1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 16 #include "map_in_map.h" 17 18 #define ARRAY_CREATE_FLAG_MASK \ 19 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 20 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 21 22 static void bpf_array_free_percpu(struct bpf_array *array) 23 { 24 int i; 25 26 for (i = 0; i < array->map.max_entries; i++) { 27 free_percpu(array->pptrs[i]); 28 cond_resched(); 29 } 30 } 31 32 static int bpf_array_alloc_percpu(struct bpf_array *array) 33 { 34 void __percpu *ptr; 35 int i; 36 37 for (i = 0; i < array->map.max_entries; i++) { 38 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 39 GFP_USER | __GFP_NOWARN); 40 if (!ptr) { 41 bpf_array_free_percpu(array); 42 return -ENOMEM; 43 } 44 array->pptrs[i] = ptr; 45 cond_resched(); 46 } 47 48 return 0; 49 } 50 51 /* Called from syscall */ 52 int array_map_alloc_check(union bpf_attr *attr) 53 { 54 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 55 int numa_node = bpf_map_attr_numa_node(attr); 56 57 /* check sanity of attributes */ 58 if (attr->max_entries == 0 || attr->key_size != 4 || 59 attr->value_size == 0 || 60 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 61 !bpf_map_flags_access_ok(attr->map_flags) || 62 (percpu && numa_node != NUMA_NO_NODE)) 63 return -EINVAL; 64 65 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 66 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 67 return -EINVAL; 68 69 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 70 attr->map_flags & BPF_F_PRESERVE_ELEMS) 71 return -EINVAL; 72 73 if (attr->value_size > KMALLOC_MAX_SIZE) 74 /* if value_size is bigger, the user space won't be able to 75 * access the elements. 76 */ 77 return -E2BIG; 78 79 return 0; 80 } 81 82 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 83 { 84 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 85 int numa_node = bpf_map_attr_numa_node(attr); 86 u32 elem_size, index_mask, max_entries; 87 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 88 u64 array_size, mask64; 89 struct bpf_array *array; 90 91 elem_size = round_up(attr->value_size, 8); 92 93 max_entries = attr->max_entries; 94 95 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 96 * upper most bit set in u32 space is undefined behavior due to 97 * resulting 1U << 32, so do it manually here in u64 space. 98 */ 99 mask64 = fls_long(max_entries - 1); 100 mask64 = 1ULL << mask64; 101 mask64 -= 1; 102 103 index_mask = mask64; 104 if (!bypass_spec_v1) { 105 /* round up array size to nearest power of 2, 106 * since cpu will speculate within index_mask limits 107 */ 108 max_entries = index_mask + 1; 109 /* Check for overflows. */ 110 if (max_entries < attr->max_entries) 111 return ERR_PTR(-E2BIG); 112 } 113 114 array_size = sizeof(*array); 115 if (percpu) { 116 array_size += (u64) max_entries * sizeof(void *); 117 } else { 118 /* rely on vmalloc() to return page-aligned memory and 119 * ensure array->value is exactly page-aligned 120 */ 121 if (attr->map_flags & BPF_F_MMAPABLE) { 122 array_size = PAGE_ALIGN(array_size); 123 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 124 } else { 125 array_size += (u64) max_entries * elem_size; 126 } 127 } 128 129 /* allocate all map elements and zero-initialize them */ 130 if (attr->map_flags & BPF_F_MMAPABLE) { 131 void *data; 132 133 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 134 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 135 if (!data) 136 return ERR_PTR(-ENOMEM); 137 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 138 - offsetof(struct bpf_array, value); 139 } else { 140 array = bpf_map_area_alloc(array_size, numa_node); 141 } 142 if (!array) 143 return ERR_PTR(-ENOMEM); 144 array->index_mask = index_mask; 145 array->map.bypass_spec_v1 = bypass_spec_v1; 146 147 /* copy mandatory map attributes */ 148 bpf_map_init_from_attr(&array->map, attr); 149 array->elem_size = elem_size; 150 151 if (percpu && bpf_array_alloc_percpu(array)) { 152 bpf_map_area_free(array); 153 return ERR_PTR(-ENOMEM); 154 } 155 156 return &array->map; 157 } 158 159 /* Called from syscall or from eBPF program */ 160 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 161 { 162 struct bpf_array *array = container_of(map, struct bpf_array, map); 163 u32 index = *(u32 *)key; 164 165 if (unlikely(index >= array->map.max_entries)) 166 return NULL; 167 168 return array->value + array->elem_size * (index & array->index_mask); 169 } 170 171 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 172 u32 off) 173 { 174 struct bpf_array *array = container_of(map, struct bpf_array, map); 175 176 if (map->max_entries != 1) 177 return -ENOTSUPP; 178 if (off >= map->value_size) 179 return -EINVAL; 180 181 *imm = (unsigned long)array->value; 182 return 0; 183 } 184 185 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 186 u32 *off) 187 { 188 struct bpf_array *array = container_of(map, struct bpf_array, map); 189 u64 base = (unsigned