1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP_SKB, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 278 }; 279 280 enum verifier_phase { 281 CHECK_META, 282 CHECK_TYPE, 283 }; 284 285 struct resolve_vertex { 286 const struct btf_type *t; 287 u32 type_id; 288 u16 next_member; 289 }; 290 291 enum visit_state { 292 NOT_VISITED, 293 VISITED, 294 RESOLVED, 295 }; 296 297 enum resolve_mode { 298 RESOLVE_TBD, /* To Be Determined */ 299 RESOLVE_PTR, /* Resolving for Pointer */ 300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 301 * or array 302 */ 303 }; 304 305 #define MAX_RESOLVE_DEPTH 32 306 307 struct btf_sec_info { 308 u32 off; 309 u32 len; 310 }; 311 312 struct btf_verifier_env { 313 struct btf *btf; 314 u8 *visit_states; 315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 316 struct bpf_verifier_log log; 317 u32 log_type_id; 318 u32 top_stack; 319 enum verifier_phase phase; 320 enum resolve_mode resolve_mode; 321 }; 322 323 static const char * const btf_kind_str[NR_BTF_KINDS] = { 324 [BTF_KIND_UNKN] = "UNKNOWN", 325 [BTF_KIND_INT] = "INT", 326 [BTF_KIND_PTR] = "PTR", 327 [BTF_KIND_ARRAY] = "ARRAY", 328 [BTF_KIND_STRUCT] = "STRUCT", 329 [BTF_KIND_UNION] = "UNION", 330 [BTF_KIND_ENUM] = "ENUM", 331 [BTF_KIND_FWD] = "FWD", 332 [BTF_KIND_TYPEDEF] = "TYPEDEF", 333 [BTF_KIND_VOLATILE] = "VOLATILE", 334 [BTF_KIND_CONST] = "CONST", 335 [BTF_KIND_RESTRICT] = "RESTRICT", 336 [BTF_KIND_FUNC] = "FUNC", 337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 338 [BTF_KIND_VAR] = "VAR", 339 [BTF_KIND_DATASEC] = "DATASEC", 340 [BTF_KIND_FLOAT] = "FLOAT", 341 [BTF_KIND_DECL_TAG] = "DECL_TAG", 342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 343 [BTF_KIND_ENUM64] = "ENUM64", 344 }; 345 346 const char *btf_type_str(const struct btf_type *t) 347 { 348 return btf_kind_str[BTF_INFO_KIND(t->info)]; 349 } 350 351 /* Chunk size we use in safe copy of data to be shown. */ 352 #define BTF_SHOW_OBJ_SAFE_SIZE 32 353 354 /* 355 * This is the maximum size of a base type value (equivalent to a 356 * 128-bit int); if we are at the end of our safe buffer and have 357 * less than 16 bytes space we can't be assured of being able 358 * to copy the next type safely, so in such cases we will initiate 359 * a new copy. 360 */ 361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 362 363 /* Type name size */ 364 #define BTF_SHOW_NAME_SIZE 80 365 366 /* 367 * The suffix of a type that indicates it cannot alias another type when 368 * comparing BTF IDs for kfunc invocations. 369 */ 370 #define NOCAST_ALIAS_SUFFIX "___init" 371 372 /* 373 * Common data to all BTF show operations. Private show functions can add 374 * their own data to a structure containing a struct btf_show and consult it 375 * in the show callback. See btf_type_show() below. 376 * 377 * One challenge with showing nested data is we want to skip 0-valued 378 * data, but in order to figure out whether a nested object is all zeros 379 * we need to walk through it. As a result, we need to make two passes 380 * when handling structs, unions and arrays; the first path simply looks 381 * for nonzero data, while the second actually does the display. The first 382 * pass is signalled by show->state.depth_check being set, and if we 383 * encounter a non-zero value we set show->state.depth_to_show to 384 * the depth at which we encountered it. When we have completed the 385 * first pass, we will know if anything needs to be displayed if 386 * depth_to_show > depth. See btf_[struct,array]_show() for the 387 * implementation of this. 388 * 389 * Another problem is we want to ensure the data for display is safe to 390 * access. To support this, the anonymous "struct {} obj" tracks the data 391 * object and our safe copy of it. We copy portions of the data needed 392 * to the object "copy" buffer, but because its size is limited to 393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 394 * traverse larger objects for display. 395 * 396 * The various data type show functions all start with a call to 397 * btf_show_start_type() which returns a pointer to the safe copy 398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 399 * raw data itself). btf_show_obj_safe() is responsible for 400 * using copy_from_kernel_nofault() to update the safe data if necessary 401 * as we traverse the object's data. skbuff-like semantics are 402 * used: 403 * 404 * - obj.head points to the start of the toplevel object for display 405 * - obj.size is the size of the toplevel object 406 * - obj.data points to the current point in the original data at 407 * which our safe data starts. obj.data will advance as we copy 408 * portions of the data. 409 * 410 * In most cases a single copy will suffice, but larger data structures 411 * such as "struct task_struct" will require many copies. The logic in 412 * btf_show_obj_safe() handles the logic that determines if a new 413 * copy_from_kernel_nofault() is needed. 414 */ 415 struct btf_show { 416 u64 flags; 417 void *target; /* target of show operation (seq file, buffer) */ 418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 419 const struct btf *btf; 420 /* below are used during iteration */ 421 struct { 422 u8 depth; 423 u8 depth_to_show; 424 u8 depth_check; 425 u8 array_member:1, 426 array_terminated:1; 427 u16 array_encoding; 428 u32 type_id; 429 int status; /* non-zero for error */ 430 const struct btf_type *type; 431 const struct btf_member *member; 432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 433 } state; 434 struct { 435 u32 size; 436 void *head; 437 void *data; 438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 439 } obj; 440 }; 441 442 struct btf_kind_operations { 443 s32 (*check_meta)(struct btf_verifier_env *env, 444 const struct btf_type *t, 445 u32 meta_left); 446 int (*resolve)(struct btf_verifier_env *env, 447 const struct resolve_vertex *v); 448 int (*check_member)(struct btf_verifier_env *env, 449 const struct btf_type *struct_type, 450 const struct btf_member *member, 451 const struct btf_type *member_type); 452 int (*check_kflag_member)(struct btf_verifier_env *env, 453 const struct btf_type *struct_type, 454 const struct btf_member *member, 455 const struct btf_type *member_type); 456 void (*log_details)(struct btf_verifier_env *env, 457 const struct btf_type *t); 458 void (*show)(const struct btf *btf, const struct btf_type *t, 459 u32 type_id, void *data, u8 bits_offsets, 460 struct btf_show *show); 461 }; 462 463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 464 static struct btf_type btf_void; 465 466 static int btf_resolve(struct btf_verifier_env *env, 467 const struct btf_type *t, u32 type_id); 468 469 static int btf_func_check(struct btf_verifier_env *env, 470 const struct btf_type *t); 471 472 static bool btf_type_is_modifier(const struct btf_type *t) 473 { 474 /* Some of them is not strictly a C modifier 475 * but they are grouped into the same bucket 476 * for BTF concern: 477 * A type (t) that refers to another 478 * type through t->type AND its size cannot 479 * be determined without following the t->type. 480 * 481 * ptr does not fall into this bucket 482 * because its size is always sizeof(void *). 483 */ 484 switch (BTF_INFO_KIND(t->info)) { 485 case BTF_KIND_TYPEDEF: 486 case BTF_KIND_VOLATILE: 487 case BTF_KIND_CONST: 488 case BTF_KIND_RESTRICT: 489 case BTF_KIND_TYPE_TAG: 490 return true; 491 } 492 493 return false; 494 } 495 496 bool btf_type_is_void(const struct btf_type *t) 497 { 498 return t == &btf_void; 499 } 500 501 static bool btf_type_is_fwd(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 504 } 505 506 static bool btf_type_is_datasec(const struct btf_type *t) 507 { 508 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 509 } 510 511 static bool btf_type_is_decl_tag(const struct btf_type *t) 512 { 513 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 514 } 515 516 static bool btf_type_nosize(const struct btf_type *t) 517 { 518 return btf_type_is_void(t) || btf_type_is_fwd(t) || 519 btf_type_is_func(t) || btf_type_is_func_proto(t) || 520 btf_type_is_decl_tag(t); 521 } 522 523 static bool btf_type_nosize_or_null(const struct btf_type *t) 524 { 525 return !t || btf_type_nosize(t); 526 } 527 528 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 529 { 530 return btf_type_is_func(t) || btf_type_is_struct(t) || 531 btf_type_is_var(t) || btf_type_is_typedef(t); 532 } 533 534 bool btf_is_vmlinux(const struct btf *btf) 535 { 536 return btf->kernel_btf && !btf->base_btf; 537 } 538 539 u32 btf_nr_types(const struct btf *btf) 540 { 541 u32 total = 0; 542 543 while (btf) { 544 total += btf->nr_types; 545 btf = btf->base_btf; 546 } 547 548 return total; 549 } 550 551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 552 { 553 const struct btf_type *t; 554 const char *tname; 555 u32 i, total; 556 557 total = btf_nr_types(btf); 558 for (i = 1; i < total; i++) { 559 t = btf_type_by_id(btf, i); 560 if (BTF_INFO_KIND(t->info) != kind) 561 continue; 562 563 tname = btf_name_by_offset(btf, t->name_off); 564 if (!strcmp(tname, name)) 565 return i; 566 } 567 568 return -ENOENT; 569 } 570 571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 572 { 573 struct btf *btf; 574 s32 ret; 575 int id; 576 577 btf = bpf_get_btf_vmlinux(); 578 if (IS_ERR(btf)) 579 return PTR_ERR(btf); 580 if (!btf) 581 return -EINVAL; 582 583 ret = btf_find_by_name_kind(btf, name, kind); 584 /* ret is never zero, since btf_find_by_name_kind returns 585 * positive btf_id or negative error. 586 */ 587 if (ret > 0) { 588 btf_get(btf); 589 *btf_p = btf; 590 return ret; 591 } 592 593 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 594 spin_lock_bh(&btf_idr_lock); 595 idr_for_each_entry(&btf_idr, btf, id) { 596 if (!btf_is_module(btf)) 597 continue; 598 /* linear search could be slow hence unlock/lock 599 * the IDR to avoiding holding it for too long 600 */ 601 btf_get(btf); 602 spin_unlock_bh(&btf_idr_lock); 603 ret = btf_find_by_name_kind(btf, name, kind); 604 if (ret > 0) { 605 *btf_p = btf; 606 return ret; 607 } 608 btf_put(btf); 609 spin_lock_bh(&btf_idr_lock); 610 } 611 spin_unlock_bh(&btf_idr_lock); 612 return ret; 613 } 614 615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 616 u32 id, u32 *res_id) 617 { 618 const struct btf_type *t = btf_type_by_id(btf, id); 619 620 while (btf_type_is_modifier(t)) { 621 id = t->type; 622 t = btf_type_by_id(btf, t->type); 623 } 624 625 if (res_id) 626 *res_id = id; 627 628 return t; 629 } 630 631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 632 u32 id, u32 *res_id) 633 { 634 const struct btf_type *t; 635 636 t = btf_type_skip_modifiers(btf, id, NULL); 637 if (!btf_type_is_ptr(t)) 638 return NULL; 639 640 return btf_type_skip_modifiers(btf, t->type, res_id); 641 } 642 643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 644 u32 id, u32 *res_id) 645 { 646 const struct btf_type *ptype; 647 648 ptype = btf_type_resolve_ptr(btf, id, res_id); 649 if (ptype && btf_type_is_func_proto(ptype)) 650 return ptype; 651 652 return NULL; 653 } 654 655 /* Types that act only as a source, not sink or intermediate 656 * type when resolving. 657 */ 658 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 659 { 660 return btf_type_is_var(t) || 661 btf_type_is_decl_tag(t) || 662 btf_type_is_datasec(t); 663 } 664 665 /* What types need to be resolved? 666 * 667 * btf_type_is_modifier() is an obvious one. 668 * 669 * btf_type_is_struct() because its member refers to 670 * another type (through member->type). 671 * 672 * btf_type_is_var() because the variable refers to 673 * another type. btf_type_is_datasec() holds multiple 674 * btf_type_is_var() types that need resolving. 675 * 676 * btf_type_is_array() because its element (array->type) 677 * refers to another type. Array can be thought of a 678 * special case of struct while array just has the same 679 * member-type repeated by array->nelems of times. 680 */ 681 static bool btf_type_needs_resolve(const struct btf_type *t) 682 { 683 return btf_type_is_modifier(t) || 684 btf_type_is_ptr(t) || 685 btf_type_is_struct(t) || 686 btf_type_is_array(t) || 687 btf_type_is_var(t) || 688 btf_type_is_func(t) || 689 btf_type_is_decl_tag(t) || 690 btf_type_is_datasec(t); 691 } 692 693 /* t->size can be used */ 694 static bool btf_type_has_size(const struct btf_type *t) 695 { 696 switch (BTF_INFO_KIND(t->info)) { 697 case BTF_KIND_INT: 698 case BTF_KIND_STRUCT: 699 case BTF_KIND_UNION: 700 case BTF_KIND_ENUM: 701 case BTF_KIND_DATASEC: 702 case BTF_KIND_FLOAT: 703 case BTF_KIND_ENUM64: 704 return true; 705 } 706 707 return false; 708 } 709 710 static const char *btf_int_encoding_str(u8 encoding) 711 { 712 if (encoding == 0) 713 return "(none)"; 714 else if (encoding == BTF_INT_SIGNED) 715 return "SIGNED"; 716 else if (encoding == BTF_INT_CHAR) 717 return "CHAR"; 718 else if (encoding == BTF_INT_BOOL) 719 return "BOOL"; 720 else 721 return "UNKN"; 722 } 723 724 static u32 btf_type_int(const struct btf_type *t) 725 { 726 return *(u32 *)(t + 1); 727 } 728 729 static const struct btf_array *btf_type_array(const struct btf_type *t) 730 { 731 return (const struct btf_array *)(t + 1); 732 } 733 734 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 735 { 736 return (const struct btf_enum *)(t + 1); 737 } 738 739 static const struct btf_var *btf_type_var(const struct btf_type *t) 740 { 741 return (const struct btf_var *)(t + 1); 742 } 743 744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 745 { 746 return (const struct btf_decl_tag *)(t + 1); 747 } 748 749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 750 { 751 return (const struct btf_enum64 *)(t + 1); 752 } 753 754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 755 { 756 return kind_ops[BTF_INFO_KIND(t->info)]; 757 } 758 759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 760 { 761 if (!BTF_STR_OFFSET_VALID(offset)) 762 return false; 763 764 while (offset < btf->start_str_off) 765 btf = btf->base_btf; 766 767 offset -= btf->start_str_off; 768 return offset < btf->hdr.str_len; 769 } 770 771 static bool __btf_name_char_ok(char c, bool first) 772 { 773 if ((first ? !isalpha(c) : 774 !isalnum(c)) && 775 c != '_' && 776 c != '.') 777 return false; 778 return true; 779 } 780 781 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 782 { 783 while (offset < btf->start_str_off) 784 btf = btf->base_btf; 785 786 offset -= btf->start_str_off; 787 if (offset < btf->hdr.str_len) 788 return &btf->strings[offset]; 789 790 return NULL; 791 } 792 793 static bool __btf_name_valid(const struct btf *btf, u32 offset) 794 { 795 /* offset must be valid */ 796 const char *src = btf_str_by_offset(btf, offset); 797 const char *src_limit; 798 799 if (!__btf_name_char_ok(*src, true)) 800 return false; 801 802 /* set a limit on identifier length */ 803 src_limit = src + KSYM_NAME_LEN; 804 src++; 805 while (*src && src < src_limit) { 806 if (!__btf_name_char_ok(*src, false)) 807 return false; 808 src++; 809 } 810 811 return !*src; 812 } 813 814 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 815 { 816 return __btf_name_valid(btf, offset); 817 } 818 819 /* Allow any printable character in DATASEC names */ 820 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 821 { 822 /* offset must be valid */ 823 const char *src = btf_str_by_offset(btf, offset); 824 const char *src_limit; 825 826 /* set a limit on identifier length */ 827 src_limit = src + KSYM_NAME_LEN; 828 src++; 829 while (*src && src < src_limit) { 830 if (!isprint(*src)) 831 return false; 832 src++; 833 } 834 835 return !*src; 836 } 837 838 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 839 { 840 const char *name; 841 842 if (!offset) 843 return "(anon)"; 844 845 name = btf_str_by_offset(btf, offset); 846 return name ?: "(invalid-name-offset)"; 847 } 848 849 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 850 { 851 return btf_str_by_offset(btf, offset); 852 } 853 854 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 855 { 856 while (type_id < btf->start_id) 857 btf = btf->base_btf; 858 859 type_id -= btf->start_id; 860 if (type_id >= btf->nr_types) 861 return NULL; 862 return btf->types[type_id]; 863 } 864 EXPORT_SYMBOL_GPL(btf_type_by_id); 865 866 /* 867 * Regular int is not a bit field and it must be either 868 * u8/u16/u32/u64 or __int128. 869 */ 870 static bool btf_type_int_is_regular(const struct btf_type *t) 871 { 872 u8 nr_bits, nr_bytes; 873 u32 int_data; 874 875 int_data = btf_type_int(t); 876 nr_bits = BTF_INT_BITS(int_data); 877 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 878 if (BITS_PER_BYTE_MASKED(nr_bits) || 879 BTF_INT_OFFSET(int_data) || 880 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 881 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 882 nr_bytes != (2 * sizeof(u64)))) { 883 return false; 884 } 885 886 return true; 887 } 888 889 /* 890 * Check that given struct member is a regular int with expected 891 * offset and size. 892 */ 893 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 894 const struct btf_member *m, 895 u32 expected_offset, u32 expected_size) 896 { 897 const struct btf_type *t; 898 u32 id, int_data; 899 u8 nr_bits; 900 901 id = m->type; 902 t = btf_type_id_size(btf, &id, NULL); 903 if (!t || !btf_type_is_int(t)) 904 return false; 905 906 int_data = btf_type_int(t); 907 nr_bits = BTF_INT_BITS(int_data); 908 if (btf_type_kflag(s)) { 909 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 910 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 911 912 /* if kflag set, int should be a regular int and 913 * bit offset should be at byte boundary. 914 */ 915 return !bitfield_size && 916 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 917 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 918 } 919 920 if (BTF_INT_OFFSET(int_data) || 921 BITS_PER_BYTE_MASKED(m->offset) || 922 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 923 BITS_PER_BYTE_MASKED(nr_bits) || 924 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 925 return false; 926 927 return true; 928 } 929 930 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 931 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 932 u32 id) 933 { 934 const struct btf_type *t = btf_type_by_id(btf, id); 935 936 while (btf_type_is_modifier(t) && 937 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 938 t = btf_type_by_id(btf, t->type); 939 } 940 941 return t; 942 } 943 944 #define BTF_SHOW_MAX_ITER 10 945 946 #define BTF_KIND_BIT(kind) (1ULL << kind) 947 948 /* 949 * Populate show->state.name with type name information. 950 * Format of type name is 951 * 952 * [.member_name = ] (type_name) 953 */ 954 static const char *btf_show_name(struct btf_show *show) 955 { 956 /* BTF_MAX_ITER array suffixes "[]" */ 957 const char *array_suffixes = "[][][][][][][][][][]"; 958 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 959 /* BTF_MAX_ITER pointer suffixes "*" */ 960 const char *ptr_suffixes = "**********"; 961 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 962 const char *name = NULL, *prefix = "", *parens = ""; 963 const struct btf_member *m = show->state.member; 964 const struct btf_type *t; 965 const struct btf_array *array; 966 u32 id = show->state.type_id; 967 const char *member = NULL; 968 bool show_member = false; 969 u64 kinds = 0; 970 int i; 971 972 show->state.name[0] = '\0'; 973 974 /* 975 * Don't show type name if we're showing an array member; 976 * in that case we show the array type so don't need to repeat 977 * ourselves for each member. 978 */ 979 if (show->state.array_member) 980 return ""; 981 982 /* Retrieve member name, if any. */ 983 if (m) { 984 member = btf_name_by_offset(show->btf, m->name_off); 985 show_member = strlen(member) > 0; 986 id = m->type; 987 } 988 989 /* 990 * Start with type_id, as we have resolved the struct btf_type * 991 * via btf_modifier_show() past the parent typedef to the child 992 * struct, int etc it is defined as. In such cases, the type_id 993 * still represents the starting type while the struct btf_type * 994 * in our show->state points at the resolved type of the typedef. 995 */ 996 t = btf_type_by_id(show->btf, id); 997 if (!t) 998 return ""; 999 1000 /* 1001 * The goal here is to build up the right number of pointer and 1002 * array suffixes while ensuring the type name for a typedef 1003 * is represented. Along the way we accumulate a list of 1004 * BTF kinds we have encountered, since these will inform later 1005 * display; for example, pointer types will not require an 1006 * opening "{" for struct, we will just display the pointer value. 1007 * 1008 * We also want to accumulate the right number of pointer or array 1009 * indices in the format string while iterating until we get to 1010 * the typedef/pointee/array member target type. 1011 * 1012 * We start by pointing at the end of pointer and array suffix 1013 * strings; as we accumulate pointers and arrays we move the pointer 1014 * or array string backwards so it will show the expected number of 1015 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1016 * and/or arrays and typedefs are supported as a precaution. 1017 * 1018 * We also want to get typedef name while proceeding to resolve 1019 * type it points to so that we can add parentheses if it is a 1020 * "typedef struct" etc. 1021 */ 1022 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1023 1024 switch (BTF_INFO_KIND(t->info)) { 1025 case BTF_KIND_TYPEDEF: 1026 if (!name) 1027 name = btf_name_by_offset(show->btf, 1028 t->name_off); 1029 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1030 id = t->type; 1031 break; 1032 case BTF_KIND_ARRAY: 1033 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1034 parens = "["; 1035 if (!t) 1036 return ""; 1037 array = btf_type_array(t); 1038 if (array_suffix > array_suffixes) 1039 array_suffix -= 2; 1040 id = array->type; 1041 break; 1042 case BTF_KIND_PTR: 1043 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1044 if (ptr_suffix > ptr_suffixes) 1045 ptr_suffix -= 1; 1046 id = t->type; 1047 break; 1048 default: 1049 id = 0; 1050 break; 1051 } 1052 if (!id) 1053 break; 1054 t = btf_type_skip_qualifiers(show->btf, id); 1055 } 1056 /* We may not be able to represent this type; bail to be safe */ 1057 if (i == BTF_SHOW_MAX_ITER) 1058 return ""; 1059 1060 if (!name) 1061 name = btf_name_by_offset(show->btf, t->name_off); 1062 1063 switch (BTF_INFO_KIND(t->info)) { 1064 case BTF_KIND_STRUCT: 1065 case BTF_KIND_UNION: 1066 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1067 "struct" : "union"; 1068 /* if it's an array of struct/union, parens is already set */ 1069 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1070 parens = "{"; 1071 break; 1072 case BTF_KIND_ENUM: 1073 case BTF_KIND_ENUM64: 1074 prefix = "enum"; 1075 break; 1076 default: 1077 break; 1078 } 1079 1080 /* pointer does not require parens */ 1081 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1082 parens = ""; 1083 /* typedef does not require struct/union/enum prefix */ 1084 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1085 prefix = ""; 1086 1087 if (!name) 1088 name = ""; 1089 1090 /* Even if we don't want type name info, we want parentheses etc */ 1091 if (show->flags & BTF_SHOW_NONAME) 1092 snprintf(show->state.name, sizeof(show->state.name), "%s", 1093 parens); 1094 else 1095 snprintf(show->state.name, sizeof(show->state.name), 1096 "%s%s%s(%s%s%s%s%s%s)%s", 1097 /* first 3 strings comprise ".member = " */ 1098 show_member ? "." : "", 1099 show_member ? member : "", 1100 show_member ? " = " : "", 1101 /* ...next is our prefix (struct, enum, etc) */ 1102 prefix, 1103 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1104 /* ...this is the type name itself */ 1105 name, 1106 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1107 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1108 array_suffix, parens); 1109 1110 return show->state.name; 1111 } 1112 1113 static const char *__btf_show_indent(struct btf_show *show) 1114 { 1115 const char *indents = " "; 1116 const char *indent = &indents[strlen(indents)]; 1117 1118 if ((indent - show->state.depth) >= indents) 1119 return indent - show->state.depth; 1120 return indents; 1121 } 1122 1123 static const char *btf_show_indent(struct btf_show *show) 1124 { 1125 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1126 } 1127 1128 static const char *btf_show_newline(struct btf_show *show) 1129 { 1130 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1131 } 1132 1133 static const char *btf_show_delim(struct btf_show *show) 1134 { 1135 if (show->state.depth == 0) 1136 return ""; 1137 1138 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1139 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1140 return "|"; 1141 1142 return ","; 1143 } 1144 1145 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1146 { 1147 va_list args; 1148 1149 if (!show->state.depth_check) { 1150 va_start(args, fmt); 1151 show->showfn(show, fmt, args); 1152 va_end(args); 1153 } 1154 } 1155 1156 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1157 * format specifiers to the format specifier passed in; these do the work of 1158 * adding indentation, delimiters etc while the caller simply has to specify 1159 * the type value(s) in the format specifier + value(s). 1160 */ 1161 #define btf_show_type_value(show, fmt, value) \ 1162 do { \ 1163 if ((value) != (__typeof__(value))0 || \ 1164 (show->flags & BTF_SHOW_ZERO) || \ 1165 show->state.depth == 0) { \ 1166 btf_show(show, "%s%s" fmt "%s%s", \ 1167 btf_show_indent(show), \ 1168 btf_show_name(show), \ 1169 value, btf_show_delim(show), \ 1170 btf_show_newline(show)); \ 1171 if (show->state.depth > show->state.depth_to_show) \ 1172 show->state.depth_to_show = show->state.depth; \ 1173 } \ 1174 } while (0) 1175 1176 #define btf_show_type_values(show, fmt, ...) \ 1177 do { \ 1178 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1179 btf_show_name(show), \ 1180 __VA_ARGS__, btf_show_delim(show), \ 1181 btf_show_newline(show)); \ 1182 if (show->state.depth > show->state.depth_to_show) \ 1183 show->state.depth_to_show = show->state.depth; \ 1184 } while (0) 1185 1186 /* How much is left to copy to safe buffer after @data? */ 1187 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1188 { 1189 return show->obj.head + show->obj.size - data; 1190 } 1191 1192 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1193 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1194 { 1195 return data >= show->obj.data && 1196 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1197 } 1198 1199 /* 1200 * If object pointed to by @data of @size falls within our safe buffer, return 1201 * the equivalent pointer to the same safe data. Assumes 1202 * copy_from_kernel_nofault() has already happened and our safe buffer is 1203 * populated. 1204 */ 1205 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1206 { 1207 if (btf_show_obj_is_safe(show, data, size)) 1208 return show->obj.safe + (data - show->obj.data); 1209 return NULL; 1210 } 1211 1212 /* 1213 * Return a safe-to-access version of data pointed to by @data. 1214 * We do this by copying the relevant amount of information 1215 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1216 * 1217 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1218 * safe copy is needed. 1219 * 1220 * Otherwise we need to determine if we have the required amount 1221 * of data (determined by the @data pointer and the size of the 1222 * largest base type we can encounter (represented by 1223 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1224 * that we will be able to print some of the current object, 1225 * and if more is needed a copy will be triggered. 1226 * Some objects such as structs will not fit into the buffer; 1227 * in such cases additional copies when we iterate over their 1228 * members may be needed. 1229 * 1230 * btf_show_obj_safe() is used to return a safe buffer for 1231 * btf_show_start_type(); this ensures that as we recurse into 1232 * nested types we always have safe data for the given type. 1233 * This approach is somewhat wasteful; it's possible for example 1234 * that when iterating over a large union we'll end up copying the 1235 * same data repeatedly, but the goal is safety not performance. 1236 * We use stack data as opposed to per-CPU buffers because the 1237 * iteration over a type can take some time, and preemption handling 1238 * would greatly complicate use of the safe buffer. 1239 */ 1240 static void *btf_show_obj_safe(struct btf_show *show, 1241 const struct btf_type *t, 1242 void *data) 1243 { 1244 const struct btf_type *rt; 1245 int size_left, size; 1246 void *safe = NULL; 1247 1248 if (show->flags & BTF_SHOW_UNSAFE) 1249 return data; 1250 1251 rt = btf_resolve_size(show->btf, t, &size); 1252 if (IS_ERR(rt)) { 1253 show->state.status = PTR_ERR(rt); 1254 return NULL; 1255 } 1256 1257 /* 1258 * Is this toplevel object? If so, set total object size and 1259 * initialize pointers. Otherwise check if we still fall within 1260 * our safe object data. 1261 */ 1262 if (show->state.depth == 0) { 1263 show->obj.size = size; 1264 show->obj.head = data; 1265 } else { 1266 /* 1267 * If the size of the current object is > our remaining 1268 * safe buffer we _may_ need to do a new copy. However 1269 * consider the case of a nested struct; it's size pushes 1270 * us over the safe buffer limit, but showing any individual 1271 * struct members does not. In such cases, we don't need 1272 * to initiate a fresh copy yet; however we definitely need 1273 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1274 * in our buffer, regardless of the current object size. 1275 * The logic here is that as we resolve types we will 1276 * hit a base type at some point, and we need to be sure 1277 * the next chunk of data is safely available to display 1278 * that type info safely. We cannot rely on the size of 1279 * the current object here because it may be much larger 1280 * than our current buffer (e.g. task_struct is 8k). 1281 * All we want to do here is ensure that we can print the 1282 * next basic type, which we can if either 1283 * - the current type size is within the safe buffer; or 1284 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1285 * the safe buffer. 1286 */ 1287 safe = __btf_show_obj_safe(show, data, 1288 min(size, 1289 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1290 } 1291 1292 /* 1293 * We need a new copy to our safe object, either because we haven't 1294 * yet copied and are initializing safe data, or because the data 1295 * we want falls outside the boundaries of the safe object. 