xref: /linux/kernel/bpf/arraymap.c (revision ad2d22b617b7c0ca2cff4da6dc063183822484bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016,2017 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/err.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/filter.h>
11 #include <linux/perf_event.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/rcupdate_trace.h>
14 #include <linux/btf_ids.h>
15 
16 #include "map_in_map.h"
17 
18 #define ARRAY_CREATE_FLAG_MASK \
19 	(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \
20 	 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP)
21 
22 static void bpf_array_free_percpu(struct bpf_array *array)
23 {
24 	int i;
25 
26 	for (i = 0; i < array->map.max_entries; i++) {
27 		free_percpu(array->pptrs[i]);
28 		cond_resched();
29 	}
30 }
31 
32 static int bpf_array_alloc_percpu(struct bpf_array *array)
33 {
34 	void __percpu *ptr;
35 	int i;
36 
37 	for (i = 0; i < array->map.max_entries; i++) {
38 		ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8,
39 					   GFP_USER | __GFP_NOWARN);
40 		if (!ptr) {
41 			bpf_array_free_percpu(array);
42 			return -ENOMEM;
43 		}
44 		array->pptrs[i] = ptr;
45 		cond_resched();
46 	}
47 
48 	return 0;
49 }
50 
51 /* Called from syscall */
52 int array_map_alloc_check(union bpf_attr *attr)
53 {
54 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
55 	int numa_node = bpf_map_attr_numa_node(attr);
56 
57 	/* check sanity of attributes */
58 	if (attr->max_entries == 0 || attr->key_size != 4 ||
59 	    attr->value_size == 0 ||
60 	    attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
61 	    !bpf_map_flags_access_ok(attr->map_flags) ||
62 	    (percpu && numa_node != NUMA_NO_NODE))
63 		return -EINVAL;
64 
65 	if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
66 	    attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP))
67 		return -EINVAL;
68 
69 	if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
70 	    attr->map_flags & BPF_F_PRESERVE_ELEMS)
71 		return -EINVAL;
72 
73 	/* avoid overflow on round_up(map->value_size) */
74 	if (attr->value_size > INT_MAX)
75 		return -E2BIG;
76 
77 	return 0;
78 }
79 
80 static struct bpf_map *array_map_alloc(union bpf_attr *attr)
81 {
82 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
83 	int numa_node = bpf_map_attr_numa_node(attr);
84 	u32 elem_size, index_mask, max_entries;
85 	bool bypass_spec_v1 = bpf_bypass_spec_v1(NULL);
86 	u64 array_size, mask64;
87 	struct bpf_array *array;
88 
89 	elem_size = round_up(attr->value_size, 8);
90 
91 	max_entries = attr->max_entries;
92 
93 	/* On 32 bit archs roundup_pow_of_two() with max_entries that has
94 	 * upper most bit set in u32 space is undefined behavior due to
95 	 * resulting 1U << 32, so do it manually here in u64 space.
96 	 */
97 	mask64 = fls_long(max_entries - 1);
98 	mask64 = 1ULL << mask64;
99 	mask64 -= 1;
100 
101 	index_mask = mask64;
102 	if (!bypass_spec_v1) {
103 		/* round up array size to nearest power of 2,
104 		 * since cpu will speculate within index_mask limits
105 		 */
106 		max_entries = index_mask + 1;
107 		/* Check for overflows. */
108 		if (max_entries < attr->max_entries)
109 			return ERR_PTR(-E2BIG);
110 	}
111 
112 	array_size = sizeof(*array);
113 	if (percpu) {
114 		array_size += (u64) max_entries * sizeof(void *);
115 	} else {
116 		/* rely on vmalloc() to return page-aligned memory and
117 		 * ensure array->value is exactly page-aligned
118 		 */
119 		if (attr->map_flags & BPF_F_MMAPABLE) {
120 			array_size = PAGE_ALIGN(array_size);
121 			array_size += PAGE_ALIGN((u64) max_entries * elem_size);
122 		} else {
123 			array_size += (u64) max_entries * elem_size;
124 		}
125 	}
126 
127 	/* allocate all map elements and zero-initialize them */
128 	if (attr->map_flags & BPF_F_MMAPABLE) {
129 		void *data;
130 
131 		/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
132 		data = bpf_map_area_mmapable_alloc(array_size, numa_node);
133 		if (!data)
134 			return ERR_PTR(-ENOMEM);
135 		array = data + PAGE_ALIGN(sizeof(struct bpf_array))
136 			- offsetof(struct bpf_array, value);
137 	} else {
138 		array = bpf_map_area_alloc(array_size, numa_node);
139 	}
140 	if (!array)
141 		return ERR_PTR(-ENOMEM);
142 	array->index_mask = index_mask;
143 	array->map.bypass_spec_v1 = bypass_spec_v1;
144 
145 	/* copy mandatory map attributes */
146 	bpf_map_init_from_attr(&array->map, attr);
147 	array->elem_size = elem_size;
148 
149 	if (percpu && bpf_array_alloc_percpu(array)) {
150 		bpf_map_area_free(array);
151 		return ERR_PTR(-ENOMEM);
152 	}
153 
154 	return &array->map;
155 }
156 
157 static void *array_map_elem_ptr(struct bpf_array* array, u32 index)
158 {
159 	return array->value + (u64)array->elem_size * index;
160 }
161 
162 /* Called from syscall or from eBPF program */
163 static void *array_map_lookup_elem(struct bpf_map *map, void *key)
164 {
165 	struct bpf_array *array = container_of(map, struct bpf_array, map);
166 	u32 index = *(u32 *)key;
167 
168 	if (unlikely(index >= array->map.max_entries))
169 		return NULL;
170 
171 	return array->value + (u64)array->elem_size * (index & array->index_mask);
172 }
173 
174 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
175 				       u32 off)
176 {
177 	struct bpf_array *array = container_of(map, struct bpf_array, map);
178 
179 	if (map->max_entries != 1)
180 		return -ENOTSUPP;
181 	if (off >= map->value_size)
182 		return -EINVAL;
183 
184 	*imm = (unsigned long)array->value;
185 	return 0;
186 }
187 
188 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
189 				       u32 *off)
