offsets,
458 			 struct btf_show *show);
459 };
460 
461 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
462 static struct btf_type btf_void;
463 
464 static int btf_resolve(struct btf_verifier_env *env,
465 		       const struct btf_type *t, u32 type_id);
466 
467 static int btf_func_check(struct btf_verifier_env *env,
468 			  const struct btf_type *t);
469 
470 static bool btf_type_is_modifier(const struct btf_type *t)
471 {
472 	/* Some of them is not strictly a C modifier
473 	 * but they are grouped into the same bucket
474 	 * for BTF concern:
475 	 *   A type (t) that refers to another
476 	 *   type through t->type AND its size cannot
477 	 *   be determined without following the t->type.
478 	 *
479 	 * ptr does not fall into this bucket
480 	 * because its size is always sizeof(void *).
481 	 */
482 	switch (BTF_INFO_KIND(t->info)) {
483 	case BTF_KIND_TYPEDEF:
484 	case BTF_KIND_VOLATILE:
485 	case BTF_KIND_CONST:
486 	case BTF_KIND_RESTRICT:
487 	case BTF_KIND_TYPE_TAG:
488 		return true;
489 	}
490 
491 	return false;
492 }
493 
494 bool btf_type_is_void(const struct btf_type *t)
495 {
496 	return t == &btf_void;
497 }
498 
499 static bool btf_type_is_fwd(const struct btf_type *t)
500 {
501 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
502 }
503 
504 static bool btf_type_is_datasec(const struct btf_type *t)
505 {
506 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
507 }
508 
509 static bool btf_type_is_decl_tag(const struct btf_type *t)
510 {
511 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
512 }
513 
514 static bool btf_type_nosize(const struct btf_type *t)
515 {
516 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
517 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
518 	       btf_type_is_decl_tag(t);
519 }
520 
521 static bool btf_type_nosize_or_null(const struct btf_type *t)
522 {
523 	return !t || btf_type_nosize(t);
524 }
525 
526 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
527 {
528 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
529 	       btf_type_is_var(t) || btf_type_is_typedef(t);
530 }
531 
532 u32 btf_nr_types(const struct btf *btf)
533 {
534 	u32 total = 0;
535 
536 	while (btf) {
537 		total += btf->nr_types;
538 		btf = btf->base_btf;
539 	}
540 
541 	return total;
542 }
543 
544 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
545 {
546 	const struct btf_type *t;
547 	const char *tname;
548 	u32 i, total;
549 
550 	total = btf_nr_types(btf);
551 	for (i = 1; i < total; i++) {
552 		t = btf_type_by_id(btf, i);
553 		if (BTF_INFO_KIND(t->info) != kind)
554 			continue;
555 
556 		tname = btf_name_by_offset(btf, t->name_off);
557 		if (!strcmp(tname, name))
558 			return i;
559 	}
560 
561 	return -ENOENT;
562 }
563 
564 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
565 {
566 	struct btf *btf;
567 	s32 ret;
568 	int id;
569 
570 	btf = bpf_get_btf_vmlinux();
571 	if (IS_ERR(btf))
572 		return PTR_ERR(btf);
573 	if (!btf)
574 		return -EINVAL;
575 
576 	ret = btf_find_by_name_kind(btf, name, kind);
577 	/* ret is never zero, since btf_find_by_name_kind returns
578 	 * positive btf_id or negative error.
579 	 */
580 	if (ret > 0) {
581 		btf_get(btf);
582 		*btf_p = btf;
583 		return ret;
584 	}
585 
586 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
587 	spin_lock_bh(&btf_idr_lock);
588 	idr_for_each_entry(&btf_idr, btf, id) {
589 		if (!btf_is_module(btf))
590 			continue;
591 		/* linear search could be slow hence unlock/lock
592 		 * the IDR to avoiding holding it for too long
593 		 */
594 		btf_get(btf);
595 		spin_unlock_bh(&btf_idr_lock);
596 		ret = btf_find_by_name_kind(btf, name, kind);
597 		if (ret > 0) {
598 			*btf_p = btf;
599 			return ret;
600 		}
601 		btf_put(btf);
602 		spin_lock_bh(&btf_idr_lock);
603 	}
604 	spin_unlock_bh(&btf_idr_lock);
605 	return ret;
606 }
607 
608 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
609 					       u32 id, u32 *res_id)
610 {
611 	const struct btf_type *t = btf_type_by_id(btf, id);
612 
613 	while (btf_type_is_modifier(t)) {
614 		id = t->type;
615 		t = btf_type_by_id(btf, t->type);
616 	}
617 
618 	if (res_id)
619 		*res_id = id;
620 
621 	return t;
622 }
623 
624 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
625 					    u32 id, u32 *res_id)
626 {
627 	const struct btf_type *t;
628 
629 	t = btf_type_skip_modifiers(btf, id, NULL);
630 	if (!btf_type_is_ptr(t))
631 		return NULL;
632 
633 	return btf_type_skip_modifiers(btf, t->type, res_id);
634 }
635 
636 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
637 						 u32 id, u32 *res_id)
638 {
639 	const struct btf_type *ptype;
640 
641 	ptype = btf_type_resolve_ptr(btf, id, res_id);
642 	if (ptype && btf_type_is_func_proto(ptype))
643 		return ptype;
644 
645 	return NULL;
646 }
647 
648 /* Types that act only as a source, not sink or intermediate
649  * type when resolving.
650  */
651 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
652 {
653 	return btf_type_is_var(t) ||
654 	       btf_type_is_decl_tag(t) ||
655 	       btf_type_is_datasec(t);
656 }
657 
658 /* What types need to be resolved?
659  *
660  * btf_type_is_modifier() is an obvious one.
661  *
662  * btf_type_is_struct() because its member refers to
663  * another type (through member->type).
664  *
665  * btf_type_is_var() because the variable refers to
666  * another type. btf_type_is_datasec() holds multiple
667  * btf_type_is_var() types that need resolving.
668  *
669  * btf_type_is_array() because its element (array->type)
670  * refers to another type.  Array can be thought of a
671  * special case of struct while array just has the same
672  * member-type repeated by array->nelems of times.
673  */
674 static bool btf_type_needs_resolve(const struct btf_type *t)
675 {
676 	return btf_type_is_modifier(t) ||
677 	       btf_type_is_ptr(t) ||
678 	       btf_type_is_struct(t) ||
679 	       btf_type_is_array(t) ||
680 	       btf_type_is_var(t) ||
681 	       btf_type_is_func(t) ||
682 	       btf_type_is_decl_tag(t) ||
683 	       btf_type_is_datasec(t);
684 }
685 
686 /* t->size can be used */
687 static bool btf_type_has_size(const struct btf_type *t)
688 {
689 	switch (BTF_INFO_KIND(t->info)) {
690 	case BTF_KIND_INT:
691 	case BTF_KIND_STRUCT:
692 	case BTF_KIND_UNION:
693 	case BTF_KIND_ENUM:
694 	case BTF_KIND_DATASEC:
695 	case BTF_KIND_FLOAT:
696 	case BTF_KIND_ENUM64:
697 		return true;
698 	}
699 
700 	return false;
701 }
702 
703 static const char *btf_int_encoding_str(u8 encoding)
704 {
705 	if (encoding == 0)
706 		return "(none)";
707 	else if (encoding == BTF_INT_SIGNED)
708 		return "SIGNED";
709 	else if (encoding == BTF_INT_CHAR)
710 		return "CHAR";
711 	else if (encoding == BTF_INT_BOOL)
712 		return "BOOL";
713 	else
714 		return "UNKN";
715 }
716 
717 static u32 btf_type_int(const struct btf_type *t)
718 {
719 	return *(u32 *)(t + 1);
720 }
721 
722 static const struct btf_array *btf_type_array(const struct btf_type *t)
723 {
724 	return (const struct btf_array *)(t + 1);
725 }
726 
727 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
728 {
729 	return (const struct btf_enum *)(t + 1);
730 }
731 
732 static const struct btf_var *btf_type_var(const struct btf_type *t)
733 {
734 	return (const struct btf_var *)(t + 1);
735 }
736 
737 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
738 {
739 	return (const struct btf_decl_tag *)(t + 1);
740 }
741 
742 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
743 {
744 	return (const struct btf_enum64 *)(t + 1);
745 }
746 
747 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
748 {
749 	return kind_ops[BTF_INFO_KIND(t->info)];
750 }
751 
752 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
753 {
754 	if (!BTF_STR_OFFSET_VALID(offset))
755 		return false;
756 
757 	while (offset < btf->start_str_off)
758 		btf = btf->base_btf;
759 
760 	offset -= btf->start_str_off;
761 	return offset < btf->hdr.str_len;
762 }
763 
764 static bool __btf_name_char_ok(char c, bool first)
765 {
766 	if ((first ? !isalpha(c) :
767 		     !isalnum(c)) &&
768 	    c != '_' &&
769 	    c != '.')
770 		return false;
771 	return true;
772 }
773 
774 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
775 {
776 	while (offset < btf->start_str_off)
777 		btf = btf->base_btf;
778 
779 	offset -= btf->start_str_off;
780 	if (offset < btf->hdr.str_len)
781 		return &btf->strings[offset];
782 
783 	return NULL;
784 }
785 
786 static bool __btf_name_valid(const struct btf *btf, u32 offset)
787 {
788 	/* offset must be valid */
789 	const char *src = btf_str_by_offset(btf, offset);
790 	const char *src_limit;
791 
792 	if (!__btf_name_char_ok(*src, true))
793 		return false;
794 
795 	/* set a limit on identifier length */
796 	src_limit = src + KSYM_NAME_LEN;
797 	src++;
798 	while (*src && src < src_limit) {
799 		if (!__btf_name_char_ok(*src, false))
800 			return false;
801 		src++;
802 	}
803 
804 	return !*src;
805 }
806 
807 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
808 {
809 	return __btf_name_valid(btf, offset);
810 }
811 
812 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
813 {
814 	return __btf_name_valid(btf, offset);
815 }
816 
817 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
818 {
819 	const char *name;
820 
821 	if (!offset)
822 		return "(anon)";
823 
824 	name = btf_str_by_offset(btf, offset);
825 	return name ?: "(invalid-name-offset)";
826 }
827 
828 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
829 {
830 	return btf_str_by_offset(btf, offset);
831 }
832 
833 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
834 {
835 	while (type_id < btf->start_id)
836 		btf = btf->base_btf;
837 
838 	type_id -= btf->start_id;
839 	if (type_id >= btf->nr_types)
840 		return NULL;
841 	return btf->types[type_id];
842 }
843 EXPORT_SYMBOL_GPL(btf_type_by_id);
844 
845 /*
846  * Regular int is not a bit field and it must be either
847  * u8/u16/u32/u64 or __int128.
848  */
849 static bool btf_type_int_is_regular(const struct btf_type *t)
850 {
851 	u8 nr_bits, nr_bytes;
852 	u32 int_data;
853 
854 	int_data = btf_type_int(t);
855 	nr_bits = BTF_INT_BITS(int_data);
856 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
857 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
858 	    BTF_INT_OFFSET(int_data) ||
859 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
860 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
861 	     nr_bytes != (2 * sizeof(u64)))) {
862 		return false;
863 	}
864 
865 	return true;
866 }
867 
868 /*
869  * Check that given struct member is a regular int with expected
870  * offset and size.
871  */
872 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
873 			   const struct btf_member *m,
874 			   u32 expected_offset, u32 expected_size)
875 {
876 	const struct btf_type *t;
877 	u32 id, int_data;
878 	u8 nr_bits;
879 
880 	id = m->type;
881 	t = btf_type_id_size(btf, &id, NULL);
882 	if (!t || !btf_type_is_int(t))
883 		return false;
884 
885 	int_data = btf_type_int(t);
886 	nr_bits = BTF_INT_BITS(int_data);
887 	if (btf_type_kflag(s)) {
888 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
889 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
890 
891 		/* if kflag set, int should be a regular int and
892 		 * bit offset should be at byte boundary.
893 		 */
894 		return !bitfield_size &&
895 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
896 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
897 	}
898 
899 	if (BTF_INT_OFFSET(int_data) ||
900 	    BITS_PER_BYTE_MASKED(m->offset) ||
901 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
902 	    BITS_PER_BYTE_MASKED(nr_bits) ||
903 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
904 		return false;
905 
906 	return true;
907 }
908 
909 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
910 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
911 						       u32 id)
912 {
913 	const struct btf_type *t = btf_type_by_id(btf, id);
914 
915 	while (btf_type_is_modifier(t) &&
916 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
917 		t = btf_type_by_id(btf, t->type);
918 	}
919 
920 	return t;
921 }
922 
923 #define BTF_SHOW_MAX_ITER	10
924 
925 #define BTF_KIND_BIT(kind)	(1ULL << kind)
926 
927 /*
928  * Populate show->state.name with type name information.
929  * Format of type name is
930  *
931  * [.member_name = ] (type_name)
932  */
933 static const char *btf_show_name(struct btf_show *show)
934 {
935 	/* BTF_MAX_ITER array suffixes "[]" */
936 	const char *array_suffixes = "[][][][][][][][][][]";
937 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
938 	/* BTF_MAX_ITER pointer suffixes "*" */
939 	const char *ptr_suffixes = "**********";
940 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
941 	const char *name = NULL, *prefix = "", *parens = "";
942 	const struct btf_member *m = show->state.member;
943 	const struct btf_type *t;
944 	const struct btf_array *array;
945 	u32 id = show->state.type_id;
946 	const char *member = NULL;
947 	bool show_member = false;
948 	u64 kinds = 0;
949 	int i;
950 
951 	show->state.name[0] = '\0';
952 
953 	/*
954 	 * Don't show type name if we're showing an array member;
955 	 * in that case we show the array type so don't need to repeat
956 	 * ourselves for each member.
957 	 */
958 	if (show->state.array_member)
959 		return "";
960 
961 	/* Retrieve member name, if any. */
962 	if (m) {
963 		member = btf_name_by_offset(show->btf, m->name_off);
964 		show_member = strlen(member) > 0;
965 		id = m->type;
966 	}
967 
968 	/*
969 	 * Start with type_id, as we have resolved the struct btf_type *
970 	 * via btf_modifier_show() past the parent typedef to the child
971 	 * struct, int etc it is defined as.  In such cases, the type_id
972 	 * still represents the starting type while the struct btf_type *
973 	 * in our show->state points at the resolved type of the typedef.
974 	 */
975 	t = btf_type_by_id(show->btf, id);
976 	if (!t)
977 		return "";
978 
979 	/*
980 	 * The goal here is to build up the right number of pointer and
981 	 * array suffixes while ensuring the type name for a typedef
982 	 * is represented.  Along the way we accumulate a list of
983 	 * BTF kinds we have encountered, since these will inform later
984 	 * display; for example, pointer types will not require an
985 	 * opening "{" for struct, we will just display the pointer value.
986 	 *
987 	 * We also want to accumulate the right number of pointer or array
988 	 * indices in the format string while iterating until we get to
989 	 * the typedef/pointee/array member target type.
990 	 *
991 	 * We start by pointing at the end of pointer and array suffix
992 	 * strings; as we accumulate pointers and arrays we move the pointer
993 	 * or array string backwards so it will show the expected number of
994 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
995 	 * and/or arrays and typedefs are supported as a precaution.
996 	 *
997 	 * We also want to get typedef name while proceeding to resolve
998 	 * type it points to so that we can add parentheses if it is a
999 	 * "typedef struct" etc.
1000 	 */
1001 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1002 
1003 		switch (BTF_INFO_KIND(t->info)) {
1004 		case BTF_KIND_TYPEDEF:
1005 			if (!name)
1006 				name = btf_name_by_offset(show->btf,
1007 							       t->name_off);
1008 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1009 			id = t->type;
1010 			break;
1011 		case BTF_KIND_ARRAY:
1012 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1013 			parens = "[";
1014 			if (!t)
1015 				return "";
1016 			array = btf_type_array(t);
1017 			if (array_suffix > array_suffixes)
1018 				array_suffix -= 2;
1019 			id = array->type;
1020 			break;
1021 		case BTF_KIND_PTR:
1022 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1023 			if (ptr_suffix > ptr_suffixes)
1024 				ptr_suffix -= 1;
1025 			id = t->type;
1026 			break;
1027 		default:
1028 			id = 0;
1029 			break;
1030 		}
1031 		if (!id)
1032 			break;
1033 		t = btf_type_skip_qualifiers(show->btf, id);
1034 	}
1035 	/* We may not be able to represent this type; bail to be safe */
1036 	if (i == BTF_SHOW_MAX_ITER)
1037 		return "";
1038 
1039 	if (!name)
1040 		name = btf_name_by_offset(show->btf, t->name_off);
1041 
1042 	switch (BTF_INFO_KIND(t->info)) {
1043 	case BTF_KIND_STRUCT:
1044 	case BTF_KIND_UNION:
1045 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1046 			 "struct" : "union";
1047 		/* if it's an array of struct/union, parens is already set */
1048 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1049 			parens = "{";
1050 		break;
1051 	case BTF_KIND_ENUM:
1052 	case BTF_KIND_ENUM64:
1053 		prefix = "enum";
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	/* pointer does not require parens */
1060 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1061 		parens = "";
1062 	/* typedef does not require struct/union/enum prefix */
1063 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1064 		prefix = "";
1065 
1066 	if (!name)
1067 		name = "";
1068 
1069 	/* Even if we don't want type name info, we want parentheses etc */
1070 	if (show->flags & BTF_SHOW_NONAME)
1071 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1072 			 parens);
1073 	else
1074 		snprintf(show->state.name, sizeof(show->state.name),
1075 			 "%s%s%s(%s%s%s%s%s%s)%s",
1076 			 /* first 3 strings comprise ".member = " */
1077 			 show_member ? "." : "",
1078 			 show_member ? member : "",
1079 			 show_member ? " = " : "",
1080 			 /* ...next is our prefix (struct, enum, etc) */
1081 			 prefix,
1082 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1083 			 /* ...this is the type name itself */
1084 			 name,
1085 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1086 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1087 			 array_suffix, parens);
1088 
1089 	return show->state.name;
1090 }
1091 
1092 static const char *__btf_show_indent(struct btf_show *show)
1093 {
1094 	const char *indents = "                                ";
1095 	const char *indent = &indents[strlen(indents)];
1096 
1097 	if ((indent - show->state.depth) >= indents)
1098 		return indent - show->state.depth;
1099 	return indents;
1100 }
1101 
1102 static const char *btf_show_indent(struct btf_show *show)
1103 {
1104 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1105 }
1106 
1107 static const char *btf_show_newline(struct btf_show *show)
1108 {
1109 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1110 }
1111 
1112 static const char *btf_show_delim(struct btf_show *show)
1113 {
1114 	if (show->state.depth == 0)
1115 		return "";
1116 
1117 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1118 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1119 		return "|";
1120 
1121 	return ",";
1122 }
1123 
1124 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1125 {
1126 	va_list args;
1127 
1128 	if (!show->state.depth_check) {
1129 		va_start(args, fmt);
1130 		show->showfn(show, fmt, args);
1131 		va_end(args);
1132 	}
1133 }
1134 
1135 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1136  * format specifiers to the format specifier passed in; these do the work of
1137  * adding indentation, delimiters etc while the caller simply has to specify
1138  * the type value(s) in the format specifier + value(s).
1139  */
1140 #define btf_show_type_value(show, fmt, value)				       \
1141 	do {								       \
1142 		if ((value) != (__typeof__(value))0 ||			       \
1143 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1144 		    show->state.depth == 0) {				       \
1145 			btf_show(show, "%s%s" fmt "%s%s",		       \
1146 				 btf_show_indent(show),			       \
1147 				 btf_show_name(show),			       \
1148 				 value, btf_show_delim(show),		       \
1149 				 btf_show_newline(show));		       \
1150 			if (show->state.depth > show->state.depth_to_show)     \
1151 				show->state.depth_to_show = show->state.depth; \
1152 		}							       \
1153 	} while (0)
1154 
1155 #define btf_show_type_values(show, fmt, ...)				       \
1156 	do {								       \
1157 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1158 			 btf_show_name(show),				       \
1159 			 __VA_ARGS__, btf_show_delim(show),		       \
1160 			 btf_show_newline(show));			       \
1161 		if (show->state.depth > show->state.depth_to_show)	       \
1162 			show->state.depth_to_show = show->state.depth;	       \
1163 	} while (0)
1164 
1165 /* How much is left to copy to safe buffer after @data? */
1166 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1167 {
1168 	return show->obj.head + show->obj.size - data;
1169 }
1170 
1171 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1172 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1173 {
1174 	return data >= show->obj.data &&
1175 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1176 }
1177 
1178 /*
1179  * If object pointed to by @data of @size falls within our safe buffer, return
1180  * the equivalent pointer to the same safe data.  Assumes
1181  * copy_from_kernel_nofault() has already happened and our safe buffer is
1182  * populated.
1183  */
1184 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1185 {
1186 	if (btf_show_obj_is_safe(show, data, size))
1187 		return show->obj.safe + (data - show->obj.data);
1188 	return NULL;
1189 }
1190 
1191 /*
1192  * Return a safe-to-access version of data pointed to by @data.
1193  * We do this by copying the relevant amount of information
1194  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1195  *
1196  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1197  * safe copy is needed.
1198  *
1199  * Otherwise we need to determine if we have the required amount
1200  * of data (determined by the @data pointer and the size of the
1201  * largest base type we can encounter (represented by
1202  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1203  * that we will be able to print some of the current object,
1204  * and if more is needed a copy will be triggered.
1205  * Some objects such as structs will not fit into the buffer;
1206  * in such cases additional copies when we iterate over their
1207  * members may be needed.
1208  *
1209  * btf_show_obj_safe() is used to return a safe buffer for
1210  * btf_show_start_type(); this ensures that as we recurse into
1211  * nested types we always have safe data for the given type.
1212  * This approach is somewhat wasteful; it's possible for example
1213  * that when iterating over a large union we'll end up copying the
1214  * same data repeatedly, but the goal is safety not performance.
1215  * We use stack data as opposed to per-CPU buffers because the
1216  * iteration over a type can take some time, and preemption handling
1217  * would greatly complicate use of the safe buffer.
1218  */
1219 static void *btf_show_obj_safe(struct btf_show *show,
1220 			       const struct btf_type *t,
1221 			       void *data)
1222 {
1223 	const struct btf_type *rt;
1224 	int size_left, size;
1225 	void *safe = NULL;
1226 
1227 	if (show->flags & BTF_SHOW_UNSAFE)
1228 		return data;
1229 
1230 	rt = btf_resolve_size(show->btf, t, &size);
1231 	if (IS_ERR(rt)) {
1232 		show->state.status = PTR_ERR(rt);
1233 		return NULL;
1234 	}
1235 
1236 	/*
1237 	 * Is this toplevel object? If so, set total object size and
1238 	 * initialize pointers.  Otherwise check if we still fall within
1239 	 * our safe object data.
1240 	 */
1241 	if (show->state.depth == 0) {
1242 		show->obj.size = size;
1243 		show->obj.head = data;
1244 	} else {
1245 		/*
1246 		 * If the size of the current object is > our remaining
1247 		 * safe buffer we _may_ need to do a new copy.  However
1248 		 * consider the case of a nested struct; it's size pushes
1249 		 * us over the safe buffer limit, but showing any individual
1250 		 * struct members does not.  In such cases, we don't need
1251 		 * to initiate a fresh copy yet; however we definitely need
1252 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1253 		 * in our buffer, regardless of the current object size.
1254 		 * The logic here is that as we resolve types we will
1255 		 * hit a base type at some point, and we need to be sure
1256 		 * the next chunk of data is safely available to display
1257 		 * that type info safely.  We cannot rely on the size of
1258 		 * the current object here because it may be much larger
1259 		 * than our current buffer (e.g. task_struct is 8k).
1260 		 * All we want to do here is ensure that we can print the
1261 		 * next basic type, which we can if either
1262 		 * - the current type size is within the safe buffer; or
1263 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1264 		 *   the safe buffer.
1265 		 */
1266 		safe = __btf_show_obj_safe(show, data,
1267 					   min(size,
1268 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1269 	}
1270 
1271 	/*
1272 	 * We need a new copy to our safe object, either because we haven't
1273 	 * yet copied and are initializing safe data, or because the data
1274 	 * we want falls outside the boundaries of the safe object.
1275 	 */
1276 	if (!safe) {
1277 		size_left = btf_show_obj_size_left(show, data);
1278 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1279 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1280 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1281 							      data, size_left);
1282 		if (!show->state.status) {
1283 			show->obj.data = data;
1284 			safe = show->obj.safe;
1285 		}
1286 	}
1287 
1288 	return safe;
1289 }
1290 
1291 /*
1292  * Set the type we are starting to show and return a safe data pointer
1293  * to be used for showing the associated data.
1294  */
1295 static void *btf_show_start_type(struct btf_show *show,
1296 				 const struct btf_type *t,
1297 				 u32 type_id, void *data)
1298 {
1299 	show->state.type = t;
1300 	show->state.type_id = type_id;
1301 	show->state.name[0] = '\0';
1302 
1303 	return btf_show_obj_safe(show, t, data);
1304 }
1305 
1306 static void btf_show_end_type(struct btf_show *show)
1307 {
1308 	show->state.type = NULL;
1309 	show->state.type_id = 0;
1310 	show->state.name[0] = '\0';
1311 }
1312 
1313 static void *btf_show_start_aggr_type(struct btf_show *show,
1314 				      const struct btf_type *t,
1315 				      u32 type_id, void *data)
1316 {
1317 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1318 
1319 	if (!safe_data)
1320 		return safe_data;
1321 
1322 	btf_show(show, "%s%s%s", btf_show_indent(show),
1323 		 btf_show_name(show),
1324 		 btf_show_newline(show));
1325 	show->state.depth++;
1326 	return safe_data;
1327 }
1328 
1329 static void btf_show_end_aggr_type(struct btf_show *show,
1330 				   const char *suffix)
1331 {
1332 	show->state.depth--;
1333 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1334 		 btf_show_delim(show), btf_show_newline(show));
1335 	btf_show_end_type(show);
1336 }
1337 
1338 static void btf_show_start_member(struct btf_show *show,
1339 				  const struct btf_member *m)
1340 {
1341 	show->state.member = m;
1342 }
1343 
1344 static void btf_show_start_array_member(struct btf_show *show)
1345 {
1346 	show->state.array_member = 1;
1347 	btf_show_start_member(show, NULL);
1348 }
1349 
1350 static void btf_show_end_member(struct btf_show *show)
1351 {
1352 	show->state.member = NULL;
1353 }
1354 
1355 static void btf_show_end_array_member(struct btf_show *show)
1356 {
1357 	show->state.array_member = 0;
1358 	btf_show_end_member(show);
1359 }
1360 
1361 static void *btf_show_start_array_type(struct btf_show *show,
1362 				       const struct btf_type *t,
1363 				       u32 type_id,
1364 				       u16 array_encoding,
1365 				       void *data)
1366 {
1367 	show->state.array_encoding = array_encoding;
1368 	show->state.array_terminated = 0;
1369 	return btf_show_start_aggr_type(show, t, type_id, data);
1370 }
1371 
1372 static void btf_show_end_array_type(struct btf_show *show)
1373 {
1374 	show->state.array_encoding = 0;
1375 	show->state.array_terminated = 0;
1376 	btf_show_end_aggr_type(show, "]");
1377 }
1378 
1379 static void *btf_show_start_struct_type(struct btf_show *show,
1380 					const struct btf_type *t,
1381 					u32 type_id,
1382 					void *data)
1383 {
1384 	return btf_show_start_aggr_type(show, t, type_id, data);
1385 }
1386 
1387 static void btf_show_end_struct_type(struct btf_show *show)
1388 {
1389 	btf_show_end_aggr_type(show, "}");
1390 }
1391 
1392 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1393 					      const char *fmt, ...)
1394 {
1395 	va_list args;
1396 
1397 	va_start(args, fmt);
1398 	bpf_verifier_vlog(log, fmt, args);
1399 	va_end(args);
1400 }
1401 
1402 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1403 					    const char *fmt, ...)
1404 {
1405 	struct bpf_verifier_log *log = &env->log;
1406 	va_list args;
1407 
1408 	if (!bpf_verifier_log_needed(log))
1409 		return;
1410 
1411 	va_start(args, fmt);
1412 	bpf_verifier_vlog(log, fmt, args);
1413 	va_end(args);
1414 }
1415 
1416 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1417 						   const struct btf_type *t,
1418 						   bool log_details,
1419 						   const char *fmt, ...)
1420 {
1421 	struct bpf_verifier_log *log = &env->log;
1422 	struct btf *btf = env->btf;
1423 	va_list args;
1424 
1425 	if (!bpf_verifier_log_needed(log))
1426 		return;
1427 
1428 	if (log->level == BPF_LOG_KERNEL) {
1429 		/* btf verifier prints all types it is processing via
1430 		 * btf_verifier_log_type(..., fmt = NULL).
1431 		 * Skip those prints for in-kernel BTF verification.
1432 		 */
1433 		if (!fmt)
1434 			return;
1435 
1436 		/* Skip logging when loading module BTF with mismatches permitted */
1437 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1438 			return;
1439 	}
1440 
1441 	__btf_verifier_log(log, "[%u] %s %s%s",
1442 			   env->log_type_id,
1443 			   btf_type_str(t),
1444 			   __btf_name_by_offset(btf, t->name_off),
1445 			   log_details ? " " : "");
1446 
1447 	if (log_details)
1448 		btf_type_ops(t)->log_details(env, t);
1449 
1450 	if (fmt && *fmt) {
1451 		__btf_verifier_log(log, " ");
1452 		va_start(args, fmt);
1453 		bpf_verifier_vlog(log, fmt, args);
1454 		va_end(args);
1455 	}
1456 
1457 	__btf_verifier_log(log, "\n");
1458 }
1459 
1460 #define btf_verifier_log_type(env, t, ...) \
1461 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1462 #define btf_verifier_log_basic(env, t, ...) \
1463 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1464 
1465 __printf(4, 5)
1466 static void btf_verifier_log_member(struct btf_verifier_env *env,
1467 				    const struct btf_type *struct_type,
1468 				    const struct btf_member *member,
1469 				    const char *fmt, ...)
1470 {
1471 	struct bpf_verifier_log *log = &env->log;
1472 	struct btf *btf = env->btf;
1473 	va_list args;
1474 
1475 	if (!bpf_verifier_log_needed(log))
1476 		return;
1477 
1478 	if (log->level == BPF_LOG_KERNEL) {
1479 		if (!fmt)
1480 			return;
1481 
1482 		/* Skip logging when loading module BTF with mismatches permitted */
1483 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1484 			return;
1485 	}
1486 
1487 	/* The CHECK_META phase already did a btf dump.
1488 	 *
1489 	 * If member is logged again, it must hit an error in
1490 	 * parsing this member.  It is useful to print out which
1491 	 * struct this member belongs to.
1492 	 */
1493 	if (env->phase != CHECK_META)
1494 		btf_verifier_log_type(env, struct_type, NULL);
1495 
1496 	if (btf_type_kflag(struct_type))
1497 		__btf_verifier_log(log,
1498 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1499 				   __btf_name_by_offset(btf, member->name_off),
1500 				   member->type,
1501 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1502 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1503 	else
1504 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1505 				   __btf_name_by_offset(btf, member->name_off),
1506 				   member->type, member->offset);
1507 
1508 	if (fmt && *fmt) {
1509 		__btf_verifier_log(log, " ");
1510 		va_start(args, fmt);
1511 		bpf_verifier_vlog(log, fmt, args);
1512 		va_end(args);
1513 	}
1514 
1515 	__btf_verifier_log(log, "\n");
1516 }
1517 
1518 __printf(4, 5)
1519 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1520 				 const struct btf_type *datasec_type,
1521 				 const struct btf_var_secinfo *vsi,
1522 				 const char *fmt, ...)
