1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 #include <linux/overflow.h> 30 31 #include <net/netfilter/nf_bpf_link.h> 32 33 #include <net/sock.h> 34 #include <net/xdp.h> 35 #include "../tools/lib/bpf/relo_core.h" 36 37 /* BTF (BPF Type Format) is the meta data format which describes 38 * the data types of BPF program/map. Hence, it basically focus 39 * on the C programming language which the modern BPF is primary 40 * using. 41 * 42 * ELF Section: 43 * ~~~~~~~~~~~ 44 * The BTF data is stored under the ".BTF" ELF section 45 * 46 * struct btf_type: 47 * ~~~~~~~~~~~~~~~ 48 * Each 'struct btf_type' object describes a C data type. 49 * Depending on the type it is describing, a 'struct btf_type' 50 * object may be followed by more data. F.e. 51 * To describe an array, 'struct btf_type' is followed by 52 * 'struct btf_array'. 53 * 54 * 'struct btf_type' and any extra data following it are 55 * 4 bytes aligned. 56 * 57 * Type section: 58 * ~~~~~~~~~~~~~ 59 * The BTF type section contains a list of 'struct btf_type' objects. 60 * Each one describes a C type. Recall from the above section 61 * that a 'struct btf_type' object could be immediately followed by extra 62 * data in order to describe some particular C types. 63 * 64 * type_id: 65 * ~~~~~~~ 66 * Each btf_type object is identified by a type_id. The type_id 67 * is implicitly implied by the location of the btf_type object in 68 * the BTF type section. The first one has type_id 1. The second 69 * one has type_id 2...etc. Hence, an earlier btf_type has 70 * a smaller type_id. 71 * 72 * A btf_type object may refer to another btf_type object by using 73 * type_id (i.e. the "type" in the "struct btf_type"). 74 * 75 * NOTE that we cannot assume any reference-order. 76 * A btf_type object can refer to an earlier btf_type object 77 * but it can also refer to a later btf_type object. 78 * 79 * For example, to describe "const void *". A btf_type 80 * object describing "const" may refer to another btf_type 81 * object describing "void *". This type-reference is done 82 * by specifying type_id: 83 * 84 * [1] CONST (anon) type_id=2 85 * [2] PTR (anon) type_id=0 86 * 87 * The above is the btf_verifier debug log: 88 * - Each line started with "[?]" is a btf_type object 89 * - [?] is the type_id of the btf_type object. 90 * - CONST/PTR is the BTF_KIND_XXX 91 * - "(anon)" is the name of the type. It just 92 * happens that CONST and PTR has no name. 93 * - type_id=XXX is the 'u32 type' in btf_type 94 * 95 * NOTE: "void" has type_id 0 96 * 97 * String section: 98 * ~~~~~~~~~~~~~~ 99 * The BTF string section contains the names used by the type section. 100 * Each string is referred by an "offset" from the beginning of the 101 * string section. 102 * 103 * Each string is '\0' terminated. 104 * 105 * The first character in the string section must be '\0' 106 * which is used to mean 'anonymous'. Some btf_type may not 107 * have a name. 108 */ 109 110 /* BTF verification: 111 * 112 * To verify BTF data, two passes are needed. 113 * 114 * Pass #1 115 * ~~~~~~~ 116 * The first pass is to collect all btf_type objects to 117 * an array: "btf->types". 118 * 119 * Depending on the C type that a btf_type is describing, 120 * a btf_type may be followed by extra data. We don't know 121 * how many btf_type is there, and more importantly we don't 122 * know where each btf_type is located in the type section. 123 * 124 * Without knowing the location of each type_id, most verifications 125 * cannot be done. e.g. an earlier btf_type may refer to a later 126 * btf_type (recall the "const void *" above), so we cannot 127 * check this type-reference in the first pass. 128 * 129 * In the first pass, it still does some verifications (e.g. 130 * checking the name is a valid offset to the string section). 131 * 132 * Pass #2 133 * ~~~~~~~ 134 * The main focus is to resolve a btf_type that is referring 135 * to another type. 136 * 137 * We have to ensure the referring type: 138 * 1) does exist in the BTF (i.e. in btf->types[]) 139 * 2) does not cause a loop: 140 * struct A { 141 * struct B b; 142 * }; 143 * 144 * struct B { 145 * struct A a; 146 * }; 147 * 148 * btf_type_needs_resolve() decides if a btf_type needs 149 * to be resolved. 150 * 151 * The needs_resolve type implements the "resolve()" ops which 152 * essentially does a DFS and detects backedge. 153 * 154 * During resolve (or DFS), different C types have different 155 * "RESOLVED" conditions. 156 * 157 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 158 * members because a member is always referring to another 159 * type. A struct's member can be treated as "RESOLVED" if 160 * it is referring to a BTF_KIND_PTR. Otherwise, the 161 * following valid C struct would be rejected: 162 * 163 * struct A { 164 * int m; 165 * struct A *a; 166 * }; 167 * 168 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 169 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 170 * detect a pointer loop, e.g.: 171 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 172 * ^ | 173 * +-----------------------------------------+ 174 * 175 */ 176 177 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 178 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 179 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 180 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 181 #define BITS_ROUNDUP_BYTES(bits) \ 182 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 183 184 #define BTF_INFO_MASK 0x9f00ffff 185 #define BTF_INT_MASK 0x0fffffff 186 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 187 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 188 189 /* 16MB for 64k structs and each has 16 members and 190 * a few MB spaces for the string section. 191 * The hard limit is S32_MAX. 192 */ 193 #define BTF_MAX_SIZE (16 * 1024 * 1024) 194 195 #define for_each_member_from(i, from, struct_type, member) \ 196 for (i = from, member = btf_type_member(struct_type) + from; \ 197 i < btf_type_vlen(struct_type); \ 198 i++, member++) 199 200 #define for_each_vsi_from(i, from, struct_type, member) \ 201 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 202 i < btf_type_vlen(struct_type); \ 203 i++, member++) 204 205 DEFINE_IDR(btf_idr); 206 DEFINE_SPINLOCK(btf_idr_lock); 207 208 enum btf_kfunc_hook { 209 BTF_KFUNC_HOOK_COMMON, 210 BTF_KFUNC_HOOK_XDP, 211 BTF_KFUNC_HOOK_TC, 212 BTF_KFUNC_HOOK_STRUCT_OPS, 213 BTF_KFUNC_HOOK_TRACING, 214 BTF_KFUNC_HOOK_SYSCALL, 215 BTF_KFUNC_HOOK_FMODRET, 216 BTF_KFUNC_HOOK_CGROUP, 217 BTF_KFUNC_HOOK_SCHED_ACT, 218 BTF_KFUNC_HOOK_SK_SKB, 219 BTF_KFUNC_HOOK_SOCKET_FILTER, 220 BTF_KFUNC_HOOK_LWT, 221 BTF_KFUNC_HOOK_NETFILTER, 222 BTF_KFUNC_HOOK_KPROBE, 223 BTF_KFUNC_HOOK_MAX, 224 }; 225 226 enum { 227 BTF_KFUNC_SET_MAX_CNT = 256, 228 BTF_DTOR_KFUNC_MAX_CNT = 256, 229 BTF_KFUNC_FILTER_MAX_CNT = 16, 230 }; 231 232 struct btf_kfunc_hook_filter { 233 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 234 u32 nr_filters; 235 }; 236 237 struct btf_kfunc_set_tab { 238 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 239 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 240 }; 241 242 struct btf_id_dtor_kfunc_tab { 243 u32 cnt; 244 struct btf_id_dtor_kfunc dtors[]; 245 }; 246 247 struct btf_struct_ops_tab { 248 u32 cnt; 249 u32 capacity; 250 struct bpf_struct_ops_desc ops[]; 251 }; 252 253 struct btf { 254 void *data; 255 struct btf_type **types; 256 u32 *resolved_ids; 257 u32 *resolved_sizes; 258 const char *strings; 259 void *nohdr_data; 260 struct btf_header hdr; 261 u32 nr_types; /* includes VOID for base BTF */ 262 u32 types_size; 263 u32 data_size; 264 refcount_t refcnt; 265 u32 id; 266 struct rcu_head rcu; 267 struct btf_kfunc_set_tab *kfunc_set_tab; 268 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 269 struct btf_struct_metas *struct_meta_tab; 270 struct btf_struct_ops_tab *struct_ops_tab; 271 272 /* split BTF support */ 273 struct btf *base_btf; 274 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 275 u32 start_str_off; /* first string offset (0 for base BTF) */ 276 char name[MODULE_NAME_LEN]; 277 bool kernel_btf; 278 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 279 }; 280 281 enum verifier_phase { 282 CHECK_META, 283 CHECK_TYPE, 284 }; 285 286 struct resolve_vertex { 287 const struct btf_type *t; 288 u32 type_id; 289 u16 next_member; 290 }; 291 292 enum visit_state { 293 NOT_VISITED, 294 VISITED, 295 RESOLVED, 296 }; 297 298 enum resolve_mode { 299 RESOLVE_TBD, /* To Be Determined */ 300 RESOLVE_PTR, /* Resolving for Pointer */ 301 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 302 * or array 303 */ 304 }; 305 306 #define MAX_RESOLVE_DEPTH 32 307 308 struct btf_sec_info { 309 u32 off; 310 u32 len; 311 }; 312 313 struct btf_verifier_env { 314 struct btf *btf; 315 u8 *visit_states; 316 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 317 struct bpf_verifier_log log; 318 u32 log_type_id; 319 u32 top_stack; 320 enum verifier_phase phase; 321 enum resolve_mode resolve_mode; 322 }; 323 324 static const char * const btf_kind_str[NR_BTF_KINDS] = { 325 [BTF_KIND_UNKN] = "UNKNOWN", 326 [BTF_KIND_INT] = "INT", 327 [BTF_KIND_PTR] = "PTR", 328 [BTF_KIND_ARRAY] = "ARRAY", 329 [BTF_KIND_STRUCT] = "STRUCT", 330 [BTF_KIND_UNION] = "UNION", 331 [BTF_KIND_ENUM] = "ENUM", 332 [BTF_KIND_FWD] = "FWD", 333 [BTF_KIND_TYPEDEF] = "TYPEDEF", 334 [BTF_KIND_VOLATILE] = "VOLATILE", 335 [BTF_KIND_CONST] = "CONST", 336 [BTF_KIND_RESTRICT] = "RESTRICT", 337 [BTF_KIND_FUNC] = "FUNC", 338 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 339 [BTF_KIND_VAR] = "VAR", 340 [BTF_KIND_DATASEC] = "DATASEC", 341 [BTF_KIND_FLOAT] = "FLOAT", 342 [BTF_KIND_DECL_TAG] = "DECL_TAG", 343 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 344 [BTF_KIND_ENUM64] = "ENUM64", 345 }; 346 347 const char *btf_type_str(const struct btf_type *t) 348 { 349 return btf_kind_str[BTF_INFO_KIND(t->info)]; 350 } 351 352 /* Chunk size we use in safe copy of data to be shown. */ 353 #define BTF_SHOW_OBJ_SAFE_SIZE 32 354 355 /* 356 * This is the maximum size of a base type value (equivalent to a 357 * 128-bit int); if we are at the end of our safe buffer and have 358 * less than 16 bytes space we can't be assured of being able 359 * to copy the next type safely, so in such cases we will initiate 360 * a new copy. 361 */ 362 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 363 364 /* Type name size */ 365 #define BTF_SHOW_NAME_SIZE 80 366 367 /* 368 * The suffix of a type that indicates it cannot alias another type when 369 * comparing BTF IDs for kfunc invocations. 370 */ 371 #define NOCAST_ALIAS_SUFFIX "___init" 372 373 /* 374 * Common data to all BTF show operations. Private show functions can add 375 * their own data to a structure containing a struct btf_show and consult it 376 * in the show callback. See btf_type_show() below. 377 * 378 * One challenge with showing nested data is we want to skip 0-valued 379 * data, but in order to figure out whether a nested object is all zeros 380 * we need to walk through it. As a result, we need to make two passes 381 * when handling structs, unions and arrays; the first path simply looks 382 * for nonzero data, while the second actually does the display. The first 383 * pass is signalled by show->state.depth_check being set, and if we 384 * encounter a non-zero value we set show->state.depth_to_show to 385 * the depth at which we encountered it. When we have completed the 386 * first pass, we will know if anything needs to be displayed if 387 * depth_to_show > depth. See btf_[struct,array]_show() for the 388 * implementation of this. 389 * 390 * Another problem is we want to ensure the data for display is safe to 391 * access. To support this, the anonymous "struct {} obj" tracks the data 392 * object and our safe copy of it. We copy portions of the data needed 393 * to the object "copy" buffer, but because its size is limited to 394 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 395 * traverse larger objects for display. 396 * 397 * The various data type show functions all start with a call to 398 * btf_show_start_type() which returns a pointer to the safe copy 399 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 400 * raw data itself). btf_show_obj_safe() is responsible for 401 * using copy_from_kernel_nofault() to update the safe data if necessary 402 * as we traverse the object's data. skbuff-like semantics are 403 * used: 404 * 405 * - obj.head points to the start of the toplevel object for display 406 * - obj.size is the size of the toplevel object 407 * - obj.data points to the current point in the original data at 408 * which our safe data starts. obj.data will advance as we copy 409 * portions of the data. 410 * 411 * In most cases a single copy will suffice, but larger data structures 412 * such as "struct task_struct" will require many copies. The logic in 413 * btf_show_obj_safe() handles the logic that determines if a new 414 * copy_from_kernel_nofault() is needed. 415 */ 416 struct btf_show { 417 u64 flags; 418 void *target; /* target of show operation (seq file, buffer) */ 419 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 420 const struct btf *btf; 421 /* below are used during iteration */ 422 struct { 423 u8 depth; 424 u8 depth_to_show; 425 u8 depth_check; 426 u8 array_member:1, 427 array_terminated:1; 428 u16 array_encoding; 429 u32 type_id; 430 int status; /* non-zero for error */ 431 const struct btf_type *type; 432 const struct btf_member *member; 433 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 434 } state; 435 struct { 436 u32 size; 437 void *head; 438 void *data; 439 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 440 } obj; 441 }; 442 443 struct btf_kind_operations { 444 s32 (*check_meta)(struct btf_verifier_env *env, 445 const struct btf_type *t, 446 u32 meta_left); 447 int (*resolve)(struct btf_verifier_env *env, 448 const struct resolve_vertex *v); 449 int (*check_member)(struct btf_verifier_env *env, 450 const struct btf_type *struct_type, 451 const struct btf_member *member, 452 const struct btf_type *member_type); 453 int (*check_kflag_member)(struct btf_verifier_env *env, 454 const struct btf_type *struct_type, 455 const struct btf_member *member, 456 const struct btf_type *member_type); 457 void (*log_details)(struct btf_verifier_env *env, 458 const struct btf_type *t); 459 void (*show)(const struct btf *btf, const struct btf_type *t, 460 u32 type_id, void *data, u8 bits_offsets, 461 struct btf_show *show); 462 }; 463 464 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 465 static struct btf_type btf_void; 466 467 static int btf_resolve(struct btf_verifier_env *env, 468 const struct btf_type *t, u32 type_id); 469 470 static int btf_func_check(struct btf_verifier_env *env, 471 const struct btf_type *t); 472 473 static bool btf_type_is_modifier(const struct btf_type *t) 474 { 475 /* Some of them is not strictly a C modifier 476 * but they are grouped into the same bucket 477 * for BTF concern: 478 * A type (t) that refers to another 479 * type through t->type AND its size cannot 480 * be determined without following the t->type. 481 * 482 * ptr does not fall into this bucket 483 * because its size is always sizeof(void *). 484 */ 485 switch (BTF_INFO_KIND(t->info)) { 486 case BTF_KIND_TYPEDEF: 487 case BTF_KIND_VOLATILE: 488 case BTF_KIND_CONST: 489 case BTF_KIND_RESTRICT: 490 case BTF_KIND_TYPE_TAG: 491 return true; 492 } 493 494 return false; 495 } 496 497 bool btf_type_is_void(const struct btf_type *t) 498 { 499 return t == &btf_void; 500 } 501 502 static bool btf_type_is_datasec(const struct btf_type *t) 503 { 504 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 505 } 506 507 static bool btf_type_is_decl_tag(const struct btf_type *t) 508 { 509 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 510 } 511 512 static bool btf_type_nosize(const struct btf_type *t) 513 { 514 return btf_type_is_void(t) || btf_type_is_fwd(t) || 515 btf_type_is_func(t) || btf_type_is_func_proto(t) || 516 btf_type_is_decl_tag(t); 517 } 518 519 static bool btf_type_nosize_or_null(const struct btf_type *t) 520 { 521 return !t || btf_type_nosize(t); 522 } 523 524 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 525 { 526 return btf_type_is_func(t) || btf_type_is_struct(t) || 527 btf_type_is_var(t) || btf_type_is_typedef(t); 528 } 529 530 bool btf_is_vmlinux(const struct btf *btf) 531 { 532 return btf->kernel_btf && !btf->base_btf; 533 } 534 535 u32 btf_nr_types(const struct btf *btf) 536 { 537 u32 total = 0; 538 539 while (btf) { 540 total += btf->nr_types; 541 btf = btf->base_btf; 542 } 543 544 return total; 545 } 546 547 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 548 { 549 const struct btf_type *t; 550 const char *tname; 551 u32 i, total; 552 553 total = btf_nr_types(btf); 554 for (i = 1; i < total; i++) { 555 t = btf_type_by_id(btf, i); 556 if (BTF_INFO_KIND(t->info) != kind) 557 continue; 558 559 tname = btf_name_by_offset(btf, t->name_off); 560 if (!strcmp(tname, name)) 561 return i; 562 } 563 564 return -ENOENT; 565 } 566 567 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 568 { 569 struct btf *btf; 570 s32 ret; 571 int id; 572 573 btf = bpf_get_btf_vmlinux(); 574 if (IS_ERR(btf)) 575 return PTR_ERR(btf); 576 if (!btf) 577 return -EINVAL; 578 579 ret = btf_find_by_name_kind(btf, name, kind); 580 /* ret is never zero, since btf_find_by_name_kind returns 581 * positive btf_id or negative error. 582 */ 583 if (ret > 0) { 584 btf_get(btf); 585 *btf_p = btf; 586 return ret; 587 } 588 589 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 590 spin_lock_bh(&btf_idr_lock); 591 idr_for_each_entry(&btf_idr, btf, id) { 592 if (!btf_is_module(btf)) 593 continue; 594 /* linear search could be slow hence unlock/lock 595 * the IDR to avoiding holding it for too long 596 */ 597 btf_get(btf); 598 spin_unlock_bh(&btf_idr_lock); 599 ret = btf_find_by_name_kind(btf, name, kind); 600 if (ret > 0) { 601 *btf_p = btf; 602 return ret; 603 } 604 btf_put(btf); 605 spin_lock_bh(&btf_idr_lock); 606 } 607 spin_unlock_bh(&btf_idr_lock); 608 return ret; 609 } 610 EXPORT_SYMBOL_GPL(bpf_find_btf_id); 611 612 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 613 u32 id, u32 *res_id) 614 { 615 const struct btf_type *t = btf_type_by_id(btf, id); 616 617 while (btf_type_is_modifier(t)) { 618 id = t->type; 619 t = btf_type_by_id(btf, t->type); 620 } 621 622 if (res_id) 623 *res_id = id; 624 625 return t; 626 } 627 628 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 629 u32 id, u32 *res_id) 630 { 631 const struct btf_type *t; 632 633 t = btf_type_skip_modifiers(btf, id, NULL); 634 if (!btf_type_is_ptr(t)) 635 return NULL; 636 637 return btf_type_skip_modifiers(btf, t->type, res_id); 638 } 639 640 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 641 u32 id, u32 *res_id) 642 { 643 const struct btf_type *ptype; 644 645 ptype = btf_type_resolve_ptr(btf, id, res_id); 646 if (ptype && btf_type_is_func_proto(ptype)) 647 return ptype; 648 649 return NULL; 650 } 651 652 /* Types that act only as a source, not sink or intermediate 653 * type when resolving. 654 */ 655 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 656 { 657 return btf_type_is_var(t) || 658 btf_type_is_decl_tag(t) || 659 btf_type_is_datasec(t); 660 } 661 662 /* What types need to be resolved? 663 * 664 * btf_type_is_modifier() is an obvious one. 665 * 666 * btf_type_is_struct() because its member refers to 667 * another type (through member->type). 668 * 669 * btf_type_is_var() because the variable refers to 670 * another type. btf_type_is_datasec() holds multiple 671 * btf_type_is_var() types that need resolving. 672 * 673 * btf_type_is_array() because its element (array->type) 674 * refers to another type. Array can be thought of a 675 * special case of struct while array just has the same 676 * member-type repeated by array->nelems of times. 677 */ 678 static bool btf_type_needs_resolve(const struct btf_type *t) 679 { 680 return btf_type_is_modifier(t) || 681 btf_type_is_ptr(t) || 682 btf_type_is_struct(t) || 683 btf_type_is_array(t) || 684 btf_type_is_var(t) || 685 btf_type_is_func(t) || 686 btf_type_is_decl_tag(t) || 687 btf_type_is_datasec(t); 688 } 689 690 /* t->size can be used */ 691 static bool btf_type_has_size(const struct btf_type *t) 692 { 693 switch (BTF_INFO_KIND(t->info)) { 694 case BTF_KIND_INT: 695 case BTF_KIND_STRUCT: 696 case BTF_KIND_UNION: 697 case BTF_KIND_ENUM: 698 case BTF_KIND_DATASEC: 699 case BTF_KIND_FLOAT: 700 case BTF_KIND_ENUM64: 701 return true; 702 } 703 704 return false; 705 } 706 707 static const char *btf_int_encoding_str(u8 encoding) 708 { 709 if (encoding == 0) 710 return "(none)"; 711 else if (encoding == BTF_INT_SIGNED) 712 return "SIGNED"; 713 else if (encoding == BTF_INT_CHAR) 714 return "CHAR"; 715 else if (encoding == BTF_INT_BOOL) 716 return "BOOL"; 717 else 718 return "UNKN"; 719 } 720 721 static u32 btf_type_int(const struct btf_type *t) 722 { 723 return *(u32 *)(t + 1); 724 } 725 726 static const struct btf_array *btf_type_array(const struct btf_type *t) 727 { 728 return (const struct btf_array *)(t + 1); 729 } 730 731 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 732 { 733 return (const struct btf_enum *)(t + 1); 734 } 735 736 static const struct btf_var *btf_type_var(const struct btf_type *t) 737 { 738 return (const struct btf_var *)(t + 1); 739 } 740 741 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 742 { 743 return (const struct btf_decl_tag *)(t + 1); 744 } 745 746 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 747 { 748 return (const struct btf_enum64 *)(t + 1); 749 } 750 751 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 752 { 753 return kind_ops[BTF_INFO_KIND(t->info)]; 754 } 755 756 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 757 { 758 if (!BTF_STR_OFFSET_VALID(offset)) 759 return false; 760 761 while (offset < btf->start_str_off) 762 btf = btf->base_btf; 763 764 offset -= btf->start_str_off; 765 return offset < btf->hdr.str_len; 766 } 767 768 static bool __btf_name_char_ok(char c, bool first) 769 { 770 if ((first ? !isalpha(c) : 771 !isalnum(c)) && 772 c != '_' && 773 c != '.') 774 return false; 775 return true; 776 } 777 778 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 779 { 780 while (offset < btf->start_str_off) 781 btf = btf->base_btf; 782 783 offset -= btf->start_str_off; 784 if (offset < btf->hdr.str_len) 785 return &btf->strings[offset]; 786 787 return NULL; 788 } 789 790 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 791 { 792 /* offset must be valid */ 793 const char *src = btf_str_by_offset(btf, offset); 794 const char *src_limit; 795 796 if (!__btf_name_char_ok(*src, true)) 797 return false; 798 799 /* set a limit on identifier length */ 800 src_limit = src + KSYM_NAME_LEN; 801 src++; 802 while (*src && src < src_limit) { 803 if (!__btf_name_char_ok(*src, false)) 804 return false; 805 src++; 806 } 807 808 return !*src; 809 } 810 811 /* Allow any printable character in DATASEC names */ 812 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 813 { 814 /* offset must be valid */ 815 const char *src = btf_str_by_offset(btf, offset); 816 const char *src_limit; 817 818 if (!*src) 819 return false; 820 821 /* set a limit on identifier length */ 822 src_limit = src + KSYM_NAME_LEN; 823 while (*src && src < src_limit) { 824 if (!isprint(*src)) 825 return false; 826 src++; 827 } 828 829 return !*src; 830 } 831 832 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 833 { 834 const char *name; 835 836 if (!offset) 837 return "(anon)"; 838 839 name = btf_str_by_offset(btf, offset); 840 return name ?: "(invalid-name-offset)"; 841 } 842 843 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 844 { 845 return btf_str_by_offset(btf, offset); 846 } 847 848 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 849 { 850 while (type_id < btf->start_id) 851 btf = btf->base_btf; 852 853 type_id -= btf->start_id; 854 if (type_id >= btf->nr_types) 855 return NULL; 856 return btf->types[type_id]; 857 } 858 EXPORT_SYMBOL_GPL(btf_type_by_id); 859 860 /* 861 * Check that the type @t is a regular int. This means that @t is not 862 * a bit field and it has the same size as either of u8/u16/u32/u64 863 * or __int128. If @expected_size is not zero, then size of @t should 864 * be the same. A caller should already have checked that the type @t 865 * is an integer. 866 */ 867 static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size) 868 { 869 u32 int_data = btf_type_int(t); 870 u8 nr_bits = BTF_INT_BITS(int_data); 871 u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 872 873 return BITS_PER_BYTE_MASKED(nr_bits) == 0 && 874 BTF_INT_OFFSET(int_data) == 0 && 875 (nr_bytes <= 16 && is_power_of_2(nr_bytes)) && 876 (expected_size == 0 || nr_bytes == expected_size); 877 } 878 879 static bool btf_type_int_is_regular(const struct btf_type *t) 880 { 881 return __btf_type_int_is_regular(t, 0); 882 } 883 884 bool btf_type_is_i32(const struct btf_type *t) 885 { 886 return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4); 887 } 888 889 bool btf_type_is_i64(const struct btf_type *t) 890 { 891 return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8); 892 } 893 894 bool btf_type_is_primitive(const struct btf_type *t) 895 { 896 return (btf_type_is_int(t) && btf_type_int_is_regular(t)) || 897 btf_is_any_enum(t); 898 } 899 900 /* 901 * Check that given struct member is a regular int with expected 902 * offset and size. 903 */ 904 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 905 const struct btf_member *m, 906 u32 expected_offset, u32 expected_size) 907 { 908 const struct btf_type *t; 909 u32 id, int_data; 910 u8 nr_bits; 911 912 id = m->type; 913 t = btf_type_id_size(btf, &id, NULL); 914 if (!t || !btf_type_is_int(t)) 915 return false; 916 917 int_data = btf_type_int(t); 918 nr_bits = BTF_INT_BITS(int_data); 919 if (btf_type_kflag(s)) { 920 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 921 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 922 923 /* if kflag set, int should be a regular int and 924 * bit offset should be at byte boundary. 925 */ 926 return !bitfield_size && 927 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 928 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 929 } 930 931 if (BTF_INT_OFFSET(int_data) || 932 BITS_PER_BYTE_MASKED(m->offset) || 933 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 934 BITS_PER_BYTE_MASKED(nr_bits) || 935 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 936 return false; 937 938 return true; 939 } 940 941 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 942 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 943 u32 id) 944 { 945 const struct btf_type *t = btf_type_by_id(btf, id); 946 947 while (btf_type_is_modifier(t) && 948 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 949 t = btf_type_by_id(btf, t->type); 950 } 951 952 return t; 953 } 954 955 #define BTF_SHOW_MAX_ITER 10 956 957 #define BTF_KIND_BIT(kind) (1ULL << kind) 958 959 /* 960 * Populate show->state.name with type name information. 961 * Format of type name is 962 * 963 * [.member_name = ] (type_name) 964 */ 965 static const char *btf_show_name(struct btf_show *show) 966 { 967 /* BTF_MAX_ITER array suffixes "[]" */ 968 const char *array_suffixes = "[][][][][][][][][][]"; 969 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 970 /* BTF_MAX_ITER pointer suffixes "*" */ 971 const char *ptr_suffixes = "**********"; 972 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 973 const char *name = NULL, *prefix = "", *parens = ""; 974 const struct btf_member *m = show->state.member; 975 const struct btf_type *t; 976 const struct btf_array *array; 977 u32 id = show->state.type_id; 978 const char *member = NULL; 979 bool show_member = false; 980 u64 kinds = 0; 981 int i; 982 983 show->state.name[0] = '\0'; 984 985 /* 986 * Don't show type name if we're showing an array member; 987 * in that case we show the array type so don't need to repeat 988 * ourselves for each member. 989 */ 990 if (show->state.array_member) 991 return ""; 992 993 /* Retrieve member name, if any. */ 994 if (m) { 995 member = btf_name_by_offset(show->btf, m->name_off); 996 show_member = strlen(member) > 0; 997 id = m->type; 998 } 999 1000 /* 1001 * Start with type_id, as we have resolved the struct btf_type * 1002 * via btf_modifier_show() past the parent typedef to the child 1003 * struct, int etc it is defined as. In such cases, the type_id 1004 * still represents the starting type while the struct btf_type * 1005 * in our show->state points at the resolved type of the typedef. 1006 */ 1007 t = btf_type_by_id(show->btf, id); 1008 if (!t) 1009 return ""; 1010 1011 /* 1012 * The goal here is to build up the right number of pointer and 1013 * array suffixes while ensuring the type name for a typedef 1014 * is represented. Along the way we accumulate a list of 1015 * BTF kinds we have encountered, since these will inform later 1016 * display; for example, pointer types will not require an 1017 * opening "{" for struct, we will just display the pointer value. 1018 * 1019 * We also want to accumulate the right number of pointer or array 1020 * indices in the format string while iterating until we get to 1021 * the typedef/pointee/array member target type. 1022 * 1023 * We start by pointing at the end of pointer and array suffix 1024 * strings; as we accumulate pointers and arrays we move the pointer 1025 * or array string backwards so it will show the expected number of 1026 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1027 * and/or arrays and typedefs are supported as a precaution. 1028 * 1029 * We also want to get typedef name while proceeding to resolve 1030 * type it points to so that we can add parentheses if it is a 1031 * "typedef struct" etc. 1032 */ 1033 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1034 1035 switch (BTF_INFO_KIND(t->info)) { 1036 case BTF_KIND_TYPEDEF: 1037 if (!name) 1038 name = btf_name_by_offset(show->btf, 1039 t->name_off); 1040 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1041 id = t->type; 1042 break; 1043 case BTF_KIND_ARRAY: 1044 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1045 parens = "["; 1046 if (!t) 1047 return ""; 1048 array = btf_type_array(t); 1049 if (array_suffix > array_suffixes) 1050 array_suffix -= 2; 1051 id = array->type; 1052 break; 1053 case BTF_KIND_PTR: 1054 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1055 if (ptr_suffix > ptr_suffixes) 1056 ptr_suffix -= 1; 1057 id = t->type; 1058 break; 1059 default: 1060 id = 0; 1061 break; 1062 } 1063 if (!id) 1064 break; 1065 t = btf_type_skip_qualifiers(show->btf, id); 1066 } 1067 /* We may not be able to represent this type; bail to be safe */ 1068 if (i == BTF_SHOW_MAX_ITER) 1069 return ""; 1070 1071 if (!name) 1072 name = btf_name_by_offset(show->btf, t->name_off); 1073 1074 switch (BTF_INFO_KIND(t->info)) { 1075 case BTF_KIND_STRUCT: 1076 case BTF_KIND_UNION: 1077 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1078 "struct" : "union"; 1079 /* if it's an array of struct/union, parens is already set */ 1080 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1081 parens = "{"; 1082 break; 1083 case BTF_KIND_ENUM: 1084 case BTF_KIND_ENUM64: 1085 prefix = "enum"; 1086 break; 1087 default: 1088 break; 1089 } 1090 1091 /* pointer does not require parens */ 1092 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1093 parens = ""; 1094 /* typedef does not require struct/union/enum prefix */ 1095 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1096 prefix = ""; 1097 1098 if (!name) 1099 name = ""; 1100 1101 /* Even if we don't want type name info, we want parentheses etc */ 1102 if (show->flags & BTF_SHOW_NONAME) 1103 snprintf(show->state.name, sizeof(show->state.name), "%s", 1104 parens); 1105 else 1106 snprintf(show->state.name, sizeof(show->state.name), 1107 "%s%s%s(%s%s%s%s%s%s)%s", 1108 /* first 3 strings comprise ".member = " */ 1109 show_member ? "." : "", 1110 show_member ? member : "", 1111 show_member ? " = " : "", 1112 /* ...next is our prefix (struct, enum, etc) */ 1113 prefix, 1114 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1115 /* ...this is the type name itself */ 1116 name, 1117 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1118 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1119 array_suffix, parens); 1120 1121 return show->state.name; 1122 } 1123 1124 static const char *__btf_show_indent(struct btf_show *show) 1125 { 1126 const char *indents = " "; 1127 const char *indent = &indents[strlen(indents)]; 1128 1129 if ((indent - show->state.depth) >= indents) 1130 return indent - show->state.depth; 1131 return indents; 1132 } 1133 1134 static const char *btf_show_indent(struct btf_show *show) 1135 { 1136 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1137 } 1138 1139 static const char *btf_show_newline(struct btf_show *show) 1140 { 1141 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1142 } 1143 1144 static const char *btf_show_delim(struct btf_show *show) 1145 { 1146 if (show->state.depth == 0) 1147 return ""; 1148 1149 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1150 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1151 return "|"; 1152 1153 return ","; 1154 } 1155 1156 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1157 { 1158 va_list args; 1159 1160 if (!show->state.depth_check) { 1161 va_start(args, fmt); 1162 show->showfn(show, fmt, args); 1163 va_end(args); 1164 } 1165 } 1166 1167 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1168 * format specifiers to the format specifier passed in; these do the work of 1169 * adding indentation, delimiters etc while the caller simply has to specify 1170 * the type value(s) in the format specifier + value(s). 