190 {
191 	struct bpf_array *array = container_of(map, struct bpf_array, map);
192 	u64 base = (unsigned long)array->value;
193 	u64 range = array->elem_size;
194 
195 	if (map->max_entries != 1)
196 		return -ENOTSUPP;
197 	if (imm < base || imm >= base + range)
198 		return -ENOENT;
199 
200 	*off = imm - base;
201 	return 0;
202 }
203 
204 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
205 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
206 {
207 	struct bpf_array *array = container_of(map, struct bpf_array, map);
208 	struct bpf_insn *insn = insn_buf;
209 	u32 elem_size = array->elem_size;
210 	const int ret = BPF_REG_0;
211 	const int map_ptr = BPF_REG_1;
212 	const int index = BPF_REG_2;
213 
214 	if (map->map_flags & BPF_F_INNER_MAP)
215 		return -EOPNOTSUPP;
216 
217 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
218 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
219 	if (!map->bypass_spec_v1) {
220 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
221 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
222 	} else {
223 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
224 	}
225 
226 	if (is_power_of_2(elem_size)) {
227 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
228 	} else {
229 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
230 	}
231 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
232 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
233 	*insn++ = BPF_MOV64_IMM(ret, 0);
234 	return insn - insn_buf;
235 }
236 
237 /* Called from eBPF program */
238 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
239 {
240 	struct bpf_array *array = container_of(map, struct bpf_array, map);
241 	u32 index = *(u32 *)key;
242 
243 	if (unlikely(index >= array->map.max_entries))
244 		return NULL;
245 
246 	return this_cpu_ptr(array->pptrs[index & array->index_mask]);
247 }
248 
249 /* emit BPF instructions equivalent to C code of percpu_array_map_lookup_elem() */
250 static int percpu_array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
251 {
252 	struct bpf_array *array = container_of(map, struct bpf_array, map);
253 	struct bpf_insn *insn = insn_buf;
254 
255 	if (!bpf_jit_supports_percpu_insn())
256 		return -EOPNOTSUPP;
257 
258 	if (map->map_flags & BPF_F_INNER_MAP)
259 		return -EOPNOTSUPP;
260 
261 	BUILD_BUG_ON(offsetof(struct bpf_array, map) != 0);
262 	*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct bpf_array, pptrs));
263 
264 	*insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0);
265 	if (!map->bypass_spec_v1) {
266 		*insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 6);
267 		*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_0, array->index_mask);
268 	} else {
269 		*insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 5);
270 	}
271 
272 	*insn++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
273 	*insn++ = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
274 	*insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0);
275 	*insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
276 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
277 	*insn++ = BPF_MOV64_IMM(BPF_REG_0, 0);
278 	return insn - insn_buf;
279 }
280 
281 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
282 {
283 	struct bpf_array *array = container_of(map, struct bpf_array, map);
284 	u32 index = *(u32 *)key;
285 
286 	if (cpu >= nr_cpu_ids)
287 		return NULL;
288 
289 	if (unlikely(index >= array->map.max_entries))
290 		return NULL;
291 
292 	return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu);
293 }
294 
295 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
296 {
297 	struct bpf_array *array = container_of(map, struct bpf_array, map);
298 	u32 index = *(u32 *)key;
299 	void __percpu *pptr;
300 	int cpu, off = 0;
301 	u32 size;
302 
303 	if (unlikely(index >= array->map.max_entries))
304 		return -ENOENT;
305 
306 	/* per_cpu areas are zero-filled and bpf programs can only
307 	 * access 'value_size' of them, so copying rounded areas
308 	 * will not leak any kernel data
309 	 */
310 	size = array->elem_size;
311 	rcu_read_lock();
312 	pptr = array->pptrs[index & array->index_mask];
313 	for_each_possible_cpu(cpu) {
314 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
315 		check_and_init_map_value(map, value + off);
316 		off += size;
317 	}
318 	rcu_read_unlock();
319 	return 0;
320 }
321 
322 /* Called from syscall */
323 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
324 {
325 	struct bpf_array *array = container_of(map, struct bpf_array, map);
326 	u32 index = key ? *(u32 *)key : U32_MAX;
327 	u32 *next = (u32 *)next_key;
328 
329 	if (index >= array->map.max_entries) {
330 		*next = 0;
331 		return 0;
332 	}
333 
334 	if (index == array->map.max_entries - 1)
335 		return -ENOENT;
336 
337 	*next = index + 1;
338 	return 0;
339 }
340 
341 /* Called from syscall or from eBPF program */
342 static long array_map_update_elem(struct bpf_map *map, void *key, void *value,
343 				  u64 map_flags)
344 {
345 	struct bpf_array *array = container_of(map, struct bpf_array, map);
346 	u32 index = *(u32 *)key;
347 	char *val;
348 
349 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
350 		/* unknown flags */
351 		return -EINVAL;
352 
353 	if (unlikely(index >= array->map.max_entries))
354 		/* all elements were pre-allocated, cannot insert a new one */
355 		return -E2BIG;
356 
357 	if (unlikely(map_flags & BPF_NOEXIST))
358 		/* all elements already exist */
359 		return -EEXIST;
360 
361 	if (unlikely((map_flags & BPF_F_LOCK) &&