1523 {
1524 	struct bpf_verifier_log *log = &env->log;
1525 	va_list args;
1526 
1527 	if (!bpf_verifier_log_needed(log))
1528 		return;
1529 	if (log->level == BPF_LOG_KERNEL && !fmt)
1530 		return;
1531 	if (env->phase != CHECK_META)
1532 		btf_verifier_log_type(env, datasec_type, NULL);
1533 
1534 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1535 			   vsi->type, vsi->offset, vsi->size);
1536 	if (fmt && *fmt) {
1537 		__btf_verifier_log(log, " ");
1538 		va_start(args, fmt);
1539 		bpf_verifier_vlog(log, fmt, args);
1540 		va_end(args);
1541 	}
1542 
1543 	__btf_verifier_log(log, "\n");
1544 }
1545 
1546 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1547 				 u32 btf_data_size)
1548 {
1549 	struct bpf_verifier_log *log = &env->log;
1550 	const struct btf *btf = env->btf;
1551 	const struct btf_header *hdr;
1552 
1553 	if (!bpf_verifier_log_needed(log))
1554 		return;
1555 
1556 	if (log->level == BPF_LOG_KERNEL)
1557 		return;
1558 	hdr = &btf->hdr;
1559 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1560 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1561 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1562 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1563 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1564 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1565 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1566 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1567 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1568 }
1569 
1570 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1571 {
1572 	struct btf *btf = env->btf;
1573 
1574 	if (btf->types_size == btf->nr_types) {
1575 		/* Expand 'types' array */
1576 
1577 		struct btf_type **new_types;
1578 		u32 expand_by, new_size;
1579 
1580 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1581 			btf_verifier_log(env, "Exceeded max num of types");
1582 			return -E2BIG;
1583 		}
1584 
1585 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1586 		new_size = min_t(u32, BTF_MAX_TYPE,
1587 				 btf->types_size + expand_by);
1588 
1589 		new_types = kvcalloc(new_size, sizeof(*new_types),
1590 				     GFP_KERNEL | __GFP_NOWARN);
1591 		if (!new_types)
1592 			return -ENOMEM;
1593 
1594 		if (btf->nr_types == 0) {
1595 			if (!btf->base_btf) {
1596 				/* lazily init VOID type */
1597 				new_types[0] = &btf_void;
1598 				btf->nr_types++;
1599 			}
1600 		} else {
1601 			memcpy(new_types, btf->types,
1602 			       sizeof(*btf->types) * btf->nr_types);
1603 		}
1604 
1605 		kvfree(btf->types);
1606 		btf->types = new_types;
1607 		btf->types_size = new_size;
1608 	}
1609 
1610 	btf->types[btf->nr_types++] = t;
1611 
1612 	return 0;
1613 }
1614 
1615 static int btf_alloc_id(struct btf *btf)
1616 {
1617 	int id;
1618 
1619 	idr_preload(GFP_KERNEL);
1620 	spin_lock_bh(&btf_idr_lock);
1621 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1622 	if (id > 0)
1623 		btf->id = id;
1624 	spin_unlock_bh(&btf_idr_lock);
1625 	idr_preload_end();
1626 
1627 	if (WARN_ON_ONCE(!id))
1628 		return -ENOSPC;
1629 
1630 	return id > 0 ? 0 : id;
1631 }
1632 
1633 static void btf_free_id(struct btf *btf)
1634 {
1635 	unsigned long flags;
1636 
1637 	/*
1638 	 * In map-in-map, calling map_delete_elem() on outer
1639 	 * map will call bpf_map_put on the inner map.
1640 	 * It will then eventually call btf_free_id()
1641 	 * on the inner map.  Some of the map_delete_elem()
1642 	 * implementation may have irq disabled, so
1643 	 * we need to use the _irqsave() version instead
1644 	 * of the _bh() version.
1645 	 */
1646 	spin_lock_irqsave(&btf_idr_lock, flags);
1647 	idr_remove(&btf_idr, btf->id);
1648 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1649 }
1650 
1651 static void btf_free_kfunc_set_tab(struct btf *btf)
1652 {
1653 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1654 	int hook;
1655 
1656 	if (!tab)
1657 		return;
1658 	/* For module BTF, we directly assign the sets being registered, so
1659 	 * there is nothing to free except kfunc_set_tab.
1660 	 */
1661 	if (btf_is_module(btf))
1662 		goto free_tab;
1663 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1664 		kfree(tab->sets[hook]);
1665 free_tab:
1666 	kfree(tab);
1667 	btf->kfunc_set_tab = NULL;
1668 }
1669 
1670 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1671 {
1672 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1673 
1674 	if (!tab)
1675 		return;
1676 	kfree(tab);
1677 	btf->dtor_kfunc_tab = NULL;
1678 }
1679 
1680 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1681 {
1682 	int i;
1683 
1684 	if (!tab)
1685 		return;
1686 	for (i = 0; i < tab->cnt; i++)
1687 		btf_record_free(tab->types[i].record);
1688 	kfree(tab);
1689 }
1690 
1691 static void btf_free_struct_meta_tab(struct btf *btf)
1692 {
1693 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1694 
1695 	btf_struct_metas_free(tab);
1696 	btf->struct_meta_tab = NULL;
1697 }
1698 
1699 static void btf_free_struct_ops_tab(struct btf *btf)
1700 {
1701 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1702 
1703 	kfree(tab);
1704 	btf->struct_ops_tab = NULL;
1705 }
1706 
1707 static void btf_free(struct btf *btf)
1708 {
1709 	btf_free_struct_meta_tab(btf);
1710 	btf_free_dtor_kfunc_tab(btf);
1711 	btf_free_kfunc_set_tab(btf);
1712 	btf_free_struct_ops_tab(btf);
1713 	kvfree(btf->types);
1714 	kvfree(btf->resolved_sizes);
1715 	kvfree(btf->resolved_ids);
1716 	kvfree(btf->data);
1717 	kfree(btf);
1718 }
1719 
1720 static void btf_free_rcu(struct rcu_head *rcu)
1721 {
1722 	struct btf *btf = container_of(rcu, struct btf, rcu);
1723 
1724 	btf_free(btf);
1725 }
1726 
1727 const char *btf_get_name(const struct btf *btf)
1728 {
1729 	return btf->name;
1730 }
1731 
1732 void btf_get(struct btf *btf)
1733 {
1734 	refcount_inc(&btf->refcnt);
1735 }
1736 
1737 void btf_put(struct btf *btf)
1738 {
1739 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1740 		btf_free_id(btf);
1741 		call_rcu(&btf->rcu, btf_free_rcu);
1742 	}
1743 }
1744 
1745 static int env_resolve_init(struct btf_verifier_env *env)
1746 {
1747 	struct btf *btf = env->btf;
1748 	u32 nr_types = btf->nr_types;
1749 	u32 *resolved_sizes = NULL;
1750 	u32 *resolved_ids = NULL;
1751 	u8 *visit_states = NULL;
1752 
1753 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1754 				  GFP_KERNEL | __GFP_NOWARN);
1755 	if (!resolved_sizes)
1756 		goto nomem;
1757 
1758 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1759 				GFP_KERNEL | __GFP_NOWARN);
1760 	if (!resolved_ids)
1761 		goto nomem;
1762 
1763 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1764 				GFP_KERNEL | __GFP_NOWARN);
1765 	if (!visit_states)
1766 		goto nomem;
1767 
1768 	btf->resolved_sizes = resolved_sizes;
1769 	btf->resolved_ids = resolved_ids;
1770 	env->visit_states = visit_states;
1771 
1772 	return 0;
1773 
1774 nomem:
1775 	kvfree(resolved_sizes);
1776 	kvfree(resolved_ids);
1777 	kvfree(visit_states);
1778 	return -ENOMEM;
1779 }
1780 
1781 static void btf_verifier_env_free(struct btf_verifier_env *env)
1782 {
1783 	kvfree(env->visit_states);
1784 	kfree(env);
1785 }
1786 
1787 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1788 				     const struct btf_type *next_type)
1789 {
1790 	switch (env->resolve_mode) {
1791 	case RESOLVE_TBD:
1792 		/* int, enum or void is a sink */
1793 		return !btf_type_needs_resolve(next_type);
1794 	case RESOLVE_PTR:
1795 		/* int, enum, void, struct, array, func or func_proto is a sink
1796 		 * for ptr
1797 		 */
1798 		return !btf_type_is_modifier(next_type) &&
1799 			!btf_type_is_ptr(next_type);
1800 	case RESOLVE_STRUCT_OR_ARRAY:
1801 		/* int, enum, void, ptr, func or func_proto is a sink
1802 		 * for struct and array
1803 		 */
1804 		return !btf_type_is_modifier(next_type) &&
1805 			!btf_type_is_array(next_type) &&
1806 			!btf_type_is_struct(next_type);
1807 	default:
1808 		BUG();
1809 	}
1810 }
1811 
1812 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1813 				 u32 type_id)
1814 {
1815 	/* base BTF types should be resolved by now */
1816 	if (type_id < env->btf->start_id)
1817 		return true;
1818 
1819 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1820 }
1821 
1822 static int env_stack_push(struct btf_verifier_env *env,
1823 			  const struct btf_type *t, u32 type_id)
1824 {
1825 	const struct btf *btf = env->btf;
1826 	struct resolve_vertex *v;
1827 
1828 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1829 		return -E2BIG;
1830 
1831 	if (type_id < btf->start_id
1832 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1833 		return -EEXIST;
1834 
1835 	env->visit_states[type_id - btf->start_id] = VISITED;
1836 
1837 	v = &env->stack[env->top_stack++];
1838 	v->t = t;
1839 	v->type_id = type_id;
1840 	v->next_member = 0;
1841 
1842 	if (env->resolve_mode == RESOLVE_TBD) {
1843 		if (btf_type_is_ptr(t))
1844 			env->resolve_mode = RESOLVE_PTR;
1845 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1846 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static void env_stack_set_next_member(struct btf_verifier_env *env,
1853 				      u16 next_member)
1854 {
1855 	env->stack[env->top_stack - 1].next_member = next_member;
1856 }
1857 
1858 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1859 				   u32 resolved_type_id,
1860 				   u32 resolved_size)
1861 {
1862 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1863 	struct btf *btf = env->btf;
1864 
1865 	type_id -= btf->start_id; /* adjust to local type id */
1866 	btf->resolved_sizes[type_id] = resolved_size;
1867 	btf->resolved_ids[type_id] = resolved_type_id;
1868 	env->visit_states[type_id] = RESOLVED;
1869 }
1870 
1871 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1872 {
1873 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1874 }
1875 
1876 /* Resolve the size of a passed-in "type"
1877  *
1878  * type: is an array (e.g. u32 array[x][y])
1879  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1880  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1881  *             corresponds to the return type.
1882  * *elem_type: u32
1883  * *elem_id: id of u32
1884  * *total_nelems: (x * y).  Hence, individual elem size is
1885  *                (*type_size / *total_nelems)
1886  * *type_id: id of type if it's changed within the function, 0 if not
1887  *
1888  * type: is not an array (e.g. const struct X)
1889  * return type: type "struct X"
1890  * *type_size: sizeof(struct X)
1891  * *elem_type: same as return type ("struct X")
1892  * *elem_id: 0
1893  * *total_nelems: 1
1894  * *type_id: id of type if it's changed within the function, 0 if not
1895  */
1896 static const struct btf_type *
1897 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1898 		   u32 *type_size, const struct btf_type **elem_type,
1899 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1900 {
1901 	const struct btf_type *array_type = NULL;
1902 	const struct btf_array *array = NULL;
1903 	u32 i, size, nelems = 1, id = 0;
1904 
1905 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1906 		switch (BTF_INFO_KIND(type->info)) {
1907 		/* type->size can be used */
1908 		case BTF_KIND_INT:
1909 		case BTF_KIND_STRUCT:
1910 		case BTF_KIND_UNION:
1911 		case BTF_KIND_ENUM:
1912 		case BTF_KIND_FLOAT:
1913 		case BTF_KIND_ENUM64:
1914 			size = type->size;
1915 			goto resolved;
1916 
1917 		case BTF_KIND_PTR:
1918 			size = sizeof(void *);
1919 			goto resolved;
1920 
1921 		/* Modifiers */
1922 		case BTF_KIND_TYPEDEF:
1923 		case BTF_KIND_VOLATILE:
1924 		case BTF_KIND_CONST:
1925 		case BTF_KIND_RESTRICT:
1926 		case BTF_KIND_TYPE_TAG:
1927 			id = type->type;
1928 			type = btf_type_by_id(btf, type->type);
1929 			break;
1930 
1931 		case BTF_KIND_ARRAY:
1932 			if (!array_type)
1933 				array_type = type;
1934 			array = btf_type_array(type);
1935 			if (nelems && array->nelems > U32_MAX / nelems)
1936 				return ERR_PTR(-EINVAL);
1937 			nelems *= array->nelems;
1938 			type = btf_type_by_id(btf, array->type);
1939 			break;
1940 
1941 		/* type without size */
1942 		default:
1943 			return ERR_PTR(-EINVAL);
1944 		}
1945 	}
1946 
1947 	return ERR_PTR(-EINVAL);
1948 
1949 resolved:
1950 	if (nelems && size > U32_MAX / nelems)
1951 		return ERR_PTR(-EINVAL);
1952 
1953 	*type_size = nelems * size;
1954 	if (total_nelems)
1955 		*total_nelems = nelems;
1956 	if (elem_type)
1957 		*elem_type = type;
1958 	if (elem_id)
1959 		*elem_id = array ? array->type : 0;
1960 	if (type_id && id)
1961 		*type_id = id;
1962 
1963 	return array_type ? : type;
1964 }
1965 
1966 const struct btf_type *
1967 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1968 		 u32 *type_size)
1969 {
1970 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1971 }
1972 
1973 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1974 {
1975 	while (type_id < btf->start_id)
1976 		btf = btf->base_btf;
1977 
1978 	return btf->resolved_ids[type_id - btf->start_id];
1979 }
1980 
1981 /* The input param "type_id" must point to a needs_resolve type */
1982 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1983 						  u32 *type_id)
1984 {
1985 	*type_id = btf_resolved_type_id(btf, *type_id);
1986 	return btf_type_by_id(btf, *type_id);
1987 }
1988 
1989 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1990 {
1991 	while (type_id < btf->start_id)
1992 		btf = btf->base_btf;
1993 
1994 	return btf->resolved_sizes[type_id - btf->start_id];
1995 }
1996 
1997 const struct btf_type *btf_type_id_size(const struct btf *btf,
1998 					u32 *type_id, u32 *ret_size)
1999 {
2000 	const struct btf_type *size_type;
2001 	u32 size_type_id = *type_id;
2002 	u32 size = 0;
2003 
2004 	size_type = btf_type_by_id(btf, size_type_id);
2005 	if (btf_type_nosize_or_null(size_type))
2006 		return NULL;
2007 
2008 	if (btf_type_has_size(size_type)) {
2009 		size = size_type->size;
2010 	} else if (btf_type_is_array(size_type)) {
2011 		size = btf_resolved_type_size(btf, size_type_id);
2012 	} else if (btf_type_is_ptr(size_type)) {
2013 		size = sizeof(void *);
2014 	} else {
2015 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2016 				 !btf_type_is_var(size_type)))
2017 			return NULL;
2018 
2019 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2020 		size_type = btf_type_by_id(btf, size_type_id);
2021 		if (btf_type_nosize_or_null(size_type))
2022 			return NULL;
2023 		else if (btf_type_has_size(size_type))
2024 			size = size_type->size;
2025 		else if (btf_type_is_array(size_type))
2026 			size = btf_resolved_type_size(btf, size_type_id);
2027 		else if (btf_type_is_ptr(size_type))
2028 			size = sizeof(void *);
2029 		else
2030 			return NULL;
2031 	}
2032 
2033 	*type_id = size_type_id;
2034 	if (ret_size)
2035 		*ret_size = size;
2036 
2037 	return size_type;
2038 }
2039 
2040 static int btf_df_check_member(struct btf_verifier_env *env,
2041 			       const struct btf_type *struct_type,
2042 			       const struct btf_member *member,
2043 			       const struct btf_type *member_type)
2044 {
2045 	btf_verifier_log_basic(env, struct_type,
2046 			       "Unsupported check_member");
2047 	return -EINVAL;
2048 }
2049 
2050 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2051 				     const struct btf_type *struct_type,
2052 				     const struct btf_member *member,
2053 				     const struct btf_type *member_type)
2054 {
2055 	btf_verifier_log_basic(env, struct_type,
2056 			       "Unsupported check_kflag_member");
2057 	return -EINVAL;
2058 }
2059 
2060 /* Used for ptr, array struct/union and float type members.
2061  * int, enum and modifier types have their specific callback functions.
2062  */
2063 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2064 					  const struct btf_type *struct_type,
2065 					  const struct btf_member *member,
2066 					  const struct btf_type *member_type)
2067 {
2068 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2069 		btf_verifier_log_member(env, struct_type, member,
2070 					"Invalid member bitfield_size");
2071 		return -EINVAL;
2072 	}
2073 
2074 	/* bitfield size is 0, so member->offset represents bit offset only.
2075 	 * It is safe to call non kflag check_member variants.
2076 	 */
2077 	return btf_type_ops(member_type)->check_member(env, struct_type,
2078 						       member,
2079 						       member_type);
2080 }
2081 
2082 static int btf_df_resolve(struct btf_verifier_env *env,
2083 			  const struct resolve_vertex *v)
2084 {
2085 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2086 	return -EINVAL;
2087 }
2088 
2089 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2090 			u32 type_id, void *data, u8 bits_offsets,
2091 			struct btf_show *show)
2092 {
2093 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2094 }
2095 
2096 static int btf_int_check_member(struct btf_verifier_env *env,
2097 				const struct btf_type *struct_type,
2098 				const struct btf_member *member,
2099 				const struct btf_type *member_type)
2100 {
2101 	u32 int_data = btf_type_int(member_type);
2102 	u32 struct_bits_off = member->offset;
2103 	u32 struct_size = struct_type->size;
2104 	u32 nr_copy_bits;
2105 	u32 bytes_offset;
2106 
2107 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2108 		btf_verifier_log_member(env, struct_type, member,
2109 					"bits_offset exceeds U32_MAX");
2110 		return -EINVAL;
2111 	}
2112 
2113 	struct_bits_off += BTF_INT_OFFSET(int_data);
2114 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2115 	nr_copy_bits = BTF_INT_BITS(int_data) +
2116 		BITS_PER_BYTE_MASKED(struct_bits_off);
2117 
2118 	if (nr_copy_bits > BITS_PER_U128) {
2119 		btf_verifier_log_member(env, struct_type, member,
2120 					"nr_copy_bits exceeds 128");
2121 		return -EINVAL;
2122 	}
2123 
2124 	if (struct_size < bytes_offset ||
2125 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2126 		btf_verifier_log_member(env, struct_type, member,
2127 					"Member exceeds struct_size");
2128 		return -EINVAL;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2135 				      const struct btf_type *struct_type,
2136 				      const struct btf_member *member,
2137 				      const struct btf_type *member_type)
2138 {
2139 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2140 	u32 int_data = btf_type_int(member_type);
2141 	u32 struct_size = struct_type->size;
2142 	u32 nr_copy_bits;
2143 
2144 	/* a regular int type is required for the kflag int member */
2145 	if (!btf_type_int_is_regular(member_type)) {
2146 		btf_verifier_log_member(env, struct_type, member,
2147 					"Invalid member base type");
2148 		return -EINVAL;
2149 	}
2150 
2151 	/* check sanity of bitfield size */
2152 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2153 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2154 	nr_int_data_bits = BTF_INT_BITS(int_data);
2155 	if (!nr_bits) {
2156 		/* Not a bitfield member, member offset must be at byte
2157 		 * boundary.
2158 		 */
2159 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2160 			btf_verifier_log_member(env, struct_type, member,
2161 						"Invalid member offset");
2162 			return -EINVAL;
2163 		}
2164 
2165 		nr_bits = nr_int_data_bits;
2166 	} else if (nr_bits > nr_int_data_bits) {
2167 		btf_verifier_log_member(env, struct_type, member,
2168 					"Invalid member bitfield_size");
2169 		return -EINVAL;
2170 	}
2171 
2172 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2173 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2174 	if (nr_copy_bits > BITS_PER_U128) {
2175 		btf_verifier_log_member(env, struct_type, member,
2176 					"nr_copy_bits exceeds 128");
2177 		return -EINVAL;
2178 	}
2179 
2180 	if (struct_size < bytes_offset ||
2181 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2182 		btf_verifier_log_member(env, struct_type, member,
2183 					"Member exceeds struct_size");
2184 		return -EINVAL;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2191 			      const struct btf_type *t,
2192 			      u32 meta_left)
2193 {
2194 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2195 	u16 encoding;
2196 
2197 	if (meta_left < meta_needed) {
2198 		btf_verifier_log_basic(env, t,
2199 				       "meta_left:%u meta_needed:%u",
2200 				       meta_left, meta_needed);
2201 		return -EINVAL;
2202 	}
2203 
2204 	if (btf_type_vlen(t)) {
2205 		btf_verifier_log_type(env, t, "vlen != 0");
2206 		return -EINVAL;
2207 	}
2208 
2209 	if (btf_type_kflag(t)) {
2210 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2211 		return -EINVAL;
2212 	}
2213 
2214 	int_data = btf_type_int(t);
2215 	if (int_data & ~BTF_INT_MASK) {
2216 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2217 				       int_data);
2218 		return -EINVAL;
2219 	}
2220 
2221 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2222 
2223 	if (nr_bits > BITS_PER_U128) {
2224 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2225 				      BITS_PER_U128);
2226 		return -EINVAL;
2227 	}
2228 
2229 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2230 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2231 		return -EINVAL;
2232 	}
2233 
2234 	/*
2235 	 * Only one of the encoding bits is allowed and it
2236 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2237 	 * Multiple bits can be allowed later if it is found
2238 	 * to be insufficient.
2239 	 */
2240 	encoding = BTF_INT_ENCODING(int_data);
2241 	if (encoding &&
2242 	    encoding != BTF_INT_SIGNED &&
2243 	    encoding != BTF_INT_CHAR &&
2244 	    encoding != BTF_INT_BOOL) {
2245 		btf_verifier_log_type(env, t, "Unsupported encoding");
2246 		return -ENOTSUPP;
2247 	}
2248 
2249 	btf_verifier_log_type(env, t, NULL);
2250 
2251 	return meta_needed;
2252 }
2253 
2254 static void btf_int_log(struct btf_verifier_env *env,
2255 			const struct btf_type *t)
2256 {
2257 	int int_data = btf_type_int(t);
2258 
2259 	btf_verifier_log(env,
2260 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2261 			 t->size, BTF_INT_OFFSET(int_data),
2262 			 BTF_INT_BITS(int_data),
2263 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2264 }
2265 
2266 static void btf_int128_print(struct btf_show *show, void *data)
2267 {
2268 	/* data points to a __int128 number.
2269 	 * Suppose
2270 	 *     int128_num = *(__int128 *)data;
2271 	 * The below formulas shows what upper_num and lower_num represents:
2272 	 *     upper_num = int128_num >> 64;
2273 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2274 	 */
2275 	u64 upper_num, lower_num;
2276 
2277 #ifdef __BIG_ENDIAN_BITFIELD
2278 	upper_num = *(u64 *)data;
2279 	lower_num = *(u64 *)(data + 8);
2280 #else
2281 	upper_num = *(u64 *)(data + 8);
2282 	lower_num = *(u64 *)data;
2283 #endif
2284 	if (upper_num == 0)
2285 		btf_show_type_value(show, "0x%llx", lower_num);
2286 	else
2287 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2288 				     lower_num);
2289 }
2290 
2291 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2292 			     u16 right_shift_bits)
2293 {
2294 	u64 upper_num, lower_num;
2295 
2296 #ifdef __BIG_ENDIAN_BITFIELD
2297 	upper_num = print_num[0];
2298 	lower_num = print_num[1];
2299 #else
2300 	upper_num = print_num[1];
2301 	lower_num = print_num[0];
2302 #endif
2303 
2304 	/* shake out un-needed bits by shift/or operations */
2305 	if (left_shift_bits >= 64) {
2306 		upper_num = lower_num << (left_shift_bits - 64);
2307 		lower_num = 0;
2308 	} else {
2309 		upper_num = (upper_num << left_shift_bits) |
2310 			    (lower_num >> (64 - left_shift_bits));
2311 		lower_num = lower_num << left_shift_bits;
2312 	}
2313 
2314 	if (right_shift_bits >= 64) {
2315 		lower_num = upper_num >> (right_shift_bits - 64);
2316 		upper_num = 0;
2317 	} else {
2318 		lower_num = (lower_num >> right_shift_bits) |
2319 			    (upper_num << (64 - right_shift_bits));
2320 		upper_num = upper_num >> right_shift_bits;
2321 	}
2322 
2323 #ifdef __BIG_ENDIAN_BITFIELD
2324 	print_num[0] = upper_num;
2325 	print_num[1] = lower_num;
2326 #else
2327 	print_num[0] = lower_num;
2328 	print_num[1] = upper_num;
2329 #endif
2330 }
2331 
2332 static void btf_bitfield_show(void *data, u8 bits_offset,
2333 			      u8 nr_bits, struct btf_show *show)
2334 {
2335 	u16 left_shift_bits, right_shift_bits;
2336 	u8 nr_copy_bytes;
2337 	u8 nr_copy_bits;
2338 	u64 print_num[2] = {};
2339 
2340 	nr_copy_bits = nr_bits + bits_offset;
2341 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2342 
2343 	memcpy(print_num, data, nr_copy_bytes);
2344 
2345 #ifdef __BIG_ENDIAN_BITFIELD
2346 	left_shift_bits = bits_offset;
2347 #else
2348 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2349 #endif
2350 	right_shift_bits = BITS_PER_U128 - nr_bits;
2351 
2352 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2353 	btf_int128_print(show, print_num);
2354 }
2355 
2356 
2357 static void btf_int_bits_show(const struct btf *btf,
2358 			      const struct btf_type *t,
2359 			      void *data, u8 bits_offset,
2360 			      struct btf_show *show)
2361 {
2362 	u32 int_data = btf_type_int(t);
2363 	u8 nr_bits = BTF_INT_BITS(int_data);
2364 	u8 total_bits_offset;
2365 
2366 	/*
2367 	 * bits_offset is at most 7.
2368 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2369 	 */
2370 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2371 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2372 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2373 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2374 }
2375 
2376 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2377 			 u32 type_id, void *data, u8 bits_offset,
2378 			 struct btf_show *show)
2379 {
2380 	u32 int_data = btf_type_int(t);
2381 	u8 encoding = BTF_INT_ENCODING(int_data);
2382 	bool sign = encoding & BTF_INT_SIGNED;
2383 	u8 nr_bits = BTF_INT_BITS(int_data);
2384 	void *safe_data;
2385 
2386 	safe_data = btf_show_start_type(show, t, type_id, data);
2387 	if (!safe_data)
2388 		return;
2389 
2390 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2391 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2392 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2393 		goto out;
2394 	}
2395 
2396 	switch (nr_bits) {
2397 	case 128:
2398 		btf_int128_print(show, safe_data);
2399 		break;
2400 	case 64:
2401 		if (sign)
2402 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2403 		else
2404 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2405 		break;
2406 	case 32:
2407 		if (sign)
2408 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2409 		else
2410 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2411 		break;
2412 	case 16:
2413 		if (sign)
2414 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2415 		else
2416 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2417 		break;
2418 	case 8:
2419 		if (show->state.array_encoding == BTF_INT_CHAR) {
2420 			/* check for null terminator */
2421 			if (show->state.array_terminated)
2422 				break;
2423 			if (*(char *)data == '\0') {
2424 				show->state.array_terminated = 1;
2425 				break;
2426 			}
2427 			if (isprint(*(char *)data)) {
2428 				btf_show_type_value(show, "'%c'",
2429 						    *(char *)safe_data);
2430 				break;
2431 			}
2432 		}
2433 		if (sign)
2434 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2435 		else
2436 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2437 		break;
2438 	default:
2439 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2440 		break;
2441 	}
2442 out:
2443 	btf_show_end_type(show);
2444 }
2445 
2446 static const struct btf_kind_operations int_ops = {
2447 	.check_meta = btf_int_check_meta,
2448 	.resolve = btf_df_resolve,
2449 	.check_member = btf_int_check_member,
2450 	.check_kflag_member = btf_int_check_kflag_member,
2451 	.log_details = btf_int_log,
2452 	.show = btf_int_show,
2453 };
2454 
2455 static int btf_modifier_check_member(struct btf_verifier_env *env,
2456 				     const struct btf_type *struct_type,
2457 				     const struct btf_member *member,
2458 				     const struct btf_type *member_type)
2459 {
2460 	const struct btf_type *resolved_type;
2461 	u32 resolved_type_id = member->type;
2462 	struct btf_member resolved_member;
2463 	struct btf *btf = env->btf;
2464 
2465 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2466 	if (!resolved_type) {
2467 		btf_verifier_log_member(env, struct_type, member,
2468 					"Invalid member");
2469 		return -EINVAL;
2470 	}
2471 
2472 	resolved_member = *member;
2473 	resolved_member.type = resolved_type_id;
2474 
2475 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2476 							 &resolved_member,
2477 							 resolved_type);
2478 }
2479 
2480 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2481 					   const struct btf_type *struct_type,
2482 					   const struct btf_member *member,
2483 					   const struct btf_type *member_type)
2484 {
2485 	const struct btf_type *resolved_type;
2486 	u32 resolved_type_id = member->type;
2487 	struct btf_member resolved_member;
2488 	struct btf *btf = env->btf;
2489 
2490 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2491 	if (!resolved_type) {
2492 		btf_verifier_log_member(env, struct_type, member,
2493 					"Invalid member");
2494 		return -EINVAL;
2495 	}
2496 
2497 	resolved_member = *member;
2498 	resolved_member.type = resolved_type_id;
2499 
2500 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2501 							       &resolved_member,
2502 							       resolved_type);
2503 }
2504 
2505 static int btf_ptr_check_member(struct btf_verifier_env *env,
2506 				const struct btf_type *struct_type,
2507 				const struct btf_member *member,
2508 				const struct btf_type *member_type)
2509 {
2510 	u32 struct_size, struct_bits_off, bytes_offset;
2511 
2512 	struct_size = struct_type->size;
2513 	struct_bits_off = member->offset;
2514 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2515 
2516 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2517 		btf_verifier_log_member(env, struct_type, member,
2518 					"Member is not byte aligned");
2519 		return -EINVAL;
2520 	}
2521 
2522 	if (struct_size - bytes_offset < sizeof(void *)) {
2523 		btf_verifier_log_member(env, struct_type, member,
2524 					"Member exceeds struct_size");
2525 		return -EINVAL;
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2532 				   const struct btf_type *t,
2533 				   u32 meta_left)
2534 {
2535 	const char *value;
2536 
2537 	if (btf_type_vlen(t)) {
2538 		btf_verifier_log_type(env, t, "vlen != 0");
2539 		return -EINVAL;
2540 	}
2541 
2542 	if (btf_type_kflag(t)) {
2543 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2544 		return -EINVAL;
2545 	}
2546 
2547 	if (!BTF_TYPE_ID_VALID(t->type)) {
2548 		btf_verifier_log_type(env, t, "Invalid type_id");
2549 		return -EINVAL;
2550 	}
2551 
2552 	/* typedef/type_tag type must have a valid name, and other ref types,
2553 	 * volatile, const, restrict, should have a null name.
2554 	 */
2555 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2556 		if (!t->name_off ||
2557 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2558 			btf_verifier_log_type(env, t, "Invalid name");
2559 			return -EINVAL;
2560 		}
2561 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2562 		value = btf_name_by_offset(env->btf, t->name_off);
2563 		if (!value || !value[0]) {
2564 			btf_verifier_log_type(env, t, "Invalid name");
2565 			return -EINVAL;
2566 		}
2567 	} else {
2568 		if (t->name_off) {
2569 			btf_verifier_log_type(env, t, "Invalid name");
2570 			return -EINVAL;
2571 		}
2572 	}
2573 
2574 	btf_verifier_log_type(env, t, NULL);
2575 
2576 	return 0;
2577 }
2578 
2579 static int btf_modifier_resolve(struct btf_verifier_env *env,
2580 				const struct resolve_vertex *v)
2581 {
2582 	const struct btf_type *t = v->t;
2583 	const struct btf_type *next_type;
2584 	u32 next_type_id = t->type;
2585 	struct btf *btf = env->btf;
2586 
2587 	next_type = btf_type_by_id(btf, next_type_id);
2588 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2589 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2590 		return -EINVAL;
2591 	}
2592 
2593 	if (!env_type_is_resolve_sink(env, next_type) &&
2594 	    !env_type_is_resolved(env, next_type_id))
2595 		return env_stack_push(env, next_type, next_type_id);
2596 
2597 	/* Figure out the resolved next_type_id with size.