long)array->value; 190 u64 range = array->elem_size; 191 192 if (map->max_entries != 1) 193 return -ENOTSUPP; 194 if (imm < base || imm >= base + range) 195 return -ENOENT; 196 197 *off = imm - base; 198 return 0; 199 } 200 201 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 202 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 203 { 204 struct bpf_array *array = container_of(map, struct bpf_array, map); 205 struct bpf_insn *insn = insn_buf; 206 u32 elem_size = round_up(map->value_size, 8); 207 const int ret = BPF_REG_0; 208 const int map_ptr = BPF_REG_1; 209 const int index = BPF_REG_2; 210 211 if (map->map_flags & BPF_F_INNER_MAP) 212 return -EOPNOTSUPP; 213 214 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 215 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 216 if (!map->bypass_spec_v1) { 217 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 218 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 219 } else { 220 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 221 } 222 223 if (is_power_of_2(elem_size)) { 224 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 225 } else { 226 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 227 } 228 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 229 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 230 *insn++ = BPF_MOV64_IMM(ret, 0); 231 return insn - insn_buf; 232 } 233 234 /* Called from eBPF program */ 235 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 236 { 237 struct bpf_array *array = container_of(map, struct bpf_array, map); 238 u32 index = *(u32 *)key; 239 240 if (unlikely(index >= array->map.max_entries)) 241 return NULL; 242 243 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 244 } 245 246 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 247 { 248 struct bpf_array *array = container_of(map, struct bpf_array, map); 249 u32 index = *(u32 *)key; 250 251 if (cpu >= nr_cpu_ids) 252 return NULL; 253 254 if (unlikely(index >= array->map.max_entries)) 255 return NULL; 256 257 return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); 258 } 259 260 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 261 { 262 struct bpf_array *array = container_of(map, struct bpf_array, map); 263 u32 index = *(u32 *)key; 264 void __percpu *pptr; 265 int cpu, off = 0; 266 u32 size; 267 268 if (unlikely(index >= array->map.max_entries)) 269 return -ENOENT; 270 271 /* per_cpu areas are zero-filled and bpf programs can only 272 * access 'value_size' of them, so copying rounded areas 273 * will not leak any kernel data 274 */ 275 size = round_up(map->value_size, 8); 276 rcu_read_lock(); 277 pptr = array->pptrs[index & array->index_mask]; 278 for_each_possible_cpu(cpu) { 279 bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); 280 off += size; 281 } 282 rcu_read_unlock(); 283 return 0; 284 } 285 286 /* Called from syscall */ 287 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 288 { 289 struct bpf_array *array = container_of(map, struct bpf_array, map); 290 u32 index = key ? *(u32 *)key : U32_MAX; 291 u32 *next = (u32 *)next_key; 292 293 if (index >= array->map.max_entries) { 294 *next = 0; 295 return 0; 296 } 297 298 if (index == array->map.max_entries - 1) 299 return -ENOENT; 300 301 *next = index + 1; 302 return 0; 303 } 304 305 static void check_and_free_fields(struct bpf_array *arr, void *val) 306 { 307 if (map_value_has_timer(&arr->map)) 308 bpf_timer_cancel_and_free(val + arr->map.timer_off); 309 if (map_value_has_kptrs(&arr->map)) 310 bpf_map_free_kptrs(&arr->map, val); 311 } 312 313 /* Called from syscall or from eBPF program */ 314 static int array_map_update_elem(struct bpf_map *map, void *key, void *value, 315 u64 map_flags) 316 { 317 struct bpf_array *array = container_of(map, struct bpf_array, map); 318 u32 index = *(u32 *)key; 319 char *val; 320 321 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 322 /* unknown flags */ 323 return -EINVAL; 324 325 if (unlikely(index >= array->map.max_entries)) 326 /* all elements were pre-allocated, cannot insert a new one */ 327 return -E2BIG; 328 329 if (unlikely(map_flags & BPF_NOEXIST)) 330 /* all elements already exist */ 331 return -EEXIST; 332 333 if (unlikely((map_flags & BPF_F_LOCK) && 334 !map_value_has_spin_lock(map))) 335 return -EINVAL; 336 337 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 338 memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), 339 value, map->value_size); 340 } else { 341 val = array->value + 342 array->elem_size * (index & array->index_mask); 343 if (map_flags & BPF_F_LOCK) 344 copy_map_value_locked(map, val, value, false); 345 else 346 copy_map_value(map, val, value); 347 check_and_free_fields(array, val); 348 } 349 return 0; 350 } 351 352 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 353 u64 map_flags) 354 { 355 struct bpf_array *array = container_of(map, struct bpf_array, map); 356 u32 index = *(u32 *)key; 357 void __percpu *pptr; 358 