1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 #include <linux/overflow.h> 30 31 #include <net/netfilter/nf_bpf_link.h> 32 33 #include <net/sock.h> 34 #include <net/xdp.h> 35 #include "../tools/lib/bpf/relo_core.h" 36 37 /* BTF (BPF Type Format) is the meta data format which describes 38 * the data types of BPF program/map. Hence, it basically focus 39 * on the C programming language which the modern BPF is primary 40 * using. 41 * 42 * ELF Section: 43 * ~~~~~~~~~~~ 44 * The BTF data is stored under the ".BTF" ELF section 45 * 46 * struct btf_type: 47 * ~~~~~~~~~~~~~~~ 48 * Each 'struct btf_type' object describes a C data type. 49 * Depending on the type it is describing, a 'struct btf_type' 50 * object may be followed by more data. F.e. 51 * To describe an array, 'struct btf_type' is followed by 52 * 'struct btf_array'. 53 * 54 * 'struct btf_type' and any extra data following it are 55 * 4 bytes aligned. 56 * 57 * Type section: 58 * ~~~~~~~~~~~~~ 59 * The BTF type section contains a list of 'struct btf_type' objects. 60 * Each one describes a C type. Recall from the above section 61 * that a 'struct btf_type' object could be immediately followed by extra 62 * data in order to describe some particular C types. 63 * 64 * type_id: 65 * ~~~~~~~ 66 * Each btf_type object is identified by a type_id. The type_id 67 * is implicitly implied by the location of the btf_type object in 68 * the BTF type section. The first one has type_id 1. The second 69 * one has type_id 2...etc. Hence, an earlier btf_type has 70 * a smaller type_id. 71 * 72 * A btf_type object may refer to another btf_type object by using 73 * type_id (i.e. the "type" in the "struct btf_type"). 74 * 75 * NOTE that we cannot assume any reference-order. 76 * A btf_type object can refer to an earlier btf_type object 77 * but it can also refer to a later btf_type object. 78 * 79 * For example, to describe "const void *". A btf_type 80 * object describing "const" may refer to another btf_type 81 * object describing "void *". This type-reference is done 82 * by specifying type_id: 83 * 84 * [1] CONST (anon) type_id=2 85 * [2] PTR (anon) type_id=0 86 * 87 * The above is the btf_verifier debug log: 88 * - Each line started with "[?]" is a btf_type object 89 * - [?] is the type_id of the btf_type object. 90 * - CONST/PTR is the BTF_KIND_XXX 91 * - "(anon)" is the name of the type. It just 92 * happens that CONST and PTR has no name. 93 * - type_id=XXX is the 'u32 type' in btf_type 94 * 95 * NOTE: "void" has type_id 0 96 * 97 * String section: 98 * ~~~~~~~~~~~~~~ 99 * The BTF string section contains the names used by the type section. 100 * Each string is referred by an "offset" from the beginning of the 101 * string section. 102 * 103 * Each string is '\0' terminated. 104 * 105 * The first character in the string section must be '\0' 106 * which is used to mean 'anonymous'. Some btf_type may not 107 * have a name. 108 */ 109 110 /* BTF verification: 111 * 112 * To verify BTF data, two passes are needed. 113 * 114 * Pass #1 115 * ~~~~~~~ 116 * The first pass is to collect all btf_type objects to 117 * an array: "btf->types". 118 * 119 * Depending on the C type that a btf_type is describing, 120 * a btf_type may be followed by extra data. We don't know 121 * how many btf_type is there, and more importantly we don't 122 * know where each btf_type is located in the type section. 123 * 124 * Without knowing the location of each type_id, most verifications 125 * cannot be done. e.g. an earlier btf_type may refer to a later 126 * btf_type (recall the "const void *" above), so we cannot 127 * check this type-reference in the first pass. 128 * 129 * In the first pass, it still does some verifications (e.g. 130 * checking the name is a valid offset to the string section). 131 * 132 * Pass #2 133 * ~~~~~~~ 134 * The main focus is to resolve a btf_type that is referring 135 * to another type. 136 * 137 * We have to ensure the referring type: 138 * 1) does exist in the BTF (i.e. in btf->types[]) 139 * 2) does not cause a loop: 140 * struct A { 141 * struct B b; 142 * }; 143 * 144 * struct B { 145 * struct A a; 146 * }; 147 * 148 * btf_type_needs_resolve() decides if a btf_type needs 149 * to be resolved. 150 * 151 * The needs_resolve type implements the "resolve()" ops which 152 * essentially does a DFS and detects backedge. 153 * 154 * During resolve (or DFS), different C types have different 155 * "RESOLVED" conditions. 156 * 157 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 158 * members because a member is always referring to another 159 * type. A struct's member can be treated as "RESOLVED" if 160 * it is referring to a BTF_KIND_PTR. Otherwise, the 161 * following valid C struct would be rejected: 162 * 163 * struct A { 164 * int m; 165 * struct A *a; 166 * }; 167 * 168 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 169 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 170 * detect a pointer loop, e.g.: 171 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 172 * ^ | 173 * +-----------------------------------------+ 174 * 175 */ 176 177 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 178 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 179 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 180 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 181 #define BITS_ROUNDUP_BYTES(bits) \ 182 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 183 184 #define BTF_INFO_MASK 0x9f00ffff 185 #define BTF_INT_MASK 0x0fffffff 186 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 187 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 188 189 /* 16MB for 64k structs and each has 16 members and 190 * a few MB spaces for the string section. 191 * The hard limit is S32_MAX. 192 */ 193 #define BTF_MAX_SIZE (16 * 1024 * 1024) 194 195 #define for_each_member_from(i, from, struct_type, member) \ 196 for (i = from, member = btf_type_member(struct_type) + from; \ 197 i < btf_type_vlen(struct_type); \ 198 i++, member++) 199 200 #define for_each_vsi_from(i, from, struct_type, member) \ 201 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 202 i < btf_type_vlen(struct_type); \ 203 i++, member++) 204 205 DEFINE_IDR(btf_idr); 206 DEFINE_SPINLOCK(btf_idr_lock); 207 208 enum btf_kfunc_hook { 209 BTF_KFUNC_HOOK_COMMON, 210 BTF_KFUNC_HOOK_XDP, 211 BTF_KFUNC_HOOK_TC, 212 BTF_KFUNC_HOOK_STRUCT_OPS, 213 BTF_KFUNC_HOOK_TRACING, 214 BTF_KFUNC_HOOK_SYSCALL, 215 BTF_KFUNC_HOOK_FMODRET, 216 BTF_KFUNC_HOOK_CGROUP, 217 BTF_KFUNC_HOOK_SCHED_ACT, 218 BTF_KFUNC_HOOK_SK_SKB, 219 BTF_KFUNC_HOOK_SOCKET_FILTER, 220 BTF_KFUNC_HOOK_LWT, 221 BTF_KFUNC_HOOK_NETFILTER, 222 BTF_KFUNC_HOOK_KPROBE, 223 BTF_KFUNC_HOOK_MAX, 224 }; 225 226 enum { 227 BTF_KFUNC_SET_MAX_CNT = 256, 228 BTF_DTOR_KFUNC_MAX_CNT = 256, 229 BTF_KFUNC_FILTER_MAX_CNT = 16, 230 }; 231 232 struct btf_kfunc_hook_filter { 233 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 234 u32 nr_filters; 235 }; 236 237 struct btf_kfunc_set_tab { 238 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 239 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 240 }; 241 242 struct btf_id_dtor_kfunc_tab { 243 u32 cnt; 244 struct btf_id_dtor_kfunc dtors[]; 245 }; 246 247 struct btf_struct_ops_tab { 248 u32 cnt; 249 u32 capacity; 250 struct bpf_struct_ops_desc ops[]; 251 }; 252 253 struct btf { 254 void *data; 255 struct btf_type **types; 256 u32 *resolved_ids; 257 u32 *resolved_sizes; 258 const char *strings; 259 void *nohdr_data; 260 struct btf_header hdr; 261 u32 nr_types; /* includes VOID for base BTF */ 262 u32 types_size; 263 u32 data_size; 264 refcount_t refcnt; 265 u32 id; 266 struct rcu_head rcu; 267 struct btf_kfunc_set_tab *kfunc_set_tab; 268 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 269 struct btf_struct_metas *struct_meta_tab; 270 struct btf_struct_ops_tab *struct_ops_tab; 271 272 /* split BTF support */ 273 struct btf *base_btf; 274 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 275 u32 start_str_off; /* first string offset (0 for base BTF) */ 276 char name[MODULE_NAME_LEN]; 277 bool kernel_btf; 278 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 279 }; 280 281 enum verifier_phase { 282 CHECK_META, 283 CHECK_TYPE, 284 }; 285 286 struct resolve_vertex { 287 const struct btf_type *t; 288 u32 type_id; 289 u16 next_member; 290 }; 291 292 enum visit_state { 293 NOT_VISITED, 294 VISITED, 295 RESOLVED, 296 }; 297 298 enum resolve_mode { 299 RESOLVE_TBD, /* To Be Determined */ 300 RESOLVE_PTR, /* Resolving for Pointer */ 301 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 302 * or array 303 */ 304 }; 305 306 #define MAX_RESOLVE_DEPTH 32 307 308 struct btf_sec_info { 309 u32 off; 310 u32 len; 311 }; 312 313 struct btf_verifier_env { 314 struct btf *btf; 315 u8 *visit_states; 316 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 317 struct bpf_verifier_log log; 318 u32 log_type_id; 319 u32 top_stack; 320 enum verifier_phase phase; 321 enum resolve_mode resolve_mode; 322 }; 323 324 static const char * const btf_kind_str[NR_BTF_KINDS] = { 325 [BTF_KIND_UNKN] = "UNKNOWN", 326 [BTF_KIND_INT] = "INT", 327 [BTF_KIND_PTR] = "PTR", 328 [BTF_KIND_ARRAY] = "ARRAY", 329 [BTF_KIND_STRUCT] = "STRUCT", 330 [BTF_KIND_UNION] = "UNION", 331 [BTF_KIND_ENUM] = "ENUM", 332 [BTF_KIND_FWD] = "FWD", 333 [BTF_KIND_TYPEDEF] = "TYPEDEF", 334 [BTF_KIND_VOLATILE] = "VOLATILE", 335 [BTF_KIND_CONST] = "CONST", 336 [BTF_KIND_RESTRICT] = "RESTRICT", 337 [BTF_KIND_FUNC] = "FUNC", 338 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 339 [BTF_KIND_VAR] = "VAR", 340 [BTF_KIND_DATASEC] = "DATASEC", 341 [BTF_KIND_FLOAT] = "FLOAT", 342 [BTF_KIND_DECL_TAG] = "DECL_TAG", 343 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 344 [BTF_KIND_ENUM64] = "ENUM64", 345 }; 346 347 const char *btf_type_str(const struct btf_type *t) 348 { 349 return btf_kind_str[BTF_INFO_KIND(t->info)]; 350 } 351 352 /* Chunk size we use in safe copy of data to be shown. */ 353 #define BTF_SHOW_OBJ_SAFE_SIZE 32 354 355 /* 356 * This is the maximum size of a base type value (equivalent to a 357 * 128-bit int); if we are at the end of our safe buffer and have 358 * less than 16 bytes space we can't be assured of being able 359 * to copy the next type safely, so in such cases we will initiate 360 * a new copy. 361 */ 362 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 363 364 /* Type name size */ 365 #define BTF_SHOW_NAME_SIZE 80 366 367 /* 368 * The suffix of a type that indicates it cannot alias another type when 369 * comparing BTF IDs for kfunc invocations. 370 */ 371 #define NOCAST_ALIAS_SUFFIX "___init" 372 373 /* 374 * Common data to all BTF show operations. Private show functions can add 375 * their own data to a structure containing a struct btf_show and consult it 376 * in the show callback. See btf_type_show() below. 377 * 378 * One challenge with showing nested data is we want to skip 0-valued 379 * data, but in order to figure out whether a nested object is all zeros 380 * we need to walk through it. As a result, we need to make two passes 381 * when handling structs, unions and arrays; the first path simply looks 382 * for nonzero data, while the second actually does the display. The first 383 * pass is signalled by show->state.depth_check being set, and if we 384 * encounter a non-zero value we set show->state.depth_to_show to 385 * the depth at which we encountered it. When we have completed the 386 * first pass, we will know if anything needs to be displayed if 387 * depth_to_show > depth. See btf_[struct,array]_show() for the 388 * implementation of this. 389 * 390 * Another problem is we want to ensure the data for display is safe to 391 * access. To support this, the anonymous "struct {} obj" tracks the data 392 * object and our safe copy of it. We copy portions of the data needed 393 * to the object "copy" buffer, but because its size is limited to 394 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 395 * traverse larger objects for display. 396 * 397 * The various data type show functions all start with a call to 398 * btf_show_start_type() which returns a pointer to the safe copy 399 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 400 * raw data itself). btf_show_obj_safe() is responsible for 401 * using copy_from_kernel_nofault() to update the safe data if necessary 402 * as we traverse the object's data. skbuff-like semantics are 403 * used: 404 * 405 * - obj.head points to the start of the toplevel object for display 406 * - obj.size is the size of the toplevel object 407 * - obj.data points to the current point in the original data at 408 * which our safe data starts. obj.data will advance as we copy 409 * portions of the data. 410 * 411 * In most cases a single copy will suffice, but larger data structures 412 * such as "struct task_struct" will require many copies. The logic in 413 * btf_show_obj_safe() handles the logic that determines if a new 414 * copy_from_kernel_nofault() is needed. 415 */ 416 struct btf_show { 417 u64 flags; 418 void *target; /* target of show operation (seq file, buffer) */ 419 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 420 const struct btf *btf; 421 /* below are used during iteration */ 422 struct { 423 u8 depth; 424 u8 depth_to_show; 425 u8 depth_check; 426 u8 array_member:1, 427 array_terminated:1; 428 u16 array_encoding; 429 u32 type_id; 430 int status; /* non-zero for error */ 431 const struct btf_type *type; 432 const struct btf_member *member; 433 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 434 } state; 435 struct { 436 u32 size; 437 void *head; 438 void *data; 439 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 440 } obj; 441 }; 442 443 struct btf_kind_operations { 444 s32 (*check_meta)(struct btf_verifier_env *env, 445 const struct btf_type *t, 446 u32 meta_left); 447 int (*resolve)(struct btf_verifier_env *env, 448 const struct resolve_vertex *v); 449 int (*check_member)(struct btf_verifier_env *env, 450 const struct btf_type *struct_type, 451 const struct btf_member *member, 452 const struct btf_type *member_type); 453 int (*check_kflag_member)(struct btf_verifier_env *env, 454 const struct btf_type *struct_type, 455 const struct btf_member *member, 456 const struct btf_type *member_type); 457 void (*log_details)(struct btf_verifier_env *env, 458 const struct btf_type *t); 459 void (*show)(const struct btf *btf, const struct btf_type *t, 460 u32 type_id, void *data, u8 bits_offsets, 461 struct btf_show *show); 462 }; 463 464 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 465 static struct btf_type btf_void; 466 467 static int btf_resolve(struct btf_verifier_env *env, 468 const struct btf_type *t, u32 type_id); 469 470 static int btf_func_check(struct btf_verifier_env *env, 471 const struct btf_type *t); 472 473 static bool btf_type_is_modifier(const struct btf_type *t) 474 { 475 /* Some of them is not strictly a C modifier 476 * but they are grouped into the same bucket 477 * for BTF concern: 478 * A type (t) that refers to another 479 * type through t->type AND its size cannot 480 * be determined without following the t->type. 481 * 482 * ptr does not fall into this bucket 483 * because its size is always sizeof(void *). 484 */ 485 switch (BTF_INFO_KIND(t->info)) { 486 case BTF_KIND_TYPEDEF: 487 case BTF_KIND_VOLATILE: 488 case BTF_KIND_CONST: 489 case BTF_KIND_RESTRICT: 490 case BTF_KIND_TYPE_TAG: 491 return true; 492 } 493 494 return false; 495 } 496 497 bool btf_type_is_void(const struct btf_type *t) 498 { 499 return t == &btf_void; 500 } 501 502 static bool btf_type_is_datasec(const struct btf_type *t) 503 { 504 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 505 } 506 507 static bool btf_type_is_decl_tag(const struct btf_type *t) 508 { 509 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 510 } 511 512 static bool btf_type_nosize(const struct btf_type *t) 513 { 514 return btf_type_is_void(t) || btf_type_is_fwd(t) || 515 btf_type_is_func(t) || btf_type_is_func_proto(t) || 516 btf_type_is_decl_tag(t); 517 } 518 519 static bool btf_type_nosize_or_null(const struct btf_type *t) 520 { 521 return !t || btf_type_nosize(t); 522 } 523 524 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 525 { 526 return btf_type_is_func(t) || btf_type_is_struct(t) || 527 btf_type_is_var(t) || btf_type_is_typedef(t); 528 } 529 530 bool btf_is_vmlinux(const struct btf *btf) 531 { 532 return btf->kernel_btf && !btf->base_btf; 533 } 534 535 u32 btf_nr_types(const struct btf *btf) 536 { 537 u32 total = 0; 538 539 while (btf) { 540 total += btf->nr_types; 541 btf = btf->base_btf; 542 } 543 544 return total; 545 } 546 547 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 548 { 549 const struct btf_type *t; 550 const char *tname; 551 u32 i, total; 552 553 total = btf_nr_types(btf); 554 for (i = 1; i < total; i++) { 555 t = btf_type_by_id(btf, i); 556 if (BTF_INFO_KIND(t->info) != kind) 557 continue; 558 559 tname = btf_name_by_offset(btf, t->name_off); 560 if (!strcmp(tname, name)) 561 return i; 562 } 563 564 return -ENOENT; 565 } 566 567 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 568 { 569 struct btf *btf; 570 s32 ret; 571 int id; 572 573 btf = bpf_get_btf_vmlinux(); 574 if (IS_ERR(btf)) 575 return PTR_ERR(btf); 576 if (!btf) 577 return -EINVAL; 578 579 ret = btf_find_by_name_kind(btf, name, kind); 580 /* ret is never zero, since btf_find_by_name_kind returns 581 * positive btf_id or negative error. 582 */ 583 if (ret > 0) { 584 btf_get(btf); 585 *btf_p = btf; 586 return ret; 587 } 588 589 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 590 spin_lock_bh(&btf_idr_lock); 591 idr_for_each_entry(&btf_idr, btf, id) { 592 if (!btf_is_module(btf)) 593 continue; 594 /* linear search could be slow hence unlock/lock 595 * the IDR to avoiding holding it for too long 596 */ 597 btf_get(btf); 598 spin_unlock_bh(&btf_idr_lock); 599 ret = btf_find_by_name_kind(btf, name, kind); 600 if (ret > 0) { 601 *btf_p = btf; 602 return ret; 603 } 604 btf_put(btf); 605 spin_lock_bh(&btf_idr_lock); 606 } 607 spin_unlock_bh(&btf_idr_lock); 608 return ret; 609 } 610 EXPORT_SYMBOL_GPL(bpf_find_btf_id); 611 612 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 613 u32 id, u32 *res_id) 614 { 615 const struct btf_type *t = btf_type_by_id(btf, id); 616 617 while (btf_type_is_modifier(t)) { 618 id = t->type; 619 t = btf_type_by_id(btf, t->type); 620 } 621 622 if (res_id) 623 *res_id = id; 624 625 return t; 626 } 627 628 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 629 u32 id, u32 *res_id) 630 { 631 const struct btf_type *t; 632 633 t = btf_type_skip_modifiers(btf, id, NULL); 634 if (!btf_type_is_ptr(t)) 635 return NULL; 636 637 return btf_type_skip_modifiers(btf, t->type, res_id); 638 } 639 640 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 641 u32 id, u32 *res_id) 642 { 643 const struct btf_type *ptype; 644 645 ptype = btf_type_resolve_ptr(btf, id, res_id); 646 if (ptype && btf_type_is_func_proto(ptype)) 647 return ptype; 648 649 return NULL; 650 } 651 652 /* Types that act only as a source, not sink or intermediate 653 * type when resolving. 654 */ 655 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 656 { 657 return btf_type_is_var(t) || 658 btf_type_is_decl_tag(t) || 659 btf_type_is_datasec(t); 660 } 661 662 /* What types need to be resolved? 663 * 664 * btf_type_is_modifier() is an obvious one. 665 * 666 * btf_type_is_struct() because its member refers to 667 * another type (through member->type). 668 * 669 * btf_type_is_var() because the variable refers to 670 * another type. btf_type_is_datasec() holds multiple 671 * btf_type_is_var() types that need resolving. 672 * 673 * btf_type_is_array() because its element (array->type) 674 * refers to another type. Array can be thought of a 675 * special case of struct while array just has the same 676 * member-type repeated by array->nelems of times. 677 */ 678 static bool btf_type_needs_resolve(const struct btf_type *t) 679 { 680 return btf_type_is_modifier(t) || 681 btf_type_is_ptr(t) || 682 btf_type_is_struct(t) || 683 btf_type_is_array(t) || 684 btf_type_is_var(t) || 685 btf_type_is_func(t) || 686 btf_type_is_decl_tag(t) || 687 btf_type_is_datasec(t); 688 } 689 690 /* t->size can be used */ 691 static bool btf_type_has_size(const struct btf_type *t) 692 { 693 switch (BTF_INFO_KIND(t->info)) { 694 case BTF_KIND_INT: 695 case BTF_KIND_STRUCT: 696 case BTF_KIND_UNION: 697 case BTF_KIND_ENUM: 698 case BTF_KIND_DATASEC: 699 case BTF_KIND_FLOAT: 700 case BTF_KIND_ENUM64: 701 return true; 702 } 703 704 return false; 705 } 706 707 static const char *btf_int_encoding_str(u8 encoding) 708 { 709 if (encoding == 0) 710 return "(none)"; 711 else if (encoding == BTF_INT_SIGNED) 712 return "SIGNED"; 713 else if (encoding == BTF_INT_CHAR) 714 return "CHAR"; 715 else if (encoding == BTF_INT_BOOL) 716 return "BOOL"; 717 else 718 return "UNKN"; 719 } 720 721 static u32 btf_type_int(const struct btf_type *t) 722 { 723 return *(u32 *)(t + 1); 724 } 725 726 static const struct btf_array *btf_type_array(const struct btf_type *t) 727 { 728 return (const struct btf_array *)(t + 1); 729 } 730 731 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 732 { 733 return (const struct btf_enum *)(t + 1); 734 } 735 736 static const struct btf_var *btf_type_var(const struct btf_type *t) 737 { 738 return (const struct btf_var *)(t + 1); 739 } 740 741 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 742 { 743 return (const struct btf_decl_tag *)(t + 1); 744 } 745 746 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 747 { 748 return (const struct btf_enum64 *)(t + 1); 749 } 750 751 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 752 { 753 return kind_ops[BTF_INFO_KIND(t->info)]; 754 } 755 756 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 757 { 758 if (!BTF_STR_OFFSET_VALID(offset)) 759 return false; 760 761 while (offset < btf->start_str_off) 762 btf = btf->base_btf; 763 764 offset -= btf->start_str_off; 765 return offset < btf->hdr.str_len; 766 } 767 768 static bool __btf_name_char_ok(char c, bool first) 769 { 770 if ((first ? !isalpha(c) : 771 !isalnum(c)) && 772 c != '_' && 773 c != '.') 774 return false; 775 return true; 776 } 777 778 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 779 { 780 while (offset < btf->start_str_off) 781 btf = btf->base_btf; 782 783 offset -= btf->start_str_off; 784 if (offset < btf->hdr.str_len) 785 return &btf->strings[offset]; 786 787 return NULL; 788 } 789 790 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 791 { 792 /* offset must be valid */ 793 const char *src = btf_str_by_offset(btf, offset); 794 const char *src_limit; 795 796 if (!__btf_name_char_ok(*src, true)) 797 return false; 798 799 /* set a limit on identifier length */ 800 src_limit = src + KSYM_NAME_LEN; 801 src++; 802 while (*src && src < src_limit) { 803 if (!__btf_name_char_ok(*src, false)) 804 return false; 805 src++; 806 } 807 808 return !*src; 809 } 810 811 /* Allow any printable character in DATASEC names */ 812 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 813 { 814 /* offset must be valid */ 815 const char *src = btf_str_by_offset(btf, offset); 816 const char *src_limit; 817 818 if (!*src) 819 return false; 820 821 /* set a limit on identifier length */ 822 src_limit = src + KSYM_NAME_LEN; 823 while (*src && src < src_limit) { 824 if (!isprint(*src)) 825 return false; 826 src++; 827 } 828 829 return !*src; 830 } 831 832 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 833 { 834 const char *name; 835 836 if (!offset) 837 return "(anon)"; 838 839 name = btf_str_by_offset(btf, offset); 840 return name ?: "(invalid-name-offset)"; 841 } 842 843 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 844 { 845 return btf_str_by_offset(btf, offset); 846 } 847 848 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 849 { 850 while (type_id < btf->start_id) 851 btf = btf->base_btf; 852 853 type_id -= btf->start_id; 854 if (type_id >= btf->nr_types) 855 return NULL; 856 return btf->types[type_id]; 857 } 858 EXPORT_SYMBOL_GPL(btf_type_by_id); 859 860 /* 861 * Check that the type @t is a regular int. This means that @t is not 862 * a bit field and it has the same size as either of u8/u16/u32/u64 863 * or __int128. If @expected_size is not zero, then size of @t should 864 * be the same. A caller should already have checked that the type @t 865 * is an integer. 866 */ 867 static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size) 868 { 869 u32 int_data = btf_type_int(t); 870 u8 nr_bits = BTF_INT_BITS(int_data); 871 u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 872 873 return BITS_PER_BYTE_MASKED(nr_bits) == 0 && 874 BTF_INT_OFFSET(int_data) == 0 && 875 (nr_bytes <= 16 && is_power_of_2(nr_bytes)) && 876 (expected_size == 0 || nr_bytes == expected_size); 877 } 878 879 static bool btf_type_int_is_regular(const struct btf_type *t) 880 { 881 return __btf_type_int_is_regular(t, 0); 882 } 883 884 bool btf_type_is_i32(const struct btf_type *t) 885 { 886 return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4); 887 } 888 889 bool btf_type_is_i64(const struct btf_type *t) 890 { 891 return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8); 892 } 893 894 bool btf_type_is_primitive(const struct btf_type *t) 895 { 896 return (btf_type_is_int(t) && btf_type_int_is_regular(t)) || 897 btf_is_any_enum(t); 898 } 899 900 /* 901 * Check that given struct member is a regular int with expected 902 * offset and size. 903 */ 904 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 905 const struct btf_member *m, 906 u32 expected_offset, u32 expected_size) 907 { 908 const struct btf_type *t; 909 u32 id, int_data; 910 u8 nr_bits; 911 912 id = m->type; 913 t = btf_type_id_size(btf, &id, NULL); 914 if (!t || !btf_type_is_int(t)) 915 return false; 916 917 int_data = btf_type_int(t); 918 nr_bits = BTF_INT_BITS(int_data); 919 if (btf_type_kflag(s)) { 920 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 921 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 922 923 /* if kflag set, int should be a regular int and 924 * bit offset should be at byte boundary. 925 */ 926 return !bitfield_size && 927 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 928 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 929 } 930 931 if (BTF_INT_OFFSET(int_data) || 932 BITS_PER_BYTE_MASKED(m->offset) || 933 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 934 BITS_PER_BYTE_MASKED(nr_bits) || 935 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 936 return false; 937 938 return true; 939 } 940 941 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 942 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 943 u32 id) 944 { 945 const struct btf_type *t = btf_type_by_id(btf, id); 946 947 while (btf_type_is_modifier(t) && 948 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 949 t = btf_type_by_id(btf, t->type); 950 } 951 952 return t; 953 } 954 955 #define BTF_SHOW_MAX_ITER 10 956 957 #define BTF_KIND_BIT(kind) (1ULL << kind) 958 959 /* 960 * Populate show->state.name with type name information. 961 * Format of type name is 962 * 963 * [.member_name = ] (type_name) 964 */ 965 static const char *btf_show_name(struct btf_show *show) 966 { 967 /* BTF_MAX_ITER array suffixes "[]" */ 968 const char *array_suffixes = "[][][][][][][][][][]"; 969 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 970 /* BTF_MAX_ITER pointer suffixes "*" */ 971 const char *ptr_suffixes = "**********"; 972 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 973 const char *name = NULL, *prefix = "", *parens = ""; 974 const struct btf_member *m = show->state.member; 975 const struct btf_type *t; 976 const struct btf_array *array; 977 u32 id = show->state.type_id; 978 const char *member = NULL; 979 bool show_member = false; 980 u64 kinds = 0; 981 int i; 982 983 show->state.name[0] = '\0'; 984 985 /* 986 * Don't show type name if we're showing an array member; 987 * in that case we show the array type so don't need to repeat 988 * ourselves for each member. 989 */ 990 if (show->state.array_member) 991 return ""; 992 993 /* Retrieve member name, if any. */ 994 if (m) { 995 member = btf_name_by_offset(show->btf, m->name_off); 996 show_member = strlen(member) > 0; 997 id = m->type; 998 } 999 1000 /* 1001 * Start with type_id, as we have resolved the struct btf_type * 1002 * via btf_modifier_show() past the parent typedef to the child 1003 * struct, int etc it is defined as. In such cases, the type_id 1004 * still represents the starting type while the struct btf_type * 1005 * in our show->state points at the resolved type of the typedef. 1006 */ 1007 t = btf_type_by_id(show->btf, id); 1008 if (!t) 1009 return ""; 1010 1011 /* 1012 * The goal here is to build up the right number of pointer and 1013 * array suffixes while ensuring the type name for a typedef 1014 * is represented. Along the way we accumulate a list of 1015 * BTF kinds we have encountered, since these will inform later 1016 * display; for example, pointer types will not require an 1017 * opening "{" for struct, we will just display the pointer value. 1018 * 1019 * We also want to accumulate the right number of pointer or array 1020 * indices in the format string while iterating until we get to 1021 * the typedef/pointee/array member target type. 1022 * 1023 * We start by pointing at the end of pointer and array suffix 1024 * strings; as we accumulate pointers and arrays we move the pointer 1025 * or array string backwards so it will show the expected number of 1026 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1027 * and/or arrays and typedefs are supported as a precaution. 1028 * 1029 * We also want to get typedef name while proceeding to resolve 1030 * type it points to so that we can add parentheses if it is a 1031 * "typedef struct" etc. 1032 */ 1033 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1034 1035 switch (BTF_INFO_KIND(t->info)) { 1036 case BTF_KIND_TYPEDEF: 1037 if (!name) 1038 name = btf_name_by_offset(show->btf, 1039 t->name_off); 1040 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1041 id = t->type; 1042 break; 1043 case BTF_KIND_ARRAY: 1044 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1045 parens = "["; 1046 if (!t) 1047 return ""; 1048 array = btf_type_array(t); 1049 if (array_suffix > array_suffixes) 1050 array_suffix -= 2; 1051 id = array->type; 1052 break; 1053 case BTF_KIND_PTR: 1054 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1055 if (ptr_suffix > ptr_suffixes) 1056 ptr_suffix -= 1; 1057 id = t->type; 1058 break; 1059 default: 1060 id = 0; 1061 break; 1062 } 1063 if (!id) 1064 break; 1065 t = btf_type_skip_qualifiers(show->btf, id); 1066 } 1067 /* We may not be able to represent this type; bail to be safe */ 1068 if (i == BTF_SHOW_MAX_ITER) 1069 return ""; 1070 1071 if (!name) 1072 name = btf_name_by_offset(show->btf, t->name_off); 1073 1074 switch (BTF_INFO_KIND(t->info)) { 1075 case BTF_KIND_STRUCT: 1076 case BTF_KIND_UNION: 1077 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1078 "struct" : "union"; 1079 /* if it's an array of struct/union, parens is already set */ 1080 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1081 parens = "{"; 1082 break; 1083 case BTF_KIND_ENUM: 1084 case BTF_KIND_ENUM64: 1085 prefix = "enum"; 1086 break; 1087 default: 1088 break; 1089 } 1090 1091 /* pointer does not require parens */ 1092 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1093 parens = ""; 1094 /* typedef does not require struct/union/enum prefix */ 1095 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1096 prefix = ""; 1097 1098 if (!name) 1099 name = ""; 1100 1101 /* Even if we don't want type name info, we want parentheses etc */ 1102 if (show->flags & BTF_SHOW_NONAME) 1103 snprintf(show->state.name, sizeof(show->state.name), "%s", 1104 parens); 1105 else 1106 snprintf(show->state.name, sizeof(show->state.name), 1107 "%s%s%s(%s%s%s%s%s%s)%s", 1108 /* first 3 strings comprise ".member = " */ 1109 show_member ? "." : "", 1110 show_member ? member : "", 1111 show_member ? " = " : "", 1112 /* ...next is our prefix (struct, enum, etc) */ 1113 prefix, 1114 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1115 /* ...this is the type name itself */ 1116 name, 1117 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1118 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1119 array_suffix, parens); 1120 1121 return show->state.name; 1122 } 1123 1124 static const char *__btf_show_indent(struct btf_show *show) 1125 { 1126 const char *indents = " "; 1127 const char *indent = &indents[strlen(indents)]; 1128 1129 if ((indent - show->state.depth) >= indents) 1130 return indent - show->state.depth; 1131 return indents; 1132 } 1133 1134 static const char *btf_show_indent(struct btf_show *show) 1135 { 1136 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1137 } 1138 1139 static const char *btf_show_newline(struct btf_show *show) 1140 { 1141 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1142 } 1143 1144 static const char *btf_show_delim(struct btf_show *show) 1145 { 1146 if (show->state.depth == 0) 1147 return ""; 1148 1149 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1150 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1151 return "|"; 1152 1153 return ","; 1154 } 1155 1156 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1157 { 1158 va_list args; 1159 1160 if (!show->state.depth_check) { 1161 va_start(args, fmt); 1162 show->showfn(show, fmt, args); 1163 va_end(args); 1164 } 1165 } 1166 1167 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1168 * format specifiers to the format specifier passed in; these do the work of 1169 * adding indentation, delimiters etc while the caller simply has to specify 1170 * the type value(s) in the format specifier + value(s). 