1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 16 #include "map_in_map.h" 17 18 #define ARRAY_CREATE_FLAG_MASK \ 19 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 20 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 21 22 static void bpf_array_free_percpu(struct bpf_array *array) 23 { 24 int i; 25 26 for (i = 0; i < array->map.max_entries; i++) { 27 free_percpu(array->pptrs[i]); 28 cond_resched(); 29 } 30 } 31 32 static int bpf_array_alloc_percpu(struct bpf_array *array) 33 { 34 void __percpu *ptr; 35 int i; 36 37 for (i = 0; i < array->map.max_entries; i++) { 38 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 39 GFP_USER | __GFP_NOWARN); 40 if (!ptr) { 41 bpf_array_free_percpu(array); 42 return -ENOMEM; 43 } 44 array->pptrs[i] = ptr; 45 cond_resched(); 46 } 47 48 return 0; 49 } 50 51 /* Called from syscall */ 52 int array_map_alloc_check(union bpf_attr *attr) 53 { 54 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 55 int numa_node = bpf_map_attr_numa_node(attr); 56 57 /* check sanity of attributes */ 58 if (attr->max_entries == 0 || attr->key_size != 4 || 59 attr->value_size == 0 || 60 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 61 !bpf_map_flags_access_ok(attr->map_flags) || 62 (percpu && numa_node != NUMA_NO_NODE)) 63 return -EINVAL; 64 65 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 66 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 67 return -EINVAL; 68 69 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 70 attr->map_flags & BPF_F_PRESERVE_ELEMS) 71 return -EINVAL; 72 73 /* avoid overflow on round_up(map->value_size) */ 74 if (attr->value_size > INT_MAX) 75 return -E2BIG; 76 77 return 0; 78 } 79 80 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 81 { 82 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 83 int numa_node = bpf_map_attr_numa_node(attr); 84 u32 elem_size, index_mask, max_entries; 85 bool bypass_spec_v1 = bpf_bypass_spec_v1(NULL); 86 u64 array_size, mask64; 87 struct bpf_array *array; 88 89 elem_size = round_up(attr->value_size, 8); 90 91 max_entries = attr->max_entries; 92 93 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 94 * upper most bit set in u32 space is undefined behavior due to 95 * resulting 1U << 32, so do it manually here in u64 space. 96 */ 97 mask64 = fls_long(max_entries - 1); 98 mask64 = 1ULL << mask64; 99 mask64 -= 1; 100 101 index_mask = mask64; 102 if (!bypass_spec_v1) { 103 /* round up array size to nearest power of 2, 104 * since cpu will speculate within index_mask limits 105 */ 106 max_entries = index_mask + 1; 107 /* Check for overflows. */ 108 if (max_entries < attr->max_entries) 109 return ERR_PTR(-E2BIG); 110 } 111 112 array_size = sizeof(*array); 113 if (percpu) { 114 array_size += (u64) max_entries * sizeof(void *); 115 } else { 116 /* rely on vmalloc() to return page-aligned memory and 117 * ensure array->value is exactly page-aligned 118 */ 119 if (attr->map_flags & BPF_F_MMAPABLE) { 120 array_size = PAGE_ALIGN(array_size); 121 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 122 } else { 123 array_size += (u64) max_entries * elem_size; 124 } 125 } 126 127 /* allocate all map elements and zero-initialize them */ 128 if (attr->map_flags & BPF_F_MMAPABLE) { 129 void *data; 130 131 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 132 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 133 if (!data) 134 return ERR_PTR(-ENOMEM); 135 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 136 - offsetof(struct bpf_array, value); 137 } else { 138 array = bpf_map_area_alloc(array_size, numa_node); 139 } 140 if (!array) 141 return ERR_PTR(-ENOMEM); 142 array->index_mask = index_mask; 143 array->map.bypass_spec_v1 = bypass_spec_v1; 144 145 /* copy mandatory map attributes */ 146 bpf_map_init_from_attr(&array->map, attr); 147 array->elem_size = elem_size; 148 149 if (percpu && bpf_array_alloc_percpu(array)) { 150 bpf_map_area_free(array); 151 return ERR_PTR(-ENOMEM); 152 } 153 154 return &array->map; 155 } 156 157 static void *array_map_elem_ptr(struct bpf_array* array, u32 index) 158 { 159 return array->value + (u64)array->elem_size * index; 160 } 161 162 /* Called from syscall or from eBPF program */ 163 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 164 { 165 struct bpf_array *array = container_of(map, struct bpf_array, map); 166 u32 index = *(u32 *)key; 167 168 if (unlikely(index >= array->map.max_entries)) 169 return NULL; 170 171 return array->value + (u64)array->elem_size * (index & array->index_mask); 172 } 173 174 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 175 u32 off) 176 { 177 struct bpf_array *array = container_of(map, struct bpf_array, map); 178 179 if (map->max_entries != 1) 180 return -ENOTSUPP; 181 if (off >= map->value_size) 182 return -EINVAL; 183 184 *imm = (unsigned long)array->value; 185 return 0; 186 } 187 188 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 189 u32 *off) 190 { 191 struct bpf_array *array = container_of(map, struct bpf_array, map); 192 u64 base = (unsigned long)array->value; 193 u64 range = array->elem_size; 194 195 if (map->max_entries != 1) 196 return -ENOTSUPP; 197 if (imm < base || imm >= base + range) 