int cpu, off = 0; 359 u32 size; 360 361 if (unlikely(map_flags > BPF_EXIST)) 362 /* unknown flags */ 363 return -EINVAL; 364 365 if (unlikely(index >= array->map.max_entries)) 366 /* all elements were pre-allocated, cannot insert a new one */ 367 return -E2BIG; 368 369 if (unlikely(map_flags == BPF_NOEXIST)) 370 /* all elements already exist */ 371 return -EEXIST; 372 373 /* the user space will provide round_up(value_size, 8) bytes that 374 * will be copied into per-cpu area. bpf programs can only access 375 * value_size of it. During lookup the same extra bytes will be 376 * returned or zeros which were zero-filled by percpu_alloc, 377 * so no kernel data leaks possible 378 */ 379 size = round_up(map->value_size, 8); 380 rcu_read_lock(); 381 pptr = array->pptrs[index & array->index_mask]; 382 for_each_possible_cpu(cpu) { 383 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); 384 off += size; 385 } 386 rcu_read_unlock(); 387 return 0; 388 } 389 390 /* Called from syscall or from eBPF program */ 391 static int array_map_delete_elem(struct bpf_map *map, void *key) 392 { 393 return -EINVAL; 394 } 395 396 static void *array_map_vmalloc_addr(struct bpf_array *array) 397 { 398 return (void *)round_down((unsigned long)array, PAGE_SIZE); 399 } 400 401 static void array_map_free_timers(struct bpf_map *map) 402 { 403 struct bpf_array *array = container_of(map, struct bpf_array, map); 404 int i; 405 406 /* We don't reset or free kptr on uref dropping to zero. */ 407 if (!map_value_has_timer(map)) 408 return; 409 410 for (i = 0; i < array->map.max_entries; i++) 411 bpf_timer_cancel_and_free(array->value + array->elem_size * i + 412 map->timer_off); 413 } 414 415 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 416 static void array_map_free(struct bpf_map *map) 417 { 418 struct bpf_array *array = container_of(map, struct bpf_array, map); 419 int i; 420 421 if (map_value_has_kptrs(map)) { 422 for (i = 0; i < array->map.max_entries; i++) 423 bpf_map_free_kptrs(map, array->value + array->elem_size * i); 424 bpf_map_free_kptr_off_tab(map); 425 } 426 427 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 428 bpf_array_free_percpu(array); 429 430 if (array->map.map_flags & BPF_F_MMAPABLE) 431 bpf_map_area_free(array_map_vmalloc_addr(array)); 432 else 433 bpf_map_area_free(array); 434 } 435 436 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 437 struct seq_file *m) 438 { 439 void *value; 440 441 rcu_read_lock(); 442 443 value = array_map_lookup_elem(map, key); 444 if (!value) { 445 rcu_read_unlock(); 446 return; 447 } 448 449 if (map->btf_key_type_id) 450 seq_printf(m, "%u: ", *(u32 *)key); 451 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 452 seq_puts(m, "\n"); 453 454 rcu_read_unlock(); 455 } 456 457 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 458 struct seq_file *m) 459 { 460 struct bpf_array *array = container_of(map, struct bpf_array, map); 461 u32 index = *(u32 *)key; 462 void __percpu *pptr; 463 int cpu; 464 465 rcu_read_lock(); 466 467 seq_printf(m, "%u: {\n", *(u32 *)key); 468 pptr = array->pptrs[index & array->index_mask]; 469 for_each_possible_cpu(cpu) { 470 seq_printf(m, "\tcpu%d: ", cpu); 471 btf_type_seq_show(map->btf, map->btf_value_type_id, 472 per_cpu_ptr(pptr, cpu), m); 473 seq_puts(m, "\n"); 474 } 475 seq_puts(m, "}\n"); 476 477 rcu_read_unlock(); 478 } 479 480 static int array_map_check_btf(const struct bpf_map *map, 481 const struct btf *btf, 482 const struct btf_type *key_type, 483 const struct btf_type *value_type) 484 { 485 u32 int_data; 486 487 /* One exception for keyless BTF: .bss/.data/.rodata map */ 488 if (btf_type_is_void(key_type)) { 489 if (map->map_type != BPF_MAP_TYPE_ARRAY || 490 map->max_entries != 1) 491 return -EINVAL; 492 493 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 494 return -EINVAL; 495 496 return 0; 497 } 498 499 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 500 return -EINVAL; 501 502 int_data = *(u32 *)(key_type + 1); 503 /* bpf array can only take a u32 key. This check makes sure 504 * that the btf matches the attr used during map_create. 505 */ 506 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 507 return -EINVAL; 508 509 return 0; 510 } 511 512 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 513 { 514 struct bpf_array *array = container_of(map, struct bpf_array, map); 515 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 516 517 if (!