362 		     !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
363 		return -EINVAL;
364 
365 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
366 		val = this_cpu_ptr(array->pptrs[index & array->index_mask]);
367 		copy_map_value(map, val, value);
368 		bpf_obj_free_fields(array->map.record, val);
369 	} else {
370 		val = array->value +
371 			(u64)array->elem_size * (index & array->index_mask);
372 		if (map_flags & BPF_F_LOCK)
373 			copy_map_value_locked(map, val, value, false);
374 		else
375 			copy_map_value(map, val, value);
376 		bpf_obj_free_fields(array->map.record, val);
377 	}
378 	return 0;
379 }
380 
381 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
382 			    u64 map_flags)
383 {
384 	struct bpf_array *array = container_of(map, struct bpf_array, map);
385 	u32 index = *(u32 *)key;
386 	void __percpu *pptr;
387 	int cpu, off = 0;
388 	u32 size;
389 
390 	if (unlikely(map_flags > BPF_EXIST))
391 		/* unknown flags */
392 		return -EINVAL;
393 
394 	if (unlikely(index >= array->map.max_entries))
395 		/* all elements were pre-allocated, cannot insert a new one */
396 		return -E2BIG;
397 
398 	if (unlikely(map_flags == BPF_NOEXIST))
399 		/* all elements already exist */
400 		return -EEXIST;
401 
402 	/* the user space will provide round_up(value_size, 8) bytes that
403 	 * will be copied into per-cpu area. bpf programs can only access
404 	 * value_size of it. During lookup the same extra bytes will be
405 	 * returned or zeros which were zero-filled by percpu_alloc,
406 	 * so no kernel data leaks possible
407 	 */
408 	size = array->elem_size;
409 	rcu_read_lock();
410 	pptr = array->pptrs[index & array->index_mask];
411 	for_each_possible_cpu(cpu) {
412 		copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off);
413 		bpf_obj_free_fields(array->map.record, per_cpu_ptr(pptr, cpu));
414 		off += size;
415 	}
416 	rcu_read_unlock();
417 	return 0;
418 }
419 
420 /* Called from syscall or from eBPF program */
421 static long array_map_delete_elem(struct bpf_map *map, void *key)
422 {
423 	return -EINVAL;
424 }
425 
426 static void *array_map_vmalloc_addr(struct bpf_array *array)
427 {
428 	return (void *)round_down((unsigned long)array, PAGE_SIZE);
429 }
430 
431 static void array_map_free_timers(struct bpf_map *map)
432 {
433 	struct bpf_array *array = container_of(map, struct bpf_array, map);
434 	int i;
435 
436 	/* We don't reset or free fields other than timer on uref dropping to zero. */
437 	if (!btf_record_has_field(map->record, BPF_TIMER))
438 		return;
439 
440 	for (i = 0; i < array->map.max_entries; i++)
441 		bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i));
442 }
443 
444 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
445 static void array_map_free(struct bpf_map *map)
446 {
447 	struct bpf_array *array = container_of(map, struct bpf_array, map);
448 	int i;
449 
450 	if (!IS_ERR_OR_NULL(map->record)) {
451 		if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
452 			for (i = 0; i < array->map.max_entries; i++) {
453 				void __percpu *pptr = array->pptrs[i & array->index_mask];
454 				int cpu;
455 
456 				for_each_possible_cpu(cpu) {
457 					bpf_obj_free_fields(map->record, per_cpu_ptr(pptr, cpu));
458 					cond_resched();
459 				}
460 			}
461 		} else {
462 			for (i = 0; i < array->map.max_entries; i++)
463 				bpf_obj_free_fields(map->record, array_map_elem_ptr(array, i));
464 		}
465 	}
466 
467 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
468 		bpf_array_free_percpu(array);
469 
470 	if (array->map.map_flags & BPF_F_MMAPABLE)
471 		bpf_map_area_free(array_map_vmalloc_addr(array));
472 	else
473 		bpf_map_area_free(array);
474 }
475 
476 static void array_map_seq_show_elem(struct bpf_map *map, void *key,
477 				    struct seq_file *m)
478 {
479 	void *value;
480 
481 	rcu_read_lock();
482 
483 	value = array_map_lookup_elem(map, key);
484 	if (!value) {
485 		rcu_read_unlock();
486 		return;
487 	}
488 
489 	if (map->btf_key_type_id)
490 		seq_printf(m, "%u: ", *(u32 *)key);
491 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
492 	seq_puts(m, "\n");
493 
494 	rcu_read_unlock();
495 }
496 
497 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
498 					   struct seq_file *m)
499 {
500 	struct bpf_array *array = container_of(map, struct bpf_array, map);
501 	u32 index = *(u32 *)key;
502 	void __percpu *pptr;
503 	int cpu;
504 
505 	rcu_read_lock();
506 
507 	seq_printf(m, "%u: {\n", *(u32 *)key);
508 	pptr = array->pptrs[index & array->index_mask];
509 	for_each_possible_cpu(cpu) {
510 		seq_printf(m, "\tcpu%d: ", cpu);
511 		btf_type_seq_show(map->btf, map->btf_value_type_id,
512 				  per_cpu_ptr(pptr, cpu), m);
513 		seq_puts(m, "\n");
514 	}
515 	seq_puts(m, "}\n");
516 
517 	rcu_read_unlock();
518 }
519 
520 static int array_map_check_btf(const struct bpf_map *map,
521 			       const struct btf *btf,
522 			       const struct btf_type *key_type,
523 			       const struct btf_type *value_type)
524 {
525 	u32 int_data;
526 
527 	/* One exception for keyless BTF: .bss/.data/.rodata map */
528 	if (btf_type_is_void(key_type)) {
529 		if (map->map_type != BPF_MAP_TYPE_ARRAY ||
530 		    map->max_entries != 1)
531 			return -EINVAL;
532 
533 		if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
534 			return -EINVAL;
535 
536 		return 0;
537 	}
538 
539 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
540 		return -EINVAL;
541 
542 	int_data = *(u32 *)(key_type + 1);
543 	/* bpf array can only take a u32 key. This check makes sure
544 	 * that the btf matches the attr used during map_create.
