1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 #include <net/sock.h> 29 #include "../tools/lib/bpf/relo_core.h" 30 31 /* BTF (BPF Type Format) is the meta data format which describes 32 * the data types of BPF program/map. Hence, it basically focus 33 * on the C programming language which the modern BPF is primary 34 * using. 35 * 36 * ELF Section: 37 * ~~~~~~~~~~~ 38 * The BTF data is stored under the ".BTF" ELF section 39 * 40 * struct btf_type: 41 * ~~~~~~~~~~~~~~~ 42 * Each 'struct btf_type' object describes a C data type. 43 * Depending on the type it is describing, a 'struct btf_type' 44 * object may be followed by more data. F.e. 45 * To describe an array, 'struct btf_type' is followed by 46 * 'struct btf_array'. 47 * 48 * 'struct btf_type' and any extra data following it are 49 * 4 bytes aligned. 50 * 51 * Type section: 52 * ~~~~~~~~~~~~~ 53 * The BTF type section contains a list of 'struct btf_type' objects. 54 * Each one describes a C type. Recall from the above section 55 * that a 'struct btf_type' object could be immediately followed by extra 56 * data in order to describe some particular C types. 57 * 58 * type_id: 59 * ~~~~~~~ 60 * Each btf_type object is identified by a type_id. The type_id 61 * is implicitly implied by the location of the btf_type object in 62 * the BTF type section. The first one has type_id 1. The second 63 * one has type_id 2...etc. Hence, an earlier btf_type has 64 * a smaller type_id. 65 * 66 * A btf_type object may refer to another btf_type object by using 67 * type_id (i.e. the "type" in the "struct btf_type"). 68 * 69 * NOTE that we cannot assume any reference-order. 70 * A btf_type object can refer to an earlier btf_type object 71 * but it can also refer to a later btf_type object. 72 * 73 * For example, to describe "const void *". A btf_type 74 * object describing "const" may refer to another btf_type 75 * object describing "void *". This type-reference is done 76 * by specifying type_id: 77 * 78 * [1] CONST (anon) type_id=2 79 * [2] PTR (anon) type_id=0 80 * 81 * The above is the btf_verifier debug log: 82 * - Each line started with "[?]" is a btf_type object 83 * - [?] is the type_id of the btf_type object. 84 * - CONST/PTR is the BTF_KIND_XXX 85 * - "(anon)" is the name of the type. It just 86 * happens that CONST and PTR has no name. 87 * - type_id=XXX is the 'u32 type' in btf_type 88 * 89 * NOTE: "void" has type_id 0 90 * 91 * String section: 92 * ~~~~~~~~~~~~~~ 93 * The BTF string section contains the names used by the type section. 94 * Each string is referred by an "offset" from the beginning of the 95 * string section. 96 * 97 * Each string is '\0' terminated. 98 * 99 * The first character in the string section must be '\0' 100 * which is used to mean 'anonymous'. Some btf_type may not 101 * have a name. 102 */ 103 104 /* BTF verification: 105 * 106 * To verify BTF data, two passes are needed. 107 * 108 * Pass #1 109 * ~~~~~~~ 110 * The first pass is to collect all btf_type objects to 111 * an array: "btf->types". 112 * 113 * Depending on the C type that a btf_type is describing, 114 * a btf_type may be followed by extra data. We don't know 115 * how many btf_type is there, and more importantly we don't 116 * know where each btf_type is located in the type section. 117 * 118 * Without knowing the location of each type_id, most verifications 119 * cannot be done. e.g. an earlier btf_type may refer to a later 120 * btf_type (recall the "const void *" above), so we cannot 121 * check this type-reference in the first pass. 122 * 123 * In the first pass, it still does some verifications (e.g. 124 * checking the name is a valid offset to the string section). 125 * 126 * Pass #2 127 * ~~~~~~~ 128 * The main focus is to resolve a btf_type that is referring 129 * to another type. 130 * 131 * We have to ensure the referring type: 132 * 1) does exist in the BTF (i.e. in btf->types[]) 133 * 2) does not cause a loop: 134 * struct A { 135 * struct B b; 136 * }; 137 * 138 * struct B { 139 * struct A a; 140 * }; 141 * 142 * btf_type_needs_resolve() decides if a btf_type needs 143 * to be resolved. 144 * 145 * The needs_resolve type implements the "resolve()" ops which 146 * essentially does a DFS and detects backedge. 147 * 148 * During resolve (or DFS), different C types have different 149 * "RESOLVED" conditions. 150 * 151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 152 * members because a member is always referring to another 153 * type. A struct's member can be treated as "RESOLVED" if 154 * it is referring to a BTF_KIND_PTR. Otherwise, the 155 * following valid C struct would be rejected: 156 * 157 * struct A { 158 * int m; 159 * struct A *a; 160 * }; 161 * 162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 164 * detect a pointer loop, e.g.: 165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 166 * ^ | 167 * +-----------------------------------------+ 168 * 169 */ 170 171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 175 #define BITS_ROUNDUP_BYTES(bits) \ 176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 177 178 #define BTF_INFO_MASK 0x9f00ffff 179 #define BTF_INT_MASK 0x0fffffff 180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 182 183 /* 16MB for 64k structs and each has 16 members and 184 * a few MB spaces for the string section. 185 * The hard limit is S32_MAX. 186 */ 187 #define BTF_MAX_SIZE (16 * 1024 * 1024) 188 189 #define for_each_member_from(i, from, struct_type, member) \ 190 for (i = from, member = btf_type_member(struct_type) + from; \ 191 i < btf_type_vlen(struct_type); \ 192 i++, member++) 193 194 #define for_each_vsi_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 DEFINE_IDR(btf_idr); 200 DEFINE_SPINLOCK(btf_idr_lock); 201 202 enum btf_kfunc_hook { 203 BTF_KFUNC_HOOK_COMMON, 204 BTF_KFUNC_HOOK_XDP, 205 BTF_KFUNC_HOOK_TC, 206 BTF_KFUNC_HOOK_STRUCT_OPS, 207 BTF_KFUNC_HOOK_TRACING, 208 BTF_KFUNC_HOOK_SYSCALL, 209 BTF_KFUNC_HOOK_FMODRET, 210 BTF_KFUNC_HOOK_CGROUP_SKB, 211 BTF_KFUNC_HOOK_SCHED_ACT, 212 BTF_KFUNC_HOOK_SK_SKB, 213 BTF_KFUNC_HOOK_SOCKET_FILTER, 214 BTF_KFUNC_HOOK_LWT, 215 BTF_KFUNC_HOOK_MAX, 216 }; 217 218 enum { 219 BTF_KFUNC_SET_MAX_CNT = 256, 220 BTF_DTOR_KFUNC_MAX_CNT = 256, 221 }; 222 223 struct btf_kfunc_set_tab { 224 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 225 }; 226 227 struct btf_id_dtor_kfunc_tab { 228 u32 cnt; 229 struct btf_id_dtor_kfunc dtors[]; 230 }; 231 232 struct btf { 233 void *data; 234 struct btf_type **types; 235 u32 *resolved_ids; 236 u32 *resolved_sizes; 237 const char *strings; 238 void *nohdr_data; 239 struct btf_header hdr; 240 u32 nr_types; /* includes VOID for base BTF */ 241 u32 types_size; 242 u32 data_size; 243 refcount_t refcnt; 244 u32 id; 245 struct rcu_head rcu; 246 struct btf_kfunc_set_tab *kfunc_set_tab; 247 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 248 struct btf_struct_metas *struct_meta_tab; 249 250 /* split BTF support */ 251 struct btf *base_btf; 252 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 253 u32 start_str_off; /* first string offset (0 for base BTF) */ 254 char name[MODULE_NAME_LEN]; 255 bool kernel_btf; 256 }; 257 258 enum verifier_phase { 259 CHECK_META, 260 CHECK_TYPE, 261 }; 262 263 struct resolve_vertex { 264 const struct btf_type *t; 265 u32 type_id; 266 u16 next_member; 267 }; 268 269 enum visit_state { 270 NOT_VISITED, 271 VISITED, 272 RESOLVED, 273 }; 274 275 enum resolve_mode { 276 RESOLVE_TBD, /* To Be Determined */ 277 RESOLVE_PTR, /* Resolving for Pointer */ 278 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 279 * or array 280 */ 281 }; 282 283 #define MAX_RESOLVE_DEPTH 32 284 285 struct btf_sec_info { 286 u32 off; 287 u32 len; 288 }; 289 290 struct btf_verifier_env { 291 struct btf *btf; 292 u8 *visit_states; 293 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 294 struct bpf_verifier_log log; 295 u32 log_type_id; 296 u32 top_stack; 297 enum verifier_phase phase; 298 enum resolve_mode resolve_mode; 299 }; 300 301 static const char * const btf_kind_str[NR_BTF_KINDS] = { 302 [BTF_KIND_UNKN] = "UNKNOWN", 303 [BTF_KIND_INT] = "INT", 304 [BTF_KIND_PTR] = "PTR", 305 [BTF_KIND_ARRAY] = "ARRAY", 306 [BTF_KIND_STRUCT] = "STRUCT", 307 [BTF_KIND_UNION] = "UNION", 308 [BTF_KIND_ENUM] = "ENUM", 309 [BTF_KIND_FWD] = "FWD", 310 [BTF_KIND_TYPEDEF] = "TYPEDEF", 311 [BTF_KIND_VOLATILE] = "VOLATILE", 312 [BTF_KIND_CONST] = "CONST", 313 [BTF_KIND_RESTRICT] = "RESTRICT", 314 [BTF_KIND_FUNC] = "FUNC", 315 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 316 [BTF_KIND_VAR] = "VAR", 317 [BTF_KIND_DATASEC] = "DATASEC", 318 [BTF_KIND_FLOAT] = "FLOAT", 319 [BTF_KIND_DECL_TAG] = "DECL_TAG", 320 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 321 [BTF_KIND_ENUM64] = "ENUM64", 322 }; 323 324 const char *btf_type_str(const struct btf_type *t) 325 { 326 return btf_kind_str[BTF_INFO_KIND(t->info)]; 327 } 328 329 /* Chunk size we use in safe copy of data to be shown. */ 330 #define BTF_SHOW_OBJ_SAFE_SIZE 32 331 332 /* 333 * This is the maximum size of a base type value (equivalent to a 334 * 128-bit int); if we are at the end of our safe buffer and have 335 * less than 16 bytes space we can't be assured of being able 336 * to copy the next type safely, so in such cases we will initiate 337 * a new copy. 338 */ 339 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 340 341 /* Type name size */ 342 #define BTF_SHOW_NAME_SIZE 80 343 344 /* 345 * The suffix of a type that indicates it cannot alias another type when 346 * comparing BTF IDs for kfunc invocations. 347 */ 348 #define NOCAST_ALIAS_SUFFIX "___init" 349 350 /* 351 * Common data to all BTF show operations. Private show functions can add 352 * their own data to a structure containing a struct btf_show and consult it 353 * in the show callback. See btf_type_show() below. 354 * 355 * One challenge with showing nested data is we want to skip 0-valued 356 * data, but in order to figure out whether a nested object is all zeros 357 * we need to walk through it. As a result, we need to make two passes 358 * when handling structs, unions and arrays; the first path simply looks 359 * for nonzero data, while the second actually does the display. The first 360 * pass is signalled by show->state.depth_check being set, and if we 361 * encounter a non-zero value we set show->state.depth_to_show to 362 * the depth at which we encountered it. When we have completed the 363 * first pass, we will know if anything needs to be displayed if 364 * depth_to_show > depth. See btf_[struct,array]_show() for the 365 * implementation of this. 366 * 367 * Another problem is we want to ensure the data for display is safe to 368 * access. To support this, the anonymous "struct {} obj" tracks the data 369 * object and our safe copy of it. We copy portions of the data needed 370 * to the object "copy" buffer, but because its size is limited to 371 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 372 * traverse larger objects for display. 373 * 374 * The various data type show functions all start with a call to 375 * btf_show_start_type() which returns a pointer to the safe copy 376 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 377 * raw data itself). btf_show_obj_safe() is responsible for 378 * using copy_from_kernel_nofault() to update the safe data if necessary 379 * as we traverse the object's data. skbuff-like semantics are 380 * used: 381 * 382 * - obj.head points to the start of the toplevel object for display 383 * - obj.size is the size of the toplevel object 384 * - obj.data points to the current point in the original data at 385 * which our safe data starts. obj.data will advance as we copy 386 * portions of the data. 387 * 388 * In most cases a single copy will suffice, but larger data structures 389 * such as "struct task_struct" will require many copies. The logic in 390 * btf_show_obj_safe() handles the logic that determines if a new 391 * copy_from_kernel_nofault() is needed. 392 */ 393 struct btf_show { 394 u64 flags; 395 void *target; /* target of show operation (seq file, buffer) */ 396 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 397 const struct btf *btf; 398 /* below are used during iteration */ 399 struct { 400 u8 depth; 401 u8 depth_to_show; 402 u8 depth_check; 403 u8 array_member:1, 404 array_terminated:1; 405 u16 array_encoding; 406 u32 type_id; 407 int status; /* non-zero for error */ 408 const struct btf_type *type; 409 const struct btf_member *member; 410 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 411 } state; 412 struct { 413 u32 size; 414 void *head; 415 void *data; 416 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 417 } obj; 418 }; 419 420 struct btf_kind_operations { 421 s32 (*check_meta)(struct btf_verifier_env *env, 422 const struct btf_type *t, 423 u32 meta_left); 424 int (*resolve)(struct btf_verifier_env *env, 425 const struct resolve_vertex *v); 426 int (*check_member)(struct btf_verifier_env *env, 427 const struct btf_type *struct_type, 428 const struct btf_member *member, 429 const struct btf_type *member_type); 430 int (*check_kflag_member)(struct btf_verifier_env *env, 431 const struct btf_type *struct_type, 432 const struct btf_member *member, 433 const struct btf_type *member_type); 434 void (*log_details)(struct btf_verifier_env *env, 435 const struct btf_type *t); 436 void (*show)(const struct btf *btf, const struct btf_type *t, 437 u32 type_id, void *data, u8 bits_offsets, 438 struct btf_show *show); 439 }; 440 441 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 442 static struct btf_type btf_void; 443 444 static int btf_resolve(struct btf_verifier_env *env, 445 const struct btf_type *t, u32 type_id); 446 447 static int btf_func_check(struct btf_verifier_env *env, 448 const struct btf_type *t); 449 450 static bool btf_type_is_modifier(const struct btf_type *t) 451 { 452 /* Some of them is not strictly a C modifier 453 * but they are grouped into the same bucket 454 * for BTF concern: 455 * A type (t) that refers to another 456 * type through t->type AND its size cannot 457 * be determined without following the t->type. 458 * 459 * ptr does not fall into this bucket 460 * because its size is always sizeof(void *). 461 */ 462 switch (BTF_INFO_KIND(t->info)) { 463 case BTF_KIND_TYPEDEF: 464 case BTF_KIND_VOLATILE: 465 case BTF_KIND_CONST: 466 case BTF_KIND_RESTRICT: 467 case BTF_KIND_TYPE_TAG: 468 return true; 469 } 470 471 return false; 472 } 473 474 bool btf_type_is_void(const struct btf_type *t) 475 { 476 return t == &btf_void; 477 } 478 479 static bool btf_type_is_fwd(const struct btf_type *t) 480 { 481 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 482 } 483 484 static bool btf_type_nosize(const struct btf_type *t) 485 { 486 return btf_type_is_void(t) || btf_type_is_fwd(t) || 487 btf_type_is_func(t) || btf_type_is_func_proto(t); 488 } 489 490 static bool btf_type_nosize_or_null(const struct btf_type *t) 491 { 492 return !t || btf_type_nosize(t); 493 } 494 495 static bool btf_type_is_datasec(const struct btf_type *t) 496 { 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 498 } 499 500 static bool btf_type_is_decl_tag(const struct btf_type *t) 501 { 502 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 503 } 504 505 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 506 { 507 return btf_type_is_func(t) || btf_type_is_struct(t) || 508 btf_type_is_var(t) || btf_type_is_typedef(t); 509 } 510 511 u32 btf_nr_types(const struct btf *btf) 512 { 513 u32 total = 0; 514 515 while (btf) { 516 total += btf->nr_types; 517 btf = btf->base_btf; 518 } 519 520 return total; 521 } 522 523 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 524 { 525 const struct btf_type *t; 526 const char *tname; 527 u32 i, total; 528 529 total = btf_nr_types(btf); 530 for (i = 1; i < total; i++) { 531 t = btf_type_by_id(btf, i); 532 if (BTF_INFO_KIND(t->info) != kind) 533 continue; 534 535 tname = btf_name_by_offset(btf, t->name_off); 536 if (!strcmp(tname, name)) 537 return i; 538 } 539 540 return -ENOENT; 541 } 542 543 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 544 { 545 struct btf *btf; 546 s32 ret; 547 int id; 548 549 btf = bpf_get_btf_vmlinux(); 550 if (IS_ERR(btf)) 551 return PTR_ERR(btf); 552 if (!btf) 553 return -EINVAL; 554 555 ret = btf_find_by_name_kind(btf, name, kind); 556 /* ret is never zero, since btf_find_by_name_kind returns 557 * positive btf_id or negative error. 558 */ 559 if (ret > 0) { 560 btf_get(btf); 561 *btf_p = btf; 562 return ret; 563 } 564 565 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 566 spin_lock_bh(&btf_idr_lock); 567 idr_for_each_entry(&btf_idr, btf, id) { 568 if (!btf_is_module(btf)) 569 continue; 570 /* linear search could be slow hence unlock/lock 571 * the IDR to avoiding holding it for too long 572 */ 573 btf_get(btf); 574 spin_unlock_bh(&btf_idr_lock); 575 ret = btf_find_by_name_kind(btf, name, kind); 576 if (ret > 0) { 577 *btf_p = btf; 578 return ret; 579 } 580 spin_lock_bh(&btf_idr_lock); 581 btf_put(btf); 582 } 583 spin_unlock_bh(&btf_idr_lock); 584 return ret; 585 } 586 587 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 588 u32 id, u32 *res_id) 589 { 590 const struct btf_type *t = btf_type_by_id(btf, id); 591 592 while (btf_type_is_modifier(t)) { 593 id = t->type; 594 t = btf_type_by_id(btf, t->type); 595 } 596 597 if (res_id) 598 *res_id = id; 599 600 return t; 601 } 602 603 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 604 u32 id, u32 *res_id) 605 { 606 const struct btf_type *t; 607 608 t = btf_type_skip_modifiers(btf, id, NULL); 609 if (!btf_type_is_ptr(t)) 610 return NULL; 611 612 return btf_type_skip_modifiers(btf, t->type, res_id); 613 } 614 615 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 616 u32 id, u32 *res_id) 617 { 618 const struct btf_type *ptype; 619 620 ptype = btf_type_resolve_ptr(btf, id, res_id); 621 if (ptype && btf_type_is_func_proto(ptype)) 622 return ptype; 623 624 return NULL; 625 } 626 627 /* Types that act only as a source, not sink or intermediate 628 * type when resolving. 629 */ 630 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 631 { 632 return btf_type_is_var(t) || 633 btf_type_is_decl_tag(t) || 634 btf_type_is_datasec(t); 635 } 636 637 /* What types need to be resolved? 638 * 639 * btf_type_is_modifier() is an obvious one. 640 * 641 * btf_type_is_struct() because its member refers to 642 * another type (through member->type). 643 * 644 * btf_type_is_var() because the variable refers to 645 * another type. btf_type_is_datasec() holds multiple 646 * btf_type_is_var() types that need resolving. 647 * 648 * btf_type_is_array() because its element (array->type) 649 * refers to another type. Array can be thought of a 650 * special case of struct while array just has the same 651 * member-type repeated by array->nelems of times. 652 */ 653 static bool btf_type_needs_resolve(const struct btf_type *t) 654 { 655 return btf_type_is_modifier(t) || 656 btf_type_is_ptr(t) || 657 btf_type_is_struct(t) || 658 btf_type_is_array(t) || 659 btf_type_is_var(t) || 660 btf_type_is_func(t) || 661 btf_type_is_decl_tag(t) || 662 btf_type_is_datasec(t); 663 } 664 665 /* t->size can be used */ 666 static bool btf_type_has_size(const struct btf_type *t) 667 { 668 switch (BTF_INFO_KIND(t->info)) { 669 case BTF_KIND_INT: 670 case BTF_KIND_STRUCT: 671 case BTF_KIND_UNION: 672 case BTF_KIND_ENUM: 673 case BTF_KIND_DATASEC: 674 case BTF_KIND_FLOAT: 675 case BTF_KIND_ENUM64: 676 return true; 677 } 678 679 return false; 680 } 681 682 static const char *btf_int_encoding_str(u8 encoding) 683 { 684 if (encoding == 0) 685 return "(none)"; 686 else if (encoding == BTF_INT_SIGNED) 687 return "SIGNED"; 688 else if (encoding == BTF_INT_CHAR) 689 return "CHAR"; 690 else if (encoding == BTF_INT_BOOL) 691 return "BOOL"; 692 else 693 return "UNKN"; 694 } 695 696 static u32 btf_type_int(const struct btf_type *t) 697 { 698 return *(u32 *)(t + 1); 699 } 700 701 static const struct btf_array *btf_type_array(const struct btf_type *t) 702 { 703 return (const struct btf_array *)(t + 1); 704 } 705 706 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 707 { 708 return (const struct btf_enum *)(t + 1); 709 } 710 711 static const struct btf_var *btf_type_var(const struct btf_type *t) 712 { 713 return (const struct btf_var *)(t + 1); 714 } 715 716 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 717 { 718 return (const struct btf_decl_tag *)(t + 1); 719 } 720 721 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 722 { 723 return (const struct btf_enum64 *)(t + 1); 724 } 725 726 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 727 { 728 return kind_ops[BTF_INFO_KIND(t->info)]; 729 } 730 731 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 732 { 733 if (!BTF_STR_OFFSET_VALID(offset)) 734 return false; 735 736 while (offset < btf->start_str_off) 737 btf = btf->base_btf; 738 739 offset -= btf->start_str_off; 740 return offset < btf->hdr.str_len; 741 } 742 743 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 744 { 745 if ((first ? !isalpha(c) : 746 !isalnum(c)) && 747 c != '_' && 748 ((c == '.' && !dot_ok) || 749 c != '.')) 750 return false; 751 return true; 752 } 753 754 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 755 { 756 while (offset < btf->start_str_off) 757 btf = btf->base_btf; 758 759 offset -= btf->start_str_off; 760 if (offset < btf->hdr.str_len) 761 return &btf->strings[offset]; 762 763 return NULL; 764 } 765 766 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 767 { 768 /* offset must be valid */ 769 const char *src = btf_str_by_offset(btf, offset); 770 const char *src_limit; 771 772 if (!__btf_name_char_ok(*src, true, dot_ok)) 773 return false; 774 775 /* set a limit on identifier length */ 776 src_limit = src + KSYM_NAME_LEN; 777 src++; 778 while (*src && src < src_limit) { 779 if (!__btf_name_char_ok(*src, false, dot_ok)) 780 return false; 781 src++; 782 } 783 784 return !*src; 785 } 786 787 /* Only C-style identifier is permitted. This can be relaxed if 788 * necessary. 789 */ 790 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 791 { 792 return __btf_name_valid(btf, offset, false); 793 } 794 795 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 796 { 797 return __btf_name_valid(btf, offset, true); 798 } 799 800 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 801 { 802 const char *name; 803 804 if (!offset) 805 return "(anon)"; 806 807 name = btf_str_by_offset(btf, offset); 808 return name ?: "(invalid-name-offset)"; 809 } 810 811 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 812 { 813 return btf_str_by_offset(btf, offset); 814 } 815 816 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 817 { 818 while (type_id < btf->start_id) 819 btf = btf->base_btf; 820 821 type_id -= btf->start_id; 822 if (type_id >= btf->nr_types) 823 return NULL; 824 return btf->types[type_id]; 825 } 826 EXPORT_SYMBOL_GPL(btf_type_by_id); 827 828 /* 829 * Regular int is not a bit field and it must be either 830 * u8/u16/u32/u64 or __int128. 831 */ 832 static bool btf_type_int_is_regular(const struct btf_type *t) 833 { 834 u8 nr_bits, nr_bytes; 835 u32 int_data; 836 837 int_data = btf_type_int(t); 838 nr_bits = BTF_INT_BITS(int_data); 839 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 840 if (BITS_PER_BYTE_MASKED(nr_bits) || 841 BTF_INT_OFFSET(int_data) || 842 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 843 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 844 nr_bytes != (2 * sizeof(u64)))) { 845 return false; 846 } 847 848 return true; 849 } 850 851 /* 852 * Check that given struct member is a regular int with expected 853 * offset and size. 854 */ 855 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 856 const struct btf_member *m, 857 u32 expected_offset, u32 expected_size) 858 { 859 const struct btf_type *t; 860 u32 id, int_data; 861 u8 nr_bits; 862 863 id = m->type; 864 t = btf_type_id_size(btf, &id, NULL); 865 if (!t || !btf_type_is_int(t)) 866 return false; 867 868 int_data = btf_type_int(t); 869 nr_bits = BTF_INT_BITS(int_data); 870 if (btf_type_kflag(s)) { 871 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 872 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 873 874 /* if kflag set, int should be a regular int and 875 * bit offset should be at byte boundary. 876 */ 877 return !bitfield_size && 878 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 879 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 880 } 881 882 if (BTF_INT_OFFSET(int_data) || 883 BITS_PER_BYTE_MASKED(m->offset) || 884 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 885 BITS_PER_BYTE_MASKED(nr_bits) || 886 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 887 return false; 888 889 return true; 890 } 891 892 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 893 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 894 u32 id) 895 { 896 const struct btf_type *t = btf_type_by_id(btf, id); 897 898 while (btf_type_is_modifier(t) && 899 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 900 t = btf_type_by_id(btf, t->type); 901 } 902 903 return t; 904 } 905 906 #define BTF_SHOW_MAX_ITER 10 907 908 #define BTF_KIND_BIT(kind) (1ULL << kind) 909 910 /* 911 * Populate show->state.name with type name information. 912 * Format of type name is 913 * 914 * [.member_name = ] (type_name) 915 */ 916 static const char *btf_show_name(struct btf_show *show) 917 { 918 /* BTF_MAX_ITER array suffixes "[]" */ 919 const char *array_suffixes = "[][][][][][][][][][]"; 920 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 921 /* BTF_MAX_ITER pointer suffixes "*" */ 922 const char *ptr_suffixes = "**********"; 923 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 924 const char *name = NULL, *prefix = "", *parens = ""; 925 const struct btf_member *m = show->state.member; 926 const struct btf_type *t; 927 const struct btf_array *array; 928 u32 id = show->state.type_id; 929 const char *member = NULL; 930 bool show_member = false; 931 u64 kinds = 0; 932 int i; 933 934 show->state.name[0] = '\0'; 935 936 /* 937 * Don't show type name if we're showing an array member; 938 * in that case we show the array type so don't need to repeat 939 * ourselves for each member. 940 */ 941 if (show->state.array_member) 942 return ""; 943 944 /* Retrieve member name, if any. */ 945 if (m) { 946 member = btf_name_by_offset(show->btf, m->name_off); 947 show_member = strlen(member) > 0; 948 id = m->type; 949 } 950 951 /* 952 * Start with type_id, as we have resolved the struct btf_type * 953 * via btf_modifier_show() past the parent typedef to the child 954 * struct, int etc it is defined as. In such cases, the type_id 955 * still represents the starting type while the struct btf_type * 956 * in our show->state points at the resolved type of the typedef. 957 */ 958 t = btf_type_by_id(show->btf, id); 959 if (!t) 960 return ""; 961 962 /* 963 * The goal here is to build up the right number of pointer and 964 * array suffixes while ensuring the type name for a typedef 965 * is represented. Along the way we accumulate a list of 966 * BTF kinds we have encountered, since these will inform later 967 * display; for example, pointer types will not require an 968 * opening "{" for struct, we will just display the pointer value. 969 * 970 * We also want to accumulate the right number of pointer or array 971 * indices in the format string while iterating until we get to 972 * the typedef/pointee/array member target type. 973 * 974 * We start by pointing at the end of pointer and array suffix 975 * strings; as we accumulate pointers and arrays we move the pointer 976 * or array string backwards so it will show the expected number of 977 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 978 * and/or arrays and typedefs are supported as a precaution. 979 * 980 * We also want to get typedef name while proceeding to resolve 981 * type it points to so that we can add parentheses if it is a 982 * "typedef struct" etc. 983 */ 984 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 985 986 switch (BTF_INFO_KIND(t->info)) { 987 case BTF_KIND_TYPEDEF: 988 if (!name) 989 name = btf_name_by_offset(show->btf, 990 t->name_off); 991 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 992 id = t->type; 993 break; 994 case BTF_KIND_ARRAY: 995 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 996 parens = "["; 997 if (!t) 998 return ""; 999 array = btf_type_array(t); 1000 if (array_suffix > array_suffixes) 1001 array_suffix -= 2; 1002 id = array->type; 1003 break; 1004 case BTF_KIND_PTR: 1005 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1006 if (ptr_suffix > ptr_suffixes) 1007 ptr_suffix -= 1; 1008 id = t->type; 1009 break; 1010 default: 1011 id = 0; 1012 break; 1013 } 1014 if (!id) 1015 break; 1016 t = btf_type_skip_qualifiers(show->btf, id); 1017 } 1018 /* We may not be able to represent this type; bail to be safe */ 1019 if (i == BTF_SHOW_MAX_ITER) 1020 return ""; 1021 1022 if (!name) 1023 name = btf_name_by_offset(show->btf, t->name_off); 1024 1025 switch (BTF_INFO_KIND(t->info)) { 1026 case BTF_KIND_STRUCT: 1027 case BTF_KIND_UNION: 1028 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1029 "struct" : "union"; 1030 /* if it's an array of struct/union, parens is already set */ 1031 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1032 parens = "{"; 1033 break; 1034 case BTF_KIND_ENUM: 1035 case BTF_KIND_ENUM64: 1036 prefix = "enum"; 1037 break; 1038 default: 1039 break; 1040 } 1041 1042 /* pointer does not require parens */ 1043 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1044 parens = ""; 1045 /* typedef does not require struct/union/enum prefix */ 1046 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1047 prefix = ""; 1048 1049 if (!name) 1050 name = ""; 1051 1052 /* Even if we don't want type name info, we want parentheses etc */ 1053 if (show->flags & BTF_SHOW_NONAME) 1054 snprintf(show->state.name, sizeof(show->state.name), "%s", 1055 parens); 1056 else 1057 snprintf(show->state.name, sizeof(show->state.name), 1058 "%s%s%s(%s%s%s%s%s%s)%s", 1059 /* first 3 strings comprise ".member = " */ 1060 show_member ? "." : "", 1061 show_member ? member : "", 1062 show_member ? " = " : "", 1063 /* ...next is our prefix (struct, enum, etc) */ 1064 prefix, 1065 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1066 /* ...this is the type name itself */ 1067 name, 1068 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1069 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1070 array_suffix, parens); 1071 1072 return show->state.name; 1073 } 1074 1075 static const char *__btf_show_indent(struct btf_show *show) 1076 { 1077 const char *indents = " "; 1078 const char *indent = &indents[strlen(indents)]; 1079 1080 if ((indent - show->state.depth) >= indents) 1081 return indent - show->state.depth; 1082 return indents; 1083 } 1084 1085 static const char *btf_show_indent(struct btf_show *show) 1086 { 1087 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1088 } 1089 1090 static const char *btf_show_newline(struct btf_show *show) 1091 { 1092 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1093 } 1094 1095 static const char *btf_show_delim(struct btf_show *show) 1096 { 1097 if (show->state.depth == 0) 1098 return ""; 1099 1100 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1101 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1102 return "|"; 1103 1104 return ","; 1105 } 1106 1107 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1108 { 1109 va_list args; 1110 1111 if (!show->state.depth_check) { 1112 va_start(args, fmt); 1113 show->showfn(show, fmt, args); 1114 va_end(args); 1115 } 1116 } 1117 1118 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1119 * format specifiers to the format specifier passed in; these do the work of 1120 * adding indentation, delimiters etc while the caller simply has to specify 1121 * the type value(s) in the format specifier + value(s). 