1296 */ 1297 if (!safe) { 1298 size_left = btf_show_obj_size_left(show, data); 1299 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1300 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1301 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1302 data, size_left); 1303 if (!show->state.status) { 1304 show->obj.data = data; 1305 safe = show->obj.safe; 1306 } 1307 } 1308 1309 return safe; 1310 } 1311 1312 /* 1313 * Set the type we are starting to show and return a safe data pointer 1314 * to be used for showing the associated data. 1315 */ 1316 static void *btf_show_start_type(struct btf_show *show, 1317 const struct btf_type *t, 1318 u32 type_id, void *data) 1319 { 1320 show->state.type = t; 1321 show->state.type_id = type_id; 1322 show->state.name[0] = '\0'; 1323 1324 return btf_show_obj_safe(show, t, data); 1325 } 1326 1327 static void btf_show_end_type(struct btf_show *show) 1328 { 1329 show->state.type = NULL; 1330 show->state.type_id = 0; 1331 show->state.name[0] = '\0'; 1332 } 1333 1334 static void *btf_show_start_aggr_type(struct btf_show *show, 1335 const struct btf_type *t, 1336 u32 type_id, void *data) 1337 { 1338 void *safe_data = btf_show_start_type(show, t, type_id, data); 1339 1340 if (!safe_data) 1341 return safe_data; 1342 1343 btf_show(show, "%s%s%s", btf_show_indent(show), 1344 btf_show_name(show), 1345 btf_show_newline(show)); 1346 show->state.depth++; 1347 return safe_data; 1348 } 1349 1350 static void btf_show_end_aggr_type(struct btf_show *show, 1351 const char *suffix) 1352 { 1353 show->state.depth--; 1354 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1355 btf_show_delim(show), btf_show_newline(show)); 1356 btf_show_end_type(show); 1357 } 1358 1359 static void btf_show_start_member(struct btf_show *show, 1360 const struct btf_member *m) 1361 { 1362 show->state.member = m; 1363 } 1364 1365 static void btf_show_start_array_member(struct btf_show *show) 1366 { 1367 show->state.array_member = 1; 1368 btf_show_start_member(show, NULL); 1369 } 1370 1371 static void btf_show_end_member(struct btf_show *show) 1372 { 1373 show->state.member = NULL; 1374 } 1375 1376 static void btf_show_end_array_member(struct btf_show *show) 1377 { 1378 show->state.array_member = 0; 1379 btf_show_end_member(show); 1380 } 1381 1382 static void *btf_show_start_array_type(struct btf_show *show, 1383 const struct btf_type *t, 1384 u32 type_id, 1385 u16 array_encoding, 1386 void *data) 1387 { 1388 show->state.array_encoding = array_encoding; 1389 show->state.array_terminated = 0; 1390 return btf_show_start_aggr_type(show, t, type_id, data); 1391 } 1392 1393 static void btf_show_end_array_type(struct btf_show *show) 1394 { 1395 show->state.array_encoding = 0; 1396 show->state.array_terminated = 0; 1397 btf_show_end_aggr_type(show, "]"); 1398 } 1399 1400 static void *btf_show_start_struct_type(struct btf_show *show, 1401 const struct btf_type *t, 1402 u32 type_id, 1403 void *data) 1404 { 1405 return btf_show_start_aggr_type(show, t, type_id, data); 1406 } 1407 1408 static void btf_show_end_struct_type(struct btf_show *show) 1409 { 1410 btf_show_end_aggr_type(show, "}"); 1411 } 1412 1413 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1414 const char *fmt, ...) 1415 { 1416 va_list args; 1417 1418 va_start(args, fmt); 1419 bpf_verifier_vlog(log, fmt, args); 1420 va_end(args); 1421 } 1422 1423 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1424 const char *fmt, ...) 1425 { 1426 struct bpf_verifier_log *log = &env->log; 1427 va_list args; 1428 1429 if (!bpf_verifier_log_needed(log)) 1430 return; 1431 1432 va_start(args, fmt); 1433 bpf_verifier_vlog(log, fmt, args); 1434 va_end(args); 1435 } 1436 1437 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1438 const struct btf_type *t, 1439 bool log_details, 1440 const char *fmt, ...) 1441 { 1442 struct bpf_verifier_log *log = &env->log; 1443 struct btf *btf = env->btf; 1444 va_list args; 1445 1446 if (!bpf_verifier_log_needed(log)) 1447 return; 1448 1449 if (log->level == BPF_LOG_KERNEL) { 1450 /* btf verifier prints all types it is processing via 1451 * btf_verifier_log_type(..., fmt = NULL). 1452 * Skip those prints for in-kernel BTF verification. 1453 */ 1454 if (!fmt) 1455 return; 1456 1457 /* Skip logging when loading module BTF with mismatches permitted */ 1458 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1459 return; 1460 } 1461 1462 __btf_verifier_log(log, "[%u] %s %s%s", 1463 env->log_type_id, 1464 btf_type_str(t), 1465 __btf_name_by_offset(btf, t->name_off), 1466 log_details ? " " : ""); 1467 1468 if (log_details) 1469 btf_type_ops(t)->log_details(env, t); 1470 1471 if (fmt && *fmt) { 1472 __btf_verifier_log(log, " "); 1473 va_start(args, fmt); 1474 bpf_verifier_vlog(log, fmt, args); 1475 va_end(args); 1476 } 1477 1478 __btf_verifier_log(log, "\n"); 1479 } 1480 1481 #define btf_verifier_log_type(env, t, ...) \ 1482 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1483 #define btf_verifier_log_basic(env, t, ...) \ 1484 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1485 1486 __printf(4, 5) 1487 static void btf_verifier_log_member(struct btf_verifier_env *env, 1488 const struct btf_type *struct_type, 1489 const struct btf_member *member, 1490 const char *fmt, ...) 1491 { 1492 struct bpf_verifier_log *log = &env->log; 1493 struct btf *btf = env->btf; 1494 va_list args; 1495 1496 if (!bpf_verifier_log_needed(log)) 1497 return; 1498 1499 if (log->level == BPF_LOG_KERNEL) { 1500 if (!fmt) 1501 return; 1502 1503 /* Skip logging when loading module BTF with mismatches permitted */ 1504 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1505 return; 1506 } 1507 1508 /* The CHECK_META phase already did a btf dump. 1509 * 1510 * If member is logged again, it must hit an error in 1511 * parsing this member. It is useful to print out which 1512 * struct this member belongs to. 1513 */ 1514 if (env->phase != CHECK_META) 1515 btf_verifier_log_type(env, struct_type, NULL); 1516 1517 if (btf_type_kflag(struct_type)) 1518 __btf_verifier_log(log, 1519 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1520 __btf_name_by_offset(btf, member->name_off), 1521 member->type, 1522 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1523 BTF_MEMBER_BIT_OFFSET(member->offset)); 1524 else 1525 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1526 __btf_name_by_offset(btf, member->name_off), 1527 member->type, member->offset); 1528 1529 if (fmt && *fmt) { 1530 __btf_verifier_log(log, " "); 1531 va_start(args, fmt); 1532 bpf_verifier_vlog(log, fmt, args); 1533 va_end(args); 1534 } 1535 1536 __btf_verifier_log(log, "\n"); 1537 } 1538 1539 __printf(4, 5) 1540 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1541 const struct btf_type *datasec_type, 1542 const struct btf_var_secinfo *vsi, 1543 const char *fmt, ...) 1544 { 1545 struct bpf_verifier_log *log = &env->log; 1546 va_list args; 1547 1548 if (!bpf_verifier_log_needed(log)) 1549 return; 1550 if (log->level == BPF_LOG_KERNEL && !fmt) 1551 return; 1552 if (env->phase != CHECK_META) 1553 btf_verifier_log_type(env, datasec_type, NULL); 1554 1555 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1556 vsi->type, vsi->offset, vsi->size); 1557 if (fmt && *fmt) { 1558 __btf_verifier_log(log, " "); 1559 va_start(args, fmt); 1560 bpf_verifier_vlog(log, fmt, args); 1561 va_end(args); 1562 } 1563 1564 __btf_verifier_log(log, "\n"); 1565 } 1566 1567 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1568 u32 btf_data_size) 1569 { 1570 struct bpf_verifier_log *log = &env->log; 1571 const struct btf *btf = env->btf; 1572 const struct btf_header *hdr; 1573 1574 if (!bpf_verifier_log_needed(log)) 1575 return; 1576 1577 if (log->level == BPF_LOG_KERNEL) 1578 return; 1579 hdr = &btf->hdr; 1580 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1581 __btf_verifier_log(log, "version: %u\n", hdr->version); 1582 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1583 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1584 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1585 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1586 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1587 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1588 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1589 } 1590 1591 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1592 { 1593 struct btf *btf = env->btf; 1594 1595 if (btf->types_size == btf->nr_types) { 1596 /* Expand 'types' array */ 1597 1598 struct btf_type **new_types; 1599 u32 expand_by, new_size; 1600 1601 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1602 btf_verifier_log(env, "Exceeded max num of types"); 1603 return -E2BIG; 1604 } 1605 1606 expand_by = max_t(u32, btf->types_size >> 2, 16); 1607 new_size = min_t(u32, BTF_MAX_TYPE, 1608 btf->types_size + expand_by); 1609 1610 new_types = kvcalloc(new_size, sizeof(*new_types), 1611 GFP_KERNEL | __GFP_NOWARN); 1612 if (!new_types) 1613 return -ENOMEM; 1614 1615 if (btf->nr_types == 0) { 1616 if (!btf->base_btf) { 1617 /* lazily init VOID type */ 1618 new_types[0] = &btf_void; 1619 btf->nr_types++; 1620 } 1621 } else { 1622 memcpy(new_types, btf->types, 1623 sizeof(*btf->types) * btf->nr_types); 1624 } 1625 1626 kvfree(btf->types); 1627 btf->types = new_types; 1628 btf->types_size = new_size; 1629 } 1630 1631 btf->types[btf->nr_types++] = t; 1632 1633 return 0; 1634 } 1635 1636 static int btf_alloc_id(struct btf *btf) 1637 { 1638 int id; 1639 1640 idr_preload(GFP_KERNEL); 1641 spin_lock_bh(&btf_idr_lock); 1642 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1643 if (id > 0) 1644 btf->id = id; 1645 spin_unlock_bh(&btf_idr_lock); 1646 idr_preload_end(); 1647 1648 if (WARN_ON_ONCE(!id)) 1649 return -ENOSPC; 1650 1651 return id > 0 ? 0 : id; 1652 } 1653 1654 static void btf_free_id(struct btf *btf) 1655 { 1656 unsigned long flags; 1657 1658 /* 1659 * In map-in-map, calling map_delete_elem() on outer 1660 * map will call bpf_map_put on the inner map. 1661 * It will then eventually call btf_free_id() 1662 * on the inner map. Some of the map_delete_elem() 1663 * implementation may have irq disabled, so 1664 * we need to use the _irqsave() version instead 1665 * of the _bh() version. 1666 */ 1667 spin_lock_irqsave(&btf_idr_lock, flags); 1668 idr_remove(&btf_idr, btf->id); 1669 spin_unlock_irqrestore(&btf_idr_lock, flags); 1670 } 1671 1672 static void btf_free_kfunc_set_tab(struct btf *btf) 1673 { 1674 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1675 int hook; 1676 1677 if (!tab) 1678 return; 1679 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1680 kfree(tab->sets[hook]); 1681 kfree(tab); 1682 btf->kfunc_set_tab = NULL; 1683 } 1684 1685 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1686 { 1687 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1688 1689 if (!tab) 1690 return; 1691 kfree(tab); 1692 btf->dtor_kfunc_tab = NULL; 1693 } 1694 1695 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1696 { 1697 int i; 1698 1699 if (!tab) 1700 return; 1701 for (i = 0; i < tab->cnt; i++) 1702 btf_record_free(tab->types[i].record); 1703 kfree(tab); 1704 } 1705 1706 static void btf_free_struct_meta_tab(struct btf *btf) 1707 { 1708 struct btf_struct_metas *tab = btf->struct_meta_tab; 1709 1710 btf_struct_metas_free(tab); 1711 btf->struct_meta_tab = NULL; 1712 } 1713 1714 static void btf_free_struct_ops_tab(struct btf *btf) 1715 { 1716 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1717 u32 i; 1718 1719 if (!tab) 1720 return; 1721 1722 for (i = 0; i < tab->cnt; i++) 1723 bpf_struct_ops_desc_release(&tab->ops[i]); 1724 1725 kfree(tab); 1726 btf->struct_ops_tab = NULL; 1727 } 1728 1729 static void btf_free(struct btf *btf) 1730 { 1731 btf_free_struct_meta_tab(btf); 1732 btf_free_dtor_kfunc_tab(btf); 1733 btf_free_kfunc_set_tab(btf); 1734 btf_free_struct_ops_tab(btf); 1735 kvfree(btf->types); 1736 kvfree(btf->resolved_sizes); 1737 kvfree(btf->resolved_ids); 1738 /* vmlinux does not allocate btf->data, it simply points it at 1739 * __start_BTF. 1740 */ 1741 if (!btf_is_vmlinux(btf)) 1742 kvfree(btf->data); 1743 kvfree(btf->base_id_map); 1744 kfree(btf); 1745 } 1746 1747 static void btf_free_rcu(struct rcu_head *rcu) 1748 { 1749 struct btf *btf = container_of(rcu, struct btf, rcu); 1750 1751 btf_free(btf); 1752 } 1753 1754 const char *btf_get_name(const struct btf *btf) 1755 { 1756 return btf->name; 1757 } 1758 1759 void btf_get(struct btf *btf) 1760 { 1761 refcount_inc(&btf->refcnt); 1762 } 1763 1764 void btf_put(struct btf *btf) 1765 { 1766 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1767 btf_free_id(btf); 1768 call_rcu(&btf->rcu, btf_free_rcu); 1769 } 1770 } 1771 1772 struct btf *btf_base_btf(const struct btf *btf) 1773 { 1774 return btf->base_btf; 1775 } 1776 1777 const struct btf_header *btf_header(const struct btf *btf) 1778 { 1779 return &btf->hdr; 1780 } 1781 1782 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1783 { 1784 btf->base_btf = (struct btf *)base_btf; 1785 btf->start_id = btf_nr_types(base_btf); 1786 btf->start_str_off = base_btf->hdr.str_len; 1787 } 1788 1789 static int env_resolve_init(struct btf_verifier_env *env) 1790 { 1791 struct btf *btf = env->btf; 1792 u32 nr_types = btf->nr_types; 1793 u32 *resolved_sizes = NULL; 1794 u32 *resolved_ids = NULL; 1795 u8 *visit_states = NULL; 1796 1797 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1798 GFP_KERNEL | __GFP_NOWARN); 1799 if (!resolved_sizes) 1800 goto nomem; 1801 1802 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1803 GFP_KERNEL | __GFP_NOWARN); 1804 if (!resolved_ids) 1805 goto nomem; 1806 1807 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1808 GFP_KERNEL | __GFP_NOWARN); 1809 if (!visit_states) 1810 goto nomem; 1811 1812 btf->resolved_sizes = resolved_sizes; 1813 btf->resolved_ids = resolved_ids; 1814 env->visit_states = visit_states; 1815 1816 return 0; 1817 1818 nomem: 1819 kvfree(resolved_sizes); 1820 kvfree(resolved_ids); 1821 kvfree(visit_states); 1822 return -ENOMEM; 1823 } 1824 1825 static void btf_verifier_env_free(struct btf_verifier_env *env) 1826 { 1827 kvfree(env->visit_states); 1828 kfree(env); 1829 } 1830 1831 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1832 const struct btf_type *next_type) 1833 { 1834 switch (env->resolve_mode) { 1835 case RESOLVE_TBD: 1836 /* int, enum or void is a sink */ 1837 return !btf_type_needs_resolve(next_type); 1838 case RESOLVE_PTR: 1839 /* int, enum, void, struct, array, func or func_proto is a sink 1840 * for ptr 1841 */ 1842 return !btf_type_is_modifier(next_type) && 1843 !btf_type_is_ptr(next_type); 1844 case RESOLVE_STRUCT_OR_ARRAY: 1845 /* int, enum, void, ptr, func or func_proto is a sink 1846 * for struct and array 1847 */ 1848 return !btf_type_is_modifier(next_type) && 1849 !btf_type_is_array(next_type) && 1850 !btf_type_is_struct(next_type); 1851 default: 1852 BUG(); 1853 } 1854 } 1855 1856 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1857 u32 type_id) 1858 { 1859 /* base BTF types should be resolved by now */ 1860 if (type_id < env->btf->start_id) 1861 return true; 1862 1863 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1864 } 1865 1866 static int env_stack_push(struct btf_verifier_env *env, 1867 const struct btf_type *t, u32 type_id) 1868 { 1869 const struct btf *btf = env->btf; 1870 struct resolve_vertex *v; 1871 1872 if (env->top_stack == MAX_RESOLVE_DEPTH) 1873 return -E2BIG; 1874 1875 if (type_id < btf->start_id 1876 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1877 return -EEXIST; 1878 1879 env->visit_states[type_id - btf->start_id] = VISITED; 1880 1881 v = &env->stack[env->top_stack++]; 1882 v->t = t; 1883 v->type_id = type_id; 1884 v->next_member = 0; 1885 1886 if (env->resolve_mode == RESOLVE_TBD) { 1887 if (btf_type_is_ptr(t)) 1888 env->resolve_mode = RESOLVE_PTR; 1889 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1890 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1891 } 1892 1893 return 0; 1894 } 1895 1896 static void env_stack_set_next_member(struct btf_verifier_env *env, 1897 u16 next_member) 1898 { 1899 env->stack[env->top_stack - 1].next_member = next_member; 1900 } 1901 1902 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1903 u32 resolved_type_id, 1904 u32 resolved_size) 1905 { 1906 u32 type_id = env->stack[--(env->top_stack)].type_id; 1907 struct btf *btf = env->btf; 1908 1909 type_id -= btf->start_id; /* adjust to local type id */ 1910 btf->resolved_sizes[type_id] = resolved_size; 1911 btf->resolved_ids[type_id] = resolved_type_id; 1912 env->visit_states[type_id] = RESOLVED; 1913 } 1914 1915 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1916 { 1917 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1918 } 1919 1920 /* Resolve the size of a passed-in "type" 1921 * 1922 * type: is an array (e.g. u32 array[x][y]) 1923 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1924 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1925 * corresponds to the return type. 1926 * *elem_type: u32 1927 * *elem_id: id of u32 1928 * *total_nelems: (x * y). Hence, individual elem size is 1929 * (*type_size / *total_nelems) 1930 * *type_id: id of type if it's changed within the function, 0 if not 1931 * 1932 * type: is not an array (e.g. const struct X) 1933 * return type: type "struct X" 1934 * *type_size: sizeof(struct X) 1935 * *elem_type: same as return type ("struct X") 1936 * *elem_id: 0 1937 * *total_nelems: 1 1938 * *type_id: id of type if it's changed within the function, 0 if not 1939 */ 1940 static const struct btf_type * 1941 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1942 u32 *type_size, const struct btf_type **elem_type, 1943 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1944 { 1945 const struct btf_type *array_type = NULL; 1946 const struct btf_array *array = NULL; 1947 u32 i, size, nelems = 1, id = 0; 1948 1949 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1950 switch (BTF_INFO_KIND(type->info)) { 1951 /* type->size can be used */ 1952 case BTF_KIND_INT: 1953 case BTF_KIND_STRUCT: 1954 case BTF_KIND_UNION: 1955 case BTF_KIND_ENUM: 1956 case BTF_KIND_FLOAT: 1957 case BTF_KIND_ENUM64: 1958 size = type->size; 1959 goto resolved; 1960 1961 case BTF_KIND_PTR: 1962 size = sizeof(void *); 1963 goto resolved; 1964 1965 /* Modifiers */ 1966 case BTF_KIND_TYPEDEF: 1967 case BTF_KIND_VOLATILE: 1968 case BTF_KIND_CONST: 1969 case BTF_KIND_RESTRICT: 1970 case BTF_KIND_TYPE_TAG: 1971 id = type->type; 1972 type = btf_type_by_id(btf, type->type); 1973 break; 1974 1975 case BTF_KIND_ARRAY: 1976 if (!array_type) 1977 array_type = type; 1978 array = btf_type_array(type); 1979 if (nelems && array->nelems > U32_MAX / nelems) 1980 return ERR_PTR(-EINVAL); 1981 nelems *= array->nelems; 1982 type = btf_type_by_id(btf, array->type); 1983 break; 1984 1985 /* type without size */ 1986 default: 1987 return ERR_PTR(-EINVAL); 1988 } 1989 } 1990 1991 return ERR_PTR(-EINVAL); 1992 1993 resolved: 1994 if (nelems && size > U32_MAX / nelems) 1995 return ERR_PTR(-EINVAL); 1996 1997 *type_size = nelems * size; 1998 if (total_nelems) 1999 *total_nelems = nelems; 2000 if (elem_type) 2001 *elem_type = type; 2002 if (elem_id) 2003 *elem_id = array ? array->type : 0; 2004 if (type_id && id) 2005 *type_id = id; 2006 2007 return array_type ? : type; 2008 } 2009 2010 const struct btf_type * 2011 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2012 u32 *type_size) 2013 { 2014 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2015 } 2016 2017 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2018 { 2019 while (type_id < btf->start_id) 2020 btf = btf->base_btf; 2021 2022 return btf->resolved_ids[type_id - btf->start_id]; 2023 } 2024 2025 /* The input param "type_id" must point to a needs_resolve type */ 2026 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2027 u32 *type_id) 2028 { 2029 *type_id = btf_resolved_type_id(btf, *type_id); 2030 return btf_type_by_id(btf, *type_id); 2031 } 2032 2033 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2034 { 2035 while (type_id < btf->start_id) 2036 btf = btf->base_btf; 2037 2038 return btf->resolved_sizes[type_id - btf->start_id]; 2039 } 2040 2041 const struct btf_type *btf_type_id_size(const struct btf *btf, 2042 u32 *type_id, u32 *ret_size) 2043 { 2044 const struct btf_type *size_type; 2045 u32 size_type_id = *type_id; 2046 u32 size = 0; 2047 2048 size_type = btf_type_by_id(btf, size_type_id); 2049 if (btf_type_nosize_or_null(size_type)) 2050 return NULL; 2051 2052 if (btf_type_has_size(size_type)) { 2053 size = size_type->size; 2054 } else if (btf_type_is_array(size_type)) { 2055 size = btf_resolved_type_size(btf, size_type_id); 2056 } else if (btf_type_is_ptr(size_type)) { 2057 size = sizeof(void *); 2058 } else { 2059 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2060 !btf_type_is_var(size_type))) 2061 return NULL; 2062 2063 size_type_id = btf_resolved_type_id(btf, size_type_id); 2064 size_type = btf_type_by_id(btf, size_type_id); 2065 if (btf_type_nosize_or_null(size_type)) 2066 return NULL; 2067 else if (btf_type_has_size(size_type)) 2068 size = size_type->size; 2069 else if (btf_type_is_array(size_type)) 2070 size = btf_resolved_type_size(btf, size_type_id); 2071 else if (btf_type_is_ptr(size_type)) 2072 size = sizeof(void *); 2073 else 2074 return NULL; 2075 } 2076 2077 *type_id = size_type_id; 2078 if (ret_size) 2079 *ret_size = size; 2080 2081 return size_type; 2082 } 2083 2084 static int btf_df_check_member(struct btf_verifier_env *env, 2085 const struct btf_type *struct_type, 2086 const struct btf_member *member, 2087 const struct btf_type *member_type) 2088 { 2089 btf_verifier_log_basic(env, struct_type, 2090 "Unsupported check_member"); 2091 return -EINVAL; 2092 } 2093 2094 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2095 const struct btf_type *struct_type, 2096 const struct btf_member *member, 2097 const struct btf_type *member_type) 2098 { 2099 btf_verifier_log_basic(env, struct_type, 2100 "Unsupported check_kflag_member"); 2101 return -EINVAL; 2102 } 2103 2104 /* Used for ptr, array struct/union and float type members. 2105 * int, enum and modifier types have their specific callback functions. 2106 */ 2107 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2108 const struct btf_type *struct_type, 2109 const struct btf_member *member, 2110 const struct btf_type *member_type) 2111 { 2112 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2113 btf_verifier_log_member(env, struct_type, member, 2114 "Invalid member bitfield_size"); 2115 return -EINVAL; 2116 } 2117 2118 /* bitfield size is 0, so member->offset represents bit offset only. 2119 * It is safe to call non kflag check_member variants. 2120 */ 2121 return btf_type_ops(member_type)->check_member(env, struct_type, 2122 member, 2123 member_type); 2124 } 2125 2126 static int btf_df_resolve(struct btf_verifier_env *env, 2127 const struct resolve_vertex *v) 2128 { 2129 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2130 return -EINVAL; 2131 } 2132 2133 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2134 u32 type_id, void *data, u8 bits_offsets, 2135 struct btf_show *show) 2136 { 2137 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2138 } 2139 2140 static int btf_int_check_member(struct btf_verifier_env *env, 2141 const struct btf_type *struct_type, 2142 const struct btf_member *member, 2143 const struct btf_type *member_type) 2144 { 2145 u32 int_data = btf_type_int(member_type); 2146 u32 struct_bits_off = member->offset; 2147 u32 struct_size = struct_type->size; 2148 u32 nr_copy_bits; 2149 u32 bytes_offset; 2150 2151 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2152 btf_verifier_log_member(env, struct_type, member, 2153 "bits_offset exceeds U32_MAX"); 2154 return -EINVAL; 2155 } 2156 2157 struct_bits_off += BTF_INT_OFFSET(int_data); 2158 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2159 nr_copy_bits = BTF_INT_BITS(int_data) + 2160 BITS_PER_BYTE_MASKED(struct_bits_off); 2161 2162 if (nr_copy_bits > BITS_PER_U128) { 2163 btf_verifier_log_member(env, struct_type, member, 2164 "nr_copy_bits exceeds 128"); 2165 return -EINVAL; 2166 } 2167 2168 if (struct_size < bytes_offset || 2169 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2170 btf_verifier_log_member(env, struct_type, member, 2171 "Member exceeds struct_size"); 2172 return -EINVAL; 2173 } 2174 2175 return 0; 2176 } 2177 2178 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2179 const struct btf_type *struct_type, 2180 const struct btf_member *member, 2181 const struct btf_type *member_type) 2182 { 2183 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2184 u32 int_data = btf_type_int(member_type); 2185 u32 struct_size = struct_type->size; 2186 u32 nr_copy_bits; 2187 2188 /* a regular int type is required for the kflag int member */ 2189 if (!btf_type_int_is_regular(member_type)) { 2190 btf_verifier_log_member(env, struct_type, member, 2191 "Invalid member base type"); 2192 return -EINVAL; 2193 } 2194 2195 /* check sanity of bitfield size */ 2196 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2197 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2198 nr_int_data_bits = BTF_INT_BITS(int_data); 2199 if (!nr_bits) { 2200 /* Not a bitfield member, member offset must be at byte 2201 * boundary. 2202 */ 2203 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2204 btf_verifier_log_member(env, struct_type, member, 2205 "Invalid member offset"); 2206 return -EINVAL; 2207 } 2208 2209 nr_bits = nr_int_data_bits; 2210 } else if (nr_bits > nr_int_data_bits) { 2211 btf_verifier_log_member(env, struct_type, member, 2212 "Invalid member bitfield_size"); 2213 return -EINVAL; 2214 } 2215 2216 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2217 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2218 if (nr_copy_bits > BITS_PER_U128) { 2219 btf_verifier_log_member(env, struct_type, member, 2220 "nr_copy_bits exceeds 128"); 2221 return -EINVAL; 2222 } 2223 2224 if (struct_size < bytes_offset || 2225 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2226 btf_verifier_log_member(env, struct_type, member, 2227 "Member exceeds struct_size"); 2228 return -EINVAL; 2229 } 2230 2231 return 0; 2232 } 2233 2234 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2235 const struct btf_type *t, 2236 u32 meta_left) 2237 { 2238 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2239 u16 encoding; 2240 2241 if (meta_left < meta_needed) { 2242 btf_verifier_log_basic(env, t, 2243 "meta_left:%u meta_needed:%u", 2244 meta_left, meta_needed); 2245 return -EINVAL; 2246 } 2247 2248 if (btf_type_vlen(t)) { 2249 btf_verifier_log_type(env, t, "vlen != 0"); 2250 return -EINVAL; 2251 } 2252 2253 if (btf_type_kflag(t)) { 2254 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2255 return -EINVAL; 2256 } 2257 2258 int_data = btf_type_int(t); 2259 if (int_data & ~BTF_INT_MASK) { 2260 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2261 int_data); 2262 return -EINVAL; 2263 } 2264 2265 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2266 2267 if (nr_bits > BITS_PER_U128) { 2268 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2269 BITS_PER_U128); 2270 return -EINVAL; 2271 } 2272 2273 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2274 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2275 return -EINVAL; 2276 } 2277 2278 /* 2279 * Only one of the encoding bits is allowed and it 2280 * should be sufficient for the pretty print purpose (i.e. decoding). 2281 * Multiple bits can be allowed later if it is found 2282 * to be insufficient. 2283 */ 2284 encoding = BTF_INT_ENCODING(int_data); 2285 if (encoding && 2286 encoding != BTF_INT_SIGNED && 2287 encoding != BTF_INT_CHAR && 2288 encoding != BTF_INT_BOOL) { 2289 btf_verifier_log_type(env, t, "Unsupported encoding"); 2290 return -ENOTSUPP; 2291 } 2292 2293 btf_verifier_log_type(env, t, NULL); 2294 2295 return meta_needed; 2296 } 2297 2298 static void btf_int_log(struct btf_verifier_env *env, 2299 const struct btf_type *t) 2300 { 2301 int int_data = btf_type_int(t); 2302 2303 btf_verifier_log(env, 2304 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2305 t->size, BTF_INT_OFFSET(int_data), 2306 BTF_INT_BITS(int_data), 2307 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2308 } 2309 2310 static void btf_int128_print(struct btf_show *show, void *data) 2311 { 2312 /* data points to a __int128 number. 2313 * Suppose 2314 * int128_num = *(__int128 *)data; 2315 * The below formulas shows what upper_num and lower_num represents: 2316 * upper_num = int128_num >> 64; 2317 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2318 */ 2319 u64 upper_num, lower_num; 2320 2321 #ifdef __BIG_ENDIAN_BITFIELD 2322 upper_num = *(u64 *)data; 2323 lower_num = *(u64 *)(data + 8); 2324 #else 2325 upper_num = *(u64 *)(data + 8); 2326 lower_num = *(u64 *)data; 2327 #endif 2328 if (upper_num == 0) 2329 btf_show_type_value(show, "0x%llx", lower_num); 2330 else 2331 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2332 lower_num); 2333 } 2334 2335 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2336 u16 right_shift_bits) 2337 { 2338 u64 upper_num, lower_num; 2339 2340 #ifdef __BIG_ENDIAN_BITFIELD 2341 upper_num = print_num[0]; 2342 lower_num = print_num[1]; 2343 #else 2344 upper_num = print_num[1]; 2345 lower_num = print_num[0]; 2346 #endif 2347 2348 /* shake out un-needed bits by shift/or operations */ 2349 if (left_shift_bits >= 64) { 2350 upper_num = lower_num << (left_shift_bits - 64); 2351 lower_num = 0; 2352 } else { 2353 upper_num = (upper_num << left_shift_bits) | 2354 (lower_num >> (64 - left_shift_bits)); 2355 lower_num = lower_num << left_shift_bits; 2356 } 2357 2358 if (right_shift_bits >= 64) { 2359 lower_num = upper_num >> (right_shift_bits - 64); 2360 upper_num = 0; 2361 } else { 2362 lower_num = (lower_num >> right_shift_bits) | 2363 (upper_num << (64 - right_shift_bits)); 2364 upper_num = upper_num >> right_shift_bits; 2365 } 2366 2367 #ifdef __BIG_ENDIAN_BITFIELD 2368 print_num[0] = upper_num; 2369 print_num[1] = lower_num; 2370 #else 2371 print_num[0] = lower_num; 2372 print_num[1] = upper_num; 2373 #endif 2374 } 2375 2376 static void btf_bitfield_show(void *data, u8 bits_offset, 2377 u8 nr_bits, struct btf_show *show) 2378 { 2379 u16 left_shift_bits, right_shift_bits; 2380 u8 nr_copy_bytes; 2381 u8 nr_copy_bits; 2382 u64 print_num[2] = {}; 2383 2384 nr_copy_bits = nr_bits + bits_offset; 2385 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2386 2387 memcpy(print_num, data, nr_copy_bytes); 2388 2389 #ifdef __BIG_ENDIAN_BITFIELD 2390 left_shift_bits = bits_offset; 2391 #else 2392 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2393 #endif 2394 right_shift_bits = BITS_PER_U128 - nr_bits; 2395 2396 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2397 btf_int128_print(show, print_num); 2398 } 2399 2400 2401 static void btf_int_bits_show(const struct btf *btf, 2402 const struct btf_type *t, 2403 void *data, u8 bits_offset, 2404 struct btf_show *show) 2405 { 2406 u32 int_data = btf_type_int(t); 2407 u8 nr_bits = BTF_INT_BITS(int_data); 2408 u8 total_bits_offset; 2409 2410 /* 2411 * bits_offset is at most 7. 