1171 */ 1172 #define btf_show_type_value(show, fmt, value) \ 1173 do { \ 1174 if ((value) != (__typeof__(value))0 || \ 1175 (show->flags & BTF_SHOW_ZERO) || \ 1176 show->state.depth == 0) { \ 1177 btf_show(show, "%s%s" fmt "%s%s", \ 1178 btf_show_indent(show), \ 1179 btf_show_name(show), \ 1180 value, btf_show_delim(show), \ 1181 btf_show_newline(show)); \ 1182 if (show->state.depth > show->state.depth_to_show) \ 1183 show->state.depth_to_show = show->state.depth; \ 1184 } \ 1185 } while (0) 1186 1187 #define btf_show_type_values(show, fmt, ...) \ 1188 do { \ 1189 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1190 btf_show_name(show), \ 1191 __VA_ARGS__, btf_show_delim(show), \ 1192 btf_show_newline(show)); \ 1193 if (show->state.depth > show->state.depth_to_show) \ 1194 show->state.depth_to_show = show->state.depth; \ 1195 } while (0) 1196 1197 /* How much is left to copy to safe buffer after @data? */ 1198 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1199 { 1200 return show->obj.head + show->obj.size - data; 1201 } 1202 1203 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1204 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1205 { 1206 return data >= show->obj.data && 1207 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1208 } 1209 1210 /* 1211 * If object pointed to by @data of @size falls within our safe buffer, return 1212 * the equivalent pointer to the same safe data. Assumes 1213 * copy_from_kernel_nofault() has already happened and our safe buffer is 1214 * populated. 1215 */ 1216 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1217 { 1218 if (btf_show_obj_is_safe(show, data, size)) 1219 return show->obj.safe + (data - show->obj.data); 1220 return NULL; 1221 } 1222 1223 /* 1224 * Return a safe-to-access version of data pointed to by @data. 1225 * We do this by copying the relevant amount of information 1226 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1227 * 1228 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1229 * safe copy is needed. 1230 * 1231 * Otherwise we need to determine if we have the required amount 1232 * of data (determined by the @data pointer and the size of the 1233 * largest base type we can encounter (represented by 1234 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1235 * that we will be able to print some of the current object, 1236 * and if more is needed a copy will be triggered. 1237 * Some objects such as structs will not fit into the buffer; 1238 * in such cases additional copies when we iterate over their 1239 * members may be needed. 1240 * 1241 * btf_show_obj_safe() is used to return a safe buffer for 1242 * btf_show_start_type(); this ensures that as we recurse into 1243 * nested types we always have safe data for the given type. 1244 * This approach is somewhat wasteful; it's possible for example 1245 * that when iterating over a large union we'll end up copying the 1246 * same data repeatedly, but the goal is safety not performance. 1247 * We use stack data as opposed to per-CPU buffers because the 1248 * iteration over a type can take some time, and preemption handling 1249 * would greatly complicate use of the safe buffer. 1250 */ 1251 static void *btf_show_obj_safe(struct btf_show *show, 1252 const struct btf_type *t, 1253 void *data) 1254 { 1255 const struct btf_type *rt; 1256 int size_left, size; 1257 void *safe = NULL; 1258 1259 if (show->flags & BTF_SHOW_UNSAFE) 1260 return data; 1261 1262 rt = btf_resolve_size(show->btf, t, &size); 1263 if (IS_ERR(rt)) { 1264 show->state.status = PTR_ERR(rt); 1265 return NULL; 1266 } 1267 1268 /* 1269 * Is this toplevel object? If so, set total object size and 1270 * initialize pointers. Otherwise check if we still fall within 1271 * our safe object data. 1272 */ 1273 if (show->state.depth == 0) { 1274 show->obj.size = size; 1275 show->obj.head = data; 1276 } else { 1277 /* 1278 * If the size of the current object is > our remaining 1279 * safe buffer we _may_ need to do a new copy. However 1280 * consider the case of a nested struct; it's size pushes 1281 * us over the safe buffer limit, but showing any individual 1282 * struct members does not. In such cases, we don't need 1283 * to initiate a fresh copy yet; however we definitely need 1284 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1285 * in our buffer, regardless of the current object size. 1286 * The logic here is that as we resolve types we will 1287 * hit a base type at some point, and we need to be sure 1288 * the next chunk of data is safely available to display 1289 * that type info safely. We cannot rely on the size of 1290 * the current object here because it may be much larger 1291 * than our current buffer (e.g. task_struct is 8k). 1292 * All we want to do here is ensure that we can print the 1293 * next basic type, which we can if either 1294 * - the current type size is within the safe buffer; or 1295 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1296 * the safe buffer. 1297 */ 1298 safe = __btf_show_obj_safe(show, data, 1299 min(size, 1300 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1301 } 1302 1303 /* 1304 * We need a new copy to our safe object, either because we haven't 1305 * yet copied and are initializing safe data, or because the data 1306 * we want falls outside the boundaries of the safe object. 1307 */ 1308 if (!safe) { 1309 size_left = btf_show_obj_size_left(show, data); 1310 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1311 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1312 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1313 data, size_left); 1314 if (!show->state.status) { 1315 show->obj.data = data; 1316 safe = show->obj.safe; 1317 } 1318 } 1319 1320 return safe; 1321 } 1322 1323 /* 1324 * Set the type we are starting to show and return a safe data pointer 1325 * to be used for showing the associated data. 1326 */ 1327 static void *btf_show_start_type(struct btf_show *show, 1328 const struct btf_type *t, 1329 u32 type_id, void *data) 1330 { 1331 show->state.type = t; 1332 show->state.type_id = type_id; 1333 show->state.name[0] = '\0'; 1334 1335 return btf_show_obj_safe(show, t, data); 1336 } 1337 1338 static void btf_show_end_type(struct btf_show *show) 1339 { 1340 show->state.type = NULL; 1341 show->state.type_id = 0; 1342 show->state.name[0] = '\0'; 1343 } 1344 1345 static void *btf_show_start_aggr_type(struct btf_show *show, 1346 const struct btf_type *t, 1347 u32 type_id, void *data) 1348 { 1349 void *safe_data = btf_show_start_type(show, t, type_id, data); 1350 1351 if (!safe_data) 1352 return safe_data; 1353 1354 btf_show(show, "%s%s%s", btf_show_indent(show), 1355 btf_show_name(show), 1356 btf_show_newline(show)); 1357 show->state.depth++; 1358 return safe_data; 1359 } 1360 1361 static void btf_show_end_aggr_type(struct btf_show *show, 1362 const char *suffix) 1363 { 1364 show->state.depth--; 1365 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1366 btf_show_delim(show), btf_show_newline(show)); 1367 btf_show_end_type(show); 1368 } 1369 1370 static void btf_show_start_member(struct btf_show *show, 1371 const struct btf_member *m) 1372 { 1373 show->state.member = m; 1374 } 1375 1376 static void btf_show_start_array_member(struct btf_show *show) 1377 { 1378 show->state.array_member = 1; 1379 btf_show_start_member(show, NULL); 1380 } 1381 1382 static void btf_show_end_member(struct btf_show *show) 1383 { 1384 show->state.member = NULL; 1385 } 1386 1387 static void btf_show_end_array_member(struct btf_show *show) 1388 { 1389 show->state.array_member = 0; 1390 btf_show_end_member(show); 1391 } 1392 1393 static void *btf_show_start_array_type(struct btf_show *show, 1394 const struct btf_type *t, 1395 u32 type_id, 1396 u16 array_encoding, 1397 void *data) 1398 { 1399 show->state.array_encoding = array_encoding; 1400 show->state.array_terminated = 0; 1401 return btf_show_start_aggr_type(show, t, type_id, data); 1402 } 1403 1404 static void btf_show_end_array_type(struct btf_show *show) 1405 { 1406 show->state.array_encoding = 0; 1407 show->state.array_terminated = 0; 1408 btf_show_end_aggr_type(show, "]"); 1409 } 1410 1411 static void *btf_show_start_struct_type(struct btf_show *show, 1412 const struct btf_type *t, 1413 u32 type_id, 1414 void *data) 1415 { 1416 return btf_show_start_aggr_type(show, t, type_id, data); 1417 } 1418 1419 static void btf_show_end_struct_type(struct btf_show *show) 1420 { 1421 btf_show_end_aggr_type(show, "}"); 1422 } 1423 1424 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1425 const char *fmt, ...) 1426 { 1427 va_list args; 1428 1429 va_start(args, fmt); 1430 bpf_verifier_vlog(log, fmt, args); 1431 va_end(args); 1432 } 1433 1434 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1435 const char *fmt, ...) 1436 { 1437 struct bpf_verifier_log *log = &env->log; 1438 va_list args; 1439 1440 if (!bpf_verifier_log_needed(log)) 1441 return; 1442 1443 va_start(args, fmt); 1444 bpf_verifier_vlog(log, fmt, args); 1445 va_end(args); 1446 } 1447 1448 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1449 const struct btf_type *t, 1450 bool log_details, 1451 const char *fmt, ...) 1452 { 1453 struct bpf_verifier_log *log = &env->log; 1454 struct btf *btf = env->btf; 1455 va_list args; 1456 1457 if (!bpf_verifier_log_needed(log)) 1458 return; 1459 1460 if (log->level == BPF_LOG_KERNEL) { 1461 /* btf verifier prints all types it is processing via 1462 * btf_verifier_log_type(..., fmt = NULL). 1463 * Skip those prints for in-kernel BTF verification. 1464 */ 1465 if (!fmt) 1466 return; 1467 1468 /* Skip logging when loading module BTF with mismatches permitted */ 1469 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1470 return; 1471 } 1472 1473 __btf_verifier_log(log, "[%u] %s %s%s", 1474 env->log_type_id, 1475 btf_type_str(t), 1476 __btf_name_by_offset(btf, t->name_off), 1477 log_details ? " " : ""); 1478 1479 if (log_details) 1480 btf_type_ops(t)->log_details(env, t); 1481 1482 if (fmt && *fmt) { 1483 __btf_verifier_log(log, " "); 1484 va_start(args, fmt); 1485 bpf_verifier_vlog(log, fmt, args); 1486 va_end(args); 1487 } 1488 1489 __btf_verifier_log(log, "\n"); 1490 } 1491 1492 #define btf_verifier_log_type(env, t, ...) \ 1493 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1494 #define btf_verifier_log_basic(env, t, ...) \ 1495 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1496 1497 __printf(4, 5) 1498 static void btf_verifier_log_member(struct btf_verifier_env *env, 1499 const struct btf_type *struct_type, 1500 const struct btf_member *member, 1501 const char *fmt, ...) 1502 { 1503 struct bpf_verifier_log *log = &env->log; 1504 struct btf *btf = env->btf; 1505 va_list args; 1506 1507 if (!bpf_verifier_log_needed(log)) 1508 return; 1509 1510 if (log->level == BPF_LOG_KERNEL) { 1511 if (!fmt) 1512 return; 1513 1514 /* Skip logging when loading module BTF with mismatches permitted */ 1515 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1516 return; 1517 } 1518 1519 /* The CHECK_META phase already did a btf dump. 1520 * 1521 * If member is logged again, it must hit an error in 1522 * parsing this member. It is useful to print out which 1523 * struct this member belongs to. 1524 */ 1525 if (env->phase != CHECK_META) 1526 btf_verifier_log_type(env, struct_type, NULL); 1527 1528 if (btf_type_kflag(struct_type)) 1529 __btf_verifier_log(log, 1530 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1531 __btf_name_by_offset(btf, member->name_off), 1532 member->type, 1533 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1534 BTF_MEMBER_BIT_OFFSET(member->offset)); 1535 else 1536 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1537 __btf_name_by_offset(btf, member->name_off), 1538 member->type, member->offset); 1539 1540 if (fmt && *fmt) { 1541 __btf_verifier_log(log, " "); 1542 va_start(args, fmt); 1543 bpf_verifier_vlog(log, fmt, args); 1544 va_end(args); 1545 } 1546 1547 __btf_verifier_log(log, "\n"); 1548 } 1549 1550 __printf(4, 5) 1551 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1552 const struct btf_type *datasec_type, 1553 const struct btf_var_secinfo *vsi, 1554 const char *fmt, ...) 1555 { 1556 struct bpf_verifier_log *log = &env->log; 1557 va_list args; 1558 1559 if (!bpf_verifier_log_needed(log)) 1560 return; 1561 if (log->level == BPF_LOG_KERNEL && !fmt) 1562 return; 1563 if (env->phase != CHECK_META) 1564 btf_verifier_log_type(env, datasec_type, NULL); 1565 1566 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1567 vsi->type, vsi->offset, vsi->size); 1568 if (fmt && *fmt) { 1569 __btf_verifier_log(log, " "); 1570 va_start(args, fmt); 1571 bpf_verifier_vlog(log, fmt, args); 1572 va_end(args); 1573 } 1574 1575 __btf_verifier_log(log, "\n"); 1576 } 1577 1578 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1579 u32 btf_data_size) 1580 { 1581 struct bpf_verifier_log *log = &env->log; 1582 const struct btf *btf = env->btf; 1583 const struct btf_header *hdr; 1584 1585 if (!bpf_verifier_log_needed(log)) 1586 return; 1587 1588 if (log->level == BPF_LOG_KERNEL) 1589 return; 1590 hdr = &btf->hdr; 1591 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1592 __btf_verifier_log(log, "version: %u\n", hdr->version); 1593 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1594 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1595 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1596 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1597 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1598 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1599 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1600 } 1601 1602 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1603 { 1604 struct btf *btf = env->btf; 1605 1606 if (btf->types_size == btf->nr_types) { 1607 /* Expand 'types' array */ 1608 1609 struct btf_type **new_types; 1610 u32 expand_by, new_size; 1611 1612 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1613 btf_verifier_log(env, "Exceeded max num of types"); 1614 return -E2BIG; 1615 } 1616 1617 expand_by = max_t(u32, btf->types_size >> 2, 16); 1618 new_size = min_t(u32, BTF_MAX_TYPE, 1619 btf->types_size + expand_by); 1620 1621 new_types = kvcalloc(new_size, sizeof(*new_types), 1622 GFP_KERNEL | __GFP_NOWARN); 1623 if (!new_types) 1624 return -ENOMEM; 1625 1626 if (btf->nr_types == 0) { 1627 if (!btf->base_btf) { 1628 /* lazily init VOID type */ 1629 new_types[0] = &btf_void; 1630 btf->nr_types++; 1631 } 1632 } else { 1633 memcpy(new_types, btf->types, 1634 sizeof(*btf->types) * btf->nr_types); 1635 } 1636 1637 kvfree(btf->types); 1638 btf->types = new_types; 1639 btf->types_size = new_size; 1640 } 1641 1642 btf->types[btf->nr_types++] = t; 1643 1644 return 0; 1645 } 1646 1647 static int btf_alloc_id(struct btf *btf) 1648 { 1649 int id; 1650 1651 idr_preload(GFP_KERNEL); 1652 spin_lock_bh(&btf_idr_lock); 1653 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1654 if (id > 0) 1655 btf->id = id; 1656 spin_unlock_bh(&btf_idr_lock); 1657 idr_preload_end(); 1658 1659 if (WARN_ON_ONCE(!id)) 1660 return -ENOSPC; 1661 1662 return id > 0 ? 0 : id; 1663 } 1664 1665 static void btf_free_id(struct btf *btf) 1666 { 1667 unsigned long flags; 1668 1669 /* 1670 * In map-in-map, calling map_delete_elem() on outer 1671 * map will call bpf_map_put on the inner map. 1672 * It will then eventually call btf_free_id() 1673 * on the inner map. Some of the map_delete_elem() 1674 * implementation may have irq disabled, so 1675 * we need to use the _irqsave() version instead 1676 * of the _bh() version. 1677 */ 1678 spin_lock_irqsave(&btf_idr_lock, flags); 1679 idr_remove(&btf_idr, btf->id); 1680 spin_unlock_irqrestore(&btf_idr_lock, flags); 1681 } 1682 1683 static void btf_free_kfunc_set_tab(struct btf *btf) 1684 { 1685 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1686 int hook; 1687 1688 if (!tab) 1689 return; 1690 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1691 kfree(tab->sets[hook]); 1692 kfree(tab); 1693 btf->kfunc_set_tab = NULL; 1694 } 1695 1696 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1697 { 1698 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1699 1700 if (!tab) 1701 return; 1702 kfree(tab); 1703 btf->dtor_kfunc_tab = NULL; 1704 } 1705 1706 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1707 { 1708 int i; 1709 1710 if (!tab) 1711 return; 1712 for (i = 0; i < tab->cnt; i++) 1713 btf_record_free(tab->types[i].record); 1714 kfree(tab); 1715 } 1716 1717 static void btf_free_struct_meta_tab(struct btf *btf) 1718 { 1719 struct btf_struct_metas *tab = btf->struct_meta_tab; 1720 1721 btf_struct_metas_free(tab); 1722 btf->struct_meta_tab = NULL; 1723 } 1724 1725 static void btf_free_struct_ops_tab(struct btf *btf) 1726 { 1727 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1728 u32 i; 1729 1730 if (!tab) 1731 return; 1732 1733 for (i = 0; i < tab->cnt; i++) 1734 bpf_struct_ops_desc_release(&tab->ops[i]); 1735 1736 kfree(tab); 1737 btf->struct_ops_tab = NULL; 1738 } 1739 1740 static void btf_free(struct btf *btf) 1741 { 1742 btf_free_struct_meta_tab(btf); 1743 btf_free_dtor_kfunc_tab(btf); 1744 btf_free_kfunc_set_tab(btf); 1745 btf_free_struct_ops_tab(btf); 1746 kvfree(btf->types); 1747 kvfree(btf->resolved_sizes); 1748 kvfree(btf->resolved_ids); 1749 /* vmlinux does not allocate btf->data, it simply points it at 1750 * __start_BTF. 1751 */ 1752 if (!btf_is_vmlinux(btf)) 1753 kvfree(btf->data); 1754 kvfree(btf->base_id_map); 1755 kfree(btf); 1756 } 1757 1758 static void btf_free_rcu(struct rcu_head *rcu) 1759 { 1760 struct btf *btf = container_of(rcu, struct btf, rcu); 1761 1762 btf_free(btf); 1763 } 1764 1765 const char *btf_get_name(const struct btf *btf) 1766 { 1767 return btf->name; 1768 } 1769 1770 void btf_get(struct btf *btf) 1771 { 1772 refcount_inc(&btf->refcnt); 1773 } 1774 1775 void btf_put(struct btf *btf) 1776 { 1777 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1778 btf_free_id(btf); 1779 call_rcu(&btf->rcu, btf_free_rcu); 1780 } 1781 } 1782 1783 struct btf *btf_base_btf(const struct btf *btf) 1784 { 1785 return btf->base_btf; 1786 } 1787 1788 const struct btf_header *btf_header(const struct btf *btf) 1789 { 1790 return &btf->hdr; 1791 } 1792 1793 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1794 { 1795 btf->base_btf = (struct btf *)base_btf; 1796 btf->start_id = btf_nr_types(base_btf); 1797 btf->start_str_off = base_btf->hdr.str_len; 1798 } 1799 1800 static int env_resolve_init(struct btf_verifier_env *env) 1801 { 1802 struct btf *btf = env->btf; 1803 u32 nr_types = btf->nr_types; 1804 u32 *resolved_sizes = NULL; 1805 u32 *resolved_ids = NULL; 1806 u8 *visit_states = NULL; 1807 1808 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1809 GFP_KERNEL | __GFP_NOWARN); 1810 if (!resolved_sizes) 1811 goto nomem; 1812 1813 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1814 GFP_KERNEL | __GFP_NOWARN); 1815 if (!resolved_ids) 1816 goto nomem; 1817 1818 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1819 GFP_KERNEL | __GFP_NOWARN); 1820 if (!visit_states) 1821 goto nomem; 1822 1823 btf->resolved_sizes = resolved_sizes; 1824 btf->resolved_ids = resolved_ids; 1825 env->visit_states = visit_states; 1826 1827 return 0; 1828 1829 nomem: 1830 kvfree(resolved_sizes); 1831 kvfree(resolved_ids); 1832 kvfree(visit_states); 1833 return -ENOMEM; 1834 } 1835 1836 static void btf_verifier_env_free(struct btf_verifier_env *env) 1837 { 1838 kvfree(env->visit_states); 1839 kfree(env); 1840 } 1841 1842 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1843 const struct btf_type *next_type) 1844 { 1845 switch (env->resolve_mode) { 1846 case RESOLVE_TBD: 1847 /* int, enum or void is a sink */ 1848 return !btf_type_needs_resolve(next_type); 1849 case RESOLVE_PTR: 1850 /* int, enum, void, struct, array, func or func_proto is a sink 1851 * for ptr 1852 */ 1853 return !btf_type_is_modifier(next_type) && 1854 !btf_type_is_ptr(next_type); 1855 case RESOLVE_STRUCT_OR_ARRAY: 1856 /* int, enum, void, ptr, func or func_proto is a sink 1857 * for struct and array 1858 */ 1859 return !btf_type_is_modifier(next_type) && 1860 !btf_type_is_array(next_type) && 1861 !btf_type_is_struct(next_type); 1862 default: 1863 BUG(); 1864 } 1865 } 1866 1867 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1868 u32 type_id) 1869 { 1870 /* base BTF types should be resolved by now */ 1871 if (type_id < env->btf->start_id) 1872 return true; 1873 1874 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1875 } 1876 1877 static int env_stack_push(struct btf_verifier_env *env, 1878 const struct btf_type *t, u32 type_id) 1879 { 1880 const struct btf *btf = env->btf; 1881 struct resolve_vertex *v; 1882 1883 if (env->top_stack == MAX_RESOLVE_DEPTH) 1884 return -E2BIG; 1885 1886 if (type_id < btf->start_id 1887 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1888 return -EEXIST; 1889 1890 env->visit_states[type_id - btf->start_id] = VISITED; 1891 1892 v = &env->stack[env->top_stack++]; 1893 v->t = t; 1894 v->type_id = type_id; 1895 v->next_member = 0; 1896 1897 if (env->resolve_mode == RESOLVE_TBD) { 1898 if (btf_type_is_ptr(t)) 1899 env->resolve_mode = RESOLVE_PTR; 1900 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1901 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static void env_stack_set_next_member(struct btf_verifier_env *env, 1908 u16 next_member) 1909 { 1910 env->stack[env->top_stack - 1].next_member = next_member; 1911 } 1912 1913 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1914 u32 resolved_type_id, 1915 u32 resolved_size) 1916 { 1917 u32 type_id = env->stack[--(env->top_stack)].type_id; 1918 struct btf *btf = env->btf; 1919 1920 type_id -= btf->start_id; /* adjust to local type id */ 1921 btf->resolved_sizes[type_id] = resolved_size; 1922 btf->resolved_ids[type_id] = resolved_type_id; 1923 env->visit_states[type_id] = RESOLVED; 1924 } 1925 1926 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1927 { 1928 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1929 } 1930 1931 /* Resolve the size of a passed-in "type" 1932 * 1933 * type: is an array (e.g. u32 array[x][y]) 1934 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1935 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1936 * corresponds to the return type. 1937 * *elem_type: u32 1938 * *elem_id: id of u32 1939 * *total_nelems: (x * y). Hence, individual elem size is 1940 * (*type_size / *total_nelems) 1941 * *type_id: id of type if it's changed within the function, 0 if not 1942 * 1943 * type: is not an array (e.g. const struct X) 1944 * return type: type "struct X" 1945 * *type_size: sizeof(struct X) 1946 * *elem_type: same as return type ("struct X") 1947 * *elem_id: 0 1948 * *total_nelems: 1 1949 * *type_id: id of type if it's changed within the function, 0 if not 1950 */ 1951 static const struct btf_type * 1952 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1953 u32 *type_size, const struct btf_type **elem_type, 1954 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1955 { 1956 const struct btf_type *array_type = NULL; 1957 const struct btf_array *array = NULL; 1958 u32 i, size, nelems = 1, id = 0; 1959 1960 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1961 switch (BTF_INFO_KIND(type->info)) { 1962 /* type->size can be used */ 1963 case BTF_KIND_INT: 1964 case BTF_KIND_STRUCT: 1965 case BTF_KIND_UNION: 1966 case BTF_KIND_ENUM: 1967 case BTF_KIND_FLOAT: 1968 case BTF_KIND_ENUM64: 1969 size = type->size; 1970 goto resolved; 1971 1972 case BTF_KIND_PTR: 1973 size = sizeof(void *); 1974 goto resolved; 1975 1976 /* Modifiers */ 1977 case BTF_KIND_TYPEDEF: 1978 case BTF_KIND_VOLATILE: 1979 case BTF_KIND_CONST: 1980 case BTF_KIND_RESTRICT: 1981 case BTF_KIND_TYPE_TAG: 1982 id = type->type; 1983 type = btf_type_by_id(btf, type->type); 1984 break; 1985 1986 case BTF_KIND_ARRAY: 1987 if (!array_type) 1988 array_type = type; 1989 array = btf_type_array(type); 1990 if (nelems && array->nelems > U32_MAX / nelems) 1991 return ERR_PTR(-EINVAL); 1992 nelems *= array->nelems; 1993 type = btf_type_by_id(btf, array->type); 1994 break; 1995 1996 /* type without size */ 1997 default: 1998 return ERR_PTR(-EINVAL); 1999 } 2000 } 2001 2002 return ERR_PTR(-EINVAL); 2003 2004 resolved: 2005 if (nelems && size > U32_MAX / nelems) 2006 return ERR_PTR(-EINVAL); 2007 2008 *type_size = nelems * size; 2009 if (total_nelems) 2010 *total_nelems = nelems; 2011 if (elem_type) 2012 *elem_type = type; 2013 if (elem_id) 2014 *elem_id = array ? array->type : 0; 2015 if (type_id && id) 2016 *type_id = id; 2017 2018 return array_type ? : type; 2019 } 2020 2021 const struct btf_type * 2022 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2023 u32 *type_size) 2024 { 2025 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2026 } 2027 2028 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2029 { 2030 while (type_id < btf->start_id) 2031 btf = btf->base_btf; 2032 2033 return btf->resolved_ids[type_id - btf->start_id]; 2034 } 2035 2036 /* The input param "type_id" must point to a needs_resolve type */ 2037 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2038 u32 *type_id) 2039 { 2040 *type_id = btf_resolved_type_id(btf, *type_id); 2041 return btf_type_by_id(btf, *type_id); 2042 } 2043 2044 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2045 { 2046 while (type_id < btf->start_id) 2047 btf = btf->base_btf; 2048 2049 return btf->resolved_sizes[type_id - btf->start_id]; 2050 } 2051 2052 const struct btf_type *btf_type_id_size(const struct btf *btf, 2053 u32 *type_id, u32 *ret_size) 2054 { 2055 const struct btf_type *size_type; 2056 u32 size_type_id = *type_id; 2057 u32 size = 0; 2058 2059 size_type = btf_type_by_id(btf, size_type_id); 2060 if (btf_type_nosize_or_null(size_type)) 2061 return NULL; 2062 2063 if (btf_type_has_size(size_type)) { 2064 size = size_type->size; 2065 } else if (btf_type_is_array(size_type)) { 2066 size = btf_resolved_type_size(btf, size_type_id); 2067 } else if (btf_type_is_ptr(size_type)) { 2068 size = sizeof(void *); 2069 } else { 2070 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2071 !btf_type_is_var(size_type))) 2072 return NULL; 2073 2074 size_type_id = btf_resolved_type_id(btf, size_type_id); 2075 size_type = btf_type_by_id(btf, size_type_id); 2076 if (btf_type_nosize_or_null(size_type)) 2077 return NULL; 2078 else if (btf_type_has_size(size_type)) 2079 size = size_type->size; 2080 else if (btf_type_is_array(size_type)) 2081 size = btf_resolved_type_size(btf, size_type_id); 2082 else if (btf_type_is_ptr(size_type)) 2083 size = sizeof(void *); 2084 else 2085 return NULL; 2086 } 2087 2088 *type_id = size_type_id; 2089 if (ret_size) 2090 *ret_size = size; 2091 2092 return size_type; 2093 } 2094 2095 static int btf_df_check_member(struct btf_verifier_env *env, 2096 const struct btf_type *struct_type, 2097 const struct btf_member *member, 2098 const struct btf_type *member_type) 2099 { 2100 btf_verifier_log_basic(env, struct_type, 2101 "Unsupported check_member"); 2102 return -EINVAL; 2103 } 2104 2105 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2106 const struct btf_type *struct_type, 2107 const struct btf_member *member, 2108 const struct btf_type *member_type) 2109 { 2110 btf_verifier_log_basic(env, struct_type, 2111 "Unsupported check_kflag_member"); 2112 return -EINVAL; 2113 } 2114 2115 /* Used for ptr, array struct/union and float type members. 2116 * int, enum and modifier types have their specific callback functions. 2117 */ 2118 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2119 const struct btf_type *struct_type, 2120 const struct btf_member *member, 2121 const struct btf_type *member_type) 2122 { 2123 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2124 btf_verifier_log_member(env, struct_type, member, 2125 "Invalid member bitfield_size"); 2126 return -EINVAL; 2127 } 2128 2129 /* bitfield size is 0, so member->offset represents bit offset only. 2130 * It is safe to call non kflag check_member variants. 2131 */ 2132 return btf_type_ops(member_type)->check_member(env, struct_type, 2133 member, 2134 member_type); 2135 } 2136 2137 static int btf_df_resolve(struct btf_verifier_env *env, 2138 const struct resolve_vertex *v) 2139 { 2140 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2141 return -EINVAL; 2142 } 2143 2144 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2145 u32 type_id, void *data, u8 bits_offsets, 2146 struct btf_show *show) 2147 { 2148 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2149 } 2150 2151 static int btf_int_check_member(struct btf_verifier_env *env, 2152 const struct btf_type *struct_type, 2153 const struct btf_member *member, 2154 const struct btf_type *member_type) 2155 { 2156 u32 int_data = btf_type_int(member_type); 2157 u32 struct_bits_off = member->offset; 2158 u32 struct_size = struct_type->size; 2159 u32 nr_copy_bits; 2160 u32 bytes_offset; 2161 2162 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2163 btf_verifier_log_member(env, struct_type, member, 2164 "bits_offset exceeds U32_MAX"); 2165 return -EINVAL; 2166 } 2167 2168 struct_bits_off += BTF_INT_OFFSET(int_data); 2169 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2170 nr_copy_bits = BTF_INT_BITS(int_data) + 2171 BITS_PER_BYTE_MASKED(struct_bits_off); 2172 2173 if (nr_copy_bits > BITS_PER_U128) { 2174 btf_verifier_log_member(env, struct_type, member, 2175 "nr_copy_bits exceeds 128"); 2176 return -EINVAL; 2177 } 2178 2179 if (struct_size < bytes_offset || 2180 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2181 btf_verifier_log_member(env, struct_type, member, 2182 "Member exceeds struct_size"); 2183 return -EINVAL; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2190 const struct btf_type *struct_type, 2191 const struct btf_member *member, 2192 const struct btf_type *member_type) 2193 { 2194 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2195 u32 int_data = btf_type_int(member_type); 2196 u32 struct_size = struct_type->size; 2197 u32 nr_copy_bits; 2198 2199 /* a regular int type is required for the kflag int member */ 2200 if (!btf_type_int_is_regular(member_type)) { 2201 btf_verifier_log_member(env, struct_type, member, 2202 "Invalid member base type"); 2203 return -EINVAL; 2204 } 2205 2206 /* check sanity of bitfield size */ 2207 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2208 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2209 nr_int_data_bits = BTF_INT_BITS(int_data); 2210 if (!nr_bits) { 2211 /* Not a bitfield member, member offset must be at byte 2212 * boundary. 2213 */ 2214 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2215 btf_verifier_log_member(env, struct_type, member, 2216 "Invalid member offset"); 2217 return -EINVAL; 2218 } 2219 2220 nr_bits = nr_int_data_bits; 2221 } else if (nr_bits > nr_int_data_bits) { 2222 btf_verifier_log_member(env, struct_type, member, 2223 "Invalid member bitfield_size"); 2224 return -EINVAL; 2225 } 2226 2227 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2228 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2229 if (nr_copy_bits > BITS_PER_U128) { 2230 btf_verifier_log_member(env, struct_type, member, 2231 "nr_copy_bits exceeds 128"); 2232 return -EINVAL; 2233 } 2234 2235 if (struct_size < bytes_offset || 2236 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2237 btf_verifier_log_member(env, struct_type, member, 2238 "Member exceeds struct_size"); 2239 return -EINVAL; 2240 } 2241 2242 return 0; 2243 } 2244 2245 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2246 const struct btf_type *t, 2247 u32 meta_left) 2248 { 2249 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2250 u16 encoding; 2251 2252 if (meta_left < meta_needed) { 2253 btf_verifier_log_basic(env, t, 2254 "meta_left:%u meta_needed:%u", 2255 meta_left, meta_needed); 2256 return -EINVAL; 2257 } 2258 2259 if (btf_type_vlen(t)) { 2260 btf_verifier_log_type(env, t, "vlen != 0"); 2261 return -EINVAL; 2262 } 2263 2264 if (btf_type_kflag(t)) { 2265 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2266 return -EINVAL; 2267 } 2268 2269 int_data = btf_type_int(t); 2270 if (int_data & ~BTF_INT_MASK) { 2271 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2272 int_data); 2273 return -EINVAL; 2274 } 2275 2276 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2277 2278 if (nr_bits > BITS_PER_U128) { 2279 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2280 BITS_PER_U128); 2281 return -EINVAL; 2282 } 2283 2284 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2285 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2286 return -EINVAL; 2287 } 2288 2289 /* 2290 * Only one of the encoding bits is allowed and it 2291 * should be sufficient for the pretty print purpose (i.e. decoding). 2292 * Multiple bits can be allowed later if it is found 2293 * to be insufficient. 2294 */ 2295 encoding = BTF_INT_ENCODING(int_data); 2296 if (encoding && 2297 encoding != BTF_INT_SIGNED && 2298 encoding != BTF_INT_CHAR && 2299 encoding != BTF_INT_BOOL) { 2300 btf_verifier_log_type(env, t, "Unsupported encoding"); 2301 return -ENOTSUPP; 2302 } 2303 2304 btf_verifier_log_type(env, t, NULL); 2305 2306 return meta_needed; 2307 } 2308 2309 static void btf_int_log(struct btf_verifier_env *env, 2310 const struct btf_type *t) 2311 { 2312 int int_data = btf_type_int(t); 2313 2314 btf_verifier_log(env, 2315 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2316 t->size, BTF_INT_OFFSET(int_data), 2317 BTF_INT_BITS(int_data), 2318 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2319 } 2320 2321 static void btf_int128_print(struct btf_show *show, void *data) 2322 { 2323 /* data points to a __int128 number. 