xref: /linux/kernel/bpf/btf.c (revision 02ff58dcf70ad7d11b01523dc404166ed11021da)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x0f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190 
191 struct btf {
192 	void *data;
193 	struct btf_type **types;
194 	u32 *resolved_ids;
195 	u32 *resolved_sizes;
196 	const char *strings;
197 	void *nohdr_data;
198 	struct btf_header hdr;
199 	u32 nr_types;
200 	u32 types_size;
201 	u32 data_size;
202 	refcount_t refcnt;
203 	u32 id;
204 	struct rcu_head rcu;
205 };
206 
207 enum verifier_phase {
208 	CHECK_META,
209 	CHECK_TYPE,
210 };
211 
212 struct resolve_vertex {
213 	const struct btf_type *t;
214 	u32 type_id;
215 	u16 next_member;
216 };
217 
218 enum visit_state {
219 	NOT_VISITED,
220 	VISITED,
221 	RESOLVED,
222 };
223 
224 enum resolve_mode {
225 	RESOLVE_TBD,	/* To Be Determined */
226 	RESOLVE_PTR,	/* Resolving for Pointer */
227 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
228 					 * or array
229 					 */
230 };
231 
232 #define MAX_RESOLVE_DEPTH 32
233 
234 struct btf_sec_info {
235 	u32 off;
236 	u32 len;
237 };
238 
239 struct btf_verifier_env {
240 	struct btf *btf;
241 	u8 *visit_states;
242 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 	struct bpf_verifier_log log;
244 	u32 log_type_id;
245 	u32 top_stack;
246 	enum verifier_phase phase;
247 	enum resolve_mode resolve_mode;
248 };
249 
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 	[BTF_KIND_UNKN]		= "UNKNOWN",
252 	[BTF_KIND_INT]		= "INT",
253 	[BTF_KIND_PTR]		= "PTR",
254 	[BTF_KIND_ARRAY]	= "ARRAY",
255 	[BTF_KIND_STRUCT]	= "STRUCT",
256 	[BTF_KIND_UNION]	= "UNION",
257 	[BTF_KIND_ENUM]		= "ENUM",
258 	[BTF_KIND_FWD]		= "FWD",
259 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
260 	[BTF_KIND_VOLATILE]	= "VOLATILE",
261 	[BTF_KIND_CONST]	= "CONST",
262 	[BTF_KIND_RESTRICT]	= "RESTRICT",
263 	[BTF_KIND_FUNC]		= "FUNC",
264 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
265 };
266 
267 struct btf_kind_operations {
268 	s32 (*check_meta)(struct btf_verifier_env *env,
269 			  const struct btf_type *t,
270 			  u32 meta_left);
271 	int (*resolve)(struct btf_verifier_env *env,
272 		       const struct resolve_vertex *v);
273 	int (*check_member)(struct btf_verifier_env *env,
274 			    const struct btf_type *struct_type,
275 			    const struct btf_member *member,
276 			    const struct btf_type *member_type);
277 	void (*log_details)(struct btf_verifier_env *env,
278 			    const struct btf_type *t);
279 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
280 			 u32 type_id, void *data, u8 bits_offsets,
281 			 struct seq_file *m);
282 };
283 
284 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
285 static struct btf_type btf_void;
286 
287 static int btf_resolve(struct btf_verifier_env *env,
288 		       const struct btf_type *t, u32 type_id);
289 
290 static bool btf_type_is_modifier(const struct btf_type *t)
291 {
292 	/* Some of them is not strictly a C modifier
293 	 * but they are grouped into the same bucket
294 	 * for BTF concern:
295 	 *   A type (t) that refers to another
296 	 *   type through t->type AND its size cannot
297 	 *   be determined without following the t->type.
298 	 *
299 	 * ptr does not fall into this bucket
300 	 * because its size is always sizeof(void *).
301 	 */
302 	switch (BTF_INFO_KIND(t->info)) {
303 	case BTF_KIND_TYPEDEF:
304 	case BTF_KIND_VOLATILE:
305 	case BTF_KIND_CONST:
306 	case BTF_KIND_RESTRICT:
307 		return true;
308 	}
309 
310 	return false;
311 }
312 
313 static bool btf_type_is_void(const struct btf_type *t)
314 {
315 	return t == &btf_void;
316 }
317 
318 static bool btf_type_is_fwd(const struct btf_type *t)
319 {
320 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
321 }
322 
323 static bool btf_type_is_func(const struct btf_type *t)
324 {
325 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
326 }
327 
328 static bool btf_type_is_func_proto(const struct btf_type *t)
329 {
330 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
331 }
332 
333 static bool btf_type_nosize(const struct btf_type *t)
334 {
335 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
336 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
337 }
338 
339 static bool btf_type_nosize_or_null(const struct btf_type *t)
340 {
341 	return !t || btf_type_nosize(t);
342 }
343 
344 /* union is only a special case of struct:
345  * all its offsetof(member) == 0
346  */
347 static bool btf_type_is_struct(const struct btf_type *t)
348 {
349 	u8 kind = BTF_INFO_KIND(t->info);
350 
351 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
352 }
353 
354 static bool btf_type_is_array(const struct btf_type *t)
355 {
356 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
357 }
358 
359 static bool btf_type_is_ptr(const struct btf_type *t)
360 {
361 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
362 }
363 
364 static bool btf_type_is_int(const struct btf_type *t)
365 {
366 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
367 }
368 
369 /* What types need to be resolved?
370  *
371  * btf_type_is_modifier() is an obvious one.
372  *
373  * btf_type_is_struct() because its member refers to
374  * another type (through member->type).
375 
376  * btf_type_is_array() because its element (array->type)
377  * refers to another type.  Array can be thought of a
378  * special case of struct while array just has the same
379  * member-type repeated by array->nelems of times.
380  */
381 static bool btf_type_needs_resolve(const struct btf_type *t)
382 {
383 	return btf_type_is_modifier(t) ||
384 		btf_type_is_ptr(t) ||
385 		btf_type_is_struct(t) ||
386 		btf_type_is_array(t);
387 }
388 
389 /* t->size can be used */
390 static bool btf_type_has_size(const struct btf_type *t)
391 {
392 	switch (BTF_INFO_KIND(t->info)) {
393 	case BTF_KIND_INT:
394 	case BTF_KIND_STRUCT:
395 	case BTF_KIND_UNION:
396 	case BTF_KIND_ENUM:
397 		return true;
398 	}
399 
400 	return false;
401 }
402 
403 static const char *btf_int_encoding_str(u8 encoding)
404 {
405 	if (encoding == 0)
406 		return "(none)";
407 	else if (encoding == BTF_INT_SIGNED)
408 		return "SIGNED";
409 	else if (encoding == BTF_INT_CHAR)
410 		return "CHAR";
411 	else if (encoding == BTF_INT_BOOL)
412 		return "BOOL";
413 	else
414 		return "UNKN";
415 }
416 
417 static u16 btf_type_vlen(const struct btf_type *t)
418 {
419 	return BTF_INFO_VLEN(t->info);
420 }
421 
422 static u32 btf_type_int(const struct btf_type *t)
423 {
424 	return *(u32 *)(t + 1);
425 }
426 
427 static const struct btf_array *btf_type_array(const struct btf_type *t)
428 {
429 	return (const struct btf_array *)(t + 1);
430 }
431 
432 static const struct btf_member *btf_type_member(const struct btf_type *t)
433 {
434 	return (const struct btf_member *)(t + 1);
435 }
436 
437 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
438 {
439 	return (const struct btf_enum *)(t + 1);
440 }
441 
442 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
443 {
444 	return kind_ops[BTF_INFO_KIND(t->info)];
445 }
446 
447 bool btf_name_offset_valid(const struct btf *btf, u32 offset)
448 {
449 	return BTF_STR_OFFSET_VALID(offset) &&
450 		offset < btf->hdr.str_len;
451 }
452 
453 /* Only C-style identifier is permitted. This can be relaxed if
454  * necessary.
455  */
456 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
457 {
458 	/* offset must be valid */
459 	const char *src = &btf->strings[offset];
460 	const char *src_limit;
461 
462 	if (!isalpha(*src) && *src != '_')
463 		return false;
464 
465 	/* set a limit on identifier length */
466 	src_limit = src + KSYM_NAME_LEN;
467 	src++;
468 	while (*src && src < src_limit) {
469 		if (!isalnum(*src) && *src != '_')
470 			return false;
471 		src++;
472 	}
473 
474 	return !*src;
475 }
476 
477 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
478 {
479 	if (!offset)
480 		return "(anon)";
481 	else if (offset < btf->hdr.str_len)
482 		return &btf->strings[offset];
483 	else
484 		return "(invalid-name-offset)";
485 }
486 
487 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
488 {
489 	if (type_id > btf->nr_types)
490 		return NULL;
491 
492 	return btf->types[type_id];
493 }
494 
495 /*
496  * Regular int is not a bit field and it must be either
497  * u8/u16/u32/u64.
498  */
499 static bool btf_type_int_is_regular(const struct btf_type *t)
500 {
501 	u8 nr_bits, nr_bytes;
502 	u32 int_data;
503 
504 	int_data = btf_type_int(t);
505 	nr_bits = BTF_INT_BITS(int_data);
506 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
507 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
508 	    BTF_INT_OFFSET(int_data) ||
509 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
510 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
511 		return false;
512 	}
513 
514 	return true;
515 }
516 
517 /*
518  * Check that given type is a regular int and has the expected size.
519  */
520 bool btf_type_is_reg_int(const struct btf_type *t, u32 expected_size)
521 {
522 	u8 nr_bits, nr_bytes;
523 	u32 int_data;
524 
525 	if (!btf_type_is_int(t))
526 		return false;
527 
528 	int_data = btf_type_int(t);
529 	nr_bits = BTF_INT_BITS(int_data);
530 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
531 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
532 	    BTF_INT_OFFSET(int_data) ||
533 	    nr_bytes != expected_size)
534 		return false;
535 
536 	return true;
537 }
538 
539 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
540 					      const char *fmt, ...)