2412 * BTF_INT_OFFSET() cannot exceed 128 bits. 2413 */ 2414 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2415 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2416 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2417 btf_bitfield_show(data, bits_offset, nr_bits, show); 2418 } 2419 2420 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2421 u32 type_id, void *data, u8 bits_offset, 2422 struct btf_show *show) 2423 { 2424 u32 int_data = btf_type_int(t); 2425 u8 encoding = BTF_INT_ENCODING(int_data); 2426 bool sign = encoding & BTF_INT_SIGNED; 2427 u8 nr_bits = BTF_INT_BITS(int_data); 2428 void *safe_data; 2429 2430 safe_data = btf_show_start_type(show, t, type_id, data); 2431 if (!safe_data) 2432 return; 2433 2434 if (bits_offset || BTF_INT_OFFSET(int_data) || 2435 BITS_PER_BYTE_MASKED(nr_bits)) { 2436 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2437 goto out; 2438 } 2439 2440 switch (nr_bits) { 2441 case 128: 2442 btf_int128_print(show, safe_data); 2443 break; 2444 case 64: 2445 if (sign) 2446 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2447 else 2448 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2449 break; 2450 case 32: 2451 if (sign) 2452 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2453 else 2454 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2455 break; 2456 case 16: 2457 if (sign) 2458 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2459 else 2460 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2461 break; 2462 case 8: 2463 if (show->state.array_encoding == BTF_INT_CHAR) { 2464 /* check for null terminator */ 2465 if (show->state.array_terminated) 2466 break; 2467 if (*(char *)data == '\0') { 2468 show->state.array_terminated = 1; 2469 break; 2470 } 2471 if (isprint(*(char *)data)) { 2472 btf_show_type_value(show, "'%c'", 2473 *(char *)safe_data); 2474 break; 2475 } 2476 } 2477 if (sign) 2478 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2479 else 2480 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2481 break; 2482 default: 2483 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2484 break; 2485 } 2486 out: 2487 btf_show_end_type(show); 2488 } 2489 2490 static const struct btf_kind_operations int_ops = { 2491 .check_meta = btf_int_check_meta, 2492 .resolve = btf_df_resolve, 2493 .check_member = btf_int_check_member, 2494 .check_kflag_member = btf_int_check_kflag_member, 2495 .log_details = btf_int_log, 2496 .show = btf_int_show, 2497 }; 2498 2499 static int btf_modifier_check_member(struct btf_verifier_env *env, 2500 const struct btf_type *struct_type, 2501 const struct btf_member *member, 2502 const struct btf_type *member_type) 2503 { 2504 const struct btf_type *resolved_type; 2505 u32 resolved_type_id = member->type; 2506 struct btf_member resolved_member; 2507 struct btf *btf = env->btf; 2508 2509 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2510 if (!resolved_type) { 2511 btf_verifier_log_member(env, struct_type, member, 2512 "Invalid member"); 2513 return -EINVAL; 2514 } 2515 2516 resolved_member = *member; 2517 resolved_member.type = resolved_type_id; 2518 2519 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2520 &resolved_member, 2521 resolved_type); 2522 } 2523 2524 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2525 const struct btf_type *struct_type, 2526 const struct btf_member *member, 2527 const struct btf_type *member_type) 2528 { 2529 const struct btf_type *resolved_type; 2530 u32 resolved_type_id = member->type; 2531 struct btf_member resolved_member; 2532 struct btf *btf = env->btf; 2533 2534 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2535 if (!resolved_type) { 2536 btf_verifier_log_member(env, struct_type, member, 2537 "Invalid member"); 2538 return -EINVAL; 2539 } 2540 2541 resolved_member = *member; 2542 resolved_member.type = resolved_type_id; 2543 2544 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2545 &resolved_member, 2546 resolved_type); 2547 } 2548 2549 static int btf_ptr_check_member(struct btf_verifier_env *env, 2550 const struct btf_type *struct_type, 2551 const struct btf_member *member, 2552 const struct btf_type *member_type) 2553 { 2554 u32 struct_size, struct_bits_off, bytes_offset; 2555 2556 struct_size = struct_type->size; 2557 struct_bits_off = member->offset; 2558 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2559 2560 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2561 btf_verifier_log_member(env, struct_type, member, 2562 "Member is not byte aligned"); 2563 return -EINVAL; 2564 } 2565 2566 if (struct_size - bytes_offset < sizeof(void *)) { 2567 btf_verifier_log_member(env, struct_type, member, 2568 "Member exceeds struct_size"); 2569 return -EINVAL; 2570 } 2571 2572 return 0; 2573 } 2574 2575 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2576 const struct btf_type *t, 2577 u32 meta_left) 2578 { 2579 const char *value; 2580 2581 if (btf_type_vlen(t)) { 2582 btf_verifier_log_type(env, t, "vlen != 0"); 2583 return -EINVAL; 2584 } 2585 2586 if (btf_type_kflag(t)) { 2587 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2588 return -EINVAL; 2589 } 2590 2591 if (!BTF_TYPE_ID_VALID(t->type)) { 2592 btf_verifier_log_type(env, t, "Invalid type_id"); 2593 return -EINVAL; 2594 } 2595 2596 /* typedef/type_tag type must have a valid name, and other ref types, 2597 * volatile, const, restrict, should have a null name. 2598 */ 2599 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2600 if (!t->name_off || 2601 !btf_name_valid_identifier(env->btf, t->name_off)) { 2602 btf_verifier_log_type(env, t, "Invalid name"); 2603 return -EINVAL; 2604 } 2605 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2606 value = btf_name_by_offset(env->btf, t->name_off); 2607 if (!value || !value[0]) { 2608 btf_verifier_log_type(env, t, "Invalid name"); 2609 return -EINVAL; 2610 } 2611 } else { 2612 if (t->name_off) { 2613 btf_verifier_log_type(env, t, "Invalid name"); 2614 return -EINVAL; 2615 } 2616 } 2617 2618 btf_verifier_log_type(env, t, NULL); 2619 2620 return 0; 2621 } 2622 2623 static int btf_modifier_resolve(struct btf_verifier_env *env, 2624 const struct resolve_vertex *v) 2625 { 2626 const struct btf_type *t = v->t; 2627 const struct btf_type *next_type; 2628 u32 next_type_id = t->type; 2629 struct btf *btf = env->btf; 2630 2631 next_type = btf_type_by_id(btf, next_type_id); 2632 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2633 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2634 return -EINVAL; 2635 } 2636 2637 if (!env_type_is_resolve_sink(env, next_type) && 2638 !env_type_is_resolved(env, next_type_id)) 2639 return env_stack_push(env, next_type, next_type_id); 2640 2641 /* Figure out the resolved next_type_id with size. 2642 * They will be stored in the current modifier's 2643 * resolved_ids and resolved_sizes such that it can 2644 * save us a few type-following when we use it later (e.g. in 2645 * pretty print). 2646 */ 2647 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2648 if (env_type_is_resolved(env, next_type_id)) 2649 next_type = btf_type_id_resolve(btf, &next_type_id); 2650 2651 /* "typedef void new_void", "const void"...etc */ 2652 if (!btf_type_is_void(next_type) && 2653 !btf_type_is_fwd(next_type) && 2654 !btf_type_is_func_proto(next_type)) { 2655 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2656 return -EINVAL; 2657 } 2658 } 2659 2660 env_stack_pop_resolved(env, next_type_id, 0); 2661 2662 return 0; 2663 } 2664 2665 static int btf_var_resolve(struct btf_verifier_env *env, 2666 const struct resolve_vertex *v) 2667 { 2668 const struct btf_type *next_type; 2669 const struct btf_type *t = v->t; 2670 u32 next_type_id = t->type; 2671 struct btf *btf = env->btf; 2672 2673 next_type = btf_type_by_id(btf, next_type_id); 2674 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2675 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2676 return -EINVAL; 2677 } 2678 2679 if (!env_type_is_resolve_sink(env, next_type) && 2680 !env_type_is_resolved(env, next_type_id)) 2681 return env_stack_push(env, next_type, next_type_id); 2682 2683 if (btf_type_is_modifier(next_type)) { 2684 const struct btf_type *resolved_type; 2685 u32 resolved_type_id; 2686 2687 resolved_type_id = next_type_id; 2688 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2689 2690 if (btf_type_is_ptr(resolved_type) && 2691 !env_type_is_resolve_sink(env, resolved_type) && 2692 !env_type_is_resolved(env, resolved_type_id)) 2693 return env_stack_push(env, resolved_type, 2694 resolved_type_id); 2695 } 2696 2697 /* We must resolve to something concrete at this point, no 2698 * forward types or similar that would resolve to size of 2699 * zero is allowed. 2700 */ 2701 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2702 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2703 return -EINVAL; 2704 } 2705 2706 env_stack_pop_resolved(env, next_type_id, 0); 2707 2708 return 0; 2709 } 2710 2711 static int btf_ptr_resolve(struct btf_verifier_env *env, 2712 const struct resolve_vertex *v) 2713 { 2714 const struct btf_type *next_type; 2715 const struct btf_type *t = v->t; 2716 u32 next_type_id = t->type; 2717 struct btf *btf = env->btf; 2718 2719 next_type = btf_type_by_id(btf, next_type_id); 2720 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2721 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2722 return -EINVAL; 2723 } 2724 2725 if (!env_type_is_resolve_sink(env, next_type) && 2726 !env_type_is_resolved(env, next_type_id)) 2727 return env_stack_push(env, next_type, next_type_id); 2728 2729 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2730 * the modifier may have stopped resolving when it was resolved 2731 * to a ptr (last-resolved-ptr). 2732 * 2733 * We now need to continue from the last-resolved-ptr to 2734 * ensure the last-resolved-ptr will not referring back to 2735 * the current ptr (t). 2736 */ 2737 if (btf_type_is_modifier(next_type)) { 2738 const struct btf_type *resolved_type; 2739 u32 resolved_type_id; 2740 2741 resolved_type_id = next_type_id; 2742 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2743 2744 if (btf_type_is_ptr(resolved_type) && 2745 !env_type_is_resolve_sink(env, resolved_type) && 2746 !env_type_is_resolved(env, resolved_type_id)) 2747 return env_stack_push(env, resolved_type, 2748 resolved_type_id); 2749 } 2750 2751 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2752 if (env_type_is_resolved(env, next_type_id)) 2753 next_type = btf_type_id_resolve(btf, &next_type_id); 2754 2755 if (!btf_type_is_void(next_type) && 2756 !btf_type_is_fwd(next_type) && 2757 !btf_type_is_func_proto(next_type)) { 2758 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2759 return -EINVAL; 2760 } 2761 } 2762 2763 env_stack_pop_resolved(env, next_type_id, 0); 2764 2765 return 0; 2766 } 2767 2768 static void btf_modifier_show(const struct btf *btf, 2769 const struct btf_type *t, 2770 u32 type_id, void *data, 2771 u8 bits_offset, struct btf_show *show) 2772 { 2773 if (btf->resolved_ids) 2774 t = btf_type_id_resolve(btf, &type_id); 2775 else 2776 t = btf_type_skip_modifiers(btf, type_id, NULL); 2777 2778 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2779 } 2780 2781 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2782 u32 type_id, void *data, u8 bits_offset, 2783 struct btf_show *show) 2784 { 2785 t = btf_type_id_resolve(btf, &type_id); 2786 2787 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2788 } 2789 2790 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2791 u32 type_id, void *data, u8 bits_offset, 2792 struct btf_show *show) 2793 { 2794 void *safe_data; 2795 2796 safe_data = btf_show_start_type(show, t, type_id, data); 2797 if (!safe_data) 2798 return; 2799 2800 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2801 if (show->flags & BTF_SHOW_PTR_RAW) 2802 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2803 else 2804 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2805 btf_show_end_type(show); 2806 } 2807 2808 static void btf_ref_type_log(struct btf_verifier_env *env, 2809 const struct btf_type *t) 2810 { 2811 btf_verifier_log(env, "type_id=%u", t->type); 2812 } 2813 2814 static struct btf_kind_operations modifier_ops = { 2815 .check_meta = btf_ref_type_check_meta, 2816 .resolve = btf_modifier_resolve, 2817 .check_member = btf_modifier_check_member, 2818 .check_kflag_member = btf_modifier_check_kflag_member, 2819 .log_details = btf_ref_type_log, 2820 .show = btf_modifier_show, 2821 }; 2822 2823 static struct btf_kind_operations ptr_ops = { 2824 .check_meta = btf_ref_type_check_meta, 2825 .resolve = btf_ptr_resolve, 2826 .check_member = btf_ptr_check_member, 2827 .check_kflag_member = btf_generic_check_kflag_member, 2828 .log_details = btf_ref_type_log, 2829 .show = btf_ptr_show, 2830 }; 2831 2832 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2833 const struct btf_type *t, 2834 u32 meta_left) 2835 { 2836 if (btf_type_vlen(t)) { 2837 btf_verifier_log_type(env, t, "vlen != 0"); 2838 return -EINVAL; 2839 } 2840 2841 if (t->type) { 2842 btf_verifier_log_type(env, t, "type != 0"); 2843 return -EINVAL; 2844 } 2845 2846 /* fwd type must have a valid name */ 2847 if (!t->name_off || 2848 !btf_name_valid_identifier(env->btf, t->name_off)) { 2849 btf_verifier_log_type(env, t, "Invalid name"); 2850 return -EINVAL; 2851 } 2852 2853 btf_verifier_log_type(env, t, NULL); 2854 2855 return 0; 2856 } 2857 2858 static void btf_fwd_type_log(struct btf_verifier_env *env, 2859 const struct btf_type *t) 2860 { 2861 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2862 } 2863 2864 static struct btf_kind_operations fwd_ops = { 2865 .check_meta = btf_fwd_check_meta, 2866 .resolve = btf_df_resolve, 2867 .check_member = btf_df_check_member, 2868 .check_kflag_member = btf_df_check_kflag_member, 2869 .log_details = btf_fwd_type_log, 2870 .show = btf_df_show, 2871 }; 2872 2873 static int btf_array_check_member(struct btf_verifier_env *env, 2874 const struct btf_type *struct_type, 2875 const struct btf_member *member, 2876 const struct btf_type *member_type) 2877 { 2878 u32 struct_bits_off = member->offset; 2879 u32 struct_size, bytes_offset; 2880 u32 array_type_id, array_size; 2881 struct btf *btf = env->btf; 2882 2883 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2884 btf_verifier_log_member(env, struct_type, member, 2885 "Member is not byte aligned"); 2886 return -EINVAL; 2887 } 2888 2889 array_type_id = member->type; 2890 btf_type_id_size(btf, &array_type_id, &array_size); 2891 struct_size = struct_type->size; 2892 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2893 if (struct_size - bytes_offset < array_size) { 2894 btf_verifier_log_member(env, struct_type, member, 2895 "Member exceeds struct_size"); 2896 return -EINVAL; 2897 } 2898 2899 return 0; 2900 } 2901 2902 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2903 const struct btf_type *t, 2904 u32 meta_left) 2905 { 2906 const struct btf_array *array = btf_type_array(t); 2907 u32 meta_needed = sizeof(*array); 2908 2909 if (meta_left < meta_needed) { 2910 btf_verifier_log_basic(env, t, 2911 "meta_left:%u meta_needed:%u", 2912 meta_left, meta_needed); 2913 return -EINVAL; 2914 } 2915 2916 /* array type should not have a name */ 2917 if (t->name_off) { 2918 btf_verifier_log_type(env, t, "Invalid name"); 2919 return -EINVAL; 2920 } 2921 2922 if (btf_type_vlen(t)) { 2923 btf_verifier_log_type(env, t, "vlen != 0"); 2924 return -EINVAL; 2925 } 2926 2927 if (btf_type_kflag(t)) { 2928 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2929 return -EINVAL; 2930 } 2931 2932 if (t->size) { 2933 btf_verifier_log_type(env, t, "size != 0"); 2934 return -EINVAL; 2935 } 2936 2937 /* Array elem type and index type cannot be in type void, 2938 * so !array->type and !array->index_type are not allowed. 2939 */ 2940 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2941 btf_verifier_log_type(env, t, "Invalid elem"); 2942 return -EINVAL; 2943 } 2944 2945 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2946 btf_verifier_log_type(env, t, "Invalid index"); 2947 return -EINVAL; 2948 } 2949 2950 btf_verifier_log_type(env, t, NULL); 2951 2952 return meta_needed; 2953 } 2954 2955 static int btf_array_resolve(struct btf_verifier_env *env, 2956 const struct resolve_vertex *v) 2957 { 2958 const struct btf_array *array = btf_type_array(v->t); 2959 const struct btf_type *elem_type, *index_type; 2960 u32 elem_type_id, index_type_id; 2961 struct btf *btf = env->btf; 2962 u32 elem_size; 2963 2964 /* Check array->index_type */ 2965 index_type_id = array->index_type; 2966 index_type = btf_type_by_id(btf, index_type_id); 2967 if (btf_type_nosize_or_null(index_type) || 2968 btf_type_is_resolve_source_only(index_type)) { 2969 btf_verifier_log_type(env, v->t, "Invalid index"); 2970 return -EINVAL; 2971 } 2972 2973 if (!env_type_is_resolve_sink(env, index_type) && 2974 !env_type_is_resolved(env, index_type_id)) 2975 return env_stack_push(env, index_type, index_type_id); 2976 2977 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2978 if (!index_type || !btf_type_is_int(index_type) || 2979 !btf_type_int_is_regular(index_type)) { 2980 btf_verifier_log_type(env, v->t, "Invalid index"); 2981 return -EINVAL; 2982 } 2983 2984 /* Check array->type */ 2985 elem_type_id = array->type; 2986 elem_type = btf_type_by_id(btf, elem_type_id); 2987 if (btf_type_nosize_or_null(elem_type) || 2988 btf_type_is_resolve_source_only(elem_type)) { 2989 btf_verifier_log_type(env, v->t, 2990 "Invalid elem"); 2991 return -EINVAL; 2992 } 2993 2994 if (!env_type_is_resolve_sink(env, elem_type) && 2995 !env_type_is_resolved(env, elem_type_id)) 2996 return env_stack_push(env, elem_type, elem_type_id); 2997 2998 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2999 if (!elem_type) { 3000 btf_verifier_log_type(env, v->t, "Invalid elem"); 3001 return -EINVAL; 3002 } 3003 3004 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 3005 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3006 return -EINVAL; 3007 } 3008 3009 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3010 btf_verifier_log_type(env, v->t, 3011 "Array size overflows U32_MAX"); 3012 return -EINVAL; 3013 } 3014 3015 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3016 3017 return 0; 3018 } 3019 3020 static void btf_array_log(struct btf_verifier_env *env, 3021 const struct btf_type *t) 3022 { 3023 const struct btf_array *array = btf_type_array(t); 3024 3025 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3026 array->type, array->index_type, array->nelems); 3027 } 3028 3029 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3030 u32 type_id, void *data, u8 bits_offset, 3031 struct btf_show *show) 3032 { 3033 const struct btf_array *array = btf_type_array(t); 3034 const struct btf_kind_operations *elem_ops; 3035 const struct btf_type *elem_type; 3036 u32 i, elem_size = 0, elem_type_id; 3037 u16 encoding = 0; 3038 3039 elem_type_id = array->type; 3040 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3041 if (elem_type && btf_type_has_size(elem_type)) 3042 elem_size = elem_type->size; 3043 3044 if (elem_type && btf_type_is_int(elem_type)) { 3045 u32 int_type = btf_type_int(elem_type); 3046 3047 encoding = BTF_INT_ENCODING(int_type); 3048 3049 /* 3050 * BTF_INT_CHAR encoding never seems to be set for 3051 * char arrays, so if size is 1 and element is 3052 * printable as a char, we'll do that. 3053 */ 3054 if (elem_size == 1) 3055 encoding = BTF_INT_CHAR; 3056 } 3057 3058 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3059 return; 3060 3061 if (!elem_type) 3062 goto out; 3063 elem_ops = btf_type_ops(elem_type); 3064 3065 for (i = 0; i < array->nelems; i++) { 3066 3067 btf_show_start_array_member(show); 3068 3069 elem_ops->show(btf, elem_type, elem_type_id, data, 3070 bits_offset, show); 3071 data += elem_size; 3072 3073 btf_show_end_array_member(show); 3074 3075 if (show->state.array_terminated) 3076 break; 3077 } 3078 out: 3079 btf_show_end_array_type(show); 3080 } 3081 3082 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3083 u32 type_id, void *data, u8 bits_offset, 3084 struct btf_show *show) 3085 { 3086 const struct btf_member *m = show->state.member; 3087 3088 /* 3089 * First check if any members would be shown (are non-zero). 3090 * See comments above "struct btf_show" definition for more 3091 * details on how this works at a high-level. 3092 */ 3093 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3094 if (!show->state.depth_check) { 3095 show->state.depth_check = show->state.depth + 1; 3096 show->state.depth_to_show = 0; 3097 } 3098 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3099 show->state.member = m; 3100 3101 if (show->state.depth_check != show->state.depth + 1) 3102 return; 3103 show->state.depth_check = 0; 3104 3105 if (show->state.depth_to_show <= show->state.depth) 3106 return; 3107 /* 3108 * Reaching here indicates we have recursed and found 3109 * non-zero array member(s). 3110 */ 3111 } 3112 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3113 } 3114 3115 static struct btf_kind_operations array_ops = { 3116 .check_meta = btf_array_check_meta, 3117 .resolve = btf_array_resolve, 3118 .check_member = btf_array_check_member, 3119 .check_kflag_member = btf_generic_check_kflag_member, 3120 .log_details = btf_array_log, 3121 .show = btf_array_show, 3122 }; 3123 3124 static int btf_struct_check_member(struct btf_verifier_env *env, 3125 const struct btf_type *struct_type, 3126 const struct btf_member *member, 3127 const struct btf_type *member_type) 3128 { 3129 u32 struct_bits_off = member->offset; 3130 u32 struct_size, bytes_offset; 3131 3132 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3133 btf_verifier_log_member(env, struct_type, member, 3134 "Member is not byte aligned"); 3135 return -EINVAL; 3136 } 3137 3138 struct_size = struct_type->size; 3139 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3140 if (struct_size - bytes_offset < member_type->size) { 3141 btf_verifier_log_member(env, struct_type, member, 3142 "Member exceeds struct_size"); 3143 return -EINVAL; 3144 } 3145 3146 return 0; 3147 } 3148 3149 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3150 const struct btf_type *t, 3151 u32 meta_left) 3152 { 3153 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3154 const struct btf_member *member; 3155 u32 meta_needed, last_offset; 3156 struct btf *btf = env->btf; 3157 u32 struct_size = t->size; 3158 u32 offset; 3159 u16 i; 3160 3161 meta_needed = btf_type_vlen(t) * sizeof(*member); 3162 if (meta_left < meta_needed) { 3163 btf_verifier_log_basic(env, t, 3164 "meta_left:%u meta_needed:%u", 3165 meta_left, meta_needed); 3166 return -EINVAL; 3167 } 3168 3169 /* struct type either no name or a valid one */ 3170 if (t->name_off && 3171 !btf_name_valid_identifier(env->btf, t->name_off)) { 3172 btf_verifier_log_type(env, t, "Invalid name"); 3173 return -EINVAL; 3174 } 3175 3176 btf_verifier_log_type(env, t, NULL); 3177 3178 last_offset = 0; 3179 for_each_member(i, t, member) { 3180 if (!btf_name_offset_valid(btf, member->name_off)) { 3181 btf_verifier_log_member(env, t, member, 3182 "Invalid member name_offset:%u", 3183 member->name_off); 3184 return -EINVAL; 3185 } 3186 3187 /* struct member either no name or a valid one */ 3188 if (member->name_off && 3189 !btf_name_valid_identifier(btf, member->name_off)) { 3190 btf_verifier_log_member(env, t, member, "Invalid name"); 3191 return -EINVAL; 3192 } 3193 /* A member cannot be in type void */ 3194 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3195 btf_verifier_log_member(env, t, member, 3196 "Invalid type_id"); 3197 return -EINVAL; 3198 } 3199 3200 offset = __btf_member_bit_offset(t, member); 3201 if (is_union && offset) { 3202 btf_verifier_log_member(env, t, member, 3203 "Invalid member bits_offset"); 3204 return -EINVAL; 3205 } 3206 3207 /* 3208 * ">" instead of ">=" because the last member could be 3209 * "char a[0];" 3210 */ 3211 if (last_offset > offset) { 3212 btf_verifier_log_member(env, t, member, 3213 "Invalid member bits_offset"); 3214 return -EINVAL; 3215 } 3216 3217 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3218 btf_verifier_log_member(env, t, member, 3219 "Member bits_offset exceeds its struct size"); 3220 return -EINVAL; 3221 } 3222 3223 btf_verifier_log_member(env, t, member, NULL); 3224 last_offset = offset; 3225 } 3226 3227 return meta_needed; 3228 } 3229 3230 static int btf_struct_resolve(struct btf_verifier_env *env, 3231 const struct resolve_vertex *v) 3232 { 3233 const struct btf_member *member; 3234 int err; 3235 u16 i; 3236 3237 /* Before continue resolving the next_member, 3238 * ensure the last member is indeed resolved to a 3239 * type with size info. 3240 */ 3241 if (v->next_member) { 3242 const struct btf_type *last_member_type; 3243 const struct btf_member *last_member; 3244 u32 last_member_type_id; 3245 3246 last_member = btf_type_member(v->t) + v->next_member - 1; 3247 last_member_type_id = last_member->type; 3248 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3249 last_member_type_id))) 3250 return -EINVAL; 3251 3252 last_member_type = btf_type_by_id(env->btf, 3253 last_member_type_id); 3254 if (btf_type_kflag(v->t)) 3255 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3256 last_member, 3257 last_member_type); 3258 else 3259 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3260 last_member, 3261 last_member_type); 3262 if (err) 3263 return err; 3264 } 3265 3266 for_each_member_from(i, v->next_member, v->t, member) { 3267 u32 member_type_id = member->type; 3268 const struct btf_type *member_type = btf_type_by_id(env->btf, 3269 member_type_id); 3270 3271 if (btf_type_nosize_or_null(member_type) || 3272 btf_type_is_resolve_source_only(member_type)) { 3273 btf_verifier_log_member(env, v->t, member, 3274 "Invalid member"); 3275 return -EINVAL; 3276 } 3277 3278 if (!env_type_is_resolve_sink(env, member_type) && 3279 !env_type_is_resolved(env, member_type_id)) { 3280 env_stack_set_next_member(env, i + 1); 3281 return env_stack_push(env, member_type, member_type_id); 3282 } 3283 3284 if (btf_type_kflag(v->t)) 3285 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3286 member, 3287 member_type); 3288 else 3289 err = btf_type_ops(member_type)->check_member(env, v->t, 3290 member, 3291 member_type); 3292 if (err) 3293 return err; 3294 } 3295 3296 env_stack_pop_resolved(env, 0, 0); 3297 3298 return 0; 3299 } 3300 3301 static void btf_struct_log(struct btf_verifier_env *env, 3302 const struct btf_type *t) 3303 { 3304 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3305 } 3306 3307 enum { 3308 BTF_FIELD_IGNORE = 0, 3309 BTF_FIELD_FOUND = 1, 3310 }; 3311 3312 struct btf_field_info { 3313 enum btf_field_type type; 3314 u32 off; 3315 union { 3316 struct { 3317 u32 type_id; 3318 } kptr; 3319 struct { 3320 const char *node_name; 3321 u32 value_btf_id; 3322 } graph_root; 3323 }; 3324 }; 3325 3326 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3327 u32 off, int sz, enum btf_field_type field_type, 3328 struct btf_field_info *info) 3329 { 3330 if (!__btf_type_is_struct(t)) 3331 return BTF_FIELD_IGNORE; 3332 if (t->size != sz) 3333 return BTF_FIELD_IGNORE; 3334 info->type = field_type; 3335 info->off = off; 3336 return BTF_FIELD_FOUND; 3337 } 3338 3339 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3340 u32 off, int sz, struct btf_field_info *info) 3341 { 3342 enum btf_field_type type; 3343 u32 res_id; 3344 3345 /* Permit modifiers on the pointer itself */ 3346 if (btf_type_is_volatile(t)) 3347 t = btf_type_by_id(btf, t->type); 3348 /* For PTR, sz is always == 8 */ 3349 if (!btf_type_is_ptr(t)) 3350 return BTF_FIELD_IGNORE; 3351 t = btf_type_by_id(btf, t->type); 3352 3353 if (!btf_type_is_type_tag(t)) 3354 return BTF_FIELD_IGNORE; 3355 /* Reject extra tags */ 3356 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3357 return -EINVAL; 3358 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3359 type = BPF_KPTR_UNREF; 3360 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3361 type = BPF_KPTR_REF; 3362 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3363 type = BPF_KPTR_PERCPU; 3364 else 3365 return -EINVAL; 3366 3367 /* Get the base type */ 3368 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3369 /* Only pointer to struct is allowed */ 3370 if (!__btf_type_is_struct(t)) 3371 return -EINVAL; 3372 3373 info->type = type; 3374 info->off = off; 3375 info->kptr.type_id = res_id; 3376 return BTF_FIELD_FOUND; 3377 } 3378 3379 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3380 int comp_idx, const char *tag_key, int last_id) 3381 { 3382 int len = strlen(tag_key); 3383 int i, n; 3384 3385 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3386 const struct btf_type *t = btf_type_by_id(btf, i); 3387 3388 if (!btf_type_is_decl_tag(t)) 3389 continue; 3390 if (pt != btf_type_by_id(btf, t->type)) 3391 continue; 3392 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3393 continue; 3394 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3395 continue; 3396 return i; 3397 } 3398 return -ENOENT; 3399 } 3400 3401 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3402 int comp_idx, const char *tag_key) 3403 { 3404 const char *value = NULL; 3405 const struct btf_type *t; 3406 int len, id; 3407 3408 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3409 if (id < 0) 3410 return ERR_PTR(id); 3411 3412 t = btf_type_by_id(btf, id); 3413 len = strlen(tag_key); 3414 value = __btf_name_by_offset(btf, t->name_off) + len; 3415 3416 /* Prevent duplicate entries for same type */ 3417 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3418 if (id >= 0) 3419 return ERR_PTR(-EEXIST); 3420 3421 return value; 3422 } 3423 3424 static int 3425 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3426 const struct btf_type *t, int comp_idx, u32 off, 3427 int sz, struct btf_field_info *info, 3428 enum btf_field_type head_type) 3429 { 3430 const char *node_field_name; 3431 const char *value_type; 3432 s32 id; 3433 3434 if (!__btf_type_is_struct(t)) 3435 return BTF_FIELD_IGNORE; 3436 if (t->size != sz) 3437 return BTF_FIELD_IGNORE; 3438 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3439 if (IS_ERR(value_type)) 3440 return -EINVAL; 3441 node_field_name = strstr(value_type, ":"); 3442 if (!node_field_name) 3443 return -EINVAL; 3444 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3445 if (!value_type) 3446 return -ENOMEM; 3447 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3448 kfree(value_type); 3449 if (id < 0) 3450 return id; 3451 node_field_name++; 3452 if (str_is_empty(node_field_name)) 3453 return -EINVAL; 3454 info->type = head_type; 3455 info->off = off; 3456 info->graph_root.value_btf_id = id; 3457 info->graph_root.node_name = node_field_name; 3458 return BTF_FIELD_FOUND; 3459 } 3460 3461 #define field_mask_test_name(field_type, field_type_str) \ 3462 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3463 type = field_type; \ 3464 goto end; \ 3465 } 3466 3467 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3468 u32 field_mask, u32 *seen_mask, 3469 int *align, int *sz) 3470 { 3471 int type = 0; 3472 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3473 3474 if (field_mask & BPF_SPIN_LOCK) { 3475 if (!strcmp(name, "bpf_spin_lock")) { 3476 if (*seen_mask & BPF_SPIN_LOCK) 3477 return -E2BIG; 3478 *seen_mask |= BPF_SPIN_LOCK; 3479 type = BPF_SPIN_LOCK; 3480 goto end; 3481 } 3482 } 3483 if (field_mask & BPF_TIMER) { 3484 if (!strcmp(name, "bpf_timer")) { 3485 if (*seen_mask & BPF_TIMER) 3486 return -E2BIG; 3487 *seen_mask |= BPF_TIMER; 3488 type = BPF_TIMER; 3489 goto end; 3490 } 3491 } 3492 if (field_mask & BPF_WORKQUEUE) { 3493 if (!strcmp(name, "bpf_wq")) { 3494 if (*seen_mask & BPF_WORKQUEUE) 3495 return -E2BIG; 3496 *seen_mask |= BPF_WORKQUEUE; 3497 type = BPF_WORKQUEUE; 3498 goto end; 3499 } 3500 } 3501 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3502 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3503 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3504 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3505 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3506 3507 /* Only return BPF_KPTR when all other types with matchable names fail */ 3508 if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) { 3509 type = BPF_KPTR_REF; 3510 goto end; 3511 } 3512 return 0; 3513 end: 3514 *sz = btf_field_type_size(type); 3515 *align = btf_field_type_align(type); 3516 return type; 3517 } 3518 3519 #undef field_mask_test_name 3520 3521 /* Repeat a number of fields for a specified number of times. 3522 * 3523 * Copy the fields starting from the first field and repeat them for 3524 * repeat_cnt times. The fields are repeated by adding the offset of each 3525 * field with 3526 * (i + 1) * elem_size 3527 * where i is the repeat index and elem_size is the size of an element. 