(map->map_flags & BPF_F_MMAPABLE)) 518 return -EINVAL; 519 520 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 521 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 522 return -EINVAL; 523 524 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 525 vma->vm_pgoff + pgoff); 526 } 527 528 static bool array_map_meta_equal(const struct bpf_map *meta0, 529 const struct bpf_map *meta1) 530 { 531 if (!bpf_map_meta_equal(meta0, meta1)) 532 return false; 533 return meta0->map_flags & BPF_F_INNER_MAP ? true : 534 meta0->max_entries == meta1->max_entries; 535 } 536 537 struct bpf_iter_seq_array_map_info { 538 struct bpf_map *map; 539 void *percpu_value_buf; 540 u32 index; 541 }; 542 543 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 544 { 545 struct bpf_iter_seq_array_map_info *info = seq->private; 546 struct bpf_map *map = info->map; 547 struct bpf_array *array; 548 u32 index; 549 550 if (info->index >= map->max_entries) 551 return NULL; 552 553 if (*pos == 0) 554 ++*pos; 555 array = container_of(map, struct bpf_array, map); 556 index = info->index & array->index_mask; 557 if (info->percpu_value_buf) 558 return array->pptrs[index]; 559 return array->value + array->elem_size * index; 560 } 561 562 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 563 { 564 struct bpf_iter_seq_array_map_info *info = seq->private; 565 struct bpf_map *map = info->map; 566 struct bpf_array *array; 567 u32 index; 568 569 ++*pos; 570 ++info->index; 571 if (info->index >= map->max_entries) 572 return NULL; 573 574 array = container_of(map, struct bpf_array, map); 575 index = info->index & array->index_mask; 576 if (info->percpu_value_buf) 577 return array->pptrs[index]; 578 return array->value + array->elem_size * index; 579 } 580 581 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 582 { 583 struct bpf_iter_seq_array_map_info *info = seq->private; 584 struct bpf_iter__bpf_map_elem ctx = {}; 585 struct bpf_map *map = info->map; 586 struct bpf_iter_meta meta; 587 struct bpf_prog *prog; 588 int off = 0, cpu = 0; 589 void __percpu **pptr; 590 u32 size; 591 592 meta.seq = seq; 593 prog = bpf_iter_get_info(&meta, v == NULL); 594 if (!prog) 595 return 0; 596 597 ctx.meta = &meta; 598 ctx.map = info->map; 599 if (v) { 600 ctx.key = &info->index; 601 602 if (!info->percpu_value_buf) { 603 ctx.value = v; 604 } else { 605 pptr = v; 606 size = round_up(map->value_size, 8); 607 for_each_possible_cpu(cpu) { 608 bpf_long_memcpy(info->percpu_value_buf + off, 609 per_cpu_ptr(pptr, cpu), 610 size); 611 off += size; 612 } 613 ctx.value = info->percpu_value_buf; 614 } 615 } 616 617 return bpf_iter_run_prog(prog, &ctx); 618 } 619 620 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 621 { 622 return __bpf_array_map_seq_show(seq, v); 623 } 624 625 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 626 { 627 if (!v) 628 (void)__bpf_array_map_seq_show(seq, NULL); 629 } 630 631 static int bpf_iter_init_array_map(void *priv_data, 632 struct bpf_iter_aux_info *aux) 633 { 634 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 635 struct bpf_map *map = aux->map; 636 void *value_buf; 637 u32 buf_size; 638 639 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 640 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 641 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 642 if (!value_buf) 643 return -ENOMEM; 644 645 seq_info->percpu_value_buf = value_buf; 646 } 647 648 seq_info->map = map; 649 return 0; 650 } 651 652 static void bpf_iter_fini_array_map(void *priv_data) 653 { 654 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 655 656 kfree(seq_info->percpu_value_buf); 657 } 658 659 static const struct seq_operations bpf_array_map_seq_ops = { 660 .start = bpf_array_map_seq_start, 661 .next = bpf_array_map_seq_next, 662 .stop = bpf_array_map_seq_stop, 663 .show = bpf_array_map_seq_show, 664 }; 665 666 static const struct bpf_iter_seq_info iter_seq_info = { 667 .seq_ops = &bpf_array_map_seq_ops, 668 .init_seq_private = bpf_iter_init_array_map, 669 .fini_seq_private = bpf_iter_fini_array_map, 670 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 671 }; 672 673 static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, 674 void *callback_ctx, u64 flags) 675 { 676 u32 i, key, num_elems = 0; 677 struct bpf_array *array; 678 bool is_percpu; 679 u64 ret = 0; 680 void *val; 681 682 if (flags != 0) 683 return -EINVAL; 684 685 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 686 array = container_of(map, struct bpf_array, map); 687 if (is_percpu) 688 migrate_disable(); 689 for (i = 0; i < map->max_entries; i++) { 690 if (is_percpu) 691 val = this_cpu_ptr(array->pptrs[i]); 692 else 693 val = array->value + array->elem_size * i; 694 num_elems++; 695 key = i; 696 ret = callback_fn((u64)(long)map, (u64)(long)&key, 697 (u64)(long)val, (u64)(long)callback_ctx, 0); 698 /* return value: 0 - continue, 1 - stop and return */ 699 if (ret) 700 break; 701 } 702 703 if (is_percpu) 704 migrate_enable(); 705 return num_elems; 706 } 707 708 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) 709 const struct bpf_map_ops array_map_ops = { 710 .map_meta_equal = array_map_meta_equal, 711 .map_alloc_check = array_map_alloc_check, 712 .map_alloc = array_map_alloc, 713 .map_free = array_map_free, 714 .map_get_next_key = array_map_get_next_key, 715 .map_release_uref = array_map_free_timers, 716 .map_lookup_elem = array_map_lookup_elem, 717 .map_update_elem = array_map_update_elem, 718 .map_delete_elem = array_map_delete_elem, 719 .map_gen_lookup = array_map_gen_lookup, 720 .map_direct_value_addr = array_map_direct_value_addr, 721 .map_direct_value_meta = array_map_direct_value_meta, 722 .map_mmap = array_map_mmap, 723 .map_seq_show_elem = array_map_seq_show_elem, 724 .map_check_btf = array_map_check_btf, 725 .map_lookup_batch = generic_map_lookup_batch, 726 .map_update_batch = generic_map_update_batch, 727 .map_set_for_each_callback_args = map_set_for_each_callback_args, 728 .map_for_each_callback = bpf_for_each_array_elem, 729 .map_btf_id = &array_map_btf_ids[0], 730 .iter_seq_info = &iter_seq_info, 731 }; 732 733 const struct bpf_map_ops percpu_array_map_ops = { 734 .map_meta_equal = bpf_map_meta_equal, 735 .map_alloc_check = array_map_alloc_check, 736 .map_alloc = array_map_alloc, 737 .map_free = array_map_free, 738 .map_get_next_key = array_map_get_next_key, 739 .map_lookup_elem = percpu_array_map_lookup_elem, 740 .map_update_elem = array_map_update_elem, 741 .map_delete_elem = array_map_delete_elem, 742 .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, 743 .map_seq_show_elem = percpu_array_map_seq_show_elem, 744 .map_check_btf = array_map_check_btf, 745 .map_lookup_batch = generic_map_lookup_batch, 746 .map_update_batch = generic_map_update_batch, 747 .map_set_for_each_callback_args = map_set_for_each_callback_args, 748 .map_for_each_callback = bpf_for_each_array_elem, 749 .map_btf_id = &array_map_btf_ids[0], 750 .iter_seq_info = &iter_seq_info, 751 }; 752 753 static int fd_array_map_alloc_check(union bpf_attr *attr) 754 { 755 /* only file descriptors can be stored in this type of map */ 756 if (attr->value_size != sizeof(u32)) 757 return -EINVAL; 758 /* Program read-only/write-only not supported for special maps yet. */ 759 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 760 return -EINVAL; 761 return array_map_alloc_check(attr); 762 } 763 764 static void fd_array_map_free(struct bpf_map *map) 765 { 766 struct bpf_array *array = container_of(map, struct bpf_array, map); 767 int i; 768 769 /* make sure it's empty */ 770 for (i = 0; i < array->map.max_entries; i++) 771 BUG_ON(array->ptrs[i] != NULL); 772 773 bpf_map_area_free(array); 774 } 775 776 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 777 { 778 return ERR_PTR(-EOPNOTSUPP); 779 } 780 781 /* only called from syscall */ 782 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 783 { 784 void **elem, *ptr; 785 int ret = 0; 786 787 if (!map->ops->map_fd_sys_lookup_elem) 788 return -ENOTSUPP; 789 790 rcu_read_lock(); 791 elem = array_map_lookup_elem(map, key); 792 if (elem && (ptr = READ_ONCE(*elem))) 793 *value = map->ops->map_fd_sys_lookup_elem(ptr); 794 else 795 ret = -ENOENT; 796 rcu_read_unlock(); 797 798 return ret; 799 } 800 801 /* only called from syscall */ 802 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 803 void *key, void *value, u64 map_flags) 804 { 805 struct bpf_array *array = container_of(map, struct bpf_array, map); 806 void *new_ptr, *old_ptr; 807 u32 index = *(u32 *)key, ufd; 808 809 if (map_flags != BPF_ANY) 810 return -EINVAL; 811 812 if (index >= array->map.max_entries) 813 return -E2BIG; 814 815 ufd = *(u32 *)value; 816 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 817 if (IS_ERR(new_ptr)) 818 return PTR_ERR(new_ptr); 819 820 if (map->ops->map_poke_run) { 821 mutex_lock(&array->aux->poke_mutex); 822 old_ptr = xchg(array->ptrs + index, new_ptr); 823 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 824 mutex_unlock(&array->aux->poke_mutex); 825 } else { 826 old_ptr = xchg(array->ptrs + index, new_ptr); 827 } 828 829 if (old_ptr) 830 map->ops->map_fd_put_ptr(old_ptr); 831 return 0; 832 } 833 834 static int fd_array_map_delete_elem(struct bpf_map *map, void *key) 835 { 836 struct bpf_array *array = container_of(map, struct bpf_array, map); 837 void *old_ptr; 838 u32 index = *(u32 *)key; 839 840 if (index >= array->map.max_entries) 841 return -E2BIG; 842 843 if (map->ops->map_poke_run) { 844 mutex_lock(&array->aux->poke_mutex); 845 old_ptr = xchg(array->ptrs + index, NULL); 846 map->ops->map_poke_run(map, index, old_ptr, NULL); 847 mutex_unlock(&array->aux->poke_mutex); 848 } else { 849 old_ptr = xchg(array->ptrs + index, NULL); 850 } 851 852 if (old_ptr) { 853 map->ops->map_fd_put_ptr(old_ptr); 854 return 0; 855 } else { 856 return -ENOENT; 857 } 858 } 859 860 static void *prog_fd_array_get_ptr(struct bpf_map *map, 861 struct file *map_file, int fd) 862 { 863 struct bpf_prog *prog = bpf_prog_get(fd); 864 865 if (IS_ERR(prog)) 866 return prog; 867 868 if (!bpf_prog_map_compatible(map, prog)) { 869 bpf_prog_put(prog); 870 return ERR_PTR(-EINVAL); 871 } 872 873 return prog; 874 } 875 876 static void prog_fd_array_put_ptr(void *ptr) 877 { 878 bpf_prog_put(ptr); 879 } 880 881 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 882 { 883 return ((struct bpf_prog *)ptr)->aux->id; 884 } 885 886 /* decrement refcnt of all bpf_progs that