2598 	 * They will be stored in the current modifier's
2599 	 * resolved_ids and resolved_sizes such that it can
2600 	 * save us a few type-following when we use it later (e.g. in
2601 	 * pretty print).
2602 	 */
2603 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2604 		if (env_type_is_resolved(env, next_type_id))
2605 			next_type = btf_type_id_resolve(btf, &next_type_id);
2606 
2607 		/* "typedef void new_void", "const void"...etc */
2608 		if (!btf_type_is_void(next_type) &&
2609 		    !btf_type_is_fwd(next_type) &&
2610 		    !btf_type_is_func_proto(next_type)) {
2611 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2612 			return -EINVAL;
2613 		}
2614 	}
2615 
2616 	env_stack_pop_resolved(env, next_type_id, 0);
2617 
2618 	return 0;
2619 }
2620 
2621 static int btf_var_resolve(struct btf_verifier_env *env,
2622 			   const struct resolve_vertex *v)
2623 {
2624 	const struct btf_type *next_type;
2625 	const struct btf_type *t = v->t;
2626 	u32 next_type_id = t->type;
2627 	struct btf *btf = env->btf;
2628 
2629 	next_type = btf_type_by_id(btf, next_type_id);
2630 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2631 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2632 		return -EINVAL;
2633 	}
2634 
2635 	if (!env_type_is_resolve_sink(env, next_type) &&
2636 	    !env_type_is_resolved(env, next_type_id))
2637 		return env_stack_push(env, next_type, next_type_id);
2638 
2639 	if (btf_type_is_modifier(next_type)) {
2640 		const struct btf_type *resolved_type;
2641 		u32 resolved_type_id;
2642 
2643 		resolved_type_id = next_type_id;
2644 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2645 
2646 		if (btf_type_is_ptr(resolved_type) &&
2647 		    !env_type_is_resolve_sink(env, resolved_type) &&
2648 		    !env_type_is_resolved(env, resolved_type_id))
2649 			return env_stack_push(env, resolved_type,
2650 					      resolved_type_id);
2651 	}
2652 
2653 	/* We must resolve to something concrete at this point, no
2654 	 * forward types or similar that would resolve to size of
2655 	 * zero is allowed.
2656 	 */
2657 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2658 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2659 		return -EINVAL;
2660 	}
2661 
2662 	env_stack_pop_resolved(env, next_type_id, 0);
2663 
2664 	return 0;
2665 }
2666 
2667 static int btf_ptr_resolve(struct btf_verifier_env *env,
2668 			   const struct resolve_vertex *v)
2669 {
2670 	const struct btf_type *next_type;
2671 	const struct btf_type *t = v->t;
2672 	u32 next_type_id = t->type;
2673 	struct btf *btf = env->btf;
2674 
2675 	next_type = btf_type_by_id(btf, next_type_id);
2676 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2677 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2678 		return -EINVAL;
2679 	}
2680 
2681 	if (!env_type_is_resolve_sink(env, next_type) &&
2682 	    !env_type_is_resolved(env, next_type_id))
2683 		return env_stack_push(env, next_type, next_type_id);
2684 
2685 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2686 	 * the modifier may have stopped resolving when it was resolved
2687 	 * to a ptr (last-resolved-ptr).
2688 	 *
2689 	 * We now need to continue from the last-resolved-ptr to
2690 	 * ensure the last-resolved-ptr will not referring back to
2691 	 * the current ptr (t).
2692 	 */
2693 	if (btf_type_is_modifier(next_type)) {
2694 		const struct btf_type *resolved_type;
2695 		u32 resolved_type_id;
2696 
2697 		resolved_type_id = next_type_id;
2698 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2699 
2700 		if (btf_type_is_ptr(resolved_type) &&
2701 		    !env_type_is_resolve_sink(env, resolved_type) &&
2702 		    !env_type_is_resolved(env, resolved_type_id))
2703 			return env_stack_push(env, resolved_type,
2704 					      resolved_type_id);
2705 	}
2706 
2707 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2708 		if (env_type_is_resolved(env, next_type_id))
2709 			next_type = btf_type_id_resolve(btf, &next_type_id);
2710 
2711 		if (!btf_type_is_void(next_type) &&
2712 		    !btf_type_is_fwd(next_type) &&
2713 		    !btf_type_is_func_proto(next_type)) {
2714 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2715 			return -EINVAL;
2716 		}
2717 	}
2718 
2719 	env_stack_pop_resolved(env, next_type_id, 0);
2720 
2721 	return 0;
2722 }
2723 
2724 static void btf_modifier_show(const struct btf *btf,
2725 			      const struct btf_type *t,
2726 			      u32 type_id, void *data,
2727 			      u8 bits_offset, struct btf_show *show)
2728 {
2729 	if (btf->resolved_ids)
2730 		t = btf_type_id_resolve(btf, &type_id);
2731 	else
2732 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2733 
2734 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2735 }
2736 
2737 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2738 			 u32 type_id, void *data, u8 bits_offset,
2739 			 struct btf_show *show)
2740 {
2741 	t = btf_type_id_resolve(btf, &type_id);
2742 
2743 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2744 }
2745 
2746 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2747 			 u32 type_id, void *data, u8 bits_offset,
2748 			 struct btf_show *show)
2749 {
2750 	void *safe_data;
2751 
2752 	safe_data = btf_show_start_type(show, t, type_id, data);
2753 	if (!safe_data)
2754 		return;
2755 
2756 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2757 	if (show->flags & BTF_SHOW_PTR_RAW)
2758 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2759 	else
2760 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2761 	btf_show_end_type(show);
2762 }
2763 
2764 static void btf_ref_type_log(struct btf_verifier_env *env,
2765 			     const struct btf_type *t)
2766 {
2767 	btf_verifier_log(env, "type_id=%u", t->type);
2768 }
2769 
2770 static struct btf_kind_operations modifier_ops = {
2771 	.check_meta = btf_ref_type_check_meta,
2772 	.resolve = btf_modifier_resolve,
2773 	.check_member = btf_modifier_check_member,
2774 	.check_kflag_member = btf_modifier_check_kflag_member,
2775 	.log_details = btf_ref_type_log,
2776 	.show = btf_modifier_show,
2777 };
2778 
2779 static struct btf_kind_operations ptr_ops = {
2780 	.check_meta = btf_ref_type_check_meta,
2781 	.resolve = btf_ptr_resolve,
2782 	.check_member = btf_ptr_check_member,
2783 	.check_kflag_member = btf_generic_check_kflag_member,
2784 	.log_details = btf_ref_type_log,
2785 	.show = btf_ptr_show,
2786 };
2787 
2788 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2789 			      const struct btf_type *t,
2790 			      u32 meta_left)
2791 {
2792 	if (btf_type_vlen(t)) {
2793 		btf_verifier_log_type(env, t, "vlen != 0");
2794 		return -EINVAL;
2795 	}
2796 
2797 	if (t->type) {
2798 		btf_verifier_log_type(env, t, "type != 0");
2799 		return -EINVAL;
2800 	}
2801 
2802 	/* fwd type must have a valid name */
2803 	if (!t->name_off ||
2804 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2805 		btf_verifier_log_type(env, t, "Invalid name");
2806 		return -EINVAL;
2807 	}
2808 
2809 	btf_verifier_log_type(env, t, NULL);
2810 
2811 	return 0;
2812 }
2813 
2814 static void btf_fwd_type_log(struct btf_verifier_env *env,
2815 			     const struct btf_type *t)
2816 {
2817 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2818 }
2819 
2820 static struct btf_kind_operations fwd_ops = {
2821 	.check_meta = btf_fwd_check_meta,
2822 	.resolve = btf_df_resolve,
2823 	.check_member = btf_df_check_member,
2824 	.check_kflag_member = btf_df_check_kflag_member,
2825 	.log_details = btf_fwd_type_log,
2826 	.show = btf_df_show,
2827 };
2828 
2829 static int btf_array_check_member(struct btf_verifier_env *env,
2830 				  const struct btf_type *struct_type,
2831 				  const struct btf_member *member,
2832 				  const struct btf_type *member_type)
2833 {
2834 	u32 struct_bits_off = member->offset;
2835 	u32 struct_size, bytes_offset;
2836 	u32 array_type_id, array_size;
2837 	struct btf *btf = env->btf;
2838 
2839 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2840 		btf_verifier_log_member(env, struct_type, member,
2841 					"Member is not byte aligned");
2842 		return -EINVAL;
2843 	}
2844 
2845 	array_type_id = member->type;
2846 	btf_type_id_size(btf, &array_type_id, &array_size);
2847 	struct_size = struct_type->size;
2848 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2849 	if (struct_size - bytes_offset < array_size) {
2850 		btf_verifier_log_member(env, struct_type, member,
2851 					"Member exceeds struct_size");
2852 		return -EINVAL;
2853 	}
2854 
2855 	return 0;
2856 }
2857 
2858 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2859 				const struct btf_type *t,
2860 				u32 meta_left)
2861 {
2862 	const struct btf_array *array = btf_type_array(t);
2863 	u32 meta_needed = sizeof(*array);
2864 
2865 	if (meta_left < meta_needed) {
2866 		btf_verifier_log_basic(env, t,
2867 				       "meta_left:%u meta_needed:%u",
2868 				       meta_left, meta_needed);
2869 		return -EINVAL;
2870 	}
2871 
2872 	/* array type should not have a name */
2873 	if (t->name_off) {
2874 		btf_verifier_log_type(env, t, "Invalid name");
2875 		return -EINVAL;
2876 	}
2877 
2878 	if (btf_type_vlen(t)) {
2879 		btf_verifier_log_type(env, t, "vlen != 0");
2880 		return -EINVAL;
2881 	}
2882 
2883 	if (btf_type_kflag(t)) {
2884 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2885 		return -EINVAL;
2886 	}
2887 
2888 	if (t->size) {
2889 		btf_verifier_log_type(env, t, "size != 0");
2890 		return -EINVAL;
2891 	}
2892 
2893 	/* Array elem type and index type cannot be in type void,
2894 	 * so !array->type and !array->index_type are not allowed.
2895 	 */
2896 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2897 		btf_verifier_log_type(env, t, "Invalid elem");
2898 		return -EINVAL;
2899 	}
2900 
2901 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2902 		btf_verifier_log_type(env, t, "Invalid index");
2903 		return -EINVAL;
2904 	}
2905 
2906 	btf_verifier_log_type(env, t, NULL);
2907 
2908 	return meta_needed;
2909 }
2910 
2911 static int btf_array_resolve(struct btf_verifier_env *env,
2912 			     const struct resolve_vertex *v)
2913 {
2914 	const struct btf_array *array = btf_type_array(v->t);
2915 	const struct btf_type *elem_type, *index_type;
2916 	u32 elem_type_id, index_type_id;
2917 	struct btf *btf = env->btf;
2918 	u32 elem_size;
2919 
2920 	/* Check array->index_type */
2921 	index_type_id = array->index_type;
2922 	index_type = btf_type_by_id(btf, index_type_id);
2923 	if (btf_type_nosize_or_null(index_type) ||
2924 	    btf_type_is_resolve_source_only(index_type)) {
2925 		btf_verifier_log_type(env, v->t, "Invalid index");
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (!env_type_is_resolve_sink(env, index_type) &&
2930 	    !env_type_is_resolved(env, index_type_id))
2931 		return env_stack_push(env, index_type, index_type_id);
2932 
2933 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2934 	if (!index_type || !btf_type_is_int(index_type) ||
2935 	    !btf_type_int_is_regular(index_type)) {
2936 		btf_verifier_log_type(env, v->t, "Invalid index");
2937 		return -EINVAL;
2938 	}
2939 
2940 	/* Check array->type */
2941 	elem_type_id = array->type;
2942 	elem_type = btf_type_by_id(btf, elem_type_id);
2943 	if (btf_type_nosize_or_null(elem_type) ||
2944 	    btf_type_is_resolve_source_only(elem_type)) {
2945 		btf_verifier_log_type(env, v->t,
2946 				      "Invalid elem");
2947 		return -EINVAL;
2948 	}
2949 
2950 	if (!env_type_is_resolve_sink(env, elem_type) &&
2951 	    !env_type_is_resolved(env, elem_type_id))
2952 		return env_stack_push(env, elem_type, elem_type_id);
2953 
2954 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2955 	if (!elem_type) {
2956 		btf_verifier_log_type(env, v->t, "Invalid elem");
2957 		return -EINVAL;
2958 	}
2959 
2960 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2961 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2962 		return -EINVAL;
2963 	}
2964 
2965 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2966 		btf_verifier_log_type(env, v->t,
2967 				      "Array size overflows U32_MAX");
2968 		return -EINVAL;
2969 	}
2970 
2971 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2972 
2973 	return 0;
2974 }
2975 
2976 static void btf_array_log(struct btf_verifier_env *env,
2977 			  const struct btf_type *t)
2978 {
2979 	const struct btf_array *array = btf_type_array(t);
2980 
2981 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2982 			 array->type, array->index_type, array->nelems);
2983 }
2984 
2985 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2986 			     u32 type_id, void *data, u8 bits_offset,
2987 			     struct btf_show *show)
2988 {
2989 	const struct btf_array *array = btf_type_array(t);
2990 	const struct btf_kind_operations *elem_ops;
2991 	const struct btf_type *elem_type;
2992 	u32 i, elem_size = 0, elem_type_id;
2993 	u16 encoding = 0;
2994 
2995 	elem_type_id = array->type;
2996 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2997 	if (elem_type && btf_type_has_size(elem_type))
2998 		elem_size = elem_type->size;
2999 
3000 	if (elem_type && btf_type_is_int(elem_type)) {
3001 		u32 int_type = btf_type_int(elem_type);
3002 
3003 		encoding = BTF_INT_ENCODING(int_type);
3004 
3005 		/*
3006 		 * BTF_INT_CHAR encoding never seems to be set for
3007 		 * char arrays, so if size is 1 and element is
3008 		 * printable as a char, we'll do that.
3009 		 */
3010 		if (elem_size == 1)
3011 			encoding = BTF_INT_CHAR;
3012 	}
3013 
3014 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3015 		return;
3016 
3017 	if (!elem_type)
3018 		goto out;
3019 	elem_ops = btf_type_ops(elem_type);
3020 
3021 	for (i = 0; i < array->nelems; i++) {
3022 
3023 		btf_show_start_array_member(show);
3024 
3025 		elem_ops->show(btf, elem_type, elem_type_id, data,
3026 			       bits_offset, show);
3027 		data += elem_size;
3028 
3029 		btf_show_end_array_member(show);
3030 
3031 		if (show->state.array_terminated)
3032 			break;
3033 	}
3034 out:
3035 	btf_show_end_array_type(show);
3036 }
3037 
3038 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3039 			   u32 type_id, void *data, u8 bits_offset,
3040 			   struct btf_show *show)
3041 {
3042 	const struct btf_member *m = show->state.member;
3043 
3044 	/*
3045 	 * First check if any members would be shown (are non-zero).
3046 	 * See comments above "struct btf_show" definition for more
3047 	 * details on how this works at a high-level.
3048 	 */
3049 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3050 		if (!show->state.depth_check) {
3051 			show->state.depth_check = show->state.depth + 1;
3052 			show->state.depth_to_show = 0;
3053 		}
3054 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3055 		show->state.member = m;
3056 
3057 		if (show->state.depth_check != show->state.depth + 1)
3058 			return;
3059 		show->state.depth_check = 0;
3060 
3061 		if (show->state.depth_to_show <= show->state.depth)
3062 			return;
3063 		/*
3064 		 * Reaching here indicates we have recursed and found
3065 		 * non-zero array member(s).
3066 		 */
3067 	}
3068 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3069 }
3070 
3071 static struct btf_kind_operations array_ops = {
3072 	.check_meta = btf_array_check_meta,
3073 	.resolve = btf_array_resolve,
3074 	.check_member = btf_array_check_member,
3075 	.check_kflag_member = btf_generic_check_kflag_member,
3076 	.log_details = btf_array_log,
3077 	.show = btf_array_show,
3078 };
3079 
3080 static int btf_struct_check_member(struct btf_verifier_env *env,
3081 				   const struct btf_type *struct_type,
3082 				   const struct btf_member *member,
3083 				   const struct btf_type *member_type)
3084 {
3085 	u32 struct_bits_off = member->offset;
3086 	u32 struct_size, bytes_offset;
3087 
3088 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3089 		btf_verifier_log_member(env, struct_type, member,
3090 					"Member is not byte aligned");
3091 		return -EINVAL;
3092 	}
3093 
3094 	struct_size = struct_type->size;
3095 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3096 	if (struct_size - bytes_offset < member_type->size) {
3097 		btf_verifier_log_member(env, struct_type, member,
3098 					"Member exceeds struct_size");
3099 		return -EINVAL;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3106 				 const struct btf_type *t,
3107 				 u32 meta_left)
3108 {
3109 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3110 	const struct btf_member *member;
3111 	u32 meta_needed, last_offset;
3112 	struct btf *btf = env->btf;
3113 	u32 struct_size = t->size;
3114 	u32 offset;
3115 	u16 i;
3116 
3117 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3118 	if (meta_left < meta_needed) {
3119 		btf_verifier_log_basic(env, t,
3120 				       "meta_left:%u meta_needed:%u",
3121 				       meta_left, meta_needed);
3122 		return -EINVAL;
3123 	}
3124 
3125 	/* struct type either no name or a valid one */
3126 	if (t->name_off &&
3127 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3128 		btf_verifier_log_type(env, t, "Invalid name");
3129 		return -EINVAL;
3130 	}
3131 
3132 	btf_verifier_log_type(env, t, NULL);
3133 
3134 	last_offset = 0;
3135 	for_each_member(i, t, member) {
3136 		if (!btf_name_offset_valid(btf, member->name_off)) {
3137 			btf_verifier_log_member(env, t, member,
3138 						"Invalid member name_offset:%u",
3139 						member->name_off);
3140 			return -EINVAL;
3141 		}
3142 
3143 		/* struct member either no name or a valid one */
3144 		if (member->name_off &&
3145 		    !btf_name_valid_identifier(btf, member->name_off)) {
3146 			btf_verifier_log_member(env, t, member, "Invalid name");
3147 			return -EINVAL;
3148 		}
3149 		/* A member cannot be in type void */
3150 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3151 			btf_verifier_log_member(env, t, member,
3152 						"Invalid type_id");
3153 			return -EINVAL;
3154 		}
3155 
3156 		offset = __btf_member_bit_offset(t, member);
3157 		if (is_union && offset) {
3158 			btf_verifier_log_member(env, t, member,
3159 						"Invalid member bits_offset");
3160 			return -EINVAL;
3161 		}
3162 
3163 		/*
3164 		 * ">" instead of ">=" because the last member could be
3165 		 * "char a[0];"
3166 		 */
3167 		if (last_offset > offset) {
3168 			btf_verifier_log_member(env, t, member,
3169 						"Invalid member bits_offset");
3170 			return -EINVAL;
3171 		}
3172 
3173 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3174 			btf_verifier_log_member(env, t, member,
3175 						"Member bits_offset exceeds its struct size");
3176 			return -EINVAL;
3177 		}
3178 
3179 		btf_verifier_log_member(env, t, member, NULL);
3180 		last_offset = offset;
3181 	}
3182 
3183 	return meta_needed;
3184 }
3185 
3186 static int btf_struct_resolve(struct btf_verifier_env *env,
3187 			      const struct resolve_vertex *v)
3188 {
3189 	const struct btf_member *member;
3190 	int err;
3191 	u16 i;
3192 
3193 	/* Before continue resolving the next_member,
3194 	 * ensure the last member is indeed resolved to a
3195 	 * type with size info.
3196 	 */
3197 	if (v->next_member) {
3198 		const struct btf_type *last_member_type;
3199 		const struct btf_member *last_member;
3200 		u32 last_member_type_id;
3201 
3202 		last_member = btf_type_member(v->t) + v->next_member - 1;
3203 		last_member_type_id = last_member->type;
3204 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3205 						       last_member_type_id)))
3206 			return -EINVAL;
3207 
3208 		last_member_type = btf_type_by_id(env->btf,
3209 						  last_member_type_id);
3210 		if (btf_type_kflag(v->t))
3211 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3212 								last_member,
3213 								last_member_type);
3214 		else
3215 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3216 								last_member,
3217 								last_member_type);
3218 		if (err)
3219 			return err;
3220 	}
3221 
3222 	for_each_member_from(i, v->next_member, v->t, member) {
3223 		u32 member_type_id = member->type;
3224 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3225 								member_type_id);
3226 
3227 		if (btf_type_nosize_or_null(member_type) ||
3228 		    btf_type_is_resolve_source_only(member_type)) {
3229 			btf_verifier_log_member(env, v->t, member,
3230 						"Invalid member");
3231 			return -EINVAL;
3232 		}
3233 
3234 		if (!env_type_is_resolve_sink(env, member_type) &&
3235 		    !env_type_is_resolved(env, member_type_id)) {
3236 			env_stack_set_next_member(env, i + 1);
3237 			return env_stack_push(env, member_type, member_type_id);
3238 		}
3239 
3240 		if (btf_type_kflag(v->t))
3241 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3242 									    member,
3243 									    member_type);
3244 		else
3245 			err = btf_type_ops(member_type)->check_member(env, v->t,
3246 								      member,
3247 								      member_type);
3248 		if (err)
3249 			return err;
3250 	}
3251 
3252 	env_stack_pop_resolved(env, 0, 0);
3253 
3254 	return 0;
3255 }
3256 
3257 static void btf_struct_log(struct btf_verifier_env *env,
3258 			   const struct btf_type *t)
3259 {
3260 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3261 }
3262 
3263 enum {
3264 	BTF_FIELD_IGNORE = 0,
3265 	BTF_FIELD_FOUND  = 1,
3266 };
3267 
3268 struct btf_field_info {
3269 	enum btf_field_type type;
3270 	u32 off;
3271 	union {
3272 		struct {
3273 			u32 type_id;
3274 		} kptr;
3275 		struct {
3276 			const char *node_name;
3277 			u32 value_btf_id;
3278 		} graph_root;
3279 	};
3280 };
3281 
3282 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3283 			   u32 off, int sz, enum btf_field_type field_type,
3284 			   struct btf_field_info *info)
3285 {
3286 	if (!__btf_type_is_struct(t))
3287 		return BTF_FIELD_IGNORE;
3288 	if (t->size != sz)
3289 		return BTF_FIELD_IGNORE;
3290 	info->type = field_type;
3291 	info->off = off;
3292 	return BTF_FIELD_FOUND;
3293 }
3294 
3295 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3296 			 u32 off, int sz, struct btf_field_info *info)
3297 {
3298 	enum btf_field_type type;
3299 	u32 res_id;
3300 
3301 	/* Permit modifiers on the pointer itself */
3302 	if (btf_type_is_volatile(t))
3303 		t = btf_type_by_id(btf, t->type);
3304 	/* For PTR, sz is always == 8 */
3305 	if (!btf_type_is_ptr(t))
3306 		return BTF_FIELD_IGNORE;
3307 	t = btf_type_by_id(btf, t->type);
3308 
3309 	if (!btf_type_is_type_tag(t))
3310 		return BTF_FIELD_IGNORE;
3311 	/* Reject extra tags */
3312 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3313 		return -EINVAL;
3314 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3315 		type = BPF_KPTR_UNREF;
3316 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3317 		type = BPF_KPTR_REF;
3318 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3319 		type = BPF_KPTR_PERCPU;
3320 	else
3321 		return -EINVAL;
3322 
3323 	/* Get the base type */
3324 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3325 	/* Only pointer to struct is allowed */
3326 	if (!__btf_type_is_struct(t))
3327 		return -EINVAL;
3328 
3329 	info->type = type;
3330 	info->off = off;
3331 	info->kptr.type_id = res_id;
3332 	return BTF_FIELD_FOUND;
3333 }
3334 
3335 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3336 			   int comp_idx, const char *tag_key, int last_id)
3337 {
3338 	int len = strlen(tag_key);
3339 	int i, n;
3340 
3341 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3342 		const struct btf_type *t = btf_type_by_id(btf, i);
3343 
3344 		if (!btf_type_is_decl_tag(t))
3345 			continue;
3346 		if (pt != btf_type_by_id(btf, t->type))
3347 			continue;
3348 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3349 			continue;
3350 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3351 			continue;
3352 		return i;
3353 	}
3354 	return -ENOENT;
3355 }
3356 
3357 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3358 				    int comp_idx, const char *tag_key)
3359 {
3360 	const char *value = NULL;
3361 	const struct btf_type *t;
3362 	int len, id;
3363 
3364 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3365 	if (id < 0)
3366 		return ERR_PTR(id);
3367 
3368 	t = btf_type_by_id(btf, id);
3369 	len = strlen(tag_key);
3370 	value = __btf_name_by_offset(btf, t->name_off) + len;
3371 
3372 	/* Prevent duplicate entries for same type */
3373 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3374 	if (id >= 0)
3375 		return ERR_PTR(-EEXIST);
3376 
3377 	return value;
3378 }
3379 
3380 static int
3381 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3382 		    const struct btf_type *t, int comp_idx, u32 off,
3383 		    int sz, struct btf_field_info *info,
3384 		    enum btf_field_type head_type)
3385 {
3386 	const char *node_field_name;
3387 	const char *value_type;
3388 	s32 id;
3389 
3390 	if (!__btf_type_is_struct(t))
3391 		return BTF_FIELD_IGNORE;
3392 	if (t->size != sz)
3393 		return BTF_FIELD_IGNORE;
3394 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3395 	if (IS_ERR(value_type))
3396 		return -EINVAL;
3397 	node_field_name = strstr(value_type, ":");
3398 	if (!node_field_name)
3399 		return -EINVAL;
3400 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3401 	if (!value_type)
3402 		return -ENOMEM;
3403 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3404 	kfree(value_type);
3405 	if (id < 0)
3406 		return id;
3407 	node_field_name++;
3408 	if (str_is_empty(node_field_name))
3409 		return -EINVAL;
3410 	info->type = head_type;
3411 	info->off = off;
3412 	info->graph_root.value_btf_id = id;
3413 	info->graph_root.node_name = node_field_name;
3414 	return BTF_FIELD_FOUND;
3415 }
3416 
3417 #define field_mask_test_name(field_type, field_type_str) \
3418 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3419 		type = field_type;					\
3420 		goto end;						\
3421 	}
3422 
3423 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3424 			      int *align, int *sz)
3425 {
3426 	int type = 0;
3427 
3428 	if (field_mask & BPF_SPIN_LOCK) {
3429 		if (!strcmp(name, "bpf_spin_lock")) {
3430 			if (*seen_mask & BPF_SPIN_LOCK)
3431 				return -E2BIG;
3432 			*seen_mask |= BPF_SPIN_LOCK;
3433 			type = BPF_SPIN_LOCK;
3434 			goto end;
3435 		}
3436 	}
3437 	if (field_mask & BPF_TIMER) {
3438 		if (!strcmp(name, "bpf_timer")) {
3439 			if (*seen_mask & BPF_TIMER)
3440 				return -E2BIG;
3441 			*seen_mask |= BPF_TIMER;
3442 			type = BPF_TIMER;
3443 			goto end;
3444 		}
3445 	}
3446 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3447 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3448 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3449 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3450 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3451 
3452 	/* Only return BPF_KPTR when all other types with matchable names fail */
3453 	if (field_mask & BPF_KPTR) {
3454 		type = BPF_KPTR_REF;
3455 		goto end;
3456 	}
3457 	return 0;
3458 end:
3459 	*sz = btf_field_type_size(type);
3460 	*align = btf_field_type_align(type);
3461 	return type;
3462 }
3463 
3464 #undef field_mask_test_name
3465 
3466 static int btf_find_struct_field(const struct btf *btf,
3467 				 const struct btf_type *t, u32 field_mask,
3468 				 struct btf_field_info *info, int info_cnt)
3469 {
3470 	int ret, idx = 0, align, sz, field_type;
3471 	const struct btf_member *member;
3472 	struct btf_field_info tmp;
3473 	u32 i, off, seen_mask = 0;
3474 
3475 	for_each_member(i, t, member) {
3476 		const struct btf_type *member_type = btf_type_by_id(btf,
3477 								    member->type);
3478 
3479 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3480 						field_mask, &seen_mask, &align, &sz);
3481 		if (field_type == 0)
3482 			continue;
3483 		if (field_type < 0)
3484 			return field_type;
3485 
3486 		off = __btf_member_bit_offset(t, member);
3487 		if (off % 8)
3488 			/* valid C code cannot generate such BTF */
3489 			return -EINVAL;
3490 		off /= 8;
3491 		if (off % align)
3492 			continue;
3493 
3494 		switch (field_type) {
3495 		case BPF_SPIN_LOCK:
3496 		case BPF_TIMER:
3497 		case BPF_LIST_NODE:
3498 		case BPF_RB_NODE:
3499 		case BPF_REFCOUNT:
3500 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3501 					      idx < info_cnt ? &info[idx] : &tmp);
3502 			if (ret < 0)
3503 				return ret;
3504 			break;
3505 		case BPF_KPTR_UNREF:
3506 		case BPF_KPTR_REF:
3507 		case BPF_KPTR_PERCPU:
3508 			ret = btf_find_kptr(btf, member_type, off, sz,
3509 					    idx < info_cnt ? &info[idx] : &tmp);
3510 			if (ret < 0)
3511 				return ret;
3512 			break;
3513 		case BPF_LIST_HEAD:
3514 		case BPF_RB_ROOT:
3515 			ret = btf_find_graph_root(btf, t, member_type,
3516 						  i, off, sz,
3517 						  idx < info_cnt ? &info[idx] : &tmp,
3518 						  field_type);
3519 			if (ret < 0)
3520 				return ret;
3521 			break;
3522 		default:
3523 			return -EFAULT;
3524 		}
3525 
3526 		if (ret == BTF_FIELD_IGNORE)
3527 			continue;
3528 		if (idx >= info_cnt)
3529 			return -E2BIG;
3530 		++idx;
3531 	}
3532 	return idx;
3533 }
3534 
3535 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3536 				u32 field_mask, struct btf_field_info *info,
3537 				int info_cnt)
3538 {
3539 	int ret, idx = 0, align, sz, field_type;
3540 	const struct btf_var_secinfo *vsi;
3541 	struct btf_field_info tmp;
3542 	u32 i, off, seen_mask = 0;
3543 
3544 	for_each_vsi(i, t, vsi) {
3545 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3546 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3547 
3548 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3549 						field_mask, &seen_mask, &align, &sz);
3550 		if (field_type == 0)
3551 			continue;
3552 		if (field_type < 0)
3553 			return field_type;
3554 
3555 		off = vsi->offset;
3556 		if (vsi->size != sz)
3557 			continue;
3558 		if (off % align)
3559 			continue;
3560 
3561 		switch (field_type) {
3562 		case BPF_SPIN_LOCK:
3563 		case BPF_TIMER:
3564 		case BPF_LIST_NODE:
3565 		case BPF_RB_NODE:
3566 		case BPF_REFCOUNT:
3567 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3568 					      idx < info_cnt ? &info[idx] : &tmp);
3569 			if (ret < 0)
3570 				return ret;
3571 			break;
3572 		case BPF_KPTR_UNREF:
3573 		case BPF_KPTR_REF:
3574 		case BPF_KPTR_PERCPU:
3575 			ret = btf_find_kptr(btf, var_type, off, sz,
3576 					    idx < info_cnt ? &info[idx] : &tmp);
3577 			if (ret < 0)
3578 				return ret;
3579 			break;
3580 		case BPF_LIST_HEAD:
3581 		case BPF_RB_ROOT:
3582 			ret = btf_find_graph_root(btf, var, var_type,
3583 						  -1, off, sz,
3584 						  idx < info_cnt ? &info[idx] : &tmp,
3585 						  field_type);
3586 			if (ret < 0)
3587 				return ret;
3588 			break;
3589 		default:
3590 			return -EFAULT;
3591 		}
3592 
3593 		if (ret == BTF_FIELD_IGNORE)
3594 			continue;
3595 		if (idx >= info_cnt)
3596 			return -E2BIG;
3597 		++idx;
3598 	}
3599 	return idx;
3600 }
3601 
3602 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3603 			  u32 field_mask, struct btf_field_info *info,
3604 			  int info_cnt)
3605 {
3606 	if (__btf_type_is_struct(t))
3607 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3608 	else if (btf_type_is_datasec(t))
3609 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3610 	return -EINVAL;
3611 }
3612 
3613 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3614 			  struct btf_field_info *info)
3615 {
3616 	struct module *mod = NULL;
3617 	const struct btf_type *t;
3618 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3619 	 * is that BTF, otherwise it's program BTF
3620 	 */
3621 	struct btf *kptr_btf;
3622 	int ret;
3623 	s32 id;
3624 
3625 	/* Find type in map BTF, and use it to look up the matching type
3626 	 * in vmlinux or module BTFs, by name and kind.
