1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/slab.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/uaccess.h> 14 #include <linux/kernel.h> 15 #include <linux/idr.h> 16 #include <linux/sort.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/btf.h> 19 20 /* BTF (BPF Type Format) is the meta data format which describes 21 * the data types of BPF program/map. Hence, it basically focus 22 * on the C programming language which the modern BPF is primary 23 * using. 24 * 25 * ELF Section: 26 * ~~~~~~~~~~~ 27 * The BTF data is stored under the ".BTF" ELF section 28 * 29 * struct btf_type: 30 * ~~~~~~~~~~~~~~~ 31 * Each 'struct btf_type' object describes a C data type. 32 * Depending on the type it is describing, a 'struct btf_type' 33 * object may be followed by more data. F.e. 34 * To describe an array, 'struct btf_type' is followed by 35 * 'struct btf_array'. 36 * 37 * 'struct btf_type' and any extra data following it are 38 * 4 bytes aligned. 39 * 40 * Type section: 41 * ~~~~~~~~~~~~~ 42 * The BTF type section contains a list of 'struct btf_type' objects. 43 * Each one describes a C type. Recall from the above section 44 * that a 'struct btf_type' object could be immediately followed by extra 45 * data in order to desribe some particular C types. 46 * 47 * type_id: 48 * ~~~~~~~ 49 * Each btf_type object is identified by a type_id. The type_id 50 * is implicitly implied by the location of the btf_type object in 51 * the BTF type section. The first one has type_id 1. The second 52 * one has type_id 2...etc. Hence, an earlier btf_type has 53 * a smaller type_id. 54 * 55 * A btf_type object may refer to another btf_type object by using 56 * type_id (i.e. the "type" in the "struct btf_type"). 57 * 58 * NOTE that we cannot assume any reference-order. 59 * A btf_type object can refer to an earlier btf_type object 60 * but it can also refer to a later btf_type object. 61 * 62 * For example, to describe "const void *". A btf_type 63 * object describing "const" may refer to another btf_type 64 * object describing "void *". This type-reference is done 65 * by specifying type_id: 66 * 67 * [1] CONST (anon) type_id=2 68 * [2] PTR (anon) type_id=0 69 * 70 * The above is the btf_verifier debug log: 71 * - Each line started with "[?]" is a btf_type object 72 * - [?] is the type_id of the btf_type object. 73 * - CONST/PTR is the BTF_KIND_XXX 74 * - "(anon)" is the name of the type. It just 75 * happens that CONST and PTR has no name. 76 * - type_id=XXX is the 'u32 type' in btf_type 77 * 78 * NOTE: "void" has type_id 0 79 * 80 * String section: 81 * ~~~~~~~~~~~~~~ 82 * The BTF string section contains the names used by the type section. 83 * Each string is referred by an "offset" from the beginning of the 84 * string section. 85 * 86 * Each string is '\0' terminated. 87 * 88 * The first character in the string section must be '\0' 89 * which is used to mean 'anonymous'. Some btf_type may not 90 * have a name. 91 */ 92 93 /* BTF verification: 94 * 95 * To verify BTF data, two passes are needed. 96 * 97 * Pass #1 98 * ~~~~~~~ 99 * The first pass is to collect all btf_type objects to 100 * an array: "btf->types". 101 * 102 * Depending on the C type that a btf_type is describing, 103 * a btf_type may be followed by extra data. We don't know 104 * how many btf_type is there, and more importantly we don't 105 * know where each btf_type is located in the type section. 106 * 107 * Without knowing the location of each type_id, most verifications 108 * cannot be done. e.g. an earlier btf_type may refer to a later 109 * btf_type (recall the "const void *" above), so we cannot 110 * check this type-reference in the first pass. 111 * 112 * In the first pass, it still does some verifications (e.g. 113 * checking the name is a valid offset to the string section). 114 * 115 * Pass #2 116 * ~~~~~~~ 117 * The main focus is to resolve a btf_type that is referring 118 * to another type. 119 * 120 * We have to ensure the referring type: 121 * 1) does exist in the BTF (i.e. in btf->types[]) 122 * 2) does not cause a loop: 123 * struct A { 124 * struct B b; 125 * }; 126 * 127 * struct B { 128 * struct A a; 129 * }; 130 * 131 * btf_type_needs_resolve() decides if a btf_type needs 132 * to be resolved. 133 * 134 * The needs_resolve type implements the "resolve()" ops which 135 * essentially does a DFS and detects backedge. 136 * 137 * During resolve (or DFS), different C types have different 138 * "RESOLVED" conditions. 139 * 140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 141 * members because a member is always referring to another 142 * type. A struct's member can be treated as "RESOLVED" if 143 * it is referring to a BTF_KIND_PTR. Otherwise, the 144 * following valid C struct would be rejected: 145 * 146 * struct A { 147 * int m; 148 * struct A *a; 149 * }; 150 * 151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 153 * detect a pointer loop, e.g.: 154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 155 * ^ | 156 * +-----------------------------------------+ 157 * 158 */ 159 160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 164 #define BITS_ROUNDUP_BYTES(bits) \ 165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 166 167 #define BTF_INFO_MASK 0x8f00ffff 168 #define BTF_INT_MASK 0x0fffffff 169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 171 172 /* 16MB for 64k structs and each has 16 members and 173 * a few MB spaces for the string section. 174 * The hard limit is S32_MAX. 175 */ 176 #define BTF_MAX_SIZE (16 * 1024 * 1024) 177 178 #define for_each_member(i, struct_type, member) \ 179 for (i = 0, member = btf_type_member(struct_type); \ 180 i < btf_type_vlen(struct_type); \ 181 i++, member++) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 #define for_each_vsi(i, struct_type, member) \ 189 for (i = 0, member = btf_type_var_secinfo(struct_type); \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 static DEFINE_IDR(btf_idr); 199 static DEFINE_SPINLOCK(btf_idr_lock); 200 201 struct btf { 202 void *data; 203 struct btf_type **types; 204 u32 *resolved_ids; 205 u32 *resolved_sizes; 206 const char *strings; 207 void *nohdr_data; 208 struct btf_header hdr; 209 u32 nr_types; 210 u32 types_size; 211 u32 data_size; 212 refcount_t refcnt; 213 u32 id; 214 struct rcu_head rcu; 215 }; 216 217 enum verifier_phase { 218 CHECK_META, 219 CHECK_TYPE, 220 }; 221 222 struct resolve_vertex { 223 const struct btf_type *t; 224 u32 type_id; 225 u16 next_member; 226 }; 227 228 enum visit_state { 229 NOT_VISITED, 230 VISITED, 231 RESOLVED, 232 }; 233 234 enum resolve_mode { 235 RESOLVE_TBD, /* To Be Determined */ 236 RESOLVE_PTR, /* Resolving for Pointer */ 237 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 238 * or array 239 */ 240 }; 241 242 #define MAX_RESOLVE_DEPTH 32 243 244 struct btf_sec_info { 245 u32 off; 246 u32 len; 247 }; 248 249 struct btf_verifier_env { 250 struct btf *btf; 251 u8 *visit_states; 252 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 253 struct bpf_verifier_log log; 254 u32 log_type_id; 255 u32 top_stack; 256 enum verifier_phase phase; 257 enum resolve_mode resolve_mode; 258 }; 259 260 static const char * const btf_kind_str[NR_BTF_KINDS] = { 261 [BTF_KIND_UNKN] = "UNKNOWN", 262 [BTF_KIND_INT] = "INT", 263 [BTF_KIND_PTR] = "PTR", 264 [BTF_KIND_ARRAY] = "ARRAY", 265 [BTF_KIND_STRUCT] = "STRUCT", 266 [BTF_KIND_UNION] = "UNION", 267 [BTF_KIND_ENUM] = "ENUM", 268 [BTF_KIND_FWD] = "FWD", 269 [BTF_KIND_TYPEDEF] = "TYPEDEF", 270 [BTF_KIND_VOLATILE] = "VOLATILE", 271 [BTF_KIND_CONST] = "CONST", 272 [BTF_KIND_RESTRICT] = "RESTRICT", 273 [BTF_KIND_FUNC] = "FUNC", 274 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 275 [BTF_KIND_VAR] = "VAR", 276 [BTF_KIND_DATASEC] = "DATASEC", 277 }; 278 279 struct btf_kind_operations { 280 s32 (*check_meta)(struct btf_verifier_env *env, 281 const struct btf_type *t, 282 u32 meta_left); 283 int (*resolve)(struct btf_verifier_env *env, 284 const struct resolve_vertex *v); 285 int (*check_member)(struct btf_verifier_env *env, 286 const struct btf_type *struct_type, 287 const struct btf_member *member, 288 const struct btf_type *member_type); 289 int (*check_kflag_member)(struct btf_verifier_env *env, 290 const struct btf_type *struct_type, 291 const struct btf_member *member, 292 const struct btf_type *member_type); 293 void (*log_details)(struct btf_verifier_env *env, 294 const struct btf_type *t); 295 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 296 u32 type_id, void *data, u8 bits_offsets, 297 struct seq_file *m); 298 }; 299 300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 301 static struct btf_type btf_void; 302 303 static int btf_resolve(struct btf_verifier_env *env, 304 const struct btf_type *t, u32 type_id); 305 306 static bool btf_type_is_modifier(const struct btf_type *t) 307 { 308 /* Some of them is not strictly a C modifier 309 * but they are grouped into the same bucket 310 * for BTF concern: 311 * A type (t) that refers to another 312 * type through t->type AND its size cannot 313 * be determined without following the t->type. 314 * 315 * ptr does not fall into this bucket 316 * because its size is always sizeof(void *). 317 */ 318 switch (BTF_INFO_KIND(t->info)) { 319 case BTF_KIND_TYPEDEF: 320 case BTF_KIND_VOLATILE: 321 case BTF_KIND_CONST: 322 case BTF_KIND_RESTRICT: 323 return true; 324 } 325 326 return false; 327 } 328 329 bool btf_type_is_void(const struct btf_type *t) 330 { 331 return t == &btf_void; 332 } 333 334 static bool btf_type_is_fwd(const struct btf_type *t) 335 { 336 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 337 } 338 339 static bool btf_type_is_func(const struct btf_type *t) 340 { 341 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC; 342 } 343 344 static bool btf_type_is_func_proto(const struct btf_type *t) 345 { 346 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO; 347 } 348 349 static bool btf_type_nosize(const struct btf_type *t) 350 { 351 return btf_type_is_void(t) || btf_type_is_fwd(t) || 352 btf_type_is_func(t) || btf_type_is_func_proto(t); 353 } 354 355 static bool btf_type_nosize_or_null(const struct btf_type *t) 356 { 357 return !t || btf_type_nosize(t); 358 } 359 360 /* union is only a special case of struct: 361 * all its offsetof(member) == 0 362 */ 363 static bool btf_type_is_struct(const struct btf_type *t) 364 { 365 u8 kind = BTF_INFO_KIND(t->info); 366 367 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 368 } 369 370 static bool __btf_type_is_struct(const struct btf_type *t) 371 { 372 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 373 } 374 375 static bool btf_type_is_array(const struct btf_type *t) 376 { 377 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 378 } 379 380 static bool btf_type_is_ptr(const struct btf_type *t) 381 { 382 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 383 } 384 385 static bool btf_type_is_int(const struct btf_type *t) 386 { 387 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 388 } 389 390 static bool btf_type_is_var(const struct btf_type *t) 391 { 392 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR; 393 } 394 395 static bool btf_type_is_datasec(const struct btf_type *t) 396 { 397 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 398 } 399 400 /* Types that act only as a source, not sink or intermediate 401 * type when resolving. 402 */ 403 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 404 { 405 return btf_type_is_var(t) || 406 btf_type_is_datasec(t); 407 } 408 409 /* What types need to be resolved? 410 * 411 * btf_type_is_modifier() is an obvious one. 412 * 413 * btf_type_is_struct() because its member refers to 414 * another type (through member->type). 415 * 416 * btf_type_is_var() because the variable refers to 417 * another type. btf_type_is_datasec() holds multiple 418 * btf_type_is_var() types that need resolving. 419 * 420 * btf_type_is_array() because its element (array->type) 421 * refers to another type. Array can be thought of a 422 * special case of struct while array just has the same 423 * member-type repeated by array->nelems of times. 