1122 */ 1123 #define btf_show_type_value(show, fmt, value) \ 1124 do { \ 1125 if ((value) != (__typeof__(value))0 || \ 1126 (show->flags & BTF_SHOW_ZERO) || \ 1127 show->state.depth == 0) { \ 1128 btf_show(show, "%s%s" fmt "%s%s", \ 1129 btf_show_indent(show), \ 1130 btf_show_name(show), \ 1131 value, btf_show_delim(show), \ 1132 btf_show_newline(show)); \ 1133 if (show->state.depth > show->state.depth_to_show) \ 1134 show->state.depth_to_show = show->state.depth; \ 1135 } \ 1136 } while (0) 1137 1138 #define btf_show_type_values(show, fmt, ...) \ 1139 do { \ 1140 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1141 btf_show_name(show), \ 1142 __VA_ARGS__, btf_show_delim(show), \ 1143 btf_show_newline(show)); \ 1144 if (show->state.depth > show->state.depth_to_show) \ 1145 show->state.depth_to_show = show->state.depth; \ 1146 } while (0) 1147 1148 /* How much is left to copy to safe buffer after @data? */ 1149 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1150 { 1151 return show->obj.head + show->obj.size - data; 1152 } 1153 1154 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1155 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1156 { 1157 return data >= show->obj.data && 1158 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1159 } 1160 1161 /* 1162 * If object pointed to by @data of @size falls within our safe buffer, return 1163 * the equivalent pointer to the same safe data. Assumes 1164 * copy_from_kernel_nofault() has already happened and our safe buffer is 1165 * populated. 1166 */ 1167 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1168 { 1169 if (btf_show_obj_is_safe(show, data, size)) 1170 return show->obj.safe + (data - show->obj.data); 1171 return NULL; 1172 } 1173 1174 /* 1175 * Return a safe-to-access version of data pointed to by @data. 1176 * We do this by copying the relevant amount of information 1177 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1178 * 1179 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1180 * safe copy is needed. 1181 * 1182 * Otherwise we need to determine if we have the required amount 1183 * of data (determined by the @data pointer and the size of the 1184 * largest base type we can encounter (represented by 1185 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1186 * that we will be able to print some of the current object, 1187 * and if more is needed a copy will be triggered. 1188 * Some objects such as structs will not fit into the buffer; 1189 * in such cases additional copies when we iterate over their 1190 * members may be needed. 1191 * 1192 * btf_show_obj_safe() is used to return a safe buffer for 1193 * btf_show_start_type(); this ensures that as we recurse into 1194 * nested types we always have safe data for the given type. 1195 * This approach is somewhat wasteful; it's possible for example 1196 * that when iterating over a large union we'll end up copying the 1197 * same data repeatedly, but the goal is safety not performance. 1198 * We use stack data as opposed to per-CPU buffers because the 1199 * iteration over a type can take some time, and preemption handling 1200 * would greatly complicate use of the safe buffer. 1201 */ 1202 static void *btf_show_obj_safe(struct btf_show *show, 1203 const struct btf_type *t, 1204 void *data) 1205 { 1206 const struct btf_type *rt; 1207 int size_left, size; 1208 void *safe = NULL; 1209 1210 if (show->flags & BTF_SHOW_UNSAFE) 1211 return data; 1212 1213 rt = btf_resolve_size(show->btf, t, &size); 1214 if (IS_ERR(rt)) { 1215 show->state.status = PTR_ERR(rt); 1216 return NULL; 1217 } 1218 1219 /* 1220 * Is this toplevel object? If so, set total object size and 1221 * initialize pointers. Otherwise check if we still fall within 1222 * our safe object data. 1223 */ 1224 if (show->state.depth == 0) { 1225 show->obj.size = size; 1226 show->obj.head = data; 1227 } else { 1228 /* 1229 * If the size of the current object is > our remaining 1230 * safe buffer we _may_ need to do a new copy. However 1231 * consider the case of a nested struct; it's size pushes 1232 * us over the safe buffer limit, but showing any individual 1233 * struct members does not. In such cases, we don't need 1234 * to initiate a fresh copy yet; however we definitely need 1235 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1236 * in our buffer, regardless of the current object size. 1237 * The logic here is that as we resolve types we will 1238 * hit a base type at some point, and we need to be sure 1239 * the next chunk of data is safely available to display 1240 * that type info safely. We cannot rely on the size of 1241 * the current object here because it may be much larger 1242 * than our current buffer (e.g. task_struct is 8k). 1243 * All we want to do here is ensure that we can print the 1244 * next basic type, which we can if either 1245 * - the current type size is within the safe buffer; or 1246 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1247 * the safe buffer. 1248 */ 1249 safe = __btf_show_obj_safe(show, data, 1250 min(size, 1251 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1252 } 1253 1254 /* 1255 * We need a new copy to our safe object, either because we haven't 1256 * yet copied and are initializing safe data, or because the data 1257 * we want falls outside the boundaries of the safe object. 1258 */ 1259 if (!safe) { 1260 size_left = btf_show_obj_size_left(show, data); 1261 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1262 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1263 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1264 data, size_left); 1265 if (!show->state.status) { 1266 show->obj.data = data; 1267 safe = show->obj.safe; 1268 } 1269 } 1270 1271 return safe; 1272 } 1273 1274 /* 1275 * Set the type we are starting to show and return a safe data pointer 1276 * to be used for showing the associated data. 1277 */ 1278 static void *btf_show_start_type(struct btf_show *show, 1279 const struct btf_type *t, 1280 u32 type_id, void *data) 1281 { 1282 show->state.type = t; 1283 show->state.type_id = type_id; 1284 show->state.name[0] = '\0'; 1285 1286 return btf_show_obj_safe(show, t, data); 1287 } 1288 1289 static void btf_show_end_type(struct btf_show *show) 1290 { 1291 show->state.type = NULL; 1292 show->state.type_id = 0; 1293 show->state.name[0] = '\0'; 1294 } 1295 1296 static void *btf_show_start_aggr_type(struct btf_show *show, 1297 const struct btf_type *t, 1298 u32 type_id, void *data) 1299 { 1300 void *safe_data = btf_show_start_type(show, t, type_id, data); 1301 1302 if (!safe_data) 1303 return safe_data; 1304 1305 btf_show(show, "%s%s%s", btf_show_indent(show), 1306 btf_show_name(show), 1307 btf_show_newline(show)); 1308 show->state.depth++; 1309 return safe_data; 1310 } 1311 1312 static void btf_show_end_aggr_type(struct btf_show *show, 1313 const char *suffix) 1314 { 1315 show->state.depth--; 1316 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1317 btf_show_delim(show), btf_show_newline(show)); 1318 btf_show_end_type(show); 1319 } 1320 1321 static void btf_show_start_member(struct btf_show *show, 1322 const struct btf_member *m) 1323 { 1324 show->state.member = m; 1325 } 1326 1327 static void btf_show_start_array_member(struct btf_show *show) 1328 { 1329 show->state.array_member = 1; 1330 btf_show_start_member(show, NULL); 1331 } 1332 1333 static void btf_show_end_member(struct btf_show *show) 1334 { 1335 show->state.member = NULL; 1336 } 1337 1338 static void btf_show_end_array_member(struct btf_show *show) 1339 { 1340 show->state.array_member = 0; 1341 btf_show_end_member(show); 1342 } 1343 1344 static void *btf_show_start_array_type(struct btf_show *show, 1345 const struct btf_type *t, 1346 u32 type_id, 1347 u16 array_encoding, 1348 void *data) 1349 { 1350 show->state.array_encoding = array_encoding; 1351 show->state.array_terminated = 0; 1352 return btf_show_start_aggr_type(show, t, type_id, data); 1353 } 1354 1355 static void btf_show_end_array_type(struct btf_show *show) 1356 { 1357 show->state.array_encoding = 0; 1358 show->state.array_terminated = 0; 1359 btf_show_end_aggr_type(show, "]"); 1360 } 1361 1362 static void *btf_show_start_struct_type(struct btf_show *show, 1363 const struct btf_type *t, 1364 u32 type_id, 1365 void *data) 1366 { 1367 return btf_show_start_aggr_type(show, t, type_id, data); 1368 } 1369 1370 static void btf_show_end_struct_type(struct btf_show *show) 1371 { 1372 btf_show_end_aggr_type(show, "}"); 1373 } 1374 1375 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1376 const char *fmt, ...) 1377 { 1378 va_list args; 1379 1380 va_start(args, fmt); 1381 bpf_verifier_vlog(log, fmt, args); 1382 va_end(args); 1383 } 1384 1385 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1386 const char *fmt, ...) 1387 { 1388 struct bpf_verifier_log *log = &env->log; 1389 va_list args; 1390 1391 if (!bpf_verifier_log_needed(log)) 1392 return; 1393 1394 va_start(args, fmt); 1395 bpf_verifier_vlog(log, fmt, args); 1396 va_end(args); 1397 } 1398 1399 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1400 const struct btf_type *t, 1401 bool log_details, 1402 const char *fmt, ...) 1403 { 1404 struct bpf_verifier_log *log = &env->log; 1405 struct btf *btf = env->btf; 1406 va_list args; 1407 1408 if (!bpf_verifier_log_needed(log)) 1409 return; 1410 1411 if (log->level == BPF_LOG_KERNEL) { 1412 /* btf verifier prints all types it is processing via 1413 * btf_verifier_log_type(..., fmt = NULL). 1414 * Skip those prints for in-kernel BTF verification. 1415 */ 1416 if (!fmt) 1417 return; 1418 1419 /* Skip logging when loading module BTF with mismatches permitted */ 1420 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1421 return; 1422 } 1423 1424 __btf_verifier_log(log, "[%u] %s %s%s", 1425 env->log_type_id, 1426 btf_type_str(t), 1427 __btf_name_by_offset(btf, t->name_off), 1428 log_details ? " " : ""); 1429 1430 if (log_details) 1431 btf_type_ops(t)->log_details(env, t); 1432 1433 if (fmt && *fmt) { 1434 __btf_verifier_log(log, " "); 1435 va_start(args, fmt); 1436 bpf_verifier_vlog(log, fmt, args); 1437 va_end(args); 1438 } 1439 1440 __btf_verifier_log(log, "\n"); 1441 } 1442 1443 #define btf_verifier_log_type(env, t, ...) \ 1444 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1445 #define btf_verifier_log_basic(env, t, ...) \ 1446 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1447 1448 __printf(4, 5) 1449 static void btf_verifier_log_member(struct btf_verifier_env *env, 1450 const struct btf_type *struct_type, 1451 const struct btf_member *member, 1452 const char *fmt, ...) 1453 { 1454 struct bpf_verifier_log *log = &env->log; 1455 struct btf *btf = env->btf; 1456 va_list args; 1457 1458 if (!bpf_verifier_log_needed(log)) 1459 return; 1460 1461 if (log->level == BPF_LOG_KERNEL) { 1462 if (!fmt) 1463 return; 1464 1465 /* Skip logging when loading module BTF with mismatches permitted */ 1466 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1467 return; 1468 } 1469 1470 /* The CHECK_META phase already did a btf dump. 1471 * 1472 * If member is logged again, it must hit an error in 1473 * parsing this member. It is useful to print out which 1474 * struct this member belongs to. 1475 */ 1476 if (env->phase != CHECK_META) 1477 btf_verifier_log_type(env, struct_type, NULL); 1478 1479 if (btf_type_kflag(struct_type)) 1480 __btf_verifier_log(log, 1481 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1482 __btf_name_by_offset(btf, member->name_off), 1483 member->type, 1484 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1485 BTF_MEMBER_BIT_OFFSET(member->offset)); 1486 else 1487 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1488 __btf_name_by_offset(btf, member->name_off), 1489 member->type, member->offset); 1490 1491 if (fmt && *fmt) { 1492 __btf_verifier_log(log, " "); 1493 va_start(args, fmt); 1494 bpf_verifier_vlog(log, fmt, args); 1495 va_end(args); 1496 } 1497 1498 __btf_verifier_log(log, "\n"); 1499 } 1500 1501 __printf(4, 5) 1502 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1503 const struct btf_type *datasec_type, 1504 const struct btf_var_secinfo *vsi, 1505 const char *fmt, ...) 1506 { 1507 struct bpf_verifier_log *log = &env->log; 1508 va_list args; 1509 1510 if (!bpf_verifier_log_needed(log)) 1511 return; 1512 if (log->level == BPF_LOG_KERNEL && !fmt) 1513 return; 1514 if (env->phase != CHECK_META) 1515 btf_verifier_log_type(env, datasec_type, NULL); 1516 1517 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1518 vsi->type, vsi->offset, vsi->size); 1519 if (fmt && *fmt) { 1520 __btf_verifier_log(log, " "); 1521 va_start(args, fmt); 1522 bpf_verifier_vlog(log, fmt, args); 1523 va_end(args); 1524 } 1525 1526 __btf_verifier_log(log, "\n"); 1527 } 1528 1529 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1530 u32 btf_data_size) 1531 { 1532 struct bpf_verifier_log *log = &env->log; 1533 const struct btf *btf = env->btf; 1534 const struct btf_header *hdr; 1535 1536 if (!bpf_verifier_log_needed(log)) 1537 return; 1538 1539 if (log->level == BPF_LOG_KERNEL) 1540 return; 1541 hdr = &btf->hdr; 1542 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1543 __btf_verifier_log(log, "version: %u\n", hdr->version); 1544 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1545 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1546 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1547 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1548 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1549 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1550 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1551 } 1552 1553 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1554 { 1555 struct btf *btf = env->btf; 1556 1557 if (btf->types_size == btf->nr_types) { 1558 /* Expand 'types' array */ 1559 1560 struct btf_type **new_types; 1561 u32 expand_by, new_size; 1562 1563 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1564 btf_verifier_log(env, "Exceeded max num of types"); 1565 return -E2BIG; 1566 } 1567 1568 expand_by = max_t(u32, btf->types_size >> 2, 16); 1569 new_size = min_t(u32, BTF_MAX_TYPE, 1570 btf->types_size + expand_by); 1571 1572 new_types = kvcalloc(new_size, sizeof(*new_types), 1573 GFP_KERNEL | __GFP_NOWARN); 1574 if (!new_types) 1575 return -ENOMEM; 1576 1577 if (btf->nr_types == 0) { 1578 if (!btf->base_btf) { 1579 /* lazily init VOID type */ 1580 new_types[0] = &btf_void; 1581 btf->nr_types++; 1582 } 1583 } else { 1584 memcpy(new_types, btf->types, 1585 sizeof(*btf->types) * btf->nr_types); 1586 } 1587 1588 kvfree(btf->types); 1589 btf->types = new_types; 1590 btf->types_size = new_size; 1591 } 1592 1593 btf->types[btf->nr_types++] = t; 1594 1595 return 0; 1596 } 1597 1598 static int btf_alloc_id(struct btf *btf) 1599 { 1600 int id; 1601 1602 idr_preload(GFP_KERNEL); 1603 spin_lock_bh(&btf_idr_lock); 1604 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1605 if (id > 0) 1606 btf->id = id; 1607 spin_unlock_bh(&btf_idr_lock); 1608 idr_preload_end(); 1609 1610 if (WARN_ON_ONCE(!id)) 1611 return -ENOSPC; 1612 1613 return id > 0 ? 0 : id; 1614 } 1615 1616 static void btf_free_id(struct btf *btf) 1617 { 1618 unsigned long flags; 1619 1620 /* 1621 * In map-in-map, calling map_delete_elem() on outer 1622 * map will call bpf_map_put on the inner map. 1623 * It will then eventually call btf_free_id() 1624 * on the inner map. Some of the map_delete_elem() 1625 * implementation may have irq disabled, so 1626 * we need to use the _irqsave() version instead 1627 * of the _bh() version. 1628 */ 1629 spin_lock_irqsave(&btf_idr_lock, flags); 1630 idr_remove(&btf_idr, btf->id); 1631 spin_unlock_irqrestore(&btf_idr_lock, flags); 1632 } 1633 1634 static void btf_free_kfunc_set_tab(struct btf *btf) 1635 { 1636 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1637 int hook; 1638 1639 if (!tab) 1640 return; 1641 /* For module BTF, we directly assign the sets being registered, so 1642 * there is nothing to free except kfunc_set_tab. 1643 */ 1644 if (btf_is_module(btf)) 1645 goto free_tab; 1646 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1647 kfree(tab->sets[hook]); 1648 free_tab: 1649 kfree(tab); 1650 btf->kfunc_set_tab = NULL; 1651 } 1652 1653 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1654 { 1655 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1656 1657 if (!tab) 1658 return; 1659 kfree(tab); 1660 btf->dtor_kfunc_tab = NULL; 1661 } 1662 1663 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1664 { 1665 int i; 1666 1667 if (!tab) 1668 return; 1669 for (i = 0; i < tab->cnt; i++) { 1670 btf_record_free(tab->types[i].record); 1671 kfree(tab->types[i].field_offs); 1672 } 1673 kfree(tab); 1674 } 1675 1676 static void btf_free_struct_meta_tab(struct btf *btf) 1677 { 1678 struct btf_struct_metas *tab = btf->struct_meta_tab; 1679 1680 btf_struct_metas_free(tab); 1681 btf->struct_meta_tab = NULL; 1682 } 1683 1684 static void btf_free(struct btf *btf) 1685 { 1686 btf_free_struct_meta_tab(btf); 1687 btf_free_dtor_kfunc_tab(btf); 1688 btf_free_kfunc_set_tab(btf); 1689 kvfree(btf->types); 1690 kvfree(btf->resolved_sizes); 1691 kvfree(btf->resolved_ids); 1692 kvfree(btf->data); 1693 kfree(btf); 1694 } 1695 1696 static void btf_free_rcu(struct rcu_head *rcu) 1697 { 1698 struct btf *btf = container_of(rcu, struct btf, rcu); 1699 1700 btf_free(btf); 1701 } 1702 1703 void btf_get(struct btf *btf) 1704 { 1705 refcount_inc(&btf->refcnt); 1706 } 1707 1708 void btf_put(struct btf *btf) 1709 { 1710 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1711 btf_free_id(btf); 1712 call_rcu(&btf->rcu, btf_free_rcu); 1713 } 1714 } 1715 1716 static int env_resolve_init(struct btf_verifier_env *env) 1717 { 1718 struct btf *btf = env->btf; 1719 u32 nr_types = btf->nr_types; 1720 u32 *resolved_sizes = NULL; 1721 u32 *resolved_ids = NULL; 1722 u8 *visit_states = NULL; 1723 1724 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1725 GFP_KERNEL | __GFP_NOWARN); 1726 if (!resolved_sizes) 1727 goto nomem; 1728 1729 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1730 GFP_KERNEL | __GFP_NOWARN); 1731 if (!resolved_ids) 1732 goto nomem; 1733 1734 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1735 GFP_KERNEL | __GFP_NOWARN); 1736 if (!visit_states) 1737 goto nomem; 1738 1739 btf->resolved_sizes = resolved_sizes; 1740 btf->resolved_ids = resolved_ids; 1741 env->visit_states = visit_states; 1742 1743 return 0; 1744 1745 nomem: 1746 kvfree(resolved_sizes); 1747 kvfree(resolved_ids); 1748 kvfree(visit_states); 1749 return -ENOMEM; 1750 } 1751 1752 static void btf_verifier_env_free(struct btf_verifier_env *env) 1753 { 1754 kvfree(env->visit_states); 1755 kfree(env); 1756 } 1757 1758 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1759 const struct btf_type *next_type) 1760 { 1761 switch (env->resolve_mode) { 1762 case RESOLVE_TBD: 1763 /* int, enum or void is a sink */ 1764 return !btf_type_needs_resolve(next_type); 1765 case RESOLVE_PTR: 1766 /* int, enum, void, struct, array, func or func_proto is a sink 1767 * for ptr 1768 */ 1769 return !btf_type_is_modifier(next_type) && 1770 !btf_type_is_ptr(next_type); 1771 case RESOLVE_STRUCT_OR_ARRAY: 1772 /* int, enum, void, ptr, func or func_proto is a sink 1773 * for struct and array 1774 */ 1775 return !btf_type_is_modifier(next_type) && 1776 !btf_type_is_array(next_type) && 1777 !btf_type_is_struct(next_type); 1778 default: 1779 BUG(); 1780 } 1781 } 1782 1783 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1784 u32 type_id) 1785 { 1786 /* base BTF types should be resolved by now */ 1787 if (type_id < env->btf->start_id) 1788 return true; 1789 1790 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1791 } 1792 1793 static int env_stack_push(struct btf_verifier_env *env, 1794 const struct btf_type *t, u32 type_id) 1795 { 1796 const struct btf *btf = env->btf; 1797 struct resolve_vertex *v; 1798 1799 if (env->top_stack == MAX_RESOLVE_DEPTH) 1800 return -E2BIG; 1801 1802 if (type_id < btf->start_id 1803 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1804 return -EEXIST; 1805 1806 env->visit_states[type_id - btf->start_id] = VISITED; 1807 1808 v = &env->stack[env->top_stack++]; 1809 v->t = t; 1810 v->type_id = type_id; 1811 v->next_member = 0; 1812 1813 if (env->resolve_mode == RESOLVE_TBD) { 1814 if (btf_type_is_ptr(t)) 1815 env->resolve_mode = RESOLVE_PTR; 1816 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1817 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1818 } 1819 1820 return 0; 1821 } 1822 1823 static void env_stack_set_next_member(struct btf_verifier_env *env, 1824 u16 next_member) 1825 { 1826 env->stack[env->top_stack - 1].next_member = next_member; 1827 } 1828 1829 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1830 u32 resolved_type_id, 1831 u32 resolved_size) 1832 { 1833 u32 type_id = env->stack[--(env->top_stack)].type_id; 1834 struct btf *btf = env->btf; 1835 1836 type_id -= btf->start_id; /* adjust to local type id */ 1837 btf->resolved_sizes[type_id] = resolved_size; 1838 btf->resolved_ids[type_id] = resolved_type_id; 1839 env->visit_states[type_id] = RESOLVED; 1840 } 1841 1842 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1843 { 1844 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1845 } 1846 1847 /* Resolve the size of a passed-in "type" 1848 * 1849 * type: is an array (e.g. u32 array[x][y]) 1850 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1851 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1852 * corresponds to the return type. 1853 * *elem_type: u32 1854 * *elem_id: id of u32 1855 * *total_nelems: (x * y). Hence, individual elem size is 1856 * (*type_size / *total_nelems) 1857 * *type_id: id of type if it's changed within the function, 0 if not 1858 * 1859 * type: is not an array (e.g. const struct X) 1860 * return type: type "struct X" 1861 * *type_size: sizeof(struct X) 1862 * *elem_type: same as return type ("struct X") 1863 * *elem_id: 0 1864 * *total_nelems: 1 1865 * *type_id: id of type if it's changed within the function, 0 if not 1866 */ 1867 static const struct btf_type * 1868 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1869 u32 *type_size, const struct btf_type **elem_type, 1870 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1871 { 1872 const struct btf_type *array_type = NULL; 1873 const struct btf_array *array = NULL; 1874 u32 i, size, nelems = 1, id = 0; 1875 1876 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1877 switch (BTF_INFO_KIND(type->info)) { 1878 /* type->size can be used */ 1879 case BTF_KIND_INT: 1880 case BTF_KIND_STRUCT: 1881 case BTF_KIND_UNION: 1882 case BTF_KIND_ENUM: 1883 case BTF_KIND_FLOAT: 1884 case BTF_KIND_ENUM64: 1885 size = type->size; 1886 goto resolved; 1887 1888 case BTF_KIND_PTR: 1889 size = sizeof(void *); 1890 goto resolved; 1891 1892 /* Modifiers */ 1893 case BTF_KIND_TYPEDEF: 1894 case BTF_KIND_VOLATILE: 1895 case BTF_KIND_CONST: 1896 case BTF_KIND_RESTRICT: 1897 case BTF_KIND_TYPE_TAG: 1898 id = type->type; 1899 type = btf_type_by_id(btf, type->type); 1900 break; 1901 1902 case BTF_KIND_ARRAY: 1903 if (!array_type) 1904 array_type = type; 1905 array = btf_type_array(type); 1906 if (nelems && array->nelems > U32_MAX / nelems) 1907 return ERR_PTR(-EINVAL); 1908 nelems *= array->nelems; 1909 type = btf_type_by_id(btf, array->type); 1910 break; 1911 1912 /* type without size */ 1913 default: 1914 return ERR_PTR(-EINVAL); 1915 } 1916 } 1917 1918 return ERR_PTR(-EINVAL); 1919 1920 resolved: 1921 if (nelems && size > U32_MAX / nelems) 1922 return ERR_PTR(-EINVAL); 1923 1924 *type_size = nelems * size; 1925 if (total_nelems) 1926 *total_nelems = nelems; 1927 if (elem_type) 1928 *elem_type = type; 1929 if (elem_id) 1930 *elem_id = array ? array->type : 0; 1931 if (type_id && id) 1932 *type_id = id; 1933 1934 return array_type ? : type; 1935 } 1936 1937 const struct btf_type * 1938 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1939 u32 *type_size) 1940 { 1941 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1942 } 1943 1944 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1945 { 1946 while (type_id < btf->start_id) 1947 btf = btf->base_btf; 1948 1949 return btf->resolved_ids[type_id - btf->start_id]; 1950 } 1951 1952 /* The input param "type_id" must point to a needs_resolve type */ 1953 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1954 u32 *type_id) 1955 { 1956 *type_id = btf_resolved_type_id(btf, *type_id); 1957 return btf_type_by_id(btf, *type_id); 1958 } 1959 1960 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1961 { 1962 while (type_id < btf->start_id) 1963 btf = btf->base_btf; 1964 1965 return btf->resolved_sizes[type_id - btf->start_id]; 1966 } 1967 1968 const struct btf_type *btf_type_id_size(const struct btf *btf, 1969 u32 *type_id, u32 *ret_size) 1970 { 1971 const struct btf_type *size_type; 1972 u32 size_type_id = *type_id; 1973 u32 size = 0; 1974 1975 size_type = btf_type_by_id(btf, size_type_id); 1976 if (btf_type_nosize_or_null(size_type)) 1977 return NULL; 1978 1979 if (btf_type_has_size(size_type)) { 1980 size = size_type->size; 1981 } else if (btf_type_is_array(size_type)) { 1982 size = btf_resolved_type_size(btf, size_type_id); 1983 } else if (btf_type_is_ptr(size_type)) { 1984 size = sizeof(void *); 1985 } else { 1986 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1987 !btf_type_is_var(size_type))) 1988 return NULL; 1989 1990 size_type_id = btf_resolved_type_id(btf, size_type_id); 1991 size_type = btf_type_by_id(btf, size_type_id); 1992 if (btf_type_nosize_or_null(size_type)) 1993 return NULL; 1994 else if (btf_type_has_size(size_type)) 1995 size = size_type->size; 1996 else if (btf_type_is_array(size_type)) 1997 size = btf_resolved_type_size(btf, size_type_id); 1998 else if (btf_type_is_ptr(size_type)) 1999 size = sizeof(void *); 2000 else 2001 return NULL; 2002 } 2003 2004 *type_id = size_type_id; 2005 if (ret_size) 2006 *ret_size = size; 2007 2008 return size_type; 2009 } 2010 2011 static int btf_df_check_member(struct btf_verifier_env *env, 2012 const struct btf_type *struct_type, 2013 const struct btf_member *member, 2014 const struct btf_type *member_type) 2015 { 2016 btf_verifier_log_basic(env, struct_type, 2017 "Unsupported check_member"); 2018 return -EINVAL; 2019 } 2020 2021 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2022 const struct btf_type *struct_type, 2023 const struct btf_member *member, 2024 const struct btf_type *member_type) 2025 { 2026 btf_verifier_log_basic(env, struct_type, 2027 "Unsupported check_kflag_member"); 2028 return -EINVAL; 2029 } 2030 2031 /* Used for ptr, array struct/union and float type members. 2032 * int, enum and modifier types have their specific callback functions. 2033 */ 2034 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2035 const struct btf_type *struct_type, 2036 const struct btf_member *member, 2037 const struct btf_type *member_type) 2038 { 2039 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2040 btf_verifier_log_member(env, struct_type, member, 2041 "Invalid member bitfield_size"); 2042 return -EINVAL; 2043 } 2044 2045 /* bitfield size is 0, so member->offset represents bit offset only. 2046 * It is safe to call non kflag check_member variants. 2047 */ 2048 return btf_type_ops(member_type)->check_member(env, struct_type, 2049 member, 2050 member_type); 2051 } 2052 2053 static int btf_df_resolve(struct btf_verifier_env *env, 2054 const struct resolve_vertex *v) 2055 { 2056 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2057 return -EINVAL; 2058 } 2059 2060 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2061 u32 type_id, void *data, u8 bits_offsets, 2062 struct btf_show *show) 2063 { 2064 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2065 } 2066 2067 static int btf_int_check_member(struct btf_verifier_env *env, 2068 const struct btf_type *struct_type, 2069 const struct btf_member *member, 2070 const struct btf_type *member_type) 2071 { 2072 u32 int_data = btf_type_int(member_type); 2073 u32 struct_bits_off = member->offset; 2074 u32 struct_size = struct_type->size; 2075 u32 nr_copy_bits; 2076 u32 bytes_offset; 2077 2078 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2079 btf_verifier_log_member(env, struct_type, member, 2080 "bits_offset exceeds U32_MAX"); 2081 return -EINVAL; 2082 } 2083 2084 struct_bits_off += BTF_INT_OFFSET(int_data); 2085 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2086 nr_copy_bits = BTF_INT_BITS(int_data) + 2087 BITS_PER_BYTE_MASKED(struct_bits_off); 2088 2089 if (nr_copy_bits > BITS_PER_U128) { 2090 btf_verifier_log_member(env, struct_type, member, 2091 "nr_copy_bits exceeds 128"); 2092 return -EINVAL; 2093 } 2094 2095 if (struct_size < bytes_offset || 2096 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2097 btf_verifier_log_member(env, struct_type, member, 2098 "Member exceeds struct_size"); 2099 return -EINVAL; 2100 } 2101 2102 return 0; 2103 } 2104 2105 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2106 const struct btf_type *struct_type, 2107 const struct btf_member *member, 2108 const struct btf_type *member_type) 2109 { 2110 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2111 u32 int_data = btf_type_int(member_type); 2112 u32 struct_size = struct_type->size; 2113 u32 nr_copy_bits; 2114 2115 /* a regular int type is required for the kflag int member */ 2116 if (!btf_type_int_is_regular(member_type)) { 2117 btf_verifier_log_member(env, struct_type, member, 2118 "Invalid member base type"); 2119 return -EINVAL; 2120 } 2121 2122 /* check sanity of bitfield size */ 2123 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2124 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2125 nr_int_data_bits = BTF_INT_BITS(int_data); 2126 if (!nr_bits) { 2127 /* Not a bitfield member, member offset must be at byte 2128 * boundary. 