1171 */ 1172 #define btf_show_type_value(show, fmt, value) \ 1173 do { \ 1174 if ((value) != (__typeof__(value))0 || \ 1175 (show->flags & BTF_SHOW_ZERO) || \ 1176 show->state.depth == 0) { \ 1177 btf_show(show, "%s%s" fmt "%s%s", \ 1178 btf_show_indent(show), \ 1179 btf_show_name(show), \ 1180 value, btf_show_delim(show), \ 1181 btf_show_newline(show)); \ 1182 if (show->state.depth > show->state.depth_to_show) \ 1183 show->state.depth_to_show = show->state.depth; \ 1184 } \ 1185 } while (0) 1186 1187 #define btf_show_type_values(show, fmt, ...) \ 1188 do { \ 1189 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1190 btf_show_name(show), \ 1191 __VA_ARGS__, btf_show_delim(show), \ 1192 btf_show_newline(show)); \ 1193 if (show->state.depth > show->state.depth_to_show) \ 1194 show->state.depth_to_show = show->state.depth; \ 1195 } while (0) 1196 1197 /* How much is left to copy to safe buffer after @data? */ 1198 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1199 { 1200 return show->obj.head + show->obj.size - data; 1201 } 1202 1203 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1204 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1205 { 1206 return data >= show->obj.data && 1207 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1208 } 1209 1210 /* 1211 * If object pointed to by @data of @size falls within our safe buffer, return 1212 * the equivalent pointer to the same safe data. Assumes 1213 * copy_from_kernel_nofault() has already happened and our safe buffer is 1214 * populated. 1215 */ 1216 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1217 { 1218 if (btf_show_obj_is_safe(show, data, size)) 1219 return show->obj.safe + (data - show->obj.data); 1220 return NULL; 1221 } 1222 1223 /* 1224 * Return a safe-to-access version of data pointed to by @data. 1225 * We do this by copying the relevant amount of information 1226 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1227 * 1228 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1229 * safe copy is needed. 1230 * 1231 * Otherwise we need to determine if we have the required amount 1232 * of data (determined by the @data pointer and the size of the 1233 * largest base type we can encounter (represented by 1234 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1235 * that we will be able to print some of the current object, 1236 * and if more is needed a copy will be triggered. 1237 * Some objects such as structs will not fit into the buffer; 1238 * in such cases additional copies when we iterate over their 1239 * members may be needed. 1240 * 1241 * btf_show_obj_safe() is used to return a safe buffer for 1242 * btf_show_start_type(); this ensures that as we recurse into 1243 * nested types we always have safe data for the given type. 1244 * This approach is somewhat wasteful; it's possible for example 1245 * that when iterating over a large union we'll end up copying the 1246 * same data repeatedly, but the goal is safety not performance. 1247 * We use stack data as opposed to per-CPU buffers because the 1248 * iteration over a type can take some time, and preemption handling 1249 * would greatly complicate use of the safe buffer. 1250 */ 1251 static void *btf_show_obj_safe(struct btf_show *show, 1252 const struct btf_type *t, 1253 void *data) 1254 { 1255 const struct btf_type *rt; 1256 int size_left, size; 1257 void *safe = NULL; 1258 1259 if (show->flags & BTF_SHOW_UNSAFE) 1260 return data; 1261 1262 rt = btf_resolve_size(show->btf, t, &size); 1263 if (IS_ERR(rt)) { 1264 show->state.status = PTR_ERR(rt); 1265 return NULL; 1266 } 1267 1268 /* 1269 * Is this toplevel object? If so, set total object size and 1270 * initialize pointers. Otherwise check if we still fall within 1271 * our safe object data. 1272 */ 1273 if (show->state.depth == 0) { 1274 show->obj.size = size; 1275 show->obj.head = data; 1276 } else { 1277 /* 1278 * If the size of the current object is > our remaining 1279 * safe buffer we _may_ need to do a new copy. However 1280 * consider the case of a nested struct; it's size pushes 1281 * us over the safe buffer limit, but showing any individual 1282 * struct members does not. In such cases, we don't need 1283 * to initiate a fresh copy yet; however we definitely need 1284 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1285 * in our buffer, regardless of the current object size. 1286 * The logic here is that as we resolve types we will 1287 * hit a base type at some point, and we need to be sure 1288 * the next chunk of data is safely available to display 1289 * that type info safely. We cannot rely on the size of 1290 * the current object here because it may be much larger 1291 * than our current buffer (e.g. task_struct is 8k). 1292 * All we want to do here is ensure that we can print the 1293 * next basic type, which we can if either 1294 * - the current type size is within the safe buffer; or 1295 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1296 * the safe buffer. 1297 */ 1298 safe = __btf_show_obj_safe(show, data, 1299 min(size, 1300 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1301 } 1302 1303 /* 1304 * We need a new copy to our safe object, either because we haven't 1305 * yet copied and are initializing safe data, or because the data 1306 * we want falls outside the boundaries of the safe object. 1307 */ 1308 if (!safe) { 1309 size_left = btf_show_obj_size_left(show, data); 1310 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1311 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1312 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1313 data, size_left); 1314 if (!show->state.status) { 1315 show->obj.data = data; 1316 safe = show->obj.safe; 1317 } 1318 } 1319 1320 return safe; 1321 } 1322 1323 /* 1324 * Set the type we are starting to show and return a safe data pointer 1325 * to be used for showing the associated data. 1326 */ 1327 static void *btf_show_start_type(struct btf_show *show, 1328 const struct btf_type *t, 1329 u32 type_id, void *data) 1330 { 1331 show->state.type = t; 1332 show->state.type_id = type_id; 1333 show->state.name[0] = '\0'; 1334 1335 return btf_show_obj_safe(show, t, data); 1336 } 1337 1338 static void btf_show_end_type(struct btf_show *show) 1339 { 1340 show->state.type = NULL; 1341 show->state.type_id = 0; 1342 show->state.name[0] = '\0'; 1343 } 1344 1345 static void *btf_show_start_aggr_type(struct btf_show *show, 1346 const struct btf_type *t, 1347 u32 type_id, void *data) 1348 { 1349 void *safe_data = btf_show_start_type(show, t, type_id, data); 1350 1351 if (!safe_data) 1352 return safe_data; 1353 1354 btf_show(show, "%s%s%s", btf_show_indent(show), 1355 btf_show_name(show), 1356 btf_show_newline(show)); 1357 show->state.depth++; 1358 return safe_data; 1359 } 1360 1361 static void btf_show_end_aggr_type(struct btf_show *show, 1362 const char *suffix) 1363 { 1364 show->state.depth--; 1365 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1366 btf_show_delim(show), btf_show_newline(show)); 1367 btf_show_end_type(show); 1368 } 1369 1370 static void btf_show_start_member(struct btf_show *show, 1371 const struct btf_member *m) 1372 { 1373 show->state.member = m; 1374 } 1375 1376 static void btf_show_start_array_member(struct btf_show *show) 1377 { 1378 show->state.array_member = 1; 1379 btf_show_start_member(show, NULL); 1380 } 1381 1382 static void btf_show_end_member(struct btf_show *show) 1383 { 1384 show->state.member = NULL; 1385 } 1386 1387 static void btf_show_end_array_member(struct btf_show *show) 1388 { 1389 show->state.array_member = 0; 1390 btf_show_end_member(show); 1391 } 1392 1393 static void *btf_show_start_array_type(struct btf_show *show, 1394 const struct btf_type *t, 1395 u32 type_id, 1396 u16 array_encoding, 1397 void *data) 1398 { 1399 show->state.array_encoding = array_encoding; 1400 show->state.array_terminated = 0; 1401 return btf_show_start_aggr_type(show, t, type_id, data); 1402 } 1403 1404 static void btf_show_end_array_type(struct btf_show *show) 1405 { 1406 show->state.array_encoding = 0; 1407 show->state.array_terminated = 0; 1408 btf_show_end_aggr_type(show, "]"); 1409 } 1410 1411 static void *btf_show_start_struct_type(struct btf_show *show, 1412 const struct btf_type *t, 1413 u32 type_id, 1414 void *data) 1415 { 1416 return btf_show_start_aggr_type(show, t, type_id, data); 1417 } 1418 1419 static void btf_show_end_struct_type(struct btf_show *show) 1420 { 1421 btf_show_end_aggr_type(show, "}"); 1422 } 1423 1424 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1425 const char *fmt, ...) 1426 { 1427 va_list args; 1428 1429 va_start(args, fmt); 1430 bpf_verifier_vlog(log, fmt, args); 1431 va_end(args); 1432 } 1433 1434 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1435 const char *fmt, ...) 1436 { 1437 struct bpf_verifier_log *log = &env->log; 1438 va_list args; 1439 1440 if (!bpf_verifier_log_needed(log)) 1441 return; 1442 1443 va_start(args, fmt); 1444 bpf_verifier_vlog(log, fmt, args); 1445 va_end(args); 1446 } 1447 1448 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1449 const struct btf_type *t, 1450 bool log_details, 1451 const char *fmt, ...) 1452 { 1453 struct bpf_verifier_log *log = &env->log; 1454 struct btf *btf = env->btf; 1455 va_list args; 1456 1457 if (!bpf_verifier_log_needed(log)) 1458 return; 1459 1460 if (log->level == BPF_LOG_KERNEL) { 1461 /* btf verifier prints all types it is processing via 1462 * btf_verifier_log_type(..., fmt = NULL). 1463 * Skip those prints for in-kernel BTF verification. 1464 */ 1465 if (!fmt) 1466 return; 1467 1468 /* Skip logging when loading module BTF with mismatches permitted */ 1469 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1470 return; 1471 } 1472 1473 __btf_verifier_log(log, "[%u] %s %s%s", 1474 env->log_type_id, 1475 btf_type_str(t), 1476 __btf_name_by_offset(btf, t->name_off), 1477 log_details ? " " : ""); 1478 1479 if (log_details) 1480 btf_type_ops(t)->log_details(env, t); 1481 1482 if (fmt && *fmt) { 1483 __btf_verifier_log(log, " "); 1484 va_start(args, fmt); 1485 bpf_verifier_vlog(log, fmt, args); 1486 va_end(args); 1487 } 1488 1489 __btf_verifier_log(log, "\n"); 1490 } 1491 1492 #define btf_verifier_log_type(env, t, ...) \ 1493 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1494 #define btf_verifier_log_basic(env, t, ...) \ 1495 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1496 1497 __printf(4, 5) 1498 static void btf_verifier_log_member(struct btf_verifier_env *env, 1499 const struct btf_type *struct_type, 1500 const struct btf_member *member, 1501 const char *fmt, ...) 1502 { 1503 struct bpf_verifier_log *log = &env->log; 1504 struct btf *btf = env->btf; 1505 va_list args; 1506 1507 if (!bpf_verifier_log_needed(log)) 1508 return; 1509 1510 if (log->level == BPF_LOG_KERNEL) { 1511 if (!fmt) 1512 return; 1513 1514 /* Skip logging when loading module BTF with mismatches permitted */ 1515 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1516 return; 1517 } 1518 1519 /* The CHECK_META phase already did a btf dump. 1520 * 1521 * If member is logged again, it must hit an error in 1522 * parsing this member. It is useful to print out which 1523 * struct this member belongs to. 1524 */ 1525 if (env->phase != CHECK_META) 1526 btf_verifier_log_type(env, struct_type, NULL); 1527 1528 if (btf_type_kflag(struct_type)) 1529 __btf_verifier_log(log, 1530 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1531 __btf_name_by_offset(btf, member->name_off), 1532 member->type, 1533 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1534 BTF_MEMBER_BIT_OFFSET(member->offset)); 1535 else 1536 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1537 __btf_name_by_offset(btf, member->name_off), 1538 member->type, member->offset); 1539 1540 if (fmt && *fmt) { 1541 __btf_verifier_log(log, " "); 1542 va_start(args, fmt); 1543 bpf_verifier_vlog(log, fmt, args); 1544 va_end(args); 1545 } 1546 1547 __btf_verifier_log(log, "\n"); 1548 } 1549 1550 __printf(4, 5) 1551 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1552 const struct btf_type *datasec_type, 1553 const struct btf_var_secinfo *vsi, 1554 const char *fmt, ...) 1555 { 1556 struct bpf_verifier_log *log = &env->log; 1557 va_list args; 1558 1559 if (!bpf_verifier_log_needed(log)) 1560 return; 1561 if (log->level == BPF_LOG_KERNEL && !fmt) 1562 return; 1563 if (env->phase != CHECK_META) 1564 btf_verifier_log_type(env, datasec_type, NULL); 1565 1566 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1567 vsi->type, vsi->offset, vsi->size); 1568 if (fmt && *fmt) { 1569 __btf_verifier_log(log, " "); 1570 va_start(args, fmt); 1571 bpf_verifier_vlog(log, fmt, args); 1572 va_end(args); 1573 } 1574 1575 __btf_verifier_log(log, "\n"); 1576 } 1577 1578 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1579 u32 btf_data_size) 1580 { 1581 struct bpf_verifier_log *log = &env->log; 1582 const struct btf *btf = env->btf; 1583 const struct btf_header *hdr; 1584 1585 if (!bpf_verifier_log_needed(log)) 1586 return; 1587 1588 if (log->level == BPF_LOG_KERNEL) 1589 return; 1590 hdr = &btf->hdr; 1591 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1592 __btf_verifier_log(log, "version: %u\n", hdr->version); 1593 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1594 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1595 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1596 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1597 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1598 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1599 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1600 } 1601 1602 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1603 { 1604 struct btf *btf = env->btf; 1605 1606 if (btf->types_size == btf->nr_types) { 1607 /* Expand 'types' array */ 1608 1609 struct btf_type **new_types; 1610 u32 expand_by, new_size; 1611 1612 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1613 btf_verifier_log(env, "Exceeded max num of types"); 1614 return -E2BIG; 1615 } 1616 1617 expand_by = max_t(u32, btf->types_size >> 2, 16); 1618 new_size = min_t(u32, BTF_MAX_TYPE, 1619 btf->types_size + expand_by); 1620 1621 new_types = kvcalloc(new_size, sizeof(*new_types), 1622 GFP_KERNEL | __GFP_NOWARN); 1623 if (!new_types) 1624 return -ENOMEM; 1625 1626 if (btf->nr_types == 0) { 1627 if (!btf->base_btf) { 1628 /* lazily init VOID type */ 1629 new_types[0] = &btf_void; 1630 btf->nr_types++; 1631 } 1632 } else { 1633 memcpy(new_types, btf->types, 1634 sizeof(*btf->types) * btf->nr_types); 1635 } 1636 1637 kvfree(btf->types); 1638 btf->types = new_types; 1639 btf->types_size = new_size; 1640 } 1641 1642 btf->types[btf->nr_types++] = t; 1643 1644 return 0; 1645 } 1646 1647 static int btf_alloc_id(struct btf *btf) 1648 { 1649 int id; 1650 1651 idr_preload(GFP_KERNEL); 1652 spin_lock_bh(&btf_idr_lock); 1653 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1654 if (id > 0) 1655 btf->id = id; 1656 spin_unlock_bh(&btf_idr_lock); 1657 idr_preload_end(); 1658 1659 if (WARN_ON_ONCE(!id)) 1660 return -ENOSPC; 1661 1662 return id > 0 ? 0 : id; 1663 } 1664 1665 static void btf_free_id(struct btf *btf) 1666 { 1667 unsigned long flags; 1668 1669 /* 1670 * In map-in-map, calling map_delete_elem() on outer 1671 * map will call bpf_map_put on the inner map. 1672 * It will then eventually call btf_free_id() 1673 * on the inner map. Some of the map_delete_elem() 1674 * implementation may have irq disabled, so 1675 * we need to use the _irqsave() version instead 1676 * of the _bh() version. 1677 */ 1678 spin_lock_irqsave(&btf_idr_lock, flags); 1679 idr_remove(&btf_idr, btf->id); 1680 spin_unlock_irqrestore(&btf_idr_lock, flags); 1681 } 1682 1683 static void btf_free_kfunc_set_tab(struct btf *btf) 1684 { 1685 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1686 int hook; 1687 1688 if (!tab) 1689 return; 1690 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1691 kfree(tab->sets[hook]); 1692 kfree(tab); 1693 btf->kfunc_set_tab = NULL; 1694 } 1695 1696 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1697 { 1698 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1699 1700 if (!tab) 1701 return; 1702 kfree(tab); 1703 btf->dtor_kfunc_tab = NULL; 1704 } 1705 1706 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1707 { 1708 int i; 1709 1710 if (!tab) 1711 return; 1712 for (i = 0; i < tab->cnt; i++) 1713 btf_record_free(tab->types[i].record); 1714 kfree(tab); 1715 } 1716 1717 static void btf_free_struct_meta_tab(struct btf *btf) 1718 { 1719 struct btf_struct_metas *tab = btf->struct_meta_tab; 1720 1721 btf_struct_metas_free(tab); 1722 btf->struct_meta_tab = NULL; 1723 } 1724 1725 static void btf_free_struct_ops_tab(struct btf *btf) 1726 { 1727 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1728 u32 i; 1729 1730 if (!tab) 1731 return; 1732 1733 for (i = 0; i < tab->cnt; i++) 1734 bpf_struct_ops_desc_release(&tab->ops[i]); 1735 1736 kfree(tab); 1737 btf->struct_ops_tab = NULL; 1738 } 1739 1740 static void btf_free(struct btf *btf) 1741 { 1742 btf_free_struct_meta_tab(btf); 1743 btf_free_dtor_kfunc_tab(btf); 1744 btf_free_kfunc_set_tab(btf); 1745 btf_free_struct_ops_tab(btf); 1746 kvfree(btf->types); 1747 kvfree(btf->resolved_sizes); 1748 kvfree(btf->resolved_ids); 1749 /* vmlinux does not allocate btf->data, it simply points it at 1750 * __start_BTF. 1751 */ 1752 if (!btf_is_vmlinux(btf)) 1753 kvfree(btf->data); 1754 kvfree(btf->base_id_map); 1755 kfree(btf); 1756 } 1757 1758 static void btf_free_rcu(struct rcu_head *rcu) 1759 { 1760 struct btf *btf = container_of(rcu, struct btf, rcu); 1761 1762 btf_free(btf); 1763 } 1764 1765 const char *btf_get_name(const struct btf *btf) 1766 { 1767 return btf->name; 1768 } 1769 1770 void btf_get(struct btf *btf) 1771 { 1772 refcount_inc(&btf->refcnt); 1773 } 1774 1775 void btf_put(struct btf *btf) 1776 { 1777 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1778 btf_free_id(btf); 1779 call_rcu(&btf->rcu, btf_free_rcu); 1780 } 1781 } 1782 1783 struct btf *btf_base_btf(const struct btf *btf) 1784 { 1785 return btf->base_btf; 1786 } 1787 1788 const struct btf_header *btf_header(const struct btf *btf) 1789 { 1790 return &btf->hdr; 1791 } 1792 1793 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1794 { 1795 btf->base_btf = (struct btf *)base_btf; 1796 btf->start_id = btf_nr_types(base_btf); 1797 btf->start_str_off = base_btf->hdr.str_len; 1798 } 1799 1800 static int env_resolve_init(struct btf_verifier_env *env) 1801 { 1802 struct btf *btf = env->btf; 1803 u32 nr_types = btf->nr_types; 1804 u32 *resolved_sizes = NULL; 1805 u32 *resolved_ids = NULL; 1806 u8 *visit_states = NULL; 1807 1808 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1809 GFP_KERNEL | __GFP_NOWARN); 1810 if (!resolved_sizes) 1811 goto nomem; 1812 1813 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1814 GFP_KERNEL | __GFP_NOWARN); 1815 if (!resolved_ids) 1816 goto nomem; 1817 1818 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1819 GFP_KERNEL | __GFP_NOWARN); 1820 if (!visit_states) 1821 goto nomem; 1822 1823 btf->resolved_sizes = resolved_sizes; 1824 btf->resolved_ids = resolved_ids; 1825 env->visit_states = visit_states; 1826 1827 return 0; 1828 1829 nomem: 1830 kvfree(resolved_sizes); 1831 kvfree(resolved_ids); 1832 kvfree(visit_states); 1833 return -ENOMEM; 1834 } 1835 1836 static void btf_verifier_env_free(struct btf_verifier_env *env) 1837 { 1838 kvfree(env->visit_states); 1839 kfree(env); 1840 } 1841 1842 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1843 const struct btf_type *next_type) 1844 { 1845 switch (env->resolve_mode) { 1846 case RESOLVE_TBD: 1847 /* int, enum or void is a sink */ 1848 return !btf_type_needs_resolve(next_type); 1849 case RESOLVE_PTR: 1850 /* int, enum, void, struct, array, func or func_proto is a sink 1851 * for ptr 1852 */ 1853 return !btf_type_is_modifier(next_type) && 1854 !btf_type_is_ptr(next_type); 1855 case RESOLVE_STRUCT_OR_ARRAY: 1856 /* int, enum, void, ptr, func or func_proto is a sink 1857 * for struct and array 1858 */ 1859 return !btf_type_is_modifier(next_type) && 1860 !btf_type_is_array(next_type) && 1861 !btf_type_is_struct(next_type); 1862 default: 1863 BUG(); 1864 } 1865 } 1866 1867 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1868 u32 type_id) 1869 { 1870 /* base BTF types should be resolved by now */ 1871 if (type_id < env->btf->start_id) 1872 return true; 1873 1874 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1875 } 1876 1877 static int env_stack_push(struct btf_verifier_env *env, 1878 const struct btf_type *t, u32 type_id) 1879 { 1880 const struct btf *btf = env->btf; 1881 struct resolve_vertex *v; 1882 1883 if (env->top_stack == MAX_RESOLVE_DEPTH) 1884 return -E2BIG; 1885 1886 if (type_id < btf->start_id 1887 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1888 return -EEXIST; 1889 1890 env->visit_states[type_id - btf->start_id] = VISITED; 1891 1892 v = &env->stack[env->top_stack++]; 1893 v->t = t; 1894 v->type_id = type_id; 1895 v->next_member = 0; 1896 1897 if (env->resolve_mode == RESOLVE_TBD) { 1898 if (btf_type_is_ptr(t)) 1899 env->resolve_mode = RESOLVE_PTR; 1900 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1901 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static void env_stack_set_next_member(struct btf_verifier_env *env, 1908 u16 next_member) 1909 { 1910 env->stack[env->top_stack - 1].next_member = next_member; 1911 } 1912 1913 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1914 u32 resolved_type_id, 1915 u32 resolved_size) 1916 { 1917 u32 type_id = env->stack[--(env->top_stack)].type_id; 1918 struct btf *btf = env->btf; 1919 1920 type_id -= btf->start_id; /* adjust to local type id */ 1921 btf->resolved_sizes[type_id] = resolved_size; 1922 btf->resolved_ids[type_id] = resolved_type_id; 1923 env->visit_states[type_id] = RESOLVED; 1924 } 1925 1926 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1927 { 1928 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1929 } 1930 1931 /* Resolve the size of a passed-in "type" 1932 * 1933 * type: is an array (e.g. u32 array[x][y]) 1934 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1935 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1936 * corresponds to the return type. 1937 * *elem_type: u32 1938 * *elem_id: id of u32 1939 * *total_nelems: (x * y). Hence, individual elem size is 1940 * (*type_size / *total_nelems) 1941 * *type_id: id of type if it's changed within the function, 0 if not 1942 * 1943 * type: is not an array (e.g. const struct X) 1944 * return type: type "struct X" 1945 * *type_size: sizeof(struct X) 1946 * *elem_type: same as return type ("struct X") 1947 * *elem_id: 0 1948 * *total_nelems: 1 1949 * *type_id: id of type if it's changed within the function, 0 if not 1950 */ 1951 static const struct btf_type * 1952 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1953 u32 *type_size, const struct btf_type **elem_type, 1954 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1955 { 1956 const struct btf_type *array_type = NULL; 1957 const struct btf_array *array = NULL; 1958 u32 i, size, nelems = 1, id = 0; 1959 1960 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1961 switch (BTF_INFO_KIND(type->info)) { 1962 /* type->size can be used */ 1963 case BTF_KIND_INT: 1964 case BTF_KIND_STRUCT: 1965 case BTF_KIND_UNION: 1966 case BTF_KIND_ENUM: 1967 case BTF_KIND_FLOAT: 1968 case BTF_KIND_ENUM64: 1969 size = type->size; 1970 goto resolved; 1971 1972 case BTF_KIND_PTR: 1973 size = sizeof(void *); 1974 goto resolved; 1975 1976 /* Modifiers */ 1977 case BTF_KIND_TYPEDEF: 1978 case BTF_KIND_VOLATILE: 1979 case BTF_KIND_CONST: 1980 case BTF_KIND_RESTRICT: 1981 case BTF_KIND_TYPE_TAG: 1982 id = type->type; 1983 type = btf_type_by_id(btf, type->type); 1984 break; 1985 1986 case BTF_KIND_ARRAY: 1987 if (!array_type) 1988 array_type = type; 1989 array = btf_type_array(type); 1990 if (nelems && array->nelems > U32_MAX / nelems) 1991 return ERR_PTR(-EINVAL); 1992 nelems *= array->nelems; 1993 type = btf_type_by_id(btf, array->type); 1994 break; 1995 1996 /* type without size */ 1997 default: 1998 return ERR_PTR(-EINVAL); 1999 } 2000 } 2001 2002 return ERR_PTR(-EINVAL); 2003 2004 resolved: 2005 if (nelems && size > U32_MAX / nelems) 2006 return ERR_PTR(-EINVAL); 2007 2008 *type_size = nelems * size; 2009 if (total_nelems) 2010 *total_nelems = nelems; 2011 if (elem_type) 2012 *elem_type = type; 2013 if (elem_id) 2014 *elem_id = array ? array->type : 0; 2015 if (type_id && id) 2016 *type_id = id; 2017 2018 return array_type ? : type; 2019 } 2020 2021 const struct btf_type * 2022 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2023 u32 *type_size) 2024 { 2025 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2026 } 2027 2028 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2029 { 2030 while (type_id < btf->start_id) 2031 btf = btf->base_btf; 2032 2033 return btf->resolved_ids[type_id - btf->start_id]; 2034 } 2035 2036 /* The input param "type_id" must point to a needs_resolve type */ 2037 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2038 u32 *type_id) 2039 { 2040 *type_id = btf_resolved_type_id(btf, *type_id); 2041 return btf_type_by_id(btf, *type_id); 2042 } 2043 2044 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2045 { 2046 while (type_id < btf->start_id) 2047 btf = btf->base_btf; 2048 2049 return btf->resolved_sizes[type_id - btf->start_id]; 2050 } 2051 2052 const struct btf_type *btf_type_id_size(const struct btf *btf, 2053 u32 *type_id, u32 *ret_size) 2054 { 2055 const struct btf_type *size_type; 2056 u32 size_type_id = *type_id; 2057 u32 size = 0; 2058 2059 size_type = btf_type_by_id(btf, size_type_id); 2060 if (btf_type_nosize_or_null(size_type)) 2061 return NULL; 2062 2063 if (btf_type_has_size(size_type)) { 2064 size = size_type->size; 2065 } else if (btf_type_is_array(size_type)) { 2066 size = btf_resolved_type_size(btf, size_type_id); 2067 } else if (btf_type_is_ptr(size_type)) { 2068 size = sizeof(void *); 2069 } else { 2070 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2071 !btf_type_is_var(size_type))) 2072 return NULL; 2073 2074 size_type_id = btf_resolved_type_id(btf, size_type_id); 2075 size_type = btf_type_by_id(btf, size_type_id); 2076 if (btf_type_nosize_or_null(size_type)) 2077 return NULL; 2078 else if (btf_type_has_size(size_type)) 2079 size = size_type->size; 2080 else if (btf_type_is_array(size_type)) 2081 size = btf_resolved_type_size(btf, size_type_id); 2082 else if (btf_type_is_ptr(size_type)) 2083 size = sizeof(void *); 2084 else 2085 return NULL; 2086 } 2087 2088 *type_id = size_type_id; 2089 if (ret_size) 2090 *ret_size = size; 2091 2092 return size_type; 2093 } 2094 2095 static int btf_df_check_member(struct btf_verifier_env *env, 2096 const struct btf_type *struct_type, 2097 const struct btf_member *member, 2098 const struct btf_type *member_type) 2099 { 2100 btf_verifier_log_basic(env, struct_type, 2101 "Unsupported check_member"); 2102 return -EINVAL; 2103 } 2104 2105 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2106 const struct btf_type *struct_type, 2107 const struct btf_member *member, 2108 const struct btf_type *member_type) 2109 { 2110 btf_verifier_log_basic(env, struct_type, 2111 "Unsupported check_kflag_member"); 2112 return -EINVAL; 2113 } 2114 2115 /* Used for ptr, array struct/union and float type members. 2116 * int, enum and modifier types have their specific callback functions. 2117 */ 2118 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2119 const struct btf_type *struct_type, 2120 const struct btf_member *member, 2121 const struct btf_type *member_type) 2122 { 2123 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2124 btf_verifier_log_member(env, struct_type, member, 2125 "Invalid member bitfield_size"); 2126 return -EINVAL; 2127 } 2128 2129 /* bitfield size is 0, so member->offset represents bit offset only. 2130 * It is safe to call non kflag check_member variants. 2131 */ 2132 return btf_type_ops(member_type)->check_member(env, struct_type, 2133 member, 2134 member_type); 2135 } 2136 2137 static int btf_df_resolve(struct btf_verifier_env *env, 2138 const struct resolve_vertex *v) 2139 { 2140 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2141 return -EINVAL; 2142 } 2143 2144 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2145 u32 type_id, void *data, u8 bits_offsets, 2146 struct btf_show *show) 2147 { 2148 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2149 } 2150 2151 static int btf_int_check_member(struct btf_verifier_env *env, 2152 const struct btf_type *struct_type, 2153 const struct btf_member *member, 2154 const struct btf_type *member_type) 2155 { 2156 u32 int_data = btf_type_int(member_type); 2157 u32 struct_bits_off = member->offset; 2158 u32 struct_size = struct_type->size; 2159 u32 nr_copy_bits; 2160 u32 bytes_offset; 2161 2162 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2163 btf_verifier_log_member(env, struct_type, member, 2164 "bits_offset exceeds U32_MAX"); 2165 return -EINVAL; 2166 } 2167 2168 struct_bits_off += BTF_INT_OFFSET(int_data); 2169 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2170 nr_copy_bits = BTF_INT_BITS(int_data) + 2171 BITS_PER_BYTE_MASKED(struct_bits_off); 2172 2173 if (nr_copy_bits > BITS_PER_U128) { 2174 btf_verifier_log_member(env, struct_type, member, 2175 "nr_copy_bits exceeds 128"); 2176 return -EINVAL; 2177 } 2178 2179 if (struct_size < bytes_offset || 2180 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2181 btf_verifier_log_member(env, struct_type, member, 2182 "Member exceeds struct_size"); 2183 return -EINVAL; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2190 const struct btf_type *struct_type, 2191 const struct btf_member *member, 2192 const struct btf_type *member_type) 2193 { 2194 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2195 u32 int_data = btf_type_int(member_type); 2196 u32 struct_size = struct_type->size; 2197 u32 nr_copy_bits; 2198 2199 /* a regular int type is required for the kflag int member */ 2200 if (!btf_type_int_is_regular(member_type)) { 2201 btf_verifier_log_member(env, struct_type, member, 2202 "Invalid member base type"); 2203 return -EINVAL; 2204 } 2205 2206 /* check sanity of bitfield size */ 2207 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2208 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2209 nr_int_data_bits = BTF_INT_BITS(int_data); 2210 if (!nr_bits) { 2211 /* Not a bitfield member, member offset must be at byte 2212 * boundary. 2213 */ 2214 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2215 btf_verifier_log_member(env, struct_type, member, 2216 "Invalid member offset"); 2217 return -EINVAL; 2218 } 2219 2220 nr_bits = nr_int_data_bits; 2221 } else if (nr_bits > nr_int_data_bits) { 2222 btf_verifier_log_member(env, struct_type, member, 2223 "Invalid member bitfield_size"); 2224 return -EINVAL; 2225 } 2226 2227 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2228 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2229 if (nr_copy_bits > BITS_PER_U128) { 2230 btf_verifier_log_member(env, struct_type, member, 2231 "nr_copy_bits exceeds 128"); 2232 return -EINVAL; 2233 } 2234 2235 if (struct_size < bytes_offset || 2236 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2237 btf_verifier_log_member(env, struct_type, member, 2238 "Member exceeds struct_size"); 2239 return -EINVAL; 2240 } 2241 2242 return 0; 2243 } 2244 2245 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2246 const struct btf_type *t, 2247 u32 meta_left) 2248 { 2249 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2250 u16 encoding; 2251 2252 if (meta_left < meta_needed) { 2253 btf_verifier_log_basic(env, t, 2254 "meta_left:%u meta_needed:%u", 2255 meta_left, meta_needed); 2256 return -EINVAL; 2257 } 2258 2259 if (btf_type_vlen(t)) { 2260 btf_verifier_log_type(env, t, "vlen != 0"); 2261 return -EINVAL; 2262 } 2263 2264 if (btf_type_kflag(t)) { 2265 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2266 return -EINVAL; 2267 } 2268 2269 int_data = btf_type_int(t); 2270 if (int_data & ~BTF_INT_MASK) { 2271 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2272 int_data); 2273 return -EINVAL; 2274 } 2275 2276 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2277 2278 if (nr_bits > BITS_PER_U128) { 2279 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2280 BITS_PER_U128); 2281 return -EINVAL; 2282 } 2283 2284 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2285 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2286 return -EINVAL; 2287 } 2288 2289 /* 2290 * Only one of the encoding bits is allowed and it 2291 * should be sufficient for the pretty print purpose (i.e. decoding). 2292 * Multiple bits can be allowed later if it is found 2293 * to be insufficient. 2294 */ 2295 encoding = BTF_INT_ENCODING(int_data); 2296 if (encoding && 2297 encoding != BTF_INT_SIGNED && 2298 encoding != BTF_INT_CHAR && 2299 encoding != BTF_INT_BOOL) { 2300 btf_verifier_log_type(env, t, "Unsupported encoding"); 2301 return -ENOTSUPP; 2302 } 2303 2304 btf_verifier_log_type(env, t, NULL); 2305 2306 return meta_needed; 2307 } 2308 2309 static void btf_int_log(struct btf_verifier_env *env, 2310 const struct btf_type *t) 2311 { 2312 int int_data = btf_type_int(t); 2313 2314 btf_verifier_log(env, 2315 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2316 t->size, BTF_INT_OFFSET(int_data), 2317 BTF_INT_BITS(int_data), 2318 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2319 } 2320 2321 static void btf_int128_print(struct btf_show *show, void *data) 2322 { 2323 /* data points to a __int128 number. 