545 	 */
546 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
547 		return -EINVAL;
548 
549 	return 0;
550 }
551 
552 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
553 {
554 	struct bpf_array *array = container_of(map, struct bpf_array, map);
555 	pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
556 
557 	if (!(map->map_flags & BPF_F_MMAPABLE))
558 		return -EINVAL;
559 
560 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
561 	    PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
562 		return -EINVAL;
563 
564 	return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
565 				   vma->vm_pgoff + pgoff);
566 }
567 
568 static bool array_map_meta_equal(const struct bpf_map *meta0,
569 				 const struct bpf_map *meta1)
570 {
571 	if (!bpf_map_meta_equal(meta0, meta1))
572 		return false;
573 	return meta0->map_flags & BPF_F_INNER_MAP ? true :
574 	       meta0->max_entries == meta1->max_entries;
575 }
576 
577 struct bpf_iter_seq_array_map_info {
578 	struct bpf_map *map;
579 	void *percpu_value_buf;
580 	u32 index;
581 };
582 
583 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
584 {
585 	struct bpf_iter_seq_array_map_info *info = seq->private;
586 	struct bpf_map *map = info->map;
587 	struct bpf_array *array;
588 	u32 index;
589 
590 	if (info->index >= map->max_entries)
591 		return NULL;
592 
593 	if (*pos == 0)
594 		++*pos;
595 	array = container_of(map, struct bpf_array, map);
596 	index = info->index & array->index_mask;
597 	if (info->percpu_value_buf)
598 	       return array->pptrs[index];
599 	return array_map_elem_ptr(array, index);
600 }
601 
602 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
603 {
604 	struct bpf_iter_seq_array_map_info *info = seq->private;
605 	struct bpf_map *map = info->map;
606 	struct bpf_array *array;
607 	u32 index;
608 
609 	++*pos;
610 	++info->index;
611 	if (info->index >= map->max_entries)
612 		return NULL;
613 
614 	array = container_of(map, struct bpf_array, map);
615 	index = info->index & array->index_mask;
616 	if (info->percpu_value_buf)
617 	       return array->pptrs[index];
618 	return array_map_elem_ptr(array, index);
619 }
620 
621 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
622 {
623 	struct bpf_iter_seq_array_map_info *info = seq->private;
624 	struct bpf_iter__bpf_map_elem ctx = {};
625 	struct bpf_map *map = info->map;
626 	struct bpf_array *array = container_of(map, struct bpf_array, map);
627 	struct bpf_iter_meta meta;
628 	struct bpf_prog *prog;
629 	int off = 0, cpu = 0;
630 	void __percpu **pptr;
631 	u32 size;
632 
633 	meta.seq = seq;
634 	prog = bpf_iter_get_info(&meta, v == NULL);
635 	if (!prog)
636 		return 0;
637 
638 	ctx.meta = &meta;
639 	ctx.map = info->map;
640 	if (v) {
641 		ctx.key = &info->index;
642 
643 		if (!info->percpu_value_buf) {
644 			ctx.value = v;
645 		} else {
646 			pptr = v;
647 			size = array->elem_size;
648 			for_each_possible_cpu(cpu) {
649 				copy_map_value_long(map, info->percpu_value_buf + off,
650 						    per_cpu_ptr(pptr, cpu));
651 				check_and_init_map_value(map, info->percpu_value_buf + off);
652 				off += size;
653 			}
654 			ctx.value = info->percpu_value_buf;
655 		}
656 	}
657 
658 	return bpf_iter_run_prog(prog, &ctx);
659 }
660 
661 static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
662 {
663 	return __bpf_array_map_seq_show(seq, v);
664 }
665 
666 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
667 {
668 	if (!v)
669 		(void)__bpf_array_map_seq_show(seq, NULL);
670 }
671 
672 static int bpf_iter_init_array_map(void *priv_data,
673 				   struct bpf_iter_aux_info *aux)
674 {
675 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
676 	struct bpf_map *map = aux->map;
677 	struct bpf_array *array = container_of(map, struct bpf_array, map);
678 	void *value_buf;
679 	u32 buf_size;
680 
681 	if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
682 		buf_size = array->elem_size * num_possible_cpus();
683 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
684 		if (!value_buf)
685 			return -ENOMEM;
686 
687 		seq_info->percpu_value_buf = value_buf;
688 	}
689 
690 	/* bpf_iter_attach_map() acquires a map uref, and the uref may be
691 	 * released before or in the middle of iterating map elements, so
692 	 * acquire an extra map uref for iterator.
693 	 */
694 	bpf_map_inc_with_uref(map);
695 	seq_info->map = map;
696 	return 0;
697 }
698 
699 static void bpf_iter_fini_array_map(void *priv_data)
700 {
701 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
702 
703 	bpf_map_put_with_uref(seq_info->map);
704 	kfree(seq_info->percpu_value_buf);
705 }
706 
707 static const struct seq_operations bpf_array_map_seq_ops = {
708 	.start	= bpf_array_map_seq_start,
709 	.next	= bpf_array_map_seq_next,
710 	.stop	= bpf_array_map_seq_stop,
711 	.show	= bpf_array_map_seq_show,
712 };
713 
714 static const struct bpf_iter_seq_info iter_seq_info = {
715 	.seq_ops		= &bpf_array_map_seq_ops,
716 	.init_seq_private	= bpf_iter_init_array_map,
717 	.fini_seq_private	= bpf_iter_fini_array_map,
718 	.seq_priv_size		= sizeof(struct bpf_iter_seq_array_map_info),
719 };
720 
721 static long bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn,
722 				    void *callback_ctx, u64 flags)
723 {
724 	u32 i, key, num_elems = 0;
725 	struct bpf_array *array;
726 	bool is_percpu;
727 	u64 ret = 0;
728 	void *val;
729 
