xref: /linux/kernel/bpf/arraymap.c (revision efc7d01a9ecdc59946fad1743d96a0db9925064c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016,2017 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/err.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/filter.h>
11 #include <linux/perf_event.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/rcupdate_trace.h>
14 
15 #include "map_in_map.h"
16 
17 #define ARRAY_CREATE_FLAG_MASK \
18 	(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \
19 	 BPF_F_PRESERVE_ELEMS)
20 
21 static void bpf_array_free_percpu(struct bpf_array *array)
22 {
23 	int i;
24 
25 	for (i = 0; i < array->map.max_entries; i++) {
26 		free_percpu(array->pptrs[i]);
27 		cond_resched();
28 	}
29 }
30 
31 static int bpf_array_alloc_percpu(struct bpf_array *array)
32 {
33 	void __percpu *ptr;
34 	int i;
35 
36 	for (i = 0; i < array->map.max_entries; i++) {
37 		ptr = __alloc_percpu_gfp(array->elem_size, 8,
38 					 GFP_USER | __GFP_NOWARN);
39 		if (!ptr) {
40 			bpf_array_free_percpu(array);
41 			return -ENOMEM;
42 		}
43 		array->pptrs[i] = ptr;
44 		cond_resched();
45 	}
46 
47 	return 0;
48 }
49 
50 /* Called from syscall */
51 int array_map_alloc_check(union bpf_attr *attr)
52 {
53 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
54 	int numa_node = bpf_map_attr_numa_node(attr);
55 
56 	/* check sanity of attributes */
57 	if (attr->max_entries == 0 || attr->key_size != 4 ||
58 	    attr->value_size == 0 ||
59 	    attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
60 	    !bpf_map_flags_access_ok(attr->map_flags) ||
61 	    (percpu && numa_node != NUMA_NO_NODE))
62 		return -EINVAL;
63 
64 	if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
65 	    attr->map_flags & BPF_F_MMAPABLE)
66 		return -EINVAL;
67 
68 	if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
69 	    attr->map_flags & BPF_F_PRESERVE_ELEMS)
70 		return -EINVAL;
71 
72 	if (attr->value_size > KMALLOC_MAX_SIZE)
73 		/* if value_size is bigger, the user space won't be able to
74 		 * access the elements.
75 		 */
76 		return -E2BIG;
77 
78 	return 0;
79 }
80 
81 static struct bpf_map *array_map_alloc(union bpf_attr *attr)
82 {
83 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
84 	int ret, numa_node = bpf_map_attr_numa_node(attr);
85 	u32 elem_size, index_mask, max_entries;
86 	bool bypass_spec_v1 = bpf_bypass_spec_v1();
87 	u64 cost, array_size, mask64;
88 	struct bpf_map_memory mem;
89 	struct bpf_array *array;
90 
91 	elem_size = round_up(attr->value_size, 8);
92 
93 	max_entries = attr->max_entries;
94 
95 	/* On 32 bit archs roundup_pow_of_two() with max_entries that has
96 	 * upper most bit set in u32 space is undefined behavior due to
97 	 * resulting 1U << 32, so do it manually here in u64 space.
98 	 */
99 	mask64 = fls_long(max_entries - 1);
100 	mask64 = 1ULL << mask64;
101 	mask64 -= 1;
102 
103 	index_mask = mask64;
104 	if (!bypass_spec_v1) {
105 		/* round up array size to nearest power of 2,
106 		 * since cpu will speculate within index_mask limits
107 		 */
108 		max_entries = index_mask + 1;
109 		/* Check for overflows. */
110 		if (max_entries < attr->max_entries)
111 			return ERR_PTR(-E2BIG);
112 	}
113 
114 	array_size = sizeof(*array);
115 	if (percpu) {
116 		array_size += (u64) max_entries * sizeof(void *);
117 	} else {
118 		/* rely on vmalloc() to return page-aligned memory and
119 		 * ensure array->value is exactly page-aligned
120 		 */
121 		if (attr->map_flags & BPF_F_MMAPABLE) {
122 			array_size = PAGE_ALIGN(array_size);
123 			array_size += PAGE_ALIGN((u64) max_entries * elem_size);
124 		} else {
125 			array_size += (u64) max_entries * elem_size;
126 		}
127 	}
128 
129 	/* make sure there is no u32 overflow later in round_up() */
130 	cost = array_size;
131 	if (percpu)
132 		cost += (u64)attr->max_entries * elem_size * num_possible_cpus();
133 
134 	ret = bpf_map_charge_init(&mem, cost);
135 	if (ret < 0)
136 		return ERR_PTR(ret);
137 
138 	/* allocate all map elements and zero-initialize them */
139 	if (attr->map_flags & BPF_F_MMAPABLE) {
140 		void *data;
141 
142 		/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
143 		data = bpf_map_area_mmapable_alloc(array_size, numa_node);
144 		if (!data) {
145 			bpf_map_charge_finish(&mem);
146 			return ERR_PTR(-ENOMEM);
147 		}
148 		array = data + PAGE_ALIGN(sizeof(struct bpf_array))
149 			- offsetof(struct bpf_array, value);
150 	} else {
151 		array = bpf_map_area_alloc(array_size, numa_node);
152 	}
153 	if (!array) {
154 		bpf_map_charge_finish(&mem);
155 		return ERR_PTR(-ENOMEM);
156 	}
157 	array->index_mask = index_mask;
158 	array->map.bypass_spec_v1 = bypass_spec_v1;
159 