3627 	 */
3628 	t = btf_type_by_id(btf, info->kptr.type_id);
3629 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3630 			     &kptr_btf);
3631 	if (id == -ENOENT) {
3632 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3633 		WARN_ON_ONCE(btf_is_kernel(btf));
3634 
3635 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3636 		 * kptr allocated via bpf_obj_new
3637 		 */
3638 		field->kptr.dtor = NULL;
3639 		id = info->kptr.type_id;
3640 		kptr_btf = (struct btf *)btf;
3641 		btf_get(kptr_btf);
3642 		goto found_dtor;
3643 	}
3644 	if (id < 0)
3645 		return id;
3646 
3647 	/* Find and stash the function pointer for the destruction function that
3648 	 * needs to be eventually invoked from the map free path.
3649 	 */
3650 	if (info->type == BPF_KPTR_REF) {
3651 		const struct btf_type *dtor_func;
3652 		const char *dtor_func_name;
3653 		unsigned long addr;
3654 		s32 dtor_btf_id;
3655 
3656 		/* This call also serves as a whitelist of allowed objects that
3657 		 * can be used as a referenced pointer and be stored in a map at
3658 		 * the same time.
3659 		 */
3660 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3661 		if (dtor_btf_id < 0) {
3662 			ret = dtor_btf_id;
3663 			goto end_btf;
3664 		}
3665 
3666 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3667 		if (!dtor_func) {
3668 			ret = -ENOENT;
3669 			goto end_btf;
3670 		}
3671 
3672 		if (btf_is_module(kptr_btf)) {
3673 			mod = btf_try_get_module(kptr_btf);
3674 			if (!mod) {
3675 				ret = -ENXIO;
3676 				goto end_btf;
3677 			}
3678 		}
3679 
3680 		/* We already verified dtor_func to be btf_type_is_func
3681 		 * in register_btf_id_dtor_kfuncs.
3682 		 */
3683 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3684 		addr = kallsyms_lookup_name(dtor_func_name);
3685 		if (!addr) {
3686 			ret = -EINVAL;
3687 			goto end_mod;
3688 		}
3689 		field->kptr.dtor = (void *)addr;
3690 	}
3691 
3692 found_dtor:
3693 	field->kptr.btf_id = id;
3694 	field->kptr.btf = kptr_btf;
3695 	field->kptr.module = mod;
3696 	return 0;
3697 end_mod:
3698 	module_put(mod);
3699 end_btf:
3700 	btf_put(kptr_btf);
3701 	return ret;
3702 }
3703 
3704 static int btf_parse_graph_root(const struct btf *btf,
3705 				struct btf_field *field,
3706 				struct btf_field_info *info,
3707 				const char *node_type_name,
3708 				size_t node_type_align)
3709 {
3710 	const struct btf_type *t, *n = NULL;
3711 	const struct btf_member *member;
3712 	u32 offset;
3713 	int i;
3714 
3715 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3716 	/* We've already checked that value_btf_id is a struct type. We
3717 	 * just need to figure out the offset of the list_node, and
3718 	 * verify its type.
3719 	 */
3720 	for_each_member(i, t, member) {
3721 		if (strcmp(info->graph_root.node_name,
3722 			   __btf_name_by_offset(btf, member->name_off)))
3723 			continue;
3724 		/* Invalid BTF, two members with same name */
3725 		if (n)
3726 			return -EINVAL;
3727 		n = btf_type_by_id(btf, member->type);
3728 		if (!__btf_type_is_struct(n))
3729 			return -EINVAL;
3730 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3731 			return -EINVAL;
3732 		offset = __btf_member_bit_offset(n, member);
3733 		if (offset % 8)
3734 			return -EINVAL;
3735 		offset /= 8;
3736 		if (offset % node_type_align)
3737 			return -EINVAL;
3738 
3739 		field->graph_root.btf = (struct btf *)btf;
3740 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3741 		field->graph_root.node_offset = offset;
3742 	}
3743 	if (!n)
3744 		return -ENOENT;
3745 	return 0;
3746 }
3747 
3748 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3749 			       struct btf_field_info *info)
3750 {
3751 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3752 					    __alignof__(struct bpf_list_node));
3753 }
3754 
3755 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3756 			     struct btf_field_info *info)
3757 {
3758 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3759 					    __alignof__(struct bpf_rb_node));
3760 }
3761 
3762 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3763 {
3764 	const struct btf_field *a = (const struct btf_field *)_a;
3765 	const struct btf_field *b = (const struct btf_field *)_b;
3766 
3767 	if (a->offset < b->offset)
3768 		return -1;
3769 	else if (a->offset > b->offset)
3770 		return 1;
3771 	return 0;
3772 }
3773 
3774 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3775 				    u32 field_mask, u32 value_size)
3776 {
3777 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3778 	u32 next_off = 0, field_type_size;
3779 	struct btf_record *rec;
3780 	int ret, i, cnt;
3781 
3782 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3783 	if (ret < 0)
3784 		return ERR_PTR(ret);
3785 	if (!ret)
3786 		return NULL;
3787 
3788 	cnt = ret;
3789 	/* This needs to be kzalloc to zero out padding and unused fields, see
3790 	 * comment in btf_record_equal.
3791 	 */
3792 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3793 	if (!rec)
3794 		return ERR_PTR(-ENOMEM);
3795 
3796 	rec->spin_lock_off = -EINVAL;
3797 	rec->timer_off = -EINVAL;
3798 	rec->refcount_off = -EINVAL;
3799 	for (i = 0; i < cnt; i++) {
3800 		field_type_size = btf_field_type_size(info_arr[i].type);
3801 		if (info_arr[i].off + field_type_size > value_size) {
3802 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3803 			ret = -EFAULT;
3804 			goto end;
3805 		}
3806 		if (info_arr[i].off < next_off) {
3807 			ret = -EEXIST;
3808 			goto end;
3809 		}
3810 		next_off = info_arr[i].off + field_type_size;
3811 
3812 		rec->field_mask |= info_arr[i].type;
3813 		rec->fields[i].offset = info_arr[i].off;
3814 		rec->fields[i].type = info_arr[i].type;
3815 		rec->fields[i].size = field_type_size;
3816 
3817 		switch (info_arr[i].type) {
3818 		case BPF_SPIN_LOCK:
3819 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3820 			/* Cache offset for faster lookup at runtime */
3821 			rec->spin_lock_off = rec->fields[i].offset;
3822 			break;
3823 		case BPF_TIMER:
3824 			WARN_ON_ONCE(rec->timer_off >= 0);
3825 			/* Cache offset for faster lookup at runtime */
3826 			rec->timer_off = rec->fields[i].offset;
3827 			break;
3828 		case BPF_REFCOUNT:
3829 			WARN_ON_ONCE(rec->refcount_off >= 0);
3830 			/* Cache offset for faster lookup at runtime */
3831 			rec->refcount_off = rec->fields[i].offset;
3832 			break;
3833 		case BPF_KPTR_UNREF:
3834 		case BPF_KPTR_REF:
3835 		case BPF_KPTR_PERCPU:
3836 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3837 			if (ret < 0)
3838 				goto end;
3839 			break;
3840 		case BPF_LIST_HEAD:
3841 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3842 			if (ret < 0)
3843 				goto end;
3844 			break;
3845 		case BPF_RB_ROOT:
3846 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3847 			if (ret < 0)
3848 				goto end;
3849 			break;
3850 		case BPF_LIST_NODE:
3851 		case BPF_RB_NODE:
3852 			break;
3853 		default:
3854 			ret = -EFAULT;
3855 			goto end;
3856 		}
3857 		rec->cnt++;
3858 	}
3859 
3860 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3861 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3862 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3863 		ret = -EINVAL;
3864 		goto end;
3865 	}
3866 
3867 	if (rec->refcount_off < 0 &&
3868 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3869 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3870 		ret = -EINVAL;
3871 		goto end;
3872 	}
3873 
3874 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3875 	       NULL, rec);
3876 
3877 	return rec;
3878 end:
3879 	btf_record_free(rec);
3880 	return ERR_PTR(ret);
3881 }
3882 
3883 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3884 {
3885 	int i;
3886 
3887 	/* There are three types that signify ownership of some other type:
3888 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3889 	 * kptr_ref only supports storing kernel types, which can't store
3890 	 * references to program allocated local types.
3891 	 *
3892 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3893 	 * does not form cycles.
3894 	 */
3895 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3896 		return 0;
3897 	for (i = 0; i < rec->cnt; i++) {
3898 		struct btf_struct_meta *meta;
3899 		u32 btf_id;
3900 
3901 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3902 			continue;
3903 		btf_id = rec->fields[i].graph_root.value_btf_id;
3904 		meta = btf_find_struct_meta(btf, btf_id);
3905 		if (!meta)
3906 			return -EFAULT;
3907 		rec->fields[i].graph_root.value_rec = meta->record;
3908 
3909 		/* We need to set value_rec for all root types, but no need
3910 		 * to check ownership cycle for a type unless it's also a
3911 		 * node type.
3912 		 */
3913 		if (!(rec->field_mask & BPF_GRAPH_NODE))
3914 			continue;
3915 
3916 		/* We need to ensure ownership acyclicity among all types. The
3917 		 * proper way to do it would be to topologically sort all BTF
3918 		 * IDs based on the ownership edges, since there can be multiple
3919 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3920 		 * following resaoning:
3921 		 *
3922 		 * - A type can only be owned by another type in user BTF if it
3923 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3924 		 * - A type can only _own_ another type in user BTF if it has a
3925 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3926 		 *
3927 		 * We ensure that if a type is both a root and node, its
3928 		 * element types cannot be root types.
3929 		 *
3930 		 * To ensure acyclicity:
3931 		 *
3932 		 * When A is an root type but not a node, its ownership
3933 		 * chain can be:
3934 		 *	A -> B -> C
3935 		 * Where:
3936 		 * - A is an root, e.g. has bpf_rb_root.
3937 		 * - B is both a root and node, e.g. has bpf_rb_node and
3938 		 *   bpf_list_head.
3939 		 * - C is only an root, e.g. has bpf_list_node
3940 		 *
3941 		 * When A is both a root and node, some other type already
3942 		 * owns it in the BTF domain, hence it can not own
3943 		 * another root type through any of the ownership edges.
3944 		 *	A -> B
3945 		 * Where:
3946 		 * - A is both an root and node.
3947 		 * - B is only an node.
3948 		 */
3949 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
3950 			return -ELOOP;
3951 	}
3952 	return 0;
3953 }
3954 
3955 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3956 			      u32 type_id, void *data, u8 bits_offset,
3957 			      struct btf_show *show)
3958 {
3959 	const struct btf_member *member;
3960 	void *safe_data;
3961 	u32 i;
3962 
3963 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3964 	if (!safe_data)
3965 		return;
3966 
3967 	for_each_member(i, t, member) {
3968 		const struct btf_type *member_type = btf_type_by_id(btf,
3969 								member->type);
3970 		const struct btf_kind_operations *ops;
3971 		u32 member_offset, bitfield_size;
3972 		u32 bytes_offset;
3973 		u8 bits8_offset;
3974 
3975 		btf_show_start_member(show, member);
3976 
3977 		member_offset = __btf_member_bit_offset(t, member);
3978 		bitfield_size = __btf_member_bitfield_size(t, member);
3979 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3980 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3981 		if (bitfield_size) {
3982 			safe_data = btf_show_start_type(show, member_type,
3983 							member->type,
3984 							data + bytes_offset);
3985 			if (safe_data)
3986 				btf_bitfield_show(safe_data,
3987 						  bits8_offset,
3988 						  bitfield_size, show);
3989 			btf_show_end_type(show);
3990 		} else {
3991 			ops = btf_type_ops(member_type);
3992 			ops->show(btf, member_type, member->type,
3993 				  data + bytes_offset, bits8_offset, show);
3994 		}
3995 
3996 		btf_show_end_member(show);
3997 	}
3998 
3999 	btf_show_end_struct_type(show);
4000 }
4001 
4002 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4003 			    u32 type_id, void *data, u8 bits_offset,
4004 			    struct btf_show *show)
4005 {
4006 	const struct btf_member *m = show->state.member;
4007 
4008 	/*
4009 	 * First check if any members would be shown (are non-zero).
4010 	 * See comments above "struct btf_show" definition for more
4011 	 * details on how this works at a high-level.
4012 	 */
4013 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4014 		if (!show->state.depth_check) {
4015 			show->state.depth_check = show->state.depth + 1;
4016 			show->state.depth_to_show = 0;
4017 		}
4018 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4019 		/* Restore saved member data here */
4020 		show->state.member = m;
4021 		if (show->state.depth_check != show->state.depth + 1)
4022 			return;
4023 		show->state.depth_check = 0;
4024 
4025 		if (show->state.depth_to_show <= show->state.depth)
4026 			return;
4027 		/*
4028 		 * Reaching here indicates we have recursed and found
4029 		 * non-zero child values.
4030 		 */
4031 	}
4032 
4033 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4034 }
4035 
4036 static struct btf_kind_operations struct_ops = {
4037 	.check_meta = btf_struct_check_meta,
4038 	.resolve = btf_struct_resolve,
4039 	.check_member = btf_struct_check_member,
4040 	.check_kflag_member = btf_generic_check_kflag_member,
4041 	.log_details = btf_struct_log,
4042 	.show = btf_struct_show,
4043 };
4044 
4045 static int btf_enum_check_member(struct btf_verifier_env *env,
4046 				 const struct btf_type *struct_type,
4047 				 const struct btf_member *member,
4048 				 const struct btf_type *member_type)
4049 {
4050 	u32 struct_bits_off = member->offset;
4051 	u32 struct_size, bytes_offset;
4052 
4053 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4054 		btf_verifier_log_member(env, struct_type, member,
4055 					"Member is not byte aligned");
4056 		return -EINVAL;
4057 	}
4058 
4059 	struct_size = struct_type->size;
4060 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4061 	if (struct_size - bytes_offset < member_type->size) {
4062 		btf_verifier_log_member(env, struct_type, member,
4063 					"Member exceeds struct_size");
4064 		return -EINVAL;
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4071 				       const struct btf_type *struct_type,
4072 				       const struct btf_member *member,
4073 				       const struct btf_type *member_type)
4074 {
4075 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4076 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4077 
4078 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4079 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4080 	if (!nr_bits) {
4081 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4082 			btf_verifier_log_member(env, struct_type, member,
4083 						"Member is not byte aligned");
4084 			return -EINVAL;
4085 		}
4086 
4087 		nr_bits = int_bitsize;
4088 	} else if (nr_bits > int_bitsize) {
4089 		btf_verifier_log_member(env, struct_type, member,
4090 					"Invalid member bitfield_size");
4091 		return -EINVAL;
4092 	}
4093 
4094 	struct_size = struct_type->size;
4095 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4096 	if (struct_size < bytes_end) {
4097 		btf_verifier_log_member(env, struct_type, member,
4098 					"Member exceeds struct_size");
4099 		return -EINVAL;
4100 	}
4101 
4102 	return 0;
4103 }
4104 
4105 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4106 			       const struct btf_type *t,
4107 			       u32 meta_left)
4108 {
4109 	const struct btf_enum *enums = btf_type_enum(t);
4110 	struct btf *btf = env->btf;
4111 	const char *fmt_str;
4112 	u16 i, nr_enums;
4113 	u32 meta_needed;
4114 
4115 	nr_enums = btf_type_vlen(t);
4116 	meta_needed = nr_enums * sizeof(*enums);
4117 
4118 	if (meta_left < meta_needed) {
4119 		btf_verifier_log_basic(env, t,
4120 				       "meta_left:%u meta_needed:%u",
4121 				       meta_left, meta_needed);
4122 		return -EINVAL;
4123 	}
4124 
4125 	if (t->size > 8 || !is_power_of_2(t->size)) {
4126 		btf_verifier_log_type(env, t, "Unexpected size");
4127 		return -EINVAL;
4128 	}
4129 
4130 	/* enum type either no name or a valid one */
4131 	if (t->name_off &&
4132 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4133 		btf_verifier_log_type(env, t, "Invalid name");
4134 		return -EINVAL;
4135 	}
4136 
4137 	btf_verifier_log_type(env, t, NULL);
4138 
4139 	for (i = 0; i < nr_enums; i++) {
4140 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4141 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4142 					 enums[i].name_off);
4143 			return -EINVAL;
4144 		}
4145 
4146 		/* enum member must have a valid name */
4147 		if (!enums[i].name_off ||
4148 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4149 			btf_verifier_log_type(env, t, "Invalid name");
4150 			return -EINVAL;
4151 		}
4152 
4153 		if (env->log.level == BPF_LOG_KERNEL)
4154 			continue;
4155 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4156 		btf_verifier_log(env, fmt_str,
4157 				 __btf_name_by_offset(btf, enums[i].name_off),
4158 				 enums[i].val);
4159 	}
4160 
4161 	return meta_needed;
4162 }
4163 
4164 static void btf_enum_log(struct btf_verifier_env *env,
4165 			 const struct btf_type *t)
4166 {
4167 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4168 }
4169 
4170 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4171 			  u32 type_id, void *data, u8 bits_offset,
4172 			  struct btf_show *show)
4173 {
4174 	const struct btf_enum *enums = btf_type_enum(t);
4175 	u32 i, nr_enums = btf_type_vlen(t);
4176 	void *safe_data;
4177 	int v;
4178 
4179 	safe_data = btf_show_start_type(show, t, type_id, data);
4180 	if (!safe_data)
4181 		return;
4182 
4183 	v = *(int *)safe_data;
4184 
4185 	for (i = 0; i < nr_enums; i++) {
4186 		if (v != enums[i].val)
4187 			continue;
4188 
4189 		btf_show_type_value(show, "%s",
4190 				    __btf_name_by_offset(btf,
4191 							 enums[i].name_off));
4192 
4193 		btf_show_end_type(show);
4194 		return;
4195 	}
4196 
4197 	if (btf_type_kflag(t))
4198 		btf_show_type_value(show, "%d", v);
4199 	else
4200 		btf_show_type_value(show, "%u", v);
4201 	btf_show_end_type(show);
4202 }
4203 
4204 static struct btf_kind_operations enum_ops = {
4205 	.check_meta = btf_enum_check_meta,
4206 	.resolve = btf_df_resolve,
4207 	.check_member = btf_enum_check_member,
4208 	.check_kflag_member = btf_enum_check_kflag_member,
4209 	.log_details = btf_enum_log,
4210 	.show = btf_enum_show,
4211 };
4212 
4213 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4214 				 const struct btf_type *t,
4215 				 u32 meta_left)
4216 {
4217 	const struct btf_enum64 *enums = btf_type_enum64(t);
4218 	struct btf *btf = env->btf;
4219 	const char *fmt_str;
4220 	u16 i, nr_enums;
4221 	u32 meta_needed;
4222 
4223 	nr_enums = btf_type_vlen(t);
4224 	meta_needed = nr_enums * sizeof(*enums);
4225 
4226 	if (meta_left < meta_needed) {
4227 		btf_verifier_log_basic(env, t,
4228 				       "meta_left:%u meta_needed:%u",
4229 				       meta_left, meta_needed);
4230 		return -EINVAL;
4231 	}
4232 
4233 	if (t->size > 8 || !is_power_of_2(t->size)) {
4234 		btf_verifier_log_type(env, t, "Unexpected size");
4235 		return -EINVAL;
4236 	}
4237 
4238 	/* enum type either no name or a valid one */
4239 	if (t->name_off &&
4240 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4241 		btf_verifier_log_type(env, t, "Invalid name");
4242 		return -EINVAL;
4243 	}
4244 
4245 	btf_verifier_log_type(env, t, NULL);
4246 
4247 	for (i = 0; i < nr_enums; i++) {
4248 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4249 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4250 					 enums[i].name_off);
4251 			return -EINVAL;
4252 		}
4253 
4254 		/* enum member must have a valid name */
4255 		if (!enums[i].name_off ||
4256 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4257 			btf_verifier_log_type(env, t, "Invalid name");
4258 			return -EINVAL;
4259 		}
4260 
4261 		if (env->log.level == BPF_LOG_KERNEL)
4262 			continue;
4263 
4264 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4265 		btf_verifier_log(env, fmt_str,
4266 				 __btf_name_by_offset(btf, enums[i].name_off),
4267 				 btf_enum64_value(enums + i));
4268 	}
4269 
4270 	return meta_needed;
4271 }
4272 
4273 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4274 			    u32 type_id, void *data, u8 bits_offset,
4275 			    struct btf_show *show)
4276 {
4277 	const struct btf_enum64 *enums = btf_type_enum64(t);
4278 	u32 i, nr_enums = btf_type_vlen(t);
4279 	void *safe_data;
4280 	s64 v;
4281 
4282 	safe_data = btf_show_start_type(show, t, type_id, data);
4283 	if (!safe_data)
4284 		return;
4285 
4286 	v = *(u64 *)safe_data;
4287 
4288 	for (i = 0; i < nr_enums; i++) {
4289 		if (v != btf_enum64_value(enums + i))
4290 			continue;
4291 
4292 		btf_show_type_value(show, "%s",
4293 				    __btf_name_by_offset(btf,
4294 							 enums[i].name_off));
4295 
4296 		btf_show_end_type(show);
4297 		return;
4298 	}
4299 
4300 	if (btf_type_kflag(t))
4301 		btf_show_type_value(show, "%lld", v);
4302 	else
4303 		btf_show_type_value(show, "%llu", v);
4304 	btf_show_end_type(show);
4305 }
4306 
4307 static struct btf_kind_operations enum64_ops = {
4308 	.check_meta = btf_enum64_check_meta,
4309 	.resolve = btf_df_resolve,
4310 	.check_member = btf_enum_check_member,
4311 	.check_kflag_member = btf_enum_check_kflag_member,
4312 	.log_details = btf_enum_log,
4313 	.show = btf_enum64_show,
4314 };
4315 
4316 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4317 				     const struct btf_type *t,
4318 				     u32 meta_left)
4319 {
4320 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4321 
4322 	if (meta_left < meta_needed) {
4323 		btf_verifier_log_basic(env, t,
4324 				       "meta_left:%u meta_needed:%u",
4325 				       meta_left, meta_needed);
4326 		return -EINVAL;
4327 	}
4328 
4329 	if (t->name_off) {
4330 		btf_verifier_log_type(env, t, "Invalid name");
4331 		return -EINVAL;
4332 	}
4333 
4334 	if (btf_type_kflag(t)) {
4335 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4336 		return -EINVAL;
4337 	}
4338 
4339 	btf_verifier_log_type(env, t, NULL);
4340 
4341 	return meta_needed;
4342 }
4343 
4344 static void btf_func_proto_log(struct btf_verifier_env *env,
4345 			       const struct btf_type *t)
4346 {
4347 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4348 	u16 nr_args = btf_type_vlen(t), i;
4349 
4350 	btf_verifier_log(env, "return=%u args=(", t->type);
4351 	if (!nr_args) {
4352 		btf_verifier_log(env, "void");
4353 		goto done;
4354 	}
4355 
4356 	if (nr_args == 1 && !args[0].type) {
4357 		/* Only one vararg */
4358 		btf_verifier_log(env, "vararg");
4359 		goto done;
4360 	}
4361 
4362 	btf_verifier_log(env, "%u %s", args[0].type,
4363 			 __btf_name_by_offset(env->btf,
4364 					      args[0].name_off));
4365 	for (i = 1; i < nr_args - 1; i++)
4366 		btf_verifier_log(env, ", %u %s", args[i].type,
4367 				 __btf_name_by_offset(env->btf,
4368 						      args[i].name_off));
4369 
4370 	if (nr_args > 1) {
4371 		const struct btf_param *last_arg = &args[nr_args - 1];
4372 
4373 		if (last_arg->type)
4374 			btf_verifier_log(env, ", %u %s", last_arg->type,
4375 					 __btf_name_by_offset(env->btf,
4376 							      last_arg->name_off));
4377 		else
4378 			btf_verifier_log(env, ", vararg");
4379 	}
4380 
4381 done:
4382 	btf_verifier_log(env, ")");
4383 }
4384 
4385 static struct btf_kind_operations func_proto_ops = {
4386 	.check_meta = btf_func_proto_check_meta,
4387 	.resolve = btf_df_resolve,
4388 	/*
4389 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4390 	 * a struct's member.
4391 	 *
4392 	 * It should be a function pointer instead.
4393 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4394 	 *
4395 	 * Hence, there is no btf_func_check_member().
4396 	 */
4397 	.check_member = btf_df_check_member,
4398 	.check_kflag_member = btf_df_check_kflag_member,
4399 	.log_details = btf_func_proto_log,
4400 	.show = btf_df_show,
4401 };
4402 
4403 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4404 			       const struct btf_type *t,
4405 			       u32 meta_left)
4406 {
4407 	if (!t->name_off ||
4408 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4409 		btf_verifier_log_type(env, t, "Invalid name");
4410 		return -EINVAL;
4411 	}
4412 
4413 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4414 		btf_verifier_log_type(env, t, "Invalid func linkage");
4415 		return -EINVAL;
4416 	}
4417 
4418 	if (btf_type_kflag(t)) {
4419 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4420 		return -EINVAL;
4421 	}
4422 
4423 	btf_verifier_log_type(env, t, NULL);
4424 
4425 	return 0;
4426 }
4427 
4428 static int btf_func_resolve(struct btf_verifier_env *env,
4429 			    const struct resolve_vertex *v)
4430 {
4431 	const struct btf_type *t = v->t;
4432 	u32 next_type_id = t->type;
4433 	int err;
4434 
4435 	err = btf_func_check(env, t);
4436 	if (err)
4437 		return err;
4438 
4439 	env_stack_pop_resolved(env, next_type_id, 0);
4440 	return 0;
4441 }
4442 
4443 static struct btf_kind_operations func_ops = {
4444 	.check_meta = btf_func_check_meta,
4445 	.resolve = btf_func_resolve,
4446 	.check_member = btf_df_check_member,
4447 	.check_kflag_member = btf_df_check_kflag_member,
4448 	.log_details = btf_ref_type_log,
4449 	.show = btf_df_show,
4450 };
4451 
4452 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4453 			      const struct btf_type *t,
4454 			      u32 meta_left)
4455 {
4456 	const struct btf_var *var;
4457 	u32 meta_needed = sizeof(*var);
4458 
4459 	if (meta_left < meta_needed) {
4460 		btf_verifier_log_basic(env, t,
4461 				       "meta_left:%u meta_needed:%u",
4462 				       meta_left, meta_needed);
4463 		return -EINVAL;
4464 	}
4465 
4466 	if (btf_type_vlen(t)) {
4467 		btf_verifier_log_type(env, t, "vlen != 0");
4468 		return -EINVAL;
4469 	}
4470 
4471 	if (btf_type_kflag(t)) {
4472 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4473 		return -EINVAL;
4474 	}
4475 
4476 	if (!t->name_off ||
4477 	    !__btf_name_valid(env->btf, t->name_off)) {
4478 		btf_verifier_log_type(env, t, "Invalid name");
4479 		return -EINVAL;
4480 	}
4481 
4482 	/* A var cannot be in type void */
4483 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4484 		btf_verifier_log_type(env, t, "Invalid type_id");
4485 		return -EINVAL;
4486 	}
4487 
4488 	var = btf_type_var(t);
4489 	if (var->linkage != BTF_VAR_STATIC &&
4490 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4491 		btf_verifier_log_type(env, t, "Linkage not supported");
4492 		return -EINVAL;
4493 	}
4494 
4495 	btf_verifier_log_type(env, t, NULL);
4496 
4497 	return meta_needed;
4498 }
4499 
4500 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4501 {
4502 	const struct btf_var *var = btf_type_var(t);
4503 
4504 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4505 }
4506 
4507 static const struct btf_kind_operations var_ops = {
4508 	.check_meta		= btf_var_check_meta,
4509 	.resolve		= btf_var_resolve,
4510 	.check_member		= btf_df_check_member,
4511 	.check_kflag_member	= btf_df_check_kflag_member,
4512 	.log_details		= btf_var_log,
4513 	.show			= btf_var_show,
4514 };
4515 
4516 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4517 				  const struct btf_type *t,
4518 				  u32 meta_left)
4519 {
4520 	const struct btf_var_secinfo *vsi;
4521 	u64 last_vsi_end_off = 0, sum = 0;
4522 	u32 i, meta_needed;
4523 
4524 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4525 	if (meta_left < meta_needed) {
4526 		btf_verifier_log_basic(env, t,
4527 				       "meta_left:%u meta_needed:%u",
4528 				       meta_left, meta_needed);
4529 		return -EINVAL;
4530 	}
4531 
4532 	if (!t->size) {
4533 		btf_verifier_log_type(env, t, "size == 0");
4534 		return -EINVAL;
4535 	}
4536 
4537 	if (btf_type_kflag(t)) {
4538 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4539 		return -EINVAL;
4540 	}
4541 
4542 	if (!t->name_off ||
4543 	    !btf_name_valid_section(env->btf, t->name_off)) {
4544 		btf_verifier_log_type(env, t, "Invalid name");
4545 		return -EINVAL;
4546 	}
4547 
4548 	btf_verifier_log_type(env, t, NULL);
4549 
4550 	for_each_vsi(i, t, vsi) {
4551 		/* A var cannot be in type void */
4552 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4553 			btf_verifier_log_vsi(env, t, vsi,
4554 					     "Invalid type_id");
4555 			return -EINVAL;
4556 		}
4557 
4558 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4559 			btf_verifier_log_vsi(env, t, vsi,
4560 					     "Invalid offset");
4561 			return -EINVAL;
4562 		}
4563 
4564 		if (!vsi->size || vsi->size > t->size) {
4565 			btf_verifier_log_vsi(env, t, vsi,
4566 					     "Invalid size");
4567 			return -EINVAL;
4568 		}
4569 
4570 		last_vsi_end_off = vsi->offset + vsi->size;
4571 		if (last_vsi_end_off > t->size) {
4572 			btf_verifier_log_vsi(env, t, vsi,
4573 					     "Invalid offset+size");
4574 			return -EINVAL;
4575 		}
4576 
4577 		btf_verifier_log_vsi(env, t, vsi, NULL);
4578 		sum += vsi->size;
4579 	}
4580 
4581 	if (t->size < sum) {
4582 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4583 		return -EINVAL;
4584 	}
4585 
4586 	return meta_needed;
4587 }
4588 
4589 static int btf_datasec_resolve(struct btf_verifier_env *env,
4590 			       const struct resolve_vertex *v)
4591 {
4592 	const struct btf_var_secinfo *vsi;
4593 	struct btf *btf = env->btf;
4594 	u16 i;
4595 
4596 	env->resolve_mode = RESOLVE_TBD;
4597 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4598 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4599 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4600 								 var_type_id);
4601 		if (!var_type || !btf_type_is_var(var_type)) {
4602 			btf_verifier_log_vsi(env, v->t, vsi,
4603 					     "Not a VAR kind member");
4604 			return -EINVAL;
4605 		}
4606 
4607 		if (!env_type_is_resolve_sink(env, var_type) &&
4608 		    !env_type_is_resolved(env, var_type_id)) {
4609 			env_stack_set_next_member(env, i + 1);
4610 			return env_stack_push(env, var_type, var_type_id);
4611 		}
4612 
4613 		type_id = var_type->type;
4614 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4615 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4616 			return -EINVAL;
4617 		}
4618 
4619 		if (vsi->size < type_size) {
4620 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4621 			return -EINVAL;
4622 		}
4623 	}
4624 
4625 	env_stack_pop_resolved(env, 0, 0);
4626 	return 0;
4627 }
4628 
4629 static void btf_datasec_log(struct btf_verifier_env *env,
4630 			    const struct btf_type *t)
4631 {
4632 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4633 }
4634 
4635 static void btf_datasec_show(const struct btf *btf,
4636 			     const struct btf_type *t, u32 type_id,
4637 			     void *data, u8 bits_offset,
4638 			     struct btf_show *show)
4639 {
4640 	const struct btf_var_secinfo *vsi;
4641 	const struct btf_type *var;
4642 	u32 i;
4643 
4644 	if (!btf_show_start_type(show, t, type_id, data))
4645 		return;
4646 
4647 	btf_show_type_value(show, "section (\"%s\") = {",
4648 			    __btf_name_by_offset(btf, t->name_off));
4649 	for_each_vsi(i, t, vsi) {
4650 		var = btf_type_by_id(btf, vsi->type);
4651 		if (i)
4652 			btf_show(show, ",");
4653 		btf_type_ops(var)->show(btf, var, vsi->type,
4654 					data + vsi->offset, bits_offset, show);
4655 	}
4656 	btf_show_end_type(show);
4657 }
4658 
4659 static const struct btf_kind_operations datasec_ops = {
4660 	.check_meta		= btf_datasec_check_meta,
4661 	.resolve		= btf_datasec_resolve,
4662 	.check_member		= btf_df_check_member,
4663 	.check_kflag_member	= btf_df_check_kflag_member,
4664 	.log_details		= btf_datasec_log,
4665 	.show			= btf_datasec_show,
4666 };
4667 
4668 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4669 				const struct btf_type *t,
4670 				u32 meta_left)
4671 {
4672 	if (btf_type_vlen(t)) {
4673 		btf_verifier_log_type(env, t, "vlen != 0");
4674 		return -EINVAL;
4675 	}
4676 
4677 	if (btf_type_kflag(t)) {
4678 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4679 		return -EINVAL;
4680 	}
4681 
4682 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4683 	    t->size != 16) {
4684 		btf_verifier_log_type(env, t, "Invalid type_size");
4685 		return -EINVAL;
4686 	}
4687 
4688 	btf_verifier_log_type(env, t, NULL);
4689 
4690 	return 0;
4691 }
4692 
4693 static int btf_float_check_member(struct btf_verifier_env *env,
4694 				  const struct btf_type *struct_type,
4695 				  const struct btf_member *member,
4696 				  const struct btf_type *member_type)
4697 {
4698 	u64 start_offset_bytes;
4699 	u64 end_offset_bytes;
4700 	u64 misalign_bits;
4701 	u64 align_bytes;
4702 	u64 align_bits;
4703 
4704 	/* Different architectures have different alignment requirements, so
4705 	 * here we check only for the reasonable minimum. This way we ensure
4706 	 * that types after CO-RE can pass the kernel BTF verifier.