198 return -ENOENT; 199 200 *off = imm - base; 201 return 0; 202 } 203 204 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 205 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 206 { 207 struct bpf_array *array = container_of(map, struct bpf_array, map); 208 struct bpf_insn *insn = insn_buf; 209 u32 elem_size = array->elem_size; 210 const int ret = BPF_REG_0; 211 const int map_ptr = BPF_REG_1; 212 const int index = BPF_REG_2; 213 214 if (map->map_flags & BPF_F_INNER_MAP) 215 return -EOPNOTSUPP; 216 217 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 218 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 219 if (!map->bypass_spec_v1) { 220 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 221 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 222 } else { 223 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 224 } 225 226 if (is_power_of_2(elem_size)) { 227 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 228 } else { 229 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 230 } 231 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 232 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 233 *insn++ = BPF_MOV64_IMM(ret, 0); 234 return insn - insn_buf; 235 } 236 237 /* Called from eBPF program */ 238 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 239 { 240 struct bpf_array *array = container_of(map, struct bpf_array, map); 241 u32 index = *(u32 *)key; 242 243 if (unlikely(index >= array->map.max_entries)) 244 return NULL; 245 246 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 247 } 248 249 /* emit BPF instructions equivalent to C code of percpu_array_map_lookup_elem() */ 250 static int percpu_array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 251 { 252 struct bpf_array *array = container_of(map, struct bpf_array, map); 253 struct bpf_insn *insn = insn_buf; 254 255 if (!bpf_jit_supports_percpu_insn()) 256 return -EOPNOTSUPP; 257 258 if (map->map_flags & BPF_F_INNER_MAP) 259 return -EOPNOTSUPP; 260 261 BUILD_BUG_ON(offsetof(struct bpf_array, map) != 0); 262 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct bpf_array, pptrs)); 263 264 *insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0); 265 if (!map->bypass_spec_v1) { 266 *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 6); 267 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_0, array->index_mask); 268 } else { 269 *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 5); 270 } 271 272 *insn++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 273 *insn++ = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 274 *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 275 *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 276 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 277 *insn++ = BPF_MOV64_IMM(BPF_REG_0, 0); 278 return insn - insn_buf; 279 } 280 281 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 282 { 283 struct bpf_array *array = container_of(map, struct bpf_array, map); 284 u32 index = *(u32 *)key; 285 286 if (cpu >= nr_cpu_ids) 287 return NULL; 288 289 if (unlikely(index >= array->map.max_entries)) 290 return NULL; 291 292 return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); 293 } 294 295 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 296 { 297 struct bpf_array *array = container_of(map, struct bpf_array, map); 298 u32 index = *(u32 *)key; 299 void __percpu *pptr; 300 int cpu, off = 0; 301 u32 size; 302 303 if (unlikely(index >= array->map.max_entries)) 304 return -ENOENT; 305 306 /* per_cpu areas are zero-filled and bpf programs can only 307 * access 'value_size' of them, so copying rounded areas 308 * will not leak any kernel data 309 */ 310 size = array->elem_size; 311 rcu_read_lock(); 312 pptr = array->pptrs[index & array->index_mask]; 313 for_each_possible_cpu(cpu) { 314 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 315 check_and_init_map_value(map, value + off); 316 off += size; 317 } 318 rcu_read_unlock(); 319 return 0; 320 } 321 322 /* Called from syscall */ 323 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 324 { 325 struct bpf_array *array = container_of(map, struct bpf_array, map); 326 u32 index = key ? *(u32 *)key : U32_MAX; 327 u32 *next = (u32 *)next_key; 328 329 if (index >= array->map.max_entries) { 330 *next = 0; 331 return 0; 332 } 333 334 if (index == array->map.max_entries - 1) 335 return -ENOENT; 336 337 *next = index + 1; 338 return 0; 339 } 340 341 /* Called from syscall or from eBPF program */ 342 static long array_map_update_elem(struct bpf_map *map, void *key, void *value, 343 u64 map_flags) 344 { 345 struct bpf_array *array = container_of(map, struct bpf_array, map); 346 u32 index = *(u32 *)key; 347 char *val; 348 349 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 350 /* unknown flags */ 351 return -EINVAL; 352 353 if (unlikely(index >= array->map.max_entries)) 354 /* all elements were pre-allocated, cannot insert a new one */ 355 return -E2BIG; 356 357 if (unlikely(map_flags & BPF_NOEXIST)) 358 /* all elements already exist */ 359 return -EEXIST; 360 361 if (unlikely((map_flags & BPF_F_LOCK) && 362 !