424 */ 425 static bool btf_type_needs_resolve(const struct btf_type *t) 426 { 427 return btf_type_is_modifier(t) || 428 btf_type_is_ptr(t) || 429 btf_type_is_struct(t) || 430 btf_type_is_array(t) || 431 btf_type_is_var(t) || 432 btf_type_is_datasec(t); 433 } 434 435 /* t->size can be used */ 436 static bool btf_type_has_size(const struct btf_type *t) 437 { 438 switch (BTF_INFO_KIND(t->info)) { 439 case BTF_KIND_INT: 440 case BTF_KIND_STRUCT: 441 case BTF_KIND_UNION: 442 case BTF_KIND_ENUM: 443 case BTF_KIND_DATASEC: 444 return true; 445 } 446 447 return false; 448 } 449 450 static const char *btf_int_encoding_str(u8 encoding) 451 { 452 if (encoding == 0) 453 return "(none)"; 454 else if (encoding == BTF_INT_SIGNED) 455 return "SIGNED"; 456 else if (encoding == BTF_INT_CHAR) 457 return "CHAR"; 458 else if (encoding == BTF_INT_BOOL) 459 return "BOOL"; 460 else 461 return "UNKN"; 462 } 463 464 static u16 btf_type_vlen(const struct btf_type *t) 465 { 466 return BTF_INFO_VLEN(t->info); 467 } 468 469 static bool btf_type_kflag(const struct btf_type *t) 470 { 471 return BTF_INFO_KFLAG(t->info); 472 } 473 474 static u32 btf_member_bit_offset(const struct btf_type *struct_type, 475 const struct btf_member *member) 476 { 477 return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset) 478 : member->offset; 479 } 480 481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type, 482 const struct btf_member *member) 483 { 484 return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset) 485 : 0; 486 } 487 488 static u32 btf_type_int(const struct btf_type *t) 489 { 490 return *(u32 *)(t + 1); 491 } 492 493 static const struct btf_array *btf_type_array(const struct btf_type *t) 494 { 495 return (const struct btf_array *)(t + 1); 496 } 497 498 static const struct btf_member *btf_type_member(const struct btf_type *t) 499 { 500 return (const struct btf_member *)(t + 1); 501 } 502 503 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 504 { 505 return (const struct btf_enum *)(t + 1); 506 } 507 508 static const struct btf_var *btf_type_var(const struct btf_type *t) 509 { 510 return (const struct btf_var *)(t + 1); 511 } 512 513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t) 514 { 515 return (const struct btf_var_secinfo *)(t + 1); 516 } 517 518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 519 { 520 return kind_ops[BTF_INFO_KIND(t->info)]; 521 } 522 523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 524 { 525 return BTF_STR_OFFSET_VALID(offset) && 526 offset < btf->hdr.str_len; 527 } 528 529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 530 { 531 if ((first ? !isalpha(c) : 532 !isalnum(c)) && 533 c != '_' && 534 ((c == '.' && !dot_ok) || 535 c != '.')) 536 return false; 537 return true; 538 } 539 540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 541 { 542 /* offset must be valid */ 543 const char *src = &btf->strings[offset]; 544 const char *src_limit; 545 546 if (!__btf_name_char_ok(*src, true, dot_ok)) 547 return false; 548 549 /* set a limit on identifier length */ 550 src_limit = src + KSYM_NAME_LEN; 551 src++; 552 while (*src && src < src_limit) { 553 if (!__btf_name_char_ok(*src, false, dot_ok)) 554 return false; 555 src++; 556 } 557 558 return !*src; 559 } 560 561 /* Only C-style identifier is permitted. This can be relaxed if 562 * necessary. 563 */ 564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 565 { 566 return __btf_name_valid(btf, offset, false); 567 } 568 569 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 570 { 571 return __btf_name_valid(btf, offset, true); 572 } 573 574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 575 { 576 if (!offset) 577 return "(anon)"; 578 else if (offset < btf->hdr.str_len) 579 return &btf->strings[offset]; 580 else 581 return "(invalid-name-offset)"; 582 } 583 584 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 585 { 586 if (offset < btf->hdr.str_len) 587 return &btf->strings[offset]; 588 589 return NULL; 590 } 591 592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 593 { 594 if (type_id > btf->nr_types) 595 return NULL; 596 597 return btf->types[type_id]; 598 } 599 600 /* 601 * Regular int is not a bit field and it must be either 602 * u8/u16/u32/u64 or __int128. 603 */ 604 static bool btf_type_int_is_regular(const struct btf_type *t) 605 { 606 u8 nr_bits, nr_bytes; 607 u32 int_data; 608 609 int_data = btf_type_int(t); 610 nr_bits = BTF_INT_BITS(int_data); 611 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 612 if (BITS_PER_BYTE_MASKED(nr_bits) || 613 BTF_INT_OFFSET(int_data) || 614 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 615 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 616 nr_bytes != (2 * sizeof(u64)))) { 617 return false; 618 } 619 620 return true; 621 } 622 623 /* 624 * Check that given struct member is a regular int with expected 625 * offset and size. 626 */ 627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 628 const struct btf_member *m, 629 u32 expected_offset, u32 expected_size) 630 { 631 const struct btf_type *t; 632 u32 id, int_data; 633 u8 nr_bits; 634 635 id = m->type; 636 t = btf_type_id_size(btf, &id, NULL); 637 if (!t || !btf_type_is_int(t)) 638 return false; 639 640 int_data = btf_type_int(t); 641 nr_bits = BTF_INT_BITS(int_data); 642 if (btf_type_kflag(s)) { 643 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 644 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 645 646 /* if kflag set, int should be a regular int and 647 * bit offset should be at byte boundary. 648 */ 649 return !bitfield_size && 650 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 651 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 652 } 653 654 if (BTF_INT_OFFSET(int_data) || 655 BITS_PER_BYTE_MASKED(m->offset) || 656 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 657 BITS_PER_BYTE_MASKED(nr_bits) || 658 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 659 return false; 660 661 return true; 662 } 663 664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 665 const char *fmt, ...) 666 { 667 va_list args; 668 669 va_start(args, fmt); 670 bpf_verifier_vlog(log, fmt, args); 671 va_end(args); 672 } 673 674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 675 const char *fmt, ...) 676 { 677 struct bpf_verifier_log *log = &env->log; 678 va_list args; 679 680 if (!bpf_verifier_log_needed(log)) 681 return; 682 683 va_start(args, fmt); 684 bpf_verifier_vlog(log, fmt, args); 685 va_end(args); 686 } 687 688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 689 const struct btf_type *t, 690 bool log_details, 691 const char *fmt, ...) 692 { 693 struct bpf_verifier_log *log = &env->log; 694 u8 kind = BTF_INFO_KIND(t->info); 695 struct btf *btf = env->btf; 696 va_list args; 697 698 if (!bpf_verifier_log_needed(log)) 699 return; 700 701 __btf_verifier_log(log, "[%u] %s %s%s", 702 env->log_type_id, 703 btf_kind_str[kind], 704 __btf_name_by_offset(btf, t->name_off), 705 log_details ? " " : ""); 706 707 if (log_details) 708 btf_type_ops(t)->log_details(env, t); 709 710 if (fmt && *fmt) { 711 __btf_verifier_log(log, " "); 712 va_start(args, fmt); 713 bpf_verifier_vlog(log, fmt, args); 714 va_end(args); 715 } 716 717 __btf_verifier_log(log, "\n"); 718 } 719 720 #define btf_verifier_log_type(env, t, ...) \ 721 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 722 #define btf_verifier_log_basic(env, t, ...) \ 723 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 724 725 __printf(4, 5) 726 static void btf_verifier_log_member(struct btf_verifier_env *env, 727 const struct btf_type *struct_type, 728 const struct btf_member *member, 729 const char *fmt, ...) 730 { 731 struct bpf_verifier_log *log = &env->log; 732 struct btf *btf = env->btf; 733 va_list args; 734 735 if (!bpf_verifier_log_needed(log)) 736 return; 737 738 /* The CHECK_META phase already did a btf dump. 739 * 740 * If member is logged again, it must hit an error in 741 * parsing this member. It is useful to print out which 742 * struct this member belongs to. 743 */ 744 if (env->phase != CHECK_META) 745 btf_verifier_log_type(env, struct_type, NULL); 746 747 if (btf_type_kflag(struct_type)) 748 __btf_verifier_log(log, 749 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 750 __btf_name_by_offset(btf, member->name_off), 751 member->type, 752 BTF_MEMBER_BITFIELD_SIZE(member->offset), 753 BTF_MEMBER_BIT_OFFSET(member->offset)); 754 else 755 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 756 __btf_name_by_offset(btf, member->name_off), 757 member->type, member->offset); 758 759 if (fmt && *fmt) { 760 __btf_verifier_log(log, " "); 761 va_start(args, fmt); 762 bpf_verifier_vlog(log, fmt, args); 763 va_end(args); 764 } 765 766 __btf_verifier_log(log, "\n"); 767 } 768 769 __printf(4, 5) 770 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 771 const struct btf_type *datasec_type, 772 const struct btf_var_secinfo *vsi, 773 const char *fmt, ...) 774 { 775 struct bpf_verifier_log *log = &env->log; 776 va_list args; 777 778 if (!bpf_verifier_log_needed(log)) 779 return; 780 if (env->phase != CHECK_META) 781 btf_verifier_log_type(env, datasec_type, NULL); 782 783 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 784 vsi->type, vsi->offset, vsi->size); 785 if (fmt && *fmt) { 786 __btf_verifier_log(log, " "); 787 va_start(args, fmt); 788 bpf_verifier_vlog(log, fmt, args); 789 va_end(args); 790 } 791 792 __btf_verifier_log(log, "\n"); 793 } 794 795 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 796 u32 btf_data_size) 797 { 798 struct bpf_verifier_log *log = &env->log; 799 const struct btf *btf = env->btf; 800 const struct btf_header *hdr; 801 802 if (!bpf_verifier_log_needed(log)) 803 return; 804 805 hdr = &btf->hdr; 806 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 807 __btf_verifier_log(log, "version: %u\n", hdr->version); 808 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 809 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 810 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 811 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 812 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 813 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 814 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 815 } 816 817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 818 { 819 struct btf *btf = env->btf; 820 821 /* < 2 because +1 for btf_void which is always in btf->types[0]. 822 * btf_void is not accounted in btf->nr_types because btf_void 823 * does not come from the BTF file. 824 */ 825 if (btf->types_size - btf->nr_types < 2) { 826 /* Expand 'types' array */ 827 828 struct btf_type **new_types; 829 u32 expand_by, new_size; 830 831 if (btf->types_size == BTF_MAX_TYPE) { 832 btf_verifier_log(env, "Exceeded max num of types"); 833 return -E2BIG; 834 } 835 836 expand_by = max_t(u32, btf->types_size >> 2, 16); 837 new_size = min_t(u32, BTF_MAX_TYPE, 838 btf->types_size + expand_by); 839 840 new_types = kvcalloc(new_size, sizeof(*new_types), 841 GFP_KERNEL | __GFP_NOWARN); 842 if (!new_types) 843 return -ENOMEM; 844 845 if (btf->nr_types == 0) 846 new_types[0] = &btf_void; 847 else 848 memcpy(new_types, btf->types, 849 sizeof(*btf->types) * (btf->nr_types + 1)); 850 851 kvfree(btf->types); 852 btf->types = new_types; 853 btf->types_size = new_size; 854 } 855 856 btf->types[++(btf->nr_types)] = t; 857 858 return 0; 859 } 860 861 static int btf_alloc_id(struct btf *btf) 862 { 863 int id; 864 865 idr_preload(GFP_KERNEL); 866 spin_lock_bh(&btf_idr_lock); 867 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 868 if (id > 0) 869 btf->id = id; 870 spin_unlock_bh(&btf_idr_lock); 871 idr_preload_end(); 872 873 if (WARN_ON_ONCE(!id)) 874 return -ENOSPC; 875 876 return id > 0 ? 0 : id; 877 } 878 879 static void btf_free_id(struct btf *btf) 880 { 881 unsigned long flags; 882 883 /* 884 * In map-in-map, calling map_delete_elem() on outer 885 * map will call bpf_map_put on the inner map. 886 * It will then eventually call btf_free_id() 887 * on the inner map. Some of the map_delete_elem() 888 * implementation may have irq disabled, so 889 * we need to use the _irqsave() version instead 890 * of the _bh() version. 