1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 278 }; 279 280 enum verifier_phase { 281 CHECK_META, 282 CHECK_TYPE, 283 }; 284 285 struct resolve_vertex { 286 const struct btf_type *t; 287 u32 type_id; 288 u16 next_member; 289 }; 290 291 enum visit_state { 292 NOT_VISITED, 293 VISITED, 294 RESOLVED, 295 }; 296 297 enum resolve_mode { 298 RESOLVE_TBD, /* To Be Determined */ 299 RESOLVE_PTR, /* Resolving for Pointer */ 300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 301 * or array 302 */ 303 }; 304 305 #define MAX_RESOLVE_DEPTH 32 306 307 struct btf_sec_info { 308 u32 off; 309 u32 len; 310 }; 311 312 struct btf_verifier_env { 313 struct btf *btf; 314 u8 *visit_states; 315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 316 struct bpf_verifier_log log; 317 u32 log_type_id; 318 u32 top_stack; 319 enum verifier_phase phase; 320 enum resolve_mode resolve_mode; 321 }; 322 323 static const char * const btf_kind_str[NR_BTF_KINDS] = { 324 [BTF_KIND_UNKN] = "UNKNOWN", 325 [BTF_KIND_INT] = "INT", 326 [BTF_KIND_PTR] = "PTR", 327 [BTF_KIND_ARRAY] = "ARRAY", 328 [BTF_KIND_STRUCT] = "STRUCT", 329 [BTF_KIND_UNION] = "UNION", 330 [BTF_KIND_ENUM] = "ENUM", 331 [BTF_KIND_FWD] = "FWD", 332 [BTF_KIND_TYPEDEF] = "TYPEDEF", 333 [BTF_KIND_VOLATILE] = "VOLATILE", 334 [BTF_KIND_CONST] = "CONST", 335 [BTF_KIND_RESTRICT] = "RESTRICT", 336 [BTF_KIND_FUNC] = "FUNC", 337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 338 [BTF_KIND_VAR] = "VAR", 339 [BTF_KIND_DATASEC] = "DATASEC", 340 [BTF_KIND_FLOAT] = "FLOAT", 341 [BTF_KIND_DECL_TAG] = "DECL_TAG", 342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 343 [BTF_KIND_ENUM64] = "ENUM64", 344 }; 345 346 const char *btf_type_str(const struct btf_type *t) 347 { 348 return btf_kind_str[BTF_INFO_KIND(t->info)]; 349 } 350 351 /* Chunk size we use in safe copy of data to be shown. */ 352 #define BTF_SHOW_OBJ_SAFE_SIZE 32 353 354 /* 355 * This is the maximum size of a base type value (equivalent to a 356 * 128-bit int); if we are at the end of our safe buffer and have 357 * less than 16 bytes space we can't be assured of being able 358 * to copy the next type safely, so in such cases we will initiate 359 * a new copy. 360 */ 361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 362 363 /* Type name size */ 364 #define BTF_SHOW_NAME_SIZE 80 365 366 /* 367 * The suffix of a type that indicates it cannot alias another type when 368 * comparing BTF IDs for kfunc invocations. 369 */ 370 #define NOCAST_ALIAS_SUFFIX "___init" 371 372 /* 373 * Common data to all BTF show operations. Private show functions can add 374 * their own data to a structure containing a struct btf_show and consult it 375 * in the show callback. See btf_type_show() below. 376 * 377 * One challenge with showing nested data is we want to skip 0-valued 378 * data, but in order to figure out whether a nested object is all zeros 379 * we need to walk through it. As a result, we need to make two passes 380 * when handling structs, unions and arrays; the first path simply looks 381 * for nonzero data, while the second actually does the display. The first 382 * pass is signalled by show->state.depth_check being set, and if we 383 * encounter a non-zero value we set show->state.depth_to_show to 384 * the depth at which we encountered it. When we have completed the 385 * first pass, we will know if anything needs to be displayed if 386 * depth_to_show > depth. See btf_[struct,array]_show() for the 387 * implementation of this. 388 * 389 * Another problem is we want to ensure the data for display is safe to 390 * access. To support this, the anonymous "struct {} obj" tracks the data 391 * object and our safe copy of it. We copy portions of the data needed 392 * to the object "copy" buffer, but because its size is limited to 393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 394 * traverse larger objects for display. 395 * 396 * The various data type show functions all start with a call to 397 * btf_show_start_type() which returns a pointer to the safe copy 398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 399 * raw data itself). btf_show_obj_safe() is responsible for 400 * using copy_from_kernel_nofault() to update the safe data if necessary 401 * as we traverse the object's data. skbuff-like semantics are 402 * used: 403 * 404 * - obj.head points to the start of the toplevel object for display 405 * - obj.size is the size of the toplevel object 406 * - obj.data points to the current point in the original data at 407 * which our safe data starts. obj.data will advance as we copy 408 * portions of the data. 409 * 410 * In most cases a single copy will suffice, but larger data structures 411 * such as "struct task_struct" will require many copies. The logic in 412 * btf_show_obj_safe() handles the logic that determines if a new 413 * copy_from_kernel_nofault() is needed. 414 */ 415 struct btf_show { 416 u64 flags; 417 void *target; /* target of show operation (seq file, buffer) */ 418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 419 const struct btf *btf; 420 /* below are used during iteration */ 421 struct { 422 u8 depth; 423 u8 depth_to_show; 424 u8 depth_check; 425 u8 array_member:1, 426 array_terminated:1; 427 u16 array_encoding; 428 u32 type_id; 429 int status; /* non-zero for error */ 430 const struct btf_type *type; 431 const struct btf_member *member; 432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 433 } state; 434 struct { 435 u32 size; 436 void *head; 437 void *data; 438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 439 } obj; 440 }; 441 442 struct btf_kind_operations { 443 s32 (*check_meta)(struct btf_verifier_env *env, 444 const struct btf_type *t, 445 u32 meta_left); 446 int (*resolve)(struct btf_verifier_env *env, 447 const struct resolve_vertex *v); 448 int (*check_member)(struct btf_verifier_env *env, 449 const struct btf_type *struct_type, 450 const struct btf_member *member, 451 const struct btf_type *member_type); 452 int (*check_kflag_member)(struct btf_verifier_env *env, 453 const struct btf_type *struct_type, 454 const struct btf_member *member, 455 const struct btf_type *member_type); 456 void (*log_details)(struct btf_verifier_env *env, 457 const struct btf_type *t); 458 void (*show)(const struct btf *btf, const struct btf_type *t, 459 u32 type_id, void *data, u8 bits_offsets, 460 struct btf_show *show); 461 }; 462 463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 464 static struct btf_type btf_void; 465 466 static int btf_resolve(struct btf_verifier_env *env, 467 const struct btf_type *t, u32 type_id); 468 469 static int btf_func_check(struct btf_verifier_env *env, 470 const struct btf_type *t); 471 472 static bool btf_type_is_modifier(const struct btf_type *t) 473 { 474 /* Some of them is not strictly a C modifier 475 * but they are grouped into the same bucket 476 * for BTF concern: 477 * A type (t) that refers to another 478 * type through t->type AND its size cannot 479 * be determined without following the t->type. 480 * 481 * ptr does not fall into this bucket 482 * because its size is always sizeof(void *). 483 */ 484 switch (BTF_INFO_KIND(t->info)) { 485 case BTF_KIND_TYPEDEF: 486 case BTF_KIND_VOLATILE: 487 case BTF_KIND_CONST: 488 case BTF_KIND_RESTRICT: 489 case BTF_KIND_TYPE_TAG: 490 return true; 491 } 492 493 return false; 494 } 495 496 bool btf_type_is_void(const struct btf_type *t) 497 { 498 return t == &btf_void; 499 } 500 501 static bool btf_type_is_fwd(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 504 } 505 506 static bool btf_type_is_datasec(const struct btf_type *t) 507 { 508 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 509 } 510 511 static bool btf_type_is_decl_tag(const struct btf_type *t) 512 { 513 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 514 } 515 516 static bool btf_type_nosize(const struct btf_type *t) 517 { 518 return btf_type_is_void(t) || btf_type_is_fwd(t) || 519 btf_type_is_func(t) || btf_type_is_func_proto(t) || 520 btf_type_is_decl_tag(t); 521 } 522 523 static bool btf_type_nosize_or_null(const struct btf_type *t) 524 { 525 return !t || btf_type_nosize(t); 526 } 527 528 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 529 { 530 return btf_type_is_func(t) || btf_type_is_struct(t) || 531 btf_type_is_var(t) || btf_type_is_typedef(t); 532 } 533 534 bool btf_is_vmlinux(const struct btf *btf) 535 { 536 return btf->kernel_btf && !btf->base_btf; 537 } 538 539 u32 btf_nr_types(const struct btf *btf) 540 { 541 u32 total = 0; 542 543 while (btf) { 544 total += btf->nr_types; 545 btf = btf->base_btf; 546 } 547 548 return total; 549 } 550 551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 552 { 553 const struct btf_type *t; 554 const char *tname; 555 u32 i, total; 556 557 total = btf_nr_types(btf); 558 for (i = 1; i < total; i++) { 559 t = btf_type_by_id(btf, i); 560 if (BTF_INFO_KIND(t->info) != kind) 561 continue; 562 563 tname = btf_name_by_offset(btf, t->name_off); 564 if (!strcmp(tname, name)) 565 return i; 566 } 567 568 return -ENOENT; 569 } 570 571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 572 { 573 struct btf *btf; 574 s32 ret; 575 int id; 576 577 btf = bpf_get_btf_vmlinux(); 578 if (IS_ERR(btf)) 579 return PTR_ERR(btf); 580 if (!btf) 581 return -EINVAL; 582 583 ret = btf_find_by_name_kind(btf, name, kind); 584 /* ret is never zero, since btf_find_by_name_kind returns 585 * positive btf_id or negative error. 586 */ 587 if (ret > 0) { 588 btf_get(btf); 589 *btf_p = btf; 590 return ret; 591 } 592 593 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 594 spin_lock_bh(&btf_idr_lock); 595 idr_for_each_entry(&btf_idr, btf, id) { 596 if (!btf_is_module(btf)) 597 continue; 598 /* linear search could be slow hence unlock/lock 599 * the IDR to avoiding holding it for too long 600 */ 601 btf_get(btf); 602 spin_unlock_bh(&btf_idr_lock); 603 ret = btf_find_by_name_kind(btf, name, kind); 604 if (ret > 0) { 605 *btf_p = btf; 606 return ret; 607 } 608 btf_put(btf); 609 spin_lock_bh(&btf_idr_lock); 610 } 611 spin_unlock_bh(&btf_idr_lock); 612 return ret; 613 } 614 615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 616 u32 id, u32 *res_id) 617 { 618 const struct btf_type *t = btf_type_by_id(btf, id); 619 620 while (btf_type_is_modifier(t)) { 621 id = t->type; 622 t = btf_type_by_id(btf, t->type); 623 } 624 625 if (res_id) 626 *res_id = id; 627 628 return t; 629 } 630 631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 632 u32 id, u32 *res_id) 633 { 634 const struct btf_type *t; 635 636 t = btf_type_skip_modifiers(btf, id, NULL); 637 if (!btf_type_is_ptr(t)) 638 return NULL; 639 640 return btf_type_skip_modifiers(btf, t->type, res_id); 641 } 642 643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 644 u32 id, u32 *res_id) 645 { 646 const struct btf_type *ptype; 647 648 ptype = btf_type_resolve_ptr(btf, id, res_id); 649 if (ptype && btf_type_is_func_proto(ptype)) 650 return ptype; 651 652 return NULL; 653 } 654 655 /* Types that act only as a source, not sink or intermediate 656 * type when resolving. 657 */ 658 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 659 { 660 return btf_type_is_var(t) || 661 btf_type_is_decl_tag(t) || 662 btf_type_is_datasec(t); 663 } 664 665 /* What types need to be resolved? 666 * 667 * btf_type_is_modifier() is an obvious one. 668 * 669 * btf_type_is_struct() because its member refers to 670 * another type (through member->type). 671 * 672 * btf_type_is_var() because the variable refers to 673 * another type. btf_type_is_datasec() holds multiple 674 * btf_type_is_var() types that need resolving. 675 * 676 * btf_type_is_array() because its element (array->type) 677 * refers to another type. Array can be thought of a 678 * special case of struct while array just has the same 679 * member-type repeated by array->nelems of times. 680 */ 681 static bool btf_type_needs_resolve(const struct btf_type *t) 682 { 683 return btf_type_is_modifier(t) || 684 btf_type_is_ptr(t) || 685 btf_type_is_struct(t) || 686 btf_type_is_array(t) || 687 btf_type_is_var(t) || 688 btf_type_is_func(t) || 689 btf_type_is_decl_tag(t) || 690 btf_type_is_datasec(t); 691 } 692 693 /* t->size can be used */ 694 static bool btf_type_has_size(const struct btf_type *t) 695 { 696 switch (BTF_INFO_KIND(t->info)) { 697 case BTF_KIND_INT: 698 case BTF_KIND_STRUCT: 699 case BTF_KIND_UNION: 700 case BTF_KIND_ENUM: 701 case BTF_KIND_DATASEC: 702 case BTF_KIND_FLOAT: 703 case BTF_KIND_ENUM64: 704 return true; 705 } 706 707 return false; 708 } 709 710 static const char *btf_int_encoding_str(u8 encoding) 711 { 712 if (encoding == 0) 713 return "(none)"; 714 else if (encoding == BTF_INT_SIGNED) 715 return "SIGNED"; 716 else if (encoding == BTF_INT_CHAR) 717 return "CHAR"; 718 else if (encoding == BTF_INT_BOOL) 719 return "BOOL"; 720 else 721 return "UNKN"; 722 } 723 724 static u32 btf_type_int(const struct btf_type *t) 725 { 726 return *(u32 *)(t + 1); 727 } 728 729 static const struct btf_array *btf_type_array(const struct btf_type *t) 730 { 731 return (const struct btf_array *)(t + 1); 732 } 733 734 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 735 { 736 return (const struct btf_enum *)(t + 1); 737 } 738 739 static const struct btf_var *btf_type_var(const struct btf_type *t) 740 { 741 return (const struct btf_var *)(t + 1); 742 } 743 744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 745 { 746 return (const struct btf_decl_tag *)(t + 1); 747 } 748 749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 750 { 751 return (const struct btf_enum64 *)(t + 1); 752 } 753 754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 755 { 756 return kind_ops[BTF_INFO_KIND(t->info)]; 757 } 758 759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 760 { 761 if (!BTF_STR_OFFSET_VALID(offset)) 762 return false; 763 764 while (offset < btf->start_str_off) 765 btf = btf->base_btf; 766 767 offset -= btf->start_str_off; 768 return offset < btf->hdr.str_len; 769 } 770 771 static bool __btf_name_char_ok(char c, bool first) 772 { 773 if ((first ? !isalpha(c) : 774 !isalnum(c)) && 775 c != '_' && 776 c != '.') 777 return false; 778 return true; 779 } 780 781 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 782 { 783 while (offset < btf->start_str_off) 784 btf = btf->base_btf; 785 786 offset -= btf->start_str_off; 787 if (offset < btf->hdr.str_len) 788 return &btf->strings[offset]; 789 790 return NULL; 791 } 792 793 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 794 { 795 /* offset must be valid */ 796 const char *src = btf_str_by_offset(btf, offset); 797 const char *src_limit; 798 799 if (!__btf_name_char_ok(*src, true)) 800 return false; 801 802 /* set a limit on identifier length */ 803 src_limit = src + KSYM_NAME_LEN; 804 src++; 805 while (*src && src < src_limit) { 806 if (!__btf_name_char_ok(*src, false)) 807 return false; 808 src++; 809 } 810 811 return !*src; 812 } 813 814 /* Allow any printable character in DATASEC names */ 815 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 816 { 817 /* offset must be valid */ 818 const char *src = btf_str_by_offset(btf, offset); 819 const char *src_limit; 820 821 if (!*src) 822 return false; 823 824 /* set a limit on identifier length */ 825 src_limit = src + KSYM_NAME_LEN; 826 while (*src && src < src_limit) { 827 if (!isprint(*src)) 828 return false; 829 src++; 830 } 831 832 return !*src; 833 } 834 835 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 836 { 837 const char *name; 838 839 if (!offset) 840 return "(anon)"; 841 842 name = btf_str_by_offset(btf, offset); 843 return name ?: "(invalid-name-offset)"; 844 } 845 846 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 847 { 848 return btf_str_by_offset(btf, offset); 849 } 850 851 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 852 { 853 while (type_id < btf->start_id) 854 btf = btf->base_btf; 855 856 type_id -= btf->start_id; 857 if (type_id >= btf->nr_types) 858 return NULL; 859 return btf->types[type_id]; 860 } 861 EXPORT_SYMBOL_GPL(btf_type_by_id); 862 863 /* 864 * Regular int is not a bit field and it must be either 865 * u8/u16/u32/u64 or __int128. 866 */ 867 static bool btf_type_int_is_regular(const struct btf_type *t) 868 { 869 u8 nr_bits, nr_bytes; 870 u32 int_data; 871 872 int_data = btf_type_int(t); 873 nr_bits = BTF_INT_BITS(int_data); 874 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 875 if (BITS_PER_BYTE_MASKED(nr_bits) || 876 BTF_INT_OFFSET(int_data) || 877 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 878 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 879 nr_bytes != (2 * sizeof(u64)))) { 880 return false; 881 } 882 883 return true; 884 } 885 886 /* 887 * Check that given struct member is a regular int with expected 888 * offset and size. 889 */ 890 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 891 const struct btf_member *m, 892 u32 expected_offset, u32 expected_size) 893 { 894 const struct btf_type *t; 895 u32 id, int_data; 896 u8 nr_bits; 897 898 id = m->type; 899 t = btf_type_id_size(btf, &id, NULL); 900 if (!t || !btf_type_is_int(t)) 901 return false; 902 903 int_data = btf_type_int(t); 904 nr_bits = BTF_INT_BITS(int_data); 905 if (btf_type_kflag(s)) { 906 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 907 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 908 909 /* if kflag set, int should be a regular int and 910 * bit offset should be at byte boundary. 911 */ 912 return !bitfield_size && 913 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 914 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 915 } 916 917 if (BTF_INT_OFFSET(int_data) || 918 BITS_PER_BYTE_MASKED(m->offset) || 919 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 920 BITS_PER_BYTE_MASKED(nr_bits) || 921 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 922 return false; 923 924 return true; 925 } 926 927 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 928 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 929 u32 id) 930 { 931 const struct btf_type *t = btf_type_by_id(btf, id); 932 933 while (btf_type_is_modifier(t) && 934 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 935 t = btf_type_by_id(btf, t->type); 936 } 937 938 return t; 939 } 940 941 #define BTF_SHOW_MAX_ITER 10 942 943 #define BTF_KIND_BIT(kind) (1ULL << kind) 944 945 /* 946 * Populate show->state.name with type name information. 947 * Format of type name is 948 * 949 * [.member_name = ] (type_name) 950 */ 951 static const char *btf_show_name(struct btf_show *show) 952 { 953 /* BTF_MAX_ITER array suffixes "[]" */ 954 const char *array_suffixes = "[][][][][][][][][][]"; 955 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 956 /* BTF_MAX_ITER pointer suffixes "*" */ 957 const char *ptr_suffixes = "**********"; 958 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 959 const char *name = NULL, *prefix = "", *parens = ""; 960 const struct btf_member *m = show->state.member; 961 const struct btf_type *t; 962 const struct btf_array *array; 963 u32 id = show->state.type_id; 964 const char *member = NULL; 965 bool show_member = false; 966 u64 kinds = 0; 967 int i; 968 969 show->state.name[0] = '\0'; 970 971 /* 972 * Don't show type name if we're showing an array member; 973 * in that case we show the array type so don't need to repeat 974 * ourselves for each member. 975 */ 976 if (show->state.array_member) 977 return ""; 978 979 /* Retrieve member name, if any. */ 980 if (m) { 981 member = btf_name_by_offset(show->btf, m->name_off); 982 show_member = strlen(member) > 0; 983 id = m->type; 984 } 985 986 /* 987 * Start with type_id, as we have resolved the struct btf_type * 988 * via btf_modifier_show() past the parent typedef to the child 989 * struct, int etc it is defined as. In such cases, the type_id 990 * still represents the starting type while the struct btf_type * 991 * in our show->state points at the resolved type of the typedef. 992 */ 993 t = btf_type_by_id(show->btf, id); 994 if (!t) 995 return ""; 996 997 /* 998 * The goal here is to build up the right number of pointer and 999 * array suffixes while ensuring the type name for a typedef 1000 * is represented. Along the way we accumulate a list of 1001 * BTF kinds we have encountered, since these will inform later 1002 * display; for example, pointer types will not require an 1003 * opening "{" for struct, we will just display the pointer value. 1004 * 1005 * We also want to accumulate the right number of pointer or array 1006 * indices in the format string while iterating until we get to 1007 * the typedef/pointee/array member target type. 1008 * 1009 * We start by pointing at the end of pointer and array suffix 1010 * strings; as we accumulate pointers and arrays we move the pointer 1011 * or array string backwards so it will show the expected number of 1012 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1013 * and/or arrays and typedefs are supported as a precaution. 1014 * 1015 * We also want to get typedef name while proceeding to resolve 1016 * type it points to so that we can add parentheses if it is a 1017 * "typedef struct" etc. 1018 */ 1019 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1020 1021 switch (BTF_INFO_KIND(t->info)) { 1022 case BTF_KIND_TYPEDEF: 1023 if (!name) 1024 name = btf_name_by_offset(show->btf, 1025 t->name_off); 1026 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1027 id = t->type; 1028 break; 1029 case BTF_KIND_ARRAY: 1030 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1031 parens = "["; 1032 if (!t) 1033 return ""; 1034 array = btf_type_array(t); 1035 if (array_suffix > array_suffixes) 1036 array_suffix -= 2; 1037 id = array->type; 1038 break; 1039 case BTF_KIND_PTR: 1040 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1041 if (ptr_suffix > ptr_suffixes) 1042 ptr_suffix -= 1; 1043 id = t->type; 1044 break; 1045 default: 1046 id = 0; 1047 break; 1048 } 1049 if (!id) 1050 break; 1051 t = btf_type_skip_qualifiers(show->btf, id); 1052 } 1053 /* We may not be able to represent this type; bail to be safe */ 1054 if (i == BTF_SHOW_MAX_ITER) 1055 return ""; 1056 1057 if (!name) 1058 name = btf_name_by_offset(show->btf, t->name_off); 1059 1060 switch (BTF_INFO_KIND(t->info)) { 1061 case BTF_KIND_STRUCT: 1062 case BTF_KIND_UNION: 1063 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1064 "struct" : "union"; 1065 /* if it's an array of struct/union, parens is already set */ 1066 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1067 parens = "{"; 1068 break; 1069 case BTF_KIND_ENUM: 1070 case BTF_KIND_ENUM64: 1071 prefix = "enum"; 1072 break; 1073 default: 1074 break; 1075 } 1076 1077 /* pointer does not require parens */ 1078 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1079 parens = ""; 1080 /* typedef does not require struct/union/enum prefix */ 1081 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1082 prefix = ""; 1083 1084 if (!name) 1085 name = ""; 1086 1087 /* Even if we don't want type name info, we want parentheses etc */ 1088 if (show->flags & BTF_SHOW_NONAME) 1089 snprintf(show->state.name, sizeof(show->state.name), "%s", 1090 parens); 1091 else 1092 snprintf(show->state.name, sizeof(show->state.name), 1093 "%s%s%s(%s%s%s%s%s%s)%s", 1094 /* first 3 strings comprise ".member = " */ 1095 show_member ? "." : "", 1096 show_member ? member : "", 1097 show_member ? " = " : "", 1098 /* ...next is our prefix (struct, enum, etc) */ 1099 prefix, 1100 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1101 /* ...this is the type name itself */ 1102 name, 1103 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1104 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1105 array_suffix, parens); 1106 1107 return show->state.name; 1108 } 1109 1110 static const char *__btf_show_indent(struct btf_show *show) 1111 { 1112 const char *indents = " "; 1113 const char *indent = &indents[strlen(indents)]; 1114 1115 if ((indent - show->state.depth) >= indents) 1116 return indent - show->state.depth; 1117 return indents; 1118 } 1119 1120 static const char *btf_show_indent(struct btf_show *show) 1121 { 1122 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1123 } 1124 1125 static const char *btf_show_newline(struct btf_show *show) 1126 { 1127 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1128 } 1129 1130 static const char *btf_show_delim(struct btf_show *show) 1131 { 1132 if (show->state.depth == 0) 1133 return ""; 1134 1135 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1136 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1137 return "|"; 1138 1139 return ","; 1140 } 1141 1142 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1143 { 1144 va_list args; 1145 1146 if (!show->state.depth_check) { 1147 va_start(args, fmt); 1148 show->showfn(show, fmt, args); 1149 va_end(args); 1150 } 1151 } 1152 1153 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1154 * format specifiers to the format specifier passed in; these do the work of 1155 * adding indentation, delimiters etc while the caller simply has to specify 1156 * the type value(s) in the format specifier + value(s). 1157 */ 1158 #define btf_show_type_value(show, fmt, value) \ 1159 do { \ 1160 if ((value) != (__typeof__(value))0 || \ 1161 (show->flags & BTF_SHOW_ZERO) || \ 1162 show->state.depth == 0) { \ 1163 btf_show(show, "%s%s" fmt "%s%s", \ 1164 btf_show_indent(show), \ 1165 btf_show_name(show), \ 1166 value, btf_show_delim(show), \ 1167 btf_show_newline(show)); \ 1168 if (show->state.depth > show->state.depth_to_show) \ 1169 show->state.depth_to_show = show->state.depth; \ 1170 } \ 1171 } while (0) 1172 1173 #define btf_show_type_values(show, fmt, ...) \ 1174 do { \ 1175 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1176 btf_show_name(show), \ 1177 __VA_ARGS__, btf_show_delim(show), \ 1178 btf_show_newline(show)); \ 1179 if (show->state.depth > show->state.depth_to_show) \ 1180 show->state.depth_to_show = show->state.depth; \ 1181 } while (0) 1182 1183 /* How much is left to copy to safe buffer after @data? */ 1184 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1185 { 1186 return show->obj.head + show->obj.size - data; 1187 } 1188 1189 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1190 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1191 { 1192 return data >= show->obj.data && 1193 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1194 } 1195 1196 /* 1197 * If object pointed to by @data of @size falls within our safe buffer, return 1198 * the equivalent pointer to the same safe data. Assumes 1199 * copy_from_kernel_nofault() has already happened and our safe buffer is 1200 * populated. 1201 */ 1202 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1203 { 1204 if (btf_show_obj_is_safe(show, data, size)) 1205 return show->obj.safe + (data - show->obj.data); 1206 return NULL; 1207 } 1208 1209 /* 1210 * Return a safe-to-access version of data pointed to by @data. 1211 * We do this by copying the relevant amount of information 1212 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1213 * 1214 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1215 * safe copy is needed. 1216 * 1217 * Otherwise we need to determine if we have the required amount 1218 * of data (determined by the @data pointer and the size of the 1219 * largest base type we can encounter (represented by 1220 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1221 * that we will be able to print some of the current object, 1222 * and if more is needed a copy will be triggered. 1223 * Some objects such as structs will not fit into the buffer; 1224 * in such cases additional copies when we iterate over their 1225 * members may be needed. 1226 * 1227 * btf_show_obj_safe() is used to return a safe buffer for 1228 * btf_show_start_type(); this ensures that as we recurse into 1229 * nested types we always have safe data for the given type. 1230 * This approach is somewhat wasteful; it's possible for example 1231 * that when iterating over a large union we'll end up copying the 1232 * same data repeatedly, but the goal is safety not performance. 1233 * We use stack data as opposed to per-CPU buffers because the 1234 * iteration over a type can take some time, and preemption handling 1235 * would greatly complicate use of the safe buffer. 1236 */ 1237 static void *btf_show_obj_safe(struct btf_show *show, 1238 const struct btf_type *t, 1239 void *data) 1240 { 1241 const struct btf_type *rt; 1242 int size_left, size; 1243 void *safe = NULL; 1244 1245 if (show->flags & BTF_SHOW_UNSAFE) 1246 return data; 1247 1248 rt = btf_resolve_size(show->btf, t, &size); 1249 if (IS_ERR(rt)) { 1250 show->state.status = PTR_ERR(rt); 1251 return NULL; 1252 } 1253 1254 /* 1255 * Is this toplevel object? If so, set total object size and 1256 * initialize pointers. Otherwise check if we still fall within 1257 * our safe object data. 1258 */ 1259 if (show->state.depth == 0) { 1260 show->obj.size = size; 1261 show->obj.head = data; 1262 } else { 1263 /* 1264 * If the size of the current object is > our remaining 1265 * safe buffer we _may_ need to do a new copy. However 1266 * consider the case of a nested struct; it's size pushes 1267 * us over the safe buffer limit, but showing any individual 1268 * struct members does not. In such cases, we don't need 1269 * to initiate a fresh copy yet; however we definitely need 1270 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1271 * in our buffer, regardless of the current object size. 1272 * The logic here is that as we resolve types we will 1273 * hit a base type at some point, and we need to be sure 1274 * the next chunk of data is safely available to display 1275 * that type info safely. We cannot rely on the size of 1276 * the current object here because it may be much larger 1277 * than our current buffer (e.g. task_struct is 8k). 1278 * All we want to do here is ensure that we can print the 1279 * next basic type, which we can if either 1280 * - the current type size is within the safe buffer; or 1281 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1282 * the safe buffer. 1283 */ 1284 safe = __btf_show_obj_safe(show, data, 1285 min(size, 1286 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1287 } 1288 1289 /* 1290 * We need a new copy to our safe object, either because we haven't 1291 * yet copied and are initializing safe data, or because the data 1292 * we want falls outside the boundaries of the safe object. 