2129 */ 2130 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2131 btf_verifier_log_member(env, struct_type, member, 2132 "Invalid member offset"); 2133 return -EINVAL; 2134 } 2135 2136 nr_bits = nr_int_data_bits; 2137 } else if (nr_bits > nr_int_data_bits) { 2138 btf_verifier_log_member(env, struct_type, member, 2139 "Invalid member bitfield_size"); 2140 return -EINVAL; 2141 } 2142 2143 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2144 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2145 if (nr_copy_bits > BITS_PER_U128) { 2146 btf_verifier_log_member(env, struct_type, member, 2147 "nr_copy_bits exceeds 128"); 2148 return -EINVAL; 2149 } 2150 2151 if (struct_size < bytes_offset || 2152 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2153 btf_verifier_log_member(env, struct_type, member, 2154 "Member exceeds struct_size"); 2155 return -EINVAL; 2156 } 2157 2158 return 0; 2159 } 2160 2161 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2162 const struct btf_type *t, 2163 u32 meta_left) 2164 { 2165 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2166 u16 encoding; 2167 2168 if (meta_left < meta_needed) { 2169 btf_verifier_log_basic(env, t, 2170 "meta_left:%u meta_needed:%u", 2171 meta_left, meta_needed); 2172 return -EINVAL; 2173 } 2174 2175 if (btf_type_vlen(t)) { 2176 btf_verifier_log_type(env, t, "vlen != 0"); 2177 return -EINVAL; 2178 } 2179 2180 if (btf_type_kflag(t)) { 2181 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2182 return -EINVAL; 2183 } 2184 2185 int_data = btf_type_int(t); 2186 if (int_data & ~BTF_INT_MASK) { 2187 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2188 int_data); 2189 return -EINVAL; 2190 } 2191 2192 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2193 2194 if (nr_bits > BITS_PER_U128) { 2195 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2196 BITS_PER_U128); 2197 return -EINVAL; 2198 } 2199 2200 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2201 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2202 return -EINVAL; 2203 } 2204 2205 /* 2206 * Only one of the encoding bits is allowed and it 2207 * should be sufficient for the pretty print purpose (i.e. decoding). 2208 * Multiple bits can be allowed later if it is found 2209 * to be insufficient. 2210 */ 2211 encoding = BTF_INT_ENCODING(int_data); 2212 if (encoding && 2213 encoding != BTF_INT_SIGNED && 2214 encoding != BTF_INT_CHAR && 2215 encoding != BTF_INT_BOOL) { 2216 btf_verifier_log_type(env, t, "Unsupported encoding"); 2217 return -ENOTSUPP; 2218 } 2219 2220 btf_verifier_log_type(env, t, NULL); 2221 2222 return meta_needed; 2223 } 2224 2225 static void btf_int_log(struct btf_verifier_env *env, 2226 const struct btf_type *t) 2227 { 2228 int int_data = btf_type_int(t); 2229 2230 btf_verifier_log(env, 2231 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2232 t->size, BTF_INT_OFFSET(int_data), 2233 BTF_INT_BITS(int_data), 2234 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2235 } 2236 2237 static void btf_int128_print(struct btf_show *show, void *data) 2238 { 2239 /* data points to a __int128 number. 2240 * Suppose 2241 * int128_num = *(__int128 *)data; 2242 * The below formulas shows what upper_num and lower_num represents: 2243 * upper_num = int128_num >> 64; 2244 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2245 */ 2246 u64 upper_num, lower_num; 2247 2248 #ifdef __BIG_ENDIAN_BITFIELD 2249 upper_num = *(u64 *)data; 2250 lower_num = *(u64 *)(data + 8); 2251 #else 2252 upper_num = *(u64 *)(data + 8); 2253 lower_num = *(u64 *)data; 2254 #endif 2255 if (upper_num == 0) 2256 btf_show_type_value(show, "0x%llx", lower_num); 2257 else 2258 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2259 lower_num); 2260 } 2261 2262 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2263 u16 right_shift_bits) 2264 { 2265 u64 upper_num, lower_num; 2266 2267 #ifdef __BIG_ENDIAN_BITFIELD 2268 upper_num = print_num[0]; 2269 lower_num = print_num[1]; 2270 #else 2271 upper_num = print_num[1]; 2272 lower_num = print_num[0]; 2273 #endif 2274 2275 /* shake out un-needed bits by shift/or operations */ 2276 if (left_shift_bits >= 64) { 2277 upper_num = lower_num << (left_shift_bits - 64); 2278 lower_num = 0; 2279 } else { 2280 upper_num = (upper_num << left_shift_bits) | 2281 (lower_num >> (64 - left_shift_bits)); 2282 lower_num = lower_num << left_shift_bits; 2283 } 2284 2285 if (right_shift_bits >= 64) { 2286 lower_num = upper_num >> (right_shift_bits - 64); 2287 upper_num = 0; 2288 } else { 2289 lower_num = (lower_num >> right_shift_bits) | 2290 (upper_num << (64 - right_shift_bits)); 2291 upper_num = upper_num >> right_shift_bits; 2292 } 2293 2294 #ifdef __BIG_ENDIAN_BITFIELD 2295 print_num[0] = upper_num; 2296 print_num[1] = lower_num; 2297 #else 2298 print_num[0] = lower_num; 2299 print_num[1] = upper_num; 2300 #endif 2301 } 2302 2303 static void btf_bitfield_show(void *data, u8 bits_offset, 2304 u8 nr_bits, struct btf_show *show) 2305 { 2306 u16 left_shift_bits, right_shift_bits; 2307 u8 nr_copy_bytes; 2308 u8 nr_copy_bits; 2309 u64 print_num[2] = {}; 2310 2311 nr_copy_bits = nr_bits + bits_offset; 2312 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2313 2314 memcpy(print_num, data, nr_copy_bytes); 2315 2316 #ifdef __BIG_ENDIAN_BITFIELD 2317 left_shift_bits = bits_offset; 2318 #else 2319 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2320 #endif 2321 right_shift_bits = BITS_PER_U128 - nr_bits; 2322 2323 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2324 btf_int128_print(show, print_num); 2325 } 2326 2327 2328 static void btf_int_bits_show(const struct btf *btf, 2329 const struct btf_type *t, 2330 void *data, u8 bits_offset, 2331 struct btf_show *show) 2332 { 2333 u32 int_data = btf_type_int(t); 2334 u8 nr_bits = BTF_INT_BITS(int_data); 2335 u8 total_bits_offset; 2336 2337 /* 2338 * bits_offset is at most 7. 2339 * BTF_INT_OFFSET() cannot exceed 128 bits. 2340 */ 2341 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2342 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2343 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2344 btf_bitfield_show(data, bits_offset, nr_bits, show); 2345 } 2346 2347 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2348 u32 type_id, void *data, u8 bits_offset, 2349 struct btf_show *show) 2350 { 2351 u32 int_data = btf_type_int(t); 2352 u8 encoding = BTF_INT_ENCODING(int_data); 2353 bool sign = encoding & BTF_INT_SIGNED; 2354 u8 nr_bits = BTF_INT_BITS(int_data); 2355 void *safe_data; 2356 2357 safe_data = btf_show_start_type(show, t, type_id, data); 2358 if (!safe_data) 2359 return; 2360 2361 if (bits_offset || BTF_INT_OFFSET(int_data) || 2362 BITS_PER_BYTE_MASKED(nr_bits)) { 2363 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2364 goto out; 2365 } 2366 2367 switch (nr_bits) { 2368 case 128: 2369 btf_int128_print(show, safe_data); 2370 break; 2371 case 64: 2372 if (sign) 2373 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2374 else 2375 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2376 break; 2377 case 32: 2378 if (sign) 2379 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2380 else 2381 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2382 break; 2383 case 16: 2384 if (sign) 2385 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2386 else 2387 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2388 break; 2389 case 8: 2390 if (show->state.array_encoding == BTF_INT_CHAR) { 2391 /* check for null terminator */ 2392 if (show->state.array_terminated) 2393 break; 2394 if (*(char *)data == '\0') { 2395 show->state.array_terminated = 1; 2396 break; 2397 } 2398 if (isprint(*(char *)data)) { 2399 btf_show_type_value(show, "'%c'", 2400 *(char *)safe_data); 2401 break; 2402 } 2403 } 2404 if (sign) 2405 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2406 else 2407 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2408 break; 2409 default: 2410 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2411 break; 2412 } 2413 out: 2414 btf_show_end_type(show); 2415 } 2416 2417 static const struct btf_kind_operations int_ops = { 2418 .check_meta = btf_int_check_meta, 2419 .resolve = btf_df_resolve, 2420 .check_member = btf_int_check_member, 2421 .check_kflag_member = btf_int_check_kflag_member, 2422 .log_details = btf_int_log, 2423 .show = btf_int_show, 2424 }; 2425 2426 static int btf_modifier_check_member(struct btf_verifier_env *env, 2427 const struct btf_type *struct_type, 2428 const struct btf_member *member, 2429 const struct btf_type *member_type) 2430 { 2431 const struct btf_type *resolved_type; 2432 u32 resolved_type_id = member->type; 2433 struct btf_member resolved_member; 2434 struct btf *btf = env->btf; 2435 2436 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2437 if (!resolved_type) { 2438 btf_verifier_log_member(env, struct_type, member, 2439 "Invalid member"); 2440 return -EINVAL; 2441 } 2442 2443 resolved_member = *member; 2444 resolved_member.type = resolved_type_id; 2445 2446 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2447 &resolved_member, 2448 resolved_type); 2449 } 2450 2451 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2452 const struct btf_type *struct_type, 2453 const struct btf_member *member, 2454 const struct btf_type *member_type) 2455 { 2456 const struct btf_type *resolved_type; 2457 u32 resolved_type_id = member->type; 2458 struct btf_member resolved_member; 2459 struct btf *btf = env->btf; 2460 2461 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2462 if (!resolved_type) { 2463 btf_verifier_log_member(env, struct_type, member, 2464 "Invalid member"); 2465 return -EINVAL; 2466 } 2467 2468 resolved_member = *member; 2469 resolved_member.type = resolved_type_id; 2470 2471 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2472 &resolved_member, 2473 resolved_type); 2474 } 2475 2476 static int btf_ptr_check_member(struct btf_verifier_env *env, 2477 const struct btf_type *struct_type, 2478 const struct btf_member *member, 2479 const struct btf_type *member_type) 2480 { 2481 u32 struct_size, struct_bits_off, bytes_offset; 2482 2483 struct_size = struct_type->size; 2484 struct_bits_off = member->offset; 2485 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2486 2487 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2488 btf_verifier_log_member(env, struct_type, member, 2489 "Member is not byte aligned"); 2490 return -EINVAL; 2491 } 2492 2493 if (struct_size - bytes_offset < sizeof(void *)) { 2494 btf_verifier_log_member(env, struct_type, member, 2495 "Member exceeds struct_size"); 2496 return -EINVAL; 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2503 const struct btf_type *t, 2504 u32 meta_left) 2505 { 2506 const char *value; 2507 2508 if (btf_type_vlen(t)) { 2509 btf_verifier_log_type(env, t, "vlen != 0"); 2510 return -EINVAL; 2511 } 2512 2513 if (btf_type_kflag(t)) { 2514 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2515 return -EINVAL; 2516 } 2517 2518 if (!BTF_TYPE_ID_VALID(t->type)) { 2519 btf_verifier_log_type(env, t, "Invalid type_id"); 2520 return -EINVAL; 2521 } 2522 2523 /* typedef/type_tag type must have a valid name, and other ref types, 2524 * volatile, const, restrict, should have a null name. 2525 */ 2526 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2527 if (!t->name_off || 2528 !btf_name_valid_identifier(env->btf, t->name_off)) { 2529 btf_verifier_log_type(env, t, "Invalid name"); 2530 return -EINVAL; 2531 } 2532 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2533 value = btf_name_by_offset(env->btf, t->name_off); 2534 if (!value || !value[0]) { 2535 btf_verifier_log_type(env, t, "Invalid name"); 2536 return -EINVAL; 2537 } 2538 } else { 2539 if (t->name_off) { 2540 btf_verifier_log_type(env, t, "Invalid name"); 2541 return -EINVAL; 2542 } 2543 } 2544 2545 btf_verifier_log_type(env, t, NULL); 2546 2547 return 0; 2548 } 2549 2550 static int btf_modifier_resolve(struct btf_verifier_env *env, 2551 const struct resolve_vertex *v) 2552 { 2553 const struct btf_type *t = v->t; 2554 const struct btf_type *next_type; 2555 u32 next_type_id = t->type; 2556 struct btf *btf = env->btf; 2557 2558 next_type = btf_type_by_id(btf, next_type_id); 2559 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2560 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2561 return -EINVAL; 2562 } 2563 2564 if (!env_type_is_resolve_sink(env, next_type) && 2565 !env_type_is_resolved(env, next_type_id)) 2566 return env_stack_push(env, next_type, next_type_id); 2567 2568 /* Figure out the resolved next_type_id with size. 2569 * They will be stored in the current modifier's 2570 * resolved_ids and resolved_sizes such that it can 2571 * save us a few type-following when we use it later (e.g. in 2572 * pretty print). 2573 */ 2574 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2575 if (env_type_is_resolved(env, next_type_id)) 2576 next_type = btf_type_id_resolve(btf, &next_type_id); 2577 2578 /* "typedef void new_void", "const void"...etc */ 2579 if (!btf_type_is_void(next_type) && 2580 !btf_type_is_fwd(next_type) && 2581 !btf_type_is_func_proto(next_type)) { 2582 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2583 return -EINVAL; 2584 } 2585 } 2586 2587 env_stack_pop_resolved(env, next_type_id, 0); 2588 2589 return 0; 2590 } 2591 2592 static int btf_var_resolve(struct btf_verifier_env *env, 2593 const struct resolve_vertex *v) 2594 { 2595 const struct btf_type *next_type; 2596 const struct btf_type *t = v->t; 2597 u32 next_type_id = t->type; 2598 struct btf *btf = env->btf; 2599 2600 next_type = btf_type_by_id(btf, next_type_id); 2601 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2602 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2603 return -EINVAL; 2604 } 2605 2606 if (!env_type_is_resolve_sink(env, next_type) && 2607 !env_type_is_resolved(env, next_type_id)) 2608 return env_stack_push(env, next_type, next_type_id); 2609 2610 if (btf_type_is_modifier(next_type)) { 2611 const struct btf_type *resolved_type; 2612 u32 resolved_type_id; 2613 2614 resolved_type_id = next_type_id; 2615 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2616 2617 if (btf_type_is_ptr(resolved_type) && 2618 !env_type_is_resolve_sink(env, resolved_type) && 2619 !env_type_is_resolved(env, resolved_type_id)) 2620 return env_stack_push(env, resolved_type, 2621 resolved_type_id); 2622 } 2623 2624 /* We must resolve to something concrete at this point, no 2625 * forward types or similar that would resolve to size of 2626 * zero is allowed. 2627 */ 2628 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2629 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2630 return -EINVAL; 2631 } 2632 2633 env_stack_pop_resolved(env, next_type_id, 0); 2634 2635 return 0; 2636 } 2637 2638 static int btf_ptr_resolve(struct btf_verifier_env *env, 2639 const struct resolve_vertex *v) 2640 { 2641 const struct btf_type *next_type; 2642 const struct btf_type *t = v->t; 2643 u32 next_type_id = t->type; 2644 struct btf *btf = env->btf; 2645 2646 next_type = btf_type_by_id(btf, next_type_id); 2647 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2648 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2649 return -EINVAL; 2650 } 2651 2652 if (!env_type_is_resolve_sink(env, next_type) && 2653 !env_type_is_resolved(env, next_type_id)) 2654 return env_stack_push(env, next_type, next_type_id); 2655 2656 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2657 * the modifier may have stopped resolving when it was resolved 2658 * to a ptr (last-resolved-ptr). 2659 * 2660 * We now need to continue from the last-resolved-ptr to 2661 * ensure the last-resolved-ptr will not referring back to 2662 * the current ptr (t). 2663 */ 2664 if (btf_type_is_modifier(next_type)) { 2665 const struct btf_type *resolved_type; 2666 u32 resolved_type_id; 2667 2668 resolved_type_id = next_type_id; 2669 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2670 2671 if (btf_type_is_ptr(resolved_type) && 2672 !env_type_is_resolve_sink(env, resolved_type) && 2673 !env_type_is_resolved(env, resolved_type_id)) 2674 return env_stack_push(env, resolved_type, 2675 resolved_type_id); 2676 } 2677 2678 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2679 if (env_type_is_resolved(env, next_type_id)) 2680 next_type = btf_type_id_resolve(btf, &next_type_id); 2681 2682 if (!btf_type_is_void(next_type) && 2683 !btf_type_is_fwd(next_type) && 2684 !btf_type_is_func_proto(next_type)) { 2685 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2686 return -EINVAL; 2687 } 2688 } 2689 2690 env_stack_pop_resolved(env, next_type_id, 0); 2691 2692 return 0; 2693 } 2694 2695 static void btf_modifier_show(const struct btf *btf, 2696 const struct btf_type *t, 2697 u32 type_id, void *data, 2698 u8 bits_offset, struct btf_show *show) 2699 { 2700 if (btf->resolved_ids) 2701 t = btf_type_id_resolve(btf, &type_id); 2702 else 2703 t = btf_type_skip_modifiers(btf, type_id, NULL); 2704 2705 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2706 } 2707 2708 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2709 u32 type_id, void *data, u8 bits_offset, 2710 struct btf_show *show) 2711 { 2712 t = btf_type_id_resolve(btf, &type_id); 2713 2714 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2715 } 2716 2717 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2718 u32 type_id, void *data, u8 bits_offset, 2719 struct btf_show *show) 2720 { 2721 void *safe_data; 2722 2723 safe_data = btf_show_start_type(show, t, type_id, data); 2724 if (!safe_data) 2725 return; 2726 2727 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2728 if (show->flags & BTF_SHOW_PTR_RAW) 2729 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2730 else 2731 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2732 btf_show_end_type(show); 2733 } 2734 2735 static void btf_ref_type_log(struct btf_verifier_env *env, 2736 const struct btf_type *t) 2737 { 2738 btf_verifier_log(env, "type_id=%u", t->type); 2739 } 2740 2741 static struct btf_kind_operations modifier_ops = { 2742 .check_meta = btf_ref_type_check_meta, 2743 .resolve = btf_modifier_resolve, 2744 .check_member = btf_modifier_check_member, 2745 .check_kflag_member = btf_modifier_check_kflag_member, 2746 .log_details = btf_ref_type_log, 2747 .show = btf_modifier_show, 2748 }; 2749 2750 static struct btf_kind_operations ptr_ops = { 2751 .check_meta = btf_ref_type_check_meta, 2752 .resolve = btf_ptr_resolve, 2753 .check_member = btf_ptr_check_member, 2754 .check_kflag_member = btf_generic_check_kflag_member, 2755 .log_details = btf_ref_type_log, 2756 .show = btf_ptr_show, 2757 }; 2758 2759 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2760 const struct btf_type *t, 2761 u32 meta_left) 2762 { 2763 if (btf_type_vlen(t)) { 2764 btf_verifier_log_type(env, t, "vlen != 0"); 2765 return -EINVAL; 2766 } 2767 2768 if (t->type) { 2769 btf_verifier_log_type(env, t, "type != 0"); 2770 return -EINVAL; 2771 } 2772 2773 /* fwd type must have a valid name */ 2774 if (!t->name_off || 2775 !btf_name_valid_identifier(env->btf, t->name_off)) { 2776 btf_verifier_log_type(env, t, "Invalid name"); 2777 return -EINVAL; 2778 } 2779 2780 btf_verifier_log_type(env, t, NULL); 2781 2782 return 0; 2783 } 2784 2785 static void btf_fwd_type_log(struct btf_verifier_env *env, 2786 const struct btf_type *t) 2787 { 2788 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2789 } 2790 2791 static struct btf_kind_operations fwd_ops = { 2792 .check_meta = btf_fwd_check_meta, 2793 .resolve = btf_df_resolve, 2794 .check_member = btf_df_check_member, 2795 .check_kflag_member = btf_df_check_kflag_member, 2796 .log_details = btf_fwd_type_log, 2797 .show = btf_df_show, 2798 }; 2799 2800 static int btf_array_check_member(struct btf_verifier_env *env, 2801 const struct btf_type *struct_type, 2802 const struct btf_member *member, 2803 const struct btf_type *member_type) 2804 { 2805 u32 struct_bits_off = member->offset; 2806 u32 struct_size, bytes_offset; 2807 u32 array_type_id, array_size; 2808 struct btf *btf = env->btf; 2809 2810 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2811 btf_verifier_log_member(env, struct_type, member, 2812 "Member is not byte aligned"); 2813 return -EINVAL; 2814 } 2815 2816 array_type_id = member->type; 2817 btf_type_id_size(btf, &array_type_id, &array_size); 2818 struct_size = struct_type->size; 2819 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2820 if (struct_size - bytes_offset < array_size) { 2821 btf_verifier_log_member(env, struct_type, member, 2822 "Member exceeds struct_size"); 2823 return -EINVAL; 2824 } 2825 2826 return 0; 2827 } 2828 2829 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2830 const struct btf_type *t, 2831 u32 meta_left) 2832 { 2833 const struct btf_array *array = btf_type_array(t); 2834 u32 meta_needed = sizeof(*array); 2835 2836 if (meta_left < meta_needed) { 2837 btf_verifier_log_basic(env, t, 2838 "meta_left:%u meta_needed:%u", 2839 meta_left, meta_needed); 2840 return -EINVAL; 2841 } 2842 2843 /* array type should not have a name */ 2844 if (t->name_off) { 2845 btf_verifier_log_type(env, t, "Invalid name"); 2846 return -EINVAL; 2847 } 2848 2849 if (btf_type_vlen(t)) { 2850 btf_verifier_log_type(env, t, "vlen != 0"); 2851 return -EINVAL; 2852 } 2853 2854 if (btf_type_kflag(t)) { 2855 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2856 return -EINVAL; 2857 } 2858 2859 if (t->size) { 2860 btf_verifier_log_type(env, t, "size != 0"); 2861 return -EINVAL; 2862 } 2863 2864 /* Array elem type and index type cannot be in type void, 2865 * so !array->type and !array->index_type are not allowed. 2866 */ 2867 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2868 btf_verifier_log_type(env, t, "Invalid elem"); 2869 return -EINVAL; 2870 } 2871 2872 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2873 btf_verifier_log_type(env, t, "Invalid index"); 2874 return -EINVAL; 2875 } 2876 2877 btf_verifier_log_type(env, t, NULL); 2878 2879 return meta_needed; 2880 } 2881 2882 static int btf_array_resolve(struct btf_verifier_env *env, 2883 const struct resolve_vertex *v) 2884 { 2885 const struct btf_array *array = btf_type_array(v->t); 2886 const struct btf_type *elem_type, *index_type; 2887 u32 elem_type_id, index_type_id; 2888 struct btf *btf = env->btf; 2889 u32 elem_size; 2890 2891 /* Check array->index_type */ 2892 index_type_id = array->index_type; 2893 index_type = btf_type_by_id(btf, index_type_id); 2894 if (btf_type_nosize_or_null(index_type) || 2895 btf_type_is_resolve_source_only(index_type)) { 2896 btf_verifier_log_type(env, v->t, "Invalid index"); 2897 return -EINVAL; 2898 } 2899 2900 if (!env_type_is_resolve_sink(env, index_type) && 2901 !env_type_is_resolved(env, index_type_id)) 2902 return env_stack_push(env, index_type, index_type_id); 2903 2904 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2905 if (!index_type || !btf_type_is_int(index_type) || 2906 !btf_type_int_is_regular(index_type)) { 2907 btf_verifier_log_type(env, v->t, "Invalid index"); 2908 return -EINVAL; 2909 } 2910 2911 /* Check array->type */ 2912 elem_type_id = array->type; 2913 elem_type = btf_type_by_id(btf, elem_type_id); 2914 if (btf_type_nosize_or_null(elem_type) || 2915 btf_type_is_resolve_source_only(elem_type)) { 2916 btf_verifier_log_type(env, v->t, 2917 "Invalid elem"); 2918 return -EINVAL; 2919 } 2920 2921 if (!env_type_is_resolve_sink(env, elem_type) && 2922 !env_type_is_resolved(env, elem_type_id)) 2923 return env_stack_push(env, elem_type, elem_type_id); 2924 2925 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2926 if (!elem_type) { 2927 btf_verifier_log_type(env, v->t, "Invalid elem"); 2928 return -EINVAL; 2929 } 2930 2931 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2932 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2933 return -EINVAL; 2934 } 2935 2936 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2937 btf_verifier_log_type(env, v->t, 2938 "Array size overflows U32_MAX"); 2939 return -EINVAL; 2940 } 2941 2942 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2943 2944 return 0; 2945 } 2946 2947 static void btf_array_log(struct btf_verifier_env *env, 2948 const struct btf_type *t) 2949 { 2950 const struct btf_array *array = btf_type_array(t); 2951 2952 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2953 array->type, array->index_type, array->nelems); 2954 } 2955 2956 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2957 u32 type_id, void *data, u8 bits_offset, 2958 struct btf_show *show) 2959 { 2960 const struct btf_array *array = btf_type_array(t); 2961 const struct btf_kind_operations *elem_ops; 2962 const struct btf_type *elem_type; 2963 u32 i, elem_size = 0, elem_type_id; 2964 u16 encoding = 0; 2965 2966 elem_type_id = array->type; 2967 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2968 if (elem_type && btf_type_has_size(elem_type)) 2969 elem_size = elem_type->size; 2970 2971 if (elem_type && btf_type_is_int(elem_type)) { 2972 u32 int_type = btf_type_int(elem_type); 2973 2974 encoding = BTF_INT_ENCODING(int_type); 2975 2976 /* 2977 * BTF_INT_CHAR encoding never seems to be set for 2978 * char arrays, so if size is 1 and element is 2979 * printable as a char, we'll do that. 2980 */ 2981 if (elem_size == 1) 2982 encoding = BTF_INT_CHAR; 2983 } 2984 2985 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2986 return; 2987 2988 if (!elem_type) 2989 goto out; 2990 elem_ops = btf_type_ops(elem_type); 2991 2992 for (i = 0; i < array->nelems; i++) { 2993 2994 btf_show_start_array_member(show); 2995 2996 elem_ops->show(btf, elem_type, elem_type_id, data, 2997 bits_offset, show); 2998 data += elem_size; 2999 3000 btf_show_end_array_member(show); 3001 3002 if (show->state.array_terminated) 3003 break; 3004 } 3005 out: 3006 btf_show_end_array_type(show); 3007 } 3008 3009 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3010 u32 type_id, void *data, u8 bits_offset, 3011 struct btf_show *show) 3012 { 3013 const struct btf_member *m = show->state.member; 3014 3015 /* 3016 * First check if any members would be shown (are non-zero). 3017 * See comments above "struct btf_show" definition for more 3018 * details on how this works at a high-level. 3019 */ 3020 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3021 if (!show->state.depth_check) { 3022 show->state.depth_check = show->state.depth + 1; 3023 show->state.depth_to_show = 0; 3024 } 3025 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3026 show->state.member = m; 3027 3028 if (show->state.depth_check != show->state.depth + 1) 3029 return; 3030 show->state.depth_check = 0; 3031 3032 if (show->state.depth_to_show <= show->state.depth) 3033 return; 3034 /* 3035 * Reaching here indicates we have recursed and found 3036 * non-zero array member(s). 3037 */ 3038 } 3039 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3040 } 3041 3042 static struct btf_kind_operations array_ops = { 3043 .check_meta = btf_array_check_meta, 3044 .resolve = btf_array_resolve, 3045 .check_member = btf_array_check_member, 3046 .check_kflag_member = btf_generic_check_kflag_member, 3047 .log_details = btf_array_log, 3048 .show = btf_array_show, 3049 }; 3050 3051 static int btf_struct_check_member(struct btf_verifier_env *env, 3052 const struct btf_type *struct_type, 3053 const struct btf_member *member, 3054 const struct btf_type *member_type) 3055 { 3056 u32 struct_bits_off = member->offset; 3057 u32 struct_size, bytes_offset; 3058 3059 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3060 btf_verifier_log_member(env, struct_type, member, 3061 "Member is not byte aligned"); 3062 return -EINVAL; 3063 } 3064 3065 struct_size = struct_type->size; 3066 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3067 if (struct_size - bytes_offset < member_type->size) { 3068 btf_verifier_log_member(env, struct_type, member, 3069 "Member exceeds struct_size"); 3070 return -EINVAL; 3071 } 3072 3073 return 0; 3074 } 3075 3076 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3077 const struct btf_type *t, 3078 u32 meta_left) 3079 { 3080 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3081 const struct btf_member *member; 3082 u32 meta_needed, last_offset; 3083 struct btf *btf = env->btf; 3084 u32 struct_size = t->size; 3085 u32 offset; 3086 u16 i; 3087 3088 meta_needed = btf_type_vlen(t) * sizeof(*member); 3089 if (meta_left < meta_needed) { 3090 btf_verifier_log_basic(env, t, 3091 "meta_left:%u meta_needed:%u", 3092 meta_left, meta_needed); 3093 return -EINVAL; 3094 } 3095 3096 /* struct type either no name or a valid one */ 3097 if (t->name_off && 3098 !btf_name_valid_identifier(env->btf, t->name_off)) { 3099 btf_verifier_log_type(env, t, "Invalid name"); 3100 return -EINVAL; 3101 } 3102 3103 btf_verifier_log_type(env, t, NULL); 3104 3105 last_offset = 0; 3106 for_each_member(i, t, member) { 3107 if (!btf_name_offset_valid(btf, member->name_off)) { 3108 btf_verifier_log_member(env, t, member, 3109 "Invalid member name_offset:%u", 3110 member->name_off); 3111 return -EINVAL; 3112 } 3113 3114 /* struct member either no name or a valid one */ 3115 if (member->name_off && 3116 !btf_name_valid_identifier(btf, member->name_off)) { 3117 btf_verifier_log_member(env, t, member, "Invalid name"); 3118 return -EINVAL; 3119 } 3120 /* A member cannot be in type void */ 3121 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3122 btf_verifier_log_member(env, t, member, 3123 "Invalid type_id"); 3124 return -EINVAL; 3125 } 3126 3127 offset = __btf_member_bit_offset(t, member); 3128 if (is_union && offset) { 3129 btf_verifier_log_member(env, t, member, 3130 "Invalid member bits_offset"); 3131 return -EINVAL; 3132 } 3133 3134 /* 3135 * ">" instead of ">=" because the last member could be 3136 * "char a[0];" 3137 */ 3138 if (last_offset > offset) { 3139 btf_verifier_log_member(env, t, member, 3140 "Invalid member bits_offset"); 3141 return -EINVAL; 3142 } 3143 3144 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3145 btf_verifier_log_member(env, t, member, 3146 "Member bits_offset exceeds its struct size"); 3147 return -EINVAL; 3148 } 3149 3150 btf_verifier_log_member(env, t, member, NULL); 3151 last_offset = offset; 3152 } 3153 3154 return meta_needed; 3155 } 3156 3157 static int btf_struct_resolve(struct btf_verifier_env *env, 3158 const struct resolve_vertex *v) 3159 { 3160 const struct btf_member *member; 3161 int err; 3162 u16 i; 3163 3164 /* Before continue resolving the next_member, 3165 * ensure the last member is indeed resolved to a 3166 * type with size info. 3167 */ 3168 if (v->next_member) { 3169 const struct btf_type *last_member_type; 3170 const struct btf_member *last_member; 3171 u32 last_member_type_id; 3172 3173 last_member = btf_type_member(v->t) + v->next_member - 1; 3174 last_member_type_id = last_member->type; 3175 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3176 last_member_type_id))) 3177 return -EINVAL; 3178 3179 last_member_type = btf_type_by_id(env->btf, 3180 last_member_type_id); 3181 if (btf_type_kflag(v->t)) 3182 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3183 last_member, 3184 last_member_type); 3185 else 3186 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3187 last_member, 3188 last_member_type); 3189 if (err) 3190 return err; 3191 } 3192 3193 for_each_member_from(i, v->next_member, v->t, member) { 3194 u32 member_type_id = member->type; 3195 const struct btf_type *member_type = btf_type_by_id(env->btf, 3196 member_type_id); 3197 3198 if (btf_type_nosize_or_null(member_type) || 3199 btf_type_is_resolve_source_only(member_type)) { 3200 btf_verifier_log_member(env, v->t, member, 3201 "Invalid member"); 3202 return -EINVAL; 3203 } 3204 3205 if (!env_type_is_resolve_sink(env, member_type) && 3206 !env_type_is_resolved(env, member_type_id)) { 3207 env_stack_set_next_member(env, i + 1); 3208 return env_stack_push(env, member_type, member_type_id); 3209 } 3210 3211 if (btf_type_kflag(v->t)) 3212 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3213 member, 3214 member_type); 3215 else 3216 err = btf_type_ops(member_type)->check_member(env, v->t, 3217 member, 3218 member_type); 3219 if (err) 3220 return err; 3221 } 3222 3223 env_stack_pop_resolved(env, 0, 0); 3224 3225 return 0; 3226 } 3227 3228 static void btf_struct_log(struct btf_verifier_env *env, 3229 const struct btf_type *t) 3230 { 3231 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3232 } 3233 3234 enum { 3235 BTF_FIELD_IGNORE = 0, 3236 BTF_FIELD_FOUND = 1, 3237 }; 3238 3239 struct btf_field_info { 3240 enum btf_field_type type; 3241 u32 off; 3242 union { 3243 struct { 3244 u32 type_id; 3245 } kptr; 3246 struct { 3247 const char *node_name; 3248 u32 value_btf_id; 3249 } graph_root; 3250 }; 3251 }; 3252 3253 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3254 u32 off, int sz, enum btf_field_type field_type, 3255 struct btf_field_info *info) 3256 { 3257 if (!