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 363 return -EINVAL; 364 365 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 366 val = this_cpu_ptr(array->pptrs[index & array->index_mask]); 367 copy_map_value(map, val, value); 368 bpf_obj_free_fields(array->map.record, val); 369 } else { 370 val = array->value + 371 (u64)array->elem_size * (index & array->index_mask); 372 if (map_flags & BPF_F_LOCK) 373 copy_map_value_locked(map, val, value, false); 374 else 375 copy_map_value(map, val, value); 376 bpf_obj_free_fields(array->map.record, val); 377 } 378 return 0; 379 } 380 381 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 382 u64 map_flags) 383 { 384 struct bpf_array *array = container_of(map, struct bpf_array, map); 385 u32 index = *(u32 *)key; 386 void __percpu *pptr; 387 int cpu, off = 0; 388 u32 size; 389 390 if (unlikely(map_flags > BPF_EXIST)) 391 /* unknown flags */ 392 return -EINVAL; 393 394 if (unlikely(index >= array->map.max_entries)) 395 /* all elements were pre-allocated, cannot insert a new one */ 396 return -E2BIG; 397 398 if (unlikely(map_flags == BPF_NOEXIST)) 399 /* all elements already exist */ 400 return -EEXIST; 401 402 /* the user space will provide round_up(value_size, 8) bytes that 403 * will be copied into per-cpu area. bpf programs can only access 404 * value_size of it. During lookup the same extra bytes will be 405 * returned or zeros which were zero-filled by percpu_alloc, 406 * so no kernel data leaks possible 407 */ 408 size = array->elem_size; 409 rcu_read_lock(); 410 pptr = array->pptrs[index & array->index_mask]; 411 for_each_possible_cpu(cpu) { 412 copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off); 413 bpf_obj_free_fields(array->map.record, per_cpu_ptr(pptr, cpu)); 414 off += size; 415 } 416 rcu_read_unlock(); 417 return 0; 418 } 419 420 /* Called from syscall or from eBPF program */ 421 static long array_map_delete_elem(struct bpf_map *map, void *key) 422 { 423 return -EINVAL; 424 } 425 426 static void *array_map_vmalloc_addr(struct bpf_array *array) 427 { 428 return (void *)round_down((unsigned long)array, PAGE_SIZE); 429 } 430 431 static void array_map_free_timers(struct bpf_map *map) 432 { 433 struct bpf_array *array = container_of(map, struct bpf_array, map); 434 int i; 435 436 /* We don't reset or free fields other than timer on uref dropping to zero. */ 437 if (!btf_record_has_field(map->record, BPF_TIMER)) 438 return; 439 440 for (i = 0; i < array->map.max_entries; i++) 441 bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i)); 442 } 443 444 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 445 static void array_map_free(struct bpf_map *map) 446 { 447 struct bpf_array *array = container_of(map, struct bpf_array, map); 448 int i; 449 450 if (!IS_ERR_OR_NULL(map->record)) { 451 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 452 for (i = 0; i < array->map.max_entries; i++) { 453 void __percpu *pptr = array->pptrs[i & array->index_mask]; 454 int cpu; 455 456 for_each_possible_cpu(cpu) { 457 bpf_obj_free_fields(map->record, per_cpu_ptr(pptr, cpu)); 458 cond_resched(); 459 } 460 } 461 } else { 462 for (i = 0; i < array->map.max_entries; i++) 463 bpf_obj_free_fields(map->record, array_map_elem_ptr(array, i)); 464 } 465 } 466 467 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 468 bpf_array_free_percpu(array); 469 470 if (array->map.map_flags & BPF_F_MMAPABLE) 471 bpf_map_area_free(array_map_vmalloc_addr(array)); 472 else 473 bpf_map_area_free(array); 474 } 475 476 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 477 struct seq_file *m) 478 { 479 void *value; 480 481 rcu_read_lock(); 482 483 value = array_map_lookup_elem(map, key); 484 if (!value) { 485 rcu_read_unlock(); 486 return; 487 } 488 489 if (map->btf_key_type_id) 490 seq_printf(m, "%u: ", *(u32 *)key); 491 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 492 seq_puts(m, "\n"); 493 494 rcu_read_unlock(); 495 } 496 497 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 498 struct seq_file *m) 499 { 500 struct bpf_array *array = container_of(map, struct bpf_array, map); 501 u32 index = *(u32 *)key; 502 void __percpu *pptr; 503 int cpu; 504 505 rcu_read_lock(); 506 507 seq_printf(m, "%u: {\n", *(u32 *)key); 508 pptr = array->pptrs[index & array->index_mask]; 509 for_each_possible_cpu(cpu) { 510 seq_printf(m, "\tcpu%d: ", cpu); 511 btf_type_seq_show(map->btf, map->btf_value_type_id, 512 per_cpu_ptr(pptr, cpu), m); 513 seq_puts(m, "\n"); 514 } 515 seq_puts(m, "}\n"); 516 517 rcu_read_unlock(); 518 } 519 520 static int array_map_check_btf(const struct bpf_map *map, 521 const struct btf *btf, 522 const struct btf_type *key_type, 523 const struct btf_type *value_type) 524 { 525 u32 int_data; 526 527 /* One exception for keyless BTF: .bss/.data/.rodata map */ 528 if (btf_type_is_void(key_type)) { 529 if (map->map_type != BPF_MAP_TYPE_ARRAY || 530 map->max_entries != 1) 531 return -EINVAL; 532 533 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 534 return -EINVAL; 535 536 return 0; 537 } 538 539 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 540 return -EINVAL; 541 542 int_data = *(u32 *)(key_type + 1); 543 /* bpf array can only take a u32 key. This check makes sure 544 * that the btf matches the attr used during map_create. 