1293 */ 1294 if (!safe) { 1295 size_left = btf_show_obj_size_left(show, data); 1296 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1297 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1298 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1299 data, size_left); 1300 if (!show->state.status) { 1301 show->obj.data = data; 1302 safe = show->obj.safe; 1303 } 1304 } 1305 1306 return safe; 1307 } 1308 1309 /* 1310 * Set the type we are starting to show and return a safe data pointer 1311 * to be used for showing the associated data. 1312 */ 1313 static void *btf_show_start_type(struct btf_show *show, 1314 const struct btf_type *t, 1315 u32 type_id, void *data) 1316 { 1317 show->state.type = t; 1318 show->state.type_id = type_id; 1319 show->state.name[0] = '\0'; 1320 1321 return btf_show_obj_safe(show, t, data); 1322 } 1323 1324 static void btf_show_end_type(struct btf_show *show) 1325 { 1326 show->state.type = NULL; 1327 show->state.type_id = 0; 1328 show->state.name[0] = '\0'; 1329 } 1330 1331 static void *btf_show_start_aggr_type(struct btf_show *show, 1332 const struct btf_type *t, 1333 u32 type_id, void *data) 1334 { 1335 void *safe_data = btf_show_start_type(show, t, type_id, data); 1336 1337 if (!safe_data) 1338 return safe_data; 1339 1340 btf_show(show, "%s%s%s", btf_show_indent(show), 1341 btf_show_name(show), 1342 btf_show_newline(show)); 1343 show->state.depth++; 1344 return safe_data; 1345 } 1346 1347 static void btf_show_end_aggr_type(struct btf_show *show, 1348 const char *suffix) 1349 { 1350 show->state.depth--; 1351 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1352 btf_show_delim(show), btf_show_newline(show)); 1353 btf_show_end_type(show); 1354 } 1355 1356 static void btf_show_start_member(struct btf_show *show, 1357 const struct btf_member *m) 1358 { 1359 show->state.member = m; 1360 } 1361 1362 static void btf_show_start_array_member(struct btf_show *show) 1363 { 1364 show->state.array_member = 1; 1365 btf_show_start_member(show, NULL); 1366 } 1367 1368 static void btf_show_end_member(struct btf_show *show) 1369 { 1370 show->state.member = NULL; 1371 } 1372 1373 static void btf_show_end_array_member(struct btf_show *show) 1374 { 1375 show->state.array_member = 0; 1376 btf_show_end_member(show); 1377 } 1378 1379 static void *btf_show_start_array_type(struct btf_show *show, 1380 const struct btf_type *t, 1381 u32 type_id, 1382 u16 array_encoding, 1383 void *data) 1384 { 1385 show->state.array_encoding = array_encoding; 1386 show->state.array_terminated = 0; 1387 return btf_show_start_aggr_type(show, t, type_id, data); 1388 } 1389 1390 static void btf_show_end_array_type(struct btf_show *show) 1391 { 1392 show->state.array_encoding = 0; 1393 show->state.array_terminated = 0; 1394 btf_show_end_aggr_type(show, "]"); 1395 } 1396 1397 static void *btf_show_start_struct_type(struct btf_show *show, 1398 const struct btf_type *t, 1399 u32 type_id, 1400 void *data) 1401 { 1402 return btf_show_start_aggr_type(show, t, type_id, data); 1403 } 1404 1405 static void btf_show_end_struct_type(struct btf_show *show) 1406 { 1407 btf_show_end_aggr_type(show, "}"); 1408 } 1409 1410 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1411 const char *fmt, ...) 1412 { 1413 va_list args; 1414 1415 va_start(args, fmt); 1416 bpf_verifier_vlog(log, fmt, args); 1417 va_end(args); 1418 } 1419 1420 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1421 const char *fmt, ...) 1422 { 1423 struct bpf_verifier_log *log = &env->log; 1424 va_list args; 1425 1426 if (!bpf_verifier_log_needed(log)) 1427 return; 1428 1429 va_start(args, fmt); 1430 bpf_verifier_vlog(log, fmt, args); 1431 va_end(args); 1432 } 1433 1434 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1435 const struct btf_type *t, 1436 bool log_details, 1437 const char *fmt, ...) 1438 { 1439 struct bpf_verifier_log *log = &env->log; 1440 struct btf *btf = env->btf; 1441 va_list args; 1442 1443 if (!bpf_verifier_log_needed(log)) 1444 return; 1445 1446 if (log->level == BPF_LOG_KERNEL) { 1447 /* btf verifier prints all types it is processing via 1448 * btf_verifier_log_type(..., fmt = NULL). 1449 * Skip those prints for in-kernel BTF verification. 1450 */ 1451 if (!fmt) 1452 return; 1453 1454 /* Skip logging when loading module BTF with mismatches permitted */ 1455 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1456 return; 1457 } 1458 1459 __btf_verifier_log(log, "[%u] %s %s%s", 1460 env->log_type_id, 1461 btf_type_str(t), 1462 __btf_name_by_offset(btf, t->name_off), 1463 log_details ? " " : ""); 1464 1465 if (log_details) 1466 btf_type_ops(t)->log_details(env, t); 1467 1468 if (fmt && *fmt) { 1469 __btf_verifier_log(log, " "); 1470 va_start(args, fmt); 1471 bpf_verifier_vlog(log, fmt, args); 1472 va_end(args); 1473 } 1474 1475 __btf_verifier_log(log, "\n"); 1476 } 1477 1478 #define btf_verifier_log_type(env, t, ...) \ 1479 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1480 #define btf_verifier_log_basic(env, t, ...) \ 1481 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1482 1483 __printf(4, 5) 1484 static void btf_verifier_log_member(struct btf_verifier_env *env, 1485 const struct btf_type *struct_type, 1486 const struct btf_member *member, 1487 const char *fmt, ...) 1488 { 1489 struct bpf_verifier_log *log = &env->log; 1490 struct btf *btf = env->btf; 1491 va_list args; 1492 1493 if (!bpf_verifier_log_needed(log)) 1494 return; 1495 1496 if (log->level == BPF_LOG_KERNEL) { 1497 if (!fmt) 1498 return; 1499 1500 /* Skip logging when loading module BTF with mismatches permitted */ 1501 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1502 return; 1503 } 1504 1505 /* The CHECK_META phase already did a btf dump. 1506 * 1507 * If member is logged again, it must hit an error in 1508 * parsing this member. It is useful to print out which 1509 * struct this member belongs to. 1510 */ 1511 if (env->phase != CHECK_META) 1512 btf_verifier_log_type(env, struct_type, NULL); 1513 1514 if (btf_type_kflag(struct_type)) 1515 __btf_verifier_log(log, 1516 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1517 __btf_name_by_offset(btf, member->name_off), 1518 member->type, 1519 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1520 BTF_MEMBER_BIT_OFFSET(member->offset)); 1521 else 1522 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1523 __btf_name_by_offset(btf, member->name_off), 1524 member->type, member->offset); 1525 1526 if (fmt && *fmt) { 1527 __btf_verifier_log(log, " "); 1528 va_start(args, fmt); 1529 bpf_verifier_vlog(log, fmt, args); 1530 va_end(args); 1531 } 1532 1533 __btf_verifier_log(log, "\n"); 1534 } 1535 1536 __printf(4, 5) 1537 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1538 const struct btf_type *datasec_type, 1539 const struct btf_var_secinfo *vsi, 1540 const char *fmt, ...) 1541 { 1542 struct bpf_verifier_log *log = &env->log; 1543 va_list args; 1544 1545 if (!bpf_verifier_log_needed(log)) 1546 return; 1547 if (log->level == BPF_LOG_KERNEL && !fmt) 1548 return; 1549 if (env->phase != CHECK_META) 1550 btf_verifier_log_type(env, datasec_type, NULL); 1551 1552 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1553 vsi->type, vsi->offset, vsi->size); 1554 if (fmt && *fmt) { 1555 __btf_verifier_log(log, " "); 1556 va_start(args, fmt); 1557 bpf_verifier_vlog(log, fmt, args); 1558 va_end(args); 1559 } 1560 1561 __btf_verifier_log(log, "\n"); 1562 } 1563 1564 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1565 u32 btf_data_size) 1566 { 1567 struct bpf_verifier_log *log = &env->log; 1568 const struct btf *btf = env->btf; 1569 const struct btf_header *hdr; 1570 1571 if (!bpf_verifier_log_needed(log)) 1572 return; 1573 1574 if (log->level == BPF_LOG_KERNEL) 1575 return; 1576 hdr = &btf->hdr; 1577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1578 __btf_verifier_log(log, "version: %u\n", hdr->version); 1579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1586 } 1587 1588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1589 { 1590 struct btf *btf = env->btf; 1591 1592 if (btf->types_size == btf->nr_types) { 1593 /* Expand 'types' array */ 1594 1595 struct btf_type **new_types; 1596 u32 expand_by, new_size; 1597 1598 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1599 btf_verifier_log(env, "Exceeded max num of types"); 1600 return -E2BIG; 1601 } 1602 1603 expand_by = max_t(u32, btf->types_size >> 2, 16); 1604 new_size = min_t(u32, BTF_MAX_TYPE, 1605 btf->types_size + expand_by); 1606 1607 new_types = kvcalloc(new_size, sizeof(*new_types), 1608 GFP_KERNEL | __GFP_NOWARN); 1609 if (!new_types) 1610 return -ENOMEM; 1611 1612 if (btf->nr_types == 0) { 1613 if (!btf->base_btf) { 1614 /* lazily init VOID type */ 1615 new_types[0] = &btf_void; 1616 btf->nr_types++; 1617 } 1618 } else { 1619 memcpy(new_types, btf->types, 1620 sizeof(*btf->types) * btf->nr_types); 1621 } 1622 1623 kvfree(btf->types); 1624 btf->types = new_types; 1625 btf->types_size = new_size; 1626 } 1627 1628 btf->types[btf->nr_types++] = t; 1629 1630 return 0; 1631 } 1632 1633 static int btf_alloc_id(struct btf *btf) 1634 { 1635 int id; 1636 1637 idr_preload(GFP_KERNEL); 1638 spin_lock_bh(&btf_idr_lock); 1639 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1640 if (id > 0) 1641 btf->id = id; 1642 spin_unlock_bh(&btf_idr_lock); 1643 idr_preload_end(); 1644 1645 if (WARN_ON_ONCE(!id)) 1646 return -ENOSPC; 1647 1648 return id > 0 ? 0 : id; 1649 } 1650 1651 static void btf_free_id(struct btf *btf) 1652 { 1653 unsigned long flags; 1654 1655 /* 1656 * In map-in-map, calling map_delete_elem() on outer 1657 * map will call bpf_map_put on the inner map. 1658 * It will then eventually call btf_free_id() 1659 * on the inner map. Some of the map_delete_elem() 1660 * implementation may have irq disabled, so 1661 * we need to use the _irqsave() version instead 1662 * of the _bh() version. 1663 */ 1664 spin_lock_irqsave(&btf_idr_lock, flags); 1665 idr_remove(&btf_idr, btf->id); 1666 spin_unlock_irqrestore(&btf_idr_lock, flags); 1667 } 1668 1669 static void btf_free_kfunc_set_tab(struct btf *btf) 1670 { 1671 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1672 int hook; 1673 1674 if (!tab) 1675 return; 1676 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1677 kfree(tab->sets[hook]); 1678 kfree(tab); 1679 btf->kfunc_set_tab = NULL; 1680 } 1681 1682 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1683 { 1684 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1685 1686 if (!tab) 1687 return; 1688 kfree(tab); 1689 btf->dtor_kfunc_tab = NULL; 1690 } 1691 1692 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1693 { 1694 int i; 1695 1696 if (!tab) 1697 return; 1698 for (i = 0; i < tab->cnt; i++) 1699 btf_record_free(tab->types[i].record); 1700 kfree(tab); 1701 } 1702 1703 static void btf_free_struct_meta_tab(struct btf *btf) 1704 { 1705 struct btf_struct_metas *tab = btf->struct_meta_tab; 1706 1707 btf_struct_metas_free(tab); 1708 btf->struct_meta_tab = NULL; 1709 } 1710 1711 static void btf_free_struct_ops_tab(struct btf *btf) 1712 { 1713 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1714 u32 i; 1715 1716 if (!tab) 1717 return; 1718 1719 for (i = 0; i < tab->cnt; i++) 1720 bpf_struct_ops_desc_release(&tab->ops[i]); 1721 1722 kfree(tab); 1723 btf->struct_ops_tab = NULL; 1724 } 1725 1726 static void btf_free(struct btf *btf) 1727 { 1728 btf_free_struct_meta_tab(btf); 1729 btf_free_dtor_kfunc_tab(btf); 1730 btf_free_kfunc_set_tab(btf); 1731 btf_free_struct_ops_tab(btf); 1732 kvfree(btf->types); 1733 kvfree(btf->resolved_sizes); 1734 kvfree(btf->resolved_ids); 1735 /* vmlinux does not allocate btf->data, it simply points it at 1736 * __start_BTF. 1737 */ 1738 if (!btf_is_vmlinux(btf)) 1739 kvfree(btf->data); 1740 kvfree(btf->base_id_map); 1741 kfree(btf); 1742 } 1743 1744 static void btf_free_rcu(struct rcu_head *rcu) 1745 { 1746 struct btf *btf = container_of(rcu, struct btf, rcu); 1747 1748 btf_free(btf); 1749 } 1750 1751 const char *btf_get_name(const struct btf *btf) 1752 { 1753 return btf->name; 1754 } 1755 1756 void btf_get(struct btf *btf) 1757 { 1758 refcount_inc(&btf->refcnt); 1759 } 1760 1761 void btf_put(struct btf *btf) 1762 { 1763 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1764 btf_free_id(btf); 1765 call_rcu(&btf->rcu, btf_free_rcu); 1766 } 1767 } 1768 1769 struct btf *btf_base_btf(const struct btf *btf) 1770 { 1771 return btf->base_btf; 1772 } 1773 1774 const struct btf_header *btf_header(const struct btf *btf) 1775 { 1776 return &btf->hdr; 1777 } 1778 1779 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1780 { 1781 btf->base_btf = (struct btf *)base_btf; 1782 btf->start_id = btf_nr_types(base_btf); 1783 btf->start_str_off = base_btf->hdr.str_len; 1784 } 1785 1786 static int env_resolve_init(struct btf_verifier_env *env) 1787 { 1788 struct btf *btf = env->btf; 1789 u32 nr_types = btf->nr_types; 1790 u32 *resolved_sizes = NULL; 1791 u32 *resolved_ids = NULL; 1792 u8 *visit_states = NULL; 1793 1794 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1795 GFP_KERNEL | __GFP_NOWARN); 1796 if (!resolved_sizes) 1797 goto nomem; 1798 1799 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1800 GFP_KERNEL | __GFP_NOWARN); 1801 if (!resolved_ids) 1802 goto nomem; 1803 1804 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1805 GFP_KERNEL | __GFP_NOWARN); 1806 if (!visit_states) 1807 goto nomem; 1808 1809 btf->resolved_sizes = resolved_sizes; 1810 btf->resolved_ids = resolved_ids; 1811 env->visit_states = visit_states; 1812 1813 return 0; 1814 1815 nomem: 1816 kvfree(resolved_sizes); 1817 kvfree(resolved_ids); 1818 kvfree(visit_states); 1819 return -ENOMEM; 1820 } 1821 1822 static void btf_verifier_env_free(struct btf_verifier_env *env) 1823 { 1824 kvfree(env->visit_states); 1825 kfree(env); 1826 } 1827 1828 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1829 const struct btf_type *next_type) 1830 { 1831 switch (env->resolve_mode) { 1832 case RESOLVE_TBD: 1833 /* int, enum or void is a sink */ 1834 return !btf_type_needs_resolve(next_type); 1835 case RESOLVE_PTR: 1836 /* int, enum, void, struct, array, func or func_proto is a sink 1837 * for ptr 1838 */ 1839 return !btf_type_is_modifier(next_type) && 1840 !btf_type_is_ptr(next_type); 1841 case RESOLVE_STRUCT_OR_ARRAY: 1842 /* int, enum, void, ptr, func or func_proto is a sink 1843 * for struct and array 1844 */ 1845 return !btf_type_is_modifier(next_type) && 1846 !btf_type_is_array(next_type) && 1847 !btf_type_is_struct(next_type); 1848 default: 1849 BUG(); 1850 } 1851 } 1852 1853 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1854 u32 type_id) 1855 { 1856 /* base BTF types should be resolved by now */ 1857 if (type_id < env->btf->start_id) 1858 return true; 1859 1860 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1861 } 1862 1863 static int env_stack_push(struct btf_verifier_env *env, 1864 const struct btf_type *t, u32 type_id) 1865 { 1866 const struct btf *btf = env->btf; 1867 struct resolve_vertex *v; 1868 1869 if (env->top_stack == MAX_RESOLVE_DEPTH) 1870 return -E2BIG; 1871 1872 if (type_id < btf->start_id 1873 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1874 return -EEXIST; 1875 1876 env->visit_states[type_id - btf->start_id] = VISITED; 1877 1878 v = &env->stack[env->top_stack++]; 1879 v->t = t; 1880 v->type_id = type_id; 1881 v->next_member = 0; 1882 1883 if (env->resolve_mode == RESOLVE_TBD) { 1884 if (btf_type_is_ptr(t)) 1885 env->resolve_mode = RESOLVE_PTR; 1886 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1887 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1888 } 1889 1890 return 0; 1891 } 1892 1893 static void env_stack_set_next_member(struct btf_verifier_env *env, 1894 u16 next_member) 1895 { 1896 env->stack[env->top_stack - 1].next_member = next_member; 1897 } 1898 1899 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1900 u32 resolved_type_id, 1901 u32 resolved_size) 1902 { 1903 u32 type_id = env->stack[--(env->top_stack)].type_id; 1904 struct btf *btf = env->btf; 1905 1906 type_id -= btf->start_id; /* adjust to local type id */ 1907 btf->resolved_sizes[type_id] = resolved_size; 1908 btf->resolved_ids[type_id] = resolved_type_id; 1909 env->visit_states[type_id] = RESOLVED; 1910 } 1911 1912 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1913 { 1914 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1915 } 1916 1917 /* Resolve the size of a passed-in "type" 1918 * 1919 * type: is an array (e.g. u32 array[x][y]) 1920 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1921 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1922 * corresponds to the return type. 1923 * *elem_type: u32 1924 * *elem_id: id of u32 1925 * *total_nelems: (x * y). Hence, individual elem size is 1926 * (*type_size / *total_nelems) 1927 * *type_id: id of type if it's changed within the function, 0 if not 1928 * 1929 * type: is not an array (e.g. const struct X) 1930 * return type: type "struct X" 1931 * *type_size: sizeof(struct X) 1932 * *elem_type: same as return type ("struct X") 1933 * *elem_id: 0 1934 * *total_nelems: 1 1935 * *type_id: id of type if it's changed within the function, 0 if not 1936 */ 1937 static const struct btf_type * 1938 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1939 u32 *type_size, const struct btf_type **elem_type, 1940 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1941 { 1942 const struct btf_type *array_type = NULL; 1943 const struct btf_array *array = NULL; 1944 u32 i, size, nelems = 1, id = 0; 1945 1946 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1947 switch (BTF_INFO_KIND(type->info)) { 1948 /* type->size can be used */ 1949 case BTF_KIND_INT: 1950 case BTF_KIND_STRUCT: 1951 case BTF_KIND_UNION: 1952 case BTF_KIND_ENUM: 1953 case BTF_KIND_FLOAT: 1954 case BTF_KIND_ENUM64: 1955 size = type->size; 1956 goto resolved; 1957 1958 case BTF_KIND_PTR: 1959 size = sizeof(void *); 1960 goto resolved; 1961 1962 /* Modifiers */ 1963 case BTF_KIND_TYPEDEF: 1964 case BTF_KIND_VOLATILE: 1965 case BTF_KIND_CONST: 1966 case BTF_KIND_RESTRICT: 1967 case BTF_KIND_TYPE_TAG: 1968 id = type->type; 1969 type = btf_type_by_id(btf, type->type); 1970 break; 1971 1972 case BTF_KIND_ARRAY: 1973 if (!array_type) 1974 array_type = type; 1975 array = btf_type_array(type); 1976 if (nelems && array->nelems > U32_MAX / nelems) 1977 return ERR_PTR(-EINVAL); 1978 nelems *= array->nelems; 1979 type = btf_type_by_id(btf, array->type); 1980 break; 1981 1982 /* type without size */ 1983 default: 1984 return ERR_PTR(-EINVAL); 1985 } 1986 } 1987 1988 return ERR_PTR(-EINVAL); 1989 1990 resolved: 1991 if (nelems && size > U32_MAX / nelems) 1992 return ERR_PTR(-EINVAL); 1993 1994 *type_size = nelems * size; 1995 if (total_nelems) 1996 *total_nelems = nelems; 1997 if (elem_type) 1998 *elem_type = type; 1999 if (elem_id) 2000 *elem_id = array ? array->type : 0; 2001 if (type_id && id) 2002 *type_id = id; 2003 2004 return array_type ? : type; 2005 } 2006 2007 const struct btf_type * 2008 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2009 u32 *type_size) 2010 { 2011 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2012 } 2013 2014 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2015 { 2016 while (type_id < btf->start_id) 2017 btf = btf->base_btf; 2018 2019 return btf->resolved_ids[type_id - btf->start_id]; 2020 } 2021 2022 /* The input param "type_id" must point to a needs_resolve type */ 2023 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2024 u32 *type_id) 2025 { 2026 *type_id = btf_resolved_type_id(btf, *type_id); 2027 return btf_type_by_id(btf, *type_id); 2028 } 2029 2030 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2031 { 2032 while (type_id < btf->start_id) 2033 btf = btf->base_btf; 2034 2035 return btf->resolved_sizes[type_id - btf->start_id]; 2036 } 2037 2038 const struct btf_type *btf_type_id_size(const struct btf *btf, 2039 u32 *type_id, u32 *ret_size) 2040 { 2041 const struct btf_type *size_type; 2042 u32 size_type_id = *type_id; 2043 u32 size = 0; 2044 2045 size_type = btf_type_by_id(btf, size_type_id); 2046 if (btf_type_nosize_or_null(size_type)) 2047 return NULL; 2048 2049 if (btf_type_has_size(size_type)) { 2050 size = size_type->size; 2051 } else if (btf_type_is_array(size_type)) { 2052 size = btf_resolved_type_size(btf, size_type_id); 2053 } else if (btf_type_is_ptr(size_type)) { 2054 size = sizeof(void *); 2055 } else { 2056 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2057 !btf_type_is_var(size_type))) 2058 return NULL; 2059 2060 size_type_id = btf_resolved_type_id(btf, size_type_id); 2061 size_type = btf_type_by_id(btf, size_type_id); 2062 if (btf_type_nosize_or_null(size_type)) 2063 return NULL; 2064 else if (btf_type_has_size(size_type)) 2065 size = size_type->size; 2066 else if (btf_type_is_array(size_type)) 2067 size = btf_resolved_type_size(btf, size_type_id); 2068 else if (btf_type_is_ptr(size_type)) 2069 size = sizeof(void *); 2070 else 2071 return NULL; 2072 } 2073 2074 *type_id = size_type_id; 2075 if (ret_size) 2076 *ret_size = size; 2077 2078 return size_type; 2079 } 2080 2081 static int btf_df_check_member(struct btf_verifier_env *env, 2082 const struct btf_type *struct_type, 2083 const struct btf_member *member, 2084 const struct btf_type *member_type) 2085 { 2086 btf_verifier_log_basic(env, struct_type, 2087 "Unsupported check_member"); 2088 return -EINVAL; 2089 } 2090 2091 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2092 const struct btf_type *struct_type, 2093 const struct btf_member *member, 2094 const struct btf_type *member_type) 2095 { 2096 btf_verifier_log_basic(env, struct_type, 2097 "Unsupported check_kflag_member"); 2098 return -EINVAL; 2099 } 2100 2101 /* Used for ptr, array struct/union and float type members. 2102 * int, enum and modifier types have their specific callback functions. 2103 */ 2104 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2105 const struct btf_type *struct_type, 2106 const struct btf_member *member, 2107 const struct btf_type *member_type) 2108 { 2109 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2110 btf_verifier_log_member(env, struct_type, member, 2111 "Invalid member bitfield_size"); 2112 return -EINVAL; 2113 } 2114 2115 /* bitfield size is 0, so member->offset represents bit offset only. 2116 * It is safe to call non kflag check_member variants. 2117 */ 2118 return btf_type_ops(member_type)->check_member(env, struct_type, 2119 member, 2120 member_type); 2121 } 2122 2123 static int btf_df_resolve(struct btf_verifier_env *env, 2124 const struct resolve_vertex *v) 2125 { 2126 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2127 return -EINVAL; 2128 } 2129 2130 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2131 u32 type_id, void *data, u8 bits_offsets, 2132 struct btf_show *show) 2133 { 2134 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2135 } 2136 2137 static int btf_int_check_member(struct btf_verifier_env *env, 2138 const struct btf_type *struct_type, 2139 const struct btf_member *member, 2140 const struct btf_type *member_type) 2141 { 2142 u32 int_data = btf_type_int(member_type); 2143 u32 struct_bits_off = member->offset; 2144 u32 struct_size = struct_type->size; 2145 u32 nr_copy_bits; 2146 u32 bytes_offset; 2147 2148 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2149 btf_verifier_log_member(env, struct_type, member, 2150 "bits_offset exceeds U32_MAX"); 2151 return -EINVAL; 2152 } 2153 2154 struct_bits_off += BTF_INT_OFFSET(int_data); 2155 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2156 nr_copy_bits = BTF_INT_BITS(int_data) + 2157 BITS_PER_BYTE_MASKED(struct_bits_off); 2158 2159 if (nr_copy_bits > BITS_PER_U128) { 2160 btf_verifier_log_member(env, struct_type, member, 2161 "nr_copy_bits exceeds 128"); 2162 return -EINVAL; 2163 } 2164 2165 if (struct_size < bytes_offset || 2166 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2167 btf_verifier_log_member(env, struct_type, member, 2168 "Member exceeds struct_size"); 2169 return -EINVAL; 2170 } 2171 2172 return 0; 2173 } 2174 2175 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2176 const struct btf_type *struct_type, 2177 const struct btf_member *member, 2178 const struct btf_type *member_type) 2179 { 2180 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2181 u32 int_data = btf_type_int(member_type); 2182 u32 struct_size = struct_type->size; 2183 u32 nr_copy_bits; 2184 2185 /* a regular int type is required for the kflag int member */ 2186 if (!btf_type_int_is_regular(member_type)) { 2187 btf_verifier_log_member(env, struct_type, member, 2188 "Invalid member base type"); 2189 return -EINVAL; 2190 } 2191 2192 /* check sanity of bitfield size */ 2193 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2194 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2195 nr_int_data_bits = BTF_INT_BITS(int_data); 2196 if (!nr_bits) { 2197 /* Not a bitfield member, member offset must be at byte 2198 * boundary. 2199 */ 2200 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2201 btf_verifier_log_member(env, struct_type, member, 2202 "Invalid member offset"); 2203 return -EINVAL; 2204 } 2205 2206 nr_bits = nr_int_data_bits; 2207 } else if (nr_bits > nr_int_data_bits) { 2208 btf_verifier_log_member(env, struct_type, member, 2209 "Invalid member bitfield_size"); 2210 return -EINVAL; 2211 } 2212 2213 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2214 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2215 if (nr_copy_bits > BITS_PER_U128) { 2216 btf_verifier_log_member(env, struct_type, member, 2217 "nr_copy_bits exceeds 128"); 2218 return -EINVAL; 2219 } 2220 2221 if (struct_size < bytes_offset || 2222 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2223 btf_verifier_log_member(env, struct_type, member, 2224 "Member exceeds struct_size"); 2225 return -EINVAL; 2226 } 2227 2228 return 0; 2229 } 2230 2231 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2232 const struct btf_type *t, 2233 u32 meta_left) 2234 { 2235 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2236 u16 encoding; 2237 2238 if (meta_left < meta_needed) { 2239 btf_verifier_log_basic(env, t, 2240 "meta_left:%u meta_needed:%u", 2241 meta_left, meta_needed); 2242 return -EINVAL; 2243 } 2244 2245 if (btf_type_vlen(t)) { 2246 btf_verifier_log_type(env, t, "vlen != 0"); 2247 return -EINVAL; 2248 } 2249 2250 if (btf_type_kflag(t)) { 2251 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2252 return -EINVAL; 2253 } 2254 2255 int_data = btf_type_int(t); 2256 if (int_data & ~BTF_INT_MASK) { 2257 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2258 int_data); 2259 return -EINVAL; 2260 } 2261 2262 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2263 2264 if (nr_bits > BITS_PER_U128) { 2265 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2266 BITS_PER_U128); 2267 return -EINVAL; 2268 } 2269 2270 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2271 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2272 return -EINVAL; 2273 } 2274 2275 /* 2276 * Only one of the encoding bits is allowed and it 2277 * should be sufficient for the pretty print purpose (i.e. decoding). 2278 * Multiple bits can be allowed later if it is found 2279 * to be insufficient. 2280 */ 2281 encoding = BTF_INT_ENCODING(int_data); 2282 if (encoding && 2283 encoding != BTF_INT_SIGNED && 2284 encoding != BTF_INT_CHAR && 2285 encoding != BTF_INT_BOOL) { 2286 btf_verifier_log_type(env, t, "Unsupported encoding"); 2287 return -ENOTSUPP; 2288 } 2289 2290 btf_verifier_log_type(env, t, NULL); 2291 2292 return meta_needed; 2293 } 2294 2295 static void btf_int_log(struct btf_verifier_env *env, 2296 const struct btf_type *t) 2297 { 2298 int int_data = btf_type_int(t); 2299 2300 btf_verifier_log(env, 2301 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2302 t->size, BTF_INT_OFFSET(int_data), 2303 BTF_INT_BITS(int_data), 2304 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2305 } 2306 2307 static void btf_int128_print(struct btf_show *show, void *data) 2308 { 2309 /* data points to a __int128 number. 2310 * Suppose 2311 * int128_num = *(__int128 *)data; 2312 * The below formulas shows what upper_num and lower_num represents: 2313 * upper_num = int128_num >> 64; 2314 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2315 */ 2316 u64 upper_num, lower_num; 2317 2318 #ifdef __BIG_ENDIAN_BITFIELD 2319 upper_num = *(u64 *)data; 2320 lower_num = *(u64 *)(data + 8); 2321 #else 2322 upper_num = *(u64 *)(data + 8); 2323 lower_num = *(u64 *)data; 2324 #endif 2325 if (upper_num == 0) 2326 btf_show_type_value(show, "0x%llx", lower_num); 2327 else 2328 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2329 lower_num); 2330 } 2331 2332 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2333 u16 right_shift_bits) 2334 { 2335 u64 upper_num, lower_num; 2336 2337 #ifdef __BIG_ENDIAN_BITFIELD 2338 upper_num = print_num[0]; 2339 lower_num = print_num[1]; 2340 #else 2341 upper_num = print_num[1]; 2342 lower_num = print_num[0]; 2343 #endif 2344 2345 /* shake out un-needed bits by shift/or operations */ 2346 if (left_shift_bits >= 64) { 2347 upper_num = lower_num << (left_shift_bits - 64); 2348 lower_num = 0; 2349 } else { 2350 upper_num = (upper_num << left_shift_bits) | 2351 (lower_num >> (64 - left_shift_bits)); 2352 lower_num = lower_num << left_shift_bits; 2353 } 2354 2355 if (right_shift_bits >= 64) { 2356 lower_num = upper_num >> (right_shift_bits - 64); 2357 upper_num = 0; 2358 } else { 2359 lower_num = (lower_num >> right_shift_bits) | 2360 (upper_num << (64 - right_shift_bits)); 2361 upper_num = upper_num >> right_shift_bits; 2362 } 2363 2364 #ifdef __BIG_ENDIAN_BITFIELD 2365 print_num[0] = upper_num; 2366 print_num[1] = lower_num; 2367 #else 2368 print_num[0] = lower_num; 2369 print_num[1] = upper_num; 2370 #endif 2371 } 2372 2373 static void btf_bitfield_show(void *data, u8 bits_offset, 2374 u8 nr_bits, struct btf_show *show) 2375 { 2376 u16 left_shift_bits, right_shift_bits; 2377 u8 nr_copy_bytes; 2378 u8 nr_copy_bits; 2379 u64 print_num[2] = {}; 2380 2381 nr_copy_bits = nr_bits + bits_offset; 2382 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2383 2384 memcpy(print_num, data, nr_copy_bytes); 2385 2386 #ifdef __BIG_ENDIAN_BITFIELD 2387 left_shift_bits = bits_offset; 2388 #else 2389 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2390 #endif 2391 right_shift_bits = BITS_PER_U128 - nr_bits; 2392 2393 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2394 btf_int128_print(show, print_num); 2395 } 2396 2397 2398 static void btf_int_bits_show(const struct btf *btf, 2399 const struct btf_type *t, 2400 void *data, u8 bits_offset, 2401 struct btf_show *show) 2402 { 2403 u32 int_data = btf_type_int(t); 2404 u8 nr_bits = BTF_INT_BITS(int_data); 2405 u8 total_bits_offset; 2406 2407 /* 2408 * bits_offset is at most 7. 