4707 	 */
4708 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4709 	align_bits = align_bytes * BITS_PER_BYTE;
4710 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4711 	if (misalign_bits) {
4712 		btf_verifier_log_member(env, struct_type, member,
4713 					"Member is not properly aligned");
4714 		return -EINVAL;
4715 	}
4716 
4717 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4718 	end_offset_bytes = start_offset_bytes + member_type->size;
4719 	if (end_offset_bytes > struct_type->size) {
4720 		btf_verifier_log_member(env, struct_type, member,
4721 					"Member exceeds struct_size");
4722 		return -EINVAL;
4723 	}
4724 
4725 	return 0;
4726 }
4727 
4728 static void btf_float_log(struct btf_verifier_env *env,
4729 			  const struct btf_type *t)
4730 {
4731 	btf_verifier_log(env, "size=%u", t->size);
4732 }
4733 
4734 static const struct btf_kind_operations float_ops = {
4735 	.check_meta = btf_float_check_meta,
4736 	.resolve = btf_df_resolve,
4737 	.check_member = btf_float_check_member,
4738 	.check_kflag_member = btf_generic_check_kflag_member,
4739 	.log_details = btf_float_log,
4740 	.show = btf_df_show,
4741 };
4742 
4743 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4744 			      const struct btf_type *t,
4745 			      u32 meta_left)
4746 {
4747 	const struct btf_decl_tag *tag;
4748 	u32 meta_needed = sizeof(*tag);
4749 	s32 component_idx;
4750 	const char *value;
4751 
4752 	if (meta_left < meta_needed) {
4753 		btf_verifier_log_basic(env, t,
4754 				       "meta_left:%u meta_needed:%u",
4755 				       meta_left, meta_needed);
4756 		return -EINVAL;
4757 	}
4758 
4759 	value = btf_name_by_offset(env->btf, t->name_off);
4760 	if (!value || !value[0]) {
4761 		btf_verifier_log_type(env, t, "Invalid value");
4762 		return -EINVAL;
4763 	}
4764 
4765 	if (btf_type_vlen(t)) {
4766 		btf_verifier_log_type(env, t, "vlen != 0");
4767 		return -EINVAL;
4768 	}
4769 
4770 	if (btf_type_kflag(t)) {
4771 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4772 		return -EINVAL;
4773 	}
4774 
4775 	component_idx = btf_type_decl_tag(t)->component_idx;
4776 	if (component_idx < -1) {
4777 		btf_verifier_log_type(env, t, "Invalid component_idx");
4778 		return -EINVAL;
4779 	}
4780 
4781 	btf_verifier_log_type(env, t, NULL);
4782 
4783 	return meta_needed;
4784 }
4785 
4786 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4787 			   const struct resolve_vertex *v)
4788 {
4789 	const struct btf_type *next_type;
4790 	const struct btf_type *t = v->t;
4791 	u32 next_type_id = t->type;
4792 	struct btf *btf = env->btf;
4793 	s32 component_idx;
4794 	u32 vlen;
4795 
4796 	next_type = btf_type_by_id(btf, next_type_id);
4797 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4798 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4799 		return -EINVAL;
4800 	}
4801 
4802 	if (!env_type_is_resolve_sink(env, next_type) &&
4803 	    !env_type_is_resolved(env, next_type_id))
4804 		return env_stack_push(env, next_type, next_type_id);
4805 
4806 	component_idx = btf_type_decl_tag(t)->component_idx;
4807 	if (component_idx != -1) {
4808 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4809 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4810 			return -EINVAL;
4811 		}
4812 
4813 		if (btf_type_is_struct(next_type)) {
4814 			vlen = btf_type_vlen(next_type);
4815 		} else {
4816 			/* next_type should be a function */
4817 			next_type = btf_type_by_id(btf, next_type->type);
4818 			vlen = btf_type_vlen(next_type);
4819 		}
4820 
4821 		if ((u32)component_idx >= vlen) {
4822 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4823 			return -EINVAL;
4824 		}
4825 	}
4826 
4827 	env_stack_pop_resolved(env, next_type_id, 0);
4828 
4829 	return 0;
4830 }
4831 
4832 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4833 {
4834 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4835 			 btf_type_decl_tag(t)->component_idx);
4836 }
4837 
4838 static const struct btf_kind_operations decl_tag_ops = {
4839 	.check_meta = btf_decl_tag_check_meta,
4840 	.resolve = btf_decl_tag_resolve,
4841 	.check_member = btf_df_check_member,
4842 	.check_kflag_member = btf_df_check_kflag_member,
4843 	.log_details = btf_decl_tag_log,
4844 	.show = btf_df_show,
4845 };
4846 
4847 static int btf_func_proto_check(struct btf_verifier_env *env,
4848 				const struct btf_type *t)
4849 {
4850 	const struct btf_type *ret_type;
4851 	const struct btf_param *args;
4852 	const struct btf *btf;
4853 	u16 nr_args, i;
4854 	int err;
4855 
4856 	btf = env->btf;
4857 	args = (const struct btf_param *)(t + 1);
4858 	nr_args = btf_type_vlen(t);
4859 
4860 	/* Check func return type which could be "void" (t->type == 0) */
4861 	if (t->type) {
4862 		u32 ret_type_id = t->type;
4863 
4864 		ret_type = btf_type_by_id(btf, ret_type_id);
4865 		if (!ret_type) {
4866 			btf_verifier_log_type(env, t, "Invalid return type");
4867 			return -EINVAL;
4868 		}
4869 
4870 		if (btf_type_is_resolve_source_only(ret_type)) {
4871 			btf_verifier_log_type(env, t, "Invalid return type");
4872 			return -EINVAL;
4873 		}
4874 
4875 		if (btf_type_needs_resolve(ret_type) &&
4876 		    !env_type_is_resolved(env, ret_type_id)) {
4877 			err = btf_resolve(env, ret_type, ret_type_id);
4878 			if (err)
4879 				return err;
4880 		}
4881 
4882 		/* Ensure the return type is a type that has a size */
4883 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4884 			btf_verifier_log_type(env, t, "Invalid return type");
4885 			return -EINVAL;
4886 		}
4887 	}
4888 
4889 	if (!nr_args)
4890 		return 0;
4891 
4892 	/* Last func arg type_id could be 0 if it is a vararg */
4893 	if (!args[nr_args - 1].type) {
4894 		if (args[nr_args - 1].name_off) {
4895 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4896 					      nr_args);
4897 			return -EINVAL;
4898 		}
4899 		nr_args--;
4900 	}
4901 
4902 	for (i = 0; i < nr_args; i++) {
4903 		const struct btf_type *arg_type;
4904 		u32 arg_type_id;
4905 
4906 		arg_type_id = args[i].type;
4907 		arg_type = btf_type_by_id(btf, arg_type_id);
4908 		if (!arg_type) {
4909 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4910 			return -EINVAL;
4911 		}
4912 
4913 		if (btf_type_is_resolve_source_only(arg_type)) {
4914 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4915 			return -EINVAL;
4916 		}
4917 
4918 		if (args[i].name_off &&
4919 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4920 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4921 			btf_verifier_log_type(env, t,
4922 					      "Invalid arg#%u", i + 1);
4923 			return -EINVAL;
4924 		}
4925 
4926 		if (btf_type_needs_resolve(arg_type) &&
4927 		    !env_type_is_resolved(env, arg_type_id)) {
4928 			err = btf_resolve(env, arg_type, arg_type_id);
4929 			if (err)
4930 				return err;
4931 		}
4932 
4933 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4934 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4935 			return -EINVAL;
4936 		}
4937 	}
4938 
4939 	return 0;
4940 }
4941 
4942 static int btf_func_check(struct btf_verifier_env *env,
4943 			  const struct btf_type *t)
4944 {
4945 	const struct btf_type *proto_type;
4946 	const struct btf_param *args;
4947 	const struct btf *btf;
4948 	u16 nr_args, i;
4949 
4950 	btf = env->btf;
4951 	proto_type = btf_type_by_id(btf, t->type);
4952 
4953 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4954 		btf_verifier_log_type(env, t, "Invalid type_id");
4955 		return -EINVAL;
4956 	}
4957 
4958 	args = (const struct btf_param *)(proto_type + 1);
4959 	nr_args = btf_type_vlen(proto_type);
4960 	for (i = 0; i < nr_args; i++) {
4961 		if (!args[i].name_off && args[i].type) {
4962 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4963 			return -EINVAL;
4964 		}
4965 	}
4966 
4967 	return 0;
4968 }
4969 
4970 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4971 	[BTF_KIND_INT] = &int_ops,
4972 	[BTF_KIND_PTR] = &ptr_ops,
4973 	[BTF_KIND_ARRAY] = &array_ops,
4974 	[BTF_KIND_STRUCT] = &struct_ops,
4975 	[BTF_KIND_UNION] = &struct_ops,
4976 	[BTF_KIND_ENUM] = &enum_ops,
4977 	[BTF_KIND_FWD] = &fwd_ops,
4978 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4979 	[BTF_KIND_VOLATILE] = &modifier_ops,
4980 	[BTF_KIND_CONST] = &modifier_ops,
4981 	[BTF_KIND_RESTRICT] = &modifier_ops,
4982 	[BTF_KIND_FUNC] = &func_ops,
4983 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4984 	[BTF_KIND_VAR] = &var_ops,
4985 	[BTF_KIND_DATASEC] = &datasec_ops,
4986 	[BTF_KIND_FLOAT] = &float_ops,
4987 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4988 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4989 	[BTF_KIND_ENUM64] = &enum64_ops,
4990 };
4991 
4992 static s32 btf_check_meta(struct btf_verifier_env *env,
4993 			  const struct btf_type *t,
4994 			  u32 meta_left)
4995 {
4996 	u32 saved_meta_left = meta_left;
4997 	s32 var_meta_size;
4998 
4999 	if (meta_left < sizeof(*t)) {
5000 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5001 				 env->log_type_id, meta_left, sizeof(*t));
5002 		return -EINVAL;
5003 	}
5004 	meta_left -= sizeof(*t);
5005 
5006 	if (t->info & ~BTF_INFO_MASK) {
5007 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5008 				 env->log_type_id, t->info);
5009 		return -EINVAL;
5010 	}
5011 
5012 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5013 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5014 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5015 				 env->log_type_id, BTF_INFO_KIND(t->info));
5016 		return -EINVAL;
5017 	}
5018 
5019 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5020 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5021 				 env->log_type_id, t->name_off);
5022 		return -EINVAL;
5023 	}
5024 
5025 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5026 	if (var_meta_size < 0)
5027 		return var_meta_size;
5028 
5029 	meta_left -= var_meta_size;
5030 
5031 	return saved_meta_left - meta_left;
5032 }
5033 
5034 static int btf_check_all_metas(struct btf_verifier_env *env)
5035 {
5036 	struct btf *btf = env->btf;
5037 	struct btf_header *hdr;
5038 	void *cur, *end;
5039 
5040 	hdr = &btf->hdr;
5041 	cur = btf->nohdr_data + hdr->type_off;
5042 	end = cur + hdr->type_len;
5043 
5044 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5045 	while (cur < end) {
5046 		struct btf_type *t = cur;
5047 		s32 meta_size;
5048 
5049 		meta_size = btf_check_meta(env, t, end - cur);
5050 		if (meta_size < 0)
5051 			return meta_size;
5052 
5053 		btf_add_type(env, t);
5054 		cur += meta_size;
5055 		env->log_type_id++;
5056 	}
5057 
5058 	return 0;
5059 }
5060 
5061 static bool btf_resolve_valid(struct btf_verifier_env *env,
5062 			      const struct btf_type *t,
5063 			      u32 type_id)
5064 {
5065 	struct btf *btf = env->btf;
5066 
5067 	if (!env_type_is_resolved(env, type_id))
5068 		return false;
5069 
5070 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5071 		return !btf_resolved_type_id(btf, type_id) &&
5072 		       !btf_resolved_type_size(btf, type_id);
5073 
5074 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5075 		return btf_resolved_type_id(btf, type_id) &&
5076 		       !btf_resolved_type_size(btf, type_id);
5077 
5078 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5079 	    btf_type_is_var(t)) {
5080 		t = btf_type_id_resolve(btf, &type_id);
5081 		return t &&
5082 		       !btf_type_is_modifier(t) &&
5083 		       !btf_type_is_var(t) &&
5084 		       !btf_type_is_datasec(t);
5085 	}
5086 
5087 	if (btf_type_is_array(t)) {
5088 		const struct btf_array *array = btf_type_array(t);
5089 		const struct btf_type *elem_type;
5090 		u32 elem_type_id = array->type;
5091 		u32 elem_size;
5092 
5093 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5094 		return elem_type && !btf_type_is_modifier(elem_type) &&
5095 			(array->nelems * elem_size ==
5096 			 btf_resolved_type_size(btf, type_id));
5097 	}
5098 
5099 	return false;
5100 }
5101 
5102 static int btf_resolve(struct btf_verifier_env *env,
5103 		       const struct btf_type *t, u32 type_id)
5104 {
5105 	u32 save_log_type_id = env->log_type_id;
5106 	const struct resolve_vertex *v;
5107 	int err = 0;
5108 
5109 	env->resolve_mode = RESOLVE_TBD;
5110 	env_stack_push(env, t, type_id);
5111 	while (!err && (v = env_stack_peak(env))) {
5112 		env->log_type_id = v->type_id;
5113 		err = btf_type_ops(v->t)->resolve(env, v);
5114 	}
5115 
5116 	env->log_type_id = type_id;
5117 	if (err == -E2BIG) {
5118 		btf_verifier_log_type(env, t,
5119 				      "Exceeded max resolving depth:%u",
5120 				      MAX_RESOLVE_DEPTH);
5121 	} else if (err == -EEXIST) {
5122 		btf_verifier_log_type(env, t, "Loop detected");
5123 	}
5124 
5125 	/* Final sanity check */
5126 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5127 		btf_verifier_log_type(env, t, "Invalid resolve state");
5128 		err = -EINVAL;
5129 	}
5130 
5131 	env->log_type_id = save_log_type_id;
5132 	return err;
5133 }
5134 
5135 static int btf_check_all_types(struct btf_verifier_env *env)
5136 {
5137 	struct btf *btf = env->btf;
5138 	const struct btf_type *t;
5139 	u32 type_id, i;
5140 	int err;
5141 
5142 	err = env_resolve_init(env);
5143 	if (err)
5144 		return err;
5145 
5146 	env->phase++;
5147 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5148 		type_id = btf->start_id + i;
5149 		t = btf_type_by_id(btf, type_id);
5150 
5151 		env->log_type_id = type_id;
5152 		if (btf_type_needs_resolve(t) &&
5153 		    !env_type_is_resolved(env, type_id)) {
5154 			err = btf_resolve(env, t, type_id);
5155 			if (err)
5156 				return err;
5157 		}
5158 
5159 		if (btf_type_is_func_proto(t)) {
5160 			err = btf_func_proto_check(env, t);
5161 			if (err)
5162 				return err;
5163 		}
5164 	}
5165 
5166 	return 0;
5167 }
5168 
5169 static int btf_parse_type_sec(struct btf_verifier_env *env)
5170 {
5171 	const struct btf_header *hdr = &env->btf->hdr;
5172 	int err;
5173 
5174 	/* Type section must align to 4 bytes */
5175 	if (hdr->type_off & (sizeof(u32) - 1)) {
5176 		btf_verifier_log(env, "Unaligned type_off");
5177 		return -EINVAL;
5178 	}
5179 
5180 	if (!env->btf->base_btf && !hdr->type_len) {
5181 		btf_verifier_log(env, "No type found");
5182 		return -EINVAL;
5183 	}
5184 
5185 	err = btf_check_all_metas(env);
5186 	if (err)
5187 		return err;
5188 
5189 	return btf_check_all_types(env);
5190 }
5191 
5192 static int btf_parse_str_sec(struct btf_verifier_env *env)
5193 {
5194 	const struct btf_header *hdr;
5195 	struct btf *btf = env->btf;
5196 	const char *start, *end;
5197 
5198 	hdr = &btf->hdr;
5199 	start = btf->nohdr_data + hdr->str_off;
5200 	end = start + hdr->str_len;
5201 
5202 	if (end != btf->data + btf->data_size) {
5203 		btf_verifier_log(env, "String section is not at the end");
5204 		return -EINVAL;
5205 	}
5206 
5207 	btf->strings = start;
5208 
5209 	if (btf->base_btf && !hdr->str_len)
5210 		return 0;
5211 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5212 		btf_verifier_log(env, "Invalid string section");
5213 		return -EINVAL;
5214 	}
5215 	if (!btf->base_btf && start[0]) {
5216 		btf_verifier_log(env, "Invalid string section");
5217 		return -EINVAL;
5218 	}
5219 
5220 	return 0;
5221 }
5222 
5223 static const size_t btf_sec_info_offset[] = {
5224 	offsetof(struct btf_header, type_off),
5225 	offsetof(struct btf_header, str_off),
5226 };
5227 
5228 static int btf_sec_info_cmp(const void *a, const void *b)
5229 {
5230 	const struct btf_sec_info *x = a;
5231 	const struct btf_sec_info *y = b;
5232 
5233 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5234 }
5235 
5236 static int btf_check_sec_info(struct btf_verifier_env *env,
5237 			      u32 btf_data_size)
5238 {
5239 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5240 	u32 total, expected_total, i;
5241 	const struct btf_header *hdr;
5242 	const struct btf *btf;
5243 
5244 	btf = env->btf;
5245 	hdr = &btf->hdr;
5246 
5247 	/* Populate the secs from hdr */
5248 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5249 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5250 						   btf_sec_info_offset[i]);
5251 
5252 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5253 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5254 
5255 	/* Check for gaps and overlap among sections */
5256 	total = 0;
5257 	expected_total = btf_data_size - hdr->hdr_len;
5258 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5259 		if (expected_total < secs[i].off) {
5260 			btf_verifier_log(env, "Invalid section offset");
5261 			return -EINVAL;
5262 		}
5263 		if (total < secs[i].off) {
5264 			/* gap */
5265 			btf_verifier_log(env, "Unsupported section found");
5266 			return -EINVAL;
5267 		}
5268 		if (total > secs[i].off) {
5269 			btf_verifier_log(env, "Section overlap found");
5270 			return -EINVAL;
5271 		}
5272 		if (expected_total - total < secs[i].len) {
5273 			btf_verifier_log(env,
5274 					 "Total section length too long");
5275 			return -EINVAL;
5276 		}
5277 		total += secs[i].len;
5278 	}
5279 
5280 	/* There is data other than hdr and known sections */
5281 	if (expected_total != total) {
5282 		btf_verifier_log(env, "Unsupported section found");
5283 		return -EINVAL;
5284 	}
5285 
5286 	return 0;
5287 }
5288 
5289 static int btf_parse_hdr(struct btf_verifier_env *env)
5290 {
5291 	u32 hdr_len, hdr_copy, btf_data_size;
5292 	const struct btf_header *hdr;
5293 	struct btf *btf;
5294 
5295 	btf = env->btf;
5296 	btf_data_size = btf->data_size;
5297 
5298 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5299 		btf_verifier_log(env, "hdr_len not found");
5300 		return -EINVAL;
5301 	}
5302 
5303 	hdr = btf->data;
5304 	hdr_len = hdr->hdr_len;
5305 	if (btf_data_size < hdr_len) {
5306 		btf_verifier_log(env, "btf_header not found");
5307 		return -EINVAL;
5308 	}
5309 
5310 	/* Ensure the unsupported header fields are zero */
5311 	if (hdr_len > sizeof(btf->hdr)) {
5312 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5313 		u8 *end = btf->data + hdr_len;
5314 
5315 		for (; expected_zero < end; expected_zero++) {
5316 			if (*expected_zero) {
5317 				btf_verifier_log(env, "Unsupported btf_header");
5318 				return -E2BIG;
5319 			}
5320 		}
5321 	}
5322 
5323 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5324 	memcpy(&btf->hdr, btf->data, hdr_copy);
5325 
5326 	hdr = &btf->hdr;
5327 
5328 	btf_verifier_log_hdr(env, btf_data_size);
5329 
5330 	if (hdr->magic != BTF_MAGIC) {
5331 		btf_verifier_log(env, "Invalid magic");
5332 		return -EINVAL;
5333 	}
5334 
5335 	if (hdr->version != BTF_VERSION) {
5336 		btf_verifier_log(env, "Unsupported version");
5337 		return -ENOTSUPP;
5338 	}
5339 
5340 	if (hdr->flags) {
5341 		btf_verifier_log(env, "Unsupported flags");
5342 		return -ENOTSUPP;
5343 	}
5344 
5345 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5346 		btf_verifier_log(env, "No data");
5347 		return -EINVAL;
5348 	}
5349 
5350 	return btf_check_sec_info(env, btf_data_size);
5351 }
5352 
5353 static const char *alloc_obj_fields[] = {
5354 	"bpf_spin_lock",
5355 	"bpf_list_head",
5356 	"bpf_list_node",
5357 	"bpf_rb_root",
5358 	"bpf_rb_node",
5359 	"bpf_refcount",
5360 };
5361 
5362 static struct btf_struct_metas *
5363 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5364 {
5365 	union {
5366 		struct btf_id_set set;
5367 		struct {
5368 			u32 _cnt;
5369 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5370 		} _arr;
5371 	} aof;
5372 	struct btf_struct_metas *tab = NULL;
5373 	int i, n, id, ret;
5374 
5375 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5376 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5377 
5378 	memset(&aof, 0, sizeof(aof));
5379 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5380 		/* Try to find whether this special type exists in user BTF, and
5381 		 * if so remember its ID so we can easily find it among members
5382 		 * of structs that we iterate in the next loop.
5383 		 */
5384 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5385 		if (id < 0)
5386 			continue;
5387 		aof.set.ids[aof.set.cnt++] = id;
5388 	}
5389 
5390 	if (!aof.set.cnt)
5391 		return NULL;
5392 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5393 
5394 	n = btf_nr_types(btf);
5395 	for (i = 1; i < n; i++) {
5396 		struct btf_struct_metas *new_tab;
5397 		const struct btf_member *member;
5398 		struct btf_struct_meta *type;
5399 		struct btf_record *record;
5400 		const struct btf_type *t;
5401 		int j, tab_cnt;
5402 
5403 		t = btf_type_by_id(btf, i);
5404 		if (!t) {
5405 			ret = -EINVAL;
5406 			goto free;
5407 		}
5408 		if (!__btf_type_is_struct(t))
5409 			continue;
5410 
5411 		cond_resched();
5412 
5413 		for_each_member(j, t, member) {
5414 			if (btf_id_set_contains(&aof.set, member->type))
5415 				goto parse;
5416 		}
5417 		continue;
5418 	parse:
5419 		tab_cnt = tab ? tab->cnt : 0;
5420 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5421 				   GFP_KERNEL | __GFP_NOWARN);
5422 		if (!new_tab) {
5423 			ret = -ENOMEM;
5424 			goto free;
5425 		}
5426 		if (!tab)
5427 			new_tab->cnt = 0;
5428 		tab = new_tab;
5429 
5430 		type = &tab->types[tab->cnt];
5431 		type->btf_id = i;
5432 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5433 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5434 		/* The record cannot be unset, treat it as an error if so */
5435 		if (IS_ERR_OR_NULL(record)) {
5436 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5437 			goto free;
5438 		}
5439 		type->record = record;
5440 		tab->cnt++;
5441 	}
5442 	return tab;
5443 free:
5444 	btf_struct_metas_free(tab);
5445 	return ERR_PTR(ret);
5446 }
5447 
5448 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5449 {
5450 	struct btf_struct_metas *tab;
5451 
5452 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5453 	tab = btf->struct_meta_tab;
5454 	if (!tab)
5455 		return NULL;
5456 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5457 }
5458 
5459 static int btf_check_type_tags(struct btf_verifier_env *env,
5460 			       struct btf *btf, int start_id)
5461 {
5462 	int i, n, good_id = start_id - 1;
5463 	bool in_tags;
5464 
5465 	n = btf_nr_types(btf);
5466 	for (i = start_id; i < n; i++) {
5467 		const struct btf_type *t;
5468 		int chain_limit = 32;
5469 		u32 cur_id = i;
5470 
5471 		t = btf_type_by_id(btf, i);
5472 		if (!t)
5473 			return -EINVAL;
5474 		if (!btf_type_is_modifier(t))
5475 			continue;
5476 
5477 		cond_resched();
5478 
5479 		in_tags = btf_type_is_type_tag(t);
5480 		while (btf_type_is_modifier(t)) {
5481 			if (!chain_limit--) {
5482 				btf_verifier_log(env, "Max chain length or cycle detected");
5483 				return -ELOOP;
5484 			}
5485 			if (btf_type_is_type_tag(t)) {
5486 				if (!in_tags) {
5487 					btf_verifier_log(env, "Type tags don't precede modifiers");
5488 					return -EINVAL;
5489 				}
5490 			} else if (in_tags) {
5491 				in_tags = false;
5492 			}
5493 			if (cur_id <= good_id)
5494 				break;
5495 			/* Move to next type */
5496 			cur_id = t->type;
5497 			t = btf_type_by_id(btf, cur_id);
5498 			if (!t)
5499 				return -EINVAL;
5500 		}
5501 		good_id = i;
5502 	}
5503 	return 0;
5504 }
5505 
5506 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5507 {
5508 	u32 log_true_size;
5509 	int err;
5510 
5511 	err = bpf_vlog_finalize(log, &log_true_size);
5512 
5513 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5514 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5515 				  &log_true_size, sizeof(log_true_size)))
5516 		err = -EFAULT;
5517 
5518 	return err;
5519 }
5520 
5521 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5522 {
5523 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5524 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5525 	struct btf_struct_metas *struct_meta_tab;
5526 	struct btf_verifier_env *env = NULL;
5527 	struct btf *btf = NULL;
5528 	u8 *data;
5529 	int err, ret;
5530 
5531 	if (attr->btf_size > BTF_MAX_SIZE)
5532 		return ERR_PTR(-E2BIG);
5533 
5534 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5535 	if (!env)
5536 		return ERR_PTR(-ENOMEM);
5537 
5538 	/* user could have requested verbose verifier output
5539 	 * and supplied buffer to store the verification trace
5540 	 */
5541 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5542 			    log_ubuf, attr->btf_log_size);
5543 	if (err)
5544 		goto errout_free;
5545 
5546 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5547 	if (!btf) {
5548 		err = -ENOMEM;
5549 		goto errout;
5550 	}
5551 	env->btf = btf;
5552 
5553 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5554 	if (!data) {
5555 		err = -ENOMEM;
5556 		goto errout;
5557 	}
5558 
5559 	btf->data = data;
5560 	btf->data_size = attr->btf_size;
5561 
5562 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5563 		err = -EFAULT;
5564 		goto errout;
5565 	}
5566 
5567 	err = btf_parse_hdr(env);
5568 	if (err)
5569 		goto errout;
5570 
5571 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5572 
5573 	err = btf_parse_str_sec(env);
5574 	if (err)
5575 		goto errout;
5576 
5577 	err = btf_parse_type_sec(env);
5578 	if (err)
5579 		goto errout;
5580 
5581 	err = btf_check_type_tags(env, btf, 1);
5582 	if (err)
5583 		goto errout;
5584 
5585 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5586 	if (IS_ERR(struct_meta_tab)) {
5587 		err = PTR_ERR(struct_meta_tab);
5588 		goto errout;
5589 	}
5590 	btf->struct_meta_tab = struct_meta_tab;
5591 
5592 	if (struct_meta_tab) {
5593 		int i;
5594 
5595 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5596 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5597 			if (err < 0)
5598 				goto errout_meta;
5599 		}
5600 	}
5601 
5602 	err = finalize_log(&env->log, uattr, uattr_size);
5603 	if (err)
5604 		goto errout_free;
5605 
5606 	btf_verifier_env_free(env);
5607 	refcount_set(&btf->refcnt, 1);
5608 	return btf;
5609 
5610 errout_meta:
5611 	btf_free_struct_meta_tab(btf);
5612 errout:
5613 	/* overwrite err with -ENOSPC or -EFAULT */
5614 	ret = finalize_log(&env->log, uattr, uattr_size);
5615 	if (ret)
5616 		err = ret;
5617 errout_free:
5618 	btf_verifier_env_free(env);
5619 	if (btf)
5620 		btf_free(btf);
5621 	return ERR_PTR(err);
5622 }
5623 
5624 extern char __weak __start_BTF[];
5625 extern char __weak __stop_BTF[];
5626 extern struct btf *btf_vmlinux;
5627 
5628 #define BPF_MAP_TYPE(_id, _ops)
5629 #define BPF_LINK_TYPE(_id, _name)
5630 static union {
5631 	struct bpf_ctx_convert {
5632 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5633 	prog_ctx_type _id##_prog; \
5634 	kern_ctx_type _id##_kern;
5635 #include <linux/bpf_types.h>
5636 #undef BPF_PROG_TYPE
5637 	} *__t;
5638 	/* 't' is written once under lock. Read many times. */
5639 	const struct btf_type *t;
5640 } bpf_ctx_convert;
5641 enum {
5642 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5643 	__ctx_convert##_id,
5644 #include <linux/bpf_types.h>
5645 #undef BPF_PROG_TYPE
5646 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5647 };
5648 static u8 bpf_ctx_convert_map[] = {
5649 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5650 	[_id] = __ctx_convert##_id,
5651 #include <linux/bpf_types.h>
5652 #undef BPF_PROG_TYPE
5653 	0, /* avoid empty array */
5654 };
5655 #undef BPF_MAP_TYPE
5656 #undef BPF_LINK_TYPE
5657 
5658 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5659 {
5660 	const struct btf_type *conv_struct;
5661 	const struct btf_member *ctx_type;
5662 
5663 	conv_struct = bpf_ctx_convert.t;
5664 	if (!conv_struct)
5665 		return NULL;
5666 	/* prog_type is valid bpf program type. No need for bounds check. */
5667 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5668 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5669 	 * Like 'struct __sk_buff'
5670 	 */
5671 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5672 }
5673 
5674 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5675 {
5676 	const struct btf_type *conv_struct;
5677 	const struct btf_member *ctx_type;
5678 
5679 	conv_struct = bpf_ctx_convert.t;
5680 	if (!conv_struct)
5681 		return -EFAULT;
5682 	/* prog_type is valid bpf program type. No need for bounds check. */
5683 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5684 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5685 	 * Like 'struct sk_buff'
5686 	 */
5687 	return ctx_type->type;
5688 }
5689 
5690 const struct btf_type *
5691 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5692 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5693 		      int arg)
5694 {
5695 	const struct btf_type *ctx_type;
5696 	const char *tname, *ctx_tname;
5697 
5698 	t = btf_type_by_id(btf, t->type);
5699 	while (btf_type_is_modifier(t))
5700 		t = btf_type_by_id(btf, t->type);
5701 	if (!btf_type_is_struct(t)) {
5702 		/* Only pointer to struct is supported for now.