2324 * Suppose 2325 * int128_num = *(__int128 *)data; 2326 * The below formulas shows what upper_num and lower_num represents: 2327 * upper_num = int128_num >> 64; 2328 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2329 */ 2330 u64 upper_num, lower_num; 2331 2332 #ifdef __BIG_ENDIAN_BITFIELD 2333 upper_num = *(u64 *)data; 2334 lower_num = *(u64 *)(data + 8); 2335 #else 2336 upper_num = *(u64 *)(data + 8); 2337 lower_num = *(u64 *)data; 2338 #endif 2339 if (upper_num == 0) 2340 btf_show_type_value(show, "0x%llx", lower_num); 2341 else 2342 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2343 lower_num); 2344 } 2345 2346 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2347 u16 right_shift_bits) 2348 { 2349 u64 upper_num, lower_num; 2350 2351 #ifdef __BIG_ENDIAN_BITFIELD 2352 upper_num = print_num[0]; 2353 lower_num = print_num[1]; 2354 #else 2355 upper_num = print_num[1]; 2356 lower_num = print_num[0]; 2357 #endif 2358 2359 /* shake out un-needed bits by shift/or operations */ 2360 if (left_shift_bits >= 64) { 2361 upper_num = lower_num << (left_shift_bits - 64); 2362 lower_num = 0; 2363 } else { 2364 upper_num = (upper_num << left_shift_bits) | 2365 (lower_num >> (64 - left_shift_bits)); 2366 lower_num = lower_num << left_shift_bits; 2367 } 2368 2369 if (right_shift_bits >= 64) { 2370 lower_num = upper_num >> (right_shift_bits - 64); 2371 upper_num = 0; 2372 } else { 2373 lower_num = (lower_num >> right_shift_bits) | 2374 (upper_num << (64 - right_shift_bits)); 2375 upper_num = upper_num >> right_shift_bits; 2376 } 2377 2378 #ifdef __BIG_ENDIAN_BITFIELD 2379 print_num[0] = upper_num; 2380 print_num[1] = lower_num; 2381 #else 2382 print_num[0] = lower_num; 2383 print_num[1] = upper_num; 2384 #endif 2385 } 2386 2387 static void btf_bitfield_show(void *data, u8 bits_offset, 2388 u8 nr_bits, struct btf_show *show) 2389 { 2390 u16 left_shift_bits, right_shift_bits; 2391 u8 nr_copy_bytes; 2392 u8 nr_copy_bits; 2393 u64 print_num[2] = {}; 2394 2395 nr_copy_bits = nr_bits + bits_offset; 2396 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2397 2398 memcpy(print_num, data, nr_copy_bytes); 2399 2400 #ifdef __BIG_ENDIAN_BITFIELD 2401 left_shift_bits = bits_offset; 2402 #else 2403 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2404 #endif 2405 right_shift_bits = BITS_PER_U128 - nr_bits; 2406 2407 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2408 btf_int128_print(show, print_num); 2409 } 2410 2411 2412 static void btf_int_bits_show(const struct btf *btf, 2413 const struct btf_type *t, 2414 void *data, u8 bits_offset, 2415 struct btf_show *show) 2416 { 2417 u32 int_data = btf_type_int(t); 2418 u8 nr_bits = BTF_INT_BITS(int_data); 2419 u8 total_bits_offset; 2420 2421 /* 2422 * bits_offset is at most 7. 2423 * BTF_INT_OFFSET() cannot exceed 128 bits. 2424 */ 2425 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2426 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2427 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2428 btf_bitfield_show(data, bits_offset, nr_bits, show); 2429 } 2430 2431 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2432 u32 type_id, void *data, u8 bits_offset, 2433 struct btf_show *show) 2434 { 2435 u32 int_data = btf_type_int(t); 2436 u8 encoding = BTF_INT_ENCODING(int_data); 2437 bool sign = encoding & BTF_INT_SIGNED; 2438 u8 nr_bits = BTF_INT_BITS(int_data); 2439 void *safe_data; 2440 2441 safe_data = btf_show_start_type(show, t, type_id, data); 2442 if (!safe_data) 2443 return; 2444 2445 if (bits_offset || BTF_INT_OFFSET(int_data) || 2446 BITS_PER_BYTE_MASKED(nr_bits)) { 2447 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2448 goto out; 2449 } 2450 2451 switch (nr_bits) { 2452 case 128: 2453 btf_int128_print(show, safe_data); 2454 break; 2455 case 64: 2456 if (sign) 2457 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2458 else 2459 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2460 break; 2461 case 32: 2462 if (sign) 2463 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2464 else 2465 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2466 break; 2467 case 16: 2468 if (sign) 2469 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2470 else 2471 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2472 break; 2473 case 8: 2474 if (show->state.array_encoding == BTF_INT_CHAR) { 2475 /* check for null terminator */ 2476 if (show->state.array_terminated) 2477 break; 2478 if (*(char *)data == '\0') { 2479 show->state.array_terminated = 1; 2480 break; 2481 } 2482 if (isprint(*(char *)data)) { 2483 btf_show_type_value(show, "'%c'", 2484 *(char *)safe_data); 2485 break; 2486 } 2487 } 2488 if (sign) 2489 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2490 else 2491 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2492 break; 2493 default: 2494 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2495 break; 2496 } 2497 out: 2498 btf_show_end_type(show); 2499 } 2500 2501 static const struct btf_kind_operations int_ops = { 2502 .check_meta = btf_int_check_meta, 2503 .resolve = btf_df_resolve, 2504 .check_member = btf_int_check_member, 2505 .check_kflag_member = btf_int_check_kflag_member, 2506 .log_details = btf_int_log, 2507 .show = btf_int_show, 2508 }; 2509 2510 static int btf_modifier_check_member(struct btf_verifier_env *env, 2511 const struct btf_type *struct_type, 2512 const struct btf_member *member, 2513 const struct btf_type *member_type) 2514 { 2515 const struct btf_type *resolved_type; 2516 u32 resolved_type_id = member->type; 2517 struct btf_member resolved_member; 2518 struct btf *btf = env->btf; 2519 2520 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2521 if (!resolved_type) { 2522 btf_verifier_log_member(env, struct_type, member, 2523 "Invalid member"); 2524 return -EINVAL; 2525 } 2526 2527 resolved_member = *member; 2528 resolved_member.type = resolved_type_id; 2529 2530 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2531 &resolved_member, 2532 resolved_type); 2533 } 2534 2535 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2536 const struct btf_type *struct_type, 2537 const struct btf_member *member, 2538 const struct btf_type *member_type) 2539 { 2540 const struct btf_type *resolved_type; 2541 u32 resolved_type_id = member->type; 2542 struct btf_member resolved_member; 2543 struct btf *btf = env->btf; 2544 2545 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2546 if (!resolved_type) { 2547 btf_verifier_log_member(env, struct_type, member, 2548 "Invalid member"); 2549 return -EINVAL; 2550 } 2551 2552 resolved_member = *member; 2553 resolved_member.type = resolved_type_id; 2554 2555 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2556 &resolved_member, 2557 resolved_type); 2558 } 2559 2560 static int btf_ptr_check_member(struct btf_verifier_env *env, 2561 const struct btf_type *struct_type, 2562 const struct btf_member *member, 2563 const struct btf_type *member_type) 2564 { 2565 u32 struct_size, struct_bits_off, bytes_offset; 2566 2567 struct_size = struct_type->size; 2568 struct_bits_off = member->offset; 2569 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2570 2571 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2572 btf_verifier_log_member(env, struct_type, member, 2573 "Member is not byte aligned"); 2574 return -EINVAL; 2575 } 2576 2577 if (struct_size - bytes_offset < sizeof(void *)) { 2578 btf_verifier_log_member(env, struct_type, member, 2579 "Member exceeds struct_size"); 2580 return -EINVAL; 2581 } 2582 2583 return 0; 2584 } 2585 2586 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2587 const struct btf_type *t, 2588 u32 meta_left) 2589 { 2590 const char *value; 2591 2592 if (btf_type_vlen(t)) { 2593 btf_verifier_log_type(env, t, "vlen != 0"); 2594 return -EINVAL; 2595 } 2596 2597 if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) { 2598 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2599 return -EINVAL; 2600 } 2601 2602 if (!BTF_TYPE_ID_VALID(t->type)) { 2603 btf_verifier_log_type(env, t, "Invalid type_id"); 2604 return -EINVAL; 2605 } 2606 2607 /* typedef/type_tag type must have a valid name, and other ref types, 2608 * volatile, const, restrict, should have a null name. 2609 */ 2610 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2611 if (!t->name_off || 2612 !btf_name_valid_identifier(env->btf, t->name_off)) { 2613 btf_verifier_log_type(env, t, "Invalid name"); 2614 return -EINVAL; 2615 } 2616 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2617 value = btf_name_by_offset(env->btf, t->name_off); 2618 if (!value || !value[0]) { 2619 btf_verifier_log_type(env, t, "Invalid name"); 2620 return -EINVAL; 2621 } 2622 } else { 2623 if (t->name_off) { 2624 btf_verifier_log_type(env, t, "Invalid name"); 2625 return -EINVAL; 2626 } 2627 } 2628 2629 btf_verifier_log_type(env, t, NULL); 2630 2631 return 0; 2632 } 2633 2634 static int btf_modifier_resolve(struct btf_verifier_env *env, 2635 const struct resolve_vertex *v) 2636 { 2637 const struct btf_type *t = v->t; 2638 const struct btf_type *next_type; 2639 u32 next_type_id = t->type; 2640 struct btf *btf = env->btf; 2641 2642 next_type = btf_type_by_id(btf, next_type_id); 2643 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2644 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2645 return -EINVAL; 2646 } 2647 2648 if (!env_type_is_resolve_sink(env, next_type) && 2649 !env_type_is_resolved(env, next_type_id)) 2650 return env_stack_push(env, next_type, next_type_id); 2651 2652 /* Figure out the resolved next_type_id with size. 2653 * They will be stored in the current modifier's 2654 * resolved_ids and resolved_sizes such that it can 2655 * save us a few type-following when we use it later (e.g. in 2656 * pretty print). 2657 */ 2658 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2659 if (env_type_is_resolved(env, next_type_id)) 2660 next_type = btf_type_id_resolve(btf, &next_type_id); 2661 2662 /* "typedef void new_void", "const void"...etc */ 2663 if (!btf_type_is_void(next_type) && 2664 !btf_type_is_fwd(next_type) && 2665 !btf_type_is_func_proto(next_type)) { 2666 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2667 return -EINVAL; 2668 } 2669 } 2670 2671 env_stack_pop_resolved(env, next_type_id, 0); 2672 2673 return 0; 2674 } 2675 2676 static int btf_var_resolve(struct btf_verifier_env *env, 2677 const struct resolve_vertex *v) 2678 { 2679 const struct btf_type *next_type; 2680 const struct btf_type *t = v->t; 2681 u32 next_type_id = t->type; 2682 struct btf *btf = env->btf; 2683 2684 next_type = btf_type_by_id(btf, next_type_id); 2685 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2686 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2687 return -EINVAL; 2688 } 2689 2690 if (!env_type_is_resolve_sink(env, next_type) && 2691 !env_type_is_resolved(env, next_type_id)) 2692 return env_stack_push(env, next_type, next_type_id); 2693 2694 if (btf_type_is_modifier(next_type)) { 2695 const struct btf_type *resolved_type; 2696 u32 resolved_type_id; 2697 2698 resolved_type_id = next_type_id; 2699 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2700 2701 if (btf_type_is_ptr(resolved_type) && 2702 !env_type_is_resolve_sink(env, resolved_type) && 2703 !env_type_is_resolved(env, resolved_type_id)) 2704 return env_stack_push(env, resolved_type, 2705 resolved_type_id); 2706 } 2707 2708 /* We must resolve to something concrete at this point, no 2709 * forward types or similar that would resolve to size of 2710 * zero is allowed. 2711 */ 2712 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2713 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2714 return -EINVAL; 2715 } 2716 2717 env_stack_pop_resolved(env, next_type_id, 0); 2718 2719 return 0; 2720 } 2721 2722 static int btf_ptr_resolve(struct btf_verifier_env *env, 2723 const struct resolve_vertex *v) 2724 { 2725 const struct btf_type *next_type; 2726 const struct btf_type *t = v->t; 2727 u32 next_type_id = t->type; 2728 struct btf *btf = env->btf; 2729 2730 next_type = btf_type_by_id(btf, next_type_id); 2731 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2732 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2733 return -EINVAL; 2734 } 2735 2736 if (!env_type_is_resolve_sink(env, next_type) && 2737 !env_type_is_resolved(env, next_type_id)) 2738 return env_stack_push(env, next_type, next_type_id); 2739 2740 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2741 * the modifier may have stopped resolving when it was resolved 2742 * to a ptr (last-resolved-ptr). 2743 * 2744 * We now need to continue from the last-resolved-ptr to 2745 * ensure the last-resolved-ptr will not referring back to 2746 * the current ptr (t). 2747 */ 2748 if (btf_type_is_modifier(next_type)) { 2749 const struct btf_type *resolved_type; 2750 u32 resolved_type_id; 2751 2752 resolved_type_id = next_type_id; 2753 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2754 2755 if (btf_type_is_ptr(resolved_type) && 2756 !env_type_is_resolve_sink(env, resolved_type) && 2757 !env_type_is_resolved(env, resolved_type_id)) 2758 return env_stack_push(env, resolved_type, 2759 resolved_type_id); 2760 } 2761 2762 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2763 if (env_type_is_resolved(env, next_type_id)) 2764 next_type = btf_type_id_resolve(btf, &next_type_id); 2765 2766 if (!btf_type_is_void(next_type) && 2767 !btf_type_is_fwd(next_type) && 2768 !btf_type_is_func_proto(next_type)) { 2769 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2770 return -EINVAL; 2771 } 2772 } 2773 2774 env_stack_pop_resolved(env, next_type_id, 0); 2775 2776 return 0; 2777 } 2778 2779 static void btf_modifier_show(const struct btf *btf, 2780 const struct btf_type *t, 2781 u32 type_id, void *data, 2782 u8 bits_offset, struct btf_show *show) 2783 { 2784 if (btf->resolved_ids) 2785 t = btf_type_id_resolve(btf, &type_id); 2786 else 2787 t = btf_type_skip_modifiers(btf, type_id, NULL); 2788 2789 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2790 } 2791 2792 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2793 u32 type_id, void *data, u8 bits_offset, 2794 struct btf_show *show) 2795 { 2796 t = btf_type_id_resolve(btf, &type_id); 2797 2798 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2799 } 2800 2801 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2802 u32 type_id, void *data, u8 bits_offset, 2803 struct btf_show *show) 2804 { 2805 void *safe_data; 2806 2807 safe_data = btf_show_start_type(show, t, type_id, data); 2808 if (!safe_data) 2809 return; 2810 2811 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2812 if (show->flags & BTF_SHOW_PTR_RAW) 2813 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2814 else 2815 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2816 btf_show_end_type(show); 2817 } 2818 2819 static void btf_ref_type_log(struct btf_verifier_env *env, 2820 const struct btf_type *t) 2821 { 2822 btf_verifier_log(env, "type_id=%u", t->type); 2823 } 2824 2825 static const struct btf_kind_operations modifier_ops = { 2826 .check_meta = btf_ref_type_check_meta, 2827 .resolve = btf_modifier_resolve, 2828 .check_member = btf_modifier_check_member, 2829 .check_kflag_member = btf_modifier_check_kflag_member, 2830 .log_details = btf_ref_type_log, 2831 .show = btf_modifier_show, 2832 }; 2833 2834 static const struct btf_kind_operations ptr_ops = { 2835 .check_meta = btf_ref_type_check_meta, 2836 .resolve = btf_ptr_resolve, 2837 .check_member = btf_ptr_check_member, 2838 .check_kflag_member = btf_generic_check_kflag_member, 2839 .log_details = btf_ref_type_log, 2840 .show = btf_ptr_show, 2841 }; 2842 2843 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2844 const struct btf_type *t, 2845 u32 meta_left) 2846 { 2847 if (btf_type_vlen(t)) { 2848 btf_verifier_log_type(env, t, "vlen != 0"); 2849 return -EINVAL; 2850 } 2851 2852 if (t->type) { 2853 btf_verifier_log_type(env, t, "type != 0"); 2854 return -EINVAL; 2855 } 2856 2857 /* fwd type must have a valid name */ 2858 if (!t->name_off || 2859 !btf_name_valid_identifier(env->btf, t->name_off)) { 2860 btf_verifier_log_type(env, t, "Invalid name"); 2861 return -EINVAL; 2862 } 2863 2864 btf_verifier_log_type(env, t, NULL); 2865 2866 return 0; 2867 } 2868 2869 static void btf_fwd_type_log(struct btf_verifier_env *env, 2870 const struct btf_type *t) 2871 { 2872 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2873 } 2874 2875 static const struct btf_kind_operations fwd_ops = { 2876 .check_meta = btf_fwd_check_meta, 2877 .resolve = btf_df_resolve, 2878 .check_member = btf_df_check_member, 2879 .check_kflag_member = btf_df_check_kflag_member, 2880 .log_details = btf_fwd_type_log, 2881 .show = btf_df_show, 2882 }; 2883 2884 static int btf_array_check_member(struct btf_verifier_env *env, 2885 const struct btf_type *struct_type, 2886 const struct btf_member *member, 2887 const struct btf_type *member_type) 2888 { 2889 u32 struct_bits_off = member->offset; 2890 u32 struct_size, bytes_offset; 2891 u32 array_type_id, array_size; 2892 struct btf *btf = env->btf; 2893 2894 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2895 btf_verifier_log_member(env, struct_type, member, 2896 "Member is not byte aligned"); 2897 return -EINVAL; 2898 } 2899 2900 array_type_id = member->type; 2901 btf_type_id_size(btf, &array_type_id, &array_size); 2902 struct_size = struct_type->size; 2903 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2904 if (struct_size - bytes_offset < array_size) { 2905 btf_verifier_log_member(env, struct_type, member, 2906 "Member exceeds struct_size"); 2907 return -EINVAL; 2908 } 2909 2910 return 0; 2911 } 2912 2913 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2914 const struct btf_type *t, 2915 u32 meta_left) 2916 { 2917 const struct btf_array *array = btf_type_array(t); 2918 u32 meta_needed = sizeof(*array); 2919 2920 if (meta_left < meta_needed) { 2921 btf_verifier_log_basic(env, t, 2922 "meta_left:%u meta_needed:%u", 2923 meta_left, meta_needed); 2924 return -EINVAL; 2925 } 2926 2927 /* array type should not have a name */ 2928 if (t->name_off) { 2929 btf_verifier_log_type(env, t, "Invalid name"); 2930 return -EINVAL; 2931 } 2932 2933 if (btf_type_vlen(t)) { 2934 btf_verifier_log_type(env, t, "vlen != 0"); 2935 return -EINVAL; 2936 } 2937 2938 if (btf_type_kflag(t)) { 2939 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2940 return -EINVAL; 2941 } 2942 2943 if (t->size) { 2944 btf_verifier_log_type(env, t, "size != 0"); 2945 return -EINVAL; 2946 } 2947 2948 /* Array elem type and index type cannot be in type void, 2949 * so !array->type and !array->index_type are not allowed. 2950 */ 2951 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2952 btf_verifier_log_type(env, t, "Invalid elem"); 2953 return -EINVAL; 2954 } 2955 2956 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2957 btf_verifier_log_type(env, t, "Invalid index"); 2958 return -EINVAL; 2959 } 2960 2961 btf_verifier_log_type(env, t, NULL); 2962 2963 return meta_needed; 2964 } 2965 2966 static int btf_array_resolve(struct btf_verifier_env *env, 2967 const struct resolve_vertex *v) 2968 { 2969 const struct btf_array *array = btf_type_array(v->t); 2970 const struct btf_type *elem_type, *index_type; 2971 u32 elem_type_id, index_type_id; 2972 struct btf *btf = env->btf; 2973 u32 elem_size; 2974 2975 /* Check array->index_type */ 2976 index_type_id = array->index_type; 2977 index_type = btf_type_by_id(btf, index_type_id); 2978 if (btf_type_nosize_or_null(index_type) || 2979 btf_type_is_resolve_source_only(index_type)) { 2980 btf_verifier_log_type(env, v->t, "Invalid index"); 2981 return -EINVAL; 2982 } 2983 2984 if (!env_type_is_resolve_sink(env, index_type) && 2985 !env_type_is_resolved(env, index_type_id)) 2986 return env_stack_push(env, index_type, index_type_id); 2987 2988 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2989 if (!index_type || !btf_type_is_int(index_type) || 2990 !btf_type_int_is_regular(index_type)) { 2991 btf_verifier_log_type(env, v->t, "Invalid index"); 2992 return -EINVAL; 2993 } 2994 2995 /* Check array->type */ 2996 elem_type_id = array->type; 2997 elem_type = btf_type_by_id(btf, elem_type_id); 2998 if (btf_type_nosize_or_null(elem_type) || 2999 btf_type_is_resolve_source_only(elem_type)) { 3000 btf_verifier_log_type(env, v->t, 3001 "Invalid elem"); 3002 return -EINVAL; 3003 } 3004 3005 if (!env_type_is_resolve_sink(env, elem_type) && 3006 !env_type_is_resolved(env, elem_type_id)) 3007 return env_stack_push(env, elem_type, elem_type_id); 3008 3009 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3010 if (!elem_type) { 3011 btf_verifier_log_type(env, v->t, "Invalid elem"); 3012 return -EINVAL; 3013 } 3014 3015 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 3016 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3017 return -EINVAL; 3018 } 3019 3020 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3021 btf_verifier_log_type(env, v->t, 3022 "Array size overflows U32_MAX"); 3023 return -EINVAL; 3024 } 3025 3026 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3027 3028 return 0; 3029 } 3030 3031 static void btf_array_log(struct btf_verifier_env *env, 3032 const struct btf_type *t) 3033 { 3034 const struct btf_array *array = btf_type_array(t); 3035 3036 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3037 array->type, array->index_type, array->nelems); 3038 } 3039 3040 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3041 u32 type_id, void *data, u8 bits_offset, 3042 struct btf_show *show) 3043 { 3044 const struct btf_array *array = btf_type_array(t); 3045 const struct btf_kind_operations *elem_ops; 3046 const struct btf_type *elem_type; 3047 u32 i, elem_size = 0, elem_type_id; 3048 u16 encoding = 0; 3049 3050 elem_type_id = array->type; 3051 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3052 if (elem_type && btf_type_has_size(elem_type)) 3053 elem_size = elem_type->size; 3054 3055 if (elem_type && btf_type_is_int(elem_type)) { 3056 u32 int_type = btf_type_int(elem_type); 3057 3058 encoding = BTF_INT_ENCODING(int_type); 3059 3060 /* 3061 * BTF_INT_CHAR encoding never seems to be set for 3062 * char arrays, so if size is 1 and element is 3063 * printable as a char, we'll do that. 3064 */ 3065 if (elem_size == 1) 3066 encoding = BTF_INT_CHAR; 3067 } 3068 3069 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3070 return; 3071 3072 if (!elem_type) 3073 goto out; 3074 elem_ops = btf_type_ops(elem_type); 3075 3076 for (i = 0; i < array->nelems; i++) { 3077 3078 btf_show_start_array_member(show); 3079 3080 elem_ops->show(btf, elem_type, elem_type_id, data, 3081 bits_offset, show); 3082 data += elem_size; 3083 3084 btf_show_end_array_member(show); 3085 3086 if (show->state.array_terminated) 3087 break; 3088 } 3089 out: 3090 btf_show_end_array_type(show); 3091 } 3092 3093 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3094 u32 type_id, void *data, u8 bits_offset, 3095 struct btf_show *show) 3096 { 3097 const struct btf_member *m = show->state.member; 3098 3099 /* 3100 * First check if any members would be shown (are non-zero). 3101 * See comments above "struct btf_show" definition for more 3102 * details on how this works at a high-level. 3103 */ 3104 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3105 if (!show->state.depth_check) { 3106 show->state.depth_check = show->state.depth + 1; 3107 show->state.depth_to_show = 0; 3108 } 3109 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3110 show->state.member = m; 3111 3112 if (show->state.depth_check != show->state.depth + 1) 3113 return; 3114 show->state.depth_check = 0; 3115 3116 if (show->state.depth_to_show <= show->state.depth) 3117 return; 3118 /* 3119 * Reaching here indicates we have recursed and found 3120 * non-zero array member(s). 3121 */ 3122 } 3123 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3124 } 3125 3126 static const struct btf_kind_operations array_ops = { 3127 .check_meta = btf_array_check_meta, 3128 .resolve = btf_array_resolve, 3129 .check_member = btf_array_check_member, 3130 .check_kflag_member = btf_generic_check_kflag_member, 3131 .log_details = btf_array_log, 3132 .show = btf_array_show, 3133 }; 3134 3135 static int btf_struct_check_member(struct btf_verifier_env *env, 3136 const struct btf_type *struct_type, 3137 const struct btf_member *member, 3138 const struct btf_type *member_type) 3139 { 3140 u32 struct_bits_off = member->offset; 3141 u32 struct_size, bytes_offset; 3142 3143 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3144 btf_verifier_log_member(env, struct_type, member, 3145 "Member is not byte aligned"); 3146 return -EINVAL; 3147 } 3148 3149 struct_size = struct_type->size; 3150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3151 if (struct_size - bytes_offset < member_type->size) { 3152 btf_verifier_log_member(env, struct_type, member, 3153 "Member exceeds struct_size"); 3154 return -EINVAL; 3155 } 3156 3157 return 0; 3158 } 3159 3160 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3161 const struct btf_type *t, 3162 u32 meta_left) 3163 { 3164 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3165 const struct btf_member *member; 3166 u32 meta_needed, last_offset; 3167 struct btf *btf = env->btf; 3168 u32 struct_size = t->size; 3169 u32 offset; 3170 u16 i; 3171 3172 meta_needed = btf_type_vlen(t) * sizeof(*member); 3173 if (meta_left < meta_needed) { 3174 btf_verifier_log_basic(env, t, 3175 "meta_left:%u meta_needed:%u", 3176 meta_left, meta_needed); 3177 return -EINVAL; 3178 } 3179 3180 /* struct type either no name or a valid one */ 3181 if (t->name_off && 3182 !btf_name_valid_identifier(env->btf, t->name_off)) { 3183 btf_verifier_log_type(env, t, "Invalid name"); 3184 return -EINVAL; 3185 } 3186 3187 btf_verifier_log_type(env, t, NULL); 3188 3189 last_offset = 0; 3190 for_each_member(i, t, member) { 3191 if (!btf_name_offset_valid(btf, member->name_off)) { 3192 btf_verifier_log_member(env, t, member, 3193 "Invalid member name_offset:%u", 3194 member->name_off); 3195 return -EINVAL; 3196 } 3197 3198 /* struct member either no name or a valid one */ 3199 if (member->name_off && 3200 !btf_name_valid_identifier(btf, member->name_off)) { 3201 btf_verifier_log_member(env, t, member, "Invalid name"); 3202 return -EINVAL; 3203 } 3204 /* A member cannot be in type void */ 3205 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3206 btf_verifier_log_member(env, t, member, 3207 "Invalid type_id"); 3208 return -EINVAL; 3209 } 3210 3211 offset = __btf_member_bit_offset(t, member); 3212 if (is_union && offset) { 3213 btf_verifier_log_member(env, t, member, 3214 "Invalid member bits_offset"); 3215 return -EINVAL; 3216 } 3217 3218 /* 3219 * ">" instead of ">=" because the last member could be 3220 * "char a[0];" 3221 */ 3222 if (last_offset > offset) { 3223 btf_verifier_log_member(env, t, member, 3224 "Invalid member bits_offset"); 3225 return -EINVAL; 3226 } 3227 3228 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3229 btf_verifier_log_member(env, t, member, 3230 "Member bits_offset exceeds its struct size"); 3231 return -EINVAL; 3232 } 3233 3234 btf_verifier_log_member(env, t, member, NULL); 3235 last_offset = offset; 3236 } 3237 3238 return meta_needed; 3239 } 3240 3241 static int btf_struct_resolve(struct btf_verifier_env *env, 3242 const struct resolve_vertex *v) 3243 { 3244 const struct btf_member *member; 3245 int err; 3246 u16 i; 3247 3248 /* Before continue resolving the next_member, 3249 * ensure the last member is indeed resolved to a 3250 * type with size info. 3251 */ 3252 if (v->next_member) { 3253 const struct btf_type *last_member_type; 3254 const struct btf_member *last_member; 3255 u32 last_member_type_id; 3256 3257 last_member = btf_type_member(v->t) + v->next_member - 1; 3258 last_member_type_id = last_member->type; 3259 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3260 last_member_type_id))) 3261 return -EINVAL; 3262 3263 last_member_type = btf_type_by_id(env->btf, 3264 last_member_type_id); 3265 if (btf_type_kflag(v->t)) 3266 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3267 last_member, 3268 last_member_type); 3269 else 3270 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3271 last_member, 3272 last_member_type); 3273 if (err) 3274 return err; 3275 } 3276 3277 for_each_member_from(i, v->next_member, v->t, member) { 3278 u32 member_type_id = member->type; 3279 const struct btf_type *member_type = btf_type_by_id(env->btf, 3280 member_type_id); 3281 3282 if (btf_type_nosize_or_null(member_type) || 3283 btf_type_is_resolve_source_only(member_type)) { 3284 btf_verifier_log_member(env, v->t, member, 3285 "Invalid member"); 3286 return -EINVAL; 3287 } 3288 3289 if (!env_type_is_resolve_sink(env, member_type) && 3290 !env_type_is_resolved(env, member_type_id)) { 3291 env_stack_set_next_member(env, i + 1); 3292 return env_stack_push(env, member_type, member_type_id); 3293 } 3294 3295 if (btf_type_kflag(v->t)) 3296 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3297 member, 3298 member_type); 3299 else 3300 err = btf_type_ops(member_type)->check_member(env, v->t, 3301 member, 3302 member_type); 3303 if (err) 3304 return err; 3305 } 3306 3307 env_stack_pop_resolved(env, 0, 0); 3308 3309 return 0; 3310 } 3311 3312 static void btf_struct_log(struct btf_verifier_env *env, 3313 const struct btf_type *t) 3314 { 3315 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3316 } 3317 3318 enum { 3319 BTF_FIELD_IGNORE = 0, 3320 BTF_FIELD_FOUND = 1, 3321 }; 3322 3323 struct btf_field_info { 3324 enum btf_field_type type; 3325 u32 off; 3326 union { 3327 struct { 3328 u32 type_id; 3329 } kptr; 3330 struct { 3331 const char *node_name; 3332 u32 value_btf_id; 3333 } graph_root; 3334 }; 3335 }; 3336 3337 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3338 u32 off, int sz, enum btf_field_type field_type, 3339 struct btf_field_info *info) 3340 { 3341 if (!__btf_type_is_struct(t)) 3342 return BTF_FIELD_IGNORE; 3343 if (t->size != sz) 3344 return BTF_FIELD_IGNORE; 3345 info->type = field_type; 3346 info->off = off; 3347 return BTF_FIELD_FOUND; 3348 } 3349 3350 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3351 u32 off, int sz, struct btf_field_info *info, u32 field_mask) 3352 { 3353 enum btf_field_type type; 3354 const char *tag_value; 3355 bool is_type_tag; 3356 u32 res_id; 3357 3358 /* Permit modifiers on the pointer itself */ 3359 if (btf_type_is_volatile(t)) 3360 t = btf_type_by_id(btf, t->type); 3361 /* For PTR, sz is always == 8 */ 3362 if (!btf_type_is_ptr(t)) 3363 return BTF_FIELD_IGNORE; 3364 t = btf_type_by_id(btf, t->type); 3365 is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t); 3366 if (!is_type_tag) 3367 return BTF_FIELD_IGNORE; 3368 /* Reject extra tags */ 3369 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3370 return -EINVAL; 3371 tag_value = __btf_name_by_offset(btf, t->name_off); 3372 if (!strcmp("kptr_untrusted", tag_value)) 3373 type = BPF_KPTR_UNREF; 3374 else if (!strcmp("kptr", tag_value)) 3375 type = BPF_KPTR_REF; 3376 else if (!strcmp("percpu_kptr", tag_value)) 3377 type = BPF_KPTR_PERCPU; 3378 else if (!strcmp("uptr", tag_value)) 3379 type = BPF_UPTR; 3380 else 3381 return -EINVAL; 3382 3383 if (!(type & field_mask)) 3384 return BTF_FIELD_IGNORE; 3385 3386 /* Get the base type */ 3387 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3388 /* Only pointer to struct is allowed */ 3389 if (!__btf_type_is_struct(t)) 3390 return -EINVAL; 3391 3392 info->type = type; 3393 info->off = off; 3394 info->kptr.type_id = res_id; 3395 return BTF_FIELD_FOUND; 3396 } 3397 3398 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3399 int comp_idx, const char *tag_key, int last_id) 3400 { 3401 int len = strlen(tag_key); 3402 int i, n; 3403 3404 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3405 const struct btf_type *t = btf_type_by_id(btf, i); 3406 3407 if (!btf_type_is_decl_tag(t)) 3408 continue; 3409 if (pt != btf_type_by_id(btf, t->type)) 3410 continue; 3411 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3412 continue; 3413 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3414 continue; 3415 return i; 3416 } 3417 return -ENOENT; 3418 } 3419 3420 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3421 int comp_idx, const char *tag_key) 3422 { 3423 const char *value = NULL; 3424 const struct btf_type *t; 3425 int len, id; 3426 3427 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3428 if (id < 0) 3429 return ERR_PTR(id); 3430 3431 t = btf_type_by_id(btf, id); 3432 len = strlen(tag_key); 3433 value = __btf_name_by_offset(btf, t->name_off) + len; 3434 3435 /* Prevent duplicate entries for same type */ 3436 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3437 if (id >= 0) 3438 return ERR_PTR(-EEXIST); 3439 3440 return value; 3441 } 3442 3443 static int 3444 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3445 const struct btf_type *t, int comp_idx, u32 off, 3446 int sz, struct btf_field_info *info, 3447 enum btf_field_type head_type) 3448 { 3449 const char *node_field_name; 3450 const char *value_type; 3451 s32 id; 3452 3453 if (!__btf_type_is_struct(t)) 3454 return BTF_FIELD_IGNORE; 3455 if (t->size != sz) 3456 return BTF_FIELD_IGNORE; 3457 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3458 if (IS_ERR(value_type)) 3459 return -EINVAL; 3460 node_field_name = strstr(value_type, ":"); 3461 if (!node_field_name) 3462 return -EINVAL; 3463 value_type = kstrndup(value_type, node_field_name - value_type, 3464 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 3465 if (!value_type) 3466 return -ENOMEM; 3467 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3468 kfree(value_type); 3469 if (id < 0) 3470 return id; 3471 node_field_name++; 3472 if (str_is_empty(node_field_name)) 3473 return -EINVAL; 3474 info->type = head_type; 3475 info->off = off; 3476 info->graph_root.value_btf_id = id; 3477 info->graph_root.node_name = node_field_name; 3478 return BTF_FIELD_FOUND; 3479 } 3480 3481 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3482 u32 field_mask, u32 *seen_mask, int *align, int *sz) 3483 { 3484 const struct { 3485 enum btf_field_type type; 3486 const char *const name; 3487 const bool is_unique; 3488 } field_types[] = { 3489 { BPF_SPIN_LOCK, "bpf_spin_lock", true }, 3490 { BPF_RES_SPIN_LOCK, "bpf_res_spin_lock", true }, 3491 { BPF_TIMER, "bpf_timer", true }, 3492 { BPF_WORKQUEUE, "bpf_wq", true }, 3493 { BPF_TASK_WORK, "bpf_task_work", true }, 3494 { BPF_LIST_HEAD, "bpf_list_head", false }, 3495 { BPF_LIST_NODE, "bpf_list_node", false }, 3496 { BPF_RB_ROOT, "bpf_rb_root", false }, 3497 { BPF_RB_NODE, "bpf_rb_node", false }, 3498 { BPF_REFCOUNT, "bpf_refcount", false }, 3499 }; 3500 int type = 0, i; 3501 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3502 const char *field_type_name; 3503 enum btf_field_type field_type; 3504 bool is_unique; 3505 3506 for (i = 0; i < ARRAY_SIZE(field_types); ++i) { 3507 field_type = field_types[i].type; 3508 field_type_name = field_types[i].name; 3509 is_unique = field_types[i].is_unique; 3510 if (!(field_mask & field_type) || strcmp(name, field_type_name)) 3511 continue; 3512 if (is_unique) { 3513 if (*seen_mask & field_type) 3514 return -E2BIG; 3515 *seen_mask |= field_type; 3516 } 3517 type = field_type; 3518 goto end; 3519 } 3520 3521 /* Only return BPF_KPTR when all other types with matchable names fail */ 3522 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { 3523 type = BPF_KPTR_REF; 3524 goto end; 3525 } 3526 return 0; 3527 end: 3528 *sz = btf_field_type_size(type); 3529 *align = btf_field_type_align(type); 3530 return type; 3531 } 3532 3533 /* Repeat a number of fields for a specified number of times. 