3528 */ 3529 static int btf_repeat_fields(struct btf_field_info *info, 3530 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3531 { 3532 u32 i, j; 3533 u32 cur; 3534 3535 /* Ensure not repeating fields that should not be repeated. */ 3536 for (i = 0; i < field_cnt; i++) { 3537 switch (info[i].type) { 3538 case BPF_KPTR_UNREF: 3539 case BPF_KPTR_REF: 3540 case BPF_KPTR_PERCPU: 3541 case BPF_LIST_HEAD: 3542 case BPF_RB_ROOT: 3543 break; 3544 default: 3545 return -EINVAL; 3546 } 3547 } 3548 3549 cur = field_cnt; 3550 for (i = 0; i < repeat_cnt; i++) { 3551 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3552 for (j = 0; j < field_cnt; j++) 3553 info[cur++].off += (i + 1) * elem_size; 3554 } 3555 3556 return 0; 3557 } 3558 3559 static int btf_find_struct_field(const struct btf *btf, 3560 const struct btf_type *t, u32 field_mask, 3561 struct btf_field_info *info, int info_cnt, 3562 u32 level); 3563 3564 /* Find special fields in the struct type of a field. 3565 * 3566 * This function is used to find fields of special types that is not a 3567 * global variable or a direct field of a struct type. It also handles the 3568 * repetition if it is the element type of an array. 3569 */ 3570 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3571 u32 off, u32 nelems, 3572 u32 field_mask, struct btf_field_info *info, 3573 int info_cnt, u32 level) 3574 { 3575 int ret, err, i; 3576 3577 level++; 3578 if (level >= MAX_RESOLVE_DEPTH) 3579 return -E2BIG; 3580 3581 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3582 3583 if (ret <= 0) 3584 return ret; 3585 3586 /* Shift the offsets of the nested struct fields to the offsets 3587 * related to the container. 3588 */ 3589 for (i = 0; i < ret; i++) 3590 info[i].off += off; 3591 3592 if (nelems > 1) { 3593 err = btf_repeat_fields(info, ret, nelems - 1, t->size); 3594 if (err == 0) 3595 ret *= nelems; 3596 else 3597 ret = err; 3598 } 3599 3600 return ret; 3601 } 3602 3603 static int btf_find_field_one(const struct btf *btf, 3604 const struct btf_type *var, 3605 const struct btf_type *var_type, 3606 int var_idx, 3607 u32 off, u32 expected_size, 3608 u32 field_mask, u32 *seen_mask, 3609 struct btf_field_info *info, int info_cnt, 3610 u32 level) 3611 { 3612 int ret, align, sz, field_type; 3613 struct btf_field_info tmp; 3614 const struct btf_array *array; 3615 u32 i, nelems = 1; 3616 3617 /* Walk into array types to find the element type and the number of 3618 * elements in the (flattened) array. 3619 */ 3620 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3621 array = btf_array(var_type); 3622 nelems *= array->nelems; 3623 var_type = btf_type_by_id(btf, array->type); 3624 } 3625 if (i == MAX_RESOLVE_DEPTH) 3626 return -E2BIG; 3627 if (nelems == 0) 3628 return 0; 3629 3630 field_type = btf_get_field_type(btf, var_type, 3631 field_mask, seen_mask, &align, &sz); 3632 /* Look into variables of struct types */ 3633 if (!field_type && __btf_type_is_struct(var_type)) { 3634 sz = var_type->size; 3635 if (expected_size && expected_size != sz * nelems) 3636 return 0; 3637 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3638 &info[0], info_cnt, level); 3639 return ret; 3640 } 3641 3642 if (field_type == 0) 3643 return 0; 3644 if (field_type < 0) 3645 return field_type; 3646 3647 if (expected_size && expected_size != sz * nelems) 3648 return 0; 3649 if (off % align) 3650 return 0; 3651 3652 switch (field_type) { 3653 case BPF_SPIN_LOCK: 3654 case BPF_TIMER: 3655 case BPF_WORKQUEUE: 3656 case BPF_LIST_NODE: 3657 case BPF_RB_NODE: 3658 case BPF_REFCOUNT: 3659 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3660 info_cnt ? &info[0] : &tmp); 3661 if (ret < 0) 3662 return ret; 3663 break; 3664 case BPF_KPTR_UNREF: 3665 case BPF_KPTR_REF: 3666 case BPF_KPTR_PERCPU: 3667 ret = btf_find_kptr(btf, var_type, off, sz, 3668 info_cnt ? &info[0] : &tmp); 3669 if (ret < 0) 3670 return ret; 3671 break; 3672 case BPF_LIST_HEAD: 3673 case BPF_RB_ROOT: 3674 ret = btf_find_graph_root(btf, var, var_type, 3675 var_idx, off, sz, 3676 info_cnt ? &info[0] : &tmp, 3677 field_type); 3678 if (ret < 0) 3679 return ret; 3680 break; 3681 default: 3682 return -EFAULT; 3683 } 3684 3685 if (ret == BTF_FIELD_IGNORE) 3686 return 0; 3687 if (nelems > info_cnt) 3688 return -E2BIG; 3689 if (nelems > 1) { 3690 ret = btf_repeat_fields(info, 1, nelems - 1, sz); 3691 if (ret < 0) 3692 return ret; 3693 } 3694 return nelems; 3695 } 3696 3697 static int btf_find_struct_field(const struct btf *btf, 3698 const struct btf_type *t, u32 field_mask, 3699 struct btf_field_info *info, int info_cnt, 3700 u32 level) 3701 { 3702 int ret, idx = 0; 3703 const struct btf_member *member; 3704 u32 i, off, seen_mask = 0; 3705 3706 for_each_member(i, t, member) { 3707 const struct btf_type *member_type = btf_type_by_id(btf, 3708 member->type); 3709 3710 off = __btf_member_bit_offset(t, member); 3711 if (off % 8) 3712 /* valid C code cannot generate such BTF */ 3713 return -EINVAL; 3714 off /= 8; 3715 3716 ret = btf_find_field_one(btf, t, member_type, i, 3717 off, 0, 3718 field_mask, &seen_mask, 3719 &info[idx], info_cnt - idx, level); 3720 if (ret < 0) 3721 return ret; 3722 idx += ret; 3723 } 3724 return idx; 3725 } 3726 3727 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3728 u32 field_mask, struct btf_field_info *info, 3729 int info_cnt, u32 level) 3730 { 3731 int ret, idx = 0; 3732 const struct btf_var_secinfo *vsi; 3733 u32 i, off, seen_mask = 0; 3734 3735 for_each_vsi(i, t, vsi) { 3736 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3737 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3738 3739 off = vsi->offset; 3740 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3741 field_mask, &seen_mask, 3742 &info[idx], info_cnt - idx, 3743 level); 3744 if (ret < 0) 3745 return ret; 3746 idx += ret; 3747 } 3748 return idx; 3749 } 3750 3751 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3752 u32 field_mask, struct btf_field_info *info, 3753 int info_cnt) 3754 { 3755 if (__btf_type_is_struct(t)) 3756 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3757 else if (btf_type_is_datasec(t)) 3758 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3759 return -EINVAL; 3760 } 3761 3762 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3763 struct btf_field_info *info) 3764 { 3765 struct module *mod = NULL; 3766 const struct btf_type *t; 3767 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3768 * is that BTF, otherwise it's program BTF 3769 */ 3770 struct btf *kptr_btf; 3771 int ret; 3772 s32 id; 3773 3774 /* Find type in map BTF, and use it to look up the matching type 3775 * in vmlinux or module BTFs, by name and kind. 3776 */ 3777 t = btf_type_by_id(btf, info->kptr.type_id); 3778 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3779 &kptr_btf); 3780 if (id == -ENOENT) { 3781 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3782 WARN_ON_ONCE(btf_is_kernel(btf)); 3783 3784 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3785 * kptr allocated via bpf_obj_new 3786 */ 3787 field->kptr.dtor = NULL; 3788 id = info->kptr.type_id; 3789 kptr_btf = (struct btf *)btf; 3790 btf_get(kptr_btf); 3791 goto found_dtor; 3792 } 3793 if (id < 0) 3794 return id; 3795 3796 /* Find and stash the function pointer for the destruction function that 3797 * needs to be eventually invoked from the map free path. 3798 */ 3799 if (info->type == BPF_KPTR_REF) { 3800 const struct btf_type *dtor_func; 3801 const char *dtor_func_name; 3802 unsigned long addr; 3803 s32 dtor_btf_id; 3804 3805 /* This call also serves as a whitelist of allowed objects that 3806 * can be used as a referenced pointer and be stored in a map at 3807 * the same time. 3808 */ 3809 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3810 if (dtor_btf_id < 0) { 3811 ret = dtor_btf_id; 3812 goto end_btf; 3813 } 3814 3815 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3816 if (!dtor_func) { 3817 ret = -ENOENT; 3818 goto end_btf; 3819 } 3820 3821 if (btf_is_module(kptr_btf)) { 3822 mod = btf_try_get_module(kptr_btf); 3823 if (!mod) { 3824 ret = -ENXIO; 3825 goto end_btf; 3826 } 3827 } 3828 3829 /* We already verified dtor_func to be btf_type_is_func 3830 * in register_btf_id_dtor_kfuncs. 3831 */ 3832 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3833 addr = kallsyms_lookup_name(dtor_func_name); 3834 if (!addr) { 3835 ret = -EINVAL; 3836 goto end_mod; 3837 } 3838 field->kptr.dtor = (void *)addr; 3839 } 3840 3841 found_dtor: 3842 field->kptr.btf_id = id; 3843 field->kptr.btf = kptr_btf; 3844 field->kptr.module = mod; 3845 return 0; 3846 end_mod: 3847 module_put(mod); 3848 end_btf: 3849 btf_put(kptr_btf); 3850 return ret; 3851 } 3852 3853 static int btf_parse_graph_root(const struct btf *btf, 3854 struct btf_field *field, 3855 struct btf_field_info *info, 3856 const char *node_type_name, 3857 size_t node_type_align) 3858 { 3859 const struct btf_type *t, *n = NULL; 3860 const struct btf_member *member; 3861 u32 offset; 3862 int i; 3863 3864 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3865 /* We've already checked that value_btf_id is a struct type. We 3866 * just need to figure out the offset of the list_node, and 3867 * verify its type. 3868 */ 3869 for_each_member(i, t, member) { 3870 if (strcmp(info->graph_root.node_name, 3871 __btf_name_by_offset(btf, member->name_off))) 3872 continue; 3873 /* Invalid BTF, two members with same name */ 3874 if (n) 3875 return -EINVAL; 3876 n = btf_type_by_id(btf, member->type); 3877 if (!__btf_type_is_struct(n)) 3878 return -EINVAL; 3879 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3880 return -EINVAL; 3881 offset = __btf_member_bit_offset(n, member); 3882 if (offset % 8) 3883 return -EINVAL; 3884 offset /= 8; 3885 if (offset % node_type_align) 3886 return -EINVAL; 3887 3888 field->graph_root.btf = (struct btf *)btf; 3889 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3890 field->graph_root.node_offset = offset; 3891 } 3892 if (!n) 3893 return -ENOENT; 3894 return 0; 3895 } 3896 3897 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3898 struct btf_field_info *info) 3899 { 3900 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3901 __alignof__(struct bpf_list_node)); 3902 } 3903 3904 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3905 struct btf_field_info *info) 3906 { 3907 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3908 __alignof__(struct bpf_rb_node)); 3909 } 3910 3911 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3912 { 3913 const struct btf_field *a = (const struct btf_field *)_a; 3914 const struct btf_field *b = (const struct btf_field *)_b; 3915 3916 if (a->offset < b->offset) 3917 return -1; 3918 else if (a->offset > b->offset) 3919 return 1; 3920 return 0; 3921 } 3922 3923 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3924 u32 field_mask, u32 value_size) 3925 { 3926 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3927 u32 next_off = 0, field_type_size; 3928 struct btf_record *rec; 3929 int ret, i, cnt; 3930 3931 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3932 if (ret < 0) 3933 return ERR_PTR(ret); 3934 if (!ret) 3935 return NULL; 3936 3937 cnt = ret; 3938 /* This needs to be kzalloc to zero out padding and unused fields, see 3939 * comment in btf_record_equal. 3940 */ 3941 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3942 if (!rec) 3943 return ERR_PTR(-ENOMEM); 3944 3945 rec->spin_lock_off = -EINVAL; 3946 rec->timer_off = -EINVAL; 3947 rec->wq_off = -EINVAL; 3948 rec->refcount_off = -EINVAL; 3949 for (i = 0; i < cnt; i++) { 3950 field_type_size = btf_field_type_size(info_arr[i].type); 3951 if (info_arr[i].off + field_type_size > value_size) { 3952 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3953 ret = -EFAULT; 3954 goto end; 3955 } 3956 if (info_arr[i].off < next_off) { 3957 ret = -EEXIST; 3958 goto end; 3959 } 3960 next_off = info_arr[i].off + field_type_size; 3961 3962 rec->field_mask |= info_arr[i].type; 3963 rec->fields[i].offset = info_arr[i].off; 3964 rec->fields[i].type = info_arr[i].type; 3965 rec->fields[i].size = field_type_size; 3966 3967 switch (info_arr[i].type) { 3968 case BPF_SPIN_LOCK: 3969 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3970 /* Cache offset for faster lookup at runtime */ 3971 rec->spin_lock_off = rec->fields[i].offset; 3972 break; 3973 case BPF_TIMER: 3974 WARN_ON_ONCE(rec->timer_off >= 0); 3975 /* Cache offset for faster lookup at runtime */ 3976 rec->timer_off = rec->fields[i].offset; 3977 break; 3978 case BPF_WORKQUEUE: 3979 WARN_ON_ONCE(rec->wq_off >= 0); 3980 /* Cache offset for faster lookup at runtime */ 3981 rec->wq_off = rec->fields[i].offset; 3982 break; 3983 case BPF_REFCOUNT: 3984 WARN_ON_ONCE(rec->refcount_off >= 0); 3985 /* Cache offset for faster lookup at runtime */ 3986 rec->refcount_off = rec->fields[i].offset; 3987 break; 3988 case BPF_KPTR_UNREF: 3989 case BPF_KPTR_REF: 3990 case BPF_KPTR_PERCPU: 3991 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3992 if (ret < 0) 3993 goto end; 3994 break; 3995 case BPF_LIST_HEAD: 3996 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3997 if (ret < 0) 3998 goto end; 3999 break; 4000 case BPF_RB_ROOT: 4001 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4002 if (ret < 0) 4003 goto end; 4004 break; 4005 case BPF_LIST_NODE: 4006 case BPF_RB_NODE: 4007 break; 4008 default: 4009 ret = -EFAULT; 4010 goto end; 4011 } 4012 rec->cnt++; 4013 } 4014 4015 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4016 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4017 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 4018 ret = -EINVAL; 4019 goto end; 4020 } 4021 4022 if (rec->refcount_off < 0 && 4023 btf_record_has_field(rec, BPF_LIST_NODE) && 4024 btf_record_has_field(rec, BPF_RB_NODE)) { 4025 ret = -EINVAL; 4026 goto end; 4027 } 4028 4029 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4030 NULL, rec); 4031 4032 return rec; 4033 end: 4034 btf_record_free(rec); 4035 return ERR_PTR(ret); 4036 } 4037 4038 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4039 { 4040 int i; 4041 4042 /* There are three types that signify ownership of some other type: 4043 * kptr_ref, bpf_list_head, bpf_rb_root. 4044 * kptr_ref only supports storing kernel types, which can't store 4045 * references to program allocated local types. 4046 * 4047 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4048 * does not form cycles. 4049 */ 4050 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT)) 4051 return 0; 4052 for (i = 0; i < rec->cnt; i++) { 4053 struct btf_struct_meta *meta; 4054 u32 btf_id; 4055 4056 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4057 continue; 4058 btf_id = rec->fields[i].graph_root.value_btf_id; 4059 meta = btf_find_struct_meta(btf, btf_id); 4060 if (!meta) 4061 return -EFAULT; 4062 rec->fields[i].graph_root.value_rec = meta->record; 4063 4064 /* We need to set value_rec for all root types, but no need 4065 * to check ownership cycle for a type unless it's also a 4066 * node type. 4067 */ 4068 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4069 continue; 4070 4071 /* We need to ensure ownership acyclicity among all types. The 4072 * proper way to do it would be to topologically sort all BTF 4073 * IDs based on the ownership edges, since there can be multiple 4074 * bpf_{list_head,rb_node} in a type. Instead, we use the 4075 * following resaoning: 4076 * 4077 * - A type can only be owned by another type in user BTF if it 4078 * has a bpf_{list,rb}_node. Let's call these node types. 4079 * - A type can only _own_ another type in user BTF if it has a 4080 * bpf_{list_head,rb_root}. Let's call these root types. 4081 * 4082 * We ensure that if a type is both a root and node, its 4083 * element types cannot be root types. 4084 * 4085 * To ensure acyclicity: 4086 * 4087 * When A is an root type but not a node, its ownership 4088 * chain can be: 4089 * A -> B -> C 4090 * Where: 4091 * - A is an root, e.g. has bpf_rb_root. 4092 * - B is both a root and node, e.g. has bpf_rb_node and 4093 * bpf_list_head. 4094 * - C is only an root, e.g. has bpf_list_node 4095 * 4096 * When A is both a root and node, some other type already 4097 * owns it in the BTF domain, hence it can not own 4098 * another root type through any of the ownership edges. 4099 * A -> B 4100 * Where: 4101 * - A is both an root and node. 4102 * - B is only an node. 4103 */ 4104 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4105 return -ELOOP; 4106 } 4107 return 0; 4108 } 4109 4110 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4111 u32 type_id, void *data, u8 bits_offset, 4112 struct btf_show *show) 4113 { 4114 const struct btf_member *member; 4115 void *safe_data; 4116 u32 i; 4117 4118 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4119 if (!safe_data) 4120 return; 4121 4122 for_each_member(i, t, member) { 4123 const struct btf_type *member_type = btf_type_by_id(btf, 4124 member->type); 4125 const struct btf_kind_operations *ops; 4126 u32 member_offset, bitfield_size; 4127 u32 bytes_offset; 4128 u8 bits8_offset; 4129 4130 btf_show_start_member(show, member); 4131 4132 member_offset = __btf_member_bit_offset(t, member); 4133 bitfield_size = __btf_member_bitfield_size(t, member); 4134 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4135 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4136 if (bitfield_size) { 4137 safe_data = btf_show_start_type(show, member_type, 4138 member->type, 4139 data + bytes_offset); 4140 if (safe_data) 4141 btf_bitfield_show(safe_data, 4142 bits8_offset, 4143 bitfield_size, show); 4144 btf_show_end_type(show); 4145 } else { 4146 ops = btf_type_ops(member_type); 4147 ops->show(btf, member_type, member->type, 4148 data + bytes_offset, bits8_offset, show); 4149 } 4150 4151 btf_show_end_member(show); 4152 } 4153 4154 btf_show_end_struct_type(show); 4155 } 4156 4157 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4158 u32 type_id, void *data, u8 bits_offset, 4159 struct btf_show *show) 4160 { 4161 const struct btf_member *m = show->state.member; 4162 4163 /* 4164 * First check if any members would be shown (are non-zero). 4165 * See comments above "struct btf_show" definition for more 4166 * details on how this works at a high-level. 4167 */ 4168 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4169 if (!show->state.depth_check) { 4170 show->state.depth_check = show->state.depth + 1; 4171 show->state.depth_to_show = 0; 4172 } 4173 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4174 /* Restore saved member data here */ 4175 show->state.member = m; 4176 if (show->state.depth_check != show->state.depth + 1) 4177 return; 4178 show->state.depth_check = 0; 4179 4180 if (show->state.depth_to_show <= show->state.depth) 4181 return; 4182 /* 4183 * Reaching here indicates we have recursed and found 4184 * non-zero child values. 4185 */ 4186 } 4187 4188 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4189 } 4190 4191 static struct btf_kind_operations struct_ops = { 4192 .check_meta = btf_struct_check_meta, 4193 .resolve = btf_struct_resolve, 4194 .check_member = btf_struct_check_member, 4195 .check_kflag_member = btf_generic_check_kflag_member, 4196 .log_details = btf_struct_log, 4197 .show = btf_struct_show, 4198 }; 4199 4200 static int btf_enum_check_member(struct btf_verifier_env *env, 4201 const struct btf_type *struct_type, 4202 const struct btf_member *member, 4203 const struct btf_type *member_type) 4204 { 4205 u32 struct_bits_off = member->offset; 4206 u32 struct_size, bytes_offset; 4207 4208 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4209 btf_verifier_log_member(env, struct_type, member, 4210 "Member is not byte aligned"); 4211 return -EINVAL; 4212 } 4213 4214 struct_size = struct_type->size; 4215 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4216 if (struct_size - bytes_offset < member_type->size) { 4217 btf_verifier_log_member(env, struct_type, member, 4218 "Member exceeds struct_size"); 4219 return -EINVAL; 4220 } 4221 4222 return 0; 4223 } 4224 4225 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4226 const struct btf_type *struct_type, 4227 const struct btf_member *member, 4228 const struct btf_type *member_type) 4229 { 4230 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4231 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4232 4233 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4234 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4235 if (!nr_bits) { 4236 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4237 btf_verifier_log_member(env, struct_type, member, 4238 "Member is not byte aligned"); 4239 return -EINVAL; 4240 } 4241 4242 nr_bits = int_bitsize; 4243 } else if (nr_bits > int_bitsize) { 4244 btf_verifier_log_member(env, struct_type, member, 4245 "Invalid member bitfield_size"); 4246 return -EINVAL; 4247 } 4248 4249 struct_size = struct_type->size; 4250 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4251 if (struct_size < bytes_end) { 4252 btf_verifier_log_member(env, struct_type, member, 4253 "Member exceeds struct_size"); 4254 return -EINVAL; 4255 } 4256 4257 return 0; 4258 } 4259 4260 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4261 const struct btf_type *t, 4262 u32 meta_left) 4263 { 4264 const struct btf_enum *enums = btf_type_enum(t); 4265 struct btf *btf = env->btf; 4266 const char *fmt_str; 4267 u16 i, nr_enums; 4268 u32 meta_needed; 4269 4270 nr_enums = btf_type_vlen(t); 4271 meta_needed = nr_enums * sizeof(*enums); 4272 4273 if (meta_left < meta_needed) { 4274 btf_verifier_log_basic(env, t, 4275 "meta_left:%u meta_needed:%u", 4276 meta_left, meta_needed); 4277 return -EINVAL; 4278 } 4279 4280 if (t->size > 8 || !is_power_of_2(t->size)) { 4281 btf_verifier_log_type(env, t, "Unexpected size"); 4282 return -EINVAL; 4283 } 4284 4285 /* enum type either no name or a valid one */ 4286 if (t->name_off && 4287 !btf_name_valid_identifier(env->btf, t->name_off)) { 4288 btf_verifier_log_type(env, t, "Invalid name"); 4289 return -EINVAL; 4290 } 4291 4292 btf_verifier_log_type(env, t, NULL); 4293 4294 for (i = 0; i < nr_enums; i++) { 4295 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4296 btf_verifier_log(env, "\tInvalid name_offset:%u", 4297 enums[i].name_off); 4298 return -EINVAL; 4299 } 4300 4301 /* enum member must have a valid name */ 4302 if (!enums[i].name_off || 4303 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4304 btf_verifier_log_type(env, t, "Invalid name"); 4305 return -EINVAL; 4306 } 4307 4308 if (env->log.level == BPF_LOG_KERNEL) 4309 continue; 4310 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4311 btf_verifier_log(env, fmt_str, 4312 __btf_name_by_offset(btf, enums[i].name_off), 4313 enums[i].val); 4314 } 4315 4316 return meta_needed; 4317 } 4318 4319 static void btf_enum_log(struct btf_verifier_env *env, 4320 const struct btf_type *t) 4321 { 4322 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4323 } 4324 4325 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4326 u32 type_id, void *data, u8 bits_offset, 4327 struct btf_show *show) 4328 { 4329 const struct btf_enum *enums = btf_type_enum(t); 4330 u32 i, nr_enums = btf_type_vlen(t); 4331 void *safe_data; 4332 int v; 4333 4334 safe_data = btf_show_start_type(show, t, type_id, data); 4335 if (!safe_data) 4336 return; 4337 4338 v = *(int *)safe_data; 4339 4340 for (i = 0; i < nr_enums; i++) { 4341 if (v != enums[i].val) 4342 continue; 4343 4344 btf_show_type_value(show, "%s", 4345 __btf_name_by_offset(btf, 4346 enums[i].name_off)); 4347 4348 btf_show_end_type(show); 4349 return; 4350 } 4351 4352 if (btf_type_kflag(t)) 4353 btf_show_type_value(show, "%d", v); 4354 else 4355 btf_show_type_value(show, "%u", v); 4356 btf_show_end_type(show); 4357 } 4358 4359 static struct btf_kind_operations enum_ops = { 4360 .check_meta = btf_enum_check_meta, 4361 .resolve = btf_df_resolve, 4362 .check_member = btf_enum_check_member, 4363 .check_kflag_member = btf_enum_check_kflag_member, 4364 .log_details = btf_enum_log, 4365 .show = btf_enum_show, 4366 }; 4367 4368 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4369 const struct btf_type *t, 4370 u32 meta_left) 4371 { 4372 const struct btf_enum64 *enums = btf_type_enum64(t); 4373 struct btf *btf = env->btf; 4374 const char *fmt_str; 4375 u16 i, nr_enums; 4376 u32 meta_needed; 4377 4378 nr_enums = btf_type_vlen(t); 4379 meta_needed = nr_enums * sizeof(*enums); 4380 4381 if (meta_left < meta_needed) { 4382 btf_verifier_log_basic(env, t, 4383 "meta_left:%u meta_needed:%u", 4384 meta_left, meta_needed); 4385 return -EINVAL; 4386 } 4387 4388 if (t->size > 8 || !is_power_of_2(t->size)) { 4389 btf_verifier_log_type(env, t, "Unexpected size"); 4390 return -EINVAL; 4391 } 4392 4393 /* enum type either no name or a valid one */ 4394 if (t->name_off && 4395 !btf_name_valid_identifier(env->btf, t->name_off)) { 4396 btf_verifier_log_type(env, t, "Invalid name"); 4397 return -EINVAL; 4398 } 4399 4400 btf_verifier_log_type(env, t, NULL); 4401 4402 for (i = 0; i < nr_enums; i++) { 4403 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4404 btf_verifier_log(env, "\tInvalid name_offset:%u", 4405 enums[i].name_off); 4406 return -EINVAL; 4407 } 4408 4409 /* enum member must have a valid name */ 4410 if (!enums[i].name_off || 4411 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4412 btf_verifier_log_type(env, t, "Invalid name"); 4413 return -EINVAL; 4414 } 4415 4416 if (env->log.level == BPF_LOG_KERNEL) 4417 continue; 4418 4419 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4420 btf_verifier_log(env, fmt_str, 4421 __btf_name_by_offset(btf, enums[i].name_off), 4422 btf_enum64_value(enums + i)); 4423 } 4424 4425 return meta_needed; 4426 } 4427 4428 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4429 u32 type_id, void *data, u8 bits_offset, 4430 struct btf_show *show) 4431 { 4432 const struct btf_enum64 *enums = btf_type_enum64(t); 4433 u32 i, nr_enums = btf_type_vlen(t); 4434 void *safe_data; 4435 s64 v; 4436 4437 safe_data = btf_show_start_type(show, t, type_id, data); 4438 if (!safe_data) 4439 return; 4440 4441 v = *(u64 *)safe_data; 4442 4443 for (i = 0; i < nr_enums; i++) { 4444 if (v != btf_enum64_value(enums + i)) 4445 continue; 4446 4447 btf_show_type_value(show, "%s", 4448 __btf_name_by_offset(btf, 4449 enums[i].name_off)); 4450 4451 btf_show_end_type(show); 4452 return; 4453 } 4454 4455 if (btf_type_kflag(t)) 4456 btf_show_type_value(show, "%lld", v); 4457 else 4458 btf_show_type_value(show, "%llu", v); 4459 btf_show_end_type(show); 4460 } 4461 4462 static struct btf_kind_operations enum64_ops = { 4463 .check_meta = btf_enum64_check_meta, 4464 .resolve = btf_df_resolve, 4465 .check_member = btf_enum_check_member, 4466 .check_kflag_member = btf_enum_check_kflag_member, 4467 .log_details = btf_enum_log, 4468 .show = btf_enum64_show, 4469 }; 4470 4471 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4472 const struct btf_type *t, 4473 u32 meta_left) 4474 { 4475 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4476 4477 if (meta_left < meta_needed) { 4478 btf_verifier_log_basic(env, t, 4479 "meta_left:%u meta_needed:%u", 4480 meta_left, meta_needed); 4481 return -EINVAL; 4482 } 4483 4484 if (t->name_off) { 4485 btf_verifier_log_type(env, t, "Invalid name"); 4486 return -EINVAL; 4487 } 4488 4489 if (btf_type_kflag(t)) { 4490 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4491 return -EINVAL; 4492 } 4493 4494 btf_verifier_log_type(env, t, NULL); 4495 4496 return meta_needed; 4497 } 4498 4499 static void btf_func_proto_log(struct btf_verifier_env *env, 4500 const struct btf_type *t) 4501 { 4502 const struct btf_param *args = (const struct btf_param *)(t + 1); 4503 u16 nr_args = btf_type_vlen(t), i; 4504 4505 btf_verifier_log(env, "return=%u args=(", t->type); 4506 if (!nr_args) { 4507 btf_verifier_log(env, "void"); 4508 goto done; 4509 } 4510 4511 if (nr_args == 1 && !args[0].type) { 4512 /* Only one vararg */ 4513 btf_verifier_log(env, "vararg"); 4514 goto done; 4515 } 4516 4517 btf_verifier_log(env, "%u %s", args[0].type, 4518 __btf_name_by_offset(env->btf, 4519 args[0].name_off)); 4520 for (i = 1; i < nr_args - 1; i++) 4521 btf_verifier_log(env, ", %u %s", args[i].type, 4522 __btf_name_by_offset(env->btf, 4523 args[i].name_off)); 4524 4525 if (nr_args > 1) { 4526 const struct btf_param *last_arg = &args[nr_args - 1]; 4527 4528 if (last_arg->type) 4529 btf_verifier_log(env, ", %u %s", last_arg->type, 4530 __btf_name_by_offset(env->btf, 4531 last_arg->name_off)); 4532 else 4533 btf_verifier_log(env, ", vararg"); 4534 } 4535 4536 done: 4537 btf_verifier_log(env, ")"); 4538 } 4539 4540 static struct btf_kind_operations func_proto_ops = { 4541 .check_meta = btf_func_proto_check_meta, 4542 .resolve = btf_df_resolve, 4543 /* 4544 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4545 * a struct's member. 4546 * 4547 * It should be a function pointer instead. 4548 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4549 * 4550 * Hence, there is no btf_func_check_member(). 4551 */ 4552 .check_member = btf_df_check_member, 4553 .check_kflag_member = btf_df_check_kflag_member, 4554 .log_details = btf_func_proto_log, 4555 .show = btf_df_show, 4556 }; 4557 4558 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4559 const struct btf_type *t, 4560 u32 meta_left) 4561 { 4562 if (!t->name_off || 4563 !btf_name_valid_identifier(env->btf, t->name_off)) { 4564 btf_verifier_log_type(env, t, "Invalid name"); 4565 return -EINVAL; 4566 } 4567 4568 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4569 btf_verifier_log_type(env, t, "Invalid func linkage"); 4570 return -EINVAL; 4571 } 4572 4573 if (btf_type_kflag(t)) { 4574 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4575 return -EINVAL; 4576 } 4577 4578 btf_verifier_log_type(env, t, NULL); 4579 4580 return 0; 4581 } 4582 4583 static int btf_func_resolve(struct btf_verifier_env *env, 4584 const struct resolve_vertex *v) 4585 { 4586 const struct btf_type *t = v->t; 4587 u32 next_type_id = t->type; 4588 int err; 4589 4590 err = btf_func_check(env, t); 4591 if (err) 4592 return err; 4593 4594 env_stack_pop_resolved(env, next_type_id, 0); 4595 return 0; 4596 } 4597 4598 static struct btf_kind_operations func_ops = { 4599 .check_meta = btf_func_check_meta, 4600 .resolve = btf_func_resolve, 4601 .check_member = btf_df_check_member, 4602 .check_kflag_member = btf_df_check_kflag_member, 4603 .log_details = btf_ref_type_log, 4604 .show = btf_df_show, 4605 }; 4606 4607 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4608 const struct btf_type *t, 4609 u32 meta_left) 4610 { 4611 const struct btf_var *var; 4612 u32 meta_needed = sizeof(*var); 4613 4614 if (meta_left < meta_needed) { 4615 btf_verifier_log_basic(env, t, 4616 "meta_left:%u meta_needed:%u", 4617 meta_left, meta_needed); 4618 return -EINVAL; 4619 } 4620 4621 if (btf_type_vlen(t)) { 4622 btf_verifier_log_type(env, t, "vlen != 0"); 4623 return -EINVAL; 4624 } 4625 4626 if (btf_type_kflag(t)) { 4627 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4628 return -EINVAL; 4629 } 4630 4631 if (!t->name_off || 4632 !