__btf_type_is_struct(t)) 3258 return BTF_FIELD_IGNORE; 3259 if (t->size != sz) 3260 return BTF_FIELD_IGNORE; 3261 info->type = field_type; 3262 info->off = off; 3263 return BTF_FIELD_FOUND; 3264 } 3265 3266 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3267 u32 off, int sz, struct btf_field_info *info) 3268 { 3269 enum btf_field_type type; 3270 u32 res_id; 3271 3272 /* Permit modifiers on the pointer itself */ 3273 if (btf_type_is_volatile(t)) 3274 t = btf_type_by_id(btf, t->type); 3275 /* For PTR, sz is always == 8 */ 3276 if (!btf_type_is_ptr(t)) 3277 return BTF_FIELD_IGNORE; 3278 t = btf_type_by_id(btf, t->type); 3279 3280 if (!btf_type_is_type_tag(t)) 3281 return BTF_FIELD_IGNORE; 3282 /* Reject extra tags */ 3283 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3284 return -EINVAL; 3285 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3286 type = BPF_KPTR_UNREF; 3287 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3288 type = BPF_KPTR_REF; 3289 else 3290 return -EINVAL; 3291 3292 /* Get the base type */ 3293 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3294 /* Only pointer to struct is allowed */ 3295 if (!__btf_type_is_struct(t)) 3296 return -EINVAL; 3297 3298 info->type = type; 3299 info->off = off; 3300 info->kptr.type_id = res_id; 3301 return BTF_FIELD_FOUND; 3302 } 3303 3304 static const char *btf_find_decl_tag_value(const struct btf *btf, 3305 const struct btf_type *pt, 3306 int comp_idx, const char *tag_key) 3307 { 3308 int i; 3309 3310 for (i = 1; i < btf_nr_types(btf); i++) { 3311 const struct btf_type *t = btf_type_by_id(btf, i); 3312 int len = strlen(tag_key); 3313 3314 if (!btf_type_is_decl_tag(t)) 3315 continue; 3316 if (pt != btf_type_by_id(btf, t->type) || 3317 btf_type_decl_tag(t)->component_idx != comp_idx) 3318 continue; 3319 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3320 continue; 3321 return __btf_name_by_offset(btf, t->name_off) + len; 3322 } 3323 return NULL; 3324 } 3325 3326 static int 3327 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3328 const struct btf_type *t, int comp_idx, u32 off, 3329 int sz, struct btf_field_info *info, 3330 enum btf_field_type head_type) 3331 { 3332 const char *node_field_name; 3333 const char *value_type; 3334 s32 id; 3335 3336 if (!__btf_type_is_struct(t)) 3337 return BTF_FIELD_IGNORE; 3338 if (t->size != sz) 3339 return BTF_FIELD_IGNORE; 3340 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3341 if (!value_type) 3342 return -EINVAL; 3343 node_field_name = strstr(value_type, ":"); 3344 if (!node_field_name) 3345 return -EINVAL; 3346 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3347 if (!value_type) 3348 return -ENOMEM; 3349 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3350 kfree(value_type); 3351 if (id < 0) 3352 return id; 3353 node_field_name++; 3354 if (str_is_empty(node_field_name)) 3355 return -EINVAL; 3356 info->type = head_type; 3357 info->off = off; 3358 info->graph_root.value_btf_id = id; 3359 info->graph_root.node_name = node_field_name; 3360 return BTF_FIELD_FOUND; 3361 } 3362 3363 #define field_mask_test_name(field_type, field_type_str) \ 3364 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3365 type = field_type; \ 3366 goto end; \ 3367 } 3368 3369 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3370 int *align, int *sz) 3371 { 3372 int type = 0; 3373 3374 if (field_mask & BPF_SPIN_LOCK) { 3375 if (!strcmp(name, "bpf_spin_lock")) { 3376 if (*seen_mask & BPF_SPIN_LOCK) 3377 return -E2BIG; 3378 *seen_mask |= BPF_SPIN_LOCK; 3379 type = BPF_SPIN_LOCK; 3380 goto end; 3381 } 3382 } 3383 if (field_mask & BPF_TIMER) { 3384 if (!strcmp(name, "bpf_timer")) { 3385 if (*seen_mask & BPF_TIMER) 3386 return -E2BIG; 3387 *seen_mask |= BPF_TIMER; 3388 type = BPF_TIMER; 3389 goto end; 3390 } 3391 } 3392 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3393 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3394 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3395 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3396 3397 /* Only return BPF_KPTR when all other types with matchable names fail */ 3398 if (field_mask & BPF_KPTR) { 3399 type = BPF_KPTR_REF; 3400 goto end; 3401 } 3402 return 0; 3403 end: 3404 *sz = btf_field_type_size(type); 3405 *align = btf_field_type_align(type); 3406 return type; 3407 } 3408 3409 #undef field_mask_test_name 3410 3411 static int btf_find_struct_field(const struct btf *btf, 3412 const struct btf_type *t, u32 field_mask, 3413 struct btf_field_info *info, int info_cnt) 3414 { 3415 int ret, idx = 0, align, sz, field_type; 3416 const struct btf_member *member; 3417 struct btf_field_info tmp; 3418 u32 i, off, seen_mask = 0; 3419 3420 for_each_member(i, t, member) { 3421 const struct btf_type *member_type = btf_type_by_id(btf, 3422 member->type); 3423 3424 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3425 field_mask, &seen_mask, &align, &sz); 3426 if (field_type == 0) 3427 continue; 3428 if (field_type < 0) 3429 return field_type; 3430 3431 off = __btf_member_bit_offset(t, member); 3432 if (off % 8) 3433 /* valid C code cannot generate such BTF */ 3434 return -EINVAL; 3435 off /= 8; 3436 if (off % align) 3437 continue; 3438 3439 switch (field_type) { 3440 case BPF_SPIN_LOCK: 3441 case BPF_TIMER: 3442 case BPF_LIST_NODE: 3443 case BPF_RB_NODE: 3444 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3445 idx < info_cnt ? &info[idx] : &tmp); 3446 if (ret < 0) 3447 return ret; 3448 break; 3449 case BPF_KPTR_UNREF: 3450 case BPF_KPTR_REF: 3451 ret = btf_find_kptr(btf, member_type, off, sz, 3452 idx < info_cnt ? &info[idx] : &tmp); 3453 if (ret < 0) 3454 return ret; 3455 break; 3456 case BPF_LIST_HEAD: 3457 case BPF_RB_ROOT: 3458 ret = btf_find_graph_root(btf, t, member_type, 3459 i, off, sz, 3460 idx < info_cnt ? &info[idx] : &tmp, 3461 field_type); 3462 if (ret < 0) 3463 return ret; 3464 break; 3465 default: 3466 return -EFAULT; 3467 } 3468 3469 if (ret == BTF_FIELD_IGNORE) 3470 continue; 3471 if (idx >= info_cnt) 3472 return -E2BIG; 3473 ++idx; 3474 } 3475 return idx; 3476 } 3477 3478 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3479 u32 field_mask, struct btf_field_info *info, 3480 int info_cnt) 3481 { 3482 int ret, idx = 0, align, sz, field_type; 3483 const struct btf_var_secinfo *vsi; 3484 struct btf_field_info tmp; 3485 u32 i, off, seen_mask = 0; 3486 3487 for_each_vsi(i, t, vsi) { 3488 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3489 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3490 3491 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3492 field_mask, &seen_mask, &align, &sz); 3493 if (field_type == 0) 3494 continue; 3495 if (field_type < 0) 3496 return field_type; 3497 3498 off = vsi->offset; 3499 if (vsi->size != sz) 3500 continue; 3501 if (off % align) 3502 continue; 3503 3504 switch (field_type) { 3505 case BPF_SPIN_LOCK: 3506 case BPF_TIMER: 3507 case BPF_LIST_NODE: 3508 case BPF_RB_NODE: 3509 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3510 idx < info_cnt ? &info[idx] : &tmp); 3511 if (ret < 0) 3512 return ret; 3513 break; 3514 case BPF_KPTR_UNREF: 3515 case BPF_KPTR_REF: 3516 ret = btf_find_kptr(btf, var_type, off, sz, 3517 idx < info_cnt ? &info[idx] : &tmp); 3518 if (ret < 0) 3519 return ret; 3520 break; 3521 case BPF_LIST_HEAD: 3522 case BPF_RB_ROOT: 3523 ret = btf_find_graph_root(btf, var, var_type, 3524 -1, off, sz, 3525 idx < info_cnt ? &info[idx] : &tmp, 3526 field_type); 3527 if (ret < 0) 3528 return ret; 3529 break; 3530 default: 3531 return -EFAULT; 3532 } 3533 3534 if (ret == BTF_FIELD_IGNORE) 3535 continue; 3536 if (idx >= info_cnt) 3537 return -E2BIG; 3538 ++idx; 3539 } 3540 return idx; 3541 } 3542 3543 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3544 u32 field_mask, struct btf_field_info *info, 3545 int info_cnt) 3546 { 3547 if (__btf_type_is_struct(t)) 3548 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3549 else if (btf_type_is_datasec(t)) 3550 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3551 return -EINVAL; 3552 } 3553 3554 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3555 struct btf_field_info *info) 3556 { 3557 struct module *mod = NULL; 3558 const struct btf_type *t; 3559 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3560 * is that BTF, otherwise it's program BTF 3561 */ 3562 struct btf *kptr_btf; 3563 int ret; 3564 s32 id; 3565 3566 /* Find type in map BTF, and use it to look up the matching type 3567 * in vmlinux or module BTFs, by name and kind. 3568 */ 3569 t = btf_type_by_id(btf, info->kptr.type_id); 3570 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3571 &kptr_btf); 3572 if (id == -ENOENT) { 3573 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3574 WARN_ON_ONCE(btf_is_kernel(btf)); 3575 3576 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3577 * kptr allocated via bpf_obj_new 3578 */ 3579 field->kptr.dtor = NULL; 3580 id = info->kptr.type_id; 3581 kptr_btf = (struct btf *)btf; 3582 btf_get(kptr_btf); 3583 goto found_dtor; 3584 } 3585 if (id < 0) 3586 return id; 3587 3588 /* Find and stash the function pointer for the destruction function that 3589 * needs to be eventually invoked from the map free path. 3590 */ 3591 if (info->type == BPF_KPTR_REF) { 3592 const struct btf_type *dtor_func; 3593 const char *dtor_func_name; 3594 unsigned long addr; 3595 s32 dtor_btf_id; 3596 3597 /* This call also serves as a whitelist of allowed objects that 3598 * can be used as a referenced pointer and be stored in a map at 3599 * the same time. 3600 */ 3601 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3602 if (dtor_btf_id < 0) { 3603 ret = dtor_btf_id; 3604 goto end_btf; 3605 } 3606 3607 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3608 if (!dtor_func) { 3609 ret = -ENOENT; 3610 goto end_btf; 3611 } 3612 3613 if (btf_is_module(kptr_btf)) { 3614 mod = btf_try_get_module(kptr_btf); 3615 if (!mod) { 3616 ret = -ENXIO; 3617 goto end_btf; 3618 } 3619 } 3620 3621 /* We already verified dtor_func to be btf_type_is_func 3622 * in register_btf_id_dtor_kfuncs. 3623 */ 3624 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3625 addr = kallsyms_lookup_name(dtor_func_name); 3626 if (!addr) { 3627 ret = -EINVAL; 3628 goto end_mod; 3629 } 3630 field->kptr.dtor = (void *)addr; 3631 } 3632 3633 found_dtor: 3634 field->kptr.btf_id = id; 3635 field->kptr.btf = kptr_btf; 3636 field->kptr.module = mod; 3637 return 0; 3638 end_mod: 3639 module_put(mod); 3640 end_btf: 3641 btf_put(kptr_btf); 3642 return ret; 3643 } 3644 3645 static int btf_parse_graph_root(const struct btf *btf, 3646 struct btf_field *field, 3647 struct btf_field_info *info, 3648 const char *node_type_name, 3649 size_t node_type_align) 3650 { 3651 const struct btf_type *t, *n = NULL; 3652 const struct btf_member *member; 3653 u32 offset; 3654 int i; 3655 3656 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3657 /* We've already checked that value_btf_id is a struct type. We 3658 * just need to figure out the offset of the list_node, and 3659 * verify its type. 3660 */ 3661 for_each_member(i, t, member) { 3662 if (strcmp(info->graph_root.node_name, 3663 __btf_name_by_offset(btf, member->name_off))) 3664 continue; 3665 /* Invalid BTF, two members with same name */ 3666 if (n) 3667 return -EINVAL; 3668 n = btf_type_by_id(btf, member->type); 3669 if (!__btf_type_is_struct(n)) 3670 return -EINVAL; 3671 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3672 return -EINVAL; 3673 offset = __btf_member_bit_offset(n, member); 3674 if (offset % 8) 3675 return -EINVAL; 3676 offset /= 8; 3677 if (offset % node_type_align) 3678 return -EINVAL; 3679 3680 field->graph_root.btf = (struct btf *)btf; 3681 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3682 field->graph_root.node_offset = offset; 3683 } 3684 if (!n) 3685 return -ENOENT; 3686 return 0; 3687 } 3688 3689 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3690 struct btf_field_info *info) 3691 { 3692 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3693 __alignof__(struct bpf_list_node)); 3694 } 3695 3696 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3697 struct btf_field_info *info) 3698 { 3699 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3700 __alignof__(struct bpf_rb_node)); 3701 } 3702 3703 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3704 u32 field_mask, u32 value_size) 3705 { 3706 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3707 struct btf_record *rec; 3708 u32 next_off = 0; 3709 int ret, i, cnt; 3710 3711 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3712 if (ret < 0) 3713 return ERR_PTR(ret); 3714 if (!ret) 3715 return NULL; 3716 3717 cnt = ret; 3718 /* This needs to be kzalloc to zero out padding and unused fields, see 3719 * comment in btf_record_equal. 3720 */ 3721 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3722 if (!rec) 3723 return ERR_PTR(-ENOMEM); 3724 3725 rec->spin_lock_off = -EINVAL; 3726 rec->timer_off = -EINVAL; 3727 for (i = 0; i < cnt; i++) { 3728 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) { 3729 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3730 ret = -EFAULT; 3731 goto end; 3732 } 3733 if (info_arr[i].off < next_off) { 3734 ret = -EEXIST; 3735 goto end; 3736 } 3737 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type); 3738 3739 rec->field_mask |= info_arr[i].type; 3740 rec->fields[i].offset = info_arr[i].off; 3741 rec->fields[i].type = info_arr[i].type; 3742 3743 switch (info_arr[i].type) { 3744 case BPF_SPIN_LOCK: 3745 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3746 /* Cache offset for faster lookup at runtime */ 3747 rec->spin_lock_off = rec->fields[i].offset; 3748 break; 3749 case BPF_TIMER: 3750 WARN_ON_ONCE(rec->timer_off >= 0); 3751 /* Cache offset for faster lookup at runtime */ 3752 rec->timer_off = rec->fields[i].offset; 3753 break; 3754 case BPF_KPTR_UNREF: 3755 case BPF_KPTR_REF: 3756 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3757 if (ret < 0) 3758 goto end; 3759 break; 3760 case BPF_LIST_HEAD: 3761 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3762 if (ret < 0) 3763 goto end; 3764 break; 3765 case BPF_RB_ROOT: 3766 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3767 if (ret < 0) 3768 goto end; 3769 break; 3770 case BPF_LIST_NODE: 3771 case BPF_RB_NODE: 3772 break; 3773 default: 3774 ret = -EFAULT; 3775 goto end; 3776 } 3777 rec->cnt++; 3778 } 3779 3780 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3781 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3782 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3783 ret = -EINVAL; 3784 goto end; 3785 } 3786 3787 /* need collection identity for non-owning refs before allowing this 3788 * 3789 * Consider a node type w/ both list and rb_node fields: 3790 * struct node { 3791 * struct bpf_list_node l; 3792 * struct bpf_rb_node r; 3793 * } 3794 * 3795 * Used like so: 3796 * struct node *n = bpf_obj_new(....); 3797 * bpf_list_push_front(&list_head, &n->l); 3798 * bpf_rbtree_remove(&rb_root, &n->r); 3799 * 3800 * It should not be possible to rbtree_remove the node since it hasn't 3801 * been added to a tree. But push_front converts n to a non-owning 3802 * reference, and rbtree_remove accepts the non-owning reference to 3803 * a type w/ bpf_rb_node field. 3804 */ 3805 if (btf_record_has_field(rec, BPF_LIST_NODE) && 3806 btf_record_has_field(rec, BPF_RB_NODE)) { 3807 ret = -EINVAL; 3808 goto end; 3809 } 3810 3811 return rec; 3812 end: 3813 btf_record_free(rec); 3814 return ERR_PTR(ret); 3815 } 3816 3817 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) 3818 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) 3819 3820 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3821 { 3822 int i; 3823 3824 /* There are three types that signify ownership of some other type: 3825 * kptr_ref, bpf_list_head, bpf_rb_root. 3826 * kptr_ref only supports storing kernel types, which can't store 3827 * references to program allocated local types. 3828 * 3829 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3830 * does not form cycles. 3831 */ 3832 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) 3833 return 0; 3834 for (i = 0; i < rec->cnt; i++) { 3835 struct btf_struct_meta *meta; 3836 u32 btf_id; 3837 3838 if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) 3839 continue; 3840 btf_id = rec->fields[i].graph_root.value_btf_id; 3841 meta = btf_find_struct_meta(btf, btf_id); 3842 if (!meta) 3843 return -EFAULT; 3844 rec->fields[i].graph_root.value_rec = meta->record; 3845 3846 /* We need to set value_rec for all root types, but no need 3847 * to check ownership cycle for a type unless it's also a 3848 * node type. 3849 */ 3850 if (!(rec->field_mask & GRAPH_NODE_MASK)) 3851 continue; 3852 3853 /* We need to ensure ownership acyclicity among all types. The 3854 * proper way to do it would be to topologically sort all BTF 3855 * IDs based on the ownership edges, since there can be multiple 3856 * bpf_{list_head,rb_node} in a type. Instead, we use the 3857 * following resaoning: 3858 * 3859 * - A type can only be owned by another type in user BTF if it 3860 * has a bpf_{list,rb}_node. Let's call these node types. 3861 * - A type can only _own_ another type in user BTF if it has a 3862 * bpf_{list_head,rb_root}. Let's call these root types. 3863 * 3864 * We ensure that if a type is both a root and node, its 3865 * element types cannot be root types. 3866 * 3867 * To ensure acyclicity: 3868 * 3869 * When A is an root type but not a node, its ownership 3870 * chain can be: 3871 * A -> B -> C 3872 * Where: 3873 * - A is an root, e.g. has bpf_rb_root. 3874 * - B is both a root and node, e.g. has bpf_rb_node and 3875 * bpf_list_head. 3876 * - C is only an root, e.g. has bpf_list_node 3877 * 3878 * When A is both a root and node, some other type already 3879 * owns it in the BTF domain, hence it can not own 3880 * another root type through any of the ownership edges. 3881 * A -> B 3882 * Where: 3883 * - A is both an root and node. 3884 * - B is only an node. 3885 */ 3886 if (meta->record->field_mask & GRAPH_ROOT_MASK) 3887 return -ELOOP; 3888 } 3889 return 0; 3890 } 3891 3892 static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv) 3893 { 3894 const u32 a = *(const u32 *)_a; 3895 const u32 b = *(const u32 *)_b; 3896 3897 if (a < b) 3898 return -1; 3899 else if (a > b) 3900 return 1; 3901 return 0; 3902 } 3903 3904 static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv) 3905 { 3906 struct btf_field_offs *foffs = (void *)priv; 3907 u32 *off_base = foffs->field_off; 3908 u32 *a = _a, *b = _b; 3909 u8 *sz_a, *sz_b; 3910 3911 sz_a = foffs->field_sz + (a - off_base); 3912 sz_b = foffs->field_sz + (b - off_base); 3913 3914 swap(*a, *b); 3915 swap(*sz_a, *sz_b); 3916 } 3917 3918 struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec) 3919 { 3920 struct btf_field_offs *foffs; 3921 u32 i, *off; 3922 u8 *sz; 3923 3924 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz)); 3925 if (IS_ERR_OR_NULL(rec)) 3926 return NULL; 3927 3928 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN); 3929 if (!foffs) 3930 return ERR_PTR(-ENOMEM); 3931 3932 off = foffs->field_off; 3933 sz = foffs->field_sz; 3934 for (i = 0; i < rec->cnt; i++) { 3935 off[i] = rec->fields[i].offset; 3936 sz[i] = btf_field_type_size(rec->fields[i].type); 3937 } 3938 foffs->cnt = rec->cnt; 3939 3940 if (foffs->cnt == 1) 3941 return foffs; 3942 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]), 3943 btf_field_offs_cmp, btf_field_offs_swap, foffs); 3944 return foffs; 3945 } 3946 3947 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3948 u32 type_id, void *data, u8 bits_offset, 3949 struct btf_show *show) 3950 { 3951 const struct btf_member *member; 3952 void *safe_data; 3953 u32 i; 3954 3955 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3956 if (!safe_data) 3957 return; 3958 3959 for_each_member(i, t, member) { 3960 const struct btf_type *member_type = btf_type_by_id(btf, 3961 member->type); 3962 const struct btf_kind_operations *ops; 3963 u32 member_offset, bitfield_size; 3964 u32 bytes_offset; 3965 u8 bits8_offset; 3966 3967 btf_show_start_member(show, member); 3968 3969 member_offset = __btf_member_bit_offset(t, member); 3970 bitfield_size = __btf_member_bitfield_size(t, member); 3971 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3972 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3973 if (bitfield_size) { 3974 safe_data = btf_show_start_type(show, member_type, 3975 member->type, 3976 data + bytes_offset); 3977 if (safe_data) 3978 btf_bitfield_show(safe_data, 3979 bits8_offset, 3980 bitfield_size, show); 3981 btf_show_end_type(show); 3982 } else { 3983 ops = btf_type_ops(member_type); 3984 ops->show(btf, member_type, member->type, 3985 data + bytes_offset, bits8_offset, show); 3986 } 3987 3988 btf_show_end_member(show); 3989 } 3990 3991 btf_show_end_struct_type(show); 3992 } 3993 3994 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3995 u32 type_id, void *data, u8 bits_offset, 3996 struct btf_show *show) 3997 { 3998 const struct btf_member *m = show->state.member; 3999 4000 /* 4001 * First check if any members would be shown (are non-zero). 4002 * See comments above "struct btf_show" definition for more 4003 * details on how this works at a high-level. 4004 */ 4005 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4006 if (!show->state.depth_check) { 4007 show->state.depth_check = show->state.depth + 1; 4008 show->state.depth_to_show = 0; 4009 } 4010 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4011 /* Restore saved member data here */ 4012 show->state.member = m; 4013 if (show->state.depth_check != show->state.depth + 1) 4014 return; 4015 show->state.depth_check = 0; 4016 4017 if (show->state.depth_to_show <= show->state.depth) 4018 return; 4019 /* 4020 * Reaching here indicates we have recursed and found 4021 * non-zero child values. 4022 */ 4023 } 4024 4025 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4026 } 4027 4028 static struct btf_kind_operations struct_ops = { 4029 .check_meta = btf_struct_check_meta, 4030 .resolve = btf_struct_resolve, 4031 .check_member = btf_struct_check_member, 4032 .check_kflag_member = btf_generic_check_kflag_member, 4033 .log_details = btf_struct_log, 4034 .show = btf_struct_show, 4035 }; 4036 4037 static int btf_enum_check_member(struct btf_verifier_env *env, 4038 const struct btf_type *struct_type, 4039 const struct btf_member *member, 4040 const struct btf_type *member_type) 4041 { 4042 u32 struct_bits_off = member->offset; 4043 u32 struct_size, bytes_offset; 4044 4045 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4046 btf_verifier_log_member(env, struct_type, member, 4047 "Member is not byte aligned"); 4048 return -EINVAL; 4049 } 4050 4051 struct_size = struct_type->size; 4052 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4053 if (struct_size - bytes_offset < member_type->size) { 4054 btf_verifier_log_member(env, struct_type, member, 4055 "Member exceeds struct_size"); 4056 return -EINVAL; 4057 } 4058 4059 return 0; 4060 } 4061 4062 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4063 const struct btf_type *struct_type, 4064 const struct btf_member *member, 4065 const struct btf_type *member_type) 4066 { 4067 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4068 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4069 4070 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4071 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4072 if (!nr_bits) { 4073 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4074 btf_verifier_log_member(env, struct_type, member, 4075 "Member is not byte aligned"); 4076 return -EINVAL; 4077 } 4078 4079 nr_bits = int_bitsize; 4080 } else if (nr_bits > int_bitsize) { 4081 btf_verifier_log_member(env, struct_type, member, 4082 "Invalid member bitfield_size"); 4083 return -EINVAL; 4084 } 4085 4086 struct_size = struct_type->size; 4087 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4088 if (struct_size < bytes_end) { 4089 btf_verifier_log_member(env, struct_type, member, 4090 "Member exceeds struct_size"); 4091 return -EINVAL; 4092 } 4093 4094 return 0; 4095 } 4096 4097 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4098 const struct btf_type *t, 4099 u32 meta_left) 4100 { 4101 const struct btf_enum *enums = btf_type_enum(t); 4102 struct btf *btf = env->btf; 4103 const char *fmt_str; 4104 u16 i, nr_enums; 4105 u32 meta_needed; 4106 4107 nr_enums = btf_type_vlen(t); 4108 meta_needed = nr_enums * sizeof(*enums); 4109 4110 if (meta_left < meta_needed) { 4111 btf_verifier_log_basic(env, t, 4112 "meta_left:%u meta_needed:%u", 4113 meta_left, meta_needed); 4114 return -EINVAL; 4115 } 4116 4117 if (t->size > 8 || !is_power_of_2(t->size)) { 4118 btf_verifier_log_type(env, t, "Unexpected size"); 4119 return -EINVAL; 4120 } 4121 4122 /* enum type either no name or a valid one */ 4123 if (t->name_off && 4124 !btf_name_valid_identifier(env->btf, t->name_off)) { 4125 btf_verifier_log_type(env, t, "Invalid name"); 4126 return -EINVAL; 4127 } 4128 4129 btf_verifier_log_type(env, t, NULL); 4130 4131 for (i = 0; i < nr_enums; i++) { 4132 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4133 btf_verifier_log(env, "\tInvalid name_offset:%u", 4134 enums[i].name_off); 4135 return -EINVAL; 4136 } 4137 4138 /* enum member must have a valid name */ 4139 if (!enums[i].name_off || 4140 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4141 btf_verifier_log_type(env, t, "Invalid name"); 4142 return -EINVAL; 4143 } 4144 4145 if (env->log.level == BPF_LOG_KERNEL) 4146 continue; 4147 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4148 btf_verifier_log(env, fmt_str, 4149 __btf_name_by_offset(btf, enums[i].name_off), 4150 enums[i].val); 4151 } 4152 4153 return meta_needed; 4154 } 4155 4156 static void btf_enum_log(struct btf_verifier_env *env, 4157 const struct btf_type *t) 4158 { 4159 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4160 } 4161 4162 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4163 u32 type_id, void *data, u8 bits_offset, 4164 struct btf_show *show) 4165 { 4166 const struct btf_enum *enums = btf_type_enum(t); 4167 u32 i, nr_enums = btf_type_vlen(t); 4168 void *safe_data; 4169 int v; 4170 4171 safe_data = btf_show_start_type(show, t, type_id, data); 4172 if (!safe_data) 4173 return; 4174 4175 v = *(int *)safe_data; 4176 4177 for (i = 0; i < nr_enums; i++) { 4178 if (v != enums[i].val) 4179 continue; 4180 4181 btf_show_type_value(show, "%s", 4182 __btf_name_by_offset(btf, 4183 enums[i].name_off)); 4184 4185 btf_show_end_type(show); 4186 return; 4187 } 4188 4189 if (btf_type_kflag(t)) 4190 btf_show_type_value(show, "%d", v); 4191 else 4192 btf_show_type_value(show, "%u", v); 4193 btf_show_end_type(show); 4194 } 4195 4196 static struct btf_kind_operations enum_ops = { 4197 .check_meta = btf_enum_check_meta, 4198 .resolve = btf_df_resolve, 4199 .check_member = btf_enum_check_member, 4200 .check_kflag_member = btf_enum_check_kflag_member, 4201 .log_details = btf_enum_log, 4202 .show = btf_enum_show, 4203 }; 4204 4205 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4206 const struct btf_type *t, 4207 u32 meta_left) 4208 { 4209 const struct btf_enum64 *enums = btf_type_enum64(t); 4210 struct btf *btf = env->btf; 4211 const char *fmt_str; 4212 u16 i, nr_enums; 4213 u32 meta_needed; 4214 4215 nr_enums = btf_type_vlen(t); 4216 meta_needed = nr_enums * sizeof(*enums); 4217 4218 if (meta_left < meta_needed) { 4219 btf_verifier_log_basic(env, t, 4220 "meta_left:%u meta_needed:%u", 4221 meta_left, meta_needed); 4222 return -EINVAL; 4223 } 4224 4225 if (t->size > 8 || !is_power_of_2(t->size)) { 4226 btf_verifier_log_type(env, t, "Unexpected size"); 4227 return -EINVAL; 4228 } 4229 4230 /* enum type either no name or a valid one */ 4231 if (t->name_off && 4232 !btf_name_valid_identifier(env->btf, t->name_off)) { 4233 btf_verifier_log_type(env, t, "Invalid name"); 4234 return -EINVAL; 4235 } 4236 4237 btf_verifier_log_type(env, t, NULL); 4238 4239 for (i = 0; i < nr_enums; i++) { 4240 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4241 btf_verifier_log(env, "\tInvalid name_offset:%u", 4242 enums[i].name_off); 4243 return -EINVAL; 4244 } 4245 4246 /* enum member must have a valid name */ 4247 if (!enums[i].name_off || 4248 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4249 btf_verifier_log_type(env, t, "Invalid name"); 4250 return -EINVAL; 4251 } 4252 4253 if (env->log.level == BPF_LOG_KERNEL) 4254 continue; 4255 4256 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4257 btf_verifier_log(env, fmt_str, 4258 __btf_name_by_offset(btf, enums[i].name_off), 4259 btf_enum64_value(enums + i)); 4260 } 4261 4262 return meta_needed; 4263 } 4264 4265 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4266 u32 type_id, void *data, u8 bits_offset, 4267 struct btf_show *show) 4268 { 4269 const struct btf_enum64 *enums = btf_type_enum64(t); 4270 u32 i, nr_enums = btf_type_vlen(t); 4271 void *safe_data; 4272 s64 v; 4273 4274 safe_data = btf_show_start_type(show, t, type_id, data); 4275 if (!safe_data) 4276 return; 4277 4278 v = *(u64 *)safe_data; 4279 4280 for (i = 0; i < nr_enums; i++) { 4281 if (v != btf_enum64_value(enums + i)) 4282 continue; 4283 4284 btf_show_type_value(show, "%s", 4285 __btf_name_by_offset(btf, 4286 enums[i].name_off)); 4287 4288 btf_show_end_type(show); 4289 return; 4290 } 4291 4292 if (btf_type_kflag(t)) 4293 btf_show_type_value(show, "%lld", v); 4294 else 4295 btf_show_type_value(show, "%llu", v); 4296 btf_show_end_type(show); 4297 } 4298 4299 static struct btf_kind_operations enum64_ops = { 4300 .check_meta = btf_enum64_check_meta, 4301 .resolve = btf_df_resolve, 4302 .check_member = btf_enum_check_member, 4303 .check_kflag_member = btf_enum_check_kflag_member, 4304 .log_details = btf_enum_log, 4305 .show = btf_enum64_show, 4306 }; 4307 4308 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4309 const struct btf_type *t, 4310 u32 meta_left) 4311 { 4312 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4313 4314 if (meta_left < meta_needed) { 4315 btf_verifier_log_basic(env, t, 4316 "meta_left:%u meta_needed:%u", 4317 meta_left, meta_needed); 4318 return -EINVAL; 4319 } 4320 4321 if (t->name_off) { 4322 btf_verifier_log_type(env, t, "Invalid name"); 4323 return -EINVAL; 4324 } 4325 4326 if (btf_type_kflag(t)) { 4327 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4328 return -EINVAL; 4329 } 4330 4331 btf_verifier_log_type(env, t, NULL); 4332 4333 return meta_needed; 4334 } 4335 4336 static void btf_func_proto_log(struct btf_verifier_env *env, 4337 const struct btf_type *t) 4338 { 4339 const struct btf_param *args = (const struct btf_param *)(t + 1); 4340 u16 nr_args = btf_type_vlen(t), i; 4341 4342 btf_verifier_log(env, "return=%u args=(", t->type); 4343 if (!nr_args) { 4344 btf_verifier_log(env, "void"); 4345 goto done; 4346 } 4347 4348 if (nr_args == 1 && !args[0].type) { 4349 /* Only one vararg */ 4350 btf_verifier_log(env, "vararg"); 4351 goto done; 4352 } 4353 4354 btf_verifier_log(env, "%u %s", args[0].type, 4355 __btf_name_by_offset(env->btf, 4356 args[0].name_off)); 4357 for (i = 1; i < nr_args - 1; i++) 4358 btf_verifier_log(env, ", %u %s", args[i].type, 4359 __btf_name_by_offset(env->btf, 4360 args[i].name_off)); 4361 4362 if (nr_args > 1) { 4363 const struct btf_param *last_arg = &args[nr_args - 1]; 4364 4365 if (last_arg->type) 4366 btf_verifier_log(env, ", %u %s", last_arg->type, 4367 __btf_name_by_offset(env->btf, 4368 last_arg->name_off)); 4369 else 4370 btf_verifier_log(env, ", vararg"); 4371 } 4372 4373 done: 4374 btf_verifier_log(env, ")"); 4375 } 4376 4377 static struct btf_kind_operations func_proto_ops = { 4378 .check_meta = btf_func_proto_check_meta, 4379 .resolve = btf_df_resolve, 4380 /* 4381 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4382 * a struct's member. 