2409 * BTF_INT_OFFSET() cannot exceed 128 bits. 2410 */ 2411 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2412 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2413 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2414 btf_bitfield_show(data, bits_offset, nr_bits, show); 2415 } 2416 2417 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2418 u32 type_id, void *data, u8 bits_offset, 2419 struct btf_show *show) 2420 { 2421 u32 int_data = btf_type_int(t); 2422 u8 encoding = BTF_INT_ENCODING(int_data); 2423 bool sign = encoding & BTF_INT_SIGNED; 2424 u8 nr_bits = BTF_INT_BITS(int_data); 2425 void *safe_data; 2426 2427 safe_data = btf_show_start_type(show, t, type_id, data); 2428 if (!safe_data) 2429 return; 2430 2431 if (bits_offset || BTF_INT_OFFSET(int_data) || 2432 BITS_PER_BYTE_MASKED(nr_bits)) { 2433 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2434 goto out; 2435 } 2436 2437 switch (nr_bits) { 2438 case 128: 2439 btf_int128_print(show, safe_data); 2440 break; 2441 case 64: 2442 if (sign) 2443 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2444 else 2445 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2446 break; 2447 case 32: 2448 if (sign) 2449 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2450 else 2451 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2452 break; 2453 case 16: 2454 if (sign) 2455 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2456 else 2457 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2458 break; 2459 case 8: 2460 if (show->state.array_encoding == BTF_INT_CHAR) { 2461 /* check for null terminator */ 2462 if (show->state.array_terminated) 2463 break; 2464 if (*(char *)data == '\0') { 2465 show->state.array_terminated = 1; 2466 break; 2467 } 2468 if (isprint(*(char *)data)) { 2469 btf_show_type_value(show, "'%c'", 2470 *(char *)safe_data); 2471 break; 2472 } 2473 } 2474 if (sign) 2475 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2476 else 2477 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2478 break; 2479 default: 2480 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2481 break; 2482 } 2483 out: 2484 btf_show_end_type(show); 2485 } 2486 2487 static const struct btf_kind_operations int_ops = { 2488 .check_meta = btf_int_check_meta, 2489 .resolve = btf_df_resolve, 2490 .check_member = btf_int_check_member, 2491 .check_kflag_member = btf_int_check_kflag_member, 2492 .log_details = btf_int_log, 2493 .show = btf_int_show, 2494 }; 2495 2496 static int btf_modifier_check_member(struct btf_verifier_env *env, 2497 const struct btf_type *struct_type, 2498 const struct btf_member *member, 2499 const struct btf_type *member_type) 2500 { 2501 const struct btf_type *resolved_type; 2502 u32 resolved_type_id = member->type; 2503 struct btf_member resolved_member; 2504 struct btf *btf = env->btf; 2505 2506 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2507 if (!resolved_type) { 2508 btf_verifier_log_member(env, struct_type, member, 2509 "Invalid member"); 2510 return -EINVAL; 2511 } 2512 2513 resolved_member = *member; 2514 resolved_member.type = resolved_type_id; 2515 2516 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2517 &resolved_member, 2518 resolved_type); 2519 } 2520 2521 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2522 const struct btf_type *struct_type, 2523 const struct btf_member *member, 2524 const struct btf_type *member_type) 2525 { 2526 const struct btf_type *resolved_type; 2527 u32 resolved_type_id = member->type; 2528 struct btf_member resolved_member; 2529 struct btf *btf = env->btf; 2530 2531 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2532 if (!resolved_type) { 2533 btf_verifier_log_member(env, struct_type, member, 2534 "Invalid member"); 2535 return -EINVAL; 2536 } 2537 2538 resolved_member = *member; 2539 resolved_member.type = resolved_type_id; 2540 2541 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2542 &resolved_member, 2543 resolved_type); 2544 } 2545 2546 static int btf_ptr_check_member(struct btf_verifier_env *env, 2547 const struct btf_type *struct_type, 2548 const struct btf_member *member, 2549 const struct btf_type *member_type) 2550 { 2551 u32 struct_size, struct_bits_off, bytes_offset; 2552 2553 struct_size = struct_type->size; 2554 struct_bits_off = member->offset; 2555 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2556 2557 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2558 btf_verifier_log_member(env, struct_type, member, 2559 "Member is not byte aligned"); 2560 return -EINVAL; 2561 } 2562 2563 if (struct_size - bytes_offset < sizeof(void *)) { 2564 btf_verifier_log_member(env, struct_type, member, 2565 "Member exceeds struct_size"); 2566 return -EINVAL; 2567 } 2568 2569 return 0; 2570 } 2571 2572 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2573 const struct btf_type *t, 2574 u32 meta_left) 2575 { 2576 const char *value; 2577 2578 if (btf_type_vlen(t)) { 2579 btf_verifier_log_type(env, t, "vlen != 0"); 2580 return -EINVAL; 2581 } 2582 2583 if (btf_type_kflag(t)) { 2584 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2585 return -EINVAL; 2586 } 2587 2588 if (!BTF_TYPE_ID_VALID(t->type)) { 2589 btf_verifier_log_type(env, t, "Invalid type_id"); 2590 return -EINVAL; 2591 } 2592 2593 /* typedef/type_tag type must have a valid name, and other ref types, 2594 * volatile, const, restrict, should have a null name. 2595 */ 2596 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2597 if (!t->name_off || 2598 !btf_name_valid_identifier(env->btf, t->name_off)) { 2599 btf_verifier_log_type(env, t, "Invalid name"); 2600 return -EINVAL; 2601 } 2602 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2603 value = btf_name_by_offset(env->btf, t->name_off); 2604 if (!value || !value[0]) { 2605 btf_verifier_log_type(env, t, "Invalid name"); 2606 return -EINVAL; 2607 } 2608 } else { 2609 if (t->name_off) { 2610 btf_verifier_log_type(env, t, "Invalid name"); 2611 return -EINVAL; 2612 } 2613 } 2614 2615 btf_verifier_log_type(env, t, NULL); 2616 2617 return 0; 2618 } 2619 2620 static int btf_modifier_resolve(struct btf_verifier_env *env, 2621 const struct resolve_vertex *v) 2622 { 2623 const struct btf_type *t = v->t; 2624 const struct btf_type *next_type; 2625 u32 next_type_id = t->type; 2626 struct btf *btf = env->btf; 2627 2628 next_type = btf_type_by_id(btf, next_type_id); 2629 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2630 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2631 return -EINVAL; 2632 } 2633 2634 if (!env_type_is_resolve_sink(env, next_type) && 2635 !env_type_is_resolved(env, next_type_id)) 2636 return env_stack_push(env, next_type, next_type_id); 2637 2638 /* Figure out the resolved next_type_id with size. 2639 * They will be stored in the current modifier's 2640 * resolved_ids and resolved_sizes such that it can 2641 * save us a few type-following when we use it later (e.g. in 2642 * pretty print). 2643 */ 2644 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2645 if (env_type_is_resolved(env, next_type_id)) 2646 next_type = btf_type_id_resolve(btf, &next_type_id); 2647 2648 /* "typedef void new_void", "const void"...etc */ 2649 if (!btf_type_is_void(next_type) && 2650 !btf_type_is_fwd(next_type) && 2651 !btf_type_is_func_proto(next_type)) { 2652 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2653 return -EINVAL; 2654 } 2655 } 2656 2657 env_stack_pop_resolved(env, next_type_id, 0); 2658 2659 return 0; 2660 } 2661 2662 static int btf_var_resolve(struct btf_verifier_env *env, 2663 const struct resolve_vertex *v) 2664 { 2665 const struct btf_type *next_type; 2666 const struct btf_type *t = v->t; 2667 u32 next_type_id = t->type; 2668 struct btf *btf = env->btf; 2669 2670 next_type = btf_type_by_id(btf, next_type_id); 2671 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2672 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2673 return -EINVAL; 2674 } 2675 2676 if (!env_type_is_resolve_sink(env, next_type) && 2677 !env_type_is_resolved(env, next_type_id)) 2678 return env_stack_push(env, next_type, next_type_id); 2679 2680 if (btf_type_is_modifier(next_type)) { 2681 const struct btf_type *resolved_type; 2682 u32 resolved_type_id; 2683 2684 resolved_type_id = next_type_id; 2685 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2686 2687 if (btf_type_is_ptr(resolved_type) && 2688 !env_type_is_resolve_sink(env, resolved_type) && 2689 !env_type_is_resolved(env, resolved_type_id)) 2690 return env_stack_push(env, resolved_type, 2691 resolved_type_id); 2692 } 2693 2694 /* We must resolve to something concrete at this point, no 2695 * forward types or similar that would resolve to size of 2696 * zero is allowed. 2697 */ 2698 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2699 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2700 return -EINVAL; 2701 } 2702 2703 env_stack_pop_resolved(env, next_type_id, 0); 2704 2705 return 0; 2706 } 2707 2708 static int btf_ptr_resolve(struct btf_verifier_env *env, 2709 const struct resolve_vertex *v) 2710 { 2711 const struct btf_type *next_type; 2712 const struct btf_type *t = v->t; 2713 u32 next_type_id = t->type; 2714 struct btf *btf = env->btf; 2715 2716 next_type = btf_type_by_id(btf, next_type_id); 2717 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2718 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2719 return -EINVAL; 2720 } 2721 2722 if (!env_type_is_resolve_sink(env, next_type) && 2723 !env_type_is_resolved(env, next_type_id)) 2724 return env_stack_push(env, next_type, next_type_id); 2725 2726 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2727 * the modifier may have stopped resolving when it was resolved 2728 * to a ptr (last-resolved-ptr). 2729 * 2730 * We now need to continue from the last-resolved-ptr to 2731 * ensure the last-resolved-ptr will not referring back to 2732 * the current ptr (t). 2733 */ 2734 if (btf_type_is_modifier(next_type)) { 2735 const struct btf_type *resolved_type; 2736 u32 resolved_type_id; 2737 2738 resolved_type_id = next_type_id; 2739 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2740 2741 if (btf_type_is_ptr(resolved_type) && 2742 !env_type_is_resolve_sink(env, resolved_type) && 2743 !env_type_is_resolved(env, resolved_type_id)) 2744 return env_stack_push(env, resolved_type, 2745 resolved_type_id); 2746 } 2747 2748 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2749 if (env_type_is_resolved(env, next_type_id)) 2750 next_type = btf_type_id_resolve(btf, &next_type_id); 2751 2752 if (!btf_type_is_void(next_type) && 2753 !btf_type_is_fwd(next_type) && 2754 !btf_type_is_func_proto(next_type)) { 2755 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2756 return -EINVAL; 2757 } 2758 } 2759 2760 env_stack_pop_resolved(env, next_type_id, 0); 2761 2762 return 0; 2763 } 2764 2765 static void btf_modifier_show(const struct btf *btf, 2766 const struct btf_type *t, 2767 u32 type_id, void *data, 2768 u8 bits_offset, struct btf_show *show) 2769 { 2770 if (btf->resolved_ids) 2771 t = btf_type_id_resolve(btf, &type_id); 2772 else 2773 t = btf_type_skip_modifiers(btf, type_id, NULL); 2774 2775 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2776 } 2777 2778 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2779 u32 type_id, void *data, u8 bits_offset, 2780 struct btf_show *show) 2781 { 2782 t = btf_type_id_resolve(btf, &type_id); 2783 2784 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2785 } 2786 2787 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2788 u32 type_id, void *data, u8 bits_offset, 2789 struct btf_show *show) 2790 { 2791 void *safe_data; 2792 2793 safe_data = btf_show_start_type(show, t, type_id, data); 2794 if (!safe_data) 2795 return; 2796 2797 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2798 if (show->flags & BTF_SHOW_PTR_RAW) 2799 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2800 else 2801 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2802 btf_show_end_type(show); 2803 } 2804 2805 static void btf_ref_type_log(struct btf_verifier_env *env, 2806 const struct btf_type *t) 2807 { 2808 btf_verifier_log(env, "type_id=%u", t->type); 2809 } 2810 2811 static struct btf_kind_operations modifier_ops = { 2812 .check_meta = btf_ref_type_check_meta, 2813 .resolve = btf_modifier_resolve, 2814 .check_member = btf_modifier_check_member, 2815 .check_kflag_member = btf_modifier_check_kflag_member, 2816 .log_details = btf_ref_type_log, 2817 .show = btf_modifier_show, 2818 }; 2819 2820 static struct btf_kind_operations ptr_ops = { 2821 .check_meta = btf_ref_type_check_meta, 2822 .resolve = btf_ptr_resolve, 2823 .check_member = btf_ptr_check_member, 2824 .check_kflag_member = btf_generic_check_kflag_member, 2825 .log_details = btf_ref_type_log, 2826 .show = btf_ptr_show, 2827 }; 2828 2829 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2830 const struct btf_type *t, 2831 u32 meta_left) 2832 { 2833 if (btf_type_vlen(t)) { 2834 btf_verifier_log_type(env, t, "vlen != 0"); 2835 return -EINVAL; 2836 } 2837 2838 if (t->type) { 2839 btf_verifier_log_type(env, t, "type != 0"); 2840 return -EINVAL; 2841 } 2842 2843 /* fwd type must have a valid name */ 2844 if (!t->name_off || 2845 !btf_name_valid_identifier(env->btf, t->name_off)) { 2846 btf_verifier_log_type(env, t, "Invalid name"); 2847 return -EINVAL; 2848 } 2849 2850 btf_verifier_log_type(env, t, NULL); 2851 2852 return 0; 2853 } 2854 2855 static void btf_fwd_type_log(struct btf_verifier_env *env, 2856 const struct btf_type *t) 2857 { 2858 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2859 } 2860 2861 static struct btf_kind_operations fwd_ops = { 2862 .check_meta = btf_fwd_check_meta, 2863 .resolve = btf_df_resolve, 2864 .check_member = btf_df_check_member, 2865 .check_kflag_member = btf_df_check_kflag_member, 2866 .log_details = btf_fwd_type_log, 2867 .show = btf_df_show, 2868 }; 2869 2870 static int btf_array_check_member(struct btf_verifier_env *env, 2871 const struct btf_type *struct_type, 2872 const struct btf_member *member, 2873 const struct btf_type *member_type) 2874 { 2875 u32 struct_bits_off = member->offset; 2876 u32 struct_size, bytes_offset; 2877 u32 array_type_id, array_size; 2878 struct btf *btf = env->btf; 2879 2880 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2881 btf_verifier_log_member(env, struct_type, member, 2882 "Member is not byte aligned"); 2883 return -EINVAL; 2884 } 2885 2886 array_type_id = member->type; 2887 btf_type_id_size(btf, &array_type_id, &array_size); 2888 struct_size = struct_type->size; 2889 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2890 if (struct_size - bytes_offset < array_size) { 2891 btf_verifier_log_member(env, struct_type, member, 2892 "Member exceeds struct_size"); 2893 return -EINVAL; 2894 } 2895 2896 return 0; 2897 } 2898 2899 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2900 const struct btf_type *t, 2901 u32 meta_left) 2902 { 2903 const struct btf_array *array = btf_type_array(t); 2904 u32 meta_needed = sizeof(*array); 2905 2906 if (meta_left < meta_needed) { 2907 btf_verifier_log_basic(env, t, 2908 "meta_left:%u meta_needed:%u", 2909 meta_left, meta_needed); 2910 return -EINVAL; 2911 } 2912 2913 /* array type should not have a name */ 2914 if (t->name_off) { 2915 btf_verifier_log_type(env, t, "Invalid name"); 2916 return -EINVAL; 2917 } 2918 2919 if (btf_type_vlen(t)) { 2920 btf_verifier_log_type(env, t, "vlen != 0"); 2921 return -EINVAL; 2922 } 2923 2924 if (btf_type_kflag(t)) { 2925 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2926 return -EINVAL; 2927 } 2928 2929 if (t->size) { 2930 btf_verifier_log_type(env, t, "size != 0"); 2931 return -EINVAL; 2932 } 2933 2934 /* Array elem type and index type cannot be in type void, 2935 * so !array->type and !array->index_type are not allowed. 2936 */ 2937 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2938 btf_verifier_log_type(env, t, "Invalid elem"); 2939 return -EINVAL; 2940 } 2941 2942 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2943 btf_verifier_log_type(env, t, "Invalid index"); 2944 return -EINVAL; 2945 } 2946 2947 btf_verifier_log_type(env, t, NULL); 2948 2949 return meta_needed; 2950 } 2951 2952 static int btf_array_resolve(struct btf_verifier_env *env, 2953 const struct resolve_vertex *v) 2954 { 2955 const struct btf_array *array = btf_type_array(v->t); 2956 const struct btf_type *elem_type, *index_type; 2957 u32 elem_type_id, index_type_id; 2958 struct btf *btf = env->btf; 2959 u32 elem_size; 2960 2961 /* Check array->index_type */ 2962 index_type_id = array->index_type; 2963 index_type = btf_type_by_id(btf, index_type_id); 2964 if (btf_type_nosize_or_null(index_type) || 2965 btf_type_is_resolve_source_only(index_type)) { 2966 btf_verifier_log_type(env, v->t, "Invalid index"); 2967 return -EINVAL; 2968 } 2969 2970 if (!env_type_is_resolve_sink(env, index_type) && 2971 !env_type_is_resolved(env, index_type_id)) 2972 return env_stack_push(env, index_type, index_type_id); 2973 2974 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2975 if (!index_type || !btf_type_is_int(index_type) || 2976 !btf_type_int_is_regular(index_type)) { 2977 btf_verifier_log_type(env, v->t, "Invalid index"); 2978 return -EINVAL; 2979 } 2980 2981 /* Check array->type */ 2982 elem_type_id = array->type; 2983 elem_type = btf_type_by_id(btf, elem_type_id); 2984 if (btf_type_nosize_or_null(elem_type) || 2985 btf_type_is_resolve_source_only(elem_type)) { 2986 btf_verifier_log_type(env, v->t, 2987 "Invalid elem"); 2988 return -EINVAL; 2989 } 2990 2991 if (!env_type_is_resolve_sink(env, elem_type) && 2992 !env_type_is_resolved(env, elem_type_id)) 2993 return env_stack_push(env, elem_type, elem_type_id); 2994 2995 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2996 if (!elem_type) { 2997 btf_verifier_log_type(env, v->t, "Invalid elem"); 2998 return -EINVAL; 2999 } 3000 3001 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 3002 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3003 return -EINVAL; 3004 } 3005 3006 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3007 btf_verifier_log_type(env, v->t, 3008 "Array size overflows U32_MAX"); 3009 return -EINVAL; 3010 } 3011 3012 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3013 3014 return 0; 3015 } 3016 3017 static void btf_array_log(struct btf_verifier_env *env, 3018 const struct btf_type *t) 3019 { 3020 const struct btf_array *array = btf_type_array(t); 3021 3022 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3023 array->type, array->index_type, array->nelems); 3024 } 3025 3026 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3027 u32 type_id, void *data, u8 bits_offset, 3028 struct btf_show *show) 3029 { 3030 const struct btf_array *array = btf_type_array(t); 3031 const struct btf_kind_operations *elem_ops; 3032 const struct btf_type *elem_type; 3033 u32 i, elem_size = 0, elem_type_id; 3034 u16 encoding = 0; 3035 3036 elem_type_id = array->type; 3037 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3038 if (elem_type && btf_type_has_size(elem_type)) 3039 elem_size = elem_type->size; 3040 3041 if (elem_type && btf_type_is_int(elem_type)) { 3042 u32 int_type = btf_type_int(elem_type); 3043 3044 encoding = BTF_INT_ENCODING(int_type); 3045 3046 /* 3047 * BTF_INT_CHAR encoding never seems to be set for 3048 * char arrays, so if size is 1 and element is 3049 * printable as a char, we'll do that. 3050 */ 3051 if (elem_size == 1) 3052 encoding = BTF_INT_CHAR; 3053 } 3054 3055 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3056 return; 3057 3058 if (!elem_type) 3059 goto out; 3060 elem_ops = btf_type_ops(elem_type); 3061 3062 for (i = 0; i < array->nelems; i++) { 3063 3064 btf_show_start_array_member(show); 3065 3066 elem_ops->show(btf, elem_type, elem_type_id, data, 3067 bits_offset, show); 3068 data += elem_size; 3069 3070 btf_show_end_array_member(show); 3071 3072 if (show->state.array_terminated) 3073 break; 3074 } 3075 out: 3076 btf_show_end_array_type(show); 3077 } 3078 3079 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3080 u32 type_id, void *data, u8 bits_offset, 3081 struct btf_show *show) 3082 { 3083 const struct btf_member *m = show->state.member; 3084 3085 /* 3086 * First check if any members would be shown (are non-zero). 3087 * See comments above "struct btf_show" definition for more 3088 * details on how this works at a high-level. 3089 */ 3090 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3091 if (!show->state.depth_check) { 3092 show->state.depth_check = show->state.depth + 1; 3093 show->state.depth_to_show = 0; 3094 } 3095 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3096 show->state.member = m; 3097 3098 if (show->state.depth_check != show->state.depth + 1) 3099 return; 3100 show->state.depth_check = 0; 3101 3102 if (show->state.depth_to_show <= show->state.depth) 3103 return; 3104 /* 3105 * Reaching here indicates we have recursed and found 3106 * non-zero array member(s). 3107 */ 3108 } 3109 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3110 } 3111 3112 static struct btf_kind_operations array_ops = { 3113 .check_meta = btf_array_check_meta, 3114 .resolve = btf_array_resolve, 3115 .check_member = btf_array_check_member, 3116 .check_kflag_member = btf_generic_check_kflag_member, 3117 .log_details = btf_array_log, 3118 .show = btf_array_show, 3119 }; 3120 3121 static int btf_struct_check_member(struct btf_verifier_env *env, 3122 const struct btf_type *struct_type, 3123 const struct btf_member *member, 3124 const struct btf_type *member_type) 3125 { 3126 u32 struct_bits_off = member->offset; 3127 u32 struct_size, bytes_offset; 3128 3129 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3130 btf_verifier_log_member(env, struct_type, member, 3131 "Member is not byte aligned"); 3132 return -EINVAL; 3133 } 3134 3135 struct_size = struct_type->size; 3136 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3137 if (struct_size - bytes_offset < member_type->size) { 3138 btf_verifier_log_member(env, struct_type, member, 3139 "Member exceeds struct_size"); 3140 return -EINVAL; 3141 } 3142 3143 return 0; 3144 } 3145 3146 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3147 const struct btf_type *t, 3148 u32 meta_left) 3149 { 3150 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3151 const struct btf_member *member; 3152 u32 meta_needed, last_offset; 3153 struct btf *btf = env->btf; 3154 u32 struct_size = t->size; 3155 u32 offset; 3156 u16 i; 3157 3158 meta_needed = btf_type_vlen(t) * sizeof(*member); 3159 if (meta_left < meta_needed) { 3160 btf_verifier_log_basic(env, t, 3161 "meta_left:%u meta_needed:%u", 3162 meta_left, meta_needed); 3163 return -EINVAL; 3164 } 3165 3166 /* struct type either no name or a valid one */ 3167 if (t->name_off && 3168 !btf_name_valid_identifier(env->btf, t->name_off)) { 3169 btf_verifier_log_type(env, t, "Invalid name"); 3170 return -EINVAL; 3171 } 3172 3173 btf_verifier_log_type(env, t, NULL); 3174 3175 last_offset = 0; 3176 for_each_member(i, t, member) { 3177 if (!btf_name_offset_valid(btf, member->name_off)) { 3178 btf_verifier_log_member(env, t, member, 3179 "Invalid member name_offset:%u", 3180 member->name_off); 3181 return -EINVAL; 3182 } 3183 3184 /* struct member either no name or a valid one */ 3185 if (member->name_off && 3186 !btf_name_valid_identifier(btf, member->name_off)) { 3187 btf_verifier_log_member(env, t, member, "Invalid name"); 3188 return -EINVAL; 3189 } 3190 /* A member cannot be in type void */ 3191 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3192 btf_verifier_log_member(env, t, member, 3193 "Invalid type_id"); 3194 return -EINVAL; 3195 } 3196 3197 offset = __btf_member_bit_offset(t, member); 3198 if (is_union && offset) { 3199 btf_verifier_log_member(env, t, member, 3200 "Invalid member bits_offset"); 3201 return -EINVAL; 3202 } 3203 3204 /* 3205 * ">" instead of ">=" because the last member could be 3206 * "char a[0];" 3207 */ 3208 if (last_offset > offset) { 3209 btf_verifier_log_member(env, t, member, 3210 "Invalid member bits_offset"); 3211 return -EINVAL; 3212 } 3213 3214 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3215 btf_verifier_log_member(env, t, member, 3216 "Member bits_offset exceeds its struct size"); 3217 return -EINVAL; 3218 } 3219 3220 btf_verifier_log_member(env, t, member, NULL); 3221 last_offset = offset; 3222 } 3223 3224 return meta_needed; 3225 } 3226 3227 static int btf_struct_resolve(struct btf_verifier_env *env, 3228 const struct resolve_vertex *v) 3229 { 3230 const struct btf_member *member; 3231 int err; 3232 u16 i; 3233 3234 /* Before continue resolving the next_member, 3235 * ensure the last member is indeed resolved to a 3236 * type with size info. 3237 */ 3238 if (v->next_member) { 3239 const struct btf_type *last_member_type; 3240 const struct btf_member *last_member; 3241 u32 last_member_type_id; 3242 3243 last_member = btf_type_member(v->t) + v->next_member - 1; 3244 last_member_type_id = last_member->type; 3245 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3246 last_member_type_id))) 3247 return -EINVAL; 3248 3249 last_member_type = btf_type_by_id(env->btf, 3250 last_member_type_id); 3251 if (btf_type_kflag(v->t)) 3252 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3253 last_member, 3254 last_member_type); 3255 else 3256 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3257 last_member, 3258 last_member_type); 3259 if (err) 3260 return err; 3261 } 3262 3263 for_each_member_from(i, v->next_member, v->t, member) { 3264 u32 member_type_id = member->type; 3265 const struct btf_type *member_type = btf_type_by_id(env->btf, 3266 member_type_id); 3267 3268 if (btf_type_nosize_or_null(member_type) || 3269 btf_type_is_resolve_source_only(member_type)) { 3270 btf_verifier_log_member(env, v->t, member, 3271 "Invalid member"); 3272 return -EINVAL; 3273 } 3274 3275 if (!env_type_is_resolve_sink(env, member_type) && 3276 !env_type_is_resolved(env, member_type_id)) { 3277 env_stack_set_next_member(env, i + 1); 3278 return env_stack_push(env, member_type, member_type_id); 3279 } 3280 3281 if (btf_type_kflag(v->t)) 3282 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3283 member, 3284 member_type); 3285 else 3286 err = btf_type_ops(member_type)->check_member(env, v->t, 3287 member, 3288 member_type); 3289 if (err) 3290 return err; 3291 } 3292 3293 env_stack_pop_resolved(env, 0, 0); 3294 3295 return 0; 3296 } 3297 3298 static void btf_struct_log(struct btf_verifier_env *env, 3299 const struct btf_type *t) 3300 { 3301 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3302 } 3303 3304 enum { 3305 BTF_FIELD_IGNORE = 0, 3306 BTF_FIELD_FOUND = 1, 3307 }; 3308 3309 struct btf_field_info { 3310 enum btf_field_type type; 3311 u32 off; 3312 union { 3313 struct { 3314 u32 type_id; 3315 } kptr; 3316 struct { 3317 const char *node_name; 3318 u32 value_btf_id; 3319 } graph_root; 3320 }; 3321 }; 3322 3323 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3324 u32 off, int sz, enum btf_field_type field_type, 3325 struct btf_field_info *info) 3326 { 3327 if (!__btf_type_is_struct(t)) 3328 return BTF_FIELD_IGNORE; 3329 if (t->size != sz) 3330 return BTF_FIELD_IGNORE; 3331 info->type = field_type; 3332 info->off = off; 3333 return BTF_FIELD_FOUND; 3334 } 3335 3336 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3337 u32 off, int sz, struct btf_field_info *info) 3338 { 3339 enum btf_field_type type; 3340 u32 res_id; 3341 3342 /* Permit modifiers on the pointer itself */ 3343 if (btf_type_is_volatile(t)) 3344 t = btf_type_by_id(btf, t->type); 3345 /* For PTR, sz is always == 8 */ 3346 if (!btf_type_is_ptr(t)) 3347 return BTF_FIELD_IGNORE; 3348 t = btf_type_by_id(btf, t->type); 3349 3350 if (!btf_type_is_type_tag(t)) 3351 return BTF_FIELD_IGNORE; 3352 /* Reject extra tags */ 3353 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3354 return -EINVAL; 3355 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3356 type = BPF_KPTR_UNREF; 3357 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3358 type = BPF_KPTR_REF; 3359 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) 3360 type = BPF_KPTR_PERCPU; 3361 else 3362 return -EINVAL; 3363 3364 /* Get the base type */ 3365 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3366 /* Only pointer to struct is allowed */ 3367 if (!__btf_type_is_struct(t)) 3368 return -EINVAL; 3369 3370 info->type = type; 3371 info->off = off; 3372 info->kptr.type_id = res_id; 3373 return BTF_FIELD_FOUND; 3374 } 3375 3376 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3377 int comp_idx, const char *tag_key, int last_id) 3378 { 3379 int len = strlen(tag_key); 3380 int i, n; 3381 3382 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3383 const struct btf_type *t = btf_type_by_id(btf, i); 3384 3385 if (!btf_type_is_decl_tag(t)) 3386 continue; 3387 if (pt != btf_type_by_id(btf, t->type)) 3388 continue; 3389 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3390 continue; 3391 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3392 continue; 3393 return i; 3394 } 3395 return -ENOENT; 3396 } 3397 3398 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3399 int comp_idx, const char *tag_key) 3400 { 3401 const char *value = NULL; 3402 const struct btf_type *t; 3403 int len, id; 3404 3405 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3406 if (id < 0) 3407 return ERR_PTR(id); 3408 3409 t = btf_type_by_id(btf, id); 3410 len = strlen(tag_key); 3411 value = __btf_name_by_offset(btf, t->name_off) + len; 3412 3413 /* Prevent duplicate entries for same type */ 3414 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3415 if (id >= 0) 3416 return ERR_PTR(-EEXIST); 3417 3418 return value; 3419 } 3420 3421 static int 3422 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3423 const struct btf_type *t, int comp_idx, u32 off, 3424 int sz, struct btf_field_info *info, 3425 enum btf_field_type head_type) 3426 { 3427 const char *node_field_name; 3428 const char *value_type; 3429 s32 id; 3430 3431 if (!__btf_type_is_struct(t)) 3432 return BTF_FIELD_IGNORE; 3433 if (t->size != sz) 3434 return BTF_FIELD_IGNORE; 3435 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3436 if (IS_ERR(value_type)) 3437 return -EINVAL; 3438 node_field_name = strstr(value_type, ":"); 3439 if (!node_field_name) 3440 return -EINVAL; 3441 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3442 if (!value_type) 3443 return -ENOMEM; 3444 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3445 kfree(value_type); 3446 if (id < 0) 3447 return id; 3448 node_field_name++; 3449 if (str_is_empty(node_field_name)) 3450 return -EINVAL; 3451 info->type = head_type; 3452 info->off = off; 3453 info->graph_root.value_btf_id = id; 3454 info->graph_root.node_name = node_field_name; 3455 return BTF_FIELD_FOUND; 3456 } 3457 3458 #define field_mask_test_name(field_type, field_type_str) \ 3459 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3460 type = field_type; \ 3461 goto end; \ 3462 } 3463 3464 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3465 u32 field_mask, u32 *seen_mask, 3466 int *align, int *sz) 3467 { 3468 int type = 0; 3469 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3470 3471 if (field_mask & BPF_SPIN_LOCK) { 3472 if (!strcmp(name, "bpf_spin_lock")) { 3473 if (*seen_mask & BPF_SPIN_LOCK) 3474 return -E2BIG; 3475 *seen_mask |= BPF_SPIN_LOCK; 3476 type = BPF_SPIN_LOCK; 3477 goto end; 3478 } 3479 } 3480 if (field_mask & BPF_TIMER) { 3481 if (!strcmp(name, "bpf_timer")) { 3482 if (*seen_mask & BPF_TIMER) 3483 return -E2BIG; 3484 *seen_mask |= BPF_TIMER; 3485 type = BPF_TIMER; 3486 goto end; 3487 } 3488 } 3489 if (field_mask & BPF_WORKQUEUE) { 3490 if (!strcmp(name, "bpf_wq")) { 3491 if (*seen_mask & BPF_WORKQUEUE) 3492 return -E2BIG; 3493 *seen_mask |= BPF_WORKQUEUE; 3494 type = BPF_WORKQUEUE; 3495 goto end; 3496 } 3497 } 3498 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3499 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3500 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3501 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3502 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3503 3504 /* Only return BPF_KPTR when all other types with matchable names fail */ 3505 if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) { 3506 type = BPF_KPTR_REF; 3507 goto end; 3508 } 3509 return 0; 3510 end: 3511 *sz = btf_field_type_size(type); 3512 *align = btf_field_type_align(type); 3513 return type; 3514 } 3515 3516 #undef field_mask_test_name 3517 3518 /* Repeat a number of fields for a specified number of times. 3519 * 3520 * Copy the fields starting from the first field and repeat them for 3521 * repeat_cnt times. The fields are repeated by adding the offset of each 3522 * field with 3523 * (i + 1) * elem_size 3524 * where i is the repeat index and elem_size is the size of an element. 3525 */ 3526 static int btf_repeat_fields(struct btf_field_info *info, 3527 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3528 { 3529 u32 i, j; 3530 u32 cur; 3531 3532 /* Ensure not repeating fields that should not be repeated. */ 3533 for (i = 0; i < field_cnt; i++) { 3534 switch (info[i].type) { 3535 case BPF_KPTR_UNREF: 3536 case BPF_KPTR_REF: 3537 case BPF_KPTR_PERCPU: 3538 case BPF_LIST_HEAD: 3539 case BPF_RB_ROOT: 3540 break; 3541 default: 3542 return -EINVAL; 3543 } 3544 } 3545 3546 cur = field_cnt; 3547 for (i = 0; i < repeat_cnt; i++) { 3548 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3549 for (j = 0; j < field_cnt; j++) 3550 info[cur++].off += (i + 1) * elem_size; 3551 } 3552 3553 return 0; 3554 } 3555 3556 static int btf_find_struct_field(const struct btf *btf, 3557 const struct btf_type *t, u32 field_mask, 3558 struct btf_field_info *info, int info_cnt, 3559 u32 level); 3560 3561 /* Find special fields in the struct type of a field. 3562 * 3563 * This function is used to find fields of special types that is not a 3564 * global variable or a direct field of a struct type. It also handles the 3565 * repetition if it is the element type of an array. 3566 */ 3567 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3568 u32 off, u32 nelems, 3569 u32 field_mask, struct btf_field_info *info, 3570 int info_cnt, u32 level) 3571 { 3572 int ret, err, i; 3573 3574 level++; 3575 if (level >= MAX_RESOLVE_DEPTH) 3576 return -E2BIG; 3577 3578 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3579 3580 if (ret <= 0) 3581 return ret; 3582 3583 /* Shift the offsets of the nested struct fields to the offsets 3584 * related to the container. 