545 */ 546 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 547 return -EINVAL; 548 549 return 0; 550 } 551 552 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 553 { 554 struct bpf_array *array = container_of(map, struct bpf_array, map); 555 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 556 557 if (!(map->map_flags & BPF_F_MMAPABLE)) 558 return -EINVAL; 559 560 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 561 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 562 return -EINVAL; 563 564 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 565 vma->vm_pgoff + pgoff); 566 } 567 568 static bool array_map_meta_equal(const struct bpf_map *meta0, 569 const struct bpf_map *meta1) 570 { 571 if (!bpf_map_meta_equal(meta0, meta1)) 572 return false; 573 return meta0->map_flags & BPF_F_INNER_MAP ? true : 574 meta0->max_entries == meta1->max_entries; 575 } 576 577 struct bpf_iter_seq_array_map_info { 578 struct bpf_map *map; 579 void *percpu_value_buf; 580 u32 index; 581 }; 582 583 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 584 { 585 struct bpf_iter_seq_array_map_info *info = seq->private; 586 struct bpf_map *map = info->map; 587 struct bpf_array *array; 588 u32 index; 589 590 if (info->index >= map->max_entries) 591 return NULL; 592 593 if (*pos == 0) 594 ++*pos; 595 array = container_of(map, struct bpf_array, map); 596 index = info->index & array->index_mask; 597 if (info->percpu_value_buf) 598 return array->pptrs[index]; 599 return array_map_elem_ptr(array, index); 600 } 601 602 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 603 { 604 struct bpf_iter_seq_array_map_info *info = seq->private; 605 struct bpf_map *map = info->map; 606 struct bpf_array *array; 607 u32 index; 608 609 ++*pos; 610 ++info->index; 611 if (info->index >= map->max_entries) 612 return NULL; 613 614 array = container_of(map, struct bpf_array, map); 615 index = info->index & array->index_mask; 616 if (info->percpu_value_buf) 617 return array->pptrs[index]; 618 return array_map_elem_ptr(array, index); 619 } 620 621 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 622 { 623 struct bpf_iter_seq_array_map_info *info = seq->private; 624 struct bpf_iter__bpf_map_elem ctx = {}; 625 struct bpf_map *map = info->map; 626 struct bpf_array *array = container_of(map, struct bpf_array, map); 627 struct bpf_iter_meta meta; 628 struct bpf_prog *prog; 629 int off = 0, cpu = 0; 630 void __percpu **pptr; 631 u32 size; 632 633 meta.seq = seq; 634 prog = bpf_iter_get_info(&meta, v == NULL); 635 if (!prog) 636 return 0; 637 638 ctx.meta = &meta; 639 ctx.map = info->map; 640 if (v) { 641 ctx.key = &info->index; 642 643 if (!info->percpu_value_buf) { 644 ctx.value = v; 645 } else { 646 pptr = v; 647 size = array->elem_size; 648 for_each_possible_cpu(cpu) { 649 copy_map_value_long(map, info->percpu_value_buf + off, 650 per_cpu_ptr(pptr, cpu)); 651 check_and_init_map_value(map, info->percpu_value_buf + off); 652 off += size; 653 } 654 ctx.value = info->percpu_value_buf; 655 } 656 } 657 658 return bpf_iter_run_prog(prog, &ctx); 659 } 660 661 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 662 { 663 return __bpf_array_map_seq_show(seq, v); 664 } 665 666 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 667 { 668 if (!v) 669 (void)__bpf_array_map_seq_show(seq, NULL); 670 } 671 672 static int bpf_iter_init_array_map(void *priv_data, 673 struct bpf_iter_aux_info *aux) 674 { 675 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 676 struct bpf_map *map = aux->map; 677 struct bpf_array *array = container_of(map, struct bpf_array, map); 678 void *value_buf; 679 u32 buf_size; 680 681 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 682 buf_size = array->elem_size * num_possible_cpus(); 683 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 684 if (!value_buf) 685 return -ENOMEM; 686 687 seq_info->percpu_value_buf = value_buf; 688 } 689 690 /* bpf_iter_attach_map() acquires a map uref, and the uref may be 691 * released before or in the middle of iterating map elements, so 692 * acquire an extra map uref for iterator. 693 */ 694 bpf_map_inc_with_uref(map); 695 seq_info->map = map; 696 return 0; 697 } 698 699 static void bpf_iter_fini_array_map(void *priv_data) 700 { 701 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 702 703 bpf_map_put_with_uref(seq_info->map); 704 kfree(seq_info->percpu_value_buf); 705 } 706 707 static const struct seq_operations bpf_array_map_seq_ops = { 708 .start = bpf_array_map_seq_start, 709 .next = bpf_array_map_seq_next, 710 .stop = bpf_array_map_seq_stop, 711 .show = bpf_array_map_seq_show, 712 }; 713 714 static const struct bpf_iter_seq_info iter_seq_info = { 715 .seq_ops = &bpf_array_map_seq_ops, 716 .init_seq_private = bpf_iter_init_array_map, 717 .fini_seq_private = bpf_iter_fini_array_map, 718 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 719 }; 720 721 static long bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, 722 void *callback_ctx, u64 flags) 723 { 724 u32 i, key, num_elems = 0; 725 struct bpf_array *array; 726 bool is_percpu; 727 u64 ret = 0; 728 void *val; 729 730 if (flags != 0) 731 return -EINVAL; 732 733 