2324 * Suppose 2325 * int128_num = *(__int128 *)data; 2326 * The below formulas shows what upper_num and lower_num represents: 2327 * upper_num = int128_num >> 64; 2328 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2329 */ 2330 u64 upper_num, lower_num; 2331 2332 #ifdef __BIG_ENDIAN_BITFIELD 2333 upper_num = *(u64 *)data; 2334 lower_num = *(u64 *)(data + 8); 2335 #else 2336 upper_num = *(u64 *)(data + 8); 2337 lower_num = *(u64 *)data; 2338 #endif 2339 if (upper_num == 0) 2340 btf_show_type_value(show, "0x%llx", lower_num); 2341 else 2342 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2343 lower_num); 2344 } 2345 2346 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2347 u16 right_shift_bits) 2348 { 2349 u64 upper_num, lower_num; 2350 2351 #ifdef __BIG_ENDIAN_BITFIELD 2352 upper_num = print_num[0]; 2353 lower_num = print_num[1]; 2354 #else 2355 upper_num = print_num[1]; 2356 lower_num = print_num[0]; 2357 #endif 2358 2359 /* shake out un-needed bits by shift/or operations */ 2360 if (left_shift_bits >= 64) { 2361 upper_num = lower_num << (left_shift_bits - 64); 2362 lower_num = 0; 2363 } else { 2364 upper_num = (upper_num << left_shift_bits) | 2365 (lower_num >> (64 - left_shift_bits)); 2366 lower_num = lower_num << left_shift_bits; 2367 } 2368 2369 if (right_shift_bits >= 64) { 2370 lower_num = upper_num >> (right_shift_bits - 64); 2371 upper_num = 0; 2372 } else { 2373 lower_num = (lower_num >> right_shift_bits) | 2374 (upper_num << (64 - right_shift_bits)); 2375 upper_num = upper_num >> right_shift_bits; 2376 } 2377 2378 #ifdef __BIG_ENDIAN_BITFIELD 2379 print_num[0] = upper_num; 2380 print_num[1] = lower_num; 2381 #else 2382 print_num[0] = lower_num; 2383 print_num[1] = upper_num; 2384 #endif 2385 } 2386 2387 static void btf_bitfield_show(void *data, u8 bits_offset, 2388 u8 nr_bits, struct btf_show *show) 2389 { 2390 u16 left_shift_bits, right_shift_bits; 2391 u8 nr_copy_bytes; 2392 u8 nr_copy_bits; 2393 u64 print_num[2] = {}; 2394 2395 nr_copy_bits = nr_bits + bits_offset; 2396 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2397 2398 memcpy(print_num, data, nr_copy_bytes); 2399 2400 #ifdef __BIG_ENDIAN_BITFIELD 2401 left_shift_bits = bits_offset; 2402 #else 2403 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2404 #endif 2405 right_shift_bits = BITS_PER_U128 - nr_bits; 2406 2407 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2408 btf_int128_print(show, print_num); 2409 } 2410 2411 2412 static void btf_int_bits_show(const struct btf *btf, 2413 const struct btf_type *t, 2414 void *data, u8 bits_offset, 2415 struct btf_show *show) 2416 { 2417 u32 int_data = btf_type_int(t); 2418 u8 nr_bits = BTF_INT_BITS(int_data); 2419 u8 total_bits_offset; 2420 2421 /* 2422 * bits_offset is at most 7. 2423 * BTF_INT_OFFSET() cannot exceed 128 bits. 2424 */ 2425 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2426 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2427 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2428 btf_bitfield_show(data, bits_offset, nr_bits, show); 2429 } 2430 2431 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2432 u32 type_id, void *data, u8 bits_offset, 2433 struct btf_show *show) 2434 { 2435 u32 int_data = btf_type_int(t); 2436 u8 encoding = BTF_INT_ENCODING(int_data); 2437 bool sign = encoding & BTF_INT_SIGNED; 2438 u8 nr_bits = BTF_INT_BITS(int_data); 2439 void *safe_data; 2440 2441 safe_data = btf_show_start_type(show, t, type_id, data); 2442 if (!safe_data) 2443 return; 2444 2445 if (bits_offset || BTF_INT_OFFSET(int_data) || 2446 BITS_PER_BYTE_MASKED(nr_bits)) { 2447 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2448 goto out; 2449 } 2450 2451 switch (nr_bits) { 2452 case 128: 2453 btf_int128_print(show, safe_data); 2454 break; 2455 case 64: 2456 if (sign) 2457 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2458 else 2459 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2460 break; 2461 case 32: 2462 if (sign) 2463 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2464 else 2465 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2466 break; 2467 case 16: 2468 if (sign) 2469 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2470 else 2471 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2472 break; 2473 case 8: 2474 if (show->state.array_encoding == BTF_INT_CHAR) { 2475 /* check for null terminator */ 2476 if (show->state.array_terminated) 2477 break; 2478 if (*(char *)data == '\0') { 2479 show->state.array_terminated = 1; 2480 break; 2481 } 2482 if (isprint(*(char *)data)) { 2483 btf_show_type_value(show, "'%c'", 2484 *(char *)safe_data); 2485 break; 2486 } 2487 } 2488 if (sign) 2489 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2490 else 2491 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2492 break; 2493 default: 2494 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2495 break; 2496 } 2497 out: 2498 btf_show_end_type(show); 2499 } 2500 2501 static const struct btf_kind_operations int_ops = { 2502 .check_meta = btf_int_check_meta, 2503 .resolve = btf_df_resolve, 2504 .check_member = btf_int_check_member, 2505 .check_kflag_member = btf_int_check_kflag_member, 2506 .log_details = btf_int_log, 2507 .show = btf_int_show, 2508 }; 2509 2510 static int btf_modifier_check_member(struct btf_verifier_env *env, 2511 const struct btf_type *struct_type, 2512 const struct btf_member *member, 2513 const struct btf_type *member_type) 2514 { 2515 const struct btf_type *resolved_type; 2516 u32 resolved_type_id = member->type; 2517 struct btf_member resolved_member; 2518 struct btf *btf = env->btf; 2519 2520 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2521 if (!resolved_type) { 2522 btf_verifier_log_member(env, struct_type, member, 2523 "Invalid member"); 2524 return -EINVAL; 2525 } 2526 2527 resolved_member = *member; 2528 resolved_member.type = resolved_type_id; 2529 2530 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2531 &resolved_member, 2532 resolved_type); 2533 } 2534 2535 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2536 const struct btf_type *struct_type, 2537 const struct btf_member *member, 2538 const struct btf_type *member_type) 2539 { 2540 const struct btf_type *resolved_type; 2541 u32 resolved_type_id = member->type; 2542 struct btf_member resolved_member; 2543 struct btf *btf = env->btf; 2544 2545 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2546 if (!resolved_type) { 2547 btf_verifier_log_member(env, struct_type, member, 2548 "Invalid member"); 2549 return -EINVAL; 2550 } 2551 2552 resolved_member = *member; 2553 resolved_member.type = resolved_type_id; 2554 2555 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2556 &resolved_member, 2557 resolved_type); 2558 } 2559 2560 static int btf_ptr_check_member(struct btf_verifier_env *env, 2561 const struct btf_type *struct_type, 2562 const struct btf_member *member, 2563 const struct btf_type *member_type) 2564 { 2565 u32 struct_size, struct_bits_off, bytes_offset; 2566 2567 struct_size = struct_type->size; 2568 struct_bits_off = member->offset; 2569 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2570 2571 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2572 btf_verifier_log_member(env, struct_type, member, 2573 "Member is not byte aligned"); 2574 return -EINVAL; 2575 } 2576 2577 if (struct_size - bytes_offset < sizeof(void *)) { 2578 btf_verifier_log_member(env, struct_type, member, 2579 "Member exceeds struct_size"); 2580 return -EINVAL; 2581 } 2582 2583 return 0; 2584 } 2585 2586 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2587 const struct btf_type *t, 2588 u32 meta_left) 2589 { 2590 const char *value; 2591 2592 if (btf_type_vlen(t)) { 2593 btf_verifier_log_type(env, t, "vlen != 0"); 2594 return -EINVAL; 2595 } 2596 2597 if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) { 2598 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2599 return -EINVAL; 2600 } 2601 2602 if (!BTF_TYPE_ID_VALID(t->type)) { 2603 btf_verifier_log_type(env, t, "Invalid type_id"); 2604 return -EINVAL; 2605 } 2606 2607 /* typedef/type_tag type must have a valid name, and other ref types, 2608 * volatile, const, restrict, should have a null name. 2609 */ 2610 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2611 if (!t->name_off || 2612 !btf_name_valid_identifier(env->btf, t->name_off)) { 2613 btf_verifier_log_type(env, t, "Invalid name"); 2614 return -EINVAL; 2615 } 2616 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2617 value = btf_name_by_offset(env->btf, t->name_off); 2618 if (!value || !value[0]) { 2619 btf_verifier_log_type(env, t, "Invalid name"); 2620 return -EINVAL; 2621 } 2622 } else { 2623 if (t->name_off) { 2624 btf_verifier_log_type(env, t, "Invalid name"); 2625 return -EINVAL; 2626 } 2627 } 2628 2629 btf_verifier_log_type(env, t, NULL); 2630 2631 return 0; 2632 } 2633 2634 static int btf_modifier_resolve(struct btf_verifier_env *env, 2635 const struct resolve_vertex *v) 2636 { 2637 const struct btf_type *t = v->t; 2638 const struct btf_type *next_type; 2639 u32 next_type_id = t->type; 2640 struct btf *btf = env->btf; 2641 2642 next_type = btf_type_by_id(btf, next_type_id); 2643 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2644 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2645 return -EINVAL; 2646 } 2647 2648 if (!env_type_is_resolve_sink(env, next_type) && 2649 !env_type_is_resolved(env, next_type_id)) 2650 return env_stack_push(env, next_type, next_type_id); 2651 2652 /* Figure out the resolved next_type_id with size. 2653 * They will be stored in the current modifier's 2654 * resolved_ids and resolved_sizes such that it can 2655 * save us a few type-following when we use it later (e.g. in 2656 * pretty print). 2657 */ 2658 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2659 if (env_type_is_resolved(env, next_type_id)) 2660 next_type = btf_type_id_resolve(btf, &next_type_id); 2661 2662 /* "typedef void new_void", "const void"...etc */ 2663 if (!btf_type_is_void(next_type) && 2664 !btf_type_is_fwd(next_type) && 2665 !btf_type_is_func_proto(next_type)) { 2666 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2667 return -EINVAL; 2668 } 2669 } 2670 2671 env_stack_pop_resolved(env, next_type_id, 0); 2672 2673 return 0; 2674 } 2675 2676 static int btf_var_resolve(struct btf_verifier_env *env, 2677 const struct resolve_vertex *v) 2678 { 2679 const struct btf_type *next_type; 2680 const struct btf_type *t = v->t; 2681 u32 next_type_id = t->type; 2682 struct btf *btf = env->btf; 2683 2684 next_type = btf_type_by_id(btf, next_type_id); 2685 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2686 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2687 return -EINVAL; 2688 } 2689 2690 if (!env_type_is_resolve_sink(env, next_type) && 2691 !env_type_is_resolved(env, next_type_id)) 2692 return env_stack_push(env, next_type, next_type_id); 2693 2694 if (btf_type_is_modifier(next_type)) { 2695 const struct btf_type *resolved_type; 2696 u32 resolved_type_id; 2697 2698 resolved_type_id = next_type_id; 2699 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2700 2701 if (btf_type_is_ptr(resolved_type) && 2702 !env_type_is_resolve_sink(env, resolved_type) && 2703 !env_type_is_resolved(env, resolved_type_id)) 2704 return env_stack_push(env, resolved_type, 2705 resolved_type_id); 2706 } 2707 2708 /* We must resolve to something concrete at this point, no 2709 * forward types or similar that would resolve to size of 2710 * zero is allowed. 2711 */ 2712 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2713 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2714 return -EINVAL; 2715 } 2716 2717 env_stack_pop_resolved(env, next_type_id, 0); 2718 2719 return 0; 2720 } 2721 2722 static int btf_ptr_resolve(struct btf_verifier_env *env, 2723 const struct resolve_vertex *v) 2724 { 2725 const struct btf_type *next_type; 2726 const struct btf_type *t = v->t; 2727 u32 next_type_id = t->type; 2728 struct btf *btf = env->btf; 2729 2730 next_type = btf_type_by_id(btf, next_type_id); 2731 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2732 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2733 return -EINVAL; 2734 } 2735 2736 if (!env_type_is_resolve_sink(env, next_type) && 2737 !env_type_is_resolved(env, next_type_id)) 2738 return env_stack_push(env, next_type, next_type_id); 2739 2740 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2741 * the modifier may have stopped resolving when it was resolved 2742 * to a ptr (last-resolved-ptr). 2743 * 2744 * We now need to continue from the last-resolved-ptr to 2745 * ensure the last-resolved-ptr will not referring back to 2746 * the current ptr (t). 2747 */ 2748 if (btf_type_is_modifier(next_type)) { 2749 const struct btf_type *resolved_type; 2750 u32 resolved_type_id; 2751 2752 resolved_type_id = next_type_id; 2753 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2754 2755 if (btf_type_is_ptr(resolved_type) && 2756 !env_type_is_resolve_sink(env, resolved_type) && 2757 !env_type_is_resolved(env, resolved_type_id)) 2758 return env_stack_push(env, resolved_type, 2759 resolved_type_id); 2760 } 2761 2762 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2763 if (env_type_is_resolved(env, next_type_id)) 2764 next_type = btf_type_id_resolve(btf, &next_type_id); 2765 2766 if (!btf_type_is_void(next_type) && 2767 !btf_type_is_fwd(next_type) && 2768 !btf_type_is_func_proto(next_type)) { 2769 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2770 return -EINVAL; 2771 } 2772 } 2773 2774 env_stack_pop_resolved(env, next_type_id, 0); 2775 2776 return 0; 2777 } 2778 2779 static void btf_modifier_show(const struct btf *btf, 2780 const struct btf_type *t, 2781 u32 type_id, void *data, 2782 u8 bits_offset, struct btf_show *show) 2783 { 2784 if (btf->resolved_ids) 2785 t = btf_type_id_resolve(btf, &type_id); 2786 else 2787 t = btf_type_skip_modifiers(btf, type_id, NULL); 2788 2789 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2790 } 2791 2792 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2793 u32 type_id, void *data, u8 bits_offset, 2794 struct btf_show *show) 2795 { 2796 t = btf_type_id_resolve(btf, &type_id); 2797 2798 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2799 } 2800 2801 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2802 u32 type_id, void *data, u8 bits_offset, 2803 struct btf_show *show) 2804 { 2805 void *safe_data; 2806 2807 safe_data = btf_show_start_type(show, t, type_id, data); 2808 if (!safe_data) 2809 return; 2810 2811 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2812 if (show->flags & BTF_SHOW_PTR_RAW) 2813 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2814 else 2815 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2816 btf_show_end_type(show); 2817 } 2818 2819 static void btf_ref_type_log(struct btf_verifier_env *env, 2820 const struct btf_type *t) 2821 { 2822 btf_verifier_log(env, "type_id=%u", t->type); 2823 } 2824 2825 static const struct btf_kind_operations modifier_ops = { 2826 .check_meta = btf_ref_type_check_meta, 2827 .resolve = btf_modifier_resolve, 2828 .check_member = btf_modifier_check_member, 2829 .check_kflag_member = btf_modifier_check_kflag_member, 2830 .log_details = btf_ref_type_log, 2831 .show = btf_modifier_show, 2832 }; 2833 2834 static const struct btf_kind_operations ptr_ops = { 2835 .check_meta = btf_ref_type_check_meta, 2836 .resolve = btf_ptr_resolve, 2837 .check_member = btf_ptr_check_member, 2838 .check_kflag_member = btf_generic_check_kflag_member, 2839 .log_details = btf_ref_type_log, 2840 .show = btf_ptr_show, 2841 }; 2842 2843 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2844 const struct btf_type *t, 2845 u32 meta_left) 2846 { 2847 if (btf_type_vlen(t)) { 2848 btf_verifier_log_type(env, t, "vlen != 0"); 2849 return -EINVAL; 2850 } 2851 2852 if (t->type) { 2853 btf_verifier_log_type(env, t, "type != 0"); 2854 return -EINVAL; 2855 } 2856 2857 /* fwd type must have a valid name */ 2858 if (!t->name_off || 2859 !btf_name_valid_identifier(env->btf, t->name_off)) { 2860 btf_verifier_log_type(env, t, "Invalid name"); 2861 return -EINVAL; 2862 } 2863 2864 btf_verifier_log_type(env, t, NULL); 2865 2866 return 0; 2867 } 2868 2869 static void btf_fwd_type_log(struct btf_verifier_env *env, 2870 const struct btf_type *t) 2871 { 2872 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2873 } 2874 2875 static const struct btf_kind_operations fwd_ops = { 2876 .check_meta = btf_fwd_check_meta, 2877 .resolve = btf_df_resolve, 2878 .check_member = btf_df_check_member, 2879 .check_kflag_member = btf_df_check_kflag_member, 2880 .log_details = btf_fwd_type_log, 2881 .show = btf_df_show, 2882 }; 2883 2884 static int btf_array_check_member(struct btf_verifier_env *env, 2885 const struct btf_type *struct_type, 2886 const struct btf_member *member, 2887 const struct btf_type *member_type) 2888 { 2889 u32 struct_bits_off = member->offset; 2890 u32 struct_size, bytes_offset; 2891 u32 array_type_id, array_size; 2892 struct btf *btf = env->btf; 2893 2894 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2895 btf_verifier_log_member(env, struct_type, member, 2896 "Member is not byte aligned"); 2897 return -EINVAL; 2898 } 2899 2900 array_type_id = member->type; 2901 btf_type_id_size(btf, &array_type_id, &array_size); 2902 struct_size = struct_type->size; 2903 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2904 if (struct_size - bytes_offset < array_size) { 2905 btf_verifier_log_member(env, struct_type, member, 2906 "Member exceeds struct_size"); 2907 return -EINVAL; 2908 } 2909 2910 return 0; 2911 } 2912 2913 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2914 const struct btf_type *t, 2915 u32 meta_left) 2916 { 2917 const struct btf_array *array = btf_type_array(t); 2918 u32 meta_needed = sizeof(*array); 2919 2920 if (meta_left < meta_needed) { 2921 btf_verifier_log_basic(env, t, 2922 "meta_left:%u meta_needed:%u", 2923 meta_left, meta_needed); 2924 return -EINVAL; 2925 } 2926 2927 /* array type should not have a name */ 2928 if (t->name_off) { 2929 btf_verifier_log_type(env, t, "Invalid name"); 2930 return -EINVAL; 2931 } 2932 2933 if (btf_type_vlen(t)) { 2934 btf_verifier_log_type(env, t, "vlen != 0"); 2935 return -EINVAL; 2936 } 2937 2938 if (btf_type_kflag(t)) { 2939 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2940 return -EINVAL; 2941 } 2942 2943 if (t->size) { 2944 btf_verifier_log_type(env, t, "size != 0"); 2945 return -EINVAL; 2946 } 2947 2948 /* Array elem type and index type cannot be in type void, 2949 * so !array->type and !array->index_type are not allowed. 2950 */ 2951 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2952 btf_verifier_log_type(env, t, "Invalid elem"); 2953 return -EINVAL; 2954 } 2955 2956 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2957 btf_verifier_log_type(env, t, "Invalid index"); 2958 return -EINVAL; 2959 } 2960 2961 btf_verifier_log_type(env, t, NULL); 2962 2963 return meta_needed; 2964 } 2965 2966 static int btf_array_resolve(struct btf_verifier_env *env, 2967 const struct resolve_vertex *v) 2968 { 2969 const struct btf_array *array = btf_type_array(v->t); 2970 const struct btf_type *elem_type, *index_type; 2971 u32 elem_type_id, index_type_id; 2972 struct btf *btf = env->btf; 2973 u32 elem_size; 2974 2975 /* Check array->index_type */ 2976 index_type_id = array->index_type; 2977 index_type = btf_type_by_id(btf, index_type_id); 2978 if (btf_type_nosize_or_null(index_type) || 2979 btf_type_is_resolve_source_only(index_type)) { 2980 btf_verifier_log_type(env, v->t, "Invalid index"); 2981 return -EINVAL; 2982 } 2983 2984 if (!env_type_is_resolve_sink(env, index_type) && 2985 !env_type_is_resolved(env, index_type_id)) 2986 return env_stack_push(env, index_type, index_type_id); 2987 2988 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2989 if (!index_type || !btf_type_is_int(index_type) || 2990 !btf_type_int_is_regular(index_type)) { 2991 btf_verifier_log_type(env, v->t, "Invalid index"); 2992 return -EINVAL; 2993 } 2994 2995 /* Check array->type */ 2996 elem_type_id = array->type; 2997 elem_type = btf_type_by_id(btf, elem_type_id); 2998 if (btf_type_nosize_or_null(elem_type) || 2999 btf_type_is_resolve_source_only(elem_type)) { 3000 btf_verifier_log_type(env, v->t, 3001 "Invalid elem"); 3002 return -EINVAL; 3003 } 3004 3005 if (!env_type_is_resolve_sink(env, elem_type) && 3006 !env_type_is_resolved(env, elem_type_id)) 3007 return env_stack_push(env, elem_type, elem_type_id); 3008 3009 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3010 if (!elem_type) { 3011 btf_verifier_log_type(env, v->t, "Invalid elem"); 3012 return -EINVAL; 3013 } 3014 3015 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 3016 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3017 return -EINVAL; 3018 } 3019 3020 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3021 btf_verifier_log_type(env, v->t, 3022 "Array size overflows U32_MAX"); 3023 return -EINVAL; 3024 } 3025 3026 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3027 3028 return 0; 3029 } 3030 3031 static void btf_array_log(struct btf_verifier_env *env, 3032 const struct btf_type *t) 3033 { 3034 const struct btf_array *array = btf_type_array(t); 3035 3036 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3037 array->type, array->index_type, array->nelems); 3038 } 3039 3040 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3041 u32 type_id, void *data, u8 bits_offset, 3042 struct btf_show *show) 3043 { 3044 const struct btf_array *array = btf_type_array(t); 3045 const struct btf_kind_operations *elem_ops; 3046 const struct btf_type *elem_type; 3047 u32 i, elem_size = 0, elem_type_id; 3048 u16 encoding = 0; 3049 3050 elem_type_id = array->type; 3051 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3052 if (elem_type && btf_type_has_size(elem_type)) 3053 elem_size = elem_type->size; 3054 3055 if (elem_type && btf_type_is_int(elem_type)) { 3056 u32 int_type = btf_type_int(elem_type); 3057 3058 encoding = BTF_INT_ENCODING(int_type); 3059 3060 /* 3061 * BTF_INT_CHAR encoding never seems to be set for 3062 * char arrays, so if size is 1 and element is 3063 * printable as a char, we'll do that. 3064 */ 3065 if (elem_size == 1) 3066 encoding = BTF_INT_CHAR; 3067 } 3068 3069 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3070 return; 3071 3072 if (!elem_type) 3073 goto out; 3074 elem_ops = btf_type_ops(elem_type); 3075 3076 for (i = 0; i < array->nelems; i++) { 3077 3078 btf_show_start_array_member(show); 3079 3080 elem_ops->show(btf, elem_type, elem_type_id, data, 3081 bits_offset, show); 3082 data += elem_size; 3083 3084 btf_show_end_array_member(show); 3085 3086 if (show->state.array_terminated) 3087 break; 3088 } 3089 out: 3090 btf_show_end_array_type(show); 3091 } 3092 3093 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3094 u32 type_id, void *data, u8 bits_offset, 3095 struct btf_show *show) 3096 { 3097 const struct btf_member *m = show->state.member; 3098 3099 /* 3100 * First check if any members would be shown (are non-zero). 3101 * See comments above "struct btf_show" definition for more 3102 * details on how this works at a high-level. 3103 */ 3104 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3105 if (!show->state.depth_check) { 3106 show->state.depth_check = show->state.depth + 1; 3107 show->state.depth_to_show = 0; 3108 } 3109 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3110 show->state.member = m; 3111 3112 if (show->state.depth_check != show->state.depth + 1) 3113 return; 3114 show->state.depth_check = 0; 3115 3116 if (show->state.depth_to_show <= show->state.depth) 3117 return; 3118 /* 3119 * Reaching here indicates we have recursed and found 3120 * non-zero array member(s). 3121 */ 3122 } 3123 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3124 } 3125 3126 static const struct btf_kind_operations array_ops = { 3127 .check_meta = btf_array_check_meta, 3128 .resolve = btf_array_resolve, 3129 .check_member = btf_array_check_member, 3130 .check_kflag_member = btf_generic_check_kflag_member, 3131 .log_details = btf_array_log, 3132 .show = btf_array_show, 3133 }; 3134 3135 static int btf_struct_check_member(struct btf_verifier_env *env, 3136 const struct btf_type *struct_type, 3137 const struct btf_member *member, 3138 const struct btf_type *member_type) 3139 { 3140 u32 struct_bits_off = member->offset; 3141 u32 struct_size, bytes_offset; 3142 3143 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3144 btf_verifier_log_member(env, struct_type, member, 3145 "Member is not byte aligned"); 3146 return -EINVAL; 3147 } 3148 3149 struct_size = struct_type->size; 3150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3151 if (struct_size - bytes_offset < member_type->size) { 3152 btf_verifier_log_member(env, struct_type, member, 3153 "Member exceeds struct_size"); 3154 return -EINVAL; 3155 } 3156 3157 return 0; 3158 } 3159 3160 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3161 const struct btf_type *t, 3162 u32 meta_left) 3163 { 3164 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3165 const struct btf_member *member; 3166 u32 meta_needed, last_offset; 3167 struct btf *btf = env->btf; 3168 u32 struct_size = t->size; 3169 u32 offset; 3170 u16 i; 3171 3172 meta_needed = btf_type_vlen(t) * sizeof(*member); 3173 if (meta_left < meta_needed) { 3174 btf_verifier_log_basic(env, t, 3175 "meta_left:%u meta_needed:%u", 3176 meta_left, meta_needed); 3177 return -EINVAL; 3178 } 3179 3180 /* struct type either no name or a valid one */ 3181 if (t->name_off && 3182 !btf_name_valid_identifier(env->btf, t->name_off)) { 3183 btf_verifier_log_type(env, t, "Invalid name"); 3184 return -EINVAL; 3185 } 3186 3187 btf_verifier_log_type(env, t, NULL); 3188 3189 last_offset = 0; 3190 for_each_member(i, t, member) { 3191 if (!btf_name_offset_valid(btf, member->name_off)) { 3192 btf_verifier_log_member(env, t, member, 3193 "Invalid member name_offset:%u", 3194 member->name_off); 3195 return -EINVAL; 3196 } 3197 3198 /* struct member either no name or a valid one */ 3199 if (member->name_off && 3200 !btf_name_valid_identifier(btf, member->name_off)) { 3201 btf_verifier_log_member(env, t, member, "Invalid name"); 3202 return -EINVAL; 3203 } 3204 /* A member cannot be in type void */ 3205 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3206 btf_verifier_log_member(env, t, member, 3207 "Invalid type_id"); 3208 return -EINVAL; 3209 } 3210 3211 offset = __btf_member_bit_offset(t, member); 3212 if (is_union && offset) { 3213 btf_verifier_log_member(env, t, member, 3214 "Invalid member bits_offset"); 3215 return -EINVAL; 3216 } 3217 3218 /* 3219 * ">" instead of ">=" because the last member could be 3220 * "char a[0];" 3221 */ 3222 if (last_offset > offset) { 3223 btf_verifier_log_member(env, t, member, 3224 "Invalid member bits_offset"); 3225 return -EINVAL; 3226 } 3227 3228 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3229 btf_verifier_log_member(env, t, member, 3230 "Member bits_offset exceeds its struct size"); 3231 return -EINVAL; 3232 } 3233 3234 btf_verifier_log_member(env, t, member, NULL); 3235 last_offset = offset; 3236 } 3237 3238 return meta_needed; 3239 } 3240 3241 static int btf_struct_resolve(struct btf_verifier_env *env, 3242 const struct resolve_vertex *v) 3243 { 3244 const struct btf_member *member; 3245 int err; 3246 u16 i; 3247 3248 /* Before continue resolving the next_member, 3249 * ensure the last member is indeed resolved to a 3250 * type with size info. 3251 */ 3252 if (v->next_member) { 3253 const struct btf_type *last_member_type; 3254 const struct btf_member *last_member; 3255 u32 last_member_type_id; 3256 3257 last_member = btf_type_member(v->t) + v->next_member - 1; 3258 last_member_type_id = last_member->type; 3259 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3260 last_member_type_id))) 3261 return -EINVAL; 3262 3263 last_member_type = btf_type_by_id(env->btf, 3264 last_member_type_id); 3265 if (btf_type_kflag(v->t)) 3266 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3267 last_member, 3268 last_member_type); 3269 else 3270 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3271 last_member, 3272 last_member_type); 3273 if (err) 3274 return err; 3275 } 3276 3277 for_each_member_from(i, v->next_member, v->t, member) { 3278 u32 member_type_id = member->type; 3279 const struct btf_type *member_type = btf_type_by_id(env->btf, 3280 member_type_id); 3281 3282 if (btf_type_nosize_or_null(member_type) || 3283 btf_type_is_resolve_source_only(member_type)) { 3284 btf_verifier_log_member(env, v->t, member, 3285 "Invalid member"); 3286 return -EINVAL; 3287 } 3288 3289 if (!env_type_is_resolve_sink(env, member_type) && 3290 !env_type_is_resolved(env, member_type_id)) { 3291 env_stack_set_next_member(env, i + 1); 3292 return env_stack_push(env, member_type, member_type_id); 3293 } 3294 3295 if (btf_type_kflag(v->t)) 3296 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3297 member, 3298 member_type); 3299 else 3300 err = btf_type_ops(member_type)->check_member(env, v->t, 3301 member, 3302 member_type); 3303 if (err) 3304 return err; 3305 } 3306 3307 env_stack_pop_resolved(env, 0, 0); 3308 3309 return 0; 3310 } 3311 3312 static void btf_struct_log(struct btf_verifier_env *env, 3313 const struct btf_type *t) 3314 { 3315 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3316 } 3317 3318 enum { 3319 BTF_FIELD_IGNORE = 0, 3320 BTF_FIELD_FOUND = 1, 3321 }; 3322 3323 struct btf_field_info { 3324 enum btf_field_type type; 3325 u32 off; 3326 union { 3327 struct { 3328 u32 type_id; 3329 } kptr; 3330 struct { 3331 const char *node_name; 3332 u32 value_btf_id; 3333 } graph_root; 3334 }; 3335 }; 3336 3337 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3338 u32 off, int sz, enum btf_field_type field_type, 3339 struct btf_field_info *info) 3340 { 3341 if (!__btf_type_is_struct(t)) 3342 return BTF_FIELD_IGNORE; 3343 if (t->size != sz) 3344 return BTF_FIELD_IGNORE; 3345 info->type = field_type; 3346 info->off = off; 3347 return BTF_FIELD_FOUND; 3348 } 3349 3350 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3351 u32 off, int sz, struct btf_field_info *info, u32 field_mask) 3352 { 3353 enum btf_field_type type; 3354 const char *tag_value; 3355 bool is_type_tag; 3356 u32 res_id; 3357 3358 /* Permit modifiers on the pointer itself */ 3359 if (btf_type_is_volatile(t)) 3360 t = btf_type_by_id(btf, t->type); 3361 /* For PTR, sz is always == 8 */ 3362 if (!btf_type_is_ptr(t)) 3363 return BTF_FIELD_IGNORE; 3364 t = btf_type_by_id(btf, t->type); 3365 is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t); 3366 if (!is_type_tag) 3367 return BTF_FIELD_IGNORE; 3368 /* Reject extra tags */ 3369 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3370 return -EINVAL; 3371 tag_value = __btf_name_by_offset(btf, t->name_off); 3372 if (!strcmp("kptr_untrusted", tag_value)) 3373 type = BPF_KPTR_UNREF; 3374 else if (!strcmp("kptr", tag_value)) 3375 type = BPF_KPTR_REF; 3376 else if (!strcmp("percpu_kptr", tag_value)) 3377 type = BPF_KPTR_PERCPU; 3378 else if (!strcmp("uptr", tag_value)) 3379 type = BPF_UPTR; 3380 else 3381 return -EINVAL; 3382 3383 if (!(type & field_mask)) 3384 return BTF_FIELD_IGNORE; 3385 3386 /* Get the base type */ 3387 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3388 /* Only pointer to struct is allowed */ 3389 if (!__btf_type_is_struct(t)) 3390 return -EINVAL; 3391 3392 info->type = type; 3393 info->off = off; 3394 info->kptr.type_id = res_id; 3395 return BTF_FIELD_FOUND; 3396 } 3397 3398 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3399 int comp_idx, const char *tag_key, int last_id) 3400 { 3401 int len = strlen(tag_key); 3402 int i, n; 3403 3404 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3405 const struct btf_type *t = btf_type_by_id(btf, i); 3406 3407 if (!btf_type_is_decl_tag(t)) 3408 continue; 3409 if (pt != btf_type_by_id(btf, t->type)) 3410 continue; 3411 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3412 continue; 3413 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3414 continue; 3415 return i; 3416 } 3417 return -ENOENT; 3418 } 3419 3420 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3421 int comp_idx, const char *tag_key) 3422 { 3423 const char *value = NULL; 3424 const struct btf_type *t; 3425 int len, id; 3426 3427 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3428 if (id < 0) 3429 return ERR_PTR(id); 3430 3431 t = btf_type_by_id(btf, id); 3432 len = strlen(tag_key); 3433 value = __btf_name_by_offset(btf, t->name_off) + len; 3434 3435 /* Prevent duplicate entries for same type */ 3436 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3437 if (id >= 0) 3438 return ERR_PTR(-EEXIST); 3439 3440 return value; 3441 } 3442 3443 static int 3444 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3445 const struct btf_type *t, int comp_idx, u32 off, 3446 int sz, struct btf_field_info *info, 3447 enum btf_field_type head_type) 3448 { 3449 const char *node_field_name; 3450 const char *value_type; 3451 s32 id; 3452 3453 if (!__btf_type_is_struct(t)) 3454 return BTF_FIELD_IGNORE; 3455 if (t->size != sz) 3456 return BTF_FIELD_IGNORE; 3457 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3458 if (IS_ERR(value_type)) 3459 return -EINVAL; 3460 node_field_name = strstr(value_type, ":"); 3461 if (!node_field_name) 3462 return -EINVAL; 3463 value_type = kstrndup(value_type, node_field_name - value_type, 3464 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 3465 if (!value_type) 3466 return -ENOMEM; 3467 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3468 kfree(value_type); 3469 if (id < 0) 3470 return id; 3471 node_field_name++; 3472 if (str_is_empty(node_field_name)) 3473 return -EINVAL; 3474 info->type = head_type; 3475 info->off = off; 3476 info->graph_root.value_btf_id = id; 3477 info->graph_root.node_name = node_field_name; 3478 return BTF_FIELD_FOUND; 3479 } 3480 3481 #define field_mask_test_name(field_type, field_type_str) \ 3482 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3483 type = field_type; \ 3484 goto end; \ 3485 } 3486 3487 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3488 u32 field_mask, u32 *seen_mask, 3489 int *align, int *sz) 3490 { 3491 int type = 0; 3492 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3493 3494 if (field_mask & BPF_SPIN_LOCK) { 3495 if (!strcmp(name, "bpf_spin_lock")) { 3496 if (*seen_mask & BPF_SPIN_LOCK) 3497 return -E2BIG; 3498 *seen_mask |= BPF_SPIN_LOCK; 3499 type = BPF_SPIN_LOCK; 3500 goto end; 3501 } 3502 } 3503 if (field_mask & BPF_RES_SPIN_LOCK) { 3504 if (!strcmp(name, "bpf_res_spin_lock")) { 3505 if (*seen_mask & BPF_RES_SPIN_LOCK) 3506 return -E2BIG; 3507 *seen_mask |= BPF_RES_SPIN_LOCK; 3508 type = BPF_RES_SPIN_LOCK; 3509 goto end; 3510 } 3511 } 3512 if (field_mask & BPF_TIMER) { 3513 if (!strcmp(name, "bpf_timer")) { 3514 if (*seen_mask & BPF_TIMER) 3515 return -E2BIG; 3516 *seen_mask |= BPF_TIMER; 3517 type = BPF_TIMER; 3518 goto end; 3519 } 3520 } 3521 if (field_mask & BPF_WORKQUEUE) { 3522 if (!strcmp(name, "bpf_wq")) { 3523 if (*seen_mask & BPF_WORKQUEUE) 3524 return -E2BIG; 3525 *seen_mask |= BPF_WORKQUEUE; 3526 type = BPF_WORKQUEUE; 3527 goto end; 3528 } 3529 } 3530 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3531 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3532 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3533 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3534 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3535 3536 /* Only return BPF_KPTR when all other types with matchable names fail */ 3537 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { 3538 type = BPF_KPTR_REF; 3539 goto end; 3540 } 3541 return 0; 3542 end: 3543 *sz = btf_field_type_size(type); 3544 *align = btf_field_type_align(type); 3545 return type; 3546 } 3547 3548 #undef field_mask_test_name 3549 3550 /* Repeat a number of fields for a specified number of times. 