730 	if (flags != 0)
731 		return -EINVAL;
732 
733 	is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
734 	array = container_of(map, struct bpf_array, map);
735 	if (is_percpu)
736 		migrate_disable();
737 	for (i = 0; i < map->max_entries; i++) {
738 		if (is_percpu)
739 			val = this_cpu_ptr(array->pptrs[i]);
740 		else
741 			val = array_map_elem_ptr(array, i);
742 		num_elems++;
743 		key = i;
744 		ret = callback_fn((u64)(long)map, (u64)(long)&key,
745 				  (u64)(long)val, (u64)(long)callback_ctx, 0);
746 		/* return value: 0 - continue, 1 - stop and return */
747 		if (ret)
748 			break;
749 	}
750 
751 	if (is_percpu)
752 		migrate_enable();
753 	return num_elems;
754 }
755 
756 static u64 array_map_mem_usage(const struct bpf_map *map)
757 {
758 	struct bpf_array *array = container_of(map, struct bpf_array, map);
759 	bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
760 	u32 elem_size = array->elem_size;
761 	u64 entries = map->max_entries;
762 	u64 usage = sizeof(*array);
763 
764 	if (percpu) {
765 		usage += entries * sizeof(void *);
766 		usage += entries * elem_size * num_possible_cpus();
767 	} else {
768 		if (map->map_flags & BPF_F_MMAPABLE) {
769 			usage = PAGE_ALIGN(usage);
770 			usage += PAGE_ALIGN(entries * elem_size);
771 		} else {
772 			usage += entries * elem_size;
773 		}
774 	}
775 	return usage;
776 }
777 
778 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array)
779 const struct bpf_map_ops array_map_ops = {
780 	.map_meta_equal = array_map_meta_equal,
781 	.map_alloc_check = array_map_alloc_check,
782 	.map_alloc = array_map_alloc,
783 	.map_free = array_map_free,
784 	.map_get_next_key = array_map_get_next_key,
785 	.map_release_uref = array_map_free_timers,
786 	.map_lookup_elem = array_map_lookup_elem,
787 	.map_update_elem = array_map_update_elem,
788 	.map_delete_elem = array_map_delete_elem,
789 	.map_gen_lookup = array_map_gen_lookup,
790 	.map_direct_value_addr = array_map_direct_value_addr,
791 	.map_direct_value_meta = array_map_direct_value_meta,
792 	.map_mmap = array_map_mmap,
793 	.map_seq_show_elem = array_map_seq_show_elem,
794 	.map_check_btf = array_map_check_btf,
795 	.map_lookup_batch = generic_map_lookup_batch,
796 	.map_update_batch = generic_map_update_batch,
797 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
798 	.map_for_each_callback = bpf_for_each_array_elem,
799 	.map_mem_usage = array_map_mem_usage,
800 	.map_btf_id = &array_map_btf_ids[0],
801 	.iter_seq_info = &iter_seq_info,
802 };
803 
804 const struct bpf_map_ops percpu_array_map_ops = {
805 	.map_meta_equal = bpf_map_meta_equal,
806 	.map_alloc_check = array_map_alloc_check,
807 	.map_alloc = array_map_alloc,
808 	.map_free = array_map_free,
809 	.map_get_next_key = array_map_get_next_key,
810 	.map_lookup_elem = percpu_array_map_lookup_elem,
811 	.map_gen_lookup = percpu_array_map_gen_lookup,
812 	.map_update_elem = array_map_update_elem,
813 	.map_delete_elem = array_map_delete_elem,
814 	.map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem,
815 	.map_seq_show_elem = percpu_array_map_seq_show_elem,
816 	.map_check_btf = array_map_check_btf,
817 	.map_lookup_batch = generic_map_lookup_batch,
818 	.map_update_batch = generic_map_update_batch,
819 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
820 	.map_for_each_callback = bpf_for_each_array_elem,
821 	.map_mem_usage = array_map_mem_usage,
822 	.map_btf_id = &array_map_btf_ids[0],
823 	.iter_seq_info = &iter_seq_info,
824 };
825 
826 static int fd_array_map_alloc_check(union bpf_attr *attr)
827 {
828 	/* only file descriptors can be stored in this type of map */
829 	if (attr->value_size != sizeof(u32))
830 		return -EINVAL;
831 	/* Program read-only/write-only not supported for special maps yet. */
832 	if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
833 		return -EINVAL;
834 	return array_map_alloc_check(attr);
835 }
836 
837 static void fd_array_map_free(struct bpf_map *map)
838 {
839 	struct bpf_array *array = container_of(map, struct bpf_array, map);
840 	int i;
841 
842 	/* make sure it's empty */
843 	for (i = 0; i < array->map.max_entries; i++)
844 		BUG_ON(array->ptrs[i] != NULL);
845 
846 	bpf_map_area_free(array);
847 }
848 
849 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
850 {
851 	return ERR_PTR(-EOPNOTSUPP);
852 }
853 
854 /* only called from syscall */
855 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
856 {
857 	void **elem, *ptr;
858 	int ret =  0;
859 
860 	if (!map->ops->map_fd_sys_lookup_elem)
861 		return -ENOTSUPP;
862 
863 	rcu_read_lock();
864 	elem = array_map_lookup_elem(map, key);
865 	if (elem && (ptr = READ_ONCE(*elem)))
866 		*value = map->ops->map_fd_sys_lookup_elem(ptr);
867 	else
868 		ret = -ENOENT;
869 	rcu_read_unlock();
870 
871 	return ret;
872 }
873 
874 /* only called from syscall */
875 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
876 				 void *key, void *value, u64 map_flags)
877 {
878 	struct bpf_array *array = container_of(map, struct bpf_array, map);
879 	void *new_ptr, *old_ptr;
880 	u32 index = *(u32 *)key, ufd;
881 
882 	if (map_flags != BPF_ANY)
883 		return -EINVAL;
884 
885 	if (index >= array->map.max_entries)
886 		return -E2BIG;
887 
888 	ufd = *(u32 *)value;
889 	new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
890 	if (IS_ERR(new_ptr))
891 		return PTR_ERR(new_ptr);
892 