are stored in this map */ 887 static void bpf_fd_array_map_clear(struct bpf_map *map) 888 { 889 struct bpf_array *array = container_of(map, struct bpf_array, map); 890 int i; 891 892 for (i = 0; i < array->map.max_entries; i++) 893 fd_array_map_delete_elem(map, &i); 894 } 895 896 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 897 struct seq_file *m) 898 { 899 void **elem, *ptr; 900 u32 prog_id; 901 902 rcu_read_lock(); 903 904 elem = array_map_lookup_elem(map, key); 905 if (elem) { 906 ptr = READ_ONCE(*elem); 907 if (ptr) { 908 seq_printf(m, "%u: ", *(u32 *)key); 909 prog_id = prog_fd_array_sys_lookup_elem(ptr); 910 btf_type_seq_show(map->btf, map->btf_value_type_id, 911 &prog_id, m); 912 seq_puts(m, "\n"); 913 } 914 } 915 916 rcu_read_unlock(); 917 } 918 919 struct prog_poke_elem { 920 struct list_head list; 921 struct bpf_prog_aux *aux; 922 }; 923 924 static int prog_array_map_poke_track(struct bpf_map *map, 925 struct bpf_prog_aux *prog_aux) 926 { 927 struct prog_poke_elem *elem; 928 struct bpf_array_aux *aux; 929 int ret = 0; 930 931 aux = container_of(map, struct bpf_array, map)->aux; 932 mutex_lock(&aux->poke_mutex); 933 list_for_each_entry(elem, &aux->poke_progs, list) { 934 if (elem->aux == prog_aux) 935 goto out; 936 } 937 938 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 939 if (!elem) { 940 ret = -ENOMEM; 941 goto out; 942 } 943 944 INIT_LIST_HEAD(&elem->list); 945 /* We must track the program's aux info at this point in time 946 * since the program pointer itself may not be stable yet, see 947 * also comment in prog_array_map_poke_run(). 948 */ 949 elem->aux = prog_aux; 950 951 list_add_tail(&elem->list, &aux->poke_progs); 952 out: 953 mutex_unlock(&aux->poke_mutex); 954 return ret; 955 } 956 957 static void prog_array_map_poke_untrack(struct bpf_map *map, 958 struct bpf_prog_aux *prog_aux) 959 { 960 struct prog_poke_elem *elem, *tmp; 961 struct bpf_array_aux *aux; 962 963 aux = container_of(map, struct bpf_array, map)->aux; 964 mutex_lock(&aux->poke_mutex); 965 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 966 if (elem->aux == prog_aux) { 967 list_del_init(&elem->list); 968 kfree(elem); 969 break; 970 } 971 } 972 mutex_unlock(&aux->poke_mutex); 973 } 974 975 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 976 struct bpf_prog *old, 977 struct bpf_prog *new) 978 { 979 u8 *old_addr, *new_addr, *old_bypass_addr; 980 struct prog_poke_elem *elem; 981 struct bpf_array_aux *aux; 982 983 aux = container_of(map, struct bpf_array, map)->aux; 984 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 985 986 list_for_each_entry(elem, &aux->poke_progs, list) { 987 struct bpf_jit_poke_descriptor *poke; 988 int i, ret; 989 990 for (i = 0; i < elem->aux->size_poke_tab; i++) { 991 poke = &elem->aux->poke_tab[i]; 992 993 /* Few things to be aware of: 994 * 995 * 1) We can only ever access aux in this context, but 996 * not aux->prog since it might not be stable yet and 997 * there could be danger of use after free otherwise. 998 * 2) Initially when we start tracking aux, the program 999 * is not JITed yet and also does not have a kallsyms 1000 * entry. We skip these as poke->tailcall_target_stable 1001 * is not active yet. The JIT will do the final fixup 1002 * before setting it stable. The various 1003 * poke->tailcall_target_stable are successively 1004 * activated, so tail call updates can arrive from here 1005 * while JIT is still finishing its final fixup for 1006 * non-activated poke entries. 1007 * 3) On program teardown, the program's kallsym entry gets 1008 * removed out of RCU callback, but we can only untrack 1009 * from sleepable context, therefore bpf_arch_text_poke() 1010 * might not see that this is in BPF text section and 1011 * bails out with -EINVAL. As these are unreachable since 1012 * RCU grace period already passed, we simply skip them. 1013 * 4) Also programs reaching refcount of zero while patching 1014 * is in progress is okay since we're protected under 1015 * poke_mutex and untrack the programs before the JIT 1016 * buffer is freed. When we're still in the middle of 1017 * patching and suddenly kallsyms entry of the program 1018 * gets evicted, we just skip the rest which is fine due 1019 * to point 3). 