891 */ 892 spin_lock_irqsave(&btf_idr_lock, flags); 893 idr_remove(&btf_idr, btf->id); 894 spin_unlock_irqrestore(&btf_idr_lock, flags); 895 } 896 897 static void btf_free(struct btf *btf) 898 { 899 kvfree(btf->types); 900 kvfree(btf->resolved_sizes); 901 kvfree(btf->resolved_ids); 902 kvfree(btf->data); 903 kfree(btf); 904 } 905 906 static void btf_free_rcu(struct rcu_head *rcu) 907 { 908 struct btf *btf = container_of(rcu, struct btf, rcu); 909 910 btf_free(btf); 911 } 912 913 void btf_put(struct btf *btf) 914 { 915 if (btf && refcount_dec_and_test(&btf->refcnt)) { 916 btf_free_id(btf); 917 call_rcu(&btf->rcu, btf_free_rcu); 918 } 919 } 920 921 static int env_resolve_init(struct btf_verifier_env *env) 922 { 923 struct btf *btf = env->btf; 924 u32 nr_types = btf->nr_types; 925 u32 *resolved_sizes = NULL; 926 u32 *resolved_ids = NULL; 927 u8 *visit_states = NULL; 928 929 /* +1 for btf_void */ 930 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 931 GFP_KERNEL | __GFP_NOWARN); 932 if (!resolved_sizes) 933 goto nomem; 934 935 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 936 GFP_KERNEL | __GFP_NOWARN); 937 if (!resolved_ids) 938 goto nomem; 939 940 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 941 GFP_KERNEL | __GFP_NOWARN); 942 if (!visit_states) 943 goto nomem; 944 945 btf->resolved_sizes = resolved_sizes; 946 btf->resolved_ids = resolved_ids; 947 env->visit_states = visit_states; 948 949 return 0; 950 951 nomem: 952 kvfree(resolved_sizes); 953 kvfree(resolved_ids); 954 kvfree(visit_states); 955 return -ENOMEM; 956 } 957 958 static void btf_verifier_env_free(struct btf_verifier_env *env) 959 { 960 kvfree(env->visit_states); 961 kfree(env); 962 } 963 964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 965 const struct btf_type *next_type) 966 { 967 switch (env->resolve_mode) { 968 case RESOLVE_TBD: 969 /* int, enum or void is a sink */ 970 return !btf_type_needs_resolve(next_type); 971 case RESOLVE_PTR: 972 /* int, enum, void, struct, array, func or func_proto is a sink 973 * for ptr 974 */ 975 return !btf_type_is_modifier(next_type) && 976 !btf_type_is_ptr(next_type); 977 case RESOLVE_STRUCT_OR_ARRAY: 978 /* int, enum, void, ptr, func or func_proto is a sink 979 * for struct and array 980 */ 981 return !btf_type_is_modifier(next_type) && 982 !btf_type_is_array(next_type) && 983 !btf_type_is_struct(next_type); 984 default: 985 BUG(); 986 } 987 } 988 989 static bool env_type_is_resolved(const struct btf_verifier_env *env, 990 u32 type_id) 991 { 992 return env->visit_states[type_id] == RESOLVED; 993 } 994 995 static int env_stack_push(struct btf_verifier_env *env, 996 const struct btf_type *t, u32 type_id) 997 { 998 struct resolve_vertex *v; 999 1000 if (env->top_stack == MAX_RESOLVE_DEPTH) 1001 return -E2BIG; 1002 1003 if (env->visit_states[type_id] != NOT_VISITED) 1004 return -EEXIST; 1005 1006 env->visit_states[type_id] = VISITED; 1007 1008 v = &env->stack[env->top_stack++]; 1009 v->t = t; 1010 v->type_id = type_id; 1011 v->next_member = 0; 1012 1013 if (env->resolve_mode == RESOLVE_TBD) { 1014 if (btf_type_is_ptr(t)) 1015 env->resolve_mode = RESOLVE_PTR; 1016 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1017 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static void env_stack_set_next_member(struct btf_verifier_env *env, 1024 u16 next_member) 1025 { 1026 env->stack[env->top_stack - 1].next_member = next_member; 1027 } 1028 1029 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1030 u32 resolved_type_id, 1031 u32 resolved_size) 1032 { 1033 u32 type_id = env->stack[--(env->top_stack)].type_id; 1034 struct btf *btf = env->btf; 1035 1036 btf->resolved_sizes[type_id] = resolved_size; 1037 btf->resolved_ids[type_id] = resolved_type_id; 1038 env->visit_states[type_id] = RESOLVED; 1039 } 1040 1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1042 { 1043 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1044 } 1045 1046 /* The input param "type_id" must point to a needs_resolve type */ 1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1048 u32 *type_id) 1049 { 1050 *type_id = btf->resolved_ids[*type_id]; 1051 return btf_type_by_id(btf, *type_id); 1052 } 1053 1054 const struct btf_type *btf_type_id_size(const struct btf *btf, 1055 u32 *type_id, u32 *ret_size) 1056 { 1057 const struct btf_type *size_type; 1058 u32 size_type_id = *type_id; 1059 u32 size = 0; 1060 1061 size_type = btf_type_by_id(btf, size_type_id); 1062 if (btf_type_nosize_or_null(size_type)) 1063 return NULL; 1064 1065 if (btf_type_has_size(size_type)) { 1066 size = size_type->size; 1067 } else if (btf_type_is_array(size_type)) { 1068 size = btf->resolved_sizes[size_type_id]; 1069 } else if (btf_type_is_ptr(size_type)) { 1070 size = sizeof(void *); 1071 } else { 1072 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1073 !btf_type_is_var(size_type))) 1074 return NULL; 1075 1076 size_type_id = btf->resolved_ids[size_type_id]; 1077 size_type = btf_type_by_id(btf, size_type_id); 1078 if (btf_type_nosize_or_null(size_type)) 1079 return NULL; 1080 else if (btf_type_has_size(size_type)) 1081 size = size_type->size; 1082 else if (btf_type_is_array(size_type)) 1083 size = btf->resolved_sizes[size_type_id]; 1084 else if (btf_type_is_ptr(size_type)) 1085 size = sizeof(void *); 1086 else 1087 return NULL; 1088 } 1089 1090 *type_id = size_type_id; 1091 if (ret_size) 1092 *ret_size = size; 1093 1094 return size_type; 1095 } 1096 1097 static int btf_df_check_member(struct btf_verifier_env *env, 1098 const struct btf_type *struct_type, 1099 const struct btf_member *member, 1100 const struct btf_type *member_type) 1101 { 1102 btf_verifier_log_basic(env, struct_type, 1103 "Unsupported check_member"); 1104 return -EINVAL; 1105 } 1106 1107 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1108 const struct btf_type *struct_type, 1109 const struct btf_member *member, 1110 const struct btf_type *member_type) 1111 { 1112 btf_verifier_log_basic(env, struct_type, 1113 "Unsupported check_kflag_member"); 1114 return -EINVAL; 1115 } 1116 1117 /* Used for ptr, array and struct/union type members. 1118 * int, enum and modifier types have their specific callback functions. 1119 */ 1120 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1121 const struct btf_type *struct_type, 1122 const struct btf_member *member, 1123 const struct btf_type *member_type) 1124 { 1125 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1126 btf_verifier_log_member(env, struct_type, member, 1127 "Invalid member bitfield_size"); 1128 return -EINVAL; 1129 } 1130 1131 /* bitfield size is 0, so member->offset represents bit offset only. 1132 * It is safe to call non kflag check_member variants. 1133 */ 1134 return btf_type_ops(member_type)->check_member(env, struct_type, 1135 member, 1136 member_type); 1137 } 1138 1139 static int btf_df_resolve(struct btf_verifier_env *env, 1140 const struct resolve_vertex *v) 1141 { 1142 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1143 return -EINVAL; 1144 } 1145 1146 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 1147 u32 type_id, void *data, u8 bits_offsets, 1148 struct seq_file *m) 1149 { 1150 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1151 } 1152 1153 static int btf_int_check_member(struct btf_verifier_env *env, 1154 const struct btf_type *struct_type, 1155 const struct btf_member *member, 1156 const struct btf_type *member_type) 1157 { 1158 u32 int_data = btf_type_int(member_type); 1159 u32 struct_bits_off = member->offset; 1160 u32 struct_size = struct_type->size; 1161 u32 nr_copy_bits; 1162 u32 bytes_offset; 1163 1164 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1165 btf_verifier_log_member(env, struct_type, member, 1166 "bits_offset exceeds U32_MAX"); 1167 return -EINVAL; 1168 } 1169 1170 struct_bits_off += BTF_INT_OFFSET(int_data); 1171 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1172 nr_copy_bits = BTF_INT_BITS(int_data) + 1173 BITS_PER_BYTE_MASKED(struct_bits_off); 1174 1175 if (nr_copy_bits > BITS_PER_U128) { 1176 btf_verifier_log_member(env, struct_type, member, 1177 "nr_copy_bits exceeds 128"); 1178 return -EINVAL; 1179 } 1180 1181 if (struct_size < bytes_offset || 1182 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1183 btf_verifier_log_member(env, struct_type, member, 1184 "Member exceeds struct_size"); 1185 return -EINVAL; 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1192 const struct btf_type *struct_type, 1193 const struct btf_member *member, 1194 const struct btf_type *member_type) 1195 { 1196 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1197 u32 int_data = btf_type_int(member_type); 1198 u32 struct_size = struct_type->size; 1199 u32 nr_copy_bits; 1200 1201 /* a regular int type is required for the kflag int member */ 1202 if (!btf_type_int_is_regular(member_type)) { 1203 btf_verifier_log_member(env, struct_type, member, 1204 "Invalid member base type"); 1205 return -EINVAL; 1206 } 1207 1208 /* check sanity of bitfield size */ 1209 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1210 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1211 nr_int_data_bits = BTF_INT_BITS(int_data); 1212 if (!nr_bits) { 1213 /* Not a bitfield member, member offset must be at byte 1214 * boundary. 1215 */ 1216 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1217 btf_verifier_log_member(env, struct_type, member, 1218 "Invalid member offset"); 1219 return -EINVAL; 1220 } 1221 1222 nr_bits = nr_int_data_bits; 1223 } else if (nr_bits > nr_int_data_bits) { 1224 btf_verifier_log_member(env, struct_type, member, 1225 "Invalid member bitfield_size"); 1226 return -EINVAL; 1227 } 1228 1229 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1230 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1231 if (nr_copy_bits > BITS_PER_U128) { 1232 btf_verifier_log_member(env, struct_type, member, 1233 "nr_copy_bits exceeds 128"); 1234 return -EINVAL; 1235 } 1236 1237 if (struct_size < bytes_offset || 1238 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1239 btf_verifier_log_member(env, struct_type, member, 1240 "Member exceeds struct_size"); 1241 return -EINVAL; 1242 } 1243 1244 return 0; 1245 } 1246 1247 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1248 const struct btf_type *t, 1249 u32 meta_left) 1250 { 1251 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1252 u16 encoding; 1253 1254 if (meta_left < meta_needed) { 1255 btf_verifier_log_basic(env, t, 1256 "meta_left:%u meta_needed:%u", 1257 meta_left, meta_needed); 1258 return -EINVAL; 1259 } 1260 1261 if (btf_type_vlen(t)) { 1262 btf_verifier_log_type(env, t, "vlen != 0"); 1263 return -EINVAL; 1264 } 1265 1266 if (btf_type_kflag(t)) { 1267 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1268 return -EINVAL; 1269 } 1270 1271 int_data = btf_type_int(t); 1272 if (int_data & ~BTF_INT_MASK) { 1273 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 1274 int_data); 1275 return -EINVAL; 1276 } 1277 1278 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 1279 1280 if (nr_bits > BITS_PER_U128) { 1281 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1282 BITS_PER_U128); 1283 return -EINVAL; 1284 } 1285 1286 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1287 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1288 return -EINVAL; 1289 } 1290 1291 /* 1292 * Only one of the encoding bits is allowed and it 1293 * should be sufficient for the pretty print purpose (i.e. decoding). 1294 * Multiple bits can be allowed later if it is found 1295 * to be insufficient. 1296 */ 1297 encoding = BTF_INT_ENCODING(int_data); 1298 if (encoding && 1299 encoding != BTF_INT_SIGNED && 1300 encoding != BTF_INT_CHAR && 1301 encoding != BTF_INT_BOOL) { 1302 btf_verifier_log_type(env, t, "Unsupported encoding"); 1303 return -ENOTSUPP; 1304 } 1305 1306 btf_verifier_log_type(env, t, NULL); 1307 1308 return meta_needed; 1309 } 1310 1311 static void btf_int_log(struct btf_verifier_env *env, 1312 const struct btf_type *t) 1313 { 1314 int int_data = btf_type_int(t); 1315 1316 btf_verifier_log(env, 1317 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1318 t->size, BTF_INT_OFFSET(int_data), 1319 BTF_INT_BITS(int_data), 1320 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1321 } 1322 1323 static void btf_int128_print(struct seq_file *m, void *data) 1324 { 1325 /* data points to a __int128 number. 