5703 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5704 		 * is not supported yet.
5705 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5706 		 */
5707 		return NULL;
5708 	}
5709 	tname = btf_name_by_offset(btf, t->name_off);
5710 	if (!tname) {
5711 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5712 		return NULL;
5713 	}
5714 
5715 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5716 	if (!ctx_type) {
5717 		bpf_log(log, "btf_vmlinux is malformed\n");
5718 		/* should not happen */
5719 		return NULL;
5720 	}
5721 again:
5722 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5723 	if (!ctx_tname) {
5724 		/* should not happen */
5725 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5726 		return NULL;
5727 	}
5728 	/* only compare that prog's ctx type name is the same as
5729 	 * kernel expects. No need to compare field by field.
5730 	 * It's ok for bpf prog to do:
5731 	 * struct __sk_buff {};
5732 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5733 	 * { // no fields of skb are ever used }
5734 	 */
5735 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5736 		return ctx_type;
5737 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5738 		return ctx_type;
5739 	if (strcmp(ctx_tname, tname)) {
5740 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5741 		 * underlying struct and check name again
5742 		 */
5743 		if (!btf_type_is_modifier(ctx_type))
5744 			return NULL;
5745 		while (btf_type_is_modifier(ctx_type))
5746 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5747 		goto again;
5748 	}
5749 	return ctx_type;
5750 }
5751 
5752 /* forward declarations for arch-specific underlying types of
5753  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5754  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5755  * works correctly with __builtin_types_compatible_p() on respective
5756  * architectures
5757  */
5758 struct user_regs_struct;
5759 struct user_pt_regs;
5760 
5761 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5762 				      const struct btf_type *t, int arg,
5763 				      enum bpf_prog_type prog_type,
5764 				      enum bpf_attach_type attach_type)
5765 {
5766 	const struct btf_type *ctx_type;
5767 	const char *tname, *ctx_tname;
5768 
5769 	if (!btf_is_ptr(t)) {
5770 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5771 		return -EINVAL;
5772 	}
5773 	t = btf_type_by_id(btf, t->type);
5774 
5775 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5776 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5777 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5778 			t = btf_type_by_id(btf, t->type);
5779 
5780 		if (btf_type_is_typedef(t)) {
5781 			tname = btf_name_by_offset(btf, t->name_off);
5782 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5783 				return 0;
5784 		}
5785 	}
5786 
5787 	/* all other program types don't use typedefs for context type */
5788 	while (btf_type_is_modifier(t))
5789 		t = btf_type_by_id(btf, t->type);
5790 
5791 	/* `void *ctx __arg_ctx` is always valid */
5792 	if (btf_type_is_void(t))
5793 		return 0;
5794 
5795 	tname = btf_name_by_offset(btf, t->name_off);
5796 	if (str_is_empty(tname)) {
5797 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5798 		return -EINVAL;
5799 	}
5800 
5801 	/* special cases */
5802 	switch (prog_type) {
5803 	case BPF_PROG_TYPE_KPROBE:
5804 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5805 			return 0;
5806 		break;
5807 	case BPF_PROG_TYPE_PERF_EVENT:
5808 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5809 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5810 			return 0;
5811 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5812 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5813 			return 0;
5814 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5815 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5816 			return 0;
5817 		break;
5818 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
5819 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5820 		/* allow u64* as ctx */
5821 		if (btf_is_int(t) && t->size == 8)
5822 			return 0;
5823 		break;
5824 	case BPF_PROG_TYPE_TRACING:
5825 		switch (attach_type) {
5826 		case BPF_TRACE_RAW_TP:
5827 			/* tp_btf program is TRACING, so need special case here */
5828 			if (__btf_type_is_struct(t) &&
5829 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5830 				return 0;
5831 			/* allow u64* as ctx */
5832 			if (btf_is_int(t) && t->size == 8)
5833 				return 0;
5834 			break;
5835 		case BPF_TRACE_ITER:
5836 			/* allow struct bpf_iter__xxx types only */
5837 			if (__btf_type_is_struct(t) &&
5838 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5839 				return 0;
5840 			break;
5841 		case BPF_TRACE_FENTRY:
5842 		case BPF_TRACE_FEXIT:
5843 		case BPF_MODIFY_RETURN:
5844 			/* allow u64* as ctx */
5845 			if (btf_is_int(t) && t->size == 8)
5846 				return 0;
5847 			break;
5848 		default:
5849 			break;
5850 		}
5851 		break;
5852 	case BPF_PROG_TYPE_LSM:
5853 	case BPF_PROG_TYPE_STRUCT_OPS:
5854 		/* allow u64* as ctx */
5855 		if (btf_is_int(t) && t->size == 8)
5856 			return 0;
5857 		break;
5858 	case BPF_PROG_TYPE_TRACEPOINT:
5859 	case BPF_PROG_TYPE_SYSCALL:
5860 	case BPF_PROG_TYPE_EXT:
5861 		return 0; /* anything goes */
5862 	default:
5863 		break;
5864 	}
5865 
5866 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5867 	if (!ctx_type) {
5868 		/* should not happen */
5869 		bpf_log(log, "btf_vmlinux is malformed\n");
5870 		return -EINVAL;
5871 	}
5872 
5873 	/* resolve typedefs and check that underlying structs are matching as well */
5874 	while (btf_type_is_modifier(ctx_type))
5875 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5876 
5877 	/* if program type doesn't have distinctly named struct type for
5878 	 * context, then __arg_ctx argument can only be `void *`, which we
5879 	 * already checked above
5880 	 */
5881 	if (!__btf_type_is_struct(ctx_type)) {
5882 		bpf_log(log, "arg#%d should be void pointer\n", arg);
5883 		return -EINVAL;
5884 	}
5885 
5886 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5887 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5888 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5889 		return -EINVAL;
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5896 				     struct btf *btf,
5897 				     const struct btf_type *t,
5898 				     enum bpf_prog_type prog_type,
5899 				     int arg)
5900 {
5901 	if (!btf_get_prog_ctx_type(log, btf, t, prog_type, arg))
5902 		return -ENOENT;
5903 	return find_kern_ctx_type_id(prog_type);
5904 }
5905 
5906 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5907 {
5908 	const struct btf_member *kctx_member;
5909 	const struct btf_type *conv_struct;
5910 	const struct btf_type *kctx_type;
5911 	u32 kctx_type_id;
5912 
5913 	conv_struct = bpf_ctx_convert.t;
5914 	/* get member for kernel ctx type */
5915 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5916 	kctx_type_id = kctx_member->type;
5917 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5918 	if (!btf_type_is_struct(kctx_type)) {
5919 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5920 		return -EINVAL;
5921 	}
5922 
5923 	return kctx_type_id;
5924 }
5925 
5926 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5927 BTF_ID(struct, bpf_ctx_convert)
5928 
5929 struct btf *btf_parse_vmlinux(void)
5930 {
5931 	struct btf_verifier_env *env = NULL;
5932 	struct bpf_verifier_log *log;
5933 	struct btf *btf = NULL;
5934 	int err;
5935 
5936 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5937 	if (!env)
5938 		return ERR_PTR(-ENOMEM);
5939 
5940 	log = &env->log;
5941 	log->level = BPF_LOG_KERNEL;
5942 
5943 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5944 	if (!btf) {
5945 		err = -ENOMEM;
5946 		goto errout;
5947 	}
5948 	env->btf = btf;
5949 
5950 	btf->data = __start_BTF;
5951 	btf->data_size = __stop_BTF - __start_BTF;
5952 	btf->kernel_btf = true;
5953 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5954 
5955 	err = btf_parse_hdr(env);
5956 	if (err)
5957 		goto errout;
5958 
5959 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5960 
5961 	err = btf_parse_str_sec(env);
5962 	if (err)
5963 		goto errout;
5964 
5965 	err = btf_check_all_metas(env);
5966 	if (err)
5967 		goto errout;
5968 
5969 	err = btf_check_type_tags(env, btf, 1);
5970 	if (err)
5971 		goto errout;
5972 
5973 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5974 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5975 
5976 	refcount_set(&btf->refcnt, 1);
5977 
5978 	err = btf_alloc_id(btf);
5979 	if (err)
5980 		goto errout;
5981 
5982 	btf_verifier_env_free(env);
5983 	return btf;
5984 
5985 errout:
5986 	btf_verifier_env_free(env);
5987 	if (btf) {
5988 		kvfree(btf->types);
5989 		kfree(btf);
5990 	}
5991 	return ERR_PTR(err);
5992 }
5993 
5994 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5995 
5996 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5997 {
5998 	struct btf_verifier_env *env = NULL;
5999 	struct bpf_verifier_log *log;
6000 	struct btf *btf = NULL, *base_btf;
6001 	int err;
6002 
6003 	base_btf = bpf_get_btf_vmlinux();
6004 	if (IS_ERR(base_btf))
6005 		return base_btf;
6006 	if (!base_btf)
6007 		return ERR_PTR(-EINVAL);
6008 
6009 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6010 	if (!env)
6011 		return ERR_PTR(-ENOMEM);
6012 
6013 	log = &env->log;
6014 	log->level = BPF_LOG_KERNEL;
6015 
6016 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6017 	if (!btf) {
6018 		err = -ENOMEM;
6019 		goto errout;
6020 	}
6021 	env->btf = btf;
6022 
6023 	btf->base_btf = base_btf;
6024 	btf->start_id = base_btf->nr_types;
6025 	btf->start_str_off = base_btf->hdr.str_len;
6026 	btf->kernel_btf = true;
6027 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6028 
6029 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6030 	if (!btf->data) {
6031 		err = -ENOMEM;
6032 		goto errout;
6033 	}
6034 	memcpy(btf->data, data, data_size);
6035 	btf->data_size = data_size;
6036 
6037 	err = btf_parse_hdr(env);
6038 	if (err)
6039 		goto errout;
6040 
6041 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6042 
6043 	err = btf_parse_str_sec(env);
6044 	if (err)
6045 		goto errout;
6046 
6047 	err = btf_check_all_metas(env);
6048 	if (err)
6049 		goto errout;
6050 
6051 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6052 	if (err)
6053 		goto errout;
6054 
6055 	btf_verifier_env_free(env);
6056 	refcount_set(&btf->refcnt, 1);
6057 	return btf;
6058 
6059 errout:
6060 	btf_verifier_env_free(env);
6061 	if (btf) {
6062 		kvfree(btf->data);
6063 		kvfree(btf->types);
6064 		kfree(btf);
6065 	}
6066 	return ERR_PTR(err);
6067 }
6068 
6069 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6070 
6071 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6072 {
6073 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6074 
6075 	if (tgt_prog)
6076 		return tgt_prog->aux->btf;
6077 	else
6078 		return prog->aux->attach_btf;
6079 }
6080 
6081 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6082 {
6083 	/* skip modifiers */
6084 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6085 
6086 	return btf_type_is_int(t);
6087 }
6088 
6089 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6090 			   int off)
6091 {
6092 	const struct btf_param *args;
6093 	const struct btf_type *t;
6094 	u32 offset = 0, nr_args;
6095 	int i;
6096 
6097 	if (!func_proto)
6098 		return off / 8;
6099 
6100 	nr_args = btf_type_vlen(func_proto);
6101 	args = (const struct btf_param *)(func_proto + 1);
6102 	for (i = 0; i < nr_args; i++) {
6103 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6104 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6105 		if (off < offset)
6106 			return i;
6107 	}
6108 
6109 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6110 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6111 	if (off < offset)
6112 		return nr_args;
6113 
6114 	return nr_args + 1;
6115 }
6116 
6117 static bool prog_args_trusted(const struct bpf_prog *prog)
6118 {
6119 	enum bpf_attach_type atype = prog->expected_attach_type;
6120 
6121 	switch (prog->type) {
6122 	case BPF_PROG_TYPE_TRACING:
6123 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6124 	case BPF_PROG_TYPE_LSM:
6125 		return bpf_lsm_is_trusted(prog);
6126 	case BPF_PROG_TYPE_STRUCT_OPS:
6127 		return true;
6128 	default:
6129 		return false;
6130 	}
6131 }
6132 
6133 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6134 		    const struct bpf_prog *prog,
6135 		    struct bpf_insn_access_aux *info)
6136 {
6137 	const struct btf_type *t = prog->aux->attach_func_proto;
6138 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6139 	struct btf *btf = bpf_prog_get_target_btf(prog);
6140 	const char *tname = prog->aux->attach_func_name;
6141 	struct bpf_verifier_log *log = info->log;
6142 	const struct btf_param *args;
6143 	const char *tag_value;
6144 	u32 nr_args, arg;
6145 	int i, ret;
6146 
6147 	if (off % 8) {
6148 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6149 			tname, off);
6150 		return false;
6151 	}
6152 	arg = get_ctx_arg_idx(btf, t, off);
6153 	args = (const struct btf_param *)(t + 1);
6154 	/* if (t == NULL) Fall back to default BPF prog with
6155 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6156 	 */
6157 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6158 	if (prog->aux->attach_btf_trace) {
6159 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6160 		args++;
6161 		nr_args--;
6162 	}
6163 
6164 	if (arg > nr_args) {
6165 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6166 			tname, arg + 1);
6167 		return false;
6168 	}
6169 
6170 	if (arg == nr_args) {
6171 		switch (prog->expected_attach_type) {
6172 		case BPF_LSM_CGROUP:
6173 		case BPF_LSM_MAC:
6174 		case BPF_TRACE_FEXIT:
6175 			/* When LSM programs are attached to void LSM hooks
6176 			 * they use FEXIT trampolines and when attached to
6177 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6178 			 *
6179 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6180 			 * the check:
6181 			 *
6182 			 *	if (ret_type != 'int')
6183 			 *		return -EINVAL;
6184 			 *
6185 			 * is _not_ done here. This is still safe as LSM hooks
6186 			 * have only void and int return types.
6187 			 */
6188 			if (!t)
6189 				return true;
6190 			t = btf_type_by_id(btf, t->type);
6191 			break;
6192 		case BPF_MODIFY_RETURN:
6193 			/* For now the BPF_MODIFY_RETURN can only be attached to
6194 			 * functions that return an int.
6195 			 */
6196 			if (!t)
6197 				return false;
6198 
6199 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6200 			if (!btf_type_is_small_int(t)) {
6201 				bpf_log(log,
6202 					"ret type %s not allowed for fmod_ret\n",
6203 					btf_type_str(t));
6204 				return false;
6205 			}
6206 			break;
6207 		default:
6208 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6209 				tname, arg + 1);
6210 			return false;
6211 		}
6212 	} else {
6213 		if (!t)
6214 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6215 			return true;
6216 		t = btf_type_by_id(btf, args[arg].type);
6217 	}
6218 
6219 	/* skip modifiers */
6220 	while (btf_type_is_modifier(t))
6221 		t = btf_type_by_id(btf, t->type);
6222 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6223 		/* accessing a scalar */
6224 		return true;
6225 	if (!btf_type_is_ptr(t)) {
6226 		bpf_log(log,
6227 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6228 			tname, arg,
6229 			__btf_name_by_offset(btf, t->name_off),
6230 			btf_type_str(t));
6231 		return false;
6232 	}
6233 
6234 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6235 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6236 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6237 		u32 type, flag;
6238 
6239 		type = base_type(ctx_arg_info->reg_type);
6240 		flag = type_flag(ctx_arg_info->reg_type);
6241 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6242 		    (flag & PTR_MAYBE_NULL)) {
6243 			info->reg_type = ctx_arg_info->reg_type;
6244 			return true;
6245 		}
6246 	}
6247 
6248 	if (t->type == 0)
6249 		/* This is a pointer to void.
6250 		 * It is the same as scalar from the verifier safety pov.
6251 		 * No further pointer walking is allowed.
6252 		 */
6253 		return true;
6254 
6255 	if (is_int_ptr(btf, t))
6256 		return true;
6257 
6258 	/* this is a pointer to another type */
6259 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6260 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6261 
6262 		if (ctx_arg_info->offset == off) {
6263 			if (!ctx_arg_info->btf_id) {
6264 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6265 				return false;
6266 			}
6267 
6268 			info->reg_type = ctx_arg_info->reg_type;
6269 			info->btf = btf_vmlinux;
6270 			info->btf_id = ctx_arg_info->btf_id;
6271 			return true;
6272 		}
6273 	}
6274 
6275 	info->reg_type = PTR_TO_BTF_ID;
6276 	if (prog_args_trusted(prog))
6277 		info->reg_type |= PTR_TRUSTED;
6278 
6279 	if (tgt_prog) {
6280 		enum bpf_prog_type tgt_type;
6281 
6282 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6283 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6284 		else
6285 			tgt_type = tgt_prog->type;
6286 
6287 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6288 		if (ret > 0) {
6289 			info->btf = btf_vmlinux;
6290 			info->btf_id = ret;
6291 			return true;
6292 		} else {
6293 			return false;
6294 		}
6295 	}
6296 
6297 	info->btf = btf;
6298 	info->btf_id = t->type;
6299 	t = btf_type_by_id(btf, t->type);
6300 
6301 	if (btf_type_is_type_tag(t)) {
6302 		tag_value = __btf_name_by_offset(btf, t->name_off);
6303 		if (strcmp(tag_value, "user") == 0)
6304 			info->reg_type |= MEM_USER;
6305 		if (strcmp(tag_value, "percpu") == 0)
6306 			info->reg_type |= MEM_PERCPU;
6307 	}
6308 
6309 	/* skip modifiers */
6310 	while (btf_type_is_modifier(t)) {
6311 		info->btf_id = t->type;
6312 		t = btf_type_by_id(btf, t->type);
6313 	}
6314 	if (!btf_type_is_struct(t)) {
6315 		bpf_log(log,
6316 			"func '%s' arg%d type %s is not a struct\n",
6317 			tname, arg, btf_type_str(t));
6318 		return false;
6319 	}
6320 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6321 		tname, arg, info->btf_id, btf_type_str(t),
6322 		__btf_name_by_offset(btf, t->name_off));
6323 	return true;
6324 }
6325 EXPORT_SYMBOL_GPL(btf_ctx_access);
6326 
6327 enum bpf_struct_walk_result {
6328 	/* < 0 error */
6329 	WALK_SCALAR = 0,
6330 	WALK_PTR,
6331 	WALK_STRUCT,
6332 };
6333 
6334 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6335 			   const struct btf_type *t, int off, int size,
6336 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6337 			   const char **field_name)
6338 {
6339 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6340 	const struct btf_type *mtype, *elem_type = NULL;
6341 	const struct btf_member *member;
6342 	const char *tname, *mname, *tag_value;
6343 	u32 vlen, elem_id, mid;
6344 
6345 again:
6346 	if (btf_type_is_modifier(t))
6347 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6348 	tname = __btf_name_by_offset(btf, t->name_off);
6349 	if (!btf_type_is_struct(t)) {
6350 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6351 		return -EINVAL;
6352 	}
6353 
6354 	vlen = btf_type_vlen(t);
6355 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6356 		/*
6357 		 * walking unions yields untrusted pointers
6358 		 * with exception of __bpf_md_ptr and other
6359 		 * unions with a single member
6360 		 */
6361 		*flag |= PTR_UNTRUSTED;
6362 
6363 	if (off + size > t->size) {
6364 		/* If the last element is a variable size array, we may
6365 		 * need to relax the rule.
6366 		 */
6367 		struct btf_array *array_elem;
6368 
6369 		if (vlen == 0)
6370 			goto error;
6371 
6372 		member = btf_type_member(t) + vlen - 1;
6373 		mtype = btf_type_skip_modifiers(btf, member->type,
6374 						NULL);
6375 		if (!btf_type_is_array(mtype))
6376 			goto error;
6377 
6378 		array_elem = (struct btf_array *)(mtype + 1);
6379 		if (array_elem->nelems != 0)
6380 			goto error;
6381 
6382 		moff = __btf_member_bit_offset(t, member) / 8;
6383 		if (off < moff)
6384 			goto error;
6385 
6386 		/* allow structure and integer */
6387 		t = btf_type_skip_modifiers(btf, array_elem->type,
6388 					    NULL);
6389 
6390 		if (btf_type_is_int(t))
6391 			return WALK_SCALAR;
6392 
6393 		if (!btf_type_is_struct(t))
6394 			goto error;
6395 
6396 		off = (off - moff) % t->size;
6397 		goto again;
6398 
6399 error:
6400 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6401 			tname, off, size);
6402 		return -EACCES;
6403 	}
6404 
6405 	for_each_member(i, t, member) {
6406 		/* offset of the field in bytes */
6407 		moff = __btf_member_bit_offset(t, member) / 8;
6408 		if (off + size <= moff)
6409 			/* won't find anything, field is already too far */
6410 			break;
6411 
6412 		if (__btf_member_bitfield_size(t, member)) {
6413 			u32 end_bit = __btf_member_bit_offset(t, member) +
6414 				__btf_member_bitfield_size(t, member);
6415 
6416 			/* off <= moff instead of off == moff because clang
6417 			 * does not generate a BTF member for anonymous
6418 			 * bitfield like the ":16" here:
6419 			 * struct {
6420 			 *	int :16;
6421 			 *	int x:8;
6422 			 * };
6423 			 */
6424 			if (off <= moff &&
6425 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6426 				return WALK_SCALAR;
6427 
6428 			/* off may be accessing a following member
6429 			 *
6430 			 * or
6431 			 *
6432 			 * Doing partial access at either end of this
6433 			 * bitfield.  Continue on this case also to
6434 			 * treat it as not accessing this bitfield
6435 			 * and eventually error out as field not
6436 			 * found to keep it simple.
6437 			 * It could be relaxed if there was a legit
6438 			 * partial access case later.
6439 			 */
6440 			continue;
6441 		}
6442 
6443 		/* In case of "off" is pointing to holes of a struct */
6444 		if (off < moff)
6445 			break;
6446 
6447 		/* type of the field */
6448 		mid = member->type;
6449 		mtype = btf_type_by_id(btf, member->type);
6450 		mname = __btf_name_by_offset(btf, member->name_off);
6451 
6452 		mtype = __btf_resolve_size(btf, mtype, &msize,
6453 					   &elem_type, &elem_id, &total_nelems,
6454 					   &mid);
6455 		if (IS_ERR(mtype)) {
6456 			bpf_log(log, "field %s doesn't have size\n", mname);
6457 			return -EFAULT;
6458 		}
6459 
6460 		mtrue_end = moff + msize;
6461 		if (off >= mtrue_end)
6462 			/* no overlap with member, keep iterating */
6463 			continue;
6464 
6465 		if (btf_type_is_array(mtype)) {
6466 			u32 elem_idx;
6467 
6468 			/* __btf_resolve_size() above helps to
6469 			 * linearize a multi-dimensional array.
6470 			 *
6471 			 * The logic here is treating an array
6472 			 * in a struct as the following way:
6473 			 *
6474 			 * struct outer {
6475 			 *	struct inner array[2][2];
6476 			 * };
6477 			 *
6478 			 * looks like:
6479 			 *
6480 			 * struct outer {
6481 			 *	struct inner array_elem0;
6482 			 *	struct inner array_elem1;
6483 			 *	struct inner array_elem2;
6484 			 *	struct inner array_elem3;
6485 			 * };
6486 			 *
6487 			 * When accessing outer->array[1][0], it moves
6488 			 * moff to "array_elem2", set mtype to
6489 			 * "struct inner", and msize also becomes
6490 			 * sizeof(struct inner).  Then most of the
6491 			 * remaining logic will fall through without
6492 			 * caring the current member is an array or
6493 			 * not.
6494 			 *
6495 			 * Unlike mtype/msize/moff, mtrue_end does not
6496 			 * change.  The naming difference ("_true") tells
6497 			 * that it is not always corresponding to
6498 			 * the current mtype/msize/moff.
6499 			 * It is the true end of the current
6500 			 * member (i.e. array in this case).  That
6501 			 * will allow an int array to be accessed like
6502 			 * a scratch space,
6503 			 * i.e. allow access beyond the size of
6504 			 *      the array's element as long as it is
6505 			 *      within the mtrue_end boundary.
6506 			 */
6507 
6508 			/* skip empty array */
6509 			if (moff == mtrue_end)
6510 				continue;
6511 
6512 			msize /= total_nelems;
6513 			elem_idx = (off - moff) / msize;
6514 			moff += elem_idx * msize;
6515 			mtype = elem_type;
6516 			mid = elem_id;
6517 		}
6518 
6519 		/* the 'off' we're looking for is either equal to start
6520 		 * of this field or inside of this struct
6521 		 */
6522 		if (btf_type_is_struct(mtype)) {
6523 			/* our field must be inside that union or struct */
6524 			t = mtype;
6525 
6526 			/* return if the offset matches the member offset */
6527 			if (off == moff) {
6528 				*next_btf_id = mid;
6529 				return WALK_STRUCT;
6530 			}
6531 
6532 			/* adjust offset we're looking for */
6533 			off -= moff;
6534 			goto again;
6535 		}
6536 
6537 		if (btf_type_is_ptr(mtype)) {
6538 			const struct btf_type *stype, *t;
6539 			enum bpf_type_flag tmp_flag = 0;
6540 			u32 id;
6541 
6542 			if (msize != size || off != moff) {
6543 				bpf_log(log,
6544 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6545 					mname, moff, tname, off, size);
6546 				return -EACCES;
6547 			}
6548 
6549 			/* check type tag */
6550 			t = btf_type_by_id(btf, mtype->type);
6551 			if (btf_type_is_type_tag(t)) {
6552 				tag_value = __btf_name_by_offset(btf, t->name_off);
6553 				/* check __user tag */
6554 				if (strcmp(tag_value, "user") == 0)
6555 					tmp_flag = MEM_USER;
6556 				/* check __percpu tag */
6557 				if (strcmp(tag_value, "percpu") == 0)
6558 					tmp_flag = MEM_PERCPU;
6559 				/* check __rcu tag */
6560 				if (strcmp(tag_value, "rcu") == 0)
6561 					tmp_flag = MEM_RCU;
6562 			}
6563 
6564 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6565 			if (btf_type_is_struct(stype)) {
6566 				*next_btf_id = id;
6567 				*flag |= tmp_flag;
6568 				if (field_name)
6569 					*field_name = mname;
6570 				return WALK_PTR;
6571 			}
6572 		}
6573 
6574 		/* Allow more flexible access within an int as long as
6575 		 * it is within mtrue_end.
6576 		 * Since mtrue_end could be the end of an array,
6577 		 * that also allows using an array of int as a scratch
6578 		 * space. e.g. skb->cb[].
6579 		 */
6580 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6581 			bpf_log(log,
6582 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6583 				mname, mtrue_end, tname, off, size);
6584 			return -EACCES;
6585 		}
6586 
6587 		return WALK_SCALAR;
6588 	}
6589 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6590 	return -EINVAL;
6591 }
6592 
6593 int btf_struct_access(struct bpf_verifier_log *log,
6594 		      const struct bpf_reg_state *reg,
6595 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6596 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6597 		      const char **field_name)
6598 {
6599 	const struct btf *btf = reg->btf;
6600 	enum bpf_type_flag tmp_flag = 0;
6601 	const struct btf_type *t;
6602 	u32 id = reg->btf_id;
6603 	int err;
6604 
6605 	while (type_is_alloc(reg->type)) {
6606 		struct btf_struct_meta *meta;
6607 		struct btf_record *rec;
6608 		int i;
6609 
6610 		meta = btf_find_struct_meta(btf, id);
6611 		if (!meta)
6612 			break;
6613 		rec = meta->record;
6614 		for (i = 0; i < rec->cnt; i++) {
6615 			struct btf_field *field = &rec->fields[i];
6616 			u32 offset = field->offset;
6617 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6618 				bpf_log(log,
6619 					"direct access to %s is disallowed\n",
6620 					btf_field_type_name(field->type));
6621 				return -EACCES;
6622 			}
6623 		}
6624 		break;
6625 	}
6626 
6627 	t = btf_type_by_id(btf, id);
6628 	do {
6629 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6630 
6631 		switch (err) {
6632 		case WALK_PTR:
6633 			/* For local types, the destination register cannot
6634 			 * become a pointer again.
6635 			 */
6636 			if (type_is_alloc(reg->type))
6637 				return SCALAR_VALUE;
6638 			/* If we found the pointer or scalar on t+off,
6639 			 * we're done.
6640 			 */
6641 			*next_btf_id = id;
6642 			*flag = tmp_flag;
6643 			return PTR_TO_BTF_ID;
6644 		case WALK_SCALAR:
6645 			return SCALAR_VALUE;
6646 		case WALK_STRUCT:
6647 			/* We found nested struct, so continue the search
6648 			 * by diving in it. At this point the offset is
6649 			 * aligned with the new type, so set it to 0.
6650 			 */
6651 			t = btf_type_by_id(btf, id);
6652 			off = 0;
6653 			break;
6654 		default:
6655 			/* It's either error or unknown return value..
6656 			 * scream and leave.
6657 			 */
6658 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6659 				return -EINVAL;
6660 			return err;
6661 		}
6662 	} while (t);
6663 
6664 	return -EINVAL;
6665 }
6666 
6667 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6668  * the same. Trivial ID check is not enough due to module BTFs, because we can
6669  * end up with two different module BTFs, but IDs point to the common type in
6670  * vmlinux BTF.
6671  */
6672 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6673 			const struct btf *btf2, u32 id2)
6674 {
6675 	if (id1 != id2)
6676 		return false;
6677 	if (btf1 == btf2)
6678 		return true;
6679 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6680 }
6681 
6682 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6683 			  const struct btf *btf, u32 id, int off,
6684 			  const struct btf *need_btf, u32 need_type_id,
6685 			  bool strict)
6686 {
6687 	const struct btf_type *type;
6688 	enum bpf_type_flag flag = 0;
6689 	int err;
6690 
6691 	/* Are we already done? */
6692 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6693 		return true;
6694 	/* In case of strict type match, we do not walk struct, the top level
6695 	 * type match must succeed. When strict is true, off should have already
6696 	 * been 0.
6697 	 */
6698 	if (strict)
6699 		return false;
6700 again:
6701 	type = btf_type_by_id(btf, id);
6702 	if (!type)
6703 		return false;
6704 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6705 	if (err != WALK_STRUCT)
6706 		return false;
6707 
6708 	/* We found nested struct object. If it matches
6709 	 * the requested ID, we're done. Otherwise let's
6710 	 * continue the search with offset 0 in the new
6711 	 * type.