3585 */ 3586 for (i = 0; i < ret; i++) 3587 info[i].off += off; 3588 3589 if (nelems > 1) { 3590 err = btf_repeat_fields(info, ret, nelems - 1, t->size); 3591 if (err == 0) 3592 ret *= nelems; 3593 else 3594 ret = err; 3595 } 3596 3597 return ret; 3598 } 3599 3600 static int btf_find_field_one(const struct btf *btf, 3601 const struct btf_type *var, 3602 const struct btf_type *var_type, 3603 int var_idx, 3604 u32 off, u32 expected_size, 3605 u32 field_mask, u32 *seen_mask, 3606 struct btf_field_info *info, int info_cnt, 3607 u32 level) 3608 { 3609 int ret, align, sz, field_type; 3610 struct btf_field_info tmp; 3611 const struct btf_array *array; 3612 u32 i, nelems = 1; 3613 3614 /* Walk into array types to find the element type and the number of 3615 * elements in the (flattened) array. 3616 */ 3617 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3618 array = btf_array(var_type); 3619 nelems *= array->nelems; 3620 var_type = btf_type_by_id(btf, array->type); 3621 } 3622 if (i == MAX_RESOLVE_DEPTH) 3623 return -E2BIG; 3624 if (nelems == 0) 3625 return 0; 3626 3627 field_type = btf_get_field_type(btf, var_type, 3628 field_mask, seen_mask, &align, &sz); 3629 /* Look into variables of struct types */ 3630 if (!field_type && __btf_type_is_struct(var_type)) { 3631 sz = var_type->size; 3632 if (expected_size && expected_size != sz * nelems) 3633 return 0; 3634 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3635 &info[0], info_cnt, level); 3636 return ret; 3637 } 3638 3639 if (field_type == 0) 3640 return 0; 3641 if (field_type < 0) 3642 return field_type; 3643 3644 if (expected_size && expected_size != sz * nelems) 3645 return 0; 3646 if (off % align) 3647 return 0; 3648 3649 switch (field_type) { 3650 case BPF_SPIN_LOCK: 3651 case BPF_TIMER: 3652 case BPF_WORKQUEUE: 3653 case BPF_LIST_NODE: 3654 case BPF_RB_NODE: 3655 case BPF_REFCOUNT: 3656 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3657 info_cnt ? &info[0] : &tmp); 3658 if (ret < 0) 3659 return ret; 3660 break; 3661 case BPF_KPTR_UNREF: 3662 case BPF_KPTR_REF: 3663 case BPF_KPTR_PERCPU: 3664 ret = btf_find_kptr(btf, var_type, off, sz, 3665 info_cnt ? &info[0] : &tmp); 3666 if (ret < 0) 3667 return ret; 3668 break; 3669 case BPF_LIST_HEAD: 3670 case BPF_RB_ROOT: 3671 ret = btf_find_graph_root(btf, var, var_type, 3672 var_idx, off, sz, 3673 info_cnt ? &info[0] : &tmp, 3674 field_type); 3675 if (ret < 0) 3676 return ret; 3677 break; 3678 default: 3679 return -EFAULT; 3680 } 3681 3682 if (ret == BTF_FIELD_IGNORE) 3683 return 0; 3684 if (nelems > info_cnt) 3685 return -E2BIG; 3686 if (nelems > 1) { 3687 ret = btf_repeat_fields(info, 1, nelems - 1, sz); 3688 if (ret < 0) 3689 return ret; 3690 } 3691 return nelems; 3692 } 3693 3694 static int btf_find_struct_field(const struct btf *btf, 3695 const struct btf_type *t, u32 field_mask, 3696 struct btf_field_info *info, int info_cnt, 3697 u32 level) 3698 { 3699 int ret, idx = 0; 3700 const struct btf_member *member; 3701 u32 i, off, seen_mask = 0; 3702 3703 for_each_member(i, t, member) { 3704 const struct btf_type *member_type = btf_type_by_id(btf, 3705 member->type); 3706 3707 off = __btf_member_bit_offset(t, member); 3708 if (off % 8) 3709 /* valid C code cannot generate such BTF */ 3710 return -EINVAL; 3711 off /= 8; 3712 3713 ret = btf_find_field_one(btf, t, member_type, i, 3714 off, 0, 3715 field_mask, &seen_mask, 3716 &info[idx], info_cnt - idx, level); 3717 if (ret < 0) 3718 return ret; 3719 idx += ret; 3720 } 3721 return idx; 3722 } 3723 3724 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3725 u32 field_mask, struct btf_field_info *info, 3726 int info_cnt, u32 level) 3727 { 3728 int ret, idx = 0; 3729 const struct btf_var_secinfo *vsi; 3730 u32 i, off, seen_mask = 0; 3731 3732 for_each_vsi(i, t, vsi) { 3733 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3734 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3735 3736 off = vsi->offset; 3737 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3738 field_mask, &seen_mask, 3739 &info[idx], info_cnt - idx, 3740 level); 3741 if (ret < 0) 3742 return ret; 3743 idx += ret; 3744 } 3745 return idx; 3746 } 3747 3748 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3749 u32 field_mask, struct btf_field_info *info, 3750 int info_cnt) 3751 { 3752 if (__btf_type_is_struct(t)) 3753 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3754 else if (btf_type_is_datasec(t)) 3755 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3756 return -EINVAL; 3757 } 3758 3759 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3760 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3761 struct btf_field_info *info) 3762 { 3763 struct module *mod = NULL; 3764 const struct btf_type *t; 3765 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3766 * is that BTF, otherwise it's program BTF 3767 */ 3768 struct btf *kptr_btf; 3769 int ret; 3770 s32 id; 3771 3772 /* Find type in map BTF, and use it to look up the matching type 3773 * in vmlinux or module BTFs, by name and kind. 3774 */ 3775 t = btf_type_by_id(btf, info->kptr.type_id); 3776 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3777 &kptr_btf); 3778 if (id == -ENOENT) { 3779 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3780 WARN_ON_ONCE(btf_is_kernel(btf)); 3781 3782 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3783 * kptr allocated via bpf_obj_new 3784 */ 3785 field->kptr.dtor = NULL; 3786 id = info->kptr.type_id; 3787 kptr_btf = (struct btf *)btf; 3788 goto found_dtor; 3789 } 3790 if (id < 0) 3791 return id; 3792 3793 /* Find and stash the function pointer for the destruction function that 3794 * needs to be eventually invoked from the map free path. 3795 */ 3796 if (info->type == BPF_KPTR_REF) { 3797 const struct btf_type *dtor_func; 3798 const char *dtor_func_name; 3799 unsigned long addr; 3800 s32 dtor_btf_id; 3801 3802 /* This call also serves as a whitelist of allowed objects that 3803 * can be used as a referenced pointer and be stored in a map at 3804 * the same time. 3805 */ 3806 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3807 if (dtor_btf_id < 0) { 3808 ret = dtor_btf_id; 3809 goto end_btf; 3810 } 3811 3812 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3813 if (!dtor_func) { 3814 ret = -ENOENT; 3815 goto end_btf; 3816 } 3817 3818 if (btf_is_module(kptr_btf)) { 3819 mod = btf_try_get_module(kptr_btf); 3820 if (!mod) { 3821 ret = -ENXIO; 3822 goto end_btf; 3823 } 3824 } 3825 3826 /* We already verified dtor_func to be btf_type_is_func 3827 * in register_btf_id_dtor_kfuncs. 3828 */ 3829 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3830 addr = kallsyms_lookup_name(dtor_func_name); 3831 if (!addr) { 3832 ret = -EINVAL; 3833 goto end_mod; 3834 } 3835 field->kptr.dtor = (void *)addr; 3836 } 3837 3838 found_dtor: 3839 field->kptr.btf_id = id; 3840 field->kptr.btf = kptr_btf; 3841 field->kptr.module = mod; 3842 return 0; 3843 end_mod: 3844 module_put(mod); 3845 end_btf: 3846 btf_put(kptr_btf); 3847 return ret; 3848 } 3849 3850 static int btf_parse_graph_root(const struct btf *btf, 3851 struct btf_field *field, 3852 struct btf_field_info *info, 3853 const char *node_type_name, 3854 size_t node_type_align) 3855 { 3856 const struct btf_type *t, *n = NULL; 3857 const struct btf_member *member; 3858 u32 offset; 3859 int i; 3860 3861 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3862 /* We've already checked that value_btf_id is a struct type. We 3863 * just need to figure out the offset of the list_node, and 3864 * verify its type. 3865 */ 3866 for_each_member(i, t, member) { 3867 if (strcmp(info->graph_root.node_name, 3868 __btf_name_by_offset(btf, member->name_off))) 3869 continue; 3870 /* Invalid BTF, two members with same name */ 3871 if (n) 3872 return -EINVAL; 3873 n = btf_type_by_id(btf, member->type); 3874 if (!__btf_type_is_struct(n)) 3875 return -EINVAL; 3876 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3877 return -EINVAL; 3878 offset = __btf_member_bit_offset(n, member); 3879 if (offset % 8) 3880 return -EINVAL; 3881 offset /= 8; 3882 if (offset % node_type_align) 3883 return -EINVAL; 3884 3885 field->graph_root.btf = (struct btf *)btf; 3886 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3887 field->graph_root.node_offset = offset; 3888 } 3889 if (!n) 3890 return -ENOENT; 3891 return 0; 3892 } 3893 3894 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3895 struct btf_field_info *info) 3896 { 3897 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3898 __alignof__(struct bpf_list_node)); 3899 } 3900 3901 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3902 struct btf_field_info *info) 3903 { 3904 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3905 __alignof__(struct bpf_rb_node)); 3906 } 3907 3908 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3909 { 3910 const struct btf_field *a = (const struct btf_field *)_a; 3911 const struct btf_field *b = (const struct btf_field *)_b; 3912 3913 if (a->offset < b->offset) 3914 return -1; 3915 else if (a->offset > b->offset) 3916 return 1; 3917 return 0; 3918 } 3919 3920 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3921 u32 field_mask, u32 value_size) 3922 { 3923 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3924 u32 next_off = 0, field_type_size; 3925 struct btf_record *rec; 3926 int ret, i, cnt; 3927 3928 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3929 if (ret < 0) 3930 return ERR_PTR(ret); 3931 if (!ret) 3932 return NULL; 3933 3934 cnt = ret; 3935 /* This needs to be kzalloc to zero out padding and unused fields, see 3936 * comment in btf_record_equal. 3937 */ 3938 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3939 if (!rec) 3940 return ERR_PTR(-ENOMEM); 3941 3942 rec->spin_lock_off = -EINVAL; 3943 rec->timer_off = -EINVAL; 3944 rec->wq_off = -EINVAL; 3945 rec->refcount_off = -EINVAL; 3946 for (i = 0; i < cnt; i++) { 3947 field_type_size = btf_field_type_size(info_arr[i].type); 3948 if (info_arr[i].off + field_type_size > value_size) { 3949 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3950 ret = -EFAULT; 3951 goto end; 3952 } 3953 if (info_arr[i].off < next_off) { 3954 ret = -EEXIST; 3955 goto end; 3956 } 3957 next_off = info_arr[i].off + field_type_size; 3958 3959 rec->field_mask |= info_arr[i].type; 3960 rec->fields[i].offset = info_arr[i].off; 3961 rec->fields[i].type = info_arr[i].type; 3962 rec->fields[i].size = field_type_size; 3963 3964 switch (info_arr[i].type) { 3965 case BPF_SPIN_LOCK: 3966 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3967 /* Cache offset for faster lookup at runtime */ 3968 rec->spin_lock_off = rec->fields[i].offset; 3969 break; 3970 case BPF_TIMER: 3971 WARN_ON_ONCE(rec->timer_off >= 0); 3972 /* Cache offset for faster lookup at runtime */ 3973 rec->timer_off = rec->fields[i].offset; 3974 break; 3975 case BPF_WORKQUEUE: 3976 WARN_ON_ONCE(rec->wq_off >= 0); 3977 /* Cache offset for faster lookup at runtime */ 3978 rec->wq_off = rec->fields[i].offset; 3979 break; 3980 case BPF_REFCOUNT: 3981 WARN_ON_ONCE(rec->refcount_off >= 0); 3982 /* Cache offset for faster lookup at runtime */ 3983 rec->refcount_off = rec->fields[i].offset; 3984 break; 3985 case BPF_KPTR_UNREF: 3986 case BPF_KPTR_REF: 3987 case BPF_KPTR_PERCPU: 3988 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3989 if (ret < 0) 3990 goto end; 3991 break; 3992 case BPF_LIST_HEAD: 3993 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3994 if (ret < 0) 3995 goto end; 3996 break; 3997 case BPF_RB_ROOT: 3998 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3999 if (ret < 0) 4000 goto end; 4001 break; 4002 case BPF_LIST_NODE: 4003 case BPF_RB_NODE: 4004 break; 4005 default: 4006 ret = -EFAULT; 4007 goto end; 4008 } 4009 rec->cnt++; 4010 } 4011 4012 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4013 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4014 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 4015 ret = -EINVAL; 4016 goto end; 4017 } 4018 4019 if (rec->refcount_off < 0 && 4020 btf_record_has_field(rec, BPF_LIST_NODE) && 4021 btf_record_has_field(rec, BPF_RB_NODE)) { 4022 ret = -EINVAL; 4023 goto end; 4024 } 4025 4026 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4027 NULL, rec); 4028 4029 return rec; 4030 end: 4031 btf_record_free(rec); 4032 return ERR_PTR(ret); 4033 } 4034 4035 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4036 { 4037 int i; 4038 4039 /* There are three types that signify ownership of some other type: 4040 * kptr_ref, bpf_list_head, bpf_rb_root. 4041 * kptr_ref only supports storing kernel types, which can't store 4042 * references to program allocated local types. 4043 * 4044 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4045 * does not form cycles. 4046 */ 4047 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT)) 4048 return 0; 4049 for (i = 0; i < rec->cnt; i++) { 4050 struct btf_struct_meta *meta; 4051 u32 btf_id; 4052 4053 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4054 continue; 4055 btf_id = rec->fields[i].graph_root.value_btf_id; 4056 meta = btf_find_struct_meta(btf, btf_id); 4057 if (!meta) 4058 return -EFAULT; 4059 rec->fields[i].graph_root.value_rec = meta->record; 4060 4061 /* We need to set value_rec for all root types, but no need 4062 * to check ownership cycle for a type unless it's also a 4063 * node type. 4064 */ 4065 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4066 continue; 4067 4068 /* We need to ensure ownership acyclicity among all types. The 4069 * proper way to do it would be to topologically sort all BTF 4070 * IDs based on the ownership edges, since there can be multiple 4071 * bpf_{list_head,rb_node} in a type. Instead, we use the 4072 * following resaoning: 4073 * 4074 * - A type can only be owned by another type in user BTF if it 4075 * has a bpf_{list,rb}_node. Let's call these node types. 4076 * - A type can only _own_ another type in user BTF if it has a 4077 * bpf_{list_head,rb_root}. Let's call these root types. 4078 * 4079 * We ensure that if a type is both a root and node, its 4080 * element types cannot be root types. 4081 * 4082 * To ensure acyclicity: 4083 * 4084 * When A is an root type but not a node, its ownership 4085 * chain can be: 4086 * A -> B -> C 4087 * Where: 4088 * - A is an root, e.g. has bpf_rb_root. 4089 * - B is both a root and node, e.g. has bpf_rb_node and 4090 * bpf_list_head. 4091 * - C is only an root, e.g. has bpf_list_node 4092 * 4093 * When A is both a root and node, some other type already 4094 * owns it in the BTF domain, hence it can not own 4095 * another root type through any of the ownership edges. 4096 * A -> B 4097 * Where: 4098 * - A is both an root and node. 4099 * - B is only an node. 4100 */ 4101 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4102 return -ELOOP; 4103 } 4104 return 0; 4105 } 4106 4107 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4108 u32 type_id, void *data, u8 bits_offset, 4109 struct btf_show *show) 4110 { 4111 const struct btf_member *member; 4112 void *safe_data; 4113 u32 i; 4114 4115 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4116 if (!safe_data) 4117 return; 4118 4119 for_each_member(i, t, member) { 4120 const struct btf_type *member_type = btf_type_by_id(btf, 4121 member->type); 4122 const struct btf_kind_operations *ops; 4123 u32 member_offset, bitfield_size; 4124 u32 bytes_offset; 4125 u8 bits8_offset; 4126 4127 btf_show_start_member(show, member); 4128 4129 member_offset = __btf_member_bit_offset(t, member); 4130 bitfield_size = __btf_member_bitfield_size(t, member); 4131 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4132 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4133 if (bitfield_size) { 4134 safe_data = btf_show_start_type(show, member_type, 4135 member->type, 4136 data + bytes_offset); 4137 if (safe_data) 4138 btf_bitfield_show(safe_data, 4139 bits8_offset, 4140 bitfield_size, show); 4141 btf_show_end_type(show); 4142 } else { 4143 ops = btf_type_ops(member_type); 4144 ops->show(btf, member_type, member->type, 4145 data + bytes_offset, bits8_offset, show); 4146 } 4147 4148 btf_show_end_member(show); 4149 } 4150 4151 btf_show_end_struct_type(show); 4152 } 4153 4154 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4155 u32 type_id, void *data, u8 bits_offset, 4156 struct btf_show *show) 4157 { 4158 const struct btf_member *m = show->state.member; 4159 4160 /* 4161 * First check if any members would be shown (are non-zero). 4162 * See comments above "struct btf_show" definition for more 4163 * details on how this works at a high-level. 4164 */ 4165 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4166 if (!show->state.depth_check) { 4167 show->state.depth_check = show->state.depth + 1; 4168 show->state.depth_to_show = 0; 4169 } 4170 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4171 /* Restore saved member data here */ 4172 show->state.member = m; 4173 if (show->state.depth_check != show->state.depth + 1) 4174 return; 4175 show->state.depth_check = 0; 4176 4177 if (show->state.depth_to_show <= show->state.depth) 4178 return; 4179 /* 4180 * Reaching here indicates we have recursed and found 4181 * non-zero child values. 4182 */ 4183 } 4184 4185 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4186 } 4187 4188 static struct btf_kind_operations struct_ops = { 4189 .check_meta = btf_struct_check_meta, 4190 .resolve = btf_struct_resolve, 4191 .check_member = btf_struct_check_member, 4192 .check_kflag_member = btf_generic_check_kflag_member, 4193 .log_details = btf_struct_log, 4194 .show = btf_struct_show, 4195 }; 4196 4197 static int btf_enum_check_member(struct btf_verifier_env *env, 4198 const struct btf_type *struct_type, 4199 const struct btf_member *member, 4200 const struct btf_type *member_type) 4201 { 4202 u32 struct_bits_off = member->offset; 4203 u32 struct_size, bytes_offset; 4204 4205 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4206 btf_verifier_log_member(env, struct_type, member, 4207 "Member is not byte aligned"); 4208 return -EINVAL; 4209 } 4210 4211 struct_size = struct_type->size; 4212 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4213 if (struct_size - bytes_offset < member_type->size) { 4214 btf_verifier_log_member(env, struct_type, member, 4215 "Member exceeds struct_size"); 4216 return -EINVAL; 4217 } 4218 4219 return 0; 4220 } 4221 4222 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4223 const struct btf_type *struct_type, 4224 const struct btf_member *member, 4225 const struct btf_type *member_type) 4226 { 4227 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4228 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4229 4230 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4231 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4232 if (!nr_bits) { 4233 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4234 btf_verifier_log_member(env, struct_type, member, 4235 "Member is not byte aligned"); 4236 return -EINVAL; 4237 } 4238 4239 nr_bits = int_bitsize; 4240 } else if (nr_bits > int_bitsize) { 4241 btf_verifier_log_member(env, struct_type, member, 4242 "Invalid member bitfield_size"); 4243 return -EINVAL; 4244 } 4245 4246 struct_size = struct_type->size; 4247 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4248 if (struct_size < bytes_end) { 4249 btf_verifier_log_member(env, struct_type, member, 4250 "Member exceeds struct_size"); 4251 return -EINVAL; 4252 } 4253 4254 return 0; 4255 } 4256 4257 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4258 const struct btf_type *t, 4259 u32 meta_left) 4260 { 4261 const struct btf_enum *enums = btf_type_enum(t); 4262 struct btf *btf = env->btf; 4263 const char *fmt_str; 4264 u16 i, nr_enums; 4265 u32 meta_needed; 4266 4267 nr_enums = btf_type_vlen(t); 4268 meta_needed = nr_enums * sizeof(*enums); 4269 4270 if (meta_left < meta_needed) { 4271 btf_verifier_log_basic(env, t, 4272 "meta_left:%u meta_needed:%u", 4273 meta_left, meta_needed); 4274 return -EINVAL; 4275 } 4276 4277 if (t->size > 8 || !is_power_of_2(t->size)) { 4278 btf_verifier_log_type(env, t, "Unexpected size"); 4279 return -EINVAL; 4280 } 4281 4282 /* enum type either no name or a valid one */ 4283 if (t->name_off && 4284 !btf_name_valid_identifier(env->btf, t->name_off)) { 4285 btf_verifier_log_type(env, t, "Invalid name"); 4286 return -EINVAL; 4287 } 4288 4289 btf_verifier_log_type(env, t, NULL); 4290 4291 for (i = 0; i < nr_enums; i++) { 4292 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4293 btf_verifier_log(env, "\tInvalid name_offset:%u", 4294 enums[i].name_off); 4295 return -EINVAL; 4296 } 4297 4298 /* enum member must have a valid name */ 4299 if (!enums[i].name_off || 4300 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4301 btf_verifier_log_type(env, t, "Invalid name"); 4302 return -EINVAL; 4303 } 4304 4305 if (env->log.level == BPF_LOG_KERNEL) 4306 continue; 4307 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4308 btf_verifier_log(env, fmt_str, 4309 __btf_name_by_offset(btf, enums[i].name_off), 4310 enums[i].val); 4311 } 4312 4313 return meta_needed; 4314 } 4315 4316 static void btf_enum_log(struct btf_verifier_env *env, 4317 const struct btf_type *t) 4318 { 4319 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4320 } 4321 4322 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4323 u32 type_id, void *data, u8 bits_offset, 4324 struct btf_show *show) 4325 { 4326 const struct btf_enum *enums = btf_type_enum(t); 4327 u32 i, nr_enums = btf_type_vlen(t); 4328 void *safe_data; 4329 int v; 4330 4331 safe_data = btf_show_start_type(show, t, type_id, data); 4332 if (!safe_data) 4333 return; 4334 4335 v = *(int *)safe_data; 4336 4337 for (i = 0; i < nr_enums; i++) { 4338 if (v != enums[i].val) 4339 continue; 4340 4341 btf_show_type_value(show, "%s", 4342 __btf_name_by_offset(btf, 4343 enums[i].name_off)); 4344 4345 btf_show_end_type(show); 4346 return; 4347 } 4348 4349 if (btf_type_kflag(t)) 4350 btf_show_type_value(show, "%d", v); 4351 else 4352 btf_show_type_value(show, "%u", v); 4353 btf_show_end_type(show); 4354 } 4355 4356 static struct btf_kind_operations enum_ops = { 4357 .check_meta = btf_enum_check_meta, 4358 .resolve = btf_df_resolve, 4359 .check_member = btf_enum_check_member, 4360 .check_kflag_member = btf_enum_check_kflag_member, 4361 .log_details = btf_enum_log, 4362 .show = btf_enum_show, 4363 }; 4364 4365 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4366 const struct btf_type *t, 4367 u32 meta_left) 4368 { 4369 const struct btf_enum64 *enums = btf_type_enum64(t); 4370 struct btf *btf = env->btf; 4371 const char *fmt_str; 4372 u16 i, nr_enums; 4373 u32 meta_needed; 4374 4375 nr_enums = btf_type_vlen(t); 4376 meta_needed = nr_enums * sizeof(*enums); 4377 4378 if (meta_left < meta_needed) { 4379 btf_verifier_log_basic(env, t, 4380 "meta_left:%u meta_needed:%u", 4381 meta_left, meta_needed); 4382 return -EINVAL; 4383 } 4384 4385 if (t->size > 8 || !is_power_of_2(t->size)) { 4386 btf_verifier_log_type(env, t, "Unexpected size"); 4387 return -EINVAL; 4388 } 4389 4390 /* enum type either no name or a valid one */ 4391 if (t->name_off && 4392 !btf_name_valid_identifier(env->btf, t->name_off)) { 4393 btf_verifier_log_type(env, t, "Invalid name"); 4394 return -EINVAL; 4395 } 4396 4397 btf_verifier_log_type(env, t, NULL); 4398 4399 for (i = 0; i < nr_enums; i++) { 4400 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4401 btf_verifier_log(env, "\tInvalid name_offset:%u", 4402 enums[i].name_off); 4403 return -EINVAL; 4404 } 4405 4406 /* enum member must have a valid name */ 4407 if (!enums[i].name_off || 4408 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4409 btf_verifier_log_type(env, t, "Invalid name"); 4410 return -EINVAL; 4411 } 4412 4413 if (env->log.level == BPF_LOG_KERNEL) 4414 continue; 4415 4416 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4417 btf_verifier_log(env, fmt_str, 4418 __btf_name_by_offset(btf, enums[i].name_off), 4419 btf_enum64_value(enums + i)); 4420 } 4421 4422 return meta_needed; 4423 } 4424 4425 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4426 u32 type_id, void *data, u8 bits_offset, 4427 struct btf_show *show) 4428 { 4429 const struct btf_enum64 *enums = btf_type_enum64(t); 4430 u32 i, nr_enums = btf_type_vlen(t); 4431 void *safe_data; 4432 s64 v; 4433 4434 safe_data = btf_show_start_type(show, t, type_id, data); 4435 if (!safe_data) 4436 return; 4437 4438 v = *(u64 *)safe_data; 4439 4440 for (i = 0; i < nr_enums; i++) { 4441 if (v != btf_enum64_value(enums + i)) 4442 continue; 4443 4444 btf_show_type_value(show, "%s", 4445 __btf_name_by_offset(btf, 4446 enums[i].name_off)); 4447 4448 btf_show_end_type(show); 4449 return; 4450 } 4451 4452 if (btf_type_kflag(t)) 4453 btf_show_type_value(show, "%lld", v); 4454 else 4455 btf_show_type_value(show, "%llu", v); 4456 btf_show_end_type(show); 4457 } 4458 4459 static struct btf_kind_operations enum64_ops = { 4460 .check_meta = btf_enum64_check_meta, 4461 .resolve = btf_df_resolve, 4462 .check_member = btf_enum_check_member, 4463 .check_kflag_member = btf_enum_check_kflag_member, 4464 .log_details = btf_enum_log, 4465 .show = btf_enum64_show, 4466 }; 4467 4468 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4469 const struct btf_type *t, 4470 u32 meta_left) 4471 { 4472 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4473 4474 if (meta_left < meta_needed) { 4475 btf_verifier_log_basic(env, t, 4476 "meta_left:%u meta_needed:%u", 4477 meta_left, meta_needed); 4478 return -EINVAL; 4479 } 4480 4481 if (t->name_off) { 4482 btf_verifier_log_type(env, t, "Invalid name"); 4483 return -EINVAL; 4484 } 4485 4486 if (btf_type_kflag(t)) { 4487 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4488 return -EINVAL; 4489 } 4490 4491 btf_verifier_log_type(env, t, NULL); 4492 4493 return meta_needed; 4494 } 4495 4496 static void btf_func_proto_log(struct btf_verifier_env *env, 4497 const struct btf_type *t) 4498 { 4499 const struct btf_param *args = (const struct btf_param *)(t + 1); 4500 u16 nr_args = btf_type_vlen(t), i; 4501 4502 btf_verifier_log(env, "return=%u args=(", t->type); 4503 if (!nr_args) { 4504 btf_verifier_log(env, "void"); 4505 goto done; 4506 } 4507 4508 if (nr_args == 1 && !args[0].type) { 4509 /* Only one vararg */ 4510 btf_verifier_log(env, "vararg"); 4511 goto done; 4512 } 4513 4514 btf_verifier_log(env, "%u %s", args[0].type, 4515 __btf_name_by_offset(env->btf, 4516 args[0].name_off)); 4517 for (i = 1; i < nr_args - 1; i++) 4518 btf_verifier_log(env, ", %u %s", args[i].type, 4519 __btf_name_by_offset(env->btf, 4520 args[i].name_off)); 4521 4522 if (nr_args > 1) { 4523 const struct btf_param *last_arg = &args[nr_args - 1]; 4524 4525 if (last_arg->type) 4526 btf_verifier_log(env, ", %u %s", last_arg->type, 4527 __btf_name_by_offset(env->btf, 4528 last_arg->name_off)); 4529 else 4530 btf_verifier_log(env, ", vararg"); 4531 } 4532 4533 done: 4534 btf_verifier_log(env, ")"); 4535 } 4536 4537 static struct btf_kind_operations func_proto_ops = { 4538 .check_meta = btf_func_proto_check_meta, 4539 .resolve = btf_df_resolve, 4540 /* 4541 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4542 * a struct's member. 4543 * 4544 * It should be a function pointer instead. 4545 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4546 * 4547 * Hence, there is no btf_func_check_member(). 4548 */ 4549 .check_member = btf_df_check_member, 4550 .check_kflag_member = btf_df_check_kflag_member, 4551 .log_details = btf_func_proto_log, 4552 .show = btf_df_show, 4553 }; 4554 4555 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4556 const struct btf_type *t, 4557 u32 meta_left) 4558 { 4559 if (!t->name_off || 4560 !btf_name_valid_identifier(env->btf, t->name_off)) { 4561 btf_verifier_log_type(env, t, "Invalid name"); 4562 return -EINVAL; 4563 } 4564 4565 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4566 btf_verifier_log_type(env, t, "Invalid func linkage"); 4567 return -EINVAL; 4568 } 4569 4570 if (btf_type_kflag(t)) { 4571 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4572 return -EINVAL; 4573 } 4574 4575 btf_verifier_log_type(env, t, NULL); 4576 4577 return 0; 4578 } 4579 4580 static int btf_func_resolve(struct btf_verifier_env *env, 4581 const struct resolve_vertex *v) 4582 { 4583 const struct btf_type *t = v->t; 4584 u32 next_type_id = t->type; 4585 int err; 4586 4587 err = btf_func_check(env, t); 4588 if (err) 4589 return err; 4590 4591 env_stack_pop_resolved(env, next_type_id, 0); 4592 return 0; 4593 } 4594 4595 static struct btf_kind_operations func_ops = { 4596 .check_meta = btf_func_check_meta, 4597 .resolve = btf_func_resolve, 4598 .check_member = btf_df_check_member, 4599 .check_kflag_member = btf_df_check_kflag_member, 4600 .log_details = btf_ref_type_log, 4601 .show = btf_df_show, 4602 }; 4603 4604 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4605 const struct btf_type *t, 4606 u32 meta_left) 4607 { 4608 const struct btf_var *var; 4609 u32 meta_needed = sizeof(*var); 4610 4611 if (meta_left < meta_needed) { 4612 btf_verifier_log_basic(env, t, 4613 "meta_left:%u meta_needed:%u", 4614 meta_left, meta_needed); 4615 return -EINVAL; 4616 } 4617 4618 if (btf_type_vlen(t)) { 4619 btf_verifier_log_type(env, t, "vlen != 0"); 4620 return -EINVAL; 4621 } 4622 4623 if (btf_type_kflag(t)) { 4624 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4625 return -EINVAL; 4626 } 4627 4628 if (!t->name_off || 4629 !btf_name_valid_identifier(env->btf, t->name_off)) { 4630 btf_verifier_log_type(env, t, "Invalid name"); 4631 return -EINVAL; 4632 } 4633 4634 /* A var cannot be in type void */ 4635 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4636 btf_verifier_log_type(env, t, "Invalid type_id"); 4637 return -EINVAL; 4638 } 4639 4640 var = btf_type_var(t); 4641 if (var->linkage != BTF_VAR_STATIC && 4642 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4643 btf_verifier_log_type(env, t, "Linkage not supported"); 4644 return -EINVAL; 4645 } 4646 4647 btf_verifier_log_type(env, t, NULL); 4648 4649 return meta_needed; 4650 } 4651 4652 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4653 { 4654 const struct btf_var *var = btf_type_var(t); 4655 4656 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4657 } 4658 4659 static const struct btf_kind_operations var_ops = { 4660 .check_meta = btf_var_check_meta, 4661 .resolve = btf_var_resolve, 4662 .check_member = btf_df_check_member, 4663 .check_kflag_member = btf_df_check_kflag_member, 4664 .log_details = btf_var_log, 4665 .show = btf_var_show, 4666 }; 4667 4668 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4669 const struct btf_type *t, 4670 u32 meta_left) 4671 { 4672 const struct btf_var_secinfo *vsi; 4673 u64 last_vsi_end_off = 0, sum = 0; 4674 u32 i, meta_needed; 4675 4676 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4677 if (meta_left < meta_needed) { 4678 btf_verifier_log_basic(env, t, 4679 "meta_left:%u meta_needed:%u", 4680 meta_left, meta_needed); 4681 return -EINVAL; 4682 } 4683 4684 if (!t->size) { 4685 btf_verifier_log_type(env, t, "size == 0"); 4686 return -EINVAL; 4687 } 4688 4689 if (btf_type_kflag(t)) { 4690 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4691 return -EINVAL; 4692 } 4693 4694 if (!t->name_off || 4695 !btf_name_valid_section(env->btf, t->name_off)) { 4696 btf_verifier_log_type(env, t, "Invalid name"); 4697 return -EINVAL; 4698 } 4699 4700 btf_verifier_log_type(env, t, NULL); 4701 4702 for_each_vsi(i, t, vsi) { 4703 /* A var cannot be in type void */ 4704 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4705 btf_verifier_log_vsi(env, t, vsi, 4706 "Invalid type_id"); 4707 return -EINVAL; 4708 } 4709 4710 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4711 btf_verifier_log_vsi(env, t, vsi, 4712 "Invalid offset"); 4713 return -EINVAL; 4714 } 4715 4716 if (!vsi->size || vsi->size > t->size) { 4717 btf_verifier_log_vsi(env, t, vsi, 4718 "Invalid size"); 4719 return -EINVAL; 4720 } 4721 4722 last_vsi_end_off = vsi->offset + vsi->size; 4723 if (last_vsi_end_off > t->size) { 4724 btf_verifier_log_vsi(env, t, vsi, 4725 "Invalid offset+size"); 4726 return -EINVAL; 4727 } 4728 4729 btf_verifier_log_vsi(env, t, vsi, NULL); 4730 sum += vsi->size; 4731 } 4732 4733 if (t->size < sum) { 4734 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4735 return -EINVAL; 4736 } 4737 4738 return meta_needed; 4739 } 4740 4741 static int btf_datasec_resolve(struct btf_verifier_env *env, 4742 const struct resolve_vertex *v) 4743 { 4744 const struct btf_var_secinfo *vsi; 4745 struct btf *btf = env->btf; 4746 u16 i; 4747 4748 env->resolve_mode = RESOLVE_TBD; 4749 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4750 u32 var_type_id = vsi->type, type_id, type_size = 0; 4751 const struct btf_type *var_type = btf_type_by_id(env->btf, 4752 var_type_id); 4753 if (!var_type || !btf_type_is_var(var_type)) { 4754 btf_verifier_log_vsi(env, v->t, vsi, 4755 "Not a VAR kind member"); 4756 return -EINVAL; 4757 } 4758 4759 if (!env_type_is_resolve_sink(env, var_type) && 4760 !env_type_is_resolved(env, var_type_id)) { 4761 env_stack_set_next_member(env, i + 1); 4762 return env_stack_push(env, var_type, var_type_id); 4763 } 4764 4765 type_id = var_type->type; 4766 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4767 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4768 return -EINVAL; 4769 } 4770 4771 if (vsi->size < type_size) { 4772 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4773 return -EINVAL; 4774 } 4775 } 4776 4777 env_stack_pop_resolved(env, 0, 0); 4778 return 0; 4779 } 4780 4781 static void btf_datasec_log(struct btf_verifier_env *env, 4782 const struct btf_type *t) 4783 { 4784 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4785 } 4786 4787 static void btf_datasec_show(const struct btf *btf, 4788 const struct btf_type *t, u32 type_id, 4789 void *data, u8 bits_offset, 4790 struct btf_show *show) 4791 { 4792 const struct btf_var_secinfo *vsi; 4793 const struct btf_type *var; 4794 u32 i; 4795 4796 if (!btf_show_start_type(show, t, type_id, data)) 4797 return; 4798 4799 btf_show_type_value(show, "section (\"%s\") = {", 4800 __btf_name_by_offset(btf, t->name_off)); 4801 for_each_vsi(i, t, vsi) { 4802 var = btf_type_by_id(btf, vsi->type); 4803 if (i) 4804 btf_show(show, ","); 4805 btf_type_ops(var)->show(btf, var, vsi->type, 4806 data + vsi->offset, bits_offset, show); 4807 } 4808 btf_show_end_type(show); 4809 } 4810 4811 static const struct btf_kind_operations datasec_ops = { 4812 .check_meta = btf_datasec_check_meta, 4813 .resolve = btf_datasec_resolve, 4814 .check_member = btf_df_check_member, 4815 .check_kflag_member = btf_df_check_kflag_member, 4816 .log_details = btf_datasec_log, 4817 .show = btf_datasec_show, 4818 }; 4819 4820 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4821 const struct btf_type *t, 4822 u32 meta_left) 4823 { 4824 if (btf_type_vlen(t)) { 4825 btf_verifier_log_type(env, t, "vlen != 0"); 4826 return -EINVAL; 4827 } 4828 4829 if (btf_type_kflag(t)) { 4830 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4831 return -EINVAL; 4832 } 4833 4834 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4835 t->size != 16) { 4836 btf_verifier_log_type(env, t, "Invalid type_size"); 4837 return -EINVAL; 4838 } 4839 4840 btf_verifier_log_type(env, t, NULL); 4841 4842 return 0; 4843 } 4844 4845 static int btf_float_check_member(struct btf_verifier_env *env, 4846 const struct btf_type *struct_type, 4847 const struct btf_member *member, 4848 const struct btf_type *member_type) 4849 { 4850 u64 start_offset_bytes; 4851 u64 end_offset_bytes; 4852 u64 misalign_bits; 4853 u64 align_bytes; 4854 u64 align_bits; 4855 4856 /* Different architectures have different alignment requirements, so 4857 * here we check only for the reasonable minimum. This way we ensure 4858 * that types after CO-RE can pass the kernel BTF verifier. 