1326 * Suppose 1327 * int128_num = *(__int128 *)data; 1328 * The below formulas shows what upper_num and lower_num represents: 1329 * upper_num = int128_num >> 64; 1330 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 1331 */ 1332 u64 upper_num, lower_num; 1333 1334 #ifdef __BIG_ENDIAN_BITFIELD 1335 upper_num = *(u64 *)data; 1336 lower_num = *(u64 *)(data + 8); 1337 #else 1338 upper_num = *(u64 *)(data + 8); 1339 lower_num = *(u64 *)data; 1340 #endif 1341 if (upper_num == 0) 1342 seq_printf(m, "0x%llx", lower_num); 1343 else 1344 seq_printf(m, "0x%llx%016llx", upper_num, lower_num); 1345 } 1346 1347 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 1348 u16 right_shift_bits) 1349 { 1350 u64 upper_num, lower_num; 1351 1352 #ifdef __BIG_ENDIAN_BITFIELD 1353 upper_num = print_num[0]; 1354 lower_num = print_num[1]; 1355 #else 1356 upper_num = print_num[1]; 1357 lower_num = print_num[0]; 1358 #endif 1359 1360 /* shake out un-needed bits by shift/or operations */ 1361 if (left_shift_bits >= 64) { 1362 upper_num = lower_num << (left_shift_bits - 64); 1363 lower_num = 0; 1364 } else { 1365 upper_num = (upper_num << left_shift_bits) | 1366 (lower_num >> (64 - left_shift_bits)); 1367 lower_num = lower_num << left_shift_bits; 1368 } 1369 1370 if (right_shift_bits >= 64) { 1371 lower_num = upper_num >> (right_shift_bits - 64); 1372 upper_num = 0; 1373 } else { 1374 lower_num = (lower_num >> right_shift_bits) | 1375 (upper_num << (64 - right_shift_bits)); 1376 upper_num = upper_num >> right_shift_bits; 1377 } 1378 1379 #ifdef __BIG_ENDIAN_BITFIELD 1380 print_num[0] = upper_num; 1381 print_num[1] = lower_num; 1382 #else 1383 print_num[0] = lower_num; 1384 print_num[1] = upper_num; 1385 #endif 1386 } 1387 1388 static void btf_bitfield_seq_show(void *data, u8 bits_offset, 1389 u8 nr_bits, struct seq_file *m) 1390 { 1391 u16 left_shift_bits, right_shift_bits; 1392 u8 nr_copy_bytes; 1393 u8 nr_copy_bits; 1394 u64 print_num[2] = {}; 1395 1396 nr_copy_bits = nr_bits + bits_offset; 1397 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1398 1399 memcpy(print_num, data, nr_copy_bytes); 1400 1401 #ifdef __BIG_ENDIAN_BITFIELD 1402 left_shift_bits = bits_offset; 1403 #else 1404 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 1405 #endif 1406 right_shift_bits = BITS_PER_U128 - nr_bits; 1407 1408 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 1409 btf_int128_print(m, print_num); 1410 } 1411 1412 1413 static void btf_int_bits_seq_show(const struct btf *btf, 1414 const struct btf_type *t, 1415 void *data, u8 bits_offset, 1416 struct seq_file *m) 1417 { 1418 u32 int_data = btf_type_int(t); 1419 u8 nr_bits = BTF_INT_BITS(int_data); 1420 u8 total_bits_offset; 1421 1422 /* 1423 * bits_offset is at most 7. 1424 * BTF_INT_OFFSET() cannot exceed 128 bits. 1425 */ 1426 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1427 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1428 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1429 btf_bitfield_seq_show(data, bits_offset, nr_bits, m); 1430 } 1431 1432 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1433 u32 type_id, void *data, u8 bits_offset, 1434 struct seq_file *m) 1435 { 1436 u32 int_data = btf_type_int(t); 1437 u8 encoding = BTF_INT_ENCODING(int_data); 1438 bool sign = encoding & BTF_INT_SIGNED; 1439 u8 nr_bits = BTF_INT_BITS(int_data); 1440 1441 if (bits_offset || BTF_INT_OFFSET(int_data) || 1442 BITS_PER_BYTE_MASKED(nr_bits)) { 1443 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1444 return; 1445 } 1446 1447 switch (nr_bits) { 1448 case 128: 1449 btf_int128_print(m, data); 1450 break; 1451 case 64: 1452 if (sign) 1453 seq_printf(m, "%lld", *(s64 *)data); 1454 else 1455 seq_printf(m, "%llu", *(u64 *)data); 1456 break; 1457 case 32: 1458 if (sign) 1459 seq_printf(m, "%d", *(s32 *)data); 1460 else 1461 seq_printf(m, "%u", *(u32 *)data); 1462 break; 1463 case 16: 1464 if (sign) 1465 seq_printf(m, "%d", *(s16 *)data); 1466 else 1467 seq_printf(m, "%u", *(u16 *)data); 1468 break; 1469 case 8: 1470 if (sign) 1471 seq_printf(m, "%d", *(s8 *)data); 1472 else 1473 seq_printf(m, "%u", *(u8 *)data); 1474 break; 1475 default: 1476 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1477 } 1478 } 1479 1480 static const struct btf_kind_operations int_ops = { 1481 .check_meta = btf_int_check_meta, 1482 .resolve = btf_df_resolve, 1483 .check_member = btf_int_check_member, 1484 .check_kflag_member = btf_int_check_kflag_member, 1485 .log_details = btf_int_log, 1486 .seq_show = btf_int_seq_show, 1487 }; 1488 1489 static int btf_modifier_check_member(struct btf_verifier_env *env, 1490 const struct btf_type *struct_type, 1491 const struct btf_member *member, 1492 const struct btf_type *member_type) 1493 { 1494 const struct btf_type *resolved_type; 1495 u32 resolved_type_id = member->type; 1496 struct btf_member resolved_member; 1497 struct btf *btf = env->btf; 1498 1499 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1500 if (!resolved_type) { 1501 btf_verifier_log_member(env, struct_type, member, 1502 "Invalid member"); 1503 return -EINVAL; 1504 } 1505 1506 resolved_member = *member; 1507 resolved_member.type = resolved_type_id; 1508 1509 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1510 &resolved_member, 1511 resolved_type); 1512 } 1513 1514 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 1515 const struct btf_type *struct_type, 1516 const struct btf_member *member, 1517 const struct btf_type *member_type) 1518 { 1519 const struct btf_type *resolved_type; 1520 u32 resolved_type_id = member->type; 1521 struct btf_member resolved_member; 1522 struct btf *btf = env->btf; 1523 1524 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1525 if (!resolved_type) { 1526 btf_verifier_log_member(env, struct_type, member, 1527 "Invalid member"); 1528 return -EINVAL; 1529 } 1530 1531 resolved_member = *member; 1532 resolved_member.type = resolved_type_id; 1533 1534 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 1535 &resolved_member, 1536 resolved_type); 1537 } 1538 1539 static int btf_ptr_check_member(struct btf_verifier_env *env, 1540 const struct btf_type *struct_type, 1541 const struct btf_member *member, 1542 const struct btf_type *member_type) 1543 { 1544 u32 struct_size, struct_bits_off, bytes_offset; 1545 1546 struct_size = struct_type->size; 1547 struct_bits_off = member->offset; 1548 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1549 1550 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1551 btf_verifier_log_member(env, struct_type, member, 1552 "Member is not byte aligned"); 1553 return -EINVAL; 1554 } 1555 1556 if (struct_size - bytes_offset < sizeof(void *)) { 1557 btf_verifier_log_member(env, struct_type, member, 1558 "Member exceeds struct_size"); 1559 return -EINVAL; 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1566 const struct btf_type *t, 1567 u32 meta_left) 1568 { 1569 if (btf_type_vlen(t)) { 1570 btf_verifier_log_type(env, t, "vlen != 0"); 1571 return -EINVAL; 1572 } 1573 1574 if (btf_type_kflag(t)) { 1575 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1576 return -EINVAL; 1577 } 1578 1579 if (!BTF_TYPE_ID_VALID(t->type)) { 1580 btf_verifier_log_type(env, t, "Invalid type_id"); 1581 return -EINVAL; 1582 } 1583 1584 /* typedef type must have a valid name, and other ref types, 1585 * volatile, const, restrict, should have a null name. 1586 */ 1587 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 1588 if (!t->name_off || 1589 !btf_name_valid_identifier(env->btf, t->name_off)) { 1590 btf_verifier_log_type(env, t, "Invalid name"); 1591 return -EINVAL; 1592 } 1593 } else { 1594 if (t->name_off) { 1595 btf_verifier_log_type(env, t, "Invalid name"); 1596 return -EINVAL; 1597 } 1598 } 1599 1600 btf_verifier_log_type(env, t, NULL); 1601 1602 return 0; 1603 } 1604 1605 static int btf_modifier_resolve(struct btf_verifier_env *env, 1606 const struct resolve_vertex *v) 1607 { 1608 const struct btf_type *t = v->t; 1609 const struct btf_type *next_type; 1610 u32 next_type_id = t->type; 1611 struct btf *btf = env->btf; 1612 1613 next_type = btf_type_by_id(btf, next_type_id); 1614 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1615 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1616 return -EINVAL; 1617 } 1618 1619 if (!env_type_is_resolve_sink(env, next_type) && 1620 !env_type_is_resolved(env, next_type_id)) 1621 return env_stack_push(env, next_type, next_type_id); 1622 1623 /* Figure out the resolved next_type_id with size. 1624 * They will be stored in the current modifier's 1625 * resolved_ids and resolved_sizes such that it can 1626 * save us a few type-following when we use it later (e.g. in 1627 * pretty print). 1628 */ 1629 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1630 if (env_type_is_resolved(env, next_type_id)) 1631 next_type = btf_type_id_resolve(btf, &next_type_id); 1632 1633 /* "typedef void new_void", "const void"...etc */ 1634 if (!btf_type_is_void(next_type) && 1635 !btf_type_is_fwd(next_type) && 1636 !btf_type_is_func_proto(next_type)) { 1637 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1638 return -EINVAL; 1639 } 1640 } 1641 1642 env_stack_pop_resolved(env, next_type_id, 0); 1643 1644 return 0; 1645 } 1646 1647 static int btf_var_resolve(struct btf_verifier_env *env, 1648 const struct resolve_vertex *v) 1649 { 1650 const struct btf_type *next_type; 1651 const struct btf_type *t = v->t; 1652 u32 next_type_id = t->type; 1653 struct btf *btf = env->btf; 1654 1655 next_type = btf_type_by_id(btf, next_type_id); 1656 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1657 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1658 return -EINVAL; 1659 } 1660 1661 if (!env_type_is_resolve_sink(env, next_type) && 1662 !env_type_is_resolved(env, next_type_id)) 1663 return env_stack_push(env, next_type, next_type_id); 1664 1665 if (btf_type_is_modifier(next_type)) { 1666 const struct btf_type *resolved_type; 1667 u32 resolved_type_id; 1668 1669 resolved_type_id = next_type_id; 1670 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1671 1672 if (btf_type_is_ptr(resolved_type) && 1673 !env_type_is_resolve_sink(env, resolved_type) && 1674 !env_type_is_resolved(env, resolved_type_id)) 1675 return env_stack_push(env, resolved_type, 1676 resolved_type_id); 1677 } 1678 1679 /* We must resolve to something concrete at this point, no 1680 * forward types or similar that would resolve to size of 1681 * zero is allowed. 1682 */ 1683 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1684 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1685 return -EINVAL; 1686 } 1687 1688 env_stack_pop_resolved(env, next_type_id, 0); 1689 1690 return 0; 1691 } 1692 1693 static int btf_ptr_resolve(struct btf_verifier_env *env, 1694 const struct resolve_vertex *v) 1695 { 1696 const struct btf_type *next_type; 1697 const struct btf_type *t = v->t; 1698 u32 next_type_id = t->type; 1699 struct btf *btf = env->btf; 1700 1701 next_type = btf_type_by_id(btf, next_type_id); 1702 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1703 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1704 return -EINVAL; 1705 } 1706 1707 if (!env_type_is_resolve_sink(env, next_type) && 1708 !env_type_is_resolved(env, next_type_id)) 1709 return env_stack_push(env, next_type, next_type_id); 1710 1711 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1712 * the modifier may have stopped resolving when it was resolved 1713 * to a ptr (last-resolved-ptr). 1714 * 1715 * We now need to continue from the last-resolved-ptr to 1716 * ensure the last-resolved-ptr will not referring back to 1717 * the currenct ptr (t). 