160 	/* copy mandatory map attributes */
161 	bpf_map_init_from_attr(&array->map, attr);
162 	bpf_map_charge_move(&array->map.memory, &mem);
163 	array->elem_size = elem_size;
164 
165 	if (percpu && bpf_array_alloc_percpu(array)) {
166 		bpf_map_charge_finish(&array->map.memory);
167 		bpf_map_area_free(array);
168 		return ERR_PTR(-ENOMEM);
169 	}
170 
171 	return &array->map;
172 }
173 
174 /* Called from syscall or from eBPF program */
175 static void *array_map_lookup_elem(struct bpf_map *map, void *key)
176 {
177 	struct bpf_array *array = container_of(map, struct bpf_array, map);
178 	u32 index = *(u32 *)key;
179 
180 	if (unlikely(index >= array->map.max_entries))
181 		return NULL;
182 
183 	return array->value + array->elem_size * (index & array->index_mask);
184 }
185 
186 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
187 				       u32 off)
188 {
189 	struct bpf_array *array = container_of(map, struct bpf_array, map);
190 
191 	if (map->max_entries != 1)
192 		return -ENOTSUPP;
193 	if (off >= map->value_size)
194 		return -EINVAL;
195 
196 	*imm = (unsigned long)array->value;
197 	return 0;
198 }
199 
200 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
201 				       u32 *off)
202 {
203 	struct bpf_array *array = container_of(map, struct bpf_array, map);
204 	u64 base = (unsigned long)array->value;
205 	u64 range = array->elem_size;
206 
207 	if (map->max_entries != 1)
208 		return -ENOTSUPP;
209 	if (imm < base || imm >= base + range)
210 		return -ENOENT;
211 
212 	*off = imm - base;
213 	return 0;
214 }
215 
216 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
217 static u32 array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
218 {
219 	struct bpf_array *array = container_of(map, struct bpf_array, map);
220 	struct bpf_insn *insn = insn_buf;
221 	u32 elem_size = round_up(map->value_size, 8);
222 	const int ret = BPF_REG_0;
223 	const int map_ptr = BPF_REG_1;
224 	const int index = BPF_REG_2;
225 
226 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
227 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
228 	if (!map->bypass_spec_v1) {
229 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
230 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
231 	} else {
232 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
233 	}
234 
235 	if (is_power_of_2(elem_size)) {
236 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
237 	} else {
238 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
239 	}
240 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
241 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
242 	*insn++ = BPF_MOV64_IMM(ret, 0);
243 	return insn - insn_buf;
244 }
245 
246 /* Called from eBPF program */
247 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
248 {
249 	struct bpf_array *array = container_of(map, struct bpf_array, map);
250 	u32 index = *(u32 *)key;
251 
252 	if (unlikely(index >= array->map.max_entries))
253 		return NULL;
254 
255 	return this_cpu_ptr(array->pptrs[index & array->index_mask]);
256 }
257 
258 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
259 {
260 	struct bpf_array *array = container_of(map, struct bpf_array, map);
261 	u32 index = *(u32 *)key;
262 	void __percpu *pptr;
263 	int cpu, off = 0;
264 	u32 size;
265 
266 	if (unlikely(index >= array->map.max_entries))
267 		return -ENOENT;
268 
269 	/* per_cpu areas are zero-filled and bpf programs can only
270 	 * access 'value_size' of them, so copying rounded areas
271 	 * will not leak any kernel data
272 	 */
273 	size = round_up(map->value_size, 8);
274 	rcu_read_lock();
275 	pptr = array->pptrs[index & array->index_mask];
276 	for_each_possible_cpu(cpu) {
277 		bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
278 		off += size;
279 	}
280 	rcu_read_unlock();
281 	return 0;
282 }
283 
284 /* Called from syscall */
285 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
286 {
287 	struct bpf_array *array = container_of(map, struct bpf_array, map);
288 	u32 index = key ? *(u32 *)key : U32_MAX;
289 	u32 *next = (u32 *)next_key;
290 
291 	if (index >= array->map.max_entries) {
292 		*next = 0;
293 		return 0;
294 	}
295 
296 	if (index == array->map.max_entries - 1)
297 		return -ENOENT;
298 
299 	*next = index + 1;
300 	return 0;
301 }
302 
303 /* Called from syscall or from eBPF program */
304 static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
305 				 u64 map_flags)
306 {
307 	struct bpf_array *array = container_of(map, struct bpf_array, map);
308 	u32 index = *(u32 *)key;
309 	char *val;
310 
311 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
312 		/* unknown flags */
313 		return -EINVAL;
314 