1020 * 5) Any other error happening below from bpf_arch_text_poke() 1021 * is a unexpected bug. 1022 */ 1023 if (!READ_ONCE(poke->tailcall_target_stable)) 1024 continue; 1025 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1026 continue; 1027 if (poke->tail_call.map != map || 1028 poke->tail_call.key != key) 1029 continue; 1030 1031 old_bypass_addr = old ? NULL : poke->bypass_addr; 1032 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 1033 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 1034 1035 if (new) { 1036 ret = bpf_arch_text_poke(poke->tailcall_target, 1037 BPF_MOD_JUMP, 1038 old_addr, new_addr); 1039 BUG_ON(ret < 0 && ret != -EINVAL); 1040 if (!old) { 1041 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1042 BPF_MOD_JUMP, 1043 poke->bypass_addr, 1044 NULL); 1045 BUG_ON(ret < 0 && ret != -EINVAL); 1046 } 1047 } else { 1048 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1049 BPF_MOD_JUMP, 1050 old_bypass_addr, 1051 poke->bypass_addr); 1052 BUG_ON(ret < 0 && ret != -EINVAL); 1053 /* let other CPUs finish the execution of program 1054 * so that it will not possible to expose them 1055 * to invalid nop, stack unwind, nop state 1056 */ 1057 if (!ret) 1058 synchronize_rcu(); 1059 ret = bpf_arch_text_poke(poke->tailcall_target, 1060 BPF_MOD_JUMP, 1061 old_addr, NULL); 1062 BUG_ON(ret < 0 && ret != -EINVAL); 1063 } 1064 } 1065 } 1066 } 1067 1068 static void prog_array_map_clear_deferred(struct work_struct *work) 1069 { 1070 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1071 work)->map; 1072 bpf_fd_array_map_clear(map); 1073 bpf_map_put(map); 1074 } 1075 1076 static void prog_array_map_clear(struct bpf_map *map) 1077 { 1078 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1079 map)->aux; 1080 bpf_map_inc(map); 1081 schedule_work(&aux->work); 1082 } 1083 1084 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1085 { 1086 struct bpf_array_aux *aux; 1087 struct bpf_map *map; 1088 1089 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1090 if (!aux) 1091 return ERR_PTR(-ENOMEM); 1092 1093 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1094 INIT_LIST_HEAD(&aux->poke_progs); 1095 mutex_init(&aux->poke_mutex); 1096 1097 map = array_map_alloc(attr); 1098 if (IS_ERR(map)) { 1099 kfree(aux); 1100 return map; 1101 } 1102 1103 container_of(map, struct bpf_array, map)->aux = aux; 1104 aux->map = map; 1105 1106 return map; 1107 } 1108 1109 static void prog_array_map_free(struct bpf_map *map) 1110 { 1111 struct prog_poke_elem *elem, *tmp; 1112 struct bpf_array_aux *aux; 1113 1114 aux = container_of(map, struct bpf_array, map)->aux; 1115 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1116 list_del_init(&elem->list); 1117 kfree(elem); 1118 } 1119 kfree(aux); 1120 fd_array_map_free(map); 1121 } 1122 1123 /* prog_array->aux->{type,jited} is a runtime binding. 1124 * Doing static check alone in the verifier is not enough. 1125 * Thus, prog_array_map cannot be used as an inner_map 1126 * and map_meta_equal is not implemented. 1127 */ 1128 const struct bpf_map_ops prog_array_map_ops = { 1129 .map_alloc_check = fd_array_map_alloc_check, 1130 .map_alloc = prog_array_map_alloc, 1131 .map_free = prog_array_map_free, 1132 .map_poke_track = prog_array_map_poke_track, 1133 .map_poke_untrack = prog_array_map_poke_untrack, 1134 .map_poke_run = prog_array_map_poke_run, 1135 .map_get_next_key = array_map_get_next_key, 1136 .map_lookup_elem = fd_array_map_lookup_elem, 1137 .map_delete_elem = fd_array_map_delete_elem, 1138 .map_fd_get_ptr = prog_fd_array_get_ptr, 1139 .map_fd_put_ptr = prog_fd_array_put_ptr, 1140 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1141 .map_release_uref = prog_array_map_clear, 1142 .map_seq_show_elem = prog_array_map_seq_show_elem, 1143 .map_btf_id = &array_map_btf_ids[0], 1144 }; 1145 1146 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1147 struct file *map_file) 1148 { 1149 struct bpf_event_entry *ee; 1150 1151 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 1152 if (ee) { 1153 ee->event = perf_file->private_data; 1154 ee->perf_file = perf_file; 1155 ee->map_file = map_file; 1156 } 1157 1158 return ee; 1159 } 1160 1161 static void __bpf_event_entry_free(struct rcu_head *rcu) 1162 { 1163 struct bpf_event_entry *ee; 1164 1165 ee = container_of(rcu, struct bpf_event_entry, rcu); 1166 fput(ee->perf_file); 1167 kfree(ee); 1168 } 1169 1170 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1171 { 1172 call_rcu(&ee->rcu, __bpf_event_entry_free); 1173 } 1174 1175 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1176 struct file *map_file, int fd) 1177 { 1178 struct bpf_event_entry *ee; 1179 struct perf_event *event; 1180 struct file *perf_file; 1181 u64 value; 1182 1183 perf_file = perf_event_get(fd); 1184 if (IS_ERR(perf_file)) 1185 return perf_file; 1186 1187 ee = ERR_PTR(-EOPNOTSUPP); 1188 event = perf_file->private_data; 1189 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1190 goto err_out; 1191 1192 ee = bpf_event_entry_gen(perf_file, map_file); 1193 if (ee) 1194 return ee; 1195 ee = ERR_PTR(-ENOMEM); 1196 err_out: 1197 fput(perf_file); 1198 return ee; 1199 } 1200 1201 static void perf_event_fd_array_put_ptr(void *ptr) 1202 { 1203 bpf_event_entry_free_rcu(ptr); 1204 } 1205 1206 static void perf_event_fd_array_release(struct bpf_map *map, 1207 struct file *map_file) 1208 { 1209 struct bpf_array *array = container_of(map, struct bpf_array, map); 1210 struct bpf_event_entry *ee; 1211 int i; 1212 1213 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1214 return; 1215 1216 rcu_read_lock(); 1217 for (i = 0; i < array->map.max_entries; i++) { 1218 ee = READ_ONCE(array->ptrs[i]); 