1718 */ 1719 if (btf_type_is_modifier(next_type)) { 1720 const struct btf_type *resolved_type; 1721 u32 resolved_type_id; 1722 1723 resolved_type_id = next_type_id; 1724 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1725 1726 if (btf_type_is_ptr(resolved_type) && 1727 !env_type_is_resolve_sink(env, resolved_type) && 1728 !env_type_is_resolved(env, resolved_type_id)) 1729 return env_stack_push(env, resolved_type, 1730 resolved_type_id); 1731 } 1732 1733 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1734 if (env_type_is_resolved(env, next_type_id)) 1735 next_type = btf_type_id_resolve(btf, &next_type_id); 1736 1737 if (!btf_type_is_void(next_type) && 1738 !btf_type_is_fwd(next_type) && 1739 !btf_type_is_func_proto(next_type)) { 1740 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1741 return -EINVAL; 1742 } 1743 } 1744 1745 env_stack_pop_resolved(env, next_type_id, 0); 1746 1747 return 0; 1748 } 1749 1750 static void btf_modifier_seq_show(const struct btf *btf, 1751 const struct btf_type *t, 1752 u32 type_id, void *data, 1753 u8 bits_offset, struct seq_file *m) 1754 { 1755 t = btf_type_id_resolve(btf, &type_id); 1756 1757 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1758 } 1759 1760 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t, 1761 u32 type_id, void *data, u8 bits_offset, 1762 struct seq_file *m) 1763 { 1764 t = btf_type_id_resolve(btf, &type_id); 1765 1766 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1767 } 1768 1769 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1770 u32 type_id, void *data, u8 bits_offset, 1771 struct seq_file *m) 1772 { 1773 /* It is a hashed value */ 1774 seq_printf(m, "%p", *(void **)data); 1775 } 1776 1777 static void btf_ref_type_log(struct btf_verifier_env *env, 1778 const struct btf_type *t) 1779 { 1780 btf_verifier_log(env, "type_id=%u", t->type); 1781 } 1782 1783 static struct btf_kind_operations modifier_ops = { 1784 .check_meta = btf_ref_type_check_meta, 1785 .resolve = btf_modifier_resolve, 1786 .check_member = btf_modifier_check_member, 1787 .check_kflag_member = btf_modifier_check_kflag_member, 1788 .log_details = btf_ref_type_log, 1789 .seq_show = btf_modifier_seq_show, 1790 }; 1791 1792 static struct btf_kind_operations ptr_ops = { 1793 .check_meta = btf_ref_type_check_meta, 1794 .resolve = btf_ptr_resolve, 1795 .check_member = btf_ptr_check_member, 1796 .check_kflag_member = btf_generic_check_kflag_member, 1797 .log_details = btf_ref_type_log, 1798 .seq_show = btf_ptr_seq_show, 1799 }; 1800 1801 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1802 const struct btf_type *t, 1803 u32 meta_left) 1804 { 1805 if (btf_type_vlen(t)) { 1806 btf_verifier_log_type(env, t, "vlen != 0"); 1807 return -EINVAL; 1808 } 1809 1810 if (t->type) { 1811 btf_verifier_log_type(env, t, "type != 0"); 1812 return -EINVAL; 1813 } 1814 1815 /* fwd type must have a valid name */ 1816 if (!t->name_off || 1817 !btf_name_valid_identifier(env->btf, t->name_off)) { 1818 btf_verifier_log_type(env, t, "Invalid name"); 1819 return -EINVAL; 1820 } 1821 1822 btf_verifier_log_type(env, t, NULL); 1823 1824 return 0; 1825 } 1826 1827 static void btf_fwd_type_log(struct btf_verifier_env *env, 1828 const struct btf_type *t) 1829 { 1830 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 1831 } 1832 1833 static struct btf_kind_operations fwd_ops = { 1834 .check_meta = btf_fwd_check_meta, 1835 .resolve = btf_df_resolve, 1836 .check_member = btf_df_check_member, 1837 .check_kflag_member = btf_df_check_kflag_member, 1838 .log_details = btf_fwd_type_log, 1839 .seq_show = btf_df_seq_show, 1840 }; 1841 1842 static int btf_array_check_member(struct btf_verifier_env *env, 1843 const struct btf_type *struct_type, 1844 const struct btf_member *member, 1845 const struct btf_type *member_type) 1846 { 1847 u32 struct_bits_off = member->offset; 1848 u32 struct_size, bytes_offset; 1849 u32 array_type_id, array_size; 1850 struct btf *btf = env->btf; 1851 1852 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1853 btf_verifier_log_member(env, struct_type, member, 1854 "Member is not byte aligned"); 1855 return -EINVAL; 1856 } 1857 1858 array_type_id = member->type; 1859 btf_type_id_size(btf, &array_type_id, &array_size); 1860 struct_size = struct_type->size; 1861 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1862 if (struct_size - bytes_offset < array_size) { 1863 btf_verifier_log_member(env, struct_type, member, 1864 "Member exceeds struct_size"); 1865 return -EINVAL; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1872 const struct btf_type *t, 1873 u32 meta_left) 1874 { 1875 const struct btf_array *array = btf_type_array(t); 1876 u32 meta_needed = sizeof(*array); 1877 1878 if (meta_left < meta_needed) { 1879 btf_verifier_log_basic(env, t, 1880 "meta_left:%u meta_needed:%u", 1881 meta_left, meta_needed); 1882 return -EINVAL; 1883 } 1884 1885 /* array type should not have a name */ 1886 if (t->name_off) { 1887 btf_verifier_log_type(env, t, "Invalid name"); 1888 return -EINVAL; 1889 } 1890 1891 if (btf_type_vlen(t)) { 1892 btf_verifier_log_type(env, t, "vlen != 0"); 1893 return -EINVAL; 1894 } 1895 1896 if (btf_type_kflag(t)) { 1897 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1898 return -EINVAL; 1899 } 1900 1901 if (t->size) { 1902 btf_verifier_log_type(env, t, "size != 0"); 1903 return -EINVAL; 1904 } 1905 1906 /* Array elem type and index type cannot be in type void, 1907 * so !array->type and !array->index_type are not allowed. 1908 */ 1909 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1910 btf_verifier_log_type(env, t, "Invalid elem"); 1911 return -EINVAL; 1912 } 1913 1914 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1915 btf_verifier_log_type(env, t, "Invalid index"); 1916 return -EINVAL; 1917 } 1918 1919 btf_verifier_log_type(env, t, NULL); 1920 1921 return meta_needed; 1922 } 1923 1924 static int btf_array_resolve(struct btf_verifier_env *env, 1925 const struct resolve_vertex *v) 1926 { 1927 const struct btf_array *array = btf_type_array(v->t); 1928 const struct btf_type *elem_type, *index_type; 1929 u32 elem_type_id, index_type_id; 1930 struct btf *btf = env->btf; 1931 u32 elem_size; 1932 1933 /* Check array->index_type */ 1934 index_type_id = array->index_type; 1935 index_type = btf_type_by_id(btf, index_type_id); 1936 if (btf_type_nosize_or_null(index_type) || 1937 btf_type_is_resolve_source_only(index_type)) { 1938 btf_verifier_log_type(env, v->t, "Invalid index"); 1939 return -EINVAL; 1940 } 1941 1942 if (!env_type_is_resolve_sink(env, index_type) && 1943 !env_type_is_resolved(env, index_type_id)) 1944 return env_stack_push(env, index_type, index_type_id); 1945 1946 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1947 if (!index_type || !btf_type_is_int(index_type) || 1948 !btf_type_int_is_regular(index_type)) { 1949 btf_verifier_log_type(env, v->t, "Invalid index"); 1950 return -EINVAL; 1951 } 1952 1953 /* Check array->type */ 1954 elem_type_id = array->type; 1955 elem_type = btf_type_by_id(btf, elem_type_id); 1956 if (btf_type_nosize_or_null(elem_type) || 1957 btf_type_is_resolve_source_only(elem_type)) { 1958 btf_verifier_log_type(env, v->t, 1959 "Invalid elem"); 1960 return -EINVAL; 1961 } 1962 1963 if (!env_type_is_resolve_sink(env, elem_type) && 1964 !env_type_is_resolved(env, elem_type_id)) 1965 return env_stack_push(env, elem_type, elem_type_id); 1966 1967 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1968 if (!elem_type) { 1969 btf_verifier_log_type(env, v->t, "Invalid elem"); 1970 return -EINVAL; 1971 } 1972 1973 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1974 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1975 return -EINVAL; 1976 } 1977 1978 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1979 btf_verifier_log_type(env, v->t, 1980 "Array size overflows U32_MAX"); 1981 return -EINVAL; 1982 } 1983 1984 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1985 1986 return 0; 1987 } 1988 1989 static void btf_array_log(struct btf_verifier_env *env, 1990 const struct btf_type *t) 1991 { 1992 const struct btf_array *array = btf_type_array(t); 1993 1994 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1995 array->type, array->index_type, array->nelems); 1996 } 1997 1998 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1999 u32 type_id, void *data, u8 bits_offset, 2000 struct seq_file *m) 2001 { 2002 const struct btf_array *array = btf_type_array(t); 2003 const struct btf_kind_operations *elem_ops; 2004 const struct btf_type *elem_type; 2005 u32 i, elem_size, elem_type_id; 2006 2007 elem_type_id = array->type; 2008 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2009 elem_ops = btf_type_ops(elem_type); 2010 seq_puts(m, "["); 2011 for (i = 0; i < array->nelems; i++) { 2012 if (i) 2013 seq_puts(m, ","); 2014 2015 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 2016 bits_offset, m); 2017 data += elem_size; 2018 } 2019 seq_puts(m, "]"); 2020 } 2021 2022 static struct btf_kind_operations array_ops = { 2023 .check_meta = btf_array_check_meta, 2024 .resolve = btf_array_resolve, 2025 .check_member = btf_array_check_member, 2026 .check_kflag_member = btf_generic_check_kflag_member, 2027 .log_details = btf_array_log, 2028 .seq_show = btf_array_seq_show, 2029 }; 2030 2031 static int btf_struct_check_member(struct btf_verifier_env *env, 2032 const struct btf_type *struct_type, 2033 const struct btf_member *member, 2034 const struct btf_type *member_type) 2035 { 2036 u32 struct_bits_off = member->offset; 2037 u32 struct_size, bytes_offset; 2038 2039 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2040 btf_verifier_log_member(env, struct_type, member, 2041 "Member is not byte aligned"); 2042 return -EINVAL; 2043 } 2044 2045 struct_size = struct_type->size; 2046 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2047 if (struct_size - bytes_offset < member_type->size) { 2048 btf_verifier_log_member(env, struct_type, member, 2049 "Member exceeds struct_size"); 2050 return -EINVAL; 2051 } 2052 2053 return 0; 2054 } 2055 2056 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2057 const struct btf_type *t, 2058 u32 meta_left) 2059 { 2060 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2061 const struct btf_member *member; 2062 u32 meta_needed, last_offset; 2063 struct btf *btf = env->btf; 2064 u32 struct_size = t->size; 2065 u32 offset; 2066 u16 i; 2067 2068 meta_needed = btf_type_vlen(t) * sizeof(*member); 2069 if (meta_left < meta_needed) { 2070 btf_verifier_log_basic(env, t, 2071 "meta_left:%u meta_needed:%u", 2072 meta_left, meta_needed); 2073 return -EINVAL; 2074 } 2075 2076 /* struct type either no name or a valid one */ 2077 if (t->name_off && 2078 !btf_name_valid_identifier(env->btf, t->name_off)) { 2079 btf_verifier_log_type(env, t, "Invalid name"); 2080 return -EINVAL; 2081 } 2082 2083 btf_verifier_log_type(env, t, NULL); 2084 2085 last_offset = 0; 2086 for_each_member(i, t, member) { 2087 if (!btf_name_offset_valid(btf, member->name_off)) { 2088 btf_verifier_log_member(env, t, member, 2089 "Invalid member name_offset:%u", 2090 member->name_off); 2091 return -EINVAL; 2092 } 2093 2094 /* struct member either no name or a valid one */ 2095 if (member->name_off && 2096 !btf_name_valid_identifier(btf, member->name_off)) { 2097 btf_verifier_log_member(env, t, member, "Invalid name"); 2098 return -EINVAL; 2099 } 2100 /* A member cannot be in type void */ 2101 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2102 btf_verifier_log_member(env, t, member, 2103 "Invalid type_id"); 2104 return -EINVAL; 2105 } 2106 2107 offset = btf_member_bit_offset(t, member); 2108 if (is_union && offset) { 2109 btf_verifier_log_member(env, t, member, 2110 "Invalid member bits_offset"); 2111 return -EINVAL; 2112 } 2113 2114 /* 2115 * ">" instead of ">=" because the last member could be 2116 * "char a[0];" 2117 */ 2118 if (last_offset > offset) { 2119 btf_verifier_log_member(env, t, member, 2120 "Invalid member bits_offset"); 2121 return -EINVAL; 2122 } 2123 2124 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2125 btf_verifier_log_member(env, t, member, 2126 "Member bits_offset exceeds its struct size"); 2127 return -EINVAL; 2128 } 2129 2130 btf_verifier_log_member(env, t, member, NULL); 2131 last_offset = offset; 2132 } 2133 2134 return meta_needed; 2135 } 2136 2137 static int btf_struct_resolve(struct btf_verifier_env *env, 2138 const struct