__btf_name_valid(env->btf, t->name_off)) { 4633 btf_verifier_log_type(env, t, "Invalid name"); 4634 return -EINVAL; 4635 } 4636 4637 /* A var cannot be in type void */ 4638 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4639 btf_verifier_log_type(env, t, "Invalid type_id"); 4640 return -EINVAL; 4641 } 4642 4643 var = btf_type_var(t); 4644 if (var->linkage != BTF_VAR_STATIC && 4645 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4646 btf_verifier_log_type(env, t, "Linkage not supported"); 4647 return -EINVAL; 4648 } 4649 4650 btf_verifier_log_type(env, t, NULL); 4651 4652 return meta_needed; 4653 } 4654 4655 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4656 { 4657 const struct btf_var *var = btf_type_var(t); 4658 4659 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4660 } 4661 4662 static const struct btf_kind_operations var_ops = { 4663 .check_meta = btf_var_check_meta, 4664 .resolve = btf_var_resolve, 4665 .check_member = btf_df_check_member, 4666 .check_kflag_member = btf_df_check_kflag_member, 4667 .log_details = btf_var_log, 4668 .show = btf_var_show, 4669 }; 4670 4671 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4672 const struct btf_type *t, 4673 u32 meta_left) 4674 { 4675 const struct btf_var_secinfo *vsi; 4676 u64 last_vsi_end_off = 0, sum = 0; 4677 u32 i, meta_needed; 4678 4679 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4680 if (meta_left < meta_needed) { 4681 btf_verifier_log_basic(env, t, 4682 "meta_left:%u meta_needed:%u", 4683 meta_left, meta_needed); 4684 return -EINVAL; 4685 } 4686 4687 if (!t->size) { 4688 btf_verifier_log_type(env, t, "size == 0"); 4689 return -EINVAL; 4690 } 4691 4692 if (btf_type_kflag(t)) { 4693 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4694 return -EINVAL; 4695 } 4696 4697 if (!t->name_off || 4698 !btf_name_valid_section(env->btf, t->name_off)) { 4699 btf_verifier_log_type(env, t, "Invalid name"); 4700 return -EINVAL; 4701 } 4702 4703 btf_verifier_log_type(env, t, NULL); 4704 4705 for_each_vsi(i, t, vsi) { 4706 /* A var cannot be in type void */ 4707 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4708 btf_verifier_log_vsi(env, t, vsi, 4709 "Invalid type_id"); 4710 return -EINVAL; 4711 } 4712 4713 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4714 btf_verifier_log_vsi(env, t, vsi, 4715 "Invalid offset"); 4716 return -EINVAL; 4717 } 4718 4719 if (!vsi->size || vsi->size > t->size) { 4720 btf_verifier_log_vsi(env, t, vsi, 4721 "Invalid size"); 4722 return -EINVAL; 4723 } 4724 4725 last_vsi_end_off = vsi->offset + vsi->size; 4726 if (last_vsi_end_off > t->size) { 4727 btf_verifier_log_vsi(env, t, vsi, 4728 "Invalid offset+size"); 4729 return -EINVAL; 4730 } 4731 4732 btf_verifier_log_vsi(env, t, vsi, NULL); 4733 sum += vsi->size; 4734 } 4735 4736 if (t->size < sum) { 4737 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4738 return -EINVAL; 4739 } 4740 4741 return meta_needed; 4742 } 4743 4744 static int btf_datasec_resolve(struct btf_verifier_env *env, 4745 const struct resolve_vertex *v) 4746 { 4747 const struct btf_var_secinfo *vsi; 4748 struct btf *btf = env->btf; 4749 u16 i; 4750 4751 env->resolve_mode = RESOLVE_TBD; 4752 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4753 u32 var_type_id = vsi->type, type_id, type_size = 0; 4754 const struct btf_type *var_type = btf_type_by_id(env->btf, 4755 var_type_id); 4756 if (!var_type || !btf_type_is_var(var_type)) { 4757 btf_verifier_log_vsi(env, v->t, vsi, 4758 "Not a VAR kind member"); 4759 return -EINVAL; 4760 } 4761 4762 if (!env_type_is_resolve_sink(env, var_type) && 4763 !env_type_is_resolved(env, var_type_id)) { 4764 env_stack_set_next_member(env, i + 1); 4765 return env_stack_push(env, var_type, var_type_id); 4766 } 4767 4768 type_id = var_type->type; 4769 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4770 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4771 return -EINVAL; 4772 } 4773 4774 if (vsi->size < type_size) { 4775 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4776 return -EINVAL; 4777 } 4778 } 4779 4780 env_stack_pop_resolved(env, 0, 0); 4781 return 0; 4782 } 4783 4784 static void btf_datasec_log(struct btf_verifier_env *env, 4785 const struct btf_type *t) 4786 { 4787 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4788 } 4789 4790 static void btf_datasec_show(const struct btf *btf, 4791 const struct btf_type *t, u32 type_id, 4792 void *data, u8 bits_offset, 4793 struct btf_show *show) 4794 { 4795 const struct btf_var_secinfo *vsi; 4796 const struct btf_type *var; 4797 u32 i; 4798 4799 if (!btf_show_start_type(show, t, type_id, data)) 4800 return; 4801 4802 btf_show_type_value(show, "section (\"%s\") = {", 4803 __btf_name_by_offset(btf, t->name_off)); 4804 for_each_vsi(i, t, vsi) { 4805 var = btf_type_by_id(btf, vsi->type); 4806 if (i) 4807 btf_show(show, ","); 4808 btf_type_ops(var)->show(btf, var, vsi->type, 4809 data + vsi->offset, bits_offset, show); 4810 } 4811 btf_show_end_type(show); 4812 } 4813 4814 static const struct btf_kind_operations datasec_ops = { 4815 .check_meta = btf_datasec_check_meta, 4816 .resolve = btf_datasec_resolve, 4817 .check_member = btf_df_check_member, 4818 .check_kflag_member = btf_df_check_kflag_member, 4819 .log_details = btf_datasec_log, 4820 .show = btf_datasec_show, 4821 }; 4822 4823 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4824 const struct btf_type *t, 4825 u32 meta_left) 4826 { 4827 if (btf_type_vlen(t)) { 4828 btf_verifier_log_type(env, t, "vlen != 0"); 4829 return -EINVAL; 4830 } 4831 4832 if (btf_type_kflag(t)) { 4833 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4834 return -EINVAL; 4835 } 4836 4837 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4838 t->size != 16) { 4839 btf_verifier_log_type(env, t, "Invalid type_size"); 4840 return -EINVAL; 4841 } 4842 4843 btf_verifier_log_type(env, t, NULL); 4844 4845 return 0; 4846 } 4847 4848 static int btf_float_check_member(struct btf_verifier_env *env, 4849 const struct btf_type *struct_type, 4850 const struct btf_member *member, 4851 const struct btf_type *member_type) 4852 { 4853 u64 start_offset_bytes; 4854 u64 end_offset_bytes; 4855 u64 misalign_bits; 4856 u64 align_bytes; 4857 u64 align_bits; 4858 4859 /* Different architectures have different alignment requirements, so 4860 * here we check only for the reasonable minimum. This way we ensure 4861 * that types after CO-RE can pass the kernel BTF verifier. 4862 */ 4863 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4864 align_bits = align_bytes * BITS_PER_BYTE; 4865 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4866 if (misalign_bits) { 4867 btf_verifier_log_member(env, struct_type, member, 4868 "Member is not properly aligned"); 4869 return -EINVAL; 4870 } 4871 4872 start_offset_bytes = member->offset / BITS_PER_BYTE; 4873 end_offset_bytes = start_offset_bytes + member_type->size; 4874 if (end_offset_bytes > struct_type->size) { 4875 btf_verifier_log_member(env, struct_type, member, 4876 "Member exceeds struct_size"); 4877 return -EINVAL; 4878 } 4879 4880 return 0; 4881 } 4882 4883 static void btf_float_log(struct btf_verifier_env *env, 4884 const struct btf_type *t) 4885 { 4886 btf_verifier_log(env, "size=%u", t->size); 4887 } 4888 4889 static const struct btf_kind_operations float_ops = { 4890 .check_meta = btf_float_check_meta, 4891 .resolve = btf_df_resolve, 4892 .check_member = btf_float_check_member, 4893 .check_kflag_member = btf_generic_check_kflag_member, 4894 .log_details = btf_float_log, 4895 .show = btf_df_show, 4896 }; 4897 4898 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4899 const struct btf_type *t, 4900 u32 meta_left) 4901 { 4902 const struct btf_decl_tag *tag; 4903 u32 meta_needed = sizeof(*tag); 4904 s32 component_idx; 4905 const char *value; 4906 4907 if (meta_left < meta_needed) { 4908 btf_verifier_log_basic(env, t, 4909 "meta_left:%u meta_needed:%u", 4910 meta_left, meta_needed); 4911 return -EINVAL; 4912 } 4913 4914 value = btf_name_by_offset(env->btf, t->name_off); 4915 if (!value || !value[0]) { 4916 btf_verifier_log_type(env, t, "Invalid value"); 4917 return -EINVAL; 4918 } 4919 4920 if (btf_type_vlen(t)) { 4921 btf_verifier_log_type(env, t, "vlen != 0"); 4922 return -EINVAL; 4923 } 4924 4925 if (btf_type_kflag(t)) { 4926 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4927 return -EINVAL; 4928 } 4929 4930 component_idx = btf_type_decl_tag(t)->component_idx; 4931 if (component_idx < -1) { 4932 btf_verifier_log_type(env, t, "Invalid component_idx"); 4933 return -EINVAL; 4934 } 4935 4936 btf_verifier_log_type(env, t, NULL); 4937 4938 return meta_needed; 4939 } 4940 4941 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4942 const struct resolve_vertex *v) 4943 { 4944 const struct btf_type *next_type; 4945 const struct btf_type *t = v->t; 4946 u32 next_type_id = t->type; 4947 struct btf *btf = env->btf; 4948 s32 component_idx; 4949 u32 vlen; 4950 4951 next_type = btf_type_by_id(btf, next_type_id); 4952 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4953 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4954 return -EINVAL; 4955 } 4956 4957 if (!env_type_is_resolve_sink(env, next_type) && 4958 !env_type_is_resolved(env, next_type_id)) 4959 return env_stack_push(env, next_type, next_type_id); 4960 4961 component_idx = btf_type_decl_tag(t)->component_idx; 4962 if (component_idx != -1) { 4963 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4964 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4965 return -EINVAL; 4966 } 4967 4968 if (btf_type_is_struct(next_type)) { 4969 vlen = btf_type_vlen(next_type); 4970 } else { 4971 /* next_type should be a function */ 4972 next_type = btf_type_by_id(btf, next_type->type); 4973 vlen = btf_type_vlen(next_type); 4974 } 4975 4976 if ((u32)component_idx >= vlen) { 4977 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4978 return -EINVAL; 4979 } 4980 } 4981 4982 env_stack_pop_resolved(env, next_type_id, 0); 4983 4984 return 0; 4985 } 4986 4987 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4988 { 4989 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4990 btf_type_decl_tag(t)->component_idx); 4991 } 4992 4993 static const struct btf_kind_operations decl_tag_ops = { 4994 .check_meta = btf_decl_tag_check_meta, 4995 .resolve = btf_decl_tag_resolve, 4996 .check_member = btf_df_check_member, 4997 .check_kflag_member = btf_df_check_kflag_member, 4998 .log_details = btf_decl_tag_log, 4999 .show = btf_df_show, 5000 }; 5001 5002 static int btf_func_proto_check(struct btf_verifier_env *env, 5003 const struct btf_type *t) 5004 { 5005 const struct btf_type *ret_type; 5006 const struct btf_param *args; 5007 const struct btf *btf; 5008 u16 nr_args, i; 5009 int err; 5010 5011 btf = env->btf; 5012 args = (const struct btf_param *)(t + 1); 5013 nr_args = btf_type_vlen(t); 5014 5015 /* Check func return type which could be "void" (t->type == 0) */ 5016 if (t->type) { 5017 u32 ret_type_id = t->type; 5018 5019 ret_type = btf_type_by_id(btf, ret_type_id); 5020 if (!ret_type) { 5021 btf_verifier_log_type(env, t, "Invalid return type"); 5022 return -EINVAL; 5023 } 5024 5025 if (btf_type_is_resolve_source_only(ret_type)) { 5026 btf_verifier_log_type(env, t, "Invalid return type"); 5027 return -EINVAL; 5028 } 5029 5030 if (btf_type_needs_resolve(ret_type) && 5031 !env_type_is_resolved(env, ret_type_id)) { 5032 err = btf_resolve(env, ret_type, ret_type_id); 5033 if (err) 5034 return err; 5035 } 5036 5037 /* Ensure the return type is a type that has a size */ 5038 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5039 btf_verifier_log_type(env, t, "Invalid return type"); 5040 return -EINVAL; 5041 } 5042 } 5043 5044 if (!nr_args) 5045 return 0; 5046 5047 /* Last func arg type_id could be 0 if it is a vararg */ 5048 if (!args[nr_args - 1].type) { 5049 if (args[nr_args - 1].name_off) { 5050 btf_verifier_log_type(env, t, "Invalid arg#%u", 5051 nr_args); 5052 return -EINVAL; 5053 } 5054 nr_args--; 5055 } 5056 5057 for (i = 0; i < nr_args; i++) { 5058 const struct btf_type *arg_type; 5059 u32 arg_type_id; 5060 5061 arg_type_id = args[i].type; 5062 arg_type = btf_type_by_id(btf, arg_type_id); 5063 if (!arg_type) { 5064 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5065 return -EINVAL; 5066 } 5067 5068 if (btf_type_is_resolve_source_only(arg_type)) { 5069 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5070 return -EINVAL; 5071 } 5072 5073 if (args[i].name_off && 5074 (!btf_name_offset_valid(btf, args[i].name_off) || 5075 !btf_name_valid_identifier(btf, args[i].name_off))) { 5076 btf_verifier_log_type(env, t, 5077 "Invalid arg#%u", i + 1); 5078 return -EINVAL; 5079 } 5080 5081 if (btf_type_needs_resolve(arg_type) && 5082 !env_type_is_resolved(env, arg_type_id)) { 5083 err = btf_resolve(env, arg_type, arg_type_id); 5084 if (err) 5085 return err; 5086 } 5087 5088 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5089 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5090 return -EINVAL; 5091 } 5092 } 5093 5094 return 0; 5095 } 5096 5097 static int btf_func_check(struct btf_verifier_env *env, 5098 const struct btf_type *t) 5099 { 5100 const struct btf_type *proto_type; 5101 const struct btf_param *args; 5102 const struct btf *btf; 5103 u16 nr_args, i; 5104 5105 btf = env->btf; 5106 proto_type = btf_type_by_id(btf, t->type); 5107 5108 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5109 btf_verifier_log_type(env, t, "Invalid type_id"); 5110 return -EINVAL; 5111 } 5112 5113 args = (const struct btf_param *)(proto_type + 1); 5114 nr_args = btf_type_vlen(proto_type); 5115 for (i = 0; i < nr_args; i++) { 5116 if (!args[i].name_off && args[i].type) { 5117 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5118 return -EINVAL; 5119 } 5120 } 5121 5122 return 0; 5123 } 5124 5125 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5126 [BTF_KIND_INT] = &int_ops, 5127 [BTF_KIND_PTR] = &ptr_ops, 5128 [BTF_KIND_ARRAY] = &array_ops, 5129 [BTF_KIND_STRUCT] = &struct_ops, 5130 [BTF_KIND_UNION] = &struct_ops, 5131 [BTF_KIND_ENUM] = &enum_ops, 5132 [BTF_KIND_FWD] = &fwd_ops, 5133 [BTF_KIND_TYPEDEF] = &modifier_ops, 5134 [BTF_KIND_VOLATILE] = &modifier_ops, 5135 [BTF_KIND_CONST] = &modifier_ops, 5136 [BTF_KIND_RESTRICT] = &modifier_ops, 5137 [BTF_KIND_FUNC] = &func_ops, 5138 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5139 [BTF_KIND_VAR] = &var_ops, 5140 [BTF_KIND_DATASEC] = &datasec_ops, 5141 [BTF_KIND_FLOAT] = &float_ops, 5142 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5143 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5144 [BTF_KIND_ENUM64] = &enum64_ops, 5145 }; 5146 5147 static s32 btf_check_meta(struct btf_verifier_env *env, 5148 const struct btf_type *t, 5149 u32 meta_left) 5150 { 5151 u32 saved_meta_left = meta_left; 5152 s32 var_meta_size; 5153 5154 if (meta_left < sizeof(*t)) { 5155 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5156 env->log_type_id, meta_left, sizeof(*t)); 5157 return -EINVAL; 5158 } 5159 meta_left -= sizeof(*t); 5160 5161 if (t->info & ~BTF_INFO_MASK) { 5162 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5163 env->log_type_id, t->info); 5164 return -EINVAL; 5165 } 5166 5167 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5168 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5169 btf_verifier_log(env, "[%u] Invalid kind:%u", 5170 env->log_type_id, BTF_INFO_KIND(t->info)); 5171 return -EINVAL; 5172 } 5173 5174 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5175 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5176 env->log_type_id, t->name_off); 5177 return -EINVAL; 5178 } 5179 5180 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5181 if (var_meta_size < 0) 5182 return var_meta_size; 5183 5184 meta_left -= var_meta_size; 5185 5186 return saved_meta_left - meta_left; 5187 } 5188 5189 static int btf_check_all_metas(struct btf_verifier_env *env) 5190 { 5191 struct btf *btf = env->btf; 5192 struct btf_header *hdr; 5193 void *cur, *end; 5194 5195 hdr = &btf->hdr; 5196 cur = btf->nohdr_data + hdr->type_off; 5197 end = cur + hdr->type_len; 5198 5199 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5200 while (cur < end) { 5201 struct btf_type *t = cur; 5202 s32 meta_size; 5203 5204 meta_size = btf_check_meta(env, t, end - cur); 5205 if (meta_size < 0) 5206 return meta_size; 5207 5208 btf_add_type(env, t); 5209 cur += meta_size; 5210 env->log_type_id++; 5211 } 5212 5213 return 0; 5214 } 5215 5216 static bool btf_resolve_valid(struct btf_verifier_env *env, 5217 const struct btf_type *t, 5218 u32 type_id) 5219 { 5220 struct btf *btf = env->btf; 5221 5222 if (!env_type_is_resolved(env, type_id)) 5223 return false; 5224 5225 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5226 return !btf_resolved_type_id(btf, type_id) && 5227 !btf_resolved_type_size(btf, type_id); 5228 5229 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5230 return btf_resolved_type_id(btf, type_id) && 5231 !btf_resolved_type_size(btf, type_id); 5232 5233 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5234 btf_type_is_var(t)) { 5235 t = btf_type_id_resolve(btf, &type_id); 5236 return t && 5237 !btf_type_is_modifier(t) && 5238 !btf_type_is_var(t) && 5239 !btf_type_is_datasec(t); 5240 } 5241 5242 if (btf_type_is_array(t)) { 5243 const struct btf_array *array = btf_type_array(t); 5244 const struct btf_type *elem_type; 5245 u32 elem_type_id = array->type; 5246 u32 elem_size; 5247 5248 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5249 return elem_type && !btf_type_is_modifier(elem_type) && 5250 (array->nelems * elem_size == 5251 btf_resolved_type_size(btf, type_id)); 5252 } 5253 5254 return false; 5255 } 5256 5257 static int btf_resolve(struct btf_verifier_env *env, 5258 const struct btf_type *t, u32 type_id) 5259 { 5260 u32 save_log_type_id = env->log_type_id; 5261 const struct resolve_vertex *v; 5262 int err = 0; 5263 5264 env->resolve_mode = RESOLVE_TBD; 5265 env_stack_push(env, t, type_id); 5266 while (!err && (v = env_stack_peak(env))) { 5267 env->log_type_id = v->type_id; 5268 err = btf_type_ops(v->t)->resolve(env, v); 5269 } 5270 5271 env->log_type_id = type_id; 5272 if (err == -E2BIG) { 5273 btf_verifier_log_type(env, t, 5274 "Exceeded max resolving depth:%u", 5275 MAX_RESOLVE_DEPTH); 5276 } else if (err == -EEXIST) { 5277 btf_verifier_log_type(env, t, "Loop detected"); 5278 } 5279 5280 /* Final sanity check */ 5281 if (!err && !btf_resolve_valid(env, t, type_id)) { 5282 btf_verifier_log_type(env, t, "Invalid resolve state"); 5283 err = -EINVAL; 5284 } 5285 5286 env->log_type_id = save_log_type_id; 5287 return err; 5288 } 5289 5290 static int btf_check_all_types(struct btf_verifier_env *env) 5291 { 5292 struct btf *btf = env->btf; 5293 const struct btf_type *t; 5294 u32 type_id, i; 5295 int err; 5296 5297 err = env_resolve_init(env); 5298 if (err) 5299 return err; 5300 5301 env->phase++; 5302 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5303 type_id = btf->start_id + i; 5304 t = btf_type_by_id(btf, type_id); 5305 5306 env->log_type_id = type_id; 5307 if (btf_type_needs_resolve(t) && 5308 !env_type_is_resolved(env, type_id)) { 5309 err = btf_resolve(env, t, type_id); 5310 if (err) 5311 return err; 5312 } 5313 5314 if (btf_type_is_func_proto(t)) { 5315 err = btf_func_proto_check(env, t); 5316 if (err) 5317 return err; 5318 } 5319 } 5320 5321 return 0; 5322 } 5323 5324 static int btf_parse_type_sec(struct btf_verifier_env *env) 5325 { 5326 const struct btf_header *hdr = &env->btf->hdr; 5327 int err; 5328 5329 /* Type section must align to 4 bytes */ 5330 if (hdr->type_off & (sizeof(u32) - 1)) { 5331 btf_verifier_log(env, "Unaligned type_off"); 5332 return -EINVAL; 5333 } 5334 5335 if (!env->btf->base_btf && !hdr->type_len) { 5336 btf_verifier_log(env, "No type found"); 5337 return -EINVAL; 5338 } 5339 5340 err = btf_check_all_metas(env); 5341 if (err) 5342 return err; 5343 5344 return btf_check_all_types(env); 5345 } 5346 5347 static int btf_parse_str_sec(struct btf_verifier_env *env) 5348 { 5349 const struct btf_header *hdr; 5350 struct btf *btf = env->btf; 5351 const char *start, *end; 5352 5353 hdr = &btf->hdr; 5354 start = btf->nohdr_data + hdr->str_off; 5355 end = start + hdr->str_len; 5356 5357 if (end != btf->data + btf->data_size) { 5358 btf_verifier_log(env, "String section is not at the end"); 5359 return -EINVAL; 5360 } 5361 5362 btf->strings = start; 5363 5364 if (btf->base_btf && !hdr->str_len) 5365 return 0; 5366 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5367 btf_verifier_log(env, "Invalid string section"); 5368 return -EINVAL; 5369 } 5370 if (!btf->base_btf && start[0]) { 5371 btf_verifier_log(env, "Invalid string section"); 5372 return -EINVAL; 5373 } 5374 5375 return 0; 5376 } 5377 5378 static const size_t btf_sec_info_offset[] = { 5379 offsetof(struct btf_header, type_off), 5380 offsetof(struct btf_header, str_off), 5381 }; 5382 5383 static int btf_sec_info_cmp(const void *a, const void *b) 5384 { 5385 const struct btf_sec_info *x = a; 5386 const struct btf_sec_info *y = b; 5387 5388 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5389 } 5390 5391 static int btf_check_sec_info(struct btf_verifier_env *env, 5392 u32 btf_data_size) 5393 { 5394 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5395 u32 total, expected_total, i; 5396 const struct btf_header *hdr; 5397 const struct btf *btf; 5398 5399 btf = env->btf; 5400 hdr = &btf->hdr; 5401 5402 /* Populate the secs from hdr */ 5403 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5404 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5405 btf_sec_info_offset[i]); 5406 5407 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5408 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5409 5410 /* Check for gaps and overlap among sections */ 5411 total = 0; 5412 expected_total = btf_data_size - hdr->hdr_len; 5413 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5414 if (expected_total < secs[i].off) { 5415 btf_verifier_log(env, "Invalid section offset"); 5416 return -EINVAL; 5417 } 5418 if (total < secs[i].off) { 5419 /* gap */ 5420 btf_verifier_log(env, "Unsupported section found"); 5421 return -EINVAL; 5422 } 5423 if (total > secs[i].off) { 5424 btf_verifier_log(env, "Section overlap found"); 5425 return -EINVAL; 5426 } 5427 if (expected_total - total < secs[i].len) { 5428 btf_verifier_log(env, 5429 "Total section length too long"); 5430 return -EINVAL; 5431 } 5432 total += secs[i].len; 5433 } 5434 5435 /* There is data other than hdr and known sections */ 5436 if (expected_total != total) { 5437 btf_verifier_log(env, "Unsupported section found"); 5438 return -EINVAL; 5439 } 5440 5441 return 0; 5442 } 5443 5444 static int btf_parse_hdr(struct btf_verifier_env *env) 5445 { 5446 u32 hdr_len, hdr_copy, btf_data_size; 5447 const struct btf_header *hdr; 5448 struct btf *btf; 5449 5450 btf = env->btf; 5451 btf_data_size = btf->data_size; 5452 5453 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5454 btf_verifier_log(env, "hdr_len not found"); 5455 return -EINVAL; 5456 } 5457 5458 hdr = btf->data; 5459 hdr_len = hdr->hdr_len; 5460 if (btf_data_size < hdr_len) { 5461 btf_verifier_log(env, "btf_header not found"); 5462 return -EINVAL; 5463 } 5464 5465 /* Ensure the unsupported header fields are zero */ 5466 if (hdr_len > sizeof(btf->hdr)) { 5467 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5468 u8 *end = btf->data + hdr_len; 5469 5470 for (; expected_zero < end; expected_zero++) { 5471 if (*expected_zero) { 5472 btf_verifier_log(env, "Unsupported btf_header"); 5473 return -E2BIG; 5474 } 5475 } 5476 } 5477 5478 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5479 memcpy(&btf->hdr, btf->data, hdr_copy); 5480 5481 hdr = &btf->hdr; 5482 5483 btf_verifier_log_hdr(env, btf_data_size); 5484 5485 if (hdr->magic != BTF_MAGIC) { 5486 btf_verifier_log(env, "Invalid magic"); 5487 return -EINVAL; 5488 } 5489 5490 if (hdr->version != BTF_VERSION) { 5491 btf_verifier_log(env, "Unsupported version"); 5492 return -ENOTSUPP; 5493 } 5494 5495 if (hdr->flags) { 5496 btf_verifier_log(env, "Unsupported flags"); 5497 return -ENOTSUPP; 5498 } 5499 5500 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5501 btf_verifier_log(env, "No data"); 5502 return -EINVAL; 5503 } 5504 5505 return btf_check_sec_info(env, btf_data_size); 5506 } 5507 5508 static const char *alloc_obj_fields[] = { 5509 "bpf_spin_lock", 5510 "bpf_list_head", 5511 "bpf_list_node", 5512 "bpf_rb_root", 5513 "bpf_rb_node", 5514 "bpf_refcount", 5515 }; 5516 5517 static struct btf_struct_metas * 5518 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5519 { 5520 union { 5521 struct btf_id_set set; 5522 struct { 5523 u32 _cnt; 5524 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5525 } _arr; 5526 } aof; 5527 struct btf_struct_metas *tab = NULL; 5528 int i, n, id, ret; 5529 5530 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5531 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5532 5533 memset(&aof, 0, sizeof(aof)); 5534 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5535 /* Try to find whether this special type exists in user BTF, and 5536 * if so remember its ID so we can easily find it among members 5537 * of structs that we iterate in the next loop. 5538 */ 5539 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5540 if (id < 0) 5541 continue; 5542 aof.set.ids[aof.set.cnt++] = id; 5543 } 5544 5545 if (!aof.set.cnt) 5546 return NULL; 5547 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5548 5549 n = btf_nr_types(btf); 5550 for (i = 1; i < n; i++) { 5551 struct btf_struct_metas *new_tab; 5552 const struct btf_member *member; 5553 struct btf_struct_meta *type; 5554 struct btf_record *record; 5555 const struct btf_type *t; 5556 int j, tab_cnt; 5557 5558 t = btf_type_by_id(btf, i); 5559 if (!t) { 5560 ret = -EINVAL; 5561 goto free; 5562 } 5563 if (!__btf_type_is_struct(t)) 5564 continue; 5565 5566 cond_resched(); 5567 5568 for_each_member(j, t, member) { 5569 if (btf_id_set_contains(&aof.set, member->type)) 5570 goto parse; 5571 } 5572 continue; 5573 parse: 5574 tab_cnt = tab ? tab->cnt : 0; 5575 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5576 GFP_KERNEL | __GFP_NOWARN); 5577 if (!new_tab) { 5578 ret = -ENOMEM; 5579 goto free; 5580 } 5581 if (!tab) 5582 new_tab->cnt = 0; 5583 tab = new_tab; 5584 5585 type = &tab->types[tab->cnt]; 5586 type->btf_id = i; 5587 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5588 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5589 /* The record cannot be unset, treat it as an error if so */ 5590 if (IS_ERR_OR_NULL(record)) { 5591 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5592 goto free; 5593 } 5594 type->record = record; 5595 tab->cnt++; 5596 } 5597 return tab; 5598 free: 5599 btf_struct_metas_free(tab); 5600 return ERR_PTR(ret); 5601 } 5602 5603 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5604 { 5605 struct btf_struct_metas *tab; 5606 5607 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5608 tab = btf->struct_meta_tab; 5609 if (!tab) 5610 return NULL; 5611 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5612 } 5613 5614 static int btf_check_type_tags(struct btf_verifier_env *env, 5615 struct btf *btf, int start_id) 5616 { 5617 int i, n, good_id = start_id - 1; 5618 bool in_tags; 5619 5620 n = btf_nr_types(btf); 5621 for (i = start_id; i < n; i++) { 5622 const struct btf_type *t; 5623 int chain_limit = 32; 5624 u32 cur_id = i; 5625 5626 t = btf_type_by_id(btf, i); 5627 if (!t) 5628 return -EINVAL; 5629 if (!btf_type_is_modifier(t)) 5630 continue; 5631 5632 cond_resched(); 5633 5634 in_tags = btf_type_is_type_tag(t); 5635 while (btf_type_is_modifier(t)) { 5636 if (!chain_limit--) { 5637 btf_verifier_log(env, "Max chain length or cycle detected"); 5638 return -ELOOP; 5639 } 5640 if (btf_type_is_type_tag(t)) { 5641 if (!in_tags) { 5642 btf_verifier_log(env, "Type tags don't precede modifiers"); 5643 return -EINVAL; 5644 } 5645 } else if (in_tags) { 5646 in_tags = false; 5647 } 5648 if (cur_id <= good_id) 5649 break; 5650 /* Move to next type */ 5651 cur_id = t->type; 5652 t = btf_type_by_id(btf, cur_id); 5653 if (!t) 5654 return -EINVAL; 5655 } 5656 good_id = i; 5657 } 5658 return 0; 5659 } 5660 5661 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5662 { 5663 u32 log_true_size; 5664 int err; 5665 5666 err = bpf_vlog_finalize(log, &log_true_size); 5667 5668 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5669 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5670 &log_true_size, sizeof(log_true_size))) 5671 err = -EFAULT; 5672 5673 return err; 5674 } 5675 5676 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5677 { 5678 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5679 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5680 struct btf_struct_metas *struct_meta_tab; 5681 struct btf_verifier_env *env = NULL; 5682 struct btf *btf = NULL; 5683 u8 *data; 5684 int err, ret; 5685 5686 if (attr->btf_size > BTF_MAX_SIZE) 5687 return ERR_PTR(-E2BIG); 5688 5689 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5690 if (!env) 5691 return ERR_PTR(-ENOMEM); 5692 5693 /* user could have requested verbose verifier output 5694 * and supplied buffer to store the verification trace 5695 */ 5696 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5697 log_ubuf, attr->btf_log_size); 5698 if (err) 5699 goto errout_free; 5700 5701 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5702 if (!btf) { 5703 err = -ENOMEM; 5704 goto errout; 5705 } 5706 env->btf = btf; 5707 5708 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5709 if (!data) { 5710 err = -ENOMEM; 5711 goto errout; 5712 } 5713 5714 btf->data = data; 5715 btf->data_size = attr->btf_size; 5716 5717 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5718 err = -EFAULT; 5719 goto errout; 5720 } 5721 5722 err = btf_parse_hdr(env); 5723 if (err) 5724 goto errout; 5725 5726 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5727 5728 err = btf_parse_str_sec(env); 5729 if (err) 5730 goto errout; 5731 5732 err = btf_parse_type_sec(env); 5733 if (err) 5734 goto errout; 5735 5736 err = btf_check_type_tags(env, btf, 1); 5737 if (err) 5738 goto errout; 5739 5740 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5741 if (IS_ERR(struct_meta_tab)) { 5742 err = PTR_ERR(struct_meta_tab); 5743 goto errout; 5744 } 5745 btf->struct_meta_tab = struct_meta_tab; 5746 5747 if (struct_meta_tab) { 5748 int i; 5749 5750 for (i = 0; i < struct_meta_tab->cnt; i++) { 5751 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5752 if (err < 0) 5753 goto errout_meta; 5754 } 5755 } 5756 5757 err = finalize_log(&env->log, uattr, uattr_size); 5758 if (err) 5759 goto errout_free; 5760 5761 btf_verifier_env_free(env); 5762 refcount_set(&btf->refcnt, 1); 5763 return btf; 5764 5765 errout_meta: 5766 btf_free_struct_meta_tab(btf); 5767 errout: 5768 /* overwrite err with -ENOSPC or -EFAULT */ 5769 ret = finalize_log(&env->log, uattr, uattr_size); 5770 if (ret) 5771 err = ret; 5772 errout_free: 5773 btf_verifier_env_free(env); 5774 if (btf) 5775 btf_free(btf); 5776 return ERR_PTR(err); 5777 } 5778 5779 extern char __start_BTF[]; 5780 extern char __stop_BTF[]; 5781 extern struct btf *btf_vmlinux; 5782 5783 #define BPF_MAP_TYPE(_id, _ops) 5784 #define BPF_LINK_TYPE(_id, _name) 5785 static union { 5786 struct bpf_ctx_convert { 5787 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5788 prog_ctx_type _id##_prog; \ 5789 kern_ctx_type _id##_kern; 5790 #include <linux/bpf_types.h> 5791 #undef BPF_PROG_TYPE 5792 } *__t; 5793 /* 't' is written once under lock. Read many times. */ 5794 const struct btf_type *t; 5795 } bpf_ctx_convert; 5796 enum { 5797 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5798 __ctx_convert##_id, 5799 #include <linux/bpf_types.h> 5800 #undef BPF_PROG_TYPE 5801 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5802 }; 5803 static u8 bpf_ctx_convert_map[] = { 5804 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5805 [_id] = __ctx_convert##_id, 5806 #include <linux/bpf_types.h> 5807 #undef BPF_PROG_TYPE 5808 0, /* avoid empty array */ 5809 }; 5810 #undef BPF_MAP_TYPE 5811 #undef BPF_LINK_TYPE 5812 5813 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5814 { 5815 const struct btf_type *conv_struct; 5816 const struct btf_member *ctx_type; 5817 5818 conv_struct = bpf_ctx_convert.t; 5819 if (!conv_struct) 5820 return NULL; 5821 /* prog_type is valid bpf program type. No need for bounds check. */ 5822 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5823 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5824 * Like 'struct __sk_buff' 5825 */ 5826 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5827 } 5828 5829 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5830 { 5831 const struct btf_type *conv_struct; 5832 const struct btf_member *ctx_type; 5833 5834 conv_struct = bpf_ctx_convert.t; 5835 if (!conv_struct) 5836 return -EFAULT; 5837 /* prog_type is valid bpf program type. No need for bounds check. */ 5838 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5839 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5840 * Like 'struct sk_buff' 5841 */ 5842 return ctx_type->type; 5843 } 5844 5845 bool btf_is_projection_of(const char *pname, const char *tname) 5846 { 5847 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5848 return true; 5849 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5850 return true; 5851 return false; 5852 } 5853 5854 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5855 const struct btf_type *t, enum bpf_prog_type prog_type, 5856 int arg) 5857 { 5858 const struct btf_type *ctx_type; 5859 const char *tname, *ctx_tname; 5860 5861 t = btf_type_by_id(btf, t->type); 5862 5863 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5864 * check before we skip all the typedef below. 