4859 */ 4860 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4861 align_bits = align_bytes * BITS_PER_BYTE; 4862 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4863 if (misalign_bits) { 4864 btf_verifier_log_member(env, struct_type, member, 4865 "Member is not properly aligned"); 4866 return -EINVAL; 4867 } 4868 4869 start_offset_bytes = member->offset / BITS_PER_BYTE; 4870 end_offset_bytes = start_offset_bytes + member_type->size; 4871 if (end_offset_bytes > struct_type->size) { 4872 btf_verifier_log_member(env, struct_type, member, 4873 "Member exceeds struct_size"); 4874 return -EINVAL; 4875 } 4876 4877 return 0; 4878 } 4879 4880 static void btf_float_log(struct btf_verifier_env *env, 4881 const struct btf_type *t) 4882 { 4883 btf_verifier_log(env, "size=%u", t->size); 4884 } 4885 4886 static const struct btf_kind_operations float_ops = { 4887 .check_meta = btf_float_check_meta, 4888 .resolve = btf_df_resolve, 4889 .check_member = btf_float_check_member, 4890 .check_kflag_member = btf_generic_check_kflag_member, 4891 .log_details = btf_float_log, 4892 .show = btf_df_show, 4893 }; 4894 4895 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4896 const struct btf_type *t, 4897 u32 meta_left) 4898 { 4899 const struct btf_decl_tag *tag; 4900 u32 meta_needed = sizeof(*tag); 4901 s32 component_idx; 4902 const char *value; 4903 4904 if (meta_left < meta_needed) { 4905 btf_verifier_log_basic(env, t, 4906 "meta_left:%u meta_needed:%u", 4907 meta_left, meta_needed); 4908 return -EINVAL; 4909 } 4910 4911 value = btf_name_by_offset(env->btf, t->name_off); 4912 if (!value || !value[0]) { 4913 btf_verifier_log_type(env, t, "Invalid value"); 4914 return -EINVAL; 4915 } 4916 4917 if (btf_type_vlen(t)) { 4918 btf_verifier_log_type(env, t, "vlen != 0"); 4919 return -EINVAL; 4920 } 4921 4922 if (btf_type_kflag(t)) { 4923 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4924 return -EINVAL; 4925 } 4926 4927 component_idx = btf_type_decl_tag(t)->component_idx; 4928 if (component_idx < -1) { 4929 btf_verifier_log_type(env, t, "Invalid component_idx"); 4930 return -EINVAL; 4931 } 4932 4933 btf_verifier_log_type(env, t, NULL); 4934 4935 return meta_needed; 4936 } 4937 4938 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4939 const struct resolve_vertex *v) 4940 { 4941 const struct btf_type *next_type; 4942 const struct btf_type *t = v->t; 4943 u32 next_type_id = t->type; 4944 struct btf *btf = env->btf; 4945 s32 component_idx; 4946 u32 vlen; 4947 4948 next_type = btf_type_by_id(btf, next_type_id); 4949 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4950 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4951 return -EINVAL; 4952 } 4953 4954 if (!env_type_is_resolve_sink(env, next_type) && 4955 !env_type_is_resolved(env, next_type_id)) 4956 return env_stack_push(env, next_type, next_type_id); 4957 4958 component_idx = btf_type_decl_tag(t)->component_idx; 4959 if (component_idx != -1) { 4960 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4961 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4962 return -EINVAL; 4963 } 4964 4965 if (btf_type_is_struct(next_type)) { 4966 vlen = btf_type_vlen(next_type); 4967 } else { 4968 /* next_type should be a function */ 4969 next_type = btf_type_by_id(btf, next_type->type); 4970 vlen = btf_type_vlen(next_type); 4971 } 4972 4973 if ((u32)component_idx >= vlen) { 4974 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4975 return -EINVAL; 4976 } 4977 } 4978 4979 env_stack_pop_resolved(env, next_type_id, 0); 4980 4981 return 0; 4982 } 4983 4984 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4985 { 4986 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4987 btf_type_decl_tag(t)->component_idx); 4988 } 4989 4990 static const struct btf_kind_operations decl_tag_ops = { 4991 .check_meta = btf_decl_tag_check_meta, 4992 .resolve = btf_decl_tag_resolve, 4993 .check_member = btf_df_check_member, 4994 .check_kflag_member = btf_df_check_kflag_member, 4995 .log_details = btf_decl_tag_log, 4996 .show = btf_df_show, 4997 }; 4998 4999 static int btf_func_proto_check(struct btf_verifier_env *env, 5000 const struct btf_type *t) 5001 { 5002 const struct btf_type *ret_type; 5003 const struct btf_param *args; 5004 const struct btf *btf; 5005 u16 nr_args, i; 5006 int err; 5007 5008 btf = env->btf; 5009 args = (const struct btf_param *)(t + 1); 5010 nr_args = btf_type_vlen(t); 5011 5012 /* Check func return type which could be "void" (t->type == 0) */ 5013 if (t->type) { 5014 u32 ret_type_id = t->type; 5015 5016 ret_type = btf_type_by_id(btf, ret_type_id); 5017 if (!ret_type) { 5018 btf_verifier_log_type(env, t, "Invalid return type"); 5019 return -EINVAL; 5020 } 5021 5022 if (btf_type_is_resolve_source_only(ret_type)) { 5023 btf_verifier_log_type(env, t, "Invalid return type"); 5024 return -EINVAL; 5025 } 5026 5027 if (btf_type_needs_resolve(ret_type) && 5028 !env_type_is_resolved(env, ret_type_id)) { 5029 err = btf_resolve(env, ret_type, ret_type_id); 5030 if (err) 5031 return err; 5032 } 5033 5034 /* Ensure the return type is a type that has a size */ 5035 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5036 btf_verifier_log_type(env, t, "Invalid return type"); 5037 return -EINVAL; 5038 } 5039 } 5040 5041 if (!nr_args) 5042 return 0; 5043 5044 /* Last func arg type_id could be 0 if it is a vararg */ 5045 if (!args[nr_args - 1].type) { 5046 if (args[nr_args - 1].name_off) { 5047 btf_verifier_log_type(env, t, "Invalid arg#%u", 5048 nr_args); 5049 return -EINVAL; 5050 } 5051 nr_args--; 5052 } 5053 5054 for (i = 0; i < nr_args; i++) { 5055 const struct btf_type *arg_type; 5056 u32 arg_type_id; 5057 5058 arg_type_id = args[i].type; 5059 arg_type = btf_type_by_id(btf, arg_type_id); 5060 if (!arg_type) { 5061 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5062 return -EINVAL; 5063 } 5064 5065 if (btf_type_is_resolve_source_only(arg_type)) { 5066 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5067 return -EINVAL; 5068 } 5069 5070 if (args[i].name_off && 5071 (!btf_name_offset_valid(btf, args[i].name_off) || 5072 !btf_name_valid_identifier(btf, args[i].name_off))) { 5073 btf_verifier_log_type(env, t, 5074 "Invalid arg#%u", i + 1); 5075 return -EINVAL; 5076 } 5077 5078 if (btf_type_needs_resolve(arg_type) && 5079 !env_type_is_resolved(env, arg_type_id)) { 5080 err = btf_resolve(env, arg_type, arg_type_id); 5081 if (err) 5082 return err; 5083 } 5084 5085 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5086 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5087 return -EINVAL; 5088 } 5089 } 5090 5091 return 0; 5092 } 5093 5094 static int btf_func_check(struct btf_verifier_env *env, 5095 const struct btf_type *t) 5096 { 5097 const struct btf_type *proto_type; 5098 const struct btf_param *args; 5099 const struct btf *btf; 5100 u16 nr_args, i; 5101 5102 btf = env->btf; 5103 proto_type = btf_type_by_id(btf, t->type); 5104 5105 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5106 btf_verifier_log_type(env, t, "Invalid type_id"); 5107 return -EINVAL; 5108 } 5109 5110 args = (const struct btf_param *)(proto_type + 1); 5111 nr_args = btf_type_vlen(proto_type); 5112 for (i = 0; i < nr_args; i++) { 5113 if (!args[i].name_off && args[i].type) { 5114 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5115 return -EINVAL; 5116 } 5117 } 5118 5119 return 0; 5120 } 5121 5122 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5123 [BTF_KIND_INT] = &int_ops, 5124 [BTF_KIND_PTR] = &ptr_ops, 5125 [BTF_KIND_ARRAY] = &array_ops, 5126 [BTF_KIND_STRUCT] = &struct_ops, 5127 [BTF_KIND_UNION] = &struct_ops, 5128 [BTF_KIND_ENUM] = &enum_ops, 5129 [BTF_KIND_FWD] = &fwd_ops, 5130 [BTF_KIND_TYPEDEF] = &modifier_ops, 5131 [BTF_KIND_VOLATILE] = &modifier_ops, 5132 [BTF_KIND_CONST] = &modifier_ops, 5133 [BTF_KIND_RESTRICT] = &modifier_ops, 5134 [BTF_KIND_FUNC] = &func_ops, 5135 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5136 [BTF_KIND_VAR] = &var_ops, 5137 [BTF_KIND_DATASEC] = &datasec_ops, 5138 [BTF_KIND_FLOAT] = &float_ops, 5139 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5140 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5141 [BTF_KIND_ENUM64] = &enum64_ops, 5142 }; 5143 5144 static s32 btf_check_meta(struct btf_verifier_env *env, 5145 const struct btf_type *t, 5146 u32 meta_left) 5147 { 5148 u32 saved_meta_left = meta_left; 5149 s32 var_meta_size; 5150 5151 if (meta_left < sizeof(*t)) { 5152 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5153 env->log_type_id, meta_left, sizeof(*t)); 5154 return -EINVAL; 5155 } 5156 meta_left -= sizeof(*t); 5157 5158 if (t->info & ~BTF_INFO_MASK) { 5159 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5160 env->log_type_id, t->info); 5161 return -EINVAL; 5162 } 5163 5164 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5165 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5166 btf_verifier_log(env, "[%u] Invalid kind:%u", 5167 env->log_type_id, BTF_INFO_KIND(t->info)); 5168 return -EINVAL; 5169 } 5170 5171 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5172 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5173 env->log_type_id, t->name_off); 5174 return -EINVAL; 5175 } 5176 5177 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5178 if (var_meta_size < 0) 5179 return var_meta_size; 5180 5181 meta_left -= var_meta_size; 5182 5183 return saved_meta_left - meta_left; 5184 } 5185 5186 static int btf_check_all_metas(struct btf_verifier_env *env) 5187 { 5188 struct btf *btf = env->btf; 5189 struct btf_header *hdr; 5190 void *cur, *end; 5191 5192 hdr = &btf->hdr; 5193 cur = btf->nohdr_data + hdr->type_off; 5194 end = cur + hdr->type_len; 5195 5196 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5197 while (cur < end) { 5198 struct btf_type *t = cur; 5199 s32 meta_size; 5200 5201 meta_size = btf_check_meta(env, t, end - cur); 5202 if (meta_size < 0) 5203 return meta_size; 5204 5205 btf_add_type(env, t); 5206 cur += meta_size; 5207 env->log_type_id++; 5208 } 5209 5210 return 0; 5211 } 5212 5213 static bool btf_resolve_valid(struct btf_verifier_env *env, 5214 const struct btf_type *t, 5215 u32 type_id) 5216 { 5217 struct btf *btf = env->btf; 5218 5219 if (!env_type_is_resolved(env, type_id)) 5220 return false; 5221 5222 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5223 return !btf_resolved_type_id(btf, type_id) && 5224 !btf_resolved_type_size(btf, type_id); 5225 5226 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5227 return btf_resolved_type_id(btf, type_id) && 5228 !btf_resolved_type_size(btf, type_id); 5229 5230 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5231 btf_type_is_var(t)) { 5232 t = btf_type_id_resolve(btf, &type_id); 5233 return t && 5234 !btf_type_is_modifier(t) && 5235 !btf_type_is_var(t) && 5236 !btf_type_is_datasec(t); 5237 } 5238 5239 if (btf_type_is_array(t)) { 5240 const struct btf_array *array = btf_type_array(t); 5241 const struct btf_type *elem_type; 5242 u32 elem_type_id = array->type; 5243 u32 elem_size; 5244 5245 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5246 return elem_type && !btf_type_is_modifier(elem_type) && 5247 (array->nelems * elem_size == 5248 btf_resolved_type_size(btf, type_id)); 5249 } 5250 5251 return false; 5252 } 5253 5254 static int btf_resolve(struct btf_verifier_env *env, 5255 const struct btf_type *t, u32 type_id) 5256 { 5257 u32 save_log_type_id = env->log_type_id; 5258 const struct resolve_vertex *v; 5259 int err = 0; 5260 5261 env->resolve_mode = RESOLVE_TBD; 5262 env_stack_push(env, t, type_id); 5263 while (!err && (v = env_stack_peak(env))) { 5264 env->log_type_id = v->type_id; 5265 err = btf_type_ops(v->t)->resolve(env, v); 5266 } 5267 5268 env->log_type_id = type_id; 5269 if (err == -E2BIG) { 5270 btf_verifier_log_type(env, t, 5271 "Exceeded max resolving depth:%u", 5272 MAX_RESOLVE_DEPTH); 5273 } else if (err == -EEXIST) { 5274 btf_verifier_log_type(env, t, "Loop detected"); 5275 } 5276 5277 /* Final sanity check */ 5278 if (!err && !btf_resolve_valid(env, t, type_id)) { 5279 btf_verifier_log_type(env, t, "Invalid resolve state"); 5280 err = -EINVAL; 5281 } 5282 5283 env->log_type_id = save_log_type_id; 5284 return err; 5285 } 5286 5287 static int btf_check_all_types(struct btf_verifier_env *env) 5288 { 5289 struct btf *btf = env->btf; 5290 const struct btf_type *t; 5291 u32 type_id, i; 5292 int err; 5293 5294 err = env_resolve_init(env); 5295 if (err) 5296 return err; 5297 5298 env->phase++; 5299 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5300 type_id = btf->start_id + i; 5301 t = btf_type_by_id(btf, type_id); 5302 5303 env->log_type_id = type_id; 5304 if (btf_type_needs_resolve(t) && 5305 !env_type_is_resolved(env, type_id)) { 5306 err = btf_resolve(env, t, type_id); 5307 if (err) 5308 return err; 5309 } 5310 5311 if (btf_type_is_func_proto(t)) { 5312 err = btf_func_proto_check(env, t); 5313 if (err) 5314 return err; 5315 } 5316 } 5317 5318 return 0; 5319 } 5320 5321 static int btf_parse_type_sec(struct btf_verifier_env *env) 5322 { 5323 const struct btf_header *hdr = &env->btf->hdr; 5324 int err; 5325 5326 /* Type section must align to 4 bytes */ 5327 if (hdr->type_off & (sizeof(u32) - 1)) { 5328 btf_verifier_log(env, "Unaligned type_off"); 5329 return -EINVAL; 5330 } 5331 5332 if (!env->btf->base_btf && !hdr->type_len) { 5333 btf_verifier_log(env, "No type found"); 5334 return -EINVAL; 5335 } 5336 5337 err = btf_check_all_metas(env); 5338 if (err) 5339 return err; 5340 5341 return btf_check_all_types(env); 5342 } 5343 5344 static int btf_parse_str_sec(struct btf_verifier_env *env) 5345 { 5346 const struct btf_header *hdr; 5347 struct btf *btf = env->btf; 5348 const char *start, *end; 5349 5350 hdr = &btf->hdr; 5351 start = btf->nohdr_data + hdr->str_off; 5352 end = start + hdr->str_len; 5353 5354 if (end != btf->data + btf->data_size) { 5355 btf_verifier_log(env, "String section is not at the end"); 5356 return -EINVAL; 5357 } 5358 5359 btf->strings = start; 5360 5361 if (btf->base_btf && !hdr->str_len) 5362 return 0; 5363 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5364 btf_verifier_log(env, "Invalid string section"); 5365 return -EINVAL; 5366 } 5367 if (!btf->base_btf && start[0]) { 5368 btf_verifier_log(env, "Invalid string section"); 5369 return -EINVAL; 5370 } 5371 5372 return 0; 5373 } 5374 5375 static const size_t btf_sec_info_offset[] = { 5376 offsetof(struct btf_header, type_off), 5377 offsetof(struct btf_header, str_off), 5378 }; 5379 5380 static int btf_sec_info_cmp(const void *a, const void *b) 5381 { 5382 const struct btf_sec_info *x = a; 5383 const struct btf_sec_info *y = b; 5384 5385 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5386 } 5387 5388 static int btf_check_sec_info(struct btf_verifier_env *env, 5389 u32 btf_data_size) 5390 { 5391 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5392 u32 total, expected_total, i; 5393 const struct btf_header *hdr; 5394 const struct btf *btf; 5395 5396 btf = env->btf; 5397 hdr = &btf->hdr; 5398 5399 /* Populate the secs from hdr */ 5400 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5401 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5402 btf_sec_info_offset[i]); 5403 5404 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5405 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5406 5407 /* Check for gaps and overlap among sections */ 5408 total = 0; 5409 expected_total = btf_data_size - hdr->hdr_len; 5410 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5411 if (expected_total < secs[i].off) { 5412 btf_verifier_log(env, "Invalid section offset"); 5413 return -EINVAL; 5414 } 5415 if (total < secs[i].off) { 5416 /* gap */ 5417 btf_verifier_log(env, "Unsupported section found"); 5418 return -EINVAL; 5419 } 5420 if (total > secs[i].off) { 5421 btf_verifier_log(env, "Section overlap found"); 5422 return -EINVAL; 5423 } 5424 if (expected_total - total < secs[i].len) { 5425 btf_verifier_log(env, 5426 "Total section length too long"); 5427 return -EINVAL; 5428 } 5429 total += secs[i].len; 5430 } 5431 5432 /* There is data other than hdr and known sections */ 5433 if (expected_total != total) { 5434 btf_verifier_log(env, "Unsupported section found"); 5435 return -EINVAL; 5436 } 5437 5438 return 0; 5439 } 5440 5441 static int btf_parse_hdr(struct btf_verifier_env *env) 5442 { 5443 u32 hdr_len, hdr_copy, btf_data_size; 5444 const struct btf_header *hdr; 5445 struct btf *btf; 5446 5447 btf = env->btf; 5448 btf_data_size = btf->data_size; 5449 5450 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5451 btf_verifier_log(env, "hdr_len not found"); 5452 return -EINVAL; 5453 } 5454 5455 hdr = btf->data; 5456 hdr_len = hdr->hdr_len; 5457 if (btf_data_size < hdr_len) { 5458 btf_verifier_log(env, "btf_header not found"); 5459 return -EINVAL; 5460 } 5461 5462 /* Ensure the unsupported header fields are zero */ 5463 if (hdr_len > sizeof(btf->hdr)) { 5464 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5465 u8 *end = btf->data + hdr_len; 5466 5467 for (; expected_zero < end; expected_zero++) { 5468 if (*expected_zero) { 5469 btf_verifier_log(env, "Unsupported btf_header"); 5470 return -E2BIG; 5471 } 5472 } 5473 } 5474 5475 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5476 memcpy(&btf->hdr, btf->data, hdr_copy); 5477 5478 hdr = &btf->hdr; 5479 5480 btf_verifier_log_hdr(env, btf_data_size); 5481 5482 if (hdr->magic != BTF_MAGIC) { 5483 btf_verifier_log(env, "Invalid magic"); 5484 return -EINVAL; 5485 } 5486 5487 if (hdr->version != BTF_VERSION) { 5488 btf_verifier_log(env, "Unsupported version"); 5489 return -ENOTSUPP; 5490 } 5491 5492 if (hdr->flags) { 5493 btf_verifier_log(env, "Unsupported flags"); 5494 return -ENOTSUPP; 5495 } 5496 5497 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5498 btf_verifier_log(env, "No data"); 5499 return -EINVAL; 5500 } 5501 5502 return btf_check_sec_info(env, btf_data_size); 5503 } 5504 5505 static const char *alloc_obj_fields[] = { 5506 "bpf_spin_lock", 5507 "bpf_list_head", 5508 "bpf_list_node", 5509 "bpf_rb_root", 5510 "bpf_rb_node", 5511 "bpf_refcount", 5512 }; 5513 5514 static struct btf_struct_metas * 5515 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5516 { 5517 struct btf_struct_metas *tab = NULL; 5518 struct btf_id_set *aof; 5519 int i, n, id, ret; 5520 5521 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5522 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5523 5524 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5525 if (!aof) 5526 return ERR_PTR(-ENOMEM); 5527 aof->cnt = 0; 5528 5529 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5530 /* Try to find whether this special type exists in user BTF, and 5531 * if so remember its ID so we can easily find it among members 5532 * of structs that we iterate in the next loop. 5533 */ 5534 struct btf_id_set *new_aof; 5535 5536 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5537 if (id < 0) 5538 continue; 5539 5540 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5541 GFP_KERNEL | __GFP_NOWARN); 5542 if (!new_aof) { 5543 ret = -ENOMEM; 5544 goto free_aof; 5545 } 5546 aof = new_aof; 5547 aof->ids[aof->cnt++] = id; 5548 } 5549 5550 n = btf_nr_types(btf); 5551 for (i = 1; i < n; i++) { 5552 /* Try to find if there are kptrs in user BTF and remember their ID */ 5553 struct btf_id_set *new_aof; 5554 struct btf_field_info tmp; 5555 const struct btf_type *t; 5556 5557 t = btf_type_by_id(btf, i); 5558 if (!t) { 5559 ret = -EINVAL; 5560 goto free_aof; 5561 } 5562 5563 ret = btf_find_kptr(btf, t, 0, 0, &tmp); 5564 if (ret != BTF_FIELD_FOUND) 5565 continue; 5566 5567 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5568 GFP_KERNEL | __GFP_NOWARN); 5569 if (!new_aof) { 5570 ret = -ENOMEM; 5571 goto free_aof; 5572 } 5573 aof = new_aof; 5574 aof->ids[aof->cnt++] = i; 5575 } 5576 5577 if (!aof->cnt) { 5578 kfree(aof); 5579 return NULL; 5580 } 5581 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5582 5583 for (i = 1; i < n; i++) { 5584 struct btf_struct_metas *new_tab; 5585 const struct btf_member *member; 5586 struct btf_struct_meta *type; 5587 struct btf_record *record; 5588 const struct btf_type *t; 5589 int j, tab_cnt; 5590 5591 t = btf_type_by_id(btf, i); 5592 if (!__btf_type_is_struct(t)) 5593 continue; 5594 5595 cond_resched(); 5596 5597 for_each_member(j, t, member) { 5598 if (btf_id_set_contains(aof, member->type)) 5599 goto parse; 5600 } 5601 continue; 5602 parse: 5603 tab_cnt = tab ? tab->cnt : 0; 5604 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5605 GFP_KERNEL | __GFP_NOWARN); 5606 if (!new_tab) { 5607 ret = -ENOMEM; 5608 goto free; 5609 } 5610 if (!tab) 5611 new_tab->cnt = 0; 5612 tab = new_tab; 5613 5614 type = &tab->types[tab->cnt]; 5615 type->btf_id = i; 5616 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5617 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5618 BPF_KPTR, t->size); 5619 /* The record cannot be unset, treat it as an error if so */ 5620 if (IS_ERR_OR_NULL(record)) { 5621 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5622 goto free; 5623 } 5624 type->record = record; 5625 tab->cnt++; 5626 } 5627 kfree(aof); 5628 return tab; 5629 free: 5630 btf_struct_metas_free(tab); 5631 free_aof: 5632 kfree(aof); 5633 return ERR_PTR(ret); 5634 } 5635 5636 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5637 { 5638 struct btf_struct_metas *tab; 5639 5640 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5641 tab = btf->struct_meta_tab; 5642 if (!tab) 5643 return NULL; 5644 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5645 } 5646 5647 static int btf_check_type_tags(struct btf_verifier_env *env, 5648 struct btf *btf, int start_id) 5649 { 5650 int i, n, good_id = start_id - 1; 5651 bool in_tags; 5652 5653 n = btf_nr_types(btf); 5654 for (i = start_id; i < n; i++) { 5655 const struct btf_type *t; 5656 int chain_limit = 32; 5657 u32 cur_id = i; 5658 5659 t = btf_type_by_id(btf, i); 5660 if (!t) 5661 return -EINVAL; 5662 if (!btf_type_is_modifier(t)) 5663 continue; 5664 5665 cond_resched(); 5666 5667 in_tags = btf_type_is_type_tag(t); 5668 while (btf_type_is_modifier(t)) { 5669 if (!chain_limit--) { 5670 btf_verifier_log(env, "Max chain length or cycle detected"); 5671 return -ELOOP; 5672 } 5673 if (btf_type_is_type_tag(t)) { 5674 if (!in_tags) { 5675 btf_verifier_log(env, "Type tags don't precede modifiers"); 5676 return -EINVAL; 5677 } 5678 } else if (in_tags) { 5679 in_tags = false; 5680 } 5681 if (cur_id <= good_id) 5682 break; 5683 /* Move to next type */ 5684 cur_id = t->type; 5685 t = btf_type_by_id(btf, cur_id); 5686 if (!t) 5687 return -EINVAL; 5688 } 5689 good_id = i; 5690 } 5691 return 0; 5692 } 5693 5694 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5695 { 5696 u32 log_true_size; 5697 int err; 5698 5699 err = bpf_vlog_finalize(log, &log_true_size); 5700 5701 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5702 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5703 &log_true_size, sizeof(log_true_size))) 5704 err = -EFAULT; 5705 5706 return err; 5707 } 5708 5709 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5710 { 5711 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5712 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5713 struct btf_struct_metas *struct_meta_tab; 5714 struct btf_verifier_env *env = NULL; 5715 struct btf *btf = NULL; 5716 u8 *data; 5717 int err, ret; 5718 5719 if (attr->btf_size > BTF_MAX_SIZE) 5720 return ERR_PTR(-E2BIG); 5721 5722 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5723 if (!env) 5724 return ERR_PTR(-ENOMEM); 5725 5726 /* user could have requested verbose verifier output 5727 * and supplied buffer to store the verification trace 5728 */ 5729 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5730 log_ubuf, attr->btf_log_size); 5731 if (err) 5732 goto errout_free; 5733 5734 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5735 if (!btf) { 5736 err = -ENOMEM; 5737 goto errout; 5738 } 5739 env->btf = btf; 5740 5741 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5742 if (!data) { 5743 err = -ENOMEM; 5744 goto errout; 5745 } 5746 5747 btf->data = data; 5748 btf->data_size = attr->btf_size; 5749 5750 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5751 err = -EFAULT; 5752 goto errout; 5753 } 5754 5755 err = btf_parse_hdr(env); 5756 if (err) 5757 goto errout; 5758 5759 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5760 5761 err = btf_parse_str_sec(env); 5762 if (err) 5763 goto errout; 5764 5765 err = btf_parse_type_sec(env); 5766 if (err) 5767 goto errout; 5768 5769 err = btf_check_type_tags(env, btf, 1); 5770 if (err) 5771 goto errout; 5772 5773 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5774 if (IS_ERR(struct_meta_tab)) { 5775 err = PTR_ERR(struct_meta_tab); 5776 goto errout; 5777 } 5778 btf->struct_meta_tab = struct_meta_tab; 5779 5780 if (struct_meta_tab) { 5781 int i; 5782 5783 for (i = 0; i < struct_meta_tab->cnt; i++) { 5784 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5785 if (err < 0) 5786 goto errout_meta; 5787 } 5788 } 5789 5790 err = finalize_log(&env->log, uattr, uattr_size); 5791 if (err) 5792 goto errout_free; 5793 5794 btf_verifier_env_free(env); 5795 refcount_set(&btf->refcnt, 1); 5796 return btf; 5797 5798 errout_meta: 5799 btf_free_struct_meta_tab(btf); 5800 errout: 5801 /* overwrite err with -ENOSPC or -EFAULT */ 5802 ret = finalize_log(&env->log, uattr, uattr_size); 5803 if (ret) 5804 err = ret; 5805 errout_free: 5806 btf_verifier_env_free(env); 5807 if (btf) 5808 btf_free(btf); 5809 return ERR_PTR(err); 5810 } 5811 5812 extern char __start_BTF[]; 5813 extern char __stop_BTF[]; 5814 extern struct btf *btf_vmlinux; 5815 5816 #define BPF_MAP_TYPE(_id, _ops) 5817 #define BPF_LINK_TYPE(_id, _name) 5818 static union { 5819 struct bpf_ctx_convert { 5820 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5821 prog_ctx_type _id##_prog; \ 5822 kern_ctx_type _id##_kern; 5823 #include <linux/bpf_types.h> 5824 #undef BPF_PROG_TYPE 5825 } *__t; 5826 /* 't' is written once under lock. Read many times. */ 5827 const struct btf_type *t; 5828 } bpf_ctx_convert; 5829 enum { 5830 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5831 __ctx_convert##_id, 5832 #include <linux/bpf_types.h> 5833 #undef BPF_PROG_TYPE 5834 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5835 }; 5836 static u8 bpf_ctx_convert_map[] = { 5837 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5838 [_id] = __ctx_convert##_id, 5839 #include <linux/bpf_types.h> 5840 #undef BPF_PROG_TYPE 5841 0, /* avoid empty array */ 5842 }; 5843 #undef BPF_MAP_TYPE 5844 #undef BPF_LINK_TYPE 5845 5846 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5847 { 5848 const struct btf_type *conv_struct; 5849 const struct btf_member *ctx_type; 5850 5851 conv_struct = bpf_ctx_convert.t; 5852 if (!conv_struct) 5853 return NULL; 5854 /* prog_type is valid bpf program type. No need for bounds check. */ 5855 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5856 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5857 * Like 'struct __sk_buff' 5858 */ 5859 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5860 } 5861 5862 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5863 { 5864 const struct btf_type *conv_struct; 5865 const struct btf_member *ctx_type; 5866 5867 conv_struct = bpf_ctx_convert.t; 5868 if (!conv_struct) 5869 return -EFAULT; 5870 /* prog_type is valid bpf program type. No need for bounds check. */ 5871 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5872 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5873 * Like 'struct sk_buff' 5874 */ 5875 return ctx_type->type; 5876 } 5877 5878 bool btf_is_projection_of(const char *pname, const char *tname) 5879 { 5880 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5881 return true; 5882 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5883 return true; 5884 return false; 5885 } 5886 5887 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5888 const struct btf_type *t, enum bpf_prog_type prog_type, 5889 int arg) 5890 { 5891 const struct btf_type *ctx_type; 5892 const char *tname, *ctx_tname; 5893 5894 t = btf_type_by_id(btf, t->type); 5895 5896 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5897 * check before we skip all the typedef below. 