3534 * 3535 * Copy the fields starting from the first field and repeat them for 3536 * repeat_cnt times. The fields are repeated by adding the offset of each 3537 * field with 3538 * (i + 1) * elem_size 3539 * where i is the repeat index and elem_size is the size of an element. 3540 */ 3541 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3542 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3543 { 3544 u32 i, j; 3545 u32 cur; 3546 3547 /* Ensure not repeating fields that should not be repeated. */ 3548 for (i = 0; i < field_cnt; i++) { 3549 switch (info[i].type) { 3550 case BPF_KPTR_UNREF: 3551 case BPF_KPTR_REF: 3552 case BPF_KPTR_PERCPU: 3553 case BPF_UPTR: 3554 case BPF_LIST_HEAD: 3555 case BPF_RB_ROOT: 3556 break; 3557 default: 3558 return -EINVAL; 3559 } 3560 } 3561 3562 /* The type of struct size or variable size is u32, 3563 * so the multiplication will not overflow. 3564 */ 3565 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3566 return -E2BIG; 3567 3568 cur = field_cnt; 3569 for (i = 0; i < repeat_cnt; i++) { 3570 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3571 for (j = 0; j < field_cnt; j++) 3572 info[cur++].off += (i + 1) * elem_size; 3573 } 3574 3575 return 0; 3576 } 3577 3578 static int btf_find_struct_field(const struct btf *btf, 3579 const struct btf_type *t, u32 field_mask, 3580 struct btf_field_info *info, int info_cnt, 3581 u32 level); 3582 3583 /* Find special fields in the struct type of a field. 3584 * 3585 * This function is used to find fields of special types that is not a 3586 * global variable or a direct field of a struct type. It also handles the 3587 * repetition if it is the element type of an array. 3588 */ 3589 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3590 u32 off, u32 nelems, 3591 u32 field_mask, struct btf_field_info *info, 3592 int info_cnt, u32 level) 3593 { 3594 int ret, err, i; 3595 3596 level++; 3597 if (level >= MAX_RESOLVE_DEPTH) 3598 return -E2BIG; 3599 3600 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3601 3602 if (ret <= 0) 3603 return ret; 3604 3605 /* Shift the offsets of the nested struct fields to the offsets 3606 * related to the container. 3607 */ 3608 for (i = 0; i < ret; i++) 3609 info[i].off += off; 3610 3611 if (nelems > 1) { 3612 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3613 if (err == 0) 3614 ret *= nelems; 3615 else 3616 ret = err; 3617 } 3618 3619 return ret; 3620 } 3621 3622 static int btf_find_field_one(const struct btf *btf, 3623 const struct btf_type *var, 3624 const struct btf_type *var_type, 3625 int var_idx, 3626 u32 off, u32 expected_size, 3627 u32 field_mask, u32 *seen_mask, 3628 struct btf_field_info *info, int info_cnt, 3629 u32 level) 3630 { 3631 int ret, align, sz, field_type; 3632 struct btf_field_info tmp; 3633 const struct btf_array *array; 3634 u32 i, nelems = 1; 3635 3636 /* Walk into array types to find the element type and the number of 3637 * elements in the (flattened) array. 3638 */ 3639 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3640 array = btf_array(var_type); 3641 nelems *= array->nelems; 3642 var_type = btf_type_by_id(btf, array->type); 3643 } 3644 if (i == MAX_RESOLVE_DEPTH) 3645 return -E2BIG; 3646 if (nelems == 0) 3647 return 0; 3648 3649 field_type = btf_get_field_type(btf, var_type, 3650 field_mask, seen_mask, &align, &sz); 3651 /* Look into variables of struct types */ 3652 if (!field_type && __btf_type_is_struct(var_type)) { 3653 sz = var_type->size; 3654 if (expected_size && expected_size != sz * nelems) 3655 return 0; 3656 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3657 &info[0], info_cnt, level); 3658 return ret; 3659 } 3660 3661 if (field_type == 0) 3662 return 0; 3663 if (field_type < 0) 3664 return field_type; 3665 3666 if (expected_size && expected_size != sz * nelems) 3667 return 0; 3668 if (off % align) 3669 return 0; 3670 3671 switch (field_type) { 3672 case BPF_SPIN_LOCK: 3673 case BPF_RES_SPIN_LOCK: 3674 case BPF_TIMER: 3675 case BPF_WORKQUEUE: 3676 case BPF_LIST_NODE: 3677 case BPF_RB_NODE: 3678 case BPF_REFCOUNT: 3679 case BPF_TASK_WORK: 3680 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3681 info_cnt ? &info[0] : &tmp); 3682 if (ret < 0) 3683 return ret; 3684 break; 3685 case BPF_KPTR_UNREF: 3686 case BPF_KPTR_REF: 3687 case BPF_KPTR_PERCPU: 3688 case BPF_UPTR: 3689 ret = btf_find_kptr(btf, var_type, off, sz, 3690 info_cnt ? &info[0] : &tmp, field_mask); 3691 if (ret < 0) 3692 return ret; 3693 break; 3694 case BPF_LIST_HEAD: 3695 case BPF_RB_ROOT: 3696 ret = btf_find_graph_root(btf, var, var_type, 3697 var_idx, off, sz, 3698 info_cnt ? &info[0] : &tmp, 3699 field_type); 3700 if (ret < 0) 3701 return ret; 3702 break; 3703 default: 3704 return -EFAULT; 3705 } 3706 3707 if (ret == BTF_FIELD_IGNORE) 3708 return 0; 3709 if (!info_cnt) 3710 return -E2BIG; 3711 if (nelems > 1) { 3712 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3713 if (ret < 0) 3714 return ret; 3715 } 3716 return nelems; 3717 } 3718 3719 static int btf_find_struct_field(const struct btf *btf, 3720 const struct btf_type *t, u32 field_mask, 3721 struct btf_field_info *info, int info_cnt, 3722 u32 level) 3723 { 3724 int ret, idx = 0; 3725 const struct btf_member *member; 3726 u32 i, off, seen_mask = 0; 3727 3728 for_each_member(i, t, member) { 3729 const struct btf_type *member_type = btf_type_by_id(btf, 3730 member->type); 3731 3732 off = __btf_member_bit_offset(t, member); 3733 if (off % 8) 3734 /* valid C code cannot generate such BTF */ 3735 return -EINVAL; 3736 off /= 8; 3737 3738 ret = btf_find_field_one(btf, t, member_type, i, 3739 off, 0, 3740 field_mask, &seen_mask, 3741 &info[idx], info_cnt - idx, level); 3742 if (ret < 0) 3743 return ret; 3744 idx += ret; 3745 } 3746 return idx; 3747 } 3748 3749 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3750 u32 field_mask, struct btf_field_info *info, 3751 int info_cnt, u32 level) 3752 { 3753 int ret, idx = 0; 3754 const struct btf_var_secinfo *vsi; 3755 u32 i, off, seen_mask = 0; 3756 3757 for_each_vsi(i, t, vsi) { 3758 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3759 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3760 3761 off = vsi->offset; 3762 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3763 field_mask, &seen_mask, 3764 &info[idx], info_cnt - idx, 3765 level); 3766 if (ret < 0) 3767 return ret; 3768 idx += ret; 3769 } 3770 return idx; 3771 } 3772 3773 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3774 u32 field_mask, struct btf_field_info *info, 3775 int info_cnt) 3776 { 3777 if (__btf_type_is_struct(t)) 3778 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3779 else if (btf_type_is_datasec(t)) 3780 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3781 return -EINVAL; 3782 } 3783 3784 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3785 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3786 struct btf_field_info *info) 3787 { 3788 struct module *mod = NULL; 3789 const struct btf_type *t; 3790 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3791 * is that BTF, otherwise it's program BTF 3792 */ 3793 struct btf *kptr_btf; 3794 int ret; 3795 s32 id; 3796 3797 /* Find type in map BTF, and use it to look up the matching type 3798 * in vmlinux or module BTFs, by name and kind. 3799 */ 3800 t = btf_type_by_id(btf, info->kptr.type_id); 3801 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3802 &kptr_btf); 3803 if (id == -ENOENT) { 3804 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3805 WARN_ON_ONCE(btf_is_kernel(btf)); 3806 3807 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3808 * kptr allocated via bpf_obj_new 3809 */ 3810 field->kptr.dtor = NULL; 3811 id = info->kptr.type_id; 3812 kptr_btf = (struct btf *)btf; 3813 goto found_dtor; 3814 } 3815 if (id < 0) 3816 return id; 3817 3818 /* Find and stash the function pointer for the destruction function that 3819 * needs to be eventually invoked from the map free path. 3820 */ 3821 if (info->type == BPF_KPTR_REF) { 3822 const struct btf_type *dtor_func; 3823 const char *dtor_func_name; 3824 unsigned long addr; 3825 s32 dtor_btf_id; 3826 3827 /* This call also serves as a whitelist of allowed objects that 3828 * can be used as a referenced pointer and be stored in a map at 3829 * the same time. 3830 */ 3831 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3832 if (dtor_btf_id < 0) { 3833 ret = dtor_btf_id; 3834 goto end_btf; 3835 } 3836 3837 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3838 if (!dtor_func) { 3839 ret = -ENOENT; 3840 goto end_btf; 3841 } 3842 3843 if (btf_is_module(kptr_btf)) { 3844 mod = btf_try_get_module(kptr_btf); 3845 if (!mod) { 3846 ret = -ENXIO; 3847 goto end_btf; 3848 } 3849 } 3850 3851 /* We already verified dtor_func to be btf_type_is_func 3852 * in register_btf_id_dtor_kfuncs. 3853 */ 3854 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3855 addr = kallsyms_lookup_name(dtor_func_name); 3856 if (!addr) { 3857 ret = -EINVAL; 3858 goto end_mod; 3859 } 3860 field->kptr.dtor = (void *)addr; 3861 } 3862 3863 found_dtor: 3864 field->kptr.btf_id = id; 3865 field->kptr.btf = kptr_btf; 3866 field->kptr.module = mod; 3867 return 0; 3868 end_mod: 3869 module_put(mod); 3870 end_btf: 3871 btf_put(kptr_btf); 3872 return ret; 3873 } 3874 3875 static int btf_parse_graph_root(const struct btf *btf, 3876 struct btf_field *field, 3877 struct btf_field_info *info, 3878 const char *node_type_name, 3879 size_t node_type_align) 3880 { 3881 const struct btf_type *t, *n = NULL; 3882 const struct btf_member *member; 3883 u32 offset; 3884 int i; 3885 3886 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3887 /* We've already checked that value_btf_id is a struct type. We 3888 * just need to figure out the offset of the list_node, and 3889 * verify its type. 3890 */ 3891 for_each_member(i, t, member) { 3892 if (strcmp(info->graph_root.node_name, 3893 __btf_name_by_offset(btf, member->name_off))) 3894 continue; 3895 /* Invalid BTF, two members with same name */ 3896 if (n) 3897 return -EINVAL; 3898 n = btf_type_by_id(btf, member->type); 3899 if (!__btf_type_is_struct(n)) 3900 return -EINVAL; 3901 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3902 return -EINVAL; 3903 offset = __btf_member_bit_offset(n, member); 3904 if (offset % 8) 3905 return -EINVAL; 3906 offset /= 8; 3907 if (offset % node_type_align) 3908 return -EINVAL; 3909 3910 field->graph_root.btf = (struct btf *)btf; 3911 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3912 field->graph_root.node_offset = offset; 3913 } 3914 if (!n) 3915 return -ENOENT; 3916 return 0; 3917 } 3918 3919 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3920 struct btf_field_info *info) 3921 { 3922 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3923 __alignof__(struct bpf_list_node)); 3924 } 3925 3926 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3927 struct btf_field_info *info) 3928 { 3929 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3930 __alignof__(struct bpf_rb_node)); 3931 } 3932 3933 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3934 { 3935 const struct btf_field *a = (const struct btf_field *)_a; 3936 const struct btf_field *b = (const struct btf_field *)_b; 3937 3938 if (a->offset < b->offset) 3939 return -1; 3940 else if (a->offset > b->offset) 3941 return 1; 3942 return 0; 3943 } 3944 3945 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3946 u32 field_mask, u32 value_size) 3947 { 3948 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3949 u32 next_off = 0, field_type_size; 3950 struct btf_record *rec; 3951 int ret, i, cnt; 3952 3953 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3954 if (ret < 0) 3955 return ERR_PTR(ret); 3956 if (!ret) 3957 return NULL; 3958 3959 cnt = ret; 3960 /* This needs to be kzalloc to zero out padding and unused fields, see 3961 * comment in btf_record_equal. 3962 */ 3963 rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 3964 if (!rec) 3965 return ERR_PTR(-ENOMEM); 3966 3967 rec->spin_lock_off = -EINVAL; 3968 rec->res_spin_lock_off = -EINVAL; 3969 rec->timer_off = -EINVAL; 3970 rec->wq_off = -EINVAL; 3971 rec->refcount_off = -EINVAL; 3972 rec->task_work_off = -EINVAL; 3973 for (i = 0; i < cnt; i++) { 3974 field_type_size = btf_field_type_size(info_arr[i].type); 3975 if (info_arr[i].off + field_type_size > value_size) { 3976 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3977 ret = -EFAULT; 3978 goto end; 3979 } 3980 if (info_arr[i].off < next_off) { 3981 ret = -EEXIST; 3982 goto end; 3983 } 3984 next_off = info_arr[i].off + field_type_size; 3985 3986 rec->field_mask |= info_arr[i].type; 3987 rec->fields[i].offset = info_arr[i].off; 3988 rec->fields[i].type = info_arr[i].type; 3989 rec->fields[i].size = field_type_size; 3990 3991 switch (info_arr[i].type) { 3992 case BPF_SPIN_LOCK: 3993 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3994 /* Cache offset for faster lookup at runtime */ 3995 rec->spin_lock_off = rec->fields[i].offset; 3996 break; 3997 case BPF_RES_SPIN_LOCK: 3998 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3999 /* Cache offset for faster lookup at runtime */ 4000 rec->res_spin_lock_off = rec->fields[i].offset; 4001 break; 4002 case BPF_TIMER: 4003 WARN_ON_ONCE(rec->timer_off >= 0); 4004 /* Cache offset for faster lookup at runtime */ 4005 rec->timer_off = rec->fields[i].offset; 4006 break; 4007 case BPF_WORKQUEUE: 4008 WARN_ON_ONCE(rec->wq_off >= 0); 4009 /* Cache offset for faster lookup at runtime */ 4010 rec->wq_off = rec->fields[i].offset; 4011 break; 4012 case BPF_TASK_WORK: 4013 WARN_ON_ONCE(rec->task_work_off >= 0); 4014 rec->task_work_off = rec->fields[i].offset; 4015 break; 4016 case BPF_REFCOUNT: 4017 WARN_ON_ONCE(rec->refcount_off >= 0); 4018 /* Cache offset for faster lookup at runtime */ 4019 rec->refcount_off = rec->fields[i].offset; 4020 break; 4021 case BPF_KPTR_UNREF: 4022 case BPF_KPTR_REF: 4023 case BPF_KPTR_PERCPU: 4024 case BPF_UPTR: 4025 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 4026 if (ret < 0) 4027 goto end; 4028 break; 4029 case BPF_LIST_HEAD: 4030 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4031 if (ret < 0) 4032 goto end; 4033 break; 4034 case BPF_RB_ROOT: 4035 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4036 if (ret < 0) 4037 goto end; 4038 break; 4039 case BPF_LIST_NODE: 4040 case BPF_RB_NODE: 4041 break; 4042 default: 4043 ret = -EFAULT; 4044 goto end; 4045 } 4046 rec->cnt++; 4047 } 4048 4049 if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { 4050 ret = -EINVAL; 4051 goto end; 4052 } 4053 4054 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4055 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4056 btf_record_has_field(rec, BPF_RB_ROOT)) && 4057 (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { 4058 ret = -EINVAL; 4059 goto end; 4060 } 4061 4062 if (rec->refcount_off < 0 && 4063 btf_record_has_field(rec, BPF_LIST_NODE) && 4064 btf_record_has_field(rec, BPF_RB_NODE)) { 4065 ret = -EINVAL; 4066 goto end; 4067 } 4068 4069 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4070 NULL, rec); 4071 4072 return rec; 4073 end: 4074 btf_record_free(rec); 4075 return ERR_PTR(ret); 4076 } 4077 4078 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4079 { 4080 int i; 4081 4082 /* There are three types that signify ownership of some other type: 4083 * kptr_ref, bpf_list_head, bpf_rb_root. 4084 * kptr_ref only supports storing kernel types, which can't store 4085 * references to program allocated local types. 4086 * 4087 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4088 * does not form cycles. 4089 */ 4090 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) 4091 return 0; 4092 for (i = 0; i < rec->cnt; i++) { 4093 struct btf_struct_meta *meta; 4094 const struct btf_type *t; 4095 u32 btf_id; 4096 4097 if (rec->fields[i].type == BPF_UPTR) { 4098 /* The uptr only supports pinning one page and cannot 4099 * point to a kernel struct 4100 */ 4101 if (btf_is_kernel(rec->fields[i].kptr.btf)) 4102 return -EINVAL; 4103 t = btf_type_by_id(rec->fields[i].kptr.btf, 4104 rec->fields[i].kptr.btf_id); 4105 if (!t->size) 4106 return -EINVAL; 4107 if (t->size > PAGE_SIZE) 4108 return -E2BIG; 4109 continue; 4110 } 4111 4112 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4113 continue; 4114 btf_id = rec->fields[i].graph_root.value_btf_id; 4115 meta = btf_find_struct_meta(btf, btf_id); 4116 if (!meta) 4117 return -EFAULT; 4118 rec->fields[i].graph_root.value_rec = meta->record; 4119 4120 /* We need to set value_rec for all root types, but no need 4121 * to check ownership cycle for a type unless it's also a 4122 * node type. 4123 */ 4124 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4125 continue; 4126 4127 /* We need to ensure ownership acyclicity among all types. The 4128 * proper way to do it would be to topologically sort all BTF 4129 * IDs based on the ownership edges, since there can be multiple 4130 * bpf_{list_head,rb_node} in a type. Instead, we use the 4131 * following resaoning: 4132 * 4133 * - A type can only be owned by another type in user BTF if it 4134 * has a bpf_{list,rb}_node. Let's call these node types. 4135 * - A type can only _own_ another type in user BTF if it has a 4136 * bpf_{list_head,rb_root}. Let's call these root types. 4137 * 4138 * We ensure that if a type is both a root and node, its 4139 * element types cannot be root types. 4140 * 4141 * To ensure acyclicity: 4142 * 4143 * When A is an root type but not a node, its ownership 4144 * chain can be: 4145 * A -> B -> C 4146 * Where: 4147 * - A is an root, e.g. has bpf_rb_root. 4148 * - B is both a root and node, e.g. has bpf_rb_node and 4149 * bpf_list_head. 4150 * - C is only an root, e.g. has bpf_list_node 4151 * 4152 * When A is both a root and node, some other type already 4153 * owns it in the BTF domain, hence it can not own 4154 * another root type through any of the ownership edges. 4155 * A -> B 4156 * Where: 4157 * - A is both an root and node. 4158 * - B is only an node. 4159 */ 4160 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4161 return -ELOOP; 4162 } 4163 return 0; 4164 } 4165 4166 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4167 u32 type_id, void *data, u8 bits_offset, 4168 struct btf_show *show) 4169 { 4170 const struct btf_member *member; 4171 void *safe_data; 4172 u32 i; 4173 4174 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4175 if (!safe_data) 4176 return; 4177 4178 for_each_member(i, t, member) { 4179 const struct btf_type *member_type = btf_type_by_id(btf, 4180 member->type); 4181 const struct btf_kind_operations *ops; 4182 u32 member_offset, bitfield_size; 4183 u32 bytes_offset; 4184 u8 bits8_offset; 4185 4186 btf_show_start_member(show, member); 4187 4188 member_offset = __btf_member_bit_offset(t, member); 4189 bitfield_size = __btf_member_bitfield_size(t, member); 4190 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4191 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4192 if (bitfield_size) { 4193 safe_data = btf_show_start_type(show, member_type, 4194 member->type, 4195 data + bytes_offset); 4196 if (safe_data) 4197 btf_bitfield_show(safe_data, 4198 bits8_offset, 4199 bitfield_size, show); 4200 btf_show_end_type(show); 4201 } else { 4202 ops = btf_type_ops(member_type); 4203 ops->show(btf, member_type, member->type, 4204 data + bytes_offset, bits8_offset, show); 4205 } 4206 4207 btf_show_end_member(show); 4208 } 4209 4210 btf_show_end_struct_type(show); 4211 } 4212 4213 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4214 u32 type_id, void *data, u8 bits_offset, 4215 struct btf_show *show) 4216 { 4217 const struct btf_member *m = show->state.member; 4218 4219 /* 4220 * First check if any members would be shown (are non-zero). 4221 * See comments above "struct btf_show" definition for more 4222 * details on how this works at a high-level. 4223 */ 4224 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4225 if (!show->state.depth_check) { 4226 show->state.depth_check = show->state.depth + 1; 4227 show->state.depth_to_show = 0; 4228 } 4229 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4230 /* Restore saved member data here */ 4231 show->state.member = m; 4232 if (show->state.depth_check != show->state.depth + 1) 4233 return; 4234 show->state.depth_check = 0; 4235 4236 if (show->state.depth_to_show <= show->state.depth) 4237 return; 4238 /* 4239 * Reaching here indicates we have recursed and found 4240 * non-zero child values. 4241 */ 4242 } 4243 4244 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4245 } 4246 4247 static const struct btf_kind_operations struct_ops = { 4248 .check_meta = btf_struct_check_meta, 4249 .resolve = btf_struct_resolve, 4250 .check_member = btf_struct_check_member, 4251 .check_kflag_member = btf_generic_check_kflag_member, 4252 .log_details = btf_struct_log, 4253 .show = btf_struct_show, 4254 }; 4255 4256 static int btf_enum_check_member(struct btf_verifier_env *env, 4257 const struct btf_type *struct_type, 4258 const struct btf_member *member, 4259 const struct btf_type *member_type) 4260 { 4261 u32 struct_bits_off = member->offset; 4262 u32 struct_size, bytes_offset; 4263 4264 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4265 btf_verifier_log_member(env, struct_type, member, 4266 "Member is not byte aligned"); 4267 return -EINVAL; 4268 } 4269 4270 struct_size = struct_type->size; 4271 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4272 if (struct_size - bytes_offset < member_type->size) { 4273 btf_verifier_log_member(env, struct_type, member, 4274 "Member exceeds struct_size"); 4275 return -EINVAL; 4276 } 4277 4278 return 0; 4279 } 4280 4281 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4282 const struct btf_type *struct_type, 4283 const struct btf_member *member, 4284 const struct btf_type *member_type) 4285 { 4286 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4287 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4288 4289 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4290 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4291 if (!nr_bits) { 4292 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4293 btf_verifier_log_member(env, struct_type, member, 4294 "Member is not byte aligned"); 4295 return -EINVAL; 4296 } 4297 4298 nr_bits = int_bitsize; 4299 } else if (nr_bits > int_bitsize) { 4300 btf_verifier_log_member(env, struct_type, member, 4301 "Invalid member bitfield_size"); 4302 return -EINVAL; 4303 } 4304 4305 struct_size = struct_type->size; 4306 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4307 if (struct_size < bytes_end) { 4308 btf_verifier_log_member(env, struct_type, member, 4309 "Member exceeds struct_size"); 4310 return -EINVAL; 4311 } 4312 4313 return 0; 4314 } 4315 4316 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4317 const struct btf_type *t, 4318 u32 meta_left) 4319 { 4320 const struct btf_enum *enums = btf_type_enum(t); 4321 struct btf *btf = env->btf; 4322 const char *fmt_str; 4323 u16 i, nr_enums; 4324 u32 meta_needed; 4325 4326 nr_enums = btf_type_vlen(t); 4327 meta_needed = nr_enums * sizeof(*enums); 4328 4329 if (meta_left < meta_needed) { 4330 btf_verifier_log_basic(env, t, 4331 "meta_left:%u meta_needed:%u", 4332 meta_left, meta_needed); 4333 return -EINVAL; 4334 } 4335 4336 if (t->size > 8 || !is_power_of_2(t->size)) { 4337 btf_verifier_log_type(env, t, "Unexpected size"); 4338 return -EINVAL; 4339 } 4340 4341 /* enum type either no name or a valid one */ 4342 if (t->name_off && 4343 !btf_name_valid_identifier(env->btf, t->name_off)) { 4344 btf_verifier_log_type(env, t, "Invalid name"); 4345 return -EINVAL; 4346 } 4347 4348 btf_verifier_log_type(env, t, NULL); 4349 4350 for (i = 0; i < nr_enums; i++) { 4351 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4352 btf_verifier_log(env, "\tInvalid name_offset:%u", 4353 enums[i].name_off); 4354 return -EINVAL; 4355 } 4356 4357 /* enum member must have a valid name */ 4358 if (!enums[i].name_off || 4359 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4360 btf_verifier_log_type(env, t, "Invalid name"); 4361 return -EINVAL; 4362 } 4363 4364 if (env->log.level == BPF_LOG_KERNEL) 4365 continue; 4366 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4367 btf_verifier_log(env, fmt_str, 4368 __btf_name_by_offset(btf, enums[i].name_off), 4369 enums[i].val); 4370 } 4371 4372 return meta_needed; 4373 } 4374 4375 static void btf_enum_log(struct btf_verifier_env *env, 4376 const struct btf_type *t) 4377 { 4378 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4379 } 4380 4381 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4382 u32 type_id, void *data, u8 bits_offset, 4383 struct btf_show *show) 4384 { 4385 const struct btf_enum *enums = btf_type_enum(t); 4386 u32 i, nr_enums = btf_type_vlen(t); 4387 void *safe_data; 4388 int v; 4389 4390 safe_data = btf_show_start_type(show, t, type_id, data); 4391 if (!safe_data) 4392 return; 4393 4394 v = *(int *)safe_data; 4395 4396 for (i = 0; i < nr_enums; i++) { 4397 if (v != enums[i].val) 4398 continue; 4399 4400 btf_show_type_value(show, "%s", 4401 __btf_name_by_offset(btf, 4402 enums[i].name_off)); 4403 4404 btf_show_end_type(show); 4405 return; 4406 } 4407 4408 if (btf_type_kflag(t)) 4409 btf_show_type_value(show, "%d", v); 4410 else 4411 btf_show_type_value(show, "%u", v); 4412 btf_show_end_type(show); 4413 } 4414 4415 static const struct btf_kind_operations enum_ops = { 4416 .check_meta = btf_enum_check_meta, 4417 .resolve = btf_df_resolve, 4418 .check_member = btf_enum_check_member, 4419 .check_kflag_member = btf_enum_check_kflag_member, 4420 .log_details = btf_enum_log, 4421 .show = btf_enum_show, 4422 }; 4423 4424 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4425 const struct btf_type *t, 4426 u32 meta_left) 4427 { 4428 const struct btf_enum64 *enums = btf_type_enum64(t); 4429 struct btf *btf = env->btf; 4430 const char *fmt_str; 4431 u16 i, nr_enums; 4432 u32 meta_needed; 4433 4434 nr_enums = btf_type_vlen(t); 4435 meta_needed = nr_enums * sizeof(*enums); 4436 4437 if (meta_left < meta_needed) { 4438 btf_verifier_log_basic(env, t, 4439 "meta_left:%u meta_needed:%u", 4440 meta_left, meta_needed); 4441 return -EINVAL; 4442 } 4443 4444 if (t->size > 8 || !is_power_of_2(t->size)) { 4445 btf_verifier_log_type(env, t, "Unexpected size"); 4446 return -EINVAL; 4447 } 4448 4449 /* enum type either no name or a valid one */ 4450 if (t->name_off && 4451 !btf_name_valid_identifier(env->btf, t->name_off)) { 4452 btf_verifier_log_type(env, t, "Invalid name"); 4453 return -EINVAL; 4454 } 4455 4456 btf_verifier_log_type(env, t, NULL); 4457 4458 for (i = 0; i < nr_enums; i++) { 4459 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4460 btf_verifier_log(env, "\tInvalid name_offset:%u", 4461 enums[i].name_off); 4462 return -EINVAL; 4463 } 4464 4465 /* enum member must have a valid name */ 4466 if (!enums[i].name_off || 4467 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4468 btf_verifier_log_type(env, t, "Invalid name"); 4469 return -EINVAL; 4470 } 4471 4472 if (env->log.level == BPF_LOG_KERNEL) 4473 continue; 4474 4475 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4476 btf_verifier_log(env, fmt_str, 4477 __btf_name_by_offset(btf, enums[i].name_off), 4478 btf_enum64_value(enums + i)); 4479 } 4480 4481 return meta_needed; 4482 } 4483 4484 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4485 u32 type_id, void *data, u8 bits_offset, 4486 struct btf_show *show) 4487 { 4488 const struct btf_enum64 *enums = btf_type_enum64(t); 4489 u32 i, nr_enums = btf_type_vlen(t); 4490 void *safe_data; 4491 s64 v; 4492 4493 safe_data = btf_show_start_type(show, t, type_id, data); 4494 if (!safe_data) 4495 return; 4496 4497 v = *(u64 *)safe_data; 4498 4499 for (i = 0; i < nr_enums; i++) { 4500 if (v != btf_enum64_value(enums + i)) 4501 continue; 4502 4503 btf_show_type_value(show, "%s", 4504 __btf_name_by_offset(btf, 4505 enums[i].name_off)); 4506 4507 btf_show_end_type(show); 4508 return; 4509 } 4510 4511 if (btf_type_kflag(t)) 4512 btf_show_type_value(show, "%lld", v); 4513 else 4514 btf_show_type_value(show, "%llu", v); 4515 btf_show_end_type(show); 4516 } 4517 4518 static const struct btf_kind_operations enum64_ops = { 4519 .check_meta = btf_enum64_check_meta, 4520 .resolve = btf_df_resolve, 4521 .check_member = btf_enum_check_member, 4522 .check_kflag_member = btf_enum_check_kflag_member, 4523 .log_details = btf_enum_log, 4524 .show = btf_enum64_show, 4525 }; 4526 4527 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4528 const struct btf_type *t, 4529 u32 meta_left) 4530 { 4531 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4532 4533 if (meta_left < meta_needed) { 4534 btf_verifier_log_basic(env, t, 4535 "meta_left:%u meta_needed:%u", 4536 meta_left, meta_needed); 4537 return -EINVAL; 4538 } 4539 4540 if (t->name_off) { 4541 btf_verifier_log_type(env, t, "Invalid name"); 4542 return -EINVAL; 4543 } 4544 4545 if (btf_type_kflag(t)) { 4546 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4547 return -EINVAL; 4548 } 4549 4550 btf_verifier_log_type(env, t, NULL); 4551 4552 return meta_needed; 4553 } 4554 4555 static void btf_func_proto_log(struct btf_verifier_env *env, 4556 const struct btf_type *t) 4557 { 4558 const struct btf_param *args = (const struct btf_param *)(t + 1); 4559 u16 nr_args = btf_type_vlen(t), i; 4560 4561 btf_verifier_log(env, "return=%u args=(", t->type); 4562 if (!nr_args) { 4563 btf_verifier_log(env, "void"); 4564 goto done; 4565 } 4566 4567 if (nr_args == 1 && !args[0].type) { 4568 /* Only one vararg */ 4569 btf_verifier_log(env, "vararg"); 4570 goto done; 4571 } 4572 4573 btf_verifier_log(env, "%u %s", args[0].type, 4574 __btf_name_by_offset(env->btf, 4575 args[0].name_off)); 4576 for (i = 1; i < nr_args - 1; i++) 4577 btf_verifier_log(env, ", %u %s", args[i].type, 4578 __btf_name_by_offset(env->btf, 4579 args[i].name_off)); 4580 4581 if (nr_args > 1) { 4582 const struct btf_param *last_arg = &args[nr_args - 1]; 4583 4584 if (last_arg->type) 4585 btf_verifier_log(env, ", %u %s", last_arg->type, 4586 __btf_name_by_offset(env->btf, 4587 last_arg->name_off)); 4588 else 4589 btf_verifier_log(env, ", vararg"); 4590 } 4591 4592 done: 4593 btf_verifier_log(env, ")"); 4594 } 4595 4596 static const struct btf_kind_operations func_proto_ops = { 4597 .check_meta = btf_func_proto_check_meta, 4598 .resolve = btf_df_resolve, 4599 /* 4600 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4601 * a struct's member. 4602 * 4603 * It should be a function pointer instead. 4604 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4605 * 4606 * Hence, there is no btf_func_check_member(). 