resolve_vertex *v) 2139 { 2140 const struct btf_member *member; 2141 int err; 2142 u16 i; 2143 2144 /* Before continue resolving the next_member, 2145 * ensure the last member is indeed resolved to a 2146 * type with size info. 2147 */ 2148 if (v->next_member) { 2149 const struct btf_type *last_member_type; 2150 const struct btf_member *last_member; 2151 u16 last_member_type_id; 2152 2153 last_member = btf_type_member(v->t) + v->next_member - 1; 2154 last_member_type_id = last_member->type; 2155 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2156 last_member_type_id))) 2157 return -EINVAL; 2158 2159 last_member_type = btf_type_by_id(env->btf, 2160 last_member_type_id); 2161 if (btf_type_kflag(v->t)) 2162 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2163 last_member, 2164 last_member_type); 2165 else 2166 err = btf_type_ops(last_member_type)->check_member(env, v->t, 2167 last_member, 2168 last_member_type); 2169 if (err) 2170 return err; 2171 } 2172 2173 for_each_member_from(i, v->next_member, v->t, member) { 2174 u32 member_type_id = member->type; 2175 const struct btf_type *member_type = btf_type_by_id(env->btf, 2176 member_type_id); 2177 2178 if (btf_type_nosize_or_null(member_type) || 2179 btf_type_is_resolve_source_only(member_type)) { 2180 btf_verifier_log_member(env, v->t, member, 2181 "Invalid member"); 2182 return -EINVAL; 2183 } 2184 2185 if (!env_type_is_resolve_sink(env, member_type) && 2186 !env_type_is_resolved(env, member_type_id)) { 2187 env_stack_set_next_member(env, i + 1); 2188 return env_stack_push(env, member_type, member_type_id); 2189 } 2190 2191 if (btf_type_kflag(v->t)) 2192 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 2193 member, 2194 member_type); 2195 else 2196 err = btf_type_ops(member_type)->check_member(env, v->t, 2197 member, 2198 member_type); 2199 if (err) 2200 return err; 2201 } 2202 2203 env_stack_pop_resolved(env, 0, 0); 2204 2205 return 0; 2206 } 2207 2208 static void btf_struct_log(struct btf_verifier_env *env, 2209 const struct btf_type *t) 2210 { 2211 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2212 } 2213 2214 /* find 'struct bpf_spin_lock' in map value. 2215 * return >= 0 offset if found 2216 * and < 0 in case of error 2217 */ 2218 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 2219 { 2220 const struct btf_member *member; 2221 u32 i, off = -ENOENT; 2222 2223 if (!__btf_type_is_struct(t)) 2224 return -EINVAL; 2225 2226 for_each_member(i, t, member) { 2227 const struct btf_type *member_type = btf_type_by_id(btf, 2228 member->type); 2229 if (!__btf_type_is_struct(member_type)) 2230 continue; 2231 if (member_type->size != sizeof(struct bpf_spin_lock)) 2232 continue; 2233 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 2234 "bpf_spin_lock")) 2235 continue; 2236 if (off != -ENOENT) 2237 /* only one 'struct bpf_spin_lock' is allowed */ 2238 return -E2BIG; 2239 off = btf_member_bit_offset(t, member); 2240 if (off % 8) 2241 /* valid C code cannot generate such BTF */ 2242 return -EINVAL; 2243 off /= 8; 2244 if (off % __alignof__(struct bpf_spin_lock)) 2245 /* valid struct bpf_spin_lock will be 4 byte aligned */ 2246 return -EINVAL; 2247 } 2248 return off; 2249 } 2250 2251 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 2252 u32 type_id, void *data, u8 bits_offset, 2253 struct seq_file *m) 2254 { 2255 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 2256 const struct btf_member *member; 2257 u32 i; 2258 2259 seq_puts(m, "{"); 2260 for_each_member(i, t, member) { 2261 const struct btf_type *member_type = btf_type_by_id(btf, 2262 member->type); 2263 const struct btf_kind_operations *ops; 2264 u32 member_offset, bitfield_size; 2265 u32 bytes_offset; 2266 u8 bits8_offset; 2267 2268 if (i) 2269 seq_puts(m, seq); 2270 2271 member_offset = btf_member_bit_offset(t, member); 2272 bitfield_size = btf_member_bitfield_size(t, member); 2273 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 2274 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 2275 if (bitfield_size) { 2276 btf_bitfield_seq_show(data + bytes_offset, bits8_offset, 2277 bitfield_size, m); 2278 } else { 2279 ops = btf_type_ops(member_type); 2280 ops->seq_show(btf, member_type, member->type, 2281 data + bytes_offset, bits8_offset, m); 2282 } 2283 } 2284 seq_puts(m, "}"); 2285 } 2286 2287 static struct btf_kind_operations struct_ops = { 2288 .check_meta = btf_struct_check_meta, 2289 .resolve = btf_struct_resolve, 2290 .check_member = btf_struct_check_member, 2291 .check_kflag_member = btf_generic_check_kflag_member, 2292 .log_details = btf_struct_log, 2293 .seq_show = btf_struct_seq_show, 2294 }; 2295 2296 static int btf_enum_check_member(struct btf_verifier_env *env, 2297 const struct btf_type *struct_type, 2298 const struct btf_member *member, 2299 const struct btf_type *member_type) 2300 { 2301 u32 struct_bits_off = member->offset; 2302 u32 struct_size, bytes_offset; 2303 2304 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2305 btf_verifier_log_member(env, struct_type, member, 2306 "Member is not byte aligned"); 2307 return -EINVAL; 2308 } 2309 2310 struct_size = struct_type->size; 2311 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2312 if (struct_size - bytes_offset < sizeof(int)) { 2313 btf_verifier_log_member(env, struct_type, member, 2314 "Member exceeds struct_size"); 2315 return -EINVAL; 2316 } 2317 2318 return 0; 2319 } 2320 2321 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 2322 const struct btf_type *struct_type, 2323 const struct btf_member *member, 2324 const struct btf_type *member_type) 2325 { 2326 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 2327 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 2328 2329 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2330 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2331 if (!nr_bits) { 2332 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2333 btf_verifier_log_member(env, struct_type, member, 2334 "Member is not byte aligned"); 2335 return -EINVAL; 2336 } 2337 2338 nr_bits = int_bitsize; 2339 } else if (nr_bits > int_bitsize) { 2340 btf_verifier_log_member(env, struct_type, member, 2341 "Invalid member bitfield_size"); 2342 return -EINVAL; 2343 } 2344 2345 struct_size = struct_type->size; 2346 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 2347 if (struct_size < bytes_end) { 2348 btf_verifier_log_member(env, struct_type, member, 2349 "Member exceeds struct_size"); 2350 return -EINVAL; 2351 } 2352 2353 return 0; 2354 } 2355 2356 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 2357 const struct btf_type *t, 2358 u32 meta_left) 2359 { 2360 const struct btf_enum *enums = btf_type_enum(t); 2361 struct btf *btf = env->btf; 2362 u16 i, nr_enums; 2363 u32 meta_needed; 2364 2365 nr_enums = btf_type_vlen(t); 2366 meta_needed = nr_enums * sizeof(*enums); 2367 2368 if (meta_left < meta_needed) { 2369 btf_verifier_log_basic(env, t, 2370 "meta_left:%u meta_needed:%u", 2371 meta_left, meta_needed); 2372 return -EINVAL; 2373 } 2374 2375 if (btf_type_kflag(t)) { 2376 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2377 return -EINVAL; 2378 } 2379 2380 if (t->size != sizeof(int)) { 2381 btf_verifier_log_type(env, t, "Expected size:%zu", 2382 sizeof(int)); 2383 return -EINVAL; 2384 } 2385 2386 /* enum type either no name or a valid one */ 2387 if (t->name_off && 2388 !btf_name_valid_identifier(env->btf, t->name_off)) { 2389 btf_verifier_log_type(env, t, "Invalid name"); 2390 return -EINVAL; 2391 } 2392 2393 btf_verifier_log_type(env, t, NULL); 2394 2395 for (i = 0; i < nr_enums; i++) { 2396 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 2397 btf_verifier_log(env, "\tInvalid name_offset:%u", 2398 enums[i].name_off); 2399 return -EINVAL; 2400 } 2401 2402 /* enum member must have a valid name */ 2403 if (!enums[i].name_off || 2404 !btf_name_valid_identifier(btf, enums[i].name_off)) { 2405 btf_verifier_log_type(env, t, "Invalid name"); 2406 return -EINVAL; 2407 } 2408 2409 2410 btf_verifier_log(env, "\t%s val=%d\n", 2411 __btf_name_by_offset(btf, enums[i].name_off), 2412 enums[i].val); 2413 } 2414 2415 return meta_needed; 2416 } 2417 2418 static void btf_enum_log(struct btf_verifier_env *env, 2419 const struct btf_type *t) 2420 { 2421 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2422 } 2423 2424 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 2425 u32 type_id, void *data, u8 bits_offset, 2426 struct seq_file *m) 2427 { 2428 const struct btf_enum *enums = btf_type_enum(t); 2429 u32 i, nr_enums = btf_type_vlen(t); 2430 int v = *(int *)data; 2431 2432 for (i = 0; i < nr_enums; i++) { 2433 if (v == enums[i].val) { 2434 seq_printf(m, "%s", 2435 __btf_name_by_offset(btf, 2436 enums[i].name_off)); 2437 return; 2438 } 2439 } 2440 2441 seq_printf(m, "%d", v); 2442 } 2443 2444 static struct btf_kind_operations enum_ops = { 2445 .check_meta = btf_enum_check_meta, 2446 .resolve = btf_df_resolve, 2447 .check_member = btf_enum_check_member, 2448 .check_kflag_member = btf_enum_check_kflag_member, 2449 .log_details = btf_enum_log, 2450 .seq_show = btf_enum_seq_show, 2451 }; 2452 2453 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 2454 const struct btf_type *t, 2455 u32 meta_left) 2456 { 2457 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 2458 2459 if (meta_left < meta_needed) { 2460 btf_verifier_log_basic(env, t, 2461 "meta_left:%u meta_needed:%u", 2462 meta_left, meta_needed); 2463 return -EINVAL; 2464 } 2465 2466 if (t->name_off) { 2467 btf_verifier_log_type(env, t, "Invalid name"); 2468 return -EINVAL; 2469 } 2470 2471 if (btf_type_kflag(t)) { 2472 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2473 return -EINVAL; 2474 } 2475 2476 btf_verifier_log_type(env, t, NULL); 2477 2478 return meta_needed; 2479 } 2480 2481 static void btf_func_proto_log(struct btf_verifier_env *env, 2482 const struct btf_type *t) 2483 { 2484 const struct btf_param *args = (const struct btf_param *)(t + 1); 2485 u16 nr_args = btf_type_vlen(t), i; 2486 2487 btf_verifier_log(env, "return=%u args=(", t->type); 2488 if (!nr_args) { 2489 btf_verifier_log(env, "void"); 2490 goto done; 2491 } 2492 2493 if (nr_args == 1 && !args[0].type) { 2494 /* Only one vararg */ 2495 btf_verifier_log(env, "vararg"); 2496 goto done; 2497 } 2498 2499 btf_verifier_log(env, "%u %s", args[0].type, 2500 __btf_name_by_offset(env->btf, 2501 args[0].name_off)); 2502 for (i = 1; i < nr_args - 1; i++) 2503 btf_verifier_log(env, ", %u %s", args[i].type, 2504 __btf_name_by_offset(env->btf, 2505 args[i].name_off)); 2506 2507 if (nr_args > 1) { 2508 const struct btf_param *last_arg = &args[nr_args - 1]; 2509 2510 if (last_arg->type) 2511 btf_verifier_log(env, ", %u %s", last_arg->type, 2512 __btf_name_by_offset(env->btf, 2513 last_arg->name_off)); 2514 else 2515 btf_verifier_log(env, ", vararg"); 2516 } 2517 2518 done: 2519 btf_verifier_log(env, ")"); 2520 } 2521 2522 static struct btf_kind_operations func_proto_ops = { 2523 .check_meta = btf_func_proto_check_meta, 2524 .resolve = btf_df_resolve, 2525 /* 2526 * BTF_KIND_FUNC_PROTO cannot be directly referred by 2527 * a struct's member. 2528 * 2529 * It should be a funciton pointer instead. 2530 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 2531 * 2532 * Hence, there is no btf_func_check_member(). 