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 734 array = container_of(map, struct bpf_array, map); 735 if (is_percpu) 736 migrate_disable(); 737 for (i = 0; i < map->max_entries; i++) { 738 if (is_percpu) 739 val = this_cpu_ptr(array->pptrs[i]); 740 else 741 val = array_map_elem_ptr(array, i); 742 num_elems++; 743 key = i; 744 ret = callback_fn((u64)(long)map, (u64)(long)&key, 745 (u64)(long)val, (u64)(long)callback_ctx, 0); 746 /* return value: 0 - continue, 1 - stop and return */ 747 if (ret) 748 break; 749 } 750 751 if (is_percpu) 752 migrate_enable(); 753 return num_elems; 754 } 755 756 static u64 array_map_mem_usage(const struct bpf_map *map) 757 { 758 struct bpf_array *array = container_of(map, struct bpf_array, map); 759 bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 760 u32 elem_size = array->elem_size; 761 u64 entries = map->max_entries; 762 u64 usage = sizeof(*array); 763 764 if (percpu) { 765 usage += entries * sizeof(void *); 766 usage += entries * elem_size * num_possible_cpus(); 767 } else { 768 if (map->map_flags & BPF_F_MMAPABLE) { 769 usage = PAGE_ALIGN(usage); 770 usage += PAGE_ALIGN(entries * elem_size); 771 } else { 772 usage += entries * elem_size; 773 } 774 } 775 return usage; 776 } 777 778 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) 779 const struct bpf_map_ops array_map_ops = { 780 .map_meta_equal = array_map_meta_equal, 781 .map_alloc_check = array_map_alloc_check, 782 .map_alloc = array_map_alloc, 783 .map_free = array_map_free, 784 .map_get_next_key = array_map_get_next_key, 785 .map_release_uref = array_map_free_timers, 786 .map_lookup_elem = array_map_lookup_elem, 787 .map_update_elem = array_map_update_elem, 788 .map_delete_elem = array_map_delete_elem, 789 .map_gen_lookup = array_map_gen_lookup, 790 .map_direct_value_addr = array_map_direct_value_addr, 791 .map_direct_value_meta = array_map_direct_value_meta, 792 .map_mmap = array_map_mmap, 793 .map_seq_show_elem = array_map_seq_show_elem, 794 .map_check_btf = array_map_check_btf, 795 .map_lookup_batch = generic_map_lookup_batch, 796 .map_update_batch = generic_map_update_batch, 797 .map_set_for_each_callback_args = map_set_for_each_callback_args, 798 .map_for_each_callback = bpf_for_each_array_elem, 799 .map_mem_usage = array_map_mem_usage, 800 .map_btf_id = &array_map_btf_ids[0], 801 .iter_seq_info = &iter_seq_info, 802 }; 803 804 const struct bpf_map_ops percpu_array_map_ops = { 805 .map_meta_equal = bpf_map_meta_equal, 806 .map_alloc_check = array_map_alloc_check, 807 .map_alloc = array_map_alloc, 808 .map_free = array_map_free, 809 .map_get_next_key = array_map_get_next_key, 810 .map_lookup_elem = percpu_array_map_lookup_elem, 811 .map_gen_lookup = percpu_array_map_gen_lookup, 812 .map_update_elem = array_map_update_elem, 813 .map_delete_elem = array_map_delete_elem, 814 .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, 815 .map_seq_show_elem = percpu_array_map_seq_show_elem, 816 .map_check_btf = array_map_check_btf, 817 .map_lookup_batch = generic_map_lookup_batch, 818 .map_update_batch = generic_map_update_batch, 819 .map_set_for_each_callback_args = map_set_for_each_callback_args, 820 .map_for_each_callback = bpf_for_each_array_elem, 821 .map_mem_usage = array_map_mem_usage, 822 .map_btf_id = &array_map_btf_ids[0], 823 .iter_seq_info = &iter_seq_info, 824 }; 825 826 static int fd_array_map_alloc_check(union bpf_attr *attr) 827 { 828 /* only file descriptors can be stored in this type of map */ 829 if (attr->value_size != sizeof(u32)) 830 return -EINVAL; 831 /* Program read-only/write-only not supported for special maps yet. */ 832 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 833 return -EINVAL; 834 return array_map_alloc_check(attr); 835 } 836 837 static void fd_array_map_free(struct bpf_map *map) 838 { 839 struct bpf_array *array = container_of(map, struct bpf_array, map); 840 int i; 841 842 /* make sure it's empty */ 843 for (i = 0; i < array->map.max_entries; i++) 844 BUG_ON(array->ptrs[i] != NULL); 845 846 bpf_map_area_free(array); 847 } 848 849 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 850 { 851 return ERR_PTR(-EOPNOTSUPP); 852 } 853 854 /* only called from syscall */ 855 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 856 { 857 void **elem, *ptr; 858 int ret = 0; 859 860 if (!map->ops->map_fd_sys_lookup_elem) 861 return -ENOTSUPP; 862 863 rcu_read_lock(); 864 elem = array_map_lookup_elem(map, key); 865 if (elem && (ptr = READ_ONCE(*elem))) 866 *value = map->ops->map_fd_sys_lookup_elem(ptr); 867 else 868 ret = -ENOENT; 869 rcu_read_unlock(); 870 871 return ret; 872 } 873 874 /* only called from syscall */ 875 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 876 void *key, void *value, u64 map_flags) 877 { 878 struct bpf_array *array = container_of(map, struct bpf_array, map); 879 void *new_ptr, *old_ptr; 880 u32 index = *(u32 *)key, ufd; 881 882 if (map_flags != BPF_ANY) 883 return -EINVAL; 884 885 if (index >= array->map.max_entries) 886 return -E2BIG; 887 888 ufd = *(u32 *)value; 889 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 890 if (IS_ERR(new_ptr)) 891 return PTR_ERR(new_ptr); 892 893 if (map->ops->map_poke_run) { 894 