541 {
542 	va_list args;
543 
544 	va_start(args, fmt);
545 	bpf_verifier_vlog(log, fmt, args);
546 	va_end(args);
547 }
548 
549 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
550 					    const char *fmt, ...)
551 {
552 	struct bpf_verifier_log *log = &env->log;
553 	va_list args;
554 
555 	if (!bpf_verifier_log_needed(log))
556 		return;
557 
558 	va_start(args, fmt);
559 	bpf_verifier_vlog(log, fmt, args);
560 	va_end(args);
561 }
562 
563 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
564 						   const struct btf_type *t,
565 						   bool log_details,
566 						   const char *fmt, ...)
567 {
568 	struct bpf_verifier_log *log = &env->log;
569 	u8 kind = BTF_INFO_KIND(t->info);
570 	struct btf *btf = env->btf;
571 	va_list args;
572 
573 	if (!bpf_verifier_log_needed(log))
574 		return;
575 
576 	__btf_verifier_log(log, "[%u] %s %s%s",
577 			   env->log_type_id,
578 			   btf_kind_str[kind],
579 			   btf_name_by_offset(btf, t->name_off),
580 			   log_details ? " " : "");
581 
582 	if (log_details)
583 		btf_type_ops(t)->log_details(env, t);
584 
585 	if (fmt && *fmt) {
586 		__btf_verifier_log(log, " ");
587 		va_start(args, fmt);
588 		bpf_verifier_vlog(log, fmt, args);
589 		va_end(args);
590 	}
591 
592 	__btf_verifier_log(log, "\n");
593 }
594 
595 #define btf_verifier_log_type(env, t, ...) \
596 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
597 #define btf_verifier_log_basic(env, t, ...) \
598 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
599 
600 __printf(4, 5)
601 static void btf_verifier_log_member(struct btf_verifier_env *env,
602 				    const struct btf_type *struct_type,
603 				    const struct btf_member *member,
604 				    const char *fmt, ...)
605 {
606 	struct bpf_verifier_log *log = &env->log;
607 	struct btf *btf = env->btf;
608 	va_list args;
609 
610 	if (!bpf_verifier_log_needed(log))
611 		return;
612 
613 	/* The CHECK_META phase already did a btf dump.
614 	 *
615 	 * If member is logged again, it must hit an error in
616 	 * parsing this member.  It is useful to print out which
617 	 * struct this member belongs to.
618 	 */
619 	if (env->phase != CHECK_META)
620 		btf_verifier_log_type(env, struct_type, NULL);
621 
622 	__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
623 			   btf_name_by_offset(btf, member->name_off),
624 			   member->type, member->offset);
625 
626 	if (fmt && *fmt) {
627 		__btf_verifier_log(log, " ");
628 		va_start(args, fmt);
629 		bpf_verifier_vlog(log, fmt, args);
630 		va_end(args);
631 	}
632 
633 	__btf_verifier_log(log, "\n");
634 }
635 
636 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
637 				 u32 btf_data_size)
638 {
639 	struct bpf_verifier_log *log = &env->log;
640 	const struct btf *btf = env->btf;
641 	const struct btf_header *hdr;
642 
643 	if (!bpf_verifier_log_needed(log))
644 		return;
645 
646 	hdr = &btf->hdr;
647 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
648 	__btf_verifier_log(log, "version: %u\n", hdr->version);
649 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
650 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
651 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
652 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
653 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
654 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
655 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
656 }
657 
658 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
659 {
660 	struct btf *btf = env->btf;
661 
662 	/* < 2 because +1 for btf_void which is always in btf->types[0].
663 	 * btf_void is not accounted in btf->nr_types because btf_void
664 	 * does not come from the BTF file.
665 	 */
666 	if (btf->types_size - btf->nr_types < 2) {
667 		/* Expand 'types' array */
668 
669 		struct btf_type **new_types;
670 		u32 expand_by, new_size;
671 
672 		if (btf->types_size == BTF_MAX_TYPE) {
673 			btf_verifier_log(env, "Exceeded max num of types");
674 			return -E2BIG;
675 		}
676 
677 		expand_by = max_t(u32, btf->types_size >> 2, 16);
678 		new_size = min_t(u32, BTF_MAX_TYPE,
679 				 btf->types_size + expand_by);
680 
681 		new_types = kvcalloc(new_size, sizeof(*new_types),
682 				     GFP_KERNEL | __GFP_NOWARN);
683 		if (!new_types)
684 			return -ENOMEM;
685 
686 		if (btf->nr_types == 0)
687 			new_types[0] = &btf_void;
688 		else
689 			memcpy(new_types, btf->types,
690 			       sizeof(*btf->types) * (btf->nr_types + 1));
691 
692 		kvfree(btf->types);
693 		btf->types = new_types;
694 		btf->types_size = new_size;
695 	}
696 
697 	btf->types[++(btf->nr_types)] = t;
698 
699 	return 0;
700 }
701 
702 static int btf_alloc_id(struct btf *btf)
703 {
704 	int id;
705 
706 	idr_preload(GFP_KERNEL);
707 	spin_lock_bh(&btf_idr_lock);
708 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
709 	if (id > 0)
710 		btf->id = id;
711 	spin_unlock_bh(&btf_idr_lock);
712 	idr_preload_end();
713 
714 	if (WARN_ON_ONCE(!id))
715 		return -ENOSPC;
716 
717 	return id > 0 ? 0 : id;
718 }
719 
720 static void btf_free_id(struct btf *btf)
721 {
722 	unsigned long flags;
723 
724 	/*
725 	 * In map-in-map, calling map_delete_elem() on outer
726 	 * map will call bpf_map_put on the inner map.
727 	 * It will then eventually call btf_free_id()
728 	 * on the inner map.  Some of the map_delete_elem()
729 	 * implementation may have irq disabled, so
730 	 * we need to use the _irqsave() version instead
731 	 * of the _bh() version.
732 	 */
733 	spin_lock_irqsave(&btf_idr_lock, flags);
734 	idr_remove(&btf_idr, btf->id);
735 	spin_unlock_irqrestore(&btf_idr_lock, flags);
736 }
737 
738 static void btf_free(struct btf *btf)
739 {
740 	kvfree(btf->types);
741 	kvfree(btf->resolved_sizes);
742 	kvfree(btf->resolved_ids);
743 	kvfree(btf->data);
744 	kfree(btf);
745 }
746 
747 static void btf_free_rcu(struct rcu_head *rcu)
748 {
749 	struct btf *btf = container_of(rcu, struct btf, rcu);
750 
751 	btf_free(btf);
752 }
753 
754 void btf_put(struct btf *btf)
755 {
756 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
757 		btf_free_id(btf);
758 		call_rcu(&btf->rcu, btf_free_rcu);
759 	}
760 }
761 
762 static int env_resolve_init(struct btf_verifier_env *env)
763 {
764 	struct btf *btf = env->btf;
765 	u32 nr_types = btf->nr_types;
766 	u32 *resolved_sizes = NULL;
767 	u32 *resolved_ids = NULL;
768 	u8 *visit_states = NULL;
769 
770 	/* +1 for btf_void */
771 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
772 				  GFP_KERNEL | __GFP_NOWARN);
773 	if (!resolved_sizes)
774 		goto nomem;
775 
776 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
777 				GFP_KERNEL | __GFP_NOWARN);
778 	if (!resolved_ids)
779 		goto nomem;
780 
781 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
782 				GFP_KERNEL | __GFP_NOWARN);
783 	if (!visit_states)
784 		goto nomem;
785 
786 	btf->resolved_sizes = resolved_sizes;
787 	btf->resolved_ids = resolved_ids;
788 	env->visit_states = visit_states;
789 
790 	return 0;
791 
792 nomem:
793 	kvfree(resolved_sizes);
794 	kvfree(resolved_ids);
795 	kvfree(visit_states);
796 	return -ENOMEM;
797 }
798 
799 static void btf_verifier_env_free(struct btf_verifier_env *env)
800 {
801 	kvfree(env->visit_states);
802 	kfree(env);
803 }
804 
805 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
806 				     const struct btf_type *next_type)
807 {
808 	switch (env->resolve_mode) {
809 	case RESOLVE_TBD:
810 		/* int, enum or void is a sink */
811 		return !btf_type_needs_resolve(next_type);
812 	case RESOLVE_PTR:
813 		/* int, enum, void, struct, array, func or func_proto is a sink
814 		 * for ptr
815 		 */
816 		return !btf_type_is_modifier(next_type) &&
817 			!btf_type_is_ptr(next_type);
818 	case RESOLVE_STRUCT_OR_ARRAY:
819 		/* int, enum, void, ptr, func or func_proto is a sink
820 		 * for struct and array
821 		 */
822 		return !btf_type_is_modifier(next_type) &&
823 			!btf_type_is_array(next_type) &&
824 			!btf_type_is_struct(next_type);
825 	default:
826 		BUG();
827 	}
828 }
829 
830 static bool env_type_is_resolved(const struct btf_verifier_env *env,
831 				 u32 type_id)
832 {
833 	return env->visit_states[type_id] == RESOLVED;
834 }
835 
836 static int env_stack_push(struct btf_verifier_env *env,
837 			  const struct btf_type *t, u32 type_id)
838 {
839 	struct resolve_vertex *v;
840 
841 	if (env->top_stack == MAX_RESOLVE_DEPTH)
842 		return -E2BIG;
843 
844 	if (env->visit_states[type_id] != NOT_VISITED)
845 		return -EEXIST;
846 
847 	env->visit_states[type_id] = VISITED;
848 
849 	v = &env->stack[env->top_stack++];
850 	v->t = t;
851 	v->type_id = type_id;
852 	v->next_member = 0;
853 
854 	if (env->resolve_mode == RESOLVE_TBD) {
855 		if (btf_type_is_ptr(t))
856 			env->resolve_mode = RESOLVE_PTR;
857 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
858 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
859 	}
860 
861 	return 0;
862 }
863 
864 static void env_stack_set_next_member(struct btf_verifier_env *env,
865 				      u16 next_member)
866 {
867 	env->stack[env->top_stack - 1].next_member = next_member;
868 }
869 
870 static void env_stack_pop_resolved(struct btf_verifier_env *env,
871 				   u32 resolved_type_id,
872 				   u32 resolved_size)
873 {
874 	u32 type_id = env->stack[--(env->top_stack)].type_id;
875 	struct btf *btf = env->btf;
876 
877 	btf->resolved_sizes[type_id] = resolved_size;
878 	btf->resolved_ids[type_id] = resolved_type_id;
879 	env->visit_states[type_id] = RESOLVED;
880 }
881 
882 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
883 {
884 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
885 }
886 
887 /* The input param "type_id" must point to a needs_resolve type */
888 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
889 						  u32 *type_id)
890 {
891 	*type_id = btf->resolved_ids[*type_id];
892 	return btf_type_by_id(btf, *type_id);