2533 */ 2534 .check_member = btf_df_check_member, 2535 .check_kflag_member = btf_df_check_kflag_member, 2536 .log_details = btf_func_proto_log, 2537 .seq_show = btf_df_seq_show, 2538 }; 2539 2540 static s32 btf_func_check_meta(struct btf_verifier_env *env, 2541 const struct btf_type *t, 2542 u32 meta_left) 2543 { 2544 if (!t->name_off || 2545 !btf_name_valid_identifier(env->btf, t->name_off)) { 2546 btf_verifier_log_type(env, t, "Invalid name"); 2547 return -EINVAL; 2548 } 2549 2550 if (btf_type_vlen(t)) { 2551 btf_verifier_log_type(env, t, "vlen != 0"); 2552 return -EINVAL; 2553 } 2554 2555 if (btf_type_kflag(t)) { 2556 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2557 return -EINVAL; 2558 } 2559 2560 btf_verifier_log_type(env, t, NULL); 2561 2562 return 0; 2563 } 2564 2565 static struct btf_kind_operations func_ops = { 2566 .check_meta = btf_func_check_meta, 2567 .resolve = btf_df_resolve, 2568 .check_member = btf_df_check_member, 2569 .check_kflag_member = btf_df_check_kflag_member, 2570 .log_details = btf_ref_type_log, 2571 .seq_show = btf_df_seq_show, 2572 }; 2573 2574 static s32 btf_var_check_meta(struct btf_verifier_env *env, 2575 const struct btf_type *t, 2576 u32 meta_left) 2577 { 2578 const struct btf_var *var; 2579 u32 meta_needed = sizeof(*var); 2580 2581 if (meta_left < meta_needed) { 2582 btf_verifier_log_basic(env, t, 2583 "meta_left:%u meta_needed:%u", 2584 meta_left, meta_needed); 2585 return -EINVAL; 2586 } 2587 2588 if (btf_type_vlen(t)) { 2589 btf_verifier_log_type(env, t, "vlen != 0"); 2590 return -EINVAL; 2591 } 2592 2593 if (btf_type_kflag(t)) { 2594 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2595 return -EINVAL; 2596 } 2597 2598 if (!t->name_off || 2599 !__btf_name_valid(env->btf, t->name_off, true)) { 2600 btf_verifier_log_type(env, t, "Invalid name"); 2601 return -EINVAL; 2602 } 2603 2604 /* A var cannot be in type void */ 2605 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 2606 btf_verifier_log_type(env, t, "Invalid type_id"); 2607 return -EINVAL; 2608 } 2609 2610 var = btf_type_var(t); 2611 if (var->linkage != BTF_VAR_STATIC && 2612 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2613 btf_verifier_log_type(env, t, "Linkage not supported"); 2614 return -EINVAL; 2615 } 2616 2617 btf_verifier_log_type(env, t, NULL); 2618 2619 return meta_needed; 2620 } 2621 2622 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 2623 { 2624 const struct btf_var *var = btf_type_var(t); 2625 2626 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 2627 } 2628 2629 static const struct btf_kind_operations var_ops = { 2630 .check_meta = btf_var_check_meta, 2631 .resolve = btf_var_resolve, 2632 .check_member = btf_df_check_member, 2633 .check_kflag_member = btf_df_check_kflag_member, 2634 .log_details = btf_var_log, 2635 .seq_show = btf_var_seq_show, 2636 }; 2637 2638 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 2639 const struct btf_type *t, 2640 u32 meta_left) 2641 { 2642 const struct btf_var_secinfo *vsi; 2643 u64 last_vsi_end_off = 0, sum = 0; 2644 u32 i, meta_needed; 2645 2646 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 2647 if (meta_left < meta_needed) { 2648 btf_verifier_log_basic(env, t, 2649 "meta_left:%u meta_needed:%u", 2650 meta_left, meta_needed); 2651 return -EINVAL; 2652 } 2653 2654 if (!btf_type_vlen(t)) { 2655 btf_verifier_log_type(env, t, "vlen == 0"); 2656 return -EINVAL; 2657 } 2658 2659 if (!t->size) { 2660 btf_verifier_log_type(env, t, "size == 0"); 2661 return -EINVAL; 2662 } 2663 2664 if (btf_type_kflag(t)) { 2665 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2666 return -EINVAL; 2667 } 2668 2669 if (!t->name_off || 2670 !btf_name_valid_section(env->btf, t->name_off)) { 2671 btf_verifier_log_type(env, t, "Invalid name"); 2672 return -EINVAL; 2673 } 2674 2675 btf_verifier_log_type(env, t, NULL); 2676 2677 for_each_vsi(i, t, vsi) { 2678 /* A var cannot be in type void */ 2679 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 2680 btf_verifier_log_vsi(env, t, vsi, 2681 "Invalid type_id"); 2682 return -EINVAL; 2683 } 2684 2685 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 2686 btf_verifier_log_vsi(env, t, vsi, 2687 "Invalid offset"); 2688 return -EINVAL; 2689 } 2690 2691 if (!vsi->size || vsi->size > t->size) { 2692 btf_verifier_log_vsi(env, t, vsi, 2693 "Invalid size"); 2694 return -EINVAL; 2695 } 2696 2697 last_vsi_end_off = vsi->offset + vsi->size; 2698 if (last_vsi_end_off > t->size) { 2699 btf_verifier_log_vsi(env, t, vsi, 2700 "Invalid offset+size"); 2701 return -EINVAL; 2702 } 2703 2704 btf_verifier_log_vsi(env, t, vsi, NULL); 2705 sum += vsi->size; 2706 } 2707 2708 if (t->size < sum) { 2709 btf_verifier_log_type(env, t, "Invalid btf_info size"); 2710 return -EINVAL; 2711 } 2712 2713 return meta_needed; 2714 } 2715 2716 static int btf_datasec_resolve(struct btf_verifier_env *env, 2717 const struct resolve_vertex *v) 2718 { 2719 const struct btf_var_secinfo *vsi; 2720 struct btf *btf = env->btf; 2721 u16 i; 2722 2723 for_each_vsi_from(i, v->next_member, v->t, vsi) { 2724 u32 var_type_id = vsi->type, type_id, type_size = 0; 2725 const struct btf_type *var_type = btf_type_by_id(env->btf, 2726 var_type_id); 2727 if (!var_type || !btf_type_is_var(var_type)) { 2728 btf_verifier_log_vsi(env, v->t, vsi, 2729 "Not a VAR kind member"); 2730 return -EINVAL; 2731 } 2732 2733 if (!env_type_is_resolve_sink(env, var_type) && 2734 !env_type_is_resolved(env, var_type_id)) { 2735 env_stack_set_next_member(env, i + 1); 2736 return env_stack_push(env, var_type, var_type_id); 2737 } 2738 2739 type_id = var_type->type; 2740 if (!btf_type_id_size(btf, &type_id, &type_size)) { 2741 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 2742 return -EINVAL; 2743 } 2744 2745 if (vsi->size < type_size) { 2746 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 2747 return -EINVAL; 2748 } 2749 } 2750 2751 env_stack_pop_resolved(env, 0, 0); 2752 return 0; 2753 } 2754 2755 static void btf_datasec_log(struct btf_verifier_env *env, 2756 const struct btf_type *t) 2757 { 2758 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2759 } 2760 2761 static void btf_datasec_seq_show(const struct btf *btf, 2762 const struct btf_type *t, u32 type_id, 2763 void *data, u8 bits_offset, 2764 struct seq_file *m) 2765 { 2766 const struct btf_var_secinfo *vsi; 2767 const struct btf_type *var; 2768 u32 i; 2769 2770 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); 2771 for_each_vsi(i, t, vsi) { 2772 var = btf_type_by_id(btf, vsi->type); 2773 if (i) 2774 seq_puts(m, ","); 2775 btf_type_ops(var)->seq_show(btf, var, vsi->type, 2776 data + vsi->offset, bits_offset, m); 2777 } 2778 seq_puts(m, "}"); 2779 } 2780 2781 static const struct btf_kind_operations datasec_ops = { 2782 .check_meta = btf_datasec_check_meta, 2783 .resolve = btf_datasec_resolve, 2784 .check_member = btf_df_check_member, 2785 .check_kflag_member = btf_df_check_kflag_member, 2786 .log_details = btf_datasec_log, 2787 .seq_show = btf_datasec_seq_show, 2788 }; 2789 2790 static int btf_func_proto_check(struct btf_verifier_env *env, 2791 const struct btf_type *t) 2792 { 2793 const struct btf_type *ret_type; 2794 const struct btf_param *args; 2795 const struct btf *btf; 2796 u16 nr_args, i; 2797 int err; 2798 2799 btf = env->btf; 2800 args = (const struct btf_param *)(t + 1); 2801 nr_args = btf_type_vlen(t); 2802 2803 /* Check func return type which could be "void" (t->type == 0) */ 2804 if (t->type) { 2805 u32 ret_type_id = t->type; 2806 2807 ret_type = btf_type_by_id(btf, ret_type_id); 2808 if (!ret_type) { 2809 btf_verifier_log_type(env, t, "Invalid return type"); 2810 return -EINVAL; 2811 } 2812 2813 if (btf_type_needs_resolve(ret_type) && 2814 !env_type_is_resolved(env, ret_type_id)) { 2815 err = btf_resolve(env, ret_type, ret_type_id); 2816 if (err) 2817 return err; 2818 } 2819 2820 /* Ensure the return type is a type that has a size */ 2821 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 2822 btf_verifier_log_type(env, t, "Invalid return type"); 2823 return -EINVAL; 2824 } 2825 } 2826 2827 if (!nr_args) 2828 return 0; 2829 2830 /* Last func arg type_id could be 0 if it is a vararg */ 2831 if (!args[nr_args - 1].type) { 2832 if (args[nr_args - 1].name_off) { 2833 btf_verifier_log_type(env, t, "Invalid arg#%u", 2834 nr_args); 2835 return -EINVAL; 2836 } 2837 nr_args--; 2838 } 2839 2840 err = 0; 2841 for (i = 0; i < nr_args; i++) { 2842 const struct btf_type *arg_type; 2843 u32 arg_type_id; 2844 2845 arg_type_id = args[i].type; 2846 arg_type = btf_type_by_id(btf, arg_type_id); 2847 if (!arg_type) { 2848 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2849 err = -EINVAL; 2850 break; 2851 } 2852 2853 if (args[i].name_off && 2854 (!btf_name_offset_valid(btf, args[i].name_off) || 2855 !btf_name_valid_identifier(btf, args[i].name_off))) { 2856 btf_verifier_log_type(env, t, 2857 "Invalid arg#%u", i + 1); 2858 err = -EINVAL; 2859 break; 2860 } 2861 2862 if (btf_type_needs_resolve(arg_type) && 2863 !env_type_is_resolved(env, arg_type_id)) { 2864 err = btf_resolve(env, arg_type, arg_type_id); 2865 if (err) 2866 break; 2867 } 2868 2869 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2870 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2871 err = -EINVAL; 2872 break; 2873 } 2874 } 2875 2876 return err; 2877 } 2878 2879 static int btf_func_check(struct btf_verifier_env *env, 2880 const struct btf_type *t) 2881 { 2882 const struct btf_type *proto_type; 2883 const struct btf_param *args; 2884 const struct btf *btf; 2885 u16 nr_args, i; 2886 2887 btf = env->btf; 2888 proto_type = btf_type_by_id(btf, t->type); 2889 2890 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 2891 btf_verifier_log_type(env, t, "Invalid type_id"); 2892 return -EINVAL; 2893 } 2894 2895 args = (const struct btf_param *)(proto_type + 1); 2896 nr_args = btf_type_vlen(proto_type); 2897 for (i = 0; i < nr_args; i++) { 2898 if (!args[i].name_off && args[i].type) { 2899 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2900 return -EINVAL; 2901 } 2902 } 2903 2904 return 0; 2905 } 2906 2907 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 2908 [BTF_KIND_INT] = &int_ops, 2909 [BTF_KIND_PTR] = &ptr_ops, 2910 [BTF_KIND_ARRAY] = &array_ops, 2911 [BTF_KIND_STRUCT] = &struct_ops, 2912 [BTF_KIND_UNION] = &struct_ops, 2913 [BTF_KIND_ENUM] = &enum_ops, 2914 [BTF_KIND_FWD] = &fwd_ops, 2915 [BTF_KIND_TYPEDEF] = &modifier_ops, 2916 [BTF_KIND_VOLATILE] = &modifier_ops, 2917 [BTF_KIND_CONST] = &modifier_ops, 2918 [BTF_KIND_RESTRICT] = &modifier_ops, 2919 [BTF_KIND_FUNC] = &func_ops, 2920 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 2921 [BTF_KIND_VAR] = &var_ops, 2922 [BTF_KIND_DATASEC] = &datasec_ops, 2923 }; 2924 2925 static s32 btf_check_meta(struct btf_verifier_env *env, 2926 const struct btf_type *t, 2927 u32 meta_left) 2928 { 2929 u32 saved_meta_left = meta_left; 2930 s32 var_meta_size; 2931 2932 if (meta_left < sizeof(*t)) { 2933 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 2934 env->log_type_id, meta_left, sizeof(*t)); 2935 return -EINVAL; 2936 } 2937 meta_left -= sizeof(*t); 2938 2939 if (t->info & ~BTF_INFO_MASK) { 2940 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 2941 env->log_type_id, t->info); 2942 return -EINVAL; 2943 } 2944 2945 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 2946 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 2947 btf_verifier_log(env, "[%u] Invalid kind:%u", 2948 env->log_type_id, BTF_INFO_KIND(t->info)); 2949 return -EINVAL; 2950 } 2951 2952 if (!btf_name_offset_valid(env->btf, t->name_off)) { 2953 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 2954 env->log_type_id, t->name_off); 2955 return -EINVAL; 2956 } 2957 2958 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 2959 if (var_meta_size < 0) 2960 return var_meta_size; 2961 2962 meta_left -= var_meta_size; 2963 2964 return saved_meta_left - meta_left; 2965 } 2966 2967 static int btf_check_all_metas(struct btf_verifier_env *env) 2968 { 2969 struct btf *btf = env->btf; 2970 struct btf_header *hdr; 2971 void *cur, *end; 2972 2973 hdr = &btf->hdr; 2974 cur = btf->nohdr_data + hdr->type_off; 2975 end = cur + hdr->type_len; 2976 2977 env->log_type_id = 1; 2978 while (cur < end) { 2979 struct btf_type *t = cur; 2980 s32 meta_size; 2981 2982 meta_size = btf_check_meta(env, t, end - cur); 2983 if (meta_size < 0) 2984 return meta_size; 2985 2986 btf_add_type(env, t); 2987 cur += meta_size; 2988 env->log_type_id++; 2989 } 2990 2991 return 0; 2992 } 2993 2994 static bool btf_resolve_valid(struct btf_verifier_env *env, 2995 const struct btf_type *t, 2996 u32 type_id) 2997 { 2998 struct btf *btf = env->btf; 2999 3000 if (!env_type_is_resolved(env, type_id)) 3001 return false; 3002 3003 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 3004 return !btf->resolved_ids[type_id] && 3005 !btf->resolved_sizes[type_id]; 3006 3007 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3008 btf_type_is_var(t)) { 3009 t = btf_type_id_resolve(btf, &type_id); 3010 return t && 3011 !btf_type_is_modifier(t) && 3012 !btf_type_is_var(t) && 3013 !btf_type_is_datasec(t); 3014 } 3015 3016 if (btf_type_is_array(t)) { 3017 const struct btf_array *array = btf_type_array(t); 3018 const struct btf_type *elem_type; 3019 u32 elem_type_id = array->type; 3020 u32 elem_size; 3021 3022 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3023 return elem_type && !btf_type_is_modifier(elem_type) && 3024 (array->nelems * elem_size == 3025 btf->resolved_sizes[type_id]); 3026 } 3027 3028 return false; 3029 } 3030 3031 static int btf_resolve(struct btf_verifier_env *env, 3032 const struct btf_type *t, u32 type_id) 3033 { 3034 u32 save_log_type_id = env->log_type_id; 3035 const struct resolve_vertex *v; 3036 int err = 0; 3037 3038 env->resolve_mode = RESOLVE_TBD; 3039 env_stack_push(env, t, type_id); 3040 while (!err && (v = env_stack_peak(env))) { 3041 env->log_type_id = v->type_id; 3042 err = btf_type_ops(v->t)->resolve(env, v); 3043 } 3044 3045 env->log_type_id = type_id; 3046 if (err == -E2BIG) { 3047 btf_verifier_log_type(env, t, 3048 "Exceeded max resolving depth:%u", 3049 MAX_RESOLVE_DEPTH); 3050 } else if (err == -EEXIST) { 3051 btf_verifier_log_type(env, t, "Loop detected"); 3052 } 3053 3054 /* Final sanity check */ 3055 if (!err && !btf_resolve_valid(env, t, type_id)) { 3056 btf_verifier_log_type(env, t, "Invalid resolve state"); 3057 err = -EINVAL; 3058 } 3059 3060 env->log_type_id = save_log_type_id; 3061 return err; 3062 } 3063 3064 static int btf_check_all_types(struct btf_verifier_env *env) 3065 { 3066 struct btf *btf = env->btf; 3067 u32 type_id; 3068 int err; 3069 3070 err = env_resolve_init(env); 3071 if (err) 3072 return err; 3073 3074 env->phase++; 3075 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 3076 const struct btf_type *t = btf_type_by_id(btf, type_id); 3077 3078 env->log_type_id = type_id; 3079 if (btf_type_needs_resolve(t) && 3080 !env_type_is_resolved(env, type_id)) { 3081 err = btf_resolve(env, t, type_id); 3082 if (err) 3083 return err; 3084 } 3085 3086 if (btf_type_is_func_proto(t)) { 3087 err = btf_func_proto_check(env, t); 3088 if (err) 3089 return err; 3090 } 3091 3092 if (btf_type_is_func(t)) { 3093 err = btf_func_check(env, t); 3094 if (err) 3095 return err; 3096 } 3097 } 3098 3099 return 0; 3100 } 3101 3102 static int btf_parse_type_sec(struct btf_verifier_env *env) 3103 { 3104 const struct btf_header *hdr = &env->btf->hdr; 3105 int err; 3106 3107 /* Type section must align to 4 bytes */ 3108 if (hdr->type_off & (sizeof(u32) - 1)) { 3109 btf_verifier_log(env, "Unaligned type_off"); 3110 return -EINVAL; 3111 } 3112 3113 if (!hdr->type_len) { 3114 btf_verifier_log(env, "No type found"); 3115 return -EINVAL; 3116 } 3117 3118 err = btf_check_all_metas(env); 3119 if (err) 3120 return err; 3121 3122 return btf_check_all_types(env); 3123 } 3124 3125 static int btf_parse_str_sec(struct btf_verifier_env *env) 3126 { 3127 const struct btf_header *hdr; 3128 struct btf *btf = env->btf; 3129 const char *start, *end; 3130 3131 hdr = &btf->hdr; 3132 start = btf->nohdr_data + hdr->str_off; 3133 end = start + hdr->str_len; 3134 3135 if (end != btf->data + btf->data_size) { 3136 btf_verifier_log(env, "String section is not at the end"); 3137 return -EINVAL; 3138 } 3139 3140 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 3141 start[0] || end[-1]) { 3142 btf_verifier_log(env, "Invalid string section"); 3143 return -EINVAL; 3144 } 3145 3146 btf->strings = start; 3147 3148 return 0; 3149 } 3150 3151 static const size_t btf_sec_info_offset[] = { 3152 offsetof(struct btf_header, type_off), 3153 offsetof(struct btf_header, str_off), 3154 }; 3155 3156 static int btf_sec_info_cmp(const void *a, const void *b) 3157 { 3158 const struct btf_sec_info *x = a; 3159 const struct btf_sec_info *y = b; 3160 3161 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 3162 } 3163 3164 static int btf_check_sec_info(struct btf_verifier_env *env, 3165 u32 btf_data_size) 3166 { 3167 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 3168 u32 total, expected_total, i; 3169 const struct btf_header *hdr; 3170 const struct btf *btf; 3171 3172 btf = env->btf; 3173 hdr = &btf->hdr; 3174 3175 /* Populate the secs from hdr */ 3176 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 3177 secs[i] = *(struct btf_sec_info *)((void *)hdr + 3178 btf_sec_info_offset[i]); 3179 3180 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 3181 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 3182 3183 /* Check for gaps and overlap among sections */ 3184 total = 0; 3185 expected_total = btf_data_size - hdr->hdr_len; 3186 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 3187 if (expected_total < secs[i].off) { 3188 btf_verifier_log(env, "Invalid section offset"); 3189 return -EINVAL; 3190 } 3191 if (total < secs[i].off) { 3192 /* gap */ 3193 btf_verifier_log(env, "Unsupported section found"); 3194 return -EINVAL; 3195 } 3196 if (total > secs[i].off) { 3197 btf_verifier_log(env, "Section overlap found"); 3198 return -EINVAL; 3199 } 3200 if (expected_total - total < secs[i].len) { 3201 btf_verifier_log(env, 3202 "Total section length too long"); 3203 return -EINVAL; 3204 } 3205 total += secs[i].len; 3206 } 3207 3208 /* There is data other than hdr and known sections */ 3209 if (expected_total != total) { 3210 btf_verifier_log(env, "Unsupported section found"); 3211 return -EINVAL; 3212 } 3213 3214 return 0; 3215 } 3216 3217 static int btf_parse_hdr(struct btf_verifier_env *env) 3218 { 3219 u32 hdr_len, hdr_copy, btf_data_size; 3220 const struct btf_header *hdr; 3221 struct btf *btf; 3222 int err; 3223 3224 btf = env->btf; 3225 btf_data_size = btf->data_size; 3226 3227 if (btf_data_size < 3228 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 3229 btf_verifier_log(env, "hdr_len not found"); 3230 return -EINVAL; 3231 } 3232 3233 hdr = btf->data; 3234 hdr_len = hdr->hdr_len; 3235 if (btf_data_size < hdr_len) { 3236 btf_verifier_log(env, "btf_header not found"); 3237 return -EINVAL; 3238 } 3239 3240 /* Ensure the unsupported header fields are zero */ 3241 if (hdr_len > sizeof(btf->hdr)) { 3242 u8 *expected_zero = btf->data + sizeof(btf->hdr); 3243 u8 *end = btf->data + hdr_len; 3244 3245 for (; expected_zero < end; expected_zero++) { 3246 if (*expected_zero) { 3247 btf_verifier_log(env, "Unsupported btf_header"); 3248 return -E2BIG; 3249 } 3250 } 3251 } 3252 3253 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 3254 memcpy(&btf->hdr, btf->data, hdr_copy); 3255 3256 hdr = &btf->hdr; 3257 3258 btf_verifier_log_hdr(env, btf_data_size); 3259 3260 if (hdr->magic != BTF_MAGIC) { 3261 btf_verifier_log(env, "Invalid magic"); 3262 return -EINVAL; 3263 } 3264 3265 if (hdr->version != BTF_VERSION) { 3266 btf_verifier_log(env, "Unsupported version"); 3267 return -ENOTSUPP; 3268 } 3269 3270 if (hdr->flags) { 3271 btf_verifier_log(env, "Unsupported flags"); 3272 return -ENOTSUPP; 3273 } 3274 3275 if (btf_data_size == hdr->hdr_len) { 3276 btf_verifier_log(env, "No data"); 3277 return -EINVAL; 3278 } 3279 3280 err = btf_check_sec_info(env, btf_data_size); 3281 if (err) 3282 return err; 3283 3284 return 0; 3285 } 3286 3287 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 3288 u32 log_level, char __user *log_ubuf, u32 log_size) 3289 { 3290 struct btf_verifier_env *env = NULL; 3291 struct bpf_verifier_log *log; 3292 struct btf *btf = NULL; 3293 u8 *data; 3294 int err; 3295 3296 if (btf_data_size > BTF_MAX_SIZE) 3297 return ERR_PTR(-E2BIG); 3298 3299 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 3300 if (!env) 3301 return ERR_PTR(-ENOMEM); 3302 3303 log = &env->log; 3304 if (log_level || log_ubuf || log_size) { 3305 /* user requested verbose verifier output 3306 * and supplied buffer to store the verification trace 3307 */ 3308 log->level = log_level; 3309 log->ubuf = log_ubuf; 3310 log->len_total = log_size; 3311 3312 /* log attributes have to be sane */ 3313 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 3314 !log->level || !log->ubuf) { 3315 err = -EINVAL; 3316 goto errout; 3317 } 3318 } 3319 3320 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 3321 if (!btf) { 3322 err = -ENOMEM; 3323 goto errout; 3324 } 3325 env->btf = btf; 3326 3327 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 3328 if (!data) { 3329 err = -ENOMEM; 3330 goto errout; 3331 } 3332 3333 btf->data = data; 3334 btf->data_size = btf_data_size; 3335 3336 if (copy_from_user(data, btf_data, btf_data_size)) { 3337 err = -EFAULT; 3338 goto errout; 3339 } 3340 3341 err = btf_parse_hdr(env); 3342 if (err) 3343 goto errout; 3344 3345 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 3346 3347 err = btf_parse_str_sec(env); 3348 if (err) 3349 goto errout; 3350 3351 err = btf_parse_type_sec(env); 3352 if (err) 3353 goto errout; 3354 3355 if (log->level && bpf_verifier_log_full(log)) { 3356 err = -ENOSPC; 3357 goto errout; 3358 } 3359 3360 btf_verifier_env_free(env); 3361 refcount_set(&btf->refcnt, 1); 3362 return btf; 3363 3364 errout: 3365 btf_verifier_env_free(env); 3366 if (btf) 3367 btf_free(btf); 3368 return ERR_PTR(err); 3369 } 3370 3371 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 3372 struct seq_file *m) 3373 { 3374 const struct btf_type *t = btf_type_by_id(btf, type_id); 3375 3376 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 3377 } 3378 3379 static int btf_release(struct inode *inode, struct file *filp) 3380 { 3381 btf_put(filp->private_data); 3382 return 0; 3383 } 3384 3385 const struct file_operations btf_fops = { 3386 .release = btf_release, 3387 }; 3388 3389 static int __btf_new_fd(struct btf *btf) 3390 { 3391 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 3392 } 3393 3394 int btf_new_fd(const union bpf_attr *attr) 3395 { 3396 struct btf *btf; 3397 int ret; 3398 3399 btf = btf_parse(u64_to_user_ptr(attr->btf), 3400 attr->btf_size, attr->btf_log_level, 3401 u64_to_user_ptr(attr->btf_log_buf), 3402 attr->btf_log_size); 3403 if (IS_ERR(btf)) 3404 return PTR_ERR(btf); 3405 3406 ret = btf_alloc_id(btf); 3407 if (ret) { 3408 btf_free(btf); 3409 return ret; 3410 } 3411 3412 /* 3413 * The BTF ID is published to the userspace. 3414 * All BTF free must go through call_rcu() from 3415 * now on (i.e. free by calling btf_put()). 3416 */ 3417 3418 ret = __btf_new_fd(btf); 3419 if (ret < 0) 3420 btf_put(btf); 3421 3422 return ret; 3423 } 3424 3425 struct btf *btf_get_by_fd(int fd) 3426 { 3427 struct btf *btf; 3428 struct fd f; 3429 3430 f = fdget(fd); 3431 3432 if (!f.file) 3433 return ERR_PTR(-EBADF); 3434 3435 if (f.file->f_op != &btf_fops) { 3436 fdput(f); 3437 return ERR_PTR(-EINVAL); 3438 } 3439 3440 btf = f.file->private_data; 3441 refcount_inc(&btf->refcnt); 3442 fdput(f); 3443 3444 return btf; 3445 } 3446 3447 int btf_get_info_by_fd(const struct btf *btf, 3448 const union bpf_attr *attr, 3449 union bpf_attr __user *uattr) 3450 { 3451 struct bpf_btf_info __user *uinfo; 3452 struct bpf_btf_info info = {}; 3453 u32 info_copy, btf_copy; 3454 void __user *ubtf; 3455 u32 uinfo_len; 3456 3457 uinfo = u64_to_user_ptr(attr->info.info); 3458 uinfo_len = attr->info.info_len; 3459 3460 info_copy = min_t(u32, uinfo_len, sizeof(info)); 3461 if (copy_from_user(&info, uinfo, info_copy)) 3462 return -EFAULT; 3463 3464 info.id = btf->id; 3465 ubtf = u64_to_user_ptr(info.btf); 3466 btf_copy = min_t(u32, btf->data_size, info.btf_size); 3467 if (copy_to_user(ubtf, btf->data, btf_copy)) 3468 return -EFAULT; 3469 info.btf_size = btf->data_size; 3470 3471 if (copy_to_user(uinfo, &info, info_copy) || 3472 put_user(info_copy, &uattr->info.info_len)) 3473 return -EFAULT; 3474 3475 return 0; 3476 } 3477 3478 int btf_get_fd_by_id(u32 id) 3479 { 3480 struct btf *btf; 3481 int fd; 3482 3483 rcu_read_lock(); 3484 btf = idr_find(&btf_idr, id); 3485 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 3486 btf = ERR_PTR(-ENOENT); 3487 rcu_read_unlock(); 3488 3489 if (IS_ERR(btf)) 3490 return PTR_ERR(btf); 3491 3492 fd = __btf_new_fd(btf); 3493 if (fd < 0) 3494 btf_put(btf); 3495 3496 return fd; 3497 } 3498 3499 u32 btf_id(const struct btf *btf) 3500 { 3501 return btf->id; 3502 } 3503