6712 	 */
6713 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6714 		off = 0;
6715 		goto again;
6716 	}
6717 
6718 	return true;
6719 }
6720 
6721 static int __get_type_size(struct btf *btf, u32 btf_id,
6722 			   const struct btf_type **ret_type)
6723 {
6724 	const struct btf_type *t;
6725 
6726 	*ret_type = btf_type_by_id(btf, 0);
6727 	if (!btf_id)
6728 		/* void */
6729 		return 0;
6730 	t = btf_type_by_id(btf, btf_id);
6731 	while (t && btf_type_is_modifier(t))
6732 		t = btf_type_by_id(btf, t->type);
6733 	if (!t)
6734 		return -EINVAL;
6735 	*ret_type = t;
6736 	if (btf_type_is_ptr(t))
6737 		/* kernel size of pointer. Not BPF's size of pointer*/
6738 		return sizeof(void *);
6739 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6740 		return t->size;
6741 	return -EINVAL;
6742 }
6743 
6744 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6745 {
6746 	u8 flags = 0;
6747 
6748 	if (__btf_type_is_struct(t))
6749 		flags |= BTF_FMODEL_STRUCT_ARG;
6750 	if (btf_type_is_signed_int(t))
6751 		flags |= BTF_FMODEL_SIGNED_ARG;
6752 
6753 	return flags;
6754 }
6755 
6756 int btf_distill_func_proto(struct bpf_verifier_log *log,
6757 			   struct btf *btf,
6758 			   const struct btf_type *func,
6759 			   const char *tname,
6760 			   struct btf_func_model *m)
6761 {
6762 	const struct btf_param *args;
6763 	const struct btf_type *t;
6764 	u32 i, nargs;
6765 	int ret;
6766 
6767 	if (!func) {
6768 		/* BTF function prototype doesn't match the verifier types.
6769 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6770 		 */
6771 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6772 			m->arg_size[i] = 8;
6773 			m->arg_flags[i] = 0;
6774 		}
6775 		m->ret_size = 8;
6776 		m->ret_flags = 0;
6777 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6778 		return 0;
6779 	}
6780 	args = (const struct btf_param *)(func + 1);
6781 	nargs = btf_type_vlen(func);
6782 	if (nargs > MAX_BPF_FUNC_ARGS) {
6783 		bpf_log(log,
6784 			"The function %s has %d arguments. Too many.\n",
6785 			tname, nargs);
6786 		return -EINVAL;
6787 	}
6788 	ret = __get_type_size(btf, func->type, &t);
6789 	if (ret < 0 || __btf_type_is_struct(t)) {
6790 		bpf_log(log,
6791 			"The function %s return type %s is unsupported.\n",
6792 			tname, btf_type_str(t));
6793 		return -EINVAL;
6794 	}
6795 	m->ret_size = ret;
6796 	m->ret_flags = __get_type_fmodel_flags(t);
6797 
6798 	for (i = 0; i < nargs; i++) {
6799 		if (i == nargs - 1 && args[i].type == 0) {
6800 			bpf_log(log,
6801 				"The function %s with variable args is unsupported.\n",
6802 				tname);
6803 			return -EINVAL;
6804 		}
6805 		ret = __get_type_size(btf, args[i].type, &t);
6806 
6807 		/* No support of struct argument size greater than 16 bytes */
6808 		if (ret < 0 || ret > 16) {
6809 			bpf_log(log,
6810 				"The function %s arg%d type %s is unsupported.\n",
6811 				tname, i, btf_type_str(t));
6812 			return -EINVAL;
6813 		}
6814 		if (ret == 0) {
6815 			bpf_log(log,
6816 				"The function %s has malformed void argument.\n",
6817 				tname);
6818 			return -EINVAL;
6819 		}
6820 		m->arg_size[i] = ret;
6821 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6822 	}
6823 	m->nr_args = nargs;
6824 	return 0;
6825 }
6826 
6827 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6828  * t1 points to BTF_KIND_FUNC in btf1
6829  * t2 points to BTF_KIND_FUNC in btf2
6830  * Returns:
6831  * EINVAL - function prototype mismatch
6832  * EFAULT - verifier bug
6833  * 0 - 99% match. The last 1% is validated by the verifier.
6834  */
6835 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6836 				     struct btf *btf1, const struct btf_type *t1,
6837 				     struct btf *btf2, const struct btf_type *t2)
6838 {
6839 	const struct btf_param *args1, *args2;
6840 	const char *fn1, *fn2, *s1, *s2;
6841 	u32 nargs1, nargs2, i;
6842 
6843 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6844 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6845 
6846 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6847 		bpf_log(log, "%s() is not a global function\n", fn1);
6848 		return -EINVAL;
6849 	}
6850 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6851 		bpf_log(log, "%s() is not a global function\n", fn2);
6852 		return -EINVAL;
6853 	}
6854 
6855 	t1 = btf_type_by_id(btf1, t1->type);
6856 	if (!t1 || !btf_type_is_func_proto(t1))
6857 		return -EFAULT;
6858 	t2 = btf_type_by_id(btf2, t2->type);
6859 	if (!t2 || !btf_type_is_func_proto(t2))
6860 		return -EFAULT;
6861 
6862 	args1 = (const struct btf_param *)(t1 + 1);
6863 	nargs1 = btf_type_vlen(t1);
6864 	args2 = (const struct btf_param *)(t2 + 1);
6865 	nargs2 = btf_type_vlen(t2);
6866 
6867 	if (nargs1 != nargs2) {
6868 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6869 			fn1, nargs1, fn2, nargs2);
6870 		return -EINVAL;
6871 	}
6872 
6873 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6874 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6875 	if (t1->info != t2->info) {
6876 		bpf_log(log,
6877 			"Return type %s of %s() doesn't match type %s of %s()\n",
6878 			btf_type_str(t1), fn1,
6879 			btf_type_str(t2), fn2);
6880 		return -EINVAL;
6881 	}
6882 
6883 	for (i = 0; i < nargs1; i++) {
6884 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6885 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6886 
6887 		if (t1->info != t2->info) {
6888 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6889 				i, fn1, btf_type_str(t1),
6890 				fn2, btf_type_str(t2));
6891 			return -EINVAL;
6892 		}
6893 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6894 			bpf_log(log,
6895 				"arg%d in %s() has size %d while %s() has %d\n",
6896 				i, fn1, t1->size,
6897 				fn2, t2->size);
6898 			return -EINVAL;
6899 		}
6900 
6901 		/* global functions are validated with scalars and pointers
6902 		 * to context only. And only global functions can be replaced.
6903 		 * Hence type check only those types.
6904 		 */
6905 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6906 			continue;
6907 		if (!btf_type_is_ptr(t1)) {
6908 			bpf_log(log,
6909 				"arg%d in %s() has unrecognized type\n",
6910 				i, fn1);
6911 			return -EINVAL;
6912 		}
6913 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6914 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6915 		if (!btf_type_is_struct(t1)) {
6916 			bpf_log(log,
6917 				"arg%d in %s() is not a pointer to context\n",
6918 				i, fn1);
6919 			return -EINVAL;
6920 		}
6921 		if (!btf_type_is_struct(t2)) {
6922 			bpf_log(log,
6923 				"arg%d in %s() is not a pointer to context\n",
6924 				i, fn2);
6925 			return -EINVAL;
6926 		}
6927 		/* This is an optional check to make program writing easier.
6928 		 * Compare names of structs and report an error to the user.
6929 		 * btf_prepare_func_args() already checked that t2 struct
6930 		 * is a context type. btf_prepare_func_args() will check
6931 		 * later that t1 struct is a context type as well.
6932 		 */
6933 		s1 = btf_name_by_offset(btf1, t1->name_off);
6934 		s2 = btf_name_by_offset(btf2, t2->name_off);
6935 		if (strcmp(s1, s2)) {
6936 			bpf_log(log,
6937 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6938 				i, fn1, s1, fn2, s2);
6939 			return -EINVAL;
6940 		}
6941 	}
6942 	return 0;
6943 }
6944 
6945 /* Compare BTFs of given program with BTF of target program */
6946 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6947 			 struct btf *btf2, const struct btf_type *t2)
6948 {
6949 	struct btf *btf1 = prog->aux->btf;
6950 	const struct btf_type *t1;
6951 	u32 btf_id = 0;
6952 
6953 	if (!prog->aux->func_info) {
6954 		bpf_log(log, "Program extension requires BTF\n");
6955 		return -EINVAL;
6956 	}
6957 
6958 	btf_id = prog->aux->func_info[0].type_id;
6959 	if (!btf_id)
6960 		return -EFAULT;
6961 
6962 	t1 = btf_type_by_id(btf1, btf_id);
6963 	if (!t1 || !btf_type_is_func(t1))
6964 		return -EFAULT;
6965 
6966 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6967 }
6968 
6969 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
6970 {
6971 	const char *name;
6972 
6973 	t = btf_type_by_id(btf, t->type); /* skip PTR */
6974 
6975 	while (btf_type_is_modifier(t))
6976 		t = btf_type_by_id(btf, t->type);
6977 
6978 	/* allow either struct or struct forward declaration */
6979 	if (btf_type_is_struct(t) ||
6980 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
6981 		name = btf_str_by_offset(btf, t->name_off);
6982 		return name && strcmp(name, "bpf_dynptr") == 0;
6983 	}
6984 
6985 	return false;
6986 }
6987 
6988 enum btf_arg_tag {
6989 	ARG_TAG_CTX = 0x1,
6990 	ARG_TAG_NONNULL = 0x2,
6991 };
6992 
6993 /* Process BTF of a function to produce high-level expectation of function
6994  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
6995  * is cached in subprog info for reuse.
6996  * Returns:
6997  * EFAULT - there is a verifier bug. Abort verification.
6998  * EINVAL - cannot convert BTF.
6999  * 0 - Successfully processed BTF and constructed argument expectations.
7000  */
7001 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7002 {
7003 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7004 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7005 	struct bpf_verifier_log *log = &env->log;
7006 	struct bpf_prog *prog = env->prog;
7007 	enum bpf_prog_type prog_type = prog->type;
7008 	struct btf *btf = prog->aux->btf;
7009 	const struct btf_param *args;
7010 	const struct btf_type *t, *ref_t, *fn_t;
7011 	u32 i, nargs, btf_id;
7012 	const char *tname;
7013 
7014 	if (sub->args_cached)
7015 		return 0;
7016 
7017 	if (!prog->aux->func_info) {
7018 		bpf_log(log, "Verifier bug\n");
7019 		return -EFAULT;
7020 	}
7021 
7022 	btf_id = prog->aux->func_info[subprog].type_id;
7023 	if (!btf_id) {
7024 		if (!is_global) /* not fatal for static funcs */
7025 			return -EINVAL;
7026 		bpf_log(log, "Global functions need valid BTF\n");
7027 		return -EFAULT;
7028 	}
7029 
7030 	fn_t = btf_type_by_id(btf, btf_id);
7031 	if (!fn_t || !btf_type_is_func(fn_t)) {
7032 		/* These checks were already done by the verifier while loading
7033 		 * struct bpf_func_info
7034 		 */
7035 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7036 			subprog);
7037 		return -EFAULT;
7038 	}
7039 	tname = btf_name_by_offset(btf, fn_t->name_off);
7040 
7041 	if (prog->aux->func_info_aux[subprog].unreliable) {
7042 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7043 		return -EFAULT;
7044 	}
7045 	if (prog_type == BPF_PROG_TYPE_EXT)
7046 		prog_type = prog->aux->dst_prog->type;
7047 
7048 	t = btf_type_by_id(btf, fn_t->type);
7049 	if (!t || !btf_type_is_func_proto(t)) {
7050 		bpf_log(log, "Invalid type of function %s()\n", tname);
7051 		return -EFAULT;
7052 	}
7053 	args = (const struct btf_param *)(t + 1);
7054 	nargs = btf_type_vlen(t);
7055 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7056 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7057 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7058 		return -EINVAL;
7059 	}
7060 	/* check that function returns int, exception cb also requires this */
7061 	t = btf_type_by_id(btf, t->type);
7062 	while (btf_type_is_modifier(t))
7063 		t = btf_type_by_id(btf, t->type);
7064 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7065 		bpf_log(log,
7066 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7067 			tname);
7068 		return -EINVAL;
7069 	}
7070 	/* Convert BTF function arguments into verifier types.
7071 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7072 	 */
7073 	for (i = 0; i < nargs; i++) {
7074 		u32 tags = 0;
7075 		int id = 0;
7076 
7077 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7078 		 * register type from BTF type itself
7079 		 */
7080 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7081 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7082 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7083 
7084 			/* disallow arg tags in static subprogs */
7085 			if (!is_global) {
7086 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7087 				return -EOPNOTSUPP;
7088 			}
7089 
7090 			if (strcmp(tag, "ctx") == 0) {
7091 				tags |= ARG_TAG_CTX;
7092 			} else if (strcmp(tag, "nonnull") == 0) {
7093 				tags |= ARG_TAG_NONNULL;
7094 			} else {
7095 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7096 				return -EOPNOTSUPP;
7097 			}
7098 		}
7099 		if (id != -ENOENT) {
7100 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7101 			return id;
7102 		}
7103 
7104 		t = btf_type_by_id(btf, args[i].type);
7105 		while (btf_type_is_modifier(t))
7106 			t = btf_type_by_id(btf, t->type);
7107 		if (!btf_type_is_ptr(t))
7108 			goto skip_pointer;
7109 
7110 		if ((tags & ARG_TAG_CTX) || btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7111 			if (tags & ~ARG_TAG_CTX) {
7112 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7113 				return -EINVAL;
7114 			}
7115 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7116 			continue;
7117 		}
7118 		if (btf_is_dynptr_ptr(btf, t)) {
7119 			if (tags) {
7120 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7121 				return -EINVAL;
7122 			}
7123 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7124 			continue;
7125 		}
7126 		if (is_global) { /* generic user data pointer */
7127 			u32 mem_size;
7128 
7129 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7130 			ref_t = btf_resolve_size(btf, t, &mem_size);
7131 			if (IS_ERR(ref_t)) {
7132 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7133 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7134 					PTR_ERR(ref_t));
7135 				return -EINVAL;
7136 			}
7137 
7138 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7139 			if (tags & ARG_TAG_NONNULL)
7140 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7141 			sub->args[i].mem_size = mem_size;
7142 			continue;
7143 		}
7144 
7145 skip_pointer:
7146 		if (tags) {
7147 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7148 			return -EINVAL;
7149 		}
7150 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7151 			sub->args[i].arg_type = ARG_ANYTHING;
7152 			continue;
7153 		}
7154 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7155 			i, btf_type_str(t), tname);
7156 		return -EINVAL;
7157 	}
7158 
7159 	for (i = 0; i < nargs; i++) {
7160 		const char *tag;
7161 
7162 		if (sub->args[i].arg_type != ARG_PTR_TO_CTX)
7163 			continue;
7164 
7165 		/* check if arg has "arg:ctx" tag */
7166 		t = btf_type_by_id(btf, args[i].type);
7167 		tag = btf_find_decl_tag_value(btf, fn_t, i, "arg:");
7168 		if (IS_ERR_OR_NULL(tag) || strcmp(tag, "ctx") != 0)
7169 			continue;
7170 
7171 		if (btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7172 					       prog->expected_attach_type))
7173 			return -EINVAL;
7174 	}
7175 
7176 	sub->arg_cnt = nargs;
7177 	sub->args_cached = true;
7178 
7179 	return 0;
7180 }
7181 
7182 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7183 			  struct btf_show *show)
7184 {
7185 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7186 
7187 	show->btf = btf;
7188 	memset(&show->state, 0, sizeof(show->state));
7189 	memset(&show->obj, 0, sizeof(show->obj));
7190 
7191 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7192 }
7193 
7194 static void btf_seq_show(struct btf_show *show, const char *fmt,
7195 			 va_list args)
7196 {
7197 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7198 }
7199 
7200 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7201 			    void *obj, struct seq_file *m, u64 flags)
7202 {
7203 	struct btf_show sseq;
7204 
7205 	sseq.target = m;
7206 	sseq.showfn = btf_seq_show;
7207 	sseq.flags = flags;
7208 
7209 	btf_type_show(btf, type_id, obj, &sseq);
7210 
7211 	return sseq.state.status;
7212 }
7213 
7214 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7215 		       struct seq_file *m)
7216 {
7217 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7218 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7219 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7220 }
7221 
7222 struct btf_show_snprintf {
7223 	struct btf_show show;
7224 	int len_left;		/* space left in string */
7225 	int len;		/* length we would have written */
7226 };
7227 
7228 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7229 			      va_list args)
7230 {
7231 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7232 	int len;
7233 
7234 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7235 
7236 	if (len < 0) {
7237 		ssnprintf->len_left = 0;
7238 		ssnprintf->len = len;
7239 	} else if (len >= ssnprintf->len_left) {
7240 		/* no space, drive on to get length we would have written */
7241 		ssnprintf->len_left = 0;
7242 		ssnprintf->len += len;
7243 	} else {
7244 		ssnprintf->len_left -= len;
7245 		ssnprintf->len += len;
7246 		show->target += len;
7247 	}
7248 }
7249 
7250 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7251 			   char *buf, int len, u64 flags)
7252 {
7253 	struct btf_show_snprintf ssnprintf;
7254 
7255 	ssnprintf.show.target = buf;
7256 	ssnprintf.show.flags = flags;
7257 	ssnprintf.show.showfn = btf_snprintf_show;
7258 	ssnprintf.len_left = len;
7259 	ssnprintf.len = 0;
7260 
7261 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7262 
7263 	/* If we encountered an error, return it. */
7264 	if (ssnprintf.show.state.status)
7265 		return ssnprintf.show.state.status;
7266 
7267 	/* Otherwise return length we would have written */
7268 	return ssnprintf.len;
7269 }
7270 
7271 #ifdef CONFIG_PROC_FS
7272 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7273 {
7274 	const struct btf *btf = filp->private_data;
7275 
7276 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7277 }
7278 #endif
7279 
7280 static int btf_release(struct inode *inode, struct file *filp)
7281 {
7282 	btf_put(filp->private_data);
7283 	return 0;
7284 }
7285 
7286 const struct file_operations btf_fops = {
7287 #ifdef CONFIG_PROC_FS
7288 	.show_fdinfo	= bpf_btf_show_fdinfo,
7289 #endif
7290 	.release	= btf_release,
7291 };
7292 
7293 static int __btf_new_fd(struct btf *btf)
7294 {
7295 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7296 }
7297 
7298 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7299 {
7300 	struct btf *btf;
7301 	int ret;
7302 
7303 	btf = btf_parse(attr, uattr, uattr_size);
7304 	if (IS_ERR(btf))
7305 		return PTR_ERR(btf);
7306 
7307 	ret = btf_alloc_id(btf);
7308 	if (ret) {
7309 		btf_free(btf);
7310 		return ret;
7311 	}
7312 
7313 	/*
7314 	 * The BTF ID is published to the userspace.
7315 	 * All BTF free must go through call_rcu() from
7316 	 * now on (i.e. free by calling btf_put()).
7317 	 */
7318 
7319 	ret = __btf_new_fd(btf);
7320 	if (ret < 0)
7321 		btf_put(btf);
7322 
7323 	return ret;
7324 }
7325 
7326 struct btf *btf_get_by_fd(int fd)
7327 {
7328 	struct btf *btf;
7329 	struct fd f;
7330 
7331 	f = fdget(fd);
7332 
7333 	if (!f.file)
7334 		return ERR_PTR(-EBADF);
7335 
7336 	if (f.file->f_op != &btf_fops) {
7337 		fdput(f);
7338 		return ERR_PTR(-EINVAL);
7339 	}
7340 
7341 	btf = f.file->private_data;
7342 	refcount_inc(&btf->refcnt);
7343 	fdput(f);
7344 
7345 	return btf;
7346 }
7347 
7348 int btf_get_info_by_fd(const struct btf *btf,
7349 		       const union bpf_attr *attr,
7350 		       union bpf_attr __user *uattr)
7351 {
7352 	struct bpf_btf_info __user *uinfo;
7353 	struct bpf_btf_info info;
7354 	u32 info_copy, btf_copy;
7355 	void __user *ubtf;
7356 	char __user *uname;
7357 	u32 uinfo_len, uname_len, name_len;
7358 	int ret = 0;
7359 
7360 	uinfo = u64_to_user_ptr(attr->info.info);
7361 	uinfo_len = attr->info.info_len;
7362 
7363 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7364 	memset(&info, 0, sizeof(info));
7365 	if (copy_from_user(&info, uinfo, info_copy))
7366 		return -EFAULT;
7367 
7368 	info.id = btf->id;
7369 	ubtf = u64_to_user_ptr(info.btf);
7370 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7371 	if (copy_to_user(ubtf, btf->data, btf_copy))
7372 		return -EFAULT;
7373 	info.btf_size = btf->data_size;
7374 
7375 	info.kernel_btf = btf->kernel_btf;
7376 
7377 	uname = u64_to_user_ptr(info.name);
7378 	uname_len = info.name_len;
7379 	if (!uname ^ !uname_len)
7380 		return -EINVAL;
7381 
7382 	name_len = strlen(btf->name);
7383 	info.name_len = name_len;
7384 
7385 	if (uname) {
7386 		if (uname_len >= name_len + 1) {
7387 			if (copy_to_user(uname, btf->name, name_len + 1))
7388 				return -EFAULT;
7389 		} else {
7390 			char zero = '\0';
7391 
7392 			if (copy_to_user(uname, btf->name, uname_len - 1))
7393 				return -EFAULT;
7394 			if (put_user(zero, uname + uname_len - 1))
7395 				return -EFAULT;
7396 			/* let user-space know about too short buffer */
7397 			ret = -ENOSPC;
7398 		}
7399 	}
7400 
7401 	if (copy_to_user(uinfo, &info, info_copy) ||
7402 	    put_user(info_copy, &uattr->info.info_len))
7403 		return -EFAULT;
7404 
7405 	return ret;
7406 }
7407 
7408 int btf_get_fd_by_id(u32 id)
7409 {
7410 	struct btf *btf;
7411 	int fd;
7412 
7413 	rcu_read_lock();
7414 	btf = idr_find(&btf_idr, id);
7415 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7416 		btf = ERR_PTR(-ENOENT);
7417 	rcu_read_unlock();
7418 
7419 	if (IS_ERR(btf))
7420 		return PTR_ERR(btf);
7421 
7422 	fd = __btf_new_fd(btf);
7423 	if (fd < 0)
7424 		btf_put(btf);
7425 
7426 	return fd;
7427 }
7428 
7429 u32 btf_obj_id(const struct btf *btf)
7430 {
7431 	return btf->id;
7432 }
7433 
7434 bool btf_is_kernel(const struct btf *btf)
7435 {
7436 	return btf->kernel_btf;
7437 }
7438 
7439 bool btf_is_module(const struct btf *btf)
7440 {
7441 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7442 }
7443 
7444 enum {
7445 	BTF_MODULE_F_LIVE = (1 << 0),
7446 };
7447 
7448 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7449 struct btf_module {
7450 	struct list_head list;
7451 	struct module *module;
7452 	struct btf *btf;
7453 	struct bin_attribute *sysfs_attr;
7454 	int flags;
7455 };
7456 
7457 static LIST_HEAD(btf_modules);
7458 static DEFINE_MUTEX(btf_module_mutex);
7459 
7460 static ssize_t
7461 btf_module_read(struct file *file, struct kobject *kobj,
7462 		struct bin_attribute *bin_attr,
7463 		char *buf, loff_t off, size_t len)
7464 {
7465 	const struct btf *btf = bin_attr->private;
7466 
7467 	memcpy(buf, btf->data + off, len);
7468 	return len;
7469 }
7470 
7471 static void purge_cand_cache(struct btf *btf);
7472 
7473 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7474 			     void *module)
7475 {
7476 	struct btf_module *btf_mod, *tmp;
7477 	struct module *mod = module;
7478 	struct btf *btf;
7479 	int err = 0;
7480 
7481 	if (mod->btf_data_size == 0 ||
7482 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7483 	     op != MODULE_STATE_GOING))
7484 		goto out;
7485 
7486 	switch (op) {
7487 	case MODULE_STATE_COMING:
7488 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7489 		if (!btf_mod) {
7490 			err = -ENOMEM;
7491 			goto out;
7492 		}
7493 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7494 		if (IS_ERR(btf)) {
7495 			kfree(btf_mod);
7496 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7497 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7498 					mod->name, PTR_ERR(btf));
7499 				err = PTR_ERR(btf);
7500 			} else {
7501 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7502 			}
7503 			goto out;
7504 		}
7505 		err = btf_alloc_id(btf);
7506 		if (err) {
7507 			btf_free(btf);
7508 			kfree(btf_mod);
7509 			goto out;
7510 		}
7511 
7512 		purge_cand_cache(NULL);
7513 		mutex_lock(&btf_module_mutex);
7514 		btf_mod->module = module;
7515 		btf_mod->btf = btf;
7516 		list_add(&btf_mod->list, &btf_modules);
7517 		mutex_unlock(&btf_module_mutex);
7518 
7519 		if (IS_ENABLED(CONFIG_SYSFS)) {
7520 			struct bin_attribute *attr;
7521 
7522 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7523 			if (!attr)
7524 				goto out;
7525 
7526 			sysfs_bin_attr_init(attr);
7527 			attr->attr.name = btf->name;
7528 			attr->attr.mode = 0444;
7529 			attr->size = btf->data_size;
7530 			attr->private = btf;
7531 			attr->read = btf_module_read;
7532 
7533 			err = sysfs_create_bin_file(btf_kobj, attr);
7534 			if (err) {
7535 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7536 					mod->name, err);
7537 				kfree(attr);
7538 				err = 0;
7539 				goto out;
7540 			}
7541 
7542 			btf_mod->sysfs_attr = attr;
7543 		}
7544 
7545 		break;
7546 	case MODULE_STATE_LIVE:
7547 		mutex_lock(&btf_module_mutex);
7548 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7549 			if (btf_mod->module != module)
7550 				continue;
7551 
7552 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7553 			break;
7554 		}
7555 		mutex_unlock(&btf_module_mutex);
7556 		break;
7557 	case MODULE_STATE_GOING:
7558 		mutex_lock(&btf_module_mutex);
7559 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7560 			if (btf_mod->module != module)
7561 				continue;
7562 
7563 			list_del(&btf_mod->list);
7564 			if (btf_mod->sysfs_attr)
7565 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7566 			purge_cand_cache(btf_mod->btf);
7567 			btf_put(btf_mod->btf);
7568 			kfree(btf_mod->sysfs_attr);
7569 			kfree(btf_mod);
7570 			break;
7571 		}
7572 		mutex_unlock(&btf_module_mutex);
7573 		break;
7574 	}
7575 out:
7576 	return notifier_from_errno(err);
7577 }
7578 
7579 static struct notifier_block btf_module_nb = {
7580 	.notifier_call = btf_module_notify,
7581 };
7582 
7583 static int __init btf_module_init(void)
7584 {
7585 	register_module_notifier(&btf_module_nb);
7586 	return 0;
7587 }
7588 
7589 fs_initcall(btf_module_init);
7590 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7591 
7592 struct module *btf_try_get_module(const struct btf *btf)
7593 {
7594 	struct module *res = NULL;
7595 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7596 	struct btf_module *btf_mod, *tmp;
7597 
7598 	mutex_lock(&btf_module_mutex);
7599 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7600 		if (btf_mod->btf != btf)
7601 			continue;
7602 
7603 		/* We must only consider module whose __init routine has
7604 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7605 		 * which is set from the notifier callback for
7606 		 * MODULE_STATE_LIVE.
7607 		 */
7608 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7609 			res = btf_mod->module;
7610 
7611 		break;
7612 	}
7613 	mutex_unlock(&btf_module_mutex);
7614 #endif
7615 
7616 	return res;
7617 }
7618 
7619 /* Returns struct btf corresponding to the struct module.
7620  * This function can return NULL or ERR_PTR.
7621  */
7622 static struct btf *btf_get_module_btf(const struct module *module)
7623 {
7624 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7625 	struct btf_module *btf_mod, *tmp;
7626 #endif
7627 	struct btf *btf = NULL;
7628 
7629 	if (!module) {
7630 		btf = bpf_get_btf_vmlinux();
7631 		if (!IS_ERR_OR_NULL(btf))
7632 			btf_get(btf);
7633 		return btf;
7634 	}
7635 
7636 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7637 	mutex_lock(&btf_module_mutex);
7638 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7639 		if (btf_mod->module != module)
7640 			continue;
7641 
7642 		btf_get(btf_mod->btf);
7643 		btf = btf_mod->btf;
7644 		break;
7645 	}
7646 	mutex_unlock(&btf_module_mutex);
7647 #endif
7648 
7649 	return btf;
7650 }
7651 
7652 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7653 {
7654 	struct btf *btf = NULL;
7655 	int btf_obj_fd = 0;
7656 	long ret;
7657 
7658 	if (flags)
7659 		return -EINVAL;
7660 
7661 	if (name_sz <= 1 || name[name_sz - 1])
7662 		return -EINVAL;
7663 
7664 	ret = bpf_find_btf_id(name, kind, &btf);
7665 	if (ret > 0 && btf_is_module(btf)) {
7666 		btf_obj_fd = __btf_new_fd(btf);
7667 		if (btf_obj_fd < 0) {
7668 			btf_put(btf);
7669 			return btf_obj_fd;
7670 		}
7671 		return ret | (((u64)btf_obj_fd) << 32);
7672 	}
7673 	if (ret > 0)
7674 		btf_put(btf);
7675 	return ret;
7676 }
7677 
7678 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7679 	.func		= bpf_btf_find_by_name_kind,
7680 	.gpl_only	= false,
7681 	.ret_type	= RET_INTEGER,
7682 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7683 	.arg2_type	= ARG_CONST_SIZE,
7684 	.arg3_type	= ARG_ANYTHING,
7685 	.arg4_type	= ARG_ANYTHING,
7686 };
7687 
7688 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7689 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7690 BTF_TRACING_TYPE_xxx
7691 #undef BTF_TRACING_TYPE
7692 
7693 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7694 				 const struct btf_type *func, u32 func_flags)
7695 {
7696 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7697 	const char *name, *sfx, *iter_name;
7698 	const struct btf_param *arg;
7699 	const struct btf_type *t;
7700 	char exp_name[128];
7701 	u32 nr_args;
7702 
7703 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7704 	if (!flags || (flags & (flags - 1)))
7705 		return -EINVAL;
7706 
7707 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7708 	nr_args = btf_type_vlen(func);
7709 	if (nr_args < 1)
7710 		return -EINVAL;
7711 
7712 	arg = &btf_params(func)[0];
7713 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7714 	if (!t || !btf_type_is_ptr(t))
7715 		return -EINVAL;
7716 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7717 	if (!t || !__btf_type_is_struct(t))
7718 		return -EINVAL;
7719 
7720 	name = btf_name_by_offset(btf, t->name_off);
7721 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7722 		return -EINVAL;
7723 
7724 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7725 	 * fit nicely in stack slots
7726 	 */
7727 	if (t->size == 0 || (t->size % 8))
7728 		return -EINVAL;
7729 
7730 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7731 	 * naming pattern
7732 	 */
7733 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7734 	if (flags & KF_ITER_NEW)
7735 		sfx = "new";
7736 	else if (flags & KF_ITER_NEXT)
7737 		sfx = "next";
7738 	else /* (flags & KF_ITER_DESTROY) */
7739 		sfx = "destroy";
7740 
7741 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7742 	if (strcmp(func_name, exp_name))
7743 		return -EINVAL;
7744 
7745 	/* only iter constructor should have extra arguments */
7746 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7747 		return -EINVAL;
7748 
7749 	if (flags & KF_ITER_NEXT) {
7750 		/* bpf_iter_<type>_next() should return pointer */
7751 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7752 		if (!t || !btf_type_is_ptr(t))
7753 			return -EINVAL;
7754 	}
7755 
7756 	if (flags & KF_ITER_DESTROY) {
7757 		/* bpf_iter_<type>_destroy() should return void */
7758 		t = btf_type_by_id(btf, func->type);
7759 		if (!t || !btf_type_is_void(t))
7760 			return -EINVAL;
7761 	}
7762 
7763 	return 0;
7764 }
7765 
7766 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7767 {
7768 	const struct btf_type *func;
7769 	const char *func_name;
7770 	int err;
7771 
7772 	/* any kfunc should be FUNC -> FUNC_PROTO */
7773 	func = btf_type_by_id(btf, func_id);
7774 	if (!func || !btf_type_is_func(func))
7775 		return -EINVAL;
7776 
7777 	/* sanity check kfunc name */
7778 	func_name = btf_name_by_offset(btf, func->name_off);
7779 	if (!func_name || !func_name[0])
7780 		return -EINVAL;
7781 
7782 	func = btf_type_by_id(btf, func->type);
7783 	if (!func || !btf_type_is_func_proto(func))
7784 		return -EINVAL;
7785 
7786 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7787 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7788 		if (err)
7789 			return err;
7790 	}
7791 
7792 	return 0;
7793 }
7794 
7795 /* Kernel Function (kfunc) BTF ID set registration API */
7796 
7797 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7798 				  const struct btf_kfunc_id_set *kset)
7799 {
7800 	struct btf_kfunc_hook_filter *hook_filter;
7801 	struct btf_id_set8 *add_set = kset->set;
7802 	bool vmlinux_set = !btf_is_module(btf);
7803 	bool add_filter = !!kset->filter;
7804 	struct btf_kfunc_set_tab *tab;
7805 	struct btf_id_set8 *set;
7806 	u32 set_cnt;
7807 	int ret;
7808 
7809 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7810 		ret = -EINVAL;
7811 		goto end;
7812 	}
7813 
7814 	if (!add_set->cnt)
7815 		return 0;
7816 
7817 	tab = btf->kfunc_set_tab;
7818 
7819 	if (tab && add_filter) {
7820 		u32 i;
7821 
7822 		hook_filter = &tab->hook_filters[hook];
7823 		for (i = 0; i < hook_filter->nr_filters; i++) {
7824 			if (hook_filter->filters[i] == kset->filter) {
7825 				add_filter = false;
7826 				break;
7827 			}
7828 		}
7829 
7830 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7831 			ret = -E2BIG;
7832 			goto end;
7833 		}
7834 	}
7835 
7836 	if (!tab) {
7837 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7838 		if (!tab)
7839 			return -ENOMEM;
7840 		btf->kfunc_set_tab = tab;
7841 	}
7842 
7843 	set = tab->sets[hook];
7844 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7845 	 * for module sets.