315 	if (unlikely(index >= array->map.max_entries))
316 		/* all elements were pre-allocated, cannot insert a new one */
317 		return -E2BIG;
318 
319 	if (unlikely(map_flags & BPF_NOEXIST))
320 		/* all elements already exist */
321 		return -EEXIST;
322 
323 	if (unlikely((map_flags & BPF_F_LOCK) &&
324 		     !map_value_has_spin_lock(map)))
325 		return -EINVAL;
326 
327 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
328 		memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
329 		       value, map->value_size);
330 	} else {
331 		val = array->value +
332 			array->elem_size * (index & array->index_mask);
333 		if (map_flags & BPF_F_LOCK)
334 			copy_map_value_locked(map, val, value, false);
335 		else
336 			copy_map_value(map, val, value);
337 	}
338 	return 0;
339 }
340 
341 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
342 			    u64 map_flags)
343 {
344 	struct bpf_array *array = container_of(map, struct bpf_array, map);
345 	u32 index = *(u32 *)key;
346 	void __percpu *pptr;
347 	int cpu, off = 0;
348 	u32 size;
349 
350 	if (unlikely(map_flags > BPF_EXIST))
351 		/* unknown flags */
352 		return -EINVAL;
353 
354 	if (unlikely(index >= array->map.max_entries))
355 		/* all elements were pre-allocated, cannot insert a new one */
356 		return -E2BIG;
357 
358 	if (unlikely(map_flags == BPF_NOEXIST))
359 		/* all elements already exist */
360 		return -EEXIST;
361 
362 	/* the user space will provide round_up(value_size, 8) bytes that
363 	 * will be copied into per-cpu area. bpf programs can only access
364 	 * value_size of it. During lookup the same extra bytes will be
365 	 * returned or zeros which were zero-filled by percpu_alloc,
366 	 * so no kernel data leaks possible
367 	 */
368 	size = round_up(map->value_size, 8);
369 	rcu_read_lock();
370 	pptr = array->pptrs[index & array->index_mask];
371 	for_each_possible_cpu(cpu) {
372 		bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
373 		off += size;
374 	}
375 	rcu_read_unlock();
376 	return 0;
377 }
378 
379 /* Called from syscall or from eBPF program */
380 static int array_map_delete_elem(struct bpf_map *map, void *key)
381 {
382 	return -EINVAL;
383 }
384 
385 static void *array_map_vmalloc_addr(struct bpf_array *array)
386 {
387 	return (void *)round_down((unsigned long)array, PAGE_SIZE);
388 }
389 
390 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
391 static void array_map_free(struct bpf_map *map)
392 {
393 	struct bpf_array *array = container_of(map, struct bpf_array, map);
394 
395 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
396 		bpf_array_free_percpu(array);
397 
398 	if (array->map.map_flags & BPF_F_MMAPABLE)
399 		bpf_map_area_free(array_map_vmalloc_addr(array));
400 	else
401 		bpf_map_area_free(array);
402 }
403 
404 static void array_map_seq_show_elem(struct bpf_map *map, void *key,
405 				    struct seq_file *m)
406 {
407 	void *value;
408 
409 	rcu_read_lock();
410 
411 	value = array_map_lookup_elem(map, key);
412 	if (!value) {
413 		rcu_read_unlock();
414 		return;
415 	}
416 
417 	if (map->btf_key_type_id)
418 		seq_printf(m, "%u: ", *(u32 *)key);
419 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
420 	seq_puts(m, "\n");
421 
422 	rcu_read_unlock();
423 }
424 
425 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
426 					   struct seq_file *m)
427 {
428 	struct bpf_array *array = container_of(map, struct bpf_array, map);
429 	u32 index = *(u32 *)key;
430 	void __percpu *pptr;
431 	int cpu;
432 
433 	rcu_read_lock();
434 
435 	seq_printf(m, "%u: {\n", *(u32 *)key);
436 	pptr = array->pptrs[index & array->index_mask];
437 	for_each_possible_cpu(cpu) {
438 		seq_printf(m, "\tcpu%d: ", cpu);
439 		btf_type_seq_show(map->btf, map->btf_value_type_id,
440 				  per_cpu_ptr(pptr, cpu), m);
441 		seq_puts(m, "\n");
442 	}
443 	seq_puts(m, "}\n");
444 
445 	rcu_read_unlock();
446 }
447 
448 static int array_map_check_btf(const struct bpf_map *map,
449 			       const struct btf *btf,
450 			       const struct btf_type *key_type,
451 			       const struct btf_type *value_type)
452 {
453 	u32 int_data;
454 
455 	/* One exception for keyless BTF: .bss/.data/.rodata map */
456 	if (btf_type_is_void(key_type)) {
457 		if (map->map_type != BPF_MAP_TYPE_ARRAY ||
458 		    map->max_entries != 1)
459 			return -EINVAL;
460 
461 		if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
462 			return -EINVAL;
463 
464 		return 0;
465 	}
466 
467 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
468 		return -EINVAL;
469 
470 	int_data = *(u32 *)(key_type + 1);
471 	/* bpf array can only take a u32 key. This check makes sure
472 	 * that the btf matches the attr used during map_create.