4383 * 4384 * It should be a function pointer instead. 4385 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4386 * 4387 * Hence, there is no btf_func_check_member(). 4388 */ 4389 .check_member = btf_df_check_member, 4390 .check_kflag_member = btf_df_check_kflag_member, 4391 .log_details = btf_func_proto_log, 4392 .show = btf_df_show, 4393 }; 4394 4395 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4396 const struct btf_type *t, 4397 u32 meta_left) 4398 { 4399 if (!t->name_off || 4400 !btf_name_valid_identifier(env->btf, t->name_off)) { 4401 btf_verifier_log_type(env, t, "Invalid name"); 4402 return -EINVAL; 4403 } 4404 4405 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4406 btf_verifier_log_type(env, t, "Invalid func linkage"); 4407 return -EINVAL; 4408 } 4409 4410 if (btf_type_kflag(t)) { 4411 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4412 return -EINVAL; 4413 } 4414 4415 btf_verifier_log_type(env, t, NULL); 4416 4417 return 0; 4418 } 4419 4420 static int btf_func_resolve(struct btf_verifier_env *env, 4421 const struct resolve_vertex *v) 4422 { 4423 const struct btf_type *t = v->t; 4424 u32 next_type_id = t->type; 4425 int err; 4426 4427 err = btf_func_check(env, t); 4428 if (err) 4429 return err; 4430 4431 env_stack_pop_resolved(env, next_type_id, 0); 4432 return 0; 4433 } 4434 4435 static struct btf_kind_operations func_ops = { 4436 .check_meta = btf_func_check_meta, 4437 .resolve = btf_func_resolve, 4438 .check_member = btf_df_check_member, 4439 .check_kflag_member = btf_df_check_kflag_member, 4440 .log_details = btf_ref_type_log, 4441 .show = btf_df_show, 4442 }; 4443 4444 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4445 const struct btf_type *t, 4446 u32 meta_left) 4447 { 4448 const struct btf_var *var; 4449 u32 meta_needed = sizeof(*var); 4450 4451 if (meta_left < meta_needed) { 4452 btf_verifier_log_basic(env, t, 4453 "meta_left:%u meta_needed:%u", 4454 meta_left, meta_needed); 4455 return -EINVAL; 4456 } 4457 4458 if (btf_type_vlen(t)) { 4459 btf_verifier_log_type(env, t, "vlen != 0"); 4460 return -EINVAL; 4461 } 4462 4463 if (btf_type_kflag(t)) { 4464 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4465 return -EINVAL; 4466 } 4467 4468 if (!t->name_off || 4469 !__btf_name_valid(env->btf, t->name_off, true)) { 4470 btf_verifier_log_type(env, t, "Invalid name"); 4471 return -EINVAL; 4472 } 4473 4474 /* A var cannot be in type void */ 4475 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4476 btf_verifier_log_type(env, t, "Invalid type_id"); 4477 return -EINVAL; 4478 } 4479 4480 var = btf_type_var(t); 4481 if (var->linkage != BTF_VAR_STATIC && 4482 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4483 btf_verifier_log_type(env, t, "Linkage not supported"); 4484 return -EINVAL; 4485 } 4486 4487 btf_verifier_log_type(env, t, NULL); 4488 4489 return meta_needed; 4490 } 4491 4492 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4493 { 4494 const struct btf_var *var = btf_type_var(t); 4495 4496 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4497 } 4498 4499 static const struct btf_kind_operations var_ops = { 4500 .check_meta = btf_var_check_meta, 4501 .resolve = btf_var_resolve, 4502 .check_member = btf_df_check_member, 4503 .check_kflag_member = btf_df_check_kflag_member, 4504 .log_details = btf_var_log, 4505 .show = btf_var_show, 4506 }; 4507 4508 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4509 const struct btf_type *t, 4510 u32 meta_left) 4511 { 4512 const struct btf_var_secinfo *vsi; 4513 u64 last_vsi_end_off = 0, sum = 0; 4514 u32 i, meta_needed; 4515 4516 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4517 if (meta_left < meta_needed) { 4518 btf_verifier_log_basic(env, t, 4519 "meta_left:%u meta_needed:%u", 4520 meta_left, meta_needed); 4521 return -EINVAL; 4522 } 4523 4524 if (!t->size) { 4525 btf_verifier_log_type(env, t, "size == 0"); 4526 return -EINVAL; 4527 } 4528 4529 if (btf_type_kflag(t)) { 4530 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4531 return -EINVAL; 4532 } 4533 4534 if (!t->name_off || 4535 !btf_name_valid_section(env->btf, t->name_off)) { 4536 btf_verifier_log_type(env, t, "Invalid name"); 4537 return -EINVAL; 4538 } 4539 4540 btf_verifier_log_type(env, t, NULL); 4541 4542 for_each_vsi(i, t, vsi) { 4543 /* A var cannot be in type void */ 4544 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4545 btf_verifier_log_vsi(env, t, vsi, 4546 "Invalid type_id"); 4547 return -EINVAL; 4548 } 4549 4550 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4551 btf_verifier_log_vsi(env, t, vsi, 4552 "Invalid offset"); 4553 return -EINVAL; 4554 } 4555 4556 if (!vsi->size || vsi->size > t->size) { 4557 btf_verifier_log_vsi(env, t, vsi, 4558 "Invalid size"); 4559 return -EINVAL; 4560 } 4561 4562 last_vsi_end_off = vsi->offset + vsi->size; 4563 if (last_vsi_end_off > t->size) { 4564 btf_verifier_log_vsi(env, t, vsi, 4565 "Invalid offset+size"); 4566 return -EINVAL; 4567 } 4568 4569 btf_verifier_log_vsi(env, t, vsi, NULL); 4570 sum += vsi->size; 4571 } 4572 4573 if (t->size < sum) { 4574 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4575 return -EINVAL; 4576 } 4577 4578 return meta_needed; 4579 } 4580 4581 static int btf_datasec_resolve(struct btf_verifier_env *env, 4582 const struct resolve_vertex *v) 4583 { 4584 const struct btf_var_secinfo *vsi; 4585 struct btf *btf = env->btf; 4586 u16 i; 4587 4588 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4589 u32 var_type_id = vsi->type, type_id, type_size = 0; 4590 const struct btf_type *var_type = btf_type_by_id(env->btf, 4591 var_type_id); 4592 if (!var_type || !btf_type_is_var(var_type)) { 4593 btf_verifier_log_vsi(env, v->t, vsi, 4594 "Not a VAR kind member"); 4595 return -EINVAL; 4596 } 4597 4598 if (!env_type_is_resolve_sink(env, var_type) && 4599 !env_type_is_resolved(env, var_type_id)) { 4600 env_stack_set_next_member(env, i + 1); 4601 return env_stack_push(env, var_type, var_type_id); 4602 } 4603 4604 type_id = var_type->type; 4605 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4606 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4607 return -EINVAL; 4608 } 4609 4610 if (vsi->size < type_size) { 4611 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4612 return -EINVAL; 4613 } 4614 } 4615 4616 env_stack_pop_resolved(env, 0, 0); 4617 return 0; 4618 } 4619 4620 static void btf_datasec_log(struct btf_verifier_env *env, 4621 const struct btf_type *t) 4622 { 4623 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4624 } 4625 4626 static void btf_datasec_show(const struct btf *btf, 4627 const struct btf_type *t, u32 type_id, 4628 void *data, u8 bits_offset, 4629 struct btf_show *show) 4630 { 4631 const struct btf_var_secinfo *vsi; 4632 const struct btf_type *var; 4633 u32 i; 4634 4635 if (!btf_show_start_type(show, t, type_id, data)) 4636 return; 4637 4638 btf_show_type_value(show, "section (\"%s\") = {", 4639 __btf_name_by_offset(btf, t->name_off)); 4640 for_each_vsi(i, t, vsi) { 4641 var = btf_type_by_id(btf, vsi->type); 4642 if (i) 4643 btf_show(show, ","); 4644 btf_type_ops(var)->show(btf, var, vsi->type, 4645 data + vsi->offset, bits_offset, show); 4646 } 4647 btf_show_end_type(show); 4648 } 4649 4650 static const struct btf_kind_operations datasec_ops = { 4651 .check_meta = btf_datasec_check_meta, 4652 .resolve = btf_datasec_resolve, 4653 .check_member = btf_df_check_member, 4654 .check_kflag_member = btf_df_check_kflag_member, 4655 .log_details = btf_datasec_log, 4656 .show = btf_datasec_show, 4657 }; 4658 4659 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4660 const struct btf_type *t, 4661 u32 meta_left) 4662 { 4663 if (btf_type_vlen(t)) { 4664 btf_verifier_log_type(env, t, "vlen != 0"); 4665 return -EINVAL; 4666 } 4667 4668 if (btf_type_kflag(t)) { 4669 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4670 return -EINVAL; 4671 } 4672 4673 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4674 t->size != 16) { 4675 btf_verifier_log_type(env, t, "Invalid type_size"); 4676 return -EINVAL; 4677 } 4678 4679 btf_verifier_log_type(env, t, NULL); 4680 4681 return 0; 4682 } 4683 4684 static int btf_float_check_member(struct btf_verifier_env *env, 4685 const struct btf_type *struct_type, 4686 const struct btf_member *member, 4687 const struct btf_type *member_type) 4688 { 4689 u64 start_offset_bytes; 4690 u64 end_offset_bytes; 4691 u64 misalign_bits; 4692 u64 align_bytes; 4693 u64 align_bits; 4694 4695 /* Different architectures have different alignment requirements, so 4696 * here we check only for the reasonable minimum. This way we ensure 4697 * that types after CO-RE can pass the kernel BTF verifier. 4698 */ 4699 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4700 align_bits = align_bytes * BITS_PER_BYTE; 4701 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4702 if (misalign_bits) { 4703 btf_verifier_log_member(env, struct_type, member, 4704 "Member is not properly aligned"); 4705 return -EINVAL; 4706 } 4707 4708 start_offset_bytes = member->offset / BITS_PER_BYTE; 4709 end_offset_bytes = start_offset_bytes + member_type->size; 4710 if (end_offset_bytes > struct_type->size) { 4711 btf_verifier_log_member(env, struct_type, member, 4712 "Member exceeds struct_size"); 4713 return -EINVAL; 4714 } 4715 4716 return 0; 4717 } 4718 4719 static void btf_float_log(struct btf_verifier_env *env, 4720 const struct btf_type *t) 4721 { 4722 btf_verifier_log(env, "size=%u", t->size); 4723 } 4724 4725 static const struct btf_kind_operations float_ops = { 4726 .check_meta = btf_float_check_meta, 4727 .resolve = btf_df_resolve, 4728 .check_member = btf_float_check_member, 4729 .check_kflag_member = btf_generic_check_kflag_member, 4730 .log_details = btf_float_log, 4731 .show = btf_df_show, 4732 }; 4733 4734 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4735 const struct btf_type *t, 4736 u32 meta_left) 4737 { 4738 const struct btf_decl_tag *tag; 4739 u32 meta_needed = sizeof(*tag); 4740 s32 component_idx; 4741 const char *value; 4742 4743 if (meta_left < meta_needed) { 4744 btf_verifier_log_basic(env, t, 4745 "meta_left:%u meta_needed:%u", 4746 meta_left, meta_needed); 4747 return -EINVAL; 4748 } 4749 4750 value = btf_name_by_offset(env->btf, t->name_off); 4751 if (!value || !value[0]) { 4752 btf_verifier_log_type(env, t, "Invalid value"); 4753 return -EINVAL; 4754 } 4755 4756 if (btf_type_vlen(t)) { 4757 btf_verifier_log_type(env, t, "vlen != 0"); 4758 return -EINVAL; 4759 } 4760 4761 if (btf_type_kflag(t)) { 4762 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4763 return -EINVAL; 4764 } 4765 4766 component_idx = btf_type_decl_tag(t)->component_idx; 4767 if (component_idx < -1) { 4768 btf_verifier_log_type(env, t, "Invalid component_idx"); 4769 return -EINVAL; 4770 } 4771 4772 btf_verifier_log_type(env, t, NULL); 4773 4774 return meta_needed; 4775 } 4776 4777 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4778 const struct resolve_vertex *v) 4779 { 4780 const struct btf_type *next_type; 4781 const struct btf_type *t = v->t; 4782 u32 next_type_id = t->type; 4783 struct btf *btf = env->btf; 4784 s32 component_idx; 4785 u32 vlen; 4786 4787 next_type = btf_type_by_id(btf, next_type_id); 4788 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4789 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4790 return -EINVAL; 4791 } 4792 4793 if (!env_type_is_resolve_sink(env, next_type) && 4794 !env_type_is_resolved(env, next_type_id)) 4795 return env_stack_push(env, next_type, next_type_id); 4796 4797 component_idx = btf_type_decl_tag(t)->component_idx; 4798 if (component_idx != -1) { 4799 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4800 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4801 return -EINVAL; 4802 } 4803 4804 if (btf_type_is_struct(next_type)) { 4805 vlen = btf_type_vlen(next_type); 4806 } else { 4807 /* next_type should be a function */ 4808 next_type = btf_type_by_id(btf, next_type->type); 4809 vlen = btf_type_vlen(next_type); 4810 } 4811 4812 if ((u32)component_idx >= vlen) { 4813 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4814 return -EINVAL; 4815 } 4816 } 4817 4818 env_stack_pop_resolved(env, next_type_id, 0); 4819 4820 return 0; 4821 } 4822 4823 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4824 { 4825 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4826 btf_type_decl_tag(t)->component_idx); 4827 } 4828 4829 static const struct btf_kind_operations decl_tag_ops = { 4830 .check_meta = btf_decl_tag_check_meta, 4831 .resolve = btf_decl_tag_resolve, 4832 .check_member = btf_df_check_member, 4833 .check_kflag_member = btf_df_check_kflag_member, 4834 .log_details = btf_decl_tag_log, 4835 .show = btf_df_show, 4836 }; 4837 4838 static int btf_func_proto_check(struct btf_verifier_env *env, 4839 const struct btf_type *t) 4840 { 4841 const struct btf_type *ret_type; 4842 const struct btf_param *args; 4843 const struct btf *btf; 4844 u16 nr_args, i; 4845 int err; 4846 4847 btf = env->btf; 4848 args = (const struct btf_param *)(t + 1); 4849 nr_args = btf_type_vlen(t); 4850 4851 /* Check func return type which could be "void" (t->type == 0) */ 4852 if (t->type) { 4853 u32 ret_type_id = t->type; 4854 4855 ret_type = btf_type_by_id(btf, ret_type_id); 4856 if (!ret_type) { 4857 btf_verifier_log_type(env, t, "Invalid return type"); 4858 return -EINVAL; 4859 } 4860 4861 if (btf_type_is_resolve_source_only(ret_type)) { 4862 btf_verifier_log_type(env, t, "Invalid return type"); 4863 return -EINVAL; 4864 } 4865 4866 if (btf_type_needs_resolve(ret_type) && 4867 !env_type_is_resolved(env, ret_type_id)) { 4868 err = btf_resolve(env, ret_type, ret_type_id); 4869 if (err) 4870 return err; 4871 } 4872 4873 /* Ensure the return type is a type that has a size */ 4874 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4875 btf_verifier_log_type(env, t, "Invalid return type"); 4876 return -EINVAL; 4877 } 4878 } 4879 4880 if (!nr_args) 4881 return 0; 4882 4883 /* Last func arg type_id could be 0 if it is a vararg */ 4884 if (!args[nr_args - 1].type) { 4885 if (args[nr_args - 1].name_off) { 4886 btf_verifier_log_type(env, t, "Invalid arg#%u", 4887 nr_args); 4888 return -EINVAL; 4889 } 4890 nr_args--; 4891 } 4892 4893 for (i = 0; i < nr_args; i++) { 4894 const struct btf_type *arg_type; 4895 u32 arg_type_id; 4896 4897 arg_type_id = args[i].type; 4898 arg_type = btf_type_by_id(btf, arg_type_id); 4899 if (!arg_type) { 4900 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4901 return -EINVAL; 4902 } 4903 4904 if (btf_type_is_resolve_source_only(arg_type)) { 4905 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4906 return -EINVAL; 4907 } 4908 4909 if (args[i].name_off && 4910 (!btf_name_offset_valid(btf, args[i].name_off) || 4911 !btf_name_valid_identifier(btf, args[i].name_off))) { 4912 btf_verifier_log_type(env, t, 4913 "Invalid arg#%u", i + 1); 4914 return -EINVAL; 4915 } 4916 4917 if (btf_type_needs_resolve(arg_type) && 4918 !env_type_is_resolved(env, arg_type_id)) { 4919 err = btf_resolve(env, arg_type, arg_type_id); 4920 if (err) 4921 return err; 4922 } 4923 4924 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4925 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4926 return -EINVAL; 4927 } 4928 } 4929 4930 return 0; 4931 } 4932 4933 static int btf_func_check(struct btf_verifier_env *env, 4934 const struct btf_type *t) 4935 { 4936 const struct btf_type *proto_type; 4937 const struct btf_param *args; 4938 const struct btf *btf; 4939 u16 nr_args, i; 4940 4941 btf = env->btf; 4942 proto_type = btf_type_by_id(btf, t->type); 4943 4944 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4945 btf_verifier_log_type(env, t, "Invalid type_id"); 4946 return -EINVAL; 4947 } 4948 4949 args = (const struct btf_param *)(proto_type + 1); 4950 nr_args = btf_type_vlen(proto_type); 4951 for (i = 0; i < nr_args; i++) { 4952 if (!args[i].name_off && args[i].type) { 4953 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4954 return -EINVAL; 4955 } 4956 } 4957 4958 return 0; 4959 } 4960 4961 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4962 [BTF_KIND_INT] = &int_ops, 4963 [BTF_KIND_PTR] = &ptr_ops, 4964 [BTF_KIND_ARRAY] = &array_ops, 4965 [BTF_KIND_STRUCT] = &struct_ops, 4966 [BTF_KIND_UNION] = &struct_ops, 4967 [BTF_KIND_ENUM] = &enum_ops, 4968 [BTF_KIND_FWD] = &fwd_ops, 4969 [BTF_KIND_TYPEDEF] = &modifier_ops, 4970 [BTF_KIND_VOLATILE] = &modifier_ops, 4971 [BTF_KIND_CONST] = &modifier_ops, 4972 [BTF_KIND_RESTRICT] = &modifier_ops, 4973 [BTF_KIND_FUNC] = &func_ops, 4974 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4975 [BTF_KIND_VAR] = &var_ops, 4976 [BTF_KIND_DATASEC] = &datasec_ops, 4977 [BTF_KIND_FLOAT] = &float_ops, 4978 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4979 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4980 [BTF_KIND_ENUM64] = &enum64_ops, 4981 }; 4982 4983 static s32 btf_check_meta(struct btf_verifier_env *env, 4984 const struct btf_type *t, 4985 u32 meta_left) 4986 { 4987 u32 saved_meta_left = meta_left; 4988 s32 var_meta_size; 4989 4990 if (meta_left < sizeof(*t)) { 4991 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4992 env->log_type_id, meta_left, sizeof(*t)); 4993 return -EINVAL; 4994 } 4995 meta_left -= sizeof(*t); 4996 4997 if (t->info & ~BTF_INFO_MASK) { 4998 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4999 env->log_type_id, t->info); 5000 return -EINVAL; 5001 } 5002 5003 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5004 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5005 btf_verifier_log(env, "[%u] Invalid kind:%u", 5006 env->log_type_id, BTF_INFO_KIND(t->info)); 5007 return -EINVAL; 5008 } 5009 5010 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5011 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5012 env->log_type_id, t->name_off); 5013 return -EINVAL; 5014 } 5015 5016 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5017 if (var_meta_size < 0) 5018 return var_meta_size; 5019 5020 meta_left -= var_meta_size; 5021 5022 return saved_meta_left - meta_left; 5023 } 5024 5025 static int btf_check_all_metas(struct btf_verifier_env *env) 5026 { 5027 struct btf *btf = env->btf; 5028 struct btf_header *hdr; 5029 void *cur, *end; 5030 5031 hdr = &btf->hdr; 5032 cur = btf->nohdr_data + hdr->type_off; 5033 end = cur + hdr->type_len; 5034 5035 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5036 while (cur < end) { 5037 struct btf_type *t = cur; 5038 s32 meta_size; 5039 5040 meta_size = btf_check_meta(env, t, end - cur); 5041 if (meta_size < 0) 5042 return meta_size; 5043 5044 btf_add_type(env, t); 5045 cur += meta_size; 5046 env->log_type_id++; 5047 } 5048 5049 return 0; 5050 } 5051 5052 static bool btf_resolve_valid(struct btf_verifier_env *env, 5053 const struct btf_type *t, 5054 u32 type_id) 5055 { 5056 struct btf *btf = env->btf; 5057 5058 if (!env_type_is_resolved(env, type_id)) 5059 return false; 5060 5061 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5062 return !btf_resolved_type_id(btf, type_id) && 5063 !btf_resolved_type_size(btf, type_id); 5064 5065 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5066 return btf_resolved_type_id(btf, type_id) && 5067 !btf_resolved_type_size(btf, type_id); 5068 5069 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5070 btf_type_is_var(t)) { 5071 t = btf_type_id_resolve(btf, &type_id); 5072 return t && 5073 !btf_type_is_modifier(t) && 5074 !btf_type_is_var(t) && 5075 !btf_type_is_datasec(t); 5076 } 5077 5078 if (btf_type_is_array(t)) { 5079 const struct btf_array *array = btf_type_array(t); 5080 const struct btf_type *elem_type; 5081 u32 elem_type_id = array->type; 5082 u32 elem_size; 5083 5084 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5085 return elem_type && !btf_type_is_modifier(elem_type) && 5086 (array->nelems * elem_size == 5087 btf_resolved_type_size(btf, type_id)); 5088 } 5089 5090 return false; 5091 } 5092 5093 static int btf_resolve(struct btf_verifier_env *env, 5094 const struct btf_type *t, u32 type_id) 5095 { 5096 u32 save_log_type_id = env->log_type_id; 5097 const struct resolve_vertex *v; 5098 int err = 0; 5099 5100 env->resolve_mode = RESOLVE_TBD; 5101 env_stack_push(env, t, type_id); 5102 while (!err && (v = env_stack_peak(env))) { 5103 env->log_type_id = v->type_id; 5104 err = btf_type_ops(v->t)->resolve(env, v); 5105 } 5106 5107 env->log_type_id = type_id; 5108 if (err == -E2BIG) { 5109 btf_verifier_log_type(env, t, 5110 "Exceeded max resolving depth:%u", 5111 MAX_RESOLVE_DEPTH); 5112 } else if (err == -EEXIST) { 5113 btf_verifier_log_type(env, t, "Loop detected"); 5114 } 5115 5116 /* Final sanity check */ 5117 if (!err && !btf_resolve_valid(env, t, type_id)) { 5118 btf_verifier_log_type(env, t, "Invalid resolve state"); 5119 err = -EINVAL; 5120 } 5121 5122 env->log_type_id = save_log_type_id; 5123 return err; 5124 } 5125 5126 static int btf_check_all_types(struct btf_verifier_env *env) 5127 { 5128 struct btf *btf = env->btf; 5129 const struct btf_type *t; 5130 u32 type_id, i; 5131 int err; 5132 5133 err = env_resolve_init(env); 5134 if (err) 5135 return err; 5136 5137 env->phase++; 5138 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5139 type_id = btf->start_id + i; 5140 t = btf_type_by_id(btf, type_id); 5141 5142 env->log_type_id = type_id; 5143 if (btf_type_needs_resolve(t) && 5144 !env_type_is_resolved(env, type_id)) { 5145 err = btf_resolve(env, t, type_id); 5146 if (err) 5147 return err; 5148 } 5149 5150 if (btf_type_is_func_proto(t)) { 5151 err = btf_func_proto_check(env, t); 5152 if (err) 5153 return err; 5154 } 5155 } 5156 5157 return 0; 5158 } 5159 5160 static int btf_parse_type_sec(struct btf_verifier_env *env) 5161 { 5162 const struct btf_header *hdr = &env->btf->hdr; 5163 int err; 5164 5165 /* Type section must align to 4 bytes */ 5166 if (hdr->type_off & (sizeof(u32) - 1)) { 5167 btf_verifier_log(env, "Unaligned type_off"); 5168 return -EINVAL; 5169 } 5170 5171 if (!env->btf->base_btf && !hdr->type_len) { 5172 btf_verifier_log(env, "No type found"); 5173 return -EINVAL; 5174 } 5175 5176 err = btf_check_all_metas(env); 5177 if (err) 5178 return err; 5179 5180 return btf_check_all_types(env); 5181 } 5182 5183 static int btf_parse_str_sec(struct btf_verifier_env *env) 5184 { 5185 const struct btf_header *hdr; 5186 struct btf *btf = env->btf; 5187 const char *start, *end; 5188 5189 hdr = &btf->hdr; 5190 start = btf->nohdr_data + hdr->str_off; 5191 end = start + hdr->str_len; 5192 5193 if (end != btf->data + btf->data_size) { 5194 btf_verifier_log(env, "String section is not at the end"); 5195 return -EINVAL; 5196 } 5197 5198 btf->strings = start; 5199 5200 if (btf->base_btf && !hdr->str_len) 5201 return 0; 5202 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5203 btf_verifier_log(env, "Invalid string section"); 5204 return -EINVAL; 5205 } 5206 if (!btf->base_btf && start[0]) { 5207 btf_verifier_log(env, "Invalid string section"); 5208 return -EINVAL; 5209 } 5210 5211 return 0; 5212 } 5213 5214 static const size_t btf_sec_info_offset[] = { 5215 offsetof(struct btf_header, type_off), 5216 offsetof(struct btf_header, str_off), 5217 }; 5218 5219 static int btf_sec_info_cmp(const void *a, const void *b) 5220 { 5221 const struct btf_sec_info *x = a; 5222 const struct btf_sec_info *y = b; 5223 5224 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5225 } 5226 5227 static int btf_check_sec_info(struct btf_verifier_env *env, 5228 u32 btf_data_size) 5229 { 5230 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5231 u32 total, expected_total, i; 5232 const struct btf_header *hdr; 5233 const struct btf *btf; 5234 5235 btf = env->btf; 5236 hdr = &btf->hdr; 5237 5238 /* Populate the secs from hdr */ 5239 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5240 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5241 btf_sec_info_offset[i]); 5242 5243 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5244 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5245 5246 /* Check for gaps and overlap among sections */ 5247 total = 0; 5248 expected_total = btf_data_size - hdr->hdr_len; 5249 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5250 if (expected_total < secs[i].off) { 5251 btf_verifier_log(env, "Invalid section offset"); 5252 return -EINVAL; 5253 } 5254 if (total < secs[i].off) { 5255 /* gap */ 5256 btf_verifier_log(env, "Unsupported section found"); 5257 return -EINVAL; 5258 } 5259 if (total > secs[i].off) { 5260 btf_verifier_log(env, "Section overlap found"); 5261 return -EINVAL; 5262 } 5263 if (expected_total - total < secs[i].len) { 5264 btf_verifier_log(env, 5265 "Total section length too long"); 5266 return -EINVAL; 5267 } 5268 total += secs[i].len; 5269 } 5270 5271 /* There is data other than hdr and known sections */ 5272 if (expected_total != total) { 5273 btf_verifier_log(env, "Unsupported section found"); 5274 return -EINVAL; 5275 } 5276 5277 return 0; 5278 } 5279 5280 static int btf_parse_hdr(struct btf_verifier_env *env) 5281 { 5282 u32 hdr_len, hdr_copy, btf_data_size; 5283 const struct btf_header *hdr; 5284 struct btf *btf; 5285 5286 btf = env->btf; 5287 btf_data_size = btf->data_size; 5288 5289 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5290 btf_verifier_log(env, "hdr_len not found"); 5291 return -EINVAL; 5292 } 5293 5294 hdr = btf->data; 5295 hdr_len = hdr->hdr_len; 5296 if (btf_data_size < hdr_len) { 5297 btf_verifier_log(env, "btf_header not found"); 5298 return -EINVAL; 5299 } 5300 5301 /* Ensure the unsupported header fields are zero */ 5302 if (hdr_len > sizeof(btf->hdr)) { 5303 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5304 u8 *end = btf->data + hdr_len; 5305 5306 for (; expected_zero < end; expected_zero++) { 5307 if (*expected_zero) { 5308 btf_verifier_log(env, "Unsupported btf_header"); 5309 return -E2BIG; 5310 } 5311 } 5312 } 5313 5314 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5315 memcpy(&btf->hdr, btf->data, hdr_copy); 5316 5317 hdr = &btf->hdr; 5318 5319 btf_verifier_log_hdr(env, btf_data_size); 5320 5321 if (hdr->magic != BTF_MAGIC) { 5322 btf_verifier_log(env, "Invalid magic"); 5323 return -EINVAL; 5324 } 5325 5326 if (hdr->version != BTF_VERSION) { 5327 btf_verifier_log(env, "Unsupported version"); 5328 return -ENOTSUPP; 5329 } 5330 5331 if (hdr->flags) { 5332 btf_verifier_log(env, "Unsupported flags"); 5333 return -ENOTSUPP; 5334 } 5335 5336 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5337 btf_verifier_log(env, "No data"); 5338 return -EINVAL; 5339 } 5340 5341 return btf_check_sec_info(env, btf_data_size); 5342 } 5343 5344 static const char *alloc_obj_fields[] = { 5345 "bpf_spin_lock", 5346 "bpf_list_head", 5347 "bpf_list_node", 5348 "bpf_rb_root", 5349 "bpf_rb_node", 5350 }; 5351 5352 static struct btf_struct_metas * 5353 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5354 { 5355 union { 5356 struct btf_id_set set; 5357 struct { 5358 u32 _cnt; 5359 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5360 } _arr; 5361 } aof; 5362 struct btf_struct_metas *tab = NULL; 5363 int i, n, id, ret; 5364 5365 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5366 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5367 5368 memset(&aof, 0, sizeof(aof)); 5369 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5370 /* Try to find whether this special type exists in user BTF, and 5371 * if so remember its ID so we can easily find it among members 5372 * of structs that we iterate in the next loop. 5373 */ 5374 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5375 if (id < 0) 5376 continue; 5377 aof.set.ids[aof.set.cnt++] = id; 5378 } 5379 5380 if (!aof.set.cnt) 5381 return NULL; 5382 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5383 5384 n = btf_nr_types(btf); 5385 for (i = 1; i < n; i++) { 5386 struct btf_struct_metas *new_tab; 5387 const struct btf_member *member; 5388 struct btf_field_offs *foffs; 5389 struct btf_struct_meta *type; 5390 struct btf_record *record; 5391 const struct btf_type *t; 5392 int j, tab_cnt; 5393 5394 t = btf_type_by_id(btf, i); 5395 if (!t) { 5396 ret = -EINVAL; 5397 goto free; 5398 } 5399 if (!