893 }
894 
895 const struct btf_type *btf_type_id_size(const struct btf *btf,
896 					u32 *type_id, u32 *ret_size)
897 {
898 	const struct btf_type *size_type;
899 	u32 size_type_id = *type_id;
900 	u32 size = 0;
901 
902 	size_type = btf_type_by_id(btf, size_type_id);
903 	if (btf_type_nosize_or_null(size_type))
904 		return NULL;
905 
906 	if (btf_type_has_size(size_type)) {
907 		size = size_type->size;
908 	} else if (btf_type_is_array(size_type)) {
909 		size = btf->resolved_sizes[size_type_id];
910 	} else if (btf_type_is_ptr(size_type)) {
911 		size = sizeof(void *);
912 	} else {
913 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
914 			return NULL;
915 
916 		size = btf->resolved_sizes[size_type_id];
917 		size_type_id = btf->resolved_ids[size_type_id];
918 		size_type = btf_type_by_id(btf, size_type_id);
919 		if (btf_type_nosize_or_null(size_type))
920 			return NULL;
921 	}
922 
923 	*type_id = size_type_id;
924 	if (ret_size)
925 		*ret_size = size;
926 
927 	return size_type;
928 }
929 
930 static int btf_df_check_member(struct btf_verifier_env *env,
931 			       const struct btf_type *struct_type,
932 			       const struct btf_member *member,
933 			       const struct btf_type *member_type)
934 {
935 	btf_verifier_log_basic(env, struct_type,
936 			       "Unsupported check_member");
937 	return -EINVAL;
938 }
939 
940 static int btf_df_resolve(struct btf_verifier_env *env,
941 			  const struct resolve_vertex *v)
942 {
943 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
944 	return -EINVAL;
945 }
946 
947 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
948 			    u32 type_id, void *data, u8 bits_offsets,
949 			    struct seq_file *m)
950 {
951 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
952 }
953 
954 static int btf_int_check_member(struct btf_verifier_env *env,
955 				const struct btf_type *struct_type,
956 				const struct btf_member *member,
957 				const struct btf_type *member_type)
958 {
959 	u32 int_data = btf_type_int(member_type);
960 	u32 struct_bits_off = member->offset;
961 	u32 struct_size = struct_type->size;
962 	u32 nr_copy_bits;
963 	u32 bytes_offset;
964 
965 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
966 		btf_verifier_log_member(env, struct_type, member,
967 					"bits_offset exceeds U32_MAX");
968 		return -EINVAL;
969 	}
970 
971 	struct_bits_off += BTF_INT_OFFSET(int_data);
972 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
973 	nr_copy_bits = BTF_INT_BITS(int_data) +
974 		BITS_PER_BYTE_MASKED(struct_bits_off);
975 
976 	if (nr_copy_bits > BITS_PER_U64) {
977 		btf_verifier_log_member(env, struct_type, member,
978 					"nr_copy_bits exceeds 64");
979 		return -EINVAL;
980 	}
981 
982 	if (struct_size < bytes_offset ||
983 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
984 		btf_verifier_log_member(env, struct_type, member,
985 					"Member exceeds struct_size");
986 		return -EINVAL;
987 	}
988 
989 	return 0;
990 }
991 
992 static s32 btf_int_check_meta(struct btf_verifier_env *env,
993 			      const struct btf_type *t,
994 			      u32 meta_left)
995 {
996 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
997 	u16 encoding;
998 
999 	if (meta_left < meta_needed) {
1000 		btf_verifier_log_basic(env, t,
1001 				       "meta_left:%u meta_needed:%u",
1002 				       meta_left, meta_needed);
1003 		return -EINVAL;
1004 	}
1005 
1006 	if (btf_type_vlen(t)) {
1007 		btf_verifier_log_type(env, t, "vlen != 0");
1008 		return -EINVAL;
1009 	}
1010 
1011 	int_data = btf_type_int(t);
1012 	if (int_data & ~BTF_INT_MASK) {
1013 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1014 				       int_data);
1015 		return -EINVAL;
1016 	}
1017 
1018 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1019 
1020 	if (nr_bits > BITS_PER_U64) {
1021 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1022 				      BITS_PER_U64);
1023 		return -EINVAL;
1024 	}
1025 
1026 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1027 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1028 		return -EINVAL;
1029 	}
1030 
1031 	/*
1032 	 * Only one of the encoding bits is allowed and it
1033 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1034 	 * Multiple bits can be allowed later if it is found
1035 	 * to be insufficient.
1036 	 */
1037 	encoding = BTF_INT_ENCODING(int_data);
1038 	if (encoding &&
1039 	    encoding != BTF_INT_SIGNED &&
1040 	    encoding != BTF_INT_CHAR &&
1041 	    encoding != BTF_INT_BOOL) {
1042 		btf_verifier_log_type(env, t, "Unsupported encoding");
1043 		return -ENOTSUPP;
1044 	}
1045 
1046 	btf_verifier_log_type(env, t, NULL);
1047 
1048 	return meta_needed;
1049 }
1050 
1051 static void btf_int_log(struct btf_verifier_env *env,
1052 			const struct btf_type *t)
1053 {
1054 	int int_data = btf_type_int(t);
1055 
1056 	btf_verifier_log(env,
1057 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1058 			 t->size, BTF_INT_OFFSET(int_data),
1059 			 BTF_INT_BITS(int_data),
1060 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1061 }
1062 
1063 static void btf_int_bits_seq_show(const struct btf *btf,
1064 				  const struct btf_type *t,
1065 				  void *data, u8 bits_offset,
1066 				  struct seq_file *m)
1067 {
1068 	u16 left_shift_bits, right_shift_bits;
1069 	u32 int_data = btf_type_int(t);
1070 	u8 nr_bits = BTF_INT_BITS(int_data);
1071 	u8 total_bits_offset;
1072 	u8 nr_copy_bytes;
1073 	u8 nr_copy_bits;
1074 	u64 print_num;
1075 
1076 	/*
1077 	 * bits_offset is at most 7.
1078 	 * BTF_INT_OFFSET() cannot exceed 64 bits.
1079 	 */
1080 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1081 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1082 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1083 	nr_copy_bits = nr_bits + bits_offset;
1084 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1085 
1086 	print_num = 0;
1087 	memcpy(&print_num, data, nr_copy_bytes);
1088 
1089 #ifdef __BIG_ENDIAN_BITFIELD
1090 	left_shift_bits = bits_offset;
1091 #else
1092 	left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1093 #endif
1094 	right_shift_bits = BITS_PER_U64 - nr_bits;
1095 
1096 	print_num <<= left_shift_bits;
1097 	print_num >>= right_shift_bits;
1098 
1099 	seq_printf(m, "0x%llx", print_num);
1100 }
1101 
1102 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1103 			     u32 type_id, void *data, u8 bits_offset,
1104 			     struct seq_file *m)
1105 {
1106 	u32 int_data = btf_type_int(t);
1107 	u8 encoding = BTF_INT_ENCODING(int_data);
1108 	bool sign = encoding & BTF_INT_SIGNED;
1109 	u8 nr_bits = BTF_INT_BITS(int_data);
1110 
1111 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1112 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1113 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1114 		return;
1115 	}
1116 
1117 	switch (nr_bits) {
1118 	case 64:
1119 		if (sign)
1120 			seq_printf(m, "%lld", *(s64 *)data);
1121 		else
1122 			seq_printf(m, "%llu", *(u64 *)data);
1123 		break;
1124 	case 32:
1125 		if (sign)
1126 			seq_printf(m, "%d", *(s32 *)data);
1127 		else
1128 			seq_printf(m, "%u", *(u32 *)data);
1129 		break;
1130 	case 16:
1131 		if (sign)
1132 			seq_printf(m, "%d", *(s16 *)data);
1133 		else
1134 			seq_printf(m, "%u", *(u16 *)data);
1135 		break;
1136 	case 8:
1137 		if (sign)
1138 			seq_printf(m, "%d", *(s8 *)data);
1139 		else
1140 			seq_printf(m, "%u", *(u8 *)data);
1141 		break;
1142 	default:
1143 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1144 	}
1145 }
1146 
1147 static const struct btf_kind_operations int_ops = {
1148 	.check_meta = btf_int_check_meta,
1149 	.resolve = btf_df_resolve,
1150 	.check_member = btf_int_check_member,
1151 	.log_details = btf_int_log,
1152 	.seq_show = btf_int_seq_show,
1153 };
1154 
1155 static int btf_modifier_check_member(struct btf_verifier_env *env,
1156 				     const struct btf_type *struct_type,
1157 				     const struct btf_member *member,
1158 				     const struct btf_type *member_type)
1159 {
1160 	const struct btf_type *resolved_type;
1161 	u32 resolved_type_id = member->type;
1162 	struct btf_member resolved_member;
1163 	struct btf *btf = env->btf;
1164 
1165 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1166 	if (!resolved_type) {
1167 		btf_verifier_log_member(env, struct_type, member,
1168 					"Invalid member");
1169 		return -EINVAL;
1170 	}
1171 
1172 	resolved_member = *member;
1173 	resolved_member.type = resolved_type_id;
1174 
1175 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1176 							 &resolved_member,
1177 							 resolved_type);
1178 }
1179 
1180 static int btf_ptr_check_member(struct btf_verifier_env *env,
1181 				const struct btf_type *struct_type,
1182 				const struct btf_member *member,
1183 				const struct btf_type *member_type)
1184 {
1185 	u32 struct_size, struct_bits_off, bytes_offset;
1186 
1187 	struct_size = struct_type->size;
1188 	struct_bits_off = member->offset;
1189 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1190 
1191 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1192 		btf_verifier_log_member(env, struct_type, member,
1193 					"Member is not byte aligned");
1194 		return -EINVAL;
1195 	}
1196 
1197 	if (struct_size - bytes_offset < sizeof(void *)) {
1198 		btf_verifier_log_member(env, struct_type, member,
1199 					"Member exceeds struct_size");
1200 		return -EINVAL;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1207 				   const struct btf_type *t,
1208 				   u32 meta_left)
1209 {
1210 	if (btf_type_vlen(t)) {
1211 		btf_verifier_log_type(env, t, "vlen != 0");
1212 		return -EINVAL;
1213 	}
1214 
1215 	if (!BTF_TYPE_ID_VALID(t->type)) {
1216 		btf_verifier_log_type(env, t, "Invalid type_id");
1217 		return -EINVAL;
1218 	}
1219 
1220 	/* typedef type must have a valid name, and other ref types,
1221 	 * volatile, const, restrict, should have a null name.