473 	 */
474 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
475 		return -EINVAL;
476 
477 	return 0;
478 }
479 
480 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
481 {
482 	struct bpf_array *array = container_of(map, struct bpf_array, map);
483 	pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
484 
485 	if (!(map->map_flags & BPF_F_MMAPABLE))
486 		return -EINVAL;
487 
488 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
489 	    PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
490 		return -EINVAL;
491 
492 	return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
493 				   vma->vm_pgoff + pgoff);
494 }
495 
496 static bool array_map_meta_equal(const struct bpf_map *meta0,
497 				 const struct bpf_map *meta1)
498 {
499 	return meta0->max_entries == meta1->max_entries &&
500 		bpf_map_meta_equal(meta0, meta1);
501 }
502 
503 struct bpf_iter_seq_array_map_info {
504 	struct bpf_map *map;
505 	void *percpu_value_buf;
506 	u32 index;
507 };
508 
509 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
510 {
511 	struct bpf_iter_seq_array_map_info *info = seq->private;
512 	struct bpf_map *map = info->map;
513 	struct bpf_array *array;
514 	u32 index;
515 
516 	if (info->index >= map->max_entries)
517 		return NULL;
518 
519 	if (*pos == 0)
520 		++*pos;
521 	array = container_of(map, struct bpf_array, map);
522 	index = info->index & array->index_mask;
523 	if (info->percpu_value_buf)
524 	       return array->pptrs[index];
525 	return array->value + array->elem_size * index;
526 }
527 
528 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
529 {
530 	struct bpf_iter_seq_array_map_info *info = seq->private;
531 	struct bpf_map *map = info->map;
532 	struct bpf_array *array;
533 	u32 index;
534 
535 	++*pos;
536 	++info->index;
537 	if (info->index >= map->max_entries)
538 		return NULL;
539 
540 	array = container_of(map, struct bpf_array, map);
541 	index = info->index & array->index_mask;
542 	if (info->percpu_value_buf)
543 	       return array->pptrs[index];
544 	return array->value + array->elem_size * index;
545 }
546 
547 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
548 {
549 	struct bpf_iter_seq_array_map_info *info = seq->private;
550 	struct bpf_iter__bpf_map_elem ctx = {};
551 	struct bpf_map *map = info->map;
552 	struct bpf_iter_meta meta;
553 	struct bpf_prog *prog;
554 	int off = 0, cpu = 0;
555 	void __percpu **pptr;
556 	u32 size;
557 
558 	meta.seq = seq;
559 	prog = bpf_iter_get_info(&meta, v == NULL);
560 	if (!prog)
561 		return 0;
562 
563 	ctx.meta = &meta;
564 	ctx.map = info->map;
565 	if (v) {
566 		ctx.key = &info->index;
567 
568 		if (!info->percpu_value_buf) {
569 			ctx.value = v;
570 		} else {
571 			pptr = v;
572 			size = round_up(map->value_size, 8);
573 			for_each_possible_cpu(cpu) {
574 				bpf_long_memcpy(info->percpu_value_buf + off,
575 						per_cpu_ptr(pptr, cpu),
576 						size);
577 				off += size;
578 			}
579 			ctx.value = info->percpu_value_buf;
580 		}
581 	}
582 
583 	return bpf_iter_run_prog(prog, &ctx);
584 }
585 
586 static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
587 {
588 	return __bpf_array_map_seq_show(seq, v);
589 }
590 
591 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
592 {
593 	if (!v)
594 		(void)__bpf_array_map_seq_show(seq, NULL);
595 }
596 
597 static int bpf_iter_init_array_map(void *priv_data,
598 				   struct bpf_iter_aux_info *aux)
599 {
600 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
601 	struct bpf_map *map = aux->map;
602 	void *value_buf;
603 	u32 buf_size;
604 
605 	if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
606 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
607 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
608 		if (!value_buf)
609 			return -ENOMEM;
610 
611 		seq_info->percpu_value_buf = value_buf;
612 	}
613 
614 	seq_info->map = map;
615 	return 0;
616 }
617 
618 static void bpf_iter_fini_array_map(void *priv_data)
619 {
620 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
621 
622 	kfree(seq_info->percpu_value_buf);
623 }
624 
625 static const struct seq_operations bpf_array_map_seq_ops = {
626 	.start	= bpf_array_map_seq_start,
627 	.next	= bpf_array_map_seq_next,
628 	.stop	= bpf_array_map_seq_stop,
629 	.show	= bpf_array_map_seq_show,
630 };
631 
632 static const struct bpf_iter_seq_info iter_seq_info = {
633 	.seq_ops		= &bpf_array_map_seq_ops,
634 	.init_seq_private	= bpf_iter_init_array_map,
635 	.fini_seq_private	= bpf_iter_fini_array_map,
636 	.seq_priv_size		= sizeof(struct bpf_iter_seq_array_map_info),
637 };
638 
639 static int array_map_btf_id;
640 const struct bpf_map_ops array_map_ops = {
641 	.map_meta_equal = array_map_meta_equal,
642 	.map_alloc_check = array_map_alloc_check,
643 	.map_alloc = array_map_alloc,
644 	.map_free = array_map_free,
645 	.map_get_next_key = array_map_get_next_key,
646 	.map_lookup_elem = array_map_lookup_elem,
647 	.map_update_elem = array_map_update_elem,
648 	.map_delete_elem = array_map_delete_elem,
649 	.map_gen_lookup = array_map_gen_lookup,
650 	.map_direct_value_addr = array_map_direct_value_addr,
651 	.map_direct_value_meta = array_map_direct_value_meta,
652 	.map_mmap = array_map_mmap,
653 	.map_seq_show_elem = array_map_seq_show_elem,
654 	.map_check_btf = array_map_check_btf,
655 	.map_lookup_batch = generic_map_lookup_batch,
656 	.map_update_batch = generic_map_update_batch,
657 	.map_btf_name = "bpf_array",
658 	.map_btf_id = &array_map_btf_id,
659 	.iter_seq_info = &iter_seq_info,
660 };
661 
662 static int percpu_array_map_btf_id;
663 const struct bpf_map_ops percpu_array_map_ops = {
664 	.map_meta_equal = bpf_map_meta_equal,
665 	.map_alloc_check = array_map_alloc_check,
666 	.map_alloc = array_map_alloc,