4607 */ 4608 .check_member = btf_df_check_member, 4609 .check_kflag_member = btf_df_check_kflag_member, 4610 .log_details = btf_func_proto_log, 4611 .show = btf_df_show, 4612 }; 4613 4614 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4615 const struct btf_type *t, 4616 u32 meta_left) 4617 { 4618 if (!t->name_off || 4619 !btf_name_valid_identifier(env->btf, t->name_off)) { 4620 btf_verifier_log_type(env, t, "Invalid name"); 4621 return -EINVAL; 4622 } 4623 4624 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4625 btf_verifier_log_type(env, t, "Invalid func linkage"); 4626 return -EINVAL; 4627 } 4628 4629 if (btf_type_kflag(t)) { 4630 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4631 return -EINVAL; 4632 } 4633 4634 btf_verifier_log_type(env, t, NULL); 4635 4636 return 0; 4637 } 4638 4639 static int btf_func_resolve(struct btf_verifier_env *env, 4640 const struct resolve_vertex *v) 4641 { 4642 const struct btf_type *t = v->t; 4643 u32 next_type_id = t->type; 4644 int err; 4645 4646 err = btf_func_check(env, t); 4647 if (err) 4648 return err; 4649 4650 env_stack_pop_resolved(env, next_type_id, 0); 4651 return 0; 4652 } 4653 4654 static const struct btf_kind_operations func_ops = { 4655 .check_meta = btf_func_check_meta, 4656 .resolve = btf_func_resolve, 4657 .check_member = btf_df_check_member, 4658 .check_kflag_member = btf_df_check_kflag_member, 4659 .log_details = btf_ref_type_log, 4660 .show = btf_df_show, 4661 }; 4662 4663 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4664 const struct btf_type *t, 4665 u32 meta_left) 4666 { 4667 const struct btf_var *var; 4668 u32 meta_needed = sizeof(*var); 4669 4670 if (meta_left < meta_needed) { 4671 btf_verifier_log_basic(env, t, 4672 "meta_left:%u meta_needed:%u", 4673 meta_left, meta_needed); 4674 return -EINVAL; 4675 } 4676 4677 if (btf_type_vlen(t)) { 4678 btf_verifier_log_type(env, t, "vlen != 0"); 4679 return -EINVAL; 4680 } 4681 4682 if (btf_type_kflag(t)) { 4683 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4684 return -EINVAL; 4685 } 4686 4687 if (!t->name_off || 4688 !btf_name_valid_identifier(env->btf, t->name_off)) { 4689 btf_verifier_log_type(env, t, "Invalid name"); 4690 return -EINVAL; 4691 } 4692 4693 /* A var cannot be in type void */ 4694 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4695 btf_verifier_log_type(env, t, "Invalid type_id"); 4696 return -EINVAL; 4697 } 4698 4699 var = btf_type_var(t); 4700 if (var->linkage != BTF_VAR_STATIC && 4701 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4702 btf_verifier_log_type(env, t, "Linkage not supported"); 4703 return -EINVAL; 4704 } 4705 4706 btf_verifier_log_type(env, t, NULL); 4707 4708 return meta_needed; 4709 } 4710 4711 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4712 { 4713 const struct btf_var *var = btf_type_var(t); 4714 4715 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4716 } 4717 4718 static const struct btf_kind_operations var_ops = { 4719 .check_meta = btf_var_check_meta, 4720 .resolve = btf_var_resolve, 4721 .check_member = btf_df_check_member, 4722 .check_kflag_member = btf_df_check_kflag_member, 4723 .log_details = btf_var_log, 4724 .show = btf_var_show, 4725 }; 4726 4727 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4728 const struct btf_type *t, 4729 u32 meta_left) 4730 { 4731 const struct btf_var_secinfo *vsi; 4732 u64 last_vsi_end_off = 0, sum = 0; 4733 u32 i, meta_needed; 4734 4735 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4736 if (meta_left < meta_needed) { 4737 btf_verifier_log_basic(env, t, 4738 "meta_left:%u meta_needed:%u", 4739 meta_left, meta_needed); 4740 return -EINVAL; 4741 } 4742 4743 if (!t->size) { 4744 btf_verifier_log_type(env, t, "size == 0"); 4745 return -EINVAL; 4746 } 4747 4748 if (btf_type_kflag(t)) { 4749 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4750 return -EINVAL; 4751 } 4752 4753 if (!t->name_off || 4754 !btf_name_valid_section(env->btf, t->name_off)) { 4755 btf_verifier_log_type(env, t, "Invalid name"); 4756 return -EINVAL; 4757 } 4758 4759 btf_verifier_log_type(env, t, NULL); 4760 4761 for_each_vsi(i, t, vsi) { 4762 /* A var cannot be in type void */ 4763 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4764 btf_verifier_log_vsi(env, t, vsi, 4765 "Invalid type_id"); 4766 return -EINVAL; 4767 } 4768 4769 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4770 btf_verifier_log_vsi(env, t, vsi, 4771 "Invalid offset"); 4772 return -EINVAL; 4773 } 4774 4775 if (!vsi->size || vsi->size > t->size) { 4776 btf_verifier_log_vsi(env, t, vsi, 4777 "Invalid size"); 4778 return -EINVAL; 4779 } 4780 4781 last_vsi_end_off = vsi->offset + vsi->size; 4782 if (last_vsi_end_off > t->size) { 4783 btf_verifier_log_vsi(env, t, vsi, 4784 "Invalid offset+size"); 4785 return -EINVAL; 4786 } 4787 4788 btf_verifier_log_vsi(env, t, vsi, NULL); 4789 sum += vsi->size; 4790 } 4791 4792 if (t->size < sum) { 4793 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4794 return -EINVAL; 4795 } 4796 4797 return meta_needed; 4798 } 4799 4800 static int btf_datasec_resolve(struct btf_verifier_env *env, 4801 const struct resolve_vertex *v) 4802 { 4803 const struct btf_var_secinfo *vsi; 4804 struct btf *btf = env->btf; 4805 u16 i; 4806 4807 env->resolve_mode = RESOLVE_TBD; 4808 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4809 u32 var_type_id = vsi->type, type_id, type_size = 0; 4810 const struct btf_type *var_type = btf_type_by_id(env->btf, 4811 var_type_id); 4812 if (!var_type || !btf_type_is_var(var_type)) { 4813 btf_verifier_log_vsi(env, v->t, vsi, 4814 "Not a VAR kind member"); 4815 return -EINVAL; 4816 } 4817 4818 if (!env_type_is_resolve_sink(env, var_type) && 4819 !env_type_is_resolved(env, var_type_id)) { 4820 env_stack_set_next_member(env, i + 1); 4821 return env_stack_push(env, var_type, var_type_id); 4822 } 4823 4824 type_id = var_type->type; 4825 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4826 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4827 return -EINVAL; 4828 } 4829 4830 if (vsi->size < type_size) { 4831 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4832 return -EINVAL; 4833 } 4834 } 4835 4836 env_stack_pop_resolved(env, 0, 0); 4837 return 0; 4838 } 4839 4840 static void btf_datasec_log(struct btf_verifier_env *env, 4841 const struct btf_type *t) 4842 { 4843 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4844 } 4845 4846 static void btf_datasec_show(const struct btf *btf, 4847 const struct btf_type *t, u32 type_id, 4848 void *data, u8 bits_offset, 4849 struct btf_show *show) 4850 { 4851 const struct btf_var_secinfo *vsi; 4852 const struct btf_type *var; 4853 u32 i; 4854 4855 if (!btf_show_start_type(show, t, type_id, data)) 4856 return; 4857 4858 btf_show_type_value(show, "section (\"%s\") = {", 4859 __btf_name_by_offset(btf, t->name_off)); 4860 for_each_vsi(i, t, vsi) { 4861 var = btf_type_by_id(btf, vsi->type); 4862 if (i) 4863 btf_show(show, ","); 4864 btf_type_ops(var)->show(btf, var, vsi->type, 4865 data + vsi->offset, bits_offset, show); 4866 } 4867 btf_show_end_type(show); 4868 } 4869 4870 static const struct btf_kind_operations datasec_ops = { 4871 .check_meta = btf_datasec_check_meta, 4872 .resolve = btf_datasec_resolve, 4873 .check_member = btf_df_check_member, 4874 .check_kflag_member = btf_df_check_kflag_member, 4875 .log_details = btf_datasec_log, 4876 .show = btf_datasec_show, 4877 }; 4878 4879 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4880 const struct btf_type *t, 4881 u32 meta_left) 4882 { 4883 if (btf_type_vlen(t)) { 4884 btf_verifier_log_type(env, t, "vlen != 0"); 4885 return -EINVAL; 4886 } 4887 4888 if (btf_type_kflag(t)) { 4889 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4890 return -EINVAL; 4891 } 4892 4893 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4894 t->size != 16) { 4895 btf_verifier_log_type(env, t, "Invalid type_size"); 4896 return -EINVAL; 4897 } 4898 4899 btf_verifier_log_type(env, t, NULL); 4900 4901 return 0; 4902 } 4903 4904 static int btf_float_check_member(struct btf_verifier_env *env, 4905 const struct btf_type *struct_type, 4906 const struct btf_member *member, 4907 const struct btf_type *member_type) 4908 { 4909 u64 start_offset_bytes; 4910 u64 end_offset_bytes; 4911 u64 misalign_bits; 4912 u64 align_bytes; 4913 u64 align_bits; 4914 4915 /* Different architectures have different alignment requirements, so 4916 * here we check only for the reasonable minimum. This way we ensure 4917 * that types after CO-RE can pass the kernel BTF verifier. 4918 */ 4919 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4920 align_bits = align_bytes * BITS_PER_BYTE; 4921 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4922 if (misalign_bits) { 4923 btf_verifier_log_member(env, struct_type, member, 4924 "Member is not properly aligned"); 4925 return -EINVAL; 4926 } 4927 4928 start_offset_bytes = member->offset / BITS_PER_BYTE; 4929 end_offset_bytes = start_offset_bytes + member_type->size; 4930 if (end_offset_bytes > struct_type->size) { 4931 btf_verifier_log_member(env, struct_type, member, 4932 "Member exceeds struct_size"); 4933 return -EINVAL; 4934 } 4935 4936 return 0; 4937 } 4938 4939 static void btf_float_log(struct btf_verifier_env *env, 4940 const struct btf_type *t) 4941 { 4942 btf_verifier_log(env, "size=%u", t->size); 4943 } 4944 4945 static const struct btf_kind_operations float_ops = { 4946 .check_meta = btf_float_check_meta, 4947 .resolve = btf_df_resolve, 4948 .check_member = btf_float_check_member, 4949 .check_kflag_member = btf_generic_check_kflag_member, 4950 .log_details = btf_float_log, 4951 .show = btf_df_show, 4952 }; 4953 4954 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4955 const struct btf_type *t, 4956 u32 meta_left) 4957 { 4958 const struct btf_decl_tag *tag; 4959 u32 meta_needed = sizeof(*tag); 4960 s32 component_idx; 4961 const char *value; 4962 4963 if (meta_left < meta_needed) { 4964 btf_verifier_log_basic(env, t, 4965 "meta_left:%u meta_needed:%u", 4966 meta_left, meta_needed); 4967 return -EINVAL; 4968 } 4969 4970 value = btf_name_by_offset(env->btf, t->name_off); 4971 if (!value || !value[0]) { 4972 btf_verifier_log_type(env, t, "Invalid value"); 4973 return -EINVAL; 4974 } 4975 4976 if (btf_type_vlen(t)) { 4977 btf_verifier_log_type(env, t, "vlen != 0"); 4978 return -EINVAL; 4979 } 4980 4981 component_idx = btf_type_decl_tag(t)->component_idx; 4982 if (component_idx < -1) { 4983 btf_verifier_log_type(env, t, "Invalid component_idx"); 4984 return -EINVAL; 4985 } 4986 4987 btf_verifier_log_type(env, t, NULL); 4988 4989 return meta_needed; 4990 } 4991 4992 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4993 const struct resolve_vertex *v) 4994 { 4995 const struct btf_type *next_type; 4996 const struct btf_type *t = v->t; 4997 u32 next_type_id = t->type; 4998 struct btf *btf = env->btf; 4999 s32 component_idx; 5000 u32 vlen; 5001 5002 next_type = btf_type_by_id(btf, next_type_id); 5003 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 5004 btf_verifier_log_type(env, v->t, "Invalid type_id"); 5005 return -EINVAL; 5006 } 5007 5008 if (!env_type_is_resolve_sink(env, next_type) && 5009 !env_type_is_resolved(env, next_type_id)) 5010 return env_stack_push(env, next_type, next_type_id); 5011 5012 component_idx = btf_type_decl_tag(t)->component_idx; 5013 if (component_idx != -1) { 5014 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 5015 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5016 return -EINVAL; 5017 } 5018 5019 if (btf_type_is_struct(next_type)) { 5020 vlen = btf_type_vlen(next_type); 5021 } else { 5022 /* next_type should be a function */ 5023 next_type = btf_type_by_id(btf, next_type->type); 5024 vlen = btf_type_vlen(next_type); 5025 } 5026 5027 if ((u32)component_idx >= vlen) { 5028 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5029 return -EINVAL; 5030 } 5031 } 5032 5033 env_stack_pop_resolved(env, next_type_id, 0); 5034 5035 return 0; 5036 } 5037 5038 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 5039 { 5040 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 5041 btf_type_decl_tag(t)->component_idx); 5042 } 5043 5044 static const struct btf_kind_operations decl_tag_ops = { 5045 .check_meta = btf_decl_tag_check_meta, 5046 .resolve = btf_decl_tag_resolve, 5047 .check_member = btf_df_check_member, 5048 .check_kflag_member = btf_df_check_kflag_member, 5049 .log_details = btf_decl_tag_log, 5050 .show = btf_df_show, 5051 }; 5052 5053 static int btf_func_proto_check(struct btf_verifier_env *env, 5054 const struct btf_type *t) 5055 { 5056 const struct btf_type *ret_type; 5057 const struct btf_param *args; 5058 const struct btf *btf; 5059 u16 nr_args, i; 5060 int err; 5061 5062 btf = env->btf; 5063 args = (const struct btf_param *)(t + 1); 5064 nr_args = btf_type_vlen(t); 5065 5066 /* Check func return type which could be "void" (t->type == 0) */ 5067 if (t->type) { 5068 u32 ret_type_id = t->type; 5069 5070 ret_type = btf_type_by_id(btf, ret_type_id); 5071 if (!ret_type) { 5072 btf_verifier_log_type(env, t, "Invalid return type"); 5073 return -EINVAL; 5074 } 5075 5076 if (btf_type_is_resolve_source_only(ret_type)) { 5077 btf_verifier_log_type(env, t, "Invalid return type"); 5078 return -EINVAL; 5079 } 5080 5081 if (btf_type_needs_resolve(ret_type) && 5082 !env_type_is_resolved(env, ret_type_id)) { 5083 err = btf_resolve(env, ret_type, ret_type_id); 5084 if (err) 5085 return err; 5086 } 5087 5088 /* Ensure the return type is a type that has a size */ 5089 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5090 btf_verifier_log_type(env, t, "Invalid return type"); 5091 return -EINVAL; 5092 } 5093 } 5094 5095 if (!nr_args) 5096 return 0; 5097 5098 /* Last func arg type_id could be 0 if it is a vararg */ 5099 if (!args[nr_args - 1].type) { 5100 if (args[nr_args - 1].name_off) { 5101 btf_verifier_log_type(env, t, "Invalid arg#%u", 5102 nr_args); 5103 return -EINVAL; 5104 } 5105 nr_args--; 5106 } 5107 5108 for (i = 0; i < nr_args; i++) { 5109 const struct btf_type *arg_type; 5110 u32 arg_type_id; 5111 5112 arg_type_id = args[i].type; 5113 arg_type = btf_type_by_id(btf, arg_type_id); 5114 if (!arg_type) { 5115 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5116 return -EINVAL; 5117 } 5118 5119 if (btf_type_is_resolve_source_only(arg_type)) { 5120 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5121 return -EINVAL; 5122 } 5123 5124 if (args[i].name_off && 5125 (!btf_name_offset_valid(btf, args[i].name_off) || 5126 !btf_name_valid_identifier(btf, args[i].name_off))) { 5127 btf_verifier_log_type(env, t, 5128 "Invalid arg#%u", i + 1); 5129 return -EINVAL; 5130 } 5131 5132 if (btf_type_needs_resolve(arg_type) && 5133 !env_type_is_resolved(env, arg_type_id)) { 5134 err = btf_resolve(env, arg_type, arg_type_id); 5135 if (err) 5136 return err; 5137 } 5138 5139 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5140 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5141 return -EINVAL; 5142 } 5143 } 5144 5145 return 0; 5146 } 5147 5148 static int btf_func_check(struct btf_verifier_env *env, 5149 const struct btf_type *t) 5150 { 5151 const struct btf_type *proto_type; 5152 const struct btf_param *args; 5153 const struct btf *btf; 5154 u16 nr_args, i; 5155 5156 btf = env->btf; 5157 proto_type = btf_type_by_id(btf, t->type); 5158 5159 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5160 btf_verifier_log_type(env, t, "Invalid type_id"); 5161 return -EINVAL; 5162 } 5163 5164 args = (const struct btf_param *)(proto_type + 1); 5165 nr_args = btf_type_vlen(proto_type); 5166 for (i = 0; i < nr_args; i++) { 5167 if (!args[i].name_off && args[i].type) { 5168 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5169 return -EINVAL; 5170 } 5171 } 5172 5173 return 0; 5174 } 5175 5176 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5177 [BTF_KIND_INT] = &int_ops, 5178 [BTF_KIND_PTR] = &ptr_ops, 5179 [BTF_KIND_ARRAY] = &array_ops, 5180 [BTF_KIND_STRUCT] = &struct_ops, 5181 [BTF_KIND_UNION] = &struct_ops, 5182 [BTF_KIND_ENUM] = &enum_ops, 5183 [BTF_KIND_FWD] = &fwd_ops, 5184 [BTF_KIND_TYPEDEF] = &modifier_ops, 5185 [BTF_KIND_VOLATILE] = &modifier_ops, 5186 [BTF_KIND_CONST] = &modifier_ops, 5187 [BTF_KIND_RESTRICT] = &modifier_ops, 5188 [BTF_KIND_FUNC] = &func_ops, 5189 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5190 [BTF_KIND_VAR] = &var_ops, 5191 [BTF_KIND_DATASEC] = &datasec_ops, 5192 [BTF_KIND_FLOAT] = &float_ops, 5193 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5194 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5195 [BTF_KIND_ENUM64] = &enum64_ops, 5196 }; 5197 5198 static s32 btf_check_meta(struct btf_verifier_env *env, 5199 const struct btf_type *t, 5200 u32 meta_left) 5201 { 5202 u32 saved_meta_left = meta_left; 5203 s32 var_meta_size; 5204 5205 if (meta_left < sizeof(*t)) { 5206 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5207 env->log_type_id, meta_left, sizeof(*t)); 5208 return -EINVAL; 5209 } 5210 meta_left -= sizeof(*t); 5211 5212 if (t->info & ~BTF_INFO_MASK) { 5213 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5214 env->log_type_id, t->info); 5215 return -EINVAL; 5216 } 5217 5218 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5219 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5220 btf_verifier_log(env, "[%u] Invalid kind:%u", 5221 env->log_type_id, BTF_INFO_KIND(t->info)); 5222 return -EINVAL; 5223 } 5224 5225 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5226 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5227 env->log_type_id, t->name_off); 5228 return -EINVAL; 5229 } 5230 5231 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5232 if (var_meta_size < 0) 5233 return var_meta_size; 5234 5235 meta_left -= var_meta_size; 5236 5237 return saved_meta_left - meta_left; 5238 } 5239 5240 static int btf_check_all_metas(struct btf_verifier_env *env) 5241 { 5242 struct btf *btf = env->btf; 5243 struct btf_header *hdr; 5244 void *cur, *end; 5245 5246 hdr = &btf->hdr; 5247 cur = btf->nohdr_data + hdr->type_off; 5248 end = cur + hdr->type_len; 5249 5250 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5251 while (cur < end) { 5252 struct btf_type *t = cur; 5253 s32 meta_size; 5254 5255 meta_size = btf_check_meta(env, t, end - cur); 5256 if (meta_size < 0) 5257 return meta_size; 5258 5259 btf_add_type(env, t); 5260 cur += meta_size; 5261 env->log_type_id++; 5262 } 5263 5264 return 0; 5265 } 5266 5267 static bool btf_resolve_valid(struct btf_verifier_env *env, 5268 const struct btf_type *t, 5269 u32 type_id) 5270 { 5271 struct btf *btf = env->btf; 5272 5273 if (!env_type_is_resolved(env, type_id)) 5274 return false; 5275 5276 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5277 return !btf_resolved_type_id(btf, type_id) && 5278 !btf_resolved_type_size(btf, type_id); 5279 5280 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5281 return btf_resolved_type_id(btf, type_id) && 5282 !btf_resolved_type_size(btf, type_id); 5283 5284 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5285 btf_type_is_var(t)) { 5286 t = btf_type_id_resolve(btf, &type_id); 5287 return t && 5288 !btf_type_is_modifier(t) && 5289 !btf_type_is_var(t) && 5290 !btf_type_is_datasec(t); 5291 } 5292 5293 if (btf_type_is_array(t)) { 5294 const struct btf_array *array = btf_type_array(t); 5295 const struct btf_type *elem_type; 5296 u32 elem_type_id = array->type; 5297 u32 elem_size; 5298 5299 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5300 return elem_type && !btf_type_is_modifier(elem_type) && 5301 (array->nelems * elem_size == 5302 btf_resolved_type_size(btf, type_id)); 5303 } 5304 5305 return false; 5306 } 5307 5308 static int btf_resolve(struct btf_verifier_env *env, 5309 const struct btf_type *t, u32 type_id) 5310 { 5311 u32 save_log_type_id = env->log_type_id; 5312 const struct resolve_vertex *v; 5313 int err = 0; 5314 5315 env->resolve_mode = RESOLVE_TBD; 5316 env_stack_push(env, t, type_id); 5317 while (!err && (v = env_stack_peak(env))) { 5318 env->log_type_id = v->type_id; 5319 err = btf_type_ops(v->t)->resolve(env, v); 5320 } 5321 5322 env->log_type_id = type_id; 5323 if (err == -E2BIG) { 5324 btf_verifier_log_type(env, t, 5325 "Exceeded max resolving depth:%u", 5326 MAX_RESOLVE_DEPTH); 5327 } else if (err == -EEXIST) { 5328 btf_verifier_log_type(env, t, "Loop detected"); 5329 } 5330 5331 /* Final sanity check */ 5332 if (!err && !btf_resolve_valid(env, t, type_id)) { 5333 btf_verifier_log_type(env, t, "Invalid resolve state"); 5334 err = -EINVAL; 5335 } 5336 5337 env->log_type_id = save_log_type_id; 5338 return err; 5339 } 5340 5341 static int btf_check_all_types(struct btf_verifier_env *env) 5342 { 5343 struct btf *btf = env->btf; 5344 const struct btf_type *t; 5345 u32 type_id, i; 5346 int err; 5347 5348 err = env_resolve_init(env); 5349 if (err) 5350 return err; 5351 5352 env->phase++; 5353 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5354 type_id = btf->start_id + i; 5355 t = btf_type_by_id(btf, type_id); 5356 5357 env->log_type_id = type_id; 5358 if (btf_type_needs_resolve(t) && 5359 !env_type_is_resolved(env, type_id)) { 5360 err = btf_resolve(env, t, type_id); 5361 if (err) 5362 return err; 5363 } 5364 5365 if (btf_type_is_func_proto(t)) { 5366 err = btf_func_proto_check(env, t); 5367 if (err) 5368 return err; 5369 } 5370 } 5371 5372 return 0; 5373 } 5374 5375 static int btf_parse_type_sec(struct btf_verifier_env *env) 5376 { 5377 const struct btf_header *hdr = &env->btf->hdr; 5378 int err; 5379 5380 /* Type section must align to 4 bytes */ 5381 if (hdr->type_off & (sizeof(u32) - 1)) { 5382 btf_verifier_log(env, "Unaligned type_off"); 5383 return -EINVAL; 5384 } 5385 5386 if (!env->btf->base_btf && !hdr->type_len) { 5387 btf_verifier_log(env, "No type found"); 5388 return -EINVAL; 5389 } 5390 5391 err = btf_check_all_metas(env); 5392 if (err) 5393 return err; 5394 5395 return btf_check_all_types(env); 5396 } 5397 5398 static int btf_parse_str_sec(struct btf_verifier_env *env) 5399 { 5400 const struct btf_header *hdr; 5401 struct btf *btf = env->btf; 5402 const char *start, *end; 5403 5404 hdr = &btf->hdr; 5405 start = btf->nohdr_data + hdr->str_off; 5406 end = start + hdr->str_len; 5407 5408 if (end != btf->data + btf->data_size) { 5409 btf_verifier_log(env, "String section is not at the end"); 5410 return -EINVAL; 5411 } 5412 5413 btf->strings = start; 5414 5415 if (btf->base_btf && !hdr->str_len) 5416 return 0; 5417 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5418 btf_verifier_log(env, "Invalid string section"); 5419 return -EINVAL; 5420 } 5421 if (!btf->base_btf && start[0]) { 5422 btf_verifier_log(env, "Invalid string section"); 5423 return -EINVAL; 5424 } 5425 5426 return 0; 5427 } 5428 5429 static const size_t btf_sec_info_offset[] = { 5430 offsetof(struct btf_header, type_off), 5431 offsetof(struct btf_header, str_off), 5432 }; 5433 5434 static int btf_sec_info_cmp(const void *a, const void *b) 5435 { 5436 const struct btf_sec_info *x = a; 5437 const struct btf_sec_info *y = b; 5438 5439 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5440 } 5441 5442 static int btf_check_sec_info(struct btf_verifier_env *env, 5443 u32 btf_data_size) 5444 { 5445 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5446 u32 total, expected_total, i; 5447 const struct btf_header *hdr; 5448 const struct btf *btf; 5449 5450 btf = env->btf; 5451 hdr = &btf->hdr; 5452 5453 /* Populate the secs from hdr */ 5454 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5455 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5456 btf_sec_info_offset[i]); 5457 5458 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5459 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5460 5461 /* Check for gaps and overlap among sections */ 5462 total = 0; 5463 expected_total = btf_data_size - hdr->hdr_len; 5464 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5465 if (expected_total < secs[i].off) { 5466 btf_verifier_log(env, "Invalid section offset"); 5467 return -EINVAL; 5468 } 5469 if (total < secs[i].off) { 5470 /* gap */ 5471 btf_verifier_log(env, "Unsupported section found"); 5472 return -EINVAL; 5473 } 5474 if (total > secs[i].off) { 5475 btf_verifier_log(env, "Section overlap found"); 5476 return -EINVAL; 5477 } 5478 if (expected_total - total < secs[i].len) { 5479 btf_verifier_log(env, 5480 "Total section length too long"); 5481 return -EINVAL; 5482 } 5483 total += secs[i].len; 5484 } 5485 5486 /* There is data other than hdr and known sections */ 5487 if (expected_total != total) { 5488 btf_verifier_log(env, "Unsupported section found"); 5489 return -EINVAL; 5490 } 5491 5492 return 0; 5493 } 5494 5495 static int btf_parse_hdr(struct btf_verifier_env *env) 5496 { 5497 u32 hdr_len, hdr_copy, btf_data_size; 5498 const struct btf_header *hdr; 5499 struct btf *btf; 5500 5501 btf = env->btf; 5502 btf_data_size = btf->data_size; 5503 5504 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5505 btf_verifier_log(env, "hdr_len not found"); 5506 return -EINVAL; 5507 } 5508 5509 hdr = btf->data; 5510 hdr_len = hdr->hdr_len; 5511 if (btf_data_size < hdr_len) { 5512 btf_verifier_log(env, "btf_header not found"); 5513 return -EINVAL; 5514 } 5515 5516 /* Ensure the unsupported header fields are zero */ 5517 if (hdr_len > sizeof(btf->hdr)) { 5518 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5519 u8 *end = btf->data + hdr_len; 5520 5521 for (; expected_zero < end; expected_zero++) { 5522 if (*expected_zero) { 5523 btf_verifier_log(env, "Unsupported btf_header"); 5524 return -E2BIG; 5525 } 5526 } 5527 } 5528 5529 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5530 memcpy(&btf->hdr, btf->data, hdr_copy); 5531 5532 hdr = &btf->hdr; 5533 5534 btf_verifier_log_hdr(env, btf_data_size); 5535 5536 if (hdr->magic != BTF_MAGIC) { 5537 btf_verifier_log(env, "Invalid magic"); 5538 return -EINVAL; 5539 } 5540 5541 if (hdr->version != BTF_VERSION) { 5542 btf_verifier_log(env, "Unsupported version"); 5543 return -ENOTSUPP; 5544 } 5545 5546 if (hdr->flags) { 5547 btf_verifier_log(env, "Unsupported flags"); 5548 return -ENOTSUPP; 5549 } 5550 5551 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5552 btf_verifier_log(env, "No data"); 5553 return -EINVAL; 5554 } 5555 5556 return btf_check_sec_info(env, btf_data_size); 5557 } 5558 5559 static const char *alloc_obj_fields[] = { 5560 "bpf_spin_lock", 5561 "bpf_list_head", 5562 "bpf_list_node", 5563 "bpf_rb_root", 5564 "bpf_rb_node", 5565 "bpf_refcount", 5566 }; 5567 5568 static struct btf_struct_metas * 5569 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5570 { 5571 struct btf_struct_metas *tab = NULL; 5572 struct btf_id_set *aof; 5573 int i, n, id, ret; 5574 5575 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5576 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5577 5578 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5579 if (!aof) 5580 return ERR_PTR(-ENOMEM); 5581 aof->cnt = 0; 5582 5583 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5584 /* Try to find whether this special type exists in user BTF, and 5585 * if so remember its ID so we can easily find it among members 5586 * of structs that we iterate in the next loop. 5587 */ 5588 struct btf_id_set *new_aof; 5589 5590 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5591 if (id < 0) 5592 continue; 5593 5594 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), 5595 GFP_KERNEL | __GFP_NOWARN); 5596 if (!new_aof) { 5597 ret = -ENOMEM; 5598 goto free_aof; 5599 } 5600 aof = new_aof; 5601 aof->ids[aof->cnt++] = id; 5602 } 5603 5604 n = btf_nr_types(btf); 5605 for (i = 1; i < n; i++) { 5606 /* Try to find if there are kptrs in user BTF and remember their ID */ 5607 struct btf_id_set *new_aof; 5608 struct btf_field_info tmp; 5609 const struct btf_type *t; 5610 5611 t = btf_type_by_id(btf, i); 5612 if (!t) { 5613 ret = -EINVAL; 5614 goto free_aof; 5615 } 5616 5617 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); 5618 if (ret != BTF_FIELD_FOUND) 5619 continue; 5620 5621 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), 5622 GFP_KERNEL | __GFP_NOWARN); 5623 if (!new_aof) { 5624 ret = -ENOMEM; 5625 goto free_aof; 5626 } 5627 aof = new_aof; 5628 aof->ids[aof->cnt++] = i; 5629 } 5630 5631 if (!aof->cnt) { 5632 kfree(aof); 5633 return NULL; 5634 } 5635 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5636 5637 for (i = 1; i < n; i++) { 5638 struct btf_struct_metas *new_tab; 5639 const struct btf_member *member; 5640 struct btf_struct_meta *type; 5641 struct btf_record *record; 5642 const struct btf_type *t; 5643 int j, tab_cnt; 5644 5645 t = btf_type_by_id(btf, i); 5646 if (!__btf_type_is_struct(t)) 5647 continue; 5648 5649 cond_resched(); 5650 5651 for_each_member(j, t, member) { 5652 if (btf_id_set_contains(aof, member->type)) 5653 goto parse; 5654 } 5655 continue; 5656 parse: 5657 tab_cnt = tab ? tab->cnt : 0; 5658 new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1), 5659 GFP_KERNEL | __GFP_NOWARN); 5660 if (!new_tab) { 5661 ret = -ENOMEM; 5662 goto free; 5663 } 5664 if (!tab) 5665 new_tab->cnt = 0; 5666 tab = new_tab; 5667 5668 type = &tab->types[tab->cnt]; 5669 type->btf_id = i; 5670 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5671 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5672 BPF_KPTR, t->size); 5673 /* The record cannot be unset, treat it as an error if so */ 5674 if (IS_ERR_OR_NULL(record)) { 5675 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5676 goto free; 5677 } 5678 type->record = record; 5679 tab->cnt++; 5680 } 5681 kfree(aof); 5682 return tab; 5683 free: 5684 btf_struct_metas_free(tab); 5685 free_aof: 5686 kfree(aof); 5687 return ERR_PTR(ret); 5688 } 5689 5690 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5691 { 5692 struct btf_struct_metas *tab; 5693 5694 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5695 tab = btf->struct_meta_tab; 5696 if (!tab) 5697 return NULL; 5698 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5699 } 5700 5701 static int btf_check_type_tags(struct btf_verifier_env *env, 5702 struct btf *btf, int start_id) 5703 { 5704 int i, n, good_id = start_id - 1; 5705 bool in_tags; 5706 5707 n = btf_nr_types(btf); 5708 for (i = start_id; i < n; i++) { 5709 const struct btf_type *t; 5710 int chain_limit = 32; 5711 u32 cur_id = i; 5712 5713 t = btf_type_by_id(btf, i); 5714 if (!t) 5715 return -EINVAL; 5716 if (!btf_type_is_modifier(t)) 5717 continue; 5718 5719 cond_resched(); 5720 5721 in_tags = btf_type_is_type_tag(t); 5722 while (btf_type_is_modifier(t)) { 5723 if (!chain_limit--) { 5724 btf_verifier_log(env, "Max chain length or cycle detected"); 5725 return -ELOOP; 5726 } 5727 if (btf_type_is_type_tag(t)) { 5728 if (!in_tags) { 5729 btf_verifier_log(env, "Type tags don't precede modifiers"); 5730 return -EINVAL; 5731 } 5732 } else if (in_tags) { 5733 in_tags = false; 5734 } 5735 if (cur_id <= good_id) 5736 break; 5737 /* Move to next type */ 5738 cur_id = t->type; 5739 t = btf_type_by_id(btf, cur_id); 5740 if (!t) 5741 return -EINVAL; 5742 } 5743 good_id = i; 5744 } 5745 return 0; 5746 } 5747 5748 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5749 { 5750 u32 log_true_size; 5751 int err; 5752 5753 err = bpf_vlog_finalize(log, &log_true_size); 5754 5755 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5756 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5757 &log_true_size, sizeof(log_true_size))) 5758 err = -EFAULT; 5759 5760 return err; 5761 } 5762 5763 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5764 { 5765 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5766 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5767 struct btf_struct_metas *struct_meta_tab; 5768 struct btf_verifier_env *env = NULL; 5769 struct btf *btf = NULL; 5770 u8 *data; 5771 int err, ret; 5772 5773 if (attr->btf_size > BTF_MAX_SIZE) 5774 return ERR_PTR(-E2BIG); 5775 5776 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5777 if (!env) 5778 return ERR_PTR(-ENOMEM); 5779 5780 /* user could have requested verbose verifier output 5781 * and supplied buffer to store the verification trace 5782 */ 5783 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5784 log_ubuf, attr->btf_log_size); 5785 if (err) 5786 goto errout_free; 5787 5788 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5789 if (!btf) { 5790 err = -ENOMEM; 5791 goto errout; 5792 } 5793 env->btf = btf; 5794 5795 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5796 if (!data) { 5797 err = -ENOMEM; 5798 goto errout; 5799 } 5800 5801 btf->data = data; 5802 btf->data_size = attr->btf_size; 5803 5804 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5805 err = -EFAULT; 5806 goto errout; 5807 } 5808 5809 err = btf_parse_hdr(env); 5810 if (err) 5811 goto errout; 5812 5813 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5814 5815 err = btf_parse_str_sec(env); 5816 if (err) 5817 goto errout; 5818 5819 err = btf_parse_type_sec(env); 5820 if (err) 5821 goto errout; 5822 5823 err = btf_check_type_tags(env, btf, 1); 5824 if (err) 5825 goto errout; 5826 5827 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5828 if (IS_ERR(struct_meta_tab)) { 5829 err = PTR_ERR(struct_meta_tab); 5830 goto errout; 5831 } 5832 btf->struct_meta_tab = struct_meta_tab; 5833 5834 if (struct_meta_tab) { 5835 int i; 5836 5837 for (i = 0; i < struct_meta_tab->cnt; i++) { 5838 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5839 if (err < 0) 5840 goto errout_meta; 5841 } 5842 } 5843 5844 err = finalize_log(&env->log, uattr, uattr_size); 5845 if (err) 5846 goto errout_free; 5847 5848 btf_verifier_env_free(env); 5849 refcount_set(&btf->refcnt, 1); 5850 return btf; 5851 5852 errout_meta: 5853 btf_free_struct_meta_tab(btf); 5854 errout: 5855 /* overwrite err with -ENOSPC or -EFAULT */ 5856 ret = finalize_log(&env->log, uattr, uattr_size); 5857 if (ret) 5858 err = ret; 5859 errout_free: 5860 btf_verifier_env_free(env); 5861 if (btf) 5862 btf_free(btf); 5863 return ERR_PTR(err); 5864 } 5865 5866 extern char __start_BTF[]; 5867 extern char __stop_BTF[]; 5868 extern struct btf *btf_vmlinux; 5869 5870 #define BPF_MAP_TYPE(_id, _ops) 5871 #define BPF_LINK_TYPE(_id, _name) 5872 static union { 5873 struct bpf_ctx_convert { 5874 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5875 prog_ctx_type _id##_prog; \ 5876 kern_ctx_type _id##_kern; 5877 #include <linux/bpf_types.h> 5878 #undef BPF_PROG_TYPE 5879 } *__t; 5880 /* 't' is written once under lock. Read many times. */ 5881 const struct btf_type *t; 5882 } bpf_ctx_convert; 5883 enum { 5884 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5885 __ctx_convert##_id, 5886 #include <linux/bpf_types.h> 5887 #undef BPF_PROG_TYPE 5888 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5889 }; 5890 static u8 bpf_ctx_convert_map[] = { 5891 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5892 [_id] = __ctx_convert##_id, 5893 #include <linux/bpf_types.h> 5894 #undef BPF_PROG_TYPE 5895 0, /* avoid empty array */ 5896 }; 5897 #undef BPF_MAP_TYPE 5898 #undef BPF_LINK_TYPE 5899 5900 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5901 { 5902 const struct btf_type *conv_struct; 5903 const struct btf_member *ctx_type; 5904 5905 conv_struct = bpf_ctx_convert.t; 5906 if (!conv_struct) 5907 return NULL; 5908 /* prog_type is valid bpf program type. No need for bounds check. */ 5909 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5910 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5911 * Like 'struct __sk_buff' 5912 */ 5913 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5914 } 5915 5916 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5917 { 5918 const struct btf_type *conv_struct; 5919 const struct btf_member *ctx_type; 5920 5921 conv_struct = bpf_ctx_convert.t; 5922 if (!conv_struct) 5923 return -EFAULT; 5924 /* prog_type is valid bpf program type. No need for bounds check. */ 5925 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5926 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5927 * Like 'struct sk_buff' 5928 */ 5929 return ctx_type->type; 5930 } 5931 5932 bool btf_is_projection_of(const char *pname, const char *tname) 5933 { 5934 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5935 return true; 5936 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5937 return true; 5938 return false; 5939 } 5940 5941 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5942 const struct btf_type *t, enum bpf_prog_type prog_type, 5943 int arg) 5944 { 5945 const struct btf_type *ctx_type; 5946 const char *tname, *ctx_tname; 5947 5948 t = btf_type_by_id(btf, t->type); 5949 5950 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5951 * check before we skip all the typedef below. 5952 */ 5953 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5954 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5955 t = btf_type_by_id(btf, t->type); 5956 5957 if (btf_type_is_typedef(t)) { 5958 tname = btf_name_by_offset(btf, t->name_off); 5959 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5960 return true; 5961 } 5962 } 5963 5964 while (btf_type_is_modifier(t)) 5965 t = btf_type_by_id(btf, t->type); 5966 if (!btf_type_is_struct(t)) { 5967 /* Only pointer to struct is supported for now. 5968 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5969 * is not supported yet. 5970 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5971 */ 5972 return false; 5973 } 5974 tname = btf_name_by_offset(btf, t->name_off); 5975 if (!tname) { 5976 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5977 return false; 5978 } 5979 5980 ctx_type = find_canonical_prog_ctx_type(prog_type); 5981 if (!ctx_type) { 5982 bpf_log(log, "btf_vmlinux is malformed\n"); 5983 /* should not happen */ 5984 return false; 5985 } 5986 again: 5987 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5988 if (!ctx_tname) { 5989 /* should not happen */ 5990 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5991 return false; 5992 } 5993 /* program types without named context types work only with arg:ctx tag */ 5994 if (ctx_tname[0] == '\0') 5995 return false; 5996 /* only compare that prog's ctx type name is the same as 5997 * kernel expects. No need to compare field by field. 