3551 * 3552 * Copy the fields starting from the first field and repeat them for 3553 * repeat_cnt times. The fields are repeated by adding the offset of each 3554 * field with 3555 * (i + 1) * elem_size 3556 * where i is the repeat index and elem_size is the size of an element. 3557 */ 3558 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3559 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3560 { 3561 u32 i, j; 3562 u32 cur; 3563 3564 /* Ensure not repeating fields that should not be repeated. */ 3565 for (i = 0; i < field_cnt; i++) { 3566 switch (info[i].type) { 3567 case BPF_KPTR_UNREF: 3568 case BPF_KPTR_REF: 3569 case BPF_KPTR_PERCPU: 3570 case BPF_UPTR: 3571 case BPF_LIST_HEAD: 3572 case BPF_RB_ROOT: 3573 break; 3574 default: 3575 return -EINVAL; 3576 } 3577 } 3578 3579 /* The type of struct size or variable size is u32, 3580 * so the multiplication will not overflow. 3581 */ 3582 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3583 return -E2BIG; 3584 3585 cur = field_cnt; 3586 for (i = 0; i < repeat_cnt; i++) { 3587 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3588 for (j = 0; j < field_cnt; j++) 3589 info[cur++].off += (i + 1) * elem_size; 3590 } 3591 3592 return 0; 3593 } 3594 3595 static int btf_find_struct_field(const struct btf *btf, 3596 const struct btf_type *t, u32 field_mask, 3597 struct btf_field_info *info, int info_cnt, 3598 u32 level); 3599 3600 /* Find special fields in the struct type of a field. 3601 * 3602 * This function is used to find fields of special types that is not a 3603 * global variable or a direct field of a struct type. It also handles the 3604 * repetition if it is the element type of an array. 3605 */ 3606 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3607 u32 off, u32 nelems, 3608 u32 field_mask, struct btf_field_info *info, 3609 int info_cnt, u32 level) 3610 { 3611 int ret, err, i; 3612 3613 level++; 3614 if (level >= MAX_RESOLVE_DEPTH) 3615 return -E2BIG; 3616 3617 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3618 3619 if (ret <= 0) 3620 return ret; 3621 3622 /* Shift the offsets of the nested struct fields to the offsets 3623 * related to the container. 3624 */ 3625 for (i = 0; i < ret; i++) 3626 info[i].off += off; 3627 3628 if (nelems > 1) { 3629 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3630 if (err == 0) 3631 ret *= nelems; 3632 else 3633 ret = err; 3634 } 3635 3636 return ret; 3637 } 3638 3639 static int btf_find_field_one(const struct btf *btf, 3640 const struct btf_type *var, 3641 const struct btf_type *var_type, 3642 int var_idx, 3643 u32 off, u32 expected_size, 3644 u32 field_mask, u32 *seen_mask, 3645 struct btf_field_info *info, int info_cnt, 3646 u32 level) 3647 { 3648 int ret, align, sz, field_type; 3649 struct btf_field_info tmp; 3650 const struct btf_array *array; 3651 u32 i, nelems = 1; 3652 3653 /* Walk into array types to find the element type and the number of 3654 * elements in the (flattened) array. 3655 */ 3656 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3657 array = btf_array(var_type); 3658 nelems *= array->nelems; 3659 var_type = btf_type_by_id(btf, array->type); 3660 } 3661 if (i == MAX_RESOLVE_DEPTH) 3662 return -E2BIG; 3663 if (nelems == 0) 3664 return 0; 3665 3666 field_type = btf_get_field_type(btf, var_type, 3667 field_mask, seen_mask, &align, &sz); 3668 /* Look into variables of struct types */ 3669 if (!field_type && __btf_type_is_struct(var_type)) { 3670 sz = var_type->size; 3671 if (expected_size && expected_size != sz * nelems) 3672 return 0; 3673 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3674 &info[0], info_cnt, level); 3675 return ret; 3676 } 3677 3678 if (field_type == 0) 3679 return 0; 3680 if (field_type < 0) 3681 return field_type; 3682 3683 if (expected_size && expected_size != sz * nelems) 3684 return 0; 3685 if (off % align) 3686 return 0; 3687 3688 switch (field_type) { 3689 case BPF_SPIN_LOCK: 3690 case BPF_RES_SPIN_LOCK: 3691 case BPF_TIMER: 3692 case BPF_WORKQUEUE: 3693 case BPF_LIST_NODE: 3694 case BPF_RB_NODE: 3695 case BPF_REFCOUNT: 3696 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3697 info_cnt ? &info[0] : &tmp); 3698 if (ret < 0) 3699 return ret; 3700 break; 3701 case BPF_KPTR_UNREF: 3702 case BPF_KPTR_REF: 3703 case BPF_KPTR_PERCPU: 3704 case BPF_UPTR: 3705 ret = btf_find_kptr(btf, var_type, off, sz, 3706 info_cnt ? &info[0] : &tmp, field_mask); 3707 if (ret < 0) 3708 return ret; 3709 break; 3710 case BPF_LIST_HEAD: 3711 case BPF_RB_ROOT: 3712 ret = btf_find_graph_root(btf, var, var_type, 3713 var_idx, off, sz, 3714 info_cnt ? &info[0] : &tmp, 3715 field_type); 3716 if (ret < 0) 3717 return ret; 3718 break; 3719 default: 3720 return -EFAULT; 3721 } 3722 3723 if (ret == BTF_FIELD_IGNORE) 3724 return 0; 3725 if (!info_cnt) 3726 return -E2BIG; 3727 if (nelems > 1) { 3728 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3729 if (ret < 0) 3730 return ret; 3731 } 3732 return nelems; 3733 } 3734 3735 static int btf_find_struct_field(const struct btf *btf, 3736 const struct btf_type *t, u32 field_mask, 3737 struct btf_field_info *info, int info_cnt, 3738 u32 level) 3739 { 3740 int ret, idx = 0; 3741 const struct btf_member *member; 3742 u32 i, off, seen_mask = 0; 3743 3744 for_each_member(i, t, member) { 3745 const struct btf_type *member_type = btf_type_by_id(btf, 3746 member->type); 3747 3748 off = __btf_member_bit_offset(t, member); 3749 if (off % 8) 3750 /* valid C code cannot generate such BTF */ 3751 return -EINVAL; 3752 off /= 8; 3753 3754 ret = btf_find_field_one(btf, t, member_type, i, 3755 off, 0, 3756 field_mask, &seen_mask, 3757 &info[idx], info_cnt - idx, level); 3758 if (ret < 0) 3759 return ret; 3760 idx += ret; 3761 } 3762 return idx; 3763 } 3764 3765 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3766 u32 field_mask, struct btf_field_info *info, 3767 int info_cnt, u32 level) 3768 { 3769 int ret, idx = 0; 3770 const struct btf_var_secinfo *vsi; 3771 u32 i, off, seen_mask = 0; 3772 3773 for_each_vsi(i, t, vsi) { 3774 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3775 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3776 3777 off = vsi->offset; 3778 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3779 field_mask, &seen_mask, 3780 &info[idx], info_cnt - idx, 3781 level); 3782 if (ret < 0) 3783 return ret; 3784 idx += ret; 3785 } 3786 return idx; 3787 } 3788 3789 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3790 u32 field_mask, struct btf_field_info *info, 3791 int info_cnt) 3792 { 3793 if (__btf_type_is_struct(t)) 3794 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3795 else if (btf_type_is_datasec(t)) 3796 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3797 return -EINVAL; 3798 } 3799 3800 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3801 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3802 struct btf_field_info *info) 3803 { 3804 struct module *mod = NULL; 3805 const struct btf_type *t; 3806 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3807 * is that BTF, otherwise it's program BTF 3808 */ 3809 struct btf *kptr_btf; 3810 int ret; 3811 s32 id; 3812 3813 /* Find type in map BTF, and use it to look up the matching type 3814 * in vmlinux or module BTFs, by name and kind. 3815 */ 3816 t = btf_type_by_id(btf, info->kptr.type_id); 3817 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3818 &kptr_btf); 3819 if (id == -ENOENT) { 3820 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3821 WARN_ON_ONCE(btf_is_kernel(btf)); 3822 3823 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3824 * kptr allocated via bpf_obj_new 3825 */ 3826 field->kptr.dtor = NULL; 3827 id = info->kptr.type_id; 3828 kptr_btf = (struct btf *)btf; 3829 goto found_dtor; 3830 } 3831 if (id < 0) 3832 return id; 3833 3834 /* Find and stash the function pointer for the destruction function that 3835 * needs to be eventually invoked from the map free path. 3836 */ 3837 if (info->type == BPF_KPTR_REF) { 3838 const struct btf_type *dtor_func; 3839 const char *dtor_func_name; 3840 unsigned long addr; 3841 s32 dtor_btf_id; 3842 3843 /* This call also serves as a whitelist of allowed objects that 3844 * can be used as a referenced pointer and be stored in a map at 3845 * the same time. 3846 */ 3847 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3848 if (dtor_btf_id < 0) { 3849 ret = dtor_btf_id; 3850 goto end_btf; 3851 } 3852 3853 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3854 if (!dtor_func) { 3855 ret = -ENOENT; 3856 goto end_btf; 3857 } 3858 3859 if (btf_is_module(kptr_btf)) { 3860 mod = btf_try_get_module(kptr_btf); 3861 if (!mod) { 3862 ret = -ENXIO; 3863 goto end_btf; 3864 } 3865 } 3866 3867 /* We already verified dtor_func to be btf_type_is_func 3868 * in register_btf_id_dtor_kfuncs. 3869 */ 3870 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3871 addr = kallsyms_lookup_name(dtor_func_name); 3872 if (!addr) { 3873 ret = -EINVAL; 3874 goto end_mod; 3875 } 3876 field->kptr.dtor = (void *)addr; 3877 } 3878 3879 found_dtor: 3880 field->kptr.btf_id = id; 3881 field->kptr.btf = kptr_btf; 3882 field->kptr.module = mod; 3883 return 0; 3884 end_mod: 3885 module_put(mod); 3886 end_btf: 3887 btf_put(kptr_btf); 3888 return ret; 3889 } 3890 3891 static int btf_parse_graph_root(const struct btf *btf, 3892 struct btf_field *field, 3893 struct btf_field_info *info, 3894 const char *node_type_name, 3895 size_t node_type_align) 3896 { 3897 const struct btf_type *t, *n = NULL; 3898 const struct btf_member *member; 3899 u32 offset; 3900 int i; 3901 3902 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3903 /* We've already checked that value_btf_id is a struct type. We 3904 * just need to figure out the offset of the list_node, and 3905 * verify its type. 3906 */ 3907 for_each_member(i, t, member) { 3908 if (strcmp(info->graph_root.node_name, 3909 __btf_name_by_offset(btf, member->name_off))) 3910 continue; 3911 /* Invalid BTF, two members with same name */ 3912 if (n) 3913 return -EINVAL; 3914 n = btf_type_by_id(btf, member->type); 3915 if (!__btf_type_is_struct(n)) 3916 return -EINVAL; 3917 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3918 return -EINVAL; 3919 offset = __btf_member_bit_offset(n, member); 3920 if (offset % 8) 3921 return -EINVAL; 3922 offset /= 8; 3923 if (offset % node_type_align) 3924 return -EINVAL; 3925 3926 field->graph_root.btf = (struct btf *)btf; 3927 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3928 field->graph_root.node_offset = offset; 3929 } 3930 if (!n) 3931 return -ENOENT; 3932 return 0; 3933 } 3934 3935 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3936 struct btf_field_info *info) 3937 { 3938 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3939 __alignof__(struct bpf_list_node)); 3940 } 3941 3942 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3943 struct btf_field_info *info) 3944 { 3945 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3946 __alignof__(struct bpf_rb_node)); 3947 } 3948 3949 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3950 { 3951 const struct btf_field *a = (const struct btf_field *)_a; 3952 const struct btf_field *b = (const struct btf_field *)_b; 3953 3954 if (a->offset < b->offset) 3955 return -1; 3956 else if (a->offset > b->offset) 3957 return 1; 3958 return 0; 3959 } 3960 3961 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3962 u32 field_mask, u32 value_size) 3963 { 3964 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3965 u32 next_off = 0, field_type_size; 3966 struct btf_record *rec; 3967 int ret, i, cnt; 3968 3969 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3970 if (ret < 0) 3971 return ERR_PTR(ret); 3972 if (!ret) 3973 return NULL; 3974 3975 cnt = ret; 3976 /* This needs to be kzalloc to zero out padding and unused fields, see 3977 * comment in btf_record_equal. 3978 */ 3979 rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 3980 if (!rec) 3981 return ERR_PTR(-ENOMEM); 3982 3983 rec->spin_lock_off = -EINVAL; 3984 rec->res_spin_lock_off = -EINVAL; 3985 rec->timer_off = -EINVAL; 3986 rec->wq_off = -EINVAL; 3987 rec->refcount_off = -EINVAL; 3988 for (i = 0; i < cnt; i++) { 3989 field_type_size = btf_field_type_size(info_arr[i].type); 3990 if (info_arr[i].off + field_type_size > value_size) { 3991 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3992 ret = -EFAULT; 3993 goto end; 3994 } 3995 if (info_arr[i].off < next_off) { 3996 ret = -EEXIST; 3997 goto end; 3998 } 3999 next_off = info_arr[i].off + field_type_size; 4000 4001 rec->field_mask |= info_arr[i].type; 4002 rec->fields[i].offset = info_arr[i].off; 4003 rec->fields[i].type = info_arr[i].type; 4004 rec->fields[i].size = field_type_size; 4005 4006 switch (info_arr[i].type) { 4007 case BPF_SPIN_LOCK: 4008 WARN_ON_ONCE(rec->spin_lock_off >= 0); 4009 /* Cache offset for faster lookup at runtime */ 4010 rec->spin_lock_off = rec->fields[i].offset; 4011 break; 4012 case BPF_RES_SPIN_LOCK: 4013 WARN_ON_ONCE(rec->spin_lock_off >= 0); 4014 /* Cache offset for faster lookup at runtime */ 4015 rec->res_spin_lock_off = rec->fields[i].offset; 4016 break; 4017 case BPF_TIMER: 4018 WARN_ON_ONCE(rec->timer_off >= 0); 4019 /* Cache offset for faster lookup at runtime */ 4020 rec->timer_off = rec->fields[i].offset; 4021 break; 4022 case BPF_WORKQUEUE: 4023 WARN_ON_ONCE(rec->wq_off >= 0); 4024 /* Cache offset for faster lookup at runtime */ 4025 rec->wq_off = rec->fields[i].offset; 4026 break; 4027 case BPF_REFCOUNT: 4028 WARN_ON_ONCE(rec->refcount_off >= 0); 4029 /* Cache offset for faster lookup at runtime */ 4030 rec->refcount_off = rec->fields[i].offset; 4031 break; 4032 case BPF_KPTR_UNREF: 4033 case BPF_KPTR_REF: 4034 case BPF_KPTR_PERCPU: 4035 case BPF_UPTR: 4036 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 4037 if (ret < 0) 4038 goto end; 4039 break; 4040 case BPF_LIST_HEAD: 4041 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4042 if (ret < 0) 4043 goto end; 4044 break; 4045 case BPF_RB_ROOT: 4046 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4047 if (ret < 0) 4048 goto end; 4049 break; 4050 case BPF_LIST_NODE: 4051 case BPF_RB_NODE: 4052 break; 4053 default: 4054 ret = -EFAULT; 4055 goto end; 4056 } 4057 rec->cnt++; 4058 } 4059 4060 if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { 4061 ret = -EINVAL; 4062 goto end; 4063 } 4064 4065 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4066 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4067 btf_record_has_field(rec, BPF_RB_ROOT)) && 4068 (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { 4069 ret = -EINVAL; 4070 goto end; 4071 } 4072 4073 if (rec->refcount_off < 0 && 4074 btf_record_has_field(rec, BPF_LIST_NODE) && 4075 btf_record_has_field(rec, BPF_RB_NODE)) { 4076 ret = -EINVAL; 4077 goto end; 4078 } 4079 4080 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4081 NULL, rec); 4082 4083 return rec; 4084 end: 4085 btf_record_free(rec); 4086 return ERR_PTR(ret); 4087 } 4088 4089 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4090 { 4091 int i; 4092 4093 /* There are three types that signify ownership of some other type: 4094 * kptr_ref, bpf_list_head, bpf_rb_root. 4095 * kptr_ref only supports storing kernel types, which can't store 4096 * references to program allocated local types. 4097 * 4098 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4099 * does not form cycles. 4100 */ 4101 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) 4102 return 0; 4103 for (i = 0; i < rec->cnt; i++) { 4104 struct btf_struct_meta *meta; 4105 const struct btf_type *t; 4106 u32 btf_id; 4107 4108 if (rec->fields[i].type == BPF_UPTR) { 4109 /* The uptr only supports pinning one page and cannot 4110 * point to a kernel struct 4111 */ 4112 if (btf_is_kernel(rec->fields[i].kptr.btf)) 4113 return -EINVAL; 4114 t = btf_type_by_id(rec->fields[i].kptr.btf, 4115 rec->fields[i].kptr.btf_id); 4116 if (!t->size) 4117 return -EINVAL; 4118 if (t->size > PAGE_SIZE) 4119 return -E2BIG; 4120 continue; 4121 } 4122 4123 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4124 continue; 4125 btf_id = rec->fields[i].graph_root.value_btf_id; 4126 meta = btf_find_struct_meta(btf, btf_id); 4127 if (!meta) 4128 return -EFAULT; 4129 rec->fields[i].graph_root.value_rec = meta->record; 4130 4131 /* We need to set value_rec for all root types, but no need 4132 * to check ownership cycle for a type unless it's also a 4133 * node type. 4134 */ 4135 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4136 continue; 4137 4138 /* We need to ensure ownership acyclicity among all types. The 4139 * proper way to do it would be to topologically sort all BTF 4140 * IDs based on the ownership edges, since there can be multiple 4141 * bpf_{list_head,rb_node} in a type. Instead, we use the 4142 * following resaoning: 4143 * 4144 * - A type can only be owned by another type in user BTF if it 4145 * has a bpf_{list,rb}_node. Let's call these node types. 4146 * - A type can only _own_ another type in user BTF if it has a 4147 * bpf_{list_head,rb_root}. Let's call these root types. 4148 * 4149 * We ensure that if a type is both a root and node, its 4150 * element types cannot be root types. 4151 * 4152 * To ensure acyclicity: 4153 * 4154 * When A is an root type but not a node, its ownership 4155 * chain can be: 4156 * A -> B -> C 4157 * Where: 4158 * - A is an root, e.g. has bpf_rb_root. 4159 * - B is both a root and node, e.g. has bpf_rb_node and 4160 * bpf_list_head. 4161 * - C is only an root, e.g. has bpf_list_node 4162 * 4163 * When A is both a root and node, some other type already 4164 * owns it in the BTF domain, hence it can not own 4165 * another root type through any of the ownership edges. 4166 * A -> B 4167 * Where: 4168 * - A is both an root and node. 4169 * - B is only an node. 4170 */ 4171 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4172 return -ELOOP; 4173 } 4174 return 0; 4175 } 4176 4177 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4178 u32 type_id, void *data, u8 bits_offset, 4179 struct btf_show *show) 4180 { 4181 const struct btf_member *member; 4182 void *safe_data; 4183 u32 i; 4184 4185 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4186 if (!safe_data) 4187 return; 4188 4189 for_each_member(i, t, member) { 4190 const struct btf_type *member_type = btf_type_by_id(btf, 4191 member->type); 4192 const struct btf_kind_operations *ops; 4193 u32 member_offset, bitfield_size; 4194 u32 bytes_offset; 4195 u8 bits8_offset; 4196 4197 btf_show_start_member(show, member); 4198 4199 member_offset = __btf_member_bit_offset(t, member); 4200 bitfield_size = __btf_member_bitfield_size(t, member); 4201 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4202 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4203 if (bitfield_size) { 4204 safe_data = btf_show_start_type(show, member_type, 4205 member->type, 4206 data + bytes_offset); 4207 if (safe_data) 4208 btf_bitfield_show(safe_data, 4209 bits8_offset, 4210 bitfield_size, show); 4211 btf_show_end_type(show); 4212 } else { 4213 ops = btf_type_ops(member_type); 4214 ops->show(btf, member_type, member->type, 4215 data + bytes_offset, bits8_offset, show); 4216 } 4217 4218 btf_show_end_member(show); 4219 } 4220 4221 btf_show_end_struct_type(show); 4222 } 4223 4224 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4225 u32 type_id, void *data, u8 bits_offset, 4226 struct btf_show *show) 4227 { 4228 const struct btf_member *m = show->state.member; 4229 4230 /* 4231 * First check if any members would be shown (are non-zero). 4232 * See comments above "struct btf_show" definition for more 4233 * details on how this works at a high-level. 4234 */ 4235 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4236 if (!show->state.depth_check) { 4237 show->state.depth_check = show->state.depth + 1; 4238 show->state.depth_to_show = 0; 4239 } 4240 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4241 /* Restore saved member data here */ 4242 show->state.member = m; 4243 if (show->state.depth_check != show->state.depth + 1) 4244 return; 4245 show->state.depth_check = 0; 4246 4247 if (show->state.depth_to_show <= show->state.depth) 4248 return; 4249 /* 4250 * Reaching here indicates we have recursed and found 4251 * non-zero child values. 4252 */ 4253 } 4254 4255 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4256 } 4257 4258 static const struct btf_kind_operations struct_ops = { 4259 .check_meta = btf_struct_check_meta, 4260 .resolve = btf_struct_resolve, 4261 .check_member = btf_struct_check_member, 4262 .check_kflag_member = btf_generic_check_kflag_member, 4263 .log_details = btf_struct_log, 4264 .show = btf_struct_show, 4265 }; 4266 4267 static int btf_enum_check_member(struct btf_verifier_env *env, 4268 const struct btf_type *struct_type, 4269 const struct btf_member *member, 4270 const struct btf_type *member_type) 4271 { 4272 u32 struct_bits_off = member->offset; 4273 u32 struct_size, bytes_offset; 4274 4275 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4276 btf_verifier_log_member(env, struct_type, member, 4277 "Member is not byte aligned"); 4278 return -EINVAL; 4279 } 4280 4281 struct_size = struct_type->size; 4282 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4283 if (struct_size - bytes_offset < member_type->size) { 4284 btf_verifier_log_member(env, struct_type, member, 4285 "Member exceeds struct_size"); 4286 return -EINVAL; 4287 } 4288 4289 return 0; 4290 } 4291 4292 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4293 const struct btf_type *struct_type, 4294 const struct btf_member *member, 4295 const struct btf_type *member_type) 4296 { 4297 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4298 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4299 4300 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4301 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4302 if (!nr_bits) { 4303 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4304 btf_verifier_log_member(env, struct_type, member, 4305 "Member is not byte aligned"); 4306 return -EINVAL; 4307 } 4308 4309 nr_bits = int_bitsize; 4310 } else if (nr_bits > int_bitsize) { 4311 btf_verifier_log_member(env, struct_type, member, 4312 "Invalid member bitfield_size"); 4313 return -EINVAL; 4314 } 4315 4316 struct_size = struct_type->size; 4317 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4318 if (struct_size < bytes_end) { 4319 btf_verifier_log_member(env, struct_type, member, 4320 "Member exceeds struct_size"); 4321 return -EINVAL; 4322 } 4323 4324 return 0; 4325 } 4326 4327 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4328 const struct btf_type *t, 4329 u32 meta_left) 4330 { 4331 const struct btf_enum *enums = btf_type_enum(t); 4332 struct btf *btf = env->btf; 4333 const char *fmt_str; 4334 u16 i, nr_enums; 4335 u32 meta_needed; 4336 4337 nr_enums = btf_type_vlen(t); 4338 meta_needed = nr_enums * sizeof(*enums); 4339 4340 if (meta_left < meta_needed) { 4341 btf_verifier_log_basic(env, t, 4342 "meta_left:%u meta_needed:%u", 4343 meta_left, meta_needed); 4344 return -EINVAL; 4345 } 4346 4347 if (t->size > 8 || !is_power_of_2(t->size)) { 4348 btf_verifier_log_type(env, t, "Unexpected size"); 4349 return -EINVAL; 4350 } 4351 4352 /* enum type either no name or a valid one */ 4353 if (t->name_off && 4354 !btf_name_valid_identifier(env->btf, t->name_off)) { 4355 btf_verifier_log_type(env, t, "Invalid name"); 4356 return -EINVAL; 4357 } 4358 4359 btf_verifier_log_type(env, t, NULL); 4360 4361 for (i = 0; i < nr_enums; i++) { 4362 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4363 btf_verifier_log(env, "\tInvalid name_offset:%u", 4364 enums[i].name_off); 4365 return -EINVAL; 4366 } 4367 4368 /* enum member must have a valid name */ 4369 if (!enums[i].name_off || 4370 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4371 btf_verifier_log_type(env, t, "Invalid name"); 4372 return -EINVAL; 4373 } 4374 4375 if (env->log.level == BPF_LOG_KERNEL) 4376 continue; 4377 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4378 btf_verifier_log(env, fmt_str, 4379 __btf_name_by_offset(btf, enums[i].name_off), 4380 enums[i].val); 4381 } 4382 4383 return meta_needed; 4384 } 4385 4386 static void btf_enum_log(struct btf_verifier_env *env, 4387 const struct btf_type *t) 4388 { 4389 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4390 } 4391 4392 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4393 u32 type_id, void *data, u8 bits_offset, 4394 struct btf_show *show) 4395 { 4396 const struct btf_enum *enums = btf_type_enum(t); 4397 u32 i, nr_enums = btf_type_vlen(t); 4398 void *safe_data; 4399 int v; 4400 4401 safe_data = btf_show_start_type(show, t, type_id, data); 4402 if (!safe_data) 4403 return; 4404 4405 v = *(int *)safe_data; 4406 4407 for (i = 0; i < nr_enums; i++) { 4408 if (v != enums[i].val) 4409 continue; 4410 4411 btf_show_type_value(show, "%s", 4412 __btf_name_by_offset(btf, 4413 enums[i].name_off)); 4414 4415 btf_show_end_type(show); 4416 return; 4417 } 4418 4419 if (btf_type_kflag(t)) 4420 btf_show_type_value(show, "%d", v); 4421 else 4422 btf_show_type_value(show, "%u", v); 4423 btf_show_end_type(show); 4424 } 4425 4426 static const struct btf_kind_operations enum_ops = { 4427 .check_meta = btf_enum_check_meta, 4428 .resolve = btf_df_resolve, 4429 .check_member = btf_enum_check_member, 4430 .check_kflag_member = btf_enum_check_kflag_member, 4431 .log_details = btf_enum_log, 4432 .show = btf_enum_show, 4433 }; 4434 4435 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4436 const struct btf_type *t, 4437 u32 meta_left) 4438 { 4439 const struct btf_enum64 *enums = btf_type_enum64(t); 4440 struct btf *btf = env->btf; 4441 const char *fmt_str; 4442 u16 i, nr_enums; 4443 u32 meta_needed; 4444 4445 nr_enums = btf_type_vlen(t); 4446 meta_needed = nr_enums * sizeof(*enums); 4447 4448 if (meta_left < meta_needed) { 4449 btf_verifier_log_basic(env, t, 4450 "meta_left:%u meta_needed:%u", 4451 meta_left, meta_needed); 4452 return -EINVAL; 4453 } 4454 4455 if (t->size > 8 || !is_power_of_2(t->size)) { 4456 btf_verifier_log_type(env, t, "Unexpected size"); 4457 return -EINVAL; 4458 } 4459 4460 /* enum type either no name or a valid one */ 4461 if (t->name_off && 4462 !btf_name_valid_identifier(env->btf, t->name_off)) { 4463 btf_verifier_log_type(env, t, "Invalid name"); 4464 return -EINVAL; 4465 } 4466 4467 btf_verifier_log_type(env, t, NULL); 4468 4469 for (i = 0; i < nr_enums; i++) { 4470 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4471 btf_verifier_log(env, "\tInvalid name_offset:%u", 4472 enums[i].name_off); 4473 return -EINVAL; 4474 } 4475 4476 /* enum member must have a valid name */ 4477 if (!enums[i].name_off || 4478 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4479 btf_verifier_log_type(env, t, "Invalid name"); 4480 return -EINVAL; 4481 } 4482 4483 if (env->log.level == BPF_LOG_KERNEL) 4484 continue; 4485 4486 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4487 btf_verifier_log(env, fmt_str, 4488 __btf_name_by_offset(btf, enums[i].name_off), 4489 btf_enum64_value(enums + i)); 4490 } 4491 4492 return meta_needed; 4493 } 4494 4495 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4496 u32 type_id, void *data, u8 bits_offset, 4497 struct btf_show *show) 4498 { 4499 const struct btf_enum64 *enums = btf_type_enum64(t); 4500 u32 i, nr_enums = btf_type_vlen(t); 4501 void *safe_data; 4502 s64 v; 4503 4504 safe_data = btf_show_start_type(show, t, type_id, data); 4505 if (!safe_data) 4506 return; 4507 4508 v = *(u64 *)safe_data; 4509 4510 for (i = 0; i < nr_enums; i++) { 4511 if (v != btf_enum64_value(enums + i)) 4512 continue; 4513 4514 btf_show_type_value(show, "%s", 4515 __btf_name_by_offset(btf, 4516 enums[i].name_off)); 4517 4518 btf_show_end_type(show); 4519 return; 4520 } 4521 4522 if (btf_type_kflag(t)) 4523 btf_show_type_value(show, "%lld", v); 4524 else 4525 btf_show_type_value(show, "%llu", v); 4526 btf_show_end_type(show); 4527 } 4528 4529 static const struct btf_kind_operations enum64_ops = { 4530 .check_meta = btf_enum64_check_meta, 4531 .resolve = btf_df_resolve, 4532 .check_member = btf_enum_check_member, 4533 .check_kflag_member = btf_enum_check_kflag_member, 4534 .log_details = btf_enum_log, 4535 .show = btf_enum64_show, 4536 }; 4537 4538 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4539 const struct btf_type *t, 4540 u32 meta_left) 4541 { 4542 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4543 4544 if (meta_left < meta_needed) { 4545 btf_verifier_log_basic(env, t, 4546 "meta_left:%u meta_needed:%u", 4547 meta_left, meta_needed); 4548 return -EINVAL; 4549 } 4550 4551 if (t->name_off) { 4552 btf_verifier_log_type(env, t, "Invalid name"); 4553 return -EINVAL; 4554 } 4555 4556 if (btf_type_kflag(t)) { 4557 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4558 return -EINVAL; 4559 } 4560 4561 btf_verifier_log_type(env, t, NULL); 4562 4563 return meta_needed; 4564 } 4565 4566 static void btf_func_proto_log(struct btf_verifier_env *env, 4567 const struct btf_type *t) 4568 { 4569 const struct btf_param *args = (const struct btf_param *)(t + 1); 4570 u16 nr_args = btf_type_vlen(t), i; 4571 4572 btf_verifier_log(env, "return=%u args=(", t->type); 4573 if (!nr_args) { 4574 btf_verifier_log(env, "void"); 4575 goto done; 4576 } 4577 4578 if (nr_args == 1 && !args[0].type) { 4579 /* Only one vararg */ 4580 btf_verifier_log(env, "vararg"); 4581 goto done; 4582 } 4583 4584 btf_verifier_log(env, "%u %s", args[0].type, 4585 __btf_name_by_offset(env->btf, 4586 args[0].name_off)); 4587 for (i = 1; i < nr_args - 1; i++) 4588 btf_verifier_log(env, ", %u %s", args[i].type, 4589 __btf_name_by_offset(env->btf, 4590 args[i].name_off)); 4591 4592 if (nr_args > 1) { 4593 const struct btf_param *last_arg = &args[nr_args - 1]; 4594 4595 if (last_arg->type) 4596 btf_verifier_log(env, ", %u %s", last_arg->type, 4597 __btf_name_by_offset(env->btf, 4598 last_arg->name_off)); 4599 else 4600 btf_verifier_log(env, ", vararg"); 4601 } 4602 4603 done: 4604 btf_verifier_log(env, ")"); 4605 } 4606 4607 static const struct btf_kind_operations func_proto_ops = { 4608 .check_meta = btf_func_proto_check_meta, 4609 .resolve = btf_df_resolve, 4610 /* 4611 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4612 * a struct's member. 4613 * 4614 * It should be a function pointer instead. 4615 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4616 * 4617 * Hence, there is no btf_func_check_member(). 