1222 	 */
1223 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1224 		if (!t->name_off ||
1225 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1226 			btf_verifier_log_type(env, t, "Invalid name");
1227 			return -EINVAL;
1228 		}
1229 	} else {
1230 		if (t->name_off) {
1231 			btf_verifier_log_type(env, t, "Invalid name");
1232 			return -EINVAL;
1233 		}
1234 	}
1235 
1236 	btf_verifier_log_type(env, t, NULL);
1237 
1238 	return 0;
1239 }
1240 
1241 static int btf_modifier_resolve(struct btf_verifier_env *env,
1242 				const struct resolve_vertex *v)
1243 {
1244 	const struct btf_type *t = v->t;
1245 	const struct btf_type *next_type;
1246 	u32 next_type_id = t->type;
1247 	struct btf *btf = env->btf;
1248 	u32 next_type_size = 0;
1249 
1250 	next_type = btf_type_by_id(btf, next_type_id);
1251 	if (!next_type) {
1252 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1253 		return -EINVAL;
1254 	}
1255 
1256 	if (!env_type_is_resolve_sink(env, next_type) &&
1257 	    !env_type_is_resolved(env, next_type_id))
1258 		return env_stack_push(env, next_type, next_type_id);
1259 
1260 	/* Figure out the resolved next_type_id with size.
1261 	 * They will be stored in the current modifier's
1262 	 * resolved_ids and resolved_sizes such that it can
1263 	 * save us a few type-following when we use it later (e.g. in
1264 	 * pretty print).
1265 	 */
1266 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1267 		if (env_type_is_resolved(env, next_type_id))
1268 			next_type = btf_type_id_resolve(btf, &next_type_id);
1269 
1270 		/* "typedef void new_void", "const void"...etc */
1271 		if (!btf_type_is_void(next_type) &&
1272 		    !btf_type_is_fwd(next_type)) {
1273 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1274 			return -EINVAL;
1275 		}
1276 	}
1277 
1278 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1279 
1280 	return 0;
1281 }
1282 
1283 static int btf_ptr_resolve(struct btf_verifier_env *env,
1284 			   const struct resolve_vertex *v)
1285 {
1286 	const struct btf_type *next_type;
1287 	const struct btf_type *t = v->t;
1288 	u32 next_type_id = t->type;
1289 	struct btf *btf = env->btf;
1290 
1291 	next_type = btf_type_by_id(btf, next_type_id);
1292 	if (!next_type) {
1293 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (!env_type_is_resolve_sink(env, next_type) &&
1298 	    !env_type_is_resolved(env, next_type_id))
1299 		return env_stack_push(env, next_type, next_type_id);
1300 
1301 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1302 	 * the modifier may have stopped resolving when it was resolved
1303 	 * to a ptr (last-resolved-ptr).
1304 	 *
1305 	 * We now need to continue from the last-resolved-ptr to
1306 	 * ensure the last-resolved-ptr will not referring back to
1307 	 * the currenct ptr (t).
1308 	 */
1309 	if (btf_type_is_modifier(next_type)) {
1310 		const struct btf_type *resolved_type;
1311 		u32 resolved_type_id;
1312 
1313 		resolved_type_id = next_type_id;
1314 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1315 
1316 		if (btf_type_is_ptr(resolved_type) &&
1317 		    !env_type_is_resolve_sink(env, resolved_type) &&
1318 		    !env_type_is_resolved(env, resolved_type_id))
1319 			return env_stack_push(env, resolved_type,
1320 					      resolved_type_id);
1321 	}
1322 
1323 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1324 		if (env_type_is_resolved(env, next_type_id))
1325 			next_type = btf_type_id_resolve(btf, &next_type_id);
1326 
1327 		if (!btf_type_is_void(next_type) &&
1328 		    !btf_type_is_fwd(next_type) &&
1329 		    !btf_type_is_func_proto(next_type)) {
1330 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1331 			return -EINVAL;
1332 		}
1333 	}
1334 
1335 	env_stack_pop_resolved(env, next_type_id, 0);
1336 
1337 	return 0;
1338 }
1339 
1340 static void btf_modifier_seq_show(const struct btf *btf,
1341 				  const struct btf_type *t,
1342 				  u32 type_id, void *data,
1343 				  u8 bits_offset, struct seq_file *m)
1344 {
1345 	t = btf_type_id_resolve(btf, &type_id);
1346 
1347 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1348 }
1349 
1350 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1351 			     u32 type_id, void *data, u8 bits_offset,
1352 			     struct seq_file *m)
1353 {
1354 	/* It is a hashed value */
1355 	seq_printf(m, "%p", *(void **)data);
1356 }
1357 
1358 static void btf_ref_type_log(struct btf_verifier_env *env,
1359 			     const struct btf_type *t)
1360 {
1361 	btf_verifier_log(env, "type_id=%u", t->type);
1362 }
1363 
1364 static struct btf_kind_operations modifier_ops = {
1365 	.check_meta = btf_ref_type_check_meta,
1366 	.resolve = btf_modifier_resolve,
1367 	.check_member = btf_modifier_check_member,
1368 	.log_details = btf_ref_type_log,
1369 	.seq_show = btf_modifier_seq_show,
1370 };
1371 
1372 static struct btf_kind_operations ptr_ops = {
1373 	.check_meta = btf_ref_type_check_meta,
1374 	.resolve = btf_ptr_resolve,
1375 	.check_member = btf_ptr_check_member,
1376 	.log_details = btf_ref_type_log,
1377 	.seq_show = btf_ptr_seq_show,
1378 };
1379 
1380 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1381 			      const struct btf_type *t,
1382 			      u32 meta_left)
1383 {
1384 	if (btf_type_vlen(t)) {
1385 		btf_verifier_log_type(env, t, "vlen != 0");
1386 		return -EINVAL;
1387 	}
1388 
1389 	if (t->type) {
1390 		btf_verifier_log_type(env, t, "type != 0");
1391 		return -EINVAL;
1392 	}
1393 
1394 	/* fwd type must have a valid name */
1395 	if (!t->name_off ||
1396 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1397 		btf_verifier_log_type(env, t, "Invalid name");
1398 		return -EINVAL;
1399 	}
1400 
1401 	btf_verifier_log_type(env, t, NULL);
1402 
1403 	return 0;
1404 }
1405 
1406 static struct btf_kind_operations fwd_ops = {
1407 	.check_meta = btf_fwd_check_meta,
1408 	.resolve = btf_df_resolve,
1409 	.check_member = btf_df_check_member,
1410 	.log_details = btf_ref_type_log,
1411 	.seq_show = btf_df_seq_show,
1412 };
1413 
1414 static int btf_array_check_member(struct btf_verifier_env *env,
1415 				  const struct btf_type *struct_type,
1416 				  const struct btf_member *member,
1417 				  const struct btf_type *member_type)
1418 {
1419 	u32 struct_bits_off = member->offset;
1420 	u32 struct_size, bytes_offset;
1421 	u32 array_type_id, array_size;
1422 	struct btf *btf = env->btf;
1423 
1424 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1425 		btf_verifier_log_member(env, struct_type, member,
1426 					"Member is not byte aligned");
1427 		return -EINVAL;
1428 	}
1429 
1430 	array_type_id = member->type;
1431 	btf_type_id_size(btf, &array_type_id, &array_size);
1432 	struct_size = struct_type->size;
1433 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1434 	if (struct_size - bytes_offset < array_size) {
1435 		btf_verifier_log_member(env, struct_type, member,
1436 					"Member exceeds struct_size");
1437 		return -EINVAL;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1444 				const struct btf_type *t,
1445 				u32 meta_left)
1446 {
1447 	const struct btf_array *array = btf_type_array(t);
1448 	u32 meta_needed = sizeof(*array);
1449 
1450 	if (meta_left < meta_needed) {
1451 		btf_verifier_log_basic(env, t,
1452 				       "meta_left:%u meta_needed:%u",
1453 				       meta_left, meta_needed);
1454 		return -EINVAL;
1455 	}
1456 
1457 	/* array type should not have a name */
1458 	if (t->name_off) {
1459 		btf_verifier_log_type(env, t, "Invalid name");
1460 		return -EINVAL;
1461 	}
1462 
1463 	if (btf_type_vlen(t)) {
1464 		btf_verifier_log_type(env, t, "vlen != 0");
1465 		return -EINVAL;
1466 	}
1467 
1468 	if (t->size) {
1469 		btf_verifier_log_type(env, t, "size != 0");
1470 		return -EINVAL;
1471 	}
1472 
1473 	/* Array elem type and index type cannot be in type void,
1474 	 * so !array->type and !array->index_type are not allowed.