5998 * It's ok for bpf prog to do: 5999 * struct __sk_buff {}; 6000 * int socket_filter_bpf_prog(struct __sk_buff *skb) 6001 * { // no fields of skb are ever used } 6002 */ 6003 if (btf_is_projection_of(ctx_tname, tname)) 6004 return true; 6005 if (strcmp(ctx_tname, tname)) { 6006 /* bpf_user_pt_regs_t is a typedef, so resolve it to 6007 * underlying struct and check name again 6008 */ 6009 if (!btf_type_is_modifier(ctx_type)) 6010 return false; 6011 while (btf_type_is_modifier(ctx_type)) 6012 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6013 goto again; 6014 } 6015 return true; 6016 } 6017 6018 /* forward declarations for arch-specific underlying types of 6019 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 6020 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 6021 * works correctly with __builtin_types_compatible_p() on respective 6022 * architectures 6023 */ 6024 struct user_regs_struct; 6025 struct user_pt_regs; 6026 6027 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 6028 const struct btf_type *t, int arg, 6029 enum bpf_prog_type prog_type, 6030 enum bpf_attach_type attach_type) 6031 { 6032 const struct btf_type *ctx_type; 6033 const char *tname, *ctx_tname; 6034 6035 if (!btf_is_ptr(t)) { 6036 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 6037 return -EINVAL; 6038 } 6039 t = btf_type_by_id(btf, t->type); 6040 6041 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 6042 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 6043 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 6044 t = btf_type_by_id(btf, t->type); 6045 6046 if (btf_type_is_typedef(t)) { 6047 tname = btf_name_by_offset(btf, t->name_off); 6048 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6049 return 0; 6050 } 6051 } 6052 6053 /* all other program types don't use typedefs for context type */ 6054 while (btf_type_is_modifier(t)) 6055 t = btf_type_by_id(btf, t->type); 6056 6057 /* `void *ctx __arg_ctx` is always valid */ 6058 if (btf_type_is_void(t)) 6059 return 0; 6060 6061 tname = btf_name_by_offset(btf, t->name_off); 6062 if (str_is_empty(tname)) { 6063 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6064 return -EINVAL; 6065 } 6066 6067 /* special cases */ 6068 switch (prog_type) { 6069 case BPF_PROG_TYPE_KPROBE: 6070 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6071 return 0; 6072 break; 6073 case BPF_PROG_TYPE_PERF_EVENT: 6074 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6075 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6076 return 0; 6077 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6078 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6079 return 0; 6080 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6081 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6082 return 0; 6083 break; 6084 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6085 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6086 /* allow u64* as ctx */ 6087 if (btf_is_int(t) && t->size == 8) 6088 return 0; 6089 break; 6090 case BPF_PROG_TYPE_TRACING: 6091 switch (attach_type) { 6092 case BPF_TRACE_RAW_TP: 6093 /* tp_btf program is TRACING, so need special case here */ 6094 if (__btf_type_is_struct(t) && 6095 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6096 return 0; 6097 /* allow u64* as ctx */ 6098 if (btf_is_int(t) && t->size == 8) 6099 return 0; 6100 break; 6101 case BPF_TRACE_ITER: 6102 /* allow struct bpf_iter__xxx types only */ 6103 if (__btf_type_is_struct(t) && 6104 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6105 return 0; 6106 break; 6107 case BPF_TRACE_FENTRY: 6108 case BPF_TRACE_FEXIT: 6109 case BPF_MODIFY_RETURN: 6110 /* allow u64* as ctx */ 6111 if (btf_is_int(t) && t->size == 8) 6112 return 0; 6113 break; 6114 default: 6115 break; 6116 } 6117 break; 6118 case BPF_PROG_TYPE_LSM: 6119 case BPF_PROG_TYPE_STRUCT_OPS: 6120 /* allow u64* as ctx */ 6121 if (btf_is_int(t) && t->size == 8) 6122 return 0; 6123 break; 6124 case BPF_PROG_TYPE_TRACEPOINT: 6125 case BPF_PROG_TYPE_SYSCALL: 6126 case BPF_PROG_TYPE_EXT: 6127 return 0; /* anything goes */ 6128 default: 6129 break; 6130 } 6131 6132 ctx_type = find_canonical_prog_ctx_type(prog_type); 6133 if (!ctx_type) { 6134 /* should not happen */ 6135 bpf_log(log, "btf_vmlinux is malformed\n"); 6136 return -EINVAL; 6137 } 6138 6139 /* resolve typedefs and check that underlying structs are matching as well */ 6140 while (btf_type_is_modifier(ctx_type)) 6141 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6142 6143 /* if program type doesn't have distinctly named struct type for 6144 * context, then __arg_ctx argument can only be `void *`, which we 6145 * already checked above 6146 */ 6147 if (!__btf_type_is_struct(ctx_type)) { 6148 bpf_log(log, "arg#%d should be void pointer\n", arg); 6149 return -EINVAL; 6150 } 6151 6152 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6153 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6154 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6155 return -EINVAL; 6156 } 6157 6158 return 0; 6159 } 6160 6161 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6162 struct btf *btf, 6163 const struct btf_type *t, 6164 enum bpf_prog_type prog_type, 6165 int arg) 6166 { 6167 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6168 return -ENOENT; 6169 return find_kern_ctx_type_id(prog_type); 6170 } 6171 6172 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6173 { 6174 const struct btf_member *kctx_member; 6175 const struct btf_type *conv_struct; 6176 const struct btf_type *kctx_type; 6177 u32 kctx_type_id; 6178 6179 conv_struct = bpf_ctx_convert.t; 6180 /* get member for kernel ctx type */ 6181 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6182 kctx_type_id = kctx_member->type; 6183 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6184 if (!btf_type_is_struct(kctx_type)) { 6185 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6186 return -EINVAL; 6187 } 6188 6189 return kctx_type_id; 6190 } 6191 6192 BTF_ID_LIST_SINGLE(bpf_ctx_convert_btf_id, struct, bpf_ctx_convert) 6193 6194 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6195 void *data, unsigned int data_size) 6196 { 6197 struct btf *btf = NULL; 6198 int err; 6199 6200 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6201 return ERR_PTR(-ENOENT); 6202 6203 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6204 if (!btf) { 6205 err = -ENOMEM; 6206 goto errout; 6207 } 6208 env->btf = btf; 6209 6210 btf->data = data; 6211 btf->data_size = data_size; 6212 btf->kernel_btf = true; 6213 snprintf(btf->name, sizeof(btf->name), "%s", name); 6214 6215 err = btf_parse_hdr(env); 6216 if (err) 6217 goto errout; 6218 6219 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6220 6221 err = btf_parse_str_sec(env); 6222 if (err) 6223 goto errout; 6224 6225 err = btf_check_all_metas(env); 6226 if (err) 6227 goto errout; 6228 6229 err = btf_check_type_tags(env, btf, 1); 6230 if (err) 6231 goto errout; 6232 6233 refcount_set(&btf->refcnt, 1); 6234 6235 return btf; 6236 6237 errout: 6238 if (btf) { 6239 kvfree(btf->types); 6240 kfree(btf); 6241 } 6242 return ERR_PTR(err); 6243 } 6244 6245 struct btf *btf_parse_vmlinux(void) 6246 { 6247 struct btf_verifier_env *env = NULL; 6248 struct bpf_verifier_log *log; 6249 struct btf *btf; 6250 int err; 6251 6252 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6253 if (!env) 6254 return ERR_PTR(-ENOMEM); 6255 6256 log = &env->log; 6257 log->level = BPF_LOG_KERNEL; 6258 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6259 if (IS_ERR(btf)) 6260 goto err_out; 6261 6262 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6263 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6264 err = btf_alloc_id(btf); 6265 if (err) { 6266 btf_free(btf); 6267 btf = ERR_PTR(err); 6268 } 6269 err_out: 6270 btf_verifier_env_free(env); 6271 return btf; 6272 } 6273 6274 /* If .BTF_ids section was created with distilled base BTF, both base and 6275 * split BTF ids will need to be mapped to actual base/split ids for 6276 * BTF now that it has been relocated. 6277 */ 6278 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6279 { 6280 if (!btf->base_btf || !btf->base_id_map) 6281 return id; 6282 return btf->base_id_map[id]; 6283 } 6284 6285 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6286 6287 static struct btf *btf_parse_module(const char *module_name, const void *data, 6288 unsigned int data_size, void *base_data, 6289 unsigned int base_data_size) 6290 { 6291 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6292 struct btf_verifier_env *env = NULL; 6293 struct bpf_verifier_log *log; 6294 int err = 0; 6295 6296 vmlinux_btf = bpf_get_btf_vmlinux(); 6297 if (IS_ERR(vmlinux_btf)) 6298 return vmlinux_btf; 6299 if (!vmlinux_btf) 6300 return ERR_PTR(-EINVAL); 6301 6302 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6303 if (!env) 6304 return ERR_PTR(-ENOMEM); 6305 6306 log = &env->log; 6307 log->level = BPF_LOG_KERNEL; 6308 6309 if (base_data) { 6310 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6311 if (IS_ERR(base_btf)) { 6312 err = PTR_ERR(base_btf); 6313 goto errout; 6314 } 6315 } else { 6316 base_btf = vmlinux_btf; 6317 } 6318 6319 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6320 if (!btf) { 6321 err = -ENOMEM; 6322 goto errout; 6323 } 6324 env->btf = btf; 6325 6326 btf->base_btf = base_btf; 6327 btf->start_id = base_btf->nr_types; 6328 btf->start_str_off = base_btf->hdr.str_len; 6329 btf->kernel_btf = true; 6330 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6331 6332 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6333 if (!btf->data) { 6334 err = -ENOMEM; 6335 goto errout; 6336 } 6337 btf->data_size = data_size; 6338 6339 err = btf_parse_hdr(env); 6340 if (err) 6341 goto errout; 6342 6343 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6344 6345 err = btf_parse_str_sec(env); 6346 if (err) 6347 goto errout; 6348 6349 err = btf_check_all_metas(env); 6350 if (err) 6351 goto errout; 6352 6353 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6354 if (err) 6355 goto errout; 6356 6357 if (base_btf != vmlinux_btf) { 6358 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6359 if (err) 6360 goto errout; 6361 btf_free(base_btf); 6362 base_btf = vmlinux_btf; 6363 } 6364 6365 btf_verifier_env_free(env); 6366 refcount_set(&btf->refcnt, 1); 6367 return btf; 6368 6369 errout: 6370 btf_verifier_env_free(env); 6371 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6372 btf_free(base_btf); 6373 if (btf) { 6374 kvfree(btf->data); 6375 kvfree(btf->types); 6376 kfree(btf); 6377 } 6378 return ERR_PTR(err); 6379 } 6380 6381 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6382 6383 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6384 { 6385 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6386 6387 if (tgt_prog) 6388 return tgt_prog->aux->btf; 6389 else 6390 return prog->aux->attach_btf; 6391 } 6392 6393 static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t) 6394 { 6395 /* skip modifiers */ 6396 t = btf_type_skip_modifiers(btf, t->type, NULL); 6397 return btf_type_is_void(t) || btf_type_is_int(t); 6398 } 6399 6400 u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6401 int off) 6402 { 6403 const struct btf_param *args; 6404 const struct btf_type *t; 6405 u32 offset = 0, nr_args; 6406 int i; 6407 6408 if (!func_proto) 6409 return off / 8; 6410 6411 nr_args = btf_type_vlen(func_proto); 6412 args = (const struct btf_param *)(func_proto + 1); 6413 for (i = 0; i < nr_args; i++) { 6414 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6415 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6416 if (off < offset) 6417 return i; 6418 } 6419 6420 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6421 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6422 if (off < offset) 6423 return nr_args; 6424 6425 return nr_args + 1; 6426 } 6427 6428 static bool prog_args_trusted(const struct bpf_prog *prog) 6429 { 6430 enum bpf_attach_type atype = prog->expected_attach_type; 6431 6432 switch (prog->type) { 6433 case BPF_PROG_TYPE_TRACING: 6434 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6435 case BPF_PROG_TYPE_LSM: 6436 return bpf_lsm_is_trusted(prog); 6437 case BPF_PROG_TYPE_STRUCT_OPS: 6438 return true; 6439 default: 6440 return false; 6441 } 6442 } 6443 6444 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6445 u32 arg_no) 6446 { 6447 const struct btf_param *args; 6448 const struct btf_type *t; 6449 int off = 0, i; 6450 u32 sz; 6451 6452 args = btf_params(func_proto); 6453 for (i = 0; i < arg_no; i++) { 6454 t = btf_type_by_id(btf, args[i].type); 6455 t = btf_resolve_size(btf, t, &sz); 6456 if (IS_ERR(t)) 6457 return PTR_ERR(t); 6458 off += roundup(sz, 8); 6459 } 6460 6461 return off; 6462 } 6463 6464 struct bpf_raw_tp_null_args { 6465 const char *func; 6466 u64 mask; 6467 }; 6468 6469 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { 6470 /* sched */ 6471 { "sched_pi_setprio", 0x10 }, 6472 /* ... from sched_numa_pair_template event class */ 6473 { "sched_stick_numa", 0x100 }, 6474 { "sched_swap_numa", 0x100 }, 6475 /* afs */ 6476 { "afs_make_fs_call", 0x10 }, 6477 { "afs_make_fs_calli", 0x10 }, 6478 { "afs_make_fs_call1", 0x10 }, 6479 { "afs_make_fs_call2", 0x10 }, 6480 { "afs_protocol_error", 0x1 }, 6481 { "afs_flock_ev", 0x10 }, 6482 /* cachefiles */ 6483 { "cachefiles_lookup", 0x1 | 0x200 }, 6484 { "cachefiles_unlink", 0x1 }, 6485 { "cachefiles_rename", 0x1 }, 6486 { "cachefiles_prep_read", 0x1 }, 6487 { "cachefiles_mark_active", 0x1 }, 6488 { "cachefiles_mark_failed", 0x1 }, 6489 { "cachefiles_mark_inactive", 0x1 }, 6490 { "cachefiles_vfs_error", 0x1 }, 6491 { "cachefiles_io_error", 0x1 }, 6492 { "cachefiles_ondemand_open", 0x1 }, 6493 { "cachefiles_ondemand_copen", 0x1 }, 6494 { "cachefiles_ondemand_close", 0x1 }, 6495 { "cachefiles_ondemand_read", 0x1 }, 6496 { "cachefiles_ondemand_cread", 0x1 }, 6497 { "cachefiles_ondemand_fd_write", 0x1 }, 6498 { "cachefiles_ondemand_fd_release", 0x1 }, 6499 /* ext4, from ext4__mballoc event class */ 6500 { "ext4_mballoc_discard", 0x10 }, 6501 { "ext4_mballoc_free", 0x10 }, 6502 /* fib */ 6503 { "fib_table_lookup", 0x100 }, 6504 /* filelock */ 6505 /* ... from filelock_lock event class */ 6506 { "posix_lock_inode", 0x10 }, 6507 { "fcntl_setlk", 0x10 }, 6508 { "locks_remove_posix", 0x10 }, 6509 { "flock_lock_inode", 0x10 }, 6510 /* ... from filelock_lease event class */ 6511 { "break_lease_noblock", 0x10 }, 6512 { "break_lease_block", 0x10 }, 6513 { "break_lease_unblock", 0x10 }, 6514 { "generic_delete_lease", 0x10 }, 6515 { "time_out_leases", 0x10 }, 6516 /* host1x */ 6517 { "host1x_cdma_push_gather", 0x10000 }, 6518 /* huge_memory */ 6519 { "mm_khugepaged_scan_pmd", 0x10 }, 6520 { "mm_collapse_huge_page_isolate", 0x1 }, 6521 { "mm_khugepaged_scan_file", 0x10 }, 6522 { "mm_khugepaged_collapse_file", 0x10 }, 6523 /* kmem */ 6524 { "mm_page_alloc", 0x1 }, 6525 { "mm_page_pcpu_drain", 0x1 }, 6526 /* .. from mm_page event class */ 6527 { "mm_page_alloc_zone_locked", 0x1 }, 6528 /* netfs */ 6529 { "netfs_failure", 0x10 }, 6530 /* power */ 6531 { "device_pm_callback_start", 0x10 }, 6532 /* qdisc */ 6533 { "qdisc_dequeue", 0x1000 }, 6534 /* rxrpc */ 6535 { "rxrpc_recvdata", 0x1 }, 6536 { "rxrpc_resend", 0x10 }, 6537 { "rxrpc_tq", 0x10 }, 6538 { "rxrpc_client", 0x1 }, 6539 /* skb */ 6540 {"kfree_skb", 0x1000}, 6541 /* sunrpc */ 6542 { "xs_stream_read_data", 0x1 }, 6543 /* ... from xprt_cong_event event class */ 6544 { "xprt_reserve_cong", 0x10 }, 6545 { "xprt_release_cong", 0x10 }, 6546 { "xprt_get_cong", 0x10 }, 6547 { "xprt_put_cong", 0x10 }, 6548 /* tcp */ 6549 { "tcp_send_reset", 0x11 }, 6550 { "tcp_sendmsg_locked", 0x100 }, 6551 /* tegra_apb_dma */ 6552 { "tegra_dma_tx_status", 0x100 }, 6553 /* timer_migration */ 6554 { "tmigr_update_events", 0x1 }, 6555 /* writeback, from writeback_folio_template event class */ 6556 { "writeback_dirty_folio", 0x10 }, 6557 { "folio_wait_writeback", 0x10 }, 6558 /* rdma */ 6559 { "mr_integ_alloc", 0x2000 }, 6560 /* bpf_testmod */ 6561 { "bpf_testmod_test_read", 0x0 }, 6562 /* amdgpu */ 6563 { "amdgpu_vm_bo_map", 0x1 }, 6564 { "amdgpu_vm_bo_unmap", 0x1 }, 6565 /* netfs */ 6566 { "netfs_folioq", 0x1 }, 6567 /* xfs from xfs_defer_pending_class */ 6568 { "xfs_defer_create_intent", 0x1 }, 6569 { "xfs_defer_cancel_list", 0x1 }, 6570 { "xfs_defer_pending_finish", 0x1 }, 6571 { "xfs_defer_pending_abort", 0x1 }, 6572 { "xfs_defer_relog_intent", 0x1 }, 6573 { "xfs_defer_isolate_paused", 0x1 }, 6574 { "xfs_defer_item_pause", 0x1 }, 6575 { "xfs_defer_item_unpause", 0x1 }, 6576 /* xfs from xfs_defer_pending_item_class */ 6577 { "xfs_defer_add_item", 0x1 }, 6578 { "xfs_defer_cancel_item", 0x1 }, 6579 { "xfs_defer_finish_item", 0x1 }, 6580 /* xfs from xfs_icwalk_class */ 6581 { "xfs_ioc_free_eofblocks", 0x10 }, 6582 { "xfs_blockgc_free_space", 0x10 }, 6583 /* xfs from xfs_btree_cur_class */ 6584 { "xfs_btree_updkeys", 0x100 }, 6585 { "xfs_btree_overlapped_query_range", 0x100 }, 6586 /* xfs from xfs_imap_class*/ 6587 { "xfs_map_blocks_found", 0x10000 }, 6588 { "xfs_map_blocks_alloc", 0x10000 }, 6589 { "xfs_iomap_alloc", 0x1000 }, 6590 { "xfs_iomap_found", 0x1000 }, 6591 /* xfs from xfs_fs_class */ 6592 { "xfs_inodegc_flush", 0x1 }, 6593 { "xfs_inodegc_push", 0x1 }, 6594 { "xfs_inodegc_start", 0x1 }, 6595 { "xfs_inodegc_stop", 0x1 }, 6596 { "xfs_inodegc_queue", 0x1 }, 6597 { "xfs_inodegc_throttle", 0x1 }, 6598 { "xfs_fs_sync_fs", 0x1 }, 6599 { "xfs_blockgc_start", 0x1 }, 6600 { "xfs_blockgc_stop", 0x1 }, 6601 { "xfs_blockgc_worker", 0x1 }, 6602 { "xfs_blockgc_flush_all", 0x1 }, 6603 /* xfs_scrub */ 6604 { "xchk_nlinks_live_update", 0x10 }, 6605 /* xfs_scrub from xchk_metapath_class */ 6606 { "xchk_metapath_lookup", 0x100 }, 6607 /* nfsd */ 6608 { "nfsd_dirent", 0x1 }, 6609 { "nfsd_file_acquire", 0x1001 }, 6610 { "nfsd_file_insert_err", 0x1 }, 6611 { "nfsd_file_cons_err", 0x1 }, 6612 /* nfs4 */ 6613 { "nfs4_setup_sequence", 0x1 }, 6614 { "pnfs_update_layout", 0x10000 }, 6615 { "nfs4_inode_callback_event", 0x200 }, 6616 { "nfs4_inode_stateid_callback_event", 0x200 }, 6617 /* nfs from pnfs_layout_event */ 6618 { "pnfs_mds_fallback_pg_init_read", 0x10000 }, 6619 { "pnfs_mds_fallback_pg_init_write", 0x10000 }, 6620 { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 }, 6621 { "pnfs_mds_fallback_read_done", 0x10000 }, 6622 { "pnfs_mds_fallback_write_done", 0x10000 }, 6623 { "pnfs_mds_fallback_read_pagelist", 0x10000 }, 6624 { "pnfs_mds_fallback_write_pagelist", 0x10000 }, 6625 /* coda */ 6626 { "coda_dec_pic_run", 0x10 }, 6627 { "coda_dec_pic_done", 0x10 }, 6628 /* cfg80211 */ 6629 { "cfg80211_scan_done", 0x11 }, 6630 { "rdev_set_coalesce", 0x10 }, 6631 { "cfg80211_report_wowlan_wakeup", 0x100 }, 6632 { "cfg80211_inform_bss_frame", 0x100 }, 6633 { "cfg80211_michael_mic_failure", 0x10000 }, 6634 /* cfg80211 from wiphy_work_event */ 6635 { "wiphy_work_queue", 0x10 }, 6636 { "wiphy_work_run", 0x10 }, 6637 { "wiphy_work_cancel", 0x10 }, 6638 { "wiphy_work_flush", 0x10 }, 6639 /* hugetlbfs */ 6640 { "hugetlbfs_alloc_inode", 0x10 }, 6641 /* spufs */ 6642 { "spufs_context", 0x10 }, 6643 /* kvm_hv */ 6644 { "kvm_page_fault_enter", 0x100 }, 6645 /* dpu */ 6646 { "dpu_crtc_setup_mixer", 0x100 }, 6647 /* binder */ 6648 { "binder_transaction", 0x100 }, 6649 /* bcachefs */ 6650 { "btree_path_free", 0x100 }, 6651 /* hfi1_tx */ 6652 { "hfi1_sdma_progress", 0x1000 }, 6653 /* iptfs */ 6654 { "iptfs_ingress_postq_event", 0x1000 }, 6655 /* neigh */ 6656 { "neigh_update", 0x10 }, 6657 /* snd_firewire_lib */ 6658 { "amdtp_packet", 0x100 }, 6659 }; 6660 6661 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6662 const struct bpf_prog *prog, 6663 struct bpf_insn_access_aux *info) 6664 { 6665 const struct btf_type *t = prog->aux->attach_func_proto; 6666 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6667 struct btf *btf = bpf_prog_get_target_btf(prog); 6668 const char *tname = prog->aux->attach_func_name; 6669 struct bpf_verifier_log *log = info->log; 6670 const struct btf_param *args; 6671 bool ptr_err_raw_tp = false; 6672 const char *tag_value; 6673 u32 nr_args, arg; 6674 int i, ret; 6675 6676 if (off % 8) { 6677 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6678 tname, off); 6679 return false; 6680 } 6681 arg = btf_ctx_arg_idx(btf, t, off); 6682 args = (const struct btf_param *)(t + 1); 6683 /* if (t == NULL) Fall back to default BPF prog with 6684 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6685 */ 6686 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6687 if (prog->aux->attach_btf_trace) { 6688 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6689 args++; 6690 nr_args--; 6691 } 6692 6693 if (arg > nr_args) { 6694 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6695 tname, arg + 1); 6696 return false; 6697 } 6698 6699 if (arg == nr_args) { 6700 switch (prog->expected_attach_type) { 6701 case BPF_LSM_MAC: 6702 /* mark we are accessing the return value */ 6703 info->is_retval = true; 6704 fallthrough; 6705 case BPF_LSM_CGROUP: 6706 case BPF_TRACE_FEXIT: 6707 /* When LSM programs are attached to void LSM hooks 6708 * they use FEXIT trampolines and when attached to 6709 * int LSM hooks, they use MODIFY_RETURN trampolines. 6710 * 6711 * While the LSM programs are BPF_MODIFY_RETURN-like 6712 * the check: 6713 * 6714 * if (ret_type != 'int') 6715 * return -EINVAL; 6716 * 6717 * is _not_ done here. This is still safe as LSM hooks 6718 * have only void and int return types. 6719 */ 6720 if (!t) 6721 return true; 6722 t = btf_type_by_id(btf, t->type); 6723 break; 6724 case BPF_MODIFY_RETURN: 6725 /* For now the BPF_MODIFY_RETURN can only be attached to 6726 * functions that return an int. 6727 */ 6728 if (!t) 6729 return false; 6730 6731 t = btf_type_skip_modifiers(btf, t->type, NULL); 6732 if (!btf_type_is_small_int(t)) { 6733 bpf_log(log, 6734 "ret type %s not allowed for fmod_ret\n", 6735 btf_type_str(t)); 6736 return false; 6737 } 6738 break; 6739 default: 6740 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6741 tname, arg + 1); 6742 return false; 6743 } 6744 } else { 6745 if (!t) 6746 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6747 return true; 6748 t = btf_type_by_id(btf, args[arg].type); 6749 } 6750 6751 /* skip modifiers */ 6752 while (btf_type_is_modifier(t)) 6753 t = btf_type_by_id(btf, t->type); 6754 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t)) 6755 /* accessing a scalar */ 6756 return true; 6757 if (!btf_type_is_ptr(t)) { 6758 bpf_log(log, 6759 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6760 tname, arg, 6761 __btf_name_by_offset(btf, t->name_off), 6762 btf_type_str(t)); 6763 return false; 6764 } 6765 6766 if (size != sizeof(u64)) { 6767 bpf_log(log, "func '%s' size %d must be 8\n", 6768 tname, size); 6769 return false; 6770 } 6771 6772 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6773 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6774 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6775 u32 type, flag; 6776 6777 type = base_type(ctx_arg_info->reg_type); 6778 flag = type_flag(ctx_arg_info->reg_type); 6779 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6780 (flag & PTR_MAYBE_NULL)) { 6781 info->reg_type = ctx_arg_info->reg_type; 6782 return true; 6783 } 6784 } 6785 6786 /* 6787 * If it's a pointer to void, it's the same as scalar from the verifier 6788 * safety POV. Either way, no futher pointer walking is allowed. 6789 */ 6790 if (is_void_or_int_ptr(btf, t)) 6791 return true; 6792 6793 /* this is a pointer to another type */ 6794 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6795 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6796 6797 if (ctx_arg_info->offset == off) { 6798 if (!ctx_arg_info->btf_id) { 6799 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6800 return false; 6801 } 6802 6803 info->reg_type = ctx_arg_info->reg_type; 6804 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6805 info->btf_id = ctx_arg_info->btf_id; 6806 info->ref_obj_id = ctx_arg_info->ref_obj_id; 6807 return true; 6808 } 6809 } 6810 6811 info->reg_type = PTR_TO_BTF_ID; 6812 if (prog_args_trusted(prog)) 6813 info->reg_type |= PTR_TRUSTED; 6814 6815 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6816 info->reg_type |= PTR_MAYBE_NULL; 6817 6818 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 6819 struct btf *btf = prog->aux->attach_btf; 6820 const struct btf_type *t; 6821 const char *tname; 6822 6823 /* BTF lookups cannot fail, return false on error */ 6824 t = btf_type_by_id(btf, prog->aux->attach_btf_id); 6825 if (!t) 6826 return false; 6827 tname = btf_name_by_offset(btf, t->name_off); 6828 if (!tname) 6829 return false; 6830 /* Checked by bpf_check_attach_target */ 6831 tname += sizeof("btf_trace_") - 1; 6832 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { 6833 /* Is this a func with potential NULL args? */ 6834 if (strcmp(tname, raw_tp_null_args[i].func)) 6835 continue; 6836 if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4))) 6837 info->reg_type |= PTR_MAYBE_NULL; 6838 /* Is the current arg IS_ERR? */ 6839 if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4))) 6840 ptr_err_raw_tp = true; 6841 break; 6842 } 6843 /* If we don't know NULL-ness specification and the tracepoint 6844 * is coming from a loadable module, be conservative and mark 6845 * argument as PTR_MAYBE_NULL. 6846 */ 6847 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) 6848 info->reg_type |= PTR_MAYBE_NULL; 6849 } 6850 6851 if (tgt_prog) { 6852 enum bpf_prog_type tgt_type; 6853 6854 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6855 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6856 else 6857 tgt_type = tgt_prog->type; 6858 6859 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6860 if (ret > 0) { 6861 info->btf = btf_vmlinux; 6862 info->btf_id = ret; 6863 return true; 6864 } else { 6865 return false; 6866 } 6867 } 6868 6869 info->btf = btf; 6870 info->btf_id = t->type; 6871 t = btf_type_by_id(btf, t->type); 6872 6873 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 6874 tag_value = __btf_name_by_offset(btf, t->name_off); 6875 if (strcmp(tag_value, "user") == 0) 6876 info->reg_type |= MEM_USER; 6877 if (strcmp(tag_value, "percpu") == 0) 6878 info->reg_type |= MEM_PERCPU; 6879 } 6880 6881 /* skip modifiers */ 6882 while (btf_type_is_modifier(t)) { 6883 info->btf_id = t->type; 6884 t = btf_type_by_id(btf, t->type); 6885 } 6886 if (!btf_type_is_struct(t)) { 6887 bpf_log(log, 6888 "func '%s' arg%d type %s is not a struct\n", 6889 tname, arg, btf_type_str(t)); 6890 return false; 6891 } 6892 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6893 tname, arg, info->btf_id, btf_type_str(t), 6894 __btf_name_by_offset(btf, t->name_off)); 6895 6896 /* Perform all checks on the validity of type for this argument, but if 6897 * we know it can be IS_ERR at runtime, scrub pointer type and mark as 6898 * scalar. 6899 */ 6900 if (ptr_err_raw_tp) { 6901 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); 6902 info->reg_type = SCALAR_VALUE; 6903 } 6904 return true; 6905 } 6906 EXPORT_SYMBOL_GPL(btf_ctx_access); 6907 6908 enum bpf_struct_walk_result { 6909 /* < 0 error */ 6910 WALK_SCALAR = 0, 6911 WALK_PTR, 6912 WALK_PTR_UNTRUSTED, 6913 WALK_STRUCT, 6914 }; 6915 6916 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6917 const struct btf_type *t, int off, int size, 6918 u32 *next_btf_id, enum bpf_type_flag *flag, 6919 const char **field_name) 6920 { 6921 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6922 const struct btf_type *mtype, *elem_type = NULL; 6923 const struct btf_member *member; 6924 const char *tname, *mname, *tag_value; 6925 u32 vlen, elem_id, mid; 6926 6927 again: 6928 if (btf_type_is_modifier(t)) 6929 t = btf_type_skip_modifiers(btf, t->type, NULL); 6930 tname = __btf_name_by_offset(btf, t->name_off); 6931 if (!btf_type_is_struct(t)) { 6932 bpf_log(log, "Type '%s' is not a struct\n", tname); 6933 return -EINVAL; 6934 } 6935 6936 vlen = btf_type_vlen(t); 6937 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6938 /* 6939 * walking unions yields untrusted pointers 6940 * with exception of __bpf_md_ptr and other 6941 * unions with a single member 6942 */ 6943 *flag |= PTR_UNTRUSTED; 6944 6945 if (off + size > t->size) { 6946 /* If the last element is a variable size array, we may 6947 * need to relax the rule. 6948 */ 6949 struct btf_array *array_elem; 6950 6951 if (vlen == 0) 6952 goto error; 6953 6954 member = btf_type_member(t) + vlen - 1; 6955 mtype = btf_type_skip_modifiers(btf, member->type, 6956 NULL); 6957 if (!btf_type_is_array(mtype)) 6958 goto error; 6959 6960 array_elem = (struct btf_array *)(mtype + 1); 6961 if (array_elem->nelems != 0) 6962 goto error; 6963 6964 moff = __btf_member_bit_offset(t, member) / 8; 6965 if (off < moff) 6966 goto error; 6967 6968 /* allow structure and integer */ 6969 t = btf_type_skip_modifiers(btf, array_elem->type, 6970 NULL); 6971 6972 if (btf_type_is_int(t)) 6973 return WALK_SCALAR; 6974 6975 if (!btf_type_is_struct(t)) 6976 goto error; 6977 6978 off = (off - moff) % t->size; 6979 goto again; 6980 6981 error: 6982 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6983 tname, off, size); 6984 return -EACCES; 6985 } 6986 6987 for_each_member(i, t, member) { 6988 /* offset of the field in bytes */ 6989 moff = __btf_member_bit_offset(t, member) / 8; 6990 if (off + size <= moff) 6991 /* won't find anything, field is already too far */ 6992 break; 6993 6994 if (__btf_member_bitfield_size(t, member)) { 6995 u32 end_bit = __btf_member_bit_offset(t, member) + 6996 __btf_member_bitfield_size(t, member); 6997 6998 /* off <= moff instead of off == moff because clang 6999 * does not generate a BTF member for anonymous 7000 * bitfield like the ":16" here: 7001 * struct { 7002 * int :16; 7003 * int x:8; 7004 * }; 7005 */ 7006 if (off <= moff && 7007 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 7008 return WALK_SCALAR; 7009 7010 /* off may be accessing a following member 7011 * 7012 * or 7013 * 7014 * Doing partial access at either end of this 7015 * bitfield. Continue on this case also to 7016 * treat it as not accessing this bitfield 7017 * and eventually error out as field not 7018 * found to keep it simple. 7019 * It could be relaxed if there was a legit 7020 * partial access case later. 7021 */ 7022 continue; 7023 } 7024 7025 /* In case of "off" is pointing to holes of a struct */ 7026 if (off < moff) 7027 break; 7028 7029 /* type of the field */ 7030 mid = member->type; 7031 mtype = btf_type_by_id(btf, member->type); 7032 mname = __btf_name_by_offset(btf, member->name_off); 7033 7034 mtype = __btf_resolve_size(btf, mtype, &msize, 7035 &elem_type, &elem_id, &total_nelems, 7036 &mid); 7037 if (IS_ERR(mtype)) { 7038 bpf_log(log, "field %s doesn't have size\n", mname); 7039 return -EFAULT; 7040 } 7041 7042 mtrue_end = moff + msize; 7043 if (off >= mtrue_end) 7044 /* no overlap with member, keep iterating */ 7045 continue; 7046 7047 if (btf_type_is_array(mtype)) { 7048 u32 elem_idx; 7049 7050 /* __btf_resolve_size() above helps to 7051 * linearize a multi-dimensional array. 7052 * 7053 * The logic here is treating an array 7054 * in a struct as the following way: 7055 * 7056 * struct outer { 7057 * struct inner array[2][2]; 7058 * }; 7059 * 7060 * looks like: 7061 * 7062 * struct outer { 7063 * struct inner array_elem0; 7064 * struct inner array_elem1; 7065 * struct inner array_elem2; 7066 * struct inner array_elem3; 7067 * }; 7068 * 7069 * When accessing outer->array[1][0], it moves 7070 * moff to "array_elem2", set mtype to 7071 * "struct inner", and msize also becomes 7072 * sizeof(struct inner). Then most of the 7073 * remaining logic will fall through without 7074 * caring the current member is an array or 7075 * not. 7076 * 7077 * Unlike mtype/msize/moff, mtrue_end does not 7078 * change. The naming difference ("_true") tells 7079 * that it is not always corresponding to 7080 * the current mtype/msize/moff. 7081 * It is the true end of the current 7082 * member (i.e. array in this case). That 7083 * will allow an int array to be accessed like 7084 * a scratch space, 7085 * i.e. allow access beyond the size of 7086 * the array's element as long as it is 7087 * within the mtrue_end boundary. 7088 */ 7089 7090 /* skip empty array */ 7091 if (moff == mtrue_end) 7092 continue; 7093 7094 msize /= total_nelems; 7095 elem_idx = (off - moff) / msize; 7096 moff += elem_idx * msize; 7097 mtype = elem_type; 7098 mid = elem_id; 7099 } 7100 7101 /* the 'off' we're looking for is either equal to start 7102 * of this field or inside of this struct 7103 */ 7104 if (btf_type_is_struct(mtype)) { 7105 /* our field must be inside that union or struct */ 7106 t = mtype; 7107 7108 /* return if the offset matches the member offset */ 7109 if (off == moff) { 7110 *next_btf_id = mid; 7111 return WALK_STRUCT; 7112 } 7113 7114 /* adjust offset we're looking for */ 7115 off -= moff; 7116 goto again; 7117 } 7118 7119 if (btf_type_is_ptr(mtype)) { 7120 const struct btf_type *stype, *t; 7121 enum bpf_type_flag tmp_flag = 0; 7122 u32 id; 7123 7124 if (msize != size || off != moff) { 7125 bpf_log(log, 7126 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 7127 mname, moff, tname, off, size); 7128 return -EACCES; 7129 } 7130 7131 /* check type tag */ 7132 t = btf_type_by_id(btf, mtype->type); 7133 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 7134 tag_value = __btf_name_by_offset(btf, t->name_off); 7135 /* check __user tag */ 7136 if (strcmp(tag_value, "user") == 0) 7137 tmp_flag = MEM_USER; 7138 /* check __percpu tag */ 7139 if (strcmp(tag_value, "percpu") == 0) 7140 tmp_flag = MEM_PERCPU; 7141 /* check __rcu tag */ 7142 if (strcmp(tag_value, "rcu") == 0) 7143 tmp_flag = MEM_RCU; 7144 } 7145 7146 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 7147 if (btf_type_is_struct(stype)) { 7148 *next_btf_id = id; 7149 *flag |= tmp_flag; 7150 if (field_name) 7151 *field_name = mname; 7152 return WALK_PTR; 7153 } 7154 7155 return WALK_PTR_UNTRUSTED; 7156 } 7157 7158 /* Allow more flexible access within an int as long as 7159 * it is within mtrue_end. 7160 * Since mtrue_end could be the end of an array, 7161 * that also allows using an array of int as a scratch 7162 * space. e.g. skb->cb[]. 