7846 	 */
7847 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7848 		ret = -EINVAL;
7849 		goto end;
7850 	}
7851 
7852 	/* We don't need to allocate, concatenate, and sort module sets, because
7853 	 * only one is allowed per hook. Hence, we can directly assign the
7854 	 * pointer and return.
7855 	 */
7856 	if (!vmlinux_set) {
7857 		tab->sets[hook] = add_set;
7858 		goto do_add_filter;
7859 	}
7860 
7861 	/* In case of vmlinux sets, there may be more than one set being
7862 	 * registered per hook. To create a unified set, we allocate a new set
7863 	 * and concatenate all individual sets being registered. While each set
7864 	 * is individually sorted, they may become unsorted when concatenated,
7865 	 * hence re-sorting the final set again is required to make binary
7866 	 * searching the set using btf_id_set8_contains function work.
7867 	 */
7868 	set_cnt = set ? set->cnt : 0;
7869 
7870 	if (set_cnt > U32_MAX - add_set->cnt) {
7871 		ret = -EOVERFLOW;
7872 		goto end;
7873 	}
7874 
7875 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7876 		ret = -E2BIG;
7877 		goto end;
7878 	}
7879 
7880 	/* Grow set */
7881 	set = krealloc(tab->sets[hook],
7882 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7883 		       GFP_KERNEL | __GFP_NOWARN);
7884 	if (!set) {
7885 		ret = -ENOMEM;
7886 		goto end;
7887 	}
7888 
7889 	/* For newly allocated set, initialize set->cnt to 0 */
7890 	if (!tab->sets[hook])
7891 		set->cnt = 0;
7892 	tab->sets[hook] = set;
7893 
7894 	/* Concatenate the two sets */
7895 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7896 	set->cnt += add_set->cnt;
7897 
7898 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7899 
7900 do_add_filter:
7901 	if (add_filter) {
7902 		hook_filter = &tab->hook_filters[hook];
7903 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7904 	}
7905 	return 0;
7906 end:
7907 	btf_free_kfunc_set_tab(btf);
7908 	return ret;
7909 }
7910 
7911 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7912 					enum btf_kfunc_hook hook,
7913 					u32 kfunc_btf_id,
7914 					const struct bpf_prog *prog)
7915 {
7916 	struct btf_kfunc_hook_filter *hook_filter;
7917 	struct btf_id_set8 *set;
7918 	u32 *id, i;
7919 
7920 	if (hook >= BTF_KFUNC_HOOK_MAX)
7921 		return NULL;
7922 	if (!btf->kfunc_set_tab)
7923 		return NULL;
7924 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7925 	for (i = 0; i < hook_filter->nr_filters; i++) {
7926 		if (hook_filter->filters[i](prog, kfunc_btf_id))
7927 			return NULL;
7928 	}
7929 	set = btf->kfunc_set_tab->sets[hook];
7930 	if (!set)
7931 		return NULL;
7932 	id = btf_id_set8_contains(set, kfunc_btf_id);
7933 	if (!id)
7934 		return NULL;
7935 	/* The flags for BTF ID are located next to it */
7936 	return id + 1;
7937 }
7938 
7939 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7940 {
7941 	switch (prog_type) {
7942 	case BPF_PROG_TYPE_UNSPEC:
7943 		return BTF_KFUNC_HOOK_COMMON;
7944 	case BPF_PROG_TYPE_XDP:
7945 		return BTF_KFUNC_HOOK_XDP;
7946 	case BPF_PROG_TYPE_SCHED_CLS:
7947 		return BTF_KFUNC_HOOK_TC;
7948 	case BPF_PROG_TYPE_STRUCT_OPS:
7949 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7950 	case BPF_PROG_TYPE_TRACING:
7951 	case BPF_PROG_TYPE_LSM:
7952 		return BTF_KFUNC_HOOK_TRACING;
7953 	case BPF_PROG_TYPE_SYSCALL:
7954 		return BTF_KFUNC_HOOK_SYSCALL;
7955 	case BPF_PROG_TYPE_CGROUP_SKB:
7956 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7957 		return BTF_KFUNC_HOOK_CGROUP_SKB;
7958 	case BPF_PROG_TYPE_SCHED_ACT:
7959 		return BTF_KFUNC_HOOK_SCHED_ACT;
7960 	case BPF_PROG_TYPE_SK_SKB:
7961 		return BTF_KFUNC_HOOK_SK_SKB;
7962 	case BPF_PROG_TYPE_SOCKET_FILTER:
7963 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
7964 	case BPF_PROG_TYPE_LWT_OUT:
7965 	case BPF_PROG_TYPE_LWT_IN:
7966 	case BPF_PROG_TYPE_LWT_XMIT:
7967 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7968 		return BTF_KFUNC_HOOK_LWT;
7969 	case BPF_PROG_TYPE_NETFILTER:
7970 		return BTF_KFUNC_HOOK_NETFILTER;
7971 	default:
7972 		return BTF_KFUNC_HOOK_MAX;
7973 	}
7974 }
7975 
7976 /* Caution:
7977  * Reference to the module (obtained using btf_try_get_module) corresponding to
7978  * the struct btf *MUST* be held when calling this function from verifier
7979  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7980  * keeping the reference for the duration of the call provides the necessary
7981  * protection for looking up a well-formed btf->kfunc_set_tab.
7982  */
7983 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7984 			       u32 kfunc_btf_id,
7985 			       const struct bpf_prog *prog)
7986 {
7987 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
7988 	enum btf_kfunc_hook hook;
7989 	u32 *kfunc_flags;
7990 
7991 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7992 	if (kfunc_flags)
7993 		return kfunc_flags;
7994 
7995 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7996 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7997 }
7998 
7999 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8000 				const struct bpf_prog *prog)
8001 {
8002 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8003 }
8004 
8005 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8006 				       const struct btf_kfunc_id_set *kset)
8007 {
8008 	struct btf *btf;
8009 	int ret, i;
8010 
8011 	btf = btf_get_module_btf(kset->owner);
8012 	if (!btf) {
8013 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8014 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
8015 			return -ENOENT;
8016 		}
8017 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8018 			pr_warn("missing module BTF, cannot register kfuncs\n");
8019 		return 0;
8020 	}
8021 	if (IS_ERR(btf))
8022 		return PTR_ERR(btf);
8023 
8024 	for (i = 0; i < kset->set->cnt; i++) {
8025 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
8026 					     kset->set->pairs[i].flags);
8027 		if (ret)
8028 			goto err_out;
8029 	}
8030 
8031 	ret = btf_populate_kfunc_set(btf, hook, kset);
8032 
8033 err_out:
8034 	btf_put(btf);
8035 	return ret;
8036 }
8037 
8038 /* This function must be invoked only from initcalls/module init functions */
8039 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8040 			      const struct btf_kfunc_id_set *kset)
8041 {
8042 	enum btf_kfunc_hook hook;
8043 
8044 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8045 	return __register_btf_kfunc_id_set(hook, kset);
8046 }
8047 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8048 
8049 /* This function must be invoked only from initcalls/module init functions */
8050 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8051 {
8052 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8053 }
8054 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8055 
8056 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8057 {
8058 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8059 	struct btf_id_dtor_kfunc *dtor;
8060 
8061 	if (!tab)
8062 		return -ENOENT;
8063 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8064 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8065 	 */
8066 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8067 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8068 	if (!dtor)
8069 		return -ENOENT;
8070 	return dtor->kfunc_btf_id;
8071 }
8072 
8073 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8074 {
8075 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8076 	const struct btf_param *args;
8077 	s32 dtor_btf_id;
8078 	u32 nr_args, i;
8079 
8080 	for (i = 0; i < cnt; i++) {
8081 		dtor_btf_id = dtors[i].kfunc_btf_id;
8082 
8083 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8084 		if (!dtor_func || !btf_type_is_func(dtor_func))
8085 			return -EINVAL;
8086 
8087 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8088 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8089 			return -EINVAL;
8090 
8091 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8092 		t = btf_type_by_id(btf, dtor_func_proto->type);
8093 		if (!t || !btf_type_is_void(t))
8094 			return -EINVAL;
8095 
8096 		nr_args = btf_type_vlen(dtor_func_proto);
8097 		if (nr_args != 1)
8098 			return -EINVAL;
8099 		args = btf_params(dtor_func_proto);
8100 		t = btf_type_by_id(btf, args[0].type);
8101 		/* Allow any pointer type, as width on targets Linux supports
8102 		 * will be same for all pointer types (i.e. sizeof(void *))
8103 		 */
8104 		if (!t || !btf_type_is_ptr(t))
8105 			return -EINVAL;
8106 	}
8107 	return 0;
8108 }
8109 
8110 /* This function must be invoked only from initcalls/module init functions */
8111 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8112 				struct module *owner)
8113 {
8114 	struct btf_id_dtor_kfunc_tab *tab;
8115 	struct btf *btf;
8116 	u32 tab_cnt;
8117 	int ret;
8118 
8119 	btf = btf_get_module_btf(owner);
8120 	if (!btf) {
8121 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8122 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8123 			return -ENOENT;
8124 		}
8125 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8126 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
8127 			return -ENOENT;
8128 		}
8129 		return 0;
8130 	}
8131 	if (IS_ERR(btf))
8132 		return PTR_ERR(btf);
8133 
8134 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8135 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8136 		ret = -E2BIG;
8137 		goto end;
8138 	}
8139 
8140 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8141 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8142 	if (ret < 0)
8143 		goto end;
8144 
8145 	tab = btf->dtor_kfunc_tab;
8146 	/* Only one call allowed for modules */
8147 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8148 		ret = -EINVAL;
8149 		goto end;
8150 	}
8151 
8152 	tab_cnt = tab ? tab->cnt : 0;
8153 	if (tab_cnt > U32_MAX - add_cnt) {
8154 		ret = -EOVERFLOW;
8155 		goto end;
8156 	}
8157 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8158 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8159 		ret = -E2BIG;
8160 		goto end;
8161 	}
8162 
8163 	tab = krealloc(btf->dtor_kfunc_tab,
8164 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8165 		       GFP_KERNEL | __GFP_NOWARN);
8166 	if (!tab) {
8167 		ret = -ENOMEM;
8168 		goto end;
8169 	}
8170 
8171 	if (!btf->dtor_kfunc_tab)
8172 		tab->cnt = 0;
8173 	btf->dtor_kfunc_tab = tab;
8174 
8175 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8176 	tab->cnt += add_cnt;
8177 
8178 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8179 
8180 end:
8181 	if (ret)
8182 		btf_free_dtor_kfunc_tab(btf);
8183 	btf_put(btf);
8184 	return ret;
8185 }
8186 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8187 
8188 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8189 
8190 /* Check local and target types for compatibility. This check is used for
8191  * type-based CO-RE relocations and follow slightly different rules than
8192  * field-based relocations. This function assumes that root types were already
8193  * checked for name match. Beyond that initial root-level name check, names
8194  * are completely ignored. Compatibility rules are as follows:
8195  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8196  *     kind should match for local and target types (i.e., STRUCT is not
8197  *     compatible with UNION);
8198  *   - for ENUMs/ENUM64s, the size is ignored;
8199  *   - for INT, size and signedness are ignored;
8200  *   - for ARRAY, dimensionality is ignored, element types are checked for
8201  *     compatibility recursively;
8202  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8203  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8204  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8205  *     number of input args and compatible return and argument types.
8206  * These rules are not set in stone and probably will be adjusted as we get
8207  * more experience with using BPF CO-RE relocations.
8208  */
8209 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8210 			      const struct btf *targ_btf, __u32 targ_id)
8211 {
8212 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8213 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8214 }
8215 
8216 #define MAX_TYPES_MATCH_DEPTH 2
8217 
8218 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8219 			 const struct btf *targ_btf, u32 targ_id)
8220 {
8221 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8222 				      MAX_TYPES_MATCH_DEPTH);
8223 }
8224 
8225 static bool bpf_core_is_flavor_sep(const char *s)
8226 {
8227 	/* check X___Y name pattern, where X and Y are not underscores */
8228 	return s[0] != '_' &&				      /* X */
8229 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8230 	       s[4] != '_';				      /* Y */
8231 }
8232 
8233 size_t bpf_core_essential_name_len(const char *name)
8234 {
8235 	size_t n = strlen(name);
8236 	int i;
8237 
8238 	for (i = n - 5; i >= 0; i--) {
8239 		if (bpf_core_is_flavor_sep(name + i))
8240 			return i + 1;
8241 	}
8242 	return n;
8243 }
8244 
8245 struct bpf_cand_cache {
8246 	const char *name;
8247 	u32 name_len;
8248 	u16 kind;
8249 	u16 cnt;
8250 	struct {
8251 		const struct btf *btf;
8252 		u32 id;
8253 	} cands[];
8254 };
8255 
8256 static void bpf_free_cands(struct bpf_cand_cache *cands)
8257 {
8258 	if (!cands->cnt)
8259 		/* empty candidate array was allocated on stack */
8260 		return;
8261 	kfree(cands);
8262 }
8263 
8264 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8265 {
8266 	kfree(cands->name);
8267 	kfree(cands);
8268 }
8269 
8270 #define VMLINUX_CAND_CACHE_SIZE 31
8271 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8272 
8273 #define MODULE_CAND_CACHE_SIZE 31
8274 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8275 
8276 static DEFINE_MUTEX(cand_cache_mutex);
8277 
8278 static void __print_cand_cache(struct bpf_verifier_log *log,
8279 			       struct bpf_cand_cache **cache,
8280 			       int cache_size)
8281 {
8282 	struct bpf_cand_cache *cc;
8283 	int i, j;
8284 
8285 	for (i = 0; i < cache_size; i++) {
8286 		cc = cache[i];
8287 		if (!cc)
8288 			continue;
8289 		bpf_log(log, "[%d]%s(", i, cc->name);
8290 		for (j = 0; j < cc->cnt; j++) {
8291 			bpf_log(log, "%d", cc->cands[j].id);
8292 			if (j < cc->cnt - 1)
8293 				bpf_log(log, " ");
8294 		}
8295 		bpf_log(log, "), ");
8296 	}
8297 }
8298 
8299 static void print_cand_cache(struct bpf_verifier_log *log)
8300 {
8301 	mutex_lock(&cand_cache_mutex);
8302 	bpf_log(log, "vmlinux_cand_cache:");
8303 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8304 	bpf_log(log, "\nmodule_cand_cache:");
8305 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8306 	bpf_log(log, "\n");
8307 	mutex_unlock(&cand_cache_mutex);
8308 }
8309 
8310 static u32 hash_cands(struct bpf_cand_cache *cands)
8311 {
8312 	return jhash(cands->name, cands->name_len, 0);
8313 }
8314 
8315 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8316 					       struct bpf_cand_cache **cache,
8317 					       int cache_size)
8318 {
8319 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8320 
8321 	if (cc && cc->name_len == cands->name_len &&
8322 	    !strncmp(cc->name, cands->name, cands->name_len))
8323 		return cc;
8324 	return NULL;
8325 }
8326 
8327 static size_t sizeof_cands(int cnt)
8328 {
8329 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8330 }
8331 
8332 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8333 						  struct bpf_cand_cache **cache,
8334 						  int cache_size)
8335 {
8336 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8337 
8338 	if (*cc) {
8339 		bpf_free_cands_from_cache(*cc);
8340 		*cc = NULL;
8341 	}
8342 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8343 	if (!new_cands) {
8344 		bpf_free_cands(cands);
8345 		return ERR_PTR(-ENOMEM);
8346 	}
8347 	/* strdup the name, since it will stay in cache.
8348 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8349 	 */
8350 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8351 	bpf_free_cands(cands);
8352 	if (!new_cands->name) {
8353 		kfree(new_cands);
8354 		return ERR_PTR(-ENOMEM);
8355 	}
8356 	*cc = new_cands;
8357 	return new_cands;
8358 }
8359 
8360 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8361 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8362 			       int cache_size)
8363 {
8364 	struct bpf_cand_cache *cc;
8365 	int i, j;
8366 
8367 	for (i = 0; i < cache_size; i++) {
8368 		cc = cache[i];
8369 		if (!cc)
8370 			continue;
8371 		if (!btf) {
8372 			/* when new module is loaded purge all of module_cand_cache,
8373 			 * since new module might have candidates with the name
8374 			 * that matches cached cands.
8375 			 */
8376 			bpf_free_cands_from_cache(cc);
8377 			cache[i] = NULL;
8378 			continue;
8379 		}
8380 		/* when module is unloaded purge cache entries
8381 		 * that match module's btf
8382 		 */
8383 		for (j = 0; j < cc->cnt; j++)
8384 			if (cc->cands[j].btf == btf) {
8385 				bpf_free_cands_from_cache(cc);
8386 				cache[i] = NULL;
8387 				break;
8388 			}
8389 	}
8390 
8391 }
8392 
8393 static void purge_cand_cache(struct btf *btf)
8394 {
8395 	mutex_lock(&cand_cache_mutex);
8396 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8397 	mutex_unlock(&cand_cache_mutex);
8398 }
8399 #endif
8400 
8401 static struct bpf_cand_cache *
8402 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8403 		   int targ_start_id)
8404 {
8405 	struct bpf_cand_cache *new_cands;
8406 	const struct btf_type *t;
8407 	const char *targ_name;
8408 	size_t targ_essent_len;
8409 	int n, i;
8410 
8411 	n = btf_nr_types(targ_btf);
8412 	for (i = targ_start_id; i < n; i++) {
8413 		t = btf_type_by_id(targ_btf, i);
8414 		if (btf_kind(t) != cands->kind)
8415 			continue;
8416 
8417 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8418 		if (!targ_name)
8419 			continue;
8420 
8421 		/* the resched point is before strncmp to make sure that search
8422 		 * for non-existing name will have a chance to schedule().
8423 		 */
8424 		cond_resched();
8425 
8426 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8427 			continue;
8428 
8429 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8430 		if (targ_essent_len != cands->name_len)
8431 			continue;
8432 
8433 		/* most of the time there is only one candidate for a given kind+name pair */
8434 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8435 		if (!new_cands) {
8436 			bpf_free_cands(cands);
8437 			return ERR_PTR(-ENOMEM);
8438 		}
8439 
8440 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8441 		bpf_free_cands(cands);
8442 		cands = new_cands;
8443 		cands->cands[cands->cnt].btf = targ_btf;
8444 		cands->cands[cands->cnt].id = i;
8445 		cands->cnt++;
8446 	}
8447 	return cands;
8448 }
8449 
8450 static struct bpf_cand_cache *
8451 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8452 {
8453 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8454 	const struct btf *local_btf = ctx->btf;
8455 	const struct btf_type *local_type;
8456 	const struct btf *main_btf;
8457 	size_t local_essent_len;
8458 	struct btf *mod_btf;
8459 	const char *name;
8460 	int id;
8461 
8462 	main_btf = bpf_get_btf_vmlinux();
8463 	if (IS_ERR(main_btf))
8464 		return ERR_CAST(main_btf);
8465 	if (!main_btf)
8466 		return ERR_PTR(-EINVAL);
8467 
8468 	local_type = btf_type_by_id(local_btf, local_type_id);
8469 	if (!local_type)
8470 		return ERR_PTR(-EINVAL);
8471 
8472 	name = btf_name_by_offset(local_btf, local_type->name_off);
8473 	if (str_is_empty(name))
8474 		return ERR_PTR(-EINVAL);
8475 	local_essent_len = bpf_core_essential_name_len(name);
8476 
8477 	cands = &local_cand;
8478 	cands->name = name;
8479 	cands->kind = btf_kind(local_type);
8480 	cands->name_len = local_essent_len;
8481 
8482 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8483 	/* cands is a pointer to stack here */
8484 	if (cc) {
8485 		if (cc->cnt)
8486 			return cc;
8487 		goto check_modules;
8488 	}
8489 
8490 	/* Attempt to find target candidates in vmlinux BTF first */
8491 	cands = bpf_core_add_cands(cands, main_btf, 1);
8492 	if (IS_ERR(cands))
8493 		return ERR_CAST(cands);
8494 
8495 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8496 
8497 	/* populate cache even when cands->cnt == 0 */
8498 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8499 	if (IS_ERR(cc))
8500 		return ERR_CAST(cc);
8501 
8502 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8503 	if (cc->cnt)
8504 		return cc;
8505 
8506 check_modules:
8507 	/* cands is a pointer to stack here and cands->cnt == 0 */
8508 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8509 	if (cc)
8510 		/* if cache has it return it even if cc->cnt == 0 */
8511 		return cc;
8512 
8513 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8514 	spin_lock_bh(&btf_idr_lock);
8515 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8516 		if (!btf_is_module(mod_btf))
8517 			continue;
8518 		/* linear search could be slow hence unlock/lock
8519 		 * the IDR to avoiding holding it for too long
8520 		 */
8521 		btf_get(mod_btf);
8522 		spin_unlock_bh(&btf_idr_lock);
8523 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8524 		btf_put(mod_btf);
8525 		if (IS_ERR(cands))
8526 			return ERR_CAST(cands);
8527 		spin_lock_bh(&btf_idr_lock);
8528 	}
8529 	spin_unlock_bh(&btf_idr_lock);
8530 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8531 	 * or pointer to stack if cands->cnd == 0.
8532 	 * Copy it into the cache even when cands->cnt == 0 and
8533 	 * return the result.
8534 	 */
8535 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8536 }
8537 
8538 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8539 		   int relo_idx, void *insn)
8540 {
8541 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8542 	struct bpf_core_cand_list cands = {};
8543 	struct bpf_core_relo_res targ_res;
8544 	struct bpf_core_spec *specs;
8545 	int err;
8546 
8547 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8548 	 * into arrays of btf_ids of struct fields and array indices.
8549 	 */
8550 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8551 	if (!specs)
8552 		return -ENOMEM;
8553 
8554 	if (need_cands) {
8555 		struct bpf_cand_cache *cc;
8556 		int i;
8557 
8558 		mutex_lock(&cand_cache_mutex);
8559 		cc = bpf_core_find_cands(ctx, relo->type_id);
8560 		if (IS_ERR(cc)) {
8561 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8562 				relo->type_id);
8563 			err = PTR_ERR(cc);
8564 			goto out;
8565 		}
8566 		if (cc->cnt) {
8567 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8568 			if (!cands.cands) {
8569 				err = -ENOMEM;
8570 				goto out;
8571 			}
8572 		}
8573 		for (i = 0; i < cc->cnt; i++) {
8574 			bpf_log(ctx->log,
8575 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8576 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8577 			cands.cands[i].btf = cc->cands[i].btf;
8578 			cands.cands[i].id = cc->cands[i].id;
8579 		}
8580 		cands.len = cc->cnt;
8581 		/* cand_cache_mutex needs to span the cache lookup and
8582 		 * copy of btf pointer into bpf_core_cand_list,
8583 		 * since module can be unloaded while bpf_core_calc_relo_insn
8584 		 * is working with module's btf.
8585 		 */
8586 	}
8587 
8588 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8589 				      &targ_res);
8590 	if (err)
8591 		goto out;
8592 
8593 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8594 				  &targ_res);
8595 
8596 out:
8597 	kfree(specs);
8598 	if (need_cands) {
8599 		kfree(cands.cands);
8600 		mutex_unlock(&cand_cache_mutex);
8601 		if (ctx->log->level & BPF_LOG_LEVEL2)
8602 			print_cand_cache(ctx->log);
8603 	}
8604 	return err;
8605 }
8606 
8607 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8608 				const struct bpf_reg_state *reg,
8609 				const char *field_name, u32 btf_id, const char *suffix)
8610 {
8611 	struct btf *btf = reg->btf;
8612 	const struct btf_type *walk_type, *safe_type;
8613 	const char *tname;
8614 	char safe_tname[64];
8615 	long ret, safe_id;
8616 	const struct btf_member *member;
8617 	u32 i;
8618 
8619 	walk_type = btf_type_by_id(btf, reg->btf_id);
8620 	if (!walk_type)
8621 		return false;
8622 
8623 	tname = btf_name_by_offset(btf, walk_type->name_off);
8624 
8625 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8626 	if (ret >= sizeof(safe_tname))
8627 		return false;
8628 
8629 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8630 	if (safe_id < 0)
8631 		return false;
8632 
8633 	safe_type = btf_type_by_id(btf, safe_id);
8634 	if (!safe_type)
8635 		return false;
8636 
8637 	for_each_member(i, safe_type, member) {
8638 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8639 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8640 		u32 id;
8641 
8642 		if (!btf_type_is_ptr(mtype))
8643 			continue;
8644 
8645 		btf_type_skip_modifiers(btf, mtype->type, &id);
8646 		/* If we match on both type and name, the field is considered trusted. */
8647 		if (btf_id == id && !strcmp(field_name, m_name))
8648 			return true;
8649 	}
8650 
8651 	return false;
8652 }
8653 
8654 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8655 			       const struct btf *reg_btf, u32 reg_id,
8656 			       const struct btf *arg_btf, u32 arg_id)
8657 {
8658 	const char *reg_name, *arg_name, *search_needle;
8659 	const struct btf_type *reg_type, *arg_type;
8660 	int reg_len, arg_len, cmp_len;
8661 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8662 
8663 	reg_type = btf_type_by_id(reg_btf, reg_id);
8664 	if (!reg_type)
8665 		return false;
8666 
8667 	arg_type = btf_type_by_id(arg_btf, arg_id);
8668 	if (!arg_type)
8669 		return false;
8670 
8671 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8672 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8673 
8674 	reg_len = strlen(reg_name);
8675 	arg_len = strlen(arg_name);
8676 
8677 	/* Exactly one of the two type names may be suffixed with ___init, so
8678 	 * if the strings are the same size, they can't possibly be no-cast
8679 	 * aliases of one another. If you have two of the same type names, e.g.
8680 	 * they're both nf_conn___init, it would be improper to return true
8681 	 * because they are _not_ no-cast aliases, they are the same type.
8682 	 */
8683 	if (reg_len == arg_len)
8684 		return false;
8685 
8686 	/* Either of the two names must be the other name, suffixed with ___init. */
8687 	if ((reg_len != arg_len + pattern_len) &&
8688 	    (arg_len != reg_len + pattern_len))
8689 		return false;
8690 
8691 	if (reg_len < arg_len) {
8692 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8693 		cmp_len = reg_len;
8694 	} else {
8695 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8696 		cmp_len = arg_len;
8697 	}
8698 
8699 	if (!search_needle)
8700 		return false;
8701 
8702 	/* ___init suffix must come at the end of the name */
8703 	if (*(search_needle + pattern_len) != '\0')
8704 		return false;
8705 
8706 	return !strncmp(reg_name, arg_name, cmp_len);
8707 }
8708 
8709 #ifdef CONFIG_BPF_JIT
8710 static int
8711 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
8712 		   struct bpf_verifier_log *log)
8713 {
8714 	struct btf_struct_ops_tab *tab, *new_tab;
8715 	int i, err;
8716 
8717 	tab = btf->struct_ops_tab;
8718 	if (!tab) {
8719 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
8720 			      GFP_KERNEL);
8721 		if (!tab)
8722 			return -ENOMEM;
8723 		tab->capacity = 4;
8724 		btf->struct_ops_tab = tab;
8725 	}
8726 
8727 	for (i = 0; i < tab->cnt; i++)
8728 		if (tab->ops[i].st_ops == st_ops)
8729 			return -EEXIST;
8730 
8731 	if (tab->cnt == tab->capacity) {
8732 		new_tab = krealloc(tab,
8733 				   offsetof(struct btf_struct_ops_tab,
8734 					    ops[tab->capacity * 2]),
8735 				   GFP_KERNEL);
8736 		if (!new_tab)
8737 			return -ENOMEM;
8738 		tab = new_tab;
8739 		tab->capacity *= 2;
8740 		btf->struct_ops_tab = tab;
8741 	}
8742 
8743 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
8744 
8745 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
8746 	if (err)
8747 		return err;
8748 
8749 	btf->struct_ops_tab->cnt++;
8750 
8751 	return 0;
8752 }
8753 
8754 const struct bpf_struct_ops_desc *
8755 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
8756 {
8757 	const struct bpf_struct_ops_desc *st_ops_list;
8758 	unsigned int i;
8759 	u32 cnt;
8760 
8761 	if (!value_id)
8762 		return NULL;
8763 	if (!btf->struct_ops_tab)
8764 		return NULL;
8765 
8766 	cnt = btf->struct_ops_tab->cnt;
8767 	st_ops_list = btf->struct_ops_tab->ops;
8768 	for (i = 0; i < cnt; i++) {
8769 		if (st_ops_list[i].value_id == value_id)
8770 			return &st_ops_list[i];
8771 	}
8772 
8773 	return NULL;
8774 }
8775 
8776 const struct bpf_struct_ops_desc *
8777 bpf_struct_ops_find(struct btf *btf, u32 type_id)
8778 {
8779 	const struct bpf_struct_ops_desc *st_ops_list;
8780 	unsigned int i;
8781 	u32 cnt;
8782 
8783 	if (!type_id)
8784 		return NULL;
8785 	if (!btf->struct_ops_tab)
8786 		return NULL;
8787 
8788 	cnt = btf->struct_ops_tab->cnt;
8789 	st_ops_list = btf->struct_ops_tab->ops;
8790 	for (i = 0; i < cnt; i++) {
8791 		if (st_ops_list[i].type_id == type_id)
8792 			return &st_ops_list[i];
8793 	}
8794 
8795 	return NULL;
8796 }
8797 
8798 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
8799 {
8800 	struct bpf_verifier_log *log;
8801 	struct btf *btf;
8802 	int err = 0;
8803 
8804 	btf = btf_get_module_btf(st_ops->owner);
8805 	if (!btf)
8806 		return -EINVAL;
8807 
8808 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
8809 	if (!log) {
8810 		err = -ENOMEM;
8811 		goto errout;
8812 	}
8813 
8814 	log->level = BPF_LOG_KERNEL;
8815 
8816 	err = btf_add_struct_ops(btf, st_ops, log);
8817 
8818 errout:
8819 	kfree(log);
8820 	btf_put(btf);
8821 
8822 	return err;
8823 }
8824 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
8825 #endif
8826