1475 	 */
1476 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1477 		btf_verifier_log_type(env, t, "Invalid elem");
1478 		return -EINVAL;
1479 	}
1480 
1481 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1482 		btf_verifier_log_type(env, t, "Invalid index");
1483 		return -EINVAL;
1484 	}
1485 
1486 	btf_verifier_log_type(env, t, NULL);
1487 
1488 	return meta_needed;
1489 }
1490 
1491 static int btf_array_resolve(struct btf_verifier_env *env,
1492 			     const struct resolve_vertex *v)
1493 {
1494 	const struct btf_array *array = btf_type_array(v->t);
1495 	const struct btf_type *elem_type, *index_type;
1496 	u32 elem_type_id, index_type_id;
1497 	struct btf *btf = env->btf;
1498 	u32 elem_size;
1499 
1500 	/* Check array->index_type */
1501 	index_type_id = array->index_type;
1502 	index_type = btf_type_by_id(btf, index_type_id);
1503 	if (btf_type_nosize_or_null(index_type)) {
1504 		btf_verifier_log_type(env, v->t, "Invalid index");
1505 		return -EINVAL;
1506 	}
1507 
1508 	if (!env_type_is_resolve_sink(env, index_type) &&
1509 	    !env_type_is_resolved(env, index_type_id))
1510 		return env_stack_push(env, index_type, index_type_id);
1511 
1512 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1513 	if (!index_type || !btf_type_is_int(index_type) ||
1514 	    !btf_type_int_is_regular(index_type)) {
1515 		btf_verifier_log_type(env, v->t, "Invalid index");
1516 		return -EINVAL;
1517 	}
1518 
1519 	/* Check array->type */
1520 	elem_type_id = array->type;
1521 	elem_type = btf_type_by_id(btf, elem_type_id);
1522 	if (btf_type_nosize_or_null(elem_type)) {
1523 		btf_verifier_log_type(env, v->t,
1524 				      "Invalid elem");
1525 		return -EINVAL;
1526 	}
1527 
1528 	if (!env_type_is_resolve_sink(env, elem_type) &&
1529 	    !env_type_is_resolved(env, elem_type_id))
1530 		return env_stack_push(env, elem_type, elem_type_id);
1531 
1532 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1533 	if (!elem_type) {
1534 		btf_verifier_log_type(env, v->t, "Invalid elem");
1535 		return -EINVAL;
1536 	}
1537 
1538 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1539 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1540 		return -EINVAL;
1541 	}
1542 
1543 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1544 		btf_verifier_log_type(env, v->t,
1545 				      "Array size overflows U32_MAX");
1546 		return -EINVAL;
1547 	}
1548 
1549 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1550 
1551 	return 0;
1552 }
1553 
1554 static void btf_array_log(struct btf_verifier_env *env,
1555 			  const struct btf_type *t)
1556 {
1557 	const struct btf_array *array = btf_type_array(t);
1558 
1559 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1560 			 array->type, array->index_type, array->nelems);
1561 }
1562 
1563 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1564 			       u32 type_id, void *data, u8 bits_offset,
1565 			       struct seq_file *m)
1566 {
1567 	const struct btf_array *array = btf_type_array(t);
1568 	const struct btf_kind_operations *elem_ops;
1569 	const struct btf_type *elem_type;
1570 	u32 i, elem_size, elem_type_id;
1571 
1572 	elem_type_id = array->type;
1573 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1574 	elem_ops = btf_type_ops(elem_type);
1575 	seq_puts(m, "[");
1576 	for (i = 0; i < array->nelems; i++) {
1577 		if (i)
1578 			seq_puts(m, ",");
1579 
1580 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1581 				   bits_offset, m);
1582 		data += elem_size;
1583 	}
1584 	seq_puts(m, "]");
1585 }
1586 
1587 static struct btf_kind_operations array_ops = {
1588 	.check_meta = btf_array_check_meta,
1589 	.resolve = btf_array_resolve,
1590 	.check_member = btf_array_check_member,
1591 	.log_details = btf_array_log,
1592 	.seq_show = btf_array_seq_show,
1593 };
1594 
1595 static int btf_struct_check_member(struct btf_verifier_env *env,
1596 				   const struct btf_type *struct_type,
1597 				   const struct btf_member *member,
1598 				   const struct btf_type *member_type)
1599 {
1600 	u32 struct_bits_off = member->offset;
1601 	u32 struct_size, bytes_offset;
1602 
1603 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1604 		btf_verifier_log_member(env, struct_type, member,
1605 					"Member is not byte aligned");
1606 		return -EINVAL;
1607 	}
1608 
1609 	struct_size = struct_type->size;
1610 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1611 	if (struct_size - bytes_offset < member_type->size) {
1612 		btf_verifier_log_member(env, struct_type, member,
1613 					"Member exceeds struct_size");
1614 		return -EINVAL;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1621 				 const struct btf_type *t,
1622 				 u32 meta_left)
1623 {
1624 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1625 	const struct btf_member *member;
1626 	u32 meta_needed, last_offset;
1627 	struct btf *btf = env->btf;
1628 	u32 struct_size = t->size;
1629 	u16 i;
1630 
1631 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1632 	if (meta_left < meta_needed) {
1633 		btf_verifier_log_basic(env, t,
1634 				       "meta_left:%u meta_needed:%u",
1635 				       meta_left, meta_needed);
1636 		return -EINVAL;
1637 	}
1638 
1639 	/* struct type either no name or a valid one */
1640 	if (t->name_off &&
1641 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1642 		btf_verifier_log_type(env, t, "Invalid name");
1643 		return -EINVAL;
1644 	}
1645 
1646 	btf_verifier_log_type(env, t, NULL);
1647 
1648 	last_offset = 0;
1649 	for_each_member(i, t, member) {
1650 		if (!btf_name_offset_valid(btf, member->name_off)) {
1651 			btf_verifier_log_member(env, t, member,
1652 						"Invalid member name_offset:%u",
1653 						member->name_off);
1654 			return -EINVAL;
1655 		}
1656 
1657 		/* struct member either no name or a valid one */
1658 		if (member->name_off &&
1659 		    !btf_name_valid_identifier(btf, member->name_off)) {
1660 			btf_verifier_log_member(env, t, member, "Invalid name");
1661 			return -EINVAL;
1662 		}
1663 		/* A member cannot be in type void */
1664 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1665 			btf_verifier_log_member(env, t, member,
1666 						"Invalid type_id");
1667 			return -EINVAL;
1668 		}
1669 
1670 		if (is_union && member->offset) {
1671 			btf_verifier_log_member(env, t, member,
1672 						"Invalid member bits_offset");
1673 			return -EINVAL;
1674 		}
1675 
1676 		/*
1677 		 * ">" instead of ">=" because the last member could be
1678 		 * "char a[0];"
1679 		 */
1680 		if (last_offset > member->offset) {
1681 			btf_verifier_log_member(env, t, member,
1682 						"Invalid member bits_offset");
1683 			return -EINVAL;
1684 		}
1685 
1686 		if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1687 			btf_verifier_log_member(env, t, member,
1688 						"Member bits_offset exceeds its struct size");
1689 			return -EINVAL;
1690 		}
1691 
1692 		btf_verifier_log_member(env, t, member, NULL);
1693 		last_offset = member->offset;
1694 	}
1695 
1696 	return meta_needed;
1697 }
1698 
1699 static int btf_struct_resolve(struct btf_verifier_env *env,
1700 			      const struct resolve_vertex *v)
1701 {
1702 	const struct btf_member *member;
1703 	int err;
1704 	u16 i;
1705 
1706 	/* Before continue resolving the next_member,
1707 	 * ensure the last member is indeed resolved to a
1708 	 * type with size info.