__btf_type_is_struct(t)) 5400 continue; 5401 5402 cond_resched(); 5403 5404 for_each_member(j, t, member) { 5405 if (btf_id_set_contains(&aof.set, member->type)) 5406 goto parse; 5407 } 5408 continue; 5409 parse: 5410 tab_cnt = tab ? tab->cnt : 0; 5411 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5412 GFP_KERNEL | __GFP_NOWARN); 5413 if (!new_tab) { 5414 ret = -ENOMEM; 5415 goto free; 5416 } 5417 if (!tab) 5418 new_tab->cnt = 0; 5419 tab = new_tab; 5420 5421 type = &tab->types[tab->cnt]; 5422 type->btf_id = i; 5423 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5424 BPF_RB_ROOT | BPF_RB_NODE, t->size); 5425 /* The record cannot be unset, treat it as an error if so */ 5426 if (IS_ERR_OR_NULL(record)) { 5427 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5428 goto free; 5429 } 5430 foffs = btf_parse_field_offs(record); 5431 /* We need the field_offs to be valid for a valid record, 5432 * either both should be set or both should be unset. 5433 */ 5434 if (IS_ERR_OR_NULL(foffs)) { 5435 btf_record_free(record); 5436 ret = -EFAULT; 5437 goto free; 5438 } 5439 type->record = record; 5440 type->field_offs = foffs; 5441 tab->cnt++; 5442 } 5443 return tab; 5444 free: 5445 btf_struct_metas_free(tab); 5446 return ERR_PTR(ret); 5447 } 5448 5449 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5450 { 5451 struct btf_struct_metas *tab; 5452 5453 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5454 tab = btf->struct_meta_tab; 5455 if (!tab) 5456 return NULL; 5457 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5458 } 5459 5460 static int btf_check_type_tags(struct btf_verifier_env *env, 5461 struct btf *btf, int start_id) 5462 { 5463 int i, n, good_id = start_id - 1; 5464 bool in_tags; 5465 5466 n = btf_nr_types(btf); 5467 for (i = start_id; i < n; i++) { 5468 const struct btf_type *t; 5469 int chain_limit = 32; 5470 u32 cur_id = i; 5471 5472 t = btf_type_by_id(btf, i); 5473 if (!t) 5474 return -EINVAL; 5475 if (!btf_type_is_modifier(t)) 5476 continue; 5477 5478 cond_resched(); 5479 5480 in_tags = btf_type_is_type_tag(t); 5481 while (btf_type_is_modifier(t)) { 5482 if (!chain_limit--) { 5483 btf_verifier_log(env, "Max chain length or cycle detected"); 5484 return -ELOOP; 5485 } 5486 if (btf_type_is_type_tag(t)) { 5487 if (!in_tags) { 5488 btf_verifier_log(env, "Type tags don't precede modifiers"); 5489 return -EINVAL; 5490 } 5491 } else if (in_tags) { 5492 in_tags = false; 5493 } 5494 if (cur_id <= good_id) 5495 break; 5496 /* Move to next type */ 5497 cur_id = t->type; 5498 t = btf_type_by_id(btf, cur_id); 5499 if (!t) 5500 return -EINVAL; 5501 } 5502 good_id = i; 5503 } 5504 return 0; 5505 } 5506 5507 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 5508 u32 log_level, char __user *log_ubuf, u32 log_size) 5509 { 5510 struct btf_struct_metas *struct_meta_tab; 5511 struct btf_verifier_env *env = NULL; 5512 struct bpf_verifier_log *log; 5513 struct btf *btf = NULL; 5514 u8 *data; 5515 int err; 5516 5517 if (btf_data_size > BTF_MAX_SIZE) 5518 return ERR_PTR(-E2BIG); 5519 5520 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5521 if (!env) 5522 return ERR_PTR(-ENOMEM); 5523 5524 log = &env->log; 5525 if (log_level || log_ubuf || log_size) { 5526 /* user requested verbose verifier output 5527 * and supplied buffer to store the verification trace 5528 */ 5529 log->level = log_level; 5530 log->ubuf = log_ubuf; 5531 log->len_total = log_size; 5532 5533 /* log attributes have to be sane */ 5534 if (!bpf_verifier_log_attr_valid(log)) { 5535 err = -EINVAL; 5536 goto errout; 5537 } 5538 } 5539 5540 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5541 if (!btf) { 5542 err = -ENOMEM; 5543 goto errout; 5544 } 5545 env->btf = btf; 5546 5547 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 5548 if (!data) { 5549 err = -ENOMEM; 5550 goto errout; 5551 } 5552 5553 btf->data = data; 5554 btf->data_size = btf_data_size; 5555 5556 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 5557 err = -EFAULT; 5558 goto errout; 5559 } 5560 5561 err = btf_parse_hdr(env); 5562 if (err) 5563 goto errout; 5564 5565 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5566 5567 err = btf_parse_str_sec(env); 5568 if (err) 5569 goto errout; 5570 5571 err = btf_parse_type_sec(env); 5572 if (err) 5573 goto errout; 5574 5575 err = btf_check_type_tags(env, btf, 1); 5576 if (err) 5577 goto errout; 5578 5579 struct_meta_tab = btf_parse_struct_metas(log, btf); 5580 if (IS_ERR(struct_meta_tab)) { 5581 err = PTR_ERR(struct_meta_tab); 5582 goto errout; 5583 } 5584 btf->struct_meta_tab = struct_meta_tab; 5585 5586 if (struct_meta_tab) { 5587 int i; 5588 5589 for (i = 0; i < struct_meta_tab->cnt; i++) { 5590 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5591 if (err < 0) 5592 goto errout_meta; 5593 } 5594 } 5595 5596 if (log->level && bpf_verifier_log_full(log)) { 5597 err = -ENOSPC; 5598 goto errout_meta; 5599 } 5600 5601 btf_verifier_env_free(env); 5602 refcount_set(&btf->refcnt, 1); 5603 return btf; 5604 5605 errout_meta: 5606 btf_free_struct_meta_tab(btf); 5607 errout: 5608 btf_verifier_env_free(env); 5609 if (btf) 5610 btf_free(btf); 5611 return ERR_PTR(err); 5612 } 5613 5614 extern char __weak __start_BTF[]; 5615 extern char __weak __stop_BTF[]; 5616 extern struct btf *btf_vmlinux; 5617 5618 #define BPF_MAP_TYPE(_id, _ops) 5619 #define BPF_LINK_TYPE(_id, _name) 5620 static union { 5621 struct bpf_ctx_convert { 5622 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5623 prog_ctx_type _id##_prog; \ 5624 kern_ctx_type _id##_kern; 5625 #include <linux/bpf_types.h> 5626 #undef BPF_PROG_TYPE 5627 } *__t; 5628 /* 't' is written once under lock. Read many times. */ 5629 const struct btf_type *t; 5630 } bpf_ctx_convert; 5631 enum { 5632 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5633 __ctx_convert##_id, 5634 #include <linux/bpf_types.h> 5635 #undef BPF_PROG_TYPE 5636 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5637 }; 5638 static u8 bpf_ctx_convert_map[] = { 5639 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5640 [_id] = __ctx_convert##_id, 5641 #include <linux/bpf_types.h> 5642 #undef BPF_PROG_TYPE 5643 0, /* avoid empty array */ 5644 }; 5645 #undef BPF_MAP_TYPE 5646 #undef BPF_LINK_TYPE 5647 5648 const struct btf_member * 5649 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5650 const struct btf_type *t, enum bpf_prog_type prog_type, 5651 int arg) 5652 { 5653 const struct btf_type *conv_struct; 5654 const struct btf_type *ctx_struct; 5655 const struct btf_member *ctx_type; 5656 const char *tname, *ctx_tname; 5657 5658 conv_struct = bpf_ctx_convert.t; 5659 if (!conv_struct) { 5660 bpf_log(log, "btf_vmlinux is malformed\n"); 5661 return NULL; 5662 } 5663 t = btf_type_by_id(btf, t->type); 5664 while (btf_type_is_modifier(t)) 5665 t = btf_type_by_id(btf, t->type); 5666 if (!btf_type_is_struct(t)) { 5667 /* Only pointer to struct is supported for now. 5668 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5669 * is not supported yet. 5670 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5671 */ 5672 return NULL; 5673 } 5674 tname = btf_name_by_offset(btf, t->name_off); 5675 if (!tname) { 5676 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5677 return NULL; 5678 } 5679 /* prog_type is valid bpf program type. No need for bounds check. */ 5680 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5681 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5682 * Like 'struct __sk_buff' 5683 */ 5684 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5685 if (!ctx_struct) 5686 /* should not happen */ 5687 return NULL; 5688 again: 5689 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5690 if (!ctx_tname) { 5691 /* should not happen */ 5692 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5693 return NULL; 5694 } 5695 /* only compare that prog's ctx type name is the same as 5696 * kernel expects. No need to compare field by field. 5697 * It's ok for bpf prog to do: 5698 * struct __sk_buff {}; 5699 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5700 * { // no fields of skb are ever used } 5701 */ 5702 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5703 return ctx_type; 5704 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5705 return ctx_type; 5706 if (strcmp(ctx_tname, tname)) { 5707 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5708 * underlying struct and check name again 5709 */ 5710 if (!btf_type_is_modifier(ctx_struct)) 5711 return NULL; 5712 while (btf_type_is_modifier(ctx_struct)) 5713 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); 5714 goto again; 5715 } 5716 return ctx_type; 5717 } 5718 5719 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5720 struct btf *btf, 5721 const struct btf_type *t, 5722 enum bpf_prog_type prog_type, 5723 int arg) 5724 { 5725 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5726 5727 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5728 if (!prog_ctx_type) 5729 return -ENOENT; 5730 kern_ctx_type = prog_ctx_type + 1; 5731 return kern_ctx_type->type; 5732 } 5733 5734 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5735 { 5736 const struct btf_member *kctx_member; 5737 const struct btf_type *conv_struct; 5738 const struct btf_type *kctx_type; 5739 u32 kctx_type_id; 5740 5741 conv_struct = bpf_ctx_convert.t; 5742 /* get member for kernel ctx type */ 5743 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5744 kctx_type_id = kctx_member->type; 5745 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5746 if (!btf_type_is_struct(kctx_type)) { 5747 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5748 return -EINVAL; 5749 } 5750 5751 return kctx_type_id; 5752 } 5753 5754 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5755 BTF_ID(struct, bpf_ctx_convert) 5756 5757 struct btf *btf_parse_vmlinux(void) 5758 { 5759 struct btf_verifier_env *env = NULL; 5760 struct bpf_verifier_log *log; 5761 struct btf *btf = NULL; 5762 int err; 5763 5764 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5765 if (!env) 5766 return ERR_PTR(-ENOMEM); 5767 5768 log = &env->log; 5769 log->level = BPF_LOG_KERNEL; 5770 5771 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5772 if (!btf) { 5773 err = -ENOMEM; 5774 goto errout; 5775 } 5776 env->btf = btf; 5777 5778 btf->data = __start_BTF; 5779 btf->data_size = __stop_BTF - __start_BTF; 5780 btf->kernel_btf = true; 5781 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5782 5783 err = btf_parse_hdr(env); 5784 if (err) 5785 goto errout; 5786 5787 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5788 5789 err = btf_parse_str_sec(env); 5790 if (err) 5791 goto errout; 5792 5793 err = btf_check_all_metas(env); 5794 if (err) 5795 goto errout; 5796 5797 err = btf_check_type_tags(env, btf, 1); 5798 if (err) 5799 goto errout; 5800 5801 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5802 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5803 5804 bpf_struct_ops_init(btf, log); 5805 5806 refcount_set(&btf->refcnt, 1); 5807 5808 err = btf_alloc_id(btf); 5809 if (err) 5810 goto errout; 5811 5812 btf_verifier_env_free(env); 5813 return btf; 5814 5815 errout: 5816 btf_verifier_env_free(env); 5817 if (btf) { 5818 kvfree(btf->types); 5819 kfree(btf); 5820 } 5821 return ERR_PTR(err); 5822 } 5823 5824 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5825 5826 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5827 { 5828 struct btf_verifier_env *env = NULL; 5829 struct bpf_verifier_log *log; 5830 struct btf *btf = NULL, *base_btf; 5831 int err; 5832 5833 base_btf = bpf_get_btf_vmlinux(); 5834 if (IS_ERR(base_btf)) 5835 return base_btf; 5836 if (!base_btf) 5837 return ERR_PTR(-EINVAL); 5838 5839 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5840 if (!env) 5841 return ERR_PTR(-ENOMEM); 5842 5843 log = &env->log; 5844 log->level = BPF_LOG_KERNEL; 5845 5846 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5847 if (!btf) { 5848 err = -ENOMEM; 5849 goto errout; 5850 } 5851 env->btf = btf; 5852 5853 btf->base_btf = base_btf; 5854 btf->start_id = base_btf->nr_types; 5855 btf->start_str_off = base_btf->hdr.str_len; 5856 btf->kernel_btf = true; 5857 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5858 5859 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5860 if (!btf->data) { 5861 err = -ENOMEM; 5862 goto errout; 5863 } 5864 memcpy(btf->data, data, data_size); 5865 btf->data_size = data_size; 5866 5867 err = btf_parse_hdr(env); 5868 if (err) 5869 goto errout; 5870 5871 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5872 5873 err = btf_parse_str_sec(env); 5874 if (err) 5875 goto errout; 5876 5877 err = btf_check_all_metas(env); 5878 if (err) 5879 goto errout; 5880 5881 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5882 if (err) 5883 goto errout; 5884 5885 btf_verifier_env_free(env); 5886 refcount_set(&btf->refcnt, 1); 5887 return btf; 5888 5889 errout: 5890 btf_verifier_env_free(env); 5891 if (btf) { 5892 kvfree(btf->data); 5893 kvfree(btf->types); 5894 kfree(btf); 5895 } 5896 return ERR_PTR(err); 5897 } 5898 5899 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5900 5901 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5902 { 5903 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5904 5905 if (tgt_prog) 5906 return tgt_prog->aux->btf; 5907 else 5908 return prog->aux->attach_btf; 5909 } 5910 5911 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5912 { 5913 /* t comes in already as a pointer */ 5914 t = btf_type_by_id(btf, t->type); 5915 5916 /* allow const */ 5917 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 5918 t = btf_type_by_id(btf, t->type); 5919 5920 return btf_type_is_int(t); 5921 } 5922 5923 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5924 int off) 5925 { 5926 const struct btf_param *args; 5927 const struct btf_type *t; 5928 u32 offset = 0, nr_args; 5929 int i; 5930 5931 if (!func_proto) 5932 return off / 8; 5933 5934 nr_args = btf_type_vlen(func_proto); 5935 args = (const struct btf_param *)(func_proto + 1); 5936 for (i = 0; i < nr_args; i++) { 5937 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5938 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5939 if (off < offset) 5940 return i; 5941 } 5942 5943 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5944 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5945 if (off < offset) 5946 return nr_args; 5947 5948 return nr_args + 1; 5949 } 5950 5951 static bool prog_args_trusted(const struct bpf_prog *prog) 5952 { 5953 enum bpf_attach_type atype = prog->expected_attach_type; 5954 5955 switch (prog->type) { 5956 case BPF_PROG_TYPE_TRACING: 5957 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5958 case BPF_PROG_TYPE_LSM: 5959 return bpf_lsm_is_trusted(prog); 5960 case BPF_PROG_TYPE_STRUCT_OPS: 5961 return true; 5962 default: 5963 return false; 5964 } 5965 } 5966 5967 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5968 const struct bpf_prog *prog, 5969 struct bpf_insn_access_aux *info) 5970 { 5971 const struct btf_type *t = prog->aux->attach_func_proto; 5972 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5973 struct btf *btf = bpf_prog_get_target_btf(prog); 5974 const char *tname = prog->aux->attach_func_name; 5975 struct bpf_verifier_log *log = info->log; 5976 const struct btf_param *args; 5977 const char *tag_value; 5978 u32 nr_args, arg; 5979 int i, ret; 5980 5981 if (off % 8) { 5982 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5983 tname, off); 5984 return false; 5985 } 5986 arg = get_ctx_arg_idx(btf, t, off); 5987 args = (const struct btf_param *)(t + 1); 5988 /* if (t == NULL) Fall back to default BPF prog with 5989 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5990 */ 5991 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5992 if (prog->aux->attach_btf_trace) { 5993 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5994 args++; 5995 nr_args--; 5996 } 5997 5998 if (arg > nr_args) { 5999 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6000 tname, arg + 1); 6001 return false; 6002 } 6003 6004 if (arg == nr_args) { 6005 switch (prog->expected_attach_type) { 6006 case BPF_LSM_CGROUP: 6007 case BPF_LSM_MAC: 6008 case BPF_TRACE_FEXIT: 6009 /* When LSM programs are attached to void LSM hooks 6010 * they use FEXIT trampolines and when attached to 6011 * int LSM hooks, they use MODIFY_RETURN trampolines. 6012 * 6013 * While the LSM programs are BPF_MODIFY_RETURN-like 6014 * the check: 6015 * 6016 * if (ret_type != 'int') 6017 * return -EINVAL; 6018 * 6019 * is _not_ done here. This is still safe as LSM hooks 6020 * have only void and int return types. 6021 */ 6022 if (!t) 6023 return true; 6024 t = btf_type_by_id(btf, t->type); 6025 break; 6026 case BPF_MODIFY_RETURN: 6027 /* For now the BPF_MODIFY_RETURN can only be attached to 6028 * functions that return an int. 6029 */ 6030 if (!t) 6031 return false; 6032 6033 t = btf_type_skip_modifiers(btf, t->type, NULL); 6034 if (!btf_type_is_small_int(t)) { 6035 bpf_log(log, 6036 "ret type %s not allowed for fmod_ret\n", 6037 btf_type_str(t)); 6038 return false; 6039 } 6040 break; 6041 default: 6042 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6043 tname, arg + 1); 6044 return false; 6045 } 6046 } else { 6047 if (!t) 6048 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6049 return true; 6050 t = btf_type_by_id(btf, args[arg].type); 6051 } 6052 6053 /* skip modifiers */ 6054 while (btf_type_is_modifier(t)) 6055 t = btf_type_by_id(btf, t->type); 6056 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6057 /* accessing a scalar */ 6058 return true; 6059 if (!btf_type_is_ptr(t)) { 6060 bpf_log(log, 6061 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6062 tname, arg, 6063 __btf_name_by_offset(btf, t->name_off), 6064 btf_type_str(t)); 6065 return false; 6066 } 6067 6068 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6069 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6070 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6071 u32 type, flag; 6072 6073 type = base_type(ctx_arg_info->reg_type); 6074 flag = type_flag(ctx_arg_info->reg_type); 6075 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6076 (flag & PTR_MAYBE_NULL)) { 6077 info->reg_type = ctx_arg_info->reg_type; 6078 return true; 6079 } 6080 } 6081 6082 if (t->type == 0) 6083 /* This is a pointer to void. 6084 * It is the same as scalar from the verifier safety pov. 6085 * No further pointer walking is allowed. 6086 */ 6087 return true; 6088 6089 if (is_int_ptr(btf, t)) 6090 return true; 6091 6092 /* this is a pointer to another type */ 6093 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6094 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6095 6096 if (ctx_arg_info->offset == off) { 6097 if (!ctx_arg_info->btf_id) { 6098 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6099 return false; 6100 } 6101 6102 info->reg_type = ctx_arg_info->reg_type; 6103 info->btf = btf_vmlinux; 6104 info->btf_id = ctx_arg_info->btf_id; 6105 return true; 6106 } 6107 } 6108 6109 info->reg_type = PTR_TO_BTF_ID; 6110 if (prog_args_trusted(prog)) 6111 info->reg_type |= PTR_TRUSTED; 6112 6113 if (tgt_prog) { 6114 enum bpf_prog_type tgt_type; 6115 6116 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6117 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6118 else 6119 tgt_type = tgt_prog->type; 6120 6121 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6122 if (ret > 0) { 6123 info->btf = btf_vmlinux; 6124 info->btf_id = ret; 6125 return true; 6126 } else { 6127 return false; 6128 } 6129 } 6130 6131 info->btf = btf; 6132 info->btf_id = t->type; 6133 t = btf_type_by_id(btf, t->type); 6134 6135 if (btf_type_is_type_tag(t)) { 6136 tag_value = __btf_name_by_offset(btf, t->name_off); 6137 if (strcmp(tag_value, "user") == 0) 6138 info->reg_type |= MEM_USER; 6139 if (strcmp(tag_value, "percpu") == 0) 6140 info->reg_type |= MEM_PERCPU; 6141 } 6142 6143 /* skip modifiers */ 6144 while (btf_type_is_modifier(t)) { 6145 info->btf_id = t->type; 6146 t = btf_type_by_id(btf, t->type); 6147 } 6148 if (!btf_type_is_struct(t)) { 6149 bpf_log(log, 6150 "func '%s' arg%d type %s is not a struct\n", 6151 tname, arg, btf_type_str(t)); 6152 return false; 6153 } 6154 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6155 tname, arg, info->btf_id, btf_type_str(t), 6156 __btf_name_by_offset(btf, t->name_off)); 6157 return true; 6158 } 6159 6160 enum bpf_struct_walk_result { 6161 /* < 0 error */ 6162 WALK_SCALAR = 0, 6163 WALK_PTR, 6164 WALK_STRUCT, 6165 }; 6166 6167 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6168 const struct btf_type *t, int off, int size, 6169 u32 *next_btf_id, enum bpf_type_flag *flag, 6170 const char **field_name) 6171 { 6172 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6173 const struct btf_type *mtype, *elem_type = NULL; 6174 const struct btf_member *member; 6175 const char *tname, *mname, *tag_value; 6176 u32 vlen, elem_id, mid; 6177 6178 *flag = 0; 6179 again: 6180 tname = __btf_name_by_offset(btf, t->name_off); 6181 if (!btf_type_is_struct(t)) { 6182 bpf_log(log, "Type '%s' is not a struct\n", tname); 6183 return -EINVAL; 6184 } 6185 6186 vlen = btf_type_vlen(t); 6187 if (off + size > t->size) { 6188 /* If the last element is a variable size array, we may 6189 * need to relax the rule. 6190 */ 6191 struct btf_array *array_elem; 6192 6193 if (vlen == 0) 6194 goto error; 6195 6196 member = btf_type_member(t) + vlen - 1; 6197 mtype = btf_type_skip_modifiers(btf, member->type, 6198 NULL); 6199 if (!btf_type_is_array(mtype)) 6200 goto error; 6201 6202 array_elem = (struct btf_array *)(mtype + 1); 6203 if (array_elem->nelems != 0) 6204 goto error; 6205 6206 moff = __btf_member_bit_offset(t, member) / 8; 6207 if (off < moff) 6208 goto error; 6209 6210 /* Only allow structure for now, can be relaxed for 6211 * other types later. 6212 */ 6213 t = btf_type_skip_modifiers(btf, array_elem->type, 6214 NULL); 6215 if (!btf_type_is_struct(t)) 6216 goto error; 6217 6218 off = (off - moff) % t->size; 6219 goto again; 6220 6221 error: 6222 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6223 tname, off, size); 6224 return -EACCES; 6225 } 6226 6227 for_each_member(i, t, member) { 6228 /* offset of the field in bytes */ 6229 moff = __btf_member_bit_offset(t, member) / 8; 6230 if (off + size <= moff) 6231 /* won't find anything, field is already too far */ 6232 break; 6233 6234 if (__btf_member_bitfield_size(t, member)) { 6235 u32 end_bit = __btf_member_bit_offset(t, member) + 6236 __btf_member_bitfield_size(t, member); 6237 6238 /* off <= moff instead of off == moff because clang 6239 * does not generate a BTF member for anonymous 6240 * bitfield like the ":16" here: 6241 * struct { 6242 * int :16; 6243 * int x:8; 6244 * }; 6245 */ 6246 if (off <= moff && 6247 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6248 return WALK_SCALAR; 6249 6250 /* off may be accessing a following member 6251 * 6252 * or 6253 * 6254 * Doing partial access at either end of this 6255 * bitfield. Continue on this case also to 6256 * treat it as not accessing this bitfield 6257 * and eventually error out as field not 6258 * found to keep it simple. 6259 * It could be relaxed if there was a legit 6260 * partial access case later. 6261 */ 6262 continue; 6263 } 6264 6265 /* In case of "off" is pointing to holes of a struct */ 6266 if (off < moff) 6267 break; 6268 6269 /* type of the field */ 6270 mid = member->type; 6271 mtype = btf_type_by_id(btf, member->type); 6272 mname = __btf_name_by_offset(btf, member->name_off); 6273 6274 mtype = __btf_resolve_size(btf, mtype, &msize, 6275 &elem_type, &elem_id, &total_nelems, 6276 &mid); 6277 if (IS_ERR(mtype)) { 6278 bpf_log(log, "field %s doesn't have size\n", mname); 6279 return -EFAULT; 6280 } 6281 6282 mtrue_end = moff + msize; 6283 if (off >= mtrue_end) 6284 /* no overlap with member, keep iterating */ 6285 continue; 6286 6287 if (btf_type_is_array(mtype)) { 6288 u32 elem_idx; 6289 6290 /* __btf_resolve_size() above helps to 6291 * linearize a multi-dimensional array. 6292 * 6293 * The logic here is treating an array 6294 * in a struct as the following way: 6295 * 6296 * struct outer { 6297 * struct inner array[2][2]; 6298 * }; 6299 * 6300 * looks like: 6301 * 6302 * struct outer { 6303 * struct inner array_elem0; 6304 * struct inner array_elem1; 6305 * struct inner array_elem2; 6306 * struct inner array_elem3; 6307 * }; 6308 * 6309 * When accessing outer->array[1][0], it moves 6310 * moff to "array_elem2", set mtype to 6311 * "struct inner", and msize also becomes 6312 * sizeof(struct inner). Then most of the 6313 * remaining logic will fall through without 6314 * caring the current member is an array or 6315 * not. 6316 * 6317 * Unlike mtype/msize/moff, mtrue_end does not 6318 * change. The naming difference ("_true") tells 6319 * that it is not always corresponding to 6320 * the current mtype/msize/moff. 6321 * It is the true end of the current 6322 * member (i.e. array in this case). That 6323 * will allow an int array to be accessed like 6324 * a scratch space, 6325 * i.e. allow access beyond the size of 6326 * the array's element as long as it is 6327 * within the mtrue_end boundary. 6328 */ 6329 6330 /* skip empty array */ 6331 if (moff == mtrue_end) 6332 continue; 6333 6334 msize /= total_nelems; 6335 elem_idx = (off - moff) / msize; 6336 moff += elem_idx * msize; 6337 mtype = elem_type; 6338 mid = elem_id; 6339 } 6340 6341 /* the 'off' we're looking for is either equal to start 6342 * of this field or inside of this struct 6343 */ 6344 if (btf_type_is_struct(mtype)) { 6345 if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION && 6346 btf_type_vlen(mtype) != 1) 6347 /* 6348 * walking unions yields untrusted pointers 6349 * with exception of __bpf_md_ptr and other 6350 * unions with a single member 6351 */ 6352 *flag |= PTR_UNTRUSTED; 6353 6354 /* our field must be inside that union or struct */ 6355 t = mtype; 6356 6357 /* return if the offset matches the member offset */ 6358 if (off == moff) { 6359 *next_btf_id = mid; 6360 return WALK_STRUCT; 6361 } 6362 6363 /* adjust offset we're looking for */ 6364 off -= moff; 6365 goto again; 6366 } 6367 6368 if (btf_type_is_ptr(mtype)) { 6369 const struct btf_type *stype, *t; 6370 enum bpf_type_flag tmp_flag = 0; 6371 u32 id; 6372 6373 if (msize != size || off != moff) { 6374 bpf_log(log, 6375 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6376 mname, moff, tname, off, size); 6377 return -EACCES; 6378 } 6379 6380 /* check type tag */ 6381 t = btf_type_by_id(btf, mtype->type); 6382 if (btf_type_is_type_tag(t)) { 6383 tag_value = __btf_name_by_offset(btf, t->name_off); 6384 /* check __user tag */ 6385 if (strcmp(tag_value, "user") == 0) 6386 tmp_flag = MEM_USER; 6387 /* check __percpu tag */ 6388 if (strcmp(tag_value, "percpu") == 0) 6389 tmp_flag = MEM_PERCPU; 6390 /* check __rcu tag */ 6391 if (strcmp(tag_value, "rcu") == 0) 6392 tmp_flag = MEM_RCU; 6393 } 6394 6395 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6396 if (btf_type_is_struct(stype)) { 6397 *next_btf_id = id; 6398 *flag |= tmp_flag; 6399 if (field_name) 6400 *field_name = mname; 6401 return WALK_PTR; 6402 } 6403 } 6404 6405 /* Allow more flexible access within an int as long as 6406 * it is within mtrue_end. 6407 * Since mtrue_end could be the end of an array, 6408 * that also allows using an array of int as a scratch 6409 * space. e.g. skb->cb[]. 6410 */ 6411 if (off + size > mtrue_end) { 6412 bpf_log(log, 6413 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6414 mname, mtrue_end, tname, off, size); 6415 return -EACCES; 6416 } 6417 6418 return WALK_SCALAR; 6419 } 6420 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6421 return -EINVAL; 6422 } 6423 6424 int btf_struct_access(struct bpf_verifier_log *log, 6425 const struct bpf_reg_state *reg, 6426 int off, int size, enum bpf_access_type atype __maybe_unused, 6427 u32 *next_btf_id, enum bpf_type_flag *flag, 6428 const char **field_name) 6429 { 6430 const struct btf *btf = reg->btf; 6431 enum bpf_type_flag tmp_flag = 0; 6432 const struct btf_type *t; 6433 u32 id = reg->btf_id; 6434 int err; 6435 6436 while (type_is_alloc(reg->type)) { 6437 struct btf_struct_meta *meta; 6438 struct btf_record *rec; 6439 int i; 6440 6441 meta = btf_find_struct_meta(btf, id); 6442 if (!meta) 6443 break; 6444 rec = meta->record; 6445 for (i = 0; i < rec->cnt; i++) { 6446 struct btf_field *field = &rec->fields[i]; 6447 u32 offset = field->offset; 6448 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6449 bpf_log(log, 6450 "direct access to %s is disallowed\n", 6451 btf_field_type_name(field->type)); 6452 return -EACCES; 6453 } 6454 } 6455 break; 6456 } 6457 6458 t = btf_type_by_id(btf, id); 6459 do { 6460 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6461 6462 switch (err) { 6463 case WALK_PTR: 6464 /* For local types, the destination register cannot 6465 * become a pointer again. 