4618 */ 4619 .check_member = btf_df_check_member, 4620 .check_kflag_member = btf_df_check_kflag_member, 4621 .log_details = btf_func_proto_log, 4622 .show = btf_df_show, 4623 }; 4624 4625 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4626 const struct btf_type *t, 4627 u32 meta_left) 4628 { 4629 if (!t->name_off || 4630 !btf_name_valid_identifier(env->btf, t->name_off)) { 4631 btf_verifier_log_type(env, t, "Invalid name"); 4632 return -EINVAL; 4633 } 4634 4635 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4636 btf_verifier_log_type(env, t, "Invalid func linkage"); 4637 return -EINVAL; 4638 } 4639 4640 if (btf_type_kflag(t)) { 4641 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4642 return -EINVAL; 4643 } 4644 4645 btf_verifier_log_type(env, t, NULL); 4646 4647 return 0; 4648 } 4649 4650 static int btf_func_resolve(struct btf_verifier_env *env, 4651 const struct resolve_vertex *v) 4652 { 4653 const struct btf_type *t = v->t; 4654 u32 next_type_id = t->type; 4655 int err; 4656 4657 err = btf_func_check(env, t); 4658 if (err) 4659 return err; 4660 4661 env_stack_pop_resolved(env, next_type_id, 0); 4662 return 0; 4663 } 4664 4665 static const struct btf_kind_operations func_ops = { 4666 .check_meta = btf_func_check_meta, 4667 .resolve = btf_func_resolve, 4668 .check_member = btf_df_check_member, 4669 .check_kflag_member = btf_df_check_kflag_member, 4670 .log_details = btf_ref_type_log, 4671 .show = btf_df_show, 4672 }; 4673 4674 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4675 const struct btf_type *t, 4676 u32 meta_left) 4677 { 4678 const struct btf_var *var; 4679 u32 meta_needed = sizeof(*var); 4680 4681 if (meta_left < meta_needed) { 4682 btf_verifier_log_basic(env, t, 4683 "meta_left:%u meta_needed:%u", 4684 meta_left, meta_needed); 4685 return -EINVAL; 4686 } 4687 4688 if (btf_type_vlen(t)) { 4689 btf_verifier_log_type(env, t, "vlen != 0"); 4690 return -EINVAL; 4691 } 4692 4693 if (btf_type_kflag(t)) { 4694 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4695 return -EINVAL; 4696 } 4697 4698 if (!t->name_off || 4699 !btf_name_valid_identifier(env->btf, t->name_off)) { 4700 btf_verifier_log_type(env, t, "Invalid name"); 4701 return -EINVAL; 4702 } 4703 4704 /* A var cannot be in type void */ 4705 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4706 btf_verifier_log_type(env, t, "Invalid type_id"); 4707 return -EINVAL; 4708 } 4709 4710 var = btf_type_var(t); 4711 if (var->linkage != BTF_VAR_STATIC && 4712 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4713 btf_verifier_log_type(env, t, "Linkage not supported"); 4714 return -EINVAL; 4715 } 4716 4717 btf_verifier_log_type(env, t, NULL); 4718 4719 return meta_needed; 4720 } 4721 4722 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4723 { 4724 const struct btf_var *var = btf_type_var(t); 4725 4726 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4727 } 4728 4729 static const struct btf_kind_operations var_ops = { 4730 .check_meta = btf_var_check_meta, 4731 .resolve = btf_var_resolve, 4732 .check_member = btf_df_check_member, 4733 .check_kflag_member = btf_df_check_kflag_member, 4734 .log_details = btf_var_log, 4735 .show = btf_var_show, 4736 }; 4737 4738 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4739 const struct btf_type *t, 4740 u32 meta_left) 4741 { 4742 const struct btf_var_secinfo *vsi; 4743 u64 last_vsi_end_off = 0, sum = 0; 4744 u32 i, meta_needed; 4745 4746 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4747 if (meta_left < meta_needed) { 4748 btf_verifier_log_basic(env, t, 4749 "meta_left:%u meta_needed:%u", 4750 meta_left, meta_needed); 4751 return -EINVAL; 4752 } 4753 4754 if (!t->size) { 4755 btf_verifier_log_type(env, t, "size == 0"); 4756 return -EINVAL; 4757 } 4758 4759 if (btf_type_kflag(t)) { 4760 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4761 return -EINVAL; 4762 } 4763 4764 if (!t->name_off || 4765 !btf_name_valid_section(env->btf, t->name_off)) { 4766 btf_verifier_log_type(env, t, "Invalid name"); 4767 return -EINVAL; 4768 } 4769 4770 btf_verifier_log_type(env, t, NULL); 4771 4772 for_each_vsi(i, t, vsi) { 4773 /* A var cannot be in type void */ 4774 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4775 btf_verifier_log_vsi(env, t, vsi, 4776 "Invalid type_id"); 4777 return -EINVAL; 4778 } 4779 4780 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4781 btf_verifier_log_vsi(env, t, vsi, 4782 "Invalid offset"); 4783 return -EINVAL; 4784 } 4785 4786 if (!vsi->size || vsi->size > t->size) { 4787 btf_verifier_log_vsi(env, t, vsi, 4788 "Invalid size"); 4789 return -EINVAL; 4790 } 4791 4792 last_vsi_end_off = vsi->offset + vsi->size; 4793 if (last_vsi_end_off > t->size) { 4794 btf_verifier_log_vsi(env, t, vsi, 4795 "Invalid offset+size"); 4796 return -EINVAL; 4797 } 4798 4799 btf_verifier_log_vsi(env, t, vsi, NULL); 4800 sum += vsi->size; 4801 } 4802 4803 if (t->size < sum) { 4804 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4805 return -EINVAL; 4806 } 4807 4808 return meta_needed; 4809 } 4810 4811 static int btf_datasec_resolve(struct btf_verifier_env *env, 4812 const struct resolve_vertex *v) 4813 { 4814 const struct btf_var_secinfo *vsi; 4815 struct btf *btf = env->btf; 4816 u16 i; 4817 4818 env->resolve_mode = RESOLVE_TBD; 4819 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4820 u32 var_type_id = vsi->type, type_id, type_size = 0; 4821 const struct btf_type *var_type = btf_type_by_id(env->btf, 4822 var_type_id); 4823 if (!var_type || !btf_type_is_var(var_type)) { 4824 btf_verifier_log_vsi(env, v->t, vsi, 4825 "Not a VAR kind member"); 4826 return -EINVAL; 4827 } 4828 4829 if (!env_type_is_resolve_sink(env, var_type) && 4830 !env_type_is_resolved(env, var_type_id)) { 4831 env_stack_set_next_member(env, i + 1); 4832 return env_stack_push(env, var_type, var_type_id); 4833 } 4834 4835 type_id = var_type->type; 4836 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4837 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4838 return -EINVAL; 4839 } 4840 4841 if (vsi->size < type_size) { 4842 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4843 return -EINVAL; 4844 } 4845 } 4846 4847 env_stack_pop_resolved(env, 0, 0); 4848 return 0; 4849 } 4850 4851 static void btf_datasec_log(struct btf_verifier_env *env, 4852 const struct btf_type *t) 4853 { 4854 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4855 } 4856 4857 static void btf_datasec_show(const struct btf *btf, 4858 const struct btf_type *t, u32 type_id, 4859 void *data, u8 bits_offset, 4860 struct btf_show *show) 4861 { 4862 const struct btf_var_secinfo *vsi; 4863 const struct btf_type *var; 4864 u32 i; 4865 4866 if (!btf_show_start_type(show, t, type_id, data)) 4867 return; 4868 4869 btf_show_type_value(show, "section (\"%s\") = {", 4870 __btf_name_by_offset(btf, t->name_off)); 4871 for_each_vsi(i, t, vsi) { 4872 var = btf_type_by_id(btf, vsi->type); 4873 if (i) 4874 btf_show(show, ","); 4875 btf_type_ops(var)->show(btf, var, vsi->type, 4876 data + vsi->offset, bits_offset, show); 4877 } 4878 btf_show_end_type(show); 4879 } 4880 4881 static const struct btf_kind_operations datasec_ops = { 4882 .check_meta = btf_datasec_check_meta, 4883 .resolve = btf_datasec_resolve, 4884 .check_member = btf_df_check_member, 4885 .check_kflag_member = btf_df_check_kflag_member, 4886 .log_details = btf_datasec_log, 4887 .show = btf_datasec_show, 4888 }; 4889 4890 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4891 const struct btf_type *t, 4892 u32 meta_left) 4893 { 4894 if (btf_type_vlen(t)) { 4895 btf_verifier_log_type(env, t, "vlen != 0"); 4896 return -EINVAL; 4897 } 4898 4899 if (btf_type_kflag(t)) { 4900 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4901 return -EINVAL; 4902 } 4903 4904 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4905 t->size != 16) { 4906 btf_verifier_log_type(env, t, "Invalid type_size"); 4907 return -EINVAL; 4908 } 4909 4910 btf_verifier_log_type(env, t, NULL); 4911 4912 return 0; 4913 } 4914 4915 static int btf_float_check_member(struct btf_verifier_env *env, 4916 const struct btf_type *struct_type, 4917 const struct btf_member *member, 4918 const struct btf_type *member_type) 4919 { 4920 u64 start_offset_bytes; 4921 u64 end_offset_bytes; 4922 u64 misalign_bits; 4923 u64 align_bytes; 4924 u64 align_bits; 4925 4926 /* Different architectures have different alignment requirements, so 4927 * here we check only for the reasonable minimum. This way we ensure 4928 * that types after CO-RE can pass the kernel BTF verifier. 4929 */ 4930 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4931 align_bits = align_bytes * BITS_PER_BYTE; 4932 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4933 if (misalign_bits) { 4934 btf_verifier_log_member(env, struct_type, member, 4935 "Member is not properly aligned"); 4936 return -EINVAL; 4937 } 4938 4939 start_offset_bytes = member->offset / BITS_PER_BYTE; 4940 end_offset_bytes = start_offset_bytes + member_type->size; 4941 if (end_offset_bytes > struct_type->size) { 4942 btf_verifier_log_member(env, struct_type, member, 4943 "Member exceeds struct_size"); 4944 return -EINVAL; 4945 } 4946 4947 return 0; 4948 } 4949 4950 static void btf_float_log(struct btf_verifier_env *env, 4951 const struct btf_type *t) 4952 { 4953 btf_verifier_log(env, "size=%u", t->size); 4954 } 4955 4956 static const struct btf_kind_operations float_ops = { 4957 .check_meta = btf_float_check_meta, 4958 .resolve = btf_df_resolve, 4959 .check_member = btf_float_check_member, 4960 .check_kflag_member = btf_generic_check_kflag_member, 4961 .log_details = btf_float_log, 4962 .show = btf_df_show, 4963 }; 4964 4965 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4966 const struct btf_type *t, 4967 u32 meta_left) 4968 { 4969 const struct btf_decl_tag *tag; 4970 u32 meta_needed = sizeof(*tag); 4971 s32 component_idx; 4972 const char *value; 4973 4974 if (meta_left < meta_needed) { 4975 btf_verifier_log_basic(env, t, 4976 "meta_left:%u meta_needed:%u", 4977 meta_left, meta_needed); 4978 return -EINVAL; 4979 } 4980 4981 value = btf_name_by_offset(env->btf, t->name_off); 4982 if (!value || !value[0]) { 4983 btf_verifier_log_type(env, t, "Invalid value"); 4984 return -EINVAL; 4985 } 4986 4987 if (btf_type_vlen(t)) { 4988 btf_verifier_log_type(env, t, "vlen != 0"); 4989 return -EINVAL; 4990 } 4991 4992 component_idx = btf_type_decl_tag(t)->component_idx; 4993 if (component_idx < -1) { 4994 btf_verifier_log_type(env, t, "Invalid component_idx"); 4995 return -EINVAL; 4996 } 4997 4998 btf_verifier_log_type(env, t, NULL); 4999 5000 return meta_needed; 5001 } 5002 5003 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 5004 const struct resolve_vertex *v) 5005 { 5006 const struct btf_type *next_type; 5007 const struct btf_type *t = v->t; 5008 u32 next_type_id = t->type; 5009 struct btf *btf = env->btf; 5010 s32 component_idx; 5011 u32 vlen; 5012 5013 next_type = btf_type_by_id(btf, next_type_id); 5014 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 5015 btf_verifier_log_type(env, v->t, "Invalid type_id"); 5016 return -EINVAL; 5017 } 5018 5019 if (!env_type_is_resolve_sink(env, next_type) && 5020 !env_type_is_resolved(env, next_type_id)) 5021 return env_stack_push(env, next_type, next_type_id); 5022 5023 component_idx = btf_type_decl_tag(t)->component_idx; 5024 if (component_idx != -1) { 5025 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 5026 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5027 return -EINVAL; 5028 } 5029 5030 if (btf_type_is_struct(next_type)) { 5031 vlen = btf_type_vlen(next_type); 5032 } else { 5033 /* next_type should be a function */ 5034 next_type = btf_type_by_id(btf, next_type->type); 5035 vlen = btf_type_vlen(next_type); 5036 } 5037 5038 if ((u32)component_idx >= vlen) { 5039 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5040 return -EINVAL; 5041 } 5042 } 5043 5044 env_stack_pop_resolved(env, next_type_id, 0); 5045 5046 return 0; 5047 } 5048 5049 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 5050 { 5051 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 5052 btf_type_decl_tag(t)->component_idx); 5053 } 5054 5055 static const struct btf_kind_operations decl_tag_ops = { 5056 .check_meta = btf_decl_tag_check_meta, 5057 .resolve = btf_decl_tag_resolve, 5058 .check_member = btf_df_check_member, 5059 .check_kflag_member = btf_df_check_kflag_member, 5060 .log_details = btf_decl_tag_log, 5061 .show = btf_df_show, 5062 }; 5063 5064 static int btf_func_proto_check(struct btf_verifier_env *env, 5065 const struct btf_type *t) 5066 { 5067 const struct btf_type *ret_type; 5068 const struct btf_param *args; 5069 const struct btf *btf; 5070 u16 nr_args, i; 5071 int err; 5072 5073 btf = env->btf; 5074 args = (const struct btf_param *)(t + 1); 5075 nr_args = btf_type_vlen(t); 5076 5077 /* Check func return type which could be "void" (t->type == 0) */ 5078 if (t->type) { 5079 u32 ret_type_id = t->type; 5080 5081 ret_type = btf_type_by_id(btf, ret_type_id); 5082 if (!ret_type) { 5083 btf_verifier_log_type(env, t, "Invalid return type"); 5084 return -EINVAL; 5085 } 5086 5087 if (btf_type_is_resolve_source_only(ret_type)) { 5088 btf_verifier_log_type(env, t, "Invalid return type"); 5089 return -EINVAL; 5090 } 5091 5092 if (btf_type_needs_resolve(ret_type) && 5093 !env_type_is_resolved(env, ret_type_id)) { 5094 err = btf_resolve(env, ret_type, ret_type_id); 5095 if (err) 5096 return err; 5097 } 5098 5099 /* Ensure the return type is a type that has a size */ 5100 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5101 btf_verifier_log_type(env, t, "Invalid return type"); 5102 return -EINVAL; 5103 } 5104 } 5105 5106 if (!nr_args) 5107 return 0; 5108 5109 /* Last func arg type_id could be 0 if it is a vararg */ 5110 if (!args[nr_args - 1].type) { 5111 if (args[nr_args - 1].name_off) { 5112 btf_verifier_log_type(env, t, "Invalid arg#%u", 5113 nr_args); 5114 return -EINVAL; 5115 } 5116 nr_args--; 5117 } 5118 5119 for (i = 0; i < nr_args; i++) { 5120 const struct btf_type *arg_type; 5121 u32 arg_type_id; 5122 5123 arg_type_id = args[i].type; 5124 arg_type = btf_type_by_id(btf, arg_type_id); 5125 if (!arg_type) { 5126 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5127 return -EINVAL; 5128 } 5129 5130 if (btf_type_is_resolve_source_only(arg_type)) { 5131 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5132 return -EINVAL; 5133 } 5134 5135 if (args[i].name_off && 5136 (!btf_name_offset_valid(btf, args[i].name_off) || 5137 !btf_name_valid_identifier(btf, args[i].name_off))) { 5138 btf_verifier_log_type(env, t, 5139 "Invalid arg#%u", i + 1); 5140 return -EINVAL; 5141 } 5142 5143 if (btf_type_needs_resolve(arg_type) && 5144 !env_type_is_resolved(env, arg_type_id)) { 5145 err = btf_resolve(env, arg_type, arg_type_id); 5146 if (err) 5147 return err; 5148 } 5149 5150 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5151 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5152 return -EINVAL; 5153 } 5154 } 5155 5156 return 0; 5157 } 5158 5159 static int btf_func_check(struct btf_verifier_env *env, 5160 const struct btf_type *t) 5161 { 5162 const struct btf_type *proto_type; 5163 const struct btf_param *args; 5164 const struct btf *btf; 5165 u16 nr_args, i; 5166 5167 btf = env->btf; 5168 proto_type = btf_type_by_id(btf, t->type); 5169 5170 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5171 btf_verifier_log_type(env, t, "Invalid type_id"); 5172 return -EINVAL; 5173 } 5174 5175 args = (const struct btf_param *)(proto_type + 1); 5176 nr_args = btf_type_vlen(proto_type); 5177 for (i = 0; i < nr_args; i++) { 5178 if (!args[i].name_off && args[i].type) { 5179 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5180 return -EINVAL; 5181 } 5182 } 5183 5184 return 0; 5185 } 5186 5187 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5188 [BTF_KIND_INT] = &int_ops, 5189 [BTF_KIND_PTR] = &ptr_ops, 5190 [BTF_KIND_ARRAY] = &array_ops, 5191 [BTF_KIND_STRUCT] = &struct_ops, 5192 [BTF_KIND_UNION] = &struct_ops, 5193 [BTF_KIND_ENUM] = &enum_ops, 5194 [BTF_KIND_FWD] = &fwd_ops, 5195 [BTF_KIND_TYPEDEF] = &modifier_ops, 5196 [BTF_KIND_VOLATILE] = &modifier_ops, 5197 [BTF_KIND_CONST] = &modifier_ops, 5198 [BTF_KIND_RESTRICT] = &modifier_ops, 5199 [BTF_KIND_FUNC] = &func_ops, 5200 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5201 [BTF_KIND_VAR] = &var_ops, 5202 [BTF_KIND_DATASEC] = &datasec_ops, 5203 [BTF_KIND_FLOAT] = &float_ops, 5204 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5205 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5206 [BTF_KIND_ENUM64] = &enum64_ops, 5207 }; 5208 5209 static s32 btf_check_meta(struct btf_verifier_env *env, 5210 const struct btf_type *t, 5211 u32 meta_left) 5212 { 5213 u32 saved_meta_left = meta_left; 5214 s32 var_meta_size; 5215 5216 if (meta_left < sizeof(*t)) { 5217 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5218 env->log_type_id, meta_left, sizeof(*t)); 5219 return -EINVAL; 5220 } 5221 meta_left -= sizeof(*t); 5222 5223 if (t->info & ~BTF_INFO_MASK) { 5224 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5225 env->log_type_id, t->info); 5226 return -EINVAL; 5227 } 5228 5229 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5230 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5231 btf_verifier_log(env, "[%u] Invalid kind:%u", 5232 env->log_type_id, BTF_INFO_KIND(t->info)); 5233 return -EINVAL; 5234 } 5235 5236 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5237 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5238 env->log_type_id, t->name_off); 5239 return -EINVAL; 5240 } 5241 5242 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5243 if (var_meta_size < 0) 5244 return var_meta_size; 5245 5246 meta_left -= var_meta_size; 5247 5248 return saved_meta_left - meta_left; 5249 } 5250 5251 static int btf_check_all_metas(struct btf_verifier_env *env) 5252 { 5253 struct btf *btf = env->btf; 5254 struct btf_header *hdr; 5255 void *cur, *end; 5256 5257 hdr = &btf->hdr; 5258 cur = btf->nohdr_data + hdr->type_off; 5259 end = cur + hdr->type_len; 5260 5261 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5262 while (cur < end) { 5263 struct btf_type *t = cur; 5264 s32 meta_size; 5265 5266 meta_size = btf_check_meta(env, t, end - cur); 5267 if (meta_size < 0) 5268 return meta_size; 5269 5270 btf_add_type(env, t); 5271 cur += meta_size; 5272 env->log_type_id++; 5273 } 5274 5275 return 0; 5276 } 5277 5278 static bool btf_resolve_valid(struct btf_verifier_env *env, 5279 const struct btf_type *t, 5280 u32 type_id) 5281 { 5282 struct btf *btf = env->btf; 5283 5284 if (!env_type_is_resolved(env, type_id)) 5285 return false; 5286 5287 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5288 return !btf_resolved_type_id(btf, type_id) && 5289 !btf_resolved_type_size(btf, type_id); 5290 5291 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5292 return btf_resolved_type_id(btf, type_id) && 5293 !btf_resolved_type_size(btf, type_id); 5294 5295 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5296 btf_type_is_var(t)) { 5297 t = btf_type_id_resolve(btf, &type_id); 5298 return t && 5299 !btf_type_is_modifier(t) && 5300 !btf_type_is_var(t) && 5301 !btf_type_is_datasec(t); 5302 } 5303 5304 if (btf_type_is_array(t)) { 5305 const struct btf_array *array = btf_type_array(t); 5306 const struct btf_type *elem_type; 5307 u32 elem_type_id = array->type; 5308 u32 elem_size; 5309 5310 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5311 return elem_type && !btf_type_is_modifier(elem_type) && 5312 (array->nelems * elem_size == 5313 btf_resolved_type_size(btf, type_id)); 5314 } 5315 5316 return false; 5317 } 5318 5319 static int btf_resolve(struct btf_verifier_env *env, 5320 const struct btf_type *t, u32 type_id) 5321 { 5322 u32 save_log_type_id = env->log_type_id; 5323 const struct resolve_vertex *v; 5324 int err = 0; 5325 5326 env->resolve_mode = RESOLVE_TBD; 5327 env_stack_push(env, t, type_id); 5328 while (!err && (v = env_stack_peak(env))) { 5329 env->log_type_id = v->type_id; 5330 err = btf_type_ops(v->t)->resolve(env, v); 5331 } 5332 5333 env->log_type_id = type_id; 5334 if (err == -E2BIG) { 5335 btf_verifier_log_type(env, t, 5336 "Exceeded max resolving depth:%u", 5337 MAX_RESOLVE_DEPTH); 5338 } else if (err == -EEXIST) { 5339 btf_verifier_log_type(env, t, "Loop detected"); 5340 } 5341 5342 /* Final sanity check */ 5343 if (!err && !btf_resolve_valid(env, t, type_id)) { 5344 btf_verifier_log_type(env, t, "Invalid resolve state"); 5345 err = -EINVAL; 5346 } 5347 5348 env->log_type_id = save_log_type_id; 5349 return err; 5350 } 5351 5352 static int btf_check_all_types(struct btf_verifier_env *env) 5353 { 5354 struct btf *btf = env->btf; 5355 const struct btf_type *t; 5356 u32 type_id, i; 5357 int err; 5358 5359 err = env_resolve_init(env); 5360 if (err) 5361 return err; 5362 5363 env->phase++; 5364 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5365 type_id = btf->start_id + i; 5366 t = btf_type_by_id(btf, type_id); 5367 5368 env->log_type_id = type_id; 5369 if (btf_type_needs_resolve(t) && 5370 !env_type_is_resolved(env, type_id)) { 5371 err = btf_resolve(env, t, type_id); 5372 if (err) 5373 return err; 5374 } 5375 5376 if (btf_type_is_func_proto(t)) { 5377 err = btf_func_proto_check(env, t); 5378 if (err) 5379 return err; 5380 } 5381 } 5382 5383 return 0; 5384 } 5385 5386 static int btf_parse_type_sec(struct btf_verifier_env *env) 5387 { 5388 const struct btf_header *hdr = &env->btf->hdr; 5389 int err; 5390 5391 /* Type section must align to 4 bytes */ 5392 if (hdr->type_off & (sizeof(u32) - 1)) { 5393 btf_verifier_log(env, "Unaligned type_off"); 5394 return -EINVAL; 5395 } 5396 5397 if (!env->btf->base_btf && !hdr->type_len) { 5398 btf_verifier_log(env, "No type found"); 5399 return -EINVAL; 5400 } 5401 5402 err = btf_check_all_metas(env); 5403 if (err) 5404 return err; 5405 5406 return btf_check_all_types(env); 5407 } 5408 5409 static int btf_parse_str_sec(struct btf_verifier_env *env) 5410 { 5411 const struct btf_header *hdr; 5412 struct btf *btf = env->btf; 5413 const char *start, *end; 5414 5415 hdr = &btf->hdr; 5416 start = btf->nohdr_data + hdr->str_off; 5417 end = start + hdr->str_len; 5418 5419 if (end != btf->data + btf->data_size) { 5420 btf_verifier_log(env, "String section is not at the end"); 5421 return -EINVAL; 5422 } 5423 5424 btf->strings = start; 5425 5426 if (btf->base_btf && !hdr->str_len) 5427 return 0; 5428 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5429 btf_verifier_log(env, "Invalid string section"); 5430 return -EINVAL; 5431 } 5432 if (!btf->base_btf && start[0]) { 5433 btf_verifier_log(env, "Invalid string section"); 5434 return -EINVAL; 5435 } 5436 5437 return 0; 5438 } 5439 5440 static const size_t btf_sec_info_offset[] = { 5441 offsetof(struct btf_header, type_off), 5442 offsetof(struct btf_header, str_off), 5443 }; 5444 5445 static int btf_sec_info_cmp(const void *a, const void *b) 5446 { 5447 const struct btf_sec_info *x = a; 5448 const struct btf_sec_info *y = b; 5449 5450 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5451 } 5452 5453 static int btf_check_sec_info(struct btf_verifier_env *env, 5454 u32 btf_data_size) 5455 { 5456 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5457 u32 total, expected_total, i; 5458 const struct btf_header *hdr; 5459 const struct btf *btf; 5460 5461 btf = env->btf; 5462 hdr = &btf->hdr; 5463 5464 /* Populate the secs from hdr */ 5465 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5466 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5467 btf_sec_info_offset[i]); 5468 5469 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5470 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5471 5472 /* Check for gaps and overlap among sections */ 5473 total = 0; 5474 expected_total = btf_data_size - hdr->hdr_len; 5475 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5476 if (expected_total < secs[i].off) { 5477 btf_verifier_log(env, "Invalid section offset"); 5478 return -EINVAL; 5479 } 5480 if (total < secs[i].off) { 5481 /* gap */ 5482 btf_verifier_log(env, "Unsupported section found"); 5483 return -EINVAL; 5484 } 5485 if (total > secs[i].off) { 5486 btf_verifier_log(env, "Section overlap found"); 5487 return -EINVAL; 5488 } 5489 if (expected_total - total < secs[i].len) { 5490 btf_verifier_log(env, 5491 "Total section length too long"); 5492 return -EINVAL; 5493 } 5494 total += secs[i].len; 5495 } 5496 5497 /* There is data other than hdr and known sections */ 5498 if (expected_total != total) { 5499 btf_verifier_log(env, "Unsupported section found"); 5500 return -EINVAL; 5501 } 5502 5503 return 0; 5504 } 5505 5506 static int btf_parse_hdr(struct btf_verifier_env *env) 5507 { 5508 u32 hdr_len, hdr_copy, btf_data_size; 5509 const struct btf_header *hdr; 5510 struct btf *btf; 5511 5512 btf = env->btf; 5513 btf_data_size = btf->data_size; 5514 5515 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5516 btf_verifier_log(env, "hdr_len not found"); 5517 return -EINVAL; 5518 } 5519 5520 hdr = btf->data; 5521 hdr_len = hdr->hdr_len; 5522 if (btf_data_size < hdr_len) { 5523 btf_verifier_log(env, "btf_header not found"); 5524 return -EINVAL; 5525 } 5526 5527 /* Ensure the unsupported header fields are zero */ 5528 if (hdr_len > sizeof(btf->hdr)) { 5529 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5530 u8 *end = btf->data + hdr_len; 5531 5532 for (; expected_zero < end; expected_zero++) { 5533 if (*expected_zero) { 5534 btf_verifier_log(env, "Unsupported btf_header"); 5535 return -E2BIG; 5536 } 5537 } 5538 } 5539 5540 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5541 memcpy(&btf->hdr, btf->data, hdr_copy); 5542 5543 hdr = &btf->hdr; 5544 5545 btf_verifier_log_hdr(env, btf_data_size); 5546 5547 if (hdr->magic != BTF_MAGIC) { 5548 btf_verifier_log(env, "Invalid magic"); 5549 return -EINVAL; 5550 } 5551 5552 if (hdr->version != BTF_VERSION) { 5553 btf_verifier_log(env, "Unsupported version"); 5554 return -ENOTSUPP; 5555 } 5556 5557 if (hdr->flags) { 5558 btf_verifier_log(env, "Unsupported flags"); 5559 return -ENOTSUPP; 5560 } 5561 5562 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5563 btf_verifier_log(env, "No data"); 5564 return -EINVAL; 5565 } 5566 5567 return btf_check_sec_info(env, btf_data_size); 5568 } 5569 5570 static const char *alloc_obj_fields[] = { 5571 "bpf_spin_lock", 5572 "bpf_list_head", 5573 "bpf_list_node", 5574 "bpf_rb_root", 5575 "bpf_rb_node", 5576 "bpf_refcount", 5577 }; 5578 5579 static struct btf_struct_metas * 5580 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5581 { 5582 struct btf_struct_metas *tab = NULL; 5583 struct btf_id_set *aof; 5584 int i, n, id, ret; 5585 5586 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5587 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5588 5589 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5590 if (!aof) 5591 return ERR_PTR(-ENOMEM); 5592 aof->cnt = 0; 5593 5594 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5595 /* Try to find whether this special type exists in user BTF, and 5596 * if so remember its ID so we can easily find it among members 5597 * of structs that we iterate in the next loop. 5598 */ 5599 struct btf_id_set *new_aof; 5600 5601 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5602 if (id < 0) 5603 continue; 5604 5605 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), 5606 GFP_KERNEL | __GFP_NOWARN); 5607 if (!new_aof) { 5608 ret = -ENOMEM; 5609 goto free_aof; 5610 } 5611 aof = new_aof; 5612 aof->ids[aof->cnt++] = id; 5613 } 5614 5615 n = btf_nr_types(btf); 5616 for (i = 1; i < n; i++) { 5617 /* Try to find if there are kptrs in user BTF and remember their ID */ 5618 struct btf_id_set *new_aof; 5619 struct btf_field_info tmp; 5620 const struct btf_type *t; 5621 5622 t = btf_type_by_id(btf, i); 5623 if (!t) { 5624 ret = -EINVAL; 5625 goto free_aof; 5626 } 5627 5628 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); 5629 if (ret != BTF_FIELD_FOUND) 5630 continue; 5631 5632 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), 5633 GFP_KERNEL | __GFP_NOWARN); 5634 if (!new_aof) { 5635 ret = -ENOMEM; 5636 goto free_aof; 5637 } 5638 aof = new_aof; 5639 aof->ids[aof->cnt++] = i; 5640 } 5641 5642 if (!aof->cnt) { 5643 kfree(aof); 5644 return NULL; 5645 } 5646 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5647 5648 for (i = 1; i < n; i++) { 5649 struct btf_struct_metas *new_tab; 5650 const struct btf_member *member; 5651 struct btf_struct_meta *type; 5652 struct btf_record *record; 5653 const struct btf_type *t; 5654 int j, tab_cnt; 5655 5656 t = btf_type_by_id(btf, i); 5657 if (!__btf_type_is_struct(t)) 5658 continue; 5659 5660 cond_resched(); 5661 5662 for_each_member(j, t, member) { 5663 if (btf_id_set_contains(aof, member->type)) 5664 goto parse; 5665 } 5666 continue; 5667 parse: 5668 tab_cnt = tab ? tab->cnt : 0; 5669 new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1), 5670 GFP_KERNEL | __GFP_NOWARN); 5671 if (!new_tab) { 5672 ret = -ENOMEM; 5673 goto free; 5674 } 5675 if (!tab) 5676 new_tab->cnt = 0; 5677 tab = new_tab; 5678 5679 type = &tab->types[tab->cnt]; 5680 type->btf_id = i; 5681 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5682 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5683 BPF_KPTR, t->size); 5684 /* The record cannot be unset, treat it as an error if so */ 5685 if (IS_ERR_OR_NULL(record)) { 5686 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5687 goto free; 5688 } 5689 type->record = record; 5690 tab->cnt++; 5691 } 5692 kfree(aof); 5693 return tab; 5694 free: 5695 btf_struct_metas_free(tab); 5696 free_aof: 5697 kfree(aof); 5698 return ERR_PTR(ret); 5699 } 5700 5701 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5702 { 5703 struct btf_struct_metas *tab; 5704 5705 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5706 tab = btf->struct_meta_tab; 5707 if (!tab) 5708 return NULL; 5709 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5710 } 5711 5712 static int btf_check_type_tags(struct btf_verifier_env *env, 5713 struct btf *btf, int start_id) 5714 { 5715 int i, n, good_id = start_id - 1; 5716 bool in_tags; 5717 5718 n = btf_nr_types(btf); 5719 for (i = start_id; i < n; i++) { 5720 const struct btf_type *t; 5721 int chain_limit = 32; 5722 u32 cur_id = i; 5723 5724 t = btf_type_by_id(btf, i); 5725 if (!t) 5726 return -EINVAL; 5727 if (!btf_type_is_modifier(t)) 5728 continue; 5729 5730 cond_resched(); 5731 5732 in_tags = btf_type_is_type_tag(t); 5733 while (btf_type_is_modifier(t)) { 5734 if (!chain_limit--) { 5735 btf_verifier_log(env, "Max chain length or cycle detected"); 5736 return -ELOOP; 5737 } 5738 if (btf_type_is_type_tag(t)) { 5739 if (!in_tags) { 5740 btf_verifier_log(env, "Type tags don't precede modifiers"); 5741 return -EINVAL; 5742 } 5743 } else if (in_tags) { 5744 in_tags = false; 5745 } 5746 if (cur_id <= good_id) 5747 break; 5748 /* Move to next type */ 5749 cur_id = t->type; 5750 t = btf_type_by_id(btf, cur_id); 5751 if (!t) 5752 return -EINVAL; 5753 } 5754 good_id = i; 5755 } 5756 return 0; 5757 } 5758 5759 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5760 { 5761 u32 log_true_size; 5762 int err; 5763 5764 err = bpf_vlog_finalize(log, &log_true_size); 5765 5766 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5767 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5768 &log_true_size, sizeof(log_true_size))) 5769 err = -EFAULT; 5770 5771 return err; 5772 } 5773 5774 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5775 { 5776 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5777 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5778 struct btf_struct_metas *struct_meta_tab; 5779 struct btf_verifier_env *env = NULL; 5780 struct btf *btf = NULL; 5781 u8 *data; 5782 int err, ret; 5783 5784 if (attr->btf_size > BTF_MAX_SIZE) 5785 return ERR_PTR(-E2BIG); 5786 5787 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5788 if (!env) 5789 return ERR_PTR(-ENOMEM); 5790 5791 /* user could have requested verbose verifier output 5792 * and supplied buffer to store the verification trace 5793 */ 5794 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5795 log_ubuf, attr->btf_log_size); 5796 if (err) 5797 goto errout_free; 5798 5799 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5800 if (!btf) { 5801 err = -ENOMEM; 5802 goto errout; 5803 } 5804 env->btf = btf; 5805 5806 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5807 if (!data) { 5808 err = -ENOMEM; 5809 goto errout; 5810 } 5811 5812 btf->data = data; 5813 btf->data_size = attr->btf_size; 5814 5815 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5816 err = -EFAULT; 5817 goto errout; 5818 } 5819 5820 err = btf_parse_hdr(env); 5821 if (err) 5822 goto errout; 5823 5824 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5825 5826 err = btf_parse_str_sec(env); 5827 if (err) 5828 goto errout; 5829 5830 err = btf_parse_type_sec(env); 5831 if (err) 5832 goto errout; 5833 5834 err = btf_check_type_tags(env, btf, 1); 5835 if (err) 5836 goto errout; 5837 5838 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5839 if (IS_ERR(struct_meta_tab)) { 5840 err = PTR_ERR(struct_meta_tab); 5841 goto errout; 5842 } 5843 btf->struct_meta_tab = struct_meta_tab; 5844 5845 if (struct_meta_tab) { 5846 int i; 5847 5848 for (i = 0; i < struct_meta_tab->cnt; i++) { 5849 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5850 if (err < 0) 5851 goto errout_meta; 5852 } 5853 } 5854 5855 err = finalize_log(&env->log, uattr, uattr_size); 5856 if (err) 5857 goto errout_free; 5858 5859 btf_verifier_env_free(env); 5860 refcount_set(&btf->refcnt, 1); 5861 return btf; 5862 5863 errout_meta: 5864 btf_free_struct_meta_tab(btf); 5865 errout: 5866 /* overwrite err with -ENOSPC or -EFAULT */ 5867 ret = finalize_log(&env->log, uattr, uattr_size); 5868 if (ret) 5869 err = ret; 5870 errout_free: 5871 btf_verifier_env_free(env); 5872 if (btf) 5873 btf_free(btf); 5874 return ERR_PTR(err); 5875 } 5876 5877 extern char __start_BTF[]; 5878 extern char __stop_BTF[]; 5879 extern struct btf *btf_vmlinux; 5880 5881 #define BPF_MAP_TYPE(_id, _ops) 5882 #define BPF_LINK_TYPE(_id, _name) 5883 static union { 5884 struct bpf_ctx_convert { 5885 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5886 prog_ctx_type _id##_prog; \ 5887 kern_ctx_type _id##_kern; 5888 #include <linux/bpf_types.h> 5889 #undef BPF_PROG_TYPE 5890 } *__t; 5891 /* 't' is written once under lock. Read many times. */ 5892 const struct btf_type *t; 5893 } bpf_ctx_convert; 5894 enum { 5895 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5896 __ctx_convert##_id, 5897 #include <linux/bpf_types.h> 5898 #undef BPF_PROG_TYPE 5899 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5900 }; 5901 static u8 bpf_ctx_convert_map[] = { 5902 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5903 [_id] = __ctx_convert##_id, 5904 #include <linux/bpf_types.h> 5905 #undef BPF_PROG_TYPE 5906 0, /* avoid empty array */ 5907 }; 5908 #undef BPF_MAP_TYPE 5909 #undef BPF_LINK_TYPE 5910 5911 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5912 { 5913 const struct btf_type *conv_struct; 5914 const struct btf_member *ctx_type; 5915 5916 conv_struct = bpf_ctx_convert.t; 5917 if (!conv_struct) 5918 return NULL; 5919 /* prog_type is valid bpf program type. No need for bounds check. */ 5920 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5921 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5922 * Like 'struct __sk_buff' 5923 */ 5924 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5925 } 5926 5927 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5928 { 5929 const struct btf_type *conv_struct; 5930 const struct btf_member *ctx_type; 5931 5932 conv_struct = bpf_ctx_convert.t; 5933 if (!conv_struct) 5934 return -EFAULT; 5935 /* prog_type is valid bpf program type. No need for bounds check. */ 5936 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5937 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5938 * Like 'struct sk_buff' 5939 */ 5940 return ctx_type->type; 5941 } 5942 5943 bool btf_is_projection_of(const char *pname, const char *tname) 5944 { 5945 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5946 return true; 5947 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5948 return true; 5949 return false; 5950 } 5951 5952 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5953 const struct btf_type *t, enum bpf_prog_type prog_type, 5954 int arg) 5955 { 5956 const struct btf_type *ctx_type; 5957 const char *tname, *ctx_tname; 5958 5959 t = btf_type_by_id(btf, t->type); 5960 5961 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5962 * check before we skip all the typedef below. 5963 */ 5964 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5965 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5966 t = btf_type_by_id(btf, t->type); 5967 5968 if (btf_type_is_typedef(t)) { 5969 tname = btf_name_by_offset(btf, t->name_off); 5970 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5971 return true; 5972 } 5973 } 5974 5975 while (btf_type_is_modifier(t)) 5976 t = btf_type_by_id(btf, t->type); 5977 if (!btf_type_is_struct(t)) { 5978 /* Only pointer to struct is supported for now. 5979 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5980 * is not supported yet. 5981 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5982 */ 5983 return false; 5984 } 5985 tname = btf_name_by_offset(btf, t->name_off); 5986 if (!tname) { 5987 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5988 return false; 5989 } 5990 5991 ctx_type = find_canonical_prog_ctx_type(prog_type); 5992 if (!ctx_type) { 5993 bpf_log(log, "btf_vmlinux is malformed\n"); 5994 /* should not happen */ 5995 return false; 5996 } 5997 again: 5998 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5999 if (!ctx_tname) { 6000 /* should not happen */ 6001 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 6002 return false; 6003 } 6004 /* program types without named context types work only with arg:ctx tag */ 6005 if (ctx_tname[0] == '\0') 6006 return false; 6007 /* only compare that prog's ctx type name is the same as 6008 * kernel expects. No need to compare field by field. 