5898 */ 5899 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5900 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5901 t = btf_type_by_id(btf, t->type); 5902 5903 if (btf_type_is_typedef(t)) { 5904 tname = btf_name_by_offset(btf, t->name_off); 5905 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5906 return true; 5907 } 5908 } 5909 5910 while (btf_type_is_modifier(t)) 5911 t = btf_type_by_id(btf, t->type); 5912 if (!btf_type_is_struct(t)) { 5913 /* Only pointer to struct is supported for now. 5914 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5915 * is not supported yet. 5916 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5917 */ 5918 return false; 5919 } 5920 tname = btf_name_by_offset(btf, t->name_off); 5921 if (!tname) { 5922 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5923 return false; 5924 } 5925 5926 ctx_type = find_canonical_prog_ctx_type(prog_type); 5927 if (!ctx_type) { 5928 bpf_log(log, "btf_vmlinux is malformed\n"); 5929 /* should not happen */ 5930 return false; 5931 } 5932 again: 5933 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5934 if (!ctx_tname) { 5935 /* should not happen */ 5936 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5937 return false; 5938 } 5939 /* program types without named context types work only with arg:ctx tag */ 5940 if (ctx_tname[0] == '\0') 5941 return false; 5942 /* only compare that prog's ctx type name is the same as 5943 * kernel expects. No need to compare field by field. 5944 * It's ok for bpf prog to do: 5945 * struct __sk_buff {}; 5946 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5947 * { // no fields of skb are ever used } 5948 */ 5949 if (btf_is_projection_of(ctx_tname, tname)) 5950 return true; 5951 if (strcmp(ctx_tname, tname)) { 5952 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5953 * underlying struct and check name again 5954 */ 5955 if (!btf_type_is_modifier(ctx_type)) 5956 return false; 5957 while (btf_type_is_modifier(ctx_type)) 5958 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 5959 goto again; 5960 } 5961 return true; 5962 } 5963 5964 /* forward declarations for arch-specific underlying types of 5965 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 5966 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 5967 * works correctly with __builtin_types_compatible_p() on respective 5968 * architectures 5969 */ 5970 struct user_regs_struct; 5971 struct user_pt_regs; 5972 5973 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5974 const struct btf_type *t, int arg, 5975 enum bpf_prog_type prog_type, 5976 enum bpf_attach_type attach_type) 5977 { 5978 const struct btf_type *ctx_type; 5979 const char *tname, *ctx_tname; 5980 5981 if (!btf_is_ptr(t)) { 5982 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 5983 return -EINVAL; 5984 } 5985 t = btf_type_by_id(btf, t->type); 5986 5987 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 5988 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 5989 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5990 t = btf_type_by_id(btf, t->type); 5991 5992 if (btf_type_is_typedef(t)) { 5993 tname = btf_name_by_offset(btf, t->name_off); 5994 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5995 return 0; 5996 } 5997 } 5998 5999 /* all other program types don't use typedefs for context type */ 6000 while (btf_type_is_modifier(t)) 6001 t = btf_type_by_id(btf, t->type); 6002 6003 /* `void *ctx __arg_ctx` is always valid */ 6004 if (btf_type_is_void(t)) 6005 return 0; 6006 6007 tname = btf_name_by_offset(btf, t->name_off); 6008 if (str_is_empty(tname)) { 6009 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6010 return -EINVAL; 6011 } 6012 6013 /* special cases */ 6014 switch (prog_type) { 6015 case BPF_PROG_TYPE_KPROBE: 6016 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6017 return 0; 6018 break; 6019 case BPF_PROG_TYPE_PERF_EVENT: 6020 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6021 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6022 return 0; 6023 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6024 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6025 return 0; 6026 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6027 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6028 return 0; 6029 break; 6030 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6031 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6032 /* allow u64* as ctx */ 6033 if (btf_is_int(t) && t->size == 8) 6034 return 0; 6035 break; 6036 case BPF_PROG_TYPE_TRACING: 6037 switch (attach_type) { 6038 case BPF_TRACE_RAW_TP: 6039 /* tp_btf program is TRACING, so need special case here */ 6040 if (__btf_type_is_struct(t) && 6041 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6042 return 0; 6043 /* allow u64* as ctx */ 6044 if (btf_is_int(t) && t->size == 8) 6045 return 0; 6046 break; 6047 case BPF_TRACE_ITER: 6048 /* allow struct bpf_iter__xxx types only */ 6049 if (__btf_type_is_struct(t) && 6050 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6051 return 0; 6052 break; 6053 case BPF_TRACE_FENTRY: 6054 case BPF_TRACE_FEXIT: 6055 case BPF_MODIFY_RETURN: 6056 /* allow u64* as ctx */ 6057 if (btf_is_int(t) && t->size == 8) 6058 return 0; 6059 break; 6060 default: 6061 break; 6062 } 6063 break; 6064 case BPF_PROG_TYPE_LSM: 6065 case BPF_PROG_TYPE_STRUCT_OPS: 6066 /* allow u64* as ctx */ 6067 if (btf_is_int(t) && t->size == 8) 6068 return 0; 6069 break; 6070 case BPF_PROG_TYPE_TRACEPOINT: 6071 case BPF_PROG_TYPE_SYSCALL: 6072 case BPF_PROG_TYPE_EXT: 6073 return 0; /* anything goes */ 6074 default: 6075 break; 6076 } 6077 6078 ctx_type = find_canonical_prog_ctx_type(prog_type); 6079 if (!ctx_type) { 6080 /* should not happen */ 6081 bpf_log(log, "btf_vmlinux is malformed\n"); 6082 return -EINVAL; 6083 } 6084 6085 /* resolve typedefs and check that underlying structs are matching as well */ 6086 while (btf_type_is_modifier(ctx_type)) 6087 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6088 6089 /* if program type doesn't have distinctly named struct type for 6090 * context, then __arg_ctx argument can only be `void *`, which we 6091 * already checked above 6092 */ 6093 if (!__btf_type_is_struct(ctx_type)) { 6094 bpf_log(log, "arg#%d should be void pointer\n", arg); 6095 return -EINVAL; 6096 } 6097 6098 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6099 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6100 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6101 return -EINVAL; 6102 } 6103 6104 return 0; 6105 } 6106 6107 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6108 struct btf *btf, 6109 const struct btf_type *t, 6110 enum bpf_prog_type prog_type, 6111 int arg) 6112 { 6113 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6114 return -ENOENT; 6115 return find_kern_ctx_type_id(prog_type); 6116 } 6117 6118 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6119 { 6120 const struct btf_member *kctx_member; 6121 const struct btf_type *conv_struct; 6122 const struct btf_type *kctx_type; 6123 u32 kctx_type_id; 6124 6125 conv_struct = bpf_ctx_convert.t; 6126 /* get member for kernel ctx type */ 6127 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6128 kctx_type_id = kctx_member->type; 6129 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6130 if (!btf_type_is_struct(kctx_type)) { 6131 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6132 return -EINVAL; 6133 } 6134 6135 return kctx_type_id; 6136 } 6137 6138 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6139 BTF_ID(struct, bpf_ctx_convert) 6140 6141 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6142 void *data, unsigned int data_size) 6143 { 6144 struct btf *btf = NULL; 6145 int err; 6146 6147 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6148 return ERR_PTR(-ENOENT); 6149 6150 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6151 if (!btf) { 6152 err = -ENOMEM; 6153 goto errout; 6154 } 6155 env->btf = btf; 6156 6157 btf->data = data; 6158 btf->data_size = data_size; 6159 btf->kernel_btf = true; 6160 snprintf(btf->name, sizeof(btf->name), "%s", name); 6161 6162 err = btf_parse_hdr(env); 6163 if (err) 6164 goto errout; 6165 6166 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6167 6168 err = btf_parse_str_sec(env); 6169 if (err) 6170 goto errout; 6171 6172 err = btf_check_all_metas(env); 6173 if (err) 6174 goto errout; 6175 6176 err = btf_check_type_tags(env, btf, 1); 6177 if (err) 6178 goto errout; 6179 6180 refcount_set(&btf->refcnt, 1); 6181 6182 return btf; 6183 6184 errout: 6185 if (btf) { 6186 kvfree(btf->types); 6187 kfree(btf); 6188 } 6189 return ERR_PTR(err); 6190 } 6191 6192 struct btf *btf_parse_vmlinux(void) 6193 { 6194 struct btf_verifier_env *env = NULL; 6195 struct bpf_verifier_log *log; 6196 struct btf *btf; 6197 int err; 6198 6199 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6200 if (!env) 6201 return ERR_PTR(-ENOMEM); 6202 6203 log = &env->log; 6204 log->level = BPF_LOG_KERNEL; 6205 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6206 if (IS_ERR(btf)) 6207 goto err_out; 6208 6209 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6210 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6211 err = btf_alloc_id(btf); 6212 if (err) { 6213 btf_free(btf); 6214 btf = ERR_PTR(err); 6215 } 6216 err_out: 6217 btf_verifier_env_free(env); 6218 return btf; 6219 } 6220 6221 /* If .BTF_ids section was created with distilled base BTF, both base and 6222 * split BTF ids will need to be mapped to actual base/split ids for 6223 * BTF now that it has been relocated. 6224 */ 6225 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6226 { 6227 if (!btf->base_btf || !btf->base_id_map) 6228 return id; 6229 return btf->base_id_map[id]; 6230 } 6231 6232 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6233 6234 static struct btf *btf_parse_module(const char *module_name, const void *data, 6235 unsigned int data_size, void *base_data, 6236 unsigned int base_data_size) 6237 { 6238 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6239 struct btf_verifier_env *env = NULL; 6240 struct bpf_verifier_log *log; 6241 int err = 0; 6242 6243 vmlinux_btf = bpf_get_btf_vmlinux(); 6244 if (IS_ERR(vmlinux_btf)) 6245 return vmlinux_btf; 6246 if (!vmlinux_btf) 6247 return ERR_PTR(-EINVAL); 6248 6249 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6250 if (!env) 6251 return ERR_PTR(-ENOMEM); 6252 6253 log = &env->log; 6254 log->level = BPF_LOG_KERNEL; 6255 6256 if (base_data) { 6257 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6258 if (IS_ERR(base_btf)) { 6259 err = PTR_ERR(base_btf); 6260 goto errout; 6261 } 6262 } else { 6263 base_btf = vmlinux_btf; 6264 } 6265 6266 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6267 if (!btf) { 6268 err = -ENOMEM; 6269 goto errout; 6270 } 6271 env->btf = btf; 6272 6273 btf->base_btf = base_btf; 6274 btf->start_id = base_btf->nr_types; 6275 btf->start_str_off = base_btf->hdr.str_len; 6276 btf->kernel_btf = true; 6277 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6278 6279 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6280 if (!btf->data) { 6281 err = -ENOMEM; 6282 goto errout; 6283 } 6284 btf->data_size = data_size; 6285 6286 err = btf_parse_hdr(env); 6287 if (err) 6288 goto errout; 6289 6290 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6291 6292 err = btf_parse_str_sec(env); 6293 if (err) 6294 goto errout; 6295 6296 err = btf_check_all_metas(env); 6297 if (err) 6298 goto errout; 6299 6300 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6301 if (err) 6302 goto errout; 6303 6304 if (base_btf != vmlinux_btf) { 6305 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6306 if (err) 6307 goto errout; 6308 btf_free(base_btf); 6309 base_btf = vmlinux_btf; 6310 } 6311 6312 btf_verifier_env_free(env); 6313 refcount_set(&btf->refcnt, 1); 6314 return btf; 6315 6316 errout: 6317 btf_verifier_env_free(env); 6318 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6319 btf_free(base_btf); 6320 if (btf) { 6321 kvfree(btf->data); 6322 kvfree(btf->types); 6323 kfree(btf); 6324 } 6325 return ERR_PTR(err); 6326 } 6327 6328 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6329 6330 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6331 { 6332 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6333 6334 if (tgt_prog) 6335 return tgt_prog->aux->btf; 6336 else 6337 return prog->aux->attach_btf; 6338 } 6339 6340 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6341 { 6342 /* skip modifiers */ 6343 t = btf_type_skip_modifiers(btf, t->type, NULL); 6344 6345 return btf_type_is_int(t); 6346 } 6347 6348 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6349 int off) 6350 { 6351 const struct btf_param *args; 6352 const struct btf_type *t; 6353 u32 offset = 0, nr_args; 6354 int i; 6355 6356 if (!func_proto) 6357 return off / 8; 6358 6359 nr_args = btf_type_vlen(func_proto); 6360 args = (const struct btf_param *)(func_proto + 1); 6361 for (i = 0; i < nr_args; i++) { 6362 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6363 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6364 if (off < offset) 6365 return i; 6366 } 6367 6368 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6369 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6370 if (off < offset) 6371 return nr_args; 6372 6373 return nr_args + 1; 6374 } 6375 6376 static bool prog_args_trusted(const struct bpf_prog *prog) 6377 { 6378 enum bpf_attach_type atype = prog->expected_attach_type; 6379 6380 switch (prog->type) { 6381 case BPF_PROG_TYPE_TRACING: 6382 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6383 case BPF_PROG_TYPE_LSM: 6384 return bpf_lsm_is_trusted(prog); 6385 case BPF_PROG_TYPE_STRUCT_OPS: 6386 return true; 6387 default: 6388 return false; 6389 } 6390 } 6391 6392 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6393 u32 arg_no) 6394 { 6395 const struct btf_param *args; 6396 const struct btf_type *t; 6397 int off = 0, i; 6398 u32 sz; 6399 6400 args = btf_params(func_proto); 6401 for (i = 0; i < arg_no; i++) { 6402 t = btf_type_by_id(btf, args[i].type); 6403 t = btf_resolve_size(btf, t, &sz); 6404 if (IS_ERR(t)) 6405 return PTR_ERR(t); 6406 off += roundup(sz, 8); 6407 } 6408 6409 return off; 6410 } 6411 6412 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6413 const struct bpf_prog *prog, 6414 struct bpf_insn_access_aux *info) 6415 { 6416 const struct btf_type *t = prog->aux->attach_func_proto; 6417 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6418 struct btf *btf = bpf_prog_get_target_btf(prog); 6419 const char *tname = prog->aux->attach_func_name; 6420 struct bpf_verifier_log *log = info->log; 6421 const struct btf_param *args; 6422 const char *tag_value; 6423 u32 nr_args, arg; 6424 int i, ret; 6425 6426 if (off % 8) { 6427 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6428 tname, off); 6429 return false; 6430 } 6431 arg = get_ctx_arg_idx(btf, t, off); 6432 args = (const struct btf_param *)(t + 1); 6433 /* if (t == NULL) Fall back to default BPF prog with 6434 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6435 */ 6436 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6437 if (prog->aux->attach_btf_trace) { 6438 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6439 args++; 6440 nr_args--; 6441 } 6442 6443 if (arg > nr_args) { 6444 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6445 tname, arg + 1); 6446 return false; 6447 } 6448 6449 if (arg == nr_args) { 6450 switch (prog->expected_attach_type) { 6451 case BPF_LSM_MAC: 6452 /* mark we are accessing the return value */ 6453 info->is_retval = true; 6454 fallthrough; 6455 case BPF_LSM_CGROUP: 6456 case BPF_TRACE_FEXIT: 6457 /* When LSM programs are attached to void LSM hooks 6458 * they use FEXIT trampolines and when attached to 6459 * int LSM hooks, they use MODIFY_RETURN trampolines. 6460 * 6461 * While the LSM programs are BPF_MODIFY_RETURN-like 6462 * the check: 6463 * 6464 * if (ret_type != 'int') 6465 * return -EINVAL; 6466 * 6467 * is _not_ done here. This is still safe as LSM hooks 6468 * have only void and int return types. 6469 */ 6470 if (!t) 6471 return true; 6472 t = btf_type_by_id(btf, t->type); 6473 break; 6474 case BPF_MODIFY_RETURN: 6475 /* For now the BPF_MODIFY_RETURN can only be attached to 6476 * functions that return an int. 6477 */ 6478 if (!t) 6479 return false; 6480 6481 t = btf_type_skip_modifiers(btf, t->type, NULL); 6482 if (!btf_type_is_small_int(t)) { 6483 bpf_log(log, 6484 "ret type %s not allowed for fmod_ret\n", 6485 btf_type_str(t)); 6486 return false; 6487 } 6488 break; 6489 default: 6490 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6491 tname, arg + 1); 6492 return false; 6493 } 6494 } else { 6495 if (!t) 6496 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6497 return true; 6498 t = btf_type_by_id(btf, args[arg].type); 6499 } 6500 6501 /* skip modifiers */ 6502 while (btf_type_is_modifier(t)) 6503 t = btf_type_by_id(btf, t->type); 6504 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6505 /* accessing a scalar */ 6506 return true; 6507 if (!btf_type_is_ptr(t)) { 6508 bpf_log(log, 6509 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6510 tname, arg, 6511 __btf_name_by_offset(btf, t->name_off), 6512 btf_type_str(t)); 6513 return false; 6514 } 6515 6516 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6517 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6518 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6519 u32 type, flag; 6520 6521 type = base_type(ctx_arg_info->reg_type); 6522 flag = type_flag(ctx_arg_info->reg_type); 6523 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6524 (flag & PTR_MAYBE_NULL)) { 6525 info->reg_type = ctx_arg_info->reg_type; 6526 return true; 6527 } 6528 } 6529 6530 if (t->type == 0) 6531 /* This is a pointer to void. 6532 * It is the same as scalar from the verifier safety pov. 6533 * No further pointer walking is allowed. 6534 */ 6535 return true; 6536 6537 if (is_int_ptr(btf, t)) 6538 return true; 6539 6540 /* this is a pointer to another type */ 6541 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6542 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6543 6544 if (ctx_arg_info->offset == off) { 6545 if (!ctx_arg_info->btf_id) { 6546 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6547 return false; 6548 } 6549 6550 info->reg_type = ctx_arg_info->reg_type; 6551 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6552 info->btf_id = ctx_arg_info->btf_id; 6553 return true; 6554 } 6555 } 6556 6557 info->reg_type = PTR_TO_BTF_ID; 6558 if (prog_args_trusted(prog)) 6559 info->reg_type |= PTR_TRUSTED; 6560 6561 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6562 info->reg_type |= PTR_MAYBE_NULL; 6563 6564 if (tgt_prog) { 6565 enum bpf_prog_type tgt_type; 6566 6567 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6568 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6569 else 6570 tgt_type = tgt_prog->type; 6571 6572 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6573 if (ret > 0) { 6574 info->btf = btf_vmlinux; 6575 info->btf_id = ret; 6576 return true; 6577 } else { 6578 return false; 6579 } 6580 } 6581 6582 info->btf = btf; 6583 info->btf_id = t->type; 6584 t = btf_type_by_id(btf, t->type); 6585 6586 if (btf_type_is_type_tag(t)) { 6587 tag_value = __btf_name_by_offset(btf, t->name_off); 6588 if (strcmp(tag_value, "user") == 0) 6589 info->reg_type |= MEM_USER; 6590 if (strcmp(tag_value, "percpu") == 0) 6591 info->reg_type |= MEM_PERCPU; 6592 } 6593 6594 /* skip modifiers */ 6595 while (btf_type_is_modifier(t)) { 6596 info->btf_id = t->type; 6597 t = btf_type_by_id(btf, t->type); 6598 } 6599 if (!btf_type_is_struct(t)) { 6600 bpf_log(log, 6601 "func '%s' arg%d type %s is not a struct\n", 6602 tname, arg, btf_type_str(t)); 6603 return false; 6604 } 6605 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6606 tname, arg, info->btf_id, btf_type_str(t), 6607 __btf_name_by_offset(btf, t->name_off)); 6608 return true; 6609 } 6610 EXPORT_SYMBOL_GPL(btf_ctx_access); 6611 6612 enum bpf_struct_walk_result { 6613 /* < 0 error */ 6614 WALK_SCALAR = 0, 6615 WALK_PTR, 6616 WALK_STRUCT, 6617 }; 6618 6619 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6620 const struct btf_type *t, int off, int size, 6621 u32 *next_btf_id, enum bpf_type_flag *flag, 6622 const char **field_name) 6623 { 6624 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6625 const struct btf_type *mtype, *elem_type = NULL; 6626 const struct btf_member *member; 6627 const char *tname, *mname, *tag_value; 6628 u32 vlen, elem_id, mid; 6629 6630 again: 6631 if (btf_type_is_modifier(t)) 6632 t = btf_type_skip_modifiers(btf, t->type, NULL); 6633 tname = __btf_name_by_offset(btf, t->name_off); 6634 if (!btf_type_is_struct(t)) { 6635 bpf_log(log, "Type '%s' is not a struct\n", tname); 6636 return -EINVAL; 6637 } 6638 6639 vlen = btf_type_vlen(t); 6640 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6641 /* 6642 * walking unions yields untrusted pointers 6643 * with exception of __bpf_md_ptr and other 6644 * unions with a single member 6645 */ 6646 *flag |= PTR_UNTRUSTED; 6647 6648 if (off + size > t->size) { 6649 /* If the last element is a variable size array, we may 6650 * need to relax the rule. 6651 */ 6652 struct btf_array *array_elem; 6653 6654 if (vlen == 0) 6655 goto error; 6656 6657 member = btf_type_member(t) + vlen - 1; 6658 mtype = btf_type_skip_modifiers(btf, member->type, 6659 NULL); 6660 if (!btf_type_is_array(mtype)) 6661 goto error; 6662 6663 array_elem = (struct btf_array *)(mtype + 1); 6664 if (array_elem->nelems != 0) 6665 goto error; 6666 6667 moff = __btf_member_bit_offset(t, member) / 8; 6668 if (off < moff) 6669 goto error; 6670 6671 /* allow structure and integer */ 6672 t = btf_type_skip_modifiers(btf, array_elem->type, 6673 NULL); 6674 6675 if (btf_type_is_int(t)) 6676 return WALK_SCALAR; 6677 6678 if (!btf_type_is_struct(t)) 6679 goto error; 6680 6681 off = (off - moff) % t->size; 6682 goto again; 6683 6684 error: 6685 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6686 tname, off, size); 6687 return -EACCES; 6688 } 6689 6690 for_each_member(i, t, member) { 6691 /* offset of the field in bytes */ 6692 moff = __btf_member_bit_offset(t, member) / 8; 6693 if (off + size <= moff) 6694 /* won't find anything, field is already too far */ 6695 break; 6696 6697 if (__btf_member_bitfield_size(t, member)) { 6698 u32 end_bit = __btf_member_bit_offset(t, member) + 6699 __btf_member_bitfield_size(t, member); 6700 6701 /* off <= moff instead of off == moff because clang 6702 * does not generate a BTF member for anonymous 6703 * bitfield like the ":16" here: 6704 * struct { 6705 * int :16; 6706 * int x:8; 6707 * }; 6708 */ 6709 if (off <= moff && 6710 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6711 return WALK_SCALAR; 6712 6713 /* off may be accessing a following member 6714 * 6715 * or 6716 * 6717 * Doing partial access at either end of this 6718 * bitfield. Continue on this case also to 6719 * treat it as not accessing this bitfield 6720 * and eventually error out as field not 6721 * found to keep it simple. 6722 * It could be relaxed if there was a legit 6723 * partial access case later. 6724 */ 6725 continue; 6726 } 6727 6728 /* In case of "off" is pointing to holes of a struct */ 6729 if (off < moff) 6730 break; 6731 6732 /* type of the field */ 6733 mid = member->type; 6734 mtype = btf_type_by_id(btf, member->type); 6735 mname = __btf_name_by_offset(btf, member->name_off); 6736 6737 mtype = __btf_resolve_size(btf, mtype, &msize, 6738 &elem_type, &elem_id, &total_nelems, 6739 &mid); 6740 if (IS_ERR(mtype)) { 6741 bpf_log(log, "field %s doesn't have size\n", mname); 6742 return -EFAULT; 6743 } 6744 6745 mtrue_end = moff + msize; 6746 if (off >= mtrue_end) 6747 /* no overlap with member, keep iterating */ 6748 continue; 6749 6750 if (btf_type_is_array(mtype)) { 6751 u32 elem_idx; 6752 6753 /* __btf_resolve_size() above helps to 6754 * linearize a multi-dimensional array. 6755 * 6756 * The logic here is treating an array 6757 * in a struct as the following way: 6758 * 6759 * struct outer { 6760 * struct inner array[2][2]; 6761 * }; 6762 * 6763 * looks like: 6764 * 6765 * struct outer { 6766 * struct inner array_elem0; 6767 * struct inner array_elem1; 6768 * struct inner array_elem2; 6769 * struct inner array_elem3; 6770 * }; 6771 * 6772 * When accessing outer->array[1][0], it moves 6773 * moff to "array_elem2", set mtype to 6774 * "struct inner", and msize also becomes 6775 * sizeof(struct inner). Then most of the 6776 * remaining logic will fall through without 6777 * caring the current member is an array or 6778 * not. 6779 * 6780 * Unlike mtype/msize/moff, mtrue_end does not 6781 * change. The naming difference ("_true") tells 6782 * that it is not always corresponding to 6783 * the current mtype/msize/moff. 6784 * It is the true end of the current 6785 * member (i.e. array in this case). That 6786 * will allow an int array to be accessed like 6787 * a scratch space, 6788 * i.e. allow access beyond the size of 6789 * the array's element as long as it is 6790 * within the mtrue_end boundary. 6791 */ 6792 6793 /* skip empty array */ 6794 if (moff == mtrue_end) 6795 continue; 6796 6797 msize /= total_nelems; 6798 elem_idx = (off - moff) / msize; 6799 moff += elem_idx * msize; 6800 mtype = elem_type; 6801 mid = elem_id; 6802 } 6803 6804 /* the 'off' we're looking for is either equal to start 6805 * of this field or inside of this struct 6806 */ 6807 if (btf_type_is_struct(mtype)) { 6808 /* our field must be inside that union or struct */ 6809 t = mtype; 6810 6811 /* return if the offset matches the member offset */ 6812 if (off == moff) { 6813 *next_btf_id = mid; 6814 return WALK_STRUCT; 6815 } 6816 6817 /* adjust offset we're looking for */ 6818 off -= moff; 6819 goto again; 6820 } 6821 6822 if (btf_type_is_ptr(mtype)) { 6823 const struct btf_type *stype, *t; 6824 enum bpf_type_flag tmp_flag = 0; 6825 u32 id; 6826 6827 if (msize != size || off != moff) { 6828 bpf_log(log, 6829 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6830 mname, moff, tname, off, size); 6831 return -EACCES; 6832 } 6833 6834 /* check type tag */ 6835 t = btf_type_by_id(btf, mtype->type); 6836 if (btf_type_is_type_tag(t)) { 6837 tag_value = __btf_name_by_offset(btf, t->name_off); 6838 /* check __user tag */ 6839 if (strcmp(tag_value, "user") == 0) 6840 tmp_flag = MEM_USER; 6841 /* check __percpu tag */ 6842 if (strcmp(tag_value, "percpu") == 0) 6843 tmp_flag = MEM_PERCPU; 6844 /* check __rcu tag */ 6845 if (strcmp(tag_value, "rcu") == 0) 6846 tmp_flag = MEM_RCU; 6847 } 6848 6849 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6850 if (btf_type_is_struct(stype)) { 6851 *next_btf_id = id; 6852 *flag |= tmp_flag; 6853 if (field_name) 6854 *field_name = mname; 6855 return WALK_PTR; 6856 } 6857 } 6858 6859 /* Allow more flexible access within an int as long as 6860 * it is within mtrue_end. 6861 * Since mtrue_end could be the end of an array, 6862 * that also allows using an array of int as a scratch 6863 * space. e.g. skb->cb[]. 6864 */ 6865 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 6866 bpf_log(log, 6867 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6868 mname, mtrue_end, tname, off, size); 6869 return -EACCES; 6870 } 6871 6872 return WALK_SCALAR; 6873 } 6874 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6875 return -EINVAL; 6876 } 6877 6878 int btf_struct_access(struct bpf_verifier_log *log, 6879 const struct bpf_reg_state *reg, 6880 int off, int size, enum bpf_access_type atype __maybe_unused, 6881 u32 *next_btf_id, enum bpf_type_flag *flag, 6882 const char **field_name) 6883 { 6884 const struct btf *btf = reg->btf; 6885 enum bpf_type_flag tmp_flag = 0; 6886 const struct btf_type *t; 6887 u32 id = reg->btf_id; 6888 int err; 6889 6890 while (type_is_alloc(reg->type)) { 6891 struct btf_struct_meta *meta; 6892 struct btf_record *rec; 6893 int i; 6894 6895 meta = btf_find_struct_meta(btf, id); 6896 if (!meta) 6897 break; 6898 rec = meta->record; 6899 for (i = 0; i < rec->cnt; i++) { 6900 struct btf_field *field = &rec->fields[i]; 6901 u32 offset = field->offset; 6902 if (off < offset + field->size && offset < off + size) { 6903 bpf_log(log, 6904 "direct access to %s is disallowed\n", 6905 btf_field_type_name(field->type)); 6906 return -EACCES; 6907 } 6908 } 6909 break; 6910 } 6911 6912 t = btf_type_by_id(btf, id); 6913 do { 6914 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6915 6916 switch (err) { 6917 case WALK_PTR: 6918 /* For local types, the destination register cannot 6919 * become a pointer again. 6920 */ 6921 if (type_is_alloc(reg->type)) 6922 return SCALAR_VALUE; 6923 /* If we found the pointer or scalar on t+off, 6924 * we're done. 6925 */ 6926 *next_btf_id = id; 6927 *flag = tmp_flag; 6928 return PTR_TO_BTF_ID; 6929 case WALK_SCALAR: 6930 return SCALAR_VALUE; 6931 case WALK_STRUCT: 6932 /* We found nested struct, so continue the search 6933 * by diving in it. At this point the offset is 6934 * aligned with the new type, so set it to 0. 6935 */ 6936 t = btf_type_by_id(btf, id); 6937 off = 0; 6938 break; 6939 default: 6940 /* It's either error or unknown return value.. 6941 * scream and leave. 6942 */ 6943 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6944 return -EINVAL; 6945 return err; 6946 } 6947 } while (t); 6948 6949 return -EINVAL; 6950 } 6951 6952 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6953 * the same. Trivial ID check is not enough due to module BTFs, because we can 6954 * end up with two different module BTFs, but IDs point to the common type in 6955 * vmlinux BTF. 6956 */ 6957 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6958 const struct btf *btf2, u32 id2) 6959 { 6960 if (id1 != id2) 6961 return false; 6962 if (btf1 == btf2) 6963 return true; 6964 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6965 } 6966 6967 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6968 const struct btf *btf, u32 id, int off, 6969 const struct btf *need_btf, u32 need_type_id, 6970 bool strict) 6971 { 6972 const struct btf_type *type; 6973 enum bpf_type_flag flag = 0; 6974 int err; 6975 6976 /* Are we already done? */ 6977 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6978 return true; 6979 /* In case of strict type match, we do not walk struct, the top level 6980 * type match must succeed. When strict is true, off should have already 6981 * been 0. 