1709 	 */
1710 	if (v->next_member) {
1711 		const struct btf_type *last_member_type;
1712 		const struct btf_member *last_member;
1713 		u16 last_member_type_id;
1714 
1715 		last_member = btf_type_member(v->t) + v->next_member - 1;
1716 		last_member_type_id = last_member->type;
1717 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1718 						       last_member_type_id)))
1719 			return -EINVAL;
1720 
1721 		last_member_type = btf_type_by_id(env->btf,
1722 						  last_member_type_id);
1723 		err = btf_type_ops(last_member_type)->check_member(env, v->t,
1724 							last_member,
1725 							last_member_type);
1726 		if (err)
1727 			return err;
1728 	}
1729 
1730 	for_each_member_from(i, v->next_member, v->t, member) {
1731 		u32 member_type_id = member->type;
1732 		const struct btf_type *member_type = btf_type_by_id(env->btf,
1733 								member_type_id);
1734 
1735 		if (btf_type_nosize_or_null(member_type)) {
1736 			btf_verifier_log_member(env, v->t, member,
1737 						"Invalid member");
1738 			return -EINVAL;
1739 		}
1740 
1741 		if (!env_type_is_resolve_sink(env, member_type) &&
1742 		    !env_type_is_resolved(env, member_type_id)) {
1743 			env_stack_set_next_member(env, i + 1);
1744 			return env_stack_push(env, member_type, member_type_id);
1745 		}
1746 
1747 		err = btf_type_ops(member_type)->check_member(env, v->t,
1748 							      member,
1749 							      member_type);
1750 		if (err)
1751 			return err;
1752 	}
1753 
1754 	env_stack_pop_resolved(env, 0, 0);
1755 
1756 	return 0;
1757 }
1758 
1759 static void btf_struct_log(struct btf_verifier_env *env,
1760 			   const struct btf_type *t)
1761 {
1762 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1763 }
1764 
1765 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1766 				u32 type_id, void *data, u8 bits_offset,
1767 				struct seq_file *m)
1768 {
1769 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1770 	const struct btf_member *member;
1771 	u32 i;
1772 
1773 	seq_puts(m, "{");
1774 	for_each_member(i, t, member) {
1775 		const struct btf_type *member_type = btf_type_by_id(btf,
1776 								member->type);
1777 		u32 member_offset = member->offset;
1778 		u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1779 		u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1780 		const struct btf_kind_operations *ops;
1781 
1782 		if (i)
1783 			seq_puts(m, seq);
1784 
1785 		ops = btf_type_ops(member_type);
1786 		ops->seq_show(btf, member_type, member->type,
1787 			      data + bytes_offset, bits8_offset, m);
1788 	}
1789 	seq_puts(m, "}");
1790 }
1791 
1792 static struct btf_kind_operations struct_ops = {
1793 	.check_meta = btf_struct_check_meta,
1794 	.resolve = btf_struct_resolve,
1795 	.check_member = btf_struct_check_member,
1796 	.log_details = btf_struct_log,
1797 	.seq_show = btf_struct_seq_show,
1798 };
1799 
1800 static int btf_enum_check_member(struct btf_verifier_env *env,
1801 				 const struct btf_type *struct_type,
1802 				 const struct btf_member *member,
1803 				 const struct btf_type *member_type)
1804 {
1805 	u32 struct_bits_off = member->offset;
1806 	u32 struct_size, bytes_offset;
1807 
1808 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1809 		btf_verifier_log_member(env, struct_type, member,
1810 					"Member is not byte aligned");
1811 		return -EINVAL;
1812 	}
1813 
1814 	struct_size = struct_type->size;
1815 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1816 	if (struct_size - bytes_offset < sizeof(int)) {
1817 		btf_verifier_log_member(env, struct_type, member,
1818 					"Member exceeds struct_size");
1819 		return -EINVAL;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1826 			       const struct btf_type *t,
1827 			       u32 meta_left)
1828 {
1829 	const struct btf_enum *enums = btf_type_enum(t);
1830 	struct btf *btf = env->btf;
1831 	u16 i, nr_enums;
1832 	u32 meta_needed;
1833 
1834 	nr_enums = btf_type_vlen(t);
1835 	meta_needed = nr_enums * sizeof(*enums);
1836 
1837 	if (meta_left < meta_needed) {
1838 		btf_verifier_log_basic(env, t,
1839 				       "meta_left:%u meta_needed:%u",
1840 				       meta_left, meta_needed);
1841 		return -EINVAL;
1842 	}
1843 
1844 	if (t->size != sizeof(int)) {
1845 		btf_verifier_log_type(env, t, "Expected size:%zu",
1846 				      sizeof(int));
1847 		return -EINVAL;
1848 	}
1849 
1850 	/* enum type either no name or a valid one */
1851 	if (t->name_off &&
1852 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1853 		btf_verifier_log_type(env, t, "Invalid name");
1854 		return -EINVAL;
1855 	}
1856 
1857 	btf_verifier_log_type(env, t, NULL);
1858 
1859 	for (i = 0; i < nr_enums; i++) {
1860 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1861 			btf_verifier_log(env, "\tInvalid name_offset:%u",
1862 					 enums[i].name_off);
1863 			return -EINVAL;
1864 		}
1865 
1866 		/* enum member must have a valid name */
1867 		if (!enums[i].name_off ||
1868 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
1869 			btf_verifier_log_type(env, t, "Invalid name");
1870 			return -EINVAL;
1871 		}
1872 
1873 
1874 		btf_verifier_log(env, "\t%s val=%d\n",
1875 				 btf_name_by_offset(btf, enums[i].name_off),
1876 				 enums[i].val);
1877 	}
1878 
1879 	return meta_needed;
1880 }
1881 
1882 static void btf_enum_log(struct btf_verifier_env *env,
1883 			 const struct btf_type *t)
1884 {
1885 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1886 }
1887 
1888 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1889 			      u32 type_id, void *data, u8 bits_offset,
1890 			      struct seq_file *m)
1891 {
1892 	const struct btf_enum *enums = btf_type_enum(t);
1893 	u32 i, nr_enums = btf_type_vlen(t);
1894 	int v = *(int *)data;
1895 
1896 	for (i = 0; i < nr_enums; i++) {
1897 		if (v == enums[i].val) {
1898 			seq_printf(m, "%s",
1899 				   btf_name_by_offset(btf, enums[i].name_off));
1900 			return;
1901 		}
1902 	}
1903 
1904 	seq_printf(m, "%d", v);
1905 }
1906 
1907 static struct btf_kind_operations enum_ops = {
1908 	.check_meta = btf_enum_check_meta,
1909 	.resolve = btf_df_resolve,
1910 	.check_member = btf_enum_check_member,
1911 	.log_details = btf_enum_log,
1912 	.seq_show = btf_enum_seq_show,
1913 };
1914 
1915 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
1916 				     const struct btf_type *t,
1917 				     u32 meta_left)
1918 {
1919 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
1920 
1921 	if (meta_left < meta_needed) {
1922 		btf_verifier_log_basic(env, t,
1923 				       "meta_left:%u meta_needed:%u",
1924 				       meta_left, meta_needed);
1925 		return -EINVAL;
1926 	}
1927 
1928 	if (t->name_off) {
1929 		btf_verifier_log_type(env, t, "Invalid name");
1930 		return -EINVAL;
1931 	}
1932 
1933 	btf_verifier_log_type(env, t, NULL);
1934 
1935 	return meta_needed;
1936 }
1937 
1938 static void btf_func_proto_log(struct btf_verifier_env *env,
1939 			       const struct btf_type *t)
1940 {
1941 	const struct btf_param *args = (const struct btf_param *)(t + 1);
1942 	u16 nr_args = btf_type_vlen(t), i;
1943 
1944 	btf_verifier_log(env, "return=%u args=(", t->type);
1945 	if (!nr_args) {
1946 		btf_verifier_log(env, "void");
1947 		goto done;
1948 	}
1949 
1950 	if (nr_args == 1 && !args[0].type) {
1951 		/* Only one vararg */
1952 		btf_verifier_log(env, "vararg");
1953 		goto done;
1954 	}
1955 
1956 	btf_verifier_log(env, "%u %s", args[0].type,
1957 			 btf_name_by_offset(env->btf,
1958 					    args[0].name_off));
1959 	for (i = 1; i < nr_args - 1; i++)
1960 		btf_verifier_log(env, ", %u %s", args[i].type,
1961 				 btf_name_by_offset(env->btf,
1962 						    args[i].name_off));
1963 
1964 	if (nr_args > 1) {
1965 		const struct btf_param *last_arg = &args[nr_args - 1];
1966 
1967 		if (last_arg->type)
1968 			btf_verifier_log(env, ", %u %s", last_arg->type,
1969 					 btf_name_by_offset(env->btf,
1970 							    last_arg->name_off));
1971 		else
1972 			btf_verifier_log(env, ", vararg");
1973 	}
1974 
1975 done:
1976 	btf_verifier_log(env, ")");
1977 }
1978 
1979 static struct btf_kind_operations func_proto_ops = {
1980 	.check_meta = btf_func_proto_check_meta,
1981 	.resolve = btf_df_resolve,
1982 	/*
1983 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
1984 	 * a struct's member.
1985 	 *
1986 	 * It should be a funciton pointer instead.
1987 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
1988 	 *
1989 	 * Hence, there is no btf_func_check_member().