6009 * It's ok for bpf prog to do: 6010 * struct __sk_buff {}; 6011 * int socket_filter_bpf_prog(struct __sk_buff *skb) 6012 * { // no fields of skb are ever used } 6013 */ 6014 if (btf_is_projection_of(ctx_tname, tname)) 6015 return true; 6016 if (strcmp(ctx_tname, tname)) { 6017 /* bpf_user_pt_regs_t is a typedef, so resolve it to 6018 * underlying struct and check name again 6019 */ 6020 if (!btf_type_is_modifier(ctx_type)) 6021 return false; 6022 while (btf_type_is_modifier(ctx_type)) 6023 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6024 goto again; 6025 } 6026 return true; 6027 } 6028 6029 /* forward declarations for arch-specific underlying types of 6030 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 6031 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 6032 * works correctly with __builtin_types_compatible_p() on respective 6033 * architectures 6034 */ 6035 struct user_regs_struct; 6036 struct user_pt_regs; 6037 6038 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 6039 const struct btf_type *t, int arg, 6040 enum bpf_prog_type prog_type, 6041 enum bpf_attach_type attach_type) 6042 { 6043 const struct btf_type *ctx_type; 6044 const char *tname, *ctx_tname; 6045 6046 if (!btf_is_ptr(t)) { 6047 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 6048 return -EINVAL; 6049 } 6050 t = btf_type_by_id(btf, t->type); 6051 6052 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 6053 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 6054 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 6055 t = btf_type_by_id(btf, t->type); 6056 6057 if (btf_type_is_typedef(t)) { 6058 tname = btf_name_by_offset(btf, t->name_off); 6059 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6060 return 0; 6061 } 6062 } 6063 6064 /* all other program types don't use typedefs for context type */ 6065 while (btf_type_is_modifier(t)) 6066 t = btf_type_by_id(btf, t->type); 6067 6068 /* `void *ctx __arg_ctx` is always valid */ 6069 if (btf_type_is_void(t)) 6070 return 0; 6071 6072 tname = btf_name_by_offset(btf, t->name_off); 6073 if (str_is_empty(tname)) { 6074 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6075 return -EINVAL; 6076 } 6077 6078 /* special cases */ 6079 switch (prog_type) { 6080 case BPF_PROG_TYPE_KPROBE: 6081 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6082 return 0; 6083 break; 6084 case BPF_PROG_TYPE_PERF_EVENT: 6085 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6086 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6087 return 0; 6088 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6089 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6090 return 0; 6091 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6092 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6093 return 0; 6094 break; 6095 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6096 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6097 /* allow u64* as ctx */ 6098 if (btf_is_int(t) && t->size == 8) 6099 return 0; 6100 break; 6101 case BPF_PROG_TYPE_TRACING: 6102 switch (attach_type) { 6103 case BPF_TRACE_RAW_TP: 6104 /* tp_btf program is TRACING, so need special case here */ 6105 if (__btf_type_is_struct(t) && 6106 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6107 return 0; 6108 /* allow u64* as ctx */ 6109 if (btf_is_int(t) && t->size == 8) 6110 return 0; 6111 break; 6112 case BPF_TRACE_ITER: 6113 /* allow struct bpf_iter__xxx types only */ 6114 if (__btf_type_is_struct(t) && 6115 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6116 return 0; 6117 break; 6118 case BPF_TRACE_FENTRY: 6119 case BPF_TRACE_FEXIT: 6120 case BPF_MODIFY_RETURN: 6121 /* allow u64* as ctx */ 6122 if (btf_is_int(t) && t->size == 8) 6123 return 0; 6124 break; 6125 default: 6126 break; 6127 } 6128 break; 6129 case BPF_PROG_TYPE_LSM: 6130 case BPF_PROG_TYPE_STRUCT_OPS: 6131 /* allow u64* as ctx */ 6132 if (btf_is_int(t) && t->size == 8) 6133 return 0; 6134 break; 6135 case BPF_PROG_TYPE_TRACEPOINT: 6136 case BPF_PROG_TYPE_SYSCALL: 6137 case BPF_PROG_TYPE_EXT: 6138 return 0; /* anything goes */ 6139 default: 6140 break; 6141 } 6142 6143 ctx_type = find_canonical_prog_ctx_type(prog_type); 6144 if (!ctx_type) { 6145 /* should not happen */ 6146 bpf_log(log, "btf_vmlinux is malformed\n"); 6147 return -EINVAL; 6148 } 6149 6150 /* resolve typedefs and check that underlying structs are matching as well */ 6151 while (btf_type_is_modifier(ctx_type)) 6152 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6153 6154 /* if program type doesn't have distinctly named struct type for 6155 * context, then __arg_ctx argument can only be `void *`, which we 6156 * already checked above 6157 */ 6158 if (!__btf_type_is_struct(ctx_type)) { 6159 bpf_log(log, "arg#%d should be void pointer\n", arg); 6160 return -EINVAL; 6161 } 6162 6163 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6164 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6165 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6166 return -EINVAL; 6167 } 6168 6169 return 0; 6170 } 6171 6172 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6173 struct btf *btf, 6174 const struct btf_type *t, 6175 enum bpf_prog_type prog_type, 6176 int arg) 6177 { 6178 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6179 return -ENOENT; 6180 return find_kern_ctx_type_id(prog_type); 6181 } 6182 6183 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6184 { 6185 const struct btf_member *kctx_member; 6186 const struct btf_type *conv_struct; 6187 const struct btf_type *kctx_type; 6188 u32 kctx_type_id; 6189 6190 conv_struct = bpf_ctx_convert.t; 6191 /* get member for kernel ctx type */ 6192 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6193 kctx_type_id = kctx_member->type; 6194 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6195 if (!btf_type_is_struct(kctx_type)) { 6196 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6197 return -EINVAL; 6198 } 6199 6200 return kctx_type_id; 6201 } 6202 6203 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6204 BTF_ID(struct, bpf_ctx_convert) 6205 6206 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6207 void *data, unsigned int data_size) 6208 { 6209 struct btf *btf = NULL; 6210 int err; 6211 6212 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6213 return ERR_PTR(-ENOENT); 6214 6215 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6216 if (!btf) { 6217 err = -ENOMEM; 6218 goto errout; 6219 } 6220 env->btf = btf; 6221 6222 btf->data = data; 6223 btf->data_size = data_size; 6224 btf->kernel_btf = true; 6225 snprintf(btf->name, sizeof(btf->name), "%s", name); 6226 6227 err = btf_parse_hdr(env); 6228 if (err) 6229 goto errout; 6230 6231 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6232 6233 err = btf_parse_str_sec(env); 6234 if (err) 6235 goto errout; 6236 6237 err = btf_check_all_metas(env); 6238 if (err) 6239 goto errout; 6240 6241 err = btf_check_type_tags(env, btf, 1); 6242 if (err) 6243 goto errout; 6244 6245 refcount_set(&btf->refcnt, 1); 6246 6247 return btf; 6248 6249 errout: 6250 if (btf) { 6251 kvfree(btf->types); 6252 kfree(btf); 6253 } 6254 return ERR_PTR(err); 6255 } 6256 6257 struct btf *btf_parse_vmlinux(void) 6258 { 6259 struct btf_verifier_env *env = NULL; 6260 struct bpf_verifier_log *log; 6261 struct btf *btf; 6262 int err; 6263 6264 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6265 if (!env) 6266 return ERR_PTR(-ENOMEM); 6267 6268 log = &env->log; 6269 log->level = BPF_LOG_KERNEL; 6270 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6271 if (IS_ERR(btf)) 6272 goto err_out; 6273 6274 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6275 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6276 err = btf_alloc_id(btf); 6277 if (err) { 6278 btf_free(btf); 6279 btf = ERR_PTR(err); 6280 } 6281 err_out: 6282 btf_verifier_env_free(env); 6283 return btf; 6284 } 6285 6286 /* If .BTF_ids section was created with distilled base BTF, both base and 6287 * split BTF ids will need to be mapped to actual base/split ids for 6288 * BTF now that it has been relocated. 6289 */ 6290 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6291 { 6292 if (!btf->base_btf || !btf->base_id_map) 6293 return id; 6294 return btf->base_id_map[id]; 6295 } 6296 6297 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6298 6299 static struct btf *btf_parse_module(const char *module_name, const void *data, 6300 unsigned int data_size, void *base_data, 6301 unsigned int base_data_size) 6302 { 6303 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6304 struct btf_verifier_env *env = NULL; 6305 struct bpf_verifier_log *log; 6306 int err = 0; 6307 6308 vmlinux_btf = bpf_get_btf_vmlinux(); 6309 if (IS_ERR(vmlinux_btf)) 6310 return vmlinux_btf; 6311 if (!vmlinux_btf) 6312 return ERR_PTR(-EINVAL); 6313 6314 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6315 if (!env) 6316 return ERR_PTR(-ENOMEM); 6317 6318 log = &env->log; 6319 log->level = BPF_LOG_KERNEL; 6320 6321 if (base_data) { 6322 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6323 if (IS_ERR(base_btf)) { 6324 err = PTR_ERR(base_btf); 6325 goto errout; 6326 } 6327 } else { 6328 base_btf = vmlinux_btf; 6329 } 6330 6331 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6332 if (!btf) { 6333 err = -ENOMEM; 6334 goto errout; 6335 } 6336 env->btf = btf; 6337 6338 btf->base_btf = base_btf; 6339 btf->start_id = base_btf->nr_types; 6340 btf->start_str_off = base_btf->hdr.str_len; 6341 btf->kernel_btf = true; 6342 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6343 6344 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6345 if (!btf->data) { 6346 err = -ENOMEM; 6347 goto errout; 6348 } 6349 btf->data_size = data_size; 6350 6351 err = btf_parse_hdr(env); 6352 if (err) 6353 goto errout; 6354 6355 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6356 6357 err = btf_parse_str_sec(env); 6358 if (err) 6359 goto errout; 6360 6361 err = btf_check_all_metas(env); 6362 if (err) 6363 goto errout; 6364 6365 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6366 if (err) 6367 goto errout; 6368 6369 if (base_btf != vmlinux_btf) { 6370 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6371 if (err) 6372 goto errout; 6373 btf_free(base_btf); 6374 base_btf = vmlinux_btf; 6375 } 6376 6377 btf_verifier_env_free(env); 6378 refcount_set(&btf->refcnt, 1); 6379 return btf; 6380 6381 errout: 6382 btf_verifier_env_free(env); 6383 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6384 btf_free(base_btf); 6385 if (btf) { 6386 kvfree(btf->data); 6387 kvfree(btf->types); 6388 kfree(btf); 6389 } 6390 return ERR_PTR(err); 6391 } 6392 6393 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6394 6395 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6396 { 6397 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6398 6399 if (tgt_prog) 6400 return tgt_prog->aux->btf; 6401 else 6402 return prog->aux->attach_btf; 6403 } 6404 6405 static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t) 6406 { 6407 /* skip modifiers */ 6408 t = btf_type_skip_modifiers(btf, t->type, NULL); 6409 return btf_type_is_void(t) || btf_type_is_int(t); 6410 } 6411 6412 u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6413 int off) 6414 { 6415 const struct btf_param *args; 6416 const struct btf_type *t; 6417 u32 offset = 0, nr_args; 6418 int i; 6419 6420 if (!func_proto) 6421 return off / 8; 6422 6423 nr_args = btf_type_vlen(func_proto); 6424 args = (const struct btf_param *)(func_proto + 1); 6425 for (i = 0; i < nr_args; i++) { 6426 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6427 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6428 if (off < offset) 6429 return i; 6430 } 6431 6432 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6433 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6434 if (off < offset) 6435 return nr_args; 6436 6437 return nr_args + 1; 6438 } 6439 6440 static bool prog_args_trusted(const struct bpf_prog *prog) 6441 { 6442 enum bpf_attach_type atype = prog->expected_attach_type; 6443 6444 switch (prog->type) { 6445 case BPF_PROG_TYPE_TRACING: 6446 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6447 case BPF_PROG_TYPE_LSM: 6448 return bpf_lsm_is_trusted(prog); 6449 case BPF_PROG_TYPE_STRUCT_OPS: 6450 return true; 6451 default: 6452 return false; 6453 } 6454 } 6455 6456 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6457 u32 arg_no) 6458 { 6459 const struct btf_param *args; 6460 const struct btf_type *t; 6461 int off = 0, i; 6462 u32 sz; 6463 6464 args = btf_params(func_proto); 6465 for (i = 0; i < arg_no; i++) { 6466 t = btf_type_by_id(btf, args[i].type); 6467 t = btf_resolve_size(btf, t, &sz); 6468 if (IS_ERR(t)) 6469 return PTR_ERR(t); 6470 off += roundup(sz, 8); 6471 } 6472 6473 return off; 6474 } 6475 6476 struct bpf_raw_tp_null_args { 6477 const char *func; 6478 u64 mask; 6479 }; 6480 6481 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { 6482 /* sched */ 6483 { "sched_pi_setprio", 0x10 }, 6484 /* ... from sched_numa_pair_template event class */ 6485 { "sched_stick_numa", 0x100 }, 6486 { "sched_swap_numa", 0x100 }, 6487 /* afs */ 6488 { "afs_make_fs_call", 0x10 }, 6489 { "afs_make_fs_calli", 0x10 }, 6490 { "afs_make_fs_call1", 0x10 }, 6491 { "afs_make_fs_call2", 0x10 }, 6492 { "afs_protocol_error", 0x1 }, 6493 { "afs_flock_ev", 0x10 }, 6494 /* cachefiles */ 6495 { "cachefiles_lookup", 0x1 | 0x200 }, 6496 { "cachefiles_unlink", 0x1 }, 6497 { "cachefiles_rename", 0x1 }, 6498 { "cachefiles_prep_read", 0x1 }, 6499 { "cachefiles_mark_active", 0x1 }, 6500 { "cachefiles_mark_failed", 0x1 }, 6501 { "cachefiles_mark_inactive", 0x1 }, 6502 { "cachefiles_vfs_error", 0x1 }, 6503 { "cachefiles_io_error", 0x1 }, 6504 { "cachefiles_ondemand_open", 0x1 }, 6505 { "cachefiles_ondemand_copen", 0x1 }, 6506 { "cachefiles_ondemand_close", 0x1 }, 6507 { "cachefiles_ondemand_read", 0x1 }, 6508 { "cachefiles_ondemand_cread", 0x1 }, 6509 { "cachefiles_ondemand_fd_write", 0x1 }, 6510 { "cachefiles_ondemand_fd_release", 0x1 }, 6511 /* ext4, from ext4__mballoc event class */ 6512 { "ext4_mballoc_discard", 0x10 }, 6513 { "ext4_mballoc_free", 0x10 }, 6514 /* fib */ 6515 { "fib_table_lookup", 0x100 }, 6516 /* filelock */ 6517 /* ... from filelock_lock event class */ 6518 { "posix_lock_inode", 0x10 }, 6519 { "fcntl_setlk", 0x10 }, 6520 { "locks_remove_posix", 0x10 }, 6521 { "flock_lock_inode", 0x10 }, 6522 /* ... from filelock_lease event class */ 6523 { "break_lease_noblock", 0x10 }, 6524 { "break_lease_block", 0x10 }, 6525 { "break_lease_unblock", 0x10 }, 6526 { "generic_delete_lease", 0x10 }, 6527 { "time_out_leases", 0x10 }, 6528 /* host1x */ 6529 { "host1x_cdma_push_gather", 0x10000 }, 6530 /* huge_memory */ 6531 { "mm_khugepaged_scan_pmd", 0x10 }, 6532 { "mm_collapse_huge_page_isolate", 0x1 }, 6533 { "mm_khugepaged_scan_file", 0x10 }, 6534 { "mm_khugepaged_collapse_file", 0x10 }, 6535 /* kmem */ 6536 { "mm_page_alloc", 0x1 }, 6537 { "mm_page_pcpu_drain", 0x1 }, 6538 /* .. from mm_page event class */ 6539 { "mm_page_alloc_zone_locked", 0x1 }, 6540 /* netfs */ 6541 { "netfs_failure", 0x10 }, 6542 /* power */ 6543 { "device_pm_callback_start", 0x10 }, 6544 /* qdisc */ 6545 { "qdisc_dequeue", 0x1000 }, 6546 /* rxrpc */ 6547 { "rxrpc_recvdata", 0x1 }, 6548 { "rxrpc_resend", 0x10 }, 6549 { "rxrpc_tq", 0x10 }, 6550 { "rxrpc_client", 0x1 }, 6551 /* skb */ 6552 {"kfree_skb", 0x1000}, 6553 /* sunrpc */ 6554 { "xs_stream_read_data", 0x1 }, 6555 /* ... from xprt_cong_event event class */ 6556 { "xprt_reserve_cong", 0x10 }, 6557 { "xprt_release_cong", 0x10 }, 6558 { "xprt_get_cong", 0x10 }, 6559 { "xprt_put_cong", 0x10 }, 6560 /* tcp */ 6561 { "tcp_send_reset", 0x11 }, 6562 { "tcp_sendmsg_locked", 0x100 }, 6563 /* tegra_apb_dma */ 6564 { "tegra_dma_tx_status", 0x100 }, 6565 /* timer_migration */ 6566 { "tmigr_update_events", 0x1 }, 6567 /* writeback, from writeback_folio_template event class */ 6568 { "writeback_dirty_folio", 0x10 }, 6569 { "folio_wait_writeback", 0x10 }, 6570 /* rdma */ 6571 { "mr_integ_alloc", 0x2000 }, 6572 /* bpf_testmod */ 6573 { "bpf_testmod_test_read", 0x0 }, 6574 /* amdgpu */ 6575 { "amdgpu_vm_bo_map", 0x1 }, 6576 { "amdgpu_vm_bo_unmap", 0x1 }, 6577 /* netfs */ 6578 { "netfs_folioq", 0x1 }, 6579 /* xfs from xfs_defer_pending_class */ 6580 { "xfs_defer_create_intent", 0x1 }, 6581 { "xfs_defer_cancel_list", 0x1 }, 6582 { "xfs_defer_pending_finish", 0x1 }, 6583 { "xfs_defer_pending_abort", 0x1 }, 6584 { "xfs_defer_relog_intent", 0x1 }, 6585 { "xfs_defer_isolate_paused", 0x1 }, 6586 { "xfs_defer_item_pause", 0x1 }, 6587 { "xfs_defer_item_unpause", 0x1 }, 6588 /* xfs from xfs_defer_pending_item_class */ 6589 { "xfs_defer_add_item", 0x1 }, 6590 { "xfs_defer_cancel_item", 0x1 }, 6591 { "xfs_defer_finish_item", 0x1 }, 6592 /* xfs from xfs_icwalk_class */ 6593 { "xfs_ioc_free_eofblocks", 0x10 }, 6594 { "xfs_blockgc_free_space", 0x10 }, 6595 /* xfs from xfs_btree_cur_class */ 6596 { "xfs_btree_updkeys", 0x100 }, 6597 { "xfs_btree_overlapped_query_range", 0x100 }, 6598 /* xfs from xfs_imap_class*/ 6599 { "xfs_map_blocks_found", 0x10000 }, 6600 { "xfs_map_blocks_alloc", 0x10000 }, 6601 { "xfs_iomap_alloc", 0x1000 }, 6602 { "xfs_iomap_found", 0x1000 }, 6603 /* xfs from xfs_fs_class */ 6604 { "xfs_inodegc_flush", 0x1 }, 6605 { "xfs_inodegc_push", 0x1 }, 6606 { "xfs_inodegc_start", 0x1 }, 6607 { "xfs_inodegc_stop", 0x1 }, 6608 { "xfs_inodegc_queue", 0x1 }, 6609 { "xfs_inodegc_throttle", 0x1 }, 6610 { "xfs_fs_sync_fs", 0x1 }, 6611 { "xfs_blockgc_start", 0x1 }, 6612 { "xfs_blockgc_stop", 0x1 }, 6613 { "xfs_blockgc_worker", 0x1 }, 6614 { "xfs_blockgc_flush_all", 0x1 }, 6615 /* xfs_scrub */ 6616 { "xchk_nlinks_live_update", 0x10 }, 6617 /* xfs_scrub from xchk_metapath_class */ 6618 { "xchk_metapath_lookup", 0x100 }, 6619 /* nfsd */ 6620 { "nfsd_dirent", 0x1 }, 6621 { "nfsd_file_acquire", 0x1001 }, 6622 { "nfsd_file_insert_err", 0x1 }, 6623 { "nfsd_file_cons_err", 0x1 }, 6624 /* nfs4 */ 6625 { "nfs4_setup_sequence", 0x1 }, 6626 { "pnfs_update_layout", 0x10000 }, 6627 { "nfs4_inode_callback_event", 0x200 }, 6628 { "nfs4_inode_stateid_callback_event", 0x200 }, 6629 /* nfs from pnfs_layout_event */ 6630 { "pnfs_mds_fallback_pg_init_read", 0x10000 }, 6631 { "pnfs_mds_fallback_pg_init_write", 0x10000 }, 6632 { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 }, 6633 { "pnfs_mds_fallback_read_done", 0x10000 }, 6634 { "pnfs_mds_fallback_write_done", 0x10000 }, 6635 { "pnfs_mds_fallback_read_pagelist", 0x10000 }, 6636 { "pnfs_mds_fallback_write_pagelist", 0x10000 }, 6637 /* coda */ 6638 { "coda_dec_pic_run", 0x10 }, 6639 { "coda_dec_pic_done", 0x10 }, 6640 /* cfg80211 */ 6641 { "cfg80211_scan_done", 0x11 }, 6642 { "rdev_set_coalesce", 0x10 }, 6643 { "cfg80211_report_wowlan_wakeup", 0x100 }, 6644 { "cfg80211_inform_bss_frame", 0x100 }, 6645 { "cfg80211_michael_mic_failure", 0x10000 }, 6646 /* cfg80211 from wiphy_work_event */ 6647 { "wiphy_work_queue", 0x10 }, 6648 { "wiphy_work_run", 0x10 }, 6649 { "wiphy_work_cancel", 0x10 }, 6650 { "wiphy_work_flush", 0x10 }, 6651 /* hugetlbfs */ 6652 { "hugetlbfs_alloc_inode", 0x10 }, 6653 /* spufs */ 6654 { "spufs_context", 0x10 }, 6655 /* kvm_hv */ 6656 { "kvm_page_fault_enter", 0x100 }, 6657 /* dpu */ 6658 { "dpu_crtc_setup_mixer", 0x100 }, 6659 /* binder */ 6660 { "binder_transaction", 0x100 }, 6661 /* bcachefs */ 6662 { "btree_path_free", 0x100 }, 6663 /* hfi1_tx */ 6664 { "hfi1_sdma_progress", 0x1000 }, 6665 /* iptfs */ 6666 { "iptfs_ingress_postq_event", 0x1000 }, 6667 /* neigh */ 6668 { "neigh_update", 0x10 }, 6669 /* snd_firewire_lib */ 6670 { "amdtp_packet", 0x100 }, 6671 }; 6672 6673 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6674 const struct bpf_prog *prog, 6675 struct bpf_insn_access_aux *info) 6676 { 6677 const struct btf_type *t = prog->aux->attach_func_proto; 6678 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6679 struct btf *btf = bpf_prog_get_target_btf(prog); 6680 const char *tname = prog->aux->attach_func_name; 6681 struct bpf_verifier_log *log = info->log; 6682 const struct btf_param *args; 6683 bool ptr_err_raw_tp = false; 6684 const char *tag_value; 6685 u32 nr_args, arg; 6686 int i, ret; 6687 6688 if (off % 8) { 6689 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6690 tname, off); 6691 return false; 6692 } 6693 arg = btf_ctx_arg_idx(btf, t, off); 6694 args = (const struct btf_param *)(t + 1); 6695 /* if (t == NULL) Fall back to default BPF prog with 6696 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6697 */ 6698 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6699 if (prog->aux->attach_btf_trace) { 6700 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6701 args++; 6702 nr_args--; 6703 } 6704 6705 if (arg > nr_args) { 6706 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6707 tname, arg + 1); 6708 return false; 6709 } 6710 6711 if (arg == nr_args) { 6712 switch (prog->expected_attach_type) { 6713 case BPF_LSM_MAC: 6714 /* mark we are accessing the return value */ 6715 info->is_retval = true; 6716 fallthrough; 6717 case BPF_LSM_CGROUP: 6718 case BPF_TRACE_FEXIT: 6719 /* When LSM programs are attached to void LSM hooks 6720 * they use FEXIT trampolines and when attached to 6721 * int LSM hooks, they use MODIFY_RETURN trampolines. 6722 * 6723 * While the LSM programs are BPF_MODIFY_RETURN-like 6724 * the check: 6725 * 6726 * if (ret_type != 'int') 6727 * return -EINVAL; 6728 * 6729 * is _not_ done here. This is still safe as LSM hooks 6730 * have only void and int return types. 6731 */ 6732 if (!t) 6733 return true; 6734 t = btf_type_by_id(btf, t->type); 6735 break; 6736 case BPF_MODIFY_RETURN: 6737 /* For now the BPF_MODIFY_RETURN can only be attached to 6738 * functions that return an int. 6739 */ 6740 if (!t) 6741 return false; 6742 6743 t = btf_type_skip_modifiers(btf, t->type, NULL); 6744 if (!btf_type_is_small_int(t)) { 6745 bpf_log(log, 6746 "ret type %s not allowed for fmod_ret\n", 6747 btf_type_str(t)); 6748 return false; 6749 } 6750 break; 6751 default: 6752 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6753 tname, arg + 1); 6754 return false; 6755 } 6756 } else { 6757 if (!t) 6758 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6759 return true; 6760 t = btf_type_by_id(btf, args[arg].type); 6761 } 6762 6763 /* skip modifiers */ 6764 while (btf_type_is_modifier(t)) 6765 t = btf_type_by_id(btf, t->type); 6766 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6767 /* accessing a scalar */ 6768 return true; 6769 if (!btf_type_is_ptr(t)) { 6770 bpf_log(log, 6771 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6772 tname, arg, 6773 __btf_name_by_offset(btf, t->name_off), 6774 btf_type_str(t)); 6775 return false; 6776 } 6777 6778 if (size != sizeof(u64)) { 6779 bpf_log(log, "func '%s' size %d must be 8\n", 6780 tname, size); 6781 return false; 6782 } 6783 6784 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6785 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6786 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6787 u32 type, flag; 6788 6789 type = base_type(ctx_arg_info->reg_type); 6790 flag = type_flag(ctx_arg_info->reg_type); 6791 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6792 (flag & PTR_MAYBE_NULL)) { 6793 info->reg_type = ctx_arg_info->reg_type; 6794 return true; 6795 } 6796 } 6797 6798 /* 6799 * If it's a pointer to void, it's the same as scalar from the verifier 6800 * safety POV. Either way, no futher pointer walking is allowed. 6801 */ 6802 if (is_void_or_int_ptr(btf, t)) 6803 return true; 6804 6805 /* this is a pointer to another type */ 6806 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6807 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6808 6809 if (ctx_arg_info->offset == off) { 6810 if (!ctx_arg_info->btf_id) { 6811 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6812 return false; 6813 } 6814 6815 info->reg_type = ctx_arg_info->reg_type; 6816 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6817 info->btf_id = ctx_arg_info->btf_id; 6818 info->ref_obj_id = ctx_arg_info->ref_obj_id; 6819 return true; 6820 } 6821 } 6822 6823 info->reg_type = PTR_TO_BTF_ID; 6824 if (prog_args_trusted(prog)) 6825 info->reg_type |= PTR_TRUSTED; 6826 6827 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6828 info->reg_type |= PTR_MAYBE_NULL; 6829 6830 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 6831 struct btf *btf = prog->aux->attach_btf; 6832 const struct btf_type *t; 6833 const char *tname; 6834 6835 /* BTF lookups cannot fail, return false on error */ 6836 t = btf_type_by_id(btf, prog->aux->attach_btf_id); 6837 if (!t) 6838 return false; 6839 tname = btf_name_by_offset(btf, t->name_off); 6840 if (!tname) 6841 return false; 6842 /* Checked by bpf_check_attach_target */ 6843 tname += sizeof("btf_trace_") - 1; 6844 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { 6845 /* Is this a func with potential NULL args? */ 6846 if (strcmp(tname, raw_tp_null_args[i].func)) 6847 continue; 6848 if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4))) 6849 info->reg_type |= PTR_MAYBE_NULL; 6850 /* Is the current arg IS_ERR? */ 6851 if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4))) 6852 ptr_err_raw_tp = true; 6853 break; 6854 } 6855 /* If we don't know NULL-ness specification and the tracepoint 6856 * is coming from a loadable module, be conservative and mark 6857 * argument as PTR_MAYBE_NULL. 6858 */ 6859 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) 6860 info->reg_type |= PTR_MAYBE_NULL; 6861 } 6862 6863 if (tgt_prog) { 6864 enum bpf_prog_type tgt_type; 6865 6866 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6867 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6868 else 6869 tgt_type = tgt_prog->type; 6870 6871 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6872 if (ret > 0) { 6873 info->btf = btf_vmlinux; 6874 info->btf_id = ret; 6875 return true; 6876 } else { 6877 return false; 6878 } 6879 } 6880 6881 info->btf = btf; 6882 info->btf_id = t->type; 6883 t = btf_type_by_id(btf, t->type); 6884 6885 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 6886 tag_value = __btf_name_by_offset(btf, t->name_off); 6887 if (strcmp(tag_value, "user") == 0) 6888 info->reg_type |= MEM_USER; 6889 if (strcmp(tag_value, "percpu") == 0) 6890 info->reg_type |= MEM_PERCPU; 6891 } 6892 6893 /* skip modifiers */ 6894 while (btf_type_is_modifier(t)) { 6895 info->btf_id = t->type; 6896 t = btf_type_by_id(btf, t->type); 6897 } 6898 if (!btf_type_is_struct(t)) { 6899 bpf_log(log, 6900 "func '%s' arg%d type %s is not a struct\n", 6901 tname, arg, btf_type_str(t)); 6902 return false; 6903 } 6904 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6905 tname, arg, info->btf_id, btf_type_str(t), 6906 __btf_name_by_offset(btf, t->name_off)); 6907 6908 /* Perform all checks on the validity of type for this argument, but if 6909 * we know it can be IS_ERR at runtime, scrub pointer type and mark as 6910 * scalar. 6911 */ 6912 if (ptr_err_raw_tp) { 6913 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); 6914 info->reg_type = SCALAR_VALUE; 6915 } 6916 return true; 6917 } 6918 EXPORT_SYMBOL_GPL(btf_ctx_access); 6919 6920 enum bpf_struct_walk_result { 6921 /* < 0 error */ 6922 WALK_SCALAR = 0, 6923 WALK_PTR, 6924 WALK_PTR_UNTRUSTED, 6925 WALK_STRUCT, 6926 }; 6927 6928 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6929 const struct btf_type *t, int off, int size, 6930 u32 *next_btf_id, enum bpf_type_flag *flag, 6931 const char **field_name) 6932 { 6933 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6934 const struct btf_type *mtype, *elem_type = NULL; 6935 const struct btf_member *member; 6936 const char *tname, *mname, *tag_value; 6937 u32 vlen, elem_id, mid; 6938 6939 again: 6940 if (btf_type_is_modifier(t)) 6941 t = btf_type_skip_modifiers(btf, t->type, NULL); 6942 tname = __btf_name_by_offset(btf, t->name_off); 6943 if (!btf_type_is_struct(t)) { 6944 bpf_log(log, "Type '%s' is not a struct\n", tname); 6945 return -EINVAL; 6946 } 6947 6948 vlen = btf_type_vlen(t); 6949 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6950 /* 6951 * walking unions yields untrusted pointers 6952 * with exception of __bpf_md_ptr and other 6953 * unions with a single member 6954 */ 6955 *flag |= PTR_UNTRUSTED; 6956 6957 if (off + size > t->size) { 6958 /* If the last element is a variable size array, we may 6959 * need to relax the rule. 6960 */ 6961 struct btf_array *array_elem; 6962 6963 if (vlen == 0) 6964 goto error; 6965 6966 member = btf_type_member(t) + vlen - 1; 6967 mtype = btf_type_skip_modifiers(btf, member->type, 6968 NULL); 6969 if (!btf_type_is_array(mtype)) 6970 goto error; 6971 6972 array_elem = (struct btf_array *)(mtype + 1); 6973 if (array_elem->nelems != 0) 6974 goto error; 6975 6976 moff = __btf_member_bit_offset(t, member) / 8; 6977 if (off < moff) 6978 goto error; 6979 6980 /* allow structure and integer */ 6981 t = btf_type_skip_modifiers(btf, array_elem->type, 6982 NULL); 6983 6984 if (btf_type_is_int(t)) 6985 return WALK_SCALAR; 6986 6987 if (!btf_type_is_struct(t)) 6988 goto error; 6989 6990 off = (off - moff) % t->size; 6991 goto again; 6992 6993 error: 6994 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6995 tname, off, size); 6996 return -EACCES; 6997 } 6998 6999 for_each_member(i, t, member) { 7000 /* offset of the field in bytes */ 7001 moff = __btf_member_bit_offset(t, member) / 8; 7002 if (off + size <= moff) 7003 /* won't find anything, field is already too far */ 7004 break; 7005 7006 if (__btf_member_bitfield_size(t, member)) { 7007 u32 end_bit = __btf_member_bit_offset(t, member) + 7008 __btf_member_bitfield_size(t, member); 7009 7010 /* off <= moff instead of off == moff because clang 7011 * does not generate a BTF member for anonymous 7012 * bitfield like the ":16" here: 7013 * struct { 7014 * int :16; 7015 * int x:8; 7016 * }; 7017 */ 7018 if (off <= moff && 7019 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 7020 return WALK_SCALAR; 7021 7022 /* off may be accessing a following member 7023 * 7024 * or 7025 * 7026 * Doing partial access at either end of this 7027 * bitfield. Continue on this case also to 7028 * treat it as not accessing this bitfield 7029 * and eventually error out as field not 7030 * found to keep it simple. 7031 * It could be relaxed if there was a legit 7032 * partial access case later. 7033 */ 7034 continue; 7035 } 7036 7037 /* In case of "off" is pointing to holes of a struct */ 7038 if (off < moff) 7039 break; 7040 7041 /* type of the field */ 7042 mid = member->type; 7043 mtype = btf_type_by_id(btf, member->type); 7044 mname = __btf_name_by_offset(btf, member->name_off); 7045 7046 mtype = __btf_resolve_size(btf, mtype, &msize, 7047 &elem_type, &elem_id, &total_nelems, 7048 &mid); 7049 if (IS_ERR(mtype)) { 7050 bpf_log(log, "field %s doesn't have size\n", mname); 7051 return -EFAULT; 7052 } 7053 7054 mtrue_end = moff + msize; 7055 if (off >= mtrue_end) 7056 /* no overlap with member, keep iterating */ 7057 continue; 7058 7059 if (btf_type_is_array(mtype)) { 7060 u32 elem_idx; 7061 7062 /* __btf_resolve_size() above helps to 7063 * linearize a multi-dimensional array. 7064 * 7065 * The logic here is treating an array 7066 * in a struct as the following way: 7067 * 7068 * struct outer { 7069 * struct inner array[2][2]; 7070 * }; 7071 * 7072 * looks like: 7073 * 7074 * struct outer { 7075 * struct inner array_elem0; 7076 * struct inner array_elem1; 7077 * struct inner array_elem2; 7078 * struct inner array_elem3; 7079 * }; 7080 * 7081 * When accessing outer->array[1][0], it moves 7082 * moff to "array_elem2", set mtype to 7083 * "struct inner", and msize also becomes 7084 * sizeof(struct inner). Then most of the 7085 * remaining logic will fall through without 7086 * caring the current member is an array or 7087 * not. 7088 * 7089 * Unlike mtype/msize/moff, mtrue_end does not 7090 * change. The naming difference ("_true") tells 7091 * that it is not always corresponding to 7092 * the current mtype/msize/moff. 7093 * It is the true end of the current 7094 * member (i.e. array in this case). That 7095 * will allow an int array to be accessed like 7096 * a scratch space, 7097 * i.e. allow access beyond the size of 7098 * the array's element as long as it is 7099 * within the mtrue_end boundary. 7100 */ 7101 7102 /* skip empty array */ 7103 if (moff == mtrue_end) 7104 continue; 7105 7106 msize /= total_nelems; 7107 elem_idx = (off - moff) / msize; 7108 moff += elem_idx * msize; 7109 mtype = elem_type; 7110 mid = elem_id; 7111 } 7112 7113 /* the 'off' we're looking for is either equal to start 7114 * of this field or inside of this struct 7115 */ 7116 if (btf_type_is_struct(mtype)) { 7117 /* our field must be inside that union or struct */ 7118 t = mtype; 7119 7120 /* return if the offset matches the member offset */ 7121 if (off == moff) { 7122 *next_btf_id = mid; 7123 return WALK_STRUCT; 7124 } 7125 7126 /* adjust offset we're looking for */ 7127 off -= moff; 7128 goto again; 7129 } 7130 7131 if (btf_type_is_ptr(mtype)) { 7132 const struct btf_type *stype, *t; 7133 enum bpf_type_flag tmp_flag = 0; 7134 u32 id; 7135 7136 if (msize != size || off != moff) { 7137 bpf_log(log, 7138 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 7139 mname, moff, tname, off, size); 7140 return -EACCES; 7141 } 7142 7143 /* check type tag */ 7144 t = btf_type_by_id(btf, mtype->type); 7145 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 7146 tag_value = __btf_name_by_offset(btf, t->name_off); 7147 /* check __user tag */ 7148 if (strcmp(tag_value, "user") == 0) 7149 tmp_flag = MEM_USER; 7150 /* check __percpu tag */ 7151 if (strcmp(tag_value, "percpu") == 0) 7152 tmp_flag = MEM_PERCPU; 7153 /* check __rcu tag */ 7154 if (strcmp(tag_value, "rcu") == 0) 7155 tmp_flag = MEM_RCU; 7156 } 7157 7158 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 7159 if (btf_type_is_struct(stype)) { 7160 *next_btf_id = id; 7161 *flag |= tmp_flag; 7162 if (field_name) 7163 *field_name = mname; 7164 return WALK_PTR; 7165 } 7166 7167 return WALK_PTR_UNTRUSTED; 7168 } 7169 7170 /* Allow more flexible access within an int as long as 7171 * it is within mtrue_end. 7172 * Since mtrue_end could be the end of an array, 7173 * that also allows using an array of int as a scratch 7174 * space. e.g. skb->cb[]. 