6982 */ 6983 if (strict) 6984 return false; 6985 again: 6986 type = btf_type_by_id(btf, id); 6987 if (!type) 6988 return false; 6989 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6990 if (err != WALK_STRUCT) 6991 return false; 6992 6993 /* We found nested struct object. If it matches 6994 * the requested ID, we're done. Otherwise let's 6995 * continue the search with offset 0 in the new 6996 * type. 6997 */ 6998 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6999 off = 0; 7000 goto again; 7001 } 7002 7003 return true; 7004 } 7005 7006 static int __get_type_size(struct btf *btf, u32 btf_id, 7007 const struct btf_type **ret_type) 7008 { 7009 const struct btf_type *t; 7010 7011 *ret_type = btf_type_by_id(btf, 0); 7012 if (!btf_id) 7013 /* void */ 7014 return 0; 7015 t = btf_type_by_id(btf, btf_id); 7016 while (t && btf_type_is_modifier(t)) 7017 t = btf_type_by_id(btf, t->type); 7018 if (!t) 7019 return -EINVAL; 7020 *ret_type = t; 7021 if (btf_type_is_ptr(t)) 7022 /* kernel size of pointer. Not BPF's size of pointer*/ 7023 return sizeof(void *); 7024 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7025 return t->size; 7026 return -EINVAL; 7027 } 7028 7029 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7030 { 7031 u8 flags = 0; 7032 7033 if (__btf_type_is_struct(t)) 7034 flags |= BTF_FMODEL_STRUCT_ARG; 7035 if (btf_type_is_signed_int(t)) 7036 flags |= BTF_FMODEL_SIGNED_ARG; 7037 7038 return flags; 7039 } 7040 7041 int btf_distill_func_proto(struct bpf_verifier_log *log, 7042 struct btf *btf, 7043 const struct btf_type *func, 7044 const char *tname, 7045 struct btf_func_model *m) 7046 { 7047 const struct btf_param *args; 7048 const struct btf_type *t; 7049 u32 i, nargs; 7050 int ret; 7051 7052 if (!func) { 7053 /* BTF function prototype doesn't match the verifier types. 7054 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7055 */ 7056 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7057 m->arg_size[i] = 8; 7058 m->arg_flags[i] = 0; 7059 } 7060 m->ret_size = 8; 7061 m->ret_flags = 0; 7062 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7063 return 0; 7064 } 7065 args = (const struct btf_param *)(func + 1); 7066 nargs = btf_type_vlen(func); 7067 if (nargs > MAX_BPF_FUNC_ARGS) { 7068 bpf_log(log, 7069 "The function %s has %d arguments. Too many.\n", 7070 tname, nargs); 7071 return -EINVAL; 7072 } 7073 ret = __get_type_size(btf, func->type, &t); 7074 if (ret < 0 || __btf_type_is_struct(t)) { 7075 bpf_log(log, 7076 "The function %s return type %s is unsupported.\n", 7077 tname, btf_type_str(t)); 7078 return -EINVAL; 7079 } 7080 m->ret_size = ret; 7081 m->ret_flags = __get_type_fmodel_flags(t); 7082 7083 for (i = 0; i < nargs; i++) { 7084 if (i == nargs - 1 && args[i].type == 0) { 7085 bpf_log(log, 7086 "The function %s with variable args is unsupported.\n", 7087 tname); 7088 return -EINVAL; 7089 } 7090 ret = __get_type_size(btf, args[i].type, &t); 7091 7092 /* No support of struct argument size greater than 16 bytes */ 7093 if (ret < 0 || ret > 16) { 7094 bpf_log(log, 7095 "The function %s arg%d type %s is unsupported.\n", 7096 tname, i, btf_type_str(t)); 7097 return -EINVAL; 7098 } 7099 if (ret == 0) { 7100 bpf_log(log, 7101 "The function %s has malformed void argument.\n", 7102 tname); 7103 return -EINVAL; 7104 } 7105 m->arg_size[i] = ret; 7106 m->arg_flags[i] = __get_type_fmodel_flags(t); 7107 } 7108 m->nr_args = nargs; 7109 return 0; 7110 } 7111 7112 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7113 * t1 points to BTF_KIND_FUNC in btf1 7114 * t2 points to BTF_KIND_FUNC in btf2 7115 * Returns: 7116 * EINVAL - function prototype mismatch 7117 * EFAULT - verifier bug 7118 * 0 - 99% match. The last 1% is validated by the verifier. 7119 */ 7120 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7121 struct btf *btf1, const struct btf_type *t1, 7122 struct btf *btf2, const struct btf_type *t2) 7123 { 7124 const struct btf_param *args1, *args2; 7125 const char *fn1, *fn2, *s1, *s2; 7126 u32 nargs1, nargs2, i; 7127 7128 fn1 = btf_name_by_offset(btf1, t1->name_off); 7129 fn2 = btf_name_by_offset(btf2, t2->name_off); 7130 7131 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7132 bpf_log(log, "%s() is not a global function\n", fn1); 7133 return -EINVAL; 7134 } 7135 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7136 bpf_log(log, "%s() is not a global function\n", fn2); 7137 return -EINVAL; 7138 } 7139 7140 t1 = btf_type_by_id(btf1, t1->type); 7141 if (!t1 || !btf_type_is_func_proto(t1)) 7142 return -EFAULT; 7143 t2 = btf_type_by_id(btf2, t2->type); 7144 if (!t2 || !btf_type_is_func_proto(t2)) 7145 return -EFAULT; 7146 7147 args1 = (const struct btf_param *)(t1 + 1); 7148 nargs1 = btf_type_vlen(t1); 7149 args2 = (const struct btf_param *)(t2 + 1); 7150 nargs2 = btf_type_vlen(t2); 7151 7152 if (nargs1 != nargs2) { 7153 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7154 fn1, nargs1, fn2, nargs2); 7155 return -EINVAL; 7156 } 7157 7158 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7159 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7160 if (t1->info != t2->info) { 7161 bpf_log(log, 7162 "Return type %s of %s() doesn't match type %s of %s()\n", 7163 btf_type_str(t1), fn1, 7164 btf_type_str(t2), fn2); 7165 return -EINVAL; 7166 } 7167 7168 for (i = 0; i < nargs1; i++) { 7169 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7170 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7171 7172 if (t1->info != t2->info) { 7173 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7174 i, fn1, btf_type_str(t1), 7175 fn2, btf_type_str(t2)); 7176 return -EINVAL; 7177 } 7178 if (btf_type_has_size(t1) && t1->size != t2->size) { 7179 bpf_log(log, 7180 "arg%d in %s() has size %d while %s() has %d\n", 7181 i, fn1, t1->size, 7182 fn2, t2->size); 7183 return -EINVAL; 7184 } 7185 7186 /* global functions are validated with scalars and pointers 7187 * to context only. And only global functions can be replaced. 7188 * Hence type check only those types. 7189 */ 7190 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7191 continue; 7192 if (!btf_type_is_ptr(t1)) { 7193 bpf_log(log, 7194 "arg%d in %s() has unrecognized type\n", 7195 i, fn1); 7196 return -EINVAL; 7197 } 7198 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7199 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7200 if (!btf_type_is_struct(t1)) { 7201 bpf_log(log, 7202 "arg%d in %s() is not a pointer to context\n", 7203 i, fn1); 7204 return -EINVAL; 7205 } 7206 if (!btf_type_is_struct(t2)) { 7207 bpf_log(log, 7208 "arg%d in %s() is not a pointer to context\n", 7209 i, fn2); 7210 return -EINVAL; 7211 } 7212 /* This is an optional check to make program writing easier. 7213 * Compare names of structs and report an error to the user. 7214 * btf_prepare_func_args() already checked that t2 struct 7215 * is a context type. btf_prepare_func_args() will check 7216 * later that t1 struct is a context type as well. 7217 */ 7218 s1 = btf_name_by_offset(btf1, t1->name_off); 7219 s2 = btf_name_by_offset(btf2, t2->name_off); 7220 if (strcmp(s1, s2)) { 7221 bpf_log(log, 7222 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7223 i, fn1, s1, fn2, s2); 7224 return -EINVAL; 7225 } 7226 } 7227 return 0; 7228 } 7229 7230 /* Compare BTFs of given program with BTF of target program */ 7231 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7232 struct btf *btf2, const struct btf_type *t2) 7233 { 7234 struct btf *btf1 = prog->aux->btf; 7235 const struct btf_type *t1; 7236 u32 btf_id = 0; 7237 7238 if (!prog->aux->func_info) { 7239 bpf_log(log, "Program extension requires BTF\n"); 7240 return -EINVAL; 7241 } 7242 7243 btf_id = prog->aux->func_info[0].type_id; 7244 if (!btf_id) 7245 return -EFAULT; 7246 7247 t1 = btf_type_by_id(btf1, btf_id); 7248 if (!t1 || !btf_type_is_func(t1)) 7249 return -EFAULT; 7250 7251 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7252 } 7253 7254 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7255 { 7256 const char *name; 7257 7258 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7259 7260 while (btf_type_is_modifier(t)) 7261 t = btf_type_by_id(btf, t->type); 7262 7263 /* allow either struct or struct forward declaration */ 7264 if (btf_type_is_struct(t) || 7265 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7266 name = btf_str_by_offset(btf, t->name_off); 7267 return name && strcmp(name, "bpf_dynptr") == 0; 7268 } 7269 7270 return false; 7271 } 7272 7273 struct bpf_cand_cache { 7274 const char *name; 7275 u32 name_len; 7276 u16 kind; 7277 u16 cnt; 7278 struct { 7279 const struct btf *btf; 7280 u32 id; 7281 } cands[]; 7282 }; 7283 7284 static DEFINE_MUTEX(cand_cache_mutex); 7285 7286 static struct bpf_cand_cache * 7287 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7288 7289 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7290 const struct btf *btf, const struct btf_type *t) 7291 { 7292 struct bpf_cand_cache *cc; 7293 struct bpf_core_ctx ctx = { 7294 .btf = btf, 7295 .log = log, 7296 }; 7297 u32 kern_type_id, type_id; 7298 int err = 0; 7299 7300 /* skip PTR and modifiers */ 7301 type_id = t->type; 7302 t = btf_type_by_id(btf, t->type); 7303 while (btf_type_is_modifier(t)) { 7304 type_id = t->type; 7305 t = btf_type_by_id(btf, t->type); 7306 } 7307 7308 mutex_lock(&cand_cache_mutex); 7309 cc = bpf_core_find_cands(&ctx, type_id); 7310 if (IS_ERR(cc)) { 7311 err = PTR_ERR(cc); 7312 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7313 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7314 err); 7315 goto cand_cache_unlock; 7316 } 7317 if (cc->cnt != 1) { 7318 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7319 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7320 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7321 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7322 goto cand_cache_unlock; 7323 } 7324 if (btf_is_module(cc->cands[0].btf)) { 7325 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7326 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7327 err = -EOPNOTSUPP; 7328 goto cand_cache_unlock; 7329 } 7330 kern_type_id = cc->cands[0].id; 7331 7332 cand_cache_unlock: 7333 mutex_unlock(&cand_cache_mutex); 7334 if (err) 7335 return err; 7336 7337 return kern_type_id; 7338 } 7339 7340 enum btf_arg_tag { 7341 ARG_TAG_CTX = BIT_ULL(0), 7342 ARG_TAG_NONNULL = BIT_ULL(1), 7343 ARG_TAG_TRUSTED = BIT_ULL(2), 7344 ARG_TAG_NULLABLE = BIT_ULL(3), 7345 ARG_TAG_ARENA = BIT_ULL(4), 7346 }; 7347 7348 /* Process BTF of a function to produce high-level expectation of function 7349 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7350 * is cached in subprog info for reuse. 7351 * Returns: 7352 * EFAULT - there is a verifier bug. Abort verification. 7353 * EINVAL - cannot convert BTF. 7354 * 0 - Successfully processed BTF and constructed argument expectations. 7355 */ 7356 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7357 { 7358 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7359 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7360 struct bpf_verifier_log *log = &env->log; 7361 struct bpf_prog *prog = env->prog; 7362 enum bpf_prog_type prog_type = prog->type; 7363 struct btf *btf = prog->aux->btf; 7364 const struct btf_param *args; 7365 const struct btf_type *t, *ref_t, *fn_t; 7366 u32 i, nargs, btf_id; 7367 const char *tname; 7368 7369 if (sub->args_cached) 7370 return 0; 7371 7372 if (!prog->aux->func_info) { 7373 bpf_log(log, "Verifier bug\n"); 7374 return -EFAULT; 7375 } 7376 7377 btf_id = prog->aux->func_info[subprog].type_id; 7378 if (!btf_id) { 7379 if (!is_global) /* not fatal for static funcs */ 7380 return -EINVAL; 7381 bpf_log(log, "Global functions need valid BTF\n"); 7382 return -EFAULT; 7383 } 7384 7385 fn_t = btf_type_by_id(btf, btf_id); 7386 if (!fn_t || !btf_type_is_func(fn_t)) { 7387 /* These checks were already done by the verifier while loading 7388 * struct bpf_func_info 7389 */ 7390 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7391 subprog); 7392 return -EFAULT; 7393 } 7394 tname = btf_name_by_offset(btf, fn_t->name_off); 7395 7396 if (prog->aux->func_info_aux[subprog].unreliable) { 7397 bpf_log(log, "Verifier bug in function %s()\n", tname); 7398 return -EFAULT; 7399 } 7400 if (prog_type == BPF_PROG_TYPE_EXT) 7401 prog_type = prog->aux->dst_prog->type; 7402 7403 t = btf_type_by_id(btf, fn_t->type); 7404 if (!t || !btf_type_is_func_proto(t)) { 7405 bpf_log(log, "Invalid type of function %s()\n", tname); 7406 return -EFAULT; 7407 } 7408 args = (const struct btf_param *)(t + 1); 7409 nargs = btf_type_vlen(t); 7410 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7411 if (!is_global) 7412 return -EINVAL; 7413 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7414 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7415 return -EINVAL; 7416 } 7417 /* check that function returns int, exception cb also requires this */ 7418 t = btf_type_by_id(btf, t->type); 7419 while (btf_type_is_modifier(t)) 7420 t = btf_type_by_id(btf, t->type); 7421 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7422 if (!is_global) 7423 return -EINVAL; 7424 bpf_log(log, 7425 "Global function %s() doesn't return scalar. Only those are supported.\n", 7426 tname); 7427 return -EINVAL; 7428 } 7429 /* Convert BTF function arguments into verifier types. 7430 * Only PTR_TO_CTX and SCALAR are supported atm. 7431 */ 7432 for (i = 0; i < nargs; i++) { 7433 u32 tags = 0; 7434 int id = 0; 7435 7436 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7437 * register type from BTF type itself 7438 */ 7439 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7440 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7441 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7442 7443 /* disallow arg tags in static subprogs */ 7444 if (!is_global) { 7445 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7446 return -EOPNOTSUPP; 7447 } 7448 7449 if (strcmp(tag, "ctx") == 0) { 7450 tags |= ARG_TAG_CTX; 7451 } else if (strcmp(tag, "trusted") == 0) { 7452 tags |= ARG_TAG_TRUSTED; 7453 } else if (strcmp(tag, "nonnull") == 0) { 7454 tags |= ARG_TAG_NONNULL; 7455 } else if (strcmp(tag, "nullable") == 0) { 7456 tags |= ARG_TAG_NULLABLE; 7457 } else if (strcmp(tag, "arena") == 0) { 7458 tags |= ARG_TAG_ARENA; 7459 } else { 7460 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7461 return -EOPNOTSUPP; 7462 } 7463 } 7464 if (id != -ENOENT) { 7465 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7466 return id; 7467 } 7468 7469 t = btf_type_by_id(btf, args[i].type); 7470 while (btf_type_is_modifier(t)) 7471 t = btf_type_by_id(btf, t->type); 7472 if (!btf_type_is_ptr(t)) 7473 goto skip_pointer; 7474 7475 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7476 if (tags & ~ARG_TAG_CTX) { 7477 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7478 return -EINVAL; 7479 } 7480 if ((tags & ARG_TAG_CTX) && 7481 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7482 prog->expected_attach_type)) 7483 return -EINVAL; 7484 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7485 continue; 7486 } 7487 if (btf_is_dynptr_ptr(btf, t)) { 7488 if (tags) { 7489 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7490 return -EINVAL; 7491 } 7492 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7493 continue; 7494 } 7495 if (tags & ARG_TAG_TRUSTED) { 7496 int kern_type_id; 7497 7498 if (tags & ARG_TAG_NONNULL) { 7499 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7500 return -EINVAL; 7501 } 7502 7503 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7504 if (kern_type_id < 0) 7505 return kern_type_id; 7506 7507 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7508 if (tags & ARG_TAG_NULLABLE) 7509 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7510 sub->args[i].btf_id = kern_type_id; 7511 continue; 7512 } 7513 if (tags & ARG_TAG_ARENA) { 7514 if (tags & ~ARG_TAG_ARENA) { 7515 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7516 return -EINVAL; 7517 } 7518 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7519 continue; 7520 } 7521 if (is_global) { /* generic user data pointer */ 7522 u32 mem_size; 7523 7524 if (tags & ARG_TAG_NULLABLE) { 7525 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7526 return -EINVAL; 7527 } 7528 7529 t = btf_type_skip_modifiers(btf, t->type, NULL); 7530 ref_t = btf_resolve_size(btf, t, &mem_size); 7531 if (IS_ERR(ref_t)) { 7532 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7533 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7534 PTR_ERR(ref_t)); 7535 return -EINVAL; 7536 } 7537 7538 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7539 if (tags & ARG_TAG_NONNULL) 7540 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7541 sub->args[i].mem_size = mem_size; 7542 continue; 7543 } 7544 7545 skip_pointer: 7546 if (tags) { 7547 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7548 return -EINVAL; 7549 } 7550 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7551 sub->args[i].arg_type = ARG_ANYTHING; 7552 continue; 7553 } 7554 if (!is_global) 7555 return -EINVAL; 7556 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7557 i, btf_type_str(t), tname); 7558 return -EINVAL; 7559 } 7560 7561 sub->arg_cnt = nargs; 7562 sub->args_cached = true; 7563 7564 return 0; 7565 } 7566 7567 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7568 struct btf_show *show) 7569 { 7570 const struct btf_type *t = btf_type_by_id(btf, type_id); 7571 7572 show->btf = btf; 7573 memset(&show->state, 0, sizeof(show->state)); 7574 memset(&show->obj, 0, sizeof(show->obj)); 7575 7576 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7577 } 7578 7579 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7580 va_list args) 7581 { 7582 seq_vprintf((struct seq_file *)show->target, fmt, args); 7583 } 7584 7585 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7586 void *obj, struct seq_file *m, u64 flags) 7587 { 7588 struct btf_show sseq; 7589 7590 sseq.target = m; 7591 sseq.showfn = btf_seq_show; 7592 sseq.flags = flags; 7593 7594 btf_type_show(btf, type_id, obj, &sseq); 7595 7596 return sseq.state.status; 7597 } 7598 7599 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7600 struct seq_file *m) 7601 { 7602 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7603 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7604 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7605 } 7606 7607 struct btf_show_snprintf { 7608 struct btf_show show; 7609 int len_left; /* space left in string */ 7610 int len; /* length we would have written */ 7611 }; 7612 7613 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7614 va_list args) 7615 { 7616 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7617 int len; 7618 7619 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7620 7621 if (len < 0) { 7622 ssnprintf->len_left = 0; 7623 ssnprintf->len = len; 7624 } else if (len >= ssnprintf->len_left) { 7625 /* no space, drive on to get length we would have written */ 7626 ssnprintf->len_left = 0; 7627 ssnprintf->len += len; 7628 } else { 7629 ssnprintf->len_left -= len; 7630 ssnprintf->len += len; 7631 show->target += len; 7632 } 7633 } 7634 7635 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7636 char *buf, int len, u64 flags) 7637 { 7638 struct btf_show_snprintf ssnprintf; 7639 7640 ssnprintf.show.target = buf; 7641 ssnprintf.show.flags = flags; 7642 ssnprintf.show.showfn = btf_snprintf_show; 7643 ssnprintf.len_left = len; 7644 ssnprintf.len = 0; 7645 7646 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7647 7648 /* If we encountered an error, return it. */ 7649 if (ssnprintf.show.state.status) 7650 return ssnprintf.show.state.status; 7651 7652 /* Otherwise return length we would have written */ 7653 return ssnprintf.len; 7654 } 7655 7656 #ifdef CONFIG_PROC_FS 7657 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7658 { 7659 const struct btf *btf = filp->private_data; 7660 7661 seq_printf(m, "btf_id:\t%u\n", btf->id); 7662 } 7663 #endif 7664 7665 static int btf_release(struct inode *inode, struct file *filp) 7666 { 7667 btf_put(filp->private_data); 7668 return 0; 7669 } 7670 7671 const struct file_operations btf_fops = { 7672 #ifdef CONFIG_PROC_FS 7673 .show_fdinfo = bpf_btf_show_fdinfo, 7674 #endif 7675 .release = btf_release, 7676 }; 7677 7678 static int __btf_new_fd(struct btf *btf) 7679 { 7680 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7681 } 7682 7683 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7684 { 7685 struct btf *btf; 7686 int ret; 7687 7688 btf = btf_parse(attr, uattr, uattr_size); 7689 if (IS_ERR(btf)) 7690 return PTR_ERR(btf); 7691 7692 ret = btf_alloc_id(btf); 7693 if (ret) { 7694 btf_free(btf); 7695 return ret; 7696 } 7697 7698 /* 7699 * The BTF ID is published to the userspace. 7700 * All BTF free must go through call_rcu() from 7701 * now on (i.e. free by calling btf_put()). 7702 */ 7703 7704 ret = __btf_new_fd(btf); 7705 if (ret < 0) 7706 btf_put(btf); 7707 7708 return ret; 7709 } 7710 7711 struct btf *btf_get_by_fd(int fd) 7712 { 7713 struct btf *btf; 7714 CLASS(fd, f)(fd); 7715 7716 if (fd_empty(f)) 7717 return ERR_PTR(-EBADF); 7718 7719 if (fd_file(f)->f_op != &btf_fops) 7720 return ERR_PTR(-EINVAL); 7721 7722 btf = fd_file(f)->private_data; 7723 refcount_inc(&btf->refcnt); 7724 7725 return btf; 7726 } 7727 7728 int btf_get_info_by_fd(const struct btf *btf, 7729 const union bpf_attr *attr, 7730 union bpf_attr __user *uattr) 7731 { 7732 struct bpf_btf_info __user *uinfo; 7733 struct bpf_btf_info info; 7734 u32 info_copy, btf_copy; 7735 void __user *ubtf; 7736 char __user *uname; 7737 u32 uinfo_len, uname_len, name_len; 7738 int ret = 0; 7739 7740 uinfo = u64_to_user_ptr(attr->info.info); 7741 uinfo_len = attr->info.info_len; 7742 7743 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7744 memset(&info, 0, sizeof(info)); 7745 if (copy_from_user(&info, uinfo, info_copy)) 7746 return -EFAULT; 7747 7748 info.id = btf->id; 7749 ubtf = u64_to_user_ptr(info.btf); 7750 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7751 if (copy_to_user(ubtf, btf->data, btf_copy)) 7752 return -EFAULT; 7753 info.btf_size = btf->data_size; 7754 7755 info.kernel_btf = btf->kernel_btf; 7756 7757 uname = u64_to_user_ptr(info.name); 7758 uname_len = info.name_len; 7759 if (!uname ^ !uname_len) 7760 return -EINVAL; 7761 7762 name_len = strlen(btf->name); 7763 info.name_len = name_len; 7764 7765 if (uname) { 7766 if (uname_len >= name_len + 1) { 7767 if (copy_to_user(uname, btf->name, name_len + 1)) 7768 return -EFAULT; 7769 } else { 7770 char zero = '\0'; 7771 7772 if (copy_to_user(uname, btf->name, uname_len - 1)) 7773 return -EFAULT; 7774 if (put_user(zero, uname + uname_len - 1)) 7775 return -EFAULT; 7776 /* let user-space know about too short buffer */ 7777 ret = -ENOSPC; 7778 } 7779 } 7780 7781 if (copy_to_user(uinfo, &info, info_copy) || 7782 put_user(info_copy, &uattr->info.info_len)) 7783 return -EFAULT; 7784 7785 return ret; 7786 } 7787 7788 int btf_get_fd_by_id(u32 id) 7789 { 7790 struct btf *btf; 7791 int fd; 7792 7793 rcu_read_lock(); 7794 btf = idr_find(&btf_idr, id); 7795 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7796 btf = ERR_PTR(-ENOENT); 7797 rcu_read_unlock(); 7798 7799 if (IS_ERR(btf)) 7800 return PTR_ERR(btf); 7801 7802 fd = __btf_new_fd(btf); 7803 if (fd < 0) 7804 btf_put(btf); 7805 7806 return fd; 7807 } 7808 7809 u32 btf_obj_id(const struct btf *btf) 7810 { 7811 return btf->id; 7812 } 7813 7814 bool btf_is_kernel(const struct btf *btf) 7815 { 7816 return btf->kernel_btf; 7817 } 7818 7819 bool btf_is_module(const struct btf *btf) 7820 { 7821 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7822 } 7823 7824 enum { 7825 BTF_MODULE_F_LIVE = (1 << 0), 7826 }; 7827 7828 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7829 struct btf_module { 7830 struct list_head list; 7831 struct module *module; 7832 struct btf *btf; 7833 struct bin_attribute *sysfs_attr; 7834 int flags; 7835 }; 7836 7837 static LIST_HEAD(btf_modules); 7838 static DEFINE_MUTEX(btf_module_mutex); 7839 7840 static ssize_t 7841 btf_module_read(struct file *file, struct kobject *kobj, 7842 struct bin_attribute *bin_attr, 7843 char *buf, loff_t off, size_t len) 7844 { 7845 const struct btf *btf = bin_attr->private; 7846 7847 memcpy(buf, btf->data + off, len); 7848 return len; 7849 } 7850 7851 static void purge_cand_cache(struct btf *btf); 7852 7853 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7854 void *module) 7855 { 7856 struct btf_module *btf_mod, *tmp; 7857 struct module *mod = module; 7858 struct btf *btf; 7859 int err = 0; 7860 7861 if (mod->btf_data_size == 0 || 7862 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7863 op != MODULE_STATE_GOING)) 7864 goto out; 7865 7866 switch (op) { 7867 case MODULE_STATE_COMING: 7868 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7869 if (!btf_mod) { 7870 err = -ENOMEM; 7871 goto out; 7872 } 7873 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 7874 mod->btf_base_data, mod->btf_base_data_size); 7875 if (IS_ERR(btf)) { 7876 kfree(btf_mod); 7877 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7878 pr_warn("failed to validate module [%s] BTF: %ld\n", 7879 mod->name, PTR_ERR(btf)); 7880 err = PTR_ERR(btf); 7881 } else { 7882 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7883 } 7884 goto out; 7885 } 7886 err = btf_alloc_id(btf); 7887 if (err) { 7888 btf_free(btf); 7889 kfree(btf_mod); 7890 goto out; 7891 } 7892 7893 purge_cand_cache(NULL); 7894 mutex_lock(&btf_module_mutex); 7895 btf_mod->module = module; 7896 btf_mod->btf = btf; 7897 list_add(&btf_mod->list, &btf_modules); 7898 mutex_unlock(&btf_module_mutex); 7899 7900 if (IS_ENABLED(CONFIG_SYSFS)) { 7901 struct bin_attribute *attr; 7902 7903 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7904 if (!attr) 7905 goto out; 7906 7907 sysfs_bin_attr_init(attr); 7908 attr->attr.name = btf->name; 7909 attr->attr.mode = 0444; 7910 attr->size = btf->data_size; 7911 attr->private = btf; 7912 attr->read = btf_module_read; 7913 7914 err = sysfs_create_bin_file(btf_kobj, attr); 7915 if (err) { 7916 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7917 mod->name, err); 7918 kfree(attr); 7919 err = 0; 7920 goto out; 7921 } 7922 7923 btf_mod->sysfs_attr = attr; 7924 } 7925 7926 break; 7927 case MODULE_STATE_LIVE: 7928 mutex_lock(&btf_module_mutex); 7929 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7930 if (btf_mod->module != module) 7931 continue; 7932 7933 btf_mod->flags |= BTF_MODULE_F_LIVE; 7934 break; 7935 } 7936 mutex_unlock(&btf_module_mutex); 7937 break; 7938 case MODULE_STATE_GOING: 7939 mutex_lock(&btf_module_mutex); 7940 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7941 if (btf_mod->module != module) 7942 continue; 7943 7944 list_del(&btf_mod->list); 7945 if (btf_mod->sysfs_attr) 7946 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7947 purge_cand_cache(btf_mod->btf); 7948 btf_put(btf_mod->btf); 7949 kfree(btf_mod->sysfs_attr); 7950 kfree(btf_mod); 7951 break; 7952 } 7953 mutex_unlock(&btf_module_mutex); 7954 break; 7955 } 7956 out: 7957 return notifier_from_errno(err); 7958 } 7959 7960 static struct notifier_block btf_module_nb = { 7961 .notifier_call = btf_module_notify, 7962 }; 7963 7964 static int __init btf_module_init(void) 7965 { 7966 register_module_notifier(&btf_module_nb); 7967 return 0; 7968 } 7969 7970 fs_initcall(btf_module_init); 7971 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7972 7973 struct module *btf_try_get_module(const struct btf *btf) 7974 { 7975 struct module *res = NULL; 7976 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7977 struct btf_module *btf_mod, *tmp; 7978 7979 mutex_lock(&btf_module_mutex); 7980 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7981 if (btf_mod->btf != btf) 7982 continue; 7983 7984 /* We must only consider module whose __init routine has 7985 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7986 * which is set from the notifier callback for 7987 * MODULE_STATE_LIVE. 7988 */ 7989 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7990 res = btf_mod->module; 7991 7992 break; 7993 } 7994 mutex_unlock(&btf_module_mutex); 7995 #endif 7996 7997 return res; 7998 } 7999 8000 /* Returns struct btf corresponding to the struct module. 8001 * This function can return NULL or ERR_PTR. 8002 */ 8003 static struct btf *btf_get_module_btf(const struct module *module) 8004 { 8005 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8006 struct btf_module *btf_mod, *tmp; 8007 #endif 8008 struct btf *btf = NULL; 8009 8010 if (!module) { 8011 btf = bpf_get_btf_vmlinux(); 8012 if (!IS_ERR_OR_NULL(btf)) 8013 btf_get(btf); 8014 return btf; 8015 } 8016 8017 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8018 mutex_lock(&btf_module_mutex); 8019 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8020 if (btf_mod->module != module) 8021 continue; 8022 8023 btf_get(btf_mod->btf); 8024 btf = btf_mod->btf; 8025 break; 8026 } 8027 mutex_unlock(&btf_module_mutex); 8028 #endif 8029 8030 return btf; 8031 } 8032 8033 static int check_btf_kconfigs(const struct module *module, const char *feature) 8034 { 8035 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8036 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8037 return -ENOENT; 8038 } 8039 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8040 pr_warn("missing module BTF, cannot register %s\n", feature); 8041 return 0; 8042 } 8043 8044 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8045 { 8046 struct btf *btf = NULL; 8047 int btf_obj_fd = 0; 8048 long ret; 8049 8050 if (flags) 8051 return -EINVAL; 8052 8053 if (name_sz <= 1 || name[name_sz - 1]) 8054 return -EINVAL; 8055 8056 ret = bpf_find_btf_id(name, kind, &btf); 8057 if (ret > 0 && btf_is_module(btf)) { 8058 btf_obj_fd = __btf_new_fd(btf); 8059 if (btf_obj_fd < 0) { 8060 btf_put(btf); 8061 return btf_obj_fd; 8062 } 8063 return ret | (((u64)btf_obj_fd) << 32); 8064 } 8065 if (ret > 0) 8066 btf_put(btf); 8067 return ret; 8068 } 8069 8070 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8071 .func = bpf_btf_find_by_name_kind, 8072 .gpl_only = false, 8073 .ret_type = RET_INTEGER, 8074 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8075 .arg2_type = ARG_CONST_SIZE, 8076 .arg3_type = ARG_ANYTHING, 8077 .arg4_type = ARG_ANYTHING, 8078 }; 8079 8080 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8081 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8082 BTF_TRACING_TYPE_xxx 8083 #undef BTF_TRACING_TYPE 8084 8085 /* Validate well-formedness of iter argument type. 8086 * On success, return positive BTF ID of iter state's STRUCT type. 8087 * On error, negative error is returned. 8088 */ 8089 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8090 { 8091 const struct btf_param *arg; 8092 const struct btf_type *t; 8093 const char *name; 8094 int btf_id; 8095 8096 if (btf_type_vlen(func) <= arg_idx) 8097 return -EINVAL; 8098 8099 arg = &btf_params(func)[arg_idx]; 8100 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8101 if (!t || !btf_type_is_ptr(t)) 8102 return -EINVAL; 8103 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8104 if (!t || !