mutex_lock(&array->aux->poke_mutex); 895 old_ptr = xchg(array->ptrs + index, new_ptr); 896 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 897 mutex_unlock(&array->aux->poke_mutex); 898 } else { 899 old_ptr = xchg(array->ptrs + index, new_ptr); 900 } 901 902 if (old_ptr) 903 map->ops->map_fd_put_ptr(map, old_ptr, true); 904 return 0; 905 } 906 907 static long __fd_array_map_delete_elem(struct bpf_map *map, void *key, bool need_defer) 908 { 909 struct bpf_array *array = container_of(map, struct bpf_array, map); 910 void *old_ptr; 911 u32 index = *(u32 *)key; 912 913 if (index >= array->map.max_entries) 914 return -E2BIG; 915 916 if (map->ops->map_poke_run) { 917 mutex_lock(&array->aux->poke_mutex); 918 old_ptr = xchg(array->ptrs + index, NULL); 919 map->ops->map_poke_run(map, index, old_ptr, NULL); 920 mutex_unlock(&array->aux->poke_mutex); 921 } else { 922 old_ptr = xchg(array->ptrs + index, NULL); 923 } 924 925 if (old_ptr) { 926 map->ops->map_fd_put_ptr(map, old_ptr, need_defer); 927 return 0; 928 } else { 929 return -ENOENT; 930 } 931 } 932 933 static long fd_array_map_delete_elem(struct bpf_map *map, void *key) 934 { 935 return __fd_array_map_delete_elem(map, key, true); 936 } 937 938 static void *prog_fd_array_get_ptr(struct bpf_map *map, 939 struct file *map_file, int fd) 940 { 941 struct bpf_prog *prog = bpf_prog_get(fd); 942 943 if (IS_ERR(prog)) 944 return prog; 945 946 if (!bpf_prog_map_compatible(map, prog)) { 947 bpf_prog_put(prog); 948 return ERR_PTR(-EINVAL); 949 } 950 951 return prog; 952 } 953 954 static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 955 { 956 /* bpf_prog is freed after one RCU or tasks trace grace period */ 957 bpf_prog_put(ptr); 958 } 959 960 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 961 { 962 return ((struct bpf_prog *)ptr)->aux->id; 963 } 964 965 /* decrement refcnt of all bpf_progs that are stored in this map */ 966 static void bpf_fd_array_map_clear(struct bpf_map *map, bool need_defer) 967 { 968 struct bpf_array *array = container_of(map, struct bpf_array, map); 969 int i; 970 971 for (i = 0; i < array->map.max_entries; i++) 972 __fd_array_map_delete_elem(map, &i, need_defer); 973 } 974 975 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 976 struct seq_file *m) 977 { 978 void **elem, *ptr; 979 u32 prog_id; 980 981 rcu_read_lock(); 982 983 elem = array_map_lookup_elem(map, key); 984 if (elem) { 985 ptr = READ_ONCE(*elem); 986 if (ptr) { 987 seq_printf(m, "%u: ", *(u32 *)key); 988 prog_id = prog_fd_array_sys_lookup_elem(ptr); 989 btf_type_seq_show(map->btf, map->btf_value_type_id, 990 &prog_id, m); 991 seq_puts(m, "\n"); 992 } 993 } 994 995 rcu_read_unlock(); 996 } 997 998 struct prog_poke_elem { 999 struct list_head list; 1000 struct bpf_prog_aux *aux; 1001 }; 1002 1003 static int prog_array_map_poke_track(struct bpf_map *map, 1004 struct bpf_prog_aux *prog_aux) 1005 { 1006 struct prog_poke_elem *elem; 1007 struct bpf_array_aux *aux; 1008 int ret = 0; 1009 1010 aux = container_of(map, struct bpf_array, map)->aux; 1011 mutex_lock(&aux->poke_mutex); 1012 list_for_each_entry(elem, &aux->poke_progs, list) { 1013 if (elem->aux == prog_aux) 1014 goto out; 1015 } 1016 1017 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 1018 if (!elem) { 1019 ret = -ENOMEM; 1020 goto out; 1021 } 1022 1023 INIT_LIST_HEAD(&elem->list); 1024 /* We must track the program's aux info at this point in time 1025 * since the program pointer itself may not be stable yet, see 1026 * also comment in prog_array_map_poke_run(). 1027 */ 1028 elem->aux = prog_aux; 1029 1030 list_add_tail(&elem->list, &aux->poke_progs); 1031 out: 1032 mutex_unlock(&aux->poke_mutex); 1033 return ret; 1034 } 1035 1036 static void prog_array_map_poke_untrack(struct bpf_map *map, 1037 struct bpf_prog_aux *prog_aux) 1038 { 1039 struct prog_poke_elem *elem, *tmp; 1040 struct bpf_array_aux *aux; 1041 1042 aux = container_of(map, struct bpf_array, map)->aux; 1043 mutex_lock(&aux->poke_mutex); 1044 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1045 if (elem->aux == prog_aux) { 1046 list_del_init(&elem->list); 1047 kfree(elem); 1048 break; 1049 } 1050 } 1051 mutex_unlock(&aux->poke_mutex); 1052 } 1053 1054 void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 1055 struct bpf_prog *new, struct bpf_prog *old) 1056 { 1057 WARN_ON_ONCE(1); 1058 } 1059 1060 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 1061 struct bpf_prog *old, 1062 struct bpf_prog *new) 1063 { 1064 struct prog_poke_elem *elem; 1065 struct bpf_array_aux *aux; 1066 1067 aux = container_of(map, struct bpf_array, map)->aux; 1068 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 1069 1070 list_for_each_entry(elem, &aux->poke_progs, list) { 1071 struct bpf_jit_poke_descriptor *poke; 1072 int i; 1073 1074 for (i = 0; i < elem->aux->size_poke_tab; i++) { 1075 poke = &elem->aux->poke_tab[i]; 1076 1077 /* Few things to be aware of: 1078 * 1079 * 1) We can only ever access aux in this context, but 1080 * not aux->prog since it might not be stable yet and 1081 * there could be danger of use after free otherwise. 