7175 */ 7176 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 7177 bpf_log(log, 7178 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 7179 mname, mtrue_end, tname, off, size); 7180 return -EACCES; 7181 } 7182 7183 return WALK_SCALAR; 7184 } 7185 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 7186 return -EINVAL; 7187 } 7188 7189 int btf_struct_access(struct bpf_verifier_log *log, 7190 const struct bpf_reg_state *reg, 7191 int off, int size, enum bpf_access_type atype __maybe_unused, 7192 u32 *next_btf_id, enum bpf_type_flag *flag, 7193 const char **field_name) 7194 { 7195 const struct btf *btf = reg->btf; 7196 enum bpf_type_flag tmp_flag = 0; 7197 const struct btf_type *t; 7198 u32 id = reg->btf_id; 7199 int err; 7200 7201 while (type_is_alloc(reg->type)) { 7202 struct btf_struct_meta *meta; 7203 struct btf_record *rec; 7204 int i; 7205 7206 meta = btf_find_struct_meta(btf, id); 7207 if (!meta) 7208 break; 7209 rec = meta->record; 7210 for (i = 0; i < rec->cnt; i++) { 7211 struct btf_field *field = &rec->fields[i]; 7212 u32 offset = field->offset; 7213 if (off < offset + field->size && offset < off + size) { 7214 bpf_log(log, 7215 "direct access to %s is disallowed\n", 7216 btf_field_type_name(field->type)); 7217 return -EACCES; 7218 } 7219 } 7220 break; 7221 } 7222 7223 t = btf_type_by_id(btf, id); 7224 do { 7225 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 7226 7227 switch (err) { 7228 case WALK_PTR: 7229 /* For local types, the destination register cannot 7230 * become a pointer again. 7231 */ 7232 if (type_is_alloc(reg->type)) 7233 return SCALAR_VALUE; 7234 /* If we found the pointer or scalar on t+off, 7235 * we're done. 7236 */ 7237 *next_btf_id = id; 7238 *flag = tmp_flag; 7239 return PTR_TO_BTF_ID; 7240 case WALK_PTR_UNTRUSTED: 7241 *flag = MEM_RDONLY | PTR_UNTRUSTED; 7242 return PTR_TO_MEM; 7243 case WALK_SCALAR: 7244 return SCALAR_VALUE; 7245 case WALK_STRUCT: 7246 /* We found nested struct, so continue the search 7247 * by diving in it. At this point the offset is 7248 * aligned with the new type, so set it to 0. 7249 */ 7250 t = btf_type_by_id(btf, id); 7251 off = 0; 7252 break; 7253 default: 7254 /* It's either error or unknown return value.. 7255 * scream and leave. 7256 */ 7257 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 7258 return -EINVAL; 7259 return err; 7260 } 7261 } while (t); 7262 7263 return -EINVAL; 7264 } 7265 7266 /* Check that two BTF types, each specified as an BTF object + id, are exactly 7267 * the same. Trivial ID check is not enough due to module BTFs, because we can 7268 * end up with two different module BTFs, but IDs point to the common type in 7269 * vmlinux BTF. 7270 */ 7271 bool btf_types_are_same(const struct btf *btf1, u32 id1, 7272 const struct btf *btf2, u32 id2) 7273 { 7274 if (id1 != id2) 7275 return false; 7276 if (btf1 == btf2) 7277 return true; 7278 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 7279 } 7280 7281 bool btf_struct_ids_match(struct bpf_verifier_log *log, 7282 const struct btf *btf, u32 id, int off, 7283 const struct btf *need_btf, u32 need_type_id, 7284 bool strict) 7285 { 7286 const struct btf_type *type; 7287 enum bpf_type_flag flag = 0; 7288 int err; 7289 7290 /* Are we already done? */ 7291 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 7292 return true; 7293 /* In case of strict type match, we do not walk struct, the top level 7294 * type match must succeed. When strict is true, off should have already 7295 * been 0. 7296 */ 7297 if (strict) 7298 return false; 7299 again: 7300 type = btf_type_by_id(btf, id); 7301 if (!type) 7302 return false; 7303 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 7304 if (err != WALK_STRUCT) 7305 return false; 7306 7307 /* We found nested struct object. If it matches 7308 * the requested ID, we're done. Otherwise let's 7309 * continue the search with offset 0 in the new 7310 * type. 7311 */ 7312 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7313 off = 0; 7314 goto again; 7315 } 7316 7317 return true; 7318 } 7319 7320 static int __get_type_size(struct btf *btf, u32 btf_id, 7321 const struct btf_type **ret_type) 7322 { 7323 const struct btf_type *t; 7324 7325 *ret_type = btf_type_by_id(btf, 0); 7326 if (!btf_id) 7327 /* void */ 7328 return 0; 7329 t = btf_type_by_id(btf, btf_id); 7330 while (t && btf_type_is_modifier(t)) 7331 t = btf_type_by_id(btf, t->type); 7332 if (!t) 7333 return -EINVAL; 7334 *ret_type = t; 7335 if (btf_type_is_ptr(t)) 7336 /* kernel size of pointer. Not BPF's size of pointer*/ 7337 return sizeof(void *); 7338 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7339 return t->size; 7340 return -EINVAL; 7341 } 7342 7343 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7344 { 7345 u8 flags = 0; 7346 7347 if (__btf_type_is_struct(t)) 7348 flags |= BTF_FMODEL_STRUCT_ARG; 7349 if (btf_type_is_signed_int(t)) 7350 flags |= BTF_FMODEL_SIGNED_ARG; 7351 7352 return flags; 7353 } 7354 7355 int btf_distill_func_proto(struct bpf_verifier_log *log, 7356 struct btf *btf, 7357 const struct btf_type *func, 7358 const char *tname, 7359 struct btf_func_model *m) 7360 { 7361 const struct btf_param *args; 7362 const struct btf_type *t; 7363 u32 i, nargs; 7364 int ret; 7365 7366 if (!func) { 7367 /* BTF function prototype doesn't match the verifier types. 7368 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7369 */ 7370 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7371 m->arg_size[i] = 8; 7372 m->arg_flags[i] = 0; 7373 } 7374 m->ret_size = 8; 7375 m->ret_flags = 0; 7376 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7377 return 0; 7378 } 7379 args = (const struct btf_param *)(func + 1); 7380 nargs = btf_type_vlen(func); 7381 if (nargs > MAX_BPF_FUNC_ARGS) { 7382 bpf_log(log, 7383 "The function %s has %d arguments. Too many.\n", 7384 tname, nargs); 7385 return -EINVAL; 7386 } 7387 ret = __get_type_size(btf, func->type, &t); 7388 if (ret < 0 || __btf_type_is_struct(t)) { 7389 bpf_log(log, 7390 "The function %s return type %s is unsupported.\n", 7391 tname, btf_type_str(t)); 7392 return -EINVAL; 7393 } 7394 m->ret_size = ret; 7395 m->ret_flags = __get_type_fmodel_flags(t); 7396 7397 for (i = 0; i < nargs; i++) { 7398 if (i == nargs - 1 && args[i].type == 0) { 7399 bpf_log(log, 7400 "The function %s with variable args is unsupported.\n", 7401 tname); 7402 return -EINVAL; 7403 } 7404 ret = __get_type_size(btf, args[i].type, &t); 7405 7406 /* No support of struct argument size greater than 16 bytes */ 7407 if (ret < 0 || ret > 16) { 7408 bpf_log(log, 7409 "The function %s arg%d type %s is unsupported.\n", 7410 tname, i, btf_type_str(t)); 7411 return -EINVAL; 7412 } 7413 if (ret == 0) { 7414 bpf_log(log, 7415 "The function %s has malformed void argument.\n", 7416 tname); 7417 return -EINVAL; 7418 } 7419 m->arg_size[i] = ret; 7420 m->arg_flags[i] = __get_type_fmodel_flags(t); 7421 } 7422 m->nr_args = nargs; 7423 return 0; 7424 } 7425 7426 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7427 * t1 points to BTF_KIND_FUNC in btf1 7428 * t2 points to BTF_KIND_FUNC in btf2 7429 * Returns: 7430 * EINVAL - function prototype mismatch 7431 * EFAULT - verifier bug 7432 * 0 - 99% match. The last 1% is validated by the verifier. 7433 */ 7434 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7435 struct btf *btf1, const struct btf_type *t1, 7436 struct btf *btf2, const struct btf_type *t2) 7437 { 7438 const struct btf_param *args1, *args2; 7439 const char *fn1, *fn2, *s1, *s2; 7440 u32 nargs1, nargs2, i; 7441 7442 fn1 = btf_name_by_offset(btf1, t1->name_off); 7443 fn2 = btf_name_by_offset(btf2, t2->name_off); 7444 7445 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7446 bpf_log(log, "%s() is not a global function\n", fn1); 7447 return -EINVAL; 7448 } 7449 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7450 bpf_log(log, "%s() is not a global function\n", fn2); 7451 return -EINVAL; 7452 } 7453 7454 t1 = btf_type_by_id(btf1, t1->type); 7455 if (!t1 || !btf_type_is_func_proto(t1)) 7456 return -EFAULT; 7457 t2 = btf_type_by_id(btf2, t2->type); 7458 if (!t2 || !btf_type_is_func_proto(t2)) 7459 return -EFAULT; 7460 7461 args1 = (const struct btf_param *)(t1 + 1); 7462 nargs1 = btf_type_vlen(t1); 7463 args2 = (const struct btf_param *)(t2 + 1); 7464 nargs2 = btf_type_vlen(t2); 7465 7466 if (nargs1 != nargs2) { 7467 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7468 fn1, nargs1, fn2, nargs2); 7469 return -EINVAL; 7470 } 7471 7472 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7473 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7474 if (t1->info != t2->info) { 7475 bpf_log(log, 7476 "Return type %s of %s() doesn't match type %s of %s()\n", 7477 btf_type_str(t1), fn1, 7478 btf_type_str(t2), fn2); 7479 return -EINVAL; 7480 } 7481 7482 for (i = 0; i < nargs1; i++) { 7483 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7484 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7485 7486 if (t1->info != t2->info) { 7487 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7488 i, fn1, btf_type_str(t1), 7489 fn2, btf_type_str(t2)); 7490 return -EINVAL; 7491 } 7492 if (btf_type_has_size(t1) && t1->size != t2->size) { 7493 bpf_log(log, 7494 "arg%d in %s() has size %d while %s() has %d\n", 7495 i, fn1, t1->size, 7496 fn2, t2->size); 7497 return -EINVAL; 7498 } 7499 7500 /* global functions are validated with scalars and pointers 7501 * to context only. And only global functions can be replaced. 7502 * Hence type check only those types. 7503 */ 7504 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7505 continue; 7506 if (!btf_type_is_ptr(t1)) { 7507 bpf_log(log, 7508 "arg%d in %s() has unrecognized type\n", 7509 i, fn1); 7510 return -EINVAL; 7511 } 7512 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7513 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7514 if (!btf_type_is_struct(t1)) { 7515 bpf_log(log, 7516 "arg%d in %s() is not a pointer to context\n", 7517 i, fn1); 7518 return -EINVAL; 7519 } 7520 if (!btf_type_is_struct(t2)) { 7521 bpf_log(log, 7522 "arg%d in %s() is not a pointer to context\n", 7523 i, fn2); 7524 return -EINVAL; 7525 } 7526 /* This is an optional check to make program writing easier. 7527 * Compare names of structs and report an error to the user. 7528 * btf_prepare_func_args() already checked that t2 struct 7529 * is a context type. btf_prepare_func_args() will check 7530 * later that t1 struct is a context type as well. 7531 */ 7532 s1 = btf_name_by_offset(btf1, t1->name_off); 7533 s2 = btf_name_by_offset(btf2, t2->name_off); 7534 if (strcmp(s1, s2)) { 7535 bpf_log(log, 7536 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7537 i, fn1, s1, fn2, s2); 7538 return -EINVAL; 7539 } 7540 } 7541 return 0; 7542 } 7543 7544 /* Compare BTFs of given program with BTF of target program */ 7545 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7546 struct btf *btf2, const struct btf_type *t2) 7547 { 7548 struct btf *btf1 = prog->aux->btf; 7549 const struct btf_type *t1; 7550 u32 btf_id = 0; 7551 7552 if (!prog->aux->func_info) { 7553 bpf_log(log, "Program extension requires BTF\n"); 7554 return -EINVAL; 7555 } 7556 7557 btf_id = prog->aux->func_info[0].type_id; 7558 if (!btf_id) 7559 return -EFAULT; 7560 7561 t1 = btf_type_by_id(btf1, btf_id); 7562 if (!t1 || !btf_type_is_func(t1)) 7563 return -EFAULT; 7564 7565 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7566 } 7567 7568 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7569 { 7570 const char *name; 7571 7572 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7573 7574 while (btf_type_is_modifier(t)) 7575 t = btf_type_by_id(btf, t->type); 7576 7577 /* allow either struct or struct forward declaration */ 7578 if (btf_type_is_struct(t) || 7579 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7580 name = btf_str_by_offset(btf, t->name_off); 7581 return name && strcmp(name, "bpf_dynptr") == 0; 7582 } 7583 7584 return false; 7585 } 7586 7587 struct bpf_cand_cache { 7588 const char *name; 7589 u32 name_len; 7590 u16 kind; 7591 u16 cnt; 7592 struct { 7593 const struct btf *btf; 7594 u32 id; 7595 } cands[]; 7596 }; 7597 7598 static DEFINE_MUTEX(cand_cache_mutex); 7599 7600 static struct bpf_cand_cache * 7601 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7602 7603 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7604 const struct btf *btf, const struct btf_type *t) 7605 { 7606 struct bpf_cand_cache *cc; 7607 struct bpf_core_ctx ctx = { 7608 .btf = btf, 7609 .log = log, 7610 }; 7611 u32 kern_type_id, type_id; 7612 int err = 0; 7613 7614 /* skip PTR and modifiers */ 7615 type_id = t->type; 7616 t = btf_type_by_id(btf, t->type); 7617 while (btf_type_is_modifier(t)) { 7618 type_id = t->type; 7619 t = btf_type_by_id(btf, t->type); 7620 } 7621 7622 mutex_lock(&cand_cache_mutex); 7623 cc = bpf_core_find_cands(&ctx, type_id); 7624 if (IS_ERR(cc)) { 7625 err = PTR_ERR(cc); 7626 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7627 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7628 err); 7629 goto cand_cache_unlock; 7630 } 7631 if (cc->cnt != 1) { 7632 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7633 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7634 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7635 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7636 goto cand_cache_unlock; 7637 } 7638 if (btf_is_module(cc->cands[0].btf)) { 7639 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7640 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7641 err = -EOPNOTSUPP; 7642 goto cand_cache_unlock; 7643 } 7644 kern_type_id = cc->cands[0].id; 7645 7646 cand_cache_unlock: 7647 mutex_unlock(&cand_cache_mutex); 7648 if (err) 7649 return err; 7650 7651 return kern_type_id; 7652 } 7653 7654 enum btf_arg_tag { 7655 ARG_TAG_CTX = BIT_ULL(0), 7656 ARG_TAG_NONNULL = BIT_ULL(1), 7657 ARG_TAG_TRUSTED = BIT_ULL(2), 7658 ARG_TAG_UNTRUSTED = BIT_ULL(3), 7659 ARG_TAG_NULLABLE = BIT_ULL(4), 7660 ARG_TAG_ARENA = BIT_ULL(5), 7661 }; 7662 7663 /* Process BTF of a function to produce high-level expectation of function 7664 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7665 * is cached in subprog info for reuse. 7666 * Returns: 7667 * EFAULT - there is a verifier bug. Abort verification. 7668 * EINVAL - cannot convert BTF. 7669 * 0 - Successfully processed BTF and constructed argument expectations. 7670 */ 7671 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7672 { 7673 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7674 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7675 struct bpf_verifier_log *log = &env->log; 7676 struct bpf_prog *prog = env->prog; 7677 enum bpf_prog_type prog_type = prog->type; 7678 struct btf *btf = prog->aux->btf; 7679 const struct btf_param *args; 7680 const struct btf_type *t, *ref_t, *fn_t; 7681 u32 i, nargs, btf_id; 7682 const char *tname; 7683 7684 if (sub->args_cached) 7685 return 0; 7686 7687 if (!prog->aux->func_info) { 7688 verifier_bug(env, "func_info undefined"); 7689 return -EFAULT; 7690 } 7691 7692 btf_id = prog->aux->func_info[subprog].type_id; 7693 if (!btf_id) { 7694 if (!is_global) /* not fatal for static funcs */ 7695 return -EINVAL; 7696 bpf_log(log, "Global functions need valid BTF\n"); 7697 return -EFAULT; 7698 } 7699 7700 fn_t = btf_type_by_id(btf, btf_id); 7701 if (!fn_t || !btf_type_is_func(fn_t)) { 7702 /* These checks were already done by the verifier while loading 7703 * struct bpf_func_info 7704 */ 7705 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7706 subprog); 7707 return -EFAULT; 7708 } 7709 tname = btf_name_by_offset(btf, fn_t->name_off); 7710 7711 if (prog->aux->func_info_aux[subprog].unreliable) { 7712 verifier_bug(env, "unreliable BTF for function %s()", tname); 7713 return -EFAULT; 7714 } 7715 if (prog_type == BPF_PROG_TYPE_EXT) 7716 prog_type = prog->aux->dst_prog->type; 7717 7718 t = btf_type_by_id(btf, fn_t->type); 7719 if (!t || !btf_type_is_func_proto(t)) { 7720 bpf_log(log, "Invalid type of function %s()\n", tname); 7721 return -EFAULT; 7722 } 7723 args = (const struct btf_param *)(t + 1); 7724 nargs = btf_type_vlen(t); 7725 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7726 if (!is_global) 7727 return -EINVAL; 7728 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7729 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7730 return -EINVAL; 7731 } 7732 /* check that function returns int, exception cb also requires this */ 7733 t = btf_type_by_id(btf, t->type); 7734 while (btf_type_is_modifier(t)) 7735 t = btf_type_by_id(btf, t->type); 7736 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7737 if (!is_global) 7738 return -EINVAL; 7739 bpf_log(log, 7740 "Global function %s() doesn't return scalar. Only those are supported.\n", 7741 tname); 7742 return -EINVAL; 7743 } 7744 /* Convert BTF function arguments into verifier types. 7745 * Only PTR_TO_CTX and SCALAR are supported atm. 7746 */ 7747 for (i = 0; i < nargs; i++) { 7748 u32 tags = 0; 7749 int id = 0; 7750 7751 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7752 * register type from BTF type itself 7753 */ 7754 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7755 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7756 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7757 7758 /* disallow arg tags in static subprogs */ 7759 if (!is_global) { 7760 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7761 return -EOPNOTSUPP; 7762 } 7763 7764 if (strcmp(tag, "ctx") == 0) { 7765 tags |= ARG_TAG_CTX; 7766 } else if (strcmp(tag, "trusted") == 0) { 7767 tags |= ARG_TAG_TRUSTED; 7768 } else if (strcmp(tag, "untrusted") == 0) { 7769 tags |= ARG_TAG_UNTRUSTED; 7770 } else if (strcmp(tag, "nonnull") == 0) { 7771 tags |= ARG_TAG_NONNULL; 7772 } else if (strcmp(tag, "nullable") == 0) { 7773 tags |= ARG_TAG_NULLABLE; 7774 } else if (strcmp(tag, "arena") == 0) { 7775 tags |= ARG_TAG_ARENA; 7776 } else { 7777 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7778 return -EOPNOTSUPP; 7779 } 7780 } 7781 if (id != -ENOENT) { 7782 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7783 return id; 7784 } 7785 7786 t = btf_type_by_id(btf, args[i].type); 7787 while (btf_type_is_modifier(t)) 7788 t = btf_type_by_id(btf, t->type); 7789 if (!btf_type_is_ptr(t)) 7790 goto skip_pointer; 7791 7792 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7793 if (tags & ~ARG_TAG_CTX) { 7794 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7795 return -EINVAL; 7796 } 7797 if ((tags & ARG_TAG_CTX) && 7798 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7799 prog->expected_attach_type)) 7800 return -EINVAL; 7801 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7802 continue; 7803 } 7804 if (btf_is_dynptr_ptr(btf, t)) { 7805 if (tags) { 7806 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7807 return -EINVAL; 7808 } 7809 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7810 continue; 7811 } 7812 if (tags & ARG_TAG_TRUSTED) { 7813 int kern_type_id; 7814 7815 if (tags & ARG_TAG_NONNULL) { 7816 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7817 return -EINVAL; 7818 } 7819 7820 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7821 if (kern_type_id < 0) 7822 return kern_type_id; 7823 7824 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7825 if (tags & ARG_TAG_NULLABLE) 7826 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7827 sub->args[i].btf_id = kern_type_id; 7828 continue; 7829 } 7830 if (tags & ARG_TAG_UNTRUSTED) { 7831 struct btf *vmlinux_btf; 7832 int kern_type_id; 7833 7834 if (tags & ~ARG_TAG_UNTRUSTED) { 7835 bpf_log(log, "arg#%d untrusted cannot be combined with any other tags\n", i); 7836 return -EINVAL; 7837 } 7838 7839 ref_t = btf_type_skip_modifiers(btf, t->type, NULL); 7840 if (btf_type_is_void(ref_t) || btf_type_is_primitive(ref_t)) { 7841 sub->args[i].arg_type = ARG_PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 7842 sub->args[i].mem_size = 0; 7843 continue; 7844 } 7845 7846 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7847 if (kern_type_id < 0) 7848 return kern_type_id; 7849 7850 vmlinux_btf = bpf_get_btf_vmlinux(); 7851 ref_t = btf_type_by_id(vmlinux_btf, kern_type_id); 7852 if (!btf_type_is_struct(ref_t)) { 7853 tname = __btf_name_by_offset(vmlinux_btf, t->name_off); 7854 bpf_log(log, "arg#%d has type %s '%s', but only struct or primitive types are allowed\n", 7855 i, btf_type_str(ref_t), tname); 7856 return -EINVAL; 7857 } 7858 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_UNTRUSTED; 7859 sub->args[i].btf_id = kern_type_id; 7860 continue; 7861 } 7862 if (tags & ARG_TAG_ARENA) { 7863 if (tags & ~ARG_TAG_ARENA) { 7864 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7865 return -EINVAL; 7866 } 7867 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7868 continue; 7869 } 7870 if (is_global) { /* generic user data pointer */ 7871 u32 mem_size; 7872 7873 if (tags & ARG_TAG_NULLABLE) { 7874 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7875 return -EINVAL; 7876 } 7877 7878 t = btf_type_skip_modifiers(btf, t->type, NULL); 7879 ref_t = btf_resolve_size(btf, t, &mem_size); 7880 if (IS_ERR(ref_t)) { 7881 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7882 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7883 PTR_ERR(ref_t)); 7884 return -EINVAL; 7885 } 7886 7887 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7888 if (tags & ARG_TAG_NONNULL) 7889 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7890 sub->args[i].mem_size = mem_size; 7891 continue; 7892 } 7893 7894 skip_pointer: 7895 if (tags) { 7896 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7897 return -EINVAL; 7898 } 7899 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7900 sub->args[i].arg_type = ARG_ANYTHING; 7901 continue; 7902 } 7903 if (!is_global) 7904 return -EINVAL; 7905 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7906 i, btf_type_str(t), tname); 7907 return -EINVAL; 7908 } 7909 7910 sub->arg_cnt = nargs; 7911 sub->args_cached = true; 7912 7913 return 0; 7914 } 7915 7916 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7917 struct btf_show *show) 7918 { 7919 const struct btf_type *t = btf_type_by_id(btf, type_id); 7920 7921 show->btf = btf; 7922 memset(&show->state, 0, sizeof(show->state)); 7923 memset(&show->obj, 0, sizeof(show->obj)); 7924 7925 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7926 } 7927 7928 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7929 va_list args) 7930 { 7931 seq_vprintf((struct seq_file *)show->target, fmt, args); 7932 } 7933 7934 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7935 void *obj, struct seq_file *m, u64 flags) 7936 { 7937 struct btf_show sseq; 7938 7939 sseq.target = m; 7940 sseq.showfn = btf_seq_show; 7941 sseq.flags = flags; 7942 7943 btf_type_show(btf, type_id, obj, &sseq); 7944 7945 return sseq.state.status; 7946 } 7947 7948 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7949 struct seq_file *m) 7950 { 7951 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7952 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7953 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7954 } 7955 7956 struct btf_show_snprintf { 7957 struct btf_show show; 7958 int len_left; /* space left in string */ 7959 int len; /* length we would have written */ 7960 }; 7961 7962 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7963 va_list args) 7964 { 7965 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7966 int len; 7967 7968 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7969 7970 if (len < 0) { 7971 ssnprintf->len_left = 0; 7972 ssnprintf->len = len; 7973 } else if (len >= ssnprintf->len_left) { 7974 /* no space, drive on to get length we would have written */ 7975 ssnprintf->len_left = 0; 7976 ssnprintf->len += len; 7977 } else { 7978 ssnprintf->len_left -= len; 7979 ssnprintf->len += len; 7980 show->target += len; 7981 } 7982 } 7983 7984 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7985 char *buf, int len, u64 flags) 7986 { 7987 struct btf_show_snprintf ssnprintf; 7988 7989 ssnprintf.show.target = buf; 7990 ssnprintf.show.flags = flags; 7991 ssnprintf.show.showfn = btf_snprintf_show; 7992 ssnprintf.len_left = len; 7993 ssnprintf.len = 0; 7994 7995 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7996 7997 /* If we encountered an error, return it. */ 7998 if (ssnprintf.show.state.status) 7999 return ssnprintf.show.state.status; 8000 8001 /* Otherwise return length we would have written */ 8002 return ssnprintf.len; 8003 } 8004 8005 #ifdef CONFIG_PROC_FS 8006 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 8007 { 8008 const struct btf *btf = filp->private_data; 8009 8010 seq_printf(m, "btf_id:\t%u\n", btf->id); 8011 } 8012 #endif 8013 8014 static int btf_release(struct inode *inode, struct file *filp) 8015 { 8016 btf_put(filp->private_data); 8017 return 0; 8018 } 8019 8020 const struct file_operations btf_fops = { 8021 #ifdef CONFIG_PROC_FS 8022 .show_fdinfo = bpf_btf_show_fdinfo, 8023 #endif 8024 .release = btf_release, 8025 }; 8026 8027 static int __btf_new_fd(struct btf *btf) 8028 { 8029 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 8030 } 8031 8032 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 8033 { 8034 struct btf *btf; 8035 int ret; 8036 8037 btf = btf_parse(attr, uattr, uattr_size); 8038 if (IS_ERR(btf)) 8039 return PTR_ERR(btf); 8040 8041 ret = btf_alloc_id(btf); 8042 if (ret) { 8043 btf_free(btf); 8044 return ret; 8045 } 8046 8047 /* 8048 * The BTF ID is published to the userspace. 8049 * All BTF free must go through call_rcu() from 8050 * now on (i.e. free by calling btf_put()). 8051 */ 8052 8053 ret = __btf_new_fd(btf); 8054 if (ret < 0) 8055 btf_put(btf); 8056 8057 return ret; 8058 } 8059 8060 struct btf *btf_get_by_fd(int fd) 8061 { 8062 struct btf *btf; 8063 CLASS(fd, f)(fd); 8064 8065 btf = __btf_get_by_fd(f); 8066 if (!IS_ERR(btf)) 8067 refcount_inc(&btf->refcnt); 8068 8069 return btf; 8070 } 8071 8072 int btf_get_info_by_fd(const struct btf *btf, 8073 const union bpf_attr *attr, 8074 union bpf_attr __user *uattr) 8075 { 8076 struct bpf_btf_info __user *uinfo; 8077 struct bpf_btf_info info; 8078 u32 info_copy, btf_copy; 8079 void __user *ubtf; 8080 char __user *uname; 8081 u32 uinfo_len, uname_len, name_len; 8082 int ret = 0; 8083 8084 uinfo = u64_to_user_ptr(attr->info.info); 8085 uinfo_len = attr->info.info_len; 8086 8087 info_copy = min_t(u32, uinfo_len, sizeof(info)); 8088 memset(&info, 0, sizeof(info)); 8089 if (copy_from_user(&info, uinfo, info_copy)) 8090 return -EFAULT; 8091 8092 info.id = btf->id; 8093 ubtf = u64_to_user_ptr(info.btf); 8094 btf_copy = min_t(u32, btf->data_size, info.btf_size); 8095 if (copy_to_user(ubtf, btf->data, btf_copy)) 8096 return -EFAULT; 8097 info.btf_size = btf->data_size; 8098 8099 info.kernel_btf = btf->kernel_btf; 8100 8101 uname = u64_to_user_ptr(info.name); 8102 uname_len = info.name_len; 8103 if (!uname ^ !uname_len) 8104 return -EINVAL; 8105 8106 name_len = strlen(btf->name); 8107 info.name_len = name_len; 8108 8109 if (uname) { 8110 if (uname_len >= name_len + 1) { 8111 if (copy_to_user(uname, btf->name, name_len + 1)) 8112 return -EFAULT; 8113 } else { 8114 char zero = '\0'; 8115 8116 if (copy_to_user(uname, btf->name, uname_len - 1)) 8117 return -EFAULT; 8118 if (put_user(zero, uname + uname_len - 1)) 8119 return -EFAULT; 8120 /* let user-space know about too short buffer */ 8121 ret = -ENOSPC; 8122 } 8123 } 8124 8125 if (copy_to_user(uinfo, &info, info_copy) || 8126 put_user(info_copy, &uattr->info.info_len)) 8127 return -EFAULT; 8128 8129 return ret; 8130 } 8131 8132 int btf_get_fd_by_id(u32 id) 8133 { 8134 struct btf *btf; 8135 int fd; 8136 8137 rcu_read_lock(); 8138 btf = idr_find(&btf_idr, id); 8139 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 8140 btf = ERR_PTR(-ENOENT); 8141 rcu_read_unlock(); 8142 8143 if (IS_ERR(btf)) 8144 return PTR_ERR(btf); 8145 8146 fd = __btf_new_fd(btf); 8147 if (fd < 0) 8148 btf_put(btf); 8149 8150 return fd; 8151 } 8152 8153 u32 btf_obj_id(const struct btf *btf) 8154 { 8155 return btf->id; 8156 } 8157 8158 bool btf_is_kernel(const struct btf *btf) 8159 { 8160 return btf->kernel_btf; 8161 } 8162 8163 bool btf_is_module(const struct btf *btf) 8164 { 8165 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 8166 } 8167 8168 enum { 8169 BTF_MODULE_F_LIVE = (1 << 0), 8170 }; 8171 8172 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8173 struct btf_module { 8174 struct list_head list; 8175 struct module *module; 8176 struct btf *btf; 8177 struct bin_attribute *sysfs_attr; 8178 int flags; 8179 }; 8180 8181 static LIST_HEAD(btf_modules); 8182 static DEFINE_MUTEX(btf_module_mutex); 8183 8184 static void purge_cand_cache(struct btf *btf); 8185 8186 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 8187 void *module) 8188 { 8189 struct btf_module *btf_mod, *tmp; 8190 struct module *mod = module; 8191 struct btf *btf; 8192 int err = 0; 8193 8194 if (mod->btf_data_size == 0 || 8195 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 8196 op != MODULE_STATE_GOING)) 8197 goto out; 8198 8199 switch (op) { 8200 case MODULE_STATE_COMING: 8201 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 8202 if (!btf_mod) { 8203 err = -ENOMEM; 8204 goto out; 8205 } 8206 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 8207 mod->btf_base_data, mod->btf_base_data_size); 8208 if (IS_ERR(btf)) { 8209 kfree(btf_mod); 8210 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 8211 pr_warn("failed to validate module [%s] BTF: %ld\n", 8212 mod->name, PTR_ERR(btf)); 8213 err = PTR_ERR(btf); 8214 } else { 8215 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 8216 } 8217 goto out; 8218 } 8219 err = btf_alloc_id(btf); 8220 if (err) { 8221 btf_free(btf); 8222 kfree(btf_mod); 8223 goto out; 8224 } 8225 8226 purge_cand_cache(NULL); 8227 mutex_lock(&btf_module_mutex); 8228 btf_mod->module = module; 8229 btf_mod->btf = btf; 8230 list_add(&btf_mod->list, &btf_modules); 8231 mutex_unlock(&btf_module_mutex); 8232 8233 if (IS_ENABLED(CONFIG_SYSFS)) { 8234 struct bin_attribute *attr; 8235 8236 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 8237 if (!attr) 8238 goto out; 8239 8240 sysfs_bin_attr_init(attr); 8241 attr->attr.name = btf->name; 8242 attr->attr.mode = 0444; 8243 attr->size = btf->data_size; 8244 attr->private = btf->data; 8245 attr->read_new = sysfs_bin_attr_simple_read; 8246 8247 err = sysfs_create_bin_file(btf_kobj, attr); 8248 if (err) { 8249 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 8250 mod->name, err); 8251 kfree(attr); 8252 err = 0; 8253 goto out; 8254 } 8255 8256 btf_mod->sysfs_attr = attr; 8257 } 8258 8259 break; 8260 case MODULE_STATE_LIVE: 8261 mutex_lock(&btf_module_mutex); 8262 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8263 if (btf_mod->module != module) 8264 continue; 8265 8266 btf_mod->flags |= BTF_MODULE_F_LIVE; 8267 break; 8268 } 8269 mutex_unlock(&btf_module_mutex); 8270 break; 8271 case MODULE_STATE_GOING: 8272 mutex_lock(&btf_module_mutex); 8273 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8274 if (btf_mod->module != module) 8275 continue; 8276 8277 list_del(&btf_mod->list); 8278 if (btf_mod->sysfs_attr) 8279 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 8280 purge_cand_cache(btf_mod->btf); 8281 btf_put(btf_mod->btf); 8282 kfree(btf_mod->sysfs_attr); 8283 kfree(btf_mod); 8284 break; 8285 } 8286 mutex_unlock(&btf_module_mutex); 8287 break; 8288 } 8289 out: 8290 return notifier_from_errno(err); 8291 } 8292 8293 static struct notifier_block btf_module_nb = { 8294 .notifier_call = btf_module_notify, 8295 }; 8296 8297 static int __init btf_module_init(void) 8298 { 8299 register_module_notifier(&btf_module_nb); 8300 return 0; 8301 } 8302 8303 fs_initcall(btf_module_init); 8304 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 8305 8306 struct module *btf_try_get_module(const struct btf *btf) 8307 { 8308 struct module *res = NULL; 8309 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8310 struct btf_module *btf_mod, *tmp; 8311 8312 mutex_lock(&btf_module_mutex); 8313 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8314 if (btf_mod->btf != btf) 8315 continue; 8316 8317 /* We must only consider module whose __init routine has 8318 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 8319 * which is set from the notifier callback for 8320 * MODULE_STATE_LIVE. 8321 */ 8322 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 8323 res = btf_mod->module; 8324 8325 break; 8326 } 8327 mutex_unlock(&btf_module_mutex); 8328 #endif 8329 8330 return res; 8331 } 8332 8333 /* Returns struct btf corresponding to the struct module. 8334 * This function can return NULL or ERR_PTR. 8335 */ 8336 static struct btf *btf_get_module_btf(const struct module *module) 8337 { 8338 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8339 struct btf_module *btf_mod, *tmp; 8340 #endif 8341 struct btf *btf = NULL; 8342 8343 if (!module) { 8344 btf = bpf_get_btf_vmlinux(); 8345 if (!IS_ERR_OR_NULL(btf)) 8346 btf_get(btf); 8347 return btf; 8348 } 8349 8350 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8351 mutex_lock(&btf_module_mutex); 8352 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8353 if (btf_mod->module != module) 8354 continue; 8355 8356 btf_get(btf_mod->btf); 8357 btf = btf_mod->btf; 8358 break; 8359 } 8360 mutex_unlock(&btf_module_mutex); 8361 #endif 8362 8363 return btf; 8364 } 8365 8366 static int check_btf_kconfigs(const struct module *module, const char *feature) 8367 { 8368 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8369 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8370 return -ENOENT; 8371 } 8372 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8373 pr_warn("missing module BTF, cannot register %s\n", feature); 8374 return 0; 8375 } 8376 8377 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8378 { 8379 struct btf *btf = NULL; 8380 int btf_obj_fd = 0; 8381 long ret; 8382 8383 if (flags) 8384 return -EINVAL; 8385 8386 if (name_sz <= 1 || name[name_sz - 1]) 8387 return -EINVAL; 8388 8389 ret = bpf_find_btf_id(name, kind, &btf); 8390 if (ret > 0 && btf_is_module(btf)) { 8391 btf_obj_fd = __btf_new_fd(btf); 8392 if (btf_obj_fd < 0) { 8393 btf_put(btf); 8394 return btf_obj_fd; 8395 } 8396 return ret | (((u64)btf_obj_fd) << 32); 8397 } 8398 if (ret > 0) 8399 btf_put(btf); 8400 return ret; 8401 } 8402 8403 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8404 .func = bpf_btf_find_by_name_kind, 8405 .gpl_only = false, 8406 .ret_type = RET_INTEGER, 8407 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8408 .arg2_type = ARG_CONST_SIZE, 8409 .arg3_type = ARG_ANYTHING, 8410 .arg4_type = ARG_ANYTHING, 8411 }; 8412 8413 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8414 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8415 BTF_TRACING_TYPE_xxx 8416 #undef BTF_TRACING_TYPE 8417 8418 /* Validate well-formedness of iter argument type. 8419 * On success, return positive BTF ID of iter state's STRUCT type. 8420 * On error, negative error is returned. 