893 	if (map->ops->map_poke_run) {
894 		mutex_lock(&array->aux->poke_mutex);
895 		old_ptr = xchg(array->ptrs + index, new_ptr);
896 		map->ops->map_poke_run(map, index, old_ptr, new_ptr);
897 		mutex_unlock(&array->aux->poke_mutex);
898 	} else {
899 		old_ptr = xchg(array->ptrs + index, new_ptr);
900 	}
901 
902 	if (old_ptr)
903 		map->ops->map_fd_put_ptr(map, old_ptr, true);
904 	return 0;
905 }
906 
907 static long __fd_array_map_delete_elem(struct bpf_map *map, void *key, bool need_defer)
908 {
909 	struct bpf_array *array = container_of(map, struct bpf_array, map);
910 	void *old_ptr;
911 	u32 index = *(u32 *)key;
912 
913 	if (index >= array->map.max_entries)
914 		return -E2BIG;
915 
916 	if (map->ops->map_poke_run) {
917 		mutex_lock(&array->aux->poke_mutex);
918 		old_ptr = xchg(array->ptrs + index, NULL);
919 		map->ops->map_poke_run(map, index, old_ptr, NULL);
920 		mutex_unlock(&array->aux->poke_mutex);
921 	} else {
922 		old_ptr = xchg(array->ptrs + index, NULL);
923 	}
924 
925 	if (old_ptr) {
926 		map->ops->map_fd_put_ptr(map, old_ptr, need_defer);
927 		return 0;
928 	} else {
929 		return -ENOENT;
930 	}
931 }
932 
933 static long fd_array_map_delete_elem(struct bpf_map *map, void *key)
934 {
935 	return __fd_array_map_delete_elem(map, key, true);
936 }
937 
938 static void *prog_fd_array_get_ptr(struct bpf_map *map,
939 				   struct file *map_file, int fd)
940 {
941 	struct bpf_prog *prog = bpf_prog_get(fd);
942 
943 	if (IS_ERR(prog))
944 		return prog;
945 
946 	if (!bpf_prog_map_compatible(map, prog)) {
947 		bpf_prog_put(prog);
948 		return ERR_PTR(-EINVAL);
949 	}
950 
951 	return prog;
952 }
953 
954 static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
955 {
956 	/* bpf_prog is freed after one RCU or tasks trace grace period */
957 	bpf_prog_put(ptr);
958 }
959 
960 static u32 prog_fd_array_sys_lookup_elem(void *ptr)
961 {
962 	return ((struct bpf_prog *)ptr)->aux->id;
963 }
964 
965 /* decrement refcnt of all bpf_progs that are stored in this map */
966 static void bpf_fd_array_map_clear(struct bpf_map *map, bool need_defer)
967 {
968 	struct bpf_array *array = container_of(map, struct bpf_array, map);
969 	int i;
970 
971 	for (i = 0; i < array->map.max_entries; i++)
972 		__fd_array_map_delete_elem(map, &i, need_defer);
973 }
974 
975 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
976 					 struct seq_file *m)
977 {
978 	void **elem, *ptr;
979 	u32 prog_id;
980 
981 	rcu_read_lock();
982 
983 	elem = array_map_lookup_elem(map, key);
984 	if (elem) {
985 		ptr = READ_ONCE(*elem);
986 		if (ptr) {
987 			seq_printf(m, "%u: ", *(u32 *)key);
988 			prog_id = prog_fd_array_sys_lookup_elem(ptr);
989 			btf_type_seq_show(map->btf, map->btf_value_type_id,
990 					  &prog_id, m);
991 			seq_puts(m, "\n");
992 		}
993 	}
994 
995 	rcu_read_unlock();
996 }
997 
998 struct prog_poke_elem {
999 	struct list_head list;
1000 	struct bpf_prog_aux *aux;
1001 };
1002 
1003 static int prog_array_map_poke_track(struct bpf_map *map,
1004 				     struct bpf_prog_aux *prog_aux)
1005 {
1006 	struct prog_poke_elem *elem;
1007 	struct bpf_array_aux *aux;
1008 	int ret = 0;
1009 
1010 	aux = container_of(map, struct bpf_array, map)->aux;
1011 	mutex_lock(&aux->poke_mutex);
1012 	list_for_each_entry(elem, &aux->poke_progs, list) {
1013 		if (elem->aux == prog_aux)
1014 			goto out;
1015 	}
1016 
1017 	elem = kmalloc(sizeof(*elem), GFP_KERNEL);
1018 	if (!elem) {
1019 		ret = -ENOMEM;
1020 		goto out;
1021 	}
1022 
1023 	INIT_LIST_HEAD(&elem->list);
1024 	/* We must track the program's aux info at this point in time
1025 	 * since the program pointer itself may not be stable yet, see
1026 	 * also comment in prog_array_map_poke_run().
1027 	 */
1028 	elem->aux = prog_aux;
1029 
1030 	list_add_tail(&elem->list, &aux->poke_progs);
1031 out:
1032 	mutex_unlock(&aux->poke_mutex);
1033 	return ret;
1034 }
1035 
1036 static void prog_array_map_poke_untrack(struct bpf_map *map,
1037 					struct bpf_prog_aux *prog_aux)
1038 {
1039 	struct prog_poke_elem *elem, *tmp;
1040 	struct bpf_array_aux *aux;
1041 
1042 	aux = container_of(map, struct bpf_array, map)->aux;
1043 	mutex_lock(&aux->poke_mutex);
1044 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
1045 		if (elem->aux == prog_aux) {
1046 			list_del_init(&elem->list);
1047 			kfree(elem);
1048 			break;
1049 		}
1050 	}
1051 	mutex_unlock(&aux->poke_mutex);
1052 }
1053 
1054 void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
1055 				      struct bpf_prog *new, struct bpf_prog *old)
1056 {
1057 	WARN_ON_ONCE(1);
1058 }
1059 
1060 static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
1061 				    struct bpf_prog *old,
1062 				    struct bpf_prog *new)
1063 {
1064 	struct prog_poke_elem *elem;
1065 	struct bpf_array_aux *aux;
1066 
1067 	aux = container_of(map, struct bpf_array, map)->aux;
1068 	WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
1069 
1070 	list_for_each_entry(elem, &aux->poke_progs, list) {
1071 		struct bpf_jit_poke_descriptor *poke;
1072 		int i;
1073 
1074 		for (i = 0; i < elem->aux->size_poke_tab; i++) {
1075 			poke = &elem->aux->poke_tab[i];
1076 
1077 			/* Few things to be aware of:
1078 			 *
1079 			 * 1) We can only ever access aux in this context, but
1080 			 *    not aux->prog since it might not be stable yet and
1081 			 *    there could be danger of use after free otherwise.