7163 */ 7164 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 7165 bpf_log(log, 7166 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 7167 mname, mtrue_end, tname, off, size); 7168 return -EACCES; 7169 } 7170 7171 return WALK_SCALAR; 7172 } 7173 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 7174 return -EINVAL; 7175 } 7176 7177 int btf_struct_access(struct bpf_verifier_log *log, 7178 const struct bpf_reg_state *reg, 7179 int off, int size, enum bpf_access_type atype __maybe_unused, 7180 u32 *next_btf_id, enum bpf_type_flag *flag, 7181 const char **field_name) 7182 { 7183 const struct btf *btf = reg->btf; 7184 enum bpf_type_flag tmp_flag = 0; 7185 const struct btf_type *t; 7186 u32 id = reg->btf_id; 7187 int err; 7188 7189 while (type_is_alloc(reg->type)) { 7190 struct btf_struct_meta *meta; 7191 struct btf_record *rec; 7192 int i; 7193 7194 meta = btf_find_struct_meta(btf, id); 7195 if (!meta) 7196 break; 7197 rec = meta->record; 7198 for (i = 0; i < rec->cnt; i++) { 7199 struct btf_field *field = &rec->fields[i]; 7200 u32 offset = field->offset; 7201 if (off < offset + field->size && offset < off + size) { 7202 bpf_log(log, 7203 "direct access to %s is disallowed\n", 7204 btf_field_type_name(field->type)); 7205 return -EACCES; 7206 } 7207 } 7208 break; 7209 } 7210 7211 t = btf_type_by_id(btf, id); 7212 do { 7213 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 7214 7215 switch (err) { 7216 case WALK_PTR: 7217 /* For local types, the destination register cannot 7218 * become a pointer again. 7219 */ 7220 if (type_is_alloc(reg->type)) 7221 return SCALAR_VALUE; 7222 /* If we found the pointer or scalar on t+off, 7223 * we're done. 7224 */ 7225 *next_btf_id = id; 7226 *flag = tmp_flag; 7227 return PTR_TO_BTF_ID; 7228 case WALK_PTR_UNTRUSTED: 7229 *flag = MEM_RDONLY | PTR_UNTRUSTED; 7230 return PTR_TO_MEM; 7231 case WALK_SCALAR: 7232 return SCALAR_VALUE; 7233 case WALK_STRUCT: 7234 /* We found nested struct, so continue the search 7235 * by diving in it. At this point the offset is 7236 * aligned with the new type, so set it to 0. 7237 */ 7238 t = btf_type_by_id(btf, id); 7239 off = 0; 7240 break; 7241 default: 7242 /* It's either error or unknown return value.. 7243 * scream and leave. 7244 */ 7245 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 7246 return -EINVAL; 7247 return err; 7248 } 7249 } while (t); 7250 7251 return -EINVAL; 7252 } 7253 7254 /* Check that two BTF types, each specified as an BTF object + id, are exactly 7255 * the same. Trivial ID check is not enough due to module BTFs, because we can 7256 * end up with two different module BTFs, but IDs point to the common type in 7257 * vmlinux BTF. 7258 */ 7259 bool btf_types_are_same(const struct btf *btf1, u32 id1, 7260 const struct btf *btf2, u32 id2) 7261 { 7262 if (id1 != id2) 7263 return false; 7264 if (btf1 == btf2) 7265 return true; 7266 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 7267 } 7268 7269 bool btf_struct_ids_match(struct bpf_verifier_log *log, 7270 const struct btf *btf, u32 id, int off, 7271 const struct btf *need_btf, u32 need_type_id, 7272 bool strict) 7273 { 7274 const struct btf_type *type; 7275 enum bpf_type_flag flag = 0; 7276 int err; 7277 7278 /* Are we already done? */ 7279 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 7280 return true; 7281 /* In case of strict type match, we do not walk struct, the top level 7282 * type match must succeed. When strict is true, off should have already 7283 * been 0. 7284 */ 7285 if (strict) 7286 return false; 7287 again: 7288 type = btf_type_by_id(btf, id); 7289 if (!type) 7290 return false; 7291 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 7292 if (err != WALK_STRUCT) 7293 return false; 7294 7295 /* We found nested struct object. If it matches 7296 * the requested ID, we're done. Otherwise let's 7297 * continue the search with offset 0 in the new 7298 * type. 7299 */ 7300 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7301 off = 0; 7302 goto again; 7303 } 7304 7305 return true; 7306 } 7307 7308 static int __get_type_size(struct btf *btf, u32 btf_id, 7309 const struct btf_type **ret_type) 7310 { 7311 const struct btf_type *t; 7312 7313 *ret_type = btf_type_by_id(btf, 0); 7314 if (!btf_id) 7315 /* void */ 7316 return 0; 7317 t = btf_type_by_id(btf, btf_id); 7318 while (t && btf_type_is_modifier(t)) 7319 t = btf_type_by_id(btf, t->type); 7320 if (!t) 7321 return -EINVAL; 7322 *ret_type = t; 7323 if (btf_type_is_ptr(t)) 7324 /* kernel size of pointer. Not BPF's size of pointer*/ 7325 return sizeof(void *); 7326 if (btf_type_is_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t)) 7327 return t->size; 7328 return -EINVAL; 7329 } 7330 7331 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7332 { 7333 u8 flags = 0; 7334 7335 if (btf_type_is_struct(t)) 7336 flags |= BTF_FMODEL_STRUCT_ARG; 7337 if (btf_type_is_signed_int(t)) 7338 flags |= BTF_FMODEL_SIGNED_ARG; 7339 7340 return flags; 7341 } 7342 7343 int btf_distill_func_proto(struct bpf_verifier_log *log, 7344 struct btf *btf, 7345 const struct btf_type *func, 7346 const char *tname, 7347 struct btf_func_model *m) 7348 { 7349 const struct btf_param *args; 7350 const struct btf_type *t; 7351 u32 i, nargs; 7352 int ret; 7353 7354 if (!func) { 7355 /* BTF function prototype doesn't match the verifier types. 7356 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7357 */ 7358 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7359 m->arg_size[i] = 8; 7360 m->arg_flags[i] = 0; 7361 } 7362 m->ret_size = 8; 7363 m->ret_flags = 0; 7364 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7365 return 0; 7366 } 7367 args = (const struct btf_param *)(func + 1); 7368 nargs = btf_type_vlen(func); 7369 if (nargs > MAX_BPF_FUNC_ARGS) { 7370 bpf_log(log, 7371 "The function %s has %d arguments. Too many.\n", 7372 tname, nargs); 7373 return -EINVAL; 7374 } 7375 ret = __get_type_size(btf, func->type, &t); 7376 if (ret < 0 || btf_type_is_struct(t)) { 7377 bpf_log(log, 7378 "The function %s return type %s is unsupported.\n", 7379 tname, btf_type_str(t)); 7380 return -EINVAL; 7381 } 7382 m->ret_size = ret; 7383 m->ret_flags = __get_type_fmodel_flags(t); 7384 7385 for (i = 0; i < nargs; i++) { 7386 if (i == nargs - 1 && args[i].type == 0) { 7387 bpf_log(log, 7388 "The function %s with variable args is unsupported.\n", 7389 tname); 7390 return -EINVAL; 7391 } 7392 ret = __get_type_size(btf, args[i].type, &t); 7393 7394 /* No support of struct argument size greater than 16 bytes */ 7395 if (ret < 0 || ret > 16) { 7396 bpf_log(log, 7397 "The function %s arg%d type %s is unsupported.\n", 7398 tname, i, btf_type_str(t)); 7399 return -EINVAL; 7400 } 7401 if (ret == 0) { 7402 bpf_log(log, 7403 "The function %s has malformed void argument.\n", 7404 tname); 7405 return -EINVAL; 7406 } 7407 m->arg_size[i] = ret; 7408 m->arg_flags[i] = __get_type_fmodel_flags(t); 7409 } 7410 m->nr_args = nargs; 7411 return 0; 7412 } 7413 7414 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7415 * t1 points to BTF_KIND_FUNC in btf1 7416 * t2 points to BTF_KIND_FUNC in btf2 7417 * Returns: 7418 * EINVAL - function prototype mismatch 7419 * EFAULT - verifier bug 7420 * 0 - 99% match. The last 1% is validated by the verifier. 7421 */ 7422 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7423 struct btf *btf1, const struct btf_type *t1, 7424 struct btf *btf2, const struct btf_type *t2) 7425 { 7426 const struct btf_param *args1, *args2; 7427 const char *fn1, *fn2, *s1, *s2; 7428 u32 nargs1, nargs2, i; 7429 7430 fn1 = btf_name_by_offset(btf1, t1->name_off); 7431 fn2 = btf_name_by_offset(btf2, t2->name_off); 7432 7433 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7434 bpf_log(log, "%s() is not a global function\n", fn1); 7435 return -EINVAL; 7436 } 7437 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7438 bpf_log(log, "%s() is not a global function\n", fn2); 7439 return -EINVAL; 7440 } 7441 7442 t1 = btf_type_by_id(btf1, t1->type); 7443 if (!t1 || !btf_type_is_func_proto(t1)) 7444 return -EFAULT; 7445 t2 = btf_type_by_id(btf2, t2->type); 7446 if (!t2 || !btf_type_is_func_proto(t2)) 7447 return -EFAULT; 7448 7449 args1 = (const struct btf_param *)(t1 + 1); 7450 nargs1 = btf_type_vlen(t1); 7451 args2 = (const struct btf_param *)(t2 + 1); 7452 nargs2 = btf_type_vlen(t2); 7453 7454 if (nargs1 != nargs2) { 7455 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7456 fn1, nargs1, fn2, nargs2); 7457 return -EINVAL; 7458 } 7459 7460 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7461 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7462 if (t1->info != t2->info) { 7463 bpf_log(log, 7464 "Return type %s of %s() doesn't match type %s of %s()\n", 7465 btf_type_str(t1), fn1, 7466 btf_type_str(t2), fn2); 7467 return -EINVAL; 7468 } 7469 7470 for (i = 0; i < nargs1; i++) { 7471 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7472 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7473 7474 if (t1->info != t2->info) { 7475 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7476 i, fn1, btf_type_str(t1), 7477 fn2, btf_type_str(t2)); 7478 return -EINVAL; 7479 } 7480 if (btf_type_has_size(t1) && t1->size != t2->size) { 7481 bpf_log(log, 7482 "arg%d in %s() has size %d while %s() has %d\n", 7483 i, fn1, t1->size, 7484 fn2, t2->size); 7485 return -EINVAL; 7486 } 7487 7488 /* global functions are validated with scalars and pointers 7489 * to context only. And only global functions can be replaced. 7490 * Hence type check only those types. 7491 */ 7492 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7493 continue; 7494 if (!btf_type_is_ptr(t1)) { 7495 bpf_log(log, 7496 "arg%d in %s() has unrecognized type\n", 7497 i, fn1); 7498 return -EINVAL; 7499 } 7500 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7501 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7502 if (!btf_type_is_struct(t1)) { 7503 bpf_log(log, 7504 "arg%d in %s() is not a pointer to context\n", 7505 i, fn1); 7506 return -EINVAL; 7507 } 7508 if (!btf_type_is_struct(t2)) { 7509 bpf_log(log, 7510 "arg%d in %s() is not a pointer to context\n", 7511 i, fn2); 7512 return -EINVAL; 7513 } 7514 /* This is an optional check to make program writing easier. 7515 * Compare names of structs and report an error to the user. 7516 * btf_prepare_func_args() already checked that t2 struct 7517 * is a context type. btf_prepare_func_args() will check 7518 * later that t1 struct is a context type as well. 7519 */ 7520 s1 = btf_name_by_offset(btf1, t1->name_off); 7521 s2 = btf_name_by_offset(btf2, t2->name_off); 7522 if (strcmp(s1, s2)) { 7523 bpf_log(log, 7524 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7525 i, fn1, s1, fn2, s2); 7526 return -EINVAL; 7527 } 7528 } 7529 return 0; 7530 } 7531 7532 /* Compare BTFs of given program with BTF of target program */ 7533 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7534 struct btf *btf2, const struct btf_type *t2) 7535 { 7536 struct btf *btf1 = prog->aux->btf; 7537 const struct btf_type *t1; 7538 u32 btf_id = 0; 7539 7540 if (!prog->aux->func_info) { 7541 bpf_log(log, "Program extension requires BTF\n"); 7542 return -EINVAL; 7543 } 7544 7545 btf_id = prog->aux->func_info[0].type_id; 7546 if (!btf_id) 7547 return -EFAULT; 7548 7549 t1 = btf_type_by_id(btf1, btf_id); 7550 if (!t1 || !btf_type_is_func(t1)) 7551 return -EFAULT; 7552 7553 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7554 } 7555 7556 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7557 { 7558 const char *name; 7559 7560 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7561 7562 while (btf_type_is_modifier(t)) 7563 t = btf_type_by_id(btf, t->type); 7564 7565 /* allow either struct or struct forward declaration */ 7566 if (btf_type_is_struct(t) || 7567 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7568 name = btf_str_by_offset(btf, t->name_off); 7569 return name && strcmp(name, "bpf_dynptr") == 0; 7570 } 7571 7572 return false; 7573 } 7574 7575 struct bpf_cand_cache { 7576 const char *name; 7577 u32 name_len; 7578 u16 kind; 7579 u16 cnt; 7580 struct { 7581 const struct btf *btf; 7582 u32 id; 7583 } cands[]; 7584 }; 7585 7586 static DEFINE_MUTEX(cand_cache_mutex); 7587 7588 static struct bpf_cand_cache * 7589 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7590 7591 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7592 const struct btf *btf, const struct btf_type *t) 7593 { 7594 struct bpf_cand_cache *cc; 7595 struct bpf_core_ctx ctx = { 7596 .btf = btf, 7597 .log = log, 7598 }; 7599 u32 kern_type_id, type_id; 7600 int err = 0; 7601 7602 /* skip PTR and modifiers */ 7603 type_id = t->type; 7604 t = btf_type_by_id(btf, t->type); 7605 while (btf_type_is_modifier(t)) { 7606 type_id = t->type; 7607 t = btf_type_by_id(btf, t->type); 7608 } 7609 7610 mutex_lock(&cand_cache_mutex); 7611 cc = bpf_core_find_cands(&ctx, type_id); 7612 if (IS_ERR(cc)) { 7613 err = PTR_ERR(cc); 7614 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7615 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7616 err); 7617 goto cand_cache_unlock; 7618 } 7619 if (cc->cnt != 1) { 7620 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7621 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7622 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7623 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7624 goto cand_cache_unlock; 7625 } 7626 if (btf_is_module(cc->cands[0].btf)) { 7627 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7628 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7629 err = -EOPNOTSUPP; 7630 goto cand_cache_unlock; 7631 } 7632 kern_type_id = cc->cands[0].id; 7633 7634 cand_cache_unlock: 7635 mutex_unlock(&cand_cache_mutex); 7636 if (err) 7637 return err; 7638 7639 return kern_type_id; 7640 } 7641 7642 enum btf_arg_tag { 7643 ARG_TAG_CTX = BIT_ULL(0), 7644 ARG_TAG_NONNULL = BIT_ULL(1), 7645 ARG_TAG_TRUSTED = BIT_ULL(2), 7646 ARG_TAG_UNTRUSTED = BIT_ULL(3), 7647 ARG_TAG_NULLABLE = BIT_ULL(4), 7648 ARG_TAG_ARENA = BIT_ULL(5), 7649 }; 7650 7651 /* Process BTF of a function to produce high-level expectation of function 7652 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7653 * is cached in subprog info for reuse. 7654 * Returns: 7655 * EFAULT - there is a verifier bug. Abort verification. 7656 * EINVAL - cannot convert BTF. 7657 * 0 - Successfully processed BTF and constructed argument expectations. 7658 */ 7659 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7660 { 7661 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7662 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7663 struct bpf_verifier_log *log = &env->log; 7664 struct bpf_prog *prog = env->prog; 7665 enum bpf_prog_type prog_type = prog->type; 7666 struct btf *btf = prog->aux->btf; 7667 const struct btf_param *args; 7668 const struct btf_type *t, *ref_t, *fn_t; 7669 u32 i, nargs, btf_id; 7670 const char *tname; 7671 7672 if (sub->args_cached) 7673 return 0; 7674 7675 if (!prog->aux->func_info) { 7676 verifier_bug(env, "func_info undefined"); 7677 return -EFAULT; 7678 } 7679 7680 btf_id = prog->aux->func_info[subprog].type_id; 7681 if (!btf_id) { 7682 if (!is_global) /* not fatal for static funcs */ 7683 return -EINVAL; 7684 bpf_log(log, "Global functions need valid BTF\n"); 7685 return -EFAULT; 7686 } 7687 7688 fn_t = btf_type_by_id(btf, btf_id); 7689 if (!fn_t || !btf_type_is_func(fn_t)) { 7690 /* These checks were already done by the verifier while loading 7691 * struct bpf_func_info 7692 */ 7693 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7694 subprog); 7695 return -EFAULT; 7696 } 7697 tname = btf_name_by_offset(btf, fn_t->name_off); 7698 7699 if (prog->aux->func_info_aux[subprog].unreliable) { 7700 verifier_bug(env, "unreliable BTF for function %s()", tname); 7701 return -EFAULT; 7702 } 7703 if (prog_type == BPF_PROG_TYPE_EXT) 7704 prog_type = prog->aux->dst_prog->type; 7705 7706 t = btf_type_by_id(btf, fn_t->type); 7707 if (!t || !btf_type_is_func_proto(t)) { 7708 bpf_log(log, "Invalid type of function %s()\n", tname); 7709 return -EFAULT; 7710 } 7711 args = (const struct btf_param *)(t + 1); 7712 nargs = btf_type_vlen(t); 7713 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7714 if (!is_global) 7715 return -EINVAL; 7716 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7717 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7718 return -EINVAL; 7719 } 7720 /* check that function returns int, exception cb also requires this */ 7721 t = btf_type_by_id(btf, t->type); 7722 while (btf_type_is_modifier(t)) 7723 t = btf_type_by_id(btf, t->type); 7724 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7725 if (!is_global) 7726 return -EINVAL; 7727 bpf_log(log, 7728 "Global function %s() doesn't return scalar. Only those are supported.\n", 7729 tname); 7730 return -EINVAL; 7731 } 7732 /* Convert BTF function arguments into verifier types. 7733 * Only PTR_TO_CTX and SCALAR are supported atm. 7734 */ 7735 for (i = 0; i < nargs; i++) { 7736 u32 tags = 0; 7737 int id = 0; 7738 7739 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7740 * register type from BTF type itself 7741 */ 7742 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7743 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7744 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7745 7746 /* disallow arg tags in static subprogs */ 7747 if (!is_global) { 7748 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7749 return -EOPNOTSUPP; 7750 } 7751 7752 if (strcmp(tag, "ctx") == 0) { 7753 tags |= ARG_TAG_CTX; 7754 } else if (strcmp(tag, "trusted") == 0) { 7755 tags |= ARG_TAG_TRUSTED; 7756 } else if (strcmp(tag, "untrusted") == 0) { 7757 tags |= ARG_TAG_UNTRUSTED; 7758 } else if (strcmp(tag, "nonnull") == 0) { 7759 tags |= ARG_TAG_NONNULL; 7760 } else if (strcmp(tag, "nullable") == 0) { 7761 tags |= ARG_TAG_NULLABLE; 7762 } else if (strcmp(tag, "arena") == 0) { 7763 tags |= ARG_TAG_ARENA; 7764 } else { 7765 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7766 return -EOPNOTSUPP; 7767 } 7768 } 7769 if (id != -ENOENT) { 7770 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7771 return id; 7772 } 7773 7774 t = btf_type_by_id(btf, args[i].type); 7775 while (btf_type_is_modifier(t)) 7776 t = btf_type_by_id(btf, t->type); 7777 if (!btf_type_is_ptr(t)) 7778 goto skip_pointer; 7779 7780 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7781 if (tags & ~ARG_TAG_CTX) { 7782 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7783 return -EINVAL; 7784 } 7785 if ((tags & ARG_TAG_CTX) && 7786 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7787 prog->expected_attach_type)) 7788 return -EINVAL; 7789 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7790 continue; 7791 } 7792 if (btf_is_dynptr_ptr(btf, t)) { 7793 if (tags) { 7794 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7795 return -EINVAL; 7796 } 7797 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7798 continue; 7799 } 7800 if (tags & ARG_TAG_TRUSTED) { 7801 int kern_type_id; 7802 7803 if (tags & ARG_TAG_NONNULL) { 7804 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7805 return -EINVAL; 7806 } 7807 7808 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7809 if (kern_type_id < 0) 7810 return kern_type_id; 7811 7812 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7813 if (tags & ARG_TAG_NULLABLE) 7814 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7815 sub->args[i].btf_id = kern_type_id; 7816 continue; 7817 } 7818 if (tags & ARG_TAG_UNTRUSTED) { 7819 struct btf *vmlinux_btf; 7820 int kern_type_id; 7821 7822 if (tags & ~ARG_TAG_UNTRUSTED) { 7823 bpf_log(log, "arg#%d untrusted cannot be combined with any other tags\n", i); 7824 return -EINVAL; 7825 } 7826 7827 ref_t = btf_type_skip_modifiers(btf, t->type, NULL); 7828 if (btf_type_is_void(ref_t) || btf_type_is_primitive(ref_t)) { 7829 sub->args[i].arg_type = ARG_PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 7830 sub->args[i].mem_size = 0; 7831 continue; 7832 } 7833 7834 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7835 if (kern_type_id < 0) 7836 return kern_type_id; 7837 7838 vmlinux_btf = bpf_get_btf_vmlinux(); 7839 ref_t = btf_type_by_id(vmlinux_btf, kern_type_id); 7840 if (!btf_type_is_struct(ref_t)) { 7841 tname = __btf_name_by_offset(vmlinux_btf, t->name_off); 7842 bpf_log(log, "arg#%d has type %s '%s', but only struct or primitive types are allowed\n", 7843 i, btf_type_str(ref_t), tname); 7844 return -EINVAL; 7845 } 7846 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_UNTRUSTED; 7847 sub->args[i].btf_id = kern_type_id; 7848 continue; 7849 } 7850 if (tags & ARG_TAG_ARENA) { 7851 if (tags & ~ARG_TAG_ARENA) { 7852 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7853 return -EINVAL; 7854 } 7855 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7856 continue; 7857 } 7858 if (is_global) { /* generic user data pointer */ 7859 u32 mem_size; 7860 7861 if (tags & ARG_TAG_NULLABLE) { 7862 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7863 return -EINVAL; 7864 } 7865 7866 t = btf_type_skip_modifiers(btf, t->type, NULL); 7867 ref_t = btf_resolve_size(btf, t, &mem_size); 7868 if (IS_ERR(ref_t)) { 7869 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7870 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7871 PTR_ERR(ref_t)); 7872 return -EINVAL; 7873 } 7874 7875 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7876 if (tags & ARG_TAG_NONNULL) 7877 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7878 sub->args[i].mem_size = mem_size; 7879 continue; 7880 } 7881 7882 skip_pointer: 7883 if (tags) { 7884 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7885 return -EINVAL; 7886 } 7887 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7888 sub->args[i].arg_type = ARG_ANYTHING; 7889 continue; 7890 } 7891 if (!is_global) 7892 return -EINVAL; 7893 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7894 i, btf_type_str(t), tname); 7895 return -EINVAL; 7896 } 7897 7898 sub->arg_cnt = nargs; 7899 sub->args_cached = true; 7900 7901 return 0; 7902 } 7903 7904 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7905 struct btf_show *show) 7906 { 7907 const struct btf_type *t = btf_type_by_id(btf, type_id); 7908 7909 show->btf = btf; 7910 memset(&show->state, 0, sizeof(show->state)); 7911 memset(&show->obj, 0, sizeof(show->obj)); 7912 7913 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7914 } 7915 7916 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7917 va_list args) 7918 { 7919 seq_vprintf((struct seq_file *)show->target, fmt, args); 7920 } 7921 7922 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7923 void *obj, struct seq_file *m, u64 flags) 7924 { 7925 struct btf_show sseq; 7926 7927 sseq.target = m; 7928 sseq.showfn = btf_seq_show; 7929 sseq.flags = flags; 7930 7931 btf_type_show(btf, type_id, obj, &sseq); 7932 7933 return sseq.state.status; 7934 } 7935 7936 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7937 struct seq_file *m) 7938 { 7939 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7940 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7941 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7942 } 7943 7944 struct btf_show_snprintf { 7945 struct btf_show show; 7946 int len_left; /* space left in string */ 7947 int len; /* length we would have written */ 7948 }; 7949 7950 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7951 va_list args) 7952 { 7953 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7954 int len; 7955 7956 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7957 7958 if (len < 0) { 7959 ssnprintf->len_left = 0; 7960 ssnprintf->len = len; 7961 } else if (len >= ssnprintf->len_left) { 7962 /* no space, drive on to get length we would have written */ 7963 ssnprintf->len_left = 0; 7964 ssnprintf->len += len; 7965 } else { 7966 ssnprintf->len_left -= len; 7967 ssnprintf->len += len; 7968 show->target += len; 7969 } 7970 } 7971 7972 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7973 char *buf, int len, u64 flags) 7974 { 7975 struct btf_show_snprintf ssnprintf; 7976 7977 ssnprintf.show.target = buf; 7978 ssnprintf.show.flags = flags; 7979 ssnprintf.show.showfn = btf_snprintf_show; 7980 ssnprintf.len_left = len; 7981 ssnprintf.len = 0; 7982 7983 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7984 7985 /* If we encountered an error, return it. */ 7986 if (ssnprintf.show.state.status) 7987 return ssnprintf.show.state.status; 7988 7989 /* Otherwise return length we would have written */ 7990 return ssnprintf.len; 7991 } 7992 7993 #ifdef CONFIG_PROC_FS 7994 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7995 { 7996 const struct btf *btf = filp->private_data; 7997 7998 seq_printf(m, "btf_id:\t%u\n", btf->id); 7999 } 8000 #endif 8001 8002 static int btf_release(struct inode *inode, struct file *filp) 8003 { 8004 btf_put(filp->private_data); 8005 return 0; 8006 } 8007 8008 const struct file_operations btf_fops = { 8009 #ifdef CONFIG_PROC_FS 8010 .show_fdinfo = bpf_btf_show_fdinfo, 8011 #endif 8012 .release = btf_release, 8013 }; 8014 8015 static int __btf_new_fd(struct btf *btf) 8016 { 8017 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 8018 } 8019 8020 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 8021 { 8022 struct btf *btf; 8023 int ret; 8024 8025 btf = btf_parse(attr, uattr, uattr_size); 8026 if (IS_ERR(btf)) 8027 return PTR_ERR(btf); 8028 8029 ret = btf_alloc_id(btf); 8030 if (ret) { 8031 btf_free(btf); 8032 return ret; 8033 } 8034 8035 /* 8036 * The BTF ID is published to the userspace. 8037 * All BTF free must go through call_rcu() from 8038 * now on (i.e. free by calling btf_put()). 8039 */ 8040 8041 ret = __btf_new_fd(btf); 8042 if (ret < 0) 8043 btf_put(btf); 8044 8045 return ret; 8046 } 8047 8048 struct btf *btf_get_by_fd(int fd) 8049 { 8050 struct btf *btf; 8051 CLASS(fd, f)(fd); 8052 8053 btf = __btf_get_by_fd(f); 8054 if (!IS_ERR(btf)) 8055 refcount_inc(&btf->refcnt); 8056 8057 return btf; 8058 } 8059 8060 int btf_get_info_by_fd(const struct btf *btf, 8061 const union bpf_attr *attr, 8062 union bpf_attr __user *uattr) 8063 { 8064 struct bpf_btf_info __user *uinfo; 8065 struct bpf_btf_info info; 8066 u32 info_copy, btf_copy; 8067 void __user *ubtf; 8068 char __user *uname; 8069 u32 uinfo_len, uname_len, name_len; 8070 int ret = 0; 8071 8072 uinfo = u64_to_user_ptr(attr->info.info); 8073 uinfo_len = attr->info.info_len; 8074 8075 info_copy = min_t(u32, uinfo_len, sizeof(info)); 8076 memset(&info, 0, sizeof(info)); 8077 if (copy_from_user(&info, uinfo, info_copy)) 8078 return -EFAULT; 8079 8080 info.id = btf->id; 8081 ubtf = u64_to_user_ptr(info.btf); 8082 btf_copy = min_t(u32, btf->data_size, info.btf_size); 8083 if (copy_to_user(ubtf, btf->data, btf_copy)) 8084 return -EFAULT; 8085 info.btf_size = btf->data_size; 8086 8087 info.kernel_btf = btf->kernel_btf; 8088 8089 uname = u64_to_user_ptr(info.name); 8090 uname_len = info.name_len; 8091 if (!uname ^ !uname_len) 8092 return -EINVAL; 8093 8094 name_len = strlen(btf->name); 8095 info.name_len = name_len; 8096 8097 if (uname) { 8098 if (uname_len >= name_len + 1) { 8099 if (copy_to_user(uname, btf->name, name_len + 1)) 8100 return -EFAULT; 8101 } else { 8102 char zero = '\0'; 8103 8104 if (copy_to_user(uname, btf->name, uname_len - 1)) 8105 return -EFAULT; 8106 if (put_user(zero, uname + uname_len - 1)) 8107 return -EFAULT; 8108 /* let user-space know about too short buffer */ 8109 ret = -ENOSPC; 8110 } 8111 } 8112 8113 if (copy_to_user(uinfo, &info, info_copy) || 8114 put_user(info_copy, &uattr->info.info_len)) 8115 return -EFAULT; 8116 8117 return ret; 8118 } 8119 8120 int btf_get_fd_by_id(u32 id) 8121 { 8122 struct btf *btf; 8123 int fd; 8124 8125 rcu_read_lock(); 8126 btf = idr_find(&btf_idr, id); 8127 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 8128 btf = ERR_PTR(-ENOENT); 8129 rcu_read_unlock(); 8130 8131 if (IS_ERR(btf)) 8132 return PTR_ERR(btf); 8133 8134 fd = __btf_new_fd(btf); 8135 if (fd < 0) 8136 btf_put(btf); 8137 8138 return fd; 8139 } 8140 8141 u32 btf_obj_id(const struct btf *btf) 8142 { 8143 return btf->id; 8144 } 8145 8146 bool btf_is_kernel(const struct btf *btf) 8147 { 8148 return btf->kernel_btf; 8149 } 8150 8151 bool btf_is_module(const struct btf *btf) 8152 { 8153 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 8154 } 8155 8156 enum { 8157 BTF_MODULE_F_LIVE = (1 << 0), 8158 }; 8159 8160 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8161 struct btf_module { 8162 struct list_head list; 8163 struct module *module; 8164 struct btf *btf; 8165 struct bin_attribute *sysfs_attr; 8166 int flags; 8167 }; 8168 8169 static LIST_HEAD(btf_modules); 8170 static DEFINE_MUTEX(btf_module_mutex); 8171 8172 static void purge_cand_cache(struct btf *btf); 8173 8174 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 8175 void *module) 8176 { 8177 struct btf_module *btf_mod, *tmp; 8178 struct module *mod = module; 8179 struct btf *btf; 8180 int err = 0; 8181 8182 if (mod->btf_data_size == 0 || 8183 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 8184 op != MODULE_STATE_GOING)) 8185 goto out; 8186 8187 switch (op) { 8188 case MODULE_STATE_COMING: 8189 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 8190 if (!btf_mod) { 8191 err = -ENOMEM; 8192 goto out; 8193 } 8194 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 8195 mod->btf_base_data, mod->btf_base_data_size); 8196 if (IS_ERR(btf)) { 8197 kfree(btf_mod); 8198 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 8199 pr_warn("failed to validate module [%s] BTF: %ld\n", 8200 mod->name, PTR_ERR(btf)); 8201 err = PTR_ERR(btf); 8202 } else { 8203 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 8204 } 8205 goto out; 8206 } 8207 err = btf_alloc_id(btf); 8208 if (err) { 8209 btf_free(btf); 8210 kfree(btf_mod); 8211 goto out; 8212 } 8213 8214 purge_cand_cache(NULL); 8215 mutex_lock(&btf_module_mutex); 8216 btf_mod->module = module; 8217 btf_mod->btf = btf; 8218 list_add(&btf_mod->list, &btf_modules); 8219 mutex_unlock(&btf_module_mutex); 8220 8221 if (IS_ENABLED(CONFIG_SYSFS)) { 8222 struct bin_attribute *attr; 8223 8224 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 8225 if (!attr) 8226 goto out; 8227 8228 sysfs_bin_attr_init(attr); 8229 attr->attr.name = btf->name; 8230 attr->attr.mode = 0444; 8231 attr->size = btf->data_size; 8232 attr->private = btf->data; 8233 attr->read = sysfs_bin_attr_simple_read; 8234 8235 err = sysfs_create_bin_file(btf_kobj, attr); 8236 if (err) { 8237 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 8238 mod->name, err); 8239 kfree(attr); 8240 err = 0; 8241 goto out; 8242 } 8243 8244 btf_mod->sysfs_attr = attr; 8245 } 8246 8247 break; 8248 case MODULE_STATE_LIVE: 8249 mutex_lock(&btf_module_mutex); 8250 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8251 if (btf_mod->module != module) 8252 continue; 8253 8254 btf_mod->flags |= BTF_MODULE_F_LIVE; 8255 break; 8256 } 8257 mutex_unlock(&btf_module_mutex); 8258 break; 8259 case MODULE_STATE_GOING: 8260 mutex_lock(&btf_module_mutex); 8261 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8262 if (btf_mod->module != module) 8263 continue; 8264 8265 list_del(&btf_mod->list); 8266 if (btf_mod->sysfs_attr) 8267 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 8268 purge_cand_cache(btf_mod->btf); 8269 btf_put(btf_mod->btf); 8270 kfree(btf_mod->sysfs_attr); 8271 kfree(btf_mod); 8272 break; 8273 } 8274 mutex_unlock(&btf_module_mutex); 8275 break; 8276 } 8277 out: 8278 return notifier_from_errno(err); 8279 } 8280 8281 static struct notifier_block btf_module_nb = { 8282 .notifier_call = btf_module_notify, 8283 }; 8284 8285 static int __init btf_module_init(void) 8286 { 8287 register_module_notifier(&btf_module_nb); 8288 return 0; 8289 } 8290 8291 fs_initcall(btf_module_init); 8292 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 8293 8294 struct module *btf_try_get_module(const struct btf *btf) 8295 { 8296 struct module *res = NULL; 8297 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8298 struct btf_module *btf_mod, *tmp; 8299 8300 mutex_lock(&btf_module_mutex); 8301 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8302 if (btf_mod->btf != btf) 8303 continue; 8304 8305 /* We must only consider module whose __init routine has 8306 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 8307 * which is set from the notifier callback for 8308 * MODULE_STATE_LIVE. 8309 */ 8310 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 8311 res = btf_mod->module; 8312 8313 break; 8314 } 8315 mutex_unlock(&btf_module_mutex); 8316 #endif 8317 8318 return res; 8319 } 8320 8321 /* Returns struct btf corresponding to the struct module. 8322 * This function can return NULL or ERR_PTR. 8323 */ 8324 static struct btf *btf_get_module_btf(const struct module *module) 8325 { 8326 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8327 struct btf_module *btf_mod, *tmp; 8328 #endif 8329 struct btf *btf = NULL; 8330 8331 if (!module) { 8332 btf = bpf_get_btf_vmlinux(); 8333 if (!IS_ERR_OR_NULL(btf)) 8334 btf_get(btf); 8335 return btf; 8336 } 8337 8338 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8339 mutex_lock(&btf_module_mutex); 8340 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8341 if (btf_mod->module != module) 8342 continue; 8343 8344 btf_get(btf_mod->btf); 8345 btf = btf_mod->btf; 8346 break; 8347 } 8348 mutex_unlock(&btf_module_mutex); 8349 #endif 8350 8351 return btf; 8352 } 8353 8354 static int check_btf_kconfigs(const struct module *module, const char *feature) 8355 { 8356 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8357 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8358 return -ENOENT; 8359 } 8360 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8361 pr_warn("missing module BTF, cannot register %s\n", feature); 8362 return 0; 8363 } 8364 8365 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8366 { 8367 struct btf *btf = NULL; 8368 int btf_obj_fd = 0; 8369 long ret; 8370 8371 if (flags) 8372 return -EINVAL; 8373 8374 if (name_sz <= 1 || name[name_sz - 1]) 8375 return -EINVAL; 8376 8377 ret = bpf_find_btf_id(name, kind, &btf); 8378 if (ret > 0 && btf_is_module(btf)) { 8379 btf_obj_fd = __btf_new_fd(btf); 8380 if (btf_obj_fd < 0) { 8381 btf_put(btf); 8382 return btf_obj_fd; 8383 } 8384 return ret | (((u64)btf_obj_fd) << 32); 8385 } 8386 if (ret > 0) 8387 btf_put(btf); 8388 return ret; 8389 } 8390 8391 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8392 .func = bpf_btf_find_by_name_kind, 8393 .gpl_only = false, 8394 .ret_type = RET_INTEGER, 8395 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8396 .arg2_type = ARG_CONST_SIZE, 8397 .arg3_type = ARG_ANYTHING, 8398 .arg4_type = ARG_ANYTHING, 8399 }; 8400 8401 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8402 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8403 BTF_TRACING_TYPE_xxx 8404 #undef BTF_TRACING_TYPE 8405 8406 /* Validate well-formedness of iter argument type. 8407 * On success, return positive BTF ID of iter state's STRUCT type. 8408 * On error, negative error is returned. 