667 	.map_free = array_map_free,
668 	.map_get_next_key = array_map_get_next_key,
669 	.map_lookup_elem = percpu_array_map_lookup_elem,
670 	.map_update_elem = array_map_update_elem,
671 	.map_delete_elem = array_map_delete_elem,
672 	.map_seq_show_elem = percpu_array_map_seq_show_elem,
673 	.map_check_btf = array_map_check_btf,
674 	.map_btf_name = "bpf_array",
675 	.map_btf_id = &percpu_array_map_btf_id,
676 	.iter_seq_info = &iter_seq_info,
677 };
678 
679 static int fd_array_map_alloc_check(union bpf_attr *attr)
680 {
681 	/* only file descriptors can be stored in this type of map */
682 	if (attr->value_size != sizeof(u32))
683 		return -EINVAL;
684 	/* Program read-only/write-only not supported for special maps yet. */
685 	if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
686 		return -EINVAL;
687 	return array_map_alloc_check(attr);
688 }
689 
690 static void fd_array_map_free(struct bpf_map *map)
691 {
692 	struct bpf_array *array = container_of(map, struct bpf_array, map);
693 	int i;
694 
695 	/* make sure it's empty */
696 	for (i = 0; i < array->map.max_entries; i++)
697 		BUG_ON(array->ptrs[i] != NULL);
698 
699 	bpf_map_area_free(array);
700 }
701 
702 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
703 {
704 	return ERR_PTR(-EOPNOTSUPP);
705 }
706 
707 /* only called from syscall */
708 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
709 {
710 	void **elem, *ptr;
711 	int ret =  0;
712 
713 	if (!map->ops->map_fd_sys_lookup_elem)
714 		return -ENOTSUPP;
715 
716 	rcu_read_lock();
717 	elem = array_map_lookup_elem(map, key);
718 	if (elem && (ptr = READ_ONCE(*elem)))
719 		*value = map->ops->map_fd_sys_lookup_elem(ptr);
720 	else
721 		ret = -ENOENT;
722 	rcu_read_unlock();
723 
724 	return ret;
725 }
726 
727 /* only called from syscall */
728 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
729 				 void *key, void *value, u64 map_flags)
730 {
731 	struct bpf_array *array = container_of(map, struct bpf_array, map);
732 	void *new_ptr, *old_ptr;
733 	u32 index = *(u32 *)key, ufd;
734 
735 	if (map_flags != BPF_ANY)
736 		return -EINVAL;
737 
738 	if (index >= array->map.max_entries)
739 		return -E2BIG;
740 
741 	ufd = *(u32 *)value;
742 	new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
743 	if (IS_ERR(new_ptr))
744 		return PTR_ERR(new_ptr);
745 
746 	if (map->ops->map_poke_run) {
747 		mutex_lock(&array->aux->poke_mutex);
748 		old_ptr = xchg(array->ptrs + index, new_ptr);
749 		map->ops->map_poke_run(map, index, old_ptr, new_ptr);
750 		mutex_unlock(&array->aux->poke_mutex);
751 	} else {
752 		old_ptr = xchg(array->ptrs + index, new_ptr);
753 	}
754 
755 	if (old_ptr)
756 		map->ops->map_fd_put_ptr(old_ptr);
757 	return 0;
758 }
759 
760 static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
761 {
762 	struct bpf_array *array = container_of(map, struct bpf_array, map);
763 	void *old_ptr;
764 	u32 index = *(u32 *)key;
765 
766 	if (index >= array->map.max_entries)
767 		return -E2BIG;
768 
769 	if (map->ops->map_poke_run) {
770 		mutex_lock(&array->aux->poke_mutex);
771 		old_ptr = xchg(array->ptrs + index, NULL);
772 		map->ops->map_poke_run(map, index, old_ptr, NULL);
773 		mutex_unlock(&array->aux->poke_mutex);
774 	} else {
775 		old_ptr = xchg(array->ptrs + index, NULL);
776 	}
777 
778 	if (old_ptr) {
779 		map->ops->map_fd_put_ptr(old_ptr);
780 		return 0;
781 	} else {
782 		return -ENOENT;
783 	}
784 }
785 
786 static void *prog_fd_array_get_ptr(struct bpf_map *map,
787 				   struct file *map_file, int fd)
788 {
789 	struct bpf_array *array = container_of(map, struct bpf_array, map);
790 	struct bpf_prog *prog = bpf_prog_get(fd);
791 
792 	if (IS_ERR(prog))
793 		return prog;
794 
795 	if (!bpf_prog_array_compatible(array, prog)) {
796 		bpf_prog_put(prog);
797 		return ERR_PTR(-EINVAL);
798 	}
799 
800 	return prog;
801 }
802 
803 static void prog_fd_array_put_ptr(void *ptr)
804 {
805 	bpf_prog_put(ptr);
806 }
807 
808 static u32 prog_fd_array_sys_lookup_elem(void *ptr)
809 {
810 	return ((struct bpf_prog *)ptr)->aux->id;
811 }
812 
813 /* decrement refcnt of all bpf_progs that are stored in this map */
814 static void bpf_fd_array_map_clear(struct bpf_map *map)
815 {
816 	struct bpf_array *array = container_of(map, struct bpf_array, map);
817 	int i;
818 
819 	for (i = 0; i < array->map.max_entries; i++)
820 		fd_array_map_delete_elem(map, &i);
821 }
822 
823 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
824 					 struct seq_file *m)
825 {
826 	void **elem, *ptr;
827 	u32 prog_id;
828 
829 	rcu_read_lock();
830 
831 	elem = array_map_lookup_elem(map, key);
832 	if (elem) {
833 		ptr = READ_ONCE(*elem);
834 		if (ptr) {
835 			seq_printf(m, "%u: ", *(u32 *)key);
836 			prog_id = prog_fd_array_sys_lookup_elem(ptr);
837 			btf_type_seq_show(map->btf, map->btf_value_type_id,
838 					  &prog_id, m);
839 			seq_puts(m, "\n");
840 		}
841 	}
842 
843 	rcu_read_unlock();
844 }
845 
846 struct prog_poke_elem {
847 	struct list_head list;
848 	struct bpf_prog_aux *aux;
849 };
850 
851 static int prog_array_map_poke_track(struct bpf_map *map,
852 				     struct bpf_prog_aux *prog_aux)
853 {
854 	struct prog_poke_elem *elem;
855 	struct bpf_array_aux *aux;
856 	int ret = 0;
857 
858 	aux = container_of(map, struct bpf_array, map)->aux;
859 	mutex_lock(&aux->poke_mutex);
860 	list_for_each_entry(elem, &aux->poke_progs, list) {
861 		if (elem->aux == prog_aux)
862 			goto out;
863 	}
864 
865 	elem = kmalloc(sizeof(*elem), GFP_KERNEL);
866 	if (!elem) {
867 		ret = -ENOMEM;
868 		goto out;
869 	}
870 
871 	INIT_LIST_HEAD(&elem->list);
872 	/* We must track the program's aux info at this point in time
873 	 * since the program pointer itself may not be stable yet, see
874 	 * also comment in prog_array_map_poke_run().