6466 */ 6467 if (type_is_alloc(reg->type)) 6468 return SCALAR_VALUE; 6469 /* If we found the pointer or scalar on t+off, 6470 * we're done. 6471 */ 6472 *next_btf_id = id; 6473 *flag = tmp_flag; 6474 return PTR_TO_BTF_ID; 6475 case WALK_SCALAR: 6476 return SCALAR_VALUE; 6477 case WALK_STRUCT: 6478 /* We found nested struct, so continue the search 6479 * by diving in it. At this point the offset is 6480 * aligned with the new type, so set it to 0. 6481 */ 6482 t = btf_type_by_id(btf, id); 6483 off = 0; 6484 break; 6485 default: 6486 /* It's either error or unknown return value.. 6487 * scream and leave. 6488 */ 6489 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6490 return -EINVAL; 6491 return err; 6492 } 6493 } while (t); 6494 6495 return -EINVAL; 6496 } 6497 6498 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6499 * the same. Trivial ID check is not enough due to module BTFs, because we can 6500 * end up with two different module BTFs, but IDs point to the common type in 6501 * vmlinux BTF. 6502 */ 6503 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6504 const struct btf *btf2, u32 id2) 6505 { 6506 if (id1 != id2) 6507 return false; 6508 if (btf1 == btf2) 6509 return true; 6510 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6511 } 6512 6513 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6514 const struct btf *btf, u32 id, int off, 6515 const struct btf *need_btf, u32 need_type_id, 6516 bool strict) 6517 { 6518 const struct btf_type *type; 6519 enum bpf_type_flag flag; 6520 int err; 6521 6522 /* Are we already done? */ 6523 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6524 return true; 6525 /* In case of strict type match, we do not walk struct, the top level 6526 * type match must succeed. When strict is true, off should have already 6527 * been 0. 6528 */ 6529 if (strict) 6530 return false; 6531 again: 6532 type = btf_type_by_id(btf, id); 6533 if (!type) 6534 return false; 6535 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6536 if (err != WALK_STRUCT) 6537 return false; 6538 6539 /* We found nested struct object. If it matches 6540 * the requested ID, we're done. Otherwise let's 6541 * continue the search with offset 0 in the new 6542 * type. 6543 */ 6544 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6545 off = 0; 6546 goto again; 6547 } 6548 6549 return true; 6550 } 6551 6552 static int __get_type_size(struct btf *btf, u32 btf_id, 6553 const struct btf_type **ret_type) 6554 { 6555 const struct btf_type *t; 6556 6557 *ret_type = btf_type_by_id(btf, 0); 6558 if (!btf_id) 6559 /* void */ 6560 return 0; 6561 t = btf_type_by_id(btf, btf_id); 6562 while (t && btf_type_is_modifier(t)) 6563 t = btf_type_by_id(btf, t->type); 6564 if (!t) 6565 return -EINVAL; 6566 *ret_type = t; 6567 if (btf_type_is_ptr(t)) 6568 /* kernel size of pointer. Not BPF's size of pointer*/ 6569 return sizeof(void *); 6570 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6571 return t->size; 6572 return -EINVAL; 6573 } 6574 6575 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6576 { 6577 u8 flags = 0; 6578 6579 if (__btf_type_is_struct(t)) 6580 flags |= BTF_FMODEL_STRUCT_ARG; 6581 if (btf_type_is_signed_int(t)) 6582 flags |= BTF_FMODEL_SIGNED_ARG; 6583 6584 return flags; 6585 } 6586 6587 int btf_distill_func_proto(struct bpf_verifier_log *log, 6588 struct btf *btf, 6589 const struct btf_type *func, 6590 const char *tname, 6591 struct btf_func_model *m) 6592 { 6593 const struct btf_param *args; 6594 const struct btf_type *t; 6595 u32 i, nargs; 6596 int ret; 6597 6598 if (!func) { 6599 /* BTF function prototype doesn't match the verifier types. 6600 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6601 */ 6602 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6603 m->arg_size[i] = 8; 6604 m->arg_flags[i] = 0; 6605 } 6606 m->ret_size = 8; 6607 m->ret_flags = 0; 6608 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6609 return 0; 6610 } 6611 args = (const struct btf_param *)(func + 1); 6612 nargs = btf_type_vlen(func); 6613 if (nargs > MAX_BPF_FUNC_ARGS) { 6614 bpf_log(log, 6615 "The function %s has %d arguments. Too many.\n", 6616 tname, nargs); 6617 return -EINVAL; 6618 } 6619 ret = __get_type_size(btf, func->type, &t); 6620 if (ret < 0 || __btf_type_is_struct(t)) { 6621 bpf_log(log, 6622 "The function %s return type %s is unsupported.\n", 6623 tname, btf_type_str(t)); 6624 return -EINVAL; 6625 } 6626 m->ret_size = ret; 6627 m->ret_flags = __get_type_fmodel_flags(t); 6628 6629 for (i = 0; i < nargs; i++) { 6630 if (i == nargs - 1 && args[i].type == 0) { 6631 bpf_log(log, 6632 "The function %s with variable args is unsupported.\n", 6633 tname); 6634 return -EINVAL; 6635 } 6636 ret = __get_type_size(btf, args[i].type, &t); 6637 6638 /* No support of struct argument size greater than 16 bytes */ 6639 if (ret < 0 || ret > 16) { 6640 bpf_log(log, 6641 "The function %s arg%d type %s is unsupported.\n", 6642 tname, i, btf_type_str(t)); 6643 return -EINVAL; 6644 } 6645 if (ret == 0) { 6646 bpf_log(log, 6647 "The function %s has malformed void argument.\n", 6648 tname); 6649 return -EINVAL; 6650 } 6651 m->arg_size[i] = ret; 6652 m->arg_flags[i] = __get_type_fmodel_flags(t); 6653 } 6654 m->nr_args = nargs; 6655 return 0; 6656 } 6657 6658 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6659 * t1 points to BTF_KIND_FUNC in btf1 6660 * t2 points to BTF_KIND_FUNC in btf2 6661 * Returns: 6662 * EINVAL - function prototype mismatch 6663 * EFAULT - verifier bug 6664 * 0 - 99% match. The last 1% is validated by the verifier. 6665 */ 6666 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6667 struct btf *btf1, const struct btf_type *t1, 6668 struct btf *btf2, const struct btf_type *t2) 6669 { 6670 const struct btf_param *args1, *args2; 6671 const char *fn1, *fn2, *s1, *s2; 6672 u32 nargs1, nargs2, i; 6673 6674 fn1 = btf_name_by_offset(btf1, t1->name_off); 6675 fn2 = btf_name_by_offset(btf2, t2->name_off); 6676 6677 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6678 bpf_log(log, "%s() is not a global function\n", fn1); 6679 return -EINVAL; 6680 } 6681 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6682 bpf_log(log, "%s() is not a global function\n", fn2); 6683 return -EINVAL; 6684 } 6685 6686 t1 = btf_type_by_id(btf1, t1->type); 6687 if (!t1 || !btf_type_is_func_proto(t1)) 6688 return -EFAULT; 6689 t2 = btf_type_by_id(btf2, t2->type); 6690 if (!t2 || !btf_type_is_func_proto(t2)) 6691 return -EFAULT; 6692 6693 args1 = (const struct btf_param *)(t1 + 1); 6694 nargs1 = btf_type_vlen(t1); 6695 args2 = (const struct btf_param *)(t2 + 1); 6696 nargs2 = btf_type_vlen(t2); 6697 6698 if (nargs1 != nargs2) { 6699 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6700 fn1, nargs1, fn2, nargs2); 6701 return -EINVAL; 6702 } 6703 6704 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6705 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6706 if (t1->info != t2->info) { 6707 bpf_log(log, 6708 "Return type %s of %s() doesn't match type %s of %s()\n", 6709 btf_type_str(t1), fn1, 6710 btf_type_str(t2), fn2); 6711 return -EINVAL; 6712 } 6713 6714 for (i = 0; i < nargs1; i++) { 6715 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6716 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6717 6718 if (t1->info != t2->info) { 6719 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6720 i, fn1, btf_type_str(t1), 6721 fn2, btf_type_str(t2)); 6722 return -EINVAL; 6723 } 6724 if (btf_type_has_size(t1) && t1->size != t2->size) { 6725 bpf_log(log, 6726 "arg%d in %s() has size %d while %s() has %d\n", 6727 i, fn1, t1->size, 6728 fn2, t2->size); 6729 return -EINVAL; 6730 } 6731 6732 /* global functions are validated with scalars and pointers 6733 * to context only. And only global functions can be replaced. 6734 * Hence type check only those types. 6735 */ 6736 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6737 continue; 6738 if (!btf_type_is_ptr(t1)) { 6739 bpf_log(log, 6740 "arg%d in %s() has unrecognized type\n", 6741 i, fn1); 6742 return -EINVAL; 6743 } 6744 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6745 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6746 if (!btf_type_is_struct(t1)) { 6747 bpf_log(log, 6748 "arg%d in %s() is not a pointer to context\n", 6749 i, fn1); 6750 return -EINVAL; 6751 } 6752 if (!btf_type_is_struct(t2)) { 6753 bpf_log(log, 6754 "arg%d in %s() is not a pointer to context\n", 6755 i, fn2); 6756 return -EINVAL; 6757 } 6758 /* This is an optional check to make program writing easier. 6759 * Compare names of structs and report an error to the user. 6760 * btf_prepare_func_args() already checked that t2 struct 6761 * is a context type. btf_prepare_func_args() will check 6762 * later that t1 struct is a context type as well. 6763 */ 6764 s1 = btf_name_by_offset(btf1, t1->name_off); 6765 s2 = btf_name_by_offset(btf2, t2->name_off); 6766 if (strcmp(s1, s2)) { 6767 bpf_log(log, 6768 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6769 i, fn1, s1, fn2, s2); 6770 return -EINVAL; 6771 } 6772 } 6773 return 0; 6774 } 6775 6776 /* Compare BTFs of given program with BTF of target program */ 6777 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6778 struct btf *btf2, const struct btf_type *t2) 6779 { 6780 struct btf *btf1 = prog->aux->btf; 6781 const struct btf_type *t1; 6782 u32 btf_id = 0; 6783 6784 if (!prog->aux->func_info) { 6785 bpf_log(log, "Program extension requires BTF\n"); 6786 return -EINVAL; 6787 } 6788 6789 btf_id = prog->aux->func_info[0].type_id; 6790 if (!btf_id) 6791 return -EFAULT; 6792 6793 t1 = btf_type_by_id(btf1, btf_id); 6794 if (!t1 || !btf_type_is_func(t1)) 6795 return -EFAULT; 6796 6797 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6798 } 6799 6800 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6801 const struct btf *btf, u32 func_id, 6802 struct bpf_reg_state *regs, 6803 bool ptr_to_mem_ok, 6804 bool processing_call) 6805 { 6806 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6807 struct bpf_verifier_log *log = &env->log; 6808 const char *func_name, *ref_tname; 6809 const struct btf_type *t, *ref_t; 6810 const struct btf_param *args; 6811 u32 i, nargs, ref_id; 6812 int ret; 6813 6814 t = btf_type_by_id(btf, func_id); 6815 if (!t || !btf_type_is_func(t)) { 6816 /* These checks were already done by the verifier while loading 6817 * struct bpf_func_info or in add_kfunc_call(). 6818 */ 6819 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6820 func_id); 6821 return -EFAULT; 6822 } 6823 func_name = btf_name_by_offset(btf, t->name_off); 6824 6825 t = btf_type_by_id(btf, t->type); 6826 if (!t || !btf_type_is_func_proto(t)) { 6827 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6828 return -EFAULT; 6829 } 6830 args = (const struct btf_param *)(t + 1); 6831 nargs = btf_type_vlen(t); 6832 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6833 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6834 MAX_BPF_FUNC_REG_ARGS); 6835 return -EINVAL; 6836 } 6837 6838 /* check that BTF function arguments match actual types that the 6839 * verifier sees. 6840 */ 6841 for (i = 0; i < nargs; i++) { 6842 enum bpf_arg_type arg_type = ARG_DONTCARE; 6843 u32 regno = i + 1; 6844 struct bpf_reg_state *reg = ®s[regno]; 6845 6846 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6847 if (btf_type_is_scalar(t)) { 6848 if (reg->type == SCALAR_VALUE) 6849 continue; 6850 bpf_log(log, "R%d is not a scalar\n", regno); 6851 return -EINVAL; 6852 } 6853 6854 if (!btf_type_is_ptr(t)) { 6855 bpf_log(log, "Unrecognized arg#%d type %s\n", 6856 i, btf_type_str(t)); 6857 return -EINVAL; 6858 } 6859 6860 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6861 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6862 6863 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6864 if (ret < 0) 6865 return ret; 6866 6867 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6868 /* If function expects ctx type in BTF check that caller 6869 * is passing PTR_TO_CTX. 6870 */ 6871 if (reg->type != PTR_TO_CTX) { 6872 bpf_log(log, 6873 "arg#%d expected pointer to ctx, but got %s\n", 6874 i, btf_type_str(t)); 6875 return -EINVAL; 6876 } 6877 } else if (ptr_to_mem_ok && processing_call) { 6878 const struct btf_type *resolve_ret; 6879 u32 type_size; 6880 6881 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6882 if (IS_ERR(resolve_ret)) { 6883 bpf_log(log, 6884 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6885 i, btf_type_str(ref_t), ref_tname, 6886 PTR_ERR(resolve_ret)); 6887 return -EINVAL; 6888 } 6889 6890 if (check_mem_reg(env, reg, regno, type_size)) 6891 return -EINVAL; 6892 } else { 6893 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6894 func_name, func_id); 6895 return -EINVAL; 6896 } 6897 } 6898 6899 return 0; 6900 } 6901 6902 /* Compare BTF of a function declaration with given bpf_reg_state. 6903 * Returns: 6904 * EFAULT - there is a verifier bug. Abort verification. 6905 * EINVAL - there is a type mismatch or BTF is not available. 6906 * 0 - BTF matches with what bpf_reg_state expects. 6907 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6908 */ 6909 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6910 struct bpf_reg_state *regs) 6911 { 6912 struct bpf_prog *prog = env->prog; 6913 struct btf *btf = prog->aux->btf; 6914 bool is_global; 6915 u32 btf_id; 6916 int err; 6917 6918 if (!prog->aux->func_info) 6919 return -EINVAL; 6920 6921 btf_id = prog->aux->func_info[subprog].type_id; 6922 if (!btf_id) 6923 return -EFAULT; 6924 6925 if (prog->aux->func_info_aux[subprog].unreliable) 6926 return -EINVAL; 6927 6928 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6929 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6930 6931 /* Compiler optimizations can remove arguments from static functions 6932 * or mismatched type can be passed into a global function. 6933 * In such cases mark the function as unreliable from BTF point of view. 6934 */ 6935 if (err) 6936 prog->aux->func_info_aux[subprog].unreliable = true; 6937 return err; 6938 } 6939 6940 /* Compare BTF of a function call with given bpf_reg_state. 6941 * Returns: 6942 * EFAULT - there is a verifier bug. Abort verification. 6943 * EINVAL - there is a type mismatch or BTF is not available. 6944 * 0 - BTF matches with what bpf_reg_state expects. 6945 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6946 * 6947 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6948 * because btf_check_func_arg_match() is still doing both. Once that 6949 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6950 * first, and then treat the calling part in a new code path. 6951 */ 6952 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6953 struct bpf_reg_state *regs) 6954 { 6955 struct bpf_prog *prog = env->prog; 6956 struct btf *btf = prog->aux->btf; 6957 bool is_global; 6958 u32 btf_id; 6959 int err; 6960 6961 if (!prog->aux->func_info) 6962 return -EINVAL; 6963 6964 btf_id = prog->aux->func_info[subprog].type_id; 6965 if (!btf_id) 6966 return -EFAULT; 6967 6968 if (prog->aux->func_info_aux[subprog].unreliable) 6969 return -EINVAL; 6970 6971 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6972 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6973 6974 /* Compiler optimizations can remove arguments from static functions 6975 * or mismatched type can be passed into a global function. 6976 * In such cases mark the function as unreliable from BTF point of view. 6977 */ 6978 if (err) 6979 prog->aux->func_info_aux[subprog].unreliable = true; 6980 return err; 6981 } 6982 6983 /* Convert BTF of a function into bpf_reg_state if possible 6984 * Returns: 6985 * EFAULT - there is a verifier bug. Abort verification. 6986 * EINVAL - cannot convert BTF. 6987 * 0 - Successfully converted BTF into bpf_reg_state 6988 * (either PTR_TO_CTX or SCALAR_VALUE). 6989 */ 6990 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6991 struct bpf_reg_state *regs) 6992 { 6993 struct bpf_verifier_log *log = &env->log; 6994 struct bpf_prog *prog = env->prog; 6995 enum bpf_prog_type prog_type = prog->type; 6996 struct btf *btf = prog->aux->btf; 6997 const struct btf_param *args; 6998 const struct btf_type *t, *ref_t; 6999 u32 i, nargs, btf_id; 7000 const char *tname; 7001 7002 if (!prog->aux->func_info || 7003 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 7004 bpf_log(log, "Verifier bug\n"); 7005 return -EFAULT; 7006 } 7007 7008 btf_id = prog->aux->func_info[subprog].type_id; 7009 if (!btf_id) { 7010 bpf_log(log, "Global functions need valid BTF\n"); 7011 return -EFAULT; 7012 } 7013 7014 t = btf_type_by_id(btf, btf_id); 7015 if (!t || !btf_type_is_func(t)) { 7016 /* These checks were already done by the verifier while loading 7017 * struct bpf_func_info 7018 */ 7019 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7020 subprog); 7021 return -EFAULT; 7022 } 7023 tname = btf_name_by_offset(btf, t->name_off); 7024 7025 if (log->level & BPF_LOG_LEVEL) 7026 bpf_log(log, "Validating %s() func#%d...\n", 7027 tname, subprog); 7028 7029 if (prog->aux->func_info_aux[subprog].unreliable) { 7030 bpf_log(log, "Verifier bug in function %s()\n", tname); 7031 return -EFAULT; 7032 } 7033 if (prog_type == BPF_PROG_TYPE_EXT) 7034 prog_type = prog->aux->dst_prog->type; 7035 7036 t = btf_type_by_id(btf, t->type); 7037 if (!t || !btf_type_is_func_proto(t)) { 7038 bpf_log(log, "Invalid type of function %s()\n", tname); 7039 return -EFAULT; 7040 } 7041 args = (const struct btf_param *)(t + 1); 7042 nargs = btf_type_vlen(t); 7043 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7044 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7045 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7046 return -EINVAL; 7047 } 7048 /* check that function returns int */ 7049 t = btf_type_by_id(btf, t->type); 7050 while (btf_type_is_modifier(t)) 7051 t = btf_type_by_id(btf, t->type); 7052 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7053 bpf_log(log, 7054 "Global function %s() doesn't return scalar. Only those are supported.\n", 7055 tname); 7056 return -EINVAL; 7057 } 7058 /* Convert BTF function arguments into verifier types. 7059 * Only PTR_TO_CTX and SCALAR are supported atm. 7060 */ 7061 for (i = 0; i < nargs; i++) { 7062 struct bpf_reg_state *reg = ®s[i + 1]; 7063 7064 t = btf_type_by_id(btf, args[i].type); 7065 while (btf_type_is_modifier(t)) 7066 t = btf_type_by_id(btf, t->type); 7067 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7068 reg->type = SCALAR_VALUE; 7069 continue; 7070 } 7071 if (btf_type_is_ptr(t)) { 7072 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 7073 reg->type = PTR_TO_CTX; 7074 continue; 7075 } 7076 7077 t = btf_type_skip_modifiers(btf, t->type, NULL); 7078 7079 ref_t = btf_resolve_size(btf, t, ®->mem_size); 7080 if (IS_ERR(ref_t)) { 7081 bpf_log(log, 7082 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7083 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7084 PTR_ERR(ref_t)); 7085 return -EINVAL; 7086 } 7087 7088 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 7089 reg->id = ++env->id_gen; 7090 7091 continue; 7092 } 7093 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7094 i, btf_type_str(t), tname); 7095 return -EINVAL; 7096 } 7097 return 0; 7098 } 7099 7100 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7101 struct btf_show *show) 7102 { 7103 const struct btf_type *t = btf_type_by_id(btf, type_id); 7104 7105 show->btf = btf; 7106 memset(&show->state, 0, sizeof(show->state)); 7107 memset(&show->obj, 0, sizeof(show->obj)); 7108 7109 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7110 } 7111 7112 static void btf_seq_show(struct btf_show *show, const char *fmt, 7113 va_list args) 7114 { 7115 seq_vprintf((struct seq_file *)show->target, fmt, args); 7116 } 7117 7118 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7119 void *obj, struct seq_file *m, u64 flags) 7120 { 7121 struct btf_show sseq; 7122 7123 sseq.target = m; 7124 sseq.showfn = btf_seq_show; 7125 sseq.flags = flags; 7126 7127 btf_type_show(btf, type_id, obj, &sseq); 7128 7129 return sseq.state.status; 7130 } 7131 7132 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7133 struct seq_file *m) 7134 { 7135 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7136 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7137 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7138 } 7139 7140 struct btf_show_snprintf { 7141 struct btf_show show; 7142 int len_left; /* space left in string */ 7143 int len; /* length we would have written */ 7144 }; 7145 7146 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7147 va_list args) 7148 { 7149 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7150 int len; 7151 7152 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7153 7154 if (len < 0) { 7155 ssnprintf->len_left = 0; 7156 ssnprintf->len = len; 7157 } else if (len >= ssnprintf->len_left) { 7158 /* no space, drive on to get length we would have written */ 7159 ssnprintf->len_left = 0; 7160 ssnprintf->len += len; 7161 } else { 7162 ssnprintf->len_left -= len; 7163 ssnprintf->len += len; 7164 show->target += len; 7165 } 7166 } 7167 7168 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7169 char *buf, int len, u64 flags) 7170 { 7171 struct btf_show_snprintf ssnprintf; 7172 7173 ssnprintf.show.target = buf; 7174 ssnprintf.show.flags = flags; 7175 ssnprintf.show.showfn = btf_snprintf_show; 7176 ssnprintf.len_left = len; 7177 ssnprintf.len = 0; 7178 7179 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7180 7181 /* If we encountered an error, return it. */ 7182 if (ssnprintf.show.state.status) 7183 return ssnprintf.show.state.status; 7184 7185 /* Otherwise return length we would have written */ 7186 return ssnprintf.len; 7187 } 7188 7189 #ifdef CONFIG_PROC_FS 7190 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7191 { 7192 const struct btf *btf = filp->private_data; 7193 7194 seq_printf(m, "btf_id:\t%u\n", btf->id); 7195 } 7196 #endif 7197 7198 static int btf_release(struct inode *inode, struct file *filp) 7199 { 7200 btf_put(filp->private_data); 7201 return 0; 7202 } 7203 7204 const struct file_operations btf_fops = { 7205 #ifdef CONFIG_PROC_FS 7206 .show_fdinfo = bpf_btf_show_fdinfo, 7207 #endif 7208 .release = btf_release, 7209 }; 7210 7211 static int __btf_new_fd(struct btf *btf) 7212 { 7213 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7214 } 7215 7216 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 7217 { 7218 struct btf *btf; 7219 int ret; 7220 7221 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 7222 attr->btf_size, attr->btf_log_level, 7223 u64_to_user_ptr(attr->btf_log_buf), 7224 attr->btf_log_size); 7225 if (IS_ERR(btf)) 7226 return PTR_ERR(btf); 7227 7228 ret = btf_alloc_id(btf); 7229 if (ret) { 7230 btf_free(btf); 7231 return ret; 7232 } 7233 7234 /* 7235 * The BTF ID is published to the userspace. 7236 * All BTF free must go through call_rcu() from 7237 * now on (i.e. free by calling btf_put()). 7238 */ 7239 7240 ret = __btf_new_fd(btf); 7241 if (ret < 0) 7242 btf_put(btf); 7243 7244 return ret; 7245 } 7246 7247 struct btf *btf_get_by_fd(int fd) 7248 { 7249 struct btf *btf; 7250 struct fd f; 7251 7252 f = fdget(fd); 7253 7254 if (!f.file) 7255 return ERR_PTR(-EBADF); 7256 7257 if (f.file->f_op != &btf_fops) { 7258 fdput(f); 7259 return ERR_PTR(-EINVAL); 7260 } 7261 7262 btf = f.file->private_data; 7263 refcount_inc(&btf->refcnt); 7264 fdput(f); 7265 7266 return btf; 7267 } 7268 7269 int btf_get_info_by_fd(const struct btf *btf, 7270 const union bpf_attr *attr, 7271 union bpf_attr __user *uattr) 7272 { 7273 struct bpf_btf_info __user *uinfo; 7274 struct bpf_btf_info info; 7275 u32 info_copy, btf_copy; 7276 void __user *ubtf; 7277 char __user *uname; 7278 u32 uinfo_len, uname_len, name_len; 7279 int ret = 0; 7280 7281 uinfo = u64_to_user_ptr(attr->info.info); 7282 uinfo_len = attr->info.info_len; 7283 7284 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7285 memset(&info, 0, sizeof(info)); 7286 if (copy_from_user(&info, uinfo, info_copy)) 7287 return -EFAULT; 7288 7289 info.id = btf->id; 7290 ubtf = u64_to_user_ptr(info.btf); 7291 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7292 if (copy_to_user(ubtf, btf->data, btf_copy)) 7293 return -EFAULT; 7294 info.btf_size = btf->data_size; 7295 7296 info.kernel_btf = btf->kernel_btf; 7297 7298 uname = u64_to_user_ptr(info.name); 7299 uname_len = info.name_len; 7300 if (!uname ^ !uname_len) 7301 return -EINVAL; 7302 7303 name_len = strlen(btf->name); 7304 info.name_len = name_len; 7305 7306 if (uname) { 7307 if (uname_len >= name_len + 1) { 7308 if (copy_to_user(uname, btf->name, name_len + 1)) 7309 return -EFAULT; 7310 } else { 7311 char zero = '\0'; 7312 7313 if (copy_to_user(uname, btf->name, uname_len - 1)) 7314 return -EFAULT; 7315 if (put_user(zero, uname + uname_len - 1)) 7316 return -EFAULT; 7317 /* let user-space know about too short buffer */ 7318 ret = -ENOSPC; 7319 } 7320 } 7321 7322 if (copy_to_user(uinfo, &info, info_copy) || 7323 put_user(info_copy, &uattr->info.info_len)) 7324 return -EFAULT; 7325 7326 return ret; 7327 } 7328 7329 int btf_get_fd_by_id(u32 id) 7330 { 7331 struct btf *btf; 7332 int fd; 7333 7334 rcu_read_lock(); 7335 btf = idr_find(&btf_idr, id); 7336 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7337 btf = ERR_PTR(-ENOENT); 7338 rcu_read_unlock(); 7339 7340 if (IS_ERR(btf)) 7341 return PTR_ERR(btf); 7342 7343 fd = __btf_new_fd(btf); 7344 if (fd < 0) 7345 btf_put(btf); 7346 7347 return fd; 7348 } 7349 7350 u32 btf_obj_id(const struct btf *btf) 7351 { 7352 return btf->id; 7353 } 7354 7355 bool btf_is_kernel(const struct btf *btf) 7356 { 7357 return btf->kernel_btf; 7358 } 7359 7360 bool btf_is_module(const struct btf *btf) 7361 { 7362 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7363 } 7364 7365 enum { 7366 BTF_MODULE_F_LIVE = (1 << 0), 7367 }; 7368 7369 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7370 struct btf_module { 7371 struct list_head list; 7372 struct module *module; 7373 struct btf *btf; 7374 struct bin_attribute *sysfs_attr; 7375 int flags; 7376 }; 7377 7378 static LIST_HEAD(btf_modules); 7379 static DEFINE_MUTEX(btf_module_mutex); 7380 7381 static ssize_t 7382 btf_module_read(struct file *file, struct kobject *kobj, 7383 struct bin_attribute *bin_attr, 7384 char *buf, loff_t off, size_t len) 7385 { 7386 const struct btf *btf = bin_attr->private; 7387 7388 memcpy(buf, btf->data + off, len); 7389 return len; 7390 } 7391 7392 static void purge_cand_cache(struct btf *btf); 7393 7394 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7395 void *module) 7396 { 7397 struct btf_module *btf_mod, *tmp; 7398 struct module *mod = module; 7399 struct btf *btf; 7400 int err = 0; 7401 7402 if (mod->btf_data_size == 0 || 7403 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7404 op != MODULE_STATE_GOING)) 7405 goto out; 7406 7407 switch (op) { 7408 case MODULE_STATE_COMING: 7409 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7410 if (!btf_mod) { 7411 err = -ENOMEM; 7412 goto out; 7413 } 7414 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7415 if (IS_ERR(btf)) { 7416 kfree(btf_mod); 7417 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7418 pr_warn("failed to validate module [%s] BTF: %ld\n", 7419 mod->name, PTR_ERR(btf)); 7420 err = PTR_ERR(btf); 7421 } else { 7422 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7423 } 7424 goto out; 7425 } 7426 err = btf_alloc_id(btf); 7427 if (err) { 7428 btf_free(btf); 7429 kfree(btf_mod); 7430 goto out; 7431 } 7432 7433 purge_cand_cache(NULL); 7434 mutex_lock(&btf_module_mutex); 7435 btf_mod->module = module; 7436 btf_mod->btf = btf; 7437 list_add(&btf_mod->list, &btf_modules); 7438 mutex_unlock(&btf_module_mutex); 7439 7440 if (IS_ENABLED(CONFIG_SYSFS)) { 7441 struct bin_attribute *attr; 7442 7443 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7444 if (!attr) 7445 goto out; 7446 7447 sysfs_bin_attr_init(attr); 7448 attr->attr.name = btf->name; 7449 attr->attr.mode = 0444; 7450 attr->size = btf->data_size; 7451 attr->private = btf; 7452 attr->read = btf_module_read; 7453 7454 err = sysfs_create_bin_file(btf_kobj, attr); 7455 if (err) { 7456 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7457 mod->name, err); 7458 kfree(attr); 7459 err = 0; 7460 goto out; 7461 } 7462 7463 btf_mod->sysfs_attr = attr; 7464 } 7465 7466 break; 7467 case MODULE_STATE_LIVE: 7468 mutex_lock(&btf_module_mutex); 7469 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7470 if (btf_mod->module != module) 7471 continue; 7472 7473 btf_mod->flags |= BTF_MODULE_F_LIVE; 7474 break; 7475 } 7476 mutex_unlock(&btf_module_mutex); 7477 break; 7478 case MODULE_STATE_GOING: 7479 mutex_lock(&btf_module_mutex); 7480 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7481 if (btf_mod->module != module) 7482 continue; 7483 7484 list_del(&btf_mod->list); 7485 if (btf_mod->sysfs_attr) 7486 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7487 purge_cand_cache(btf_mod->btf); 7488 btf_put(btf_mod->btf); 7489 kfree(btf_mod->sysfs_attr); 7490 kfree(btf_mod); 7491 break; 7492 } 7493 mutex_unlock(&btf_module_mutex); 7494 break; 7495 } 7496 out: 7497 return notifier_from_errno(err); 7498 } 7499 7500 static struct notifier_block btf_module_nb = { 7501 .notifier_call = btf_module_notify, 7502 }; 7503 7504 static int __init btf_module_init(void) 7505 { 7506 register_module_notifier(&btf_module_nb); 7507 return 0; 7508 } 7509 7510 fs_initcall(btf_module_init); 7511 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7512 7513 struct module *btf_try_get_module(const struct btf *btf) 7514 { 7515 struct module *res = NULL; 7516 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7517 struct btf_module *btf_mod, *tmp; 7518 7519 mutex_lock(&btf_module_mutex); 7520 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7521 if (btf_mod->btf != btf) 7522 continue; 7523 7524 /* We must only consider module whose __init routine has 7525 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7526 * which is set from the notifier callback for 7527 * MODULE_STATE_LIVE. 7528 */ 7529 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7530 res = btf_mod->module; 7531 7532 break; 7533 } 7534 mutex_unlock(&btf_module_mutex); 7535 #endif 7536 7537 return res; 7538 } 7539 7540 /* Returns struct btf corresponding to the struct module. 