1990 	 */
1991 	.check_member = btf_df_check_member,
1992 	.log_details = btf_func_proto_log,
1993 	.seq_show = btf_df_seq_show,
1994 };
1995 
1996 static s32 btf_func_check_meta(struct btf_verifier_env *env,
1997 			       const struct btf_type *t,
1998 			       u32 meta_left)
1999 {
2000 	if (!t->name_off ||
2001 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2002 		btf_verifier_log_type(env, t, "Invalid name");
2003 		return -EINVAL;
2004 	}
2005 
2006 	if (btf_type_vlen(t)) {
2007 		btf_verifier_log_type(env, t, "vlen != 0");
2008 		return -EINVAL;
2009 	}
2010 
2011 	btf_verifier_log_type(env, t, NULL);
2012 
2013 	return 0;
2014 }
2015 
2016 static struct btf_kind_operations func_ops = {
2017 	.check_meta = btf_func_check_meta,
2018 	.resolve = btf_df_resolve,
2019 	.check_member = btf_df_check_member,
2020 	.log_details = btf_ref_type_log,
2021 	.seq_show = btf_df_seq_show,
2022 };
2023 
2024 static int btf_func_proto_check(struct btf_verifier_env *env,
2025 				const struct btf_type *t)
2026 {
2027 	const struct btf_type *ret_type;
2028 	const struct btf_param *args;
2029 	const struct btf *btf;
2030 	u16 nr_args, i;
2031 	int err;
2032 
2033 	btf = env->btf;
2034 	args = (const struct btf_param *)(t + 1);
2035 	nr_args = btf_type_vlen(t);
2036 
2037 	/* Check func return type which could be "void" (t->type == 0) */
2038 	if (t->type) {
2039 		u32 ret_type_id = t->type;
2040 
2041 		ret_type = btf_type_by_id(btf, ret_type_id);
2042 		if (!ret_type) {
2043 			btf_verifier_log_type(env, t, "Invalid return type");
2044 			return -EINVAL;
2045 		}
2046 
2047 		if (btf_type_needs_resolve(ret_type) &&
2048 		    !env_type_is_resolved(env, ret_type_id)) {
2049 			err = btf_resolve(env, ret_type, ret_type_id);
2050 			if (err)
2051 				return err;
2052 		}
2053 
2054 		/* Ensure the return type is a type that has a size */
2055 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2056 			btf_verifier_log_type(env, t, "Invalid return type");
2057 			return -EINVAL;
2058 		}
2059 	}
2060 
2061 	if (!nr_args)
2062 		return 0;
2063 
2064 	/* Last func arg type_id could be 0 if it is a vararg */
2065 	if (!args[nr_args - 1].type) {
2066 		if (args[nr_args - 1].name_off) {
2067 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2068 					      nr_args);
2069 			return -EINVAL;
2070 		}
2071 		nr_args--;
2072 	}
2073 
2074 	err = 0;
2075 	for (i = 0; i < nr_args; i++) {
2076 		const struct btf_type *arg_type;
2077 		u32 arg_type_id;
2078 
2079 		arg_type_id = args[i].type;
2080 		arg_type = btf_type_by_id(btf, arg_type_id);
2081 		if (!arg_type) {
2082 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2083 			err = -EINVAL;
2084 			break;
2085 		}
2086 
2087 		if (args[i].name_off &&
2088 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2089 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2090 			btf_verifier_log_type(env, t,
2091 					      "Invalid arg#%u", i + 1);
2092 			err = -EINVAL;
2093 			break;
2094 		}
2095 
2096 		if (btf_type_needs_resolve(arg_type) &&
2097 		    !env_type_is_resolved(env, arg_type_id)) {
2098 			err = btf_resolve(env, arg_type, arg_type_id);
2099 			if (err)
2100 				break;
2101 		}
2102 
2103 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2104 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2105 			err = -EINVAL;
2106 			break;
2107 		}
2108 	}
2109 
2110 	return err;
2111 }
2112 
2113 static int btf_func_check(struct btf_verifier_env *env,
2114 			  const struct btf_type *t)
2115 {
2116 	const struct btf_type *proto_type;
2117 	const struct btf_param *args;
2118 	const struct btf *btf;
2119 	u16 nr_args, i;
2120 
2121 	btf = env->btf;
2122 	proto_type = btf_type_by_id(btf, t->type);
2123 
2124 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2125 		btf_verifier_log_type(env, t, "Invalid type_id");
2126 		return -EINVAL;
2127 	}
2128 
2129 	args = (const struct btf_param *)(proto_type + 1);
2130 	nr_args = btf_type_vlen(proto_type);
2131 	for (i = 0; i < nr_args; i++) {
2132 		if (!args[i].name_off && args[i].type) {
2133 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2134 			return -EINVAL;
2135 		}
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2142 	[BTF_KIND_INT] = &int_ops,
2143 	[BTF_KIND_PTR] = &ptr_ops,
2144 	[BTF_KIND_ARRAY] = &array_ops,
2145 	[BTF_KIND_STRUCT] = &struct_ops,
2146 	[BTF_KIND_UNION] = &struct_ops,
2147 	[BTF_KIND_ENUM] = &enum_ops,
2148 	[BTF_KIND_FWD] = &fwd_ops,
2149 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2150 	[BTF_KIND_VOLATILE] = &modifier_ops,
2151 	[BTF_KIND_CONST] = &modifier_ops,
2152 	[BTF_KIND_RESTRICT] = &modifier_ops,
2153 	[BTF_KIND_FUNC] = &func_ops,
2154 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2155 };
2156 
2157 static s32 btf_check_meta(struct btf_verifier_env *env,
2158 			  const struct btf_type *t,
2159 			  u32 meta_left)
2160 {
2161 	u32 saved_meta_left = meta_left;
2162 	s32 var_meta_size;
2163 
2164 	if (meta_left < sizeof(*t)) {
2165 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2166 				 env->log_type_id, meta_left, sizeof(*t));
2167 		return -EINVAL;
2168 	}
2169 	meta_left -= sizeof(*t);
2170 
2171 	if (t->info & ~BTF_INFO_MASK) {
2172 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2173 				 env->log_type_id, t->info);
2174 		return -EINVAL;
2175 	}
2176 
2177 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2178 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2179 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2180 				 env->log_type_id, BTF_INFO_KIND(t->info));
2181 		return -EINVAL;
2182 	}
2183 
2184 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2185 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2186 				 env->log_type_id, t->name_off);
2187 		return -EINVAL;
2188 	}
2189 
2190 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2191 	if (var_meta_size < 0)
2192 		return var_meta_size;
2193 
2194 	meta_left -= var_meta_size;
2195 
2196 	return saved_meta_left - meta_left;
2197 }
2198 
2199 static int btf_check_all_metas(struct btf_verifier_env *env)
2200 {
2201 	struct btf *btf = env->btf;
2202 	struct btf_header *hdr;
2203 	void *cur, *end;
2204 
2205 	hdr = &btf->hdr;
2206 	cur = btf->nohdr_data + hdr->type_off;
2207 	end = cur + hdr->type_len;
2208 
2209 	env->log_type_id = 1;
2210 	while (cur < end) {
2211 		struct btf_type *t = cur;
2212 		s32 meta_size;
2213 
2214 		meta_size = btf_check_meta(env, t, end - cur);
2215 		if (meta_size < 0)
2216 			return meta_size;
2217 
2218 		btf_add_type(env, t);
2219 		cur += meta_size;
2220 		env->log_type_id++;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static bool btf_resolve_valid(struct btf_verifier_env *env,
2227 			      const struct btf_type *t,
2228 			      u32 type_id)
2229 {
2230 	struct btf *btf = env->btf;
2231 
2232 	if (!env_type_is_resolved(env, type_id))
2233 		return false;
2234 
2235 	if (btf_type_is_struct(t))
2236 		return !btf->resolved_ids[type_id] &&
2237 			!btf->resolved_sizes[type_id];
2238 
2239 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
2240 		t = btf_type_id_resolve(btf, &type_id);
2241 		return t && !btf_type_is_modifier(t);
2242 	}
2243 
2244 	if (btf_type_is_array(t)) {
2245 		const struct btf_array *array = btf_type_array(t);
2246 		const struct btf_type *elem_type;
2247 		u32 elem_type_id = array->type;
2248 		u32 elem_size;
2249 
2250 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2251 		return elem_type && !btf_type_is_modifier(elem_type) &&
2252 			(array->nelems * elem_size ==
2253 			 btf->resolved_sizes[type_id]);
2254 	}
2255 
2256 	return false;
2257 }
2258 
2259 static int btf_resolve(struct btf_verifier_env *env,
2260 		       const struct btf_type *t, u32 type_id)
2261 {
2262 	u32 save_log_type_id = env->log_type_id;
2263 	const struct resolve_vertex *v;
2264 	int err = 0;
2265 
2266 	env->resolve_mode = RESOLVE_TBD;
2267 	env_stack_push(env, t, type_id);
2268 	while (!err && (v = env_stack_peak(env))) {
2269 		env->log_type_id = v->type_id;
2270 		err = btf_type_ops(v->t)->resolve(env, v);
2271 	}
2272 
2273 	env->log_type_id = type_id;
2274 	if (err == -E2BIG) {
2275 		btf_verifier_log_type(env, t,
2276 				      "Exceeded max resolving depth:%u",
2277 				      MAX_RESOLVE_DEPTH);
2278 	} else if (err == -EEXIST) {
2279 		btf_verifier_log_type(env, t, "Loop detected");
2280 	}
2281 
2282 	/* Final sanity check */
2283 	if (!err && !btf_resolve_valid(env, t, type_id)) {
2284 		btf_verifier_log_type(env, t, "Invalid resolve state");
2285 		err = -EINVAL;
2286 	}
2287 
2288 	env->log_type_id = save_log_type_id;
2289 	return err;
2290 }
2291 
2292 static int btf_check_all_types(struct btf_verifier_env *env)
2293 {
2294 	struct btf *btf = env->btf;
2295 	u32 type_id;
2296 	int err;
2297 
2298 	err = env_resolve_init(env);
2299 	if (err)
2300 		return err;
2301 
2302 	env->phase++;
2303 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2304 		const struct btf_type *t = btf_type_by_id(btf, type_id);
2305 
2306 		env->log_type_id = type_id;
2307 		if (btf_type_needs_resolve(t) &&
2308 		    !env_type_is_resolved(env, type_id)) {
2309 			err = btf_resolve(env, t, type_id);
2310 			if (err)
2311 				return err;
2312 		}
2313 
2314 		if (btf_type_is_func_proto(t)) {
2315 			err = btf_func_proto_check(env, t);
2316 			if (err)
2317 				return err;
2318 		}
2319 
2320 		if (btf_type_is_func(t)) {
2321 			err = btf_func_check(env, t);
2322 			if (err)
2323 				return err;
2324 		}
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static int btf_parse_type_sec(struct btf_verifier_env *env)
2331 {
2332 	const struct btf_header *hdr = &env->btf->hdr;
2333 	int err;
2334 
2335 	/* Type section must align to 4 bytes */
2336 	if (hdr->type_off & (sizeof(u32) - 1)) {
2337 		btf_verifier_log(env, "Unaligned type_off");
2338 		return -EINVAL;
2339 	}
2340 
2341 	if (!hdr->type_len) {
2342 		btf_verifier_log(env, "No type found");