875 	 */
876 	elem->aux = prog_aux;
877 
878 	list_add_tail(&elem->list, &aux->poke_progs);
879 out:
880 	mutex_unlock(&aux->poke_mutex);
881 	return ret;
882 }
883 
884 static void prog_array_map_poke_untrack(struct bpf_map *map,
885 					struct bpf_prog_aux *prog_aux)
886 {
887 	struct prog_poke_elem *elem, *tmp;
888 	struct bpf_array_aux *aux;
889 
890 	aux = container_of(map, struct bpf_array, map)->aux;
891 	mutex_lock(&aux->poke_mutex);
892 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
893 		if (elem->aux == prog_aux) {
894 			list_del_init(&elem->list);
895 			kfree(elem);
896 			break;
897 		}
898 	}
899 	mutex_unlock(&aux->poke_mutex);
900 }
901 
902 static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
903 				    struct bpf_prog *old,
904 				    struct bpf_prog *new)
905 {
906 	u8 *old_addr, *new_addr, *old_bypass_addr;
907 	struct prog_poke_elem *elem;
908 	struct bpf_array_aux *aux;
909 
910 	aux = container_of(map, struct bpf_array, map)->aux;
911 	WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
912 
913 	list_for_each_entry(elem, &aux->poke_progs, list) {
914 		struct bpf_jit_poke_descriptor *poke;
915 		int i, ret;
916 
917 		for (i = 0; i < elem->aux->size_poke_tab; i++) {
918 			poke = &elem->aux->poke_tab[i];
919 
920 			/* Few things to be aware of:
921 			 *
922 			 * 1) We can only ever access aux in this context, but
923 			 *    not aux->prog since it might not be stable yet and
924 			 *    there could be danger of use after free otherwise.
925 			 * 2) Initially when we start tracking aux, the program
926 			 *    is not JITed yet and also does not have a kallsyms
927 			 *    entry. We skip these as poke->tailcall_target_stable
928 			 *    is not active yet. The JIT will do the final fixup
929 			 *    before setting it stable. The various
930 			 *    poke->tailcall_target_stable are successively
931 			 *    activated, so tail call updates can arrive from here
932 			 *    while JIT is still finishing its final fixup for
933 			 *    non-activated poke entries.
934 			 * 3) On program teardown, the program's kallsym entry gets
935 			 *    removed out of RCU callback, but we can only untrack
936 			 *    from sleepable context, therefore bpf_arch_text_poke()
937 			 *    might not see that this is in BPF text section and
938 			 *    bails out with -EINVAL. As these are unreachable since
939 			 *    RCU grace period already passed, we simply skip them.
940 			 * 4) Also programs reaching refcount of zero while patching
941 			 *    is in progress is okay since we're protected under
942 			 *    poke_mutex and untrack the programs before the JIT
943 			 *    buffer is freed. When we're still in the middle of
944 			 *    patching and suddenly kallsyms entry of the program
945 			 *    gets evicted, we just skip the rest which is fine due
946 			 *    to point 3).
947 			 * 5) Any other error happening below from bpf_arch_text_poke()
948 			 *    is a unexpected bug.