5865 */ 5866 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5867 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5868 t = btf_type_by_id(btf, t->type); 5869 5870 if (btf_type_is_typedef(t)) { 5871 tname = btf_name_by_offset(btf, t->name_off); 5872 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5873 return true; 5874 } 5875 } 5876 5877 while (btf_type_is_modifier(t)) 5878 t = btf_type_by_id(btf, t->type); 5879 if (!btf_type_is_struct(t)) { 5880 /* Only pointer to struct is supported for now. 5881 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5882 * is not supported yet. 5883 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5884 */ 5885 return false; 5886 } 5887 tname = btf_name_by_offset(btf, t->name_off); 5888 if (!tname) { 5889 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5890 return false; 5891 } 5892 5893 ctx_type = find_canonical_prog_ctx_type(prog_type); 5894 if (!ctx_type) { 5895 bpf_log(log, "btf_vmlinux is malformed\n"); 5896 /* should not happen */ 5897 return false; 5898 } 5899 again: 5900 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5901 if (!ctx_tname) { 5902 /* should not happen */ 5903 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5904 return false; 5905 } 5906 /* program types without named context types work only with arg:ctx tag */ 5907 if (ctx_tname[0] == '\0') 5908 return false; 5909 /* only compare that prog's ctx type name is the same as 5910 * kernel expects. No need to compare field by field. 5911 * It's ok for bpf prog to do: 5912 * struct __sk_buff {}; 5913 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5914 * { // no fields of skb are ever used } 5915 */ 5916 if (btf_is_projection_of(ctx_tname, tname)) 5917 return true; 5918 if (strcmp(ctx_tname, tname)) { 5919 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5920 * underlying struct and check name again 5921 */ 5922 if (!btf_type_is_modifier(ctx_type)) 5923 return false; 5924 while (btf_type_is_modifier(ctx_type)) 5925 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5926 goto again; 5927 } 5928 return true; 5929 } 5930 5931 /* forward declarations for arch-specific underlying types of 5932 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5933 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5934 * works correctly with __builtin_types_compatible_p() on respective 5935 * architectures 5936 */ 5937 struct user_regs_struct; 5938 struct user_pt_regs; 5939 5940 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5941 const struct btf_type *t, int arg, 5942 enum bpf_prog_type prog_type, 5943 enum bpf_attach_type attach_type) 5944 { 5945 const struct btf_type *ctx_type; 5946 const char *tname, *ctx_tname; 5947 5948 if (!btf_is_ptr(t)) { 5949 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 5950 return -EINVAL; 5951 } 5952 t = btf_type_by_id(btf, t->type); 5953 5954 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 5955 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 5956 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5957 t = btf_type_by_id(btf, t->type); 5958 5959 if (btf_type_is_typedef(t)) { 5960 tname = btf_name_by_offset(btf, t->name_off); 5961 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5962 return 0; 5963 } 5964 } 5965 5966 /* all other program types don't use typedefs for context type */ 5967 while (btf_type_is_modifier(t)) 5968 t = btf_type_by_id(btf, t->type); 5969 5970 /* `void *ctx __arg_ctx` is always valid */ 5971 if (btf_type_is_void(t)) 5972 return 0; 5973 5974 tname = btf_name_by_offset(btf, t->name_off); 5975 if (str_is_empty(tname)) { 5976 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 5977 return -EINVAL; 5978 } 5979 5980 /* special cases */ 5981 switch (prog_type) { 5982 case BPF_PROG_TYPE_KPROBE: 5983 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 5984 return 0; 5985 break; 5986 case BPF_PROG_TYPE_PERF_EVENT: 5987 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 5988 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 5989 return 0; 5990 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 5991 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 5992 return 0; 5993 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 5994 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 5995 return 0; 5996 break; 5997 case BPF_PROG_TYPE_RAW_TRACEPOINT: 5998 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 5999 /* allow u64* as ctx */ 6000 if (btf_is_int(t) && t->size == 8) 6001 return 0; 6002 break; 6003 case BPF_PROG_TYPE_TRACING: 6004 switch (attach_type) { 6005 case BPF_TRACE_RAW_TP: 6006 /* tp_btf program is TRACING, so need special case here */ 6007 if (__btf_type_is_struct(t) && 6008 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6009 return 0; 6010 /* allow u64* as ctx */ 6011 if (btf_is_int(t) && t->size == 8) 6012 return 0; 6013 break; 6014 case BPF_TRACE_ITER: 6015 /* allow struct bpf_iter__xxx types only */ 6016 if (__btf_type_is_struct(t) && 6017 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6018 return 0; 6019 break; 6020 case BPF_TRACE_FENTRY: 6021 case BPF_TRACE_FEXIT: 6022 case BPF_MODIFY_RETURN: 6023 /* allow u64* as ctx */ 6024 if (btf_is_int(t) && t->size == 8) 6025 return 0; 6026 break; 6027 default: 6028 break; 6029 } 6030 break; 6031 case BPF_PROG_TYPE_LSM: 6032 case BPF_PROG_TYPE_STRUCT_OPS: 6033 /* allow u64* as ctx */ 6034 if (btf_is_int(t) && t->size == 8) 6035 return 0; 6036 break; 6037 case BPF_PROG_TYPE_TRACEPOINT: 6038 case BPF_PROG_TYPE_SYSCALL: 6039 case BPF_PROG_TYPE_EXT: 6040 return 0; /* anything goes */ 6041 default: 6042 break; 6043 } 6044 6045 ctx_type = find_canonical_prog_ctx_type(prog_type); 6046 if (!ctx_type) { 6047 /* should not happen */ 6048 bpf_log(log, "btf_vmlinux is malformed\n"); 6049 return -EINVAL; 6050 } 6051 6052 /* resolve typedefs and check that underlying structs are matching as well */ 6053 while (btf_type_is_modifier(ctx_type)) 6054 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6055 6056 /* if program type doesn't have distinctly named struct type for 6057 * context, then __arg_ctx argument can only be `void *`, which we 6058 * already checked above 6059 */ 6060 if (!__btf_type_is_struct(ctx_type)) { 6061 bpf_log(log, "arg#%d should be void pointer\n", arg); 6062 return -EINVAL; 6063 } 6064 6065 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6066 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6067 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6068 return -EINVAL; 6069 } 6070 6071 return 0; 6072 } 6073 6074 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6075 struct btf *btf, 6076 const struct btf_type *t, 6077 enum bpf_prog_type prog_type, 6078 int arg) 6079 { 6080 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6081 return -ENOENT; 6082 return find_kern_ctx_type_id(prog_type); 6083 } 6084 6085 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6086 { 6087 const struct btf_member *kctx_member; 6088 const struct btf_type *conv_struct; 6089 const struct btf_type *kctx_type; 6090 u32 kctx_type_id; 6091 6092 conv_struct = bpf_ctx_convert.t; 6093 /* get member for kernel ctx type */ 6094 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6095 kctx_type_id = kctx_member->type; 6096 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6097 if (!btf_type_is_struct(kctx_type)) { 6098 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6099 return -EINVAL; 6100 } 6101 6102 return kctx_type_id; 6103 } 6104 6105 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6106 BTF_ID(struct, bpf_ctx_convert) 6107 6108 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6109 void *data, unsigned int data_size) 6110 { 6111 struct btf *btf = NULL; 6112 int err; 6113 6114 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6115 return ERR_PTR(-ENOENT); 6116 6117 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6118 if (!btf) { 6119 err = -ENOMEM; 6120 goto errout; 6121 } 6122 env->btf = btf; 6123 6124 btf->data = data; 6125 btf->data_size = data_size; 6126 btf->kernel_btf = true; 6127 snprintf(btf->name, sizeof(btf->name), "%s", name); 6128 6129 err = btf_parse_hdr(env); 6130 if (err) 6131 goto errout; 6132 6133 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6134 6135 err = btf_parse_str_sec(env); 6136 if (err) 6137 goto errout; 6138 6139 err = btf_check_all_metas(env); 6140 if (err) 6141 goto errout; 6142 6143 err = btf_check_type_tags(env, btf, 1); 6144 if (err) 6145 goto errout; 6146 6147 refcount_set(&btf->refcnt, 1); 6148 6149 return btf; 6150 6151 errout: 6152 if (btf) { 6153 kvfree(btf->types); 6154 kfree(btf); 6155 } 6156 return ERR_PTR(err); 6157 } 6158 6159 struct btf *btf_parse_vmlinux(void) 6160 { 6161 struct btf_verifier_env *env = NULL; 6162 struct bpf_verifier_log *log; 6163 struct btf *btf; 6164 int err; 6165 6166 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6167 if (!env) 6168 return ERR_PTR(-ENOMEM); 6169 6170 log = &env->log; 6171 log->level = BPF_LOG_KERNEL; 6172 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6173 if (IS_ERR(btf)) 6174 goto err_out; 6175 6176 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6177 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6178 err = btf_alloc_id(btf); 6179 if (err) { 6180 btf_free(btf); 6181 btf = ERR_PTR(err); 6182 } 6183 err_out: 6184 btf_verifier_env_free(env); 6185 return btf; 6186 } 6187 6188 /* If .BTF_ids section was created with distilled base BTF, both base and 6189 * split BTF ids will need to be mapped to actual base/split ids for 6190 * BTF now that it has been relocated. 6191 */ 6192 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6193 { 6194 if (!btf->base_btf || !btf->base_id_map) 6195 return id; 6196 return btf->base_id_map[id]; 6197 } 6198 6199 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6200 6201 static struct btf *btf_parse_module(const char *module_name, const void *data, 6202 unsigned int data_size, void *base_data, 6203 unsigned int base_data_size) 6204 { 6205 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6206 struct btf_verifier_env *env = NULL; 6207 struct bpf_verifier_log *log; 6208 int err = 0; 6209 6210 vmlinux_btf = bpf_get_btf_vmlinux(); 6211 if (IS_ERR(vmlinux_btf)) 6212 return vmlinux_btf; 6213 if (!vmlinux_btf) 6214 return ERR_PTR(-EINVAL); 6215 6216 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6217 if (!env) 6218 return ERR_PTR(-ENOMEM); 6219 6220 log = &env->log; 6221 log->level = BPF_LOG_KERNEL; 6222 6223 if (base_data) { 6224 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6225 if (IS_ERR(base_btf)) { 6226 err = PTR_ERR(base_btf); 6227 goto errout; 6228 } 6229 } else { 6230 base_btf = vmlinux_btf; 6231 } 6232 6233 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6234 if (!btf) { 6235 err = -ENOMEM; 6236 goto errout; 6237 } 6238 env->btf = btf; 6239 6240 btf->base_btf = base_btf; 6241 btf->start_id = base_btf->nr_types; 6242 btf->start_str_off = base_btf->hdr.str_len; 6243 btf->kernel_btf = true; 6244 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6245 6246 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 6247 if (!btf->data) { 6248 err = -ENOMEM; 6249 goto errout; 6250 } 6251 memcpy(btf->data, data, data_size); 6252 btf->data_size = data_size; 6253 6254 err = btf_parse_hdr(env); 6255 if (err) 6256 goto errout; 6257 6258 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6259 6260 err = btf_parse_str_sec(env); 6261 if (err) 6262 goto errout; 6263 6264 err = btf_check_all_metas(env); 6265 if (err) 6266 goto errout; 6267 6268 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6269 if (err) 6270 goto errout; 6271 6272 if (base_btf != vmlinux_btf) { 6273 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6274 if (err) 6275 goto errout; 6276 btf_free(base_btf); 6277 base_btf = vmlinux_btf; 6278 } 6279 6280 btf_verifier_env_free(env); 6281 refcount_set(&btf->refcnt, 1); 6282 return btf; 6283 6284 errout: 6285 btf_verifier_env_free(env); 6286 if (base_btf != vmlinux_btf) 6287 btf_free(base_btf); 6288 if (btf) { 6289 kvfree(btf->data); 6290 kvfree(btf->types); 6291 kfree(btf); 6292 } 6293 return ERR_PTR(err); 6294 } 6295 6296 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6297 6298 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6299 { 6300 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6301 6302 if (tgt_prog) 6303 return tgt_prog->aux->btf; 6304 else 6305 return prog->aux->attach_btf; 6306 } 6307 6308 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6309 { 6310 /* skip modifiers */ 6311 t = btf_type_skip_modifiers(btf, t->type, NULL); 6312 6313 return btf_type_is_int(t); 6314 } 6315 6316 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6317 int off) 6318 { 6319 const struct btf_param *args; 6320 const struct btf_type *t; 6321 u32 offset = 0, nr_args; 6322 int i; 6323 6324 if (!func_proto) 6325 return off / 8; 6326 6327 nr_args = btf_type_vlen(func_proto); 6328 args = (const struct btf_param *)(func_proto + 1); 6329 for (i = 0; i < nr_args; i++) { 6330 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6331 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6332 if (off < offset) 6333 return i; 6334 } 6335 6336 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6337 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6338 if (off < offset) 6339 return nr_args; 6340 6341 return nr_args + 1; 6342 } 6343 6344 static bool prog_args_trusted(const struct bpf_prog *prog) 6345 { 6346 enum bpf_attach_type atype = prog->expected_attach_type; 6347 6348 switch (prog->type) { 6349 case BPF_PROG_TYPE_TRACING: 6350 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6351 case BPF_PROG_TYPE_LSM: 6352 return bpf_lsm_is_trusted(prog); 6353 case BPF_PROG_TYPE_STRUCT_OPS: 6354 return true; 6355 default: 6356 return false; 6357 } 6358 } 6359 6360 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6361 u32 arg_no) 6362 { 6363 const struct btf_param *args; 6364 const struct btf_type *t; 6365 int off = 0, i; 6366 u32 sz; 6367 6368 args = btf_params(func_proto); 6369 for (i = 0; i < arg_no; i++) { 6370 t = btf_type_by_id(btf, args[i].type); 6371 t = btf_resolve_size(btf, t, &sz); 6372 if (IS_ERR(t)) 6373 return PTR_ERR(t); 6374 off += roundup(sz, 8); 6375 } 6376 6377 return off; 6378 } 6379 6380 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6381 const struct bpf_prog *prog, 6382 struct bpf_insn_access_aux *info) 6383 { 6384 const struct btf_type *t = prog->aux->attach_func_proto; 6385 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6386 struct btf *btf = bpf_prog_get_target_btf(prog); 6387 const char *tname = prog->aux->attach_func_name; 6388 struct bpf_verifier_log *log = info->log; 6389 const struct btf_param *args; 6390 const char *tag_value; 6391 u32 nr_args, arg; 6392 int i, ret; 6393 6394 if (off % 8) { 6395 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6396 tname, off); 6397 return false; 6398 } 6399 arg = get_ctx_arg_idx(btf, t, off); 6400 args = (const struct btf_param *)(t + 1); 6401 /* if (t == NULL) Fall back to default BPF prog with 6402 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6403 */ 6404 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6405 if (prog->aux->attach_btf_trace) { 6406 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6407 args++; 6408 nr_args--; 6409 } 6410 6411 if (arg > nr_args) { 6412 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6413 tname, arg + 1); 6414 return false; 6415 } 6416 6417 if (arg == nr_args) { 6418 switch (prog->expected_attach_type) { 6419 case BPF_LSM_CGROUP: 6420 case BPF_LSM_MAC: 6421 case BPF_TRACE_FEXIT: 6422 /* When LSM programs are attached to void LSM hooks 6423 * they use FEXIT trampolines and when attached to 6424 * int LSM hooks, they use MODIFY_RETURN trampolines. 6425 * 6426 * While the LSM programs are BPF_MODIFY_RETURN-like 6427 * the check: 6428 * 6429 * if (ret_type != 'int') 6430 * return -EINVAL; 6431 * 6432 * is _not_ done here. This is still safe as LSM hooks 6433 * have only void and int return types. 6434 */ 6435 if (!t) 6436 return true; 6437 t = btf_type_by_id(btf, t->type); 6438 break; 6439 case BPF_MODIFY_RETURN: 6440 /* For now the BPF_MODIFY_RETURN can only be attached to 6441 * functions that return an int. 6442 */ 6443 if (!t) 6444 return false; 6445 6446 t = btf_type_skip_modifiers(btf, t->type, NULL); 6447 if (!btf_type_is_small_int(t)) { 6448 bpf_log(log, 6449 "ret type %s not allowed for fmod_ret\n", 6450 btf_type_str(t)); 6451 return false; 6452 } 6453 break; 6454 default: 6455 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6456 tname, arg + 1); 6457 return false; 6458 } 6459 } else { 6460 if (!t) 6461 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6462 return true; 6463 t = btf_type_by_id(btf, args[arg].type); 6464 } 6465 6466 /* skip modifiers */ 6467 while (btf_type_is_modifier(t)) 6468 t = btf_type_by_id(btf, t->type); 6469 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6470 /* accessing a scalar */ 6471 return true; 6472 if (!btf_type_is_ptr(t)) { 6473 bpf_log(log, 6474 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6475 tname, arg, 6476 __btf_name_by_offset(btf, t->name_off), 6477 btf_type_str(t)); 6478 return false; 6479 } 6480 6481 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6482 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6483 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6484 u32 type, flag; 6485 6486 type = base_type(ctx_arg_info->reg_type); 6487 flag = type_flag(ctx_arg_info->reg_type); 6488 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6489 (flag & PTR_MAYBE_NULL)) { 6490 info->reg_type = ctx_arg_info->reg_type; 6491 return true; 6492 } 6493 } 6494 6495 if (t->type == 0) 6496 /* This is a pointer to void. 6497 * It is the same as scalar from the verifier safety pov. 6498 * No further pointer walking is allowed. 6499 */ 6500 return true; 6501 6502 if (is_int_ptr(btf, t)) 6503 return true; 6504 6505 /* this is a pointer to another type */ 6506 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6507 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6508 6509 if (ctx_arg_info->offset == off) { 6510 if (!ctx_arg_info->btf_id) { 6511 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6512 return false; 6513 } 6514 6515 info->reg_type = ctx_arg_info->reg_type; 6516 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6517 info->btf_id = ctx_arg_info->btf_id; 6518 return true; 6519 } 6520 } 6521 6522 info->reg_type = PTR_TO_BTF_ID; 6523 if (prog_args_trusted(prog)) 6524 info->reg_type |= PTR_TRUSTED; 6525 6526 if (tgt_prog) { 6527 enum bpf_prog_type tgt_type; 6528 6529 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6530 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6531 else 6532 tgt_type = tgt_prog->type; 6533 6534 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6535 if (ret > 0) { 6536 info->btf = btf_vmlinux; 6537 info->btf_id = ret; 6538 return true; 6539 } else { 6540 return false; 6541 } 6542 } 6543 6544 info->btf = btf; 6545 info->btf_id = t->type; 6546 t = btf_type_by_id(btf, t->type); 6547 6548 if (btf_type_is_type_tag(t)) { 6549 tag_value = __btf_name_by_offset(btf, t->name_off); 6550 if (strcmp(tag_value, "user") == 0) 6551 info->reg_type |= MEM_USER; 6552 if (strcmp(tag_value, "percpu") == 0) 6553 info->reg_type |= MEM_PERCPU; 6554 } 6555 6556 /* skip modifiers */ 6557 while (btf_type_is_modifier(t)) { 6558 info->btf_id = t->type; 6559 t = btf_type_by_id(btf, t->type); 6560 } 6561 if (!btf_type_is_struct(t)) { 6562 bpf_log(log, 6563 "func '%s' arg%d type %s is not a struct\n", 6564 tname, arg, btf_type_str(t)); 6565 return false; 6566 } 6567 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6568 tname, arg, info->btf_id, btf_type_str(t), 6569 __btf_name_by_offset(btf, t->name_off)); 6570 return true; 6571 } 6572 EXPORT_SYMBOL_GPL(btf_ctx_access); 6573 6574 enum bpf_struct_walk_result { 6575 /* < 0 error */ 6576 WALK_SCALAR = 0, 6577 WALK_PTR, 6578 WALK_STRUCT, 6579 }; 6580 6581 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6582 const struct btf_type *t, int off, int size, 6583 u32 *next_btf_id, enum bpf_type_flag *flag, 6584 const char **field_name) 6585 { 6586 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6587 const struct btf_type *mtype, *elem_type = NULL; 6588 const struct btf_member *member; 6589 const char *tname, *mname, *tag_value; 6590 u32 vlen, elem_id, mid; 6591 6592 again: 6593 if (btf_type_is_modifier(t)) 6594 t = btf_type_skip_modifiers(btf, t->type, NULL); 6595 tname = __btf_name_by_offset(btf, t->name_off); 6596 if (!btf_type_is_struct(t)) { 6597 bpf_log(log, "Type '%s' is not a struct\n", tname); 6598 return -EINVAL; 6599 } 6600 6601 vlen = btf_type_vlen(t); 6602 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6603 /* 6604 * walking unions yields untrusted pointers 6605 * with exception of __bpf_md_ptr and other 6606 * unions with a single member 6607 */ 6608 *flag |= PTR_UNTRUSTED; 6609 6610 if (off + size > t->size) { 6611 /* If the last element is a variable size array, we may 6612 * need to relax the rule. 6613 */ 6614 struct btf_array *array_elem; 6615 6616 if (vlen == 0) 6617 goto error; 6618 6619 member = btf_type_member(t) + vlen - 1; 6620 mtype = btf_type_skip_modifiers(btf, member->type, 6621 NULL); 6622 if (!btf_type_is_array(mtype)) 6623 goto error; 6624 6625 array_elem = (struct btf_array *)(mtype + 1); 6626 if (array_elem->nelems != 0) 6627 goto error; 6628 6629 moff = __btf_member_bit_offset(t, member) / 8; 6630 if (off < moff) 6631 goto error; 6632 6633 /* allow structure and integer */ 6634 t = btf_type_skip_modifiers(btf, array_elem->type, 6635 NULL); 6636 6637 if (btf_type_is_int(t)) 6638 return WALK_SCALAR; 6639 6640 if (!btf_type_is_struct(t)) 6641 goto error; 6642 6643 off = (off - moff) % t->size; 6644 goto again; 6645 6646 error: 6647 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6648 tname, off, size); 6649 return -EACCES; 6650 } 6651 6652 for_each_member(i, t, member) { 6653 /* offset of the field in bytes */ 6654 moff = __btf_member_bit_offset(t, member) / 8; 6655 if (off + size <= moff) 6656 /* won't find anything, field is already too far */ 6657 break; 6658 6659 if (__btf_member_bitfield_size(t, member)) { 6660 u32 end_bit = __btf_member_bit_offset(t, member) + 6661 __btf_member_bitfield_size(t, member); 6662 6663 /* off <= moff instead of off == moff because clang 6664 * does not generate a BTF member for anonymous 6665 * bitfield like the ":16" here: 6666 * struct { 6667 * int :16; 6668 * int x:8; 6669 * }; 6670 */ 6671 if (off <= moff && 6672 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6673 return WALK_SCALAR; 6674 6675 /* off may be accessing a following member 6676 * 6677 * or 6678 * 6679 * Doing partial access at either end of this 6680 * bitfield. Continue on this case also to 6681 * treat it as not accessing this bitfield 6682 * and eventually error out as field not 6683 * found to keep it simple. 6684 * It could be relaxed if there was a legit 6685 * partial access case later. 6686 */ 6687 continue; 6688 } 6689 6690 /* In case of "off" is pointing to holes of a struct */ 6691 if (off < moff) 6692 break; 6693 6694 /* type of the field */ 6695 mid = member->type; 6696 mtype = btf_type_by_id(btf, member->type); 6697 mname = __btf_name_by_offset(btf, member->name_off); 6698 6699 mtype = __btf_resolve_size(btf, mtype, &msize, 6700 &elem_type, &elem_id, &total_nelems, 6701 &mid); 6702 if (IS_ERR(mtype)) { 6703 bpf_log(log, "field %s doesn't have size\n", mname); 6704 return -EFAULT; 6705 } 6706 6707 mtrue_end = moff + msize; 6708 if (off >= mtrue_end) 6709 /* no overlap with member, keep iterating */ 6710 continue; 6711 6712 if (btf_type_is_array(mtype)) { 6713 u32 elem_idx; 6714 6715 /* __btf_resolve_size() above helps to 6716 * linearize a multi-dimensional array. 6717 * 6718 * The logic here is treating an array 6719 * in a struct as the following way: 6720 * 6721 * struct outer { 6722 * struct inner array[2][2]; 6723 * }; 6724 * 6725 * looks like: 6726 * 6727 * struct outer { 6728 * struct inner array_elem0; 6729 * struct inner array_elem1; 6730 * struct inner array_elem2; 6731 * struct inner array_elem3; 6732 * }; 6733 * 6734 * When accessing outer->array[1][0], it moves 6735 * moff to "array_elem2", set mtype to 6736 * "struct inner", and msize also becomes 6737 * sizeof(struct inner). Then most of the 6738 * remaining logic will fall through without 6739 * caring the current member is an array or 6740 * not. 6741 * 6742 * Unlike mtype/msize/moff, mtrue_end does not 6743 * change. The naming difference ("_true") tells 6744 * that it is not always corresponding to 6745 * the current mtype/msize/moff. 6746 * It is the true end of the current 6747 * member (i.e. array in this case). That 6748 * will allow an int array to be accessed like 6749 * a scratch space, 6750 * i.e. allow access beyond the size of 6751 * the array's element as long as it is 6752 * within the mtrue_end boundary. 6753 */ 6754 6755 /* skip empty array */ 6756 if (moff == mtrue_end) 6757 continue; 6758 6759 msize /= total_nelems; 6760 elem_idx = (off - moff) / msize; 6761 moff += elem_idx * msize; 6762 mtype = elem_type; 6763 mid = elem_id; 6764 } 6765 6766 /* the 'off' we're looking for is either equal to start 6767 * of this field or inside of this struct 6768 */ 6769 if (btf_type_is_struct(mtype)) { 6770 /* our field must be inside that union or struct */ 6771 t = mtype; 6772 6773 /* return if the offset matches the member offset */ 6774 if (off == moff) { 6775 *next_btf_id = mid; 6776 return WALK_STRUCT; 6777 } 6778 6779 /* adjust offset we're looking for */ 6780 off -= moff; 6781 goto again; 6782 } 6783 6784 if (btf_type_is_ptr(mtype)) { 6785 const struct btf_type *stype, *t; 6786 enum bpf_type_flag tmp_flag = 0; 6787 u32 id; 6788 6789 if (msize != size || off != moff) { 6790 bpf_log(log, 6791 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6792 mname, moff, tname, off, size); 6793 return -EACCES; 6794 } 6795 6796 /* check type tag */ 6797 t = btf_type_by_id(btf, mtype->type); 6798 if (btf_type_is_type_tag(t)) { 6799 tag_value = __btf_name_by_offset(btf, t->name_off); 6800 /* check __user tag */ 6801 if (strcmp(tag_value, "user") == 0) 6802 tmp_flag = MEM_USER; 6803 /* check __percpu tag */ 6804 if (strcmp(tag_value, "percpu") == 0) 6805 tmp_flag = MEM_PERCPU; 6806 /* check __rcu tag */ 6807 if (strcmp(tag_value, "rcu") == 0) 6808 tmp_flag = MEM_RCU; 6809 } 6810 6811 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6812 if (btf_type_is_struct(stype)) { 6813 *next_btf_id = id; 6814 *flag |= tmp_flag; 6815 if (field_name) 6816 *field_name = mname; 6817 return WALK_PTR; 6818 } 6819 } 6820 6821 /* Allow more flexible access within an int as long as 6822 * it is within mtrue_end. 6823 * Since mtrue_end could be the end of an array, 6824 * that also allows using an array of int as a scratch 6825 * space. e.g. skb->cb[]. 6826 */ 6827 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 6828 bpf_log(log, 6829 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6830 mname, mtrue_end, tname, off, size); 6831 return -EACCES; 6832 } 6833 6834 return WALK_SCALAR; 6835 } 6836 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6837 return -EINVAL; 6838 } 6839 6840 int btf_struct_access(struct bpf_verifier_log *log, 6841 const struct bpf_reg_state *reg, 6842 int off, int size, enum bpf_access_type atype __maybe_unused, 6843 u32 *next_btf_id, enum bpf_type_flag *flag, 6844 const char **field_name) 6845 { 6846 const struct btf *btf = reg->btf; 6847 enum bpf_type_flag tmp_flag = 0; 6848 const struct btf_type *t; 6849 u32 id = reg->btf_id; 6850 int err; 6851 6852 while (type_is_alloc(reg->type)) { 6853 struct btf_struct_meta *meta; 6854 struct btf_record *rec; 6855 int i; 6856 6857 meta = btf_find_struct_meta(btf, id); 6858 if (!meta) 6859 break; 6860 rec = meta->record; 6861 for (i = 0; i < rec->cnt; i++) { 6862 struct btf_field *field = &rec->fields[i]; 6863 u32 offset = field->offset; 6864 if (off < offset + field->size && offset < off + size) { 6865 bpf_log(log, 6866 "direct access to %s is disallowed\n", 6867 btf_field_type_name(field->type)); 6868 return -EACCES; 6869 } 6870 } 6871 break; 6872 } 6873 6874 t = btf_type_by_id(btf, id); 6875 do { 6876 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6877 6878 switch (err) { 6879 case WALK_PTR: 6880 /* For local types, the destination register cannot 6881 * become a pointer again. 6882 */ 6883 if (type_is_alloc(reg->type)) 6884 return SCALAR_VALUE; 6885 /* If we found the pointer or scalar on t+off, 6886 * we're done. 6887 */ 6888 *next_btf_id = id; 6889 *flag = tmp_flag; 6890 return PTR_TO_BTF_ID; 6891 case WALK_SCALAR: 6892 return SCALAR_VALUE; 6893 case WALK_STRUCT: 6894 /* We found nested struct, so continue the search 6895 * by diving in it. At this point the offset is 6896 * aligned with the new type, so set it to 0. 6897 */ 6898 t = btf_type_by_id(btf, id); 6899 off = 0; 6900 break; 6901 default: 6902 /* It's either error or unknown return value.. 6903 * scream and leave. 6904 */ 6905 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6906 return -EINVAL; 6907 return err; 6908 } 6909 } while (t); 6910 6911 return -EINVAL; 6912 } 6913 6914 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6915 * the same. Trivial ID check is not enough due to module BTFs, because we can 6916 * end up with two different module BTFs, but IDs point to the common type in 6917 * vmlinux BTF. 6918 */ 6919 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6920 const struct btf *btf2, u32 id2) 6921 { 6922 if (id1 != id2) 6923 return false; 6924 if (btf1 == btf2) 6925 return true; 6926 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6927 } 6928 6929 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6930 const struct btf *btf, u32 id, int off, 6931 const struct btf *need_btf, u32 need_type_id, 6932 bool strict) 6933 { 6934 const struct btf_type *type; 6935 enum bpf_type_flag flag = 0; 6936 int err; 6937 6938 /* Are we already done? */ 6939 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6940 return true; 6941 /* In case of strict type match, we do not walk struct, the top level 6942 * type match must succeed. When strict is true, off should have already 6943 * been 0. 