1082 * 2) Initially when we start tracking aux, the program 1083 * is not JITed yet and also does not have a kallsyms 1084 * entry. We skip these as poke->tailcall_target_stable 1085 * is not active yet. The JIT will do the final fixup 1086 * before setting it stable. The various 1087 * poke->tailcall_target_stable are successively 1088 * activated, so tail call updates can arrive from here 1089 * while JIT is still finishing its final fixup for 1090 * non-activated poke entries. 1091 * 3) Also programs reaching refcount of zero while patching 1092 * is in progress is okay since we're protected under 1093 * poke_mutex and untrack the programs before the JIT 1094 * buffer is freed. 1095 */ 1096 if (!READ_ONCE(poke->tailcall_target_stable)) 1097 continue; 1098 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1099 continue; 1100 if (poke->tail_call.map != map || 1101 poke->tail_call.key != key) 1102 continue; 1103 1104 bpf_arch_poke_desc_update(poke, new, old); 1105 } 1106 } 1107 } 1108 1109 static void prog_array_map_clear_deferred(struct work_struct *work) 1110 { 1111 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1112 work)->map; 1113 bpf_fd_array_map_clear(map, true); 1114 bpf_map_put(map); 1115 } 1116 1117 static void prog_array_map_clear(struct bpf_map *map) 1118 { 1119 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1120 map)->aux; 1121 bpf_map_inc(map); 1122 schedule_work(&aux->work); 1123 } 1124 1125 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1126 { 1127 struct bpf_array_aux *aux; 1128 struct bpf_map *map; 1129 1130 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1131 if (!aux) 1132 return ERR_PTR(-ENOMEM); 1133 1134 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1135 INIT_LIST_HEAD(&aux->poke_progs); 1136 mutex_init(&aux->poke_mutex); 1137 1138 map = array_map_alloc(attr); 1139 if (IS_ERR(map)) { 1140 kfree(aux); 1141 return map; 1142 } 1143 1144 container_of(map, struct bpf_array, map)->aux = aux; 1145 aux->map = map; 1146 1147 return map; 1148 } 1149 1150 static void prog_array_map_free(struct bpf_map *map) 1151 { 1152 struct prog_poke_elem *elem, *tmp; 1153 struct bpf_array_aux *aux; 1154 1155 aux = container_of(map, struct bpf_array, map)->aux; 1156 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1157 list_del_init(&elem->list); 1158 kfree(elem); 1159 } 1160 kfree(aux); 1161 fd_array_map_free(map); 1162 } 1163 1164 /* prog_array->aux->{type,jited} is a runtime binding. 1165 * Doing static check alone in the verifier is not enough. 1166 * Thus, prog_array_map cannot be used as an inner_map 1167 * and map_meta_equal is not implemented. 1168 */ 1169 const struct bpf_map_ops prog_array_map_ops = { 1170 .map_alloc_check = fd_array_map_alloc_check, 1171 .map_alloc = prog_array_map_alloc, 1172 .map_free = prog_array_map_free, 1173 .map_poke_track = prog_array_map_poke_track, 1174 .map_poke_untrack = prog_array_map_poke_untrack, 1175 .map_poke_run = prog_array_map_poke_run, 1176 .map_get_next_key = array_map_get_next_key, 1177 .map_lookup_elem = fd_array_map_lookup_elem, 1178 .map_delete_elem = fd_array_map_delete_elem, 1179 .map_fd_get_ptr = prog_fd_array_get_ptr, 1180 .map_fd_put_ptr = prog_fd_array_put_ptr, 1181 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1182 .map_release_uref = prog_array_map_clear, 1183 .map_seq_show_elem = prog_array_map_seq_show_elem, 1184 .map_mem_usage = array_map_mem_usage, 1185 .map_btf_id = &array_map_btf_ids[0], 1186 }; 1187 1188 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1189 struct file *map_file) 1190 { 1191 struct bpf_event_entry *ee; 1192 1193 ee = kzalloc(sizeof(*ee), GFP_KERNEL); 1194 if (ee) { 1195 ee->event = perf_file->private_data; 1196 ee->perf_file = perf_file; 1197 ee->map_file = map_file; 1198 } 1199 1200 return ee; 1201 } 1202 1203 static void __bpf_event_entry_free(struct rcu_head *rcu) 1204 { 1205 struct bpf_event_entry *ee; 1206 1207 ee = container_of(rcu, struct bpf_event_entry, rcu); 1208 fput(ee->perf_file); 1209 kfree(ee); 1210 } 1211 1212 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1213 { 1214 call_rcu(&ee->rcu, __bpf_event_entry_free); 1215 } 1216 1217 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1218 struct file *map_file, int fd) 1219 { 1220 struct bpf_event_entry *ee; 1221 struct perf_event *event; 1222 struct file *perf_file; 1223 u64 value; 1224 1225 perf_file = perf_event_get(fd); 1226 if (IS_ERR(perf_file)) 1227 return perf_file; 1228 1229 ee = ERR_PTR(-EOPNOTSUPP); 1230 event = perf_file->private_data; 1231 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1232 goto err_out; 1233 1234 ee = bpf_event_entry_gen(perf_file, map_file); 1235 if (ee) 1236 return ee; 1237 ee = ERR_PTR(-ENOMEM); 1238 err_out: 1239 fput(perf_file); 1240 return ee; 1241 } 1242 1243 static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 1244 { 1245 /* bpf_perf_event is freed after one RCU grace period */ 1246 bpf_event_entry_free_rcu(ptr); 1247 } 1248 1249 static void perf_event_fd_array_release(struct bpf_map *map, 1250 struct file *map_file) 1251 { 1252 struct bpf_array *array = container_of(map, struct bpf_array, map); 1253 struct bpf_event_entry *ee; 1254 int i; 1255 1256 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1257 return; 1258 1259 rcu_read_lock(); 