8421 */ 8422 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8423 { 8424 const struct btf_param *arg; 8425 const struct btf_type *t; 8426 const char *name; 8427 int btf_id; 8428 8429 if (btf_type_vlen(func) <= arg_idx) 8430 return -EINVAL; 8431 8432 arg = &btf_params(func)[arg_idx]; 8433 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8434 if (!t || !btf_type_is_ptr(t)) 8435 return -EINVAL; 8436 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8437 if (!t || !__btf_type_is_struct(t)) 8438 return -EINVAL; 8439 8440 name = btf_name_by_offset(btf, t->name_off); 8441 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8442 return -EINVAL; 8443 8444 return btf_id; 8445 } 8446 8447 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8448 const struct btf_type *func, u32 func_flags) 8449 { 8450 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8451 const char *sfx, *iter_name; 8452 const struct btf_type *t; 8453 char exp_name[128]; 8454 u32 nr_args; 8455 int btf_id; 8456 8457 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8458 if (!flags || (flags & (flags - 1))) 8459 return -EINVAL; 8460 8461 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8462 nr_args = btf_type_vlen(func); 8463 if (nr_args < 1) 8464 return -EINVAL; 8465 8466 btf_id = btf_check_iter_arg(btf, func, 0); 8467 if (btf_id < 0) 8468 return btf_id; 8469 8470 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8471 * fit nicely in stack slots 8472 */ 8473 t = btf_type_by_id(btf, btf_id); 8474 if (t->size == 0 || (t->size % 8)) 8475 return -EINVAL; 8476 8477 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8478 * naming pattern 8479 */ 8480 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8481 if (flags & KF_ITER_NEW) 8482 sfx = "new"; 8483 else if (flags & KF_ITER_NEXT) 8484 sfx = "next"; 8485 else /* (flags & KF_ITER_DESTROY) */ 8486 sfx = "destroy"; 8487 8488 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8489 if (strcmp(func_name, exp_name)) 8490 return -EINVAL; 8491 8492 /* only iter constructor should have extra arguments */ 8493 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8494 return -EINVAL; 8495 8496 if (flags & KF_ITER_NEXT) { 8497 /* bpf_iter_<type>_next() should return pointer */ 8498 t = btf_type_skip_modifiers(btf, func->type, NULL); 8499 if (!t || !btf_type_is_ptr(t)) 8500 return -EINVAL; 8501 } 8502 8503 if (flags & KF_ITER_DESTROY) { 8504 /* bpf_iter_<type>_destroy() should return void */ 8505 t = btf_type_by_id(btf, func->type); 8506 if (!t || !btf_type_is_void(t)) 8507 return -EINVAL; 8508 } 8509 8510 return 0; 8511 } 8512 8513 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8514 { 8515 const struct btf_type *func; 8516 const char *func_name; 8517 int err; 8518 8519 /* any kfunc should be FUNC -> FUNC_PROTO */ 8520 func = btf_type_by_id(btf, func_id); 8521 if (!func || !btf_type_is_func(func)) 8522 return -EINVAL; 8523 8524 /* sanity check kfunc name */ 8525 func_name = btf_name_by_offset(btf, func->name_off); 8526 if (!func_name || !func_name[0]) 8527 return -EINVAL; 8528 8529 func = btf_type_by_id(btf, func->type); 8530 if (!func || !btf_type_is_func_proto(func)) 8531 return -EINVAL; 8532 8533 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8534 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8535 if (err) 8536 return err; 8537 } 8538 8539 return 0; 8540 } 8541 8542 /* Kernel Function (kfunc) BTF ID set registration API */ 8543 8544 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8545 const struct btf_kfunc_id_set *kset) 8546 { 8547 struct btf_kfunc_hook_filter *hook_filter; 8548 struct btf_id_set8 *add_set = kset->set; 8549 bool vmlinux_set = !btf_is_module(btf); 8550 bool add_filter = !!kset->filter; 8551 struct btf_kfunc_set_tab *tab; 8552 struct btf_id_set8 *set; 8553 u32 set_cnt, i; 8554 int ret; 8555 8556 if (hook >= BTF_KFUNC_HOOK_MAX) { 8557 ret = -EINVAL; 8558 goto end; 8559 } 8560 8561 if (!add_set->cnt) 8562 return 0; 8563 8564 tab = btf->kfunc_set_tab; 8565 8566 if (tab && add_filter) { 8567 u32 i; 8568 8569 hook_filter = &tab->hook_filters[hook]; 8570 for (i = 0; i < hook_filter->nr_filters; i++) { 8571 if (hook_filter->filters[i] == kset->filter) { 8572 add_filter = false; 8573 break; 8574 } 8575 } 8576 8577 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8578 ret = -E2BIG; 8579 goto end; 8580 } 8581 } 8582 8583 if (!tab) { 8584 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8585 if (!tab) 8586 return -ENOMEM; 8587 btf->kfunc_set_tab = tab; 8588 } 8589 8590 set = tab->sets[hook]; 8591 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8592 * for module sets. 8593 */ 8594 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8595 ret = -EINVAL; 8596 goto end; 8597 } 8598 8599 /* In case of vmlinux sets, there may be more than one set being 8600 * registered per hook. To create a unified set, we allocate a new set 8601 * and concatenate all individual sets being registered. While each set 8602 * is individually sorted, they may become unsorted when concatenated, 8603 * hence re-sorting the final set again is required to make binary 8604 * searching the set using btf_id_set8_contains function work. 8605 * 8606 * For module sets, we need to allocate as we may need to relocate 8607 * BTF ids. 8608 */ 8609 set_cnt = set ? set->cnt : 0; 8610 8611 if (set_cnt > U32_MAX - add_set->cnt) { 8612 ret = -EOVERFLOW; 8613 goto end; 8614 } 8615 8616 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8617 ret = -E2BIG; 8618 goto end; 8619 } 8620 8621 /* Grow set */ 8622 set = krealloc(tab->sets[hook], 8623 struct_size(set, pairs, set_cnt + add_set->cnt), 8624 GFP_KERNEL | __GFP_NOWARN); 8625 if (!set) { 8626 ret = -ENOMEM; 8627 goto end; 8628 } 8629 8630 /* For newly allocated set, initialize set->cnt to 0 */ 8631 if (!tab->sets[hook]) 8632 set->cnt = 0; 8633 tab->sets[hook] = set; 8634 8635 /* Concatenate the two sets */ 8636 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8637 /* Now that the set is copied, update with relocated BTF ids */ 8638 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8639 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8640 8641 set->cnt += add_set->cnt; 8642 8643 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8644 8645 if (add_filter) { 8646 hook_filter = &tab->hook_filters[hook]; 8647 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8648 } 8649 return 0; 8650 end: 8651 btf_free_kfunc_set_tab(btf); 8652 return ret; 8653 } 8654 8655 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8656 enum btf_kfunc_hook hook, 8657 u32 kfunc_btf_id, 8658 const struct bpf_prog *prog) 8659 { 8660 struct btf_kfunc_hook_filter *hook_filter; 8661 struct btf_id_set8 *set; 8662 u32 *id, i; 8663 8664 if (hook >= BTF_KFUNC_HOOK_MAX) 8665 return NULL; 8666 if (!btf->kfunc_set_tab) 8667 return NULL; 8668 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8669 for (i = 0; i < hook_filter->nr_filters; i++) { 8670 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8671 return NULL; 8672 } 8673 set = btf->kfunc_set_tab->sets[hook]; 8674 if (!set) 8675 return NULL; 8676 id = btf_id_set8_contains(set, kfunc_btf_id); 8677 if (!id) 8678 return NULL; 8679 /* The flags for BTF ID are located next to it */ 8680 return id + 1; 8681 } 8682 8683 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8684 { 8685 switch (prog_type) { 8686 case BPF_PROG_TYPE_UNSPEC: 8687 return BTF_KFUNC_HOOK_COMMON; 8688 case BPF_PROG_TYPE_XDP: 8689 return BTF_KFUNC_HOOK_XDP; 8690 case BPF_PROG_TYPE_SCHED_CLS: 8691 return BTF_KFUNC_HOOK_TC; 8692 case BPF_PROG_TYPE_STRUCT_OPS: 8693 return BTF_KFUNC_HOOK_STRUCT_OPS; 8694 case BPF_PROG_TYPE_TRACING: 8695 case BPF_PROG_TYPE_TRACEPOINT: 8696 case BPF_PROG_TYPE_PERF_EVENT: 8697 case BPF_PROG_TYPE_LSM: 8698 return BTF_KFUNC_HOOK_TRACING; 8699 case BPF_PROG_TYPE_SYSCALL: 8700 return BTF_KFUNC_HOOK_SYSCALL; 8701 case BPF_PROG_TYPE_CGROUP_SKB: 8702 case BPF_PROG_TYPE_CGROUP_SOCK: 8703 case BPF_PROG_TYPE_CGROUP_DEVICE: 8704 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8705 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8706 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8707 case BPF_PROG_TYPE_SOCK_OPS: 8708 return BTF_KFUNC_HOOK_CGROUP; 8709 case BPF_PROG_TYPE_SCHED_ACT: 8710 return BTF_KFUNC_HOOK_SCHED_ACT; 8711 case BPF_PROG_TYPE_SK_SKB: 8712 return BTF_KFUNC_HOOK_SK_SKB; 8713 case BPF_PROG_TYPE_SOCKET_FILTER: 8714 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8715 case BPF_PROG_TYPE_LWT_OUT: 8716 case BPF_PROG_TYPE_LWT_IN: 8717 case BPF_PROG_TYPE_LWT_XMIT: 8718 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8719 return BTF_KFUNC_HOOK_LWT; 8720 case BPF_PROG_TYPE_NETFILTER: 8721 return BTF_KFUNC_HOOK_NETFILTER; 8722 case BPF_PROG_TYPE_KPROBE: 8723 return BTF_KFUNC_HOOK_KPROBE; 8724 default: 8725 return BTF_KFUNC_HOOK_MAX; 8726 } 8727 } 8728 8729 /* Caution: 8730 * Reference to the module (obtained using btf_try_get_module) corresponding to 8731 * the struct btf *MUST* be held when calling this function from verifier 8732 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8733 * keeping the reference for the duration of the call provides the necessary 8734 * protection for looking up a well-formed btf->kfunc_set_tab. 8735 */ 8736 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8737 u32 kfunc_btf_id, 8738 const struct bpf_prog *prog) 8739 { 8740 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8741 enum btf_kfunc_hook hook; 8742 u32 *kfunc_flags; 8743 8744 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8745 if (kfunc_flags) 8746 return kfunc_flags; 8747 8748 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8749 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8750 } 8751 8752 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8753 const struct bpf_prog *prog) 8754 { 8755 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8756 } 8757 8758 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8759 const struct btf_kfunc_id_set *kset) 8760 { 8761 struct btf *btf; 8762 int ret, i; 8763 8764 btf = btf_get_module_btf(kset->owner); 8765 if (!btf) 8766 return check_btf_kconfigs(kset->owner, "kfunc"); 8767 if (IS_ERR(btf)) 8768 return PTR_ERR(btf); 8769 8770 for (i = 0; i < kset->set->cnt; i++) { 8771 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8772 kset->set->pairs[i].flags); 8773 if (ret) 8774 goto err_out; 8775 } 8776 8777 ret = btf_populate_kfunc_set(btf, hook, kset); 8778 8779 err_out: 8780 btf_put(btf); 8781 return ret; 8782 } 8783 8784 /* This function must be invoked only from initcalls/module init functions */ 8785 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8786 const struct btf_kfunc_id_set *kset) 8787 { 8788 enum btf_kfunc_hook hook; 8789 8790 /* All kfuncs need to be tagged as such in BTF. 8791 * WARN() for initcall registrations that do not check errors. 8792 */ 8793 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8794 WARN_ON(!kset->owner); 8795 return -EINVAL; 8796 } 8797 8798 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8799 return __register_btf_kfunc_id_set(hook, kset); 8800 } 8801 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8802 8803 /* This function must be invoked only from initcalls/module init functions */ 8804 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8805 { 8806 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8807 } 8808 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8809 8810 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8811 { 8812 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8813 struct btf_id_dtor_kfunc *dtor; 8814 8815 if (!tab) 8816 return -ENOENT; 8817 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8818 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8819 */ 8820 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8821 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8822 if (!dtor) 8823 return -ENOENT; 8824 return dtor->kfunc_btf_id; 8825 } 8826 8827 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8828 { 8829 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8830 const struct btf_param *args; 8831 s32 dtor_btf_id; 8832 u32 nr_args, i; 8833 8834 for (i = 0; i < cnt; i++) { 8835 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8836 8837 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8838 if (!dtor_func || !btf_type_is_func(dtor_func)) 8839 return -EINVAL; 8840 8841 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8842 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8843 return -EINVAL; 8844 8845 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8846 t = btf_type_by_id(btf, dtor_func_proto->type); 8847 if (!t || !btf_type_is_void(t)) 8848 return -EINVAL; 8849 8850 nr_args = btf_type_vlen(dtor_func_proto); 8851 if (nr_args != 1) 8852 return -EINVAL; 8853 args = btf_params(dtor_func_proto); 8854 t = btf_type_by_id(btf, args[0].type); 8855 /* Allow any pointer type, as width on targets Linux supports 8856 * will be same for all pointer types (i.e. sizeof(void *)) 8857 */ 8858 if (!t || !btf_type_is_ptr(t)) 8859 return -EINVAL; 8860 } 8861 return 0; 8862 } 8863 8864 /* This function must be invoked only from initcalls/module init functions */ 8865 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8866 struct module *owner) 8867 { 8868 struct btf_id_dtor_kfunc_tab *tab; 8869 struct btf *btf; 8870 u32 tab_cnt, i; 8871 int ret; 8872 8873 btf = btf_get_module_btf(owner); 8874 if (!btf) 8875 return check_btf_kconfigs(owner, "dtor kfuncs"); 8876 if (IS_ERR(btf)) 8877 return PTR_ERR(btf); 8878 8879 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8880 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8881 ret = -E2BIG; 8882 goto end; 8883 } 8884 8885 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8886 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8887 if (ret < 0) 8888 goto end; 8889 8890 tab = btf->dtor_kfunc_tab; 8891 /* Only one call allowed for modules */ 8892 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8893 ret = -EINVAL; 8894 goto end; 8895 } 8896 8897 tab_cnt = tab ? tab->cnt : 0; 8898 if (tab_cnt > U32_MAX - add_cnt) { 8899 ret = -EOVERFLOW; 8900 goto end; 8901 } 8902 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8903 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8904 ret = -E2BIG; 8905 goto end; 8906 } 8907 8908 tab = krealloc(btf->dtor_kfunc_tab, 8909 struct_size(tab, dtors, tab_cnt + add_cnt), 8910 GFP_KERNEL | __GFP_NOWARN); 8911 if (!tab) { 8912 ret = -ENOMEM; 8913 goto end; 8914 } 8915 8916 if (!btf->dtor_kfunc_tab) 8917 tab->cnt = 0; 8918 btf->dtor_kfunc_tab = tab; 8919 8920 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8921 8922 /* remap BTF ids based on BTF relocation (if any) */ 8923 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8924 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8925 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8926 } 8927 8928 tab->cnt += add_cnt; 8929 8930 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8931 8932 end: 8933 if (ret) 8934 btf_free_dtor_kfunc_tab(btf); 8935 btf_put(btf); 8936 return ret; 8937 } 8938 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8939 8940 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8941 8942 /* Check local and target types for compatibility. This check is used for 8943 * type-based CO-RE relocations and follow slightly different rules than 8944 * field-based relocations. This function assumes that root types were already 8945 * checked for name match. Beyond that initial root-level name check, names 8946 * are completely ignored. Compatibility rules are as follows: 8947 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8948 * kind should match for local and target types (i.e., STRUCT is not 8949 * compatible with UNION); 8950 * - for ENUMs/ENUM64s, the size is ignored; 8951 * - for INT, size and signedness are ignored; 8952 * - for ARRAY, dimensionality is ignored, element types are checked for 8953 * compatibility recursively; 8954 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8955 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8956 * - FUNC_PROTOs are compatible if they have compatible signature: same 8957 * number of input args and compatible return and argument types. 8958 * These rules are not set in stone and probably will be adjusted as we get 8959 * more experience with using BPF CO-RE relocations. 8960 */ 8961 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8962 const struct btf *targ_btf, __u32 targ_id) 8963 { 8964 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8965 MAX_TYPES_ARE_COMPAT_DEPTH); 8966 } 8967 8968 #define MAX_TYPES_MATCH_DEPTH 2 8969 8970 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8971 const struct btf *targ_btf, u32 targ_id) 8972 { 8973 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8974 MAX_TYPES_MATCH_DEPTH); 8975 } 8976 8977 static bool bpf_core_is_flavor_sep(const char *s) 8978 { 8979 /* check X___Y name pattern, where X and Y are not underscores */ 8980 return s[0] != '_' && /* X */ 8981 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8982 s[4] != '_'; /* Y */ 8983 } 8984 8985 size_t bpf_core_essential_name_len(const char *name) 8986 { 8987 size_t n = strlen(name); 8988 int i; 8989 8990 for (i = n - 5; i >= 0; i--) { 8991 if (bpf_core_is_flavor_sep(name + i)) 8992 return i + 1; 8993 } 8994 return n; 8995 } 8996 8997 static void bpf_free_cands(struct bpf_cand_cache *cands) 8998 { 8999 if (!cands->cnt) 9000 /* empty candidate array was allocated on stack */ 9001 return; 9002 kfree(cands); 9003 } 9004 9005 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 9006 { 9007 kfree(cands->name); 9008 kfree(cands); 9009 } 9010 9011 #define VMLINUX_CAND_CACHE_SIZE 31 9012 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 9013 9014 #define MODULE_CAND_CACHE_SIZE 31 9015 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 9016 9017 static void __print_cand_cache(struct bpf_verifier_log *log, 9018 struct bpf_cand_cache **cache, 9019 int cache_size) 9020 { 9021 struct bpf_cand_cache *cc; 9022 int i, j; 9023 9024 for (i = 0; i < cache_size; i++) { 9025 cc = cache[i]; 9026 if (!cc) 9027 continue; 9028 bpf_log(log, "[%d]%s(", i, cc->name); 9029 for (j = 0; j < cc->cnt; j++) { 9030 bpf_log(log, "%d", cc->cands[j].id); 9031 if (j < cc->cnt - 1) 9032 bpf_log(log, " "); 9033 } 9034 bpf_log(log, "), "); 9035 } 9036 } 9037 9038 static void print_cand_cache(struct bpf_verifier_log *log) 9039 { 9040 mutex_lock(&cand_cache_mutex); 9041 bpf_log(log, "vmlinux_cand_cache:"); 9042 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9043 bpf_log(log, "\nmodule_cand_cache:"); 9044 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9045 bpf_log(log, "\n"); 9046 mutex_unlock(&cand_cache_mutex); 9047 } 9048 9049 static u32 hash_cands(struct bpf_cand_cache *cands) 9050 { 9051 return jhash(cands->name, cands->name_len, 0); 9052 } 9053 9054 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 9055 struct bpf_cand_cache **cache, 9056 int cache_size) 9057 { 9058 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 9059 9060 if (cc && cc->name_len == cands->name_len && 9061 !strncmp(cc->name, cands->name, cands->name_len)) 9062 return cc; 9063 return NULL; 9064 } 9065 9066 static size_t sizeof_cands(int cnt) 9067 { 9068 return offsetof(struct bpf_cand_cache, cands[cnt]); 9069 } 9070 9071 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 9072 struct bpf_cand_cache **cache, 9073 int cache_size) 9074 { 9075 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 9076 9077 if (*cc) { 9078 bpf_free_cands_from_cache(*cc); 9079 *cc = NULL; 9080 } 9081 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT); 9082 if (!new_cands) { 9083 bpf_free_cands(cands); 9084 return ERR_PTR(-ENOMEM); 9085 } 9086 /* strdup the name, since it will stay in cache. 9087 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 9088 */ 9089 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT); 9090 bpf_free_cands(cands); 9091 if (!new_cands->name) { 9092 kfree(new_cands); 9093 return ERR_PTR(-ENOMEM); 9094 } 9095 *cc = new_cands; 9096 return new_cands; 9097 } 9098 9099 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 9100 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 9101 int cache_size) 9102 { 9103 struct bpf_cand_cache *cc; 9104 int i, j; 9105 9106 for (i = 0; i < cache_size; i++) { 9107 cc = cache[i]; 9108 if (!cc) 9109 continue; 9110 if (!btf) { 9111 /* when new module is loaded purge all of module_cand_cache, 9112 * since new module might have candidates with the name 9113 * that matches cached cands. 9114 */ 9115 bpf_free_cands_from_cache(cc); 9116 cache[i] = NULL; 9117 continue; 9118 } 9119 /* when module is unloaded purge cache entries 9120 * that match module's btf 9121 */ 9122 for (j = 0; j < cc->cnt; j++) 9123 if (cc->cands[j].btf == btf) { 9124 bpf_free_cands_from_cache(cc); 9125 cache[i] = NULL; 9126 break; 9127 } 9128 } 9129 9130 } 9131 9132 static void purge_cand_cache(struct btf *btf) 9133 { 9134 mutex_lock(&cand_cache_mutex); 9135 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9136 mutex_unlock(&cand_cache_mutex); 9137 } 9138 #endif 9139 9140 static struct bpf_cand_cache * 9141 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 9142 int targ_start_id) 9143 { 9144 struct bpf_cand_cache *new_cands; 9145 const struct btf_type *t; 9146 const char *targ_name; 9147 size_t targ_essent_len; 9148 int n, i; 9149 9150 n = btf_nr_types(targ_btf); 9151 for (i = targ_start_id; i < n; i++) { 9152 t = btf_type_by_id(targ_btf, i); 9153 if (btf_kind(t) != cands->kind) 9154 continue; 9155 9156 targ_name = btf_name_by_offset(targ_btf, t->name_off); 9157 if (!targ_name) 9158 continue; 9159 9160 /* the resched point is before strncmp to make sure that search 9161 * for non-existing name will have a chance to schedule(). 9162 */ 9163 cond_resched(); 9164 9165 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 9166 continue; 9167 9168 targ_essent_len = bpf_core_essential_name_len(targ_name); 9169 if (targ_essent_len != cands->name_len) 9170 continue; 9171 9172 /* most of the time there is only one candidate for a given kind+name pair */ 9173 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT); 9174 if (!new_cands) { 9175 bpf_free_cands(cands); 9176 return ERR_PTR(-ENOMEM); 9177 } 9178 9179 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 9180 bpf_free_cands(cands); 9181 cands = new_cands; 9182 cands->cands[cands->cnt].btf = targ_btf; 9183 cands->cands[cands->cnt].id = i; 9184 cands->cnt++; 9185 } 9186 return cands; 9187 } 9188 9189 static struct bpf_cand_cache * 9190 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 9191 { 9192 struct bpf_cand_cache *cands, *cc, local_cand = {}; 9193 const struct btf *local_btf = ctx->btf; 9194 const struct btf_type *local_type; 9195 const struct btf *main_btf; 9196 size_t local_essent_len; 9197 struct btf *mod_btf; 9198 const char *name; 9199 int id; 9200 9201 main_btf = bpf_get_btf_vmlinux(); 9202 if (IS_ERR(main_btf)) 9203 return ERR_CAST(main_btf); 9204 if (!main_btf) 9205 return ERR_PTR(-EINVAL); 9206 9207 local_type = btf_type_by_id(local_btf, local_type_id); 9208 if (!local_type) 9209 return ERR_PTR(-EINVAL); 9210 9211 name = btf_name_by_offset(local_btf, local_type->name_off); 9212 if (str_is_empty(name)) 9213 return ERR_PTR(-EINVAL); 9214 local_essent_len = bpf_core_essential_name_len(name); 9215 9216 cands = &local_cand; 9217 cands->name = name; 9218 cands->kind = btf_kind(local_type); 9219 cands->name_len = local_essent_len; 9220 9221 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9222 /* cands is a pointer to stack here */ 9223 if (cc) { 9224 if (cc->cnt) 9225 return cc; 9226 goto check_modules; 9227 } 9228 9229 /* Attempt to find target candidates in vmlinux BTF first */ 9230 cands = bpf_core_add_cands(cands, main_btf, 1); 9231 if (IS_ERR(cands)) 9232 return ERR_CAST(cands); 9233 9234 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 9235 9236 /* populate cache even when cands->cnt == 0 */ 9237 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9238 if (IS_ERR(cc)) 9239 return ERR_CAST(cc); 9240 9241 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 9242 if (cc->cnt) 9243 return cc; 9244 9245 check_modules: 9246 /* cands is a pointer to stack here and cands->cnt == 0 */ 9247 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9248 if (cc) 9249 /* if cache has it return it even if cc->cnt == 0 */ 9250 return cc; 9251 9252 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 9253 spin_lock_bh(&btf_idr_lock); 9254 idr_for_each_entry(&btf_idr, mod_btf, id) { 9255 if (!btf_is_module(mod_btf)) 9256 continue; 9257 /* linear search could be slow hence unlock/lock 9258 * the IDR to avoiding holding it for too long 9259 */ 9260 btf_get(mod_btf); 9261 spin_unlock_bh(&btf_idr_lock); 9262 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 9263 btf_put(mod_btf); 9264 if (IS_ERR(cands)) 9265 return ERR_CAST(cands); 9266 spin_lock_bh(&btf_idr_lock); 9267 } 9268 spin_unlock_bh(&btf_idr_lock); 9269 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 9270 * or pointer to stack if cands->cnd == 0. 9271 * Copy it into the cache even when cands->cnt == 0 and 9272 * return the result. 9273 */ 9274 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9275 } 9276 9277 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 9278 int relo_idx, void *insn) 9279 { 9280 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 9281 struct bpf_core_cand_list cands = {}; 9282 struct bpf_core_relo_res targ_res; 9283 struct bpf_core_spec *specs; 9284 const struct btf_type *type; 9285 int err; 9286 9287 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 9288 * into arrays of btf_ids of struct fields and array indices. 9289 */ 9290 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL_ACCOUNT); 9291 if (!specs) 9292 return -ENOMEM; 9293 9294 type = btf_type_by_id(ctx->btf, relo->type_id); 9295 if (!type) { 9296 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 9297 relo_idx, relo->type_id); 9298 kfree(specs); 9299 return -EINVAL; 9300 } 9301 9302 if (need_cands) { 9303 struct bpf_cand_cache *cc; 9304 int i; 9305 9306 mutex_lock(&cand_cache_mutex); 9307 cc = bpf_core_find_cands(ctx, relo->type_id); 9308 if (IS_ERR(cc)) { 9309 bpf_log(ctx->log, "target candidate search failed for %d\n", 9310 relo->type_id); 9311 err = PTR_ERR(cc); 9312 goto out; 9313 } 9314 if (cc->cnt) { 9315 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL_ACCOUNT); 9316 if (!cands.cands) { 9317 err = -ENOMEM; 9318 goto out; 9319 } 9320 } 9321 for (i = 0; i < cc->cnt; i++) { 9322 bpf_log(ctx->log, 9323 "CO-RE relocating %s %s: found target candidate [%d]\n", 9324 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 9325 cands.cands[i].btf = cc->cands[i].btf; 9326 cands.cands[i].id = cc->cands[i].id; 9327 } 9328 cands.len = cc->cnt; 9329 /* cand_cache_mutex needs to span the cache lookup and 9330 * copy of btf pointer into bpf_core_cand_list, 9331 * since module can be unloaded while bpf_core_calc_relo_insn 9332 * is working with module's btf. 9333 */ 9334 } 9335 9336 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9337 &targ_res); 9338 if (err) 9339 goto out; 9340 9341 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9342 &targ_res); 9343 9344 out: 9345 kfree(specs); 9346 if (need_cands) { 9347 kfree(cands.cands); 9348 mutex_unlock(&cand_cache_mutex); 9349 if (ctx->log->level & BPF_LOG_LEVEL2) 9350 print_cand_cache(ctx->log); 9351 } 9352 return err; 9353 } 9354 9355 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9356 const struct bpf_reg_state *reg, 9357 const char *field_name, u32 btf_id, const char *suffix) 9358 { 9359 struct btf *btf = reg->btf; 9360 const struct btf_type *walk_type, *safe_type; 9361 const char *tname; 9362 char safe_tname[64]; 9363 long ret, safe_id; 9364 const struct btf_member *member; 9365 u32 i; 9366 9367 walk_type = btf_type_by_id(btf, reg->btf_id); 9368 if (!walk_type) 9369 return false; 9370 9371 tname = btf_name_by_offset(btf, walk_type->name_off); 9372 9373 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9374 if (ret >= sizeof(safe_tname)) 9375 return false; 9376 9377 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9378 if (safe_id < 0) 9379 return false; 9380 9381 safe_type = btf_type_by_id(btf, safe_id); 9382 if (!safe_type) 9383 return false; 9384 9385 for_each_member(i, safe_type, member) { 9386 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9387 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9388 u32 id; 9389 9390 if (!btf_type_is_ptr(mtype)) 9391 continue; 9392 9393 btf_type_skip_modifiers(btf, mtype->type, &id); 9394 /* If we match on both type and name, the field is considered trusted. */ 9395 if (btf_id == id && !strcmp(field_name, m_name)) 9396 return true; 9397 } 9398 9399 return false; 9400 } 9401 9402 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9403 const struct btf *reg_btf, u32 reg_id, 9404 const struct btf *arg_btf, u32 arg_id) 9405 { 9406 const char *reg_name, *arg_name, *search_needle; 9407 const struct btf_type *reg_type, *arg_type; 9408 int reg_len, arg_len, cmp_len; 9409 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9410 9411 reg_type = btf_type_by_id(reg_btf, reg_id); 9412 if (!reg_type) 9413 return false; 9414 9415 arg_type = btf_type_by_id(arg_btf, arg_id); 9416 if (!arg_type) 9417 return false; 9418 9419 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9420 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9421 9422 reg_len = strlen(reg_name); 9423 arg_len = strlen(arg_name); 9424 9425 /* Exactly one of the two type names may be suffixed with ___init, so 9426 * if the strings are the same size, they can't possibly be no-cast 9427 * aliases of one another. If you have two of the same type names, e.g. 9428 * they're both nf_conn___init, it would be improper to return true 9429 * because they are _not_ no-cast aliases, they are the same type. 9430 */ 9431 if (reg_len == arg_len) 9432 return false; 9433 9434 /* Either of the two names must be the other name, suffixed with ___init. */ 9435 if ((reg_len != arg_len + pattern_len) && 9436 (arg_len != reg_len + pattern_len)) 9437 return false; 9438 9439 if (reg_len < arg_len) { 9440 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9441 cmp_len = reg_len; 9442 } else { 9443 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9444 cmp_len = arg_len; 9445 } 9446 9447 if (!search_needle) 9448 return false; 9449 9450 /* ___init suffix must come at the end of the name */ 9451 if (*(search_needle + pattern_len) != '\0') 9452 return false; 9453 9454 return !strncmp(reg_name, arg_name, cmp_len); 9455 } 9456 9457 #ifdef CONFIG_BPF_JIT 9458 static int 9459 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9460 struct bpf_verifier_log *log) 9461 { 9462 struct btf_struct_ops_tab *tab, *new_tab; 9463 int i, err; 9464 9465 tab = btf->struct_ops_tab; 9466 if (!tab) { 9467 tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL); 9468 if (!tab) 9469 return -ENOMEM; 9470 tab->capacity = 4; 9471 btf->struct_ops_tab = tab; 9472 } 9473 9474 for (i = 0; i < tab->cnt; i++) 9475 if (tab->ops[i].st_ops == st_ops) 9476 return -EEXIST; 9477 9478 if (tab->cnt == tab->capacity) { 9479 new_tab = krealloc(tab, 9480 struct_size(tab, ops, tab->capacity * 2), 9481 GFP_KERNEL); 9482 if (!new_tab) 9483 return -ENOMEM; 9484 tab = new_tab; 9485 tab->capacity *= 2; 9486 btf->struct_ops_tab = tab; 9487 } 9488 9489 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9490 9491 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9492 if (err) 9493 return err; 9494 9495 btf->struct_ops_tab->cnt++; 9496 9497 return 0; 9498 } 9499 9500 const struct bpf_struct_ops_desc * 9501 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9502 { 9503 const struct bpf_struct_ops_desc *st_ops_list; 9504 unsigned int i; 9505 u32 cnt; 9506 9507 if (!value_id) 9508 return NULL; 9509 if (!btf->struct_ops_tab) 9510 return NULL; 9511 9512 cnt = btf->struct_ops_tab->cnt; 9513 st_ops_list = btf->struct_ops_tab->ops; 9514 for (i = 0; i < cnt; i++) { 9515 if (st_ops_list[i].value_id == value_id) 9516 return &st_ops_list[i]; 9517 } 9518 9519 return NULL; 9520 } 9521 9522 const struct bpf_struct_ops_desc * 9523 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9524 { 9525 const struct bpf_struct_ops_desc *st_ops_list; 9526 unsigned int i; 9527 u32 cnt; 9528 9529 if (!type_id) 9530 return NULL; 9531 if (!btf->struct_ops_tab) 9532 return NULL; 9533 9534 cnt = btf->struct_ops_tab->cnt; 9535 st_ops_list = btf->struct_ops_tab->ops; 9536 for (i = 0; i < cnt; i++) { 9537 if (st_ops_list[i].type_id == type_id) 9538 return &st_ops_list[i]; 9539 } 9540 9541 return NULL; 9542 } 9543 9544 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9545 { 9546 struct bpf_verifier_log *log; 9547 struct btf *btf; 9548 int err = 0; 9549 9550 btf = btf_get_module_btf(st_ops->owner); 9551 if (!btf) 9552 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9553 if (IS_ERR(btf)) 9554 return PTR_ERR(btf); 9555 9556 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9557 if (!log) { 9558 err = -ENOMEM; 9559 goto errout; 9560 } 9561 9562 log->level = BPF_LOG_KERNEL; 9563 9564 err = btf_add_struct_ops(btf, st_ops, log); 9565 9566 errout: 9567 kfree(log); 9568 btf_put(btf); 9569 9570 return err; 9571 } 9572 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9573 #endif 9574 9575 bool btf_param_match_suffix(const struct btf *btf, 9576 const struct btf_param *arg, 9577 const char *suffix) 9578 { 9579 int suffix_len = strlen(suffix), len; 9580 const char *param_name; 9581 9582 /* In the future, this can be ported to use BTF tagging */ 9583 param_name = btf_name_by_offset(btf, arg->name_off); 9584 if (str_is_empty(param_name)) 9585 return false; 9586 len = strlen(param_name); 9587 if (len <= suffix_len) 9588 return false; 9589 param_name += len - suffix_len; 9590 return !strncmp(param_name, suffix, suffix_len); 9591 } 9592