6944 */ 6945 if (strict) 6946 return false; 6947 again: 6948 type = btf_type_by_id(btf, id); 6949 if (!type) 6950 return false; 6951 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6952 if (err != WALK_STRUCT) 6953 return false; 6954 6955 /* We found nested struct object. If it matches 6956 * the requested ID, we're done. Otherwise let's 6957 * continue the search with offset 0 in the new 6958 * type. 6959 */ 6960 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6961 off = 0; 6962 goto again; 6963 } 6964 6965 return true; 6966 } 6967 6968 static int __get_type_size(struct btf *btf, u32 btf_id, 6969 const struct btf_type **ret_type) 6970 { 6971 const struct btf_type *t; 6972 6973 *ret_type = btf_type_by_id(btf, 0); 6974 if (!btf_id) 6975 /* void */ 6976 return 0; 6977 t = btf_type_by_id(btf, btf_id); 6978 while (t && btf_type_is_modifier(t)) 6979 t = btf_type_by_id(btf, t->type); 6980 if (!t) 6981 return -EINVAL; 6982 *ret_type = t; 6983 if (btf_type_is_ptr(t)) 6984 /* kernel size of pointer. Not BPF's size of pointer*/ 6985 return sizeof(void *); 6986 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6987 return t->size; 6988 return -EINVAL; 6989 } 6990 6991 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6992 { 6993 u8 flags = 0; 6994 6995 if (__btf_type_is_struct(t)) 6996 flags |= BTF_FMODEL_STRUCT_ARG; 6997 if (btf_type_is_signed_int(t)) 6998 flags |= BTF_FMODEL_SIGNED_ARG; 6999 7000 return flags; 7001 } 7002 7003 int btf_distill_func_proto(struct bpf_verifier_log *log, 7004 struct btf *btf, 7005 const struct btf_type *func, 7006 const char *tname, 7007 struct btf_func_model *m) 7008 { 7009 const struct btf_param *args; 7010 const struct btf_type *t; 7011 u32 i, nargs; 7012 int ret; 7013 7014 if (!func) { 7015 /* BTF function prototype doesn't match the verifier types. 7016 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7017 */ 7018 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7019 m->arg_size[i] = 8; 7020 m->arg_flags[i] = 0; 7021 } 7022 m->ret_size = 8; 7023 m->ret_flags = 0; 7024 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7025 return 0; 7026 } 7027 args = (const struct btf_param *)(func + 1); 7028 nargs = btf_type_vlen(func); 7029 if (nargs > MAX_BPF_FUNC_ARGS) { 7030 bpf_log(log, 7031 "The function %s has %d arguments. Too many.\n", 7032 tname, nargs); 7033 return -EINVAL; 7034 } 7035 ret = __get_type_size(btf, func->type, &t); 7036 if (ret < 0 || __btf_type_is_struct(t)) { 7037 bpf_log(log, 7038 "The function %s return type %s is unsupported.\n", 7039 tname, btf_type_str(t)); 7040 return -EINVAL; 7041 } 7042 m->ret_size = ret; 7043 m->ret_flags = __get_type_fmodel_flags(t); 7044 7045 for (i = 0; i < nargs; i++) { 7046 if (i == nargs - 1 && args[i].type == 0) { 7047 bpf_log(log, 7048 "The function %s with variable args is unsupported.\n", 7049 tname); 7050 return -EINVAL; 7051 } 7052 ret = __get_type_size(btf, args[i].type, &t); 7053 7054 /* No support of struct argument size greater than 16 bytes */ 7055 if (ret < 0 || ret > 16) { 7056 bpf_log(log, 7057 "The function %s arg%d type %s is unsupported.\n", 7058 tname, i, btf_type_str(t)); 7059 return -EINVAL; 7060 } 7061 if (ret == 0) { 7062 bpf_log(log, 7063 "The function %s has malformed void argument.\n", 7064 tname); 7065 return -EINVAL; 7066 } 7067 m->arg_size[i] = ret; 7068 m->arg_flags[i] = __get_type_fmodel_flags(t); 7069 } 7070 m->nr_args = nargs; 7071 return 0; 7072 } 7073 7074 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7075 * t1 points to BTF_KIND_FUNC in btf1 7076 * t2 points to BTF_KIND_FUNC in btf2 7077 * Returns: 7078 * EINVAL - function prototype mismatch 7079 * EFAULT - verifier bug 7080 * 0 - 99% match. The last 1% is validated by the verifier. 7081 */ 7082 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7083 struct btf *btf1, const struct btf_type *t1, 7084 struct btf *btf2, const struct btf_type *t2) 7085 { 7086 const struct btf_param *args1, *args2; 7087 const char *fn1, *fn2, *s1, *s2; 7088 u32 nargs1, nargs2, i; 7089 7090 fn1 = btf_name_by_offset(btf1, t1->name_off); 7091 fn2 = btf_name_by_offset(btf2, t2->name_off); 7092 7093 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7094 bpf_log(log, "%s() is not a global function\n", fn1); 7095 return -EINVAL; 7096 } 7097 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7098 bpf_log(log, "%s() is not a global function\n", fn2); 7099 return -EINVAL; 7100 } 7101 7102 t1 = btf_type_by_id(btf1, t1->type); 7103 if (!t1 || !btf_type_is_func_proto(t1)) 7104 return -EFAULT; 7105 t2 = btf_type_by_id(btf2, t2->type); 7106 if (!t2 || !btf_type_is_func_proto(t2)) 7107 return -EFAULT; 7108 7109 args1 = (const struct btf_param *)(t1 + 1); 7110 nargs1 = btf_type_vlen(t1); 7111 args2 = (const struct btf_param *)(t2 + 1); 7112 nargs2 = btf_type_vlen(t2); 7113 7114 if (nargs1 != nargs2) { 7115 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7116 fn1, nargs1, fn2, nargs2); 7117 return -EINVAL; 7118 } 7119 7120 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7121 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7122 if (t1->info != t2->info) { 7123 bpf_log(log, 7124 "Return type %s of %s() doesn't match type %s of %s()\n", 7125 btf_type_str(t1), fn1, 7126 btf_type_str(t2), fn2); 7127 return -EINVAL; 7128 } 7129 7130 for (i = 0; i < nargs1; i++) { 7131 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7132 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7133 7134 if (t1->info != t2->info) { 7135 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7136 i, fn1, btf_type_str(t1), 7137 fn2, btf_type_str(t2)); 7138 return -EINVAL; 7139 } 7140 if (btf_type_has_size(t1) && t1->size != t2->size) { 7141 bpf_log(log, 7142 "arg%d in %s() has size %d while %s() has %d\n", 7143 i, fn1, t1->size, 7144 fn2, t2->size); 7145 return -EINVAL; 7146 } 7147 7148 /* global functions are validated with scalars and pointers 7149 * to context only. And only global functions can be replaced. 7150 * Hence type check only those types. 7151 */ 7152 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7153 continue; 7154 if (!btf_type_is_ptr(t1)) { 7155 bpf_log(log, 7156 "arg%d in %s() has unrecognized type\n", 7157 i, fn1); 7158 return -EINVAL; 7159 } 7160 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7161 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7162 if (!btf_type_is_struct(t1)) { 7163 bpf_log(log, 7164 "arg%d in %s() is not a pointer to context\n", 7165 i, fn1); 7166 return -EINVAL; 7167 } 7168 if (!btf_type_is_struct(t2)) { 7169 bpf_log(log, 7170 "arg%d in %s() is not a pointer to context\n", 7171 i, fn2); 7172 return -EINVAL; 7173 } 7174 /* This is an optional check to make program writing easier. 7175 * Compare names of structs and report an error to the user. 7176 * btf_prepare_func_args() already checked that t2 struct 7177 * is a context type. btf_prepare_func_args() will check 7178 * later that t1 struct is a context type as well. 7179 */ 7180 s1 = btf_name_by_offset(btf1, t1->name_off); 7181 s2 = btf_name_by_offset(btf2, t2->name_off); 7182 if (strcmp(s1, s2)) { 7183 bpf_log(log, 7184 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7185 i, fn1, s1, fn2, s2); 7186 return -EINVAL; 7187 } 7188 } 7189 return 0; 7190 } 7191 7192 /* Compare BTFs of given program with BTF of target program */ 7193 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7194 struct btf *btf2, const struct btf_type *t2) 7195 { 7196 struct btf *btf1 = prog->aux->btf; 7197 const struct btf_type *t1; 7198 u32 btf_id = 0; 7199 7200 if (!prog->aux->func_info) { 7201 bpf_log(log, "Program extension requires BTF\n"); 7202 return -EINVAL; 7203 } 7204 7205 btf_id = prog->aux->func_info[0].type_id; 7206 if (!btf_id) 7207 return -EFAULT; 7208 7209 t1 = btf_type_by_id(btf1, btf_id); 7210 if (!t1 || !btf_type_is_func(t1)) 7211 return -EFAULT; 7212 7213 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7214 } 7215 7216 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7217 { 7218 const char *name; 7219 7220 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7221 7222 while (btf_type_is_modifier(t)) 7223 t = btf_type_by_id(btf, t->type); 7224 7225 /* allow either struct or struct forward declaration */ 7226 if (btf_type_is_struct(t) || 7227 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7228 name = btf_str_by_offset(btf, t->name_off); 7229 return name && strcmp(name, "bpf_dynptr") == 0; 7230 } 7231 7232 return false; 7233 } 7234 7235 struct bpf_cand_cache { 7236 const char *name; 7237 u32 name_len; 7238 u16 kind; 7239 u16 cnt; 7240 struct { 7241 const struct btf *btf; 7242 u32 id; 7243 } cands[]; 7244 }; 7245 7246 static DEFINE_MUTEX(cand_cache_mutex); 7247 7248 static struct bpf_cand_cache * 7249 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7250 7251 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7252 const struct btf *btf, const struct btf_type *t) 7253 { 7254 struct bpf_cand_cache *cc; 7255 struct bpf_core_ctx ctx = { 7256 .btf = btf, 7257 .log = log, 7258 }; 7259 u32 kern_type_id, type_id; 7260 int err = 0; 7261 7262 /* skip PTR and modifiers */ 7263 type_id = t->type; 7264 t = btf_type_by_id(btf, t->type); 7265 while (btf_type_is_modifier(t)) { 7266 type_id = t->type; 7267 t = btf_type_by_id(btf, t->type); 7268 } 7269 7270 mutex_lock(&cand_cache_mutex); 7271 cc = bpf_core_find_cands(&ctx, type_id); 7272 if (IS_ERR(cc)) { 7273 err = PTR_ERR(cc); 7274 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7275 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7276 err); 7277 goto cand_cache_unlock; 7278 } 7279 if (cc->cnt != 1) { 7280 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7281 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7282 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7283 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7284 goto cand_cache_unlock; 7285 } 7286 if (btf_is_module(cc->cands[0].btf)) { 7287 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7288 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7289 err = -EOPNOTSUPP; 7290 goto cand_cache_unlock; 7291 } 7292 kern_type_id = cc->cands[0].id; 7293 7294 cand_cache_unlock: 7295 mutex_unlock(&cand_cache_mutex); 7296 if (err) 7297 return err; 7298 7299 return kern_type_id; 7300 } 7301 7302 enum btf_arg_tag { 7303 ARG_TAG_CTX = BIT_ULL(0), 7304 ARG_TAG_NONNULL = BIT_ULL(1), 7305 ARG_TAG_TRUSTED = BIT_ULL(2), 7306 ARG_TAG_NULLABLE = BIT_ULL(3), 7307 ARG_TAG_ARENA = BIT_ULL(4), 7308 }; 7309 7310 /* Process BTF of a function to produce high-level expectation of function 7311 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7312 * is cached in subprog info for reuse. 7313 * Returns: 7314 * EFAULT - there is a verifier bug. Abort verification. 7315 * EINVAL - cannot convert BTF. 7316 * 0 - Successfully processed BTF and constructed argument expectations. 7317 */ 7318 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7319 { 7320 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7321 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7322 struct bpf_verifier_log *log = &env->log; 7323 struct bpf_prog *prog = env->prog; 7324 enum bpf_prog_type prog_type = prog->type; 7325 struct btf *btf = prog->aux->btf; 7326 const struct btf_param *args; 7327 const struct btf_type *t, *ref_t, *fn_t; 7328 u32 i, nargs, btf_id; 7329 const char *tname; 7330 7331 if (sub->args_cached) 7332 return 0; 7333 7334 if (!prog->aux->func_info) { 7335 bpf_log(log, "Verifier bug\n"); 7336 return -EFAULT; 7337 } 7338 7339 btf_id = prog->aux->func_info[subprog].type_id; 7340 if (!btf_id) { 7341 if (!is_global) /* not fatal for static funcs */ 7342 return -EINVAL; 7343 bpf_log(log, "Global functions need valid BTF\n"); 7344 return -EFAULT; 7345 } 7346 7347 fn_t = btf_type_by_id(btf, btf_id); 7348 if (!fn_t || !btf_type_is_func(fn_t)) { 7349 /* These checks were already done by the verifier while loading 7350 * struct bpf_func_info 7351 */ 7352 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7353 subprog); 7354 return -EFAULT; 7355 } 7356 tname = btf_name_by_offset(btf, fn_t->name_off); 7357 7358 if (prog->aux->func_info_aux[subprog].unreliable) { 7359 bpf_log(log, "Verifier bug in function %s()\n", tname); 7360 return -EFAULT; 7361 } 7362 if (prog_type == BPF_PROG_TYPE_EXT) 7363 prog_type = prog->aux->dst_prog->type; 7364 7365 t = btf_type_by_id(btf, fn_t->type); 7366 if (!t || !btf_type_is_func_proto(t)) { 7367 bpf_log(log, "Invalid type of function %s()\n", tname); 7368 return -EFAULT; 7369 } 7370 args = (const struct btf_param *)(t + 1); 7371 nargs = btf_type_vlen(t); 7372 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7373 if (!is_global) 7374 return -EINVAL; 7375 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7376 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7377 return -EINVAL; 7378 } 7379 /* check that function returns int, exception cb also requires this */ 7380 t = btf_type_by_id(btf, t->type); 7381 while (btf_type_is_modifier(t)) 7382 t = btf_type_by_id(btf, t->type); 7383 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7384 if (!is_global) 7385 return -EINVAL; 7386 bpf_log(log, 7387 "Global function %s() doesn't return scalar. Only those are supported.\n", 7388 tname); 7389 return -EINVAL; 7390 } 7391 /* Convert BTF function arguments into verifier types. 7392 * Only PTR_TO_CTX and SCALAR are supported atm. 7393 */ 7394 for (i = 0; i < nargs; i++) { 7395 u32 tags = 0; 7396 int id = 0; 7397 7398 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7399 * register type from BTF type itself 7400 */ 7401 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7402 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7403 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7404 7405 /* disallow arg tags in static subprogs */ 7406 if (!is_global) { 7407 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7408 return -EOPNOTSUPP; 7409 } 7410 7411 if (strcmp(tag, "ctx") == 0) { 7412 tags |= ARG_TAG_CTX; 7413 } else if (strcmp(tag, "trusted") == 0) { 7414 tags |= ARG_TAG_TRUSTED; 7415 } else if (strcmp(tag, "nonnull") == 0) { 7416 tags |= ARG_TAG_NONNULL; 7417 } else if (strcmp(tag, "nullable") == 0) { 7418 tags |= ARG_TAG_NULLABLE; 7419 } else if (strcmp(tag, "arena") == 0) { 7420 tags |= ARG_TAG_ARENA; 7421 } else { 7422 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7423 return -EOPNOTSUPP; 7424 } 7425 } 7426 if (id != -ENOENT) { 7427 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7428 return id; 7429 } 7430 7431 t = btf_type_by_id(btf, args[i].type); 7432 while (btf_type_is_modifier(t)) 7433 t = btf_type_by_id(btf, t->type); 7434 if (!btf_type_is_ptr(t)) 7435 goto skip_pointer; 7436 7437 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7438 if (tags & ~ARG_TAG_CTX) { 7439 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7440 return -EINVAL; 7441 } 7442 if ((tags & ARG_TAG_CTX) && 7443 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7444 prog->expected_attach_type)) 7445 return -EINVAL; 7446 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7447 continue; 7448 } 7449 if (btf_is_dynptr_ptr(btf, t)) { 7450 if (tags) { 7451 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7452 return -EINVAL; 7453 } 7454 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7455 continue; 7456 } 7457 if (tags & ARG_TAG_TRUSTED) { 7458 int kern_type_id; 7459 7460 if (tags & ARG_TAG_NONNULL) { 7461 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7462 return -EINVAL; 7463 } 7464 7465 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7466 if (kern_type_id < 0) 7467 return kern_type_id; 7468 7469 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7470 if (tags & ARG_TAG_NULLABLE) 7471 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7472 sub->args[i].btf_id = kern_type_id; 7473 continue; 7474 } 7475 if (tags & ARG_TAG_ARENA) { 7476 if (tags & ~ARG_TAG_ARENA) { 7477 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7478 return -EINVAL; 7479 } 7480 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7481 continue; 7482 } 7483 if (is_global) { /* generic user data pointer */ 7484 u32 mem_size; 7485 7486 if (tags & ARG_TAG_NULLABLE) { 7487 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7488 return -EINVAL; 7489 } 7490 7491 t = btf_type_skip_modifiers(btf, t->type, NULL); 7492 ref_t = btf_resolve_size(btf, t, &mem_size); 7493 if (IS_ERR(ref_t)) { 7494 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7495 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7496 PTR_ERR(ref_t)); 7497 return -EINVAL; 7498 } 7499 7500 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7501 if (tags & ARG_TAG_NONNULL) 7502 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7503 sub->args[i].mem_size = mem_size; 7504 continue; 7505 } 7506 7507 skip_pointer: 7508 if (tags) { 7509 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7510 return -EINVAL; 7511 } 7512 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7513 sub->args[i].arg_type = ARG_ANYTHING; 7514 continue; 7515 } 7516 if (!is_global) 7517 return -EINVAL; 7518 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7519 i, btf_type_str(t), tname); 7520 return -EINVAL; 7521 } 7522 7523 sub->arg_cnt = nargs; 7524 sub->args_cached = true; 7525 7526 return 0; 7527 } 7528 7529 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7530 struct btf_show *show) 7531 { 7532 const struct btf_type *t = btf_type_by_id(btf, type_id); 7533 7534 show->btf = btf; 7535 memset(&show->state, 0, sizeof(show->state)); 7536 memset(&show->obj, 0, sizeof(show->obj)); 7537 7538 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7539 } 7540 7541 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7542 va_list args) 7543 { 7544 seq_vprintf((struct seq_file *)show->target, fmt, args); 7545 } 7546 7547 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7548 void *obj, struct seq_file *m, u64 flags) 7549 { 7550 struct btf_show sseq; 7551 7552 sseq.target = m; 7553 sseq.showfn = btf_seq_show; 7554 sseq.flags = flags; 7555 7556 btf_type_show(btf, type_id, obj, &sseq); 7557 7558 return sseq.state.status; 7559 } 7560 7561 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7562 struct seq_file *m) 7563 { 7564 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7565 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7566 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7567 } 7568 7569 struct btf_show_snprintf { 7570 struct btf_show show; 7571 int len_left; /* space left in string */ 7572 int len; /* length we would have written */ 7573 }; 7574 7575 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7576 va_list args) 7577 { 7578 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7579 int len; 7580 7581 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7582 7583 if (len < 0) { 7584 ssnprintf->len_left = 0; 7585 ssnprintf->len = len; 7586 } else if (len >= ssnprintf->len_left) { 7587 /* no space, drive on to get length we would have written */ 7588 ssnprintf->len_left = 0; 7589 ssnprintf->len += len; 7590 } else { 7591 ssnprintf->len_left -= len; 7592 ssnprintf->len += len; 7593 show->target += len; 7594 } 7595 } 7596 7597 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7598 char *buf, int len, u64 flags) 7599 { 7600 struct btf_show_snprintf ssnprintf; 7601 7602 ssnprintf.show.target = buf; 7603 ssnprintf.show.flags = flags; 7604 ssnprintf.show.showfn = btf_snprintf_show; 7605 ssnprintf.len_left = len; 7606 ssnprintf.len = 0; 7607 7608 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7609 7610 /* If we encountered an error, return it. */ 7611 if (ssnprintf.show.state.status) 7612 return ssnprintf.show.state.status; 7613 7614 /* Otherwise return length we would have written */ 7615 return ssnprintf.len; 7616 } 7617 7618 #ifdef CONFIG_PROC_FS 7619 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7620 { 7621 const struct btf *btf = filp->private_data; 7622 7623 seq_printf(m, "btf_id:\t%u\n", btf->id); 7624 } 7625 #endif 7626 7627 static int btf_release(struct inode *inode, struct file *filp) 7628 { 7629 btf_put(filp->private_data); 7630 return 0; 7631 } 7632 7633 const struct file_operations btf_fops = { 7634 #ifdef CONFIG_PROC_FS 7635 .show_fdinfo = bpf_btf_show_fdinfo, 7636 #endif 7637 .release = btf_release, 7638 }; 7639 7640 static int __btf_new_fd(struct btf *btf) 7641 { 7642 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7643 } 7644 7645 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7646 { 7647 struct btf *btf; 7648 int ret; 7649 7650 btf = btf_parse(attr, uattr, uattr_size); 7651 if (IS_ERR(btf)) 7652 return PTR_ERR(btf); 7653 7654 ret = btf_alloc_id(btf); 7655 if (ret) { 7656 btf_free(btf); 7657 return ret; 7658 } 7659 7660 /* 7661 * The BTF ID is published to the userspace. 7662 * All BTF free must go through call_rcu() from 7663 * now on (i.e. free by calling btf_put()). 7664 */ 7665 7666 ret = __btf_new_fd(btf); 7667 if (ret < 0) 7668 btf_put(btf); 7669 7670 return ret; 7671 } 7672 7673 struct btf *btf_get_by_fd(int fd) 7674 { 7675 struct btf *btf; 7676 struct fd f; 7677 7678 f = fdget(fd); 7679 7680 if (!f.file) 7681 return ERR_PTR(-EBADF); 7682 7683 if (f.file->f_op != &btf_fops) { 7684 fdput(f); 7685 return ERR_PTR(-EINVAL); 7686 } 7687 7688 btf = f.file->private_data; 7689 refcount_inc(&btf->refcnt); 7690 fdput(f); 7691 7692 return btf; 7693 } 7694 7695 int btf_get_info_by_fd(const struct btf *btf, 7696 const union bpf_attr *attr, 7697 union bpf_attr __user *uattr) 7698 { 7699 struct bpf_btf_info __user *uinfo; 7700 struct bpf_btf_info info; 7701 u32 info_copy, btf_copy; 7702 void __user *ubtf; 7703 char __user *uname; 7704 u32 uinfo_len, uname_len, name_len; 7705 int ret = 0; 7706 7707 uinfo = u64_to_user_ptr(attr->info.info); 7708 uinfo_len = attr->info.info_len; 7709 7710 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7711 memset(&info, 0, sizeof(info)); 7712 if (copy_from_user(&info, uinfo, info_copy)) 7713 return -EFAULT; 7714 7715 info.id = btf->id; 7716 ubtf = u64_to_user_ptr(info.btf); 7717 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7718 if (copy_to_user(ubtf, btf->data, btf_copy)) 7719 return -EFAULT; 7720 info.btf_size = btf->data_size; 7721 7722 info.kernel_btf = btf->kernel_btf; 7723 7724 uname = u64_to_user_ptr(info.name); 7725 uname_len = info.name_len; 7726 if (!uname ^ !uname_len) 7727 return -EINVAL; 7728 7729 name_len = strlen(btf->name); 7730 info.name_len = name_len; 7731 7732 if (uname) { 7733 if (uname_len >= name_len + 1) { 7734 if (copy_to_user(uname, btf->name, name_len + 1)) 7735 return -EFAULT; 7736 } else { 7737 char zero = '\0'; 7738 7739 if (copy_to_user(uname, btf->name, uname_len - 1)) 7740 return -EFAULT; 7741 if (put_user(zero, uname + uname_len - 1)) 7742 return -EFAULT; 7743 /* let user-space know about too short buffer */ 7744 ret = -ENOSPC; 7745 } 7746 } 7747 7748 if (copy_to_user(uinfo, &info, info_copy) || 7749 put_user(info_copy, &uattr->info.info_len)) 7750 return -EFAULT; 7751 7752 return ret; 7753 } 7754 7755 int btf_get_fd_by_id(u32 id) 7756 { 7757 struct btf *btf; 7758 int fd; 7759 7760 rcu_read_lock(); 7761 btf = idr_find(&btf_idr, id); 7762 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7763 btf = ERR_PTR(-ENOENT); 7764 rcu_read_unlock(); 7765 7766 if (IS_ERR(btf)) 7767 return PTR_ERR(btf); 7768 7769 fd = __btf_new_fd(btf); 7770 if (fd < 0) 7771 btf_put(btf); 7772 7773 return fd; 7774 } 7775 7776 u32 btf_obj_id(const struct btf *btf) 7777 { 7778 return btf->id; 7779 } 7780 7781 bool btf_is_kernel(const struct btf *btf) 7782 { 7783 return btf->kernel_btf; 7784 } 7785 7786 bool btf_is_module(const struct btf *btf) 7787 { 7788 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7789 } 7790 7791 enum { 7792 BTF_MODULE_F_LIVE = (1 << 0), 7793 }; 7794 7795 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7796 struct btf_module { 7797 struct list_head list; 7798 struct module *module; 7799 struct btf *btf; 7800 struct bin_attribute *sysfs_attr; 7801 int flags; 7802 }; 7803 7804 static LIST_HEAD(btf_modules); 7805 static DEFINE_MUTEX(btf_module_mutex); 7806 7807 static ssize_t 7808 btf_module_read(struct file *file, struct kobject *kobj, 7809 struct bin_attribute *bin_attr, 7810 char *buf, loff_t off, size_t len) 7811 { 7812 const struct btf *btf = bin_attr->private; 7813 7814 memcpy(buf, btf->data + off, len); 7815 return len; 7816 } 7817 7818 static void purge_cand_cache(struct btf *btf); 7819 7820 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7821 void *module) 7822 { 7823 struct btf_module *btf_mod, *tmp; 7824 struct module *mod = module; 7825 struct btf *btf; 7826 int err = 0; 7827 7828 if (mod->btf_data_size == 0 || 7829 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7830 op != MODULE_STATE_GOING)) 7831 goto out; 7832 7833 switch (op) { 7834 case MODULE_STATE_COMING: 7835 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7836 if (!btf_mod) { 7837 err = -ENOMEM; 7838 goto out; 7839 } 7840 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 7841 mod->btf_base_data, mod->btf_base_data_size); 7842 if (IS_ERR(btf)) { 7843 kfree(btf_mod); 7844 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7845 pr_warn("failed to validate module [%s] BTF: %ld\n", 7846 mod->name, PTR_ERR(btf)); 7847 err = PTR_ERR(btf); 7848 } else { 7849 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7850 } 7851 goto out; 7852 } 7853 err = btf_alloc_id(btf); 7854 if (err) { 7855 btf_free(btf); 7856 kfree(btf_mod); 7857 goto out; 7858 } 7859 7860 purge_cand_cache(NULL); 7861 mutex_lock(&btf_module_mutex); 7862 btf_mod->module = module; 7863 btf_mod->btf = btf; 7864 list_add(&btf_mod->list, &btf_modules); 7865 mutex_unlock(&btf_module_mutex); 7866 7867 if (IS_ENABLED(CONFIG_SYSFS)) { 7868 struct bin_attribute *attr; 7869 7870 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7871 if (!attr) 7872 goto out; 7873 7874 sysfs_bin_attr_init(attr); 7875 attr->attr.name = btf->name; 7876 attr->attr.mode = 0444; 7877 attr->size = btf->data_size; 7878 attr->private = btf; 7879 attr->read = btf_module_read; 7880 7881 err = sysfs_create_bin_file(btf_kobj, attr); 7882 if (err) { 7883 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7884 mod->name, err); 7885 kfree(attr); 7886 err = 0; 7887 goto out; 7888 } 7889 7890 btf_mod->sysfs_attr = attr; 7891 } 7892 7893 break; 7894 case MODULE_STATE_LIVE: 7895 mutex_lock(&btf_module_mutex); 7896 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7897 if (btf_mod->module != module) 7898 continue; 7899 7900 btf_mod->flags |= BTF_MODULE_F_LIVE; 7901 break; 7902 } 7903 mutex_unlock(&btf_module_mutex); 7904 break; 7905 case MODULE_STATE_GOING: 7906 mutex_lock(&btf_module_mutex); 7907 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7908 if (btf_mod->module != module) 7909 continue; 7910 7911 list_del(&btf_mod->list); 7912 if (btf_mod->sysfs_attr) 7913 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7914 purge_cand_cache(btf_mod->btf); 7915 btf_put(btf_mod->btf); 7916 kfree(btf_mod->sysfs_attr); 7917 kfree(btf_mod); 7918 break; 7919 } 7920 mutex_unlock(&btf_module_mutex); 7921 break; 7922 } 7923 out: 7924 return notifier_from_errno(err); 7925 } 7926 7927 static struct notifier_block btf_module_nb = { 7928 .notifier_call = btf_module_notify, 7929 }; 7930 7931 static int __init btf_module_init(void) 7932 { 7933 register_module_notifier(&btf_module_nb); 7934 return 0; 7935 } 7936 7937 fs_initcall(btf_module_init); 7938 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7939 7940 struct module *btf_try_get_module(const struct btf *btf) 7941 { 7942 struct module *res = NULL; 7943 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7944 struct btf_module *btf_mod, *tmp; 7945 7946 mutex_lock(&btf_module_mutex); 7947 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7948 if (btf_mod->btf != btf) 7949 continue; 7950 7951 /* We must only consider module whose __init routine has 7952 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7953 * which is set from the notifier callback for 7954 * MODULE_STATE_LIVE. 7955 */ 7956 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7957 res = btf_mod->module; 7958 7959 break; 7960 } 7961 mutex_unlock(&btf_module_mutex); 7962 #endif 7963 7964 return res; 7965 } 7966 7967 /* Returns struct btf corresponding to the struct module. 7968 * This function can return NULL or ERR_PTR. 7969 */ 7970 static struct btf *btf_get_module_btf(const struct module *module) 7971 { 7972 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7973 struct btf_module *btf_mod, *tmp; 7974 #endif 7975 struct btf *btf = NULL; 7976 7977 if (!module) { 7978 btf = bpf_get_btf_vmlinux(); 7979 if (!IS_ERR_OR_NULL(btf)) 7980 btf_get(btf); 7981 return btf; 7982 } 7983 7984 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7985 mutex_lock(&btf_module_mutex); 7986 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7987 if (btf_mod->module != module) 7988 continue; 7989 7990 btf_get(btf_mod->btf); 7991 btf = btf_mod->btf; 7992 break; 7993 } 7994 mutex_unlock(&btf_module_mutex); 7995 #endif 7996 7997 return btf; 7998 } 7999 8000 static int check_btf_kconfigs(const struct module *module, const char *feature) 8001 { 8002 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8003 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8004 return -ENOENT; 8005 } 8006 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8007 pr_warn("missing module BTF, cannot register %s\n", feature); 8008 return 0; 8009 } 8010 8011 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8012 { 8013 struct btf *btf = NULL; 8014 int btf_obj_fd = 0; 8015 long ret; 8016 8017 if (flags) 8018 return -EINVAL; 8019 8020 if (name_sz <= 1 || name[name_sz - 1]) 8021 return -EINVAL; 8022 8023 ret = bpf_find_btf_id(name, kind, &btf); 8024 if (ret > 0 && btf_is_module(btf)) { 8025 btf_obj_fd = __btf_new_fd(btf); 8026 if (btf_obj_fd < 0) { 8027 btf_put(btf); 8028 return btf_obj_fd; 8029 } 8030 return ret | (((u64)btf_obj_fd) << 32); 8031 } 8032 if (ret > 0) 8033 btf_put(btf); 8034 return ret; 8035 } 8036 8037 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8038 .func = bpf_btf_find_by_name_kind, 8039 .gpl_only = false, 8040 .ret_type = RET_INTEGER, 8041 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8042 .arg2_type = ARG_CONST_SIZE, 8043 .arg3_type = ARG_ANYTHING, 8044 .arg4_type = ARG_ANYTHING, 8045 }; 8046 8047 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8048 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8049 BTF_TRACING_TYPE_xxx 8050 #undef BTF_TRACING_TYPE 8051 8052 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8053 const struct btf_type *func, u32 func_flags) 8054 { 8055 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8056 const char *name, *sfx, *iter_name; 8057 const struct btf_param *arg; 8058 const struct btf_type *t; 8059 char exp_name[128]; 8060 u32 nr_args; 8061 8062 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8063 if (!flags || (flags & (flags - 1))) 8064 return -EINVAL; 8065 8066 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8067 nr_args = btf_type_vlen(func); 8068 if (nr_args < 1) 8069 return -EINVAL; 8070 8071 arg = &btf_params(func)[0]; 8072 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8073 if (!t || !btf_type_is_ptr(t)) 8074 return -EINVAL; 8075 t = btf_type_skip_modifiers(btf, t->type, NULL); 8076 if (!t || !