8409 */ 8410 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8411 { 8412 const struct btf_param *arg; 8413 const struct btf_type *t; 8414 const char *name; 8415 int btf_id; 8416 8417 if (btf_type_vlen(func) <= arg_idx) 8418 return -EINVAL; 8419 8420 arg = &btf_params(func)[arg_idx]; 8421 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8422 if (!t || !btf_type_is_ptr(t)) 8423 return -EINVAL; 8424 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8425 if (!t || !__btf_type_is_struct(t)) 8426 return -EINVAL; 8427 8428 name = btf_name_by_offset(btf, t->name_off); 8429 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8430 return -EINVAL; 8431 8432 return btf_id; 8433 } 8434 8435 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8436 const struct btf_type *func, u32 func_flags) 8437 { 8438 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8439 const char *sfx, *iter_name; 8440 const struct btf_type *t; 8441 char exp_name[128]; 8442 u32 nr_args; 8443 int btf_id; 8444 8445 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8446 if (!flags || (flags & (flags - 1))) 8447 return -EINVAL; 8448 8449 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8450 nr_args = btf_type_vlen(func); 8451 if (nr_args < 1) 8452 return -EINVAL; 8453 8454 btf_id = btf_check_iter_arg(btf, func, 0); 8455 if (btf_id < 0) 8456 return btf_id; 8457 8458 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8459 * fit nicely in stack slots 8460 */ 8461 t = btf_type_by_id(btf, btf_id); 8462 if (t->size == 0 || (t->size % 8)) 8463 return -EINVAL; 8464 8465 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8466 * naming pattern 8467 */ 8468 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8469 if (flags & KF_ITER_NEW) 8470 sfx = "new"; 8471 else if (flags & KF_ITER_NEXT) 8472 sfx = "next"; 8473 else /* (flags & KF_ITER_DESTROY) */ 8474 sfx = "destroy"; 8475 8476 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8477 if (strcmp(func_name, exp_name)) 8478 return -EINVAL; 8479 8480 /* only iter constructor should have extra arguments */ 8481 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8482 return -EINVAL; 8483 8484 if (flags & KF_ITER_NEXT) { 8485 /* bpf_iter_<type>_next() should return pointer */ 8486 t = btf_type_skip_modifiers(btf, func->type, NULL); 8487 if (!t || !btf_type_is_ptr(t)) 8488 return -EINVAL; 8489 } 8490 8491 if (flags & KF_ITER_DESTROY) { 8492 /* bpf_iter_<type>_destroy() should return void */ 8493 t = btf_type_by_id(btf, func->type); 8494 if (!t || !btf_type_is_void(t)) 8495 return -EINVAL; 8496 } 8497 8498 return 0; 8499 } 8500 8501 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8502 { 8503 const struct btf_type *func; 8504 const char *func_name; 8505 int err; 8506 8507 /* any kfunc should be FUNC -> FUNC_PROTO */ 8508 func = btf_type_by_id(btf, func_id); 8509 if (!func || !btf_type_is_func(func)) 8510 return -EINVAL; 8511 8512 /* sanity check kfunc name */ 8513 func_name = btf_name_by_offset(btf, func->name_off); 8514 if (!func_name || !func_name[0]) 8515 return -EINVAL; 8516 8517 func = btf_type_by_id(btf, func->type); 8518 if (!func || !btf_type_is_func_proto(func)) 8519 return -EINVAL; 8520 8521 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8522 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8523 if (err) 8524 return err; 8525 } 8526 8527 return 0; 8528 } 8529 8530 /* Kernel Function (kfunc) BTF ID set registration API */ 8531 8532 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8533 const struct btf_kfunc_id_set *kset) 8534 { 8535 struct btf_kfunc_hook_filter *hook_filter; 8536 struct btf_id_set8 *add_set = kset->set; 8537 bool vmlinux_set = !btf_is_module(btf); 8538 bool add_filter = !!kset->filter; 8539 struct btf_kfunc_set_tab *tab; 8540 struct btf_id_set8 *set; 8541 u32 set_cnt, i; 8542 int ret; 8543 8544 if (hook >= BTF_KFUNC_HOOK_MAX) { 8545 ret = -EINVAL; 8546 goto end; 8547 } 8548 8549 if (!add_set->cnt) 8550 return 0; 8551 8552 tab = btf->kfunc_set_tab; 8553 8554 if (tab && add_filter) { 8555 u32 i; 8556 8557 hook_filter = &tab->hook_filters[hook]; 8558 for (i = 0; i < hook_filter->nr_filters; i++) { 8559 if (hook_filter->filters[i] == kset->filter) { 8560 add_filter = false; 8561 break; 8562 } 8563 } 8564 8565 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8566 ret = -E2BIG; 8567 goto end; 8568 } 8569 } 8570 8571 if (!tab) { 8572 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8573 if (!tab) 8574 return -ENOMEM; 8575 btf->kfunc_set_tab = tab; 8576 } 8577 8578 set = tab->sets[hook]; 8579 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8580 * for module sets. 8581 */ 8582 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8583 ret = -EINVAL; 8584 goto end; 8585 } 8586 8587 /* In case of vmlinux sets, there may be more than one set being 8588 * registered per hook. To create a unified set, we allocate a new set 8589 * and concatenate all individual sets being registered. While each set 8590 * is individually sorted, they may become unsorted when concatenated, 8591 * hence re-sorting the final set again is required to make binary 8592 * searching the set using btf_id_set8_contains function work. 8593 * 8594 * For module sets, we need to allocate as we may need to relocate 8595 * BTF ids. 8596 */ 8597 set_cnt = set ? set->cnt : 0; 8598 8599 if (set_cnt > U32_MAX - add_set->cnt) { 8600 ret = -EOVERFLOW; 8601 goto end; 8602 } 8603 8604 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8605 ret = -E2BIG; 8606 goto end; 8607 } 8608 8609 /* Grow set */ 8610 set = krealloc(tab->sets[hook], 8611 struct_size(set, pairs, set_cnt + add_set->cnt), 8612 GFP_KERNEL | __GFP_NOWARN); 8613 if (!set) { 8614 ret = -ENOMEM; 8615 goto end; 8616 } 8617 8618 /* For newly allocated set, initialize set->cnt to 0 */ 8619 if (!tab->sets[hook]) 8620 set->cnt = 0; 8621 tab->sets[hook] = set; 8622 8623 /* Concatenate the two sets */ 8624 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8625 /* Now that the set is copied, update with relocated BTF ids */ 8626 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8627 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8628 8629 set->cnt += add_set->cnt; 8630 8631 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8632 8633 if (add_filter) { 8634 hook_filter = &tab->hook_filters[hook]; 8635 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8636 } 8637 return 0; 8638 end: 8639 btf_free_kfunc_set_tab(btf); 8640 return ret; 8641 } 8642 8643 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8644 enum btf_kfunc_hook hook, 8645 u32 kfunc_btf_id, 8646 const struct bpf_prog *prog) 8647 { 8648 struct btf_kfunc_hook_filter *hook_filter; 8649 struct btf_id_set8 *set; 8650 u32 *id, i; 8651 8652 if (hook >= BTF_KFUNC_HOOK_MAX) 8653 return NULL; 8654 if (!btf->kfunc_set_tab) 8655 return NULL; 8656 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8657 for (i = 0; i < hook_filter->nr_filters; i++) { 8658 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8659 return NULL; 8660 } 8661 set = btf->kfunc_set_tab->sets[hook]; 8662 if (!set) 8663 return NULL; 8664 id = btf_id_set8_contains(set, kfunc_btf_id); 8665 if (!id) 8666 return NULL; 8667 /* The flags for BTF ID are located next to it */ 8668 return id + 1; 8669 } 8670 8671 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8672 { 8673 switch (prog_type) { 8674 case BPF_PROG_TYPE_UNSPEC: 8675 return BTF_KFUNC_HOOK_COMMON; 8676 case BPF_PROG_TYPE_XDP: 8677 return BTF_KFUNC_HOOK_XDP; 8678 case BPF_PROG_TYPE_SCHED_CLS: 8679 return BTF_KFUNC_HOOK_TC; 8680 case BPF_PROG_TYPE_STRUCT_OPS: 8681 return BTF_KFUNC_HOOK_STRUCT_OPS; 8682 case BPF_PROG_TYPE_TRACING: 8683 case BPF_PROG_TYPE_TRACEPOINT: 8684 case BPF_PROG_TYPE_PERF_EVENT: 8685 case BPF_PROG_TYPE_LSM: 8686 return BTF_KFUNC_HOOK_TRACING; 8687 case BPF_PROG_TYPE_SYSCALL: 8688 return BTF_KFUNC_HOOK_SYSCALL; 8689 case BPF_PROG_TYPE_CGROUP_SKB: 8690 case BPF_PROG_TYPE_CGROUP_SOCK: 8691 case BPF_PROG_TYPE_CGROUP_DEVICE: 8692 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8693 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8694 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8695 case BPF_PROG_TYPE_SOCK_OPS: 8696 return BTF_KFUNC_HOOK_CGROUP; 8697 case BPF_PROG_TYPE_SCHED_ACT: 8698 return BTF_KFUNC_HOOK_SCHED_ACT; 8699 case BPF_PROG_TYPE_SK_SKB: 8700 return BTF_KFUNC_HOOK_SK_SKB; 8701 case BPF_PROG_TYPE_SOCKET_FILTER: 8702 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8703 case BPF_PROG_TYPE_LWT_OUT: 8704 case BPF_PROG_TYPE_LWT_IN: 8705 case BPF_PROG_TYPE_LWT_XMIT: 8706 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8707 return BTF_KFUNC_HOOK_LWT; 8708 case BPF_PROG_TYPE_NETFILTER: 8709 return BTF_KFUNC_HOOK_NETFILTER; 8710 case BPF_PROG_TYPE_KPROBE: 8711 return BTF_KFUNC_HOOK_KPROBE; 8712 default: 8713 return BTF_KFUNC_HOOK_MAX; 8714 } 8715 } 8716 8717 /* Caution: 8718 * Reference to the module (obtained using btf_try_get_module) corresponding to 8719 * the struct btf *MUST* be held when calling this function from verifier 8720 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8721 * keeping the reference for the duration of the call provides the necessary 8722 * protection for looking up a well-formed btf->kfunc_set_tab. 8723 */ 8724 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8725 u32 kfunc_btf_id, 8726 const struct bpf_prog *prog) 8727 { 8728 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8729 enum btf_kfunc_hook hook; 8730 u32 *kfunc_flags; 8731 8732 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8733 if (kfunc_flags) 8734 return kfunc_flags; 8735 8736 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8737 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8738 } 8739 8740 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8741 const struct bpf_prog *prog) 8742 { 8743 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8744 } 8745 8746 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8747 const struct btf_kfunc_id_set *kset) 8748 { 8749 struct btf *btf; 8750 int ret, i; 8751 8752 btf = btf_get_module_btf(kset->owner); 8753 if (!btf) 8754 return check_btf_kconfigs(kset->owner, "kfunc"); 8755 if (IS_ERR(btf)) 8756 return PTR_ERR(btf); 8757 8758 for (i = 0; i < kset->set->cnt; i++) { 8759 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8760 kset->set->pairs[i].flags); 8761 if (ret) 8762 goto err_out; 8763 } 8764 8765 ret = btf_populate_kfunc_set(btf, hook, kset); 8766 8767 err_out: 8768 btf_put(btf); 8769 return ret; 8770 } 8771 8772 /* This function must be invoked only from initcalls/module init functions */ 8773 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8774 const struct btf_kfunc_id_set *kset) 8775 { 8776 enum btf_kfunc_hook hook; 8777 8778 /* All kfuncs need to be tagged as such in BTF. 8779 * WARN() for initcall registrations that do not check errors. 8780 */ 8781 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8782 WARN_ON(!kset->owner); 8783 return -EINVAL; 8784 } 8785 8786 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8787 return __register_btf_kfunc_id_set(hook, kset); 8788 } 8789 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8790 8791 /* This function must be invoked only from initcalls/module init functions */ 8792 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8793 { 8794 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8795 } 8796 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8797 8798 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8799 { 8800 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8801 struct btf_id_dtor_kfunc *dtor; 8802 8803 if (!tab) 8804 return -ENOENT; 8805 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8806 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8807 */ 8808 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8809 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8810 if (!dtor) 8811 return -ENOENT; 8812 return dtor->kfunc_btf_id; 8813 } 8814 8815 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8816 { 8817 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8818 const struct btf_param *args; 8819 s32 dtor_btf_id; 8820 u32 nr_args, i; 8821 8822 for (i = 0; i < cnt; i++) { 8823 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8824 8825 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8826 if (!dtor_func || !btf_type_is_func(dtor_func)) 8827 return -EINVAL; 8828 8829 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8830 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8831 return -EINVAL; 8832 8833 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8834 t = btf_type_by_id(btf, dtor_func_proto->type); 8835 if (!t || !btf_type_is_void(t)) 8836 return -EINVAL; 8837 8838 nr_args = btf_type_vlen(dtor_func_proto); 8839 if (nr_args != 1) 8840 return -EINVAL; 8841 args = btf_params(dtor_func_proto); 8842 t = btf_type_by_id(btf, args[0].type); 8843 /* Allow any pointer type, as width on targets Linux supports 8844 * will be same for all pointer types (i.e. sizeof(void *)) 8845 */ 8846 if (!t || !btf_type_is_ptr(t)) 8847 return -EINVAL; 8848 } 8849 return 0; 8850 } 8851 8852 /* This function must be invoked only from initcalls/module init functions */ 8853 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8854 struct module *owner) 8855 { 8856 struct btf_id_dtor_kfunc_tab *tab; 8857 struct btf *btf; 8858 u32 tab_cnt, i; 8859 int ret; 8860 8861 btf = btf_get_module_btf(owner); 8862 if (!btf) 8863 return check_btf_kconfigs(owner, "dtor kfuncs"); 8864 if (IS_ERR(btf)) 8865 return PTR_ERR(btf); 8866 8867 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8868 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8869 ret = -E2BIG; 8870 goto end; 8871 } 8872 8873 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8874 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8875 if (ret < 0) 8876 goto end; 8877 8878 tab = btf->dtor_kfunc_tab; 8879 /* Only one call allowed for modules */ 8880 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8881 ret = -EINVAL; 8882 goto end; 8883 } 8884 8885 tab_cnt = tab ? tab->cnt : 0; 8886 if (tab_cnt > U32_MAX - add_cnt) { 8887 ret = -EOVERFLOW; 8888 goto end; 8889 } 8890 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8891 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8892 ret = -E2BIG; 8893 goto end; 8894 } 8895 8896 tab = krealloc(btf->dtor_kfunc_tab, 8897 struct_size(tab, dtors, tab_cnt + add_cnt), 8898 GFP_KERNEL | __GFP_NOWARN); 8899 if (!tab) { 8900 ret = -ENOMEM; 8901 goto end; 8902 } 8903 8904 if (!btf->dtor_kfunc_tab) 8905 tab->cnt = 0; 8906 btf->dtor_kfunc_tab = tab; 8907 8908 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8909 8910 /* remap BTF ids based on BTF relocation (if any) */ 8911 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8912 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8913 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8914 } 8915 8916 tab->cnt += add_cnt; 8917 8918 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8919 8920 end: 8921 if (ret) 8922 btf_free_dtor_kfunc_tab(btf); 8923 btf_put(btf); 8924 return ret; 8925 } 8926 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8927 8928 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8929 8930 /* Check local and target types for compatibility. This check is used for 8931 * type-based CO-RE relocations and follow slightly different rules than 8932 * field-based relocations. This function assumes that root types were already 8933 * checked for name match. Beyond that initial root-level name check, names 8934 * are completely ignored. Compatibility rules are as follows: 8935 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8936 * kind should match for local and target types (i.e., STRUCT is not 8937 * compatible with UNION); 8938 * - for ENUMs/ENUM64s, the size is ignored; 8939 * - for INT, size and signedness are ignored; 8940 * - for ARRAY, dimensionality is ignored, element types are checked for 8941 * compatibility recursively; 8942 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8943 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8944 * - FUNC_PROTOs are compatible if they have compatible signature: same 8945 * number of input args and compatible return and argument types. 8946 * These rules are not set in stone and probably will be adjusted as we get 8947 * more experience with using BPF CO-RE relocations. 8948 */ 8949 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8950 const struct btf *targ_btf, __u32 targ_id) 8951 { 8952 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8953 MAX_TYPES_ARE_COMPAT_DEPTH); 8954 } 8955 8956 #define MAX_TYPES_MATCH_DEPTH 2 8957 8958 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8959 const struct btf *targ_btf, u32 targ_id) 8960 { 8961 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8962 MAX_TYPES_MATCH_DEPTH); 8963 } 8964 8965 static bool bpf_core_is_flavor_sep(const char *s) 8966 { 8967 /* check X___Y name pattern, where X and Y are not underscores */ 8968 return s[0] != '_' && /* X */ 8969 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8970 s[4] != '_'; /* Y */ 8971 } 8972 8973 size_t bpf_core_essential_name_len(const char *name) 8974 { 8975 size_t n = strlen(name); 8976 int i; 8977 8978 for (i = n - 5; i >= 0; i--) { 8979 if (bpf_core_is_flavor_sep(name + i)) 8980 return i + 1; 8981 } 8982 return n; 8983 } 8984 8985 static void bpf_free_cands(struct bpf_cand_cache *cands) 8986 { 8987 if (!cands->cnt) 8988 /* empty candidate array was allocated on stack */ 8989 return; 8990 kfree(cands); 8991 } 8992 8993 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8994 { 8995 kfree(cands->name); 8996 kfree(cands); 8997 } 8998 8999 #define VMLINUX_CAND_CACHE_SIZE 31 9000 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 9001 9002 #define MODULE_CAND_CACHE_SIZE 31 9003 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 9004 9005 static void __print_cand_cache(struct bpf_verifier_log *log, 9006 struct bpf_cand_cache **cache, 9007 int cache_size) 9008 { 9009 struct bpf_cand_cache *cc; 9010 int i, j; 9011 9012 for (i = 0; i < cache_size; i++) { 9013 cc = cache[i]; 9014 if (!cc) 9015 continue; 9016 bpf_log(log, "[%d]%s(", i, cc->name); 9017 for (j = 0; j < cc->cnt; j++) { 9018 bpf_log(log, "%d", cc->cands[j].id); 9019 if (j < cc->cnt - 1) 9020 bpf_log(log, " "); 9021 } 9022 bpf_log(log, "), "); 9023 } 9024 } 9025 9026 static void print_cand_cache(struct bpf_verifier_log *log) 9027 { 9028 mutex_lock(&cand_cache_mutex); 9029 bpf_log(log, "vmlinux_cand_cache:"); 9030 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9031 bpf_log(log, "\nmodule_cand_cache:"); 9032 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9033 bpf_log(log, "\n"); 9034 mutex_unlock(&cand_cache_mutex); 9035 } 9036 9037 static u32 hash_cands(struct bpf_cand_cache *cands) 9038 { 9039 return jhash(cands->name, cands->name_len, 0); 9040 } 9041 9042 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 9043 struct bpf_cand_cache **cache, 9044 int cache_size) 9045 { 9046 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 9047 9048 if (cc && cc->name_len == cands->name_len && 9049 !strncmp(cc->name, cands->name, cands->name_len)) 9050 return cc; 9051 return NULL; 9052 } 9053 9054 static size_t sizeof_cands(int cnt) 9055 { 9056 return offsetof(struct bpf_cand_cache, cands[cnt]); 9057 } 9058 9059 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 9060 struct bpf_cand_cache **cache, 9061 int cache_size) 9062 { 9063 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 9064 9065 if (*cc) { 9066 bpf_free_cands_from_cache(*cc); 9067 *cc = NULL; 9068 } 9069 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT); 9070 if (!new_cands) { 9071 bpf_free_cands(cands); 9072 return ERR_PTR(-ENOMEM); 9073 } 9074 /* strdup the name, since it will stay in cache. 9075 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 9076 */ 9077 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT); 9078 bpf_free_cands(cands); 9079 if (!new_cands->name) { 9080 kfree(new_cands); 9081 return ERR_PTR(-ENOMEM); 9082 } 9083 *cc = new_cands; 9084 return new_cands; 9085 } 9086 9087 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 9088 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 9089 int cache_size) 9090 { 9091 struct bpf_cand_cache *cc; 9092 int i, j; 9093 9094 for (i = 0; i < cache_size; i++) { 9095 cc = cache[i]; 9096 if (!cc) 9097 continue; 9098 if (!btf) { 9099 /* when new module is loaded purge all of module_cand_cache, 9100 * since new module might have candidates with the name 9101 * that matches cached cands. 9102 */ 9103 bpf_free_cands_from_cache(cc); 9104 cache[i] = NULL; 9105 continue; 9106 } 9107 /* when module is unloaded purge cache entries 9108 * that match module's btf 9109 */ 9110 for (j = 0; j < cc->cnt; j++) 9111 if (cc->cands[j].btf == btf) { 9112 bpf_free_cands_from_cache(cc); 9113 cache[i] = NULL; 9114 break; 9115 } 9116 } 9117 9118 } 9119 9120 static void purge_cand_cache(struct btf *btf) 9121 { 9122 mutex_lock(&cand_cache_mutex); 9123 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9124 mutex_unlock(&cand_cache_mutex); 9125 } 9126 #endif 9127 9128 static struct bpf_cand_cache * 9129 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 9130 int targ_start_id) 9131 { 9132 struct bpf_cand_cache *new_cands; 9133 const struct btf_type *t; 9134 const char *targ_name; 9135 size_t targ_essent_len; 9136 int n, i; 9137 9138 n = btf_nr_types(targ_btf); 9139 for (i = targ_start_id; i < n; i++) { 9140 t = btf_type_by_id(targ_btf, i); 9141 if (btf_kind(t) != cands->kind) 9142 continue; 9143 9144 targ_name = btf_name_by_offset(targ_btf, t->name_off); 9145 if (!targ_name) 9146 continue; 9147 9148 /* the resched point is before strncmp to make sure that search 9149 * for non-existing name will have a chance to schedule(). 9150 */ 9151 cond_resched(); 9152 9153 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 9154 continue; 9155 9156 targ_essent_len = bpf_core_essential_name_len(targ_name); 9157 if (targ_essent_len != cands->name_len) 9158 continue; 9159 9160 /* most of the time there is only one candidate for a given kind+name pair */ 9161 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT); 9162 if (!new_cands) { 9163 bpf_free_cands(cands); 9164 return ERR_PTR(-ENOMEM); 9165 } 9166 9167 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 9168 bpf_free_cands(cands); 9169 cands = new_cands; 9170 cands->cands[cands->cnt].btf = targ_btf; 9171 cands->cands[cands->cnt].id = i; 9172 cands->cnt++; 9173 } 9174 return cands; 9175 } 9176 9177 static struct bpf_cand_cache * 9178 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 9179 { 9180 struct bpf_cand_cache *cands, *cc, local_cand = {}; 9181 const struct btf *local_btf = ctx->btf; 9182 const struct btf_type *local_type; 9183 const struct btf *main_btf; 9184 size_t local_essent_len; 9185 struct btf *mod_btf; 9186 const char *name; 9187 int id; 9188 9189 main_btf = bpf_get_btf_vmlinux(); 9190 if (IS_ERR(main_btf)) 9191 return ERR_CAST(main_btf); 9192 if (!main_btf) 9193 return ERR_PTR(-EINVAL); 9194 9195 local_type = btf_type_by_id(local_btf, local_type_id); 9196 if (!local_type) 9197 return ERR_PTR(-EINVAL); 9198 9199 name = btf_name_by_offset(local_btf, local_type->name_off); 9200 if (str_is_empty(name)) 9201 return ERR_PTR(-EINVAL); 9202 local_essent_len = bpf_core_essential_name_len(name); 9203 9204 cands = &local_cand; 9205 cands->name = name; 9206 cands->kind = btf_kind(local_type); 9207 cands->name_len = local_essent_len; 9208 9209 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9210 /* cands is a pointer to stack here */ 9211 if (cc) { 9212 if (cc->cnt) 9213 return cc; 9214 goto check_modules; 9215 } 9216 9217 /* Attempt to find target candidates in vmlinux BTF first */ 9218 cands = bpf_core_add_cands(cands, main_btf, 1); 9219 if (IS_ERR(cands)) 9220 return ERR_CAST(cands); 9221 9222 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 9223 9224 /* populate cache even when cands->cnt == 0 */ 9225 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9226 if (IS_ERR(cc)) 9227 return ERR_CAST(cc); 9228 9229 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 9230 if (cc->cnt) 9231 return cc; 9232 9233 check_modules: 9234 /* cands is a pointer to stack here and cands->cnt == 0 */ 9235 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9236 if (cc) 9237 /* if cache has it return it even if cc->cnt == 0 */ 9238 return cc; 9239 9240 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 9241 spin_lock_bh(&btf_idr_lock); 9242 idr_for_each_entry(&btf_idr, mod_btf, id) { 9243 if (!btf_is_module(mod_btf)) 9244 continue; 9245 /* linear search could be slow hence unlock/lock 9246 * the IDR to avoiding holding it for too long 9247 */ 9248 btf_get(mod_btf); 9249 spin_unlock_bh(&btf_idr_lock); 9250 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 9251 btf_put(mod_btf); 9252 if (IS_ERR(cands)) 9253 return ERR_CAST(cands); 9254 spin_lock_bh(&btf_idr_lock); 9255 } 9256 spin_unlock_bh(&btf_idr_lock); 9257 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 9258 * or pointer to stack if cands->cnd == 0. 9259 * Copy it into the cache even when cands->cnt == 0 and 9260 * return the result. 9261 */ 9262 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9263 } 9264 9265 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 9266 int relo_idx, void *insn) 9267 { 9268 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 9269 struct bpf_core_cand_list cands = {}; 9270 struct bpf_core_relo_res targ_res; 9271 struct bpf_core_spec *specs; 9272 const struct btf_type *type; 9273 int err; 9274 9275 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 9276 * into arrays of btf_ids of struct fields and array indices. 9277 */ 9278 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL_ACCOUNT); 9279 if (!specs) 9280 return -ENOMEM; 9281 9282 type = btf_type_by_id(ctx->btf, relo->type_id); 9283 if (!type) { 9284 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 9285 relo_idx, relo->type_id); 9286 kfree(specs); 9287 return -EINVAL; 9288 } 9289 9290 if (need_cands) { 9291 struct bpf_cand_cache *cc; 9292 int i; 9293 9294 mutex_lock(&cand_cache_mutex); 9295 cc = bpf_core_find_cands(ctx, relo->type_id); 9296 if (IS_ERR(cc)) { 9297 bpf_log(ctx->log, "target candidate search failed for %d\n", 9298 relo->type_id); 9299 err = PTR_ERR(cc); 9300 goto out; 9301 } 9302 if (cc->cnt) { 9303 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL_ACCOUNT); 9304 if (!cands.cands) { 9305 err = -ENOMEM; 9306 goto out; 9307 } 9308 } 9309 for (i = 0; i < cc->cnt; i++) { 9310 bpf_log(ctx->log, 9311 "CO-RE relocating %s %s: found target candidate [%d]\n", 9312 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 9313 cands.cands[i].btf = cc->cands[i].btf; 9314 cands.cands[i].id = cc->cands[i].id; 9315 } 9316 cands.len = cc->cnt; 9317 /* cand_cache_mutex needs to span the cache lookup and 9318 * copy of btf pointer into bpf_core_cand_list, 9319 * since module can be unloaded while bpf_core_calc_relo_insn 9320 * is working with module's btf. 9321 */ 9322 } 9323 9324 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9325 &targ_res); 9326 if (err) 9327 goto out; 9328 9329 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9330 &targ_res); 9331 9332 out: 9333 kfree(specs); 9334 if (need_cands) { 9335 kfree(cands.cands); 9336 mutex_unlock(&cand_cache_mutex); 9337 if (ctx->log->level & BPF_LOG_LEVEL2) 9338 print_cand_cache(ctx->log); 9339 } 9340 return err; 9341 } 9342 9343 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9344 const struct bpf_reg_state *reg, 9345 const char *field_name, u32 btf_id, const char *suffix) 9346 { 9347 struct btf *btf = reg->btf; 9348 const struct btf_type *walk_type, *safe_type; 9349 const char *tname; 9350 char safe_tname[64]; 9351 long ret, safe_id; 9352 const struct btf_member *member; 9353 u32 i; 9354 9355 walk_type = btf_type_by_id(btf, reg->btf_id); 9356 if (!walk_type) 9357 return false; 9358 9359 tname = btf_name_by_offset(btf, walk_type->name_off); 9360 9361 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9362 if (ret >= sizeof(safe_tname)) 9363 return false; 9364 9365 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9366 if (safe_id < 0) 9367 return false; 9368 9369 safe_type = btf_type_by_id(btf, safe_id); 9370 if (!safe_type) 9371 return false; 9372 9373 for_each_member(i, safe_type, member) { 9374 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9375 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9376 u32 id; 9377 9378 if (!btf_type_is_ptr(mtype)) 9379 continue; 9380 9381 btf_type_skip_modifiers(btf, mtype->type, &id); 9382 /* If we match on both type and name, the field is considered trusted. */ 9383 if (btf_id == id && !strcmp(field_name, m_name)) 9384 return true; 9385 } 9386 9387 return false; 9388 } 9389 9390 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9391 const struct btf *reg_btf, u32 reg_id, 9392 const struct btf *arg_btf, u32 arg_id) 9393 { 9394 const char *reg_name, *arg_name, *search_needle; 9395 const struct btf_type *reg_type, *arg_type; 9396 int reg_len, arg_len, cmp_len; 9397 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9398 9399 reg_type = btf_type_by_id(reg_btf, reg_id); 9400 if (!reg_type) 9401 return false; 9402 9403 arg_type = btf_type_by_id(arg_btf, arg_id); 9404 if (!arg_type) 9405 return false; 9406 9407 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9408 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9409 9410 reg_len = strlen(reg_name); 9411 arg_len = strlen(arg_name); 9412 9413 /* Exactly one of the two type names may be suffixed with ___init, so 9414 * if the strings are the same size, they can't possibly be no-cast 9415 * aliases of one another. If you have two of the same type names, e.g. 9416 * they're both nf_conn___init, it would be improper to return true 9417 * because they are _not_ no-cast aliases, they are the same type. 9418 */ 9419 if (reg_len == arg_len) 9420 return false; 9421 9422 /* Either of the two names must be the other name, suffixed with ___init. */ 9423 if ((reg_len != arg_len + pattern_len) && 9424 (arg_len != reg_len + pattern_len)) 9425 return false; 9426 9427 if (reg_len < arg_len) { 9428 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9429 cmp_len = reg_len; 9430 } else { 9431 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9432 cmp_len = arg_len; 9433 } 9434 9435 if (!search_needle) 9436 return false; 9437 9438 /* ___init suffix must come at the end of the name */ 9439 if (*(search_needle + pattern_len) != '\0') 9440 return false; 9441 9442 return !strncmp(reg_name, arg_name, cmp_len); 9443 } 9444 9445 #ifdef CONFIG_BPF_JIT 9446 static int 9447 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9448 struct bpf_verifier_log *log) 9449 { 9450 struct btf_struct_ops_tab *tab, *new_tab; 9451 int i, err; 9452 9453 tab = btf->struct_ops_tab; 9454 if (!tab) { 9455 tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL); 9456 if (!tab) 9457 return -ENOMEM; 9458 tab->capacity = 4; 9459 btf->struct_ops_tab = tab; 9460 } 9461 9462 for (i = 0; i < tab->cnt; i++) 9463 if (tab->ops[i].st_ops == st_ops) 9464 return -EEXIST; 9465 9466 if (tab->cnt == tab->capacity) { 9467 new_tab = krealloc(tab, 9468 struct_size(tab, ops, tab->capacity * 2), 9469 GFP_KERNEL); 9470 if (!new_tab) 9471 return -ENOMEM; 9472 tab = new_tab; 9473 tab->capacity *= 2; 9474 btf->struct_ops_tab = tab; 9475 } 9476 9477 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9478 9479 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9480 if (err) 9481 return err; 9482 9483 btf->struct_ops_tab->cnt++; 9484 9485 return 0; 9486 } 9487 9488 const struct bpf_struct_ops_desc * 9489 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9490 { 9491 const struct bpf_struct_ops_desc *st_ops_list; 9492 unsigned int i; 9493 u32 cnt; 9494 9495 if (!value_id) 9496 return NULL; 9497 if (!btf->struct_ops_tab) 9498 return NULL; 9499 9500 cnt = btf->struct_ops_tab->cnt; 9501 st_ops_list = btf->struct_ops_tab->ops; 9502 for (i = 0; i < cnt; i++) { 9503 if (st_ops_list[i].value_id == value_id) 9504 return &st_ops_list[i]; 9505 } 9506 9507 return NULL; 9508 } 9509 9510 const struct bpf_struct_ops_desc * 9511 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9512 { 9513 const struct bpf_struct_ops_desc *st_ops_list; 9514 unsigned int i; 9515 u32 cnt; 9516 9517 if (!type_id) 9518 return NULL; 9519 if (!btf->struct_ops_tab) 9520 return NULL; 9521 9522 cnt = btf->struct_ops_tab->cnt; 9523 st_ops_list = btf->struct_ops_tab->ops; 9524 for (i = 0; i < cnt; i++) { 9525 if (st_ops_list[i].type_id == type_id) 9526 return &st_ops_list[i]; 9527 } 9528 9529 return NULL; 9530 } 9531 9532 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9533 { 9534 struct bpf_verifier_log *log; 9535 struct btf *btf; 9536 int err = 0; 9537 9538 btf = btf_get_module_btf(st_ops->owner); 9539 if (!btf) 9540 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9541 if (IS_ERR(btf)) 9542 return PTR_ERR(btf); 9543 9544 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9545 if (!log) { 9546 err = -ENOMEM; 9547 goto errout; 9548 } 9549 9550 log->level = BPF_LOG_KERNEL; 9551 9552 err = btf_add_struct_ops(btf, st_ops, log); 9553 9554 errout: 9555 kfree(log); 9556 btf_put(btf); 9557 9558 return err; 9559 } 9560 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9561 #endif 9562 9563 bool btf_param_match_suffix(const struct btf *btf, 9564 const struct btf_param *arg, 9565 const char *suffix) 9566 { 9567 int suffix_len = strlen(suffix), len; 9568 const char *param_name; 9569 9570 /* In the future, this can be ported to use BTF tagging */ 9571 param_name = btf_name_by_offset(btf, arg->name_off); 9572 if (str_is_empty(param_name)) 9573 return false; 9574 len = strlen(param_name); 9575 if (len <= suffix_len) 9576 return false; 9577 param_name += len - suffix_len; 9578 return !strncmp(param_name, suffix, suffix_len); 9579 } 9580