__btf_type_is_struct(t)) 8105 return -EINVAL; 8106 8107 name = btf_name_by_offset(btf, t->name_off); 8108 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8109 return -EINVAL; 8110 8111 return btf_id; 8112 } 8113 8114 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8115 const struct btf_type *func, u32 func_flags) 8116 { 8117 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8118 const char *sfx, *iter_name; 8119 const struct btf_type *t; 8120 char exp_name[128]; 8121 u32 nr_args; 8122 int btf_id; 8123 8124 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8125 if (!flags || (flags & (flags - 1))) 8126 return -EINVAL; 8127 8128 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8129 nr_args = btf_type_vlen(func); 8130 if (nr_args < 1) 8131 return -EINVAL; 8132 8133 btf_id = btf_check_iter_arg(btf, func, 0); 8134 if (btf_id < 0) 8135 return btf_id; 8136 8137 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8138 * fit nicely in stack slots 8139 */ 8140 t = btf_type_by_id(btf, btf_id); 8141 if (t->size == 0 || (t->size % 8)) 8142 return -EINVAL; 8143 8144 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8145 * naming pattern 8146 */ 8147 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8148 if (flags & KF_ITER_NEW) 8149 sfx = "new"; 8150 else if (flags & KF_ITER_NEXT) 8151 sfx = "next"; 8152 else /* (flags & KF_ITER_DESTROY) */ 8153 sfx = "destroy"; 8154 8155 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8156 if (strcmp(func_name, exp_name)) 8157 return -EINVAL; 8158 8159 /* only iter constructor should have extra arguments */ 8160 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8161 return -EINVAL; 8162 8163 if (flags & KF_ITER_NEXT) { 8164 /* bpf_iter_<type>_next() should return pointer */ 8165 t = btf_type_skip_modifiers(btf, func->type, NULL); 8166 if (!t || !btf_type_is_ptr(t)) 8167 return -EINVAL; 8168 } 8169 8170 if (flags & KF_ITER_DESTROY) { 8171 /* bpf_iter_<type>_destroy() should return void */ 8172 t = btf_type_by_id(btf, func->type); 8173 if (!t || !btf_type_is_void(t)) 8174 return -EINVAL; 8175 } 8176 8177 return 0; 8178 } 8179 8180 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8181 { 8182 const struct btf_type *func; 8183 const char *func_name; 8184 int err; 8185 8186 /* any kfunc should be FUNC -> FUNC_PROTO */ 8187 func = btf_type_by_id(btf, func_id); 8188 if (!func || !btf_type_is_func(func)) 8189 return -EINVAL; 8190 8191 /* sanity check kfunc name */ 8192 func_name = btf_name_by_offset(btf, func->name_off); 8193 if (!func_name || !func_name[0]) 8194 return -EINVAL; 8195 8196 func = btf_type_by_id(btf, func->type); 8197 if (!func || !btf_type_is_func_proto(func)) 8198 return -EINVAL; 8199 8200 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8201 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8202 if (err) 8203 return err; 8204 } 8205 8206 return 0; 8207 } 8208 8209 /* Kernel Function (kfunc) BTF ID set registration API */ 8210 8211 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8212 const struct btf_kfunc_id_set *kset) 8213 { 8214 struct btf_kfunc_hook_filter *hook_filter; 8215 struct btf_id_set8 *add_set = kset->set; 8216 bool vmlinux_set = !btf_is_module(btf); 8217 bool add_filter = !!kset->filter; 8218 struct btf_kfunc_set_tab *tab; 8219 struct btf_id_set8 *set; 8220 u32 set_cnt, i; 8221 int ret; 8222 8223 if (hook >= BTF_KFUNC_HOOK_MAX) { 8224 ret = -EINVAL; 8225 goto end; 8226 } 8227 8228 if (!add_set->cnt) 8229 return 0; 8230 8231 tab = btf->kfunc_set_tab; 8232 8233 if (tab && add_filter) { 8234 u32 i; 8235 8236 hook_filter = &tab->hook_filters[hook]; 8237 for (i = 0; i < hook_filter->nr_filters; i++) { 8238 if (hook_filter->filters[i] == kset->filter) { 8239 add_filter = false; 8240 break; 8241 } 8242 } 8243 8244 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8245 ret = -E2BIG; 8246 goto end; 8247 } 8248 } 8249 8250 if (!tab) { 8251 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8252 if (!tab) 8253 return -ENOMEM; 8254 btf->kfunc_set_tab = tab; 8255 } 8256 8257 set = tab->sets[hook]; 8258 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8259 * for module sets. 8260 */ 8261 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8262 ret = -EINVAL; 8263 goto end; 8264 } 8265 8266 /* In case of vmlinux sets, there may be more than one set being 8267 * registered per hook. To create a unified set, we allocate a new set 8268 * and concatenate all individual sets being registered. While each set 8269 * is individually sorted, they may become unsorted when concatenated, 8270 * hence re-sorting the final set again is required to make binary 8271 * searching the set using btf_id_set8_contains function work. 8272 * 8273 * For module sets, we need to allocate as we may need to relocate 8274 * BTF ids. 8275 */ 8276 set_cnt = set ? set->cnt : 0; 8277 8278 if (set_cnt > U32_MAX - add_set->cnt) { 8279 ret = -EOVERFLOW; 8280 goto end; 8281 } 8282 8283 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8284 ret = -E2BIG; 8285 goto end; 8286 } 8287 8288 /* Grow set */ 8289 set = krealloc(tab->sets[hook], 8290 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8291 GFP_KERNEL | __GFP_NOWARN); 8292 if (!set) { 8293 ret = -ENOMEM; 8294 goto end; 8295 } 8296 8297 /* For newly allocated set, initialize set->cnt to 0 */ 8298 if (!tab->sets[hook]) 8299 set->cnt = 0; 8300 tab->sets[hook] = set; 8301 8302 /* Concatenate the two sets */ 8303 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8304 /* Now that the set is copied, update with relocated BTF ids */ 8305 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8306 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8307 8308 set->cnt += add_set->cnt; 8309 8310 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8311 8312 if (add_filter) { 8313 hook_filter = &tab->hook_filters[hook]; 8314 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8315 } 8316 return 0; 8317 end: 8318 btf_free_kfunc_set_tab(btf); 8319 return ret; 8320 } 8321 8322 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8323 enum btf_kfunc_hook hook, 8324 u32 kfunc_btf_id, 8325 const struct bpf_prog *prog) 8326 { 8327 struct btf_kfunc_hook_filter *hook_filter; 8328 struct btf_id_set8 *set; 8329 u32 *id, i; 8330 8331 if (hook >= BTF_KFUNC_HOOK_MAX) 8332 return NULL; 8333 if (!btf->kfunc_set_tab) 8334 return NULL; 8335 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8336 for (i = 0; i < hook_filter->nr_filters; i++) { 8337 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8338 return NULL; 8339 } 8340 set = btf->kfunc_set_tab->sets[hook]; 8341 if (!set) 8342 return NULL; 8343 id = btf_id_set8_contains(set, kfunc_btf_id); 8344 if (!id) 8345 return NULL; 8346 /* The flags for BTF ID are located next to it */ 8347 return id + 1; 8348 } 8349 8350 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8351 { 8352 switch (prog_type) { 8353 case BPF_PROG_TYPE_UNSPEC: 8354 return BTF_KFUNC_HOOK_COMMON; 8355 case BPF_PROG_TYPE_XDP: 8356 return BTF_KFUNC_HOOK_XDP; 8357 case BPF_PROG_TYPE_SCHED_CLS: 8358 return BTF_KFUNC_HOOK_TC; 8359 case BPF_PROG_TYPE_STRUCT_OPS: 8360 return BTF_KFUNC_HOOK_STRUCT_OPS; 8361 case BPF_PROG_TYPE_TRACING: 8362 case BPF_PROG_TYPE_TRACEPOINT: 8363 case BPF_PROG_TYPE_PERF_EVENT: 8364 case BPF_PROG_TYPE_LSM: 8365 return BTF_KFUNC_HOOK_TRACING; 8366 case BPF_PROG_TYPE_SYSCALL: 8367 return BTF_KFUNC_HOOK_SYSCALL; 8368 case BPF_PROG_TYPE_CGROUP_SKB: 8369 case BPF_PROG_TYPE_CGROUP_SOCK: 8370 case BPF_PROG_TYPE_CGROUP_DEVICE: 8371 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8372 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8373 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8374 return BTF_KFUNC_HOOK_CGROUP; 8375 case BPF_PROG_TYPE_SCHED_ACT: 8376 return BTF_KFUNC_HOOK_SCHED_ACT; 8377 case BPF_PROG_TYPE_SK_SKB: 8378 return BTF_KFUNC_HOOK_SK_SKB; 8379 case BPF_PROG_TYPE_SOCKET_FILTER: 8380 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8381 case BPF_PROG_TYPE_LWT_OUT: 8382 case BPF_PROG_TYPE_LWT_IN: 8383 case BPF_PROG_TYPE_LWT_XMIT: 8384 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8385 return BTF_KFUNC_HOOK_LWT; 8386 case BPF_PROG_TYPE_NETFILTER: 8387 return BTF_KFUNC_HOOK_NETFILTER; 8388 case BPF_PROG_TYPE_KPROBE: 8389 return BTF_KFUNC_HOOK_KPROBE; 8390 default: 8391 return BTF_KFUNC_HOOK_MAX; 8392 } 8393 } 8394 8395 /* Caution: 8396 * Reference to the module (obtained using btf_try_get_module) corresponding to 8397 * the struct btf *MUST* be held when calling this function from verifier 8398 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8399 * keeping the reference for the duration of the call provides the necessary 8400 * protection for looking up a well-formed btf->kfunc_set_tab. 8401 */ 8402 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8403 u32 kfunc_btf_id, 8404 const struct bpf_prog *prog) 8405 { 8406 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8407 enum btf_kfunc_hook hook; 8408 u32 *kfunc_flags; 8409 8410 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8411 if (kfunc_flags) 8412 return kfunc_flags; 8413 8414 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8415 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8416 } 8417 8418 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8419 const struct bpf_prog *prog) 8420 { 8421 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8422 } 8423 8424 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8425 const struct btf_kfunc_id_set *kset) 8426 { 8427 struct btf *btf; 8428 int ret, i; 8429 8430 btf = btf_get_module_btf(kset->owner); 8431 if (!btf) 8432 return check_btf_kconfigs(kset->owner, "kfunc"); 8433 if (IS_ERR(btf)) 8434 return PTR_ERR(btf); 8435 8436 for (i = 0; i < kset->set->cnt; i++) { 8437 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8438 kset->set->pairs[i].flags); 8439 if (ret) 8440 goto err_out; 8441 } 8442 8443 ret = btf_populate_kfunc_set(btf, hook, kset); 8444 8445 err_out: 8446 btf_put(btf); 8447 return ret; 8448 } 8449 8450 /* This function must be invoked only from initcalls/module init functions */ 8451 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8452 const struct btf_kfunc_id_set *kset) 8453 { 8454 enum btf_kfunc_hook hook; 8455 8456 /* All kfuncs need to be tagged as such in BTF. 8457 * WARN() for initcall registrations that do not check errors. 8458 */ 8459 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8460 WARN_ON(!kset->owner); 8461 return -EINVAL; 8462 } 8463 8464 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8465 return __register_btf_kfunc_id_set(hook, kset); 8466 } 8467 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8468 8469 /* This function must be invoked only from initcalls/module init functions */ 8470 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8471 { 8472 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8473 } 8474 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8475 8476 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8477 { 8478 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8479 struct btf_id_dtor_kfunc *dtor; 8480 8481 if (!tab) 8482 return -ENOENT; 8483 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8484 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8485 */ 8486 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8487 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8488 if (!dtor) 8489 return -ENOENT; 8490 return dtor->kfunc_btf_id; 8491 } 8492 8493 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8494 { 8495 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8496 const struct btf_param *args; 8497 s32 dtor_btf_id; 8498 u32 nr_args, i; 8499 8500 for (i = 0; i < cnt; i++) { 8501 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8502 8503 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8504 if (!dtor_func || !btf_type_is_func(dtor_func)) 8505 return -EINVAL; 8506 8507 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8508 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8509 return -EINVAL; 8510 8511 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8512 t = btf_type_by_id(btf, dtor_func_proto->type); 8513 if (!t || !btf_type_is_void(t)) 8514 return -EINVAL; 8515 8516 nr_args = btf_type_vlen(dtor_func_proto); 8517 if (nr_args != 1) 8518 return -EINVAL; 8519 args = btf_params(dtor_func_proto); 8520 t = btf_type_by_id(btf, args[0].type); 8521 /* Allow any pointer type, as width on targets Linux supports 8522 * will be same for all pointer types (i.e. sizeof(void *)) 8523 */ 8524 if (!t || !btf_type_is_ptr(t)) 8525 return -EINVAL; 8526 } 8527 return 0; 8528 } 8529 8530 /* This function must be invoked only from initcalls/module init functions */ 8531 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8532 struct module *owner) 8533 { 8534 struct btf_id_dtor_kfunc_tab *tab; 8535 struct btf *btf; 8536 u32 tab_cnt, i; 8537 int ret; 8538 8539 btf = btf_get_module_btf(owner); 8540 if (!btf) 8541 return check_btf_kconfigs(owner, "dtor kfuncs"); 8542 if (IS_ERR(btf)) 8543 return PTR_ERR(btf); 8544 8545 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8546 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8547 ret = -E2BIG; 8548 goto end; 8549 } 8550 8551 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8552 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8553 if (ret < 0) 8554 goto end; 8555 8556 tab = btf->dtor_kfunc_tab; 8557 /* Only one call allowed for modules */ 8558 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8559 ret = -EINVAL; 8560 goto end; 8561 } 8562 8563 tab_cnt = tab ? tab->cnt : 0; 8564 if (tab_cnt > U32_MAX - add_cnt) { 8565 ret = -EOVERFLOW; 8566 goto end; 8567 } 8568 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8569 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8570 ret = -E2BIG; 8571 goto end; 8572 } 8573 8574 tab = krealloc(btf->dtor_kfunc_tab, 8575 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8576 GFP_KERNEL | __GFP_NOWARN); 8577 if (!tab) { 8578 ret = -ENOMEM; 8579 goto end; 8580 } 8581 8582 if (!btf->dtor_kfunc_tab) 8583 tab->cnt = 0; 8584 btf->dtor_kfunc_tab = tab; 8585 8586 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8587 8588 /* remap BTF ids based on BTF relocation (if any) */ 8589 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8590 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8591 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8592 } 8593 8594 tab->cnt += add_cnt; 8595 8596 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8597 8598 end: 8599 if (ret) 8600 btf_free_dtor_kfunc_tab(btf); 8601 btf_put(btf); 8602 return ret; 8603 } 8604 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8605 8606 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8607 8608 /* Check local and target types for compatibility. This check is used for 8609 * type-based CO-RE relocations and follow slightly different rules than 8610 * field-based relocations. This function assumes that root types were already 8611 * checked for name match. Beyond that initial root-level name check, names 8612 * are completely ignored. Compatibility rules are as follows: 8613 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8614 * kind should match for local and target types (i.e., STRUCT is not 8615 * compatible with UNION); 8616 * - for ENUMs/ENUM64s, the size is ignored; 8617 * - for INT, size and signedness are ignored; 8618 * - for ARRAY, dimensionality is ignored, element types are checked for 8619 * compatibility recursively; 8620 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8621 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8622 * - FUNC_PROTOs are compatible if they have compatible signature: same 8623 * number of input args and compatible return and argument types. 8624 * These rules are not set in stone and probably will be adjusted as we get 8625 * more experience with using BPF CO-RE relocations. 8626 */ 8627 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8628 const struct btf *targ_btf, __u32 targ_id) 8629 { 8630 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8631 MAX_TYPES_ARE_COMPAT_DEPTH); 8632 } 8633 8634 #define MAX_TYPES_MATCH_DEPTH 2 8635 8636 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8637 const struct btf *targ_btf, u32 targ_id) 8638 { 8639 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8640 MAX_TYPES_MATCH_DEPTH); 8641 } 8642 8643 static bool bpf_core_is_flavor_sep(const char *s) 8644 { 8645 /* check X___Y name pattern, where X and Y are not underscores */ 8646 return s[0] != '_' && /* X */ 8647 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8648 s[4] != '_'; /* Y */ 8649 } 8650 8651 size_t bpf_core_essential_name_len(const char *name) 8652 { 8653 size_t n = strlen(name); 8654 int i; 8655 8656 for (i = n - 5; i >= 0; i--) { 8657 if (bpf_core_is_flavor_sep(name + i)) 8658 return i + 1; 8659 } 8660 return n; 8661 } 8662 8663 static void bpf_free_cands(struct bpf_cand_cache *cands) 8664 { 8665 if (!cands->cnt) 8666 /* empty candidate array was allocated on stack */ 8667 return; 8668 kfree(cands); 8669 } 8670 8671 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8672 { 8673 kfree(cands->name); 8674 kfree(cands); 8675 } 8676 8677 #define VMLINUX_CAND_CACHE_SIZE 31 8678 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8679 8680 #define MODULE_CAND_CACHE_SIZE 31 8681 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8682 8683 static void __print_cand_cache(struct bpf_verifier_log *log, 8684 struct bpf_cand_cache **cache, 8685 int cache_size) 8686 { 8687 struct bpf_cand_cache *cc; 8688 int i, j; 8689 8690 for (i = 0; i < cache_size; i++) { 8691 cc = cache[i]; 8692 if (!cc) 8693 continue; 8694 bpf_log(log, "[%d]%s(", i, cc->name); 8695 for (j = 0; j < cc->cnt; j++) { 8696 bpf_log(log, "%d", cc->cands[j].id); 8697 if (j < cc->cnt - 1) 8698 bpf_log(log, " "); 8699 } 8700 bpf_log(log, "), "); 8701 } 8702 } 8703 8704 static void print_cand_cache(struct bpf_verifier_log *log) 8705 { 8706 mutex_lock(&cand_cache_mutex); 8707 bpf_log(log, "vmlinux_cand_cache:"); 8708 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8709 bpf_log(log, "\nmodule_cand_cache:"); 8710 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8711 bpf_log(log, "\n"); 8712 mutex_unlock(&cand_cache_mutex); 8713 } 8714 8715 static u32 hash_cands(struct bpf_cand_cache *cands) 8716 { 8717 return jhash(cands->name, cands->name_len, 0); 8718 } 8719 8720 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8721 struct bpf_cand_cache **cache, 8722 int cache_size) 8723 { 8724 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8725 8726 if (cc && cc->name_len == cands->name_len && 8727 !strncmp(cc->name, cands->name, cands->name_len)) 8728 return cc; 8729 return NULL; 8730 } 8731 8732 static size_t sizeof_cands(int cnt) 8733 { 8734 return offsetof(struct bpf_cand_cache, cands[cnt]); 8735 } 8736 8737 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8738 struct bpf_cand_cache **cache, 8739 int cache_size) 8740 { 8741 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8742 8743 if (*cc) { 8744 bpf_free_cands_from_cache(*cc); 8745 *cc = NULL; 8746 } 8747 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8748 if (!new_cands) { 8749 bpf_free_cands(cands); 8750 return ERR_PTR(-ENOMEM); 8751 } 8752 /* strdup the name, since it will stay in cache. 8753 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8754 */ 8755 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8756 bpf_free_cands(cands); 8757 if (!new_cands->name) { 8758 kfree(new_cands); 8759 return ERR_PTR(-ENOMEM); 8760 } 8761 *cc = new_cands; 8762 return new_cands; 8763 } 8764 8765 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8766 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8767 int cache_size) 8768 { 8769 struct bpf_cand_cache *cc; 8770 int i, j; 8771 8772 for (i = 0; i < cache_size; i++) { 8773 cc = cache[i]; 8774 if (!cc) 8775 continue; 8776 if (!btf) { 8777 /* when new module is loaded purge all of module_cand_cache, 8778 * since new module might have candidates with the name 8779 * that matches cached cands. 8780 */ 8781 bpf_free_cands_from_cache(cc); 8782 cache[i] = NULL; 8783 continue; 8784 } 8785 /* when module is unloaded purge cache entries 8786 * that match module's btf 8787 */ 8788 for (j = 0; j < cc->cnt; j++) 8789 if (cc->cands[j].btf == btf) { 8790 bpf_free_cands_from_cache(cc); 8791 cache[i] = NULL; 8792 break; 8793 } 8794 } 8795 8796 } 8797 8798 static void purge_cand_cache(struct btf *btf) 8799 { 8800 mutex_lock(&cand_cache_mutex); 8801 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8802 mutex_unlock(&cand_cache_mutex); 8803 } 8804 #endif 8805 8806 static struct bpf_cand_cache * 8807 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8808 int targ_start_id) 8809 { 8810 struct bpf_cand_cache *new_cands; 8811 const struct btf_type *t; 8812 const char *targ_name; 8813 size_t targ_essent_len; 8814 int n, i; 8815 8816 n = btf_nr_types(targ_btf); 8817 for (i = targ_start_id; i < n; i++) { 8818 t = btf_type_by_id(targ_btf, i); 8819 if (btf_kind(t) != cands->kind) 8820 continue; 8821 8822 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8823 if (!targ_name) 8824 continue; 8825 8826 /* the resched point is before strncmp to make sure that search 8827 * for non-existing name will have a chance to schedule(). 8828 */ 8829 cond_resched(); 8830 8831 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8832 continue; 8833 8834 targ_essent_len = bpf_core_essential_name_len(targ_name); 8835 if (targ_essent_len != cands->name_len) 8836 continue; 8837 8838 /* most of the time there is only one candidate for a given kind+name pair */ 8839 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8840 if (!new_cands) { 8841 bpf_free_cands(cands); 8842 return ERR_PTR(-ENOMEM); 8843 } 8844 8845 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8846 bpf_free_cands(cands); 8847 cands = new_cands; 8848 cands->cands[cands->cnt].btf = targ_btf; 8849 cands->cands[cands->cnt].id = i; 8850 cands->cnt++; 8851 } 8852 return cands; 8853 } 8854 8855 static struct bpf_cand_cache * 8856 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8857 { 8858 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8859 const struct btf *local_btf = ctx->btf; 8860 const struct btf_type *local_type; 8861 const struct btf *main_btf; 8862 size_t local_essent_len; 8863 struct btf *mod_btf; 8864 const char *name; 8865 int id; 8866 8867 main_btf = bpf_get_btf_vmlinux(); 8868 if (IS_ERR(main_btf)) 8869 return ERR_CAST(main_btf); 8870 if (!main_btf) 8871 return ERR_PTR(-EINVAL); 8872 8873 local_type = btf_type_by_id(local_btf, local_type_id); 8874 if (!local_type) 8875 return ERR_PTR(-EINVAL); 8876 8877 name = btf_name_by_offset(local_btf, local_type->name_off); 8878 if (str_is_empty(name)) 8879 return ERR_PTR(-EINVAL); 8880 local_essent_len = bpf_core_essential_name_len(name); 8881 8882 cands = &local_cand; 8883 cands->name = name; 8884 cands->kind = btf_kind(local_type); 8885 cands->name_len = local_essent_len; 8886 8887 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8888 /* cands is a pointer to stack here */ 8889 if (cc) { 8890 if (cc->cnt) 8891 return cc; 8892 goto check_modules; 8893 } 8894 8895 /* Attempt to find target candidates in vmlinux BTF first */ 8896 cands = bpf_core_add_cands(cands, main_btf, 1); 8897 if (IS_ERR(cands)) 8898 return ERR_CAST(cands); 8899 8900 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8901 8902 /* populate cache even when cands->cnt == 0 */ 8903 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8904 if (IS_ERR(cc)) 8905 return ERR_CAST(cc); 8906 8907 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8908 if (cc->cnt) 8909 return cc; 8910 8911 check_modules: 8912 /* cands is a pointer to stack here and cands->cnt == 0 */ 8913 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8914 if (cc) 8915 /* if cache has it return it even if cc->cnt == 0 */ 8916 return cc; 8917 8918 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8919 spin_lock_bh(&btf_idr_lock); 8920 idr_for_each_entry(&btf_idr, mod_btf, id) { 8921 if (!btf_is_module(mod_btf)) 8922 continue; 8923 /* linear search could be slow hence unlock/lock 8924 * the IDR to avoiding holding it for too long 8925 */ 8926 btf_get(mod_btf); 8927 spin_unlock_bh(&btf_idr_lock); 8928 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8929 btf_put(mod_btf); 8930 if (IS_ERR(cands)) 8931 return ERR_CAST(cands); 8932 spin_lock_bh(&btf_idr_lock); 8933 } 8934 spin_unlock_bh(&btf_idr_lock); 8935 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8936 * or pointer to stack if cands->cnd == 0. 8937 * Copy it into the cache even when cands->cnt == 0 and 8938 * return the result. 8939 */ 8940 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8941 } 8942 8943 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8944 int relo_idx, void *insn) 8945 { 8946 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8947 struct bpf_core_cand_list cands = {}; 8948 struct bpf_core_relo_res targ_res; 8949 struct bpf_core_spec *specs; 8950 const struct btf_type *type; 8951 int err; 8952 8953 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8954 * into arrays of btf_ids of struct fields and array indices. 8955 */ 8956 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8957 if (!specs) 8958 return -ENOMEM; 8959 8960 type = btf_type_by_id(ctx->btf, relo->type_id); 8961 if (!type) { 8962 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 8963 relo_idx, relo->type_id); 8964 return -EINVAL; 8965 } 8966 8967 if (need_cands) { 8968 struct bpf_cand_cache *cc; 8969 int i; 8970 8971 mutex_lock(&cand_cache_mutex); 8972 cc = bpf_core_find_cands(ctx, relo->type_id); 8973 if (IS_ERR(cc)) { 8974 bpf_log(ctx->log, "target candidate search failed for %d\n", 8975 relo->type_id); 8976 err = PTR_ERR(cc); 8977 goto out; 8978 } 8979 if (cc->cnt) { 8980 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8981 if (!cands.cands) { 8982 err = -ENOMEM; 8983 goto out; 8984 } 8985 } 8986 for (i = 0; i < cc->cnt; i++) { 8987 bpf_log(ctx->log, 8988 "CO-RE relocating %s %s: found target candidate [%d]\n", 8989 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8990 cands.cands[i].btf = cc->cands[i].btf; 8991 cands.cands[i].id = cc->cands[i].id; 8992 } 8993 cands.len = cc->cnt; 8994 /* cand_cache_mutex needs to span the cache lookup and 8995 * copy of btf pointer into bpf_core_cand_list, 8996 * since module can be unloaded while bpf_core_calc_relo_insn 8997 * is working with module's btf. 8998 */ 8999 } 9000 9001 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9002 &targ_res); 9003 if (err) 9004 goto out; 9005 9006 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9007 &targ_res); 9008 9009 out: 9010 kfree(specs); 9011 if (need_cands) { 9012 kfree(cands.cands); 9013 mutex_unlock(&cand_cache_mutex); 9014 if (ctx->log->level & BPF_LOG_LEVEL2) 9015 print_cand_cache(ctx->log); 9016 } 9017 return err; 9018 } 9019 9020 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9021 const struct bpf_reg_state *reg, 9022 const char *field_name, u32 btf_id, const char *suffix) 9023 { 9024 struct btf *btf = reg->btf; 9025 const struct btf_type *walk_type, *safe_type; 9026 const char *tname; 9027 char safe_tname[64]; 9028 long ret, safe_id; 9029 const struct btf_member *member; 9030 u32 i; 9031 9032 walk_type = btf_type_by_id(btf, reg->btf_id); 9033 if (!walk_type) 9034 return false; 9035 9036 tname = btf_name_by_offset(btf, walk_type->name_off); 9037 9038 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9039 if (ret >= sizeof(safe_tname)) 9040 return false; 9041 9042 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9043 if (safe_id < 0) 9044 return false; 9045 9046 safe_type = btf_type_by_id(btf, safe_id); 9047 if (!safe_type) 9048 return false; 9049 9050 for_each_member(i, safe_type, member) { 9051 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9052 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9053 u32 id; 9054 9055 if (!btf_type_is_ptr(mtype)) 9056 continue; 9057 9058 btf_type_skip_modifiers(btf, mtype->type, &id); 9059 /* If we match on both type and name, the field is considered trusted. */ 9060 if (btf_id == id && !strcmp(field_name, m_name)) 9061 return true; 9062 } 9063 9064 return false; 9065 } 9066 9067 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9068 const struct btf *reg_btf, u32 reg_id, 9069 const struct btf *arg_btf, u32 arg_id) 9070 { 9071 const char *reg_name, *arg_name, *search_needle; 9072 const struct btf_type *reg_type, *arg_type; 9073 int reg_len, arg_len, cmp_len; 9074 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9075 9076 reg_type = btf_type_by_id(reg_btf, reg_id); 9077 if (!reg_type) 9078 return false; 9079 9080 arg_type = btf_type_by_id(arg_btf, arg_id); 9081 if (!arg_type) 9082 return false; 9083 9084 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9085 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9086 9087 reg_len = strlen(reg_name); 9088 arg_len = strlen(arg_name); 9089 9090 /* Exactly one of the two type names may be suffixed with ___init, so 9091 * if the strings are the same size, they can't possibly be no-cast 9092 * aliases of one another. If you have two of the same type names, e.g. 9093 * they're both nf_conn___init, it would be improper to return true 9094 * because they are _not_ no-cast aliases, they are the same type. 9095 */ 9096 if (reg_len == arg_len) 9097 return false; 9098 9099 /* Either of the two names must be the other name, suffixed with ___init. */ 9100 if ((reg_len != arg_len + pattern_len) && 9101 (arg_len != reg_len + pattern_len)) 9102 return false; 9103 9104 if (reg_len < arg_len) { 9105 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9106 cmp_len = reg_len; 9107 } else { 9108 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9109 cmp_len = arg_len; 9110 } 9111 9112 if (!search_needle) 9113 return false; 9114 9115 /* ___init suffix must come at the end of the name */ 9116 if (*(search_needle + pattern_len) != '\0') 9117 return false; 9118 9119 return !strncmp(reg_name, arg_name, cmp_len); 9120 } 9121 9122 #ifdef CONFIG_BPF_JIT 9123 static int 9124 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9125 struct bpf_verifier_log *log) 9126 { 9127 struct btf_struct_ops_tab *tab, *new_tab; 9128 int i, err; 9129 9130 tab = btf->struct_ops_tab; 9131 if (!tab) { 9132 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 9133 GFP_KERNEL); 9134 if (!tab) 9135 return -ENOMEM; 9136 tab->capacity = 4; 9137 btf->struct_ops_tab = tab; 9138 } 9139 9140 for (i = 0; i < tab->cnt; i++) 9141 if (tab->ops[i].st_ops == st_ops) 9142 return -EEXIST; 9143 9144 if (tab->cnt == tab->capacity) { 9145 new_tab = krealloc(tab, 9146 offsetof(struct btf_struct_ops_tab, 9147 ops[tab->capacity * 2]), 9148 GFP_KERNEL); 9149 if (!new_tab) 9150 return -ENOMEM; 9151 tab = new_tab; 9152 tab->capacity *= 2; 9153 btf->struct_ops_tab = tab; 9154 } 9155 9156 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9157 9158 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9159 if (err) 9160 return err; 9161 9162 btf->struct_ops_tab->cnt++; 9163 9164 return 0; 9165 } 9166 9167 const struct bpf_struct_ops_desc * 9168 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9169 { 9170 const struct bpf_struct_ops_desc *st_ops_list; 9171 unsigned int i; 9172 u32 cnt; 9173 9174 if (!value_id) 9175 return NULL; 9176 if (!btf->struct_ops_tab) 9177 return NULL; 9178 9179 cnt = btf->struct_ops_tab->cnt; 9180 st_ops_list = btf->struct_ops_tab->ops; 9181 for (i = 0; i < cnt; i++) { 9182 if (st_ops_list[i].value_id == value_id) 9183 return &st_ops_list[i]; 9184 } 9185 9186 return NULL; 9187 } 9188 9189 const struct bpf_struct_ops_desc * 9190 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9191 { 9192 const struct bpf_struct_ops_desc *st_ops_list; 9193 unsigned int i; 9194 u32 cnt; 9195 9196 if (!type_id) 9197 return NULL; 9198 if (!btf->struct_ops_tab) 9199 return NULL; 9200 9201 cnt = btf->struct_ops_tab->cnt; 9202 st_ops_list = btf->struct_ops_tab->ops; 9203 for (i = 0; i < cnt; i++) { 9204 if (st_ops_list[i].type_id == type_id) 9205 return &st_ops_list[i]; 9206 } 9207 9208 return NULL; 9209 } 9210 9211 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9212 { 9213 struct bpf_verifier_log *log; 9214 struct btf *btf; 9215 int err = 0; 9216 9217 btf = btf_get_module_btf(st_ops->owner); 9218 if (!btf) 9219 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9220 if (IS_ERR(btf)) 9221 return PTR_ERR(btf); 9222 9223 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9224 if (!log) { 9225 err = -ENOMEM; 9226 goto errout; 9227 } 9228 9229 log->level = BPF_LOG_KERNEL; 9230 9231 err = btf_add_struct_ops(btf, st_ops, log); 9232 9233 errout: 9234 kfree(log); 9235 btf_put(btf); 9236 9237 return err; 9238 } 9239 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9240 #endif 9241 9242 bool btf_param_match_suffix(const struct btf *btf, 9243 const struct btf_param *arg, 9244 const char *suffix) 9245 { 9246 int suffix_len = strlen(suffix), len; 9247 const char *param_name; 9248 9249 /* In the future, this can be ported to use BTF tagging */ 9250 param_name = btf_name_by_offset(btf, arg->name_off); 9251 if (str_is_empty(param_name)) 9252 return false; 9253 len = strlen(param_name); 9254 if (len <= suffix_len) 9255 return false; 9256 param_name += len - suffix_len; 9257 return !strncmp(param_name, suffix, suffix_len); 9258 } 9259