949 			 */
950 			if (!READ_ONCE(poke->tailcall_target_stable))
951 				continue;
952 			if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
953 				continue;
954 			if (poke->tail_call.map != map ||
955 			    poke->tail_call.key != key)
956 				continue;
957 
958 			old_bypass_addr = old ? NULL : poke->bypass_addr;
959 			old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
960 			new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
961 
962 			if (new) {
963 				ret = bpf_arch_text_poke(poke->tailcall_target,
964 							 BPF_MOD_JUMP,
965 							 old_addr, new_addr);
966 				BUG_ON(ret < 0 && ret != -EINVAL);
967 				if (!old) {
968 					ret = bpf_arch_text_poke(poke->tailcall_bypass,
969 								 BPF_MOD_JUMP,
970 								 poke->bypass_addr,
971 								 NULL);
972 					BUG_ON(ret < 0 && ret != -EINVAL);
973 				}
974 			} else {
975 				ret = bpf_arch_text_poke(poke->tailcall_bypass,
976 							 BPF_MOD_JUMP,
977 							 old_bypass_addr,
978 							 poke->bypass_addr);
979 				BUG_ON(ret < 0 && ret != -EINVAL);
980 				/* let other CPUs finish the execution of program
981 				 * so that it will not possible to expose them
982 				 * to invalid nop, stack unwind, nop state
983 				 */
984 				if (!ret)
985 					synchronize_rcu();
986 				ret = bpf_arch_text_poke(poke->tailcall_target,
987 							 BPF_MOD_JUMP,
988 							 old_addr, NULL);
989 				BUG_ON(ret < 0 && ret != -EINVAL);
990 			}
991 		}
992 	}
993 }
994 
995 static void prog_array_map_clear_deferred(struct work_struct *work)
996 {
997 	struct bpf_map *map = container_of(work, struct bpf_array_aux,
998 					   work)->map;
999 	bpf_fd_array_map_clear(map);
1000 	bpf_map_put(map);
1001 }
1002 
1003 static void prog_array_map_clear(struct bpf_map *map)
1004 {
1005 	struct bpf_array_aux *aux = container_of(map, struct bpf_array,
1006 						 map)->aux;
1007 	bpf_map_inc(map);
1008 	schedule_work(&aux->work);
1009 }
1010 
1011 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
1012 {
1013 	struct bpf_array_aux *aux;
1014 	struct bpf_map *map;
1015 
1016 	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
1017 	if (!aux)
1018 		return ERR_PTR(-ENOMEM);
1019 
1020 	INIT_WORK(&aux->work, prog_array_map_clear_deferred);
1021 	INIT_LIST_HEAD(&aux->poke_progs);
1022 	mutex_init(&aux->poke_mutex);
1023 
1024 	map = array_map_alloc(attr);
1025 	if (IS_ERR(map)) {
1026 		kfree(aux);
1027 		return map;
1028 	}
1029 
1030 	container_of(map, struct bpf_array, map)->aux = aux;
1031 	aux->map = map;
1032 
1033 	return map;
1034 }
1035 
1036 static void prog_array_map_free(struct bpf_map *map)
1037 {
1038 	struct prog_poke_elem *elem, *tmp;
1039 	struct bpf_array_aux *aux;
1040 
1041 	aux = container_of(map, struct bpf_array, map)->aux;
1042 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
1043 		list_del_init(&elem->list);
1044 		kfree(elem);
1045 	}
1046 	kfree(aux);
1047 	fd_array_map_free(map);
1048 }
1049 
1050 /* prog_array->aux->{type,jited} is a runtime binding.
1051  * Doing static check alone in the verifier is not enough.
1052  * Thus, prog_array_map cannot be used as an inner_map
1053  * and map_meta_equal is not implemented.
1054  */
1055 static int prog_array_map_btf_id;
1056 const struct bpf_map_ops prog_array_map_ops = {
1057 	.map_alloc_check = fd_array_map_alloc_check,
1058 	.map_alloc = prog_array_map_alloc,
1059 	.map_free = prog_array_map_free,
1060 	.map_poke_track = prog_array_map_poke_track,
1061 	.map_poke_untrack = prog_array_map_poke_untrack,
1062 	.map_poke_run = prog_array_map_poke_run,
1063 	.map_get_next_key = array_map_get_next_key,
1064 	.map_lookup_elem = fd_array_map_lookup_elem,
1065 	.map_delete_elem = fd_array_map_delete_elem,
1066 	.map_fd_get_ptr = prog_fd_array_get_ptr,
1067 	.map_fd_put_ptr = prog_fd_array_put_ptr,
1068 	.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
1069 	.map_release_uref = prog_array_map_clear,
1070 	.map_seq_show_elem = prog_array_map_seq_show_elem,
1071 	.map_btf_name = "bpf_array",
1072 	.map_btf_id = &prog_array_map_btf_id,
1073 };
1074 
1075 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
1076 						   struct file *map_file)
1077 {
1078 	struct bpf_event_entry *ee;
1079 
1080 	ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
1081 	if (ee) {
1082 		ee->event = perf_file->private_data;
1083 		ee->perf_file = perf_file;
1084 		ee->map_file = map_file;
1085 	}
1086 
1087 	return ee;
1088 }
1089 
1090 static void __bpf_event_entry_free(struct rcu_head *rcu)
1091 {
1092 	struct bpf_event_entry *ee;
1093 
1094 	ee = container_of(rcu, struct bpf_event_entry, rcu);
1095 	fput(ee->perf_file);
1096 	kfree(ee);
1097 }
1098 
1099 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
1100 {
1101 	call_rcu(&ee->rcu, __bpf_event_entry_free);
1102 }
1103 
1104 static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
1105 					 struct file *map_file, int fd)
1106 {
1107 	struct bpf_event_entry *ee;
1108 	struct perf_event *event;
1109 	struct file *perf_file;
1110 	u64 value;
1111 
1112 	perf_file = perf_event_get(fd);
1113 	if (IS_ERR(perf_file))
1114 		return perf_file;
1115 
1116 	ee = ERR_PTR(-EOPNOTSUPP);
1117 	event = perf_file->private_data;
1118 	if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
1119 		goto err_out;
1120 
1121 	ee = bpf_event_entry_gen(perf_file, map_file);
1122 	if (ee)
1123 		return ee;
1124 	ee = ERR_PTR(-ENOMEM);
1125 err_out:
1126 	fput(perf_file);
1127 	return ee;
1128 }
1129 
1130 static void perf_event_fd_array_put_ptr(void *ptr)
1131 {
1132 	bpf_event_entry_free_rcu(ptr);
1133 }
1134 