1260 for (i = 0; i < array->map.max_entries; i++) { 1261 ee = READ_ONCE(array->ptrs[i]); 1262 if (ee && ee->map_file == map_file) 1263 __fd_array_map_delete_elem(map, &i, true); 1264 } 1265 rcu_read_unlock(); 1266 } 1267 1268 static void perf_event_fd_array_map_free(struct bpf_map *map) 1269 { 1270 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1271 bpf_fd_array_map_clear(map, false); 1272 fd_array_map_free(map); 1273 } 1274 1275 const struct bpf_map_ops perf_event_array_map_ops = { 1276 .map_meta_equal = bpf_map_meta_equal, 1277 .map_alloc_check = fd_array_map_alloc_check, 1278 .map_alloc = array_map_alloc, 1279 .map_free = perf_event_fd_array_map_free, 1280 .map_get_next_key = array_map_get_next_key, 1281 .map_lookup_elem = fd_array_map_lookup_elem, 1282 .map_delete_elem = fd_array_map_delete_elem, 1283 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1284 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1285 .map_release = perf_event_fd_array_release, 1286 .map_check_btf = map_check_no_btf, 1287 .map_mem_usage = array_map_mem_usage, 1288 .map_btf_id = &array_map_btf_ids[0], 1289 }; 1290 1291 #ifdef CONFIG_CGROUPS 1292 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1293 struct file *map_file /* not used */, 1294 int fd) 1295 { 1296 return cgroup_get_from_fd(fd); 1297 } 1298 1299 static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 1300 { 1301 /* cgroup_put free cgrp after a rcu grace period */ 1302 cgroup_put(ptr); 1303 } 1304 1305 static void cgroup_fd_array_free(struct bpf_map *map) 1306 { 1307 bpf_fd_array_map_clear(map, false); 1308 fd_array_map_free(map); 1309 } 1310 1311 const struct bpf_map_ops cgroup_array_map_ops = { 1312 .map_meta_equal = bpf_map_meta_equal, 1313 .map_alloc_check = fd_array_map_alloc_check, 1314 .map_alloc = array_map_alloc, 1315 .map_free = cgroup_fd_array_free, 1316 .map_get_next_key = array_map_get_next_key, 1317 .map_lookup_elem = fd_array_map_lookup_elem, 1318 .map_delete_elem = fd_array_map_delete_elem, 1319 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1320 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1321 .map_check_btf = map_check_no_btf, 1322 .map_mem_usage = array_map_mem_usage, 1323 .map_btf_id = &array_map_btf_ids[0], 1324 }; 1325 #endif 1326 1327 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1328 { 1329 struct bpf_map *map, *inner_map_meta; 1330 1331 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1332 if (IS_ERR(inner_map_meta)) 1333 return inner_map_meta; 1334 1335 map = array_map_alloc(attr); 1336 if (IS_ERR(map)) { 1337 bpf_map_meta_free(inner_map_meta); 1338 return map; 1339 } 1340 1341 map->inner_map_meta = inner_map_meta; 1342 1343 return map; 1344 } 1345 1346 static void array_of_map_free(struct bpf_map *map) 1347 { 1348 /* map->inner_map_meta is only accessed by syscall which 1349 * is protected by fdget/fdput. 1350 */ 1351 bpf_map_meta_free(map->inner_map_meta); 1352 bpf_fd_array_map_clear(map, false); 1353 fd_array_map_free(map); 1354 } 1355 1356 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1357 { 1358 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1359 1360 if (!inner_map) 1361 return NULL; 1362 1363 return READ_ONCE(*inner_map); 1364 } 1365 1366 static int array_of_map_gen_lookup(struct bpf_map *map, 1367 struct bpf_insn *insn_buf) 1368 { 1369 struct bpf_array *array = container_of(map, struct bpf_array, map); 1370 u32 elem_size = array->elem_size; 1371 struct bpf_insn *insn = insn_buf; 1372 const int ret = BPF_REG_0; 1373 const int map_ptr = BPF_REG_1; 1374 const int index = BPF_REG_2; 1375 1376 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1377 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1378 if (!map->bypass_spec_v1) { 1379 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1380 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1381 } else { 1382 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1383 } 1384 if (is_power_of_2(elem_size)) 1385 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1386 else 1387 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1388 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1389 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1390 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1391 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1392 *insn++ = BPF_MOV64_IMM(ret, 0); 1393 1394 return insn - insn_buf; 1395 } 1396 1397 const struct bpf_map_ops array_of_maps_map_ops = { 1398 .map_alloc_check = fd_array_map_alloc_check, 1399 .map_alloc = array_of_map_alloc, 1400 .map_free = array_of_map_free, 1401 .map_get_next_key = array_map_get_next_key, 1402 .map_lookup_elem = array_of_map_lookup_elem, 1403 .map_delete_elem = fd_array_map_delete_elem, 1404 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1405 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1406 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1407 .map_gen_lookup = array_of_map_gen_lookup, 1408 .map_lookup_batch = generic_map_lookup_batch, 1409 .map_update_batch = generic_map_update_batch, 1410 .map_check_btf = map_check_no_btf, 1411 .map_mem_usage = array_map_mem_usage, 1412 .map_btf_id = &array_map_btf_ids[0], 1413 }; 1414