7541 * This function can return NULL or ERR_PTR. 7542 */ 7543 static struct btf *btf_get_module_btf(const struct module *module) 7544 { 7545 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7546 struct btf_module *btf_mod, *tmp; 7547 #endif 7548 struct btf *btf = NULL; 7549 7550 if (!module) { 7551 btf = bpf_get_btf_vmlinux(); 7552 if (!IS_ERR_OR_NULL(btf)) 7553 btf_get(btf); 7554 return btf; 7555 } 7556 7557 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7558 mutex_lock(&btf_module_mutex); 7559 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7560 if (btf_mod->module != module) 7561 continue; 7562 7563 btf_get(btf_mod->btf); 7564 btf = btf_mod->btf; 7565 break; 7566 } 7567 mutex_unlock(&btf_module_mutex); 7568 #endif 7569 7570 return btf; 7571 } 7572 7573 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7574 { 7575 struct btf *btf = NULL; 7576 int btf_obj_fd = 0; 7577 long ret; 7578 7579 if (flags) 7580 return -EINVAL; 7581 7582 if (name_sz <= 1 || name[name_sz - 1]) 7583 return -EINVAL; 7584 7585 ret = bpf_find_btf_id(name, kind, &btf); 7586 if (ret > 0 && btf_is_module(btf)) { 7587 btf_obj_fd = __btf_new_fd(btf); 7588 if (btf_obj_fd < 0) { 7589 btf_put(btf); 7590 return btf_obj_fd; 7591 } 7592 return ret | (((u64)btf_obj_fd) << 32); 7593 } 7594 if (ret > 0) 7595 btf_put(btf); 7596 return ret; 7597 } 7598 7599 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7600 .func = bpf_btf_find_by_name_kind, 7601 .gpl_only = false, 7602 .ret_type = RET_INTEGER, 7603 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7604 .arg2_type = ARG_CONST_SIZE, 7605 .arg3_type = ARG_ANYTHING, 7606 .arg4_type = ARG_ANYTHING, 7607 }; 7608 7609 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7610 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7611 BTF_TRACING_TYPE_xxx 7612 #undef BTF_TRACING_TYPE 7613 7614 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7615 const struct btf_type *func, u32 func_flags) 7616 { 7617 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7618 const char *name, *sfx, *iter_name; 7619 const struct btf_param *arg; 7620 const struct btf_type *t; 7621 char exp_name[128]; 7622 u32 nr_args; 7623 7624 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7625 if (!flags || (flags & (flags - 1))) 7626 return -EINVAL; 7627 7628 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7629 nr_args = btf_type_vlen(func); 7630 if (nr_args < 1) 7631 return -EINVAL; 7632 7633 arg = &btf_params(func)[0]; 7634 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7635 if (!t || !btf_type_is_ptr(t)) 7636 return -EINVAL; 7637 t = btf_type_skip_modifiers(btf, t->type, NULL); 7638 if (!t || !__btf_type_is_struct(t)) 7639 return -EINVAL; 7640 7641 name = btf_name_by_offset(btf, t->name_off); 7642 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 7643 return -EINVAL; 7644 7645 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 7646 * fit nicely in stack slots 7647 */ 7648 if (t->size == 0 || (t->size % 8)) 7649 return -EINVAL; 7650 7651 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 7652 * naming pattern 7653 */ 7654 iter_name = name + sizeof(ITER_PREFIX) - 1; 7655 if (flags & KF_ITER_NEW) 7656 sfx = "new"; 7657 else if (flags & KF_ITER_NEXT) 7658 sfx = "next"; 7659 else /* (flags & KF_ITER_DESTROY) */ 7660 sfx = "destroy"; 7661 7662 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 7663 if (strcmp(func_name, exp_name)) 7664 return -EINVAL; 7665 7666 /* only iter constructor should have extra arguments */ 7667 if (!(flags & KF_ITER_NEW) && nr_args != 1) 7668 return -EINVAL; 7669 7670 if (flags & KF_ITER_NEXT) { 7671 /* bpf_iter_<type>_next() should return pointer */ 7672 t = btf_type_skip_modifiers(btf, func->type, NULL); 7673 if (!t || !btf_type_is_ptr(t)) 7674 return -EINVAL; 7675 } 7676 7677 if (flags & KF_ITER_DESTROY) { 7678 /* bpf_iter_<type>_destroy() should return void */ 7679 t = btf_type_by_id(btf, func->type); 7680 if (!t || !btf_type_is_void(t)) 7681 return -EINVAL; 7682 } 7683 7684 return 0; 7685 } 7686 7687 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 7688 { 7689 const struct btf_type *func; 7690 const char *func_name; 7691 int err; 7692 7693 /* any kfunc should be FUNC -> FUNC_PROTO */ 7694 func = btf_type_by_id(btf, func_id); 7695 if (!func || !btf_type_is_func(func)) 7696 return -EINVAL; 7697 7698 /* sanity check kfunc name */ 7699 func_name = btf_name_by_offset(btf, func->name_off); 7700 if (!func_name || !func_name[0]) 7701 return -EINVAL; 7702 7703 func = btf_type_by_id(btf, func->type); 7704 if (!func || !btf_type_is_func_proto(func)) 7705 return -EINVAL; 7706 7707 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 7708 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 7709 if (err) 7710 return err; 7711 } 7712 7713 return 0; 7714 } 7715 7716 /* Kernel Function (kfunc) BTF ID set registration API */ 7717 7718 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7719 struct btf_id_set8 *add_set) 7720 { 7721 bool vmlinux_set = !btf_is_module(btf); 7722 struct btf_kfunc_set_tab *tab; 7723 struct btf_id_set8 *set; 7724 u32 set_cnt; 7725 int ret; 7726 7727 if (hook >= BTF_KFUNC_HOOK_MAX) { 7728 ret = -EINVAL; 7729 goto end; 7730 } 7731 7732 if (!add_set->cnt) 7733 return 0; 7734 7735 tab = btf->kfunc_set_tab; 7736 if (!tab) { 7737 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7738 if (!tab) 7739 return -ENOMEM; 7740 btf->kfunc_set_tab = tab; 7741 } 7742 7743 set = tab->sets[hook]; 7744 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7745 * for module sets. 7746 */ 7747 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7748 ret = -EINVAL; 7749 goto end; 7750 } 7751 7752 /* We don't need to allocate, concatenate, and sort module sets, because 7753 * only one is allowed per hook. Hence, we can directly assign the 7754 * pointer and return. 7755 */ 7756 if (!vmlinux_set) { 7757 tab->sets[hook] = add_set; 7758 return 0; 7759 } 7760 7761 /* In case of vmlinux sets, there may be more than one set being 7762 * registered per hook. To create a unified set, we allocate a new set 7763 * and concatenate all individual sets being registered. While each set 7764 * is individually sorted, they may become unsorted when concatenated, 7765 * hence re-sorting the final set again is required to make binary 7766 * searching the set using btf_id_set8_contains function work. 7767 */ 7768 set_cnt = set ? set->cnt : 0; 7769 7770 if (set_cnt > U32_MAX - add_set->cnt) { 7771 ret = -EOVERFLOW; 7772 goto end; 7773 } 7774 7775 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7776 ret = -E2BIG; 7777 goto end; 7778 } 7779 7780 /* Grow set */ 7781 set = krealloc(tab->sets[hook], 7782 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7783 GFP_KERNEL | __GFP_NOWARN); 7784 if (!set) { 7785 ret = -ENOMEM; 7786 goto end; 7787 } 7788 7789 /* For newly allocated set, initialize set->cnt to 0 */ 7790 if (!tab->sets[hook]) 7791 set->cnt = 0; 7792 tab->sets[hook] = set; 7793 7794 /* Concatenate the two sets */ 7795 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7796 set->cnt += add_set->cnt; 7797 7798 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7799 7800 return 0; 7801 end: 7802 btf_free_kfunc_set_tab(btf); 7803 return ret; 7804 } 7805 7806 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7807 enum btf_kfunc_hook hook, 7808 u32 kfunc_btf_id) 7809 { 7810 struct btf_id_set8 *set; 7811 u32 *id; 7812 7813 if (hook >= BTF_KFUNC_HOOK_MAX) 7814 return NULL; 7815 if (!btf->kfunc_set_tab) 7816 return NULL; 7817 set = btf->kfunc_set_tab->sets[hook]; 7818 if (!set) 7819 return NULL; 7820 id = btf_id_set8_contains(set, kfunc_btf_id); 7821 if (!id) 7822 return NULL; 7823 /* The flags for BTF ID are located next to it */ 7824 return id + 1; 7825 } 7826 7827 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7828 { 7829 switch (prog_type) { 7830 case BPF_PROG_TYPE_UNSPEC: 7831 return BTF_KFUNC_HOOK_COMMON; 7832 case BPF_PROG_TYPE_XDP: 7833 return BTF_KFUNC_HOOK_XDP; 7834 case BPF_PROG_TYPE_SCHED_CLS: 7835 return BTF_KFUNC_HOOK_TC; 7836 case BPF_PROG_TYPE_STRUCT_OPS: 7837 return BTF_KFUNC_HOOK_STRUCT_OPS; 7838 case BPF_PROG_TYPE_TRACING: 7839 case BPF_PROG_TYPE_LSM: 7840 return BTF_KFUNC_HOOK_TRACING; 7841 case BPF_PROG_TYPE_SYSCALL: 7842 return BTF_KFUNC_HOOK_SYSCALL; 7843 case BPF_PROG_TYPE_CGROUP_SKB: 7844 return BTF_KFUNC_HOOK_CGROUP_SKB; 7845 case BPF_PROG_TYPE_SCHED_ACT: 7846 return BTF_KFUNC_HOOK_SCHED_ACT; 7847 case BPF_PROG_TYPE_SK_SKB: 7848 return BTF_KFUNC_HOOK_SK_SKB; 7849 case BPF_PROG_TYPE_SOCKET_FILTER: 7850 return BTF_KFUNC_HOOK_SOCKET_FILTER; 7851 case BPF_PROG_TYPE_LWT_OUT: 7852 case BPF_PROG_TYPE_LWT_IN: 7853 case BPF_PROG_TYPE_LWT_XMIT: 7854 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 7855 return BTF_KFUNC_HOOK_LWT; 7856 default: 7857 return BTF_KFUNC_HOOK_MAX; 7858 } 7859 } 7860 7861 /* Caution: 7862 * Reference to the module (obtained using btf_try_get_module) corresponding to 7863 * the struct btf *MUST* be held when calling this function from verifier 7864 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7865 * keeping the reference for the duration of the call provides the necessary 7866 * protection for looking up a well-formed btf->kfunc_set_tab. 7867 */ 7868 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7869 enum bpf_prog_type prog_type, 7870 u32 kfunc_btf_id) 7871 { 7872 enum btf_kfunc_hook hook; 7873 u32 *kfunc_flags; 7874 7875 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id); 7876 if (kfunc_flags) 7877 return kfunc_flags; 7878 7879 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7880 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7881 } 7882 7883 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id) 7884 { 7885 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id); 7886 } 7887 7888 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7889 const struct btf_kfunc_id_set *kset) 7890 { 7891 struct btf *btf; 7892 int ret, i; 7893 7894 btf = btf_get_module_btf(kset->owner); 7895 if (!btf) { 7896 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7897 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7898 return -ENOENT; 7899 } 7900 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7901 pr_err("missing module BTF, cannot register kfuncs\n"); 7902 return -ENOENT; 7903 } 7904 return 0; 7905 } 7906 if (IS_ERR(btf)) 7907 return PTR_ERR(btf); 7908 7909 for (i = 0; i < kset->set->cnt; i++) { 7910 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 7911 kset->set->pairs[i].flags); 7912 if (ret) 7913 goto err_out; 7914 } 7915 7916 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7917 err_out: 7918 btf_put(btf); 7919 return ret; 7920 } 7921 7922 /* This function must be invoked only from initcalls/module init functions */ 7923 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7924 const struct btf_kfunc_id_set *kset) 7925 { 7926 enum btf_kfunc_hook hook; 7927 7928 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7929 return __register_btf_kfunc_id_set(hook, kset); 7930 } 7931 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7932 7933 /* This function must be invoked only from initcalls/module init functions */ 7934 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7935 { 7936 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7937 } 7938 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7939 7940 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7941 { 7942 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7943 struct btf_id_dtor_kfunc *dtor; 7944 7945 if (!tab) 7946 return -ENOENT; 7947 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7948 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7949 */ 7950 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7951 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7952 if (!dtor) 7953 return -ENOENT; 7954 return dtor->kfunc_btf_id; 7955 } 7956 7957 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7958 { 7959 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7960 const struct btf_param *args; 7961 s32 dtor_btf_id; 7962 u32 nr_args, i; 7963 7964 for (i = 0; i < cnt; i++) { 7965 dtor_btf_id = dtors[i].kfunc_btf_id; 7966 7967 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7968 if (!dtor_func || !btf_type_is_func(dtor_func)) 7969 return -EINVAL; 7970 7971 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7972 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7973 return -EINVAL; 7974 7975 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7976 t = btf_type_by_id(btf, dtor_func_proto->type); 7977 if (!t || !btf_type_is_void(t)) 7978 return -EINVAL; 7979 7980 nr_args = btf_type_vlen(dtor_func_proto); 7981 if (nr_args != 1) 7982 return -EINVAL; 7983 args = btf_params(dtor_func_proto); 7984 t = btf_type_by_id(btf, args[0].type); 7985 /* Allow any pointer type, as width on targets Linux supports 7986 * will be same for all pointer types (i.e. sizeof(void *)) 7987 */ 7988 if (!t || !btf_type_is_ptr(t)) 7989 return -EINVAL; 7990 } 7991 return 0; 7992 } 7993 7994 /* This function must be invoked only from initcalls/module init functions */ 7995 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7996 struct module *owner) 7997 { 7998 struct btf_id_dtor_kfunc_tab *tab; 7999 struct btf *btf; 8000 u32 tab_cnt; 8001 int ret; 8002 8003 btf = btf_get_module_btf(owner); 8004 if (!btf) { 8005 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8006 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 8007 return -ENOENT; 8008 } 8009 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 8010 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 8011 return -ENOENT; 8012 } 8013 return 0; 8014 } 8015 if (IS_ERR(btf)) 8016 return PTR_ERR(btf); 8017 8018 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8019 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8020 ret = -E2BIG; 8021 goto end; 8022 } 8023 8024 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8025 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8026 if (ret < 0) 8027 goto end; 8028 8029 tab = btf->dtor_kfunc_tab; 8030 /* Only one call allowed for modules */ 8031 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8032 ret = -EINVAL; 8033 goto end; 8034 } 8035 8036 tab_cnt = tab ? tab->cnt : 0; 8037 if (tab_cnt > U32_MAX - add_cnt) { 8038 ret = -EOVERFLOW; 8039 goto end; 8040 } 8041 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8042 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8043 ret = -E2BIG; 8044 goto end; 8045 } 8046 8047 tab = krealloc(btf->dtor_kfunc_tab, 8048 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8049 GFP_KERNEL | __GFP_NOWARN); 8050 if (!tab) { 8051 ret = -ENOMEM; 8052 goto end; 8053 } 8054 8055 if (!btf->dtor_kfunc_tab) 8056 tab->cnt = 0; 8057 btf->dtor_kfunc_tab = tab; 8058 8059 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8060 tab->cnt += add_cnt; 8061 8062 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8063 8064 end: 8065 if (ret) 8066 btf_free_dtor_kfunc_tab(btf); 8067 btf_put(btf); 8068 return ret; 8069 } 8070 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8071 8072 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8073 8074 /* Check local and target types for compatibility. This check is used for 8075 * type-based CO-RE relocations and follow slightly different rules than 8076 * field-based relocations. This function assumes that root types were already 8077 * checked for name match. Beyond that initial root-level name check, names 8078 * are completely ignored. Compatibility rules are as follows: 8079 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8080 * kind should match for local and target types (i.e., STRUCT is not 8081 * compatible with UNION); 8082 * - for ENUMs/ENUM64s, the size is ignored; 8083 * - for INT, size and signedness are ignored; 8084 * - for ARRAY, dimensionality is ignored, element types are checked for 8085 * compatibility recursively; 8086 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8087 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8088 * - FUNC_PROTOs are compatible if they have compatible signature: same 8089 * number of input args and compatible return and argument types. 8090 * These rules are not set in stone and probably will be adjusted as we get 8091 * more experience with using BPF CO-RE relocations. 8092 */ 8093 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8094 const struct btf *targ_btf, __u32 targ_id) 8095 { 8096 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8097 MAX_TYPES_ARE_COMPAT_DEPTH); 8098 } 8099 8100 #define MAX_TYPES_MATCH_DEPTH 2 8101 8102 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8103 const struct btf *targ_btf, u32 targ_id) 8104 { 8105 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8106 MAX_TYPES_MATCH_DEPTH); 8107 } 8108 8109 static bool bpf_core_is_flavor_sep(const char *s) 8110 { 8111 /* check X___Y name pattern, where X and Y are not underscores */ 8112 return s[0] != '_' && /* X */ 8113 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8114 s[4] != '_'; /* Y */ 8115 } 8116 8117 size_t bpf_core_essential_name_len(const char *name) 8118 { 8119 size_t n = strlen(name); 8120 int i; 8121 8122 for (i = n - 5; i >= 0; i--) { 8123 if (bpf_core_is_flavor_sep(name + i)) 8124 return i + 1; 8125 } 8126 return n; 8127 } 8128 8129 struct bpf_cand_cache { 8130 const char *name; 8131 u32 name_len; 8132 u16 kind; 8133 u16 cnt; 8134 struct { 8135 const struct btf *btf; 8136 u32 id; 8137 } cands[]; 8138 }; 8139 8140 static void bpf_free_cands(struct bpf_cand_cache *cands) 8141 { 8142 if (!cands->cnt) 8143 /* empty candidate array was allocated on stack */ 8144 return; 8145 kfree(cands); 8146 } 8147 8148 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8149 { 8150 kfree(cands->name); 8151 kfree(cands); 8152 } 8153 8154 #define VMLINUX_CAND_CACHE_SIZE 31 8155 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8156 8157 #define MODULE_CAND_CACHE_SIZE 31 8158 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8159 8160 static DEFINE_MUTEX(cand_cache_mutex); 8161 8162 static void __print_cand_cache(struct bpf_verifier_log *log, 8163 struct bpf_cand_cache **cache, 8164 int cache_size) 8165 { 8166 struct bpf_cand_cache *cc; 8167 int i, j; 8168 8169 for (i = 0; i < cache_size; i++) { 8170 cc = cache[i]; 8171 if (!cc) 8172 continue; 8173 bpf_log(log, "[%d]%s(", i, cc->name); 8174 for (j = 0; j < cc->cnt; j++) { 8175 bpf_log(log, "%d", cc->cands[j].id); 8176 if (j < cc->cnt - 1) 8177 bpf_log(log, " "); 8178 } 8179 bpf_log(log, "), "); 8180 } 8181 } 8182 8183 static void print_cand_cache(struct bpf_verifier_log *log) 8184 { 8185 mutex_lock(&cand_cache_mutex); 8186 bpf_log(log, "vmlinux_cand_cache:"); 8187 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8188 bpf_log(log, "\nmodule_cand_cache:"); 8189 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8190 bpf_log(log, "\n"); 8191 mutex_unlock(&cand_cache_mutex); 8192 } 8193 8194 static u32 hash_cands(struct bpf_cand_cache *cands) 8195 { 8196 return jhash(cands->name, cands->name_len, 0); 8197 } 8198 8199 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8200 struct bpf_cand_cache **cache, 8201 int cache_size) 8202 { 8203 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8204 8205 if (cc && cc->name_len == cands->name_len && 8206 !strncmp(cc->name, cands->name, cands->name_len)) 8207 return cc; 8208 return NULL; 8209 } 8210 8211 static size_t sizeof_cands(int cnt) 8212 { 8213 return offsetof(struct bpf_cand_cache, cands[cnt]); 8214 } 8215 8216 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8217 struct bpf_cand_cache **cache, 8218 int cache_size) 8219 { 8220 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8221 8222 if (*cc) { 8223 bpf_free_cands_from_cache(*cc); 8224 *cc = NULL; 8225 } 8226 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8227 if (!new_cands) { 8228 bpf_free_cands(cands); 8229 return ERR_PTR(-ENOMEM); 8230 } 8231 /* strdup the name, since it will stay in cache. 8232 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8233 */ 8234 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8235 bpf_free_cands(cands); 8236 if (!new_cands->name) { 8237 kfree(new_cands); 8238 return ERR_PTR(-ENOMEM); 8239 } 8240 *cc = new_cands; 8241 return new_cands; 8242 } 8243 8244 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8245 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8246 int cache_size) 8247 { 8248 struct bpf_cand_cache *cc; 8249 int i, j; 8250 8251 for (i = 0; i < cache_size; i++) { 8252 cc = cache[i]; 8253 if (!cc) 8254 continue; 8255 if (!btf) { 8256 /* when new module is loaded purge all of module_cand_cache, 8257 * since new module might have candidates with the name 8258 * that matches cached cands. 8259 */ 8260 bpf_free_cands_from_cache(cc); 8261 cache[i] = NULL; 8262 continue; 8263 } 8264 /* when module is unloaded purge cache entries 8265 * that match module's btf 8266 */ 8267 for (j = 0; j < cc->cnt; j++) 8268 if (cc->cands[j].btf == btf) { 8269 bpf_free_cands_from_cache(cc); 8270 cache[i] = NULL; 8271 break; 8272 } 8273 } 8274 8275 } 8276 8277 static void purge_cand_cache(struct btf *btf) 8278 { 8279 mutex_lock(&cand_cache_mutex); 8280 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8281 mutex_unlock(&cand_cache_mutex); 8282 } 8283 #endif 8284 8285 static struct bpf_cand_cache * 8286 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8287 int targ_start_id) 8288 { 8289 struct bpf_cand_cache *new_cands; 8290 const struct btf_type *t; 8291 const char *targ_name; 8292 size_t targ_essent_len; 8293 int n, i; 8294 8295 n = btf_nr_types(targ_btf); 8296 for (i = targ_start_id; i < n; i++) { 8297 t = btf_type_by_id(targ_btf, i); 8298 if (btf_kind(t) != cands->kind) 8299 continue; 8300 8301 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8302 if (!targ_name) 8303 continue; 8304 8305 /* the resched point is before strncmp to make sure that search 8306 * for non-existing name will have a chance to schedule(). 8307 */ 8308 cond_resched(); 8309 8310 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8311 continue; 8312 8313 targ_essent_len = bpf_core_essential_name_len(targ_name); 8314 if (targ_essent_len != cands->name_len) 8315 continue; 8316 8317 /* most of the time there is only one candidate for a given kind+name pair */ 8318 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8319 if (!new_cands) { 8320 bpf_free_cands(cands); 8321 return ERR_PTR(-ENOMEM); 8322 } 8323 8324 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8325 bpf_free_cands(cands); 8326 cands = new_cands; 8327 cands->cands[cands->cnt].btf = targ_btf; 8328 cands->cands[cands->cnt].id = i; 8329 cands->cnt++; 8330 } 8331 return cands; 8332 } 8333 8334 static struct bpf_cand_cache * 8335 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8336 { 8337 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8338 const struct btf *local_btf = ctx->btf; 8339 const struct btf_type *local_type; 8340 const struct btf *main_btf; 8341 size_t local_essent_len; 8342 struct btf *mod_btf; 8343 const char *name; 8344 int id; 8345 8346 main_btf = bpf_get_btf_vmlinux(); 8347 if (IS_ERR(main_btf)) 8348 return ERR_CAST(main_btf); 8349 if (!main_btf) 8350 return ERR_PTR(-EINVAL); 8351 8352 local_type = btf_type_by_id(local_btf, local_type_id); 8353 if (!local_type) 8354 return ERR_PTR(-EINVAL); 8355 8356 name = btf_name_by_offset(local_btf, local_type->name_off); 8357 if (str_is_empty(name)) 8358 return ERR_PTR(-EINVAL); 8359 local_essent_len = bpf_core_essential_name_len(name); 8360 8361 cands = &local_cand; 8362 cands->name = name; 8363 cands->kind = btf_kind(local_type); 8364 cands->name_len = local_essent_len; 8365 8366 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8367 /* cands is a pointer to stack here */ 8368 if (cc) { 8369 if (cc->cnt) 8370 return cc; 8371 goto check_modules; 8372 } 8373 8374 /* Attempt to find target candidates in vmlinux BTF first */ 8375 cands = bpf_core_add_cands(cands, main_btf, 1); 8376 if (IS_ERR(cands)) 8377 return ERR_CAST(cands); 8378 8379 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8380 8381 /* populate cache even when cands->cnt == 0 */ 8382 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8383 if (IS_ERR(cc)) 8384 return ERR_CAST(cc); 8385 8386 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8387 if (cc->cnt) 8388 return cc; 8389 8390 check_modules: 8391 /* cands is a pointer to stack here and cands->cnt == 0 */ 8392 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8393 if (cc) 8394 /* if cache has it return it even if cc->cnt == 0 */ 8395 return cc; 8396 8397 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8398 spin_lock_bh(&btf_idr_lock); 8399 idr_for_each_entry(&btf_idr, mod_btf, id) { 8400 if (!btf_is_module(mod_btf)) 8401 continue; 8402 /* linear search could be slow hence unlock/lock 8403 * the IDR to avoiding holding it for too long 8404 */ 8405 btf_get(mod_btf); 8406 spin_unlock_bh(&btf_idr_lock); 8407 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8408 if (IS_ERR(cands)) { 8409 btf_put(mod_btf); 8410 return ERR_CAST(cands); 8411 } 8412 spin_lock_bh(&btf_idr_lock); 8413 btf_put(mod_btf); 8414 } 8415 spin_unlock_bh(&btf_idr_lock); 8416 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8417 * or pointer to stack if cands->cnd == 0. 8418 * Copy it into the cache even when cands->cnt == 0 and 8419 * return the result. 8420 */ 8421 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8422 } 8423 8424 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8425 int relo_idx, void *insn) 8426 { 8427 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8428 struct bpf_core_cand_list cands = {}; 8429 struct bpf_core_relo_res targ_res; 8430 struct bpf_core_spec *specs; 8431 int err; 8432 8433 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8434 * into arrays of btf_ids of struct fields and array indices. 8435 */ 8436 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8437 if (!specs) 8438 return -ENOMEM; 8439 8440 if (need_cands) { 8441 struct bpf_cand_cache *cc; 8442 int i; 8443 8444 mutex_lock(&cand_cache_mutex); 8445 cc = bpf_core_find_cands(ctx, relo->type_id); 8446 if (IS_ERR(cc)) { 8447 bpf_log(ctx->log, "target candidate search failed for %d\n", 8448 relo->type_id); 8449 err = PTR_ERR(cc); 8450 goto out; 8451 } 8452 if (cc->cnt) { 8453 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8454 if (!cands.cands) { 8455 err = -ENOMEM; 8456 goto out; 8457 } 8458 } 8459 for (i = 0; i < cc->cnt; i++) { 8460 bpf_log(ctx->log, 8461 "CO-RE relocating %s %s: found target candidate [%d]\n", 8462 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8463 cands.cands[i].btf = cc->cands[i].btf; 8464 cands.cands[i].id = cc->cands[i].id; 8465 } 8466 cands.len = cc->cnt; 8467 /* cand_cache_mutex needs to span the cache lookup and 8468 * copy of btf pointer into bpf_core_cand_list, 8469 * since module can be unloaded while bpf_core_calc_relo_insn 8470 * is working with module's btf. 8471 */ 8472 } 8473 8474 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8475 &targ_res); 8476 if (err) 8477 goto out; 8478 8479 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8480 &targ_res); 8481 8482 out: 8483 kfree(specs); 8484 if (need_cands) { 8485 kfree(cands.cands); 8486 mutex_unlock(&cand_cache_mutex); 8487 if (ctx->log->level & BPF_LOG_LEVEL2) 8488 print_cand_cache(ctx->log); 8489 } 8490 return err; 8491 } 8492 8493 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8494 const struct bpf_reg_state *reg, 8495 const char *field_name, u32 btf_id, const char *suffix) 8496 { 8497 struct btf *btf = reg->btf; 8498 const struct btf_type *walk_type, *safe_type; 8499 const char *tname; 8500 char safe_tname[64]; 8501 long ret, safe_id; 8502 const struct btf_member *member; 8503 u32 i; 8504 8505 walk_type = btf_type_by_id(btf, reg->btf_id); 8506 if (!walk_type) 8507 return false; 8508 8509 tname = btf_name_by_offset(btf, walk_type->name_off); 8510 8511 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8512 if (ret < 0) 8513 return false; 8514 8515 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8516 if (safe_id < 0) 8517 return false; 8518 8519 safe_type = btf_type_by_id(btf, safe_id); 8520 if (!safe_type) 8521 return false; 8522 8523 for_each_member(i, safe_type, member) { 8524 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8525 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8526 u32 id; 8527 8528 if (!btf_type_is_ptr(mtype)) 8529 continue; 8530 8531 btf_type_skip_modifiers(btf, mtype->type, &id); 8532 /* If we match on both type and name, the field is considered trusted. */ 8533 if (btf_id == id && !strcmp(field_name, m_name)) 8534 return true; 8535 } 8536 8537 return false; 8538 } 8539 8540 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8541 const struct btf *reg_btf, u32 reg_id, 8542 const struct btf *arg_btf, u32 arg_id) 8543 { 8544 const char *reg_name, *arg_name, *search_needle; 8545 const struct btf_type *reg_type, *arg_type; 8546 int reg_len, arg_len, cmp_len; 8547 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8548 8549 reg_type = btf_type_by_id(reg_btf, reg_id); 8550 if (!reg_type) 8551 return false; 8552 8553 arg_type = btf_type_by_id(arg_btf, arg_id); 8554 if (!arg_type) 8555 return false; 8556 8557 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8558 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8559 8560 reg_len = strlen(reg_name); 8561 arg_len = strlen(arg_name); 8562 8563 /* Exactly one of the two type names may be suffixed with ___init, so 8564 * if the strings are the same size, they can't possibly be no-cast 8565 * aliases of one another. If you have two of the same type names, e.g. 8566 * they're both nf_conn___init, it would be improper to return true 8567 * because they are _not_ no-cast aliases, they are the same type. 8568 */ 8569 if (reg_len == arg_len) 8570 return false; 8571 8572 /* Either of the two names must be the other name, suffixed with ___init. */ 8573 if ((reg_len != arg_len + pattern_len) && 8574 (arg_len != reg_len + pattern_len)) 8575 return false; 8576 8577 if (reg_len < arg_len) { 8578 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8579 cmp_len = reg_len; 8580 } else { 8581 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8582 cmp_len = arg_len; 8583 } 8584 8585 if (!search_needle) 8586 return false; 8587 8588 /* ___init suffix must come at the end of the name */ 8589 if (*(search_needle + pattern_len) != '\0') 8590 return false; 8591 8592 return !strncmp(reg_name, arg_name, cmp_len); 8593 } 8594