1135 static void perf_event_fd_array_release(struct bpf_map *map,
1136 					struct file *map_file)
1137 {
1138 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1139 	struct bpf_event_entry *ee;
1140 	int i;
1141 
1142 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1143 		return;
1144 
1145 	rcu_read_lock();
1146 	for (i = 0; i < array->map.max_entries; i++) {
1147 		ee = READ_ONCE(array->ptrs[i]);
1148 		if (ee && ee->map_file == map_file)
1149 			fd_array_map_delete_elem(map, &i);
1150 	}
1151 	rcu_read_unlock();
1152 }
1153 
1154 static void perf_event_fd_array_map_free(struct bpf_map *map)
1155 {
1156 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1157 		bpf_fd_array_map_clear(map);
1158 	fd_array_map_free(map);
1159 }
1160 
1161 static int perf_event_array_map_btf_id;
1162 const struct bpf_map_ops perf_event_array_map_ops = {
1163 	.map_meta_equal = bpf_map_meta_equal,
1164 	.map_alloc_check = fd_array_map_alloc_check,
1165 	.map_alloc = array_map_alloc,
1166 	.map_free = perf_event_fd_array_map_free,
1167 	.map_get_next_key = array_map_get_next_key,
1168 	.map_lookup_elem = fd_array_map_lookup_elem,
1169 	.map_delete_elem = fd_array_map_delete_elem,
1170 	.map_fd_get_ptr = perf_event_fd_array_get_ptr,
1171 	.map_fd_put_ptr = perf_event_fd_array_put_ptr,
1172 	.map_release = perf_event_fd_array_release,
1173 	.map_check_btf = map_check_no_btf,
1174 	.map_btf_name = "bpf_array",
1175 	.map_btf_id = &perf_event_array_map_btf_id,
1176 };
1177 
1178 #ifdef CONFIG_CGROUPS
1179 static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
1180 				     struct file *map_file /* not used */,
1181 				     int fd)
1182 {
1183 	return cgroup_get_from_fd(fd);
1184 }
1185 
1186 static void cgroup_fd_array_put_ptr(void *ptr)
1187 {
1188 	/* cgroup_put free cgrp after a rcu grace period */
1189 	cgroup_put(ptr);
1190 }
1191 
1192 static void cgroup_fd_array_free(struct bpf_map *map)
1193 {
1194 	bpf_fd_array_map_clear(map);
1195 	fd_array_map_free(map);
1196 }
1197 
1198 static int cgroup_array_map_btf_id;
1199 const struct bpf_map_ops cgroup_array_map_ops = {
1200 	.map_meta_equal = bpf_map_meta_equal,
1201 	.map_alloc_check = fd_array_map_alloc_check,
1202 	.map_alloc = array_map_alloc,
1203 	.map_free = cgroup_fd_array_free,
1204 	.map_get_next_key = array_map_get_next_key,
1205 	.map_lookup_elem = fd_array_map_lookup_elem,
1206 	.map_delete_elem = fd_array_map_delete_elem,
1207 	.map_fd_get_ptr = cgroup_fd_array_get_ptr,
1208 	.map_fd_put_ptr = cgroup_fd_array_put_ptr,
1209 	.map_check_btf = map_check_no_btf,
1210 	.map_btf_name = "bpf_array",
1211 	.map_btf_id = &cgroup_array_map_btf_id,
1212 };
1213 #endif
1214 
1215 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
1216 {
1217 	struct bpf_map *map, *inner_map_meta;
1218 
1219 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1220 	if (IS_ERR(inner_map_meta))
1221 		return inner_map_meta;
1222 
1223 	map = array_map_alloc(attr);
1224 	if (IS_ERR(map)) {
1225 		bpf_map_meta_free(inner_map_meta);
1226 		return map;
1227 	}
1228 
1229 	map->inner_map_meta = inner_map_meta;
1230 
1231 	return map;
1232 }
1233 
1234 static void array_of_map_free(struct bpf_map *map)
1235 {
1236 	/* map->inner_map_meta is only accessed by syscall which
1237 	 * is protected by fdget/fdput.
1238 	 */
1239 	bpf_map_meta_free(map->inner_map_meta);
1240 	bpf_fd_array_map_clear(map);
1241 	fd_array_map_free(map);
1242 }
1243 
1244 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
1245 {
1246 	struct bpf_map **inner_map = array_map_lookup_elem(map, key);
1247 
1248 	if (!inner_map)
1249 		return NULL;
1250 
1251 	return READ_ONCE(*inner_map);
1252 }
1253 
1254 static u32 array_of_map_gen_lookup(struct bpf_map *map,
1255 				   struct bpf_insn *insn_buf)
1256 {
1257 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1258 	u32 elem_size = round_up(map->value_size, 8);
1259 	struct bpf_insn *insn = insn_buf;
1260 	const int ret = BPF_REG_0;
1261 	const int map_ptr = BPF_REG_1;
1262 	const int index = BPF_REG_2;
1263 
1264 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
1265 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
1266 	if (!map->bypass_spec_v1) {
1267 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
1268 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
1269 	} else {
1270 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
1271 	}
1272 	if (is_power_of_2(elem_size))
1273 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
1274 	else
1275 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
1276 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
1277 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1278 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
1279 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
1280 	*insn++ = BPF_MOV64_IMM(ret, 0);
1281 
1282 	return insn - insn_buf;
1283 }
1284 
1285 static int array_of_maps_map_btf_id;
1286 const struct bpf_map_ops array_of_maps_map_ops = {
1287 	.map_alloc_check = fd_array_map_alloc_check,
1288 	.map_alloc = array_of_map_alloc,
1289 	.map_free = array_of_map_free,
1290 	.map_get_next_key = array_map_get_next_key,
1291 	.map_lookup_elem = array_of_map_lookup_elem,
1292 	.map_delete_elem = fd_array_map_delete_elem,
1293 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1294 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1295 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1296 	.map_gen_lookup = array_of_map_gen_lookup,
1297 	.map_check_btf = map_check_no_btf,
1298 	.map_btf_name = "bpf_array",
1299 	.map_btf_id = &array_of_maps_map_btf_id,
1300 };
1301