2343 		return -EINVAL;
2344 	}
2345 
2346 	err = btf_check_all_metas(env);
2347 	if (err)
2348 		return err;
2349 
2350 	return btf_check_all_types(env);
2351 }
2352 
2353 static int btf_parse_str_sec(struct btf_verifier_env *env)
2354 {
2355 	const struct btf_header *hdr;
2356 	struct btf *btf = env->btf;
2357 	const char *start, *end;
2358 
2359 	hdr = &btf->hdr;
2360 	start = btf->nohdr_data + hdr->str_off;
2361 	end = start + hdr->str_len;
2362 
2363 	if (end != btf->data + btf->data_size) {
2364 		btf_verifier_log(env, "String section is not at the end");
2365 		return -EINVAL;
2366 	}
2367 
2368 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2369 	    start[0] || end[-1]) {
2370 		btf_verifier_log(env, "Invalid string section");
2371 		return -EINVAL;
2372 	}
2373 
2374 	btf->strings = start;
2375 
2376 	return 0;
2377 }
2378 
2379 static const size_t btf_sec_info_offset[] = {
2380 	offsetof(struct btf_header, type_off),
2381 	offsetof(struct btf_header, str_off),
2382 };
2383 
2384 static int btf_sec_info_cmp(const void *a, const void *b)
2385 {
2386 	const struct btf_sec_info *x = a;
2387 	const struct btf_sec_info *y = b;
2388 
2389 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2390 }
2391 
2392 static int btf_check_sec_info(struct btf_verifier_env *env,
2393 			      u32 btf_data_size)
2394 {
2395 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2396 	u32 total, expected_total, i;
2397 	const struct btf_header *hdr;
2398 	const struct btf *btf;
2399 
2400 	btf = env->btf;
2401 	hdr = &btf->hdr;
2402 
2403 	/* Populate the secs from hdr */
2404 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2405 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2406 						   btf_sec_info_offset[i]);
2407 
2408 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2409 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2410 
2411 	/* Check for gaps and overlap among sections */
2412 	total = 0;
2413 	expected_total = btf_data_size - hdr->hdr_len;
2414 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2415 		if (expected_total < secs[i].off) {
2416 			btf_verifier_log(env, "Invalid section offset");
2417 			return -EINVAL;
2418 		}
2419 		if (total < secs[i].off) {
2420 			/* gap */
2421 			btf_verifier_log(env, "Unsupported section found");
2422 			return -EINVAL;
2423 		}
2424 		if (total > secs[i].off) {
2425 			btf_verifier_log(env, "Section overlap found");
2426 			return -EINVAL;
2427 		}
2428 		if (expected_total - total < secs[i].len) {
2429 			btf_verifier_log(env,
2430 					 "Total section length too long");
2431 			return -EINVAL;
2432 		}
2433 		total += secs[i].len;
2434 	}
2435 
2436 	/* There is data other than hdr and known sections */
2437 	if (expected_total != total) {
2438 		btf_verifier_log(env, "Unsupported section found");
2439 		return -EINVAL;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int btf_parse_hdr(struct btf_verifier_env *env)
2446 {
2447 	u32 hdr_len, hdr_copy, btf_data_size;
2448 	const struct btf_header *hdr;
2449 	struct btf *btf;
2450 	int err;
2451 
2452 	btf = env->btf;
2453 	btf_data_size = btf->data_size;
2454 
2455 	if (btf_data_size <
2456 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2457 		btf_verifier_log(env, "hdr_len not found");
2458 		return -EINVAL;
2459 	}
2460 
2461 	hdr = btf->data;
2462 	hdr_len = hdr->hdr_len;
2463 	if (btf_data_size < hdr_len) {
2464 		btf_verifier_log(env, "btf_header not found");
2465 		return -EINVAL;
2466 	}
2467 
2468 	/* Ensure the unsupported header fields are zero */
2469 	if (hdr_len > sizeof(btf->hdr)) {
2470 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
2471 		u8 *end = btf->data + hdr_len;
2472 
2473 		for (; expected_zero < end; expected_zero++) {
2474 			if (*expected_zero) {
2475 				btf_verifier_log(env, "Unsupported btf_header");
2476 				return -E2BIG;
2477 			}
2478 		}
2479 	}
2480 
2481 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2482 	memcpy(&btf->hdr, btf->data, hdr_copy);
2483 
2484 	hdr = &btf->hdr;
2485 
2486 	btf_verifier_log_hdr(env, btf_data_size);
2487 
2488 	if (hdr->magic != BTF_MAGIC) {
2489 		btf_verifier_log(env, "Invalid magic");
2490 		return -EINVAL;
2491 	}
2492 
2493 	if (hdr->version != BTF_VERSION) {
2494 		btf_verifier_log(env, "Unsupported version");
2495 		return -ENOTSUPP;
2496 	}
2497 
2498 	if (hdr->flags) {
2499 		btf_verifier_log(env, "Unsupported flags");
2500 		return -ENOTSUPP;
2501 	}
2502 
2503 	if (btf_data_size == hdr->hdr_len) {
2504 		btf_verifier_log(env, "No data");
2505 		return -EINVAL;
2506 	}
2507 
2508 	err = btf_check_sec_info(env, btf_data_size);
2509 	if (err)
2510 		return err;
2511 
2512 	return 0;
2513 }
2514 
2515 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2516 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2517 {
2518 	struct btf_verifier_env *env = NULL;
2519 	struct bpf_verifier_log *log;
2520 	struct btf *btf = NULL;
2521 	u8 *data;
2522 	int err;
2523 
2524 	if (btf_data_size > BTF_MAX_SIZE)
2525 		return ERR_PTR(-E2BIG);
2526 
2527 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2528 	if (!env)
2529 		return ERR_PTR(-ENOMEM);
2530 
2531 	log = &env->log;
2532 	if (log_level || log_ubuf || log_size) {
2533 		/* user requested verbose verifier output
2534 		 * and supplied buffer to store the verification trace
2535 		 */
2536 		log->level = log_level;
2537 		log->ubuf = log_ubuf;
2538 		log->len_total = log_size;
2539 
2540 		/* log attributes have to be sane */
2541 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2542 		    !log->level || !log->ubuf) {
2543 			err = -EINVAL;
2544 			goto errout;
2545 		}
2546 	}
2547 
2548 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2549 	if (!btf) {
2550 		err = -ENOMEM;
2551 		goto errout;
2552 	}
2553 	env->btf = btf;
2554 
2555 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2556 	if (!data) {
2557 		err = -ENOMEM;
2558 		goto errout;
2559 	}
2560 
2561 	btf->data = data;
2562 	btf->data_size = btf_data_size;
2563 
2564 	if (copy_from_user(data, btf_data, btf_data_size)) {
2565 		err = -EFAULT;
2566 		goto errout;
2567 	}
2568 
2569 	err = btf_parse_hdr(env);
2570 	if (err)
2571 		goto errout;
2572 
2573 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2574 
2575 	err = btf_parse_str_sec(env);
2576 	if (err)
2577 		goto errout;
2578 
2579 	err = btf_parse_type_sec(env);
2580 	if (err)
2581 		goto errout;
2582 
2583 	if (log->level && bpf_verifier_log_full(log)) {
2584 		err = -ENOSPC;
2585 		goto errout;
2586 	}
2587 
2588 	btf_verifier_env_free(env);
2589 	refcount_set(&btf->refcnt, 1);
2590 	return btf;
2591 
2592 errout:
2593 	btf_verifier_env_free(env);
2594 	if (btf)
2595 		btf_free(btf);
2596 	return ERR_PTR(err);
2597 }
2598 
2599 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2600 		       struct seq_file *m)
2601 {
2602 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2603 
2604 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2605 }
2606 
2607 static int btf_release(struct inode *inode, struct file *filp)
2608 {
2609 	btf_put(filp->private_data);
2610 	return 0;
2611 }
2612 
2613 const struct file_operations btf_fops = {
2614 	.release	= btf_release,
2615 };
2616 
2617 static int __btf_new_fd(struct btf *btf)
2618 {
2619 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2620 }
2621 
2622 int btf_new_fd(const union bpf_attr *attr)
2623 {
2624 	struct btf *btf;
2625 	int ret;
2626 
2627 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2628 			attr->btf_size, attr->btf_log_level,
2629 			u64_to_user_ptr(attr->btf_log_buf),
2630 			attr->btf_log_size);
2631 	if (IS_ERR(btf))
2632 		return PTR_ERR(btf);
2633 
2634 	ret = btf_alloc_id(btf);
2635 	if (ret) {
2636 		btf_free(btf);
2637 		return ret;
2638 	}
2639 
2640 	/*
2641 	 * The BTF ID is published to the userspace.
2642 	 * All BTF free must go through call_rcu() from
2643 	 * now on (i.e. free by calling btf_put()).
2644 	 */
2645 
2646 	ret = __btf_new_fd(btf);
2647 	if (ret < 0)
2648 		btf_put(btf);
2649 
2650 	return ret;
2651 }
2652 
2653 struct btf *btf_get_by_fd(int fd)
2654 {
2655 	struct btf *btf;
2656 	struct fd f;
2657 
2658 	f = fdget(fd);
2659 
2660 	if (!f.file)
2661 		return ERR_PTR(-EBADF);
2662 
2663 	if (f.file->f_op != &btf_fops) {
2664 		fdput(f);
2665 		return ERR_PTR(-EINVAL);
2666 	}
2667 
2668 	btf = f.file->private_data;
2669 	refcount_inc(&btf->refcnt);
2670 	fdput(f);
2671 
2672 	return btf;
2673 }
2674 
2675 int btf_get_info_by_fd(const struct btf *btf,
2676 		       const union bpf_attr *attr,
2677 		       union bpf_attr __user *uattr)
2678 {
2679 	struct bpf_btf_info __user *uinfo;
2680 	struct bpf_btf_info info = {};
2681 	u32 info_copy, btf_copy;
2682 	void __user *ubtf;
2683 	u32 uinfo_len;
2684 
2685 	uinfo = u64_to_user_ptr(attr->info.info);
2686 	uinfo_len = attr->info.info_len;
2687 
2688 	info_copy = min_t(u32, uinfo_len, sizeof(info));
2689 	if (copy_from_user(&info, uinfo, info_copy))
2690 		return -EFAULT;
2691 
2692 	info.id = btf->id;
2693 	ubtf = u64_to_user_ptr(info.btf);
2694 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
2695 	if (copy_to_user(ubtf, btf->data, btf_copy))
2696 		return -EFAULT;
2697 	info.btf_size = btf->data_size;
2698 
2699 	if (copy_to_user(uinfo, &info, info_copy) ||
2700 	    put_user(info_copy, &uattr->info.info_len))
2701 		return -EFAULT;
2702 
2703 	return 0;
2704 }
2705 
2706 int btf_get_fd_by_id(u32 id)
2707 {
2708 	struct btf *btf;
2709 	int fd;
2710 
2711 	rcu_read_lock();
2712 	btf = idr_find(&btf_idr, id);
2713 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2714 		btf = ERR_PTR(-ENOENT);
2715 	rcu_read_unlock();
2716 
2717 	if (IS_ERR(btf))
2718 		return PTR_ERR(btf);
2719 
2720 	fd = __btf_new_fd(btf);
2721 	if (fd < 0)
2722 		btf_put(btf);
2723 
2724 	return fd;
2725 }
2726 
2727 u32 btf_id(const struct btf *btf)
2728 {
2729 	return btf->id;
2730 }
2731