1082 			 * 2) Initially when we start tracking aux, the program
1083 			 *    is not JITed yet and also does not have a kallsyms
1084 			 *    entry. We skip these as poke->tailcall_target_stable
1085 			 *    is not active yet. The JIT will do the final fixup
1086 			 *    before setting it stable. The various
1087 			 *    poke->tailcall_target_stable are successively
1088 			 *    activated, so tail call updates can arrive from here
1089 			 *    while JIT is still finishing its final fixup for
1090 			 *    non-activated poke entries.
1091 			 * 3) Also programs reaching refcount of zero while patching
1092 			 *    is in progress is okay since we're protected under
1093 			 *    poke_mutex and untrack the programs before the JIT
1094 			 *    buffer is freed.
1095 			 */
1096 			if (!READ_ONCE(poke->tailcall_target_stable))
1097 				continue;
1098 			if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
1099 				continue;
1100 			if (poke->tail_call.map != map ||
1101 			    poke->tail_call.key != key)
1102 				continue;
1103 
1104 			bpf_arch_poke_desc_update(poke, new, old);
1105 		}
1106 	}
1107 }
1108 
1109 static void prog_array_map_clear_deferred(struct work_struct *work)
1110 {
1111 	struct bpf_map *map = container_of(work, struct bpf_array_aux,
1112 					   work)->map;
1113 	bpf_fd_array_map_clear(map, true);
1114 	bpf_map_put(map);
1115 }
1116 
1117 static void prog_array_map_clear(struct bpf_map *map)
1118 {
1119 	struct bpf_array_aux *aux = container_of(map, struct bpf_array,
1120 						 map)->aux;
1121 	bpf_map_inc(map);
1122 	schedule_work(&aux->work);
1123 }
1124 
1125 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
1126 {
1127 	struct bpf_array_aux *aux;
1128 	struct bpf_map *map;
1129 
1130 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT);
1131 	if (!aux)
1132 		return ERR_PTR(-ENOMEM);
1133 
1134 	INIT_WORK(&aux->work, prog_array_map_clear_deferred);
1135 	INIT_LIST_HEAD(&aux->poke_progs);
1136 	mutex_init(&aux->poke_mutex);
1137 
1138 	map = array_map_alloc(attr);
1139 	if (IS_ERR(map)) {
1140 		kfree(aux);
1141 		return map;
1142 	}
1143 
1144 	container_of(map, struct bpf_array, map)->aux = aux;
1145 	aux->map = map;
1146 
1147 	return map;
1148 }
1149 
1150 static void prog_array_map_free(struct bpf_map *map)
1151 {
1152 	struct prog_poke_elem *elem, *tmp;
1153 	struct bpf_array_aux *aux;
1154 
1155 	aux = container_of(map, struct bpf_array, map)->aux;
1156 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
1157 		list_del_init(&elem->list);
1158 		kfree(elem);
1159 	}
1160 	kfree(aux);
1161 	fd_array_map_free(map);
1162 }
1163 
1164 /* prog_array->aux->{type,jited} is a runtime binding.
1165  * Doing static check alone in the verifier is not enough.
1166  * Thus, prog_array_map cannot be used as an inner_map
1167  * and map_meta_equal is not implemented.
1168  */
1169 const struct bpf_map_ops prog_array_map_ops = {
1170 	.map_alloc_check = fd_array_map_alloc_check,
1171 	.map_alloc = prog_array_map_alloc,
1172 	.map_free = prog_array_map_free,
1173 	.map_poke_track = prog_array_map_poke_track,
1174 	.map_poke_untrack = prog_array_map_poke_untrack,
1175 	.map_poke_run = prog_array_map_poke_run,
1176 	.map_get_next_key = array_map_get_next_key,
1177 	.map_lookup_elem = fd_array_map_lookup_elem,
1178 	.map_delete_elem = fd_array_map_delete_elem,
1179 	.map_fd_get_ptr = prog_fd_array_get_ptr,
1180 	.map_fd_put_ptr = prog_fd_array_put_ptr,
1181 	.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
1182 	.map_release_uref = prog_array_map_clear,
1183 	.map_seq_show_elem = prog_array_map_seq_show_elem,
1184 	.map_mem_usage = array_map_mem_usage,
1185 	.map_btf_id = &array_map_btf_ids[0],
1186 };
1187 
1188 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
1189 						   struct file *map_file)
1190 {
1191 	struct bpf_event_entry *ee;
1192 
1193 	ee = kzalloc(sizeof(*ee), GFP_KERNEL);
1194 	if (ee) {
1195 		ee->event = perf_file->private_data;
1196 		ee->perf_file = perf_file;
1197 		ee->map_file = map_file;
1198 	}
1199 
1200 	return ee;
1201 }
1202 
1203 static void __bpf_event_entry_free(struct rcu_head *rcu)
1204 {
1205 	struct bpf_event_entry *ee;
1206 
1207 	ee = container_of(rcu, struct bpf_event_entry, rcu);
1208 	fput(ee->perf_file);
1209 	kfree(ee);
1210 }
1211 
1212 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
1213 {
1214 	call_rcu(&ee->rcu, __bpf_event_entry_free);
1215 }
1216 
1217 static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
1218 					 struct file *map_file, int fd)
1219 {
1220 	struct bpf_event_entry *ee;
1221 	struct perf_event *event;
1222 	struct file *perf_file;
1223 	u64 value;
1224 
1225 	perf_file = perf_event_get(fd);
1226 	if (IS_ERR(perf_file))
1227 		return perf_file;
1228 
1229 	ee = ERR_PTR(-EOPNOTSUPP);
1230 	event = perf_file->private_data;
1231 	if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
1232 		goto err_out;
1233 
1234 	ee = bpf_event_entry_gen(perf_file, map_file);
1235 	if (ee)
1236 		return ee;
1237 	ee = ERR_PTR(-ENOMEM);
1238 err_out:
1239 	fput(perf_file);
1240 	return ee;
1241 }
1242 
1243 static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
1244 {
1245 	/* bpf_perf_event is freed after one RCU grace period */
1246 	bpf_event_entry_free_rcu(ptr);
1247 }
1248 
1249 static void perf_event_fd_array_release(struct bpf_map *map,
1250 					struct file *map_file)
1251 {
1252 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1253 	struct bpf_event_entry *ee;