__btf_type_is_struct(t)) 8077 return -EINVAL; 8078 8079 name = btf_name_by_offset(btf, t->name_off); 8080 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8081 return -EINVAL; 8082 8083 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8084 * fit nicely in stack slots 8085 */ 8086 if (t->size == 0 || (t->size % 8)) 8087 return -EINVAL; 8088 8089 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8090 * naming pattern 8091 */ 8092 iter_name = name + sizeof(ITER_PREFIX) - 1; 8093 if (flags & KF_ITER_NEW) 8094 sfx = "new"; 8095 else if (flags & KF_ITER_NEXT) 8096 sfx = "next"; 8097 else /* (flags & KF_ITER_DESTROY) */ 8098 sfx = "destroy"; 8099 8100 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8101 if (strcmp(func_name, exp_name)) 8102 return -EINVAL; 8103 8104 /* only iter constructor should have extra arguments */ 8105 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8106 return -EINVAL; 8107 8108 if (flags & KF_ITER_NEXT) { 8109 /* bpf_iter_<type>_next() should return pointer */ 8110 t = btf_type_skip_modifiers(btf, func->type, NULL); 8111 if (!t || !btf_type_is_ptr(t)) 8112 return -EINVAL; 8113 } 8114 8115 if (flags & KF_ITER_DESTROY) { 8116 /* bpf_iter_<type>_destroy() should return void */ 8117 t = btf_type_by_id(btf, func->type); 8118 if (!t || !btf_type_is_void(t)) 8119 return -EINVAL; 8120 } 8121 8122 return 0; 8123 } 8124 8125 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8126 { 8127 const struct btf_type *func; 8128 const char *func_name; 8129 int err; 8130 8131 /* any kfunc should be FUNC -> FUNC_PROTO */ 8132 func = btf_type_by_id(btf, func_id); 8133 if (!func || !btf_type_is_func(func)) 8134 return -EINVAL; 8135 8136 /* sanity check kfunc name */ 8137 func_name = btf_name_by_offset(btf, func->name_off); 8138 if (!func_name || !func_name[0]) 8139 return -EINVAL; 8140 8141 func = btf_type_by_id(btf, func->type); 8142 if (!func || !btf_type_is_func_proto(func)) 8143 return -EINVAL; 8144 8145 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8146 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8147 if (err) 8148 return err; 8149 } 8150 8151 return 0; 8152 } 8153 8154 /* Kernel Function (kfunc) BTF ID set registration API */ 8155 8156 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8157 const struct btf_kfunc_id_set *kset) 8158 { 8159 struct btf_kfunc_hook_filter *hook_filter; 8160 struct btf_id_set8 *add_set = kset->set; 8161 bool vmlinux_set = !btf_is_module(btf); 8162 bool add_filter = !!kset->filter; 8163 struct btf_kfunc_set_tab *tab; 8164 struct btf_id_set8 *set; 8165 u32 set_cnt, i; 8166 int ret; 8167 8168 if (hook >= BTF_KFUNC_HOOK_MAX) { 8169 ret = -EINVAL; 8170 goto end; 8171 } 8172 8173 if (!add_set->cnt) 8174 return 0; 8175 8176 tab = btf->kfunc_set_tab; 8177 8178 if (tab && add_filter) { 8179 u32 i; 8180 8181 hook_filter = &tab->hook_filters[hook]; 8182 for (i = 0; i < hook_filter->nr_filters; i++) { 8183 if (hook_filter->filters[i] == kset->filter) { 8184 add_filter = false; 8185 break; 8186 } 8187 } 8188 8189 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8190 ret = -E2BIG; 8191 goto end; 8192 } 8193 } 8194 8195 if (!tab) { 8196 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8197 if (!tab) 8198 return -ENOMEM; 8199 btf->kfunc_set_tab = tab; 8200 } 8201 8202 set = tab->sets[hook]; 8203 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8204 * for module sets. 8205 */ 8206 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8207 ret = -EINVAL; 8208 goto end; 8209 } 8210 8211 /* In case of vmlinux sets, there may be more than one set being 8212 * registered per hook. To create a unified set, we allocate a new set 8213 * and concatenate all individual sets being registered. While each set 8214 * is individually sorted, they may become unsorted when concatenated, 8215 * hence re-sorting the final set again is required to make binary 8216 * searching the set using btf_id_set8_contains function work. 8217 * 8218 * For module sets, we need to allocate as we may need to relocate 8219 * BTF ids. 8220 */ 8221 set_cnt = set ? set->cnt : 0; 8222 8223 if (set_cnt > U32_MAX - add_set->cnt) { 8224 ret = -EOVERFLOW; 8225 goto end; 8226 } 8227 8228 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8229 ret = -E2BIG; 8230 goto end; 8231 } 8232 8233 /* Grow set */ 8234 set = krealloc(tab->sets[hook], 8235 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8236 GFP_KERNEL | __GFP_NOWARN); 8237 if (!set) { 8238 ret = -ENOMEM; 8239 goto end; 8240 } 8241 8242 /* For newly allocated set, initialize set->cnt to 0 */ 8243 if (!tab->sets[hook]) 8244 set->cnt = 0; 8245 tab->sets[hook] = set; 8246 8247 /* Concatenate the two sets */ 8248 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8249 /* Now that the set is copied, update with relocated BTF ids */ 8250 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8251 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8252 8253 set->cnt += add_set->cnt; 8254 8255 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8256 8257 if (add_filter) { 8258 hook_filter = &tab->hook_filters[hook]; 8259 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8260 } 8261 return 0; 8262 end: 8263 btf_free_kfunc_set_tab(btf); 8264 return ret; 8265 } 8266 8267 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8268 enum btf_kfunc_hook hook, 8269 u32 kfunc_btf_id, 8270 const struct bpf_prog *prog) 8271 { 8272 struct btf_kfunc_hook_filter *hook_filter; 8273 struct btf_id_set8 *set; 8274 u32 *id, i; 8275 8276 if (hook >= BTF_KFUNC_HOOK_MAX) 8277 return NULL; 8278 if (!btf->kfunc_set_tab) 8279 return NULL; 8280 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8281 for (i = 0; i < hook_filter->nr_filters; i++) { 8282 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8283 return NULL; 8284 } 8285 set = btf->kfunc_set_tab->sets[hook]; 8286 if (!set) 8287 return NULL; 8288 id = btf_id_set8_contains(set, kfunc_btf_id); 8289 if (!id) 8290 return NULL; 8291 /* The flags for BTF ID are located next to it */ 8292 return id + 1; 8293 } 8294 8295 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8296 { 8297 switch (prog_type) { 8298 case BPF_PROG_TYPE_UNSPEC: 8299 return BTF_KFUNC_HOOK_COMMON; 8300 case BPF_PROG_TYPE_XDP: 8301 return BTF_KFUNC_HOOK_XDP; 8302 case BPF_PROG_TYPE_SCHED_CLS: 8303 return BTF_KFUNC_HOOK_TC; 8304 case BPF_PROG_TYPE_STRUCT_OPS: 8305 return BTF_KFUNC_HOOK_STRUCT_OPS; 8306 case BPF_PROG_TYPE_TRACING: 8307 case BPF_PROG_TYPE_LSM: 8308 return BTF_KFUNC_HOOK_TRACING; 8309 case BPF_PROG_TYPE_SYSCALL: 8310 return BTF_KFUNC_HOOK_SYSCALL; 8311 case BPF_PROG_TYPE_CGROUP_SKB: 8312 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8313 return BTF_KFUNC_HOOK_CGROUP_SKB; 8314 case BPF_PROG_TYPE_SCHED_ACT: 8315 return BTF_KFUNC_HOOK_SCHED_ACT; 8316 case BPF_PROG_TYPE_SK_SKB: 8317 return BTF_KFUNC_HOOK_SK_SKB; 8318 case BPF_PROG_TYPE_SOCKET_FILTER: 8319 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8320 case BPF_PROG_TYPE_LWT_OUT: 8321 case BPF_PROG_TYPE_LWT_IN: 8322 case BPF_PROG_TYPE_LWT_XMIT: 8323 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8324 return BTF_KFUNC_HOOK_LWT; 8325 case BPF_PROG_TYPE_NETFILTER: 8326 return BTF_KFUNC_HOOK_NETFILTER; 8327 case BPF_PROG_TYPE_KPROBE: 8328 return BTF_KFUNC_HOOK_KPROBE; 8329 default: 8330 return BTF_KFUNC_HOOK_MAX; 8331 } 8332 } 8333 8334 /* Caution: 8335 * Reference to the module (obtained using btf_try_get_module) corresponding to 8336 * the struct btf *MUST* be held when calling this function from verifier 8337 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8338 * keeping the reference for the duration of the call provides the necessary 8339 * protection for looking up a well-formed btf->kfunc_set_tab. 8340 */ 8341 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8342 u32 kfunc_btf_id, 8343 const struct bpf_prog *prog) 8344 { 8345 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8346 enum btf_kfunc_hook hook; 8347 u32 *kfunc_flags; 8348 8349 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8350 if (kfunc_flags) 8351 return kfunc_flags; 8352 8353 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8354 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8355 } 8356 8357 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8358 const struct bpf_prog *prog) 8359 { 8360 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8361 } 8362 8363 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8364 const struct btf_kfunc_id_set *kset) 8365 { 8366 struct btf *btf; 8367 int ret, i; 8368 8369 btf = btf_get_module_btf(kset->owner); 8370 if (!btf) 8371 return check_btf_kconfigs(kset->owner, "kfunc"); 8372 if (IS_ERR(btf)) 8373 return PTR_ERR(btf); 8374 8375 for (i = 0; i < kset->set->cnt; i++) { 8376 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8377 kset->set->pairs[i].flags); 8378 if (ret) 8379 goto err_out; 8380 } 8381 8382 ret = btf_populate_kfunc_set(btf, hook, kset); 8383 8384 err_out: 8385 btf_put(btf); 8386 return ret; 8387 } 8388 8389 /* This function must be invoked only from initcalls/module init functions */ 8390 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8391 const struct btf_kfunc_id_set *kset) 8392 { 8393 enum btf_kfunc_hook hook; 8394 8395 /* All kfuncs need to be tagged as such in BTF. 8396 * WARN() for initcall registrations that do not check errors. 8397 */ 8398 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8399 WARN_ON(!kset->owner); 8400 return -EINVAL; 8401 } 8402 8403 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8404 return __register_btf_kfunc_id_set(hook, kset); 8405 } 8406 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8407 8408 /* This function must be invoked only from initcalls/module init functions */ 8409 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8410 { 8411 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8412 } 8413 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8414 8415 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8416 { 8417 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8418 struct btf_id_dtor_kfunc *dtor; 8419 8420 if (!tab) 8421 return -ENOENT; 8422 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8423 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8424 */ 8425 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8426 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8427 if (!dtor) 8428 return -ENOENT; 8429 return dtor->kfunc_btf_id; 8430 } 8431 8432 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8433 { 8434 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8435 const struct btf_param *args; 8436 s32 dtor_btf_id; 8437 u32 nr_args, i; 8438 8439 for (i = 0; i < cnt; i++) { 8440 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8441 8442 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8443 if (!dtor_func || !btf_type_is_func(dtor_func)) 8444 return -EINVAL; 8445 8446 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8447 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8448 return -EINVAL; 8449 8450 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8451 t = btf_type_by_id(btf, dtor_func_proto->type); 8452 if (!t || !btf_type_is_void(t)) 8453 return -EINVAL; 8454 8455 nr_args = btf_type_vlen(dtor_func_proto); 8456 if (nr_args != 1) 8457 return -EINVAL; 8458 args = btf_params(dtor_func_proto); 8459 t = btf_type_by_id(btf, args[0].type); 8460 /* Allow any pointer type, as width on targets Linux supports 8461 * will be same for all pointer types (i.e. sizeof(void *)) 8462 */ 8463 if (!t || !btf_type_is_ptr(t)) 8464 return -EINVAL; 8465 } 8466 return 0; 8467 } 8468 8469 /* This function must be invoked only from initcalls/module init functions */ 8470 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8471 struct module *owner) 8472 { 8473 struct btf_id_dtor_kfunc_tab *tab; 8474 struct btf *btf; 8475 u32 tab_cnt, i; 8476 int ret; 8477 8478 btf = btf_get_module_btf(owner); 8479 if (!btf) 8480 return check_btf_kconfigs(owner, "dtor kfuncs"); 8481 if (IS_ERR(btf)) 8482 return PTR_ERR(btf); 8483 8484 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8485 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8486 ret = -E2BIG; 8487 goto end; 8488 } 8489 8490 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8491 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8492 if (ret < 0) 8493 goto end; 8494 8495 tab = btf->dtor_kfunc_tab; 8496 /* Only one call allowed for modules */ 8497 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8498 ret = -EINVAL; 8499 goto end; 8500 } 8501 8502 tab_cnt = tab ? tab->cnt : 0; 8503 if (tab_cnt > U32_MAX - add_cnt) { 8504 ret = -EOVERFLOW; 8505 goto end; 8506 } 8507 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8508 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8509 ret = -E2BIG; 8510 goto end; 8511 } 8512 8513 tab = krealloc(btf->dtor_kfunc_tab, 8514 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8515 GFP_KERNEL | __GFP_NOWARN); 8516 if (!tab) { 8517 ret = -ENOMEM; 8518 goto end; 8519 } 8520 8521 if (!btf->dtor_kfunc_tab) 8522 tab->cnt = 0; 8523 btf->dtor_kfunc_tab = tab; 8524 8525 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8526 8527 /* remap BTF ids based on BTF relocation (if any) */ 8528 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8529 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8530 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8531 } 8532 8533 tab->cnt += add_cnt; 8534 8535 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8536 8537 end: 8538 if (ret) 8539 btf_free_dtor_kfunc_tab(btf); 8540 btf_put(btf); 8541 return ret; 8542 } 8543 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8544 8545 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8546 8547 /* Check local and target types for compatibility. This check is used for 8548 * type-based CO-RE relocations and follow slightly different rules than 8549 * field-based relocations. This function assumes that root types were already 8550 * checked for name match. Beyond that initial root-level name check, names 8551 * are completely ignored. Compatibility rules are as follows: 8552 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8553 * kind should match for local and target types (i.e., STRUCT is not 8554 * compatible with UNION); 8555 * - for ENUMs/ENUM64s, the size is ignored; 8556 * - for INT, size and signedness are ignored; 8557 * - for ARRAY, dimensionality is ignored, element types are checked for 8558 * compatibility recursively; 8559 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8560 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8561 * - FUNC_PROTOs are compatible if they have compatible signature: same 8562 * number of input args and compatible return and argument types. 8563 * These rules are not set in stone and probably will be adjusted as we get 8564 * more experience with using BPF CO-RE relocations. 8565 */ 8566 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8567 const struct btf *targ_btf, __u32 targ_id) 8568 { 8569 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8570 MAX_TYPES_ARE_COMPAT_DEPTH); 8571 } 8572 8573 #define MAX_TYPES_MATCH_DEPTH 2 8574 8575 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8576 const struct btf *targ_btf, u32 targ_id) 8577 { 8578 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8579 MAX_TYPES_MATCH_DEPTH); 8580 } 8581 8582 static bool bpf_core_is_flavor_sep(const char *s) 8583 { 8584 /* check X___Y name pattern, where X and Y are not underscores */ 8585 return s[0] != '_' && /* X */ 8586 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8587 s[4] != '_'; /* Y */ 8588 } 8589 8590 size_t bpf_core_essential_name_len(const char *name) 8591 { 8592 size_t n = strlen(name); 8593 int i; 8594 8595 for (i = n - 5; i >= 0; i--) { 8596 if (bpf_core_is_flavor_sep(name + i)) 8597 return i + 1; 8598 } 8599 return n; 8600 } 8601 8602 static void bpf_free_cands(struct bpf_cand_cache *cands) 8603 { 8604 if (!cands->cnt) 8605 /* empty candidate array was allocated on stack */ 8606 return; 8607 kfree(cands); 8608 } 8609 8610 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8611 { 8612 kfree(cands->name); 8613 kfree(cands); 8614 } 8615 8616 #define VMLINUX_CAND_CACHE_SIZE 31 8617 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8618 8619 #define MODULE_CAND_CACHE_SIZE 31 8620 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8621 8622 static void __print_cand_cache(struct bpf_verifier_log *log, 8623 struct bpf_cand_cache **cache, 8624 int cache_size) 8625 { 8626 struct bpf_cand_cache *cc; 8627 int i, j; 8628 8629 for (i = 0; i < cache_size; i++) { 8630 cc = cache[i]; 8631 if (!cc) 8632 continue; 8633 bpf_log(log, "[%d]%s(", i, cc->name); 8634 for (j = 0; j < cc->cnt; j++) { 8635 bpf_log(log, "%d", cc->cands[j].id); 8636 if (j < cc->cnt - 1) 8637 bpf_log(log, " "); 8638 } 8639 bpf_log(log, "), "); 8640 } 8641 } 8642 8643 static void print_cand_cache(struct bpf_verifier_log *log) 8644 { 8645 mutex_lock(&cand_cache_mutex); 8646 bpf_log(log, "vmlinux_cand_cache:"); 8647 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8648 bpf_log(log, "\nmodule_cand_cache:"); 8649 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8650 bpf_log(log, "\n"); 8651 mutex_unlock(&cand_cache_mutex); 8652 } 8653 8654 static u32 hash_cands(struct bpf_cand_cache *cands) 8655 { 8656 return jhash(cands->name, cands->name_len, 0); 8657 } 8658 8659 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8660 struct bpf_cand_cache **cache, 8661 int cache_size) 8662 { 8663 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8664 8665 if (cc && cc->name_len == cands->name_len && 8666 !strncmp(cc->name, cands->name, cands->name_len)) 8667 return cc; 8668 return NULL; 8669 } 8670 8671 static size_t sizeof_cands(int cnt) 8672 { 8673 return offsetof(struct bpf_cand_cache, cands[cnt]); 8674 } 8675 8676 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8677 struct bpf_cand_cache **cache, 8678 int cache_size) 8679 { 8680 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8681 8682 if (*cc) { 8683 bpf_free_cands_from_cache(*cc); 8684 *cc = NULL; 8685 } 8686 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8687 if (!new_cands) { 8688 bpf_free_cands(cands); 8689 return ERR_PTR(-ENOMEM); 8690 } 8691 /* strdup the name, since it will stay in cache. 8692 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8693 */ 8694 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8695 bpf_free_cands(cands); 8696 if (!new_cands->name) { 8697 kfree(new_cands); 8698 return ERR_PTR(-ENOMEM); 8699 } 8700 *cc = new_cands; 8701 return new_cands; 8702 } 8703 8704 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8705 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8706 int cache_size) 8707 { 8708 struct bpf_cand_cache *cc; 8709 int i, j; 8710 8711 for (i = 0; i < cache_size; i++) { 8712 cc = cache[i]; 8713 if (!cc) 8714 continue; 8715 if (!btf) { 8716 /* when new module is loaded purge all of module_cand_cache, 8717 * since new module might have candidates with the name 8718 * that matches cached cands. 8719 */ 8720 bpf_free_cands_from_cache(cc); 8721 cache[i] = NULL; 8722 continue; 8723 } 8724 /* when module is unloaded purge cache entries 8725 * that match module's btf 8726 */ 8727 for (j = 0; j < cc->cnt; j++) 8728 if (cc->cands[j].btf == btf) { 8729 bpf_free_cands_from_cache(cc); 8730 cache[i] = NULL; 8731 break; 8732 } 8733 } 8734 8735 } 8736 8737 static void purge_cand_cache(struct btf *btf) 8738 { 8739 mutex_lock(&cand_cache_mutex); 8740 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8741 mutex_unlock(&cand_cache_mutex); 8742 } 8743 #endif 8744 8745 static struct bpf_cand_cache * 8746 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8747 int targ_start_id) 8748 { 8749 struct bpf_cand_cache *new_cands; 8750 const struct btf_type *t; 8751 const char *targ_name; 8752 size_t targ_essent_len; 8753 int n, i; 8754 8755 n = btf_nr_types(targ_btf); 8756 for (i = targ_start_id; i < n; i++) { 8757 t = btf_type_by_id(targ_btf, i); 8758 if (btf_kind(t) != cands->kind) 8759 continue; 8760 8761 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8762 if (!targ_name) 8763 continue; 8764 8765 /* the resched point is before strncmp to make sure that search 8766 * for non-existing name will have a chance to schedule(). 8767 */ 8768 cond_resched(); 8769 8770 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8771 continue; 8772 8773 targ_essent_len = bpf_core_essential_name_len(targ_name); 8774 if (targ_essent_len != cands->name_len) 8775 continue; 8776 8777 /* most of the time there is only one candidate for a given kind+name pair */ 8778 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8779 if (!new_cands) { 8780 bpf_free_cands(cands); 8781 return ERR_PTR(-ENOMEM); 8782 } 8783 8784 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8785 bpf_free_cands(cands); 8786 cands = new_cands; 8787 cands->cands[cands->cnt].btf = targ_btf; 8788 cands->cands[cands->cnt].id = i; 8789 cands->cnt++; 8790 } 8791 return cands; 8792 } 8793 8794 static struct bpf_cand_cache * 8795 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8796 { 8797 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8798 const struct btf *local_btf = ctx->btf; 8799 const struct btf_type *local_type; 8800 const struct btf *main_btf; 8801 size_t local_essent_len; 8802 struct btf *mod_btf; 8803 const char *name; 8804 int id; 8805 8806 main_btf = bpf_get_btf_vmlinux(); 8807 if (IS_ERR(main_btf)) 8808 return ERR_CAST(main_btf); 8809 if (!main_btf) 8810 return ERR_PTR(-EINVAL); 8811 8812 local_type = btf_type_by_id(local_btf, local_type_id); 8813 if (!local_type) 8814 return ERR_PTR(-EINVAL); 8815 8816 name = btf_name_by_offset(local_btf, local_type->name_off); 8817 if (str_is_empty(name)) 8818 return ERR_PTR(-EINVAL); 8819 local_essent_len = bpf_core_essential_name_len(name); 8820 8821 cands = &local_cand; 8822 cands->name = name; 8823 cands->kind = btf_kind(local_type); 8824 cands->name_len = local_essent_len; 8825 8826 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8827 /* cands is a pointer to stack here */ 8828 if (cc) { 8829 if (cc->cnt) 8830 return cc; 8831 goto check_modules; 8832 } 8833 8834 /* Attempt to find target candidates in vmlinux BTF first */ 8835 cands = bpf_core_add_cands(cands, main_btf, 1); 8836 if (IS_ERR(cands)) 8837 return ERR_CAST(cands); 8838 8839 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8840 8841 /* populate cache even when cands->cnt == 0 */ 8842 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8843 if (IS_ERR(cc)) 8844 return ERR_CAST(cc); 8845 8846 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8847 if (cc->cnt) 8848 return cc; 8849 8850 check_modules: 8851 /* cands is a pointer to stack here and cands->cnt == 0 */ 8852 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8853 if (cc) 8854 /* if cache has it return it even if cc->cnt == 0 */ 8855 return cc; 8856 8857 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8858 spin_lock_bh(&btf_idr_lock); 8859 idr_for_each_entry(&btf_idr, mod_btf, id) { 8860 if (!btf_is_module(mod_btf)) 8861 continue; 8862 /* linear search could be slow hence unlock/lock 8863 * the IDR to avoiding holding it for too long 8864 */ 8865 btf_get(mod_btf); 8866 spin_unlock_bh(&btf_idr_lock); 8867 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8868 btf_put(mod_btf); 8869 if (IS_ERR(cands)) 8870 return ERR_CAST(cands); 8871 spin_lock_bh(&btf_idr_lock); 8872 } 8873 spin_unlock_bh(&btf_idr_lock); 8874 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8875 * or pointer to stack if cands->cnd == 0. 8876 * Copy it into the cache even when cands->cnt == 0 and 8877 * return the result. 8878 */ 8879 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8880 } 8881 8882 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8883 int relo_idx, void *insn) 8884 { 8885 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8886 struct bpf_core_cand_list cands = {}; 8887 struct bpf_core_relo_res targ_res; 8888 struct bpf_core_spec *specs; 8889 int err; 8890 8891 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8892 * into arrays of btf_ids of struct fields and array indices. 8893 */ 8894 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8895 if (!specs) 8896 return -ENOMEM; 8897 8898 if (need_cands) { 8899 struct bpf_cand_cache *cc; 8900 int i; 8901 8902 mutex_lock(&cand_cache_mutex); 8903 cc = bpf_core_find_cands(ctx, relo->type_id); 8904 if (IS_ERR(cc)) { 8905 bpf_log(ctx->log, "target candidate search failed for %d\n", 8906 relo->type_id); 8907 err = PTR_ERR(cc); 8908 goto out; 8909 } 8910 if (cc->cnt) { 8911 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8912 if (!cands.cands) { 8913 err = -ENOMEM; 8914 goto out; 8915 } 8916 } 8917 for (i = 0; i < cc->cnt; i++) { 8918 bpf_log(ctx->log, 8919 "CO-RE relocating %s %s: found target candidate [%d]\n", 8920 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8921 cands.cands[i].btf = cc->cands[i].btf; 8922 cands.cands[i].id = cc->cands[i].id; 8923 } 8924 cands.len = cc->cnt; 8925 /* cand_cache_mutex needs to span the cache lookup and 8926 * copy of btf pointer into bpf_core_cand_list, 8927 * since module can be unloaded while bpf_core_calc_relo_insn 8928 * is working with module's btf. 8929 */ 8930 } 8931 8932 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8933 &targ_res); 8934 if (err) 8935 goto out; 8936 8937 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8938 &targ_res); 8939 8940 out: 8941 kfree(specs); 8942 if (need_cands) { 8943 kfree(cands.cands); 8944 mutex_unlock(&cand_cache_mutex); 8945 if (ctx->log->level & BPF_LOG_LEVEL2) 8946 print_cand_cache(ctx->log); 8947 } 8948 return err; 8949 } 8950 8951 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8952 const struct bpf_reg_state *reg, 8953 const char *field_name, u32 btf_id, const char *suffix) 8954 { 8955 struct btf *btf = reg->btf; 8956 const struct btf_type *walk_type, *safe_type; 8957 const char *tname; 8958 char safe_tname[64]; 8959 long ret, safe_id; 8960 const struct btf_member *member; 8961 u32 i; 8962 8963 walk_type = btf_type_by_id(btf, reg->btf_id); 8964 if (!walk_type) 8965 return false; 8966 8967 tname = btf_name_by_offset(btf, walk_type->name_off); 8968 8969 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8970 if (ret >= sizeof(safe_tname)) 8971 return false; 8972 8973 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8974 if (safe_id < 0) 8975 return false; 8976 8977 safe_type = btf_type_by_id(btf, safe_id); 8978 if (!safe_type) 8979 return false; 8980 8981 for_each_member(i, safe_type, member) { 8982 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8983 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8984 u32 id; 8985 8986 if (!btf_type_is_ptr(mtype)) 8987 continue; 8988 8989 btf_type_skip_modifiers(btf, mtype->type, &id); 8990 /* If we match on both type and name, the field is considered trusted. */ 8991 if (btf_id == id && !strcmp(field_name, m_name)) 8992 return true; 8993 } 8994 8995 return false; 8996 } 8997 8998 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8999 const struct btf *reg_btf, u32 reg_id, 9000 const struct btf *arg_btf, u32 arg_id) 9001 { 9002 const char *reg_name, *arg_name, *search_needle; 9003 const struct btf_type *reg_type, *arg_type; 9004 int reg_len, arg_len, cmp_len; 9005 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9006 9007 reg_type = btf_type_by_id(reg_btf, reg_id); 9008 if (!reg_type) 9009 return false; 9010 9011 arg_type = btf_type_by_id(arg_btf, arg_id); 9012 if (!arg_type) 9013 return false; 9014 9015 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9016 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9017 9018 reg_len = strlen(reg_name); 9019 arg_len = strlen(arg_name); 9020 9021 /* Exactly one of the two type names may be suffixed with ___init, so 9022 * if the strings are the same size, they can't possibly be no-cast 9023 * aliases of one another. If you have two of the same type names, e.g. 9024 * they're both nf_conn___init, it would be improper to return true 9025 * because they are _not_ no-cast aliases, they are the same type. 9026 */ 9027 if (reg_len == arg_len) 9028 return false; 9029 9030 /* Either of the two names must be the other name, suffixed with ___init. */ 9031 if ((reg_len != arg_len + pattern_len) && 9032 (arg_len != reg_len + pattern_len)) 9033 return false; 9034 9035 if (reg_len < arg_len) { 9036 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9037 cmp_len = reg_len; 9038 } else { 9039 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9040 cmp_len = arg_len; 9041 } 9042 9043 if (!search_needle) 9044 return false; 9045 9046 /* ___init suffix must come at the end of the name */ 9047 if (*(search_needle + pattern_len) != '\0') 9048 return false; 9049 9050 return !strncmp(reg_name, arg_name, cmp_len); 9051 } 9052 9053 #ifdef CONFIG_BPF_JIT 9054 static int 9055 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9056 struct bpf_verifier_log *log) 9057 { 9058 struct btf_struct_ops_tab *tab, *new_tab; 9059 int i, err; 9060 9061 tab = btf->struct_ops_tab; 9062 if (!tab) { 9063 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 9064 GFP_KERNEL); 9065 if (!tab) 9066 return -ENOMEM; 9067 tab->capacity = 4; 9068 btf->struct_ops_tab = tab; 9069 } 9070 9071 for (i = 0; i < tab->cnt; i++) 9072 if (tab->ops[i].st_ops == st_ops) 9073 return -EEXIST; 9074 9075 if (tab->cnt == tab->capacity) { 9076 new_tab = krealloc(tab, 9077 offsetof(struct btf_struct_ops_tab, 9078 ops[tab->capacity * 2]), 9079 GFP_KERNEL); 9080 if (!new_tab) 9081 return -ENOMEM; 9082 tab = new_tab; 9083 tab->capacity *= 2; 9084 btf->struct_ops_tab = tab; 9085 } 9086 9087 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9088 9089 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9090 if (err) 9091 return err; 9092 9093 btf->struct_ops_tab->cnt++; 9094 9095 return 0; 9096 } 9097 9098 const struct bpf_struct_ops_desc * 9099 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9100 { 9101 const struct bpf_struct_ops_desc *st_ops_list; 9102 unsigned int i; 9103 u32 cnt; 9104 9105 if (!value_id) 9106 return NULL; 9107 if (!btf->struct_ops_tab) 9108 return NULL; 9109 9110 cnt = btf->struct_ops_tab->cnt; 9111 st_ops_list = btf->struct_ops_tab->ops; 9112 for (i = 0; i < cnt; i++) { 9113 if (st_ops_list[i].value_id == value_id) 9114 return &st_ops_list[i]; 9115 } 9116 9117 return NULL; 9118 } 9119 9120 const struct bpf_struct_ops_desc * 9121 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9122 { 9123 const struct bpf_struct_ops_desc *st_ops_list; 9124 unsigned int i; 9125 u32 cnt; 9126 9127 if (!type_id) 9128 return NULL; 9129 if (!btf->struct_ops_tab) 9130 return NULL; 9131 9132 cnt = btf->struct_ops_tab->cnt; 9133 st_ops_list = btf->struct_ops_tab->ops; 9134 for (i = 0; i < cnt; i++) { 9135 if (st_ops_list[i].type_id == type_id) 9136 return &st_ops_list[i]; 9137 } 9138 9139 return NULL; 9140 } 9141 9142 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9143 { 9144 struct bpf_verifier_log *log; 9145 struct btf *btf; 9146 int err = 0; 9147 9148 btf = btf_get_module_btf(st_ops->owner); 9149 if (!btf) 9150 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9151 if (IS_ERR(btf)) 9152 return PTR_ERR(btf); 9153 9154 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9155 if (!log) { 9156 err = -ENOMEM; 9157 goto errout; 9158 } 9159 9160 log->level = BPF_LOG_KERNEL; 9161 9162 err = btf_add_struct_ops(btf, st_ops, log); 9163 9164 errout: 9165 kfree(log); 9166 btf_put(btf); 9167 9168 return err; 9169 } 9170 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9171 #endif 9172 9173 bool btf_param_match_suffix(const struct btf *btf, 9174 const struct btf_param *arg, 9175 const char *suffix) 9176 { 9177 int suffix_len = strlen(suffix), len; 9178 const char *param_name; 9179 9180 /* In the future, this can be ported to use BTF tagging */ 9181 param_name = btf_name_by_offset(btf, arg->name_off); 9182 if (str_is_empty(param_name)) 9183 return false; 9184 len = strlen(param_name); 9185 if (len <= suffix_len) 9186 return false; 9187 param_name += len - suffix_len; 9188 return !strncmp(param_name, suffix, suffix_len); 9189 } 9190