1219 if (ee && ee->map_file == map_file) 1220 fd_array_map_delete_elem(map, &i); 1221 } 1222 rcu_read_unlock(); 1223 } 1224 1225 static void perf_event_fd_array_map_free(struct bpf_map *map) 1226 { 1227 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1228 bpf_fd_array_map_clear(map); 1229 fd_array_map_free(map); 1230 } 1231 1232 const struct bpf_map_ops perf_event_array_map_ops = { 1233 .map_meta_equal = bpf_map_meta_equal, 1234 .map_alloc_check = fd_array_map_alloc_check, 1235 .map_alloc = array_map_alloc, 1236 .map_free = perf_event_fd_array_map_free, 1237 .map_get_next_key = array_map_get_next_key, 1238 .map_lookup_elem = fd_array_map_lookup_elem, 1239 .map_delete_elem = fd_array_map_delete_elem, 1240 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1241 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1242 .map_release = perf_event_fd_array_release, 1243 .map_check_btf = map_check_no_btf, 1244 .map_btf_id = &array_map_btf_ids[0], 1245 }; 1246 1247 #ifdef CONFIG_CGROUPS 1248 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1249 struct file *map_file /* not used */, 1250 int fd) 1251 { 1252 return cgroup_get_from_fd(fd); 1253 } 1254 1255 static void cgroup_fd_array_put_ptr(void *ptr) 1256 { 1257 /* cgroup_put free cgrp after a rcu grace period */ 1258 cgroup_put(ptr); 1259 } 1260 1261 static void cgroup_fd_array_free(struct bpf_map *map) 1262 { 1263 bpf_fd_array_map_clear(map); 1264 fd_array_map_free(map); 1265 } 1266 1267 const struct bpf_map_ops cgroup_array_map_ops = { 1268 .map_meta_equal = bpf_map_meta_equal, 1269 .map_alloc_check = fd_array_map_alloc_check, 1270 .map_alloc = array_map_alloc, 1271 .map_free = cgroup_fd_array_free, 1272 .map_get_next_key = array_map_get_next_key, 1273 .map_lookup_elem = fd_array_map_lookup_elem, 1274 .map_delete_elem = fd_array_map_delete_elem, 1275 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1276 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1277 .map_check_btf = map_check_no_btf, 1278 .map_btf_id = &array_map_btf_ids[0], 1279 }; 1280 #endif 1281 1282 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1283 { 1284 struct bpf_map *map, *inner_map_meta; 1285 1286 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1287 if (IS_ERR(inner_map_meta)) 1288 return inner_map_meta; 1289 1290 map = array_map_alloc(attr); 1291 if (IS_ERR(map)) { 1292 bpf_map_meta_free(inner_map_meta); 1293 return map; 1294 } 1295 1296 map->inner_map_meta = inner_map_meta; 1297 1298 return map; 1299 } 1300 1301 static void array_of_map_free(struct bpf_map *map) 1302 { 1303 /* map->inner_map_meta is only accessed by syscall which 1304 * is protected by fdget/fdput. 1305 */ 1306 bpf_map_meta_free(map->inner_map_meta); 1307 bpf_fd_array_map_clear(map); 1308 fd_array_map_free(map); 1309 } 1310 1311 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1312 { 1313 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1314 1315 if (!inner_map) 1316 return NULL; 1317 1318 return READ_ONCE(*inner_map); 1319 } 1320 1321 static int array_of_map_gen_lookup(struct bpf_map *map, 1322 struct bpf_insn *insn_buf) 1323 { 1324 struct bpf_array *array = container_of(map, struct bpf_array, map); 1325 u32 elem_size = round_up(map->value_size, 8); 1326 struct bpf_insn *insn = insn_buf; 1327 const int ret = BPF_REG_0; 1328 const int map_ptr = BPF_REG_1; 1329 const int index = BPF_REG_2; 1330 1331 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1332 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1333 if (!map->bypass_spec_v1) { 1334 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1335 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1336 } else { 1337 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1338 } 1339 if (is_power_of_2(elem_size)) 1340 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1341 else 1342 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1343 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1344 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1345 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1346 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1347 *insn++ = BPF_MOV64_IMM(ret, 0); 1348 1349 return insn - insn_buf; 1350 } 1351 1352 const struct bpf_map_ops array_of_maps_map_ops = { 1353 .map_alloc_check = fd_array_map_alloc_check, 1354 .map_alloc = array_of_map_alloc, 1355 .map_free = array_of_map_free, 1356 .map_get_next_key = array_map_get_next_key, 1357 .map_lookup_elem = array_of_map_lookup_elem, 1358 .map_delete_elem = fd_array_map_delete_elem, 1359 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1360 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1361 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1362 .map_gen_lookup = array_of_map_gen_lookup, 1363 .map_lookup_batch = generic_map_lookup_batch, 1364 .map_update_batch = generic_map_update_batch, 1365 .map_check_btf = map_check_no_btf, 1366 .map_btf_id = &array_map_btf_ids[0], 1367 }; 1368