1254 	int i;
1255 
1256 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1257 		return;
1258 
1259 	rcu_read_lock();
1260 	for (i = 0; i < array->map.max_entries; i++) {
1261 		ee = READ_ONCE(array->ptrs[i]);
1262 		if (ee && ee->map_file == map_file)
1263 			__fd_array_map_delete_elem(map, &i, true);
1264 	}
1265 	rcu_read_unlock();
1266 }
1267 
1268 static void perf_event_fd_array_map_free(struct bpf_map *map)
1269 {
1270 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1271 		bpf_fd_array_map_clear(map, false);
1272 	fd_array_map_free(map);
1273 }
1274 
1275 const struct bpf_map_ops perf_event_array_map_ops = {
1276 	.map_meta_equal = bpf_map_meta_equal,
1277 	.map_alloc_check = fd_array_map_alloc_check,
1278 	.map_alloc = array_map_alloc,
1279 	.map_free = perf_event_fd_array_map_free,
1280 	.map_get_next_key = array_map_get_next_key,
1281 	.map_lookup_elem = fd_array_map_lookup_elem,
1282 	.map_delete_elem = fd_array_map_delete_elem,
1283 	.map_fd_get_ptr = perf_event_fd_array_get_ptr,
1284 	.map_fd_put_ptr = perf_event_fd_array_put_ptr,
1285 	.map_release = perf_event_fd_array_release,
1286 	.map_check_btf = map_check_no_btf,
1287 	.map_mem_usage = array_map_mem_usage,
1288 	.map_btf_id = &array_map_btf_ids[0],
1289 };
1290 
1291 #ifdef CONFIG_CGROUPS
1292 static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
1293 				     struct file *map_file /* not used */,
1294 				     int fd)
1295 {
1296 	return cgroup_get_from_fd(fd);
1297 }
1298 
1299 static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
1300 {
1301 	/* cgroup_put free cgrp after a rcu grace period */
1302 	cgroup_put(ptr);
1303 }
1304 
1305 static void cgroup_fd_array_free(struct bpf_map *map)
1306 {
1307 	bpf_fd_array_map_clear(map, false);
1308 	fd_array_map_free(map);
1309 }
1310 
1311 const struct bpf_map_ops cgroup_array_map_ops = {
1312 	.map_meta_equal = bpf_map_meta_equal,
1313 	.map_alloc_check = fd_array_map_alloc_check,
1314 	.map_alloc = array_map_alloc,
1315 	.map_free = cgroup_fd_array_free,
1316 	.map_get_next_key = array_map_get_next_key,
1317 	.map_lookup_elem = fd_array_map_lookup_elem,
1318 	.map_delete_elem = fd_array_map_delete_elem,
1319 	.map_fd_get_ptr = cgroup_fd_array_get_ptr,
1320 	.map_fd_put_ptr = cgroup_fd_array_put_ptr,
1321 	.map_check_btf = map_check_no_btf,
1322 	.map_mem_usage = array_map_mem_usage,
1323 	.map_btf_id = &array_map_btf_ids[0],
1324 };
1325 #endif
1326 
1327 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
1328 {
1329 	struct bpf_map *map, *inner_map_meta;
1330 
1331 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1332 	if (IS_ERR(inner_map_meta))
1333 		return inner_map_meta;
1334 
1335 	map = array_map_alloc(attr);
1336 	if (IS_ERR(map)) {
1337 		bpf_map_meta_free(inner_map_meta);
1338 		return map;
1339 	}
1340 
1341 	map->inner_map_meta = inner_map_meta;
1342 
1343 	return map;
1344 }
1345 
1346 static void array_of_map_free(struct bpf_map *map)
1347 {
1348 	/* map->inner_map_meta is only accessed by syscall which
1349 	 * is protected by fdget/fdput.
1350 	 */
1351 	bpf_map_meta_free(map->inner_map_meta);
1352 	bpf_fd_array_map_clear(map, false);
1353 	fd_array_map_free(map);
1354 }
1355 
1356 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
1357 {
1358 	struct bpf_map **inner_map = array_map_lookup_elem(map, key);
1359 
1360 	if (!inner_map)
1361 		return NULL;
1362 
1363 	return READ_ONCE(*inner_map);
1364 }
1365 
1366 static int array_of_map_gen_lookup(struct bpf_map *map,
1367 				   struct bpf_insn *insn_buf)
1368 {
1369 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1370 	u32 elem_size = array->elem_size;
1371 	struct bpf_insn *insn = insn_buf;
1372 	const int ret = BPF_REG_0;
1373 	const int map_ptr = BPF_REG_1;
1374 	const int index = BPF_REG_2;
1375 
1376 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
1377 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
1378 	if (!map->bypass_spec_v1) {
1379 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
1380 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
1381 	} else {
1382 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
1383 	}
1384 	if (is_power_of_2(elem_size))
1385 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
1386 	else
1387 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
1388 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
1389 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1390 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
1391 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
1392 	*insn++ = BPF_MOV64_IMM(ret, 0);
1393 
1394 	return insn - insn_buf;
1395 }
1396 
1397 const struct bpf_map_ops array_of_maps_map_ops = {
1398 	.map_alloc_check = fd_array_map_alloc_check,
1399 	.map_alloc = array_of_map_alloc,
1400 	.map_free = array_of_map_free,
1401 	.map_get_next_key = array_map_get_next_key,
1402 	.map_lookup_elem = array_of_map_lookup_elem,
1403 	.map_delete_elem = fd_array_map_delete_elem,
1404 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1405 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1406 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1407 	.map_gen_lookup = array_of_map_gen_lookup,
1408 	.map_lookup_batch = generic_map_lookup_batch,
1409 	.map_update_batch = generic_map_update_batch,
1410 	.map_check_btf = map_check_no_btf,
1411 	.map_mem_usage = array_map_mem_usage,
1412 	.map_btf_id = &array_map_btf_ids[0],
1413 };
1414